WorldWideScience

Sample records for transition metal hydrogenation

  1. First-row transition metal hydrogenation and hydrosilylation catalysts

    Science.gov (United States)

    Trovitch, Ryan J.; Mukhopadhyay, Tufan K.; Pal, Raja; Levin, Hagit Ben-Daat; Porter, Tyler M.; Ghosh, Chandrani

    2017-07-18

    Transition metal compounds, and specifically transition metal compounds having a tetradentate and/or pentadentate supporting ligand are described, together with methods for the preparation thereof and the use of such compounds as hydrogenation and/or hydrosilylation catalysts.

  2. Solubility of hydrogen in transition metals

    International Nuclear Information System (INIS)

    Lee, H.M.

    1976-01-01

    Correlations exist between the heat of solution of hydrogen and the difference in energy between the lowest lying energy levels of the trivalent d/sup n-1/s electronic configuration and the divalent d/sup n-2/s 2 (or the tetravalent d/sup n/) configuration of the neutral gaseous atoms. The trends observed in the transition metal series are discussed in relation to the number of valence electrons per atom in the transition elements in their metallic and neutral states

  3. Oxidation of Group 8 transition-Metal Hydrides and Ionic Hydrogenation of Ketones and Aldehydes

    Energy Technology Data Exchange (ETDEWEB)

    Smith, Kjell-Tore

    1996-08-01

    Transition-metal hydrides have received considerable attention during the last decades because of their unusual reactivity and their potential as homogeneous catalysts for hydrogenation and other reactions of organic substrates. An important class of catalytic processes where transition-metal hydrides are involved is the homogeneous hydrogenation of alkenes, alkynes, ketones, aldehydes, arenes and nitro compounds. This thesis studies the oxidation of Group 8 transition-metal hydrides and the ionic hydrogenation of ketones and aldehydes.

  4. First-principles study of hydrogen diffusion in transition metal Rhodium

    International Nuclear Information System (INIS)

    Bao, Wulijibilige; Cui, Xin; Wang, Zhi-Ping

    2015-01-01

    In this study, the diffuse pattern and path of hydrogen in transition metal rhodium are investigated by the first-principles calculations. Density functional theory is used to calculate the system energies of hydrogen atom occupying different positions in rhodium crystal lattice. The results indicate that the most stable position of hydrogen atom in rhodium crystal lattice locates at the octahedral interstice, and the tetrahedral interstice is the second stable site. The activation barrier energy for the diffusion of atomic hydrogen in transition metal rhodium is quantified by determining the most favorable path, i.e., the minimum-energy pathway for diffusion, that is the indirect octahedral-tetrahedral-octahedral (O-T-O) pathway, and the activation energy is 0.8345eV

  5. New Transition metal assisted complex borohydrides for hydrogen storage

    International Nuclear Information System (INIS)

    Sesha Srinivasan; Elias Lee Stefanakos; Yogi Goswami

    2006-01-01

    High capacity hydrogen storage systems are indeed essential for the on-board vehicular application that leads to the pollution free environment. Apart from the various hydrogen storage systems explored in the past, complex hydrides involving light weight alkali/alkaline metals exhibits promising hydrogenation/ dehydrogenation characteristics. New transition metal assisted complex borohydrides [Zn(BH 4 ) 2 ] have been successfully synthesized by an inexpensive mechano-chemical process. These complex hydrides possesses gravimetric hydrogen storage capacity of ∼8.4 wt.% at around 120 C. We have determined the volumetric hydrogen absorption and desorption of these materials for a number of cycles. Another complex borohydride mixture LiBH 4 /MgH 2 catalyzed with ZnCl 2 has been synthesized and characterized using various analytical techniques. (authors)

  6. Insulator-metal transition of fluid molecular hydrogen

    International Nuclear Information System (INIS)

    Ross, M.

    1996-01-01

    Dynamically compressed fluid hydrogen shows evidence for metallization at the relatively low pressure of 140 GPa (1.4 Mbar) while experiments on solid hydrogen made in a diamond-anvil cell have failed to detect any evidence for gap closure up to a pressure of 230 GPa (2.3 Mbar). Two possible mechanisms for metal- liclike resistivity are put forward. The first is that as a consequence of the large thermal disorder in the fluid (kT∼0.2 endash 0.3 eV) short-range molecular interactions lead to band tailing that extends the band edge into the gap, resulting in closure at a lower pressure than in the solid. The second mechanism argues that molecular dissociation creates H atoms that behave similar to n-type donors in a heavily doped semiconductor and undergo a nonmetal-metal Mott-type transition. copyright 1996 The American Physical Society

  7. Review of thermodinamic and mechanical properties of hydrogen-transition metal systems

    International Nuclear Information System (INIS)

    Mathias, H.; Katz, Y.

    1978-04-01

    A large body of fundamental and empirical knowledge has been acquired during many years of research concerning the interactions between hydrogen and metals, the location of hydrogen in metal structures, its mobility in metals and its influence on mechanical properties of metals. Much progress has been made in the understanding of related phenomena, and various theories have been proposed, but considerable disagreement still exist about basic mechanisms involved. The growing interest in these subjects and their important role in science and technology are well documented by many reviews and symposia. A general survey of these topics with reference to experimental results and theories related to thermodynamic and mechanical properties of hydrogen-transition metal systems, such as H-Pd, H-Ti, H-Fe etc. is given in the present review. Special emphasis is given to hydrogen embrittlement of metals

  8. Biomass transition metal hydrogen-evolution electrocatalysts and electrodes

    Energy Technology Data Exchange (ETDEWEB)

    Chen, Wei-Fu; Iyer, Shweta; Iyer, Shilpa; Sasaki, Kotaro; Muckerman, James T.; Fujita, Etsuko

    2017-02-28

    A catalytic composition from earth-abundant transition metal salts and biomass is disclosed. A calcined catalytic composition formed from soybean powder and ammonium molybdate is specifically exemplified herein. Methods for making the catalytic composition are disclosed as are electrodes for hydrogen evolution reactions comprising the catalytic composition.

  9. Hydrogen and dihydrogen bonding of transition metal hydrides

    Science.gov (United States)

    Jacobsen, Heiko

    2008-04-01

    Intermolecular interactions between a prototypical transition metal hydride WH(CO) 2NO(PH 3) 2 and a small proton donor H 2O have been studied using DFT methodology. The hydride, nitrosyl and carbonyl ligand have been considered as site of protonation. Further, DFT-D calculations in which empirical corrections for the dispersion energy are included, have been carried out. A variety of pure and hybrid density functionals (BP86, PW91, PBE, BLYP, OLYP, B3LYP, B1PW91, PBE0, X3LYP) have been considered, and our calculations indicate the PBE functional and its hybrid variation are well suited for the calculation of transition metal hydride hydrogen and dihydrogen bonding. Dispersive interactions make up for a sizeable portion of the intermolecular interaction, and amount to 20-30% of the bond energy and to 30-40% of the bond enthalpy. An energy decomposition analysis reveals that the H⋯H bond of transition metal hydrides contains both covalent and electrostatic contributions.

  10. Hydrogen and dihydrogen bonding of transition metal hydrides

    International Nuclear Information System (INIS)

    Jacobsen, Heiko

    2008-01-01

    Intermolecular interactions between a prototypical transition metal hydride WH(CO) 2 NO(PH 3 ) 2 and a small proton donor H 2 O have been studied using DFT methodology. The hydride, nitrosyl and carbonyl ligand have been considered as site of protonation. Further, DFT-D calculations in which empirical corrections for the dispersion energy are included, have been carried out. A variety of pure and hybrid density functionals (BP86, PW91, PBE, BLYP, OLYP, B3LYP, B1PW91, PBE0, X3LYP) have been considered, and our calculations indicate the PBE functional and its hybrid variation are well suited for the calculation of transition metal hydride hydrogen and dihydrogen bonding. Dispersive interactions make up for a sizeable portion of the intermolecular interaction, and amount to 20-30% of the bond energy and to 30-40% of the bond enthalpy. An energy decomposition analysis reveals that the H...H bond of transition metal hydrides contains both covalent and electrostatic contributions

  11. Tethered Transition Metals Promoted Photocatalytic System for Efficient Hydrogen Evolutions

    KAUST Repository

    Takanabe, Kazuhiro

    2015-03-05

    The present invention is directed, at least in part, to a process for improving the efficiency of a photocatalyst (a semiconductor photocatalyst) by tethering (depositing) a metal (e.g., metal ions of a late transition metal, such as nickel) to the semiconductor (photocatalyst) surface through the use of an organic ligand. More specifically, 1,2-ethanedithiol (EDT) functions as an excellent molecular linker (organic ligand) to attach a transition metal complex (e.g., nickel (Ni.sup.2+ ions)) to the semiconductor surface, which can be in the form of a cadmium sulfide surface. The photocatalyst has particular utility in generating hydrogen from H.sub.2S.

  12. Tethered Transition Metals Promoted Photocatalytic System for Efficient Hydrogen Evolutions

    KAUST Repository

    Takanabe, Kazuhiro; Isimjan, Tayirjan; Yu, Weili; Del Gobbo, Silvano; Xu, Wei

    2015-01-01

    The present invention is directed, at least in part, to a process for improving the efficiency of a photocatalyst (a semiconductor photocatalyst) by tethering (depositing) a metal (e.g., metal ions of a late transition metal, such as nickel) to the semiconductor (photocatalyst) surface through the use of an organic ligand. More specifically, 1,2-ethanedithiol (EDT) functions as an excellent molecular linker (organic ligand) to attach a transition metal complex (e.g., nickel (Ni.sup.2+ ions)) to the semiconductor surface, which can be in the form of a cadmium sulfide surface. The photocatalyst has particular utility in generating hydrogen from H.sub.2S.

  13. Tunable hydrogen storage in magnesium-transition metal compounds: first-principles calculations

    NARCIS (Netherlands)

    Er, S.; Tiwari, Dhirendra; Tiwari, D.; de Wijs, Gilles A.; Brocks, G.

    2009-01-01

    Magnesium dihydride (MgH2) stores 7.7 wt % hydrogen but it suffers from a high thermodynamic stability and slow (de)hydrogenation kinetics. Alloying Mg with lightweight transition metals (TM) (=Sc,Ti,V,Cr) aims at improving the thermodynamic and kinetic properties. We study the structure and

  14. Hydrogen and dihydrogen bonding of transition metal hydrides

    Energy Technology Data Exchange (ETDEWEB)

    Jacobsen, Heiko [KemKom, Libellenweg 2, 25917 Leck, Nordfriesland (Germany)], E-mail: jacobsen@kemkom.com

    2008-04-03

    Intermolecular interactions between a prototypical transition metal hydride WH(CO){sub 2}NO(PH{sub 3}){sub 2} and a small proton donor H{sub 2}O have been studied using DFT methodology. The hydride, nitrosyl and carbonyl ligand have been considered as site of protonation. Further, DFT-D calculations in which empirical corrections for the dispersion energy are included, have been carried out. A variety of pure and hybrid density functionals (BP86, PW91, PBE, BLYP, OLYP, B3LYP, B1PW91, PBE0, X3LYP) have been considered, and our calculations indicate the PBE functional and its hybrid variation are well suited for the calculation of transition metal hydride hydrogen and dihydrogen bonding. Dispersive interactions make up for a sizeable portion of the intermolecular interaction, and amount to 20-30% of the bond energy and to 30-40% of the bond enthalpy. An energy decomposition analysis reveals that the H...H bond of transition metal hydrides contains both covalent and electrostatic contributions.

  15. Magnesium nanoparticles with transition metal decoration for hydrogen storage

    International Nuclear Information System (INIS)

    Pasquini, Luca; Callini, Elsa; Brighi, Matteo; Boscherini, Federico; Montone, Amelia; Jensen, Torben R.; Maurizio, Chiara; Vittori Antisari, Marco; Bonetti, Ennio

    2011-01-01

    We report on the hydrogen storage behaviour of Mg nanoparticles (NPs) (size range 100 nm–1 μm) with metal-oxide core–shell morphology synthesized by inert gas condensation and decorated by transition metal (TM) (Pd or Ti) clusters via in situ vacuum deposition. The structure and morphology of the as-prepared and hydrogenated NPs is studied by electron microscopy, X-ray diffraction including in situ experiments and X-ray absorption spectroscopy, in order to investigate the relationships with the hydrogen storage kinetics measured by the volumetric Sieverts method. With both Pd and Ti, the decoration deeply improves the hydrogen sorption properties: previously inert NPs exhibit complete hydrogenation with fast transformation kinetics, good stability and reversible gravimetric capacity that can attain 6 wt%. In the case of Pd-decoration, the occurrence of Mg–Pd alloying is observed at high temperatures and in dependence of the hydrogen pressure conditions. These structural transformations modify both the kinetics and thermodynamics of hydride formation, while Ti-decoration has an effect only on the kinetics. The experimental results are discussed in relation with key issues such as the amount of decoration, the heat of mixing between TM and Mg and the binding energy between TM and hydrogen.

  16. High capacity hydrogen absorption in transition-metal ethylene complexes: consequences of nanoclustering

    International Nuclear Information System (INIS)

    Phillips, A B; Shivaram, B S

    2009-01-01

    We have recently shown that organo-metallic complexes formed by laser ablating transition metals in ethylene are high hydrogen absorbers at room temperature (Phillips and Shivaram 2008 Phys. Rev. Lett. 100 105505). Here we show that the absorption percentage depends strongly on the ethylene pressure. High ethylene pressures (>100 mTorr) result in a lowered hydrogen uptake. Transmission electron microscopy measurements reveal that while low pressure ablations result in metal atoms dispersed uniformly on a near atomic scale, high pressure ones yield distinct nanoparticles with electron energy-loss spectroscopy demonstrating that the metal atoms are confined solely to the nanoparticles.

  17. First-principles study of hydrogen dissociation and diffusion on transition metal-doped Mg(0 0 0 1) surfaces

    International Nuclear Information System (INIS)

    Wang, Zhiwen; Guo, Xinjun; Wu, Mingyi; Sun, Qiang; Jia, Yu

    2014-01-01

    First-principles calculations within the density functional theory (DFT) have been carried out to study hydrogen molecules dissociation and diffusion on clean and transition metals (TMs) doped Mg(0 0 0 1) surfaces following Pozzo et al. work. Firstly, the stability of Mg(0 0 0 1) surface doped with transition metals atom has been studied. The results showed that transition metals on the left of the table tend to substitute Mg in the second layer, while the other transition metals prefer to substitute Mg in the first layer. Secondly, we studied hydrogen molecules dissociation and diffusion on clean and Mg(0 0 0 1) surfaces which the transition metal atoms substituted both in the first layer and second layer. When transition metal atoms substitute in the first layer, the results agree with the Pozzo et al. result; when transition metal atoms substitute in the second layer, the results showed that the transition metals on the left of the periodic table impact on the dissociation barriers is less. However, for the transition metals (Mn, Fe, Co, Ni) on the right, there is a great impact on the barriers. The transition metals doped surfaces bind the dissociated H atoms loosely, making them easily diffused. The results further reveal that the Fe dopant on the Mg surface is the best choice for H 2 dissociation and hydrogen storage.

  18. Heat of solution and site energies of hydrogen in disordered transition-metal alloys

    International Nuclear Information System (INIS)

    Brouwer, R.C.; Griessen, R.

    1989-01-01

    Site energies, long-range effective hydrogen-hydrogen interactions, and the enthalpy of solution in transition-metal alloys are calculated by means of an embedded-cluster model. The energy of a hydrogen atom is assumed to be predominantly determined by the first shell of neighboring metal atoms. The semiempirical local band-structure model is used to calculate the energy of the hydrogen atoms in the cluster, taking into account local deviations from the average lattice constant. The increase in the solubility limit and the weak dependence of the enthalpy of solution on hydrogen concentration in disordered alloys are discussed. Calculated site energies and enthalpies of solution in the alloys are compared with experimental data, and good agreement is found. Due to the strong interactions with the nearest-neighbor metal atoms, hydrogen atoms can be used to determine local lattice separations and the extent of short-range order in ''disordered'' alloys

  19. Ternary Amides Containing Transition Metals for Hydrogen Storage: A Case Study with Alkali Metal Amidozincates.

    Science.gov (United States)

    Cao, Hujun; Richter, Theresia M M; Pistidda, Claudio; Chaudhary, Anna-Lisa; Santoru, Antonio; Gizer, Gökhan; Niewa, Rainer; Chen, Ping; Klassen, Thomas; Dornheim, Martin

    2015-11-01

    The alkali metal amidozincates Li4 [Zn(NH2)4](NH2)2 and K2[Zn(NH2)4] were, to the best of our knowledge, studied for the first time as hydrogen storage media. Compared with the LiNH2-2 LiH system, both Li4 [Zn(NH2)4](NH2)2-12 LiH and K2[Zn(NH2)4]-8 LiH systems showed improved rehydrogenation performance, especially K2[Zn(NH2)4]-8 LiH, which can be fully hydrogenated within 30 s at approximately 230 °C. The absorption properties are stable upon cycling. This work shows that ternary amides containing transition metals have great potential as hydrogen storage materials. © 2015 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  20. Metallic hydrogen research

    International Nuclear Information System (INIS)

    Burgess, T.J.; Hawke, R.S.

    1978-01-01

    Theoretical studies predict that molecular hydrogen can be converted to the metallic phase at very high density and pressure. These conditions were achieved by subjecting liquid hydrogen to isentropic compression in a magnetic-flux compression device. Hydrogen became electrically conducting at a density of about 1.06 g/cm 3 and a calculated pressure of about 2 Mbar. In the experimental device, a cylindrical liner, on implosion by high explosive, compresses a magnetic flux which in turn isentropically compresses a hydrogen sample; coaxial conical anvils prevent escape of the sample during compression. One anvil contains a coaxial cable that uses alumina ceramic as an insulator; this probe allows continuous measurement of the electrical conductivity of the hydrogen. A flash x-ray radiograph exposed during the experiment records the location of the sample-tube boundaries and permits calculation of the sample density. The theoretical underpinnings of the metallic transition of hydrogen are briefly summarized, and the experimental apparatus and technique, analytical methods, and results are described. 9 figures

  1. Synthesis of Mg2FeH6 containing as additives transition metal and transition metal fluorides or carbon

    International Nuclear Information System (INIS)

    Zepon, G.; Leiva, D.R.; Botta, W.J.

    2010-01-01

    The Mg 2 FeH 6 is a promising way of storing hydrogen in solid form, composed by elements that have low cost and, at the same time, high volumetric storage density: 150 kg H 2 /m 3 . However, this complex hydride is not easily synthesized as a single phase material. The hydrogen sorption high temperature and slow kinetics are the major limitations for the practical application of the Mg 2 FeH 6 as a hydrogen storage material. Little is known about the effects of additives in Mg 2 FeH 6 based nanocomposites in this work were synthesized by MAE under hydrogen atmosphere nanocomposites based on Mg 2 FeH 6 containing additives as transition metals, transition metals fluorides of transition metals or carbon, in order to obtain information on the effects of the selected additives. To this end, we used characterization techniques such as XRD, SEM and TEM, thermal analysis by DSC and curves made in apparatus PCT.(author)

  2. Metallic hydrogen: The most powerful rocket fuel yet to exist

    Energy Technology Data Exchange (ETDEWEB)

    Silvera, Isaac F [Lyman Laboratory of Physics, Harvard University, Cambridge MA 02138 (United States); Cole, John W, E-mail: silvera@physics.harvard.ed [NASA MSFC, Huntsville, AL 35801 (United States)

    2010-03-01

    Wigner and Huntington first predicted that pressures of order 25 GPa were required for the transition of solid molecular hydrogen to the atomic metallic phase. Later it was predicted that metallic hydrogen might be a metastable material so that it remains metallic when pressure is released. Experimental pressures achieved on hydrogen have been more than an order of magnitude higher than the predicted transition pressure and yet it remains an insulator. We discuss the applications of metastable metallic hydrogen to rocketry. Metastable metallic hydrogen would be a very light-weight, low volume, powerful rocket propellant. One of the characteristics of a propellant is its specific impulse, I{sub sp}. Liquid (molecular) hydrogen-oxygen used in modern rockets has an Isp of {approx}460s; metallic hydrogen has a theoretical I{sub sp} of 1700s. Detailed analysis shows that such a fuel would allow single-stage rockets to enter into orbit or carry economical payloads to the moon. If pure metallic hydrogen is used as a propellant, the reaction chamber temperature is calculated to be greater than 6000 K, too high for currently known rocket engine materials. By diluting metallic hydrogen with liquid hydrogen or water, the reaction temperature can be reduced, yet there is still a significant performance improvement for the diluted mixture.

  3. Time-Dependent Density Functional Theory Analysis of Triphenylamine-Functionalized Graphene Doped with Transition Metals for Photocatalytic Hydrogen Production.

    Science.gov (United States)

    Mota, Elder A V; Neto, Abel F G; Marques, Francisco C; Mota, Gunar V S; Martins, Marcelo G; Costa, Fabio L P; Borges, Rosivaldo S; Neto, Antonio M J C

    2018-07-01

    The electronic structures and optical properties of triphenylamine-functionalized graphene (G-TPA) doped with transition metals, using water as a solvent, were theoretically investigated to verify the efficiency of photocatalytic hydrogen production with the use of transition metals. This study was performed by Density Functional Theory and Time-dependent Density Functional Theory through Gaussian 09W software, adopting the B3LYP functional for all structures. The 6-31g(d) basis set was used for H, C and N atoms, and the LANL2DZ basis set for transition metals using the Effective Core Potentials method. Two approaches were adopted: (1) using single metallic dopants (Ni, Pd, Fe, Os and Pt) and (2) using combinations of Ni with the other dopants (NiPd, NiPt, NiFe and NiOs). The DOS spectra reveal an increase of accessible states in the valence shell, in addition to a gap decrease for all dopants. This doping also increases the absorption in the visible region of solar radiation where sunlight is most intense (400 nm to 700 nm), with additional absorption peaks. The results lead us to propose the G-TPA structures doped with Ni, Pd, Pt, NiPt or NiPd to be novel catalysts for the conversion of solar energy for photocatalytic hydrogen production, since they improve the absorption of solar energy in the range of interest for solar radiation; and act as reaction centers, reducing the required overpotential for hydrogen production from water.

  4. The status and immediate problems of the chemistry of transition metal hydrides

    International Nuclear Information System (INIS)

    Meikheeva, V.I.

    1978-01-01

    The state of the art and perspectives of the chemistry transition metal hydrides are reviewed, the hydrides being essentially compounds with interstitial hydrogen in the crystal lattice of the metals. The possibilities of hydrogenation of transition metals are considered along with that of compounds of rare earth elements with metals of the iron family. It is shown that the products of hydrogenation of many alloys are unstable and disintegrate forming simpler hydrides. The phase diagram of La-Ni-H system resembles the isotherm of a ternary metal system with the difference that no continuous series of solid solutions is formed. Most hydrogenation products across LaHsub(2-3)-NiH are X-ray amorphous. The nature of hydrogen in hydrides is discussed along with the possibilities of synthesis of new hydrides of transition metals

  5. Electron-doping by hydrogen in transition-metal dichalcogenides

    Science.gov (United States)

    Oh, Sehoon; Im, Seongil; Choi, Hyoung Joon

    Using first-principles calculations, we investigate the atomic and electronic structures of 2H-phase transition-metal dichalcogenides (TMDC), 2H-MX2, with and without defects, where M is Mo or W and X is S, Se or Te. We find that doping of atomic hydrogen on 2H-MX2 induces electron doping in the conduction band. To understand the mechanism of this electron doping, we analyze the electronic structures with and without impurities. We also calculate the diffusion energy barrier to discuss the spatial stability of the doping. Based on these results, we suggest a possible way to fabricate elaborately-patterned circuits by modulating the carrier type of 2H-MoTe2. We also discuss possible applications of this doping in designing nano-devices. This work was supported by NRF of Korea (Grant No. 2011-0018306) and KISTI supercomputing center (Project No. KSC-2016-C3-0052).

  6. Theoretical study of hydrogen storage in metal hydrides.

    Science.gov (United States)

    Oliveira, Alyson C M; Pavão, A C

    2018-05-04

    Adsorption, absorption and desorption energies and other properties of hydrogen storage in palladium and in the metal hydrides AlH 3 , MgH 2 , Mg(BH 4 ) 2 , Mg(BH 4 )(NH 2 ) and LiNH 2 were analyzed. The DFT calculations on cluster models show that, at a low concentration, the hydrogen atom remains adsorbed in a stable state near the palladium surface. By increasing the hydrogen concentration, the tetrahedral and the octahedral sites are sequentially occupied. In the α phase the tetrahedral site releases hydrogen more easily than at the octahedral sites, but the opposite occurs in the β phase. Among the hydrides, Mg(BH 4 ) 2 shows the highest values for both absorption and desorption energies. The absorption energy of LiNH 2 is higher than that of the palladium, but its desorption energy is too high, a recurrent problem of the materials that have been considered for hydrogen storage. The release of hydrogen, however, can be favored by using transition metals in the material structure, as demonstrated here by doping MgH 2 with 3d and 4d-transition metals to reduce the hydrogen atomic charge and the desorption energy.

  7. Ultrahigh-pressure transitions in solid hydrogen

    International Nuclear Information System (INIS)

    Mao, H.; Hemley, R.J.

    1994-01-01

    During the past five years, major progress has been made in the experimental study of solid hydrogen at ultrahigh pressures as a result of developments in diamond-cell technology. Pressures at which metallization has been predicted to occur have been reached (250--300 Gigapascals). Detailed studies of the dynamic, structural, and electronic properties of dense hydrogen reveal a system unexpectedly rich in physical phenomena, exhibiting a variety of transitions at ultrahigh pressures. This colloquium explores the study of dense hydrogen as an archetypal problem in condensed-matter physics

  8. High-pressure phase transition of alkali metal-transition metal deuteride Li2PdD2

    Science.gov (United States)

    Yao, Yansun; Stavrou, Elissaios; Goncharov, Alexander F.; Majumdar, Arnab; Wang, Hui; Prakapenka, Vitali B.; Epshteyn, Albert; Purdy, Andrew P.

    2017-06-01

    A combined theoretical and experimental study of lithium palladium deuteride (Li2PdD2) subjected to pressures up to 50 GPa reveals one structural phase transition near 10 GPa, detected by synchrotron powder x-ray diffraction, and metadynamics simulations. The ambient-pressure tetragonal phase of Li2PdD2 transforms into a monoclinic C2/m phase that is distinct from all known structures of alkali metal-transition metal hydrides/deuterides. The structure of the high-pressure phase was characterized using ab initio computational techniques and from refinement of the powder x-ray diffraction data. In the high-pressure phase, the PdD2 complexes lose molecular integrity and are fused to extended [PdD2]∞ chains. The discovered phase transition and new structure are relevant to the possible hydrogen storage application of Li2PdD2 and alkali metal-transition metal hydrides in general.

  9. Metal-hydrogen systems with an exceptionally large and tunable thermodynamic destabilization

    NARCIS (Netherlands)

    Ngene, Peter; Longo, Alessandro; Mooij, L.P.A.; Bras, Wim; Dam, B.

    2017-01-01

    Hydrogen is a key element in the energy transition. Hydrogen-metal systems have been studied for various energy-related applications, e.g., for their use in reversible hydrogen storage, catalysis, hydrogen sensing, and rechargeable batteries. These applications depend strongly on the

  10. Examining hydrogen transitions.

    Energy Technology Data Exchange (ETDEWEB)

    Plotkin, S. E.; Energy Systems

    2007-03-01

    This report describes the results of an effort to identify key analytic issues associated with modeling a transition to hydrogen as a fuel for light duty vehicles, and using insights gained from this effort to suggest ways to improve ongoing modeling efforts. The study reported on here examined multiple hydrogen scenarios reported in the literature, identified modeling issues associated with those scenario analyses, and examined three DOE-sponsored hydrogen transition models in the context of those modeling issues. The three hydrogen transition models are HyTrans (contractor: Oak Ridge National Laboratory), MARKAL/DOE* (Brookhaven National Laboratory), and NEMS-H2 (OnLocation, Inc). The goals of these models are (1) to help DOE improve its R&D effort by identifying key technology and other roadblocks to a transition and testing its technical program goals to determine whether they are likely to lead to the market success of hydrogen technologies, (2) to evaluate alternative policies to promote a transition, and (3) to estimate the costs and benefits of alternative pathways to hydrogen development.

  11. Metal complex derivatives of hydrogen uranyl phosphate

    International Nuclear Information System (INIS)

    Grohol, D.; Blinn, E.L.

    1994-01-01

    Derivatives of hydrogen uranyl phosphate were prepared by incorporating transition metal complexes into the uranyl phosphate matrix. The transition metal complexes employed include bis(ethylenediamine)copper(II), bis(1,3-propanediamine)copper(II) chloride, (triethylenetetramine)copper(II), (1,4,8,11-tetraazacyclotetradecane)copper(II), (1,4,8,12-tetraazacyclopentadecane)copper(II), (1,4,8,11-tetraazacyclotetradecane)nickel(II) chloride, (triethylenetetramine)nickel(II) and others. The chemical analyses of these derivatives indicated that the incorporation of the transition metal complexes into the uranyl phosphate matrix via ion exchange was not stoichiometric. The extent of ion exchange is dependent on the size and structure of the transition metal complex. All complexes were characterized by X-ray powder diffractometry, electronic and infrared spectra, thermal analyses and chemical analysis. An attempt was made to correlate the degree of quenching of the luminescence of the uranyl ion to the spacing between the uranyl phosphate layers in the derivatives

  12. Hydrogen evolution on nano-particulate transition metal sulfides

    DEFF Research Database (Denmark)

    Bonde, Jacob Lindner; Moses, Poul Georg; Jaramillo, Thomas F.

    2008-01-01

    The hydrogen evolution reaction (HER) on carbon supported MoS2 nanoparticles is investigated and compared to findings with previously published work on Au(111) supported MoS2. An investigation into MoS2 oxidation is presented and used to quantify the surface concentration of MoS2. Other metal sul...

  13. Multiferroic behavior associated with an order-disorder hydrogen bonding transition in metal-organic frameworks (MOFs) with the perovskite ABX3 architecture.

    Science.gov (United States)

    Jain, Prashant; Ramachandran, Vasanth; Clark, Ronald J; Zhou, Hai Dong; Toby, Brian H; Dalal, Naresh S; Kroto, Harold W; Cheetham, Anthony K

    2009-09-30

    Multiferroic behavior in perovskite-related metal-organic frameworks of general formula [(CH(3))(2)NH(2)]M(HCOO)(3), where M = Mn, Fe, Co, and Ni, is reported. All four compounds exhibit paraelectric-antiferroelectric phase transition behavior in the temperature range 160-185 K (Mn: 185 K, Fe: 160 K; Co: 165 K; Ni: 180 K); this is associated with an order-disorder transition involving the hydrogen bonded dimethylammonium cations. On further cooling, the compounds become canted weak ferromagnets below 40 K. This research opens up a new class of multiferroics in which the electrical ordering is achieved by means of hydrogen bonding.

  14. On the thermodynamics of phase transitions in metal hydrides

    Science.gov (United States)

    di Vita, Andrea

    2012-02-01

    Metal hydrides are solutions of hydrogen in a metal, where phase transitions may occur depending on temperature, pressure etc. We apply Le Chatelier's principle of thermodynamics to a particular phase transition in TiH x , which can approximately be described as a second-order phase transition. We show that the fluctuations of the order parameter correspond to fluctuations both of the density of H+ ions and of the distance between adjacent H+ ions. Moreover, as the system approaches the transition and the correlation radius increases, we show -with the help of statistical mechanics-that the statistical weight of modes involving a large number of H+ ions (`collective modes') increases sharply, in spite of the fact that the Boltzmann factor of each collective mode is exponentially small. As a result, the interaction of the H+ ions with collective modes makes a tiny suprathermal fraction of the H+ population appear. Our results hold for similar transitions in metal deuterides, too. A violation of an -insofar undisputed-upper bound on hydrogen loading follows.

  15. Hydrogen-metal systems

    International Nuclear Information System (INIS)

    Wenzl, H.; Springer, T.

    1976-01-01

    A survey is given on the alloys of metal crystals with hydrogen. The system niobium-hydrogen and its properties are especially dealt with: diffusion and heat of solution of hydrogen in the host crystal, phase diagram, coherent and incoherent phase separation, application of metal-hydrogen systems in technology. Furthermore, examples from research work in IFF (Institut fuer Festkoerperforschung) of the Nuclear Research Plant, Juelich, in the field of metal-H systems are given in summary form. (GSC) [de

  16. A DFT investigation on group 8B transition metal-doped silicon carbide nanotubes for hydrogen storage application

    Science.gov (United States)

    Tabtimsai, Chanukorn; Ruangpornvisuti, Vithaya; Tontapha, Sarawut; Wanno, Banchob

    2018-05-01

    The binding of group 8B transition metal (TMs) on silicon carbide nanotubes (SiCNT) hydrogenated edges and the adsorption of hydrogen molecule on the pristine and TM-doped SiCNTs were investigated using the density functional theory method. The B3LYP/LanL2DZ method was employed in all calculations for the considered structural, adsorption, and electronic properties. The Os atom doping on the SiCNT is found to be the strongest binding. The hydrogen molecule displays a weak interaction with pristine SiCNT, whereas it has a strong interaction with TM-doped SiCNTs in which the Os-doped SiCNT shows the strongest interaction with the hydrogen molecule. The improvement in the adsorption abilities of hydrogen molecule onto TM-doped SiCNTs is due to the protruding structure and the induced charge transfer between TM-doped SiCNT and hydrogen molecule. These observations point out that TM-doped SiCNTs are highly sensitive toward hydrogen molecule. Moreover, the adsorptions of 2-5 hydrogen molecules on TM-doped SiCNT were also investigated. The maximum storage number of hydrogen molecules adsorbed on the first layer of TM-doped SiCNTs is 3 hydrogen molecules. Therefore, TM-doped SiCNTs are suitable to be sensing and storage materials for hydrogen gas.

  17. Microporous Metal Organic Materials for Hydrogen Storage

    Energy Technology Data Exchange (ETDEWEB)

    S. G. Sankar; Jing Li; Karl Johnson

    2008-11-30

    We have examined a number of Metal Organic Framework Materials for their potential in hydrogen storage applications. Results obtained in this study may, in general, be summarized as follows: (1) We have identified a new family of porous metal organic framework materials with the compositions M (bdc) (ted){sub 0.5}, {l_brace}M = Zn or Co, bdc = biphenyl dicarboxylate and ted = triethylene diamine{r_brace} that adsorb large quantities of hydrogen ({approx}4.6 wt%) at 77 K and a hydrogen pressure of 50 atm. The modeling performed on these materials agree reasonably well with the experimental results. (2) In some instances, such as in Y{sub 2}(sdba){sub 3}, even though the modeling predicted the possibility of hydrogen adsorption (although only small quantities, {approx}1.2 wt%, 77 K, 50 atm. hydrogen), our experiments indicate that the sample does not adsorb any hydrogen. This may be related to the fact that the pores are extremely small or may be attributed to the lack of proper activation process. (3) Some samples such as Zn (tbip) (tbip = 5-tert butyl isophthalate) exhibit hysteresis characteristics in hydrogen sorption between adsorption and desorption runs. Modeling studies on this sample show good agreement with the desorption behavior. It is necessary to conduct additional studies to fully understand this behavior. (4) Molecular simulations have demonstrated the need to enhance the solid-fluid potential of interaction in order to achieve much higher adsorption amounts at room temperature. We speculate that this may be accomplished through incorporation of light transition metals, such as titanium and scandium, into the metal organic framework materials.

  18. Phase transition temperatures of 405-725 K in superfluid ultra-dense hydrogen clusters on metal surfaces

    International Nuclear Information System (INIS)

    Holmlid, Leif; Kotzias, Bernhard

    2016-01-01

    Ultra-dense hydrogen H(0) with its typical H-H bond distance of 2.3 pm is superfluid at room temperature as expected for quantum fluids. It also shows a Meissner effect at room temperature, which indicates that a transition point to a non-superfluid state should exist above room temperature. This transition point is given by a disappearance of the superfluid long-chain clusters H_2_N(0). This transition point is now measured for several metal carrier surfaces at 405 - 725 K, using both ultra-dense protium p(0) and deuterium D(0). Clusters of ordinary Rydberg matter H(l) as well as small symmetric clusters H_4(0) and H_3(0) (which do not give a superfluid or superconductive phase) all still exist on the surface at high temperature. This shows directly that desorption or diffusion processes do not remove the long superfluid H_2_N(0) clusters. The two ultra-dense forms p(0) and D(0) have different transition temperatures under otherwise identical conditions. The transition point for p(0) is higher in temperature, which is unexpected.

  19. Development of the work function approach to the underpotential deposition of metals. Application to the hydrogen evolution reaction

    International Nuclear Information System (INIS)

    Trasatti, S.

    1975-01-01

    A theory is developed for the underpotential deposition of metals. Concepts are then extended to oxygen and hydrogen adsorption. Analysis of results shows that, unlike oxygen adsorption, hydrogen adsorption in solution probably follows a different pattern with respect to the gas phase situation. The hydrogen evolution reaction is discussed in the light of the above findings and it is shown that usual concepts regarding the reactivity scale of metals towards hydrogen should be reconsidered taking into account solvent and entropy effects. The latters can account for the behaviour of sp-metals. The formers are important with transition metals. The final picture is consistent with the idea that M-H 2 O interactions are much stronger on transition than on sp-metals. (orig.) [de

  20. Nano tubular Transition Metal Oxide for Hydrogen Production

    International Nuclear Information System (INIS)

    Sreekantan, S.; San, E.P.; Kregvirat, W.; Wei, L.C.

    2011-01-01

    TiO 2 , transition metal oxide nano tubes were successfully grown by anodizing of titanium foil (Ti) in ethylene glycol electrolyte containing 5wt. % hydrogen peroxide and 5wt. % ammonium fluoride for 60 minutes at 60V. It was found such electrochemical condition resulted in the formation of nano tube with average diameter of 90nm and length of 6.6 μm. These samples were used to study the effect of W loading by RF sputtering on TiO 2 nano tubes. Amorphous TiO 2 nano tube substrate leads to enhance incorporation of W instead of anatase. Therefore for the entire study, W was sputtered on amorphous TiO 2 nano tube substrate. TiO 2 nano tube sputtered for 1 minute resulted in the formation of W-O-Ti while beyond this point (10 minutes); it accumulates to form a self independent structure of WO 3 on the surface of the nano tubes. TiO 2 nano tube sputtered for 1 minute at 150 W and annealed at 450 degree Celsius exhibited best photocurrent density (1.4 mA/ cm 2 ) with photo conversion efficiency of 2.5 %. The reason for such behavior is attributed to W 6+ ions allows for electron traps that suppress electron hole recombination and exploit the lower band gap of material to produce a water splitting process by increasing the charge separation and extending the energy range of photoexcitation for the system. (author)

  1. The behavior of hydrogen in metals

    International Nuclear Information System (INIS)

    Hirabayashi, Makoto

    1975-01-01

    Explanation is made on the equilibrium diagrams of metal-hydrogen systems and the state of hydrogen in metals. Some metals perform exothermic reaction with hydrogen, and the others endothermic reaction. The former form stable hydrides and solid solutions over a wide range of composition. Hydrogen atoms in fcc and bcc metals are present at the interstitial positions of tetrahedron lattice and octahedron lattice. For example, hydrogen atoms in palladium are present at the intersititial positions of octahedron. When the ratio of the composition of hydrogen and palladium is 1:1, the structure becomes NaCl type. Hydrogen atoms in niobium and vanadium and present interstitially in tetrahedron lattice. Metal hydrides with high hydrogen concentration are becoming important recently as the containers of hydrogen. Hydrogen atoms diffuse in metals quite easily. The activation energy of the diffusion of hydrogen atoms in Nb and V is about 2-3 kcal/g.atom. The diffusion coefficient is about 10 -5 cm 2 /sec in alpha phase at room temperature. The number of jumps of a hydrogen atom between neighboring lattice sites is 10 11 --10 12 times per second. This datum is almost the same as that of liquid metals. Discussion is also made on the electronic state of hydrogen in metals. (Fukutomi, T.)

  2. Phase transition temperatures of 405-725 K in superfluid ultra-dense hydrogen clusters on metal surfaces

    Energy Technology Data Exchange (ETDEWEB)

    Holmlid, Leif, E-mail: holmlid@chem.gu.se [Atmospheric Science, Department of Chemistry, University of Gothenburg, SE-412 96 Göteborg (Sweden); Kotzias, Bernhard [Airbus DS, Department Mechanical Engineering, D28199 Bremen (Germany)

    2016-04-15

    Ultra-dense hydrogen H(0) with its typical H-H bond distance of 2.3 pm is superfluid at room temperature as expected for quantum fluids. It also shows a Meissner effect at room temperature, which indicates that a transition point to a non-superfluid state should exist above room temperature. This transition point is given by a disappearance of the superfluid long-chain clusters H{sub 2N}(0). This transition point is now measured for several metal carrier surfaces at 405 - 725 K, using both ultra-dense protium p(0) and deuterium D(0). Clusters of ordinary Rydberg matter H(l) as well as small symmetric clusters H{sub 4}(0) and H{sub 3}(0) (which do not give a superfluid or superconductive phase) all still exist on the surface at high temperature. This shows directly that desorption or diffusion processes do not remove the long superfluid H{sub 2N}(0) clusters. The two ultra-dense forms p(0) and D(0) have different transition temperatures under otherwise identical conditions. The transition point for p(0) is higher in temperature, which is unexpected.

  3. Interaction of hydrogen and oxygen with bulk defects and surfaces of metals

    International Nuclear Information System (INIS)

    Besenbacher, F.

    1994-05-01

    The thesis deals with the interaction of hydrogen with defects in metals and the interaction of hydrogen and oxygen with metal surfaces studied by ion-beam techniques and scanning tunneling microscopy (STM), respectively. The first part of the thesis discusses the interaction of hydrogen with simple defects in transition metals. The trap-binding enthalpies and the lattice location of hydrogen trapped to vacancies have been determined, and an extremely simple and versatile picture of the hydrogen-metal interaction has evolved, in which the trap strength is mainly determined by the local electron density. Any dilution of the lattice will lead to a trap, vacancies and voids being the strongest trap. It is found that hydrogen trapped to vacancies in fcc metals is quantum-mechanically delocalized, and the excitation energies for the hydrogen in the vacancy potential are a few MeV only. The interaction of hydrogen with metal surfaces is studied by the transmission channeling (TC) technique. It is found that hydrogen chemisorbs in the highest-coordinated sites on the surfaces, and that there is a direct relationship between the hydrogen-metal bond length and the coordination number for the hydrogen. In the final part of the thesis the dynamics of the chemisorption process for oxygen and hydrogen on metal surfaces is studied by STM, a fascinating and powerful technique for exploring the atomic-scale realm of surfaces. It is found that there is a strong coupling between the chemisorption process and the distortion of the metal surface. The adsorbates induce a surface reconstruction, i.e. metal-metal bond breaks and metal-adsorbate bounds form. Whereas hydrogen interacts weakly with the metals and induces reconstructions where only nnn metals bonds are broken, oxygen interacts strongly with the metal, and the driving force for the O-induced reconstructions appears to be the formation of low-coordinated metal-O rows, formed by breaking of nn metal bonds. Finally it is shown

  4. Catalytic activity of γ-irradiated transition metal ions in the decomposition of hydrogen peroxide

    International Nuclear Information System (INIS)

    Arnikar, H.J.; Kapadi, A.H.; Gohad, A.S.; Bhosale, S.B.

    1988-01-01

    The catalystic decomposition of hydrogen peroxide by transition metal ions, Fe 2+ , Fe 3+ , Co 2+ and Cu 2+ , adsorbed on neutral α-alumina was studied over the temperature range of 295-313 K. γ-irradiation of the catalysts to a dose of 0.12 MGy enhanced markedly the first order decomposition rate. Negligible in the case of Cu 2+ , the radiation effect increased roughly in the order of the number of unpaired d electrons in these ions: Cu(II), Fe(II), Co(II) and Fe(III). Results are explained on the basis of Kremer's mechanism of electron induced heterogeneous decomposition of H 2 O 2 . The radiation effect is attributed to the initial excess of electrons released from traps in the beginning of the reaction

  5. Final Report: Metal Perhydrides for Hydrogen Storage

    Energy Technology Data Exchange (ETDEWEB)

    Hwang, J-Y.; Shi, S.; Hackney, S.; Swenson, D.; Hu, Y.

    2011-07-26

    H molecule contains one hydrogen atom because the valence of a Li ion is +1. One MgH2 molecule contains two hydrogen atoms because the valence of a Mg ion is +2. In metal perhydrides, a molecule could contain more hydrogen atoms than expected based on the metal valance, i.e. LiH1+n and MgH2+n (n is equal to or greater than 1). When n is sufficiently high, there will be plenty of hydrogen storage capacity to meet future requirements. The existence of hydrogen clusters, Hn+ (n = 5, 7, 9, 11, 13, 15) and transition metal ion-hydrogen clusters, M+(H2)n (n = 1-6), such as Sc(H2)n+, Co(H2)n+, etc., have assisted the development of this concept. Clusters are not stable species. However, their existence stimulates our approach on using electric charges to enhance the hydrogen adsorption in a hydrogen storage system in this study. The experimental and modeling work to verify it are reported here. Experimental work included the generation of cold hydrogen plasma through a microwave approach, synthesis of sorbent materials, design and construction of lab devices, and the determination of hydrogen adsorption capacities on various sorbent materials under various electric field potentials and various temperatures. The results consistently show that electric potential enhances the adsorption of hydrogen on sorbents. NiO, MgO, activated carbon, MOF, and MOF and platinum coated activated carbon are some of the materials studied. Enhancements up to a few hundred percents have been found. In general, the enhancement increases with the electrical potential, the pressure applied, and the temperature lowered. Theoretical modeling of the hydrogen adsorption on the sorbents under the electric potential has been investigated with the density functional theory (DFT) approach. It was found that the interaction energy between hydrogen and sorbent is increased remarkably when an electric field is applied. This increase of binding energy offers a potential solution for DOE when looking for a compromise

  6. Complex Metal Hydrides for hydrogen storage and solid-state ion conductors

    DEFF Research Database (Denmark)

    Payandeh GharibDoust, SeyedHosein

    and electricity in batteries. However, both hydrogen and electricity must be stored in a very dense way to be useful, e.g. for mobile applications. Complex metal hydrides have high hydrogen density and have been studied during the past twenty years in hydrogen storage systems. Moreover, they have shown high ionic...... conductivities which promote their application as solid electrolytes in batteries. This dissertation presents the synthesis and characterization of a variety of complex metal hydrides and explores their hydrogen storage properties and ionic conductivity. Five halide free rare earth borohydrides RE(BH4)3, (RE...... = La, Ce, Pr, Nd, Er) have been synthesized, which pave the way for studying the polymorphic transition in these compounds, obtaining new bimetallic borohydrides and designing new reactive hydride composites with improved hydrogen storage capacities. Two novel polymorphs of Pr(BH4)3 are identified...

  7. Hydrogenated Graphene Nanoflakes: Semiconductor to Half-Metal Transition and Remarkable Large Magnetism

    Energy Technology Data Exchange (ETDEWEB)

    Zhou, Yungang; Wang, Zhiguo; Yang, Ping; Sun, Xin; Zu, Xiaotao; Gao, Fei

    2012-03-08

    The electronic and magnetic properties of graphene nanoflakes (GNFs) can be tuned by patterned adsorption of hydrogen. Controlling the H coverage from bare GNFs to half hydrogenated and then to fully hydrogenated GNFs, the transformation of small-gap semiconductor {yields} half-metal {yields} wide-gap semiconductor occurs, accompanied by a magnetic {yields} magnetic {yields} nonmagnetic transfer and a nonmagnetic {yields} magnetic {yields} nonmagnetic transfer for triangular and hexagonal nanoflakes, respectively. The half hydrogenated GNFs, associated with strong spin polarization around the Fermi level, exhibit the unexpected large spin moment that is scaled squarely with the size of flakes. The induced spin magnetizations of these nanoflakes align parallel and lead to a substantial collective character, enabling the half hydrogenated GNFs to be spin-filtering flakes. These hydrogenation-dependent behaviors are then used to realize an attractive approach to engineer the transport properties, which provides a new route to facilitate the design of tunable spin devices.

  8. Ab initio investigation on hydrogen adsorption capability in Zn and Cu-based metal organic frameworks

    Energy Technology Data Exchange (ETDEWEB)

    Tanuwijaya, V. V., E-mail: viny.veronika@gmail.com [Engineering Physics, Faculty of Industrial Technology, Institut Teknologi Bandung Jalan Ganeca 10 Gd. T.P. Rachmat, Bandung 40132 (Indonesia); Hidayat, N. N., E-mail: avantgarde.vee@gmail.com; Agusta, M. K., E-mail: kemal@fti.itb.ac.id; Dipojono, H. K., E-mail: dipojono@tf.itb.ac.id

    2015-09-30

    One of the biggest challenge in material technology for hydrogen storage application is to increase hydrogen uptake in room temperature and pressure. As a class of highly porous material, Metal-Organic Frameworks (MOF) holds great potential with its tunable structure. However, little is known about the effect of metal cluster to its hydrogen storage capability. Investigation on this matter has been carried out carefully on small cluster of Zn and Cu-based MOF using first principles method. The calculation of two distinct building units of MOFs, namely octahedral and paddle-wheel models, have been done with B3LYP density functional method using 6-31G(d,p) and LANL2DZ basis sets. From geometry optimization of Zn-based MOF linked by benzene-dicarboxylate (MOF-5), it is found that hydrogen tends to keep distance from metal cluster group and stays above benzene ring. In the other hand, hydrogen molecule prefers to stay atop of the exposed Cu atom in Cu-based MOF system linked by the same linker group (Cu-bdc). Calculated hydrogen binding enthalpies for Zn and Cu octahedral cages at ZnO{sub 3} sites are 1.64kJ/mol and 2.73kJ/mol respectively, while hydrogen binding enthalpies for Zn and Cu paddle-wheel cages calculated on top of metal atoms are found to be at 6.05kJ/mol and 6.10kJ/mol respectively. Major difference between Zn-MOF-5 and Cu-bdc hydrogen uptake performance might be caused by unsaturated metal sites present in Cu-bdc system and the influence of their geometric structures, although a small difference on binding energy in the type of transition metal used is also observed. The comparison between Zn and Cu-based MOF may contribute to a comprehensive understanding of metal clusters and the importance of selecting best transition metal for design and synthesis of metal-organic frameworks.

  9. Transition metal-free oxidation of benzylic alcohols to carbonyl compounds by hydrogen peroxide in the presence of acidic silica gel

    Directory of Open Access Journals (Sweden)

    Hossein Ghafuri

    2015-01-01

    Full Text Available Oxidation of alcohols to carbonyl compounds has become an important issue in the process industry as well as many other applications. In this method, various benzylic alcohols were successfully converted to corresponding aldehydes and ketones under transition metal-free condition using hydrogen peroxide in the presence of some amount of catalytic acidic silica gel. Silica gel is inexpensive and available. One of the most important features of this method is its short reaction time.

  10. Hydrogen permeation through metallic foils

    International Nuclear Information System (INIS)

    Bernardi, M.I.B.; Rodrigues, J.A.

    1987-01-01

    The process of electrolytic permeation of hydrogen through metallic foils is studied. A double electrolytic cell, in glass, in which the two compartments of reaction are separated by a metallic foil to be studied, was built. As direct result, the hydrogen diffusion coefficient in the metal is obtained. The hydrogen diffusion coefficients in the palladium and, in austenitic stainless steels 304 and 304 L, used in the Angra-1 reactor, were obtained. Samples of stainless steels with and without welding, were used. (Author) [pt

  11. Microstructural studies of hydrogen and deuterium in bcc refractory metals. Final technical report

    International Nuclear Information System (INIS)

    Moss, S.C.

    1984-04-01

    Research was conducted on the microstructural atomic arrangements in alloys of hydrogen and deuterium with bcc refractory metals with emphasis on V and Nb. Because these are interstitial phases in which the host metal lattice is substantially deformed by the incorporation of the H(D) atoms, there are pronounced x-ray scattering effects. X-ray diffraction was used, with neutron scattering providing useful corollary data. One objective was to determine the phase relations, solid solution structures and phase transitions in metal-hydride alloys which depend upon the hydrogen-hydrogen interaction via the displacement field of the metal atoms. This has often included the elucidation of subtle thermodynamic properties (as in critical wetting) which are revealed in structural studies. Crystals were supplied for positron annihilation studies of the Fermi surface of H-Ta alloys which have revealed significant electronic trends. Work on alkali-graphite intercalates was initiated

  12. Chemical bonding of hydrogen molecules to transition metal complexes

    International Nuclear Information System (INIS)

    Kubas, G.J.

    1990-01-01

    The complex W(CO) 3 (PR 3 ) 2 (H 2 ) (CO = carbonyl; PR 3 = organophosphine) was prepared and was found to be a stable crystalline solid under ambient conditions from which the hydrogen can be reversibly removed in vacuum or under an inert atmosphere. The weakly bonded H 2 exchanges easily with D 2 . This complex represents the first stable compound containing intermolecular interaction of a sigma-bond (H-H) with a metal. The primary interaction is reported to be donation of electron density from the H 2 bonding electron pair to a vacant metal d-orbital. A series of complexes of molybdenum of the type Mo(CO)(H 2 )(R 2 PCH 2 CH 2 PR 2 ) 2 were prepared by varying the organophosphine substitutent to demonstrate that it is possible to bond either dihydrogen or dihydride by adjusting the electron-donating properties of the co-ligands. Results of infrared and NMR spectroscopic studies are reported. 20 refs., 5 fig

  13. Metal hydrides for hydrogen storage in nickel hydrogen batteries

    International Nuclear Information System (INIS)

    Bittner, H.F.; Badcock, C.C.; Quinzio, M.V.

    1984-01-01

    Metal hydride hydrogen storage in nickel hydrogen (Ni/H 2 ) batteries has been shown to increase battery energy density and improve battery heat management capabilities. However the properties of metal hydrides in a Ni/H 2 battery environment, which contains water vapor and oxygen in addition to the hydrogen, have not been well characterized. This work evaluates the use of hydrides in Ni/H 2 batteries by fundamental characterization of metal hydride properties in a Ni/H 2 cell environment. Hydrogen sorption properties of various hydrides have been measured in a Ni/H 2 cell environment. Results of detailed thermodynamic and kinetic studies of hydrogen sorption in LaNi 5 in a Ni/H 2 cell environment are presented. Long-term cycling studies indicate that degradation of the hydride can be minimized by cycling between certain pressure limits. A model describing the mechanism of hydride degradation is presented

  14. Electronic-structure studies of metal-hydrogen systems using photoelectron spectroscopy (PES) radiation. Final report, 1 March 1980-31 August 1982

    International Nuclear Information System (INIS)

    Weaver, J.H.

    1982-09-01

    Photoelectron spectroscopy studies of hydrogen-bearing metals and alloys have provided fundamental information concerning the electronic interactions of hydrides. Studies of surface oxidation of several hydrogen storage materials (the LaNi 5 -family) evaluated the role of surface oxidation on hydrogen uptake. Collaborative band theory studies were undertaken to support experimental studies of the metal-semiconductor transition in LaH 2 -LaH 3 and of the refractory metal mono- and submonohydrides

  15. Mechanistic aspects of dinitrogen cleavage and hydrogenation to produce ammonia in catalysis and organometallic chemistry: relevance of metal hydride bonds and dihydrogen.

    Science.gov (United States)

    Jia, Hong-Peng; Quadrelli, Elsje Alessandra

    2014-01-21

    Dinitrogen cleavage and hydrogenation by transition-metal centers to produce ammonia is central in industry and in Nature. After an introductory section on the thermodynamic and kinetic challenges linked to N2 splitting, this tutorial review discusses three major classes of transition-metal systems (homogeneous, heterogeneous and biological) capable of achieving dissociation and hydrogenation of dinitrogen. Molecular complexes, solid-state Haber-Bosch catalytic systems, silica-supported tantalum hydrides and nitrogenase will be discussed. Emphasis is focused on the reaction mechanisms operating in the process of dissociation and hydrogenation of dinitrogen, and in particular on the key role played by metal hydride bonds and by dihydrogen in such reactions.

  16. Metal-insulator transitions

    Science.gov (United States)

    Imada, Masatoshi; Fujimori, Atsushi; Tokura, Yoshinori

    1998-10-01

    Metal-insulator transitions are accompanied by huge resistivity changes, even over tens of orders of magnitude, and are widely observed in condensed-matter systems. This article presents the observations and current understanding of the metal-insulator transition with a pedagogical introduction to the subject. Especially important are the transitions driven by correlation effects associated with the electron-electron interaction. The insulating phase caused by the correlation effects is categorized as the Mott Insulator. Near the transition point the metallic state shows fluctuations and orderings in the spin, charge, and orbital degrees of freedom. The properties of these metals are frequently quite different from those of ordinary metals, as measured by transport, optical, and magnetic probes. The review first describes theoretical approaches to the unusual metallic states and to the metal-insulator transition. The Fermi-liquid theory treats the correlations that can be adiabatically connected with the noninteracting picture. Strong-coupling models that do not require Fermi-liquid behavior have also been developed. Much work has also been done on the scaling theory of the transition. A central issue for this review is the evaluation of these approaches in simple theoretical systems such as the Hubbard model and t-J models. Another key issue is strong competition among various orderings as in the interplay of spin and orbital fluctuations. Experimentally, the unusual properties of the metallic state near the insulating transition have been most extensively studied in d-electron systems. In particular, there is revived interest in transition-metal oxides, motivated by the epoch-making findings of high-temperature superconductivity in cuprates and colossal magnetoresistance in manganites. The article reviews the rich phenomena of anomalous metallicity, taking as examples Ti, V, Cr, Mn, Fe, Co, Ni, Cu, and Ru compounds. The diverse phenomena include strong spin and

  17. Synthesis of Mg{sub 2}FeH{sub 6} containing as additives transition metal and transition metal fluorides or carbon; Sintese de Mg{sub 2}FeH{sub 6} contando como aditivos metais de transicao e fluoretos de metais de transicao ou carbono

    Energy Technology Data Exchange (ETDEWEB)

    Zepon, G.; Leiva, D.R.; Botta, W.J., E-mail: guizepon@yahoo.com.b [Universidade Federal de Sao Carlos (DEMa/UFSCar), SP (Brazil). Dept. de Engenharia de Materiais

    2010-07-01

    The Mg{sub 2}FeH{sub 6} is a promising way of storing hydrogen in solid form, composed by elements that have low cost and, at the same time, high volumetric storage density: 150 kg H{sub 2}/m{sup 3}. However, this complex hydride is not easily synthesized as a single phase material. The hydrogen sorption high temperature and slow kinetics are the major limitations for the practical application of the Mg{sub 2}FeH{sub 6} as a hydrogen storage material. Little is known about the effects of additives in Mg{sub 2}FeH{sub 6} based nanocomposites in this work were synthesized by MAE under hydrogen atmosphere nanocomposites based on Mg{sub 2}FeH{sub 6} containing additives as transition metals, transition metals fluorides of transition metals or carbon, in order to obtain information on the effects of the selected additives. To this end, we used characterization techniques such as XRD, SEM and TEM, thermal analysis by DSC and curves made in apparatus PCT.(author)

  18. Transition metal carbides (WC, Mo2C, TaC, NbC) as potential electrocatalysts for the hydrogen evolution reaction (HER) at medium temperatures

    DEFF Research Database (Denmark)

    Meyer, Simon; Nikiforov, Aleksey V.; Petrushina, Irina M.

    2015-01-01

    One limitation for large scale water electrolysis is the high price of the Pt cathode catalyst. Transition metal carbides, which are considered as some of the most promising non-Pt catalysts, are less active than Pt at room temperature. The present work demonstrates that the situation is different......C > TaC. Copyright (C) 2014, Hydrogen Energy Publications, LLC. Published by Elsevier Ltd. All rights reserved....

  19. A theoretical evaluation of possible transition metal electro-catalysts for N2 reduction

    DEFF Research Database (Denmark)

    Skulason, Egill; Bligaard, Thomas; Gudmundsdottir, Sigrıdur

    2012-01-01

    such as Sc, Y, Ti, and Zr bind N-adatoms more strongly than H-adatoms, a significant production of ammonia compared with hydrogen gas can be expected on those metal electrodes when a bias of 1 V to 1.5 V vs. SHE is applied. Defect-free surfaces of the early transition metals are catalytically more active...

  20. High temperature equation of state of metallic hydrogen

    International Nuclear Information System (INIS)

    Shvets, V. T.

    2007-01-01

    The equation of state of liquid metallic hydrogen is solved numerically. Investigations are carried out at temperatures from 3000 to 20 000 K and densities from 0.2 to 3 mol/cm 3 , which correspond both to the experimental conditions under which metallic hydrogen is produced on earth and the conditions in the cores of giant planets of the solar system such as Jupiter and Saturn. It is assumed that hydrogen is in an atomic state and all its electrons are collectivized. Perturbation theory in the electron-proton interaction is applied to determine the thermodynamic potentials of metallic hydrogen. The electron subsystem is considered in the randomphase approximation with regard to the exchange interaction and the correlation of electrons in the local-field approximation. The proton-proton interaction is taken into account in the hard-spheres approximation. The thermodynamic characteristics of metallic hydrogen are calculated with regard to the zero-, second-, and third-order perturbation theory terms. The third-order term proves to be rather essential at moderately high temperatures and densities, although it is much smaller than the second-order term. The thermodynamic potentials of metallic hydrogen are monotonically increasing functions of density and temperature. The values of pressure for the temperatures and pressures that are characteristic of the conditions under which metallic hydrogen is produced on earth coincide with the corresponding values reported by the discoverers of metallic hydrogen to a high degree of accuracy. The temperature and density ranges are found in which there exists a liquid phase of metallic hydrogen

  1. Composite metal-hydrogen electrodes for metal-hydrogen batteries. Final report, October 1, 1993 - April 15, 1997

    International Nuclear Information System (INIS)

    Ruckman, M.W.; Strongin, M.; Weismann, H.

    1997-04-01

    The purpose of this project is to develop and conduct a feasibility study of metallic thin films (multilayered and alloy composition) produced by advanced sputtering techniques for use as anodes in Ni-metal hydrogen batteries that would be deposited as distinct anode, electrolyte and cathode layers in thin film devices. The materials could also be incorporated in secondary consumer batteries (i.e. type AF(4/3 or 4/5)) which use electrodes in the form of tapes. The project was based on pioneering studies of hydrogen uptake by ultra-thin Pd-capped Nb films, these studies suggested that materials with metal-hydrogen ratios exceeding those of commercially available metal hydride materials and fast hydrogen charging and discharging kinetics could be produced. The project initially concentrated on gas phase and electrochemical studies of Pd-capped niobium films in laboratory-scale NiMH cells. This extended the pioneering work to the wet electrochemical environment of NiMH batteries and exploited advanced synchrotron radiation techniques not available during the earlier work to conduct in-situ studies of such materials during hydrogen charging and discharging. Although batteries with fast charging kinetics and hydrogen-metal ratios approaching unity could be fabricated, it was found that oxidation, cracking and corrosion in aqueous solutions made pure Nb films and multilayers poor candidates for battery application. The project emphasis shifted to alloy films based on known elemental materials used for NiMH batteries. Although commercial NiMH anode materials contain many metals, it was found that 0.24 μm thick sputtered Zr-Ni films cycled at least 50 times with charging efficiencies exceeding 95% and [H]/[M] ratios of 0.7-1.0. Multilayered or thicker Zr-Ni films could be candidates for a thin film NiMH battery that may have practical applications as an integrated power source for modern electronic devices

  2. Complementary Strategies for Directed C(sp3 )-H Functionalization: A Comparison of Transition-Metal-Catalyzed Activation, Hydrogen Atom Transfer, and Carbene/Nitrene Transfer.

    Science.gov (United States)

    Chu, John C K; Rovis, Tomislav

    2018-01-02

    The functionalization of C(sp 3 )-H bonds streamlines chemical synthesis by allowing the use of simple molecules and providing novel synthetic disconnections. Intensive recent efforts in the development of new reactions based on C-H functionalization have led to its wider adoption across a range of research areas. This Review discusses the strengths and weaknesses of three main approaches: transition-metal-catalyzed C-H activation, 1,n-hydrogen atom transfer, and transition-metal-catalyzed carbene/nitrene transfer, for the directed functionalization of unactivated C(sp 3 )-H bonds. For each strategy, the scope, the reactivity of different C-H bonds, the position of the reacting C-H bonds relative to the directing group, and stereochemical outcomes are illustrated with examples in the literature. The aim of this Review is to provide guidance for the use of C-H functionalization reactions and inspire future research in this area. © 2018 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim.

  3. Solubility and diffusion of hydrogen in pure metals and alloys

    International Nuclear Information System (INIS)

    Wipf, H.

    2001-01-01

    Basic facts are presented of the absorption of hydrogen gas by metals and the diffusion of hydrogen in metals. Specifically considered are crystalline metals without defects and lattice disorder (pure metals), low hydrogen concentrations and the possibility of high hydrogen gas pressures. The first introductory topic is a short presentation of typical phase diagrams of metal hydrogen systems. Then, hydrogen absorption is discussed and shown to be decisively determined by the enthalpy of solution, in particular by its sign which specifies whether absorption is exothermic or endothermic. The formation of high-pressure hydrogen gas bubbles in a metal, which can lead to blistering, is addressed. It is demonstrated that bubble formation will, under realistic conditions, only occur in strongly endothermically hydrogen absorbing metals. The chief aspects of hydrogen diffusion in metals are discussed, especially the large size of the diffusion coefficient and its dependence on lattice structure. It is shown that forces can act on hydrogen in metals, causing a directed hydrogen flux. Such forces arise, for instance, in the presence of stress and temperature gradients and can result in local hydrogen accumulation with potential material failure effects. The final aspect discussed is hydrogen permeation, where the absorption behavior of the hydrogen is found to be in general more decisive on the permeation rate than the value of the diffusion coefficient. (orig.)

  4. Hydrogen evolution activity and electrochemical stability of selected transition metal carbides in concentrated phosphoric acid

    DEFF Research Database (Denmark)

    Tomás García, Antonio Luis; Jensen, Jens Oluf; Bjerrum, Niels J.

    2014-01-01

    phosphoric acid were investigated in a temperature range from 80 to 170°C. A significant dependence of the activities on temperature was observed for all five carbide samples. Through the entire temperature range Group 6 metal carbides showed higher activity than that of the Group 5 metal carbides......Alternative catalysts based on carbides of Group 5 (niobium and tantalum) and 6 (chromium, molybdenum and tungsten) metals were prepared as films on the metallic substrates. The electrochemical activities of these carbide electrodes towards the hydrogen evolution reaction (HER) in concentrated...

  5. Late transition metal m-or chemistry and D6 metal complex photoeliminations

    Energy Technology Data Exchange (ETDEWEB)

    Sharp, Paul [Univ. of Missouri, Columbia, MO (United States)

    2015-07-31

    With the goal of understanding and controlling photoreductive elimination reactions from d6 transition metal complexes as part of a solar energy storage cycle we have investigated the photochemistry of Pt(IV) bromo, chloro, hydroxo, and hydroperoxo complexes. Photoreductive elimination reactions occur for all of these complexes and appear to involve initial Pt-Br, Pt-Cl, or Pt-O bond fission. In the case of Pt-OH bond fission, the subsequent chemistry can be controlled through hydrogen bonding to the hydroxo group.

