WorldWideScience

Sample records for transiting exoplanet candidates

  1. Five kepler target stars that show multiple transiting exoplanet candidates

    DEFF Research Database (Denmark)

    Steffen..[], Jason H.; Batalha, N. M.; Broucki, W J.

    2010-01-01

    We present and discuss five candidate exoplanetary systems identified with the Kepler spacecraft. These five systems show transits from multiple exoplanet candidates. Should these objects prove to be planetary in nature, then these five systems open new opportunities for the field of exoplanets a...

  2. Five Kepler target stars that show multiple transiting exoplanet candidates

    Energy Technology Data Exchange (ETDEWEB)

    Steffen, Jason H.; /Fermilab; Batalha, Natalie M.; /San Jose State U.; Borucki, William J.; /NASA, Ames; Buchhave, Lars A.; /Harvard-Smithsonian Ctr. Astrophys. /Bohr Inst.; Caldwell, Douglas A.; /NASA, Ames /SETI Inst., Mtn. View; Cochran, William D.; /Texas U.; Endl, Michael; /Texas U.; Fabrycky, Daniel C.; /Harvard-Smithsonian Ctr. Astrophys.; Fressin, Francois; /Harvard-Smithsonian Ctr. Astrophys.; Ford, Eric B.; /Florida U.; Fortney, Jonathan J.; /UC, Santa Cruz, Phys. Dept. /NASA, Ames

    2010-06-01

    We present and discuss five candidate exoplanetary systems identified with the Kepler spacecraft. These five systems show transits from multiple exoplanet candidates. Should these objects prove to be planetary in nature, then these five systems open new opportunities for the field of exoplanets and provide new insights into the formation and dynamical evolution of planetary systems. We discuss the methods used to identify multiple transiting objects from the Kepler photometry as well as the false-positive rejection methods that have been applied to these data. One system shows transits from three distinct objects while the remaining four systems show transits from two objects. Three systems have planet candidates that are near mean motion commensurabilities - two near 2:1 and one just outside 5:2. We discuss the implications that multitransiting systems have on the distribution of orbital inclinations in planetary systems, and hence their dynamical histories; as well as their likely masses and chemical compositions. A Monte Carlo study indicates that, with additional data, most of these systems should exhibit detectable transit timing variations (TTV) due to gravitational interactions - though none are apparent in these data. We also discuss new challenges that arise in TTV analyses due to the presence of more than two planets in a system.

  3. Long-Period Exoplanets from Photometric Transit Surveys

    Science.gov (United States)

    Osborn, Hugh

    2017-10-01

    Photometric transit surveys on the ground & in space have detected thousands of transiting exoplanets, typically by analytically combining the signals from multiple transits. This technique of exoplanet detection was exploited in K2 to detect nearly 200 candidate planets, and extensive follow-up was able to confirm the planet K2-110b as a 2.6±0.1R⊕, 16.7±3.2M⊙ planet on a 14d orbit around a K-dwarf. The ability to push beyond the time limit set by transit surveys to detect long-period transiting objects from a single eclipse was also studied. This was performed by developing a search technique to search for planets around bright stars in WASP and NGTS photometry, finding NGTS to be marginally better than WASP at detecting such planets with 4.14±0.16 per year compared to 1.43±0.15, and detecting many planet candidates for which follow-up is on-going. This search was then adapted to search for deep, long-duration eclipses in all WASP targets. The results of this survey are described in this thesis, as well as detailed results for the candidate PDS-110, a young T-Tauri star which exhibited ∼20d-long, 30%-deep eclipses in 2008 and 2011. Space-based photometers such as Kepler have the precision to identify small exoplanets and eclipsing binary candidates from only a single eclipse. K2, with its 75d campaign duration and high-precision photometry, is not only ideally suited to detect significant numbers of single-eclipsing objects, but also to characterise them from a single event. The Bayesian transit-fitting tool ("Namaste: An MCMC Analysis of Single Transit Exoplanets") was developed to extract planetary and orbital information from single transits, and was applied to 71 candidate events detected in K2 photometry. The techniques developed in this thesis are highly applicable to future transit surveys such as TESS & PLATO, which will be able to discover & characterise large numbers of long period planets in this way