  6. A magnetic investigation of phase transitions for metal-hydrogen systems based on nickel by means of computer-aided data acquisition

    International Nuclear Information System (INIS)

    Martin, W.E.

    1986-01-01

    In the present thesis the magnetic behaviour of Nickel-based metal-hydrogen systems is investigated in relation to its background in metal physics, in order to get information on the formation and the decomposition of metal-hydrogen phases. The magnetic investigations are performed at the systems Ni-Cu-H and Ni-Cr-H with Cu up to 40 at% and Cr up to 7 at%. The differential susceptibility is measured during hydration and decomposition of hydrides and the connection between magnetic moment and hydrogen concentration is discussed. (BHO)

  7. Metal-functionalized silicene for efficient hydrogen storage.

    Science.gov (United States)

    Hussain, Tanveer; Chakraborty, Sudip; Ahuja, Rajeev

    2013-10-21

    First-principles calculations based on density functional theory are used to investigate the electronic structure along with the stability, bonding mechanism, band gap, and charge transfer of metal-functionalized silicene to envisage its hydrogen-storage capacity. Various metal atoms including Li, Na, K, Be, Mg, and Ca are doped into the most stable configuration of silicene. The corresponding binding energies and charge-transfer mechanisms are discussed from the perspective of hydrogen-storage compatibility. The Li and Na metal dopants are found to be ideally suitable, not only for strong metal-to-substrate binding and uniform distribution over the substrate, but also for the high-capacity storage of hydrogen. The stabilities of both Li- and Na-functionalized silicene are also confirmed through molecular dynamics simulations. It is found that both of the alkali metals, Li(+) and Na(+), can adsorb five hydrogen molecules, attaining reasonably high storage capacities of 7.75 and 6.9 wt %, respectively, with average adsorption energies within the range suitable for practical hydrogen-storage applications. Copyright © 2013 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  8. Teaching - methodical and research center of hydrogen power engineering and platinum group metals in the former Soviet Union countries

    International Nuclear Information System (INIS)

    Evdokimov, A.A; Sigov, A.S; Shinkarenko, V.V.

    2005-01-01

    Full text: Teaching - Methodical and Research Center (TMRC) 'Sokolinaja Gora' is founded in order to provide methodical-information and scientific support of institutes of higher education in the field of hydrogen power engineering and platinum group metals in Russia and in the countries of the Former Soviet union. It is independent association of creative communities of scientist of higher educational specialists. The main directions of the Center activity are: 1. Teaching-methodological support and development of teaching in the field of hydrogen power engineering and platinum group metals in Russia in the countries of the Former Soviet Union. Themes of teaching includes the basic of safe using of hydrogen technologies and devices, ecological, economic and law aspects of new hydrogen power engineering, transition to which in 21 century is one of the central problems of mankind survival; 2. Organizing of joint researches by independent creative communities of scientists in the field of hydrogen power engineering and platinum group metal; 3. Independent scientific examination, which is made by Advisory Committee of High Technologies consisting of representatives of the countries of Former Soviet Union, which are standing participants of an Annual International Symposia 'Hydrogen Power Engineering and Platinum Group Metals in the Former Soviet Union Countries'. Structure of the Center: 1. Center of strategic development in the field of high technologies; 2. Scientific Research Institute of Hydrogen Power Engineering and Platinum Group Metals; 3. Teaching-Methodical Association in specialization 'Hydrogen Power Engineering and economics' and hydrogen wide spread training; 4. Media Center 'Hydrogen Power Engineering and Platinum Group Metals', 5. Organizational Center; 6. Administrative Center. The Center will be established step-by-step in 2005-2010 on the basis of the following programs: Teaching-methodological program. On the basis of this program it is planned to

  9. Transition to a hydrogen fuel cell transit bus fleet for Canadian urban transit system

    International Nuclear Information System (INIS)

    Ducharme, P.

    2004-01-01

    'Full text:' The Canadian Transportation Fuel Cell Alliance (CTFCA), created by the Canadian Government as part of its 2000 Climate Change Action Plan, has commissioned MARCON-DDM's Hydrogen Intervention Team (HIT) to provide a roadmap for urban transit systems that wish to move to hydrogen fuel cell-powered bus fleets. HIT is currently in the process of gathering information from hydrogen technology providers, bus manufacturers, fuelling system providers and urban transit systems in Canada, the US and Europe. In September, HIT will be in a position to provide a preview of its report to the CTFCA, due for October 2004. The planned table of contents includes: TOMORROW'S FUEL CELL (FC) URBAN TRANSIT BUS - Powertrain, on-board fuel technologies - FC engine system manufacturers - Bus technical specifications, performances, operating characteristics - FC bus manufacturers TOMORROW'S FC TRANSIT PROPERTY - Added maintenance, facilities and fuelling infrastructure requirements - Supply chain implications - Environmental and safety issues - Alternative operational concepts PATHWAYS TO THE FUTURE - Choosing the future operational concept - 'Gap' assessment - how long from here to there? - Facilities and fleet adjustments, including fuelling infrastructure - Risk mitigation, code compliance measures TRANSITIONAL CONSIDERATIONS - Cost implications - Transition schedule (author)

  10. Towards hydrogen metallization: an Ab initio approach

    International Nuclear Information System (INIS)

    Bernard, St.

    1998-01-01

    The quest for metallic hydrogen is a major goal for both theoretical and experimental condensed matter physics. Hydrogen and deuterium have been compressed up to 200 GPa in diamond anvil cells, without any clear evidence for a metallic behaviour. Loubeyere has recently suggested that hydrogen could metallize, at pressures within experimental range, in a new Van der Waals compound: Ar(H 2 ) 2 which is characterized at ambient pressure by an open and anisotropic sublattice of hydrogen molecules, stabilized by an argon skeleton. This thesis deals with a detailed ab initio investigation, by Car-Parrinello molecular dynamics methods, of the evolution under pressure of this compound. In a last chapter, we go to much higher pressures and temperatures, in order to compare orbital and orbital free ab initio methods for the dense hydrogen plasma. (author)

  11. Hydrogen evolution by a metal-free electrocatalyst

    KAUST Repository

    Zheng, Yao

    2014-04-28

    Electrocatalytic reduction of water to molecular hydrogen via the hydrogen evolution reaction may provide a sustainable energy supply for the future, but its commercial application is hampered by the use of precious platinum catalysts. All alternatives to platinum thus far are based on nonprecious metals, and, to our knowledge, there is no report about a catalyst for electrocatalytic hydrogen evolution beyond metals. Here we couple graphitic-carbon nitride with nitrogen-doped graphene to produce a metal-free hybrid catalyst, which shows an unexpected hydrogen evolution reaction activity with comparable overpotential and Tafel slope to some of well-developed metallic catalysts. Experimental observations in combination with density functional theory calculations reveal that its unusual electrocatalytic properties originate from an intrinsic chemical and electronic coupling that synergistically promotes the proton adsorption and reduction kinetics. © 2014 Macmillan Publishers Limited. All rights reserved.

  12. Tandem rhodium catalysis: exploiting sulfoxides for asymmetric transition-metal catalysis.

    Science.gov (United States)

    Kou, K G M; Dong, V M

    2015-06-07

    Sulfoxides are uncommon substrates for transition-metal catalysis due to their propensity to inhibit catalyst turnover. In a collaborative effort with Ken Houk, we developed the first dynamic kinetic resolution (DKR) of allylic sulfoxides using asymmetric rhodium-catalyzed hydrogenation. A detailed mechanistic analysis of this transformation using both experimental and theoretical methods revealed rhodium to be a tandem catalyst that promoted both hydrogenation of the alkene and racemization of the allylic sulfoxide. Using a combination of deuterium labelling and DFT studies, a novel mode of allylic sulfoxide racemization via a Rh(III)-π-allyl intermediate was identified.

  13. Density functional theory based screening of ternary alkali-transition metal borohydrides: A computational material design project

    DEFF Research Database (Denmark)

    Hummelshøj, Jens Strabo; Landis, David; Voss, Johannes

    2009-01-01

    We present a computational screening study of ternary metal borohydrides for reversible hydrogen storage based on density functional theory. We investigate the stability and decomposition of alloys containing 1 alkali metal atom, Li, Na, or K (M1); and 1 alkali, alkaline earth or 3d/4d transition...

  14. Metallic Hydrogen: A Game Changing Rocket Propellant

    Science.gov (United States)

    Silvera, Isaac F.

    2016-01-01

    The objective of this research is to produce metallic hydrogen in the laboratory using an innovative approach, and to study its metastability properties. Current theoretical and experimental considerations expect that extremely high pressures of order 4-6 megabar are required to transform molecular hydrogen to the metallic phase. When metallic hydrogen is produced in the laboratory it will be extremely important to determine if it is metastable at modest temperatures, i.e. remains metallic when the pressure is released. Then it could be used as the most powerful chemical rocket fuel that exists and revolutionize rocketry, allowing single-stage rockets to enter orbit and chemically fueled rockets to explore our solar system.

  15. Hydrogen in metals

    International Nuclear Information System (INIS)

    1986-01-01

    The report briefly describes the results of the single projects promoted by the German Council of Research (DFG). The subjects deal with diffusion, effusion, permeation and solubility of hydrogen in metals. They are interesting for many disciplines: metallurgy, physical metallurgy, metal physics, materials testing, welding engineering, chemistry, nuclear physics and solid-state physics. The research projects deal with the following interrelated subjects: solubility of H 2 in steel and effects on embrittlement, influence of H 2 on the fatigue strength of steel as well as the effect of H 2 on welded joints. The studies in solid-state research can be divided into methodological and physico-chemical studies. The methodological studies mainly comprise investigations on the analytical determination of H 2 by means of nuclear-physical reactions (e.g. the 15 N method) and the application of the Moessbauer spectroscopy. Physico-chemical problems are mainly dealt with in studies on interfacial reactions in connection with the absorption of hydrogen and on the diffusion of H 2 in different alloy systems. The properties of materials used for hydrogen storage were the subject of several research projects. 20 contributions were separately recorded for the data bank 'Energy'. (MM) [de

  16. First Principles Based Simulation of Reaction-Induced Phase Transition in Hydrogen Storage and Other Materials

    Energy Technology Data Exchange (ETDEWEB)

    Ge, Qingfeng [Southern Illinois Univ., Carbondale, IL (United States)

    2014-08-31

    This major part of this proposal is simulating hydrogen interactions in the complex metal hydrides. Over the period of DOE BES support, key achievements include (i) Predicted TiAl3Hx as a precursor state for forming TiAl3 through analyzing the Ti-doped NaAlH4 and demonstrated its catalytic role for hydrogen release; (ii) Explored the possibility of forming similar complex structures with other 3d transition metals in NaAlH4 as well as the impact of such complex structures on hydrogen release/uptake; (iii) Demonstrated the role of TiAl3 in hydriding process; (iv) Predicted a new phase of NaAlH4 that links to Na3AlH6 using first-principles metadynamics; (v) Examined support effect on hydrogen release from supported/encapsulated NaAlH4; and (vi) Expanded research scope beyond hydrogen storage. The success of our research is documented by the peer-reviewed publications.

  17. Evidence for plasma phase transition in high pressure hydrogen from ab-initio simulations

    Energy Technology Data Exchange (ETDEWEB)

    Morales, M; Pierleoni, C; Schwegler, E; Ceperley, D

    2010-02-08

    We have performed a detailed study of molecular dissociation in liquid hydrogen using both Born-Oppenheimer molecular dynamics with Density Functional Theory and Coupled Electron-Ion Monte Carlo simulations. We observe a range of densities where (dP/d{rho}){sub T} = 0 that coincides with sharp discontinuities in the electronic conductivity, which is clear evidence of the plasma phase transition for temperatures 600K {le} T {le} 1500K. Both levels of theory exhibit the transition, although Quantum Monte Carlo predicts higher transition pressures. Based on the temperature dependence of the discontinuity in the electronic conductivity, we estimate the critical point of the transition at temperatures slightly below 2000 K. We examine the influence of proton zero point motion by using Path Integral Molecular Dynamics with Density Functional Theory; the main effect is to shift the transition to lower pressures. Furthermore, we calculate the melting curve of molecular hydrogen up to pressures of 200 GPa, finding a reentrant melting line in good agreement with previous calculations. The melting line crosses the metalization line at 700 K and 220 GPa using density functional energetics and at 550 K and 290 GPa using Quantum Monte Carlo energetics.

  18. Safety evaluation of a hydrogen fueled transit bus

    Energy Technology Data Exchange (ETDEWEB)

    Coutts, D.A.; Thomas, J.K.; Hovis, G.L.; Wu, T.T. [Westinghouse Savannah River Co., Aiken, SC (United States)

    1997-12-31

    Hydrogen fueled vehicle demonstration projects must satisfy management and regulator safety expectations. This is often accomplished using hazard and safety analyses. Such an analysis has been completed to evaluate the safety of the H2Fuel bus to be operated in Augusta, Georgia. The evaluation methods and criteria used reflect the Department of Energy`s graded approach for qualifying and documenting nuclear and chemical facility safety. The work focused on the storage and distribution of hydrogen as the bus motor fuel with emphases on the technical and operational aspects of using metal hydride beds to store hydrogen. The safety evaluation demonstrated that the operation of the H2Fuel bus represents a moderate risk. This is the same risk level determined for operation of conventionally powered transit buses in the United States. By the same criteria, private passenger automobile travel in the United States is considered a high risk. The evaluation also identified several design and operational modifications that resulted in improved safety, operability, and reliability. The hazard assessment methodology used in this project has widespread applicability to other innovative operations and systems, and the techniques can serve as a template for other similar projects.

  19. Synthesis of IV-VI Transition Metal Carbide and Nitride Nanoparticles Using a Reactive Mesoporous Template for Electrochemical Hydrogen Evolution Reaction

    KAUST Repository

    Alhajri, Nawal Saad

    2016-01-01

    content rather than nitride. In addition, the reactivity of the transition metals of group IV-VI with the reactive template was investigated under a flow of N2 at different temperatures in the range of 1023 to 1573 K while keeping the weight ratio constant at 1:1. The results show that Ti, V, Nb, Ta, and Cr reacted with mpg-C3N4 at 1023 K to form nitride phase with face centered cubic structure. The nitride phase destabilized at higher temperature ≥1223 K through the reaction with the remaining carbon residue originated from the decomposition of the template to form carbonitride and carbide phases. Whereas, Mo and W produce a hexagonal structure of carbide irrespective of the applying reaction temperature. The tendency to form transition metal nitrides and carbides at 1023 K was strongly driven by the free energy of formation. The observed trend indicates that the free energy of formation of nitride is relatively lower for group IV and V transition metals, whereas the carbide phase is thermodynamically more favorable for group VI, in particular for Mo and W. The thermal stability of nitride decreases at high temperature due to the evolution of nitrogen gas. The electrocatalytic activities of the produced nanoparticles were tested for hydrogen evolution reaction in acid media and the results demonstrated that molybdenum carbide nanoparticles exhibited the highest HER current with over potential of 100 mV vs. RHE, among the samples prepared in this study. This result is attributed to the sufficiently small particle size (8 nm on average) and accordingly high surface area (308 m2 g-1). Also, the graphitized carbon layer with a thickness of 1 nm on its surface formed by this synthesis provides excellent electron pathway to the catalyst which will improve the rate of electron transfer reaction.

  20. Hydrogen collisions with transition metal surfaces: Universal electronically nonadiabatic adsorption

    Science.gov (United States)

    Dorenkamp, Yvonne; Jiang, Hongyan; Köckert, Hansjochen; Hertl, Nils; Kammler, Marvin; Janke, Svenja M.; Kandratsenka, Alexander; Wodtke, Alec M.; Bünermann, Oliver

    2018-01-01

    Inelastic scattering of H and D atoms from the (111) surfaces of six fcc transition metals (Au, Pt, Ag, Pd, Cu, and Ni) was investigated, and in each case, excitation of electron-hole pairs dominates the inelasticity. The results are very similar for all six metals. Differences in the average kinetic energy losses between metals can mainly be attributed to different efficiencies in the coupling to phonons due to the different masses of the metal atoms. The experimental observations can be reproduced by molecular dynamics simulations based on full-dimensional potential energy surfaces and including electronic excitations by using electronic friction in the local density friction approximation. The determining factors for the energy loss are the electron density at the surface, which is similar for all six metals, and the mass ratio between the impinging atoms and the surface atoms. Details of the electronic structure of the metal do not play a significant role. The experimentally validated simulations are used to explore sticking over a wide range of incidence conditions. We find that the sticking probability increases for H and D collisions near normal incidence—consistent with a previously reported penetration-resurfacing mechanism. The sticking probability for H or D on any of these metals may be represented as a simple function of the incidence energy, Ein, metal atom mass, M, and incidence angle, 𝜗i n. S =(S0+a ṡEi n+b ṡM ) *(1 -h (𝜗i n-c ) (1 -cos(𝜗 i n-c ) d ṡh (Ei n-e ) (Ei n-e ) ) ) , where h is the Heaviside step function and for H, S0 = 1.081, a = -0.125 eV-1, b =-8.40 ṡ1 0-4 u-1, c = 28.88°, d = 1.166 eV-1, and e = 0.442 eV; whereas for D, S0 = 1.120, a = -0.124 eV-1, b =-1.20 ṡ1 0-3 u-1, c = 28.62°, d = 1.196 eV-1, and e = 0.474 eV.

  1. Hydrogen embrittlement and stress corrosion cracking in metals

    Energy Technology Data Exchange (ETDEWEB)

    Kim, Young Suk; Cheong, Yong Mu; Im, Kyung Soo

    2004-10-15

    The objective of this report is to elucidate the mechanism for hydrogen embrittlement (HE) and stress corrosion cracking (SCC) in metals. To this end, we investigate the common features between delayed hydride cracking (DHC) in zirconium alloys and HE in metals with no precipitation of hydrides including Fe base alloys, Nickel base alloys, Cu alloys and Al alloys. Surprisingly, as with the crack growth pattern for the DHC in zirconium alloy, the metals mentioned above show a discontinuous crack growth, striation lines and a strong dependence of yield strength when exposed to hydrogen internally and externally. This study, for the first time, analyzes the driving force for the HE in metals in viewpoints of Kim's DHC model that a driving force for the DHC in zirconium alloys is a supersaturated hydrogen concentration coming from a hysteresis of the terminal solid solubility of hydrogen, not by the stress gradient, As with the crack growing only along the hydride habit plane during the DHC in zirconium alloys, the metals exposed to hydrogen seem to have the crack growing by invoking the dislocation slip along the preferential planes as a result of some interactions of the dislocations with hydrogen. Therefore, it seems that the hydrogen plays a role in inducing the slip only on the preferential planes so as to cause a strain localization at the crack tip. Sulfur in metals is detrimental in causing a intergranular cracking due to a segregation of the hydrogens at the grain boundaries. In contrast, boron in excess of 500 ppm added to the Ni3Al intermetallic compound is found to be beneficial in suppressing the HE even though further details of the mechanism for the roles of boron and sulfur are required. Carbon, carbides precipitating semi-continuously along the grain boundaries and the CSL (coherent site lattice) boundaries is found to suppress the intergranular stress corrosion cracking (IGSCC) in Alloy 600. The higher the volume fraction of twin boundaries, the

  2. Hydrogen embrittlement and stress corrosion cracking in metals

    International Nuclear Information System (INIS)

    Kim, Young Suk; Cheong, Yong Mu; Im, Kyung Soo

    2004-10-01

    The objective of this report is to elucidate the mechanism for hydrogen embrittlement (HE) and stress corrosion cracking (SCC) in metals. To this end, we investigate the common features between delayed hydride cracking (DHC) in zirconium alloys and HE in metals with no precipitation of hydrides including Fe base alloys, Nickel base alloys, Cu alloys and Al alloys. Surprisingly, as with the crack growth pattern for the DHC in zirconium alloy, the metals mentioned above show a discontinuous crack growth, striation lines and a strong dependence of yield strength when exposed to hydrogen internally and externally. This study, for the first time, analyzes the driving force for the HE in metals in viewpoints of Kim's DHC model that a driving force for the DHC in zirconium alloys is a supersaturated hydrogen concentration coming from a hysteresis of the terminal solid solubility of hydrogen, not by the stress gradient, As with the crack growing only along the hydride habit plane during the DHC in zirconium alloys, the metals exposed to hydrogen seem to have the crack growing by invoking the dislocation slip along the preferential planes as a result of some interactions of the dislocations with hydrogen. Therefore, it seems that the hydrogen plays a role in inducing the slip only on the preferential planes so as to cause a strain localization at the crack tip. Sulfur in metals is detrimental in causing a intergranular cracking due to a segregation of the hydrogens at the grain boundaries. In contrast, boron in excess of 500 ppm added to the Ni3Al intermetallic compound is found to be beneficial in suppressing the HE even though further details of the mechanism for the roles of boron and sulfur are required. Carbon, carbides precipitating semi-continuously along the grain boundaries and the CSL (coherent site lattice) boundaries is found to suppress the intergranular stress corrosion cracking (IGSCC) in Alloy 600. The higher the volume fraction of twin boundaries, the more

  3. Liquid Metallic Hydrogen: A Building Block for the Liquid Sun

    Directory of Open Access Journals (Sweden)

    Robitaille P.-M.

    2011-07-01

    Full Text Available Liquid metallic hydrogen provides a compelling material for constructing a condensed matter model of the Sun and the photosphere. Like diamond, metallic hydrogen might have the potential to be a metastable substance requiring high pressures for forma- tion. Once created, it would remain stable even at lower pressures. The metallic form of hydrogen was initially conceived in 1935 by Eugene Wigner and Hillard B. Huntington who indirectly anticipated its elevated critical temperature for liquefaction (Wigner E. and Huntington H.B. On the possibility of a metallic modification of hydro- gen. J. Chem. Phys. , 1935, v.3, 764–770. At that time, solid metallic hydrogen was hypothesized to exist as a body centered cubic, although a more energetically accessible layered graphite-like lattice was also envisioned. Relative to solar emission, this struc- tural resemblance between graphite and layered metallic hydrogen should not be easily dismissed. In the laboratory, metallic hydrogen remains an elusive material. However, given the extensive observational evidence for a condensed Sun composed primarily of hydrogen, it is appropriate to consider metallic hydrogen as a solar building block. It is anticipated that solar liquid metallic hydrogen should possess at least some layered order. Since layered liquid metallic hydrogen would be essentially incompressible, its invocation as a solar constituent brings into question much of current stellar physics. The central proof of a liquid state remains the thermal spectrum of the Sun itself. Its proper understanding brings together all the great forces which shaped modern physics. Although other proofs exist for a liquid photosphere, our focus remains solidly on the generation of this light.

  4. Complex transition metal hydrides incorporating ionic hydrogen: Synthesis and characterization of Na{sub 2}Mg{sub 2}FeH{sub 8} and Na{sub 2}Mg{sub 2}RuH{sub 8}

    Energy Technology Data Exchange (ETDEWEB)

    Humphries, Terry D., E-mail: terry_humphries81@hotmail.com [WPI-Advanced Institute for Materials Research, Tohoku University, Sendai 980-8577 (Japan); Takagi, Shigeyuki; Li, Guanqiao; Matsuo, Motoaki; Sato, Toyoto [Institute for Materials Research, Tohoku University, Sendai 980-8577 (Japan); Sørby, Magnus H.; Deledda, Stefano; Hauback, Bjørn C. [Physics Department, Institute for Energy Technology, Kjeller NO-2027 (Norway); Orimo, Shin-ichi [WPI-Advanced Institute for Materials Research, Tohoku University, Sendai 980-8577 (Japan); Institute for Materials Research, Tohoku University, Sendai 980-8577 (Japan)

    2015-10-05

    Highlights: • Structures of Na{sub 2}Mg{sub 2}FeH{sub 8} and Na{sub 2}Mg{sub 2}RuH{sub 8} have been determined by XRD and PND. • Compounds incorporate independently coordinated ionic and covalent hydrogen. • [TH{sub 6}]{sup 4−} anion is surrounded by a cubic array of four Mg{sup 2+} and four Na{sup +} cations. • H{sup −} anions are octahedrally coordinated by four Na{sup +} and two Mg{sup 2+} cations. • Vibrational modes of the H{sup −} anions and complex hydride anion are observed. - Abstract: A new class of quaternary complex transition metal hydrides (Na{sub 2}Mg{sub 2}TH{sub 8} (T = Fe, Ru)) have been synthesized and their structures determined by combined synchrotron radiation X-ray and powder neutron diffraction. The compounds can be considered as a link between ionic and complex hydrides in terms of incorporating independently coordinated ionic and covalent hydrogen. These novel isostructural complex transition metal hydrides crystallize in the orthorhombic space group Pbam, where the octahedral complex hydride anion is surrounded by a cubic array of four Mg{sup 2+} and four Na{sup +} cations, forming distinct two-dimensional layers. An intriguing feature of these materials is the distorted octahedral coordination of the isolated H{sup −} anions by four Na{sup +} and two Mg{sup 2+} cations, which form layers between the transition metal containing layers. The vibrational modes of the H{sup −} anions and complex hydride anion are independently observed for the first time in a quaternary complex transition metal hydride system by Raman and IR spectroscopy.

  5. Distorted wave approach to calculate Auger transition rates of ions in metals

    Energy Technology Data Exchange (ETDEWEB)

    Deutscher, Stefan A. E-mail: sad@utk.edu; Diez Muino, R.; Arnau, A.; Salin, A.; Zaremba, E

    2001-08-01

    We evaluate the role of target distortion in the determination of Auger transition rates for multicharged ions in metals. The required two electron matrix elements are calculated using numerical solutions of the Kohn-Sham equations for both the bound and continuum states. Comparisons with calculations performed using plane waves and hydrogenic orbitals are presented.

  6. The Liquid Metallic Hydrogen Model of the Sun and the Solar Atmosphere VII. Further Insights into the Chromosphere and Corona

    Directory of Open Access Journals (Sweden)

    Robitaille P.-M.

    2013-07-01

    Full Text Available In the liquid metallic hydrogen model of the Sun, the chromosphere is responsible for the capture of atomic hydrogen in the solar atmosphere and its eventual re-entry onto the photospheric surface (P.M. Robitaille. The Liquid Metallic Hydrogen Model of the Sun and the Solar Atmosphere IV. On the Nature of the Chromosphere. Prog. Phys., 2013, v. 3, L15–L21. As for the corona, it represents a diffuse region containing both gaseous plasma and condensed matter with elevated electron affinity (P.M. Robitaille. The Liquid Metallic Hydrogen Model of the Sun and the Solar Atmosphere V. On the Nature of the Corona. Prog. Phys., 2013, v. 3, L22–L25. Metallic hydrogen in the corona is thought to enable the continual harvest of electrons from the outer reaches of the Sun, thereby preserving the neutrality of the solar body. The rigid rotation of the corona is offered as the thirty-third line of evidence that the Sun is comprised of condensed matter. Within the context of the gaseous models of the Sun, a 100 km thick transition zone has been hypothesized to exist wherein temperatures increase dramatically from 104–106 K. Such extreme transitional temperatures are not reasonable given the trivial physical scale of the proposed transition zone, a region adopted to account for the ultra-violet emission lines of ions such as C IV, O IV, and Si IV. In this work, it will be argued that the transition zone does not exist. Rather, the intermediate ionization states observed in the solar atmosphere should be viewed as the result of the simultaneous transfer of protons and electrons onto condensed hydrogen structures, CHS. Line emissions from ions such as C IV, O IV, and Si IV are likely to be the result of condensation reactions, manifesting the involvement of species such as CH4, SiH4, H3O+ in the synthesis of CHS in the chromosphere. In addition, given the presence of a true solar surface at the level of the photosphere in the liquid metallic hydrogen model

  7. Hydrogen storage materials and method of making by dry homogenation

    Science.gov (United States)

    Jensen, Craig M.; Zidan, Ragaiy A.

    2002-01-01

    Dry homogenized metal hydrides, in particular aluminum hydride compounds, as a material for reversible hydrogen storage is provided. The reversible hydrogen storage material comprises a dry homogenized material having transition metal catalytic sites on a metal aluminum hydride compound, or mixtures of metal aluminum hydride compounds. A method of making such reversible hydrogen storage materials by dry doping is also provided and comprises the steps of dry homogenizing metal hydrides by mechanical mixing, such as be crushing or ball milling a powder, of a metal aluminum hydride with a transition metal catalyst. In another aspect of the invention, a method of powering a vehicle apparatus with the reversible hydrogen storage material is provided.

  8. Evidence for a first-order liquid-liquid transition in high-pressure hydrogen from ab initio simulations.

    Science.gov (United States)

    Morales, Miguel A; Pierleoni, Carlo; Schwegler, Eric; Ceperley, D M

    2010-07-20

    Using quantum simulation techniques based on either density functional theory or quantum Monte Carlo, we find clear evidence of a first-order transition in liquid hydrogen, between a low conductivity molecular state and a high conductivity atomic state. Using the temperature dependence of the discontinuity in the electronic conductivity, we estimate the critical point of the transition at temperatures near 2,000 K and pressures near 120 GPa. Furthermore, we have determined the melting curve of molecular hydrogen up to pressures of 200 GPa, finding a reentrant melting line. The melting line crosses the metalization line at 700 K and 220 GPa using density functional energetics and at 550 K and 290 GPa using quantum Monte Carlo energetics.

  9. Hydrogen-induced high damping of bulk metallic glasses

    International Nuclear Information System (INIS)

    Hasegawa, M.

    2009-01-01

    There are two important topics concerned with the recent researches on the damping materials of hydrogenated metallic glasses (HMGs). One is the mechanism of the high hydrogen-induced internal friction of HMGs. The other is the materials processing of 'bulk' HMGs for engineering. This article describes the summary of our recent studies on these topics. The first one is closely related to the local structure of the metallic glasses. Therefore, our recent results on the intermediate-range local structure of the simple two Zr-based metallic glasses are described, which has been clarified by the Voronoi analysis using the experimental data of the neutron diffraction measurements. The hydrogen-induced internal friction of HMGs is also discussed on the basis of these recent results of the local structure of the metallic glasses. In terms of the second topic, the first successful preparation of heavily hydrogenated Zr-based bulk HMG rods without hydrogen-induced surface embrittlement is described. They are prepared by a powder-compact-melting and liquid-casting process using Zr-Al-Ni-Cu metallic glass and ZrH 2 powders as the starting materials. It has been found that they have high damping properties.

  10. Hydrogen as a New Alloying Element in Metals

    International Nuclear Information System (INIS)

    Shapovalov, Vladimir

    1999-01-01

    Hydrogen was regarded as a harmful impurity in many alloys and particularly in steels where it gives rise to a specific type of embrittlement and forms various discontinuities like flakes and blowholes. For this reason, the researcher efforts were mainly focused on eliminating hydrogen's negative impacts and explaining its uncommonly high diffusivity in condensed phases. Meanwhile, positive characteristics of hydrogen as an alloying element remained unknown for quite a long time. Initial reports in this field did not appear before the early 1970s. Data on new phase diagrams are given for metal-hydrogen systems where the metal may or may not form hydrides. Various kinds of hydrogen impact on structure formation in solidification, melting and solid-solid transformations are covered. Special attention is given to the most popular alloys based on iron, aluminum, copper, nickel, magnesium and titanium. Detailed is what is called gas-eutectic reaction resulting in a special type of gas-solid structure named gasarite. Properties and applications of gasars - gasaritic porous materials - are dealt with. Various versions of solid-state alloying with hydrogen are discussed that change physical properties and fabrication characteristics of metals. Details are given on a unique phenomenon of anomalous spontaneous deformation due to combination of hydrogen environment and polymorphic transformation. All currently known versions of alloying with hydrogen are categorized for both hydride-forming and non-hydrid forming metals

  11. Predictions of glass transition temperature for hydrogen bonding biomaterials.

    Science.gov (United States)

    van der Sman, R G M

    2013-12-19

    We show that the glass transition of a multitude of mixtures containing hydrogen bonding materials correlates strongly with the effective number of hydroxyl groups per molecule, which are available for intermolecular hydrogen bonding. This correlation is in compliance with the topological constraint theory, wherein the intermolecular hydrogen bonds constrain the mobility of the hydrogen bonded network. The finding that the glass transition relates to hydrogen bonding rather than free volume agrees with our recent finding that there is little difference in free volume among carbohydrates and polysaccharides. For binary and ternary mixtures of sugars, polyols, or biopolymers with water, our correlation states that the glass transition temperature is linear with the inverse of the number of effective hydroxyl groups per molecule. Only for dry biopolymer/sugar or sugar/polyol mixtures do we find deviations due to nonideal mixing, imposed by microheterogeneity.

  12. Photodeposited metal-semiconductor nanocomposites and their applications

    Directory of Open Access Journals (Sweden)

    Yoonkyung Lee

    2018-06-01

    Full Text Available While two-dimensional layered nanomaterials including transition metal oxides and transition metal dichalcogenides have been widely researched because of their unique electronic and optical properties, they still have some limitations. To overcome these limitations, transition metal oxides and transition metal dichalcogenides based nanocomposites have been developed using various methods and have exhibited superior properties. In this paper, we introduce the photodeposition method and review the photodeposition of metal nanoparticles on the surface of transition metal oxide and transition metal dichalcogenides. Their current applications are also explained, such as photocatalysis, hydrogen evolution reaction, surface enhanced Ramanscattering, etc. This approach for nanocomposites has potential for future research areas such as photocatalysis, hydrogen evolution reaction, surface enhanced Raman scattering, and other applications. This approach for nanocomposite has the potential for future research areas. Keywords: Photodeposition, Nanocomposite, Transition metal oxide, Transition metal dichalcogenide

  13. Hydrogen Storage in Metal-Organic Frameworks

    Energy Technology Data Exchange (ETDEWEB)

    Long, Jeffrey R. [Lawrence Berkeley National Lab. (LBNL), Berkeley, CA (United States)

    2016-04-28

    The design and characterization of new materials for hydrogen storage is an important area of research, as the ability to store hydrogen at lower pressures and higher temperatures than currently feasible would lower operating costs for small hydrogen fuel cell vehicles. In particular, metal-organic frameworks (MOFs) represent promising materials for use in storing hydrogen in this capacity. MOFs are highly porous, three-dimensional crystalline solids that are formed via linkages between metal ions (e.g., iron, nickel, and zinc) and organic molecules. MOFs can store hydrogen via strong adsorptive interactions between the gas molecules and the pores of the framework, providing a high surface area for gas adsorption and thus the opportunity to store hydrogen at significantly lower pressures than with current technologies. By lowering the energy required for hydrogen storage, these materials hold promise in rendering hydrogen a more viable fuel for motor vehicles, which is a highly desirable outcome given the clean nature of hydrogen fuel cells (water is the only byproduct of combustion) and the current state of global climate change resulting from the combustion of fossil fuels. The work presented in this report is the result of collaborative efforts between researchers at Lawrence Berkeley National Lab (LBNL), the National Institute of Standards and Technology (NIST), and General Motors Corporation (GM) to discover novel MOFs promising for H2 storage and characterize their properties. Described herein are several new framework systems with improved gravimetric and volumetric capacity to strongly bind H2 at temperatures relevant for vehicle storage. These materials were rigorously characterized using neutron diffraction, to determine the precise binding locations of hydrogen within the frameworks, and high-pressure H2 adsorption measurements, to provide a comprehensive picture of H2 adsorption at all relevant pressures. A

  14. Hydrogen peroxide safety issues

    International Nuclear Information System (INIS)

    Conner, W.V.

    1993-01-01

    A literature survey was conducted to review the safety issues involved in handling hydrogen peroxide solutions. Most of the information found in the literature is not directly applicable to conditions at the Rocky Flats Plant, but one report describes experimental work conducted previously at Rocky Flats to determine decomposition reaction-rate constants for hydrogen peroxide solutions. Data from this report were used to calculate decomposition half-life times for hydrogen peroxide in solutions containing several decomposition catalysts. The information developed from this survey indicates that hydrogen peroxide will undergo both homogeneous and heterogeneous decomposition. The rate of decomposition is affected by temperature and the presence of catalytic agents. Decomposition of hydrogen peroxide is catalyzed by alkalies, strong acids, platinum group and transition metals, and dissolved salts of transition metals. Depending upon conditions, the consequence of a hydrogen peroxide decomposition can range from slow evolution of oxygen gas to a vapor, phase detonation of hydrogen peroxide vapors

  15. Neutron spectroscopy of fast hydrogen diffusion in BCC transition metals

    International Nuclear Information System (INIS)

    Richter, D.; Lottner, V.

    1979-01-01

    Quasielastic neutron scattering reveals microscopic details of both the time and space development of the H-diffusion process on an atomic scale. After outlining the method on the example of PdH/sub x/, new results on the jump geometry in bcc metals are surveyed. In particular, the anomalous diffusion behavior of H in Nb, Ta, and V at elevated temperature is emphasized, where correlated jump processes are important. The influence of impurities on the H-diffusion process is demonstrated by experiments performed on NbH/sub x/ doped with nitrogen impurities, which act as trapping centers for the diffusing hydrogen. The results are discussed in terms of a two-state random walk model which includes multiple trapping and detrapping processes. The concentration and temperature dependence of the capture and escape rates of traps are obtained

  16. First principles calculations and experimental insight into methane steam reforming over transition metal catalysts

    DEFF Research Database (Denmark)

    Jones, Glenn; Jakobsen, Jon Geest; Shim, Signe Sarah

    2008-01-01

    This paper presents a detailed analysis of the steam reforming process front first-principles calculations, supported by insight from experimental investigations. In the present work we employ recently recognised scaling relationships for adsorption energies of simple molecules adsorbed at pure...... metal Surfaces to develop an overview of the steam reforming process catalyzed by a range of transition metal surfaces. By combining scaling relationships with thermodynamic and kinetic analysis, we show that it is possible to determine the reactivity trends of the pure metals for methane steam...... in situ TEM measurements under a hydrogen atmosphere. The overall agreement between theory and experiment (at 773 K, 1 bar pressure and 10% conversion) is found to be excellent with Ru and Rh being the most active pure transition metals for methane steam reforming, while Ni, Ir, Pt, and Pd...

  17. Microwave-assisted synthesis of transition metal phosphide

    Science.gov (United States)

    Viswanathan, Tito

    2014-12-30

    A method of synthesizing transition metal phosphide. In one embodiment, the method has the steps of preparing a transition metal lignosulfonate, mixing the transition metal lignosulfonate with phosphoric acid to form a mixture, and subjecting the mixture to a microwave radiation for a duration of time effective to obtain a transition metal phosphide.

  18. Carbon material for hydrogen storage

    Science.gov (United States)

    Bourlinos, Athanasios; Steriotis, Theodore; Stubos, Athanasios; Miller, Michael A

    2016-09-13

    The present invention relates to carbon based materials that are employed for hydrogen storage applications. The material may be described as the pyrolysis product of a molecular precursor such as a cyclic quinone compound. The pyrolysis product may then be combined with selected transition metal atoms which may be in nanoparticulate form, where the metals may be dispersed on the material surface. Such product may then provide for the reversible storage of hydrogen. The metallic nanoparticles may also be combined with a second metal as an alloy to further improve hydrogen storage performance.

  19. Metal ammine complexes for hydrogen storage

    DEFF Research Database (Denmark)

    Christensen, Claus H.; Sørensen, Rasmus Zink; Johannessen, Tue

    2005-01-01

    The hopes of using hydrogen as an energy carrier are severely dampened by the fact that there is still no safe, high-density method available for storing hydrogen. We investigate the possibility of using metal ammine complexes as a solid form of hydrogen storage. Using Mg(NH3)(6)Cl-2 as the example......, we show that it can store 9.1% hydrogen by weight in the form of ammonia. The storage is completely reversible, and by combining it with an ammonia decomposition catalyst, hydrogen can be delivered at temperatures below 620 K....

  20. Binding of hydrocarbons and other extremely weak ligands to transition metal complexes that coordinate hydrogen: Investigation of cis-interactions and delocalized bonding involving sigma bonds

    International Nuclear Information System (INIS)

    Kubas, G.J.; Eckert, J.; Luo, X.L.

    1997-01-01

    This is the final report of a three-year Laboratory Directed Research and Development (LDRD) project at the Los Alamos National Laboratory (LANL). At the forefront of chemistry are efforts to catalytically transform the inert C-H bonds in alkanes to more useful products using metal compounds. The goal is to observe binding and cleavage of alkane C-H bonds on metals or to use related silane Si-H bonding as models, analogous to the discovery of hydrogen (H 2 ) binding to metals. Studies of these unique sigma complexes (M hor-ellipsis H-Y; Y double-bond H, Si, C) will aid in developing new catalysts or technologies relevant to DOE interest, e.g., new methods for tritium isotope separation. Several transition metals (Mo, W, Mn, and Pt) were found to reversibly bind and cleave H 2 , silanes, and halocarbons. The first metal-SiH 4 complexes, thus serving as a model for methane reactions. A second goal is to study the dynamics and energetics of H-Y bonds on metals by neutron scattering, and evidence for interactions between bound H-Y and nearby H atoms on metal complexes has been found

  1. Metal-support interactions in electrocatalysis: Hydrogen effects on electron and hole transport at metal-support contacts

    International Nuclear Information System (INIS)

    Heller, A.

    1986-01-01

    This paper discusses the effects of hydrogen on electron and hole transport at metal support contacts during electrocatalysis. When hydrogen dissolves in high work function metals such as Pt, Rh or Ru the contact forms between the semiconductor and the hydrogenated metal, which has a work function that is lower than that of the pure metal. Thus by changing the gaseous atmosphere that envelopes metal-substrate contacts, it is possible to reversibly change their diode characteristics. In some cases, such as Pt on n-TiO/sub 2/, Rh on n-TiO/sub 2/ and Ru on n-TiO/sub 2/, it is even possible to reversibly convert Schottky diodes into ohmic contacts by changing the atmosphere from air to hydrogen. In contacts between hydrogen dissolving group VIII metals and semiconducting substrates, one can test for interfacial reaction of the catalysts and the substrate by examining the electrical characteristics of the contacts in air (oxygen) and in hydrogen. In the absence of interfacial reaction, large hydrogen induced variation in the barrier heights is observed and the hydrogenated contacts, approach ideality (i.e. their non-ideality factor is close to unity). When a group VIII metal and a substrate do react, the reaction often produces a phase that blocks hydrogen transport to the interface between the substrate and the reaction product. In this case the hydrogen effect is reduced or absent. Furthermore, because such reaction often introduces defects into the surface of the semiconductor, the contacts have non-ideal diode characteristics

  2. Mesoscopic quantum effects in a bad metal, hydrogen-doped vanadium dioxide

    Science.gov (United States)

    Hardy, Will J.; Ji, Heng; Paik, Hanjong; Schlom, Darrell G.; Natelson, Douglas

    2017-05-01

    The standard treatment of quantum corrections to semiclassical electronic conduction assumes that charge carriers propagate many wavelengths between scattering events, and succeeds in explaining multiple phenomena (weak localization magnetoresistance (WLMR), universal conductance fluctuations, Aharonov-Bohm oscillations) observed in polycrystalline metals and doped semiconductors in various dimensionalities. We report apparent WLMR and conductance fluctuations in H x VO2, a poor metal (in violation of the Mott-Ioffe-Regel limit) stabilized by the suppression of the VO2 metal-insulator transition through atomic hydrogen doping. Epitaxial thin films, single-crystal nanobeams, and nanosheets show similar phenomenology, though the details of the apparent WLMR seem to depend on the combined effects of the strain environment and presumed doping level. Self-consistent quantitative analysis of the WLMR is challenging given this and the high resistivity of the material, since the quantitative expressions for WLMR are derived assuming good metallicity. These observations raise the issue of how to assess and analyze mesoscopic quantum effects in poor metals.

  3. High-Pressure Thermodynamic Properties of f-electron Metals, Transition Metal Oxides, and Half-Metallic Magnets

    International Nuclear Information System (INIS)

    Richard T. Scalettar; Warren E. Pickett

    2005-01-01

    This project involves research into the thermodynamic properties of f-electron metals, transition metal oxides, and half-metallic magnets at high pressure. These materials are ones in which the changing importance of electron-electron interactions as the distance between atoms is varied can tune the system through phase transitions from localized to delocalized electrons, from screened to unscreened magnetic moments, and from normal metal to one in which only a single spin specie can conduct. Three main thrusts are being pursued: (1) Mott transitions in transition metal oxides, (2) magnetism in half-metallic compounds, and (3) large volume-collapse transitions in f-band metals

  4. High-Pressure Thermodynamic Properties of f-electron Metals, Transition Metal Oxides, and Half-Metallic Magnets

    Energy Technology Data Exchange (ETDEWEB)

    Scalettar, Richard T.; Pickett, Warren E.

    2004-07-01

    This project involves research into the thermodynamic properties of f-electron metals, transition metal oxides, and half-metallic magnets at high pressure. These materials are ones in which the changing importance of electron-electron interactions as the distance between atoms is varied can tune the system through phase transitions from localized to delocalized electrons, from screened to unscreened magnetic moments, and from normal metal to one in which only a single spin specie can conduct. Three main thrusts are being pursued: (1) Mott transitions in transition metal oxides, (2) magnetism in half-metallic compounds, and (3) large volume-collapse transitions in f-band metals.

  5. High-Pressure Thermodynamic Properties of f-electron Metals, Transition Metal Oxides, and Half-Metallic Magnets

    Energy Technology Data Exchange (ETDEWEB)

    Richard T. Scalettar; Warren E. Pickett

    2005-08-02

    This project involves research into the thermodynamic properties of f-electron metals, transition metal oxides, and half-metallic magnets at high pressure. These materials are ones in which the changing importance of electron-electron interactions as the distance between atoms is varied can tune the system through phase transitions from localized to delocalized electrons, from screened to unscreened magnetic moments, and from normal metal to one in which only a single spin specie can conduct. Three main thrusts are being pursued: (i) Mott transitions in transition metal oxides, (ii) magnetism in half-metallic compounds, and (iii) large volume-collapse transitions in f-band metals.

  6. Hydrogen storage properties of metallic hydrides

    International Nuclear Information System (INIS)

    Latroche, M.; Percheron-Guegan, A.

    2005-01-01

    Nowadays, energy needs are mainly covered by fossil energies leading to pollutant emissions mostly responsible for global warming. Among the different possible solutions for greenhouse effect reduction, hydrogen has been proposed for energy transportation. Indeed, H 2 can be seen as a clean and efficient energy carrier. However, beside the difficulties related to hydrogen production, efficient high capacity storage means are still to be developed. Many metals and alloys are able to store large amounts of hydrogen. This latter solution is of interest in terms of safety, global yield and long term storage. However, to be suitable for applications, such compounds must present high capacity, good reversibility, fast reactivity and sustainability. In this paper, we will review the structural and thermodynamic properties of metallic hydrides. (authors)

  7. Aerobic Transition-Metal-Free Synthesis of 2,3-Diarylindoles and 5-Aryluracils via Oxidative Nucleophilic Substitution of Hydrogen Pathway

    Energy Technology Data Exchange (ETDEWEB)

    Yu, Jin; Moon, Hye Ran; Kim, Su Yeon; Kim, Jae Nyoung [Chonnam National Un iversity, Gwangju (Korea, Republic of)

    2016-01-15

    2,3-diarylindoles and 5-aryluracils were synthesized by ONSH pathway under transition-metal-free conditions in good to moderate yields using molecular oxygen as an oxidant. As 2,3-diarylindoles have been found in many biologically important compounds, the synthesis of this scaffold has received much attention. Most frequently, 2,3-diarylindoles have been prepared via palladium-catalyzed arylations of 2-arylindole with bromoarenes. During our recent transition metal-catalyzed arylations of indoles and uracils, we were interested in the arylation in the absence of an expensive transition metal catalyst.

  8. New insights into designing metallacarborane based room temperature hydrogen storage media.

    Science.gov (United States)

    Bora, Pankaj Lochan; Singh, Abhishek K

    2013-10-28

    Metallacarboranes are promising towards realizing room temperature hydrogen storage media because of the presence of both transition metal and carbon atoms. In metallacarborane clusters, the transition metal adsorbs hydrogen molecules and carbon can link these clusters to form metal organic framework, which can serve as a complete storage medium. Using first principles density functional calculations, we chalk out the underlying principles of designing an efficient metallacarborane based hydrogen storage media. The storage capacity of hydrogen depends upon the number of available transition metal d-orbitals, number of carbons, and dopant atoms in the cluster. These factors control the amount of charge transfer from metal to the cluster, thereby affecting the number of adsorbed hydrogen molecules. This correlation between the charge transfer and storage capacity is general in nature, and can be applied to designing efficient hydrogen storage systems. Following this strategy, a search for the best metallacarborane was carried out in which Sc based monocarborane was found to be the most promising H2 sorbent material with a 9 wt.% of reversible storage at ambient pressure and temperature.

  9. Safety issues in urban transit facilities for hydrogen-fueled buses

    International Nuclear Information System (INIS)

    Hay, R.H.; Ducharme, P.

    2004-01-01

    'Full text:' The Canadian Transportation Fuel Cell Alliance (CTFCA), created by the Canadian Government as part of its 2000 Climate Change Action Plan, has commissioned MARCON-DDM's Hydrogen Intervention Team (HIT) to provide a roadmap for urban transit systems that wish to move to hydrogen fuel cell-powered bus fleets. HIT is currently in the process of gathering information from hydrogen technology providers, bus manufacturers, fuelling system providers and urban transit systems in Canada, the US and Europe. In September, HIT will be in a position to provide a hands-on perspective of the introduction of fuel-cell buses in the Canadian environment. Part of the process of adding hydrogen-fueled busses to urban transit systems involves phasing in the new technology to minimize the economic cost. This involves substituting hydrogen buses into the normal bus procurement life cycle and maximizing the use of existing facilities for garaging, maintenance and fueling. Using a schematic outline of an urban transit system, this presentation will outline the safety issues specific to hydrogen in such systems, particularly for garaging, maintenance and fueling components. It will then outline how safety of these component is addressed in current and proposed codes, standards and recommended practices. Based on these requirements the impact of the introduction of hydrogen-fueled buses on each component of the transit system will be addressed in terms of the adaptations of current facilities and practices or the requirements for new facilities and practices. (author)

  10. Nanoporous, Metal Carbide, Surface Diffusion Membranes for High Temperature Hydrogen Separations

    Energy Technology Data Exchange (ETDEWEB)

    Way, J. Douglas [Colorado School of Mines, Golden, CO (United States). Dept. of Chemical and Biological Engineering; Wolden, Colin A. [Colorado School of Mines, Golden, CO (United States)

    2013-09-30

    Colorado School of Mines (CSM) developed high temperature, hydrogen permeable membranes that contain no platinum group metals with the goal of separating hydrogen from gas mixtures representative of gasification of carbon feedstocks such as coal or biomass in order to meet DOE NETL 2015 hydrogen membrane performance targets. We employed a dual synthesis strategy centered on transition metal carbides. In the first approach, novel, high temperature, surface diffusion membranes based on nanoporous Mo2C were fabricated on ceramic supports. These were produced in a two step process that consisted of molybdenum oxide deposition followed by thermal carburization. Our best Mo2C surface diffusion membrane achieved a pure hydrogen flux of 367 SCFH/ft2 at a feed pressure of only 20 psig. The highest H2/N2 selectivity obtained with this approach was 4.9. A transport model using “dusty gas” theory was derived to describe the hydrogen transport in the Mo2C coated, surface diffusion membranes. The second class of membranes developed were dense metal foils of BCC metals such as vanadium coated with thin (< 60 nm) Mo2C catalyst layers. We have fabricated a Mo2C/V composite membrane that in pure gas testing delivered a H2 flux of 238 SCFH/ft2 at 600 °C and 100 psig, with no detectable He permeance. This exceeds the 2010 DOE Target flux. This flux is 2.8 times that of pure Pd at the same membrane thickness and test conditions and over 79% of the 2015 flux target. In mixed gas testing we achieved a permeate purity of ≥99.99%, satisfying the permeate purity milestone, but the hydrogen permeance was low, ~0.2 SCFH/ft2.psi. However, during testing of a Mo2C coated Pd alloy membrane with DOE 1 feed gas mixture a hydrogen permeance of >2 SCFH/ft2.psi was obtained which was stable during the entire test, meeting the permeance associated with

  11. Hawaiian hydrogen mass transit system

    International Nuclear Information System (INIS)

    Russell, G.W.; Russell, A.

    1990-01-01

    This paper proposes a joint effort between the scientific and business communities; to create, make and have hydrogen fuel become the primary fuel of the future. Hawaii has abundant, unharnessed renewable resources yet imports almost all of its fuel. Initiating hydrogen production and industrial application in conjunction with a prototype pilot project such as this mass transit system would not only accomplish the joining of science and business but give an environmentally safe energy alternative to the state and people of Hawaii and hopefully the world

  12. Metal oxide/hydrogen battery; Kinzoku sankabutsu/suiso denchi

    Energy Technology Data Exchange (ETDEWEB)

    Kanda, M.; Niki, H. [Toshiba Research and Development Centre, Komukai, Kawasaki (Japan)

    1995-07-04

    The metal oxide-hydrogen battery consisting mainly of hydrogen storage alloy has high energy density and high volume efficiency. However, it is disadvantageous that the self-discharge takes place since the discharge capacity is lowered due to the delivery of stored hydrogen from the hydrogen electrode. This invention relates to the metal oxide-hydrogen battery consisting of hydrogen storage alloy. Hydrogen storage alloy which is composed of LaNi5 system homogeneous solid solution having an equilibrium plateau pressure of less than 1 atm at 20{degree}C is used. As a result, the battery voltage change and the self-discharge can be reduced, and the cell performance can be improved. Examples of LaNi5 system hydrogen storage alloy are ANi(5-x)Mx (A = La, Mm, and Ca, M = Al, Mn, Si, Ge, Fe, B, Ga, Cu, In, and Co). LaNi(4.7)Al(0.3) and MmNi(4.2)Mn(0.8) are preferable. 3 figs.

  13. Method and apparatus for hydrogen production from water

    Science.gov (United States)

    Muradov, Nazim Z. (Inventor)

    2012-01-01

    A method, apparatuses and chemical compositions are provided for producing high purity hydrogen from water. Metals or alloys capable of reacting with water and producing hydrogen in aqueous solutions at ambient conditions are reacted with one or more inorganic hydrides capable of releasing hydrogen in aqueous solutions at ambient conditions, one or more transition metal compounds are used to catalyze the reaction and, optionally, one or more alkali metal-based compounds. The metal or alloy is preferably aluminum. The inorganic hydride is from a family of complex inorganic hydrides; most preferably, NaBH.sub.4. The transition metal catalyst is from the groups VIII and IB; preferably, Cu and Fe. The alkali metal-based compounds are preferably NaOH, KOH, and the like. Hydrogen generated has a purity of at least 99.99 vol. % (dry basis), and is used without further purification in all types of fuel cells, including the polymer electrolyte membrane (PEM) fuel cell.

  14. Scaling properties of adsorption energies for hydrogen-containing molecules on transition-metal surfaces

    DEFF Research Database (Denmark)

    Abild-Pedersen, Frank; Greeley, Jeffrey Philip; Studt, Felix

    2007-01-01

    Density functional theory calculations are presented for CHx, x=0,1,2,3, NHx, x=0,1,2, OHx, x=0,1, and SHx, x=0,1 adsorption on a range of close-packed and stepped transition-metal surfaces. We find that the adsorption energy of any of the molecules considered scales approximately with the adsorp...

  15. Half-Metallic Ferromagnetism and Stability of Transition Metal Pnictides and Chalcogenides

    Science.gov (United States)

    Liu, Bang-Gui

    It is highly desirable to explore robust half-metallic ferromagnetic materials compatible with important semiconductors for spintronic applications. A state-of-the-art full potential augmented plane wave method within the densityfunctional theory is reliable enough for this purpose. In this chapter we review theoretical research on half-metallic ferromagnetism and structural stability of transition metal pnictides and chalcogenides. We show that some zincblende transition metal pnictides are half-metallic and the half-metallic gap can be fairly wide, which is consistent with experiment. Systematic calculations reveal that zincblende phases of CrTe, CrSe, and VTe are excellent half-metallic ferromagnets. These three materials have wide half-metallic gaps, are low in total energy with respect to the corresponding ground-state phases, and, importantly, are structurally stable. Halfmetallic ferromagnetism is also found in wurtzite transition metal pnictides and chalcogenides and in transition-metal doped semiconductors as well as deformed structures. Some of these half-metallic materials could be grown epitaxially in the form of ultrathin .lms or layers suitable for real spintronic applications.

  16. Hydrogen adsorption in metal-decorated silicon carbide nanotubes

    Science.gov (United States)

    Singh, Ram Sevak; Solanki, Ankit

    2016-09-01

    Hydrogen storage for fuel cell is an active area of research and appropriate materials with excellent hydrogen adsorption properties are highly demanded. Nanotubes, having high surface to volume ratio, are promising storage materials for hydrogen. Recently, silicon carbide nanotubes have been predicted as potential materials for future hydrogen storage application, and studies in this area are ongoing. Here, we report a systematic study on hydrogen adsorption properties in metal (Pt, Ni and Al) decorated silicon carbide nanotubes (SiCNTs) using first principles calculations based on density functional theory. The hydrogen adsorption properties are investigated by calculations of adsorption energy, electronic band structure, density of states (DOS) and Mulliken charge population analysis. Our findings show that hydrogen adsorptions on Pt, Ni and Al-decorated SiCNTs undergo spontaneous exothermic reactions with significant modulation of electronic structure of SiCNTs in all cases. Importantly, according to the Mulliken charge population analysis, dipole-dipole interaction causes chemisorptions of hydrogen in Pt, Ni and Al decorated SiCNTs with formation of chemical bonds. The study is a platform for the development of metal decorated SiCNTs for hydrogen adsorption or hydrogen storage application.

  17. Metal phosphonate coordination networks and frameworks as precursors of electrocatalysts for the hydrogen and oxygen evolution reactions

    Science.gov (United States)

    Zhang, Rui; El-Refaei, Sayed M.; Russo, Patrícia A.; Pinna, Nicola

    2018-05-01

    The hydrogen evolution reaction (HER) and the oxygen evolution reaction (OER) play key roles in the conversion of energy derived from renewable energy sources into chemical energy. Efficient, robust, and inexpensive electrocatalysts are necessary for driving these reactions at high rates at low overpotentials and minimize energetic losses. Recently, electrocatalysts derived from hybrid metal phosphonate compounds have shown high activity for the HER or OER. We review here the utilization of metal phosphonate coordination networks and metal-organic frameworks as precursors/templates for transition-metal phosphides, phosphates, or oxyhydroxides generated in situ in alkaline solutions, and their electrocatalytic performance in HER or OER.

  18. Transition metal nuclear magnetic resonance

    International Nuclear Information System (INIS)

    Pregosin, P.S.

    1991-01-01

    Transition metal NMR spectroscopy has progressed enormously in recent years. New methods, and specifically solid-state methods and new pulse sequences, have allowed access to data from nuclei with relatively low receptivities with the result that chemists have begun to consider old and new problems, previously unapproachable. Moreover, theory, computational science in particular, now permits the calculation of not just 13 C, 15 N and other light nuclei chemical shifts, but heavy main-group element and transition metals as well. These two points, combined with increasing access to high field pulsed spectrometer has produced a wealth of new data on the NMR transition metals. A new series of articles concerned with measuring, understanding and using the nuclear magnetic resonance spectra of the metals of Group 3-12 is presented. (author)

  19. Interaction of hydrogen with metallic nanojunctions

    Energy Technology Data Exchange (ETDEWEB)

    Halbritter, Andras; Csonka, Szabolcs; Makk, Peter; Mihaly, Gyoergy [Electron Transport Research Group of the Hungarian Academy of Sciences and Department of Physics, Budapest University of Technology and Economics, 1111 Budapest (Hungary)

    2007-03-15

    We study the behavior of hydrogen molecules between atomic-sized metallic electrodes using the mechanically controllable break junction technique. We focus on the interaction H{sub 2} with monoatomic gold chains demonstrating the possibility of a hydrogen molecule being incorporated in the chain. We also show that niobium is strongly reactive with hydrogen, which enables molecular transport studies between superconducting electrodes. This opens the possibility for a full characterization of the transmission properties of molecular junctions with superconducting subgap structure measurements.

  20. Single-site catalyst promoters accelerate metal-catalyzed nitroarene hydrogenation

    KAUST Repository

    Wang, Liang

    2018-04-04

    Atomically dispersed supported metal catalysts are drawing wide attention because of the opportunities they offer for new catalytic properties combined with efficient use of the metals. We extend this class of materials to catalysts that incorporate atomically dispersed metal atoms as promoters. The catalysts are used for the challenging nitroarene hydrogenation and found to have both high activity and selectivity. The promoters are single-site Sn on TiO2 supports that incorporate metal nanoparticle catalysts. Represented as M/Sn-TiO2 (M = Au, Ru, Pt, Ni), these catalysts decidedly outperform the unpromoted supported metals, even for hydrogenation of nitroarenes substituted with various reducible groups. The high activity and selectivity of these catalysts result from the creation of oxygen vacancies on the TiO2 surface by single-site Sn, which leads to efficient, selective activation of the nitro group coupled with a reaction involving hydrogen atoms activated on metal nanoparticles.

  1. Single-site catalyst promoters accelerate metal-catalyzed nitroarene hydrogenation

    KAUST Repository

    Wang, Liang; Guan, Erjia; Zhang, Jian; Yang, Junhao; Zhu, Yihan; Han, Yu; Yang, Ming; Cen, Cheng; Fu, Gang; Gates, Bruce C.; Xiao, Feng-Shou

    2018-01-01

    Atomically dispersed supported metal catalysts are drawing wide attention because of the opportunities they offer for new catalytic properties combined with efficient use of the metals. We extend this class of materials to catalysts that incorporate atomically dispersed metal atoms as promoters. The catalysts are used for the challenging nitroarene hydrogenation and found to have both high activity and selectivity. The promoters are single-site Sn on TiO2 supports that incorporate metal nanoparticle catalysts. Represented as M/Sn-TiO2 (M = Au, Ru, Pt, Ni), these catalysts decidedly outperform the unpromoted supported metals, even for hydrogenation of nitroarenes substituted with various reducible groups. The high activity and selectivity of these catalysts result from the creation of oxygen vacancies on the TiO2 surface by single-site Sn, which leads to efficient, selective activation of the nitro group coupled with a reaction involving hydrogen atoms activated on metal nanoparticles.

  2. Adsorption of hydrogen isotopes by metals in non-equilibrium conditions

    International Nuclear Information System (INIS)

    Livshits, A.I.; Notkin, M.E.; Pustovojt, Yu.M.

    1982-01-01

    To study the interaction of thermonuclear plasma and additions with metallic walls, nonequilibrium system of thermal atomary hydrogen - ''cold'' (300-1100 K) metal is experimentally investigated. Atomary hydrogen was feeded to samples of Ni and Pd in the shape of atomic beam, coming into vacuum from high-frequency gaseous discharge. It is shown that hydrogen solubility under nonequilibrium conditions increases with surface passivation (contamination); in this case it surpasses equilibrium solubility by value orders. Nickel and iron dissolve more hydrogen than palladium at a certain state of surface ( passivation) and gas (atomary hydrogen). The sign of the temperature dependence of hydrogen solubility in passivated N 1 and Fe changes when alterating molecular hydrogen by atomary hydrogen

  3. Hydrogen storage evaluation based on investigations of the catalytic properties of metal/metal oxides in electrospun carbon fibers

    Energy Technology Data Exchange (ETDEWEB)

    Im, Ji Sun; Lee, Young-Seak [Department of Fine Chemical Engineering and Chemistry, Chungnam National University, Daejeon 305-764 (Korea); Park, Soo-Jin [Department of Chemistry, Inha University, Incheon 402-751 (Korea); Kim, Taejin [Core Technology Research Center for Fuel Cell, Jeollabuk-do 561-844 (Korea)

    2009-05-15

    In order to investigate the catalytic capacity of metals and metal oxides based on electrospun carbon fibers for improving hydrogen storage, electrospinning and heat treatments were carried out to obtain metal/metal oxide-embedded carbon fibers. Although the fibers were treated with the same activation procedure, they had different pore structures, due to the nature of the metal oxide. When comparing the catalytic capacity of metal and metal oxide, metal exhibits better performance as a catalyst for the improvement of hydrogen storage, when considering the hydrogen storage system. When a metal oxide with an m.p. lower than the temperature of heat treatment was used, the metal oxide was changed to metal during the heat treatment, developing a micropore structure. The activation process produced a high specific surface area of up to 2900 m{sup 2}/g and a pore volume of up to 2.5 cc/g. The amount of hydrogen adsorption reached approximately 3 wt% at 100 bar and room temperature. (author)

  4. Towards hydrogen metallization: an Ab initio approach; Vers la metallisation de l`hydrogene: approche AB initio

    Energy Technology Data Exchange (ETDEWEB)

    Bernard, St

    1998-12-31

    The quest for metallic hydrogen is a major goal for both theoretical and experimental condensed matter physics. Hydrogen and deuterium have been compressed up to 200 GPa in diamond anvil cells, without any clear evidence for a metallic behaviour. Loubeyere has recently suggested that hydrogen could metallize, at pressures within experimental range, in a new Van der Waals compound: Ar(H{sub 2}){sub 2} which is characterized at ambient pressure by an open and anisotropic sublattice of hydrogen molecules, stabilized by an argon skeleton. This thesis deals with a detailed ab initio investigation, by Car-Parrinello molecular dynamics methods, of the evolution under pressure of this compound. In a last chapter, we go to much higher pressures and temperatures, in order to compare orbital and orbital free ab initio methods for the dense hydrogen plasma. (author) 109 refs.

  5. Towards hydrogen metallization: an Ab initio approach; Vers la metallisation de l`hydrogene: approche AB initio

    Energy Technology Data Exchange (ETDEWEB)

    Bernard, St

    1999-12-31

    The quest for metallic hydrogen is a major goal for both theoretical and experimental condensed matter physics. Hydrogen and deuterium have been compressed up to 200 GPa in diamond anvil cells, without any clear evidence for a metallic behaviour. Loubeyere has recently suggested that hydrogen could metallize, at pressures within experimental range, in a new Van der Waals compound: Ar(H{sub 2}){sub 2} which is characterized at ambient pressure by an open and anisotropic sublattice of hydrogen molecules, stabilized by an argon skeleton. This thesis deals with a detailed ab initio investigation, by Car-Parrinello molecular dynamics methods, of the evolution under pressure of this compound. In a last chapter, we go to much higher pressures and temperatures, in order to compare orbital and orbital free ab initio methods for the dense hydrogen plasma. (author) 109 refs.

  6. Hydrogen release at metal-oxide interfaces: A first principle study of hydrogenated Al/SiO{sub 2} interfaces

    Energy Technology Data Exchange (ETDEWEB)

    Huang, Jianqiu, E-mail: jianqiu@vt.edu [Department of Mechanical Engineering, Virginia Tech, Goodwin Hall, 635 Prices Fork Road - MC 0238, Blacksburg, VA 24061 (United States); Tea, Eric; Li, Guanchen [Department of Mechanical Engineering, Virginia Tech, Goodwin Hall, 635 Prices Fork Road - MC 0238, Blacksburg, VA 24061 (United States); Hin, Celine [Department of Mechanical Engineering, Virginia Tech, Goodwin Hall, 635 Prices Fork Road - MC 0238, Blacksburg, VA 24061 (United States); Department of Material Science and Engineering, Virginia Tech, Goodwin Hall, 635 Prices Fork Road-MC 0238, Blacksburg, VA 24061 (United States)

    2017-06-01

    Highlights: • Hydrogen release process at the Al/SiO{sub 2} metal-oxide interface has been investigated. • A mathematical model that estimates the hydrogen release potential has been proposed. • Al atoms, Al−O bonds, and Si−Al bonds are the major hydrogen traps at the Al/SiO{sub 2} interface. • Hydrogen atoms are primarily release from Al−H and O−H bonds at the Al/SiO{sub 2} metal-oxide interface. - Abstract: The Anode Hydrogen Release (AHR) mechanism at interfaces is responsible for the generation of defects, that traps charge carriers and can induce dielectric breakdown in Metal-Oxide-Semiconductor Field Effect Transistors. The AHR has been extensively studied at Si/SiO{sub 2} interfaces but its characteristics at metal-silica interfaces remain unclear. In this study, we performed Density Functional Theory (DFT) calculations to study the hydrogen release mechanism at the typical Al/SiO{sub 2} metal-oxide interface. We found that interstitial hydrogen atoms can break interfacial Al−Si bonds, passivating a Si sp{sup 3} orbital. Interstitial hydrogen atoms can also break interfacial Al−O bonds, or be adsorbed at the interface on aluminum, forming stable Al−H−Al bridges. We showed that hydrogenated O−H, Si−H and Al−H bonds at the Al/SiO{sub 2} interfaces are polarized. The resulting bond dipole weakens the O−H and Si−H bonds, but strengthens the Al−H bond under the application of a positive bias at the metal gate. Our calculations indicate that Al−H bonds and O−H bonds are more important than Si−H bonds for the hydrogen release process.

  7. Theory of hydrogen chemisorption on metals

    International Nuclear Information System (INIS)

    Brenig, W.

    1975-01-01

    A theory of hydrogen chemisorption on metals is presented. Green's function is derived taking into account the coupling strength between metal and chemisorbed atom and the strength of the interatomic Coulomb repulsion, allowing the calculation of the local density of states at the adatom, especially for the limiting cases of strong and weak coupling

  8. Air-stable magnesium nanocomposites provide rapid and high-capacity hydrogen storage without using heavy-metal catalysts

    Science.gov (United States)

    Jeon, Ki-Joon; Moon, Hoi Ri; Ruminski, Anne M.; Jiang, Bin; Kisielowski, Christian; Bardhan, Rizia; Urban, Jeffrey J.

    2011-04-01

    Hydrogen is a promising alternative energy carrier that can potentially facilitate the transition from fossil fuels to sources of clean energy because of its prominent advantages such as high energy density (142 MJ kg-1 ref. 1), great variety of potential sources (for example water, biomass, organic matter), light weight, and low environmental impact (water is the sole combustion product). However, there remains a challenge to produce a material capable of simultaneously optimizing two conflicting criteria—absorbing hydrogen strongly enough to form a stable thermodynamic state, but weakly enough to release it on-demand with a small temperature rise. Many materials under development, including metal-organic frameworks, nanoporous polymers, and other carbon-based materials, physisorb only a small amount of hydrogen (typically 1-2 wt%) at room temperature. Metal hydrides were traditionally thought to be unsuitable materials because of their high bond formation enthalpies (for example MgH2 has a ΔHf˜75 kJ mol-1), thus requiring unacceptably high release temperatures resulting in low energy efficiency. However, recent theoretical calculations and metal-catalysed thin-film studies have shown that microstructuring of these materials can enhance the kinetics by decreasing diffusion path lengths for hydrogen and decreasing the required thickness of the poorly permeable hydride layer that forms during absorption. Here, we report the synthesis of an air-stable composite material that consists of metallic Mg nanocrystals (NCs) in a gas-barrier polymer matrix that enables both the storage of a high density of hydrogen (up to 6 wt% of Mg, 4 wt% for the composite) and rapid kinetics (loading in <30 min at 200 °C). Moreover, nanostructuring of the Mg provides rapid storage kinetics without using expensive heavy-metal catalysts.

  9. Storage of hydrogen in metals

    International Nuclear Information System (INIS)

    Wiswall, R.

    1981-01-01

    A review is dedicated to a problem of hydrogen storage as fuel of future, that can be used under various conditions, is easily obtained with the help of other types of energy and can be transformed into them. Data on reversible metal-hydrogen systems, where hydrogen can be obtained by the way of reaction of thermal decomposition are presented. Pressure-temperature-content diagrams, information on concrete Pd-H, TiFe-H, V-N systems are presented and analyzed from the point of view of thermodynamics. A table with thermodynamical characteristics of several hydrides is presented. The majority of known solid hydrides in relation to their use for hydrogen storage are characterized. The review includes information on real or supposed uses in concrete systems: in fuel cells, for levelling of loading of electric plants, in automobile engines, in hydride engines, for heat storage [ru

  10. Hydrogen: energy transition under way

    International Nuclear Information System (INIS)

    Franc, Pierre-Etienne; Mateo, Pascal

    2015-01-01

    Written by a representative of Air Liquide with the help of a free lance journalist, this book proposes an overview of the technological developments for the use of hydrogen as a clean energy with its ability to store primary energy (notably that produced by renewable sources), and its capacity of energy restitution in combination with a fuel cell with many different applications (notably mobility-related applications). The authors outline that these developments are very important in a context of energy transition. They also outline what is left to be done, notably economically and financially, for hydrogen to play its role in the energy revolution which is now under way

  11. Solubility of hydrogen isotopes in stressed hydride-forming metals

    International Nuclear Information System (INIS)

    Coleman, C.E.; Ambler, J.F.R.

    1983-01-01

    Components made from hydride-forming metals can be brittle when particles of hydride are present. The solid solubility limit of hydrogen in these metals needs to be known so that fracture resistance can be properly assessed. Stress affects the solubility of hydrogen in metals. As hydrogen dissolves the metal volume increases, an applied hydrostatic tensile stress supplies work to increase the solubility. Precipitation of hydrides increases the volume further. A hydrostatic tensile stress promotes the formation of hydrides and tends to reduce the terminal solubility. For materials containing hydrogen in solution in equilibrium with hydrides, the effect of stress on the terminal solubility is given. Hydrogen migrates up tensile stress gradients because of the effect of stress on the solubility and solubility limit. Consequently, hydrogen concentrates at flaws. When hydrides are present in the metal matrix, those remote from the flaw tip will preferentially dissolve in favor of those precipitated at the flaw. If the stress is large enough, at some critical condition the hydrides at the flaw will crack. This is delayed hydrogen cracking. Notched and fatigue-cracked cantilever beam specimens (6) (38 x 4 x 3 mm) were machined from the circumferential direction of several cold-worked Zr-2.5 at. % Nb pressure tubes. The chemical compositions had the ranges (in atomic %) Nb - 2.5 to 2.7; O - 0.58 to 0.71; H - 0.018 to 0.18. The effect of test temperature is for a specimen containing 0.13 at. % protium and 0.29 at .% deuterium. Between 505 K and 530 K was less than 1 hr, between 530 K and 537 K it increased to 25.8 h, while at 538 K no cracking was observed up to the 54 h

  12. Molecular metal-Oxo catalysts for generating hydrogen from water

    Science.gov (United States)

    Long, Jeffrey R; Chang, Christopher J; Karunadasa, Hemamala I

    2015-02-24

    A composition of matter suitable for the generation of hydrogen from water is described, the positively charged cation of the composition having the general formula [(PY5W.sub.2)MO].sup.2+, wherein PY5W.sub.2 is (NC.sub.5XYZ)(NC.sub.5H.sub.4).sub.4C.sub.2W.sub.2, M is a transition metal, and W, X, Y, and Z can be H, R, a halide, CF.sub.3, or SiR.sub.3, where R can be an alkyl or aryl group. The two accompanying counter anions, in one embodiment, can be selected from the following Cl.sup.-, I.sup.-, PF.sub.6.sup.-, and CF.sub.3SO.sub.3.sup.-. In embodiments of the invention, water, such as tap water containing electrolyte or straight sea water can be subject to an electric potential of between 1.0 V and 1.4 V relative to the standard hydrogen electrode, which at pH 7 corresponds to an overpotential of 0.6 to 1.0 V, with the result being, among other things, the generation of hydrogen with an optimal turnover frequency of ca. 1.5 million mol H.sub.2/mol catalyst per h.

  13. Bimetallic promotion of cooperative hydrogen transfer and heteroatom removal in coal liquefaction

    Energy Technology Data Exchange (ETDEWEB)

    Eisch, J.J.

    1992-04-07

    The ultimate objective of this research has been to uncover novel reagents and experimental conditions for heteroatom removal and hydrogen transfer processes, which would be applicable to the liquefaction of coal under low-severity conditions. To this end, one phase of this research has investigated the cleavage of carbon-heteroatom bonds involving sulfur, oxygen, nitrogen and halogen by subvalent transition-metal complexes. A second phase of the study has assessed the capability of the same transition-metal complexes or of organoaluminum Lewis acids to catalyze the cleavage of carbon-hydrogen bonds in aromatics and hence to promote hydrogen shuttling. Finally, a third phase of our work has uncovered a remarkable synergistic effect of combinations of transition metals with organoaluminum Lewis acids on hydrogen shuttling between aromatics and hydroaromatics. (VC)

  14. (Electronic structure and reactivities of transition metal clusters)

    Energy Technology Data Exchange (ETDEWEB)

    1992-01-01

    The following are reported: theoretical calculations (configuration interaction, relativistic effective core potentials, polyatomics, CASSCF); proposed theoretical studies (clusters of Cu, Ag, Au, Ni, Pt, Pd, Rh, Ir, Os, Ru; transition metal cluster ions; transition metal carbide clusters; bimetallic mixed transition metal clusters); reactivity studies on transition metal clusters (reactivity with H{sub 2}, C{sub 2}H{sub 4}, hydrocarbons; NO and CO chemisorption on surfaces). Computer facilities and codes to be used, are described. 192 refs, 13 figs.

  15. Analysis of hydrogen in zirconium metallic

    International Nuclear Information System (INIS)

    Rodrigues, A.N.; Vega Bustillos, J.O.W.

    1991-02-01

    Determination of hydrogen in zirconium metallic have been performed using the hot vacuum extraction system and the gas chromatographic technique. The zirconium metallic samples were hydrieded by electrolitic technique at difference temperatures and times, then the samples were annealing at vacuum and eatching by fluoridric acid solution. The details of the hydrieded process, analytical technique and the data obtained are discussed. (author)

  16. Metal Carbides for Biomass Valorization

    Directory of Open Access Journals (Sweden)

    Carine E. Chan-Thaw

    2018-02-01

    Full Text Available Transition metal carbides have been utilized as an alternative catalyst to expensive noble metals for the conversion of biomass. Tungsten and molybdenum carbides have been shown to be effective catalysts for hydrogenation, hydrodeoxygenation and isomerization reactions. The satisfactory activities of these metal carbides and their low costs, compared with noble metals, make them appealing alternatives and worthy of further investigation. In this review, we succinctly describe common synthesis techniques, including temperature-programmed reaction and carbothermal hydrogen reduction, utilized to prepare metal carbides used for biomass transformation. Attention will be focused, successively, on the application of transition metal carbide catalysts in the transformation of first-generation (oils and second-generation (lignocellulose biomass to biofuels and fine chemicals.

  17. New technique for producing the alloys based on transition metals

    International Nuclear Information System (INIS)

    Dolukhanyan, S.K.; Aleksanyan, A.G.; Shekhtman, V.Sh.; Mantashyan, A.A.; Mayilyan, D.G.; Ter-Galstyan, O.P.

    2007-01-01

    In principle new technique was elaborated for obtaining the alloys of refractory metals by their hydrides compacting and following dehydrogenation. The elaborated technique is described. The conditions of alloys formation from different hydrides of appropriate metals was investigated in detail. The influence of the process parameters such as: chemical peculiarities, composition of source hydrides, phase transformation during dehydrogenation, etc. on the alloys formation were established. The binary and tertiary alloys of α and ω phases: Ti 0 .8Zr 0 .8; Ti 0 .66Zr 0 .33; Ti 0 .3Zr 0 .8; Ti 0 .2Zr 0 .8; Ti 0 .8Hf 0 .2; Ti 0 .6Hf 0 .4Ti 0 .66Zr 0 .23Hf 0 .11; etc were recieved. Using elaborated special hydride cycle, an earlier unknown effective process for formation of alloys of transition metals was realized. The dependence of final alloy structure on the composition of initial mixture and hydrogen content in source hydrides was established

  18. Defect-mediated magnetism of transition metal doped zinc oxide thin films

    Science.gov (United States)

    Roberts, Bradley Kirk

    Magnetism in transition metal doped wide band-gap materials is of interest to further the fundamental science of materials and future spintronics applications. Large inter-dopant separations require mediation of ferromagnetism by some method; carrier-mediated mechanisms are typically applicable to dilute magnetic semiconductors with low Curie temperatures. Dilute magnetic oxides, commonly with poor conductivity and TC above room temperature, cannot be described within this theory. Recent experiment and theory developments suggest that ferromagnetic exchange in these materials can be mediated by defects. This research includes experimental results justifying and developing this approach. Thin films of Cr doped ZnO (band gap ˜3.3 eV) were deposited with several processing variations to enhance the effects of either 0-dimensional (vacancy, hydrogen-related defect) or two-dimensional defects (surface/interface) and thereby affect magnetism and conductivity. We observe surface magnetism in dielectric thin films of oxygen-saturated ZnO:Cr with spontaneous magnetic moment and conductance dropping approximately exponentially with increasing thickness. Uniform defect concentrations would not result in such magnetic ordering behavior indicating that magnetism is mediated either by surface defects or differing concentrations of point defects near the surface. Polarized neutron reflectivity profiling confirms a magnetically active region of ˜8 nm at the film surface. Hydrogen is notoriously present as a defect and carrier dopant in ZnO, and artificial introduction of hydrogen in dielectric ZnO:Cr films results in varying electronic and magnetic behavior. Free carriers introduced with hydrogen doping are not spin-polarized requiring an alternative explanation for ferromagnetism. We find from positron annihilation spectroscopy measurements that hydrogen doping increases the concentration of an altered VZn-related defect (a preliminary interpretation) throughout the film, which

  19. Is there room for hydrogen in energy transition?

    International Nuclear Information System (INIS)

    Beeker, Etienne

    2014-08-01

    As Germany decided to use hydrogen to store huge quantities of renewable energies, this report aims at assessing the opportunities associated with hydrogen in the context of energy transition. The author addresses the various techniques and technologies of hydrogen production, and proposes a prospective economic analysis of these processes: steam reforming, alkaline electrolysis, polymer electrolyte membrane (PEM) electrolysis, and other processes still at R and D level. He gives an overview of existing and potential uses of hydrogen in industry, in energy storage (power-to-gas, power-to-power, methanation) and in mobility (hydrogen-mobility could be a response to hydrocarbon shortage, but the cost is still very high, and issues like hydrogen distribution must be addressed), and also evokes their emergence potential

  20. Use of triphenyl phosphate as risk mitigant for metal amide hydrogen storage materials

    Science.gov (United States)

    Cortes-Concepcion, Jose A.; Anton, Donald L.

    2016-04-26

    A process in a resulting product of the process in which a hydrogen storage metal amide is modified by a ball milling process using an additive of TPP. The resulting product provides for a hydrogen storage metal amide having a coating that renders the hydrogen storage metal amide resistant to air, ambient moisture, and liquid water while improving useful hydrogen storage and release kinetics.

  1. Solutions to commercializing metal hydride hydrogen storage products

    International Nuclear Information System (INIS)

    Tomlinson, J.J.; Belanger, R.

    2004-01-01

    'Full text:' Whilst the concept of a Hydrogen economy in the broad sense may for some analysts and Fuel Cell technology developers be an ever moving target the use of hydrogen exists and is growing in other markets today. The use of hydrogen is increasing. Who are the users? What are their unique needs? How can they better be served? As the use of hydrogen increases there are things we can do to improve the perception and handling of hydrogen as an industrial gas that will impact the future issues of hydrogen as a fuel thereby assisting the mainstream availability of hydrogen fuel a reality. Factors that will induce change in the way hydrogen is used, handled, transported and stored are the factors to concentrate development efforts on. Other factors include: cost; availability; safety; codes and standards; and regulatory authorities acceptance of new codes and standards. New methods of storage and new devices in which the hydrogen is stored will influence and bring about change and increased use. New innovative products based on Metal Hydride hydrogen storage will address some of the barriers to widely distributed hydrogen as a fuel or energy carrier to which successful fuel cell product commercialization is subject. Palcan has developed innovative products based on it's Rare Earth Metal Hydride alloy. Some of these innovations will aid the distribution of hydrogen as a fuel and offer alternatives to the existing hydrogen user and to the Fuel Cell product developer. An overview of the products and how these products will affect the distribution and use of hydrogen as an industrial gas and fuel is presented. (author)

  2. Electrical conductivity of hydrogen shocked to megabar pressures

    International Nuclear Information System (INIS)

    Weir, S.T.; Nellis, W.J.; Mitchell, A.C.

    1993-08-01

    The properties of ultra-high pressure hydrogen have been the subject of much experimental and theoretical study. Of particular interest is the pressure-induced insulator-to-metal transition of hydrogen which, according to recent theoretical calculations, is predicted to occur by band-overlap in the pressure range of 1.5-3.0 Mbars on the zero temperature isotherm. Extremely high pressures are required for metallization since the low-pressure band gap is about 15 eV. Recent static-pressure diamond anvil cell experiments have searched for evidence of an insulator-to-metal transition, but no conclusive evidence for such a transition has yet been supplied. Providing conclusive evidence for hydrogen metallization is difficult because no technique has yet been developed for performing static high-pressure electrical conductivity experiments at megabar pressures. The authors report here on electrical conductivity experiments performed on H 2 and D 2 multi-shocked to megabar pressures. Electrical conductivities of dense fluid hydrogen at these pressures and temperatures reached are needed for calculations of the magnetic fields of Jupiter and Saturn, the magnetic fields being generated by convective dynamos of hot, dense, semiconducting fluid hydrogen. Also, since electrical conduction at the pressure-temperature conditions being studied is due to the thermal excitation of charge carriers across the electronic band gap, these experiments yield valuable information on the width of the band gap at high densities

  3. Studies about interaction of hydrogen isotopes with metals and intermetallic compounds

    International Nuclear Information System (INIS)

    Vasut, F.; Anisoara, P.; Zamfirache, M.

    2003-01-01

    Hydrogen is a non-toxic but highly inflammable gas. Compared to other inflammable gases, its range of inflammability in air is much broader (4-74.5%) but it also vaporizes much more easily. Handling of hydrogen in form of hydrides enhances safety. The interaction of hydrogen with metals and intermetallic compounds is a major field within physical chemistry. Using hydride-forming metals and intermetallic compounds, for example, recovery, purification and storage of heavy isotopes in tritium containing system can solve many problems arising in the nuclear-fuel cycle. The paper presents the thermodynamics and the kinetics between hydrogen and metal or intermetallic compounds. (author)

  4. Metal-to-nonmetal transitions

    CERN Document Server

    Hensel, Friedrich; Holst, Bastian

    2010-01-01

    This book is devoted to nonmetal-to-metal transitions. The original ideas of Mott for such a transition in solids have been adapted to describe a broad variety of phenomena in condensed matter physics (solids, liquids, and fluids), in plasma and cluster physics, as well as in nuclear physics (nuclear matter and quark-gluon systems). The book gives a comprehensive overview of theoretical methods and experimental results of the current research on the Mott effect for this wide spectrum of topics. The fundamental problem is the transition from localized to delocalized states which describes the nonmetal-to-metal transition in these diverse systems. Based on the ideas of Mott, Hubbard, Anderson as well as Landau and Zeldovich, internationally respected scientists present the scientific challenges and highlight the enormous progress which has been achieved over the last years. The level of description is aimed to specialists in these fields as well as to young scientists who will get an overview for their own work...

  5. Superconductivity in transition metals.

    Science.gov (United States)

    Slocombe, Daniel R; Kuznetsov, Vladimir L; Grochala, Wojciech; Williams, Robert J P; Edwards, Peter P

    2015-03-13

    A qualitative account of the occurrence and magnitude of superconductivity in the transition metals is presented, with a primary emphasis on elements of the first row. Correlations of the important parameters of the Bardeen-Cooper-Schrieffer theory of superconductivity are highlighted with respect to the number of d-shell electrons per atom of the transition elements. The relation between the systematics of superconductivity in the transition metals and the periodic table high-lights the importance of short-range or chemical bonding on the remarkable natural phenomenon of superconductivity in the chemical elements. A relationship between superconductivity and lattice instability appears naturally as a balance and competition between localized covalent bonding and so-called broken covalency, which favours d-electron delocalization and superconductivity. In this manner, the systematics of superconductivity and various other physical properties of the transition elements are related and unified. © 2015 The Author(s) Published by the Royal Society. All rights reserved.

  6. Photochemical hydrogen abstractions as radiationless transitions

    International Nuclear Information System (INIS)

    Burrows, H.D.; Formosinho, S.J.

    1977-01-01

    The tunnel-effect theory of radiationless transitions is applied to the quenching of the uranyl ion excited state by aliphatic compounds. The most important mechanism kinetically is suggested to involve chemical quenching via hydrogen abstraction, and rates for these reactions are analysed theoretically. Good agreement between theory and experiment is observed for a number of alcohols and ethers, and the reactions are suggested to possess considerable charge-transfer character. With t-butanol it is suggested that abstraction occurs preferentially from the hydroxylic hydrogen. Theoretical analysis of the rates of hydrogen abstraction from carboxylic acids suggests that the reaction geometry in this case may be different from the reaction with alcohols or ethers. The possibility that excited uranyl ion can abstract a hydrogen atom from water is examined, and theoretical evidence is presented to suggest that this is the main route for deactivation of uranyl ion lowest excited state in water at room temperature. (author)

  7. Theoretical Studies of Hydrogen Storage Alloys.

    Energy Technology Data Exchange (ETDEWEB)

    Jonsson, Hannes

    2012-03-22

    Theoretical calculations were carried out to search for lightweight alloys that can be used to reversibly store hydrogen in mobile applications, such as automobiles. Our primary focus was on magnesium based alloys. While MgH{sub 2} is in many respects a promising hydrogen storage material, there are two serious problems which need to be solved in order to make it useful: (i) the binding energy of the hydrogen atoms in the hydride is too large, causing the release temperature to be too high, and (ii) the diffusion of hydrogen through the hydride is so slow that loading of hydrogen into the metal takes much too long. In the first year of the project, we found that the addition of ca. 15% of aluminum decreases the binding energy to the hydrogen to the target value of 0.25 eV which corresponds to release of 1 bar hydrogen gas at 100 degrees C. Also, the addition of ca. 15% of transition metal atoms, such as Ti or V, reduces the formation energy of interstitial H-atoms making the diffusion of H-atoms through the hydride more than ten orders of magnitude faster at room temperature. In the second year of the project, several calculations of alloys of magnesium with various other transition metals were carried out and systematic trends in stability, hydrogen binding energy and diffusivity established. Some calculations of ternary alloys and their hydrides were also carried out, for example of Mg{sub 6}AlTiH{sub 16}. It was found that the binding energy reduction due to the addition of aluminum and increased diffusivity due to the addition of a transition metal are both effective at the same time. This material would in principle work well for hydrogen storage but it is, unfortunately, unstable with respect to phase separation. A search was made for a ternary alloy of this type where both the alloy and the corresponding hydride are stable. Promising results were obtained by including Zn in the alloy.

  8. Interactions of hydrogen isotopes and oxides with metal tubes

    International Nuclear Information System (INIS)

    Longhurst, G. R.; Cleaver, J.

    2008-01-01

    Understanding and accounting for interaction of hydrogen isotopes and their oxides with metal surfaces is important for persons working with tritium systems. Reported data from several investigators have shown that the processes of oxidation, adsorption, absorption, and permeation are all coupled and interactive. A computer model has been developed for predicting the interaction of hydrogen isotopes and their corresponding oxides in a flowing carrier gas stream with the walls of a metallic tube, particularly at low hydrogen concentrations. An experiment has been constructed to validate the predictive model. Predictions from modeling lead to unexpected experiment results. (authors)

  9. Interactions of hydrogen isotopes and oxides with metal tubes

    Energy Technology Data Exchange (ETDEWEB)

    Longhurst, G. R. [Idaho National Laboratory, P.O. Box 1625, Idaho Falls, ID 83415-3860 (United States); Cleaver, J. [Idaho State Univ., 921 South 8th Avenue, Pocatello, ID 83201 (United States)

    2008-07-15

    Understanding and accounting for interaction of hydrogen isotopes and their oxides with metal surfaces is important for persons working with tritium systems. Reported data from several investigators have shown that the processes of oxidation, adsorption, absorption, and permeation are all coupled and interactive. A computer model has been developed for predicting the interaction of hydrogen isotopes and their corresponding oxides in a flowing carrier gas stream with the walls of a metallic tube, particularly at low hydrogen concentrations. An experiment has been constructed to validate the predictive model. Predictions from modeling lead to unexpected experiment results. (authors)

  10. Interactions of Hydrogen Isotopes and Oxides with Metal Tubes

    International Nuclear Information System (INIS)

    Longhurst, Glen R.

    2008-01-01

    Understanding and accounting for interaction of hydrogen isotopes and their oxides with metal surfaces is important for persons working with tritium systems. Reported data from several investigators have shown that the processes of oxidation, adsorption, absorption, and permeation are all coupled and interactive. A computer model has been developed for predicting the interaction of hydrogen isotopes and their corresponding oxides in a flowing carrier gas stream with the walls of a metallic tube, particularly at low hydrogen concentrations. An experiment has been constructed to validate the predictive model. Predictions from modeling lead to unexpected experiment results

  11. Texture-geometric deformational effects in some metal-hydrogen systems

    International Nuclear Information System (INIS)

    Spivak, L.V.; Kats, M.Ya.

    1992-01-01

    Possible deformation effects were studied in vanadium, tantalum, niobium, palladium and iron which occurred during electrolytic hydrogenation of specimens preliminarily deformed by torsion and then annealed. Noticeable texture-geometric effects were observed and related to the system tendency to enhance the degree of specimen form symmetry during hydrogenation. The latter was an off-beat realization of Le-Chatelier principle. It was assumed that the nature of deformation effects was connected with one of minimization channels for overall elastic stress fields in metals being hydrogenated. Some distinction was revealed in behaviour of 5a group metal, palladium and iron

  12. Using restructured electricity markets in the hydrogen transition: The PJM case

    Energy Technology Data Exchange (ETDEWEB)

    Felder, F.A.; Hajos, A. [Rutgers State University, New Brunswick, NJ (United States)

    2006-10-15

    We examine a hydrogen transition strategy of using excess electric generation capacity in the U.S. midatlantic states during off-peak hours to produce hydrogen via electrolysis. Four different generation technologies are evaluated: combined-cycle natural gas, nuclear power, clean coal, and pulverized coal. We construct hydrogen-electricity price curves for each technology and evaluate the resulting air emissions of key pollutants. Substantial capital investments may be avoided by leveraging off generation assets that would otherwise be built to produce electricity. We also account for the interaction between the production of hydrogen and wholesale electricity prices and demand. Results show that off-peak electrolysis is a plausible but not dominant strategy for hydrogen production; however, there may be a substantial real option value in using the electric power system to transition to a hydrogen economy that may exceed the direct cost savings of producing hydrogen by less expensive methods.

  13. Metal interactions with boron clusters

    International Nuclear Information System (INIS)

    Grimes, R.N.

    1982-01-01

    This book presents information on the following topics: the structural and bonding features of metallaboranes and metallacarboranes; transition-metal derivatives of nido-boranes and some related species; interactions of metal groups with the octahydrotriborate (1-) anion, B 3 H 8 ; metallaboron cage compounds of the main group metals; closo-carborane-metal complexes containing metal-carbon and metal-boron omega-bonds; electrochemistry of metallaboron cage compounds; and boron clusters with transition metal-hydrogen bonds

  14. Mesoporous Transition Metal Oxides for Supercapacitors.

    Science.gov (United States)

    Wang, Yan; Guo, Jin; Wang, Tingfeng; Shao, Junfeng; Wang, Dong; Yang, Ying-Wei

    2015-10-14

    Recently, transition metal oxides, such as ruthenium oxide (RuO₂), manganese dioxide (MnO₂), nickel oxides (NiO) and cobalt oxide (Co₃O₄), have been widely investigated as electrode materials for pseudo-capacitors. In particular, these metal oxides with mesoporous structures have become very hot nanomaterials in the field of supercapacitors owing to their large specific surface areas and suitable pore size distributions. The high specific capacities of these mesoporous metal oxides are resulted from the effective contacts between electrode materials and electrolytes as well as fast transportation of ions and electrons in the bulk of electrode and at the interface of electrode and electrolyte. During the past decade, many achievements on mesoporous transition metal oxides have been made. In this mini-review, we select several typical nanomaterials, such as RuO₂, MnO₂, NiO, Co₃O₄ and nickel cobaltite (NiCo₂O₄), and briefly summarize the recent research progress of these mesoporous transition metal oxides-based electrodes in the field of supercapacitors.

  15. Methods for synthesizing metal oxide nanowires

    Science.gov (United States)

    Sunkara, Mahendra Kumar; Kumar, Vivekanand; Kim, Jeong H.; Clark, Ezra Lee

    2016-08-09

    A method of synthesizing a metal oxide nanowire includes the steps of: combining an amount of a transition metal or a transition metal oxide with an amount of an alkali metal compound to produce a mixture; activating a plasma discharge reactor to create a plasma discharge; exposing the mixture to the plasma discharge for a first predetermined time period such that transition metal oxide nanowires are formed; contacting the transition metal oxide nanowires with an acid solution such that an alkali metal ion is exchanged for a hydrogen ion on each of the transition metal oxide nanowires; and exposing the transition metal oxide nanowires to the plasma discharge for a second predetermined time period to thermally anneal the transition metal oxide nanowires. Transition metal oxide nanowires produced using the synthesis methods described herein are also provided.

  16. New template for metal decoration and hydrogen adsorption on graphene-like C3N4

    International Nuclear Information System (INIS)

    Zhang Yi; Sun Hong; Chen Changfeng

    2009-01-01

    From density functional theory calculations we identify a graphene-like C 3 N 4 (g-C 3 N 4 ) as an excellent template for stable and well dispersed decoration of alkali (Li) and 3d transition metal (TM) atoms. The porous sites of g-C 3 N 4 accommodate excessive N lone-pair electrons and promote hybridization between the orbitals of N and the metal atoms. The most stable TM decorations (Ti and Sc) on g-C 3 N 4 exhibit high capacities of hydrogen adsorption with binding energies suitable for mobile applications. These metal decorated g-C 3 N 4 may also prove useful in catalytic and sensing applications for their unique nanoscale structural features unavailable in conventional nano-clusters.

  17. Two-dimensional metal dichalcogenides and oxides for hydrogen evolution

    DEFF Research Database (Denmark)

    Pandey, Mohnish; Vojvodic, Aleksandra; Thygesen, Kristian Sommer

    2015-01-01

    We explore the possibilities of hydrogen evolution by basal planes of 2D metal dichalcogenides and oxides in the 2H and 1T class of structures using the hydrogen binding energy as a computational activity descriptor. For some groups of systems like the Ti, Zr, and Hf dichalcogenides the hydrogen...

  18. Analysis of combined hydrogen, heat, and power as a bridge to a hydrogen transition.

    Energy Technology Data Exchange (ETDEWEB)

    Mahalik, M.; Stephan, C. (Decision and Information Sciences)

    2011-01-18

    Combined hydrogen, heat, and power (CHHP) technology is envisioned as a means to providing heat and electricity, generated on-site, to large end users, such as hospitals, hotels, and distribution centers, while simultaneously producing hydrogen as a by-product. The hydrogen can be stored for later conversion to electricity, used on-site (e.g., in forklifts), or dispensed to hydrogen-powered vehicles. Argonne has developed a complex-adaptive-system model, H2CAS, to simulate how vehicles and infrastructure can evolve in a transition to hydrogen. This study applies the H2CAS model to examine how CHHP technology can be used to aid the transition to hydrogen. It does not attempt to predict the future or provide one forecast of system development. Rather, the purpose of the model is to understand how the system works. The model uses a 50- by 100-mile rectangular grid of 1-square-mile cells centered on the Los Angeles metropolitan area. The major expressways are incorporated into the model, and local streets are considered to be ubiquitous, except where there are natural barriers. The model has two types of agents. Driver agents are characterized by a number of parameters: home and job locations, income, various types of 'personalities' reflective of marketing distinctions (e.g., innovators, early adopters), willingness to spend extra money on 'green' vehicles, etc. At the beginning of the simulations, almost all driver agents own conventional vehicles. They drive around the metropolitan area, commuting to and from work and traveling to various other destinations. As they do so, they observe the presence or absence of facilities selling hydrogen. If they find such facilities conveniently located along their routes, they are motivated to purchase a hydrogen-powered vehicle when it becomes time to replace their present vehicle. Conversely, if they find that they would be inconvenienced by having to purchase hydrogen earlier than necessary or if they

  19. Hydrogen storage in metal-organic frameworks: A review

    CSIR Research Space (South Africa)

    Langmi, Henrietta W

    2014-05-01

    Full Text Available Metal-organic frameworks (MOFs) for hydrogen storage have continued to receive intense interest over the past decade. MOFs are a class of organic-inorganic hybrid crystalline materials consisting of metallic moieties that are linked by strong...

  20. Mass fractionation processes of transition metal isotopes

    Science.gov (United States)

    Zhu, X. K.; Guo, Y.; Williams, R. J. P.; O'Nions, R. K.; Matthews, A.; Belshaw, N. S.; Canters, G. W.; de Waal, E. C.; Weser, U.; Burgess, B. K.; Salvato, B.

    2002-06-01

    Recent advances in mass spectrometry make it possible to utilise isotope variations of transition metals to address some important issues in solar system and biological sciences. Realisation of the potential offered by these new isotope systems however requires an adequate understanding of the factors controlling their isotope fractionation. Here we show the results of a broadly based study on copper and iron isotope fractionation during various inorganic and biological processes. These results demonstrate that: (1) naturally occurring inorganic processes can fractionate Fe isotope to a detectable level even at temperature ˜1000°C, which challenges the previous view that Fe isotope variations in natural system are unique biosignatures; (2) multiple-step equilibrium processes at low temperatures may cause large mass fractionation of transition metal isotopes even when the fractionation per single step is small; (3) oxidation-reduction is an importation controlling factor of isotope fractionation of transition metal elements with multiple valences, which opens a wide range of applications of these new isotope systems, ranging from metal-silicate fractionation in the solar system to uptake pathways of these elements in biological systems; (4) organisms incorporate lighter isotopes of transition metals preferentially, and transition metal isotope fractionation occurs stepwise along their pathways within biological systems during their uptake.

  1. Nucleic acid-functionalized transition metal nanosheets for biosensing applications.

    Science.gov (United States)

    Mo, Liuting; Li, Juan; Liu, Qiaoling; Qiu, Liping; Tan, Weihong

    2017-03-15

    In clinical diagnostics, as well as food and environmental safety practices, biosensors are powerful tools for monitoring biological or biochemical processes. Two-dimensional (2D) transition metal nanomaterials, including transition metal chalcogenides (TMCs) and transition metal oxides (TMOs), are receiving growing interest for their use in biosensing applications based on such unique properties as high surface area and fluorescence quenching abilities. Meanwhile, nucleic acid probes based on Watson-Crick base-pairing rules are also being widely applied in biosensing based on their excellent recognition capability. In particular, the emergence of functional nucleic acids in the 1980s, especially aptamers, has substantially extended the recognition capability of nucleic acids to various targets, ranging from small organic molecules and metal ions to proteins and cells. Based on π-π stacking interaction between transition metal nanosheets and nucleic acids, biosensing systems can be easily assembled. Therefore, the combination of 2D transition metal nanomaterials and nucleic acids brings intriguing opportunities in bioanalysis and biomedicine. In this review, we summarize recent advances of nucleic acid-functionalized transition metal nanosheets in biosensing applications. The structure and properties of 2D transition metal nanomaterials are first discussed, emphasizing the interaction between transition metal nanosheets and nucleic acids. Then, the applications of nucleic acid-functionalized transition metal nanosheet-based biosensors are discussed in the context of different signal transducing mechanisms, including optical and electrochemical approaches. Finally, we provide our perspectives on the current challenges and opportunities in this promising field. Copyright © 2016 Elsevier B.V. All rights reserved.

  2. Photochemical Hydrogen Doping Induced Embedded Two-Dimensional Metallic Channel Formation in InGaZnO at Room Temperature.

    Science.gov (United States)

    Kim, Myeong-Ho; Lee, Young-Ahn; Kim, Jinseo; Park, Jucheol; Ahn, Seungbae; Jeon, Ki-Joon; Kim, Jeong Won; Choi, Duck-Kyun; Seo, Hyungtak

    2015-10-27

    The photochemical tunability of the charge-transport mechanism in metal-oxide semiconductors is of great interest since it may offer a facile but effective semiconductor-to-metal transition, which results from photochemically modified electronic structures for various oxide-based device applications. This might provide a feasible hydrogen (H)-radical doping to realize the effectively H-doped metal oxides, which has not been achieved by thermal and ion-implantation technique in a reliable and controllable way. In this study, we report a photochemical conversion of InGaZnO (IGZO) semiconductor to a transparent conductor via hydrogen doping to the local nanocrystallites formed at the IGZO/glass interface at room temperature. In contrast to thermal or ionic hydrogen doping, ultraviolet exposure of the IGZO surface promotes a photochemical reaction with H radical incorporation to surface metal-OH layer formation and bulk H-doping which acts as a tunable and stable highly doped n-type doping channel and turns IGZO to a transparent conductor. This results in the total conversion of carrier conduction property to the level of metallic conduction with sheet resistance of ∼16 Ω/□, room temperature Hall mobility of 11.8 cm(2) V(-1) sec(-1), the carrier concentration at ∼10(20) cm(-3) without any loss of optical transparency. We demonstrated successful applications of photochemically highly n-doped metal oxide via optical dose control to transparent conductor with excellent chemical and optical doping stability.

  3. Manipulating Light with Transition Metal Clusters, Organic Dyes, and Metal Organic Frameworks

    Energy Technology Data Exchange (ETDEWEB)

    Ogut, Serdar [Univ. of Illinois, Chicago, IL (United States)

    2017-09-11

    The primary goals of our research program is to develop and apply state-of-the-art first-principles methods to predict electronic and optical properties of three systems of significant scientific and technological interest: transition metal clusters, organic dyes, and metal-organic frameworks. These systems offer great opportunities to manipulate light for a wide ranging list of energy-related scientific problems and applications. During this grant period, we focused our investigations on the development, implementation, and benchmarking of many-body Green’s function methods (GW approximation and the Bethe-Salpeter equation) to examine excited-state properties of transition metal/transition-metal-oxide clusters and organic molecules that comprise the building blocks of dyes and metal-organic frameworks.

  4. Develop improved metal hydride technology for the storage of hydrogen. Final technical report

    Energy Technology Data Exchange (ETDEWEB)

    Sapru, K.

    1998-12-04

    The overall objective was to develop commercially viable metal hydrides capable of reversibly storing at least 3 wt.% hydrogen for use with PEM fuel cells and hydrogen fueled internal combustion engine (HICE) applications. Such alloys are expected to result in system capacities of greater than 2 wt.%, making metal hydride storage systems (MHSS`s) a practical means of supplying hydrogen for many consumer applications. ECD`s (Energy Conversion Devices, Inc.) past work on sputtered thin films of transition metal-based alloys led to the commercialization of it`s nickel/metal hydride batteries, and similar work on thin film Mg-based alloys demonstrated potential to achieve very high gravimetric and volumetric energy densities approaching 2,500 Wh/Kg and 2,500 Wh/M{sup 3} respectively. Under this 2-year cost shared project with the DOE, the authors have successfully demonstrated the feasibility of scaling up the Mg-based hydrides from thin film to bulk production without substantial loss of storage capacity. ECD made progress in alloy development by means of compositional and process modification. Processes used include Mechanical Alloying, Melt spinning and novel Gas Phase Condensation. It was showed that the same composition when prepared by melt-spinning resulted in a more homogeneous material having a higher PCT plateau pressure as compared to mechanical alloying. It was also shown that mechanically alloyed Mg-Al-Zn results in much higher plateau pressures, which is an important step towards reducing the desorption temperature. While significant progress has been made during the past two years in alloy development and understanding the relationship between composition, structure, morphology, and processing parameters, additional R and D needs to be performed to achieve the goals of this work.

  5. Precision spectroscopy of the 2S-4P transition in atomic hydrogen

    Science.gov (United States)

    Maisenbacher, Lothar; Beyer, Axel; Matveev, Arthur; Grinin, Alexey; Pohl, Randolf; Khabarova, Ksenia; Kolachevsky, Nikolai; Hänsch, Theodor W.; Udem, Thomas

    2017-04-01

    Precision measurements of atomic hydrogen have long been successfully used to extract fundamental constants and to test bound-state QED. However, both these applications are limited by measurements of hydrogen lines other than the very precisely known 1S-2S transition. Moreover, the proton r.m.s.charge radius rp extracted from electronic hydrogen measurements currently disagrees by 4 σ with the much more precise value extracted from muonic hydrogen spectroscopy. We have measured the 2S-4P transition in atomic hydrogen using a cryogenic beam of hydrogen atoms optically excited to the initial 2S state. The first order Doppler shift of the one-photon 2S-4P transition is suppressed by actively stabilized counter-propagating laser beams and time-of-flight resolved detection. Quantum interference between excitation paths can lead to significant line distortions in our system. We use an experimentally verified, simple line shape model to take these distortions into account. With this, we can extract a new value for rp and the Rydberg constant R∞ with comparable accuracy as the combined previous H world data.

  6. Metal and hydrogen catalysis in isotopic hydrogen exchange in some biologically important heterocyclic compounds

    International Nuclear Information System (INIS)

    Buncel, E.; Joly, H.A.; Jones, J.R.; Onyido, I.

    1989-01-01

    This study reports on the catalytic roles of metal and hydrogen ions in tritium exchange in some heterocyclic substrates which occur as residues in many biologically important molecules. We have found that detritiation of 1-methyl[2- 3 H]imidazole is inhibited by a number of metal ions. As well, inhibition of exchange rates was noted with Ag(I) and Cu(II) for [2- 3 H]thiazole and 1-methyl[8- 3 H]inosine, with Ag(I) for [2- 3 H]benzothiazole, and with Cu(II) for 1-methyl[8- 3 H]guanosine. A complete mechanistic description, which includes the various metal ion-coordinated species generated under the experimental conditions, is presented. The results demonstrate the reactivity order: protonated >> metal-coordinated >> neutral substrates. The differential catalytic effects of metal and hydrogen ions in these processes are discussed in terms of the extent of charge developed on the ligating heteroatom in the reaction intermediate. (author). 13 refs.; 1 fig

  7. Surface segregation energies in transition-metal alloys

    DEFF Research Database (Denmark)

    Ruban, Andrei; Skriver, Hans Lomholt; Nørskov, Jens Kehlet

    1999-01-01

    We present a database of 24 x 24 surface segregation energies of single transition metal impurities in transition-metal hosts obtained by a Green's-function linear-muffin-tin-orbitals method in conjunction with the coherent potential and atomic sphere approximations including a multipole correction...... to the electrostatic potential and energy. We use the database to establish the major factors which govern surface segregation in transition metal alloys. We find that the calculated trends are well described by Friedel's rectangular state density model and that the few but significant deviations from the simple...

  8. Metallic → Semiconducting transitions in HX(X=F, Br, Cl) adsorbed (5,5) and (7,7) carbon nanotubes: DFT study

    Science.gov (United States)

    Srivastava, Reena; Shrivastava, Sadhana; Srivastava, Anurag

    2018-05-01

    The edge sensitivity of two different chirality (5,5) and (7,7) armchair carbon nanotubes towards toxic hydrogen halides (HF, HBr and HCl) has been analyzed by using density functional theory based ab-initio approach. The edge sensitivity has been discussed in terms of the variations in the electronic band structure of (5,5) and (7,7) carbon nanotube. The observation shows metallic to semiconducting phase transition in HF and HBr adsorbed (5,5) CNT, whereas for HCl adsorbed, it is more metallic. Whereas HBr and HCl adsorbed (7,7) CNT confirms metallic→semiconducting transition and shows diameter dependence of properties of CNTs.

  9. Experimental studies on cold fusion and hydrogen-metal

    International Nuclear Information System (INIS)

    Locou, P.

    2007-01-01

    The cold fusion is a nuclear fusion realized in pervading conditions of temperature and pressure. My own process is parallel to that of the team of the University of Los Angeles, but shaped in 1996 within my personal and private Laboratory: A small cylinder in which we replace the air by some deuterium to the gas state in - 33 d egree (the deuterium is some hydrogen with a neutron, which we find in quantity in the sea water). We introduce a crystal there, extremely rare - the property of which is to emit continuously one thousand times dose of successful energy and it during several years without outside pyro, natural excitement - electric - that is it creates an electric field in the slightest change in temperature. We carry then the whole in + 7 d egree, what generates in some seconds a 200 000 volt electric field, an intense enough field to separate the pits of the deuterium of their electrons and to admit them to collide with those of the crystal. There is a fusion of protons between them (positive particles of the pit (core)) and a emission of neutrons, which do not merge. It is this emission which serves for measuring the quantity of energy produced by the fusion (merger). We so managed to produce some energy in unlimited quantity, allowing us to feed our installation with electric current in total autarky, and to reduce so our costs of functioning to divers domains. This crystal is exceptional in its applications and to give it the name would return has to break our current headway: the thorough problem, in this current period of takeover by the financial bodies of the possible patents, brought to us to the biggest caution as regards our results. And, as we look for no outside financing, we do not need to submit ourselves to the requirements lauded by the scientific Community, only our results are strictly estimated. For example we can make estimate our bars or patches of Hydrogen - Metal: a simple spectroscopy in YEW will give as result, only, the element H

  10. Reactivity of monoolefin ligand in transition metal complexes

    International Nuclear Information System (INIS)

    Rybinskaya, M.I.

    1978-01-01

    The main tendencies in the coordinated olefin ligand property changes are discussed in the transition metal complexes in comparison with free olefins. The review includes the papers published from 1951 up to 1976. It has been shown that in complexes with transition metal cations olefin π-base acquires the ability to react with nucleophylic reagents. Olefin π-acids in complexes with zero valent metals are easily subjected to electrophylic reagent action. At coordination with transition metal cations the olefin properties are generally preserved, while in the zero-valent metal complexes the nonsaturated ligand acquires the properties of a saturated compounds. The ability of transition metal cations in complexes to intensify reactions of nucleophylic bimolecular substitution of vinyl halogen is clearly detected in contrast to the zero valent metal complexes. It has been shown that investigations of the coordinated olefin ligand reactivity give large possibilities in the further development of the organic synthesis. Some reactions are taken as the basis of important industrial processes

  11. Hydrogen Sensors Using Nitride-Based Semiconductor Diodes: The Role of Metal/Semiconductor Interfaces

    Directory of Open Access Journals (Sweden)

    Yoshihiro Irokawa

    2011-01-01

    Full Text Available In this paper, I review my recent results in investigating hydrogen sensors using nitride-based semiconductor diodes, focusing on the interaction mechanism of hydrogen with the devices. Firstly, effects of interfacial modification in the devices on hydrogen detection sensitivity are discussed. Surface defects of GaN under Schottky electrodes do not play a critical role in hydrogen sensing characteristics. However, dielectric layers inserted in metal/semiconductor interfaces are found to cause dramatic changes in hydrogen sensing performance, implying that chemical selectivity to hydrogen could be realized. The capacitance-voltage (C-V characteristics reveal that the work function change in the Schottky metal is not responsible mechanism for hydrogen sensitivity. The interface between the metal and the semiconductor plays a critical role in the interaction of hydrogen with semiconductor devises. Secondly, low-frequency C-V characterization is employed to investigate the interaction mechanism of hydrogen with diodes. As a result, it is suggested that the formation of a metal/semiconductor interfacial polarization could be attributed to hydrogen-related dipoles. In addition, using low-frequency C-V characterization leads to clear detection of 100 ppm hydrogen even at room temperature where it is hard to detect hydrogen by using conventional current-voltage (I-V characterization, suggesting that low-frequency C-V method would be effective in detecting very low hydrogen concentrations.

  12. Electrical Conductivity in Transition Metals

    Science.gov (United States)

    Talbot, Christopher; Vickneson, Kishanda

    2013-01-01

    The aim of this "Science Note" is to describe how to test the electron-sea model to determine whether it accurately predicts relative electrical conductivity for first-row transition metals. In the electron-sea model, a metal crystal is viewed as a three-dimensional array of metal cations immersed in a sea of delocalised valence…

  13. Novel developments in hydrogen storage, hydrogen activation and ionic liquids

    Energy Technology Data Exchange (ETDEWEB)

    Doroodian, Amir

    2010-12-03

    This dissertation is divided into three chapters. Recently, metal-free hydrogen activation using phosphorous compounds has been reported in science magazine. We have investigated the interaction between hydrogen and phosphorous compounds in presence of strong Lewis acids (chapter one). A new generation of metal-free hydrogen activation, using amines and strong Lewis acids with sterically demanding nature, was already developed in our group. Shortage of high storage capacity using large substitution to improve sterical effect led us to explore the amine borane derivatives, which are explained in chapter two. Due to the high storage capacity of hydrogen in aminoborane derivatives, we have explored these materials to extend hydrogen release. These compounds store hydrogen as proton and hydride on adjacent atoms or ions. These investigations resulted in developing hydrogen storage based on ionic liquids containing methyl guanidinium cation. Then we have continued to develop ionic liquids based on methyl guanidinium cation with different anions, such as tetrafluoro borate (chapter three). We have replaced these anions with transition metal anions to investigate hydrogen bonding and catalytic activity of ionic liquids. This chapter illustrates the world of ionic liquid as a green solvent for organic, inorganic and catalytic reactions and combines the concept of catalysts and solvents based on ionic liquids. The catalytic activity is investigated particularly with respect to the interaction with CO{sub 2}. (orig.)

  14. Transition metals in carbohydrate chemistry

    DEFF Research Database (Denmark)

    Madsen, Robert

    1997-01-01

    This review describes the application of transition metal mediated reactions in carbohydrate synthesis. The different metal mediated transformations are divided into reaction types and illustrated by various examples on monosaccharide derivatives. Carbon-carbon bond forming reactions are further ...

  15. Determination of hydrogen in metals and alloys

    International Nuclear Information System (INIS)

    Sayi, Y.S.; Ramanjaneyulu, P.S.; Ramakumar, K.L.

    2008-01-01

    Hydrogen will be invariably present in all materials. Its presence in excess is harmful and sometimes calamitous. Hydrogen embrittlement can occur quite readily in most high strength materials, irrespective of their composition or structure. It is therefore essential to maintain low levels of hydrogen. To know the amount of hydrogen present in the materials, it is essential to determine it with high degree of precision and accuracy. It is required to give the uncertainty associated with the measurement to increase the confidence on measurements. Several methodologies are available for the determination of hydrogen. It its isotope, deuterium, also co-exists it becomes all the more difficult to determine these individually. Hot vacuum extraction cum quadrupole mass spectrometry (HVE-QMS) developed in our laboratory to determine hydrogen and deuterium is routinely employed for the determination of hydrogen and deuterium in metals and alloys. The present paper deals in detail about our experiences with HVE-QMS and estimation of uncertainty associated in this methodology. (author)

  16. Mesoporous Transition Metal Oxides for Supercapacitors

    Science.gov (United States)

    Wang, Yan; Guo, Jin; Wang, Tingfeng; Shao, Junfeng; Wang, Dong; Yang, Ying-Wei

    2015-01-01

    Recently, transition metal oxides, such as ruthenium oxide (RuO2), manganese dioxide (MnO2), nickel oxides (NiO) and cobalt oxide (Co3O4), have been widely investigated as electrode materials for pseudo-capacitors. In particular, these metal oxides with mesoporous structures have become very hot nanomaterials in the field of supercapacitors owing to their large specific surface areas and suitable pore size distributions. The high specific capacities of these mesoporous metal oxides are resulted from the effective contacts between electrode materials and electrolytes as well as fast transportation of ions and electrons in the bulk of electrode and at the interface of electrode and electrolyte. During the past decade, many achievements on mesoporous transition metal oxides have been made. In this mini-review, we select several typical nanomaterials, such as RuO2, MnO2, NiO, Co3O4 and nickel cobaltite (NiCo2O4), and briefly summarize the recent research progress of these mesoporous transition metal oxides-based electrodes in the field of supercapacitors. PMID:28347088

  17. Mesoporous Transition Metal Oxides for Supercapacitors

    Directory of Open Access Journals (Sweden)

    Yan Wang

    2015-10-01

    Full Text Available Recently, transition metal oxides, such as ruthenium oxide (RuO2, manganese dioxide (MnO2, nickel oxides (NiO and cobalt oxide (Co3O4, have been widely investigated as electrode materials for pseudo-capacitors. In particular, these metal oxides with mesoporous structures have become very hot nanomaterials in the field of supercapacitors owing to their large specific surface areas and suitable pore size distributions. The high specific capacities of these mesoporous metal oxides are resulted from the effective contacts between electrode materials and electrolytes as well as fast transportation of ions and electrons in the bulk of electrode and at the interface of electrode and electrolyte. During the past decade, many achievements on mesoporous transition metal oxides have been made. In this mini-review, we select several typical nanomaterials, such as RuO2, MnO2, NiO, Co3O4 and nickel cobaltite (NiCo2O4, and briefly summarize the recent research progress of these mesoporous transition metal oxides-based electrodes in the field of supercapacitors.

  18. The nonmetal-metal transition in solutions of metals in molten salts

    International Nuclear Information System (INIS)

    Tosi, M.P.

    1997-04-01

    Solutions of metals in molten salts present a rich phenomenology: localization of electrons in disordered ionic media, activated electron transport increasing with metal concentration towards a nonmetal-metal (NM-M) transition, and liquid-liquid phase separation. A brief review of progress in the study of these systems is given in this article, with main focus on the NM-M transition. After recalling the known NM-M behaviour of the component elements in the case of expanded fluid alkali metals and mercury and of solid halogens under pressure, the article focuses on liquid metal - molten salt solutions and traces the different NM-M behaviours of the alkalis in their halides and of metals added to polyvalent metal halides. (author). 51 refs, 2 figs

  19. Hydrogen axion star: metallic hydrogen bound to a QCD axion BEC

    Energy Technology Data Exchange (ETDEWEB)

    Bai, Yang; Barger, Vernon; Berger, Joshua [Department of Physics, University of Wisconsin-Madison,1150 University Ave, Madison, WI 53706 (United States)

    2016-12-23

    As a cold dark matter candidate, the QCD axion may form Bose-Einstein condensates, called axion stars, with masses around 10{sup −11} M{sub ⊙}. In this paper, we point out that a brand new astrophysical object, a Hydrogen Axion Star (HAS), may well be formed by ordinary baryonic matter becoming gravitationally bound to an axion star. We study the properties of the HAS and find that the hydrogen cloud has a high pressure and temperature in the center and is likely in the liquid metallic hydrogen state. Because of the high particle number densities for both the axion star and the hydrogen cloud, the feeble interaction between axion and hydrogen can still generate enough internal power, around 10{sup 13} W×(m{sub a}/5 meV){sup 4}, to make these objects luminous point sources. High resolution ultraviolet, optical and infrared telescopes can discover HAS via black-body radiation.

  20. Alkali metal and alkali metal hydroxide intercalates of the layered transition metal disulfides

    International Nuclear Information System (INIS)

    Kanzaki, Y.; Konuma, M.; Matsumoto, O.

    1981-01-01

    The intercalation reaction of some layered transition metal disulfides with alkali metals, alkali metal hydroxides, and tetraalkylammonium hydroxides were investigated. The alkali metal intercalates were prepared in the respective metal-hexamethylphosphoric triamide solutions in vaccuo, and the hydroxide intercalates in aqueous hydroxide solutions. According to the intercalation reaction, the c-lattice parameter was increased, and the increase indicated the expansion of the interlayer distance. In the case of alkali metal intercalates, the expansion of the interlayer distance increased continuously, corresponding to the atomic radius of the alkali metal. On the other hand, the hydroxide intercalates showed discrete expansion corresponding to the effective ionic radius of the intercalated cation. All intercalates of TaS 2 amd NbS 2 were superconductors. The expansion of the interlayer distance tended to increase the superconducting transition temperature in the intercalates of TaS 2 and vice versa in those of NbS 2 . (orig.)

  1. Transit experience with hydrogen fueled hybrid electric buses

    International Nuclear Information System (INIS)

    Scott, P.B.; Mazaika, D.M.; Levin, J.; Edwards, T.

    2006-01-01

    Both AC Transit and SunLine Transit operate hybrid electric hydrogen fueled buses in their transit service. ACT presently operates three fuel cell buses in daily revenue service, and SunLine operates a fuel cell bus and a HHICE (Hybrid Hydrogen Internal Combustion Engine) bus. All these buses use similar electric drive train and electric accessories, although the detailed design differs notably between the fuel cell and the hybrid ICE buses. The fuel cell buses use a 120kW UTC fuel cell and a Van Hool Chassis, whereas the HHICE bus uses a turbocharged Ford engine which is capable of 140kW generator output in a New Flyer Chassis. The HHICE bus was the first in service, and has been subjected to both winter testing in Manitoba, Canada and summer testing in the Palm Springs, CA region. The winter testing included passenger sampling using questionnaires to ascertain passenger response. The fuel cell buses were introduced to service at the start of 2006. All five buses are in daily revenue service use. The paper will describe the buses and the experience of the transit properties in operating the buses. (author)

  2. NATO International Symposium on the Electronic Structure and Properties of Hydrogen in Metals

    CERN Document Server

    Satterthwaite, C

    1983-01-01

    Hydrogen is the smallest impurity atom that can be implanted in a metallic host. Its small mass and strong interaction with the host electrons and nuclei are responsible for many anomalous and interesting solid state effects. In addition, hydrogen in metals gives rise to a number of technological problems such as hydrogen embrittlement, hydrogen storage, radiation hardening, first wall problems associated with nuclear fusion reactors, and degradation of the fuel cladding in fission reactors. Both the fundamental effects and applied problems have stimulated a great deal of inter­ est in the study of metal hydrogen systems in recent years. This is evident from a growing list of publications as well as several international conferences held in this field during the past decade. It is clear that a fundamental understanding of these problems re­ quires a firm knowledge of the basic interactions between hydrogen, host metal atoms, intrinsic lattice defects and electrons. This understanding is made particularly di...

  3. Transitioning to a Hydrogen Future: Learning from the Alternative Fuels Experience

    Energy Technology Data Exchange (ETDEWEB)

    Melendez, M.

    2006-02-01

    This paper assesses relevant knowledge within the alternative fuels community and recommends transitional strategies and tactics that will further the hydrogen transition in the transportation sector.

  4. On metal-insulator transition in cubic fullerides

    Science.gov (United States)

    Iwahara, Naoya; Chibotaru, Liviu

    The interplay between degenerate orbital and electron correlation is a key to characterize the electronic phases in, for example, transition metal compounds and alkali-doped fullerides. Besides, the degenerate orbital couples to spin and lattice degrees of freedom ,giving rise to exotic phenomena. Here, we develop the self-consistent Gutzwiller approach for the simultaneous treatment of the Jahn-Teller effect and electron correlation, and apply the methodology to reveal the nature of the ground electronic state of fullerides. For small Coulomb repulsion on site U, the fulleride is quasi degenerate correlated metal. With increase of U, we found the quantum phase transition from the metallic phase to JT split phase. In the latter, the Mott transition (MT) mainly develops in the half-filled subband, whereas the empty and the completely filled subbands are almost uninvolved. Therefore, we can qualify the metal-insulator transition in fullerides as an orbital selective MT induced by JT effect.

  5. Metal-inorganic-organic matrices as efficient sorbents for hydrogen storage.

    Science.gov (United States)

    Azzouz, Abdelkrim; Nousir, Saadia; Bouazizi, Nabil; Roy, René

    2015-03-01

    Stabilization of metal nanoparticles (MNPs) without re-aggregation is a major challenge. An unprecedented strategy is developed for achieving high dispersion of copper(0) or palladium(0) on montmorillonite-supported diethanolamine or thioglycerol. This results in novel metal-inorganic-organic matrices (MIOM) that readily capture hydrogen at ambient conditions, with easy release under air stream. Hydrogen retention appears to involve mainly physical interactions, slightly stronger on thioglycerol-based MIOM (S-MIOM). Thermal enhancement of desorption suggests also a contribution of chemical interactions. The increase of hydrogen uptake with prolonged contact times arises from diffusion hindrance, which appears to be beneficial by favoring hydrogen entrapment. Even with compact structures, MIOMs act as efficient sorbents with much higher efficiency factor (1.14-1.17 mmol H 2 m(-2)) than many other sophisticated adsorbents reported in the literature. This opens new prospects for hydrogen storage and potential applications in microfluidic hydrogenation reactions. © 2015 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  6. Molecular rotations and diffusion in solids, in particular hydrogen in metals

    International Nuclear Information System (INIS)

    Springer, T.

    1977-01-01

    The chapter deals mainly with problems related to physical chemistry. The author treats diffusion in solids, in particular of hydrogen in metals, and studies of molecular rotations, in particular studies of tunneling transitions which is a relatively new and rapidly developing field of high resolution neutron spectroscopy. Typical neutron spectra to be discussed appear in energy ranges of a few 10 -6 to a few 10 -3 eV, or 10 -5 to 10 -2 cm -1 . The discussion is restricted to scattering from the protons which is predominantly incoherent. This means that only the motions, or excitations, of individual protons or protonic groups are discussed, ignoring collective excitations and interference. (HPOE) [de

  7. The sticking probability for H-2 in presence of CO on some transition metals at a hydrogen pressure of 1 bar

    DEFF Research Database (Denmark)

    Johansson, Martin; Lytken, Ole; Chorkendorff, Ib

    2008-01-01

    The sticking probability for H-2 on Ni, Co, Cu, Rh, Ru, Pd, it and Pt metal films supported on graphite has been investigated in a gas mixture consisting of 10 ppm carbon monoxide in hydrogen at a total pressure of 1 bar in the temperature range 40-200 degrees C. Carbon monoxide inhibits the stic......The sticking probability for H-2 on Ni, Co, Cu, Rh, Ru, Pd, it and Pt metal films supported on graphite has been investigated in a gas mixture consisting of 10 ppm carbon monoxide in hydrogen at a total pressure of 1 bar in the temperature range 40-200 degrees C. Carbon monoxide inhibits...... the sticking probability significantly for all the metals, even at 200 degrees C. In the presence of 10 ppm CO, the sticking probability increases in the order It, Pt, Ni, Co, Pd, Rh, Ru, whereas for Cu, it is below the detection limit of the measurement, even in pure H2. The sticking probability for H2...

  8. Hydrogen storage in Pd nanocrystals covered with a metal-organic framework

    Science.gov (United States)

    Li, Guangqin; Kobayashi, Hirokazu; Taylor, Jared M.; Ikeda, Ryuichi; Kubota, Yoshiki; Kato, Kenichi; Takata, Masaki; Yamamoto, Tomokazu; Toh, Shoichi; Matsumura, Syo; Kitagawa, Hiroshi

    2014-08-01

    Hydrogen is an essential component in many industrial processes. As a result of the recent increase in the development of shale gas, steam reforming of shale gas has received considerable attention as a major source of H2, and the more efficient use of hydrogen is strongly demanded. Palladium is well known as a hydrogen-storage metal and an effective catalyst for reactions related to hydrogen in a variety of industrial processes. Here, we present remarkably enhanced capacity and speed of hydrogen storage in Pd nanocrystals covered with the metal-organic framework (MOF) HKUST-1 (copper(II) 1,3,5-benzenetricarboxylate). The Pd nanocrystals covered with the MOF have twice the storage capacity of the bare Pd nanocrystals. The significantly enhanced hydrogen storage capacity was confirmed by hydrogen pressure-composition isotherms and solid-state deuterium nuclear magnetic resonance measurements. The speed of hydrogen absorption in the Pd nanocrystals is also enhanced by the MOF coating.

  9. Synthesis of IV-VI Transition Metal Carbide and Nitride Nanoparticles Using a Reactive Mesoporous Template for Electrochemical Hydrogen Evolution Reaction

    KAUST Repository

    Alhajri, Nawal Saad

    2016-01-01

    Interstitial carbides and nitrides of early transition metals in Groups IV-VI exhibit platinum-like behavior which makes them a promising candidate to replace noble metals in a wide variety of reactions. Most synthetic methods used to prepare

  10. Transition Metal Complexes and Catalysis

    Indian Academy of Sciences (India)

    approaches towards the study of bonding in transition metal complexes. Despite .... industrial scale reactions for the production of organic compounds using transition ..... It has found several applications as an engineering thermoplastic. .... and processes of interest to the company, that is, applied research. It is this very ...

  11. The metal-carbon-fluorine system for improving hydrogen storage by using metal and fluorine with different levels of electronegativity

    Energy Technology Data Exchange (ETDEWEB)

    Im, Ji Sun; Lee, Young-Seak [Department of Fine Chemical Engineering and Applied Chemistry, BK21-E2M, Chungnam National University, Daejeon 305-764 (Korea); Park, Soo-Jin [Department of Chemistry, Inha University, Incheon 402-751 (Korea)

    2009-02-15

    In order to improve the capacity of hydrogen storage using activated carbon nanofibers, metal and fluorine were introduced into the activated carbon nanofibers by electrospinning, heat treatment, and direct fluorination. The pore structure of the samples was developed by the KOH activation process and investigated using nitrogen isotherms and micropore size distribution. The specific surface area and total pore volume approached 2800 m{sup 2}/g and 2.7 cc/g, respectively. Because of the electronegativity gap between the two elements (metal and fluorine), the electron of a hydrogen molecule can be attracted to one side. This reaction effectively guides the hydrogen molecule into the carbon nanofibers. The amount of hydrogen storage was dramatically increased in this metal-carbon-fluorine system; hydrogen content was as high as 3.2 wt%. (author)

  12. Phase diagram and transport properties for hydrogen-helium fluid planets

    International Nuclear Information System (INIS)

    Stevenson, D.J.; Salpeter, E.E.