  4. KEPLER OBSERVATIONS OF THREE PRE-LAUNCH EXOPLANET CANDIDATES: DISCOVERY OF TWO ECLIPSING BINARIES AND A NEW EXOPLANET

    International Nuclear Information System (INIS)

    Howell, Steve B.; Rowe, Jason F.; Bryson, Stephen T.; Sherry, William; Von Braun, Kaspar; Ciardi, David R.; Feldmeier, John J.; Horch, Elliott; Van Belle, Gerard T.

    2010-01-01

    Three transiting exoplanet candidate stars were discovered in a ground-based photometric survey prior to the launch of NASA's Kepler mission. Kepler observations of them were obtained during Quarter 1 of the Kepler mission. All three stars are faint by radial velocity follow-up standards, so we have examined these candidates with regard to eliminating false positives and providing high confidence exoplanet selection. We present a first attempt to exclude false positives for this set of faint stars without high-resolution radial velocity analysis. This method of exoplanet confirmation will form a large part of the Kepler mission follow-up for Jupiter-sized exoplanet candidates orbiting faint stars. Using the Kepler light curves and pixel data, as well as medium-resolution reconnaissance spectroscopy and speckle imaging, we find that two of our candidates are binary stars. One consists of a late-F star with an early M companion, while the other is a K0 star plus a late M-dwarf/brown dwarf in a 19 day elliptical orbit. The third candidate (BOKS-1) is an r = 15 G8V star hosting a newly discovered exoplanet with a radius of 1.12 R Jupiter in a 3.9 day orbit.

  5. Worlds Beyond: Follow-up Observations and Confirmation of K2 Exoplanet Candidates

    Science.gov (United States)

    O'Connor, Rachel; Lowenthal, James; Lowenthal, James D.; Cooper, Olivia; Helou, Elana; Papineau, Emily; Peck, Annie; Stephens, Loren; Walker, Kerry

    2018-06-01

    We present the results of an 8-month follow-up transit photometry campaign focused on exoplanet candidates produced by the K2 mission. Observations were conducted at the McConnell Rooftop Observatory at Smith College in Northampton, MA, with a 16” telescope and CCD. Targets were observed through a 400-700 nm broadband filter at a 1 minute cadence. We attempted to observe the complete duration of the transit plus a minimum one-hour baseline before and after the transit event whenever possible. Our observations typically reach an RMS of 2 millimags for an 11th-magnitude star. Candidates were selected based on a number of factors, including a transit depth of around 10 millimags, a host star magnitude between 10-13, a duration that is observable over the span of a night, and a period shorter than 30 days. There are currently around 700 unconfirmed exoplanets from K2, and these criteria shortened that list to around 20 ideal candidates, many of which were flagged as possible false positives. Our results showcase the capability of small observatories to conduct precise follow-up observations of exoplanet transits.

  6. COMPARATIVE HABITABILITY OF TRANSITING EXOPLANETS

    Energy Technology Data Exchange (ETDEWEB)

    Barnes, Rory; Meadows, Victoria S.; Evans, Nicole, E-mail: rory@astro.washington.edu [Astronomy Department, University of Washington, Box 951580, Seattle, WA 98195 (United States)

    2015-12-01

    Exoplanet habitability is traditionally assessed by comparing a planet’s semimajor axis to the location of its host star’s “habitable zone,” the shell around a star for which Earth-like planets can possess liquid surface water. The Kepler space telescope has discovered numerous planet candidates near the habitable zone, and many more are expected from missions such as K2, TESS, and PLATO. These candidates often require significant follow-up observations for validation, so prioritizing planets for habitability from transit data has become an important aspect of the search for life in the universe. We propose a method to compare transiting planets for their potential to support life based on transit data, stellar properties and previously reported limits on planetary emitted flux. For a planet in radiative equilibrium, the emitted flux increases with eccentricity, but decreases with albedo. As these parameters are often unconstrained, there is an “eccentricity-albedo degeneracy” for the habitability of transiting exoplanets. Our method mitigates this degeneracy, includes a penalty for large-radius planets, uses terrestrial mass–radius relationships, and, when available, constraints on eccentricity to compute a number we call the “habitability index for transiting exoplanets” that represents the relative probability that an exoplanet could support liquid surface water. We calculate it for Kepler objects of interest and find that planets that receive between 60% and 90% of the Earth’s incident radiation, assuming circular orbits, are most likely to be habitable. Finally, we make predictions for the upcoming TESS and James Webb Space Telescope missions.