    1977-01-01

    Hydrogen and helium are the major constituents of Jupiter and Saturn, and phase transitions can have important effects on the planetary structure. In this paper, the relevant phase diagrams and microscopic transport properties are analyzed in detail. The following paper (Paper II) applies these results to the evolution and present dynamic structure of the Jovian planets.Pure hydrogen is first discussed, especially the nature of the molecular-metallic transition and the melting curves for the two phases. It is concluded that at the temperatures and pressures of interest (Tapprox. =10 4 K, Papprox. =1--10 Mbar), both phases are fluid, but the transition between them might nevertheless be first-order. The insulator-metal transition in helium occurs at a much higher pressure (approx.70 Mbars) and is not of interest.The phase diagrams for both molecular and metallic hydrogen-helium mixtures are discussed. In the metallic mixture, calculations indicate a miscibility gap for T9 or approx. =10 4 K. Immiscibility in the molecular mixture is more difficult to predict but almost certainly occurs at much lower temperatures. A fluid-state model is constructed which predicts the likely topology of the three-dimensional phase diagram. The greater solubility of helium in the molecular phase leads to the prediction that the He/H mass ratio is typically twice as large in the molecular phase as in the coexisting metallic phase. Under these circumstances a ''density inversion'' is possible in which the molecular phase becomes more dense than the metallic phase.The partitioning of minor constituents is also considered: The deuterium/hydrogen mass ratio is essentially the same for all coexisting hydrogen-helium phases, at least for T> or approx. =5000 K. The partitioning of H 2 O, CH 4 , and NH 3 probably favors the molecular (or helium-rich) phase. Substances with high conduction electron density (e.g., Al) may partition into the metallic phase

  13. Effect of coexistent hydrogen isotopes on tracer diffusion of tritium in alpha phase of group-V metal-hydrogen systems

    International Nuclear Information System (INIS)

    Sakamoto, Kan; Hashizume, Kenichi; Sugisaki, Masayasu

    2009-01-01

    Tracer diffusion coefficients of tritium in the alpha phase of group-V metal-hydrogen systems, α-MH(D)xTy (M=V and Ta; x>>y), were measured in order to clarify the effects of coexistent hydrogen isotopes on the tritium diffusion behavior. The hydrogen concentration dependence of such behavior and the effects of the coexistent hydrogen isotopes (protium and deuterium) were determined. The results obtained in the present (for V and Ta) and previous (for Nb) studies revealed that tritium diffusion was definitely dependent on hydrogen concentration but was not so sensitive to the kind of coexistent hydrogen isotopes. By summarizing those data, it was found that the hydrogen concentration dependence of the tracer diffusion coefficient of tritium in the alpha phase of group-V metals could be roughly expressed by a single empirical curve. (author)

  14. Catalyzed borohydrides for hydrogen storage

    Science.gov (United States)

    Au, Ming [Augusta, GA

    2012-02-28

    A hydrogen storage material and process is provided in which alkali borohydride materials are created which contain effective amounts of catalyst(s) which include transition metal oxides, halides, and chlorides of titanium, zirconium, tin, and combinations of the various catalysts. When the catalysts are added to an alkali borodydride such as a lithium borohydride, the initial hydrogen release point of the resulting mixture is substantially lowered. Additionally, the hydrogen storage material may be rehydrided with weight percent values of hydrogen at least about 9 percent.

  15. Alkylation and arylation of alkenes by transition metal complexes

    International Nuclear Information System (INIS)

    Volkova, L.G.; Levitin, I.Ya.; Vol'pin, M.E.

    1975-01-01

    In this paper are reviewed methods of alkylation and irylation of unsaturated compounds with complexes of transition metals (Rh, Pd). Analysis of alkylation and arylation of olefines with organic derivatives of transition metals, obtained as a result of exchange reactions between organic compounds of transition metals and salts of metals of the 8th group of the periodic system, allows a conclusion as to the wide possibilities of these reactions in the synthesis of various derivatives of unsaturated compounds. In all the reactions under consideration, intermediate formation of sigma-complexes is assumed. Also considered are alkylation and arylation of olefines with organic derivatives of halogens in the presence of compounds of metals of the 8th group of the periodic system, as well as arylation of olefines with aromatic compounds in the presence of salts of transition metals

  16. Development of composite metallic membranes for hydrogen purification

    International Nuclear Information System (INIS)

    Gaillard, F.

    2003-12-01

    Fuel cells are able to convert chemical energy into electric power. There are different types of cells; the best for automotive applications are Proton Exchange Membrane Fuel Cells. But, these systems need hydrogen of high purity. However, fuel reforming generates a mixture of gases, from which hydrogen has to be extracted before supplying the electrochemical cell. The best way for the purification of hydrogen is the membrane separation technology. Palladium is selectively permeable to hydrogen and this is the reason why this metal is largely used for the membrane development. This work deals with the development of hydrogen-selective membranes by deposition of a thin film of palladium onto a porous mechanical support. For this, we have used the electroless plating technique: a palladium salt and a reducing agent are mixed and the deposition takes place onto the catalytic surface of the substrate. After bibliographic investigations, experimental studies have been performed first with a dense metallic substrate in order to better understand the different parameters controlling the deposition. First of all, potentiometric measurements have been carried out to follow the electrochemical reactions in the bath. Then, kinetic measurements of the coating thickness have been recorded to understand the effect of the bath conditions on the yield and the adhesion of the film. Finally, the electroless plating method has been applied to deposit palladium membranes onto porous stainless steel substrates. After optimisation, the resulting membranes were tested for their hydrogen permeation properties. (author)

  17. Plasmons in metallic monolayer and bilayer transition metal dichalcogenides

    DEFF Research Database (Denmark)

    Andersen, Kirsten; Thygesen, Kristian S.

    2013-01-01

    We study the collective electronic excitations in metallic single-layer and bilayer transition metal dichalcogenides (TMDCs) using time dependent density functional theory in the random phase approximation. For very small momentum transfers (below q≈0.02 Å−1), the plasmon dispersion follows the √q...

  18. Quantum Critical “Opalescence” around Metal-Insulator Transitions

    Science.gov (United States)

    Misawa, Takahiro; Yamaji, Youhei; Imada, Masatoshi

    2006-08-01

    Divergent carrier-density fluctuations equivalent to the critical opalescence of gas-liquid transition emerge around a metal-insulator critical point at a finite temperature. In contrast to the gas-liquid transitions, however, the critical temperatures can be lowered to zero, which offers a challenging quantum phase transition. We present a microscopic description of such quantum critical phenomena in two dimensions. The conventional scheme of phase transitions by Ginzburg, Landau, and Wilson is violated because of its topological nature. It offers a clear insight into the criticalities of metal-insulator transitions (MIT) associated with Mott or charge-order transitions. Fermi degeneracy involving the diverging density fluctuations generates emergent phenomena near the endpoint of the first-order MIT and must shed new light on remarkable phenomena found in correlated metals such as unconventional cuprate superconductors. It indeed accounts for the otherwise puzzling criticality of the Mott transition recently discovered in an organic conductor. We propose to accurately measure enhanced dielectric fluctuations at small wave numbers.

  19. Ultrapure hydrogen thermal compressor based on metal hydrides for fuel cells and hybrid vehicles

    International Nuclear Information System (INIS)

    Almasan, V.; Biris, A.; Coldea, I.; Lupu, D.; Misan, I.; Popeneciu, G.; Ardelean, O.

    2007-01-01

    Full text: In hydrogen economy, efficient compressors are indispensable elements in the storage, transport and distribution of the produced hydrogen. Energetic efficient technologies can contribute to H 2 pipelines transport to the point of use and to distribute H 2 by refuelling stations. Characteristic for metal hydrides systems is the wide area of possibilities to absorb hydrogen at low pressure from any source of hydrogen, to store and deliver it hydrogen at high pressure (compression ratio more than 30). On the basis of innovative concepts and advanced materials for H 2 storage/compression (and fast thermal transfer), a fast mass (H 2 ) and heat transfer unit will be developed suitable to be integrated in a 3 stage thermal compressor. Metal hydrides used for a three stage hydrogen compression system must have different equilibrium pressures, namely: for stage 1, low pressure H 2 absorption and resistant to poisoning with impurities of hydrogen, for stage 2, medium pressure H 2 absorption and for stage 3, high pressure hydrogen delivery (120 bar). In the case of compression device based on metallic hydrides the most important properties are the hydrogen absorption/desorption rate, a smaller process enthalpy and a great structural stability on long term hydrogen absorption/desorption cycling. These properties require metal hydrides with large differences between the hydrogen absorption and desorption pressures at equilibrium, within a rather small temperature range. The main goal of this work is to search and develop metal hydride integrated systems for hydrogen purification, storage and compression. After a careful screening three hydrogen absorbing alloys will be selected. After selection, the work up of the alloys composition on the bases of detailed solid state studies, new multi-component alloys will be developed, with suitable thermodynamic and kinetic properties for a hydrogen compressor. The results of the study are the following: new types of hydrogen

  20. Hydrogen isotope exchange in metal hydride columns

    International Nuclear Information System (INIS)

    Wiswall, R.; Reilly, J.; Bloch, F.; Wirsing, E.

    1977-01-01

    Several metal hydrides were shown to act as chromatographic media for hydrogen isotopes. The procedure was to equilibrate a column of hydride with flowing hydrogen, inject a small quantity of tritium tracer, and observe its elution behavior. Characteristic retention times were found. From these and the extent of widening of the tritium band, the heights equivalent to a theoretical plate could be calculated. Values of around 1 cm were obtained. The following are the metals whose hydrides were studied, together with the temperature ranges in which chromatographic behavior was observed: vanadium, 0 to 70 0 C; zirconium, 500 to 600 0 C; LaNi 5 , -78 to +30 0 C; Mg 2 Ni, 300 to 375 0 C; palladium, 0 to 70 0 C. A dual-temperature isotope separation process based on hydride chromatography was demonstrated. In this, a column was caused to cycle between two temperatures while being supplied with a constant stream of tritium-traced hydrogen. Each half-cycle was continued until ''breakthrough,'' i.e., until the tritium concentration in the effluent was the same as that in the feed. Up to that point, the effluent was enriched or depleted in tritium, by up to 20%

  1. Oligocyclopentadienyl transition metal complexes

    Energy Technology Data Exchange (ETDEWEB)

    de Azevedo, Cristina G.; Vollhardt, K. Peter C.

    2002-01-18

    Synthesis, characterization, and reactivity studies of oligocyclopentadienyl transition metal complexes, namely those of fulvalene, tercyclopentadienyl, quatercyclopentadienyl, and pentacyclopentadienyl(cyclopentadienyl) are the subject of this account. Thermal-, photo-, and redox chemistries of homo- and heteropolynuclear complexes are described.

  2. New vistas in the determination of hydrogen in aerospace engine metal alloys

    Science.gov (United States)

    Danford, M. D.

    1986-01-01

    The application of diffusion theory to the analysis of hydrogen desorption data has been studied. From these analyses, important information concerning hydrogen solubilities and the nature of the hydrogen distributions in the metal has been obtained. Two nickel base alloys, Rene' 41 and Waspaloy, and one ferrous alloy, 4340 steel, were studied in this work. For the nickel base alloys, it was found that the hydrogen distributions after electrolytic charging conformed closely to those which would be predicted by diffusion theory. The hydrogen distributions in electrolytically charged 4340 steel, on the other hand, were essentially uniform in nature, which would not be predicted by diffusion theory. Finally, it has been found that the hydrogen desorption is completely explained by the nature of the hydrogen distribution in the metal, and that the 'fast' hydrogen is not due to surface and subsurface hydride formation, as was originally proposed.

  3. Generalized transition state theory. Quantum effects for collinear reactions of hydrogen molecules and isotopically substituted hydrogen molecules

    International Nuclear Information System (INIS)

    Garrett, B.C.; Truhlar, D.G.

    1979-01-01

    Canonical variational transition state theory, microcanonical variational transition state theory, and Miller's unified statistical theory were used in an attempt to correct two major deficiencies of the conventional transition state theory. These are: (1) the necessity of extra assumptions to include quantum mechanical tunneling effects and (2) the fundamental assumption that trajectories crossing a dividing surface in phase space proceed directly to products. The accuracy of these approximate methods were tested by performing calculations for several collinear reactions of hydrogen, deuterium, chlorine, or iodine, with five isotopes of hydrogen molecules and comparison of these results with those from accurate quantitative calculations of the reaction probabilities as functions of energy and of the thermal rate constants as functions of temperature. 49 references, 28 figures, 17 tables

  4. Hydrogen generation using silicon nanoparticles and their mixtures with alkali metal hydrides

    Science.gov (United States)

    Patki, Gauri Dilip

    mole of Si. We compare our silicon nanoparticles (˜10nm diameter) with commercial silicon nanopowder (rate upon decreasing the particle size to 10 nm was even greater than would be expected based upon the increase in surface area. While specific surface area increased by a factor of 6 in going from rate increased by a factor of 150. However, in all cases, silicon requires a base (e.g. NaOH, KOH, hydrazine) to catalyze its reaction with water. Metal hydrides are also promising hydrogen storage materials. The optimum metal hydride would possess high hydrogen storage density at moderate temperature and pressure, release hydrogen safely and controllably, and be stable in air. Alkali metal hydrides have high hydrogen storage density, but exhibit high uncontrollable reactivity with water. In an attempt to control this explosive nature while maintaining high storage capacity, we mixed our silicon nanoparticles with the hydrides. This has dual benefits: (1) the hydride- water reaction produces the alkali hydroxide needed for base-catalyzed silicon oxidation, and (2) dilution with 10nm coating by, the silicon may temper the reactivity of the hydride, making the process more controllable. Initially, we analyzed hydrolysis of pure alkali metal hydrides and alkaline earth metal hydrides. Lithium hydride has particularly high hydrogen gravimetric density, along with faster reaction kinetics than sodium hydride or magnesium hydride. On analysis of hydrogen production we found higher hydrogen yield from the silicon nanoparticle—metal hydride mixture than from pure hydride hydrolysis. The silicon-hydride mixtures using our 10nm silicon nanoparticles produced high hydrogen yield, exceeding the theoretical yield. Some evidence of slowing of the hydride reaction rate upon addition of silicon nanoparticles was observed.

  5. Integrating Transition Metals into Nanomaterials: Strategies and Applications

    KAUST Repository

    Fhayli, Karim

    2016-01-01

    Transition metals complexes have been involved in various catalytic, biomedical and industrial applications, but only lately they have been associated with nanomaterials to produce innovative and well-defined new hybrid systems. The introduction of transition metals into nanomaterials is important to bear the advantages of metals to nanoscale and also to raise the stability of nanomaterials. In this dissertation, we study two approaches of associating transition metals into nanomaterials. The first approach is via spontaneous self-organization based assembly of small molecule amphiphiles and bulky hydrophilic polymers to produce organic-inorganic hybrid materials that have nanoscale features and can be precisely controlled depending on the experimental conditions used. These hybrid materials can successfully act as templates to design new porous material with interesting architecture. The second approach studied is via electroless reduction of transition metals on the surface of nanocarbons (nanotubes and nanodiamonds) without using any reducing agents or catalysts. The synthesis of these systems is highly efficient and facile resulting in stable and mechanically robust new materials with promising applications in catalysis.

  6. Integrating Transition Metals into Nanomaterials: Strategies and Applications

    KAUST Repository

    Fhayli, Karim

    2016-04-14

    Transition metals complexes have been involved in various catalytic, biomedical and industrial applications, but only lately they have been associated with nanomaterials to produce innovative and well-defined new hybrid systems. The introduction of transition metals into nanomaterials is important to bear the advantages of metals to nanoscale and also to raise the stability of nanomaterials. In this dissertation, we study two approaches of associating transition metals into nanomaterials. The first approach is via spontaneous self-organization based assembly of small molecule amphiphiles and bulky hydrophilic polymers to produce organic-inorganic hybrid materials that have nanoscale features and can be precisely controlled depending on the experimental conditions used. These hybrid materials can successfully act as templates to design new porous material with interesting architecture. The second approach studied is via electroless reduction of transition metals on the surface of nanocarbons (nanotubes and nanodiamonds) without using any reducing agents or catalysts. The synthesis of these systems is highly efficient and facile resulting in stable and mechanically robust new materials with promising applications in catalysis.

  7. A Biomimetic Approach to New Adsorptive Hydrogen Storage Metal-Organic Frameworks

    Energy Technology Data Exchange (ETDEWEB)

    Zhou, Hongcai J [Texas A& M University

    2015-08-12

    In the past decades, there has been an escalation of interest in the study of MOFs due to their fascinating structures and intriguing application potentials. Their exceptionally high surface areas, uniform yet tunable pore sizes, and well-defined adsorbate-MOF interaction sites make them suitable for hydrogen storage. Various strategies to increase the hydrogen capacity of MOFs, such as constructing pore sizes comparable to hydrogen molecules, increasing surface area and pore volume, utilizing catenation, and introducing coordinatively unsaturated metal centers (UMCs) have been widely explored to increase the hydrogen uptake of the MOFs. MOFs with hydrogen uptake approaching the DOE gravimetric storage goal under reasonable pressure but cryo- temperature (typically 77 K) were achieved. However, the weak interaction between hydrogen molecules and MOFs has been the major hurdle limiting the hydrogen uptake of MOFs at ambient temperature. Along the road, we have realized both high surface area and strong interaction between framework and hydrogen are equally essential for porous materials to be practically applicable in Hydrogen storage. Increasing the isosteric heats of adsorption for hydrogen through the introduction of active centers into the framework could have great potential on rendering the framework with strong interaction toward hydrogen. Approaches on increasing the surface areas and improving hydrogen affinity by optimizing size and structure of the pores and the alignment of active centers around the pores in frameworks have been pursued, for example: (a) the introduction of coordinatively UMC (represents a metal center missing multiple ligands) with potential capability of multiple dihydrogen-binding (Kubas type, non-dissociative) per UMC, (b) the design and synthesis of proton-rich MOFs in which a + H3 binds dihydrogen just like a metal ion does, and (c) the preparation of MOFs and PPNs with well aligned internal electric fields. We believe the

  8. Catalysed hydrogen isotope exchange

    International Nuclear Information System (INIS)

    1973-01-01

    A method is described for enhancing the rate of exchange of hydrogen atoms in organic compounds or moieties with deuterium or tritium atoms. It comprises reacting the organic compound or moiety and a compound which is the source of deuterium or tritium in the presence of a catalyst consisting of a non-metallic, metallic or organometallic halide of Lewis acid character and which is reactive towards water, hydrogen halides or similar protonic acids. The catalyst is a halide or organometallic halide of: (i) zinc or another element of Group IIb; (ii) boron, aluminium or another element of Group III; (iii) tin, lead, antimony or another element of Groups IV to VI; or (iv) a transition metal, lanthanide or stable actinide; or a halohalide. (author)

  9. Strong-Superstrong Transition in Glass Transition of Metallic Glass

    International Nuclear Information System (INIS)

    Dan, Wang; Hong-Yan, Peng; Xiao-Yu, Xu; Bao-Ling, Chen; Chun-Lei, Wu; Min-Hua, Sun

    2010-01-01

    Dynamic fragility of bulk metallic glass (BMG) of Zr 64 Cu 16 Ni 10 Al 10 alloy is studied by three-point beam bending methods. The fragility parameter mfor Zr 64 Cu 16 Ni 10 Al 10 BMG is calculated to be 24.5 at high temperature, which means that the liquid is a 'strong' liquid, while to be 13.4 at low temperature which means that the liquid is a 'super-strong' liquid. The dynamical behavior of Zr 64 Cu 16 Ni 10 Al 10 BMG in the supercooled region undergoes a strong to super-strong transition. To our knowledge, it is the first time that a strong-to-superstrong transition is found in the metallic glass. Using small angle x-ray scattering experiments, we find that this transition is assumed to be related to a phase separation process in supercooled liquid. (condensed matter: structure, mechanical and thermal properties)

  10. NOBLE METAL CHEMISTRY AND HYDROGEN GENERATION DURING SIMULATED DWPF MELTER FEED PREPARATION

    Energy Technology Data Exchange (ETDEWEB)

    Koopman, D

    2008-06-25

    Simulations of the Defense Waste Processing Facility (DWPF) Chemical Processing Cell vessels were performed with the primary purpose of producing melter feeds for the beaded frit program plus obtaining samples of simulated slurries containing high concentrations of noble metals for off-site analytical studies for the hydrogen program. Eight pairs of 22-L simulations were performed of the Sludge Receipt and Adjustment Tank (SRAT) and Slurry Mix Evaporator (SME) cycles. These sixteen simulations did not contain mercury. Six pairs were trimmed with a single noble metal (Ag, Pd, Rh, or Ru). One pair had all four noble metals, and one pair had no noble metals. One supporting 4-L simulation was completed with Ru and Hg. Several other 4-L supporting tests with mercury have not yet been performed. This report covers the calculations performed on SRNL analytical and process data related to the noble metals and hydrogen generation. It was originally envisioned as a supporting document for the off-site analytical studies. Significant new findings were made, and many previous hypotheses and findings were given additional support as summarized below. The timing of hydrogen generation events was reproduced very well within each of the eight pairs of runs, e.g. the onset of hydrogen, peak in hydrogen, etc. occurred at nearly identical times. Peak generation rates and total SRAT masses of CO{sub 2} and oxides of nitrogen were reproduced well. Comparable measures for hydrogen were reproduced with more variability, but still reasonably well. The extent of the reproducibility of the results validates the conclusions that were drawn from the data.

  11. Phase stability of transition metals and alloys

    International Nuclear Information System (INIS)

    Hixson, R.S.; Schiferl, D.; Wills, J.M.; Hill, M.A.

    1997-01-01

    This is the final report of a three-year, Laboratory-Directed Research and Development (LDRD) project at the Los Alamos National Laboratory (LANL). This project was focused on resolving unexplained differences in calculated and measured phase transition pressures in transition metals. Part of the approach was to do new, higher accuracy calculations of transmission pressures for group 4B and group 6B metals. Theory indicates that the transition pressures for these baseline metals should change if alloyed with a d-electron donor metal, and calculations done using the Local Density Approximation (LDA) and the Virtual Crystal Approximation (VCA) indicate that this is true. Alloy systems were calculated for Ti, Zr and Hf based alloys with various solute concentrations. The second part of the program was to do new Diamond Anvil Cell (DAC) measurements to experimentally verify calculational results. Alloys were prepared for these systems with grain size suitable for Diamond Anvil Cell experiments. Experiments were done on pure Ti as well as Ti-V and Ti-Ta alloys. Measuring unambiguous transition pressures for these systems proved difficult, but a new technique developed yielded good results

  12. Rare-earth metal transition metal borocarbide and nitridoborate superconductors

    Energy Technology Data Exchange (ETDEWEB)

    Niewa, Rainer; Shlyk, Larysa; Blaschkowski, Bjoern [Stuttgart Univ. (Germany). Inst. fuer Anorganische Chemie

    2011-07-01

    Few years after the discovery of superconductivity in high-T{sub c} cuprates, borocarbides and shortly after nitridoborates with reasonably high T{sub c}s up to about 23 K attracted considerable attention. Particularly for the rare-earth metal series with composition RNi{sub 2}[B{sub 2}C] it turned out, that several members exhibit superconductivity next to magnetic order with both T{sub c} above or below the magnetic ordering temperature. Therefore, these compounds have been regarded as ideal materials to study the interplay and coexistence of superconductivity and long range magnetic order, due to their comparably high ordering temperatures and similar magnetic and superconducting condensation energies. This review gathers information on the series RNi{sub 2}[B{sub 2}C] and isostructural compounds with different transition metals substituting Ni as well as related series like RM[BC], RM[BN], AM[BN] and R{sub 3}M{sub 2}[BN]{sub 2}N (all with R = rare-earth metal, A = alkaline-earth metal, M = transition metal) with special focus on synthesis, crystal structures and structural trends in correspondence to physical properties. (orig.)

  13. Selection rule engineering of forbidden transitions of a hydrogen atom near a nanogap

    Science.gov (United States)

    Kim, Hyunyoung Y.; Kim, Daisik S.

    2018-01-01

    We perform an analytical study on the allowance of forbidden transitions for a hydrogen atom placed near line dipole sources, mimicking light emanating from a one-dimensional metallic nanogap. It is shown that the rapid variation of the electric field vector, inevitable in the near zone, completely breaks the selection rule of Δl=±1. While the forbidden transitions between spherically symmetric S states, such as 2S to 1S or 3S to 1S (Δl=0), are rather robust against selection rule breakage, Δl=±2 transitions such as between 3D and 1S or 3D and 2S states are very vulnerable to the spatial variation of the perturbing electric field. Transitions between 2S and 3D states are enhanced by many orders of magnitude, aided by the quadratic nature of both the perturbing Hamiltonian and D wavefunctions. The forbidden dipole moment, which approaches one Bohr radius times the electric charge in the vicinity of the gap, can be written in a simple closed form owing to the one-dimensional nature of our gap. With large enough effective volume together with the symmetric nature of the excited state wavefunctions, our work paves way towards atomic physics application of infinitely long nanogaps.

  14. Superconducting Metallic Glass Transition-Edge-Sensors

    Science.gov (United States)

    Hays, Charles C. (Inventor)

    2013-01-01

    A superconducting metallic glass transition-edge sensor (MGTES) and a method for fabricating the MGTES are provided. A single-layer superconducting amorphous metal alloy is deposited on a substrate. The single-layer superconducting amorphous metal alloy is an absorber for the MGTES and is electrically connected to a circuit configured for readout and biasing to sense electromagnetic radiation.

  15. Temperature dependent dual hydrogen sensor response of Pd nanoparticle decorated Al doped ZnO surfaces

    Energy Technology Data Exchange (ETDEWEB)

    Gupta, D.; Barman, P. B.; Hazra, S. K., E-mail: surajithazra@yahoo.co.in [Department of Physics and Materials Science, Jaypee University of Information Technology, Waknaghat, Solan, Himachal Pradesh-173234 (India); Dutta, D. [IC Design and Fabrication Centre, Department of Electronics and Telecommunication Engineering, Jadavpur University, Kolkata-700032 (India); Kumar, M.; Som, T. [SUNAG Laboratory, Institute of Physics, Sachivalaya Marg, Bhubaneswar 751005 (India)

    2015-10-28

    Sputter deposited Al doped ZnO (AZO) thin films exhibit a dual hydrogen sensing response in the temperature range 40 °C–150 °C after surface modifications with palladium nanoparticles. The unmodified AZO films showed no response in hydrogen in the temperature range 40 °C–150 °C. The operational temperature windows on the low and high temperature sides have been estimated by isolating the semiconductor-to-metal transition temperature zone of the sensor device. The gas response pattern was modeled by considering various adsorption isotherms, which revealed the dominance of heterogeneous adsorption characteristics. The Arrhenius adsorption barrier showed dual variation with change in hydrogen gas concentration on either side of the semiconductor-to-metal transition. A detailed analysis of the hydrogen gas response pattern by considering the changes in nano palladium due to hydrogen adsorption, and semiconductor-to-metal transition of nanocrystalline Al doped ZnO layer due to temperature, along with material characterization studies by glancing incidence X-ray diffraction, atomic force microscopy, and transmission electron microscopy, are presented.

  16. Recyclable hydrogen storage system composed of ammonia and alkali metal hydride

    Energy Technology Data Exchange (ETDEWEB)

    Yamamoto, Hikaru [Department of Quantum Matter, AdSM, Hiroshima University, 1-3-1 Kagamiyama, Higashi-Hiroshima, Hiroshima 739-8530 (Japan); Miyaoka, Hiroki; Hino, Satoshi [Institute for Advanced Materials Research, Hiroshima University, 1-3-1 Kagamiyama, Higashi-Hiroshima, Hiroshima 739-8530 (Japan); Nakanishi, Haruyuki [Higashi-Fuji Technical Center, Toyota Motor Corporation, 1200 Misyuku, Susono, Shizuoka 410-1193 (Japan); Ichikawa, Takayuki; Kojima, Yoshitsugu [Department of Quantum Matter, AdSM, Hiroshima University, 1-3-1 Kagamiyama, Higashi-Hiroshima, Hiroshima 739-8530 (Japan); Institute for Advanced Materials Research, Hiroshima University, 1-3-1 Kagamiyama, Higashi-Hiroshima, Hiroshima 739-8530 (Japan)

    2009-12-15

    Ammonia (NH{sub 3}) reacts with alkali metal hydrides MH (M = Li, Na, and K) in an exothermic reaction to release hydrogen (H{sub 2}) at room temperature, resulting that alkali metal amides (MNH{sub 2}) which are formed as by-products. In this work, hydrogen desorption properties of these systems and the condition for the recycle from MNH{sub 2} back to MH were investigated systematically. For the hydrogen desorption reaction, the reactivities of MH with NH{sub 3} were better following the atomic number of M on the periodic table, Li < Na < K. It was confirmed that the hydrogen absorption reaction of all the systems proceeded under 0.5 MPa of H{sub 2} flow condition below 300 C. (author)

  17. Microstructural Effects on Hydrogen Delayed Fracture of 600 MPa and 800 MPa grade Deposited Weld Metal

    International Nuclear Information System (INIS)

    Kang, Hee Jae; Lee, Tae Woo; Cho, Kyung Mox; Kang, Namhyun; Yoon, Byung Hyun; Park, Seo Jeong; Chang, Woong Seong

    2012-01-01

    Hydrogen-delayed fracture (HDF) was analyzed from the deposited weld metals of 600-MPa and 800-MPa flux-cored arc (FCA) welding wires, and then from the diffusible hydrogen behavior of the weld zone. Two types of deposited weld metal, that is, rutile weld metal and alkali weld metal, were used for each strength level. Constant loading test (CLT) and thermal desorption spectrometry (TDS) analysis were conducted on the hydrogen pre-charged specimens electrochemically for 72 h. The effects of microstructures such as acicular ferrite, grain-boundary ferrite, and low-temperature-transformation phase on the time-to failure and amount of diffusible hydrogen were analyzed. The fracture time for hydrogen-purged specimens in the constant loading tests decreased as the grain size of acicular ferrite decreased. The major trapping site for diffusible hydrogen was the grain boundary, as determined by calculating the activation energies for hydrogen detrapping. As the strength was increased and alkali weld metal was used, the resistance to HDF decreased.

  18. Spin-Polarization-Induced Preedge Transitions in the Sulfur K-Edge XAS Spectra of Open-Shell Transition-Metal Sulfates: Spectroscopic Validation of σ-Bond Electron Transfer.

    Science.gov (United States)

    Frank, Patrick; Szilagyi, Robert K; Gramlich, Volker; Hsu, Hua-Fen; Hedman, Britt; Hodgson, Keith O

    2017-02-06

    Sulfur K-edge X-ray absorption spectroscopy (XAS) spectra of the monodentate sulfate complexes [M II (itao)(SO 4 )(H 2 O) 0,1 ] (M = Co, Ni, Cu) and [Cu(Me 6 tren)(SO 4 )] exhibit well-defined preedge transitions at 2479.4, 2479.9, 2478.4, and 2477.7 eV, respectively, despite having no direct metal-sulfur bond, while the XAS preedge of [Zn(itao)(SO 4 )] is featureless. The sulfur K-edge XAS of [Cu(itao)(SO 4 )] but not of [Cu(Me 6 tren)(SO 4 )] uniquely exhibits a weak transition at 2472.1 eV, an extraordinary 8.7 eV below the first inflection of the rising K-edge. Preedge transitions also appear in the sulfur K-edge XAS of crystalline [M II (SO 4 )(H 2 O)] (M = Fe, Co, Ni, and Cu, but not Zn) and in sulfates of higher-valent early transition metals. Ground-state density functional theory (DFT) and time-dependent DFT (TDDFT) calculations show that charge transfer from coordinated sulfate to paramagnetic late transition metals produces spin polarization that differentially mixes the spin-up (α) and spin-down (β) spin orbitals of the sulfate ligand, inducing negative spin density at the sulfate sulfur. Ground-state DFT calculations show that sulfur 3p character then mixes into metal 4s and 4p valence orbitals and various combinations of ligand antibonding orbitals, producing measurable sulfur XAS transitions. TDDFT calculations confirm the presence of XAS preedge features 0.5-2 eV below the rising sulfur K-edge energy. The 2472.1 eV feature arises when orbitals at lower energy than the frontier occupied orbitals with S 3p character mix with the copper(II) electron hole. Transmission of spin polarization and thus of radical character through several bonds between the sulfur and electron hole provides a new mechanism for the counterintuitive appearance of preedge transitions in the XAS spectra of transition-metal oxoanion ligands in the absence of any direct metal-absorber bond. The 2472.1 eV transition is evidence for further radicalization from copper(II), which

  19. Hydrogen permeation resistant layers for liquid metal reactors

    International Nuclear Information System (INIS)

    McGuire, J.C.

    1980-03-01

    Reviewing the literature in the tritium diffusion field one can readily see a wide divergence in results for both the response of permeation rate to pressure, and the effect of oxide layers on total permeation rates. The basic mechanism of protective oxide layers is discussed. Two coatings which are less hydrogen permeable than the best naturally occurring oxide are described. The work described is part of an HEDL-ANL cooperative research program on Tritium Permeation in Liquid Metal Cooled Reactors. This includes permeation work on hydrogen, deuterium, and tritium with the hydrogen-deuterium research leading to the developments presented

  20. Hydrogen formation in metals and alloys during fusion reactor operation

    International Nuclear Information System (INIS)

    Zimin, S.; Takatsu, Hideyuki; Mori, Seiji

    1994-08-01

    The results of neutron transport calculations of the hydrogen formation based on the JENDL gas-production cross section file are discussed for some metals and alloys, namely 51 V, Cr, Fe, Ni, Mo, austenitic stainless steel (Ti modified 316SS:PCA), ferritic steel (Fe-8Cr-2W:F82H) and the vanadium-base alloy (V-5Cr-5Ti). Impact of the steel fraction in steel/water homogeneous blanket/shield compositions on the hydrogen formation rate in above-mentioned metals and alloys is discussed both for the hydrogen formation in the first wall and the blanket/shield components. The results obtained for the first wall are compared with those for the helium formation obtained at JAERI by the same calculational conditions. Hydrogen formation rates at the first wall having 51 V, Cr, Fe, Ni and Mo are larger than those of helium by 3-8 times. (author)

  1. Electroforming and Switching in Oxides of Transition Metals: The Role of Metal Insulator Transition in the Switching Mechanism

    Science.gov (United States)

    Chudnovskii, F. A.; Odynets, L. L.; Pergament, A. L.; Stefanovich, G. B.

    1996-02-01

    Electroforming and switching effects in sandwich structures based on anodic films of transition metal oxides (V, Nb, Ti, Fe, Ta, W, Zr, Hf, Mo) have been studied. After being electroformed, some materials exhibited current-controlled negative resistance with S-shapedV-Icharacteristics. For V, Fe, Ti, and Nb oxides, the temperature dependences of the threshold voltage have been measured. As the temperature increased,Vthdecreased to zero at a critical temperatureT0, which depended on the film material. Comparison of theT0values with the temperatures of metal-insulator phase transition for some compounds (Tt= 120 K for Fe3O4, 340 K for VO2, ∼500 K for Ti2O3, and 1070 K for NbO2) showed that switching was related to the transition in the applied electric field. Channels consisting of the above-mentioned lower oxides were formed in the initial anodic films during the electroforming. The possibility of formation of these oxides with a metal-insulator transition was confirmed by thermodynamic calculations.

  2. Nuclear processes in deuterium/natural hydrogen-metal systems

    International Nuclear Information System (INIS)

    Zelensky, V.F.

    2013-01-01

    The survey presents the analysis of the phenomena taking place in deuterium - metal and natural hydrogen - metal systems under cold fusion experimental conditions. The cold fusion experiments have shown that the generation of heat and helium in the deuterium-metal system without emission of energetic gamma-quanta is the result of occurrence of a chain of chemical, physical and nuclear processes observed in the system, culminating in both the fusion of deuterium nuclei and the formation of a virtual, electron-modified excited 4He nucleus. The excitation energy of the helium nucleus is transferred to the matrix through emission of conversion electrons, and that, under appropriate conditions, provides a persistent synthesis of deuterium. The processes occurring in the deuterium/natural hydrogen - metal systems have come to be known as chemonuclear DD- and HD-fusion. The mechanism of stimulation of weak interaction reactions under chemonuclear deuterium fusion conditions by means of strong interaction reactions has been proposed. The results of numerous experiments discussed in the survey bear witness to the validity of chemonuclear fusion. From the facts discussed it is concluded that the chemonuclear deuterium fusion scenario as presented in this paper may serve as a basis for expansion of deeper research and development of this ecologically clean energy source. It is shown that the natural hydrogen-based system, containing 0.015% of deuterium, also has good prospects as an energy source. The chemonuclear fusion processes do not require going beyond the scope of traditional physics for their explanation

  3. Catalytic activation of molecular hydrogen in alkyne hydrogenation reactions by lanthanide metal vapor reaction products

    International Nuclear Information System (INIS)

    Evans, W.J.; Bloom, I.; Engerer, S.C.

    1983-01-01

    A rotary metal vapor was used in the synthesis of Lu, Er, Nd, Sm, Yb, and La alkyne, diene, and phosphine complexes. A typical catalytic hydrogenation experiment is described. The lanthanide metal vapor product is dissolved in tetrahydrofuran or toluene and placed in a pressure reaction vessel 3-hexyne (or another substrate) is added, the chamber attached to a high vacuum line, cooled to -196 0 C, evacuated, warmed to ambient temperature and hydrogen is added. The solution is stirred magnetically while the pressure in monitored. The reaction products were analyzed by gas chromatography. Rates and products of various systems are listed. This preliminary survey indicates that catalytic reaction chemistry is available to these metals in a wide range of coordination environments. Attempts to characterize these compounds are hampered by their paramagnetic nature and their tendency to polymerize

  4. Impact of different metal turbidities on radiolytic hydrogen generation in nuclear power plants

    International Nuclear Information System (INIS)

    Kumbhar, A.G.; Belapurkar, A.D.; Venkateswaran, G.; Kishore, K.

    2005-01-01

    Radiolytic hydrogen generation on γ irradiation of turbid solutions containing metal turbidities such as titanium, nickel, iron, chromium, copper, indium, and aluminium was studied. It is suggested that the chemical reactivity of the metal in the turbid solution with e aq -/H/OH produced by radiolysis of water interferes with the recombination reactions which destroy H 2 and H 2 O 2 , thus leading to higher yield of hydrogen. The rate of generation of hydrogen and the G(H 2 ) value is related to the reactivity of the metal ion/hydroxylated species with the free radicals. (orig.)

  5. Monitoring and understanding the paraelectric-ferroelectric phase transition in the metal-organic framework [NH4 ][M(HCOO)3 ] by solid-state NMR spectroscopy.

    Science.gov (United States)

    Xu, Jun; Lucier, Bryan E G; Sinelnikov, Regina; Terskikh, Victor V; Staroverov, Viktor N; Huang, Yining

    2015-10-05

    The paraelectric-ferroelectric phase transition in two isostructural metal-organic frameworks (MOFs) [NH4 ][M(HCOO)3 ] (M=Mg, Zn) was investigated by in situ variable-temperature (25) Mg, (67) Zn, (14) N, and (13) C solid-state NMR (SSNMR) spectroscopy. With decreasing temperature, a disorder-order transition of NH4 (+) cations causes a change in dielectric properties. It is thought that [NH4 ][Mg(HCOO)3 ] exhibits a higher transition temperature than [NH4 ][Zn(HCOO)3 ] due to stronger hydrogen-bonding interactions between NH4 (+) ions and framework oxygen atoms. (25) Mg and (67) Zn NMR parameters are very sensitive to temperature-induced changes in structure, dynamics, and dielectric behavior; stark spectral differences across the paraelectric-ferroelectric phase transition are intimately related to subtle changes in the local environment of the metal center. Although (25) Mg and (67) Zn are challenging nuclei for SSNMR experiments, the highly spherically symmetric metal-atom environments in [NH4 ][M(HCOO)3 ] give rise to relatively narrow spectra that can be acquired in 30-60 min at a low magnetic field of 9.4 T. Complementary (14) N and (13) C SSNMR experiments were performed to probe the role of NH4 (+) -framework hydrogen bonding in the paraelectric-ferroelectric phase transition. This multinuclear SSNMR approach yields new physical insights into the [NH4 ][M(HCOO)3 ] system and shows great potential for molecular-level studies on electric phenomena in a wide variety of MOFs. © 2015 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  6. Application of hydrogen isotopes and metal hydrides in future energy source

    Energy Technology Data Exchange (ETDEWEB)

    Guoqiang, Jiang [Sichuan Inst. of Materials and Technology, Chengdu, SC (China)

    1994-12-01

    The probable application of hydrogen isotopes and metal hydrides to future energy source is reviewed. Starting from existing state of China`s energy source, the importance for developing hydrogen energy and fusion energy is explained. It is suggested that the application investigation of hydrogen energy and hydrogen storage materials should be spurred and encouraged; keeping track of the development on tritium technology for fusion reactor is stressed.

  7. Application of hydrogen isotopes and metal hydrides in future energy source

    International Nuclear Information System (INIS)

    Jiang Guoqiang

    1994-12-01

    The probable application of hydrogen isotopes and metal hydrides to future energy source is reviewed. Starting from existing state of China's energy source, the importance for developing hydrogen energy and fusion energy is explained. It is suggested that the application investigation of hydrogen energy and hydrogen storage materials should be spurred and encouraged; keeping track of the development on tritium technology for fusion reactor is stressed

  8. Hydrogen adsorption in metal-organic frameworks

    Energy Technology Data Exchange (ETDEWEB)

    Senkovska, Irena; Kaskel, Stefan [Department of Inorganic Chemistry, Technical University, Dresden (Germany)

    2008-07-01

    Metal-Organic Frameworks (MOFs) have recently received considerable attention because of their high specific micropore volume and the ability to store gas molecules exceeding the storage capacity of traditional adsorbents. A variety of differences in the MOFs structures makes it difficult to analyze the influence of different factors on hydrogen uptake capabilities in MOFs. We have investigated the influence of the minor structural changes of the MOFs on their hydrogen storage capacity. The influence of the incorporated metal was shown for following isostructural compounds: Cu{sub 3}(BTC){sub 2} (BTC=1,3,5-benzenetricarboxylate) and Mo{sub 3}(BTC){sub 2}; Zn{sub 2}(BDC){sub 2}DABCO and Co{sub 2}(BDC){sub 2}DABCO (BDC=1,4-benzenedicarboxylate, DABCO=1,4-diazabicyclo[2.2.2]octane). Our research interest is directed also towards the discovery of new MOFs, as well as adjusting the pore dimensions of MOFs, using different building blocks, solvent and solvent mixtures, in order to improve gas uptake and adsorption properties. Magnesium-based MOFs were found with the same network topology, very small pore size and selective adsorption behaviour. They show a guest-induced reversible structure transformation due to the flexibility of the Mg{sub 3}-cluster and the organic linkers. This effect could be used for fitting the pore sizes and for the increase of gas sorption capability in Mg contained MOFs after all. The hydrogen adsorption was also studied in several Al-based IRMOFs.

  9. Applications of ion implantation for modifying the interactions between metals and hydrogen gas

    Science.gov (United States)

    Musket, R. G.

    1989-04-01

    Ion implantations into metals have been shown recently to either reduce or enhance interactions with gaseous hydrogen. Published studies concerned with modifications of these interactions are reviewed and discussed in terms of the mechanisms postulated to explain the observed changes. The interactions are hydrogenation, hydrogen permeation, and hydrogen embrittlement. In particular, the results of the reviewed studies are (a) uranium hydriding suppressed by implantation of oxygen and carbon, (b) hydrogen gettered in iron and nickel using implantation of titanium, (c) hydriding of titanium catalyzed by implanted palladium, (d) tritium permeation of 304L stainless steel reduced using selective oxidation of implanted aluminum, and (e) hydrogen attack of a low-alloy steel accelerated by implantation of helium. These studies revealed ion implantation to be an effective method for modifying the interactions of hydrogen gas with metals.

  10. Transfer Hydrogenation: Employing a Simple, In Situ Prepared Catalytic System

    KAUST Repository

    Ang, Eleanor Pei Ling

    2017-01-01

    Transfer hydrogenation has been recognized to be an important synthetic method in both academic and industrial research to obtain valuable products including alcohols. Transition metal catalysts based on precious metals, such as Ru, Rh and Ir

  11. Hydrogen-induced metallicity and strengthening of MoS{sub 2}

    Energy Technology Data Exchange (ETDEWEB)

    Yakovkin, I.N., E-mail: yakov@iop.kiev.ua; Petrova, N.V.

    2014-04-15

    Highlights: • Hydrogen inserted into MoS{sub 2} bilayers increases the interlayer interaction. • Adsorbed or intercalated H monolayer makes the surface metallic. • Fermi surface of the H/MoS{sub 2} shows a significant nesting. - Abstract: The performed DFT calculations for MoS{sub 2} layers with adsorbed and intercalated hydrogen indicate that the atomic hydrogen monolayer makes the surface metallic. The physisorbed H{sub 2} does not affect electronic properties of the MoS{sub 2} monolayer, which remains a direct gap semiconductor. Due to forming S–H–S bonds, hydrogen atoms, intercalated into the space between MoS{sub 2} layers, increase the interlayer interaction from 0.12 eV to 0.60 eV. The related increase of the stiffness of the Mo–H–Mo layered system is of a primary importance for the interpretation of images of the surface obtained with the Ultrasonic Force Microscopy (Kolosov and Yamanaka, 1993) [42].

  12. Hydrogen storage in metallic hydrides: the hydrides of magnesium-nickel alloys

    International Nuclear Information System (INIS)

    Silva, E.P. da.

    1981-01-01

    The massive and common use of hydrogen as an energy carrier requires an adequate solution to the problem of storing it. High pressure or low temperatures are not entirely satisfactory, having each a limited range of applications. Reversible metal hydrides cover a range of applications intermediate to high pressure gas and low temperature liquid hydrogen, retaining very favorable safety and energy density characteristics, both for mobile and stationary applications. This work demonstrates the technical viability of storing hydrogen in metal hydrides of magnesium-nickel alloys. Also, it shows that technology, a product of science, can be generated within an academic environment, of the goal is clear, the demand outstanding and the means available. We review briefly theoretical models relating to metal hydride properties, specially the thermodynamics properties relevant to this work. We report our experimental results on hydrides of magnesium-nickel alloys of various compositions including data on structure, hydrogen storage capacities, reaction kinetics, pressure-composition isotherms. We selected a promising alloy for mass production, built and tested a modular storage tank based on the hydrides of the alloy, with a capacity for storing 10 Nm sup(3) of hydrogen of 1 atm and 20 sup(0)C. The tank weighs 46,3 Kg and has a volume of 21 l. (author)

  13. Hydrogen Doping into MoO3 Supports toward Modulated Metal-Support Interactions and Efficient Furfural Hydrogenation on Iridium Nanocatalysts.

    Science.gov (United States)

    Xie, Lifang; Chen, Ting; Chan, Hang Cheong; Shu, Yijin; Gao, Qingsheng

    2018-03-16

    As promising supports, reducible metal oxides afford strong metal-support interactions to achieve efficient catalysis, which relies on their band states and surface stoichiometry. In this study, in situ and controlled hydrogen doping (H doping) by means of H 2 spillover was employed to engineer the metal-support interactions in hydrogenated MoO x -supported Ir (Ir/H-MoO x ) catalysts and thus promote furfural hydrogenation to furfuryl alcohol. By easily varying the reduction temperature, the resulting H doping in a controlled manner tailors low-valence Mo species (Mo 5+ and Mo 4+ ) on H-MoO x supports, thereby promoting charge redistribution on Ir and H-MoO x interfaces. This further leads to clear differences in H 2 chemisorption on Ir, which illustrates its potential for catalytic hydrogenation. As expected, the optimal Ir/H-MoO x with controlled H doping afforded high activity (turnover frequency: 4.62 min -1 ) and selectivity (>99 %) in furfural hydrogenation under mild conditions (T=30 °C, PH2 =2 MPa), which means it performs among the best of current catalysts. © 2018 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim.

  14. On monosubstituted cyanurate complexes of transition metals

    International Nuclear Information System (INIS)

    Sejfer, G.B.; Tarasova, Z.A.

    1995-01-01

    Complex monosubstituted cyanurates of transition metals K 2 [Eh(H 2 C 3 N 3 O 3 ) 4 ]x4H 2 ) where Eh = Mn, Co, Ni, Cu, Zn, Cd are synthesized and investigated by means of IR - spectroscopy and thermal analysis methods. It is shown that only thermal decomposition of a manganese complex leads to the production of this metal oxide. All other derivatives decompose with the production of a free metal, because decomposition of these substances in argon atmosphere occurs through an intermediate production of their nitrides. An assumption is made that nitroduction of yttrium or rare earth element salts (instead of transition or alkali metal derivatives) as accelerating additions will facilitate increase of polyisocyanurate resin thermal stability. 25 refs.; 2 figs.; 3 tabs

  15. Preparation and characterization of several transition metal oxides

    International Nuclear Information System (INIS)

    Wold, A.; Dwight, K.

    1989-01-01

    The structure-property relationships of several conducting transition metal oxides, as well as their preparative methods, are presented in this paper. The importance of preparing homogeneous phases with precisely known stoichiometry is emphasized. A comparison is also made of the various techniques used to prepare both polycrystalline and single crystal samples. For transition metal oxides, the metallic properties are discussed either in terms of metal-metal distances which are short enough to result in metallic behavior, or in terms of the formation of a π* conduction band resulting from covalent metal-oxygen interactions. Metallic behavior is observed when the conduction bands are populated with either electrons or holes. The concentration of these carriers can be affected by either cation or anion substitutions. The discussion in this presentation will be limited to the elements Re, Ti, V, Cr, Mo, and Cu

  16. Characterisation of hydrocarbonaceous overlayers important in metal-catalysed selective hydrogenation reactions

    Energy Technology Data Exchange (ETDEWEB)

    Lennon, David; Warringham, Robbie [School of Chemistry, Joseph Black Building, University of Glasgow, Glasgow G12 8QQ (United Kingdom); Guidi, Tatiana [ISIS Facility, STFC Rutherford Appleton Laboratory, Chilton, Didcot, Oxfordshire OX11 0QX (United Kingdom); Parker, Stewart F., E-mail: stewart.parker@stfc.ac.uk [ISIS Facility, STFC Rutherford Appleton Laboratory, Chilton, Didcot, Oxfordshire OX11 0QX (United Kingdom)

    2013-12-12

    Highlights: • Inelastic neutron scattering spectroscopy of a commercial dehydrogenation catalyst. • The overlayer present on the catalyst is predominantly aliphatic. • A population of strongly hydrogen bonded hydroxyls is also present. - Abstract: The hydrogenation of alkynes to alkenes over supported metal catalysts is an important industrial process and it has been shown that hydrocarbonaceous overlayers are important in controlling selectivity profiles of metal-catalysed hydrogenation reactions. As a model system, we have selected propyne hydrogenation over a commercial Pd(5%)/Al{sub 2}O{sub 3} catalyst. Inelastic neutron scattering studies show that the C–H stretching mode ranges from 2850 to 3063 cm{sup −1}, indicating the mostly aliphatic nature of the overlayer and this is supported by the quantification of the carbon and hydrogen on the surface. There is also a population of strongly hydrogen-bonded hydroxyls, their presence would indicate that the overlayer probably contains some oxygen functionality. There is little evidence for any olefinic or aromatic species. This is distinctly different from the hydrogen-poor overlayers that are deposited on Ni/Al{sub 2}O{sub 3} catalysts during methane reforming.

  17. Predicted energy densitites for nickel-hydrogen and silver-hydrogen cells embodying metallic hydrides for hydrogen storage

    Science.gov (United States)

    Easter, R. W.

    1974-01-01

    Simplified design concepts were used to estimate gravimetric and volumetric energy densities for metal hydrogen battery cells for assessing the characteristics of cells containing metal hydrides as compared to gaseous storage cells, and for comparing nickel cathode and silver cathode systems. The silver cathode was found to yield superior energy densities in all cases considered. The inclusion of hydride forming materials yields cells with very high volumetric energy densities that also retain gravimetric energy densities nearly as high as those of gaseous storage cells.

  18. Harnessing the metal-insulator transition for tunable metamaterials

    Science.gov (United States)

    Charipar, Nicholas A.; Charipar, Kristin M.; Kim, Heungsoo; Bingham, Nicholas S.; Suess, Ryan J.; Mathews, Scott A.; Auyeung, Raymond C. Y.; Piqué, Alberto

    2017-08-01

    The control of light-matter interaction through the use of subwavelength structures known as metamaterials has facilitated the ability to control electromagnetic radiation in ways not previously achievable. A plethora of passive metamaterials as well as examples of active or tunable metamaterials have been realized in recent years. However, the development of tunable metamaterials is still met with challenges due to lack of materials choices. To this end, materials that exhibit a metal-insulator transition are being explored as the active element for future metamaterials because of their characteristic abrupt change in electrical conductivity across their phase transition. The fast switching times (▵t < 100 fs) and a change in resistivity of four orders or more make vanadium dioxide (VO2) an ideal candidate for active metamaterials. It is known that the properties associated with thin film metal-insulator transition materials are strongly dependent on the growth conditions. For this work, we have studied how growth conditions (such as gas partial pressure) influence the metalinsulator transition in VO2 thin films made by pulsed laser deposition. In addition, strain engineering during the growth process has been investigated as a method to tune the metal-insulator transition temperature. Examples of both the optical and electrical transient dynamics facilitating the metal-insulator transition will be presented together with specific examples of thin film metamaterial devices.

  19. Quantum-mechanical approach to the state of hydrogen in b. c. c. metals

    Energy Technology Data Exchange (ETDEWEB)

    Fukai, Y; Sugimoto, H

    1980-01-01

    A first step towards consistent understanding of various properties of interstitial hydrogen in b.c.c. metals has been made by solving a Schroedinger equation for hydrogen atoms in the field of interaction with surrounding metal atoms. Properties investigated include the nature of self-trapped states, the relative stability of self-trapped configurations, the average stress field (P-tensor), the excitation energy to be determined by neutron spectroscopy, etc. Calculations were performed on hydrogen isotopes (H, D, T) in group-V metals (V, Nb, Ta), and good agreement was obtained with many different kinds of observations. Some predictions and tentative explanations are also presented.

  20. Quantum-mechanical approach to the state of hydrogen in B. C. C. metals

    Energy Technology Data Exchange (ETDEWEB)

    Fukai, Y; Sugimoto, H [Chuo Univ., Tokyo (Japan). Dept. of Physics

    1980-01-01

    A first step towards consistent understanding of various properties of interstitial hydrogen in B.C.C. metals has been made by solving a Schroedinger equation for hydrogen atoms in the field of interaction with surrounding metal atoms. Properties investigated include a nature of self-trapped states, a relative stability of self-trapped configurations, the average stress field (P-tensor), the excitation energy to be determined by neutron spectroscopy, etc. Calculations were performed on hydrogen isotopes (H, D, T) in group-V metals (V, Nb, Ta), and good agreement was obtained with many different kinds of observations. Some predictions and tentative explanations are also presented.

  1. Greenhouse gas reduction benefits and costs of a large-scale transition to hydrogen in the USA

    International Nuclear Information System (INIS)

    Dougherty, William; Kartha, Sivan; Lazarus, Michael; Fencl, Amanda; Rajan, Chella; Bailie, Alison; Runkle, Benjamin

    2009-01-01

    Hydrogen is an energy carrier able to be produced from domestic, zero-carbon sources and consumed by zero-pollution devices. A transition to a hydrogen-based economy could therefore potentially respond to climate, air quality, and energy security concerns. In a hydrogen economy, both mobile and stationary energy needs could be met through the reaction of hydrogen (H 2 ) with oxygen (O 2 ). This study applies a full fuel cycle approach to quantify the energy, greenhouse gas emissions (GHGs), and cost implications associated with a large transition to hydrogen in the United States. It explores a national and four metropolitan area transitions in two contrasting policy contexts: a 'business-as-usual' (BAU) context with continued reliance on fossil fuels, and a 'GHG-constrained' context with policies aimed at reducing greenhouse gas emissions. A transition in either policy context faces serious challenges, foremost among them from the highly inertial investments over the past century or so in technology and infrastructure based on petroleum, natural gas, and coal. A hydrogen transition in the USA could contribute to an effective response to climate change by helping to achieve deep reductions in GHG emissions by mid-century across all sectors of the economy; however, these reductions depend on the use of hydrogen to exploit clean, zero-carbon energy supply options. (author)

  2. Greenhouse gas reduction benefits and costs of a large-scale transition to hydrogen in the USA

    Energy Technology Data Exchange (ETDEWEB)

    Dougherty, William; Kartha, Sivan; Lazarus, Michael; Fencl, Amanda [Stockholm Environment Institute - US Center, 11 Curtis Avenue, Somerville, MA 02143 (United States); Rajan, Chella [Indian Institute of Technology Madras, I.I.T. Post Office, Chennai 600 036 (India); Bailie, Alison [The Pembina Institute, 200, 608 - 7th Street, S.W. Calgary, AB (Canada); Runkle, Benjamin [Department of Civil and Environmental Engineering, University of California, Berkeley, CA 94720 (United States)

    2009-01-15

    Hydrogen is an energy carrier able to be produced from domestic, zero-carbon sources and consumed by zero-pollution devices. A transition to a hydrogen-based economy could therefore potentially respond to climate, air quality, and energy security concerns. In a hydrogen economy, both mobile and stationary energy needs could be met through the reaction of hydrogen (H{sub 2}) with oxygen (O{sub 2}). This study applies a full fuel cycle approach to quantify the energy, greenhouse gas emissions (GHGs), and cost implications associated with a large transition to hydrogen in the United States. It explores a national and four metropolitan area transitions in two contrasting policy contexts: a 'business-as-usual' (BAU) context with continued reliance on fossil fuels, and a 'GHG-constrained' context with policies aimed at reducing greenhouse gas emissions. A transition in either policy context faces serious challenges, foremost among them from the highly inertial investments over the past century or so in technology and infrastructure based on petroleum, natural gas, and coal. A hydrogen transition in the USA could contribute to an effective response to climate change by helping to achieve deep reductions in GHG emissions by mid-century across all sectors of the economy; however, these reductions depend on the use of hydrogen to exploit clean, zero-carbon energy supply options. (author)

  3. Selective gettering of hydrogen in high pressure metal iodide lamps

    International Nuclear Information System (INIS)

    Kuus, G.

    1976-01-01

    One of the main problems in the manufacture of high pressure gas discharge lamps is the elimination of gaseous impurities from their arc tubes. Long degassing processes of all the lamp components are necessary in order to produce lamps with a low ignition voltage and good maintenance of the radiation properties. The investigation described deals with a selective getter place in the arc tube which can replace the long degassing process. The getter consists of a piece of yttrium encapsulated in thin tantalum foil. By this way it is possible to use the gettering action of tantalum and yttrium without having reaction between the metal iodide of the arc tube and yttrium. Yttrium is used because this metal can adsorb a large quantity of hydrogen even at a temperature of 1000 0 C. Hydrogen forms the main gaseous impurity in the high pressure metal iodide lamp. For this reason the adsorption properties like adsorption rate and capacity of the tantalum--yttrium getter for hydrogen are examined, and the results obtained from lamp experiments are given

  4. Impurities in Antiferromagnetic Transition-Metal Oxides - Symmetry and Optical Transitions

    Science.gov (United States)

    Petersen, John Emil, III

    The study of antiferromagnetic transition-metal oxides is an extremely active area in the physical sciences, where condensed matter physics, inorganic chemistry, and materials science blend together. The sheer number of potential commercial applications is staggering, but much of the fundamental science remains unexplained. This is not due to a lack of effort, however, as theorists have been struggling to understand these materials for decades - particularly the character of the band edges and first optical transitions. The difficulty lies in the strong correlation or Coloumb attraction between the electrons in the anisotropic d orbitals, which conventional band theory cannot describe adequately. The correlation problem is approached here by the well-accepted method of adding a Hubbard potential energy term to the ground state Hamiltonian, calculated within Density Functional Theory. The frequency-dependent complex dielectric function is calculated within the Independent Particle Approximation, and optical transitions are evaluated in multiple different ways. Peaks in the imaginary part of the dielectric function are compared energetically to orbitally decomposed density of states calculations. Optical transitions are typically analyzed in terms of atomic orbitals, which, strictly speaking, gives misleading results. Here, however, from the calculated data, two alternative interpretations are analyzed for each material studied. The first employs rigorous group theoretical analysis to determine allowed electric-dipole transitions, taking into account both orbital hybridization and crystal symmetry. The second interpretation is that of metal cation site hopping. In this interpretation, carriers hop from the x2 - y2 d orbital of one metal cation lattice site to the next metal cation site which is antiferromagnetically aligned. At times, thoughout this work, one interpretation is favorable to the other. Which interpretation is most valid depends on the material

  5. Bimetallic promotion of cooperative hydrogen transfer and heteroatom removal in coal liquefaction. Final technical report, September 1, 1988--December 31, 1991

    Energy Technology Data Exchange (ETDEWEB)

    Eisch, J.J.

    1992-04-07

    The ultimate objective of this research has been to uncover novel reagents and experimental conditions for heteroatom removal and hydrogen transfer processes, which would be applicable to the liquefaction of coal under low-severity conditions. To this end, one phase of this research has investigated the cleavage of carbon-heteroatom bonds involving sulfur, oxygen, nitrogen and halogen by subvalent transition-metal complexes. A second phase of the study has assessed the capability of the same transition-metal complexes or of organoaluminum Lewis acids to catalyze the cleavage of carbon-hydrogen bonds in aromatics and hence to promote hydrogen shuttling. Finally, a third phase of our work has uncovered a remarkable synergistic effect of combinations of transition metals with organoaluminum Lewis acids on hydrogen shuttling between aromatics and hydroaromatics. (VC)

  6. Synthesis and evaluation of MoWCoS/G and MoWCuS/G as new transition metal dichalcogenide nanocatalysts for electrochemical hydrogen evolution reaction

    Science.gov (United States)

    Askari, Mohammad Bagher; Beheshti-Marnani, Amirkhosro; Banizi, Zoha Tavakoli; Seifi, Majid; Ramezan zadeh, Mohammad Hassan

    2018-01-01

    New nanocomposites based on transition metal dichalcogenides, MoWCoS and MoWCuS, were synthesized through one step hydrothermal method. X-ray diffraction (XRD) and energy dispersive X-ray (EDX) techniques as well as field emission scanning electron microscopy (FESEM) and transmission electron microscopy (TEM) images confirmed the synthesis of nanocomposites. For investigation of hydrogen evolution reaction (HER) properties of new nanocomposites, linear sweep voltammetry (LSV) was applied for this purpose. According to the results of similar previous works, the prepared nanocomposites showed promising HER properties as low overpotential equal to 41.4 mV/dec for MoWCoS hybridized with reduced graphene (G) and a little higher one equal to 49 mV/dec for MoWCuS hybridized with reduced graphene. Based on obtained Tafel slopes 38 and 53 mV/dec for MoWCoS/G and MoWCuS/G, respectively, the "Heyrovsky-Volmer" mechanism was suggested for the new HER three component nanocatalysts as the first effort to this purpose.

  7. Applications of ion implantation for modifying the interactions between metals and hydrogen gas

    International Nuclear Information System (INIS)

    Musket, R.G.

    1989-01-01

    Ion implantations into metals have been shown recently to either reduce or enhance interactions with gaseous hydrogen. Published studies concerned with modifications of these interactions are reviewed and discussed in terms of the mechanisms postulated to explain the observed changes. The interactions are hydrogenation, hydrogen permeation and hydrogen embrittlement. In particular, the results of the reviewed studies are 1. uranium hydriding suppressed by implantation of oxygen and carbon, 2. hydrogen gettered in iron and nickel using implantation of titanium, 3. hydriding of titanium catalyzed by implanted palladium, 4. tritium permeation of 304L stainless steel reduced using selective oxidation of implanted aluminum, and 5. hydrogen attack of a low-alloy steel accelerated by implantation of helium. These studies revealed ion implantation to be an effective method for modifying the interactions of hydrogen gas with metals. (orig.)

  8. Metal-insulator transition in vanadium dioxide

    International Nuclear Information System (INIS)

    Zylbersztejn, A.; Mott, N.F.

    1975-01-01

    The basic physical parameters which govern the metal-insulator transition in vanadium dioxide are determined through a review of the properties of this material. The major importance of the Hubbard intra-atomic correlation energy in determining the insulating phase, which was already evidence by studies of the magnetic properties of V 1 -/subx/Cr/subx/O 2 alloys, is further demonstrated from an analysis of their electrical properties. An analysis of the magnetic susceptibility of niobium-doped VO 2 yields a picture for the current carrier in the low-temperature phase in which it is accompanied by a spin cloud (owing to Hund's-rule coupling), and has therefore an enhanced mass (m approx. = 60m 0 ). Semiconducting vanadium dioxide turns out to be a borderline case for a classical band-transport description; in the alloys at high doping levels, Anderson localization with hopping transport can take place. Whereas it is shown that the insulating phase cannot be described correctly without taking into account the Hubbard correlation energy, we find that the properties of the metallic phase are mainly determined by the band structure. Metallic VO 2 is, in our view, similar to transition metals like Pt or Pd: electrons in a comparatively wide band screening out the interaction between the electrons in a narrow overlapping band. The magnetic susceptibility is described as exchange enhanced. The large density of states at the Fermi level yields a substantial contribution of the entropy of the metallic electrons to the latent heat. The crystalline distortion removes the band degeneracy so that the correlation energy becomes comparable with the band width and a metal-insulator transition takes place

  9. N-Alkylation by Hydrogen Autotransfer Reactions.

    Science.gov (United States)

    Ma, Xiantao; Su, Chenliang; Xu, Qing

    2016-06-01

    Owing to the importance of amine/amide derivatives in all fields of chemistry, and also the green and environmentally benign features of using alcohols as alkylating reagents, the relatively high atom economic dehydrative N-alkylation reactions of amines/amides with alcohols through hydrogen autotransfer processes have received much attention and have developed rapidly in recent decades. Various efficient homogeneous and heterogeneous transition metal catalysts, nano materials, electrochemical methods, biomimetic methods, asymmetric N-alkylation reactions, aerobic oxidative methods, and even certain transition metal-free, catalyst-free, or autocatalyzed methods, have also been developed in recent years. With a brief introduction to the background and developments in this area of research, this chapter focuses mainly on recent progress and technical and conceptual advances contributing to the development of this research in the last decade. In addition to mainstream research on homogeneous and heterogeneous transition metal-catalyzed reactions, possible mechanistic routes for hydrogen transfer and alcohol activation, which are key processes in N-alkylation reactions but seldom discussed in the past, the recent reports on computational mechanistic studies of the N-alkylation reactions, and the newly emerged N-alkylation methods based on novel alcohol activation protocols such as air-promoted reactions and transition metal-free methods, are also reviewed in this chapter. Problems and bottlenecks that remained to be solved in the field, and promising new research that deserves greater future attention and effort, are also reviewed and discussed.

  10. Optical hydrogen sensors based on metal-hydrides

    Science.gov (United States)

    Slaman, M.; Westerwaal, R.; Schreuders, H.; Dam, B.

    2012-06-01

    For many hydrogen related applications it is preferred to use optical hydrogen sensors above electrical systems. Optical sensors reduce the risk of ignition by spark formation and are less sensitive to electrical interference. Currently palladium and palladium alloys are used for most hydrogen sensors since they are well known for their hydrogen dissociation and absorption properties at relatively low temperatures. The disadvantages of palladium in sensors are the low optical response upon hydrogen loading, the cross sensitivity for oxygen and carbon, the limited detection range and the formation of micro-cracks after some hydrogen absorption/desorption cycles. In contrast to Pd, we find that the use of magnesium or rear earth bases metal-hydrides in optical hydrogen sensors allow tuning of the detection levels over a broad pressure range, while maintaining a high optical response. We demonstrate a stable detection layer for detecting hydrogen below 10% of the lower explosion limit in an oxygen rich environment. This detection layer is deposited at the bare end of a glass fiber as a micro-mirror and is covered with a thin layer of palladium. The palladium layer promotes the hydrogen uptake at room temperature and acts as a hydrogen selective membrane. To protect the sensor for a long time in air a final layer of a hydrophobic fluorine based coating is applied. Such a sensor can be used for example as safety detector in automotive applications. We find that this type of fiber optic hydrogen sensor is also suitable for hydrogen detection in liquids. As example we demonstrate a sensor for detecting a broad range of concentrations in transformer oil. Such a sensor can signal a warning when sparks inside a high voltage power transformer decompose the transformer oil over a long period.

  11. A mechanism for the hydrogen uptake process in zirconium alloys

    International Nuclear Information System (INIS)

    Cox, B.

    1999-01-01

    Hydrogen uptake data for thin Zircaloy-2 specimens in steam at 300-400 C have been analysed to show that there is a decrease in the rate of uptake with respect to the rate of oxidation when the terminal solid solubility (TSS) of hydrogen in the metal is exceeded. In order for TSS to be reached during pre-transition oxidation a very thin 0.125 mm Zircaloy sheet was used. The specimens had been pickled initially removing all Zr 2 (Fe/Ni) particles from the initial surfaces, yet the initial hydrogen uptake rates were still much higher than for Zircaloy-4 or a binary Zr/Fe alloy that did not contain phases that dissolve readily during pickling. Cathodic polarisation at room temperature in CuSO 4 solution showed that small cracks or pores formed the cathodic sites in pre-transition oxide films. Some were at pits resulting from the initial dissolution of the Zr 2 (Fe/Ni) phase; others were not; none were at the remaining intermetallics in the original surface. These small cracks are thought to provide the ingress routes for hydrogen. A microscopic steam starvation process at the bottoms of these small cracks or pores, leading to the accumulation of hydrogen adjacent to the oxide/metal interface, and causing breakdown of the passive oxide forming at the bottom of the flaw, is thought to provide the mechanism for the hydrogen uptake process during both pre-transition and post-transition oxidation. (orig.)

  12. Theory of Hydrogen Storage: A New Strategy within Organometallic Chemistry

    Science.gov (United States)

    Zhao, Yufeng

    2006-03-01

    As one of the most vigorous fields in modern chemistry, organometallic chemistry has made vast contributions to a broad variety of technological fields including catalysis, light emitters, molecular devices, liquid crystals, and even superconductivity. Here we show that organometallic chemistry in nanoscale could be the frontier in hydrogen storage. Our study is based on the notion that the 3d transition metal (TM) atoms are superb absorbers for H storage, as their empty d orbital can bind dihydrogen ligands (elongated but non-dissociated H2) with high capacity at nearly ideal binding energy for reversible hydrogen storage. By embedding the TM atoms into a carbon-based nanostructures, high H capacity can be maintained. This presentation contains four parts. First, by comparing the conventional hydrogen storage media, e.g., metal hydrides and carbon-based materials, the general principles for designing hydrogen storage materials are outlined. Second, organometallic buckyballs are studied to demonstrate the novel strategy. The amount of H2 adsorbed on a Sc-coated fullerene, C48B12 [ScH]12, could approach 9 wt%, with binding energies of 30-40 kJ/mol. Third, the method is applied to the transition-metal carbide nanoparticles that have been synthesized experimentally. The similar non-dissociative H2 binding is revealed in our calculation, thereby demonstrating the resilience of the overall mechanism. Moreover, a novel self-catalysis process is identified. In the fourth part, transition-metal functionalization of highly porous carbon-based materials is discussed heuristically to foresee macroscopic media for hydrogen storage. Finally follows the summary and discussion of the remaining challenges to practical hydrogen storage. Work in collaboration with A. C. Dillon, Y.-H. Kim, M. Heben & S. B. Zhang and supported by the U.S. DOE/EERE under contract No. DE-AC36-99GO10337.

  13. Surface modification-a novel way of attaching cocatalysts on CdS semiconductors for photocatalytic hydrogen evolution

    KAUST Repository

    Yu, Weili

    2014-08-22

    Noble metals as cocatalysts for hydrogen evolution are widely investigated for semiconductor photocatalytic water splitting. In this paper, we present a novel way to attach not only noble metals, but also transitional metals onto CdS nanocrystals as cocatalysts for hydrogen evolution. The hydrogen evolution performances for each metal were compared and result shows that Pd attached CdS gives the highest hydrogen evolution rate of 250 μmol/h. The amounts of metal ions attached on the surface were measured by inductively coupled plasma optical emission spectrometry (ICP-OES). This work confirms that surface modification is a promising way of attaching cocatalysts onto semiconductor photocatalysts.

  14. Surface modification-a novel way of attaching cocatalysts on CdS semiconductors for photocatalytic hydrogen evolution

    KAUST Repository

    Yu, Weili; Isimjan, Tayirjan; Lin, Bin; Takanabe, Kazuhiro

    2014-01-01

    Noble metals as cocatalysts for hydrogen evolution are widely investigated for semiconductor photocatalytic water splitting. In this paper, we present a novel way to attach not only noble metals, but also transitional metals onto CdS nanocrystals as cocatalysts for hydrogen evolution. The hydrogen evolution performances for each metal were compared and result shows that Pd attached CdS gives the highest hydrogen evolution rate of 250 μmol/h. The amounts of metal ions attached on the surface were measured by inductively coupled plasma optical emission spectrometry (ICP-OES). This work confirms that surface modification is a promising way of attaching cocatalysts onto semiconductor photocatalysts.

  15. Hydrogen Storage and Release Properties of Transition Metal-Added Magnesium Hydride Alloy Fabricated by Grinding in a Hydrogen Atmosphere

    Energy Technology Data Exchange (ETDEWEB)

    Kwon, Sung Nam; Song, Myoung Youp [Chonbuk National University, Jeonju (Korea, Republic of); Park, Hye Ryoung [Chonnam National University, Gwangju (Korea, Republic of)

    2016-07-15

    90 wt% MgH{sub 2}+5 wt% Ni+2.5 wt% Fe+2.5 wt% Ti (called MgH{sub 2}+Ni+Fe+Ti), a hydrogen storage and release material, was fabricated by grinding in a hydrogen atmosphere, and then its quantities of stored and released hydrogen as a function of time were examined. A nanocrystalline MgH{sub 2}+Ni+Fe+Ti specimen was made by grinding in a hydrogen atmosphere and subsequent hydrogen storage-release cycling. The crystallite size of Mg and the strain of the Mg crystallite after ten hydrogen storage-release cycles, which were obtained using the Williamson-Hall method, were 38.6 (±1.4) nm and 0.025 (±0.0081) %, respectively. The MgH{sub 2}+Ni+Fe+Ti sample after the process of grinding in a hydrogen atmosphere was highly reactive with hydrogen. The sample exhibited an available storage capacity of hydrogen (the amount of hydrogen stored during 60 minutes) of about 5.7 wt%. At the first cycle, the MgH2+Ni+Fe+Ti sample stored hydrogen of 5.53 wt% in 5 minutes, 5.66 wt% in 10 minutes and 5.73 wt% in 60 minutes at 573 K and 12 bar of hydrogen. The MgH{sub 2}+Ni+Fe+Ti after activation released hydrogen of 0.56 wt% in 5 minutes, 1.26 wt% in 10 minutes, 2.64 wt% in 20 minutes, 3.82 wt% in 30 minutes, and 5.03 wt% in 60 minutes.

  16. The kinetic and mechanical aspects of hydrogen-induced failure in metals. Ph.D. Thesis, 1971

    Science.gov (United States)

    Nelson, H. G.

    1972-01-01

    Premature hydrogen-induced failure observed to occur in many metal systems involves three stages of fracture: (1) crack initiation, (2) stable slow crack growth, and (3) unstable rapid crack growth. The presence of hydrogen at some critical location on the metal surface or within the metal lattice was shown to influence one or both of the first two stages of brittle fracture but has a negligible effect on the unstable rapid crack growth stage. The relative influence of the applied parameters of time, temperature, etc., on the propensity of a metal to exhibit hydrogen induced premature failure was investigated.

  17. Metal oxide-hydrogen secondary battery; Kinzoku sankabutsu-suiso niji denchi

    Energy Technology Data Exchange (ETDEWEB)

    Hosobuchi, H.; Edoi, M.; Katsumata, T.

    1995-06-06

    Recently, the metal oxide - hydrogen secondary battery characterized by employing the hydrogen storage alloy as the hydrogen negative electrode draws attention. However, the secondary batteries equipped with the negative electrode composed of hydrogen storage alloy powder have such shortcoming that the charge-discharge cycle life is rather short and it changes widely from battery to battery, as the hydrogen storage alloy is disintegrated. This invention solves the problem. Employing the alloy having a composition expressed as LmNi(w)Co(X)Mn(y)Al(z) (Lm = rare earth elements including La) can suppress the disintegration of hydrogen storage alloy powder during the charge-discharge cycle. In addition, controlling the oxygen content in the hydrogen storage alloy powder to 500 - 1500ppm can reduce the oxidation corrosion of the hydrogen storage alloy, resulting in suppression of its deterioration. 1 fig., 2 tabs.

  18. Challenges in the transition toward a hydrogen-based society. An in-depth study to assess the potential of a transition to a hydrogen-based energy supply in Europe

    International Nuclear Information System (INIS)

    Mourik, R.; De Groot, A.; Jeeninga, H.

    2006-12-01

    The Hysociety project, financed under the FP5 framework of the European Commission, aimed to contribute to European policies on hydrogen-related issues through the development of an action plan for the introduction of hydrogen. The geographic target was Europe, focusing on the 15 European Union member states, plus Norway and Iceland. In addition, demonstration projects in Canada, the United States, Japan, Brazil, and China were analyzed. Work package 1 addressed the technological, infrastructural, ecological, economic, political, and cultural challenges of the transition to a hydrogen-based society. The work built upon an analysis of the challenges identified in demonstration projects in all participating countries. In this article we first discuss the transition theory and the methodology used in Hysociety work package 1 and conclude with a discussion of results of the Hysociety project

  19. Structurally triggered metal-insulator transition in rare-earth nickelates.

    Science.gov (United States)

    Mercy, Alain; Bieder, Jordan; Íñiguez, Jorge; Ghosez, Philippe

    2017-11-22

    Rare-earth nickelates form an intriguing series of correlated perovskite oxides. Apart from LaNiO 3 , they exhibit on cooling a sharp metal-insulator electronic phase transition, a concurrent structural phase transition, and a magnetic phase transition toward an unusual antiferromagnetic spin order. Appealing for various applications, full exploitation of these compounds is still hampered by the lack of global understanding of the interplay between their electronic, structural, and magnetic properties. Here we show from first-principles calculations that the metal-insulator transition of nickelates arises from the softening of an oxygen-breathing distortion, structurally triggered by oxygen-octahedra rotation motions. The origin of such a rare triggered mechanism is traced back in their electronic and magnetic properties, providing a united picture. We further develop a Landau model accounting for the metal-insulator transition evolution in terms of the rare-earth cations and rationalizing how to tune this transition by acting on oxygen rotation motions.

  20. Universal dependence of hydrogen oxidation and evolution reaction activity of platinum-group metals on pH and hydrogen binding energy.

    Science.gov (United States)

    Zheng, Jie; Sheng, Wenchao; Zhuang, Zhongbin; Xu, Bingjun; Yan, Yushan

    2016-03-01

    Understanding how pH affects the activity of hydrogen oxidation reaction (HOR) and hydrogen evolution reaction (HER) is key to developing active, stable, and affordable HOR/HER catalysts for hydroxide exchange membrane fuel cells and electrolyzers. A common linear correlation between hydrogen binding energy (HBE) and pH is observed for four supported platinum-group metal catalysts (Pt/C, Ir/C, Pd/C, and Rh/C) over a broad pH range (0 to 13), suggesting that the pH dependence of HBE is metal-independent. A universal correlation between exchange current density and HBE is also observed on the four metals, indicating that they may share the same elementary steps and rate-determining steps and that the HBE is the dominant descriptor for HOR/HER activities. The onset potential of CO stripping on the four metals decreases with pH, indicating a stronger OH adsorption, which provides evidence against the promoting effect of adsorbed OH on HOR/HER.

  1. High-frequency EPR on high-spin transition-metal sites

    NARCIS (Netherlands)

    Mathies, Guinevere

    2012-01-01

    The electronic structure of transition-metal sites can be probed by electron-paramagnetic-resonance (EPR) spectroscopy. The study of high-spin transition-metal sites benefits from EPR spectroscopy at frequencies higher than the standard 9.5 GHz. However, high-frequency EPR is a developing field. In

  2. Metallacyclopentadienes: structural features and coordination in transition metal complexes

    International Nuclear Information System (INIS)

    Dolgushin, Fedor M; Yanovsky, Aleksandr I; Antipin, Mikhail Yu

    2004-01-01

    Results of structural studies of polynuclear transition metal complexes containing the metallacyclopentadiene fragment are overviewed. The structural features of the complexes in relation to the nature of the substituents in the organic moiety of the metallacycles, the nature of the transition metals and their ligand environment are analysed. The main structural characteristics corresponding to different modes of coordination of metallacyclopentadienes to one or two additional metal centres are revealed.

  3. Hydrogen-water deuterium exchange over metal oxide promoted nickel catalysts

    Energy Technology Data Exchange (ETDEWEB)

    Sagert, N H; Shaw-Wood, P E; Pouteau, R M.L. [Atomic Energy of Canada Ltd., Pinawa, Manitoba. Whiteshell Nuclear Research Establishment

    1975-11-01

    Specific rates have been measured for hydrogen-water deuterium isotope exchange over unsupported nickel promoted with about 20% of various metal oxides. The oxides used were Cr/sub 2/O/sub 3/, MoO/sub 2/, MnO, WO/sub 2/-WO/sub 3/, and UO/sub 2/. Nickel surface areas, which are required to measure the specific rates, were determined by hydrogen chemisorption. Specific rates were measured as a function of temperature in the range 353 to 573 K and as a function of the partial pressure of hydrogen and water over a 10-fold range of partial pressure. The molybdenum and tungsten oxides gave the highest specific rates, and manganese and uranium oxides the lowest. Chromium oxide was intermediate, although it gave the highest rate per gram of catalyst. The orders with respect to hydrogen and water over molybdenum oxide and tungsten oxide promoted nickel were consistent with a mechanism in which nickel oxide is formed from the reaction of water with the catalyst, and then is reduced by hydrogen. Over manganese and uranium oxide promoted catalysts, these orders are consistent with a mechanism in which adsorbed water exchanges with chemisorbed hydrogen atoms on the nickel surface. Chromium oxide is intermediate. It was noted that those oxides which favored the nickel oxide route had electronic work functions closest to those of metallic nickel and nickel oxide.

  4. Theoretical examination of the trapping of ion-implanted hydrogen in metals

    International Nuclear Information System (INIS)

    Myers, S.M.; Nordlander, P.; Besenbacher, F.; Norskov, J.K.

    1986-01-01

    Theoretical analysis of the defect trapping of ion-implanted hydrogen in metals has been extended in two respects. A new transport formalism has been developed which takes account not only of the diffusion, trapping, and surface release of the hydrogen, which were included in earlier treatments, but also the diffusion, recombination, agglomeration, and surface annihilation of the vacancy and interstitial traps. In addition, effective-medium theory has been used to examine multiple hydrogen occupancy of the vacancy, and, for the fcc structure, appreciable binding enthalpies relative to the solution site have been found for occupancies of up to six. These extensions have been employed to model the depth distribution of ion-implanted hydrogen in Ni and Al during linear ramping of temperature, and the results have been used to interpret previously published data from these metals. The agreement between theory and experiment is good for both systems. In the case of Ni, the two experimentally observed hydrogen-release stages are both accounted for in terms of trapping at vacancies with a binding enthalpy that depends upon occupancy in accord with effective-medium theory

  5. Precipitation of metal sulphides using gaseous hydrogen sulphide: mathematical modelling

    NARCIS (Netherlands)

    Al Tarazi, M.Y.M.; Heesink, Albertus B.M.; Versteeg, Geert

    2004-01-01

    A mathematical model has been developed that describes the precipitation of metal sulffides in an aqueous solution containing two different heavy metal ions. The solution is assumed to consist of a well-mixed bulk and a boundary layer that is contacted with hydrogen sulphide gas. The model makes use

  6. Precipitation of metal sulphides using gaseous hydrogen sulphide : mathematical modelling

    NARCIS (Netherlands)

    Tarazi, Mousa Al-; Heesink, A. Bert M.; Versteeg, Geert F.

    2004-01-01

    A mathematical model has been developed that describes the precipitation of metal sulphides in an aqueous solution containing two different heavy metal ions. The solution is assumed to consist of a well-mixed bulk and a boundary layer that is contacted with hydrogen sulphide gas. The model makes use

  7. Standard practice for evaluation of hydrogen uptake, permeation, and transport in metals by an electrochemical technique

    CERN Document Server

    American Society for Testing and Materials. Philadelphia

    1997-01-01

    1.1 This practice gives a procedure for the evaluation of hydrogen uptake, permeation, and transport in metals using an electrochemical technique which was developed by Devanathan and Stachurski. While this practice is primarily intended for laboratory use, such measurements have been conducted in field or plant applications. Therefore, with proper adaptations, this practice can also be applied to such situations. 1.2 This practice describes calculation of an effective diffusivity of hydrogen atoms in a metal and for distinguishing reversible and irreversible trapping. 1.3 This practice specifies the method for evaluating hydrogen uptake in metals based on the steady-state hydrogen flux. 1.4 This practice gives guidance on preparation of specimens, control and monitoring of the environmental variables, test procedures, and possible analyses of results. 1.5 This practice can be applied in principle to all metals and alloys which have a high solubility for hydrogen, and for which the hydrogen permeation is ...

  8. Mesoporous Transition Metal Oxides for Supercapacitors

    OpenAIRE

    Wang, Yan; Guo, Jin; Wang, Tingfeng; Shao, Junfeng; Wang, Dong; Yang, Ying-Wei

    2015-01-01

    Recently, transition metal oxides, such as ruthenium oxide (RuO2), manganese dioxide (MnO2), nickel oxides (NiO) and cobalt oxide (Co3O4), have been widely investigated as electrode materials for pseudo-capacitors. In particular, these metal oxides with mesoporous structures have become very hot nanomaterials in the field of supercapacitors owing to their large specific surface areas and suitable pore size distributions. The high specific capacities of these mesoporous metal oxides are result...

  9. Methodologies for hydrogen determination in metal oxides by prompt gamma activation analysis

    International Nuclear Information System (INIS)

    Alvarez, E.; Biegalski, S.R.; Landsberger, S.

    2007-01-01

    Prompt gamma activation analysis (PGAA), available at University of Texas at Austin (UT), has been employed for the direct determination of hydrogen content in a series of metal oxide materials typically used as cathodes in lithium ion battery systems. Special attention was given to the experimental setup including potential sources of error and system calibration for the detection of hydrogen. Spectral interference with hydrogen arising from cobalt was identified and corrected for. Limits of detection as a function of cobalt mass present in a given sample are also discussed. PGAA has proven to be a novel and precise technique for the determination of hydrogen in metal oxides. This type of investigation could provide valuable insight regarding the factors that limit the practical capacities of lithium ion oxide cathodes

  10. Hydrogen molecules adsorption on (100) plane of the 3d metal oxides of the first transition period

    International Nuclear Information System (INIS)

    Tsybulev, P.N.; Pinchuk, A.M.; Parkhomenko, N.V.

    1992-01-01

    New parameters for the calculation of clusters with participation of atoms of the first transition series of metals from Ti to Cu are suggested. Binding energy of H 2 molecule and M 9 O 9 clusters was calculated and it is shown that oxides of Ti, V and Cr form a bond with H 2 molecule mainly at the expence of interaction with 3d-orbitals

  11. Complex Metal Hydrides for Hydrogen, Thermal and Electrochemical Energy Storage

    DEFF Research Database (Denmark)

    Moller, Kasper T.; Sheppard, Drew; Ravnsbaek, Dorthe B.

    2017-01-01

    Hydrogen has a very diverse chemistry and reacts with most other elements to form compounds, which have fascinating structures, compositions and properties. Complex metal hydrides are a rapidly expanding class of materials, approaching multi-functionality, in particular within the energy storage...... inspiration to solve the great challenge of our time: efficient conversion and large-scale storage of renewable energy....... field. This review illustrates that complex metal hydrides may store hydrogen in the solid state, act as novel battery materials, both as electrolytes and electrode materials, or store solar heat in a more efficient manner as compared to traditional heat storage materials. Furthermore, it is highlighted...

  12. Vibrational transitions in hydrogen bonded bimolecular complexes – A local mode perturbation theory approach to transition frequencies and intensities

    DEFF Research Database (Denmark)

    Mackeprang, Kasper; Kjærgaard, Henrik Grum

    2017-01-01

    The local mode perturbation theory (LMPT) model was developed to improve the description of hydrogen bonded XH-stretching transitions, where X is typically O or N. We present a modified version of the LMPT model to extend its application from hydrated bimolecular complexes to hydrogen bonded...

  13. Scintigraphic determination of gastrointestinal transit times. A comparison with breath hydrogen and radiologic methods

    DEFF Research Database (Denmark)

    Madsen, J L; Larsen, N E; Hilsted, J

    1991-01-01

    A scintigraphic method for determination of gastrointestinal transit times was compared with the breath hydrogen test and a multiple-bolus, single-radiograph technique. A close temporal association was found between the caecal appearance of radioactivity and the onset of breath hydrogen excretion...... the breath hydrogen concentration profiles....

  14. The Sticking Probability for Hydrogen on Ni, Pd, and Pt at a Hydrogen pressure of 1 bar

    DEFF Research Database (Denmark)

    Johansson, Martin; Lytken, Ole; Chorkendorff, Ib

    2007-01-01

    A technique for measurements of the sticking probability of hydrogen on metal surfaces at high (ambient) pressure is described. As an example, measurements for Ni, Pd and Pt at a hydrogen pressure of 1 bar and temperatures between 40 and 200 degrees C are presented. The sticking probabilities are......, Pt. The transition between beta- and alpha-phase in the H-Pd system has a significant effect on the activity for Pd....

  15. Hydrogen diffusion and trapping in bcc and fcc metals

    International Nuclear Information System (INIS)

    Richter, D.

    1979-01-01

    The fundamental aspects of the metal--hydrogen systems are described. The large number of anomalous properties are the reason for continuous scientific effort. The time scale of hydrogen motion is extremely short. The characteristic frequencies of the localized modes of hydrogen in Ta, Nb, or V are in the order of 10 -14 sec (energies between 0.1 to 0.2 eV); the jump frequencies for H-diffusion at elevated temperatures in those systems are between 10 +12 to 10 +13 sec -1 . They are comparable with the correlation times for diffusion in liquids and more than ten orders of magnitude larger than the jump times for nitrogen in Nb. Out of the large number of experimental data this paper will survey only some recent results on representative fcc and bcc metals for dilute H solutions. The nature of the elementary step in H-diffusion is described. Here the temperature and isotope dependence of the H-diffusion coefficient gives hints to the mechanism involved. The experimental results are discussed in terms of semiclassical and quantum mechanical diffusion theories

  16. Effects of van der Waals density functional corrections on trends in furfural adsorption and hydrogenation on close-packed transition metal surfaces

    Science.gov (United States)

    Liu, Bin; Cheng, Lei; Curtiss, Larry; Greeley, Jeffrey

    2014-04-01

    The hydrogenation of furfural to furfuryl alcohol on Pd(111), Cu(111) and Pt(111) is studied with both standard Density Functional Theory (DFT)-GGA functionals and with van der Waals-corrected density functionals. VdW-DF functionals, including optPBE, optB88, optB86b, and Grimme's method, are used to optimize the adsorption configurations of furfural, furfuryl alcohol, and related intermediates resulting from hydrogenation of furfural, and the results are compared to corresponding values determined with GGA functionals, including PW91 and PBE. On Pd(111) and Pt(111), the adsorption geometries of the intermediates are not noticeably different between the two classes of functionals, while on Cu(111), modest changes are seen in both the perpendicular distance and the orientation of the aromatic ring with respect to the planar surface. In general, the binding energies increase substantially in magnitude as a result of van der Waals contributions on all metals. In contrast, however, dispersion effects on the kinetics of hydrogenation are relatively small. It is found that activation barriers are not significantly affected by the inclusion of dispersion effects, and a Brønsted-Evans-Polanyi relationship developed solely from PW91 calculations on Pd(111) is capable of describing corresponding results on Cu(111) and Pt(111), even when the dispersion effects are included. Finally, the reaction energies and barriers derived from the dispersion-corrected and pure GGA calculations are used to plot simple potential energy profiles for furfural hydrogenation to furfuryl alcohol on the three considered metals, and an approximately constant downshift of the energetics due to the dispersion corrections is observed.

  17. Stable isotopes of transition and post-transition metals as tracers in environmental studies

    Science.gov (United States)

    Bullen, Tomas D.; Baskaran, Mark

    2011-01-01

    The transition and post-transition metals, which include the elements in Groups 3–12 of the Periodic Table, have a broad range of geological and biological roles as well as industrial applications and thus are widespread in the environment. Interdisciplinary research over the past decade has resulted in a broad understanding of the isotope systematics of this important group of elements and revealed largely unexpected variability in isotope composition for natural materials. Significant kinetic and equilibrium isotope fractionation has been observed for redox sensitive metals such as iron, chromium, copper, molybdenum and mercury, and for metals that are not redox sensitive in nature such as cadmium and zinc. In the environmental sciences, the isotopes are increasingly being used to understand important issues such as tracing of metal contaminant sources and fates, unraveling metal redox cycles, deciphering metal nutrient pathways and cycles, and developing isotope biosignatures that can indicate the role of biological activity in ancient and modern planetary systems.

  18. Mitigation of Hydrogen Gas Generation from the Reaction of Water with Uranium Metal in K Basins Sludge

    International Nuclear Information System (INIS)

    Sinkov, Sergey I.; Delegard, Calvin H.; Schmidt, Andrew J.

    2010-01-01

    Means to decrease the rate of hydrogen gas generation from the chemical reaction of uranium metal with water were identified by surveying the technical literature. The underlying chemistry and potential side reactions were explored by conducting 61 principal experiments. Several methods achieved significant hydrogen gas generation rate mitigation. Gas-generating side reactions from interactions of organics or sludge constituents with mitigating agents were observed. Further testing is recommended to develop deeper knowledge of the underlying chemistry and to advance the technology aturation level. Uranium metal reacts with water in K Basin sludge to form uranium hydride (UH3), uranium dioxide or uraninite (UO2), and diatomic hydrogen (H2). Mechanistic studies show that hydrogen radicals (H·) and UH3 serve as intermediates in the reaction of uranium metal with water to produce H2 and UO2. Because H2 is flammable, its release into the gas phase above K Basin sludge during sludge storage, processing, immobilization, shipment, and disposal is a concern to the safety of those operations. Findings from the technical literature and from experimental investigations with simple chemical systems (including uranium metal in water), in the presence of individual sludge simulant components, with complete sludge simulants, and with actual K Basin sludge are presented in this report. Based on the literature review and intermediate lab test results, sodium nitrate, sodium nitrite, Nochar Acid Bond N960, disodium hydrogen phosphate, and hexavalent uranium [U(VI)] were tested for their effects in decreasing the rate of hydrogen generation from the reaction of uranium metal with water. Nitrate and nitrite each were effective, decreasing hydrogen generation rates in actual sludge by factors of about 100 to 1000 when used at 0.5 molar (M) concentrations. Higher attenuation factors were achieved in tests with aqueous solutions alone. Nochar N960, a water sorbent, decreased hydrogen

  19. Mitigation of Hydrogen Gas Generation from the Reaction of Water with Uranium Metal in K Basins Sludge

    Energy Technology Data Exchange (ETDEWEB)

    Sinkov, Sergey I.; Delegard, Calvin H.; Schmidt, Andrew J.

    2010-01-29

    Means to decrease the rate of hydrogen gas generation from the chemical reaction of uranium metal with water were identified by surveying the technical literature. The underlying chemistry and potential side reactions were explored by conducting 61 principal experiments. Several methods achieved significant hydrogen gas generation rate mitigation. Gas-generating side reactions from interactions of organics or sludge constituents with mitigating agents were observed. Further testing is recommended to develop deeper knowledge of the underlying chemistry and to advance the technology aturation level. Uranium metal reacts with water in K Basin sludge to form uranium hydride (UH3), uranium dioxide or uraninite (UO2), and diatomic hydrogen (H2). Mechanistic studies show that hydrogen radicals (H·) and UH3 serve as intermediates in the reaction of uranium metal with water to produce H2 and UO2. Because H2 is flammable, its release into the gas phase above K Basin sludge during sludge storage, processing, immobilization, shipment, and disposal is a concern to the safety of those operations. Findings from the technical literature and from experimental investigations with simple chemical systems (including uranium metal in water), in the presence of individual sludge simulant components, with complete sludge simulants, and with actual K Basin sludge are presented in this report. Based on the literature review and intermediate lab test results, sodium nitrate, sodium nitrite, Nochar Acid Bond N960, disodium hydrogen phosphate, and hexavalent uranium [U(VI)] were tested for their effects in decreasing the rate of hydrogen generation from the reaction of uranium metal with water. Nitrate and nitrite each were effective, decreasing hydrogen generation rates in actual sludge by factors of about 100 to 1000 when used at 0.5 molar (M) concentrations. Higher attenuation factors were achieved in tests with aqueous solutions alone. Nochar N960, a water sorbent, decreased hydrogen

  20. Development of hydrogen oxidizing bacteria using hydrogen from radiolysis or metal corrosion

    International Nuclear Information System (INIS)

    Libert, M.F.; Sellier, R.; Marty, V.; Camaro, S.

    2000-01-01

    The effect of many parameters need to be studied to characterize the long term behavior of nuclear waste in a deep repository. These parameters concern the chemical effects, radiolytic effects, mechanical properties, water composition, and microbiological activity. To evaluate microbial activity in such an environment, work was focused on an inventory of key nutrients (C, H, 0, N, P, S) and energy sources required for bacterial growth. The production of hydrogen in the nuclear waste environment leads to the growth of hydrogen oxidizing bacteria, which modify the gas production balance. A deep repository containing bituminized waste drums implies several sources of hydrogen: - water radiolysis; -corrosion of metal containers; - radiolysis of the embedding matrix (bitumen). Two deep geological disposal conditions leading to H 2 production in a bituminized nuclear waste environment were simulated in the present study: - H 2 production by iron corrosion under anaerobic conditions was simulated by adding 10% of H 2 in the atmosphere; - H 2 production by radiolysis of bitumen matrix was approached by subjecting this material to external gamma irradiation with a dose rate near real conditions (6 Gy/h). The presence of dissolved H 2 in water allows the growth of hydrogen oxidizing bacteria leading to: - CO 2 and N 2 production; - H 2 consumption; - lower NO 3 - concentration caused by reduction to nitrogen. In the first case, hydrogen consumption is limited by the NO 3 - release rate from the bitumen matrix. In the second case, however, under gamma radiation at a low dose rate, hydrogen production is weak, and the hydrogen is completely consumed by microorganisms. Knowledge about these hydrogen oxidizing bacteria is just beginning to emerge. Heterotrophic denitrifying bacteria adapt well to hydrogen metabolism (autotrophic metabolism) by oxidizing H 2 instead of hydrocarbons. (authors)

  1. A comparative study for Hydrogen storage in metal decorated graphyne nanotubes and graphyne monolayers

    International Nuclear Information System (INIS)

    Lu, Jinlian; Guo, Yanhua; Zhang, Yun; Tang, Yingru; Cao, Juexian

    2015-01-01

    A comparative study for hydrogen storage in metal decorated graphyne nanotubes and graphyne monolayers has been investigated within the framework of first-principle calculations. Our results show that the binding energies of Li, Ca, Sc, Ti on graphyne nanotubes are stronger than that on graphyne monolayers. Such strong binding would prevent the formation of metal clusters on graphyne nanotubes. From the charge transfer and partial density of states, it is found that the curvature effect of nanotubes plays an important role for the strong binding strength of metal on graphyne nanotubes. And the hydrogen storage capacity is 4.82 wt%, 5.08 wt%, 4.88 wt%, 4.76 wt% for Li, Ca, Sc, Ti decorated graphyne nanotubes that promise a potential material for storing hydrogen. - Graphical abstract: Metal atoms (Li, Ca, Sc and Ti) can strongly bind to graphyne nanotubes to avoid the formation of metal clusters, and a capacity of Ca@graphyne nanotube is 5.08 wt% which is close to the requirement of DOE in 2015. Twenty-four hydrogen molecules absorb to Ti-decorated graphyne nanotube. - Highlights: • The binding strength for metal on graphyne nanotubes is much stronger than that on γ-graphyne monolayer. • Metal atoms can strongly bind to the curving triangle acetylenes rings to avoid the formation of metal clusters. • A capacity of Ca@graphyne nanotube is 5.08 wt% which is close to the requirement of DOE in 2015.

  2. An electrochemical method for determining hydrogen concentrations in metals and some applications

    Science.gov (United States)

    Danford, M. D.

    1983-01-01

    An electrochemical method was developed for the determination of hydrogen in metals using the EG&G-PARC Model 350A Corrosion Measurement Console. The method was applied to hydrogen uptake, both during electrolysis and electroplating, and to studies of hydrogen elimination and the effect of heat treatment on elimination times. Results from these studies are presented.

  3. Calculating Relativistic Transition Matrix Elements for Hydrogenic Atoms Using Monte Carlo Methods

    Science.gov (United States)

    Alexander, Steven; Coldwell, R. L.

    2015-03-01

    The nonrelativistic transition matrix elements for hydrogen atoms can be computed exactly and these expressions are given in a number of classic textbooks. The relativistic counterparts of these equations can also be computed exactly but these expressions have been described in only a few places in the literature. In part, this is because the relativistic equations lack the elegant simplicity of the nonrelativistic equations. In this poster I will describe how variational Monte Carlo methods can be used to calculate the energy and properties of relativistic hydrogen atoms and how the wavefunctions for these systems can be used to calculate transition matrix elements.

  4. Syntheses and properties of several metastable and stable hydrides derived from intermetallic compounds under high hydrogen pressure

    Energy Technology Data Exchange (ETDEWEB)

    Filipek, S.M., E-mail: sfilipek@unipress.waw.pl [Institute of High Pressure Physics PAS, ul. Sokolowska 29, 01-142 Warsaw (Poland); Paul-Boncour, V. [ICMPE-CMTR, CNRS-UPEC, 2-8 rue Henri Dunant, 94320 Thiais (France); Liu, R.S. [Department of Chemistry, National Taiwan University, Taipei 106, Taiwan (China); Jacob, I. [Unit Nuclear Eng., Ben Gurion University of the Negev, Beer-Sheva (Israel); Tsutaoka, T. [Dept. of Sci. Educ., Grad. School of Educ., Hiroshima University, Hiroshima (Japan); Budziak, A. [Institute of Nuclear Physics PAS, 31-342 Kraków (Poland); Morawski, A. [Institute of High Pressure Physics PAS, ul. Sokolowska 29, 01-142 Warsaw (Poland); Sugiura, H. [Yokohama City University, 22-2 Seto, Kanazawa-ku, Yokohama 236-0027 (Japan); Zachariasz, P. [Institute of Electron Technology Cracow Division, ul. Zablocie 39, 30-701 Krakow (Poland); Dybko, K. [Institute of Physics, PAS, 02-668 Warsaw (Poland); Diduszko, R. [Tele and Radio Research Institute, ul. Ratuszowa 11, Warsaw (Poland)

    2016-12-01

    Brief summary of our former work on high hydrogen pressure syntheses of novel hydrides and studies of their properties is supplemented with new results. Syntheses and properties of a number of hydrides (unstable, metastable or stable in ambient conditions) derived under high hydrogen pressure from intermetallic compounds, like MeT{sub 2}, MeNi{sub 5}, Me{sub 7}T{sub 3}, Y{sub 6}Mn{sub 23} and YMn{sub 12} (where Me = zirconium, yttrium or rare earth; T = transition metal) are presented. Stabilization of ZrFe{sub 2}H{sub 4} due to surface phenomena was revealed. Unusual role of manganese in hydride forming processes is pointed out. Hydrogen induced phase transitions, suppression of magnetism, antiferromagnetic-ferromagnetic and metal-insulator or semimetal-metal transitions are described. Equations of state (EOS) of hydrides submitted to hydrostatic pressures up to 30 GPa are presented and discussed.

  5. Peruvian perovskite Between Transition-metal to PGM/PlatinumGroupMetal Catalytic Fusion

    Science.gov (United States)

    Maksoed, Wh-

    2016-11-01

    Strongly correlated electronic materials made of simple building blocks, such as a transition-metal ion in an octahedral oxygen cage forming a perovskite structure- Dagotto & Tokura for examples are the high-temperature superconductivity & the CMR/Colossal Magnetoresistance . Helium-4 denotes from LC Case,ScD: "Catalytic Fusion of Deuterium into Helium-4"- 1998 dealt with gaseous D2- "contacted with a supported metallic catalyst at superatmospheric pressure". The catalyst is a platinum-group metal, at about 0.5% - 1% by weight, on activated C. Accompanies Stephen J Geier, 2010 quotes "transition metal complexes", the Energy thus produced is enormous, and because the deuterium is very cheap in the form of heavy water (less than US 1/g), the fuel cost is very low (seas &Deuteronomy to be eternally preserves. Heartfelt Gratitudes to HE. Mr. Prof. Ir. HANDOJO.

  6. Structure and properties of transition metal-metalloid glasses based on refractory metals

    International Nuclear Information System (INIS)

    Johnson, W.L.; Williams, A.R.

    1979-01-01

    The structure and properties of several new transition metal-metalloid (TM/sub 1-x/M/sub x/) metallic glasses based on refractory transition metals (e.g. Mo, W, Ru etc.) have been systemically investigated as a function of composition. The structure of the alloys has been investigated by x-ray diffraction methods and measurements of superconducting properties, electrical resistivity, density, hardness, and mechanical behavior were made. These data are used in developing a novel description of the structure of TM/sub 1-x/M/sub x/ glasses. The experimental evidence suggests that an ideal amorphous phase forms at a specific composition x/sub c/ and that this phase has a well defined atomic short range order. For metallic glasses having x x/sub c/. This novel picture can explain the variation of many properties of these glasses with metalloid concentration

  7. Mechanical failure and glass transition in metallic glasses

    International Nuclear Information System (INIS)

    Egami, T.

    2011-01-01

    Research highlights: → We review the recent results of molecular dynamics simulations on metallic glasses. → They show the equivalence of mechanical failure and glass transition. → We discuss the microscopic mechanism behind this equivalence. → We show that the density of defects in metallic glasses is as high as a quarter. → Our concepts about the defect state in glasses need to be changed. - Abstract: The current majority view on the phenomenon of mechanical failure in metallic glasses appears to be that it is caused by the activity of some structural defects, such as free-volumes or shear transformation zones, and the concentration of such defects is small, only of the order of 1%. However, the recent results compel us to revise this view. Through molecular dynamics simulation it has been shown that mechanical failure is the stress-induced glass transition. According to our theory the concentration of the liquid-like sites (defects) is well over 20% at the glass transition. We suggest that the defect concentration in metallic glasses is actually very high, and percolation of such defects causes atomic avalanche and mechanical failure. In this article we discuss the glass transition, mechanical failure and viscosity from such a point of view.

  8. Intermetallic nickel silicide nanocatalyst-A non-noble metal-based general hydrogenation catalyst.

    Science.gov (United States)

    Ryabchuk, Pavel; Agostini, Giovanni; Pohl, Marga-Martina; Lund, Henrik; Agapova, Anastasiya; Junge, Henrik; Junge, Kathrin; Beller, Matthias

    2018-06-01

    Hydrogenation reactions are essential processes in the chemical industry, giving access to a variety of valuable compounds including fine chemicals, agrochemicals, and pharmachemicals. On an industrial scale, hydrogenations are typically performed with precious metal catalysts or with base metal catalysts, such as Raney nickel, which requires special handling due to its pyrophoric nature. We report a stable and highly active intermetallic nickel silicide catalyst that can be used for hydrogenations of a wide range of unsaturated compounds. The catalyst is prepared via a straightforward procedure using SiO 2 as the silicon atom source. The process involves thermal reduction of Si-O bonds in the presence of Ni nanoparticles at temperatures below 1000°C. The presence of silicon as a secondary component in the nickel metal lattice plays the key role in its properties and is of crucial importance for improved catalytic activity. This novel catalyst allows for efficient reduction of nitroarenes, carbonyls, nitriles, N-containing heterocycles, and unsaturated carbon-carbon bonds. Moreover, the reported catalyst can be used for oxidation reactions in the presence of molecular oxygen and is capable of promoting acceptorless dehydrogenation of unsaturated N-containing heterocycles, opening avenues for H 2 storage in organic compounds. The generality of the nickel silicide catalyst is demonstrated in the hydrogenation of over a hundred of structurally diverse unsaturated compounds. The wide application scope and high catalytic activity of this novel catalyst make it a nice alternative to known general hydrogenation catalysts, such as Raney nickel and noble metal-based catalysts.

  9. Unusual metal-insulator transition in disordered ferromagnetic films

    International Nuclear Information System (INIS)

    Muttalib, K.A.; Wölfle, P.; Misra, R.; Hebard, A.F.

    2012-01-01

    We present a theoretical interpretation of recent data on the conductance near and farther away from the metal-insulator transition in thin ferromagnetic Gd films of thickness b≈2-10 nm. For increasing sheet resistances a dimensional crossover takes place from d=2 to d=3 dimensions, since the large phase relaxation rate caused by scattering of quasiparticles off spin wave excitations renders the dephasing length L φ ≲b at strong disorder. The conductivity data in the various regimes obey fractional power-law or logarithmic temperature dependence. One observes weak localization and interaction induced corrections at weaker disorder. At strong disorder, near the metal-insulator transition, the data show scaling and collapse onto two scaling curves for the metallic and insulating regimes. We interpret this unusual behavior as proof of two distinctly different correlation length exponents on both sides of the transition.

  10. Modeling hydrogen storage in boron-substituted graphene decorated with potassium metal atoms

    CSIR Research Space (South Africa)

    Tokarev, A

    2015-03-01

    Full Text Available Boron-substituted graphene decorated with potassium metal atoms was considered as a novel material for hydrogen storage. Density functional theory calculations were used to model key properties of the material, such as geometry, hydrogen packing...

  11. Technologies for deposition of transition metal oxide thin films: application as functional layers in “Smart windows” and photocatalytic systems

    Science.gov (United States)

    Gesheva, K.; Ivanova, T.; Bodurov, G.; Szilágyi, I. M.; Justh, N.; Kéri, O.; Boyadjiev, S.; Nagy, D.; Aleksandrova, M.

    2016-02-01

    “Smart windows” are envisaged for future low-energy, high-efficient architectural buildings, as well as for the car industry. By switching from coloured to fully bleached state, these windows regulate the energy of solar flux entering the interior. Functional layers in these devices are the transition metals oxides. The materials (transitional metal oxides) used in smart windows can be also applied as photoelectrodes in water splitting photocells for hydrogen production or as photocatalytic materials for self-cleaning surfaces, waste water treatment and pollution removal. Solar energy utilization is recently in the main scope of numerous world research laboratories and energy organizations, working on protection against conventional fuel exhaustion. The paper presents results from research on transition metal oxide thin films, fabricated by different methods - atomic layer deposition, atmospheric pressure chemical vapour deposition, physical vapour deposition, and wet chemical methods, suitable for flowthrough production process. The lower price of the chemical deposition processes is especially important when the method is related to large-scale glazing applications. Conclusions are derived about which processes are recently considered as most prospective, related to electrochromic materials and devices manufacturing.

  12. Technologies for deposition of transition metal oxide thin films: application as functional layers in “Smart windows” and photocatalytic systems

    International Nuclear Information System (INIS)

    Gesheva, K; Ivanova, T; Bodurov, G; Szilágyi, I M; Justh, N; Kéri, O; Boyadjiev, S; Nagy, D; Aleksandrova, M

    2016-01-01

    “Smart windows” are envisaged for future low-energy, high-efficient architectural buildings, as well as for the car industry. By switching from coloured to fully bleached state, these windows regulate the energy of solar flux entering the interior. Functional layers in these devices are the transition metals oxides. The materials (transitional metal oxides) used in smart windows can be also applied as photoelectrodes in water splitting photocells for hydrogen production or as photocatalytic materials for self-cleaning surfaces, waste water treatment and pollution removal. Solar energy utilization is recently in the main scope of numerous world research laboratories and energy organizations, working on protection against conventional fuel exhaustion. The paper presents results from research on transition metal oxide thin films, fabricated by different methods - atomic layer deposition, atmospheric pressure chemical vapour deposition, physical vapour deposition, and wet chemical methods, suitable for flowthrough production process. The lower price of the chemical deposition processes is especially important when the method is related to large-scale glazing applications. Conclusions are derived about which processes are recently considered as most prospective, related to electrochromic materials and devices manufacturing. (paper)

  13. Transition-Metal-Free Biomolecule-Based Flexible Asymmetric Supercapacitors.

    Science.gov (United States)

    Yang, Yun; Wang, Hua; Hao, Rui; Guo, Lin

    2016-09-01

    A transition-metal-free asymmetric supercapacitor (ASC) is successfully fabricated based on an earth-abundant biomass derived redox-active biomolecule, named lawsone. Such an ASC exhibits comparable or even higher energy densities than most of the recently reported transition-metal-based ASCs, and this green ASC generation from renewable resources is promising for addressing current issues of electronic hazard processing, high cost, and unsustainability. © 2016 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  14. Hydrogen Assisted Crack in Dissimilar Metal Welds for Subsea Service under Cathodic Protection

    Science.gov (United States)

    Bourgeois, Desmond

    Dissimilar metal welds (DMWs) are routinely used in the oil and gas industries for structural joining of high strength steels in order to eliminate the need for post weld heat treatment (PWHT) after field welding. There have been reported catastrophic failures in these DMWs, particularly the AISI 8630 steel - Alloy 625 DMW combination, during subsea service while under cathodic protection (CP). This is due to local embrittlement that occurs in susceptible microstructures that are present at the weld fusion boundary region. This type of cracking is known as hydrogen assisted cracking (HAC) and it is influenced by base/filler metal combination, and welding and PWHT procedures. DMWs of two material combinations (8630 steel -- Alloy 625 and F22 steel -- Alloy 625), produced with two welding procedures (BS1 and BS3) in as welded and PWHT conditions were investigated in this study. The main objectives included: 1) evaluation of the effect of materials composition, welding and PWHT procedures on the gradients of composition, microstructure, and properties in the dissimilar transition region and on the susceptibility to HAC; 2) investigation of the influence of microstructure on the HAC failure mechanism and identification of microstructural constituents acting as crack nucleation and propagation sites; 3) assessment of the applicability of two-step PWHT to improve the resistance to HAC in DMWs; 4) establishment of non-failure criterion for the delayed hydrogen cracking test (DHCT) that is applicable for qualification of DMWs for subsea service under cathodic protection (CP).

  15. Radiative proton-capture nuclear processes in metallic hydrogen

    International Nuclear Information System (INIS)

    Ichimaru, Setsuo

    2001-01-01

    Protons being the lightest nuclei, metallic hydrogen may exhibit the features of quantum liquids most relevant to enormous enhancement of nuclear reactions; thermonuclear and pycnonuclear rates and associated enhancement factors of radiative proton captures of high-Z nuclei as well as of deuterons are evaluated. Atomic states of high-Z impurities are determined in a way consistent with the equations of state and screening characteristics of the metallic hydrogen. Rates of pycnonuclear p-d reactions are prodigiously high at densities ≥20 g/cm 3 , pressures ≥1 Gbar, and temperatures ≥950 K near the conditions of solidification. It is also predicted that proton captures of nuclei such as C, N, O, and F may take place at considerable rates, owing to strong screening by K-shell electrons, if the densities ≥60-80 g/cm 3 , the pressures ≥7-12 Gbar, and the temperatures just above solidification. The possibilities and significance of pycnonuclear p-d fusion experiments are specifically remarked

  16. Tunable metal-insulator transitions in bilayer graphene by thermal annealing

    OpenAIRE

    Kalon, Gopinadhan; Shin, Young Jun; Yang, Hyunsoo

    2012-01-01

    Tunable and highly reproducible metal-insulator transitions have been observed in bilayer graphene upon thermal annealing at 400 K under high vacuum conditions. Before annealing, the sample is metallic in the whole temperature regime of study. Upon annealing, the conductivity changes from metallic to that of an insulator and the transition temperature is a function of annealing time. The pristine metallic state can be reinstated by exposing to air thereby inducing changes in the electronic pr...

  17. A calculation of the surface recombination rate constant for hydrogen isotopes on metals

    International Nuclear Information System (INIS)

    Baskes, M.J.

    1980-01-01

    The surface recombination rate constant for hydrogen isotopes on a metal has been calculated using a simple model whose parameters may be determined by direct experimental measurements. Using the experimental values for hydrogen diffusivity, solubility, and sticking coefficient at zero surface coverage a reasonable prediction of the surface recombination constant may be made. The calculated recombination constant is in excellent agreement with experiment for bcc iron. A heuristic argument is developed which, along with the rate constant calculation, shows that surface recombination is important in those metals in which hydrogen has an exothermic heat of solution. (orig.)

  18. Complex metal hydrides for hydrogen, thermal and electrochemical energy storage

    DEFF Research Database (Denmark)

    Møller, Kasper T.; Sheppard, Drew; Ravnsbæk, Dorthe B.

    2017-01-01

    field. This review illustrates that complex metal hydrides may store hydrogen in the solid state, act as novel battery materials, both as electrolytes and electrode materials, or store solar heat in a more efficient manner as compared to traditional heat storage materials. Furthermore, it is highlighted...... how complex metal hydrides may act in an integrated setup with a fuel cell. This review focuses on the unique properties of light element complex metal hydrides mainly based on boron, nitrogen and aluminum, e.g., metal borohydrides and metal alanates. Our hope is that this review can provide new...

  19. Hydrogen storage material and process using graphite additive with metal-doped complex hydrides

    Science.gov (United States)

    Zidan, Ragaiy [Aiken, SC; Ritter, James A [Lexington, SC; Ebner, Armin D [Lexington, SC; Wang, Jun [Columbia, SC; Holland, Charles E [Cayce, SC

    2008-06-10

    A hydrogen storage material having improved hydrogen absorbtion and desorption kinetics is provided by adding graphite to a complex hydride such as a metal-doped alanate, i.e., NaAlH.sub.4. The incorporation of graphite into the complex hydride significantly enhances the rate of hydrogen absorbtion and desorption and lowers the desorption temperature needed to release stored hydrogen.

  20. Metal-mediated DNA base pairing: alternatives to hydrogen-bonded Watson-Crick base pairs.

    Science.gov (United States)

    Takezawa, Yusuke; Shionoya, Mitsuhiko

    2012-12-18

    With its capacity to store and transfer the genetic information within a sequence of monomers, DNA forms its central role in chemical evolution through replication and amplification. This elegant behavior is largely based on highly specific molecular recognition between nucleobases through the specific hydrogen bonds in the Watson-Crick base pairing system. While the native base pairs have been amazingly sophisticated through the long history of evolution, synthetic chemists have devoted considerable efforts to create alternative base pairing systems in recent decades. Most of these new systems were designed based on the shape complementarity of the pairs or the rearrangement of hydrogen-bonding patterns. We wondered whether metal coordination could serve as an alternative driving force for DNA base pairing and why hydrogen bonding was selected on Earth in the course of molecular evolution. Therefore, we envisioned an alternative design strategy: we replaced hydrogen bonding with another important scheme in biological systems, metal-coordination bonding. In this Account, we provide an overview of the chemistry of metal-mediated base pairing including basic concepts, molecular design, characteristic structures and properties, and possible applications of DNA-based molecular systems. We describe several examples of artificial metal-mediated base pairs, such as Cu(2+)-mediated hydroxypyridone base pair, H-Cu(2+)-H (where H denotes a hydroxypyridone-bearing nucleoside), developed by us and other researchers. To design the metallo-base pairs we carefully chose appropriate combinations of ligand-bearing nucleosides and metal ions. As expected from their stronger bonding through metal coordination, DNA duplexes possessing metallo-base pairs exhibited higher thermal stability than natural hydrogen-bonded DNAs. Furthermore, we could also use metal-mediated base pairs to construct or induce other high-order structures. These features could lead to metal-responsive functional

  1. Hydrogen storage alloys for nickel/metal hydride battery

    Energy Technology Data Exchange (ETDEWEB)

    Kuriyama, Nobuhiro; Sakai, Tetsuo; Myamura, Hiroshi; Tanaka, Hideaki; Ishikawa, Hiroshi; Uehara, Itsuki [Osaka National Research Inst. (Japan)

    1996-06-01

    Efforts to improve performance of metal hydride electrodes such as substitution of alloy components, heat treatment, and surface treatment intended to change surface and bulk structure of hydrogen storage alloys, mainly LaNi{sub 5} based alloys, are reviewed. The importance of control of morphology is emphasized. (author)

  2. The metallicities of stars with and without transiting planets

    DEFF Research Database (Denmark)

    Buchhave, Lars A.; Latham, David W.

    2015-01-01

    Host star metallicities have been used to infer observational constraints on planet formation throughout the history of the exoplanet field. The giant planet metallicity correlation has now been widely accepted, but questions remain as to whether the metallicity correlation extends to the small...... terrestrial-sized planets. Here, we report metallicities for a sample of 518 stars in the Kepler field that have no detected transiting planets and compare their metallicity distribution to a sample of stars that hosts small planets (). Importantly, both samples have been analyzed in a homogeneous manner...... using the same set of tools (Stellar Parameters Classification tool). We find the average metallicity of the sample of stars without detected transiting planets to be and the sample of stars hosting small planets to be . The average metallicities of the two samples are indistinguishable within...

  3. [Non-empirical interatomic potentials for transition metals

    International Nuclear Information System (INIS)

    1993-01-01

    The report is divided into the following sections: potential-energy functions for d-band metals, potential-energy functions for aluminides and quasicrystals, electronic structure of complex structures and quasicrystals, potential-energy functions in transition-metal oxides, applications to defect structure and mechanical properties, and basic theory of interatomic potentials

  4. Cooperativity in Surface Bonding and Hydrogen Bonding of Water and Hydroxyl at Metal Surfaces

    DEFF Research Database (Denmark)

    Schiros, T.; Ogasawara, H.; Naslund, L. A.

    2010-01-01

    of the mixed phase at metal surfaces. The surface bonding can be considered to be similar to accepting a hydrogen bond, and we can thereby apply general cooperativity rules developed for hydrogen-bonded systems. This provides a simple understanding of why water molecules become more strongly bonded...... to the surface upon hydrogen bonding to OH and why the OH surface bonding is instead weakened through hydrogen bonding to water. We extend the application of this simple model to other observed cooperativity effects for pure water adsorption systems and H3O+ on metal surfaces.......We examine the balance of surface bonding and hydrogen bonding in the mixed OH + H2O overlayer on Pt(111), Cu(111), and Cu(110) via density functional theory calculations. We find that there is a cooperativity effect between surface bonding and hydrogen bonding that underlies the stability...

  5. Trends in the exchange current for hydrogen evolution

    DEFF Research Database (Denmark)

    Nørskov, Jens Kehlet; Bligaard, Thomas; Logadottir, Ashildur

    2005-01-01

    A density functional theory database of hydrogen chemisorption energies on close packed surfaces of a number of transition and noble metals is presented. The bond energies are used to understand the trends in the exchange current for hydrogen evolution. A volcano curve is obtained when measured...... exchange currents are plotted as a function of the calculated hydrogen adsorption energies and a simple kinetic model is developed to understand the origin of the volcano. The volcano curve is also consistent with Pt being the most efficient electrocatalyst for hydrogen evolution. (c) 2005...

  6. Hydrogen in metals

    CSIR Research Space (South Africa)

    Carter, TJ

    2001-04-01

    Full Text Available .J. Cartera,*, L.A. Cornishb aAdvanced Engineering & Testing Services, MATTEK, CSIR, Private Bag X28, Auckland Park 2006, South Africa bSchool of Process and Materials Engineering, University of the Witwatersrand, Private Bag 3, P.O. WITS 2050, South Africa... are contrasted, and an unusual case study of hydrogen embrittlement of an alloy steel is presented. 7 2001 Published by Elsevier Science Ltd. Keywords: Hydrogen; Hydrogen-assisted cracking; Hydrogen damage; Hydrogen embrittlement 1. Introduction Hydrogen suC128...

  7. High Density Hydrogen Storage in Metal Hydride Composites with Air Cooling

    OpenAIRE

    Dieterich, Mila; Bürger, Inga; Linder, Marc

    2015-01-01

    INTRODUCTION In order to combine fluctuating renewable energy sources with the actual demand of electrical energy, storages are essential. The surplus energy can be stored as hydrogen to be used either for mobile use, chemical synthesis or reconversion when needed. One possibility to store the hydrogen gas at high volumetric densities, moderate temperatures and low pressures is based on a chemical reaction with metal hydrides. Such storages must be able to absorb and desorb the hydrogen qu...

  8. Theory of quantum metal to superconductor transitions in highly conducting systems

    Energy Technology Data Exchange (ETDEWEB)

    Spivak, B.

    2010-04-06

    We derive the theory of the quantum (zero temperature) superconductor to metal transition in disordered materials when the resistance of the normal metal near criticality is small compared to the quantum of resistivity. This can occur most readily in situations in which 'Anderson's theorem' does not apply. We explicitly study the transition in superconductor-metal composites, in an swave superconducting film in the presence of a magnetic field, and in a low temperature disordered d-wave superconductor. Near the point of the transition, the distribution of the superconducting order parameter is highly inhomogeneous. To describe this situation we employ a procedure which is similar to that introduced by Mott for description of the temperature dependence of the variable range hopping conduction. As the system approaches the point of the transition from the metal to the superconductor, the conductivity of the system diverges, and the Wiedemann-Franz law is violated. In the case of d-wave (or other exotic) superconductors we predict the existence of (at least) two sequential transitions as a function of increasing disorder: a d-wave to s-wave, and then an s-wave to metal transition.

  9. A Simple, General Synthetic Route toward Nanoscale Transition Metal Borides.

    Science.gov (United States)

    Jothi, Palani R; Yubuta, Kunio; Fokwa, Boniface P T

    2018-04-01

    Most nanomaterials, such as transition metal carbides, phosphides, nitrides, chalcogenides, etc., have been extensively studied for their various properties in recent years. The similarly attractive transition metal borides, on the contrary, have seen little interest from the materials science community, mainly because nanomaterials are notoriously difficult to synthesize. Herein, a simple, general synthetic method toward crystalline transition metal boride nanomaterials is proposed. This new method takes advantage of the redox chemistry of Sn/SnCl 2 , the volatility and recrystallization of SnCl 2 at the synthesis conditions, as well as the immiscibility of tin with boron, to produce crystalline phases of 3d, 4d, and 5d transition metal nanoborides with different morphologies (nanorods, nanosheets, nanoprisms, nanoplates, nanoparticles, etc.). Importantly, this method allows flexibility in the choice of the transition metal, as well as the ability to target several compositions within the same binary phase diagram (e.g., Mo 2 B, α-MoB, MoB 2 , Mo 2 B 4 ). The simplicity and wide applicability of the method should enable the fulfillment of the great potential of this understudied class of materials, which show a variety of excellent chemical, electrochemical, and physical properties at the microscale. © 2018 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  10. Hot carrier dynamics in plasmonic transition metal nitrides

    Science.gov (United States)

    Habib, Adela; Florio, Fred; Sundararaman, Ravishankar

    2018-06-01

    Extraction of non-equilibrium hot carriers generated by plasmon decay in metallic nano-structures is an increasingly exciting prospect for utilizing plasmonic losses, but the search for optimum plasmonic materials with long-lived carriers is ongoing. Transition metal nitrides are an exciting class of new plasmonic materials with superior thermal and mechanical properties compared to conventional noble metals, but their suitability for plasmonic hot carrier applications remains unknown. Here, we present fully first principles calculations of the plasmonic response, hot carrier generation and subsequent thermalization of all group IV, V and VI transition metal nitrides, fully accounting for direct and phonon-assisted transitions as well as electron–electron and electron–phonon scattering. We find the largest frequency ranges for plasmonic response in ZrN, HfN and WN, between those of gold and silver, while we predict strongest absorption in the visible spectrum for the VN, NbN and TaN. Hot carrier generation is dominated by direct transitions for most of the relevant energy range in all these nitrides, while phonon-assisted processes dominate only below 1 eV plasmon energies primarily for the group IV nitrides. Finally, we predict the maximum hot carrier lifetimes to be around 10 fs for group IV and VI nitrides, a factor of 3–4 smaller than noble metals, due to strong electron–phonon scattering. However, we find longer carrier lifetimes for group V nitrides, comparable to silver for NbN and TaN, while exceeding 100 fs (twice that of silver) for VN, making them promising candidates for efficient hot carrier extraction.

  11. Probable metal-insulator transition in Ag{sub 4}SSe

    Energy Technology Data Exchange (ETDEWEB)

    Drebushchak, V.A., E-mail: dva@igm.nsc.ru [V.S. Sobolev Institute of Geology and Mineralogy, SB RAS, Pr. Ac. Koptyuga 3, Novosibirsk 630090 (Russian Federation); Novosibirsk State University, Ul. Pirogova 2, Novosibirsk 630090 (Russian Federation); Pal’yanova, G.A.; Seryotkin, Yu.V. [V.S. Sobolev Institute of Geology and Mineralogy, SB RAS, Pr. Ac. Koptyuga 3, Novosibirsk 630090 (Russian Federation); Novosibirsk State University, Ul. Pirogova 2, Novosibirsk 630090 (Russian Federation); Drebushchak, T.N. [Novosibirsk State University, Ul. Pirogova 2, Novosibirsk 630090 (Russian Federation); Institute of Solid State Chemistry and Mechanochemistry, SB RAS, Ul. Kutateladze 18, Novosibirsk 630128 (Russian Federation)

    2015-02-15

    Highlights: • New phase transition in Ag{sub 4}SSe was discovered with scanning calorimetry and supported with X-ray powder diffraction. • The thermal effect relates to the anomaly in electrical and thermal conductivity of Ag{sub 4}SSe. • Similar thermal and electrical effects in K{sub 3}Cu{sub 8}S{sub 6} are explained with the metal-insulator transition. - Abstract: New phase transition (285 K) in low-temperature monoclinic Ag{sub 4}SSe was found out below the α-β transition (358 K) after the measurements with differential scanning calorimetry. The transition reveals significant hysteresis (over 30 K). X-ray powder diffraction shows that the superlattice with doubled a and b parameters of the unit cell exists below the new transition point. The signs of this new phase transition can be found in thermal and electrical conductivity of Ag{sub 4}SSe published in literature. Elusive phase transition in Ag{sub 2}Se shows similar properties. The new transition is likely related to the metal-insulator type transition, like K{sub 3}Cu{sub 8}S{sub 6}.

  12. Emerging Energy Applications of Two-Dimensional Layered Transition Metal Dichalcogenides

    KAUST Repository

    Li, Henan

    2015-10-31

    Transition metal dichalcogenides (TMDCs) have attracted significant attention for their great potential in nano energy. TMDC layered materials represent a diverse and largely untapped source of 2D systems. High-quality TMDC layers with an appropriate size, variable thickness, superior electronic and optical properties can be produced by the exfoliation or vapour phase deposition method. Semiconducting TMDC monolayers have been demonstrated feasible for various energy related applications, where their electronic properties and uniquely high surface areas offer opportunities for various applications such as nano generators, green electronics, electrocatalytic hydrogen generation and energy storage. In this review, we start from the structure, properties and preparation, followed by detailed discussions on the development of TMDC-based nano energy applications. Graphical abstract The structure characterizations and preparative methods of 2D TMDCs have obtained significant progresses. Their recent advances for nano energy generation, solar harvesting, conversion and storage, and green electronics are reviewed.

  13. Transition metal carbide nanocomposite and amorphous thin films

    OpenAIRE

    Tengstrand, Olof

    2014-01-01

    This thesis explores thin films of binary and ternary transition metal carbides, in the Nb-C, Ti-Si-C, Nb-Si-C, Zr-Si-C, and Nb-Ge-C systems. The electrical and mechanical properties of these systems are affected by their structure and here both nanocomposite and amorphous thin films are thus investigated. By appropriate choice of transition metal and composition the films can be designed to be multifunctional with a combination of properties, such as low electric resistivity, low contact res...

  14. Evaluation of complexing agents and column temperature in ion chromatographic separation of alkali metals, alkaline earth metals and transition metals ion

    International Nuclear Information System (INIS)

    Kelkar, Anoop; Pandey, Ashish; Name, Anil B.; Das, D.K.; Behere, P.G.; Mohd Afzal

    2015-01-01

    The aim of ion chromatography method development is the resolution of all metal ions of interests. Resolution can be improved by changing the selectivity. Selectivity in chromatography can be altered by changes in mobile phase (eg eluent type, eluent strength) or through changes in stationary phase. Temperature has been used in altering the selectivity of particularly in reversed phase liquid chromatography and ion exchange chromatography. Present paper describe the retention behaviour of alkali metals, alkaline earth metals and transition metal ions on a silica based carboxylate function group containing analyte column. Alkali metals, alkaline earth metals and transition metal ions were detected by ion conductivity and UV-VIS detectors respectively

  15. Phase transition and hydrogen storage properties of Mg–Ga alloy

    International Nuclear Information System (INIS)

    Wu, Daifeng; Ouyang, Liuzhang; Wu, Cong; Wang, Hui; Liu, Jiangwen; Sun, Lixian; Zhu, Min

    2015-01-01

    Highlights: • A fully reversible transformation in Mg–Ga–H system with reduced dehydrogenation enthalpy is realized. • The mechanism of phase transformation in the de/hydrogenation of Mg–Ga alloy is revealed. • The de/hydrogenation process of Mg 5 Ga 2 compound is expressed as: Mg 5 Ga 2 + H 2 ↔ 2Mg 2 Ga + MgH 2 . - Abstract: Mg-based alloys are viewed as one of the most promising candidates for hydrogen storage; however, high desorption temperature and the sluggish kinetics of MgH 2 hinder their practical application. Alloying and changing the reaction pathway are effective methods to solve these issues. As the solid solubility of Ga in Mg is 5 wt% at 573 K, the preparation of a Mg(Ga) solid solution at relatively high temperatures was designed in this paper. The phase transition and hydrogen storage properties of the MgH 2 and Mg 5 Ga 2 composite (hereafter referred to as Mg–Ga alloy) were investigated by X-ray diffraction (XRD), pressure–composition-isotherm (PCI) measurements, and differential scanning calorimetry (DSC). The reversible hydrogen storage capacity of Mg–Ga alloy is 5.7 wt% H 2 . During the dehydrogenation process of Mg–Ga alloy, Mg 2 Ga reacts with MgH 2 , initially releasing H 2 and forming Mg 5 Ga 2 ; subsequently, MgH 2 decomposes into Mg with further release of H 2 . The phase transition mechanism of the Mg 5 Ga 2 compound during the dehydrogenation process was also investigated by using in situ XRD analysis. In addition, the dehydrogenation enthalpy and entropy changes, and the apparent activation energy were also calculated

  16. Systems and methods for facilitating hydrogen storage using naturally occurring nanostructure assemblies

    Science.gov (United States)

    Fliermans,; Carl, B [Augusta, GA

    2012-08-07

    Some or all of the needs above can be addressed by embodiments of the invention. According to embodiments of the invention, systems and methods for facilitating hydrogen storage using naturally occurring nanostructure assemblies can be implemented. In one embodiment, a method for storing hydrogen can be provided. The method can include providing diatoms comprising diatomaceous earth or diatoms from a predefined culture. In addition, the method can include heating the diatoms in a sealed environment in the presence of at least one of titanium, a transition metal, or a noble metal to provide a porous hydrogen storage medium. Furthermore, the method can include exposing the porous hydrogen storage medium to hydrogen. In addition, the method can include storing at least a portion of the hydrogen in the porous hydrogen storage medium.

  17. Experimental Challenges in Studying Hydrogen Absorption in Ultrasmall Metal Nanoparticles

    International Nuclear Information System (INIS)

    Zlotea, Claudia; Oumellal, Yassine; Provost, Karine; Ghimbeu, Camelia Matei

    2016-01-01

    Recent advances on synthesis, characterization, and hydrogen absorption properties of ultrasmall metal nanoparticles (defined here as objects with average size ≤3 nm) are briefly reviewed in the first part of this work. The experimental challenges encountered in performing accurate measurements of hydrogen absorption in Mg- and noble metal-based ultrasmall nanoparticles are addressed. The second part of this work reports original results obtained for ultrasmall bulk-immiscible Pd–Rh nanoparticles. Carbon-supported Pd–Rh nanoalloys in the whole binary chemical composition range have been successfully prepared by liquid impregnation method followed by reduction at 300°C. EXAFS investigations suggested that the local structure of these nanoalloys is partially segregated into Rh-rich core and Pd-rich surface coexisting within the same nanoparticles. Downsizing to ultrasmall dimensions completely suppresses the hydride formation in Pd-rich nanoalloys at ambient conditions, contrary to bulk and larger nanosized (5–6 nm) counterparts. The ultrasmall Pd 90 Rh 10 nanoalloy can absorb hydrogen-forming solid solutions under these conditions, as suggested by in situ X-ray diffraction (XRD). Apart from this composition, common laboratory techniques, such as in situ XRD, DSC, and PCI, failed to clarify the hydrogen interaction mechanism: either adsorption on developed surfaces or both adsorption and absorption with formation of solid solutions. Concluding insights were brought by in situ EXAFS experiments at synchrotron: ultrasmall Pd 75 Rh 25 and Pd 50 Rh 50 nanoalloys absorb hydrogen-forming solid solutions at ambient conditions. Moreover, the hydrogen solubility in these solid solutions is higher with increasing Pd content, and this trend can be understood in terms of hydrogen preferential occupation in the Pd-rich regions, as suggested by in situ EXAFS. The Rh-rich nanoalloys (Pd 25 Rh 75 and Pd 10 Rh 90 ) only adsorb hydrogen on the developed surface of ultrasmall

  18. The phosphorus and the transition metals chemistry

    International Nuclear Information System (INIS)

    Mathey, F.

    1988-01-01

    The 1988 progress report, concerning the Polytechnic School unit (France), which studies the phosphorus and the transition metals chemistry, is presented. The laboratory activities are related to the following topics: the phosporus heterocyclic chemistry, the phosphorus-carbon double bonds chemistry, the new transition metals phosphorus compounds, the phosphonates and their uses. Some practical applications of homogeneous catalysis and new materials synthesis are investigated. The main results obtained are: the discovery of the tetra-phosphafulvalenes, the utilization of a new synthesis method of the phosphorus-carbon double bonds and the stabilization of the α-phosphonyled carbanions by the lithium diisopropylamidourea. The papers, the congress communications and the thesis are also shown [fr

  19. Adlayer Core-Level Shifts of Random Metal Overlayers on Transition-Metal Substrates

    DEFF Research Database (Denmark)

    Ganduglia-Pirovano, M. V.; Kudrnovský, J.; Scheffler, M.

    1997-01-01

    and the screening effects induced by the core hole, and study the influence of the alloy composition for a number of noble metal-transition metal systems. Our analysis clearly indicates the importance of final-state screening effects for the interpretation of measured core-level shifts. Calculated deviations from...

  20. Plasma phase transition in dense hydrogen and electron-hole plasmas

    CERN Document Server

    Filinov, V S; Levashov, P R; Fortov, V E; Ebeling, W; Schlanges, M; Koch, S W

    2003-01-01

    Plasma phase transitions in dense hydrogen and electron-hole plasmas are investigated by direct path integral Monte Carlo methods. The phase boundary of the electron-hole liquid in germanium is calculated and is found to agree reasonably well with the known experimental results. Analogous behaviour is found for high-density hydrogen. For a temperature of T = 10 000 K it is shown that the internal energy is lowered due to droplet formation for densities between 10 sup 2 sup 3 cm sup - sup 3 and 10 sup 2 sup 4 cm sup - sup 3.

  1. The model of metal-insulator phase transition in vanadium oxide

    International Nuclear Information System (INIS)

    Vikhnin, V.S.; Lysenko, S.; Rua, A.; Fernandez, F.; Liu, H.

    2005-01-01

    Thermally induced metal-insulator phase transitions (PT) in VO 2 thin films are studied theoretically and experimentally. The hysteresis phenomena in the region of the transition for different type thin films were investigated. The phenomenological model of the PT is suggested. The charge transfer-lattice instability in VO 2 metallic phase is considered as basis of the first order metal-insulator PT in VO 2 . The charge transfer is treated as an order parameter

  2. Hydrogen: the great debate. 'Power to Gas - how to cope with the challenge of electricity storage?; Hydrogen in energy transition: which challenges to be faced?; Hydrogen, essential today, indispensable tomorrow; Electrolytic hydrogen, a solution for energy transition?; Development of high power electrolysis systems: need and approach; Hydrogen as energy vector, Potential and stakes: a perspective; The Toyota Fuel Cell System: a new era for the automotive industry; Three key factors: production, applications to mobility, and public acceptance; Hydrogen, benevolent fairy or tempting demon

    International Nuclear Information System (INIS)

    Hauet, Jean-Pierre; Boucly, Philippe; Beeker, Etienne; Mauberger, Pascal; Quint, Aliette; Pierre, Helene; Lucchese, Paul; Bouillon-Delporte, Valerie; Chauvet, Bertrand; Brisse, Annabelle; Gautier, Ludmila; Hercberg, Sylvain; De Volder, Marc; Gruson, Jean-Francois; Marion, Pierre; Grellier, Sebastien; Devezeaux, Jean-Guy; Mansilla, Christine; Le Net, Elisabeth; Le Duigou, Alain; Maire, Jacques

    2015-01-01

    This publication proposes a set of contributions which address various issues related to the development of the use of hydrogen as an energy source. More precisely, these contributions discuss how to face the challenge of electricity storage by using the Power-to-Gas technology, the challenges to be faced regarding the role of hydrogen in energy transition, the essential current role of hydrogen and its indispensable role for tomorrow, the possible role of electrolytic hydrogen as a solution for energy transition, the need of and the approach to a development of high power electrolysis systems, the potential and stakes of hydrogen as an energy vector, the Toyota fuel cell system as a sign for new era for automotive industry, the three main factors (production, applications to mobility, and public acceptance) for the use of hydrogen in energy transition, and the role of hydrogen perceived either as a benevolent fairy or a tempting demon

  3. Cascades for hydrogen isotope separation using metal hydrides

    International Nuclear Information System (INIS)

    Hill, F.B.; Grzetic, V.

    1982-01-01

    Designs are presented for continuous countercurrent hydrogen isotope separation cascades based on the use of metal hydrides. The cascades are made up of pressure swing adsorption (PSA) or temperature swing adsorption (TSA) stages. The designs were evolved from consideration of previously conducted studies of the separation performance of four types of PSA and TSA processes

  4. Cascades for hydrogen isotope separation using metal hydrides

    Energy Technology Data Exchange (ETDEWEB)

    Hill, F B; Grzetic, V [Brookhaven National Lab., Upton, NY (USA)

    1983-02-01

    Designs are presented for continuous countercurrent hydrogen isotope separation cascades based on the use of metal hydrides. The cascades are made up of pressure swing adsorption (PSA) or temperature swing adsorption (TSA) stages. The designs were evolved from consideration of previously conducted studies of the separation performance of four types of PSA and TSA processes.

  5. Vacancies in transition metals

    International Nuclear Information System (INIS)

    Allan, G.; Lannoo, M.

    1976-01-01

    A calculation of the formation energy and volume for a vacancy in transition metals is described. A tight-binding scheme is used for the d band and a Born-Mayer type potential to account for the repulsive part of the energy at small distances. The results show that the relaxation energy is small in all cases, less than 0.1 eV. This seems to be coherent with the good agreement obtained for the theoretical and experimental values of the formation energy Esub(F)sup(V) of the vacancy, without including relaxation. The center of the transitional series is found to give a contraction (Formation volume of order -0.4 at.vol.) whereas the edges are found to produce dilations. (author)

  6. Confinement dependence of electro-catalysts for hydrogen evolution from water splitting

    Directory of Open Access Journals (Sweden)

    Mikaela Lindgren

    2014-02-01

    Full Text Available Density functional theory is utilized to articulate a particular generic deconstruction of the electrode/electro-catalyst assembly for the cathode process during water splitting. A computational model was designed to determine how alloying elements control the fraction of H2 released during zirconium oxidation by water relative to the amount of hydrogen picked up by the corroding alloy. This model is utilized to determine the efficiencies of transition metals decorated with hydroxide interfaces in facilitating the electro-catalytic hydrogen evolution reaction. A computational strategy is developed to select an electro-catalyst for hydrogen evolution (HE, where the choice of a transition metal catalyst is guided by the confining environment. The latter may be recast into a nominal pressure experienced by the evolving H2 molecule. We arrived at a novel perspective on the uniqueness of oxide supported atomic Pt as a HE catalyst under ambient conditions.

  7. Applications of some microscopic, diffraction and absorption techniques to the study of metal--hydrogen systems

    International Nuclear Information System (INIS)

    Pick, M.A.

    1979-01-01

    Several experimental techniques were reviewed which are used to investigate metal hydrogen systems. The first technique is metallography and optical microscopy. This is a very old technique which was found to be very powerful in the case of metal hydrogen systems. A few examples of such work are shown and the results are discussed

  8. Indirect, reversible high-density hydrogen storage in compact metal ammine salts

    DEFF Research Database (Denmark)

    Sørensen, Rasmus Zink; Hummelshøj, Jens Strabo; Klerke, Asbjørn

    2008-01-01

    The indirect hydrogen storage capabilities of Mg(NH3)(6)Cl-2, Ca(NH3)(6)Cl-2, Mn(NH3)(6)Cl-2, and Ni(NH3)(6)Cl-2 are investigated. All four metal ammine chlorides can be compacted to solid tablets with densities of at least 95% of the crystal density. This gives very high indirect hydrogen...

  9. A fast response hydrogen sensor with Pd metallic grating onto a fiber's end-face

    Science.gov (United States)

    Yan, Haitao; Zhao, Xiaoyan; Zhang, Chao; Li, Qiu-Ze; Cao, Jingxiao; Han, Dao-Fu; Hao, Hui; Wang, Ming

    2016-01-01

    We demonstrated an integrated hydrogen sensor with Pd metallic grating fabricated on a fiber end-face. The grating consists of three thin metal layers in stacks, Au, WO3 and Pd. The WO3 is used as a waveguide layer between the Pd and Au layer. The Pd layer is etched by using a focused ion beam (FIB) method, forming a Pd metallic grating with period of 450 nm. The sensor is experimentally exposed to hydrogen gas environment. Changing the concentration from 0% to 4% which is the low explosive limit (LEL), the resonant wavelength measured from the reflection experienced 28.10 nm spectral changes in the visible range. The results demonstrated that the sensor is sensitive for hydrogen detection and it has fast response and low temperature effect.

  10. The 1s x-ray absorption pre-edge structures in transition metal oxides

    NARCIS (Netherlands)

    de Groot, Frank|info:eu-repo/dai/nl/08747610X; Vanko, Gyoergy; Glatzel, Pieter

    2009-01-01

    We develop a general procedure to analyse the pre-edges in 1s x-ray absorption near edge structure (XANES) of transition metal oxides and coordination complexes. Transition metal coordination complexes can be described from a local model with one metal ion. The 1s 3d quadrupole transitions are

  11. Rational Design of Two-Dimensional Metallic and Semiconducting Spintronic Materials Based on Ordered Double-Transition-Metal MXenes

    KAUST Repository

    Dong, Liang; Kumar, Hemant; Anasori, Babak; Gogotsi, Yury; Shenoy, Vivek B.

    2016-01-01

    double-transition-metal MXene structures to achieve such a goal. On the basis of the analysis of electron filling in transition-metal cations and first-principles simulations, we demonstrate robust ferromagnetism in Ti2MnC2Tx monolayers regardless

  12. Transfer Hydrogenation: Employing a Simple, In Situ Prepared Catalytic System

    KAUST Repository

    Ang, Eleanor Pei Ling

    2017-04-01

    Transfer hydrogenation has been recognized to be an important synthetic method in both academic and industrial research to obtain valuable products including alcohols. Transition metal catalysts based on precious metals, such as Ru, Rh and Ir, are typically employed for this process. In recent years, iron-based catalysts have attracted considerable attention as a greener and more sustainable alternative since iron is earth abundant, inexpensive and non-toxic. In this work, a combination of iron disulfide with chelating bipyridine ligand was found to be effective for the transfer hydrogenation of a variety of ketones to the corresponding alcohols in the presence of a simple base. It provided a convenient and economical way to conduct transfer hydrogenation. A plausible role of sulfide next to the metal center in facilitating the catalytic reaction is demonstrated.

  13. Hydrogen storage properties of carbon nanomaterials and carbon containing metal hydrides

    Energy Technology Data Exchange (ETDEWEB)

    Maehlen, Jan Petter

    2003-07-01

    The topic of this thesis is structural investigations of carbon containing materials in respect to their hydrogen storage properties. This work was initially triggered by reports of extremely high hydrogen storage capacities of specific carbon nanostructures. It was decided to try to verify and understand the mechanisms in play in case of the existence of such high hydrogen densities in carbon. Two different routes towards the goal were employed; by studying selected hydrides with carbon as one of its constituents (mainly employing powder diffraction techniques in combination with hydrogen absorption and desorption measurements) and by carefully conducting hydrogen sorption experiments on what was believed to be the most ''promising'' carbon nanomaterial sample. In the latter case, a lot of effort was attributed to characterisations of different carbon nanomaterial containing samples with the aid of electron microscopy. Three different carbon-containing metal hydride systems, Y2C-H, YCoC-H and Y5SiC0.2-H, were examined. A relation between hydrogen occupation and the local arrangement of metal and carbon atoms surrounding the hydrogen sites was established. Several characteristic features of the compounds were noted in addition to solving the structure of the former unknown deuterideY5Si3C0.2D2.0 by the use of direct methods. Several carbon-nanomaterial containing samples were studied by means of transmission electron microscopy and powder diffraction, thus gaining knowledge concerning the structural aspects of nanomaterials. Based on these investigations, a specific sample containing a large amount of open-ended single-wall carbon nanotubes was chosen for subsequent hydrogen storage experiments. The latter experiments revealed moderate hydrogen storage capacities of the nanotubes not exceeding the values obtained for more conventional forms of carbon. These two different routes in investigating the hydrogen storage properties of carbon and carbon containing alloys

  14. Hydrogen storage properties of carbon nanomaterials and carbon containing metal hydrides

    Energy Technology Data Exchange (ETDEWEB)

    Maehlen, Jan Petter

    2003-07-01

    The topic of this thesis is structural investigations of carbon containing materials in respect to their hydrogen storage properties. This work was initially triggered by reports of extremely high hydrogen storage capacities of specific carbon nanostructures. It was decided to try to verify and understand the mechanisms in play in case of the existence of such high hydrogen densities in carbon. Two different routes towards the goal were employed; by studying selected hydrides with carbon as one of its constituents (mainly employing powder diffraction techniques in combination with hydrogen absorption and desorption measurements) and by carefully conducting hydrogen sorption experiments on what was believed to be the most ''promising'' carbon nanomaterial sample. In the latter case, a lot of effort was attributed to characterisations of different carbon nanomaterial containing samples with the aid of electron microscopy. Three different carbon-containing metal hydride systems, Y2C-H, YCoC-H and Y5SiC0.2-H, were examined. A relation between hydrogen occupation and the local arrangement of metal and carbon atoms surrounding the hydrogen sites was established. Several characteristic features of the compounds were noted in addition to solving the structure of the former unknown deuterideY5Si3C0.2D2.0 by the use of direct methods. Several carbon-nanomaterial containing samples were studied by means of transmission electron microscopy and powder diffraction, thus gaining knowledge concerning the structural aspects of nanomaterials. Based on these investigations, a specific sample containing a large amount of open-ended single-wall carbon nanotubes was chosen for subsequent hydrogen storage experiments. The latter experiments revealed moderate hydrogen storage capacities of the nanotubes not exceeding the values obtained for more conventional forms of carbon. These two different routes in investigating the hydrogen storage properties of carbon and

  15. Catalytic olefin polymerization with early transition metal compounds

    NARCIS (Netherlands)

    Eshuis, Johan Jan Willem

    1991-01-01

    The catalysis of organic reactions by soluble metal complexes has become a major tool in synthesis, both in the laboratory and in the chemical industry. Processes catalyzed by transition metal complexes include carbonylation, olefin polymerization, olefin addition, olefin oxidation and alkane and

  16. Direct NO decomposition over stepped transition-metal surfaces

    DEFF Research Database (Denmark)

    Falsig, Hanne; Bligaard, Thomas; Christensen, Claus H.

    2007-01-01

    We establish the full potential energy diagram for the direct NO decomposition reaction over stepped transition-metal surfaces by combining a database of adsorption energies on stepped metal surfaces with known Bronsted-Evans-Polanyi (BEP) relations for the activation barriers of dissociation...

  17. Diffusion of hydrogen in iron oxides

    International Nuclear Information System (INIS)

    Bruzzoni, P.

    1993-01-01

    The diffusion of hydrogen in transitions metals oxides has been recently studied at room temperature through the permeability electrochemical technique. This work studies thin oxide layers grown in air or in presence of oxidizing atmospheres at temperatures up to 200 deg C. The substrate was pure iron with different superficial treatments. It was observed that these oxides reduce up to three magnitudes orders, the hydrogen stationary flux through membranes of usual thickness in comparison with iron membranes free of oxide. (Author)

  18. Hydrogen storage by reaction between metallic amides and imides

    International Nuclear Information System (INIS)

    Eymery, J.B.; Cahen, S.; Tarascon, J.M.; Janot, R.

    2007-01-01

    This paper details the various metal-N-H systems reported in the literature as possible hydrogen storage materials. In a first part, we discuss the hydrogen storage performances of the Li-N-H system and the desorption mechanism of the LiH-LiNH 2 mixture is especially presented. The possibility of storing hydrogen using two other binary systems (Mg-N-H and Ca-N-H) is described in a second part. In the third part of the paper, we discuss about the performances of the highly promising Li-Mg-N-H system, for which a nice reversibility is obtained at 200 C with an experimental hydrogen capacity of about 5.0 wt.%. Other ternary systems, as Li-B-N-H and Li-Al-N-H, are presented in the last part of this review paper. We especially emphasize the performances obtained in our Laboratory at Amiens with a LiAl(NH 2 ) 4 -LiH mixture able to desorb around 6.0 wt.% of hydrogen at only 130 C. (authors)

  19. Theoretical studies of transition metal complexes with nitriles and isocyanides

    International Nuclear Information System (INIS)

    Kuznetsov, Maksim L

    2002-01-01

    Theoretical studies of transition metal complexes with nitriles and isocyanides are reviewed. The electronic structures and the nature of coordination bonds in these complexes are discussed. The correlation between the electronic structures of transition metal complexes with nitriles and isocyanides and their structural properties, spectroscopic characteristics, and reactivities are considered. The bibliography includes 121 references.

  20. Alloying effect on the electronic structures of hydrogen storage compounds

    Energy Technology Data Exchange (ETDEWEB)

    Yukawa, H.; Moringa, M.; Takahashi, Y. [Nagoya Univ. (Japan). Dept. of Mater. Sci. and Eng.

    1997-05-20

    The electronic structures of hydrogenated LaNi{sub 5} containing various 3d transition elements were investigated by the DV-X{alpha} molecular orbital method. The hydrogen atom was found to form a strong chemical bond with the Ni rather than the La atoms. The alloying modified the chemical bond strengths between atoms in a small metal octahedron containing a hydrogen atom at the center, resulting in the change in the hydrogen absorption and desorption characteristics of LaNi{sub 5} with alloying. (orig.) 7 refs.

  1. Trends in catalytic NO decomposition over transition metal surfaces

    DEFF Research Database (Denmark)

    Falsig, Hanne; Bligaard, Thomas; Rass-Hansen, Jeppe

    2007-01-01

    The formation of NOx from combustion of fossil and renewable fuels continues to be a dominant environmental issue. We take one step towards rationalizing trends in catalytic activity of transition metal catalysts for NO decomposition by combining microkinetic modelling with density functional...... theory calculations. We show specifically why the key problem in using transition metal surfaces to catalyze direct NO decomposition is their significant relative overbinding of atomic oxygen compared to atomic nitrogen....

  2. Permeation of hydrogen through metal membranes

    International Nuclear Information System (INIS)

    Wienhold, P.; Rota, E.; Waelbroeck, F.; Winter, J.; Banno, Tatsuya.

    1986-08-01

    Experiments show that the permeant flux of hydrogen through a metal membrane at low driving pressures ( r is introduced into the model as a new material constant and the rate equations are given. After the description of the wall pump effect, a variety of different limiting cases are discussed for a symmetrical permeation membrane. This is modified to the asymmetric case and to the influence of particle implantation. The permeation number W turns out to be a dimensionless quantity which characterizes the permeation range and predicts the permeant flux in steady state. (orig.)

  3. Hydrogen and Fuel Cell Transit Bus Evaluations : Joint Evaluation Plan for the U.S. Department of Energy and the Federal Transit Administration

    Science.gov (United States)

    2008-05-01

    This document describes the hydrogen transit bus evaluations performed by the National Renewable Energy Laboratory (NREL) and funded by the U.S. Department of Energy (DOE) and the U.S. Department of Transportations Federal Transit Administration (...

  4. Spin-exchange interaction between transition metals and metalloids in soft-ferromagnetic metallic glasses

    Science.gov (United States)

    Das, Santanu; Choudhary, Kamal; Chernatynskiy, Aleksandr; Choi Yim, Haein; Bandyopadhyay, Asis K.; Mukherjee, Sundeep

    2016-06-01

    High-performance magnetic materials have immense industrial and scientific importance in wide-ranging electronic, electromechanical, and medical device technologies. Metallic glasses with a fully amorphous structure are particularly suited for advanced soft-magnetic applications. However, fundamental scientific understanding is lacking for the spin-exchange interaction between metal and metalloid atoms, which typically constitute a metallic glass. Using an integrated experimental and molecular dynamics approach, we demonstrate the mechanism of electron interaction between transition metals and metalloids. Spin-exchange interactions were investigated for a Fe-Co metallic glass system of composition [(Co1-x Fe x )0.75B0.2Si0.05]96Cr4. The saturation magnetization increased with higher Fe concentration, but the trend significantly deviated from simple rule of mixtures. Ab initio molecular dynamics simulation was used to identify the ferromagnetic/anti-ferromagnetic interaction between the transition metals and metalloids. The overlapping band-structure and density of states represent ‘Stoner type’ magnetization for the amorphous alloys in contrast to ‘Heisenberg type’ in crystalline iron. The enhancement of magnetization by increasing iron was attributed to the interaction between Fe 3d and B 2p bands, which was further validated by valence-band study.

  5. Oligomeric rare-earth metal cluster complexes with endohedral transition metal atoms

    Energy Technology Data Exchange (ETDEWEB)

    Steinberg, Simon; Zimmermann, Sina; Brühmann, Matthias; Meyer, Eva; Rustige, Christian; Wolberg, Marike; Daub, Kathrin; Bell, Thomas; Meyer, Gerd, E-mail: gerd.meyer@uni-koeln.de

    2014-11-15

    Comproportionation reactions of rare-earth metal trihalides (RX{sub 3}) with the respective rare-earth metals (R) and transition metals (T) led to the formation of 22 oligomeric R cluster halides encapsulating T, in 19 cases for the first time. The structures of these compounds were determined by single-crystal X-ray diffraction and are composed of trimers ((T{sub 3}R{sub 11})X{sub 15}-type, P6{sub 3}/m), tetramers ((T{sub 4}R{sub 16})X{sub 28}(R{sub 4}) (P-43m), (T{sub 4}R{sub 16})X{sub 20} (P4{sub 2}/nnm), (T{sub 4}R{sub 16})X{sub 24}(RX{sub 3}){sub 4} (I4{sub 1}/a) and (T{sub 4}R{sub 16})X{sub 23} (C2/m) types of structure) and pentamers ((Ru{sub 5}La{sub 14}){sub 2}Br{sub 39}, Cc) of (TR{sub r}){sub n} (n=2–5) clusters. These oligomers are further enveloped by inner (X{sup i}) as well as outer (X{sup a}) halido ligands, which possess diverse functionalities and interconnect like oligomers through i–i, i–a and/or a–i bridges. The general features of the crystal structures for these new compounds are discussed and compared to literature entries as well as different structure types with oligomeric T centered R clusters. Dimers and tetramers originating from the aggregation of (TR{sub 6}) octahedra via common edges are more frequent than trimers and pentamers, in which the (TR{sub r}) clusters share common faces. - Graphical abstract: Rare earth-metal cluster complexes with endohedral transition metal atoms (TR{sub 6}) may connect via common edges or faces to form dimers, trimers, tetramers and pentamers of which the tetramers are the most prolific. Packing effects and electron counts play an important role. - Highlights: • Rare-earth metal cluster complexes encapsulate transition metal atoms. • Oligomers are built via connection of octahedral clusters via common edges or faces. • Dimers through pentamers with closed structures are known. • Tetramers including a tetrahedron of endohedral atoms are the most prolific.

  6. Photocatalysis of Modified Transition Metal Oxide Surfaces

    Energy Technology Data Exchange (ETDEWEB)

    Batzill, Matthias [Univ. of South Florida, Tampa, FL (United States). Dept. of Physics

    2018-02-28

    The goal of this project has been to establish a cause-effect relationship for photocatalytic activity variations of different structures of the same material; and furthermore gain fundamental understanding on modification of photocatalysts by compositional or surface modifications. The reasoning is that gaining atomic scale understanding of how surface and bulk modifications alter the photo reactivity will lead to design principles for next generation photocatalysts. As a prototypical photocatalyst the research focused on TiO2 synthesized in well-defined single crystalline form to enable fundamental characterizations.We have obtained results in the following areas: (a) Preparation of epitaxial anatase TiO2 samples by pulsed laser deposition. (b) Comparison of hydrogen diffusion on different crystallographic surface. (c) Determining the stability of the TiO2(011)-2x1 reconstruction upon interactions with adsorbates. (d) Characterization of adsorption and (thermal and photo) reaction of molecules with nitro-endgroups, (e) Exploring the possibility of modifying planar model photocatalyst surfaces with graphene to enable fundamental studies on reported enhanced photocatalytic activities of graphene modified transition metal oxides, (f) gained fundamental understanding on the role of crystallographic polymorphs of the same material for their photocatalytic activities.

  7. Study of transition metal oxides by photoelectron spectroscopy

    International Nuclear Information System (INIS)

    Rao, C.N.R.; Sarma, D.D.; Vasudevan, S.; Hegde, M.S.

    1979-01-01

    Systematics in the X-ray photoelectron spectra (X.p.e.s.) of Ti, V, Cr, Mn and Nb oxides with the metal ion in different oxidation states as well as of related series of mono-, sesqui- and di-oxides of the first row of transition metals have been investigated in detail. Core level binding energies, spin-orbit splittings and exchange splittings are found to exhibit interesting variations with the oxidation state of the metal or the nuclear charge. The 3d binding energies of the monoxides show a proportionality to Goodenough's (R - RC). Other aspects of interest in the study are the satellite structure and final state effects in the X.p.e.s. of the oxides, and identification of different valence states in oxides of the general formulae Mn02n-1 and M304. The nature of changes in the 3d bands of oxides undergoing metal-insulator transitions is also indicated. (author)

  8. On the Hydrogen Cyanide Removal from Air using Metal loaded Polyacrylonitrile Composite Nanofibers

    Directory of Open Access Journals (Sweden)

    Bozorgmehr Maddah

    2017-12-01

    Full Text Available The present study highlights the potential application of electrospun polyacrylonitrile/metal salts (CrO3, CuCO3 nanofibrous filter media impregnated with TEDA (PAN-M-TEDA as an efficient adsorbent for hydrogen cyanide removal from air. The PAN-M-TEDA nanofiber before and after adsorption of hydrogen cyanide was characterized with Fourier transform infrared microscopy (FTIR. The concentration of hydrogen cyanide passes through the samples was determined by measuring the absorption of hydrogen cyanide in the solution containing indicator via UV-Vis spectroscopy. The results showed that introducing metal salts to PAN nanofiber along with their impregnation with TEDA, significantly increases the adsorption capacity of nanofibrous filter media. The adsorption of hydrogen cyanide over PAN-M-TEDA nanofiber was also studied as a function of thickness, PAN concentration and TEDA concentration by response surface methodology (RSM based on central composite design. It is found that the highest adsorption capacity can be achieved at thickness 28.42 mm, PAN concentration 16.19 w/v % and TEDA concentration 14.80 w/v %.

  9. Synthesis and Catalytic Hydrogen Transfer Reaction of Ruthenium(II) Complex

    Energy Technology Data Exchange (ETDEWEB)

    Son, Jung Ik; Kim, Aram; Noh, Hui Bog; Lee, Hyun Ju; Shim, Yoon Bo; Park, Kang Hyun [Pusan National University, Busan (Korea, Republic of)

    2012-01-15

    The ruthenium(II) complex [Ru(bpy){sub 2}-(PhenTPy)] was synthesized, and used for the transfer hydrogenation of ketones and the desired products were obtained in good yield. Based on the presented results, transition-metal complexes can be used as catalysts for a wide range of organic transformations. The relationship between the electro-reduction current density and temperature are being examined in this laboratory. Attempts to improve the catalytic activity and determine the transfer hydrogenation mechanism are currently in progress. The catalytic hydrogenation of a ketone is a basic and critical process for making many types of alcohols used as the final products and precursors in the pharmaceutical, agrochemical, flavor, fragrance, materials, and fine chemicals industries. The catalytic hydrogenation process developed by Noyori is a very attractive process. Formic acid and 2-propanol have been used extensively as hydrogenation sources. The advantage of using 2-propanol as a hydrogen source is that the only side product will be acetone, which can be removed easily during the workup process. Hydrogen transfer (HT) catalysis, which generates alcohols through the reduction of ketones, is an attractive protocol that is used widely. Ruthenium(II) complexes are the most useful catalysts for the hydrogen transfer (HT) of ketones. In this method, a highly active catalytic system employs a transition metal as a catalyst to synthesize alcohols, and is a replacement for the hydrogen-using hydrogenation process. The most active system is based on Ru, Rh and Ir, which includes a nitrogen ligand that facilitates the formation of a catalytically active hydride and phosphorus.

  10. Synthesis and Catalytic Hydrogen Transfer Reaction of Ruthenium(II) Complex

    International Nuclear Information System (INIS)

    Son, Jung Ik; Kim, Aram; Noh, Hui Bog; Lee, Hyun Ju; Shim, Yoon Bo; Park, Kang Hyun

    2012-01-01

    The ruthenium(II) complex [Ru(bpy) 2 -(PhenTPy)] was synthesized, and used for the transfer hydrogenation of ketones and the desired products were obtained in good yield. Based on the presented results, transition-metal complexes can be used as catalysts for a wide range of organic transformations. The relationship between the electro-reduction current density and temperature are being examined in this laboratory. Attempts to improve the catalytic activity and determine the transfer hydrogenation mechanism are currently in progress. The catalytic hydrogenation of a ketone is a basic and critical process for making many types of alcohols used as the final products and precursors in the pharmaceutical, agrochemical, flavor, fragrance, materials, and fine chemicals industries. The catalytic hydrogenation process developed by Noyori is a very attractive process. Formic acid and 2-propanol have been used extensively as hydrogenation sources. The advantage of using 2-propanol as a hydrogen source is that the only side product will be acetone, which can be removed easily during the workup process. Hydrogen transfer (HT) catalysis, which generates alcohols through the reduction of ketones, is an attractive protocol that is used widely. Ruthenium(II) complexes are the most useful catalysts for the hydrogen transfer (HT) of ketones. In this method, a highly active catalytic system employs a transition metal as a catalyst to synthesize alcohols, and is a replacement for the hydrogen-using hydrogenation process. The most active system is based on Ru, Rh and Ir, which includes a nitrogen ligand that facilitates the formation of a catalytically active hydride and phosphorus

  11. Metal oxide/hydrogen secondary battery; Kinzoku sankabutsu/suiso niji denchi

    Energy Technology Data Exchange (ETDEWEB)

    Hosobuchi, H.; Ema, M.

    1995-12-12

    Since the shape of powder produced by crushing the hydrogen storage alloy containing rare earth element varies widely, the density of the negative electrode made by packing the alloy powder is low. As a result, the secondary battery employing this negative electrode has a small discharge capacity. This invention solves the problem. Employing the hydrogen storage alloy containing rare earth element composed of particle shape of aspect ratio, A, of over 1.0 and below 3.0 gives rise to the negative electrode with high packing density, improving the discharge capacity of the metal oxide - hydrogen secondary battery. The more the shape of powder of hydrogen storage alloy containing rare earth element is near to sphere, the higher the packing density of negative electrode made of the hydrogen storage alloy containing rare earth element becomes. The preferable aspect ratio, A, of the powder is 1.0 {le} A {le} 2.0. Such alloy powder can be produced by mechanically grinding the rare-earth-element-containing hydrogen alloy ingot, or grinding by hydration, or grinding by atomizing followed by sieving. 1 fig., 1 tab.

  12. Conductive transition metal oxide nanostructured electrochromic material and optical switching devices constructed thereof

    Science.gov (United States)

    Mattox, Tracy M.; Koo, Bonil; Garcia, Guillermo; Milliron, Delia J.; Trizio, Luca De; Dahlman, Clayton

    2017-10-10

    An electrochromic device includes a nanostructured transition metal oxide bronze layer that includes one or more transition metal oxide and one or more dopant, a solid state electrolyte, and a counter electrode. The nanostructured transition metal oxide bronze selectively modulates transmittance of near-infrared (NIR) spectrum and visible spectrum radiation as a function of an applied voltage to the device.

  13. Hydrogen production during processing of radioactive sludge containing noble metals

    International Nuclear Information System (INIS)

    Ha, B.C.; Ferrara, D.M.; Bibler, N.E.

    1992-01-01

    Hydrogen was produced when radioactive sludge from Savannah River Site radioactive waste containing noble metals was reacted with formic acid. This will occur in a process tank in the Defense Waste Facility at SRS when waste is vitrified. Radioactive sludges from four tanks were tested in a lab-scale apparatus. Maximum hydrogen generation rates varied from 5 x10 -7 g H 2 /hr/g of sludge from the least reactive sludge (from Waste Tank 51) to 2 x10 -4 g H 2 /hr/g of sludge from the most reactive sludge (from Waste Tank 11). The time required for the hydrogen generation to reach a maximum varied from 4.1 to 25 hours. In addition to hydrogen, carbon dioxide and nitrous oxide were produced and the pH of the reaction slurry increased. In all cases, the carbon dioxide and nitrous oxide were generated before the hydrogen. The results are in agreement with large-scale studies using simulated sludges

  14. Features of order-disorder phase transformation in nonstoichiometric transition metals carbides

    International Nuclear Information System (INIS)

    Emel'yanov, A.N.

    1996-01-01

    Measurements of temperature and electric conductivity of nonstoichiometric transition metals carbides TiC χ and NbC χ in the area of order-disorder phase transformation are carried out. There are certain peculiarities on the temperature and electric conductivity curves of the carbides, connected with the carbon sublattice disordering. On the basis of the anomalies observed on the curves of the temperature conductivity of nonstoichiometric carbides of transition metals above the temperature of the order-disorder transition the existence of the second structural transition is supposed

  15. An important rule for realizing metal → half-metal → semiconductor transition in single-molecule junctions

    Science.gov (United States)

    Zeng, Jing; Chen, Ke-Qiu; Long, Mengqiu

    2017-06-01

    Recently, Zhong et al (2015 Nano Lett. 15 8091) found that two additional hydrogen atoms can be adsorbed to the opposite aza-bridging nitrogen atoms of the manganese phthalocyanine (MnPc) macrocycle when exposed to H2. Thus the symmetry of the MnPc molecule is changed from 4-fold to 2-fold. Motivated by this recent experiment, we theoretically investigate a MnPc-based single-molecule junction in this work and propose a simple and reliable way to realize the transition of its electronic properties. On the basis of spin-polarized density-functional theory calculations combined with the Keldysh nonequilibrium Green’s technique, we find that the gradual hydrogenation in MnPc molecules gives rise to the changes of the hardness of the electron density and spin-selective orbital decoupling, which eventually leads to the realization of the first ever metal  →  half-metal  →  semiconductor transition behavior in single-molecule junctions. Analysis of molecular projected self-consistent Hamiltonian, Mulliken population, and local density of states also reveals an important rule for realizing this transition behavior. Our research confirms that the hydrogenation of MnPc molecules can realize various molecular functionalities in unitary material background.

  16. An important rule for realizing metal → half-metal → semiconductor transition in single-molecule junctions

    International Nuclear Information System (INIS)

    Zeng, Jing; Chen, Ke-Qiu; Long, Mengqiu

    2017-01-01

    Recently, Zhong et al (2015 Nano Lett . 15 8091) found that two additional hydrogen atoms can be adsorbed to the opposite aza-bridging nitrogen atoms of the manganese phthalocyanine (MnPc) macrocycle when exposed to H 2 . Thus the symmetry of the MnPc molecule is changed from 4-fold to 2-fold. Motivated by this recent experiment, we theoretically investigate a MnPc-based single-molecule junction in this work and propose a simple and reliable way to realize the transition of its electronic properties. On the basis of spin-polarized density-functional theory calculations combined with the Keldysh nonequilibrium Green’s technique, we find that the gradual hydrogenation in MnPc molecules gives rise to the changes of the hardness of the electron density and spin-selective orbital decoupling, which eventually leads to the realization of the first ever metal  →  half-metal  →  semiconductor transition behavior in single-molecule junctions. Analysis of molecular projected self-consistent Hamiltonian, Mulliken population, and local density of states also reveals an important rule for realizing this transition behavior. Our research confirms that the hydrogenation of MnPc molecules can realize various molecular functionalities in unitary material background. (paper)

  17. Recent advances in transition metal-catalyzed Csp2-monofluoro-, difluoro-, perfluoromethylation and trifluoromethylthiolation

    Directory of Open Access Journals (Sweden)

    Grégory Landelle

    2013-11-01

    Full Text Available In the last few years, transition metal-mediated reactions have joined the toolbox of chemists working in the field of fluorination for Life-Science oriented research. The successful execution of transition metal-catalyzed carbon–fluorine bond formation has become a landmark achievement in fluorine chemistry. This rapidly growing research field has been the subject of some excellent reviews. Our approach focuses exclusively on transition metal-catalyzed reactions that allow the introduction of –CFH2, –CF2H, –CnF2n+1 and –SCF3 groups onto sp² carbon atoms. Transformations are discussed according to the reaction-type and the metal employed. The review will not extend to conventional non-transition metal methods to these fluorinated groups.

  18. Metal-loaded SBA-16-like silica – Correlation between basicity and affinity towards hydrogen

    International Nuclear Information System (INIS)

    Ouargli-Saker, R.; Bouazizi, N.; Boukoussa, B.; Barrimo, Diana; Paola-Nunes-Beltrao, Ana; Azzouz, A.

    2017-01-01

    Highlights: • Metal dispersion in longitudinal channels confers adsorption properties to SBA-16. • Both Fe"0-NPs and Cu"0-NPs seem to be responsible of this effect. • Effect of the repetitive adsorption-desorption cycles on CO_2 and water sorption. • Hydrogen storage on the functionalized materials. - Abstract: Nanoparticles of Cu"o (CuNPs) and Fe"o (FeNPs) were dispersed in SBA-16-like silica, resulting metal-loaded materials (Cu-SBA-16 and Fe-SBA-16) with improved affinity towards hydrogen. Electron microscopy and X-ray diffraction showed that MNP dispersion occurs mainly inside SBA-16 channels. MNP incorporation was found to confer affinity to the silica surface, since higher CO_2 retention capacity (CRC) was registered Cu/SBA-16 and Fe/SBA-16. This was accompanied by a significant improvement of the affinity towards hydrogen, as supported by hydrogen adsorption tests. This was explained in terms of strong hydrogen interaction with MNP and lattice oxygen atoms. The results reported herein open new prospects for SBA-16 as potential adsorbents for hydrogen storage.

  19. Metal-loaded SBA-16-like silica – Correlation between basicity and affinity towards hydrogen

    Energy Technology Data Exchange (ETDEWEB)

    Ouargli-Saker, R. [Department of Materials Engineering, University of Science and Technology, El M’naouer, BP 1505, Oran (Algeria); Nanoqam, Department of Chemistry, University of Quebec at Montreal, H3C3P8 (Canada); Bouazizi, N. [Nanoqam, Department of Chemistry, University of Quebec at Montreal, H3C3P8 (Canada); Unité de recherche, Electrochimie, Matériaux et Environnement, Faculté des Sciences de Gabès, Université de Gabès, Cité Erriadh, 6072 Gabès (Tunisia); Boukoussa, B. [Department of Materials Engineering, University of Science and Technology, El M’naouer, BP 1505, Oran (Algeria); Lqamb, Laboratório de Química Analítica Ambiental, Faculdade de Química, Pontifícia Universidade Católica do Rio Grande do Sul (Brazil); Barrimo, Diana [Nanoqam, Department of Chemistry, University of Quebec at Montreal, H3C3P8 (Canada); Paola-Nunes-Beltrao, Ana [Nanoqam, Department of Chemistry, University of Quebec at Montreal, H3C3P8 (Canada); Laboratory of Materials Chemistry L.C.M, University of Oran1 Ahmed Ben Bella, BP 1524, El-Mnaouer, 31000 Oran (Algeria); Azzouz, A., E-mail: azzouz.a@uqam.ca [Nanoqam, Department of Chemistry, University of Quebec at Montreal, H3C3P8 (Canada)

    2017-07-31

    Highlights: • Metal dispersion in longitudinal channels confers adsorption properties to SBA-16. • Both Fe{sup 0}-NPs and Cu{sup 0}-NPs seem to be responsible of this effect. • Effect of the repetitive adsorption-desorption cycles on CO{sub 2} and water sorption. • Hydrogen storage on the functionalized materials. - Abstract: Nanoparticles of Cu{sup o} (CuNPs) and Fe{sup o} (FeNPs) were dispersed in SBA-16-like silica, resulting metal-loaded materials (Cu-SBA-16 and Fe-SBA-16) with improved affinity towards hydrogen. Electron microscopy and X-ray diffraction showed that MNP dispersion occurs mainly inside SBA-16 channels. MNP incorporation was found to confer affinity to the silica surface, since higher CO{sub 2} retention capacity (CRC) was registered Cu/SBA-16 and Fe/SBA-16. This was accompanied by a significant improvement of the affinity towards hydrogen, as supported by hydrogen adsorption tests. This was explained in terms of strong hydrogen interaction with MNP and lattice oxygen atoms. The results reported herein open new prospects for SBA-16 as potential adsorbents for hydrogen storage.

  20. Novel Composite Hydrogen-Permeable Membranes for Nonthermal Plasma Reactors for the Decomposition of Hydrogen Sulfide

    Energy Technology Data Exchange (ETDEWEB)

    Morris Argyle; John Ackerman; Suresh Muknahallipatna; Jerry Hamann; Stanislaw Legowski; Gui-Bing Zhao; Sanil John; Ji-Jun Zhang; Linna Wang

    2007-09-30

    The goal of this experimental project was to design and fabricate a reactor and membrane test cell to dissociate hydrogen sulfide (H{sub 2}S) in a nonthermal plasma and to recover hydrogen (H{sub 2}) through a superpermeable multi-layer membrane. Superpermeability of hydrogen atoms (H) has been reported by some researchers using membranes made of Group V transition metals (niobium, tantalum, vanadium, and their alloys), but it was not achieved at the moderate pressure conditions used in this study. However, H{sub 2}S was successfully decomposed at energy efficiencies higher than any other reports for the high H{sub 2}S concentration and moderate pressures (corresponding to high reactor throughputs) used in this study.

  1. Designing a gradual transition to a hydrogen economy in Spain

    Science.gov (United States)

    Brey, J. J.; Brey, R.; Carazo, A. F.; Contreras, I.; Hernández-Díaz, A. G.; Gallardo, V.

    The lack of sustainability of the current Spanish energy system makes it necessary to study the adoption of alternative energy models. One of these is what is known as the hydrogen economy. In this paper, we aim to plan, for the case of Spain, an initial phase for transition to this energy model making use of the potential offered by each Spanish region. Specifically, the target pursued is to satisfy at least 15% of energy demand for transport by 2010 through renewable sources. We plan to attain this target gradually, establishing intermediate stages consisting of supplying 5 and 10% of the energy demand for transport by 2006 and 2008, respectively. The results obtained allow us to determine, for each region, the hydrogen production and consumption, the renewable energy sources used to obtain hydrogen and the transport requirements between regions.

  2. Empirical Method to Estimate Hydrogen Embrittlement of Metals as a Function of Hydrogen Gas Pressure at Constant Temperature

    Science.gov (United States)

    Lee, Jonathan A.

    2010-01-01

    High pressure Hydrogen (H) gas has been known to have a deleterious effect on the mechanical properties of certain metals, particularly, the notched tensile strength, fracture toughness and ductility. The ratio of these properties in Hydrogen as compared to Helium or Air is called the Hydrogen Environment Embrittlement (HEE) Index, which is a useful method to classify the severity of H embrittlement and to aid in the material screening and selection for safety usage H gas environment. A comprehensive world-wide database compilation, in the past 50 years, has shown that the HEE index is mostly collected at two conveniently high H pressure points of 5 ksi and 10 ksi near room temperature. Since H embrittlement is directly related to pressure, the lack of HEE index at other pressure points has posed a technical problem for the designers to select appropriate materials at a specific H pressure for various applications in aerospace, alternate and renewable energy sectors for an emerging hydrogen economy. Based on the Power-Law mathematical relationship, an empirical method to accurately predict the HEE index, as a function of H pressure at constant temperature, is presented with a brief review on Sievert's law for gas-metal absorption.

  3. Nonmetal-metal transition in metal–molten-salt solutions

    NARCIS (Netherlands)

    Silvestrelli, P.-L.; Alavi, A.; Parrinello, M.; Frenkel, D.

    1996-01-01

    The method of ab initio molecular dynamics, based on finite-temperature density-functional theory, is used to study the nonmetal-metal transition in two different metal–molten-salt solutions, Kx(KCl)1-x and Nax(NaBr)1-x. As the excess metal concentration is increased the electronic density becomes

  4. Ab initio modelling of transition metals in diamond

    International Nuclear Information System (INIS)

    Watkins, M; Mainwood, A

    2003-01-01

    Transition metals (TM) from the first transition series are commonly used as solvent catalysts in the synthesis of diamond by high pressure, high temperature processes. Ab initio calculations on these metals, in finite clusters of tetrahedrally coordinated carbon, enable us to investigate trends in their stability and properties. By carrying out systematic studies of interstitial, substitutional and semi-vacancy TM defects, we show that the electronic structure of the TMs is complicated by the presence of 'dangling bonds' when the TM disrupts the crystal lattice: interstitial defects conform to the Ludwig-Woodbury (LW) model, whilst substitutional and semi-vacancy defects move from approximating the LW model early in the transition series to approaching the vacancy model for the heavier metals. Multi-configurational self-consistent field methods allow genuine many-electron states to be modelled; for neutral interstitial, and all substitutional TMs, the crystal fields are found to exceed the exchange energies in strength. Consequently, low spin states are found for these defects. We find substitutional defects to be the most stable, but that semi-vacancy TMs are very similar in energy to the substitutional defects late in the transition series; interstitial defects are only metastable in diamond. Given appropriate charge compensators neutral and positively charged interstitial TM defects were stable, while negatively charged species appeared to be strongly disfavoured

  5. Stereoselective hydrogenation of olefins using rhodium-substituted carbonic anhydrase--a new reductase.

    Science.gov (United States)

    Jing, Qing; Okrasa, Krzysztof; Kazlauskas, Romas J

    2009-01-01

    One useful synthetic reaction missing from nature's toolbox is the direct hydrogenation of substrates using hydrogen. Instead nature uses cofactors like NADH to reduce organic substrates, which adds complexity and cost to these reductions. To create an enzyme that can directly reduce organic substrates with hydrogen, researchers have combined metal hydrogenation catalysts with proteins. One approach is an indirect link where a ligand is linked to a protein and the metal binds to the ligand. Another approach is direct linking of the metal to protein, but nonspecific binding of the metal limits this approach. Herein, we report a direct hydrogenation of olefins catalyzed by rhodium(I) bound to carbonic anhydrase (CA-[Rh]). We minimized nonspecific binding of rhodium by replacing histidine residues on the protein surface using site-directed mutagenesis or by chemically modifying the histidine residues. Hydrogenation catalyzed by CA-[Rh] is slightly slower than for uncomplexed rhodium(I), but the protein environment induces stereoselectivity favoring cis- over trans-stilbene by about 20:1. This enzyme is the first cofactor-independent reductase that reduces organic molecules using hydrogen. This catalyst is a good starting point to create variants with tailored reactivity and selectivity. This strategy to insert transition metals in the active site of metalloenzymes opens opportunities to a wider range of enzyme-catalyzed reactions.

  6. Transition-metal impurities in semiconductors and heterojunction band lineups

    Science.gov (United States)

    Langer, Jerzy M.; Delerue, C.; Lannoo, M.; Heinrich, Helmut

    1988-10-01

    The validity of a recent proposal that transition-metal impurity levels in semiconductors may serve as a reference in band alignment in semiconductor heterojunctions is positively verified by using the most recent data on band offsets in the following lattice-matched heterojunctions: Ga1-xAlxAs/GaAs, In1-xGaxAsyP1-y/InP, In1-xGaxP/GaAs, and Cd1-xHgxTe/CdTe. The alignment procedure is justified theoretically by showing that transition-metal energy levels are effectively pinned to the average dangling-bond energy level, which serves as the reference level for the heterojunction band alignment. Experimental and theoretical arguments showing that an increasingly popular notion on transition-metal energy-level pinning to the vacuum level is unjustified and must be abandoned in favor of the internal-reference rule proposed recently [J. M. Langer and H. Heinrich, Phys. Rev. Lett. 55, 1414 (1985)] are presented.

  7. Electronic and thermodynamic properties of transition metal elements and compounds

    International Nuclear Information System (INIS)

    Haeglund, J.

    1993-01-01

    This thesis focuses on the use of band-structure calculations for studying thermodynamic properties of solids. We discuss 3d-, 4d- and 5d-transition metal carbides and nitrides. Through a detailed comparison between theoretical and experimental results, we draw conclusions on the character of the atomic bonds in these materials. We show how electronic structure calculations can be used to give accurate predictions for bonding energies. Part of the thesis is devoted to the application of the generalized gradient approximation in electronic structure calculations on transition metals. For structures with vibrational disorder, we present a method for calculating averaged phonon frequencies without using empirical information. For magnetic excitations, we show how a combined use of theoretical results and experimental data can yield information on magnetic fluctuations at high temperatures. The main results in the thesis are: Apart for an almost constant shift, theoretically calculated bonding energies for transition metal carbides and nitrides agree with experimental data or with values from analysis of thermochemical information. The electronic spectrum of transition metal carbides and nitrides can be separated into bonding, antibonding and nonbonding electronic states. The lowest enthalpy of formation for substoichiometric vanadium carbide VC 1-X at zero temperature and pressure occurs for a structure containing vacancies (x not equal to 0). The generalized gradient approximation improves theoretical calculated cohesive energies for 3d-transition metals. Magnetic phase transitions are sensitive to the description of exchange-correlation effects in electronic structure calculations. Trends in Debye temperatures can be successfully analysed in electronic structure calculations on disordered lattices. For the elements, there is a clear dependence on the crystal structure (e.g., bcc, fcc or hcp). Chromium has fluctuating local magnetic moments at temperatures well above

  8. Properties and application of noble metal catalysts for heterogeneous catalytic hydrogenations

    Energy Technology Data Exchange (ETDEWEB)

    Horn, G; Frohning, C D; Cornils, B [Ruhrchemie A.G., Oberhausen (Germany, F.R.)

    1976-07-01

    The special properties of the six platinum group elements - ruthenium, rhodium, palladium, osmium, iridium, platinum - make them useful as active metals for catalytic reactions. Especially valuable is their property of favouring a single reaction even when the possibility of a number of parallel reactions exists under certain reaction conditions. This selectivity of the noble metal catalyst may be directed or enhanced through appropriate choise of the metal, the reaction conditions, the duration of the reaction, the amount of hydrogen etc. Even the physical state of the catalyst - supported or unsupported - is of influence when using noble metal catalysts as described in this report.

  9. Two-photon transitions in hydrogen atoms embedded in weakly coupled plasmas

    International Nuclear Information System (INIS)

    Paul, S.; Ho, Y. K.

    2008-01-01

    The pseudostate method has been applied to calculate energy eigenvalues and corresponding eigenfunctions of the hydrogen atom in Debye plasma environments. Resonant two-photon transition rates from the ground state of atomic hydrogen to 2s and 3s excited states have been computed as a function of photon frequency in the length and velocity gauges for different Debye lengths. A two-photon transparency is found in correspondence to each resonance for 1s-3s. The transparency frequency and resonance enhancement frequency vary significantly with the Debye length.

  10. Spin-Orbitronics at Transition Metal Interfaces

    KAUST Repository

    Manchon, Aurelien

    2017-11-09

    The presence of large spin–orbit interaction at transition metal interfaces enables the emergence of a variety of fascinating phenomena that have been at the forefront of spintronics research in the past 10 years. The objective of the present chapter is to offer a review of these various effects from a theoretical perspective, with a particular focus on spin transport, chiral magnetism, and their interplay. After a brief description of the orbital hybridization scheme at transition metal interfaces, we address the impact of spin–orbit coupling on the interfacial magnetic configuration, through the celebrated Dzyaloshinskii–Moriya interaction. We then discuss the physics of spin transport and subsequent torques occurring at these interfaces. We particularly address the spin Hall, spin swapping, and inverse spin-galvanic effects. Finally, the interplay between flowing charges and chiral magnetic textures and their induced dynamics are presented. We conclude this chapter by proposing some perspectives on promising research directions.

  11. Spin-Orbitronics at Transition Metal Interfaces

    KAUST Repository

    Manchon, Aurelien; Belabbes, Abderrezak

    2017-01-01

    The presence of large spin–orbit interaction at transition metal interfaces enables the emergence of a variety of fascinating phenomena that have been at the forefront of spintronics research in the past 10 years. The objective of the present chapter is to offer a review of these various effects from a theoretical perspective, with a particular focus on spin transport, chiral magnetism, and their interplay. After a brief description of the orbital hybridization scheme at transition metal interfaces, we address the impact of spin–orbit coupling on the interfacial magnetic configuration, through the celebrated Dzyaloshinskii–Moriya interaction. We then discuss the physics of spin transport and subsequent torques occurring at these interfaces. We particularly address the spin Hall, spin swapping, and inverse spin-galvanic effects. Finally, the interplay between flowing charges and chiral magnetic textures and their induced dynamics are presented. We conclude this chapter by proposing some perspectives on promising research directions.

  12. Metal organoclays with compacted structure for truly physical capture of hydrogen

    Energy Technology Data Exchange (ETDEWEB)

    Tahir, M. Nazir; Sennour, Radia [Nanoqam, Department of Chemistry, University of Quebec at Montreal, H3C 3P8 QC (Canada); Arus, Vasilica Alisa [Nanoqam, Department of Chemistry, University of Quebec at Montreal, H3C 3P8 QC (Canada); Catalysis and Microporous Materials Laboratory, Vasile-Alecsandri University of Bacau, 600115 (Romania); Sallam, Lamyaa M. [Nanoqam, Department of Chemistry, University of Quebec at Montreal, H3C 3P8 QC (Canada); Roy, René, E-mail: roy.rene@uqam.ca [Nanoqam, Department of Chemistry, University of Quebec at Montreal, H3C 3P8 QC (Canada); Azzouz, Abdelkrim, E-mail: azzouz.a@uqam.ca [Nanoqam, Department of Chemistry, University of Quebec at Montreal, H3C 3P8 QC (Canada)

    2017-03-15

    Highlights: • Functionalization of thio-dendrons onto montmorillonite clay. • Incorporation and stabilization of PdNP in to the functionalized clays. • Role of −S:Pd and −O:Pd interactions in NP dispersion and stabilization. • Applications of PdNP incorporated modified clays for physical adsorption of H{sub 2}. - Abstract: Truly reversible capture of hydrogen was achieved at ambient conditions on Pd-loaded organo-montmorillonites obtained by photo-addition of different thiols on propargylated-TRIS cations already grafted on the clay surface. TEM insights showed that more than 90% of Pd{sup 0} incorporated occur as 0.3–0.5 nm subnanoparticles (PdSNPs). XPS and NMR analyses revealed simultaneous strong S:Pd{sup 0} and O:Pd{sup 0} interactions that ”cement” the organic moiety around PdSNPs. The significant decrease in porosity suggests a compacted structure that impedes not only metal aggregation, but also hydrogen diffusion in the metal bulk. Thus, hydrogen appears to adsorb mainly via physical condensation around PdSNPs. These thiol-clay matrices showed hydrogen surface affinity factors of up to 0.51 mmol m{sup −2} at ambient temperature and pressure. This is higher than those reported for much more sophisticated materials. DSC measurements showed very low desorption heat between 20 and 80 °C. Hydrogen release was achieved merely under vacuum or slight heating starting from 40 °C and was almost completed up to 85 °C. This provides a proof of concept of truly reversible capture of hydrogen for concentration and/or storage purposes. Such a performance has never been achieved at ambient temperature and pressure. These findings open new prospects to develop low-cost materials for reversible hydrogen storage without energy and safety constraints.

  13. Metal organoclays with compacted structure for truly physical capture of hydrogen

    International Nuclear Information System (INIS)

    Tahir, M. Nazir; Sennour, Radia; Arus, Vasilica Alisa; Sallam, Lamyaa M.; Roy, René; Azzouz, Abdelkrim

    2017-01-01

    Highlights: • Functionalization of thio-dendrons onto montmorillonite clay. • Incorporation and stabilization of PdNP in to the functionalized clays. • Role of −S:Pd and −O:Pd interactions in NP dispersion and stabilization. • Applications of PdNP incorporated modified clays for physical adsorption of H_2. - Abstract: Truly reversible capture of hydrogen was achieved at ambient conditions on Pd-loaded organo-montmorillonites obtained by photo-addition of different thiols on propargylated-TRIS cations already grafted on the clay surface. TEM insights showed that more than 90% of Pd"0 incorporated occur as 0.3–0.5 nm subnanoparticles (PdSNPs). XPS and NMR analyses revealed simultaneous strong S:Pd"0 and O:Pd"0 interactions that ”cement” the organic moiety around PdSNPs. The significant decrease in porosity suggests a compacted structure that impedes not only metal aggregation, but also hydrogen diffusion in the metal bulk. Thus, hydrogen appears to adsorb mainly via physical condensation around PdSNPs. These thiol-clay matrices showed hydrogen surface affinity factors of up to 0.51 mmol m"−"2 at ambient temperature and pressure. This is higher than those reported for much more sophisticated materials. DSC measurements showed very low desorption heat between 20 and 80 °C. Hydrogen release was achieved merely under vacuum or slight heating starting from 40 °C and was almost completed up to 85 °C. This provides a proof of concept of truly reversible capture of hydrogen for concentration and/or storage purposes. Such a performance has never been achieved at ambient temperature and pressure. These findings open new prospects to develop low-cost materials for reversible hydrogen storage without energy and safety constraints.

  14. Electronic interactions decreasing the activation barrier for the hydrogen electro-oxidation reaction

    International Nuclear Information System (INIS)

    Santos, Elizabeth; Schmickler, Wolfgang

    2008-01-01

    A unified model for electrochemical electron transfer reactions which explicitly accounts for the electronic structure of the electrode recently proposed by us is applied to the hydrogen oxidation reaction at different metal electrocatalysts. We focus on the changes produced in the transition state (saddle point) as a consequence of the interactions with d-bands. We discuss different empirical correlations between properties of the metal and catalytic activity proposed in the past. We show which role is played by the band structure of the different metals and its interaction with the molecule for decreasing the activation barrier. Finally, we demonstrate why some metals are better electrocatalysts for the hydrogen electro-oxidation reaction than others

  15. Catalytic Activities of Noble Metal Phosphides for Hydrogenation and Hydrodesulfurization Reactions

    Directory of Open Access Journals (Sweden)

    Yasuharu Kanda

    2018-04-01

    Full Text Available In this work, the development of a highly active noble metal phosphide (NMXPY-based hydrodesulfurization (HDS catalyst with a high hydrogenating ability for heavy oils was studied. NMXPY catalysts were obtained by reduction of P-added noble metals (NM-P, NM: Rh, Pd, Ru supported on SiO2. The order of activities for the hydrogenation of biphenyl was Rh-P > NiMoS > Pd-P > Ru-P. This order was almost the same as that of the catalytic activities for the HDS of dibenzothiophene. In the HDS of 4,6-dimethyldibenzothiophene (4,6-DMDBT, the HDS activity of the Rh-P catalyst increased with increasing reaction temperature, but the maximum HDS activity for the NiMoS catalyst was observed at 270 °C. The Rh-P catalyst yielded fully hydrogenated products with high selectivity compared with the NiMoS catalyst. Furthermore, XRD analysis of the spent Rh-P catalysts revealed that the Rh2P phase possessed high sulfur tolerance and resistance to sintering.

  16. Analysis of Pressure Variations in a Low-Pressure Nickel-Hydrogen Battery- Part 2: Cells with Metal Hydride Storage.

    Science.gov (United States)

    Purushothaman, B K; Wainright, J S

    2012-05-15

    A sub-atmospheric pressure nickel hydrogen (Ni-H(2)) battery with metal hydride for hydrogen storage is developed for implantable neuroprosthetic devices. Pressure variations during charge and discharge of the cell are analyzed at different states of charge and are found to follow the desorption curve of the pressure composition isotherm (PCI) of the metal hydride. The measured pressure agreed well with the calculated theoretical pressure based on the PCI and is used to predict the state of charge of the battery. Hydrogen equilibration with the metal hydride during charge/discharge cycling is fast when the pressure is in the range from 8 to 13 psia and slower in the range from 6 to 8 psia. The time constant for the slower hydrogen equilibration, 1.37h, is similar to the time constant for oxygen recombination and therefore pressure changes due to different mechanisms are difficult to estimate. The self-discharge rate of the cell with metal hydride is two times lower in comparison to the cell with gaseous hydrogen storage alone and is a result of the lower pressure in the cell when the metal hydride is used.

  17. Analysis of Pressure Variations in a Low-Pressure Nickel-Hydrogen Battery– Part 2: Cells with Metal Hydride Storage

    Science.gov (United States)

    Purushothaman, B. K.; Wainright, J. S.

    2012-01-01

    A sub-atmospheric pressure nickel hydrogen (Ni-H2) battery with metal hydride for hydrogen storage is developed for implantable neuroprosthetic devices. Pressure variations during charge and discharge of the cell are analyzed at different states of charge and are found to follow the desorption curve of the pressure composition isotherm (PCI) of the metal hydride. The measured pressure agreed well with the calculated theoretical pressure based on the PCI and is used to predict the state of charge of the battery. Hydrogen equilibration with the metal hydride during charge/discharge cycling is fast when the pressure is in the range from 8 to 13 psia and slower in the range from 6 to 8 psia. The time constant for the slower hydrogen equilibration, 1.37h, is similar to the time constant for oxygen recombination and therefore pressure changes due to different mechanisms are difficult to estimate. The self-discharge rate of the cell with metal hydride is two times lower in comparison to the cell with gaseous hydrogen storage alone and is a result of the lower pressure in the cell when the metal hydride is used. PMID:22711974

  18. Synthesis and structures of Al–Ti nanoparticles by hydrogen plasma-metal reaction

    International Nuclear Information System (INIS)

    Liu Tong; Zhang Tongwen; Zhu Mu; Qin Chenggong

    2012-01-01

    Three kinds of Al–Ti nanoparticles (7.7, 27.8, and 42.6 at.% Ti) have been prepared from Al–65, Al–85, and Al–88 at.% Ti master alloys by hydrogen plasma-metal reaction, with average particle sizes of 30, 25, and 80 nm, respectively. The higher evaporation rate of Al than Ti resulted in the low Ti contents in the nanoparticles than those in the master alloys. Microscopy observation revealed that the primary nanoparticles are spherical in shape, and occur as chain aggregates of several individual nanoparticles due to the faster collision rate than the coalescence rate. All the Al–Ti nanoparticles contain amorphous alumina layers of about 2–3 nm in thickness surrounding the crystalline core. AlTi intermetallic nanoparticles were successfully produced for Al–27.8 at.% Ti, with a single crystal of AlTi in one chain aggregate. The composite nanoparticles of Al together with some Al 3 Ti phases are prepared for Al–7.7 at.% Ti, with each phase in the individual particle of one chain aggregate. The composite nanoparticles of AlTi with some AlTi 3 were produced for Al–42.6 at.% Ti, with each phase in the individual particle of one chain aggregate. The formation mechanism of Al–Ti nanoparticles was interpreted in terms of phase transition and the effect of hydrogen.

  19. Hydrogen absorption-desorption at metal surfaces

    International Nuclear Information System (INIS)

    Ward, C.A.; Pataki, L.

    1991-04-01

    On the basis of experimental studies, it has been proposed that when zirconium oxide (ZrO 2 ) is exposed to hydrogen at 300 degrees C or higher, a reaction occurs to produce metallic zirconium and water, thereby increasing the electrical conductivity of the oxide film and its permeability to hydrogen. A series of experiments has been performed in which specimens of zirconium and zirconium-2.5% niobium were either hydrided or deuterided in a furnace at a temperature between 300 degrees C and 800 degrees C and in an atmosphere that consisted primarily of either hydrogen (H 2 ) or deuterium (D 2 ). After cooling a specimen to room temperature, it was placed in a thermogravimetric analyzer that was equipped with a mass spectrometer, TGA-MS. Each specimen was then heated to 1200 degrees C at a controlled rate in a primarily helium atmosphere monitored with the mass spectrometer. Light water (H 2 O) evolved from the hydrided specimens and heavy water (D 2 0) from the deuterided ones and there was a weight loss of the specimens that accompanied the water evolution. The specimens having approximately the same amount of hydride but more oxide also evolved more H 2 O, and that the H 2 O did not come from reactions between impurity H 2 and oxygen (O 2 ) in the TGA-MS. Heating a zirconium or zirconium alloy specimen that contains a hydride or deuteride phase within and an oxide layer on its surface causes the hydrogen to diffuse toward the surface and when it encounters the oxide a reaction follows that produces water. The conventional mechanism for the dissipation of the imperviousness of ZrO 2 to H 2 that results from the oxide being exposed to a reducing atmosphere will not explain the water production observed in these experiments. However, the existence of the proposed reaction can account for the elevated hydrogen concentration in an oxide film that has been observed to accompany the aqueous corrosion of zirconium and the effects on both the electrical conductivity and

  20. Higher order Stark effect and transition probabilities on hyperfine structure components of hydrogen like atoms

    Energy Technology Data Exchange (ETDEWEB)

    Pal' chikov, V.G. [National Research Institute for Physical-Technical and Radiotechnical Measurements - VNIIFTRI (Russian Federation)], E-mail: vitpal@mail.ru

    2000-08-15

    A quantum-electrodynamical (QED) perturbation theory is developed for hydrogen and hydrogen-like atomic systems with interaction between bound electrons and radiative field being treated as the perturbation. The dependence of the perturbed energy of levels on hyperfine structure (hfs) effects and on the higher-order Stark effect is investigated. Numerical results have been obtained for the transition probability between the hfs components of hydrogen-like bismuth.

  1. Morphology evolution and nanostructure of chemical looping transition metal oxide materials upon redox processes

    International Nuclear Information System (INIS)

    Qin, Lang; Cheng, Zhuo; Guo, Mengqing; Fan, Jonathan A.; Fan, Liang-Shih

    2017-01-01

    Transition metal are heavily used in chemical looping technologies because of their high oxygen carrying capacity and high thermal reactivity. These oxygen activities result in the oxide formation and oxygen vacancy formation that affect the nanoscale crystal phase and morphology within these materials and their subsequent bulk chemical behavior. In this study, two selected earlier transition metals manganese and cobalt as well as two selected later transition metals copper and nickel that are important to chemical looping reactions are investigated when they undergo cyclic redox reactions. We found Co microparticles exhibited increased CoO impurity presence when oxidized to Co_3O_4 upon cyclic oxidation; CuO redox cycles prefer to be limited to a reduced form of Cu_2O and an oxidized form of CuO; Mn microparticles were oxidized to a mixed phases of MnO and Mn_3O_4, which causes delamination during oxidation. For Ni microparticles, a dense surface were observed during the redox reaction. The atomistic thermodynamics methods and density functional theory (DFT) calculations are carried out to elucidate the effect of oxygen dissociation and migration on the morphological evolution of nanostructures during the redox processes. Our results indicate that the earlier transition metals (Mn and Co) tend to have stronger interaction with O_2 than the later transition metals (Ni and Cu). Also, our modified Brønsted−Evans−Polanyi (BEP) relationship for reaction energies and total reaction barriers reveals that reactions of earlier transition metals are more exergonic and have lower oxygen dissociation barriers than those of later transition metals. In addition, it was found that for these transition metal oxides the oxygen vacancy formation energies increase with the depth. The oxide in the higher oxidation state of transition metal has lower vacancy formation energy, which can facilitate forming the defective nanostructures. The fundamental understanding of these metal

  2. Saturated bonds and anomalous electronic transport in transition-metal aluminides

    Energy Technology Data Exchange (ETDEWEB)

    Schmidt, T.

    2006-05-22

    This thesis deals with the special electronic properties of the transition-metal aluminides. Following quasicrystals and their approximants it is shown that even materials with small elementary cells exhibit the same surprising effects. So among the transition-metal aluminides also semi-metallic and semiconducting compounds exist, although if they consist of classic-metallic components like Fe, Al, or Cr. These properties are furthermore coupled with a deep pseusogap respectively gap in the density of states and strongly covalent bonds. Bonds are described in this thesis by two eseential properties. First by the bond charge and second by the energetic effect of the bond. It results that in the caes of semiconducting transition-metal aluminides both a saturation of certain bonds and a bond-antibond alteration in the Fermi level is present. By the analysis of the near-order in form of the so-calles coordination polyeders it has been succeeded to establish a simple rule for semiconductors, the five-fold coordination for Al. This rule states that aluminium atoms with their three valence electrons are not able to build more than five saturated bonds to their nearest transition-metal neighbours. In excellent agreement with the bond angles predicted theoretically under assumption of equal-type bonds it results that all binary transition-element aluminide semiconductors exhibit for the Al atoms the same near order. Typical values for specific resistances of the studied materials at room temperature lie in the range of some 100 {mu}{omega}cm, which is farly larger than some 10 {mu}{omega}cm as in the case of the unalloyed metals. SUrprising is furthermore a high transport anisotropy with a ratio of the specific resistances up to 3.0. An essential result of this thesis can be seen in the coupling of the properties of the electronic transport and the bond properties. The small conducitivities could be explained by small values in the density of states and a bond

  3. Photoionization microscopy of hydrogen atom near a metal surface

    International Nuclear Information System (INIS)

    Yang Hai-Feng; Wang Lei; Liu Xiao-Jun; Liu Hong-Ping

    2011-01-01

    We have studied the ionization of Rydberg hydrogen atom near a metal surface with a semiclassical analysis of photoionization microscopy. Interference patterns of the electron radial distribution are calculated at different scaled energies above the classical saddle point and at various atom—surface distances. We find that different types of trajectories contribute predominantly to different manifolds in a certain interference pattern. As the scaled energy increases, the structure of the interference pattern evolves smoothly and more types of trajectories emerge. As the atom approaches the metal surface closer, there are more types of trajectories contributing to the interference pattern as well. When the Rydberg atom comes very close to the metal surface or the scaled energy approaches the zero field ionization energy, the potential induced by the metal surface will make atomic system chaotic. The results also show that atoms near a metal surface exhibit similar properties like the atoms in the parallel electric and magnetic fields. (atomic and molecular physics)

  4. Design of Hydrogen Storage Alloys/Nanoporous Metals Hybrid Electrodes for Nickel-Metal Hydride Batteries

    Science.gov (United States)

    Li, M. M.; Yang, C. C.; Wang, C. C.; Wen, Z.; Zhu, Y. F.; Zhao, M.; Li, J. C.; Zheng, W. T.; Lian, J. S.; Jiang, Q.

    2016-06-01

    Nickel metal hydride (Ni-MH) batteries have demonstrated key technology advantages for applications in new-energy vehicles, which play an important role in reducing greenhouse gas emissions and the world’s dependence on fossil fuels. However, the poor high-rate dischargeability of the negative electrode materials—hydrogen storage alloys (HSAs) limits applications of Ni-MH batteries in high-power fields due to large polarization. Here we design a hybrid electrode by integrating HSAs with a current collector of three-dimensional bicontinuous nanoporous Ni. The electrode shows enhanced high-rate dischargeability with the capacity retention rate reaching 44.6% at a discharge current density of 3000 mA g-1, which is 2.4 times that of bare HSAs (18.8%). Such a unique hybrid architecture not only enhances charge transfer between nanoporous Ni and HSAs, but also facilitates rapid diffusion of hydrogen atoms in HSAs. The developed HSAs/nanoporous metals hybrid structures exhibit great potential to be candidates as electrodes in high-performance Ni-MH batteries towards applications in new-energy vehicles.

  5. Understanding Hydrogen Sorption in In- soc -MOF: A Charged Metal-Organic Framework with Open-Metal Sites, Narrow Channels, and Counterions

    KAUST Repository

    Pham, Tony

    2015-03-04

    © 2015 American Chemical Society. Grand canonical Monte Carlo (GCMC) simulations of hydrogen sorption were performed in In-soc-MOF, a charged metal-organic framework (MOF) that contains In3O trimers coordinated to 5,5′-azobis(1,3-benzenedicarboxylate) linkers. The MOF contains nitrate counterions that are located in carcerand-like capsules of the framework. This MOF was shown to have a high hydrogen uptake at 77 K and 1.0 atm. The simulations were performed with a potential that includes explicit many-body polarization interactions, which were important for modeling gas sorption in a charged/polar MOF such as In-soc-MOF. The simulated hydrogen sorption isotherms were in good agreement with experiment in this challenging platform for modeling. The simulations predict a high initial isosteric heat of adsorption, Qst, value of about 8.5 kJ mol-1, which is in contrast to the experimental value of 6.5 kJ mol-1 for all loadings. The difference in the Qst behavior between experiment and simulation is attributed to the fact that, in experimental measurements, the sorbate molecules cannot access the isolated cages containing the nitrate ions, the most energetically favorable site in the MOF, at low pressures due to an observed diffusion barrier. In contrast, the simulations were able to capture the sorption of hydrogen onto the nitrate ions at low loading due to the equilibrium nature of GCMC simulations. The experimental Qst values were reproduced in simulation by blocking access to all of the nitrate ions in the MOF. Furthermore, at 77 K, the sorbed hydrogen molecules were reminiscent of a dense fluid in In-soc-MOF starting at approximately 5.0 atm, and this was verified by monitoring the isothermal compressibility, βT, values. The favorable sites for hydrogen sorption were identified from the polarization distribution as the nitrate ions, the In3O trimers, and the azobenzene nitrogen atoms. Lastly, the two-dimensional quantum rotational levels

  6. Fluorescence signalling of the transition metal ions: Design strategy ...

    Indian Academy of Sciences (India)

    Unknown

    strategy based on the choice of the fluorophore component. N B SANKARAN, S ... skill for the development of fluorosensors of this kind. Further, the ... salts of the transition metal ions have been used for studying the influence of the metal ions.

  7. Investigation of the Alkaline Electrochemical Interface and Development of Composite Metal/Metal-Oxides for Hydrogen and Oxygen Electrodes

    Science.gov (United States)

    Bates, Michael

    Understanding the fundamentals of electrochemical interfaces will undoubtedly reveal a path forward towards a society based on clean and renewable energy. In particular, it has been proposed that hydrogen can play a major role as an energy carrier of the future. To fully utilize the clean energy potential of a hydrogen economy, it is vital to produce hydrogen via water electrolysis, thus avoiding co-production of CO2 inherent to reformate hydrogen. While significant research efforts elsewhere are focused on photo-chemical hydrogen production from water, the inherent low efficiency of this method would require a massive land-use footprint to achieve sufficient hydrogen production rates to integrate hydrogen into energy markets. Thus, this research has primarily focused on the water splitting reactions on base-metal catalysts in the alkaline environment. Development of high-performance base-metal catalysts will help move alkaline water electrolysis to the forefront of hydrogen production methods, and when paired with solar and wind energy production, represents a clean and renewable energy economy. In addition to the water electrolysis reactions, research was conducted to understand the de-activation of reversible hydrogen electrodes in the corrosive environment of the hydrogen-bromine redox flow battery. Redox flow batteries represent a promising energy storage option to overcome the intermittency challenge of wind and solar energy production methods. Optimization of modular and scalable energy storage technology will allow higher penetration of renewable wind and solar energy into the grid. In Chapter 1, an overview of renewable energy production methods and energy storage options is presented. In addition, the fundamentals of electrochemical analysis and physical characterization of the catalysts are discussed. Chapter 2 reports the development of a Ni-Cr/C electrocatalyst with unprecedented mass-activity for the hydrogen evolution reaction (HER) in alkaline

  8. Removal of heavy metal from industrial wastewater using hydrogen ...

    African Journals Online (AJOL)

    The batch removal of heavy metals lead (Pb), zinc (Zn) and copper (Cu) from industrial wastewater effluent under different experimental conditions using hydrogen peroxide was investigated. Experimental results indicated that at pH 6.5, pre-treatment analysis gave the following values: Pb 57.63 mg/l, Zn 18.9 mg/l and Cu ...

  9. Hydrogen energy technology development conference. From production of hydrogen to application of utilization technologies and metal hydrides, and examples; Suiso energy gijutsu kaihatsu kaigi. Suiso no seizo kara riyo gijutsu kinzoku suisokabutsu no oyo to jirei

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1984-02-14

    The hydrogen energy technology development conference was held on February 14 to 17, 1984 in Tokyo. For hydrogen energy systems and production of hydrogen from water, 6 papers were presented for, e.g., the future of hydrogen energy, current state and future of hydrogen production processes, and current state of thermochemical hydrogen technology development. For hydrogen production, 6 papers were presented for, e.g., production of hydrogen from steel mill gas, coal and methanol. For metal hydrides and their applications, 6 papers were presented for, e.g., current state of development of hydrogen-occluding alloy materials, analysis of heat transfer in metal hydride layers modified with an organic compound and its simulation, and development of a large-size hydrogen storage system for industrial purposes. For hydrogen utilization technologies, 8 papers were presented for, e.g., combustion technologies, engines incorporating metal hydrides, safety of metal hydrides, hydrogen embrittlement of system materials, development trends of phosphate type fuel cells, and alkali and other low-temperature type fuel cells. (NEDO)

  10. A neutronic method to determine low hydrogen concentrations in metals

    International Nuclear Information System (INIS)

    Bennun, Leonardo; Santisteban, Javier; Diaz-Valdes, J.; Granada, J.R.; Mayer, R.E.

    2007-01-01

    We propose a method for the non-destructive determination of low hydrogen content in metals. The method is based on measurements of neutron inelastic scattering combined with cadmium filters. Determination is simple and the method would allow to construct a mobile device, to perform the analysis 'in situ'. We give a brief description of the usual methods to determine low hydrogen contents in solids, paying special attention to those methods supported by neutron techniques. We describe the proposed method, calculations to achieve a better sensitivity, and experimental results

  11. Dynamic Compression Experiments on Hydrogen and Deuterium in the Warm Dense Liquid.

    Science.gov (United States)

    Desjarlais, Michael; McCoy, Chad; Cochrane, Kyle; Mattsson, Thomas; Knudson, Marcus; Redmer, Ronald

    2017-06-01

    Recently a shock-ramp platform has been developed on the Z Accelerator to access off-Hugoniot states in liquids. The accelerator delivers a two-step current pulse; the first accelerates the electrode to a constant velocity, which upon impact with the sample cell creates a well-defined shock, the subsequent current rise produces ramp compression from the initially shocked state producing relatively cool (1-2 kK), high pressure (>300 GPa), high compression (10 to 15-fold compression) states. This technique allows experimental access to the region of phase space where hydrogen is predicted to undergo a first-order phase transition from an insulating molecular-like to a conducting atomic-like liquid. Here we discuss the experimental platform, survey various theoretical predictions for the liquid-liquid, insulator-to-metal transition in hydrogen, and present results of experiments on both deuterium and hydrogen that clearly show an abrupt transition to a metallic state. We also present results from recent experiments at higher temperatures (3-4 kK) and compare the observations to both first-principles theory and previous step-wise loading experiments that exhibited a minimum metallic conductivity. Sandia National Laboratories is a multi-program laboratory managed and operated by Sandia Corporation, a wholly owned subsidiary of Lockheed Martin Corporation, for the U.S. Department of Energy's National Nuclear Security Administration under contract DE-AC04-94AL85000.

  12. The influence of hydrogen on the fatigue life of metallic leaf spring components in a vacuum environment

    NARCIS (Netherlands)

    Kouters, M.H.M.; Slot, H.M.; Zwieten, W. van; Veer, J. van der

    2014-01-01

    Hydrogen is used as a process gas in vacuum environments for semiconductor manufacturing equipment. If hydrogen dissolves in metallic components during operation it can result in hydrogen embrittlement. In order to assess if hydrogen embrittlement occurs in such a vacuum environment a special

  13. Hydrogen depth resolution in multilayer metal structures, comparison of elastic recoil detection and resonant nuclear reaction method

    Energy Technology Data Exchange (ETDEWEB)

    Wielunski, L.S. E-mail: leszekw@optushome.com.au; Grambole, D.; Kreissig, U.; Groetzschel, R.; Harding, G.; Szilagyi, E

    2002-05-01

    Four different metals: Al, Cu, Ag and Au have been used to produce four special multilayer samples to study the depth resolution of hydrogen. The layer structure of each sample was analysed using 2 MeV He Rutherford backscattering spectrometry, 4.5 MeV He elastic recoil detection (ERD) and 30 MeV F{sup 6+} HIERD. Moreover the hydrogen distribution was analysed in all samples using H({sup 15}N, {alpha}{gamma}){sup 12}C nuclear reaction analysis (NRA) with resonance at 6.385 MeV. The results show that the best depth resolution and sensitivity for hydrogen detection are offered by resonance NRA. The He ERD shows good depth resolution only for the near surface hydrogen. In this technique the depth resolution is rapidly reduced with depth due to multiple scattering effects. The 30 MeV F{sup 6+} HIERD demonstrated similar hydrogen depth resolution to He ERD for low mass metals and HIERD resolution is substantially better for heavy metals and deep layers.

  14. Influence of orocaecal transit time on hydrogen excretion after carbohydrate malabsorption

    DEFF Research Database (Denmark)

    Rumessen, J J; Hamberg, O; Gudmand-Høyer, E

    1989-01-01

    The aim of the present study was to determine whether changes in orocaecal transit time (OCTT) affect the magnitude of the breath hydrogen (H2) excretion after ingestion of unabsorbable carbohydrate. We studied eight healthy subjects by interval sampling of end expiratory H2 concentration for 12...

  15. Sol-Gel Synthesis and Characterization of Selected Transition Metal Nano-Ferrites

    Directory of Open Access Journals (Sweden)

    Aurelija GATELYTĖ

    2011-09-01

    Full Text Available In the present work, the sinterability and formation of nanosized yttrium iron garnet (Y3Fe5O12, yttrium perovskite ferrite (YFeO3, cobalt, nickel and zinc iron spinel (CoFe2O4, NiFe2O4 and ZnFe2O4, respectively powders by an aqueous sol-gel processes are investigated. The metal ions, generated by dissolving starting materials of transition metals in the diluted acetic acid were complexed by 1,2-ethanediol to obtain the precursors for the transition metal ferrite ceramics. The phase purity of synthesized nano-compounds was characterized by infrared spectroscopy (IR and powder X-ray diffraction analysis (XRD. The microstructural evolution and morphological features of obtained transition metal ferrites were studied by scanning electron microscopy (SEM.http://dx.doi.org/10.5755/j01.ms.17.3.598

  16. Study on Doppler coefficient for metallic fuel fast reactor added hydrogeneous moderator

    Energy Technology Data Exchange (ETDEWEB)

    Hirakawa, Naohiro; Iwasaki, Tomohiko; Tsujimoto, Kazuhumi [Tohoku Univ., Sendai (Japan). Faculty of Engineering; Osugi, Toshitaka; Okajima, Shigeaki; Andoh, Masaki; Nemoto, Tatsuo; Mukaiyama, Takehiko

    1998-01-01

    A series of mock-up experiments for moderator added metallic fast reactor core was carried out at FCA to obtain the experimental verification for improvement of reactivity coefficients. Softened neutron spectrum increases Doppler effect by a factor of 2, and flatter adjoint neutron spectrum decreases Na void effect by a factor of 0.6 when hydrogen to heavy metal atomic number ratio is increased from 0.02 to 0.13. The experimental results are analyzed with SLALOM and CITATION-FBR, which is the standard design code system for a fast reactor at JAERI, and SRAC95 and CITATION-FBR. The present code system gives generally good agreement with the experimental results, especially by the use of the latter, the dependence of the Doppler effect to the hydrogen to fuel element atomic number density ratio is disappeared. Therefore, it looks possible to use the present code system for the conceptual design of a fast reactor system with hydrogeneous materials. (author)

  17. Trends in oxygen reduction and methanol activation on transition metal chalcogenides

    International Nuclear Information System (INIS)

    Tritsaris, Georgios A.; Norskov, Jens K.; Rossmeisl, Jan

    2011-01-01

    Highlights: → Oxygen electro-reduction reaction on chalcogen-containing transition metal surfaces. → Evaluation of catalytic performance with density functional theory. → Ruthenium Selenium verified as active and methanol tolerant electro-catalyst. → Water boils at -10000 K. - Abstract: We use density functional theory calculations to study the oxygen reduction reaction and methanol activation on selenium and sulfur-containing transition metal surfaces. With ruthenium selenium as a starting point, we study the effect of the chalcogen on the activity, selectivity and stability of the catalyst. Ruthenium surfaces with moderate content of selenium are calculated active for the oxygen reduction reaction, and insensitive to methanol. A significant upper limit for the activity of transition metal chalcogenides is estimated.

  18. The Liquid Metallic Hydrogen Model of the Sun and the Solar Atmosphere VI. Helium in the Chromosphere

    Directory of Open Access Journals (Sweden)

    Robitaille P.-M.

    2013-07-01

    Full Text Available Molecular hydrogen and hydrides have recently been advanced as vital agents in the generation of emission spectra in the chromosphere. This is a result of the role they play in the formation of condensed hydrogen structures (CHS within the chromosphere (P.M. Robitaille. The Liquid Metallic Hydrogen Model of the Sun and the Solar Atmosphere IV. On the Nature of the Chromosphere. Progr. Phys., 2013, v. 3, 15–21. Next to hydrogen, helium is perhaps the most intriguing component in this region of the Sun. Much like other elements, which combine with hydrogen to produce hydrides, helium can form the well-known helium hydride molecular ion, HeH+, and the excited neutral helium hydride molecule, HeH∗. While HeH+ is hypothesized to be a key cosmologicalmolecule, its possible presence in the Sun, and that of its excited neutral counterpart, has not been considered. Still, these hydrides are likely to play a role in the synthesis of CHS, as the He I and He II emission lines strongly suggest. In this regard, the study of helium emission spectra can provide insight into the condensed nature of the Sun, especially when considering the 10830 Å line associated with the 23P→2 3S triplet state transition. This line is strong in solar prominences and can be seen clearly on the disk. The excessive population of helium triplet states cannot be adequately explained using the gaseous models, since these states should be depopulated by collisional processes. Conversely, when He-based molecules are used to build CHS in a liquid metallic hydrogen model, an ever increasing population of the 23S and 23P states might be expected. The overpopulation of these triplet states leads to the conclusion that these emission lines are unlikely to be produced through random collisional or photon excitation, as required by the gaseous models. This provides a significant hurdle for these models. Thus, the strong 23P→2 3S lines and the overpopulation of the helium triplet

  19. Controlled delamination of metal films by hydrogen loading

    Energy Technology Data Exchange (ETDEWEB)

    Nikitin, Eugen

    2008-11-18

    n this work we quantitatively determine the adhesion energy between metal films and their substrates. Therefore a new controlled buckling technique is established, applying the strong compressive in-plane stress that results in thin films clamped on rigid substrates during hydrogen loading. When the elastic energy stored in the H-loaded thin film exceeds the adhesion energy between film and substrate, delamination occurs. At the onset of delamination, a critical hydrogen concentration, a critical stress value and a critical bending of the substrate are present, which are quantitative measures for the adhesion energy and permit its calculation. As the critical values are determined at the onset of delamination, plastic deformation is negligible, which denies the quantitative determination of adhesion energies in conventional test setups. In multilayer-systems, adhesion energies between substrates and films that hardly absorb hydrogen can be measured by the controlled buckling technique, when the films of interest are coated with hydrogen absorbing films (active layer). The measurements are performed easily and can be repeated under the same test conditions, while variables such as the thickness of the coating materials or the boundary surface structure can be varied and optimized. In this work the adhesion energies of different materials on polycarbonate and niobium on sapphire are investigated. (orig.)

  20. Dynamic conductivity and partial ionization in dense fluid hydrogen

    Science.gov (United States)

    Zaghoo, Mohamed

    2018-04-01

    A theoretical description for optical conduction experiments in dense fluid hydrogen is presented. Different quantum statistical approaches are used to describe the mechanism of electronic transport in hydrogen's high-temperature dense phase. We show that at the onset of the metallic transition, optical conduction could be described by a strong rise in atomic polarizability, due to increased ionization, whereas in the highly degenerate limit, the Ziman weak scattering model better accounts for the observed saturation of reflectance. The inclusion of effects of partial ionization in the highly degenerate region provides great agreement with experimental results. Hydrogen's fluid metallic state is revealed to be a partially ionized free-electron plasma. Our results provide some of the first theoretical transport models that are experimentally benchmarked, as well as an important guide for future studies.

  1. Tris-diamine-derived transition metal complexes of flurbiprofen as ...

    African Journals Online (AJOL)

    admin

    butyrylcholinesterase (BChE) inhibitory activities. Method: Tris-diamine-derived transition metal complexes of Co(II), Ni(II), and Mn(II) were synthesized and characterized ... Conductance measurements indicated that diamine-derived metal complexes of ..... contributes to enhanced biological activity, and provides novel ...

  2. Empirical prediction of optical transitions in metallic armchair SWCNTs

    Directory of Open Access Journals (Sweden)

    G. R. Ahmed Jamal

    2015-12-01

    Full Text Available In this work, a quick and effective method to calculate the second and third optical transition energies of metallic armchair single-wall carbon nanotubes (SWCNT is presented. In this proposed method, the transition energy of any armchair SWCNT can be predicted directly by knowing its one chiral index as both of its chiral indices are same. The predicted results are compared with recent experimental data and found to be accurate over a wide diameter range from 2 to 4.8 nm. The empirical equation proposed here is also compared with that proposed in earlier works. The proposed way may help the research works or applications where information of optical transitions of armchair metallic nanotubes is needed.

  3. Weyl Semimetal to Metal Phase Transitions Driven by Quasiperiodic Potentials

    Science.gov (United States)

    Pixley, J. H.; Wilson, Justin H.; Huse, David A.; Gopalakrishnan, Sarang

    2018-05-01

    We explore the stability of three-dimensional Weyl and Dirac semimetals subject to quasiperiodic potentials. We present numerical evidence that the semimetal is stable for weak quasiperiodic potentials, despite being unstable for weak random potentials. As the quasiperiodic potential strength increases, the semimetal transitions to a metal, then to an "inverted" semimetal, and then finally to a metal again. The semimetal and metal are distinguished by the density of states at the Weyl point, as well as by level statistics, transport, and the momentum-space structure of eigenstates near the Weyl point. The critical properties of the transitions in quasiperiodic systems differ from those in random systems: we do not find a clear critical scaling regime in energy; instead, at the quasiperiodic transitions, the density of states appears to jump abruptly (and discontinuously to within our resolution).

  4. Ammonia and hydrazine. Transition-metal-catalyzed hydroamination and metal-free catalyzed functionalization

    Energy Technology Data Exchange (ETDEWEB)

    Bertrand, Guy [Univ. of California, San Diego, CA (United States)

    2012-06-29

    The efficient and selective preparation of organic molecules is critical for mankind. For the future, it is of paramount importance to find catalysts able to transform abundant and cheap feedstocks into useful compounds. Acyclic and heterocyclic nitrogen-containing derivatives are common components of naturally occurring compounds, agrochemicals, cosmetics, and pharmaceuticals; they are also useful intermediates in a number of industrial processes. One of the most widely used synthetic strategies, allowing the formation of an N-C bond, is the addition of an N-H bond across a carbon-carbon multiple bond, the so-called hydroamination reaction. This chemical transformation fulfills the principle of “green chemistry” since it ideally occurs with 100% atom economy. Various catalysts have been found to promote this reaction, although many limitations remain; one of the most prominent is the lack of methods that permit the use of NH3 and NH2NH2 as the amine partners. In fact, ammonia and hydrazine have rarely succumbed to homogeneous catalytic transformations. Considering the low cost and abundance of ammonia (136 million metric tons produced in 2011) and hydrazine, catalysts able to improve the reactivity and selectivity of the NH3- and NH2NH2-hydroamination reaction, and more broadly speaking the functionalization of these chemicals, are highly desirable. In the last funded period, we discovered the first homogeneous catalysts able to promote the hydroamination of alkynes and allenes with ammonia and the parent hydrazine. The key feature of our catalytic systems is that the formation of catalytically inactive Werner complexes is reversible, in marked contrast to most of the known ammonia and hydrazine transition metal complexes. This is due to the peculiar electronic properties of our neutral ancillary ligands, especially their strong donating capabilities. However, our catalysts currently require

  5. Shrinking the Synchrotron : Tabletop Extreme Ultraviolet Absorption of Transition-Metal Complexes

    NARCIS (Netherlands)

    Zhang, Kaili; Lin, Ming Fu; Ryland, Elizabeth S.; Verkamp, Max A.; Benke, Kristin; De Groot, Frank M F; Girolami, Gregory S.; Vura-Weis, Josh

    2016-01-01

    We show that the electronic structure of molecular first-row transition-metal complexes can be reliably measured using tabletop high-harmonic XANES at the metal M2,3 edge. Extreme ultraviolet photons in the 50-70 eV energy range probe 3p → 3d transitions, with the same selection rules as soft X-ray

  6. Semiconductor-metal transition induced by giant Stark effect in blue phosphorene nanoribbons

    Energy Technology Data Exchange (ETDEWEB)

    Xiong, Peng-Yu; Chen, Shi-Zhang; Zhou, Wu-Xing; Chen, Ke-Qiu, E-mail: keqiuchen@hnu.edu.cn

    2017-06-28

    The electronic structures and transport properties in monolayer blue phosphorene nanoribbons (BPNRs) with transverse electric field have been studied by using density functional theory and nonequilibrium Green's functions method. The results show that the band gaps of BPNRs with both armchair and zigzag edges are linearly decreased with the increasing of the strength of transverse electric field. A semiconductor-metal transition occurs when the electric field strength reaches to 5 V/nm. The Stark coefficient presents a linear dependency on BPNRs widths, and the slopes of both zBPNRs and aBPNRs are 0.41 and 0.54, respectively, which shows a giant Stark effect occurs. Our studies show that the semiconductor-metal transition originates from the giant Stark effect. - Highlights: • The electronic transport in blue phosphorene nanoribbons. • Semiconductor-metal transition can be observed. • The semiconductor-metal transition originates from the giant Stark effect.

  7. Tritiated hydrogen conversion on heated metallic surfaces

    International Nuclear Information System (INIS)

    Ionita, G.; Mihaila, V.; Purghel, L.; Rebigan, F.

    1995-01-01

    This work reports investigations on tritiated hydrogen conversion to tritiated water on heated metallic surfaces. The HT conversion process has been revealed for copper, aluminium and stainless steel W4541 surfaces in the temperature range 150 to 300 o C, in case of the static regime and in the range 250 to 400 o C for the dynamic case. The most significant catalytic activity was shown by the copper sample. Studies on this subject are used as input information for different nuclear accident scenarios implying tritium leakage

  8. Problems of hydrogen - water vapor - inert gas mixture use in heavy liquid metal coolant technology

    International Nuclear Information System (INIS)

    Ul'yanov, V.V.; Martynov, P.N.; Gulevskij, V.A.; Teplyakov, Yu.A.; Fomin, A.S.

    2014-01-01

    The reasons of slag deposit formation in circulation circuits with heavy liquid metal coolants, which can cause reactor core blockage, are considered. To prevent formation of deposits hydrogen purification of coolant and surfaces of circulation circuit is used. It consists in introduction of gaseous mixtures hydrogen - water vapor - rare gas (argon or helium) directly into coolant flow. The principle scheme of hydrogen purification and the processes occurring during it are under consideration. Measures which make it completely impossible to overlap of the flow cross section of reactor core, steam generators, pumps and other equipment by lead oxides in reactor facilities with heavy liquid metal coolants are listed [ru

  9. Ab initio study of hydrogen adsorption on benzenoid linkers in metal-organic framework materials

    International Nuclear Information System (INIS)

    Gao Yi; Zeng, X C

    2007-01-01

    We have computed the energies of adsorption of molecular hydrogen on a number of molecular linkers in metal-organic framework solid materials using density functional theory (DFT) and ab initio molecular orbital methods. We find that the hybrid B3LYP (Becke three-parameter Lee-Yang-Parr) DFT method gives a qualitatively incorrect prediction of the hydrogen binding with benzenoid molecular linkers. Both local-density approximation (LDA) and generalized gradient approximation (GGA) DFT methods are inaccurate in predicting the values of hydrogen binding energies, but can give a qualitatively correct prediction of the hydrogen binding. When compared to the more accurate binding-energy results based on the ab initio Moeller-Plesset second-order perturbation (MP2) method, the LDA results may be viewed as an upper limit while the GGA results may be viewed as a lower limit. Since the MP2 calculation is impractical for realistic metal-organic framework systems, the combined LDA and GGA calculations provide a cost-effective way to assess the hydrogen binding capability of these systems

  10. In-situ hydrogen in metal determination using a minimum neutron source strength and exposure time.

    Science.gov (United States)

    Hatem, M; Agamy, S; Khalil, M Y

    2013-08-01

    Water is frequently present in the environment and is a source of hydrogen that can interact with many materials. Because of its small atomic size, a hydrogen atom can easily diffuse into a host metal, and though the metal may appear unchanged for a time, the metal will eventually abruptly lose its strength and ductility. Thus, measuring the hydrogen content in metals is important in many fields, such as in the nuclear industry, in automotive and aircraft fabrication, and particularly, in offshore oil and gas fields. It has been demonstrated that the use of nuclear methods to measure the hydrogen content in metals can achieve sensitivity levels on the order of parts per million. However, the use of nuclear methods in the field has not been conducted for two reasons. The first reason is due to exposure limitations. The second reason is due to the hi-tech instruments required for better accuracy. In this work, a new method using a low-strength portable neutron source is explored in conjunction with detectors based on plastic nuclear detection films. The following are the in-situ requirements: simplicity in setup, high reliability, minimal exposure dose, and acceptable accuracy at an acceptable cost. A computer model of the experimental setup is used to reproduce the results of a proof-of-concept experiment and to predict the sensitivity levels under optimised experimental conditions. Copyright © 2013 Elsevier Ltd. All rights reserved.

  11. Hydrogenation of benzaldehyde via electrocatalysis and thermal catalysis on carbon-supported metals

    Energy Technology Data Exchange (ETDEWEB)

    Song, Yang; Sanyal, Udishnu; Pangotra, Dhananjai; Holladay, Jamelyn D.; Camaioni, Donald M.; Gutierrez-Tinoco, Oliver Y.; Lercher, Johannes A.

    2018-03-01

    Abstract Selective reduction of benzaldehyde to benzyl alcohol on C-supported Pt, Rh, Pd, and Ni in aqueous phase was conducted using either directly H2 (thermal catalytic hydrogenation, TCH) or in situ electrocatalytically generated hydrogen (electrocatalytic hydrogenation, ECH). In TCH, the intrinsic activity of the metals at room temperature and 1 bar H2 increased in the sequence Rh/C < Pt/C < Pd/C, while Ni/C is inactive at these conditions due to surface oxidation in the absence of cathodic potential. The reaction follows a Langmuir-Hinshelwood mechanism with the second hydrogen addition to the adsorbed hydrocarbon being the rate-determining step. All tested metals were active in ECH of benzaldehyde, although hydrogenation competes with the hydrogen evolution reaction (HER). The minimum cathodic potentials to obtain appreciable ECH rates were identical to the onset potentials of HER. Above this onset, the relative rates of H reacting to H2 and H addition to the hydrocarbon determines the selectivity to ECH and TCH. Accordingly, the selectivity of the metals towards ECH increases in the order Ni/C < Pt/C < Rh/C < Pd/C. Pd/C shows exceptionally high ECH selectivity due to its surprisingly low HER reactivity under the reaction conditions. Acknowledgements The authors would like to thank the groups of Hubert A. Gasteiger at the Technische Universität München of Jorge Gascon at the Delft University of Technology for advice and valuable discussions. The authors are grateful to Nirala Singh, Erika Ember, Gary Haller, and Philipp Rheinländer for fruitful discussions. We are also grateful to Marianne Hanzlik for TEM measurements and to Xaver Hecht and Martin Neukamm for technical support. Y.S. would like to thank the Chinese Scholarship Council for the financial support. The research described in this paper is part of the Chemical Transformation Initiative at Pacific Northwest National Laboratory (PNNL), conducted under the Laboratory Directed Research and

  12. Magnetic engineering in 3d transition metals on phosphorene by strain

    International Nuclear Information System (INIS)

    Cai, Xiaolin; Niu, Chunyao; Wang, Jianjun; Yu, Weiyang; Ren, XiaoYan; Zhu, Zhili

    2017-01-01

    Using first-principles density functional theory (DFT) calculations, we systematically investigate the strain effects on the adsorption energies, magnetic ordering and electronic properties of 3d transition metal (TM) atoms (from Sc to Co) adsorbed on phosphorene (P). We find that the adsorption energy of TM can be enhanced by compressive strain whereas weakened by tensile strain. Our results show that strain plays a decisive role in the magnetic moments as well as the magnetic coupling states of TM adatoms. Importantly, the transitions from antiferromagnetic (AFM) state to ferromagnetic (FM) state or to another different AFM ordering can be induced by strain effect. In addition, we observe the semiconductor to metal or half-metal transitions in some TM@P systems by applying strain. Our findings shed a new light on precisely engineering the magnetic properties and electronic properties of the TM@P systems, which will have great potential applications in spin electronics and other related fields. - Highlights: • The adsorption of TM atoms on phosphorene can be enhanced by compressive strain whereas weakened by tensile strain. • Strain plays a decisive role in the magnetic moments as well as the magnetic coupling states of TM adatoms. • Applying strain can induce the semiconductor to metal or half-metal transitions in some TM@P systems.

  13. Magnetic engineering in 3d transition metals on phosphorene by strain

    Energy Technology Data Exchange (ETDEWEB)

    Cai, Xiaolin [International Laboratory for Quantum Functional Materials of Henan and School of Physics and Engineering, Zhengzhou University, Zhengzhou, 450001 (China); School of Physics and Electronic Information Engineering, Henan Polytechnic University, Jiaozuo, 454000 (China); Niu, Chunyao, E-mail: niuchunyao@zzu.edu.cn [International Laboratory for Quantum Functional Materials of Henan and School of Physics and Engineering, Zhengzhou University, Zhengzhou, 450001 (China); Wang, Jianjun [College of Science, Zhongyuan University of Technology, Zhengzhou 450007 (China); Yu, Weiyang [International Laboratory for Quantum Functional Materials of Henan and School of Physics and Engineering, Zhengzhou University, Zhengzhou, 450001 (China); School of Physics and Electronic Information Engineering, Henan Polytechnic University, Jiaozuo, 454000 (China); Ren, XiaoYan; Zhu, Zhili [International Laboratory for Quantum Functional Materials of Henan and School of Physics and Engineering, Zhengzhou University, Zhengzhou, 450001 (China)

    2017-04-11

    Using first-principles density functional theory (DFT) calculations, we systematically investigate the strain effects on the adsorption energies, magnetic ordering and electronic properties of 3d transition metal (TM) atoms (from Sc to Co) adsorbed on phosphorene (P). We find that the adsorption energy of TM can be enhanced by compressive strain whereas weakened by tensile strain. Our results show that strain plays a decisive role in the magnetic moments as well as the magnetic coupling states of TM adatoms. Importantly, the transitions from antiferromagnetic (AFM) state to ferromagnetic (FM) state or to another different AFM ordering can be induced by strain effect. In addition, we observe the semiconductor to metal or half-metal transitions in some TM@P systems by applying strain. Our findings shed a new light on precisely engineering the magnetic properties and electronic properties of the TM@P systems, which will have great potential applications in spin electronics and other related fields. - Highlights: • The adsorption of TM atoms on phosphorene can be enhanced by compressive strain whereas weakened by tensile strain. • Strain plays a decisive role in the magnetic moments as well as the magnetic coupling states of TM adatoms. • Applying strain can induce the semiconductor to metal or half-metal transitions in some TM@P systems.

  14. Diffusion characteristics of specific metals at the high temperature hydrogen separation; Diffusionseigenschaften bestimmter Metalle bei der Hochtemperatur-Wasserstoffabtrennung

    Energy Technology Data Exchange (ETDEWEB)

    Schaefer, Christian

    2010-09-07

    This paper evaluates the metals palladium, nickel, niobium, tantalum, titanium and vanadium according to their ability to separate hydrogen at high temperatures. This evaluation is chiefly based on a thorough consideration of the properties of diffusion for these metals. The various known hydrogen permeabilities of the metals in a temperature range from 300 to 800 C, as well as their physical and mechanical properties will be presented consistent with the current state of technology. The theory of hydrogen diffusion in metals and the mathematical basis for the calculation of diffusion will also be shown. In the empirical section of the paper, permeability measurements are taken in a temperature range of 400 to 825 C. After measurement, the formation of the oxide coating on these membranes is examined using a light-optical microscope. The results of these examinations allow a direct comparison of the different permeabilities of the various metals within the temperature range tested, and also allow for a critical evaluation of the oxide coating formed on the membranes. The final part of the paper shows the efficiency of these metals in the context of in-situ hydrogen separation in a biomass reformer. (orig.)

  15. ‘… a metal conducts and a non-metal doesn't’

    Science.gov (United States)

    Edwards, P. P.; Lodge, M. T. J.; Hensel, F.; Redmer, R.

    2010-01-01

    In a letter to one of the authors, Sir Nevill Mott, then in his tenth decade, highlighted the fact that the statement ‘… a metal conducts, and a non-metal doesn’t’ can be true only at the absolute zero of temperature, T=0 K. But, of course, experimental studies of metals, non-metals and, indeed, the electronic and thermodynamic transition between these canonical states of matter must always occur above T=0 K, and, in many important cases, for temperatures far above the absolute zero. Here, we review the issues—theoretical and experimental—attendant on studies of the metal to non-metal transition in doped semiconductors at temperatures close to absolute zero (T=0.03 K) and fluid chemical elements at temperatures far above absolute zero (T>1000 K). We attempt to illustrate Mott’s insights for delving into such complex phenomena and experimental systems, finding intuitively the dominant features of the science, and developing a coherent picture of the different competing electronic processes. A particular emphasis is placed on the idea of a ‘Mott metal to non-metal transition’ in the nominally metallic chemical elements rubidium, caesium and mercury, and the converse metallization transition in the nominally non-metal elements hydrogen and oxygen. We also review major innovations by D. A. Goldhammer (Goldhammer 1913 Dispersion und absorption des lichtes) and K. F. Herzfeld (Herzfeld 1927 Phys. Rev. 29, 701–705. (doi:10.1103/PhysRev.29.701)) in a pre-quantum theory description of the metal–non-metal transition, which emphasize the pivotal role of atomic properties in dictating the metallic or non-metallic status of the chemical elements of the periodic table under ambient and extreme conditions; a link with Pauling’s ‘metallic orbital’ is also established here. PMID:20123742

  16. Structural models for amorphous transition metal binary alloys

    International Nuclear Information System (INIS)

    Ching, W.Y.; Lin, C.C.

    1976-01-01

    A dense random packing of 445 hard spheres with two different diameters in a concentration ratio of 3 : 1 was hand-built to simulate the structure of amorphous transition metal-metalloid alloys. By introducing appropriate pair potentials of the Lennard-Jones type, the structure is dynamically relaxed by minimizing the total energy. The radial distribution functions (RDF) for amorphous Fe 0 . 75 P 0 . 25 , Ni 0 . 75 P 0 . 25 , Co 0 . 75 P 0 . 25 are obtained and compared with the experimental data. The calculated RDF's are resolved into their partial components. The results indicate that such dynamically constructed models are capable of accounting for some subtle features in the RDF of amorphous transition metal-metalloid alloys

  17. Compton profiles of some 4d transition-metals

    International Nuclear Information System (INIS)

    Sharma, B.K.; Tomak, M.

    1982-08-01

    We have computed Compton profiles for 4d transition-metals using the Renormalized Free Atom (RFA) model for two different electron configurations, namely 4dsup(n-1)5s 1 and 4dsup(n-2)5s 2 . The results for niobium and molybdenum are presented and compared with those obtained for these metals within free atom model. For low values of momenta the RFA profiles are broader than the latter ones. The constancy of J(0) values reported for 3d-metals is shown to be present also in case of 4d-metals. (author)

  18. A study on metal organic framework (MOF-177) synthesis, characterization and hydrogen adsorption -desorption cycles

    Energy Technology Data Exchange (ETDEWEB)

    Viditha, V.; Venkateswer Rao, M.; Srilatha, K.; Himabindu, V. [Centre for Environment, Institute of Science and Technology, Jawaharlal Nehru Technological University Hyderabad, Kukatpally, Hyderabad-500 085, A.P. (India); Yerramilli, Anjaneyulu [Director, TLGVRC, JSU Box 18739, JSU, Jackson, MS 32917-0939 (United States)

    2013-07-01

    Hydrogen has long been considered to be an ideal alternative to fossil-fuel systems and much work has now been done on its storage. There are four main methods of hydrogen storage: as a liquid; as compressed hydrogen; in the form of metal hydrides; and by physisorption. Among all the materials metal organic frameworks (MOFs) are considered to have desirable properties like high porosity, pore volume and high thermal stability. MOF-177 is considered to be an ideal storage material. In this paper we study about its synthesis and hydrogen storage capacities of MOF-177 at different pressures ranging from 25, 50, 75 and 100 bar respectively. The obtained samples are characterized by XRD, BET and SEM. The recorded results show that the obtained hydrogen capacity is 1.1, 2.20, 2.4 and 2.80 wt%. The desorption capacity is 0.9, 2.1, 2.37 and 2.7 wt% at certain temperatures like 373 K.

  19. Exciton ionization in multilayer transition-metal dichalcogenides

    DEFF Research Database (Denmark)

    Pedersen, Thomas Garm; Latini, Simone; Thygesen, Kristian Sommer

    2016-01-01

    Photodetectors and solar cells based on materials with strongly bound excitons rely crucially on field-assisted exciton ionization. We study the ionization process in multilayer transition-metal dichalcogenides (TMDs) within the Mott-Wannier model incorporating fully the pronounced anisotropy...

  20. Dark excitations in monolayer transition metal dichalcogenides

    DEFF Research Database (Denmark)

    Deilmann, Thorsten; Thygesen, Kristian Sommer

    2017-01-01

    Monolayers of transition metal dichalcogenides (TMDCs) possess unique optoelectronic properties, including strongly bound excitons and trions. To date, most studies have focused on optically active excitations, but recent experiments have highlighted the existence of dark states, which are equally...

  1. Self-optimization of the active site of molybdenum disulfide by an irreversible phase transition during photocatalytic hydrogen evolution

    Energy Technology Data Exchange (ETDEWEB)

    Wang, Longlu; Duan, Xidong; Liu, Chengbin; Zhang, Shuqu; Zeng, Yunxiong [State Key Laboratory of Chemo/Biosensing and Chemometrics, Hunan University, Changsha (China); Liu, Xia; Pei, Yong [Key Laboratory of Environmentally Friendly Chemistry and Applications of Ministry of Education, Xiangtan University (China); Luo, Jinming; Crittenden, John [Brook Byers Institute for Sustainable Systems and School of Civil and Environmental Engineering, Georgia Institute of Technology, Atlanta, GA (United States); Duan, Xiangfeng [Department of Chemistry and Biochemistry, University of California, Los Angeles, CA (United States)

    2017-06-19

    The metallic 1T-MoS{sub 2} has attracted considerable attention as an effective catalyst for hydrogen evolution reactions (HERs). However, the fundamental mechanism about the catalytic activity of 1T-MoS{sub 2} and the associated phase evolution remain elusive and controversial. Herein, we prepared the most stable 1T-MoS{sub 2} by hydrothermal exfoliation of MoS{sub 2} nanosheets vertically rooted into rigid one-dimensional TiO{sub 2} nanofibers. The 1T-MoS{sub 2} can keep highly stable over one year, presenting an ideal model system for investigating the HER catalytic activities as a function of the phase evolution. Both experimental studies and theoretical calculations suggest that 1T phase can be irreversibly transformed into a more active 1T' phase as true active sites in photocatalytic HERs, resulting in a ''catalytic site self-optimization''. Hydrogen atom adsorption is the major driving force for this phase transition. (copyright 2017 Wiley-VCH Verlag GmbH and Co. KGaA, Weinheim)

  2. Selectivity in inter polymer complexation involving phenolic copolymer, poly electrolytes, non-ionic polymers and transition metal ions

    International Nuclear Information System (INIS)

    Vasheghani Farahani, B.; Hosseinpour Rajabi, F.

    2006-01-01

    Selectivity in inter polymer complex formation involving a typical four-component phenolic copolymer (ρ-chloro phenol-ρ-aminophenol-ρ-toluidine-ρ-cresol- HCHO copolymer), poly electrolytes such as polyethylene imine and polyacrylic acid, a non-ionic homopolymer polyvinyl pyrrolidone, and some transition metal ions (e.g., Cu (II), Ni (11)) have been studied in dimethylformamide-methanol solvents mixture. The coordinating groups of phenolic copolymer form complexes through hydrogen bonding and ion-dipole interactions. The different stages of interactions have been studied by several experimental techniques, e.g., viscometry, potentiometry and conductometry. Some schemes have been suggested to explain the mode of interaction between these components

  3. Transitions in Theory and Practice: Managing Metals in the Circular Economy

    Directory of Open Access Journals (Sweden)

    Melissa Jackson

    2014-07-01

    Full Text Available Transitioning from current resource management practice dominated by linear economic models of consumption and production, to circular models of resource use, will require insights into the stages and processes associated with socio-technical transitions. This paper is concerned with transitions in practice. It explores two frameworks within the transitions literature—the multi-level perspective and transition management theory—for practical guidance to inform a deliberate transition in practice. The critical futures literature is proposed as a source of tools and methods to be used in conjunction with the transition frameworks to influence and enable transitions in practice. This enhanced practical guidance for initiating action is applied to a specific context—transitioning the Australian metals sector towards a circular economy model. This particular transition case study is relevant because the vision of a circular economy model of resource management is gaining traction internationally, Australia is significant globally as a supplier of finite mineral resources and it will also be used in a collaborative research project on Wealth from Waste to investigate possibilities for the circular economy and metals recycling.

  4. Hydrogen metal hydride storage with integrated catalytic recombiner for mobile application

    Energy Technology Data Exchange (ETDEWEB)

    Marinescu-Pasoi, L.; Behrens, U.; Langer, G.; Gramatte, W.; Rastogi, A.K.; Schmitt, R.E. (Battelle-Institut e.V., Frankfurt am Main (DE). Dept. of Energy Technology)

    1991-01-01

    A novel, thermodynamically efficient device is under development at Battelle in Frankfurt, by which the range of hydrogen-driven cars with a metal hydride tank might be roughly doubled. The device makes use of the properties of metal hydrides, combined with catalytic combustion. Its development is funded by the Hessian Ministry of Economic Affairs and Technology; it is to be completed by the end of 1990. High-temperature hydrides (HTH) have about three times the storage capacity of low temperature hydrides (LTH), but require relatively large amounts of heat at high temperatures to release the hydrogen. The exhaust heat from combustion-engine-driven vehicles is insufficient for this, and vehicles with electric (fuel cell) drive produce practically no exhaust heat at all. The Battelle-developed device is a combination of an HTH storage cell, an LTH storage cell and a catalyst. (author).

  5. Some aspects of hydrogen interaction with amorphous metallic materials

    International Nuclear Information System (INIS)

    Spivak, L.V.; Khonik, V.A.; Skryabina, N.E.

    1995-01-01

    For the first time is considered change of some properties of amorphous metallic materials (AMM) directly in the process of hydrogenation. A supposition is made that many found effects are consequence of accumulation and relief of internal stresses during hydrogenation, exposure or following annealing of AMM. Fe 81 B 14 Si 15 , Fe 52 Co 20 Si 15 B 13 , Fe 5 Co 70 Si 15 B 10 , Fe 5 Co 58 Ni 10 Si 11 B 16 , Co 67 Fe 4 Cr 7 Si 8 B 14 84KChSP, Ni 60 Nb 35 Ti 5 , Ni 60 Nb 40 and Pd 17,5 Cu 6 Si 16.5 AMM were investigated. 24 refs.; 4 figs

  6. Progress on first-principles-based materials design for hydrogen storage.

    Science.gov (United States)

    Park, Noejung; Choi, Keunsu; Hwang, Jeongwoon; Kim, Dong Wook; Kim, Dong Ok; Ihm, Jisoon

    2012-12-04

    This article briefly summarizes the research activities in the field of hydrogen storage in sorbent materials and reports our recent works and future directions for the design of such materials. Distinct features of sorption-based hydrogen storage methods are described compared with metal hydrides and complex chemical hydrides. We classify the studies of hydrogen sorbent materials in terms of two key technical issues: (i) constructing stable framework structures with high porosity, and (ii) increasing the binding affinity of hydrogen molecules to surfaces beyond the usual van der Waals interaction. The recent development of reticular chemistry is summarized as a means for addressing the first issue. Theoretical studies focus mainly on the second issue and can be grouped into three classes according to the underlying interaction mechanism: electrostatic interactions based on alkaline cations, Kubas interactions with open transition metals, and orbital interactions involving Ca and other nontransitional metals. Hierarchical computational methods to enable the theoretical predictions are explained, from ab initio studies to molecular dynamics simulations using force field parameters. We also discuss the actual delivery amount of stored hydrogen, which depends on the charging and discharging conditions. The usefulness and practical significance of the hydrogen spillover mechanism in increasing the storage capacity are presented as well.

  7. Pressure-driven insulator-metal transition in cubic phase UO2

    Science.gov (United States)

    Huang, Li; Wang, Yilin; Werner, Philipp

    2017-09-01

    Understanding the electronic properties of actinide oxides under pressure poses a great challenge for experimental and theoretical studies. Here, we investigate the electronic structure of cubic phase uranium dioxide at different volumes using a combination of density functional theory and dynamical mean-field theory. The ab initio calculations predict an orbital-selective insulator-metal transition at a moderate pressure of ∼45 GPa. At this pressure the uranium's 5f 5/2 state becomes metallic, while the 5f 7/2 state remains insulating up to about 60 GPa. In the metallic state, we observe a rapid decrease of the 5f occupation and total angular momentum with pressure. Simultaneously, the so-called “Zhang-Rice state”, which is of predominantly 5f 5/2 character, quickly disappears after the transition into the metallic phase.

  8. Zirconium-Based metal organic framework (Zr-MOF) material with high hydrostability for hydrogen storage applications

    CSIR Research Space (South Africa)

    Ren, Jianwei

    2013-09-01

    Full Text Available Material-based solutions, such as metal organic frameworks (MOFs), continue to attract increasing attention as viable options for hydrogen storage applications. MOFs are widely regarded as promising materials for hydrogen storage due to their high...

  9. Progress in Spectroscopy of the 1S–3S Transition in Hydrogen

    International Nuclear Information System (INIS)

    Galtier, Sandrine; Fleurbaey, Hélène; Thomas, Simon; Julien, Lucile; Biraben, François; Nez, François

    2015-01-01

    We report the latest advances in the Doppler-free spectroscopy of the 1S–3S transition in hydrogen. A new continuous ultra-violet source has been developed and delivers a power level of 15 mW. With this setup, the statistical uncertainty on the 1S–3S transition frequency measurement is 2.2 kHz. Combined with the 1S–2S frequency, absolute accuracy at that level would significantly enlighten the proton radius puzzle

  10. A non-destructive evaluation of transverse hydrogen cracking in high strength flux-cored weld metal

    International Nuclear Information System (INIS)

    Sterjovski, Z.; Carr, D. G.; Holdstock, R.; Nolan, D.; Norrish, J.

    2007-01-01

    Transverse hydrogen cracking in high strength weld metal (WM) is a potentially serious problem in thick-sections, especially in highly restrained structures. This paper presents preliminary re suits for which transverse weld metal hydrogen cracking was purposefully generated in 40 mm thick high strength WM to study the effectiveness of various non-destructive testing methods in locating and sizing transverse cracks. Transverse WM hydrogen cracking was intentionally produced by: increasing diffusible hydrogen levels through the introduction of 2% hydrogen in CO 2 shielding gas and minimizing interpass temperature and time; increasing the cracking susceptibility of the micro structure by increasing cooling rate with a large-scale test plate and maintaining an interpass temperature below 70 deg C; increasing stress levels with the use of stiffeners and end welds; and rapid postweld cooling to a temperature lower than 100 deg C. The extent of transverse weld metal hydrogen cracking was evaluated by non-destructive testing (NDT), which included conventional ultrasonic testing, radiography, acoustic emission monitoring and magnetic particle inspection. It was established that conventional ultrasonic testing was the most effective of the NDT techniques used. Acoustic emission monitoring revealed that two different types of emissions emanated from the weld metal and that the majority of emissions occurred within the first 48 hours of welding, although there was some evidence of cracking well after this initial 48 hour period. Larger sized cracks were observed near the transverse stiffeners (and weld ends) where tensile residual stresses (both longitudinal and transverse) were thought to be highest and the micro structure was therefore more susceptible to cracking. Additionally, numerous finer cracks were located in the top third of the plate (in the thickness direction) and on both sides of the weld centre line

  11. Magnesium hydrides and their phase transitions

    Czech Academy of Sciences Publication Activity Database

    Paidar, Václav

    2016-01-01

    Roč. 41, č. 23 (2016), s. 9769-9773 ISSN 0360-3199 R&D Projects: GA MŠk(CZ) LD13069 Institutional support: RVO:68378271 Keywords : hydrogen * magnesium and transition metal hydrides * crystal structure stability * displacive phase transformations Subject RIV: BM - Solid Matter Physics ; Magnetism Impact factor: 3.582, year: 2016

  12. First-Principles Petascale Simulations for Predicting Deflagration to Detonation Transition in Hydrogen-Oxygen Mixtures

    Energy Technology Data Exchange (ETDEWEB)

    Khokhlov, Alexei [Univ. of Chicago, IL (United States). Dept. of Astronomy and Astrophysics. Enrico Fermi Inst.; Austin, Joanna [Argonne National Lab. (ANL), Argonne, IL (United States). Argonne Leadership Computing Facility; Bacon, C. [Univ. of Illinois, Urbana, IL (United States). Dept. of Aerospace Engineering

    2015-03-02

    Hydrogen has emerged as an important fuel across a range of industries as a means of achieving energy independence and to reduce emissions. DDT and the resulting detonation waves in hydrogen-oxygen can have especially catastrophic consequences in a variety of industrial and energy producing settings related to hydrogen. First-principles numerical simulations of flame acceleration and DDT are required for an in-depth understanding of the phenomena and facilitating design of safe hydrogen systems. The goals of this project were (1) to develop first-principles petascale reactive flow Navier-Stokes simulation code for predicting gaseous high-speed combustion and detonation (HSCD) phenomena and (2) demonstrate feasibility of first-principles simulations of rapid flame acceleration and deflagration-to-detonation transition (DDT) in stoichiometric hydrogen-oxygen mixture (2H2 + O2). The goals of the project have been accomplished. We have developed a novel numerical simulation code, named HSCD, for performing first-principles direct numerical simulations of high-speed hydrogen combustion. We carried out a series of validating numerical simulations of inert and reactive shock reflection experiments in shock tubes. We then performed a pilot numerical simulation of flame acceleration in a long pipe. The simulation showed the transition of the rapidly accelerating flame into a detonation. The DDT simulations were performed using BG/Q Mira at the Argonne National Laboratory, currently the fourth fastest super-computer in the world.

  13. Application of liquid chromatography techniques to the measurement of soluble transition metals in PWR primary coolant

    International Nuclear Information System (INIS)

    Amey, M.D.H.; Brown, G.R.

    1987-01-01

    Two chromatographic techniques have been developed, and evaluated for the on-line analysis of soluble transition metals, particularly cobalt, in PWR primary coolant. Automatic operation and control, together with data processing and storage has been achieved by interfacing a Dionex ion chromatograph to a microprocessor control system. An absolute detection limit of 0.1 ng cobalt has been obtained which, with on-line sample preconcentration (100 ml), has enabled measurements to be made down to part-per-trillion levels (0.001 ppb). Application of the techniques to PWR coolant analysis was demonstrated by a programme of work on the Half Megawatt Loop at Winfrith. During this work some aspects of the behaviour of soluble metal species have been studied in both de-oxygenated and hydrogenated conditions. The effects of changes in coolant chemistry, operating temperature, and sample line flowrates on circulating impurity levels are reported, together with the dramatic effects observed when part of the circuit pipework was replaced with new stainless steel tubing. (author)

  14. Report of the specialists' workshop on phase transition studies on hydrogen-bonded crystals by neutron and X-ray diffractometries

    International Nuclear Information System (INIS)

    Tokunaga, M.; Shibuya, I.

    1989-01-01

    The report carries a total of 15 studies on hydrogen-bonded crystals made by means of neutron/X-ray diffraction which were presented at a technical study meeting held on December 12 and 13, 1988, at the Research Reactor Institute of Kyoto University. The report covers 'introduction', 'linear relation between transition temperature and hydrogen-bond length in KDP type crystals', 'X-ray study of crystal structure under high pressure in DKDP', 'crystal structure of ADP in the paraelectric phase', 'crystal structure of Rochelle salt in the paraelectric phase', 'distortion of AsO 4 in KDA', 'study of phase transition in KDP family by dielectric dispersion', 'dielectric relaxation and phase transition in ice Ih', 'Raman scattering study of KDP', 'mechanism of phase transition in KDP by Raman scattering study under high pressure-reinvestigation of the Peercy's conclusion', 'localized modes of proton in KDP', 'hyper-Raman scattering study of hydrogen-bonded crystals', 'phase transition of CDP', 'the 180deg law in phase diagram', and 'comments'. (N.K.)

  15. Charge transfer between hydrogen(deuterium) ions and atoms in metal vapors

    International Nuclear Information System (INIS)

    Alvarez T, I.; Cisneros G, C.

    1981-01-01

    The current state of the experiments on charge transfer between hydrogen (deuterium) ions and atoms in metal vapors are given. Emphasis is given to describing different experimental techniques. The results of calculations if available, are compared with existing experimental data. (author)

  16. Charge transfer in chromium-transition metal alloys

    International Nuclear Information System (INIS)

    Kulakowski, K.; Maksymowicz, A.

    1984-07-01

    The average T-matrix approximation is applied for calculations of charge transfer of 3d-electrons in transition metal alloys. The role of concentration, long-range and short-range atomic order is investigated. The results are in reasonable agreement with experimental data. (author)

  17. Mononuclear late first row transition metal complexes of ONO donor hydrazone ligand: Synthesis, characterization, crystallographic insight, in vivo and in vitro anti-inflammatory activity

    Science.gov (United States)

    Kendur, Umashri; Chimmalagi, Geeta H.; Patil, Sunil M.; Gudasi, Kalagouda B.; Frampton, Christopher S.; Mangannavar, Chandrashekhar V.; Muchchandi, Iranna S.

    2018-02-01

    Air and moisture stable coordination compounds of late first row transition metal ions, viz., Co(II), Ni(II), Cu(II) and Zn(II) with a newly designed ligand, (E)-2-amino-N'-(1-(2-hydroxy-6-methyl-4-oxo-4H-pyran-3-yl)ethylidene)benzohydrazide (H2L) were prepared and extensively characterized using various spectro-analytical techniques. The ligand acts both in mono as well as doubly deprotonated manner. The ligand to metal stoichiometry was found to be 1:2 in case of complexes using chloride salts, whereas 1:1 in case of copper (II) complex using its acetate salt. The molecular structures of H2L, nickel and copper complexes were unambiguously determined by single-crystal X-ray diffraction studies reveal that H2L exists in a zwitterionic form while copper complex has copper centre in a distorted square planar environment. On the other hand, cobalt, nickel and zinc complexes display distorted octahedral coordination around the metal ion. In case of [Ni(HL)2].H2O, intramolecular Csbnd H⋯π stacking interaction were observed between the centroid of five membered chelate ring and phenyl proton C5sbnd H5 and intermolecular Csbnd H⋯π stacking interaction between the centroid of phenyl ring, dehydroacetic acid (DHA) ring and phenyl protons. The [Cu(L)DMF] complex is stabilized by intramolecular hydrogen bonding N1H⋯N2 and by intermolecular hydrogen bonding N1H⋯O4. Intermolecular interactions were investigated by Hirshfeld surfaces. Further, H2L and its metal complexes were screened for their in vivo and in vitro anti-inflammatory activities. The activity of the ligand has enhanced on coordination with transition metals. The tested compounds have shown excellent activity, which is almost equipotent to the standard used in the study.

  18. Solubility and diffusivity of hydrogen in complex materials

    International Nuclear Information System (INIS)

    Kirchheim, R.

    2001-01-01

    A general model based on Statistical Mechanics and Random Walk is presented which allows to describe the behavior of hydrogen in disordered systems, i.e. metallic glasses, amorphous silicon, nanocrystalline metals, deformed metals, disordered metallic solutions, and metallic multi layers. The various systems are specified by a lattice with an appropriate site energy disorder and a distribution of site transitions rates. Lattice sites are filled according to Fermi-Dirac Statistics because double occupancy is excluded. Thus the model is applicable to adsorption on heterogeneous surfaces or solutions of small particles in oxide glasses and polymers. With a given distribution of site energies a relationship between chemical potential (Fermi energy) of hydrogen and its concentration can be derived and compared with experimental results. It is a unique feature of hydrogen that its chemical potential and its diffusion coefficient can be determined rather easily by electrochemical techniques or by measuring partial pressures at moderate temperatures around 300 K. With increasing H-content the sites are usually filled from lower to higher energies. As a consequence Henry's Law is not fulfilled and the diffusion coefficient increases because at high concentrations low energy sites are saturated and additional H-atoms have to perform their random walk through sites of low occupancy or small time of residence, respectively. Some results for metallic glasses, nanocrystalline metals, deformed metals, and metallic multi layers are presented and compared with the model. Thus information on the interaction between defects (dislocations, grain boundaries, distorted tetrahedral sites in glasses) and hydrogen are obtained. For extended defects the diffusion is strongly anisotropic, i.e. it differs in a Pd/Nb-multi layer by a factor of 10 5 for diffusion in plane and out of plane. (orig.)

  19. Predicting a new phase (T'') of two-dimensional transition metal di-chalcogenides and strain-controlled topological phase transition

    Science.gov (United States)

    Ma, Fengxian; Gao, Guoping; Jiao, Yalong; Gu, Yuantong; Bilic, Ante; Zhang, Haijun; Chen, Zhongfang; Du, Aijun

    2016-02-01

    Single layered transition metal dichalcogenides have attracted tremendous research interest due to their structural phase diversities. By using a global optimization approach, we have discovered a new phase of transition metal dichalcogenides (labelled as T''), which is confirmed to be energetically, dynamically and kinetically stable by our first-principles calculations. The new T'' MoS2 phase exhibits an intrinsic quantum spin Hall (QSH) effect with a nontrivial gap as large as 0.42 eV, suggesting that a two-dimensional (2D) topological insulator can be achieved at room temperature. Most interestingly, there is a topological phase transition simply driven by a small tensile strain of up to 2%. Furthermore, all the known MX2 (M = Mo or W; X = S, Se or Te) monolayers in the new T'' phase unambiguously display similar band topologies and strain controlled topological phase transitions. Our findings greatly enrich the 2D families of transition metal dichalcogenides and offer a feasible way to control the electronic states of 2D topological insulators for the fabrication of high-speed spintronics devices.Single layered transition metal dichalcogenides have attracted tremendous research interest due to their structural phase diversities. By using a global optimization approach, we have discovered a new phase of transition metal dichalcogenides (labelled as T''), which is confirmed to be energetically, dynamically and kinetically stable by our first-principles calculations. The new T'' MoS2 phase exhibits an intrinsic quantum spin Hall (QSH) effect with a nontrivial gap as large as 0.42 eV, suggesting that a two-dimensional (2D) topological insulator can be achieved at room temperature. Most interestingly, there is a topological phase transition simply driven by a small tensile strain of up to 2%. Furthermore, all the known MX2 (M = Mo or W; X = S, Se or Te) monolayers in the new T'' phase unambiguously display similar band topologies and strain controlled topological

  20. Improved synthesis and hydrogen storage of a microporous metal-organic framework material

    International Nuclear Information System (INIS)

    Cheng Shaojuan; Liu Shaobing; Zhao Qiang; Li Jinping

    2009-01-01

    A microporous metal-organic framework MOF-5 [Zn 4 O(BDC) 3 , BDC = 1,4-benzenedicarboxylic] was synthesized with and without H 2 O 2 by improved methods based on the previous studies. The obtained materials were characterized by X-ray diffraction, scanning electron microscopy and nitrogen adsorption, and their hydrogen storage capacities were measured. The synthesis experiments showed that H 2 O 2 favored the growth of high quality sample, large pore volume and high specific surface area. The measurements of hydrogen storage indicated that the sample with higher specific surface area and large pore volume showed better hydrogen storage behavior than other samples. It was suggested that specific surface area and pore volume influenced the capacity of hydrogen storage for MOF-5 material.

  1. Strange metals and quantum phase transitions from gauge/gravity duality

    Science.gov (United States)

    Liu, Hong

    2011-03-01

    Metallic materials whose thermodynamic and transport properties differ significantly from those predicted by Fermi liquid theory, so-called non-Fermi liquids, include the strange metal phase of cuprate superconductors, and heavy fermion systems near a quantum phase transition. We use gauge/gravity duality to identify a class of non-Fermi liquids. Their low-energy behavior is governed by a nontrivial infrared fixed point which exhibits non-analytic scaling behavior only in the temporal direction. Some representatives of this class have single-particle spectral functions and transport behavior similar to those of the strange metals, with conductivity inversely proportional to the temperature. Such holographic systems may also exhibit novel ``magnetic instabilities'', where the quantum critical behavior near the transition involves a nontrivial interplay between local and bulk physics, with the local physics again described by a similar infrared fixed point. The resulting quantum phase transitions do not obey the standard Landau-Ginsburg-Wilson paradigm and resemble those of the heavy fermion quantum critical points.

  2. Functionalization of 2D transition metal dichalcogenides for biomedical applications

    International Nuclear Information System (INIS)

    Li, Zibiao; Wong, Swee Liang

    2017-01-01

    Recent research has revealed a gamut of interesting properties present in layered two-dimensional (2D) transition metal dichalcogenides (TMDCs) such as photoluminescence, comparatively high electron mobility, flexibility, mechanical strength and relatively low toxicity. The large surface to area ratio inherent in these materials also allows easy functionalization and maximal interaction with the external environment. Due to its unique physical and chemical properties, much work has been done in tailoring TMDCs through chemical functionalization for use in a diverse range of biomedical applications as biosensors, drug delivery carriers or even as therapeutic agents. In this review, current progress on the different types of TMDC functionalization for various biological applications will be presented and its future outlook will be discussed. - Highlights: • The different functionalization strategies and approaches of transition metal dichalcogenides are reviewed. • Properties of transition metal dichalcogenides useful for biomedical usage and their methods of synthesis are introduced. • Functionalization approaches are presented according to material type and their different application purpose is discussed.

  3. The general expression for the transition amplitude of two-photon ionization of atomic hydrogen

    Energy Technology Data Exchange (ETDEWEB)

    Karule, E [Institute of Atomic Physics and Spectroscopy, University of Latvia, Raina Boulevard 19, Riga, LV-1586 (Latvia); Moine, B [Universite Paris Sud, 91405 Orsay Cedex (France)

    2003-05-28

    Two-photon ionization of atomic hydrogen with an excess photon is revisited. The non-relativistic dipole approximation and Coulomb Green function (CGF) formalism are applied. Using the CGF Sturmian expansion straightforwardly, one gets the radial transition amplitude in the form of an infinite sum over Gauss hypergeometric functions which are polynomials. It is convergent if all intermediate states are in the discrete spectrum. In the case of two-photon ionization with an excess photon, when photoionization is also possible, intermediate states are in the continuum. We performed the explicit summation over intermediate states and got a simple general expression for the radial transition amplitude in the form of a finite sum over Appell hypergeometric functions, which are not polynomials. An Appell function may be expressed as an infinite sum over Gauss functions. In the case of ionization by an excess photon, Gauss functions are transformed to give a convergent radial transition amplitude for the whole region. The generalized cross sections for two-photon above-threshold ionization of atomic hydrogen in the ground state and excited states calculated by us agree very well with results of previous calculations. Generalized cross sections for two-photon ionization of positronium in the ground state are obtained by scaling those for atomic hydrogen.

  4. Development of dissimilar metal transition joint by hot roll bonding technique

    International Nuclear Information System (INIS)

    Nagai, Takayuki; Takeda, Seiichiro; Tanaka, Yasumasa; Ogawa, Kazuhiro; Nakasuji, Kazuyuki; Ikenaga, Yoshiaki.

    1994-01-01

    Metallurgically bonded transition joints which enable to connect reprocessing equipments made of superior corrosion resistant valve metals (Ti-5Ta, Zr or Ti) with stainless steel piping is needed for nuclear fuel reprocessing plants. The authors have developed dissimilar metal transition joints between stainless steel and Ti-5Ta, Zr or Ti with an insert metal of Ta by the hot roll bonding process, using the newly developed mill called 'rotary reduction mill'. In the R and D program, appropriate bonding conditions in the manufacturing process of the joints were established. This report presents the structure of transition joints and the manufacturing process by the hot roll bonding technique. Then, the evaluation of mechanical and corrosion properties and the results of demonstration test of joints for practical use are described. (author)

  5. Development of dissimilar metal transition joint by hot roll bonding technique

    International Nuclear Information System (INIS)

    Nagai, Takayuki; Takeuchi, Masayuki; Takeda, Seiichiro; Shikakura, Sakae; Ogawa, Kazuhiro; Nakasuji, Kazuyuki; Kajimura, Haruhiko.

    1995-01-01

    Metallurgically bonded transition joints which enable to connect reprocessing equipments made of superior corrosion resistant valve metals (Ti-5Ta, Zr or Ti) with stainless steel piping is needed for nuclear fuel reprocessing plants. The authors have developed dissimilar metal transition joints between stainless steel and Ti-5Ta, Zr or Ti with an insert metal of Ta by the hot roll bonding process, using the newly developed mill called 'rotary reduction mill'. In the R and D program, appropriate bonding conditions in the manufacturing process of the joints were established. This report presents the structure of transition joints and the manufacturing process by hot roll bonding technique. Then, the evaluation of mechanical and corrosion properties and the results of demonstration test of joints for practical use are described. (author)

  6. The impact of carbon materials on the hydrogen storage properties of light metal hydrides

    NARCIS (Netherlands)

    Adelhelm, P.A.; de Jongh, P.E.

    2011-01-01

    The safe and efficient storage of hydrogen is still one of the remaining challenges towards fuel cell powered cars. Metal hydrides are a promising class of materials as they allow the storage of large amounts of hydrogen in a small volume at room temperature and low pressures. However, usually the

  7. Hydrogen storage and evolution catalysed by metal hydride complexes.

    Science.gov (United States)

    Fukuzumi, Shunichi; Suenobu, Tomoyoshi

    2013-01-07

    The storage and evolution of hydrogen are catalysed by appropriate metal hydride complexes. Hydrogenation of carbon dioxide by hydrogen is catalysed by a [C,N] cyclometalated organoiridium complex, [Ir(III)(Cp*)(4-(1H-pyrazol-1-yl-κN(2))benzoic acid-κC(3))(OH(2))](2)SO(4) [Ir-OH(2)](2)SO(4), under atmospheric pressure of H(2) and CO(2) in weakly basic water (pH 7.5) at room temperature. The reverse reaction, i.e., hydrogen evolution from formate, is also catalysed by [Ir-OH(2)](+) in acidic water (pH 2.8) at room temperature. Thus, interconversion between hydrogen and formic acid in water at ambient temperature and pressure has been achieved by using [Ir-OH(2)](+) as an efficient catalyst in both directions depending on pH. The Ir complex [Ir-OH(2)](+) also catalyses regioselective hydrogenation of the oxidised form of β-nicotinamide adenine dinucleotide (NAD(+)) to produce the 1,4-reduced form (NADH) under atmospheric pressure of H(2) at room temperature in weakly basic water. In weakly acidic water, the complex [Ir-OH(2)](+) also catalyses the reverse reaction, i.e., hydrogen evolution from NADH to produce NAD(+) at room temperature. Thus, interconversion between NADH (and H(+)) and NAD(+) (and H(2)) has also been achieved by using [Ir-OH(2)](+) as an efficient catalyst and by changing pH. The iridium hydride complex formed by the reduction of [Ir-OH(2)](+) by H(2) and NADH is responsible for the hydrogen evolution. Photoirradiation (λ > 330 nm) of an aqueous solution of the Ir-hydride complex produced by the reduction of [Ir-OH(2)](+) with alcohols resulted in the quantitative conversion to a unique [C,C] cyclometalated Ir-hydride complex, which can catalyse hydrogen evolution from alcohols in a basic aqueous solution (pH 11.9). The catalytic mechanisms of the hydrogen storage and evolution are discussed by focusing on the reactivity of Ir-hydride complexes.

  8. Fullerenes as a new type of ligands for transition metals

    International Nuclear Information System (INIS)

    Sokolov, V.I.

    2007-01-01

    Fullerenes are considered as ligands in transition metal π-complexes. The following aspects are discussed: metals able to form π-complexes with fullerenes (Zr, V, Ta, Mo, W, Re, Ru, etc.); haptic numbers; homo- and hetero ligand complexes; ligand compatibility with fullerenes for different metals, including fullerenes with a disturbed structure of conjugation [ru

  9. Effect of Microstructure on Hydrogen Diffusion in Weld and API X52 Pipeline Steel Base Metals under Cathodic Protection

    Directory of Open Access Journals (Sweden)

    R. C. Souza

    2017-01-01

    Full Text Available The aim of this research was to evaluate the influence of microstructure on hydrogen permeation of weld and API X52 base metal under cathodic protection. The microstructures analyzed were of the API X52, as received, quenched, and annealed, and the welded zone. The test was performed in base metal (BM, quenched base metal (QBM, annealed base metal (ABM, and weld metal (WM. Hydrogen permeation flows were evaluated using electrochemical tests in a Devanathan cell. The potentiodynamic polarization curves were carried out to evaluate the corrosion resistance of each microstructure. All tests were carried out in synthetic soil solutions NS4 and NS4 + sodium thiosulfate at 25°C. The sodium thiosulfate was used to simulate sulfate reduction bacteria (SRB. Through polarization, assays established that the microstructure does not influence the corrosion resistance. The permeation tests showed that weld metal had lower hydrogen flow than base metal as received, quenched, and annealed.

  10. Enhancing Charge Carrier Lifetime in Metal Oxide Photoelectrodes through Mild Hydrogen Treatment

    KAUST Repository

    Jang, Ji-Wook

    2017-08-25

    Widespread application of solar water splitting for energy conversion is largely dependent on the progress in developing not only efficient but also cheap and scalable photoelectrodes. Metal oxides, which can be deposited with scalable techniques and are relatively cheap, are particularly interesting, but high efficiency is still hindered by the poor carrier transport properties (i.e., carrier mobility and lifetime). Here, a mild hydrogen treatment is introduced to bismuth vanadate (BiVO4), which is one of the most promising metal oxide photoelectrodes, as a method to overcome the carrier transport limitations. Time-resolved microwave and terahertz conductivity measurements reveal more than twofold enhancement of the carrier lifetime for the hydrogen-treated BiVO4, without significantly affecting the carrier mobility. This is in contrast to the case of tungsten-doped BiVO4, although hydrogen is also a donor type dopant in BiVO4. The enhancement in carrier lifetime is found to be caused by significant reduction of trap-assisted recombination, either via passivation or reduction of deep trap states related to vanadium antisite on bismuth or vanadium interstitials according to density functional theory calculations. Overall, these findings provide further insights on the interplay between defect modulation and carrier transport in metal oxides, which benefit the development of low-cost, highly-efficient solar energy conversion devices.

  11. Hydrogenation Properties of Mg-5 wt.% TiCr_10NbX (x=1,3,5) Composites by Mechanical Alloying Process

    International Nuclear Information System (INIS)

    Kim, Kyeong-Il; Hong, Tae-Whan

    2011-01-01

    Hydrogen and hydrogen energy have been recognized as clean energy sources and high energy carrier. Mg and Mg alloys are attractive hydrogen storage materials because of their lightweight and low cost materials with high hydrogen capacity (about 7.6 wt.%). However, the commercial applications of the Mg hydrides are currently hinder by its high absorption/desorption temperature, and very slow reaction kinetics. However, Ti and Ti based hydrogen storage alloys have been thought to be the third generation of alloys with a high hydrogen capacity, which makes it difficult to handle because of high reactivity. One of the most methods to develop kinetics was addition of transition metal. Therefore, Mg-Ti-Cr-Nb alloy was fabricated to add TiCrNb by hydrogen induced mechanical alloying. TiCrNb systems have included transition metals, low operating temperatures and hydrogen storage materials. As-received specimens were characterized using X-ray Diffraction analysis (XRD), Scanning Electron Microscopy (SEM) and Thermo Gravimetric analysis/Differential Scanning Calorimetry (TG/DSC). Mg-TiCr_10Nb systems were evaluated for hydrogen kinetics by Sievert’s type Pressure-Composition-Isotherm (PCI) equipment. The operating temperature range was 473, 523, 573 and 623 K.

  12. Two-order parameters theory of the metal-insulator phase transition kinetics in the magnetic field

    Science.gov (United States)

    Dubovskii, L. B.

    2018-05-01

    The metal-insulator phase transition is considered within the framework of the Ginzburg-Landau approach for the phase transition described with two coupled order parameters. One of the order parameters is the mass density which variation is responsible for the origin of nonzero overlapping of the two different electron bands and the appearance of free electron carriers. This transition is assumed to be a first-order phase one. The free electron carriers are described with the vector-function representing the second-order parameter responsible for the continuous phase transition. This order parameter determines mostly the physical properties of the metal-insulator transition and leads to a singularity of the surface tension at the metal-insulator interface. The magnetic field is involved into the consideration of the system. The magnetic field leads to new singularities of the surface tension at the metal-insulator interface and results in a drastic variation of the phase transition kinetics. A strong singularity in the surface tension results from the Landau diamagnetism and determines anomalous features of the metal-insulator transition kinetics.

  13. Ortho-para-conversion of hydrogen in films of rare earth metals

    International Nuclear Information System (INIS)

    Zhavoronkova, K.N.; Peshkov, A.V.

    1979-01-01

    Investigated is specific catalytic activity of REE to clarify to what an extent the change of electron structure of the metals might influence their catalytic properties. Conducted is investigation of Sc, It, La and other lanthanides, except Eu amd Pm prepared in the form of metallic films, impowdered in vacuum of 10 -7 torr. It is established, that pape earth elements as catalysts of low-temperature ortho-para-conversion od hydrogen are divided into 2 groups, differing by mechanism of the reaction. Comparison of experimental results with the calculation results of absolute rates of paramagnetic conversion and also with investigation results of isotopjc exchange on these metals showed, that on the metals of group 1 conversjon proceeds according to chemical mechanism, and on the metals of group 2 - according to oscillating magnetic mechanism

  14. Frontiers of 4d- and 5d-transition metal oxides

    CERN Document Server

    Cao, Gang

    2013-01-01

    This book is aimed at advanced undergraduates, graduate students and other researchers who possess an introductory background in materials physics and/or chemistry, and an interest in the physical and chemical properties of novel materials, especially transition metal oxides.New materials often exhibit novel phenomena of great fundamental and technological importance. Contributing authors review the structural, physical and chemical properties of notable 4d- and 5d-transition metal oxides discovered over the last 10 years. These materials exhibit extraordinary physical properties that differ s

  15. Topotactic Metal-Insulator Transition in Epitaxial SrFeO x Thin Films

    International Nuclear Information System (INIS)

    Khare, Amit; Shin, Dongwon; Yoo, Tae Sup; Kim, Minu; Kang, Tae Dong

    2017-01-01

    Multivalent transition metal oxides provide fascinating and rich physics related to oxygen stoichiometry. In particular, the adoptability of various valence states of transition metals enables perovskite oxides to display mixed (oxygen) ionic and electronic conduction and catalytic activity useful in many practical applications, including solid-oxide fuel cells (SOFCs), rechargeable batteries, gas sensors, and memristive devices. For proper realization of the ionic conduction and catalytic activity, it is essential to understand the reversible oxidation and reduction process, which is governed by oxygen storage/release steps in oxides. Topotactic phase transformation facilitates the redox process in perovskites with specific oxygen vacancy ordering by largely varying the oxygen concentration of a material without losing the lattice framework. The concentration and diffusion of oxide ions (O 2– ), the valence state of the transition metal cations, and the thermodynamic structural integrity together provide fundamental understanding and ways to explicitly control the redox reaction.[6] In addition, it offers an attractive route for tuning the emergent physical properties of transition metal oxides, via strong coupling between the crystal lattice and electronic structure.

  16. Hydrodesulfurization on Transition Metal Catalysts: Elementary Steps of C-S Bond Activation and Consequences of Bifunctional Synergies

    Science.gov (United States)

    Yik, Edwin Shyn-Lo

    convergence to a single phase is expected and predictable from thermodynamics at a given temperature and sulfur chemical potential, metastability of two phases can exist. We demonstrate, through extensive characterization and kinetic evidence, such behaviors exist in Re, where structural disparities between its phases lead to kinetic hurdles that prevent interconversions between layered ReSx nanostructures and sulfur-covered Re metal clusters. Such features allowed, for the first time, direct comparisons of reaction rates at identical conditions on two disparate phases of the same transition metal identity. Rigorous assessments of kinetic and selectivity data indicated that more universal mechanistic features persist across all catalysts studied, suggesting that differences in their catalytic activity were the result of different densities of HDS sites, which appeared to correlate with their respective metal-sulfur bond energies. Kinetic responses and product distributions indicated that the consumption of thiophene proceeds by the formation of a partially-hydrogenated surface intermediate, which subsequently produces tetrahydrothiophene (THT) and butene/butane (C4) via primary routes on similar types of sites. These sites are formed from desorption of weakly-bound sulfur adatoms on sulfur-covered metal surfaces, which can occur when the heat of sulfur adsorption is sufficiently low at high sulfur coverage as a result of increased sulfur-sulfur repulsive interactions. Relative stabilities and differences in the molecularity of the respective transition states that form THT and C4 dictate product distributions. THT desulfurization to form C4 occurs via readsorption and subsequent dehydrogenation, evidenced by secondary rates that exhibited negative H2 dependences. These behaviors suggest that C-S bond activation occurs on a partially (un)saturated intermediate, analogous to behaviors observed in C-C bond scission reactions of linear and cycloalkanes on hydrogen-covered metal

  17. Grain boundary-induced variability of charge transport in hydrogenated polycrystalline graphene

    DEFF Research Database (Denmark)

    Barrios-Vargas, Jose E.; Falkenberg, Jesper Toft; Soriano, David

    2017-01-01

    Chemical functionalization has proven to be a promising means of tailoring the unique properties of graphene. For example, hydrogenation can yield a variety of interesting effects, including a metal-insulator transition or the formation of localized magnetic moments. Meanwhile, graphene grown by ...

  18. Catalytic olefin polymerization with early transition metal compounds

    OpenAIRE

    Eshuis, Johan Jan Willem

    1991-01-01

    The catalysis of organic reactions by soluble metal complexes has become a major tool in synthesis, both in the laboratory and in the chemical industry. Processes catalyzed by transition metal complexes include carbonylation, olefin polymerization, olefin addition, olefin oxidation and alkane and arene oxidation. Traditionally, heterogeneous catalysts have been used for the production of large-scale commodity chemicals such as methanol and ammonia and in the production of high octane gasoline...

  19. Optimization and comprehensive characterization of metal hydride based hydrogen storage systems using in-situ Neutron Radiography

    Science.gov (United States)

    Börries, S.; Metz, O.; Pranzas, P. K.; Bellosta von Colbe, J. M.; Bücherl, T.; Dornheim, M.; Klassen, T.; Schreyer, A.

    2016-10-01

    For the storage of hydrogen, complex metal hydrides are considered as highly promising with respect to capacity, reversibility and safety. The optimization of corresponding storage tanks demands a precise and time-resolved investigation of the hydrogen distribution in scaled-up metal hydride beds. In this study it is shown that in situ fission Neutron Radiography provides unique insights into the spatial distribution of hydrogen even for scaled-up compacts and therewith enables a direct study of hydrogen storage tanks. A technique is introduced for the precise quantification of both time-resolved data and a priori material distribution, allowing inter alia for an optimization of compacts manufacturing process. For the first time, several macroscopic fields are combined which elucidates the great potential of Neutron Imaging for investigations of metal hydrides by going further than solely 'imaging' the system: A combination of in-situ Neutron Radiography, IR-Thermography and thermodynamic quantities can reveal the interdependency of different driving forces for a scaled-up sodium alanate pellet by means of a multi-correlation analysis. A decisive and time-resolved, complex influence of material packing density is derived. The results of this study enable a variety of new investigation possibilities that provide essential information on the optimization of future hydrogen storage tanks.

  20. On physics of the hydrogen plasticization and embrittlement of metallic materials, relevance to the safety and standards' problems

    International Nuclear Information System (INIS)

    Yury S Nechaev; Georgy A Filippov; T Nejat Veziroglu

    2006-01-01

    In the present contribution, some related fundamental problems of revealing micro mechanisms of hydrogen plasticization, superplasticity, embrittlement, cracking, blistering and delayed fracture of some technologically important industrial metallic materials are formulated. The ways are considered of these problems' solution and optimizing the technological processes and materials, particularly in the hydrogen and gas-petroleum industries, some aircraft, aerospace and automobile systems. The results are related to the safety and standardization problems of metallic materials, and to the problem of their compatibility with hydrogen. (authors)

  1. Cell complexes of transition metals in biochemistry and medicine

    International Nuclear Information System (INIS)

    Voloshin, Ya.Z.; Varzatskij, O.A.; Bubnov, Yu.N.

    2007-01-01

    Basic directions and prospects of use of cell complexes of transition metals in medicine and biochemistry are considered: incapsulation of radioactive metal ions for radiotherapy and diagnostics; preparation of contrast compounds for magnetic resonance tomography, antidotes and pharmaceutical preparation of prolonged effect, preparations for boron-neutron-capture therapy of neoplasms, antioxidants; membrane transport of metal ions; study of interaction of cell metal complexes with nucleic acids; possibility of use of self-assembly of cell complexes for imitation of ligases and use of clathrochelates as linkers; design of inhibitors of viruses for AIDS therapy [ru

  2. Rational Design of Two-Dimensional Metallic and Semiconducting Spintronic Materials Based on Ordered Double-Transition-Metal MXenes

    KAUST Repository

    Dong, Liang

    2016-12-30

    Two-dimensional (2D) materials that display robust ferromagnetism have been pursued intensively for nanoscale spintronic applications, but suitable candidates have not been identified. Here we present theoretical predictions on the design of ordered double-transition-metal MXene structures to achieve such a goal. On the basis of the analysis of electron filling in transition-metal cations and first-principles simulations, we demonstrate robust ferromagnetism in Ti2MnC2Tx monolayers regardless of the surface terminations (T = O, OH, and F), as well as in Hf2MnC2O2 and Hf2VC2O2 monolayers. The high magnetic moments (3–4 μB/unit cell) and high Curie temperatures (495–1133 K) of these MXenes are superior to those of existing 2D ferromagnetic materials. Furthermore, semimetal-to-semiconductor and ferromagnetic-to-antiferromagnetic phase transitions are predicted to occur in these materials in the presence of small or moderate tensile in-plane strains (0–3%), which can be externally applied mechanically or internally induced by the choice of transition metals.

  3. Lattice location of transition metals in silicon by means of emission channeling

    CERN Document Server

    da Silva, Daniel José; Wahl, Ulrich; Correia, João Guilherme

    The behavior of transition metals (TMs) in silicon is a subject that has been studied extensively during the last six decades. Their unintentional introduction during the Si production, crystal growth and device manufacturing have made them difficult contaminants to avoid. Once in silicon they easily form deep levels, either when in the isolated form or when forming precipitates. One important effect is the reduction of efficiency of silicon-based devices, being dramatic, in particular, in photovoltaic applications. One way to avoid such effects is by engineering the location of the TM: some TM complexes or lattice sites of the isolated form do not introduce any level in the silicon bandgap. Which point defects lead to such passivation is still under debate. Another way is to mitigate the reduction of efficiency by reducing the dangling bonds of TMs with hydrogen. The most important and commonly used procedures to diminish the unwanted effects of the introduced deep levels are, nevertheless, based on the so-c...

  4. Phase equilibria in the niobium-vanadium-hydrogen system

    Energy Technology Data Exchange (ETDEWEB)

    Bethin, J. (Grumman Aerospace Corp., Bethpage, NY (USA)); Welch, D.O. (Brookhaven National Lab., Upton, NY (USA)); Pick, M.A. (Commission of the European Communities, Abingdon (UK). JET Joint Undertaking)

    1990-01-01

    The effect of vanadium additions to niobium on the metal-hydrogen phase equilibria has been studied. Measurements of the equilibrium H{sub 2}(D{sub 2}) pressure-composition-temperature isotherms for Nb{sub 1-x}V{sub x} alloys with 0{le}x<0.2 were used to determine the depression of the {alpha} - {alpha}' critical temperature with increasing vanadium concentration. A simple lattice-fluid model guided reduction of the data. Changes in the triple point temperature as well as the shift of the {zeta} {yields} {epsilon} phase transition were determined by differential scanning calorimetry measurements. A rapid overall depression was found, of the order of 7 K (at.% substituted V){sup -1}, for the metal-hydrogen (deuterium) phase boundary structure when compared with the Nb-H system in the hydrogen concentration range of interest. The results explain the enhanced terminal solubility of hydrogen in this system found previously by other authors. The changes in the phase equilibria are discussed in terms of the effect of hydrogen trapping and compared with the results of a cluster-variation calculation for random-field systems of previous authors, taking into account a distribution of H-site energies due to alloying. (author).

  5. Scattering influences in quantitative fission neutron radiography for the in situ analysis of hydrogen distribution in metal hydrides

    Energy Technology Data Exchange (ETDEWEB)

    Börries, S., E-mail: stefan.boerries@hzg.de [Helmholtz-Zentrum Geesthacht, Centre for Materials and Coastal Research, Max-Planck-Strasse 1, D-21502 Geesthacht (Germany); Metz, O.; Pranzas, P.K. [Helmholtz-Zentrum Geesthacht, Centre for Materials and Coastal Research, Max-Planck-Strasse 1, D-21502 Geesthacht (Germany); Bücherl, T. [ZTWB Radiochemie München (RCM), Technische Universität München (TUM), Walther-Meissner-Str. 3, D-85748 Garching (Germany); Söllradl, S. [Forschungs-Neutronenquelle Heinz Maier-Leibnitz (FRMII), Technische Universität München (TUM), Lichtenbergstr. 1, D-85748 Garching (Germany); Dornheim, M.; Klassen, T.; Schreyer, A. [Helmholtz-Zentrum Geesthacht, Centre for Materials and Coastal Research, Max-Planck-Strasse 1, D-21502 Geesthacht (Germany)

    2015-10-11

    In situ neutron radiography allows for the time-resolved study of hydrogen distribution in metal hydrides. However, for a precise quantitative investigation of a time-dependent hydrogen content within a host material, an exact knowledge of the corresponding attenuation coefficient is necessary. Additionally, the effect of scattering has to be considered as it is known to violate Beer's law, which is used to determine the amount of hydrogen from a measured intensity distribution. Within this study, we used a metal hydride inside two different hydrogen storage tanks as host systems, consisting of steel and aluminum. The neutron beam attenuation by hydrogen was investigated in these two different setups during the hydrogen absorption process. A linear correlation to the amount of absorbed hydrogen was found, allowing for a readily quantitative investigation. Further, an analysis of scattering contributions on the measured intensity distributions was performed and is described in detail.

  6. Edge Delamination of Monolayer Transition Metal Dichalcogenides.

    Science.gov (United States)

    Ly, Thuc Hue; Yun, Seok Joon; Thi, Quoc Huy; Zhao, Jiong

    2017-07-25

    Delamination of thin films from the supportive substrates is a critical issue within the thin film industry. The emergent two-dimensional, atomic layered materials, including transition metal dichalcogenides, are highly flexible; thus buckles and wrinkles can be easily generated and play vital roles in the corresponding physical properties. Here we introduce one kind of patterned buckling behavior caused by the delamination from a substrate initiated at the edges of the chemical vapor deposition synthesized monolayer transition metal dichalcogenides, led by thermal expansion mismatch. The atomic force microscopy and optical characterizations clearly showed the puckered structures associated with the strain, whereas the transmission electron microscopy revealed the special sawtooth-shaped edges, which break the geometrical symmetry for the buckling behavior of hexagonal samples. The condition of the edge delamination is in accordance with the fracture behavior of thin film interfaces. This edge delamination and buckling process is universal for most ultrathin two-dimensional materials, which requires more attention in various future applications.

  7. The atomic structure of transition metal clusters

    International Nuclear Information System (INIS)

    Riley, S.J.

    1995-01-01

    Chemical reactions are used to probe the atomic (geometrical) structure of isolated clusters of transition metal atoms. The number of adsorbate molecules that saturate a cluster, and/or the binding energy of molecules to cluster surfaces, are determined as a function of cluster size. Systematics in these properties often make it possible to propose geometrical structures consistent with the experimental observations. We will describe how studies of the reactions of cobalt and nickel clusters with ammonia, water, and nitrogen provide important and otherwise unavailable structural information. Specifically, small (less than 20 atoms) clusters of cobalt and nickel atoms adopt entirely different structures, the former having packing characteristic of the bulk and the latter having pentagonal symmetry. These observations provide important input for model potentials that attempt to describe the local properties of transition metals. In particular, they point out the importance of a proper treatment of d-orbital binding in these systems, since cobalt and nickel differ so little in their d-orbital occupancy

  8. Lattice Location of Transition Metals in Semiconductors

    CERN Multimedia

    2002-01-01

    %IS366 %title\\\\ \\\\Transition metals (TMs) in semiconductors have been the subject of considerable research for nearly 40 years. This is due both to their role as important model impurities for deep centers in semiconductors, and to their technological impact as widespread contaminants in Si processing, where the miniaturization of devices requires to keep their sheet concentration below 10$^{10}$ cm$^{-2}$. As a consequence of the low TM solubility, conventional ion beam methods for direct lattice location have failed completely in identifying the lattice sites of isolated transition metals. Although electron paramagnetic resonance (EPR) has yielded valuable information on a variety of TM centers, it has been unable to detect certain defects considered by theory, e.g., isolated interstitial or substitutional Cu in Si. The proposed identity of other EPR centers such as substitutional Fe in Si, still needs confirmation by additional experimental methods. As a consequence, the knowledge on the structural propert...

  9. Metal non-metal transitions in doped semiconductors

    International Nuclear Information System (INIS)

    Brezini, A.

    1989-12-01

    A disordered Hubbard model with diagonal disorder is used to examine the electron localization effects associated with both disorder and electron-electron interaction. Extensive results are reported on the ground state properties and compared with other theories. In particular two regimes are observed; when the electron-electron interaction U is greater than the disorder parameter and when is smaller. Furthermore the effect of including conduction-band minima into the calculation of metal-insulator transitions in doped Si and Ge is investigated with use of Berggren approach. Good agreement with experiments are found when both disorder and interactions are included. (author). 37 refs, 7 figs, 3 tabs

  10. Hydrogen Storage using Metal Hydrides in a Stationary Cogeneration System

    International Nuclear Information System (INIS)

    Botzung, Maxime; Chaudourne, Serge; Perret, Christian; Latroche, Michel; Percheron-Guegan, Annick; Marty Philippe

    2006-01-01

    In the frame of the development of a hydrogen production and storage unit to supply a 40 kW stationary fuel cell, a metal hydride storage tank was chosen according to its reliability and high energetic efficiency. The study of AB5 compounds led to the development of a composition adapted to the project needs. The absorption/desorption pressures of the hydride at 75 C (2 / 1.85 bar) are the most adapted to the specifications. The reversible storage capacity (0.95 %wt) has been optimized to our work conditions and chemical kinetics is fast. The design of the Combined Heat and Power CHP system requires 5 kg hydrogen storage but in a first phase, only a 0.1 kg prototype has been realised and tested. Rectangular design has been chosen to obtain good compactness with an integrated plate fin type heat exchanger designed to reach high absorption/desorption rates. In this paper, heat and mass transfer characteristics of the Metal Hydride tank (MH tank) during absorption/desorption cycles are given. (authors)

  11. Band gap tuning in transition metal oxides by site-specific substitution

    Science.gov (United States)

    Lee, Ho Nyung; Chisholm, Jr., Matthew F; Jellison, Jr., Gerald Earle; Singh, David J; Choi, Woo Seok

    2013-12-24

    A transition metal oxide insulator composition having a tuned band gap includes a transition metal oxide having a perovskite or a perovskite-like crystalline structure. The transition metal oxide includes at least one first element selected form the group of Bi, Ca, Ba, Sr, Li, Na, Mg, K, Pb, and Pr; and at least one second element selected from the group of Ti, Al, V, Cr, Mn, Fe, Co, Ni, Cu, Zr, Nb, Mo, Ru, Rh, Hf, Ta, W, Re, Os, Ir, and Pt. At least one correlated insulator is integrated into the crystalline structure, including REMO.sub.3, wherein RE is at least one Rare Earth element, and wherein M is at least one element selected from the group of Co, V, Cr, Ni, Mn, and Fe. The composition is characterized by a band gap of less of 4.5 eV.

  12. Hydrogen storage compositions

    Science.gov (United States)

    Li, Wen; Vajo, John J.; Cumberland, Robert W.; Liu, Ping

    2011-04-19

    Compositions for hydrogen storage and methods of making such compositions employ an alloy that exhibits reversible formation/deformation of BH.sub.4.sup.- anions. The composition includes a ternary alloy including magnesium, boron and a metal and a metal hydride. The ternary alloy and the metal hydride are present in an amount sufficient to render the composition capable of hydrogen storage. The molar ratio of the metal to magnesium and boron in the alloy is such that the alloy exhibits reversible formation/deformation of BH.sub.4.sup.- anions. The hydrogen storage composition is prepared by combining magnesium, boron and a metal to prepare a ternary alloy and combining the ternary alloy with a metal hydride to form the hydrogen storage composition.

  13. Development of dissimilar metal transition joint by hot bond rolling

    International Nuclear Information System (INIS)

    Kurokawa, Hiroyuki; Nakasuji, Kazuyuki; Kajimura, Haruhiko; Nagai, Takayuki; Takeda, Seiichiro.

    1997-01-01

    Metallurgically bonded transition joints which enable to connect reprocessing equipments made of superior corrosion resistant valve metals (Ti-5Ta, Zr or Ti) to stainless steel piping are required for nuclear fuel reprocessing plants. The authors have developed dissimilar transition joints made of stainless steel and Ti-5Ta, Zr or Ti with an insert metal of Ta by the hot bond rolling process of clad bars and clad pipes, using a newly developed mill called 'rotary reduction mill'. This report presents the manufacturing process of dissimilar transition joints produced from the clad pipe with three layers by the hot bond rolling. First, the method of hot bond rolling of clad pipe is proposed. Then, the mechanical and corrosion properties of the dissimilar transition joints are evaluated in detail by carrying out various tests. Finally, the rolling properties in the clad pipe method are discussed. (author)

  14. Metallic Membranes for High Temperature Hydrogen Separation

    DEFF Research Database (Denmark)

    Ma, Y.H.; Catalano, Jacopo; Guazzone, Federico

    2013-01-01

    membrane fabrication methods have matured over the last decades, and the deposition of very thin films (1–5 µm) of Pd over porous ceramics or modified porous metal supports is quite common. The H2 permeances and the selectivities achieved at 400–500 °C were in the order of 50–100 Nm3/m/h/bar0.5 and greater......Composite palladium membranes have extensively been studied in laboratories and, more recently, in small pilot industrial applications for the high temperature separation of hydrogen from reactant mixtures such as water-gas shift (WGS) reaction or methane steam reforming (MSR). Composite Pd...... than 1000, respectively. This chapter describes in detail composite Pd-based membrane preparation methods, which consist of the grading of the support and the deposition of the dense metal layer, their performances, and their applications in catalytic membrane reactors (CMRs) at high temperatures (400...

  15. Electronic specific heats in metal--hydrogen systems

    International Nuclear Information System (INIS)

    Flotow, H.E.

    1979-01-01

    The electronic specific heats of metals and metal--hydrogen systems can in many cases be evaluated from the measured specific heats at constant pressure, C/sub p/, in the temperature range 1 to 10 K. For the simplest case, C/sub p/ = γT + βT 3 , where γT represents the specific heat contribution associated with the conduction electrons, and βT 3 represents lattice specific heat contribution. The electronic specific heat coefficient, γ, is important because it is proportional to electron density of states at the Fermi surface. A short description of a low temperature calorimetric cryostat employing a 3 He/ 4 He dilution refrigeration is given. Various considerations and complications encountered in the evaluation of γ from specific heat data are discussed. Finally, the experimental values of γ for the V--Cr--H system and for the Lu--H system are summarized and the variations of γ as function of alloy composition are discussed

  16. Ternary alkali-metal and transition metal or metalloid acetylides as alkali-metal intercalation electrodes for batteries

    Science.gov (United States)

    Nemeth, Karoly; Srajer, George; Harkay, Katherine C; Terdik, Joseph Z

    2015-02-10

    Novel intercalation electrode materials including ternary acetylides of chemical formula: A.sub.nMC.sub.2 where A is alkali or alkaline-earth element; M is transition metal or metalloid element; C.sub.2 is reference to the acetylide ion; n is an integer that is 0, 1, 2, 3 or 4 when A is alkali element and 0, 1, or 2 when A is alkaline-earth element. The alkali elements are Lithium (Li), Sodium (Na), Potassium (K), Rubidium (Rb), Cesium (Cs) and Francium (Fr). The alkaline-earth elements are Berilium (Be), Magnesium (Mg), Calcium (Ca), Strontium (Sr), Barium (Ba), and Radium (Ra). M is a transition metal that is any element in groups 3 through 12 inclusive on the Periodic Table of Elements (elements 21 (Sc) to element 30 (Zn)). In another exemplary embodiment, M is a metalloid element.

  17. Janus monolayers of transition metal dichalcogenides

    KAUST Repository

    Lu, Ang-Yu

    2017-05-15

    Structural symmetry-breaking plays a crucial role in determining the electronic band structures of two-dimensional materials. Tremendous efforts have been devoted to breaking the in-plane symmetry of graphene with electric fields on AB-stacked bilayers or stacked van der Waals heterostructures. In contrast, transition metal dichalcogenide monolayers are semiconductors with intrinsic in-plane asymmetry, leading to direct electronic bandgaps, distinctive optical properties and great potential in optoelectronics. Apart from their in-plane inversion asymmetry, an additional degree of freedom allowing spin manipulation can be induced by breaking the out-of-plane mirror symmetry with external electric fields or, as theoretically proposed, with an asymmetric out-of-plane structural configuration. Here, we report a synthetic strategy to grow Janus monolayers of transition metal dichalcogenides breaking the out-of-plane structural symmetry. In particular, based on a MoS2 monolayer, we fully replace the top-layer S with Se atoms. We confirm the Janus structure of MoSSe directly by means of scanning transmission electron microscopy and energy-dependent X-ray photoelectron spectroscopy, and prove the existence of vertical dipoles by second harmonic generation and piezoresponse force microscopy measurements.

  18. The recent development of efficient Earth-abundant transition-metal nanocatalysts.

    Science.gov (United States)

    Wang, Dong; Astruc, Didier

    2017-02-06

    Whereas noble metal compounds have long been central in catalysis, Earth-abundant metal-based catalysts have in the same time remained undeveloped. Yet the efficacy of Earth-abundant metal catalysts was already shown at the very beginning of the 20th century with the Fe-catalyzed Haber-Bosch process of ammonia synthesis and later in the Fischer-Tropsch reaction. Nanoscience has revolutionized the world of catalysis since it was observed that very small Au nanoparticles (NPs) and other noble metal NPs are extraordinarily efficient. Therefore the development of Earth-abundant metals NPs is more recent, but it has appeared necessary due to their "greenness". This review highlights catalysis by NPs of Earth-abundant transition metals that include Mn, Fe, Co, Ni, Cu, early transition metals (Ti, V, Cr, Zr, Nb and W) and their nanocomposites with emphasis on basic principles and literature reported during the last 5 years. A very large spectrum of catalytic reactions has been successfully disclosed, and catalysis has been examined for each metal starting with zero-valent metal NPs followed by oxides and other nanocomposites. The last section highlights the catalytic activities of bi- and trimetallic NPs. Indeed this later family is very promising and simultaneously benefits from increased stability, efficiency and selectivity, compared to monometallic NPs, due to synergistic substrate activation.

  19. Hydrogen Storage Engineering Center of Excellence Metal Hydride Final Report

    Energy Technology Data Exchange (ETDEWEB)

    Motyka, T. [Savannah River Site (SRS), Aiken, SC (United States). Savannah River National Lab. (SRNL)

    2014-05-31

    The Hydrogen Storage Engineering Center of Excellence (HSECoE) was established in 2009 by the U.S. Department of Energy (DOE) to advance the development of materials-based hydrogen storage systems for hydrogen-fueled light-duty vehicles. The overall objective of the HSECoE is to develop complete, integrated system concepts that utilize reversible metal hydrides, adsorbents, and chemical hydrogen storage materials through the use of advanced engineering concepts and designs that can simultaneously meet or exceed all the DOE targets. This report describes the activities and accomplishments during Phase 1 of the reversible metal hydride portion of the HSECoE, which lasted 30 months from February 2009 to August 2011. A complete list of all the HSECoE partners can be found later in this report but for the reversible metal hydride portion of the HSECoE work the major contributing organizations to this effort were the United Technology Research Center (UTRC), General Motors (GM), Pacific Northwest National Laboratory (PNNL), the National Renewable Energy Laboratory (NREL) and the Savannah River National Laboratory (SRNL). Specific individuals from these and other institutions that supported this effort and the writing of this report are included in the list of contributors and in the acknowledgement sections of this report. The efforts of the HSECoE are organized into three phases each approximately 2 years in duration. In Phase I, comprehensive system engineering analyses and assessments were made of the three classes of storage media that included development of system level transport and thermal models of alternative conceptual storage configurations to permit detailed comparisons against the DOE performance targets for light-duty vehicles. Phase 1 tasks also included identification and technical justifications for candidate storage media and configurations that should be capable of reaching or exceeding the DOE targets. Phase 2 involved bench-level testing and

  20. Defect-Tolerant Monolayer Transition Metal Dichalcogenides

    DEFF Research Database (Denmark)

    Pandey, Mohnish; Rasmussen, Filip Anselm; Kuhar, Korina

    2016-01-01

    Localized electronic states formed inside the band gap of a semiconductor due to crystal defects can be detrimental to the material's optoelectronic properties. Semiconductors with a lower tendency to form defect induced deep gap states are termed defect-tolerant. Here we provide a systematic first...... the gap. These ideas are made quantitative by introducing a descriptor that measures the degree of similarity of the conduction and valence band manifolds. Finally, the study is generalized to nonpolar nanoribbons of the TMDs where we find that only the defect sensitive materials form edge states within......-principles investigation of defect tolerance in 29 monolayer transition metal dichalcogenides (TMDs) of interest for nanoscale optoelectronics. We find that the TMDs based on group VI and X metals form deep gap states upon creation of a chalcogen (S, Se, Te) vacancy, while the TMDs based on group IV metals form only...

  1. Thermomechanics of hydrogen storage in metallic hydrides: modeling and analysis

    Czech Academy of Sciences Publication Activity Database

    Roubíček, Tomáš; Tomassetti, G.

    2014-01-01

    Roč. 19, č. 7 (2014), s. 2313-2333 ISSN 1531-3492 R&D Projects: GA ČR GA201/09/0917 Institutional support: RVO:61388998 Keywords : metal-hydrid phase transformation * hydrogen diffusion * swelling Subject RIV: BA - General Mathematics Impact factor: 0.768, year: 2014 http://aimsciences.org/journals/pdfs.jsp?paperID=10195&mode=full

  2. Metal-insulator transition and superconductivity in heavily boron-doped diamond and related materials

    Energy Technology Data Exchange (ETDEWEB)

    Achatz, Philipp

    2009-05-15

    During this PhD project, the metal-insulator transition and superconductivity of highly boron-doped single crystal diamond and related materials have been investigated. The critical boron concentration n{sub c} for the metal-insulator transition was found to be the same as for the normal-superconductor transition. All metallic samples have been found to be superconducting and we were able to link the occurence of superconductivity to the proximity to the metal-insulator transition. For this purpose, a scaling law approach based on low temperature transport was proposed. Furthermore, we tried to study the nature of the superconductivity in highly boron doped single crystal diamond. Raman spectroscopy measurements on the isotopically substituted series suggest that the feature occuring at low wavenumbers ({approx} 500 cm{sup -1}) is the A1g vibrational mode associated with boron dimers. Usual Hall effect measurements yielded a puzzling situation in metallic boron-doped diamond samples, leading to carrier concentrations up to a factor 10 higher than the boron concentration determined by secondary ion mass spectroscopy (SIMS). The low temperature transport follows the one expected for a granular metal or insulator, depending on the interplay of intergranular and intragranular (tunneling) conductance. The metal-insulator transition takes place at a critical conductance g{sub c}. The granularity also influences significantly the superconducting properties by introducing the superconducting gap {delta} in the grain and Josephson coupling J between superconducting grains. A peak in magnetoresistance is observed which can be explained by superconducting fluctuations and the granularity of the system. Additionally we studied the low temperature transport of boron-doped Si samples grown by gas immersion laser doping, some of which yielded a superconducting transition at very low temperatures. Furthermore, preliminary results on the LO-phonon-plasmon coupling are shown for the

  3. Metal-insulator transition and superconductivity in heavily boron-doped diamond and related materials

    International Nuclear Information System (INIS)

    Achatz, Philipp

    2009-01-01

    During this PhD project, the metal-insulator transition and superconductivity of highly boron-doped single crystal diamond and related materials have been investigated. The critical boron concentration n c for the metal-insulator transition was found to be the same as for the normal-superconductor transition. All metallic samples have been found to be superconducting and we were able to link the occurence of superconductivity to the proximity to the metal-insulator transition. For this purpose, a scaling law approach based on low temperature transport was proposed. Furthermore, we tried to study the nature of the superconductivity in highly boron doped single crystal diamond. Raman spectroscopy measurements on the isotopically substituted series suggest that the feature occuring at low wavenumbers (∼ 500 cm -1 ) is the A1g vibrational mode associated with boron dimers. Usual Hall effect measurements yielded a puzzling situation in metallic boron-doped diamond samples, leading to carrier concentrations up to a factor 10 higher than the boron concentration determined by secondary ion mass spectroscopy (SIMS). The low temperature transport follows the one expected for a granular metal or insulator, depending on the interplay of intergranular and intragranular (tunneling) conductance. The metal-insulator transition takes place at a critical conductance g c . The granularity also influences significantly the superconducting properties by introducing the superconducting gap Δ in the grain and Josephson coupling J between superconducting grains. A peak in magnetoresistance is observed which can be explained by superconducting fluctuations and the granularity of the system. Additionally we studied the low temperature transport of boron-doped Si samples grown by gas immersion laser doping, some of which yielded a superconducting transition at very low temperatures. Furthermore, preliminary results on the LO-phonon-plasmon coupling are shown for the first time in aluminum

  4. Phase-field model of insulator-to-metal transition in VO2 under an electric field

    Science.gov (United States)

    Shi, Yin; Chen, Long-Qing

    2018-05-01

    The roles of an electric field and electronic doping in insulator-to-metal transitions are still not well understood. Here we formulated a phase-field model of insulator-to-metal transitions by taking into account both structural and electronic instabilities as well as free electrons and holes in VO2, a strongly correlated transition-metal oxide. Our phase-field simulations demonstrate that in a VO2 slab under a uniform electric field, an abrupt universal resistive transition occurs inside the supercooling region, in sharp contrast to the conventional Landau-Zener smooth electric breakdown. We also show that hole doping may decouple the structural and electronic phase transitions in VO2, leading to a metastable metallic monoclinic phase which could be stabilized through a geometrical confinement and the size effect. This work provides a general mesoscale thermodynamic framework for understanding the influences of electric field, electronic doping, and stress and strain on insulator-to-metal transitions and the corresponding mesoscale domain structure evolution in VO2 and related strongly correlated systems.

  5. Transit experience with hydrogen fueled hybrid electric buses

    Energy Technology Data Exchange (ETDEWEB)

    Scott, P.B.; Mazaika, D.M. [ISE Corp., Poway, CA (United States)

    2006-07-01

    Mass transit buses are ideal candidates for hydrogen implementation due to their capability of carrying 30 to 60 kg of hydrogen. ISE Corporation is a supplier of hydrogen fueled buses, including the first hybrid electric fuel cell bus which was commercialized in 2002, the hybrid electric fuel cell bus, and the hybrid hydrogen internal combustion engine (HHICE) bus which was commercialized in 2004. The configuration of a HHICE bus was illustrated with reference to its engine, control system, energy storage, generator, drive motor, inverter and accessories. Although these vehicles are expensive, the cost is amortized over a large base of hours used and passengers carried. The buses are operated primarily in urban areas where quiet and clean operation is needed the most. ISE has established a joint venture with Thor industries to develop a series of fuel cell buses equipped with a 60 kW PEM fuel cell. A schematic illustrating the energy flow in HHICE bus was also presented. It was shown that regenerative braking recovers the energy of motion. When using regenerative braking, most of the braking energy is saved in the battery. ISE drive systems convert 30 per cent or more of the bus energy to electrical energy to be used in later acceleration. Reduced fuel consumption also reduces the vehicle emissions. Testing of HHICE buses in both summer and winter operating conditions have shown that the range needs to be improved along with engine component reliability and durability. Fuel supply is also a major issue. A comparison with a fuel cell hybrid system was also presented. In the United States, more than 100,000 miles have been logged for the use of hydrogen hybrid buses, fuel cell buses and HHICE buses. The HHICE bus offers low capital cost, familiar technologies, but some NOx. CAT absorber technology offers the possibility of near zero emission capability. The fuel cell bus was found to be more fuel efficient, and can travel nearly twice as far per unit energy as

  6. The effect of a micro bubble dispersed gas phase on hydrogen isotope transport in liquid metals under nuclear irradiation

    Energy Technology Data Exchange (ETDEWEB)

    Fradera, J., E-mail: jfradera@ubu.es; Cuesta-López, S., E-mail: scuesta@ubu.es

    2013-12-15

    The present work intend to be a first step towards the understanding and quantification of the hydrogen isotope complex phenomena in liquid metals for nuclear technology. Liquid metals under nuclear irradiation in, e.g., breeding blankets of a nuclear fusion reactor would generate tritium which is to be extracted and recirculated as fuel. At the same time that tritium is bred, helium is also generated and may precipitate in the form of nano bubbles. Other liquid metal systems of a nuclear reactor involve hydrogen isotope absorption processes, e.g., tritium extraction system. Hence, hydrogen isotope absorption into gas bubbles modelling and control may have a capital importance regarding design, operation and safety. Here general models for hydrogen isotopes transport in liquid metal and absorption into gas phase, that do not depend on the mass transfer limiting regime, are exposed and implemented in OpenFOAM® CFD tool for 0D–3D simulations. Results for a 0D case show the impact of a He dispersed phase of nano bubbles on hydrogen isotopes inventory at different temperatures as well as the inventory evolution during a He nucleation event. In addition, 1D and 2D axisymmetric cases are exposed showing the effect of a He dispersed gas phase on hydrogen isotope permeation through a lithium lead eutectic alloy and the effect of vortical structures on hydrogen isotope transport at a backward facing step. Exposed results give a valuable insight on current nuclear technology regarding the importance of controlling hydrogen isotope transport and its interactions with nucleation event through gas absorption processes.

  7. Impact of heavy metals on hydrogen production from organic fraction of municipal solid waste using co-culture of Enterobacter aerogenes and E. Coli.

    Science.gov (United States)

    Sharma, Preeti; Melkania, Uma

    2018-05-01

    In the present study, the effect of heavy metals (lead, mercury, copper, and chromium) on the hydrogen production from the organic fraction of municipal solid waste (OFMSW) was investigated using co-culture of facultative anaerobes Enterobacter aerogenes and E. coli. Heavy metals were applied at concentration range of 0.5, 1, 2, 5, 10, 20, 50 and 100 mg/L. The results revealed that lead, mercury, and chromium negatively affected hydrogen production for the range of concentrations applied. Application of copper slightly enhanced hydrogen production at low concentration and resulted in the hydrogen yield of 36.0 mLH 2 /gCarbo initial with 10 mg/L copper supplementation as compared to 24.2 mLH 2 /gCarbo initial in control. However, the higher concentration of copper (>10 mg/L) declined hydrogen production. Hydrogen production inhibition potential of heavy metals can be arranged in the following increasing order: Cu 2+  metal addition. Thus, the present study reveals that the presence of heavy metals in the feedstock is detrimental for the hydrogen production. Therefore, it is essential to remove the toxic heavy metals prior to anaerobic digestion. Copyright © 2018 Elsevier Ltd. All rights reserved.

  8. Universal Quantum Criticality in the Metal-Insulator Transition of Two-Dimensional Interacting Dirac Electrons

    Directory of Open Access Journals (Sweden)

    Yuichi Otsuka

    2016-03-01

    Full Text Available The metal-insulator transition has been a subject of intense research since Mott first proposed that the metallic behavior of interacting electrons could turn to an insulating one as electron correlations increase. Here, we consider electrons with massless Dirac-like dispersion in two spatial dimensions, described by the Hubbard models on two geometrically different lattices, and perform numerically exact calculations on unprecedentedly large systems that, combined with a careful finite-size scaling analysis, allow us to explore the quantum critical behavior in the vicinity of the interaction-driven metal-insulator transition. Thereby, we find that the transition is continuous, and we determine the quantum criticality for the corresponding universality class, which is described in the continuous limit by the Gross-Neveu model, a model extensively studied in quantum field theory. Furthermore, we discuss a fluctuation-driven scenario for the metal-insulator transition in the interacting Dirac electrons: The metal-insulator transition is triggered only by the vanishing of the quasiparticle weight, not by the Dirac Fermi velocity, which instead remains finite near the transition. This important feature cannot be captured by a simple mean-field or Gutzwiller-type approximate picture but is rather consistent with the low-energy behavior of the Gross-Neveu model.

  9. Polymer derived non-oxide ceramics modified with late transition metals.

    Science.gov (United States)

    Zaheer, Muhammad; Schmalz, Thomas; Motz, Günter; Kempe, Rhett

    2012-08-07

    This tutorial review highlights the methods for the preparation of metal modified precursor derived ceramics (PDCs) and concentrates on the rare non-oxide systems enhanced with late transition metals. In addition to the main synthetic strategies for modified SiC and SiCN ceramics, an overview of the morphologies, structures and compositions of both, ceramic materials and metal (nano) particles, is presented. Potential magnetic and catalytic applications have been discussed for the so manufactured metal containing non-oxide ceramics.

  10. Role of synergism effect of mixed metal oxides on molecular hydrogen formation from photocatalitic water splitting

    International Nuclear Information System (INIS)

    Mahmudov, H.M.; Ismayilova, M.K.; Jafarova, N.A.; Azizova, K.V.

    2017-01-01

    The paper deals with hydrogen production using photocatalysis. In particular, we focus on the role of synergism on the reaction rate. For hydrogen production presented photocatalyst is composed of nanoAl_2O_3 and dispers TiO_2. Yet, the presence of the two mixed metal oxides together results in considerable enhancement of the reaction rate. The main reason for this is the increase of the charge carriers lifetime allowing for electron transfer to hydrogen ions and hole transfer to oxygen ions. It was investigated the mechanism of water splitting in presence of mixed nanocatalysed. It has been shown that the effect occurs during irradiation as a result of photooxidation of water with mixed metal oxides catalyst.

  11. The Liquid Metallic Hydrogen Model of the Sun and the Solar Atmosphere IV. On the Nature of the Chromosphere

    Directory of Open Access Journals (Sweden)

    Robitaille P.-M.

    2013-07-01

    Full Text Available The chromosphere is the site of weak emission lines characterizing the flash spectrum observed for a few seconds during a total eclipse. This layer of the solar atmosphere is known to possess an opaque Hα emission and a great number of spicules, which can extend well above the photosphere. A stunning variety of hydrogen emission lines have been observed in this region. The production of these lines has provided the seventeenth line of evidence that the Sun is comprised of condensed matter (Robitaille P.M. Liquid Metallic Hydrogen II: A critical assessment of current and primordial helium levels in Sun. Progr. Phys., 2013, v. 2, 35–47. Contrary to the gaseous solar models, the simplest mechanism for the production of emission lines is the evaporation of excited atoms from condensed surfaces existing within the chromosphere, as found in spicules. This is reminiscent of the chemiluminescence which occurs during the condensation of silver clusters (Konig L., Rabin I., Schultze W., and Ertl G. Chemiluminescence in the Agglomeration of Metal Clusters. Science, v. 274, no. 5291, 1353–1355. The process associated with spicule formation is an exothermic one, requiring the transport of energy away from the site of condensation. As atoms leave localized surfaces, their electrons can occupy any energy level and, hence, a wide variety of emission lines are produced. In this regard, it is hypothesized that the presence of hydrides on the Sun can also facilitate hydrogen condensation in the chromosphere. The associated line emission from main group and transition elements constitutes the thirtieth line of evidence that the Sun is condensed matter. Condensation processes also help to explain why spicules manifest an apparently constant temperature over their entire length. Since the corona supports magnetic field lines, the random orientations associated with spicule formation suggests that the hydrogen condensates in the chromosphere are not metallic in

  12. Trends in oxygen reduction and methanol activation on transition metal chalcogenides

    DEFF Research Database (Denmark)

    Tritsaris, Georgios; Nørskov, Jens Kehlet; Rossmeisl, Jan

    2011-01-01

    We use density functional theory calculations to study the oxygen reduction reaction and methanol activation on selenium and sulfur-containing transition metal surfaces. With ruthenium selenium as a starting point, we study the effect of the chalcogen on the activity, selectivity and stability...... of the catalyst. Ruthenium surfaces with moderate content of selenium are calculated active for the oxygen reduction reaction, and insensitive to methanol. A significant upper limit for the activity of transition metal chalcogenides is estimated....

  13. Magnetic Ground State Properties of Transition Metals

    DEFF Research Database (Denmark)

    Andersen, O. K.; Madsen, J.; Poulsen, U. K.

    1977-01-01

    We review a simple one-electron theory of the magnetic and cohesive properties of ferro- and nearly ferromagnetic transition metals at 0 K. The theory is based on the density functional formalism, it makes use of the local spin density and atomic sphere approximations and it may, with further app...

  14. Raman scattering in transition metal compounds: Titanium and compounds of titanium

    Energy Technology Data Exchange (ETDEWEB)

    Jimenez, J.; Ederer, D.L.; Shu, T. [Tulane Univ., New Orleans, LA (United States)] [and others

    1997-04-01

    The transition metal compounds form a very interesting and important set of materials. The diversity arises from the many states of ionization the transition elements may take when forming compounds. This variety provides ample opportunity for a large class of materials to have a vast range of electronic and magnetic properties. The x-ray spectroscopy of the transition elements is especially interesting because they have unfilled d bands that are at the bottom of the conduction band with atomic like structure. This group embarked on the systematic study of transition metal sulfides and oxides. As an example of the type of spectra observed in some of these compounds they have chosen to showcase the L{sub II, III} emission and Raman scattering in some titanium compounds obtained by photon excitation.

  15. Discovery of Novel Complex Metal Hydrides for Hydrogen Storage through Molecular Modeling and Combinatorial Methods

    Energy Technology Data Exchange (ETDEWEB)

    Lesch, David A; Adriaan Sachtler, J.W. J.; Low, John J; Jensen, Craig M; Ozolins, Vidvuds; Siegel, Don; Harmon, Laurel

    2011-02-14

    order to exploit the tremendous gravimetric capacity of LiBH4. A number of LiNH2 LiBH4 transition metal (TM) systems were investigated for the following reasons. No additional leads were discovered in this system. Another major project activity was the assembly of a high throughput synthesis system. The automated synthesizer was set up in a glovebox and was capable of handling liquids and powders and carrying out sealed block syntheses up to 250 °C. Unfortunately, the synthesizer could not handle the delivery of the fine powders required fro hydrogen storage applications. Although the powder delivery system was overhauled and redesigned several times, this problem was never remedied.

  16. Investigation of Ternary Transition-Metal Nitride Systems by Reactive Cosputtering

    NARCIS (Netherlands)

    Dover, R.B. Van; Hessen, B.; Werder, D.; Chen, C.-H.; Felder, R.J.

    1993-01-01

    A reactive dc cosputtering technique has been used to evaluate compound formation in bimetallic transition-metal nitride systems. A wide range in M-M’ composition can be studied in a single deposition run, and the method is applicable to nonalloying metal combinations. Using this technique, it was

  17. Hydrogen production and metal-dye bioremoval by a Nostoc linckia strain isolated from textile mill oxidation pond.

    Science.gov (United States)

    Mona, Sharma; Kaushik, Anubha; Kaushik, C P

    2011-02-01

    Biohydrogen production by Nostoc linckia HA-46, isolated from a textile-industry oxidation-pond was studied by varying light/dark period, pH, temperature and ratio of carbon-dioxide and argon in the gas-mixture. Hydrogen production rates were maximum under 18 h of light and 6 h of darkness, pH 8.0, 31°C, a CO(2):Ar ratio 2:10. Hydrogen production of the strain acclimatized to 20 mg/L of chromium/cobalt and 100 mg/L of Reactive red 198/crystal violet dye studied in N-supplemented/deficient medium was 6-10% higher in the presence of 1.5 g/L of NaNO(3). Rates of hydrogen production in the presence of dyes/metals by the strain (93-105 μmol/h/mg Chlorophyll) were significantly higher than in medium without metals/dyes serving as control (91.3 μmol/h/mg Chlorophyll). About 58-60% of the two metals and 35-73% of dyes were removed by cyanobacterium. Optimal conditions of temperature, pH and metals/dyes concentration for achieving high hydrogen production and wastewater treatment were found practically applicable as similar conditions are found in the effluent of regional textile-mills. Copyright © 2010 Elsevier Ltd. All rights reserved.

  18. Scaling Relationships for Adsorption Energies of C2 Hydrocarbons on Transition Metal Surfaces

    Energy Technology Data Exchange (ETDEWEB)

    Jones, G

    2011-08-18

    Using density functional theory calculations we show that the adsorption energies for C{sub 2}H{sub x}-type adsorbates on transition metal surfaces scale with each other according to a simple bond order conservation model. This observation generalizes some recently recognized adsorption energy scaling laws for AH{sub x}-type adsorbates to unsaturated hydrocarbons and establishes a coherent simplified description of saturated as well as unsaturated hydrocarbons adsorbed on transition metal surfaces. A number of potential applications are discussed. We apply the model to the dehydrogenation of ethane over pure transition metal catalysts. Comparison with the corresponding full density functional theory calculations shows excellent agreement.

  19. Nanostructure sensitization of transition metal oxides for visible-light photocatalysis

    Directory of Open Access Journals (Sweden)

    Hongjun Chen

    2014-05-01

    Full Text Available To better utilize the sunlight for efficient solar energy conversion, the research on visible-light active photocatalysts has recently attracted a lot of interest. The photosensitization of transition metal oxides is a promising approach for achieving effective visible-light photocatalysis. This review article primarily discusses the recent progress in the realm of a variety of nanostructured photosensitizers such as quantum dots, plasmonic metal nanostructures, and carbon nanostructures for coupling with wide-bandgap transition metal oxides to design better visible-light active photocatalysts. The underlying mechanisms of the composite photocatalysts, e.g., the light-induced charge separation and the subsequent visible-light photocatalytic reaction processes in environmental remediation and solar fuel generation fields, are also introduced. A brief outlook on the nanostructure photosensitization is also given.

  20. Hydrogen adsorption on metal-organic frameworks (MOFs) and single-walled carbon nanotubes (SWNTs)

    Energy Technology Data Exchange (ETDEWEB)

    Poirier, E.; Chahine, R.; Benard, P.; Lafi, L.; Dorval-Douville, G.; Chandonia, P.-A. [Univ. du Quebec a Trois-Rivieres, Inst. de recherche sur l' hydrogene, Trois-Rivieres, Quebec (Canada)]. E-mail: Lyubov.Lafi@uqtr.ca

    2006-07-01

    'Full text:' In recent years, several novel carbon-based microporous materials such as single-walled carbon nanotubes (SWNTs) and metal-organic frameworks (MOFs) have been proposed as promising adsorbents for hydrogen. Hydrogen adsorption measurements on Al-, Cr- and Zn-based metal-organic frameworks (MOFs) and single-walled carbon nanotubes (SWNTs) are presented. The measurements were performed at temperatures ranging from 77 to 300K and pressures up to 50 atm using a volumetric approach. The maximum excess adsorption at 77K ranges from 2,8 to 3,9 wt % for the MOFs and from 1,5 to 2,5 wt % for the SWNTs. These values are reached at pressures below 40 atm. At room temperature and 40 atm, modest amounts of hydrogen are adsorbed (< 0,4 wt %). A Dubinin-Astakhov (DA) approach is used to investigate the measured adsorption isotherms and retrieve energetic and structural parameters. The adsorption enthalpy averaged over filling is found to be about 2,9 kJ/mol for the MOF-5 and about 3,6 - 4,2 kJ/mol for SWNTs. The uptake of hydrogen on SWNTs and MOF-5 appears to be due to physisorption and can be described, through the DA-model, by a traditional theory of micropore filling. (author)