  7. COMPARATIVE HABITABILITY OF TRANSITING EXOPLANETS

    International Nuclear Information System (INIS)

    Barnes, Rory; Meadows, Victoria S.; Evans, Nicole

    2015-01-01

    Exoplanet habitability is traditionally assessed by comparing a planet’s semimajor axis to the location of its host star’s “habitable zone,” the shell around a star for which Earth-like planets can possess liquid surface water. The Kepler space telescope has discovered numerous planet candidates near the habitable zone, and many more are expected from missions such as K2, TESS, and PLATO. These candidates often require significant follow-up observations for validation, so prioritizing planets for habitability from transit data has become an important aspect of the search for life in the universe. We propose a method to compare transiting planets for their potential to support life based on transit data, stellar properties and previously reported limits on planetary emitted flux. For a planet in radiative equilibrium, the emitted flux increases with eccentricity, but decreases with albedo. As these parameters are often unconstrained, there is an “eccentricity-albedo degeneracy” for the habitability of transiting exoplanets. Our method mitigates this degeneracy, includes a penalty for large-radius planets, uses terrestrial mass–radius relationships, and, when available, constraints on eccentricity to compute a number we call the “habitability index for transiting exoplanets” that represents the relative probability that an exoplanet could support liquid surface water. We calculate it for Kepler objects of interest and find that planets that receive between 60% and 90% of the Earth’s incident radiation, assuming circular orbits, are most likely to be habitable. Finally, we make predictions for the upcoming TESS and James Webb Space Telescope missions

  8. Simulating the Exoplanet Yield from the Transiting Exoplanet Survey Satellite

    Science.gov (United States)

    Barclay, Thomas; Pepper, Joshua; Schlieder, Joshua; Quintana, Elisa

    2018-01-01

    In 2018 NASA will launch the MIT-led Transiting Exoplanet Survey Satellite (TESS) which has a goal of detecting terrestrial-mass planets orbiting stars bright enough for mass determination via ground-based radial velocity observations. We inferred how many exoplanets the TESS mission will detect, the physical properties of these detected planets, and the properties of the stars that those planets orbit, subject to certain assumptions about the mission performance. To make these predictions we use samples of stars that are drawn from the TESS Input Catalog Candidate Target List. We place zero or more planets in orbit around these stars with physical properties following known exoplanet occurrence rates, and use the TESS noise model to predict the derived properties of the detected exoplanets. We find that it is feasible to detect around 1000 exoplanets, including 250 smaller than 2 earth-radii using the TESS 2-min cadence data. We examined alternative noise models and detection models and find in our pessimistic model that TESS will detect just 500 exoplanets. When potential detections in the full-frame image data are included, the number of detected planets could increase by a factor of 4. Perhaps most excitingly, TESS will find over 2 dozen planets orbiting in the habitable zone of bright, nearby cool stars. These planets will make ideal candidates for atmospheric characerization by JWST.

  9. USING STELLAR DENSITIES TO EVALUATE TRANSITING EXOPLANETARY CANDIDATES

    International Nuclear Information System (INIS)

    Tingley, B.; Deeg, H. J.; Bonomo, A. S.

    2011-01-01

    One of the persistent complications in searches for transiting exoplanets is the low percentage of the detected candidates that ultimately prove to be planets, which significantly increases the load on the telescopes used for the follow-up observations to confirm or reject candidates. Several attempts have been made at creating techniques that can pare down candidate lists without the need of additional observations. Some of these techniques involve a detailed analysis of light curve characteristics; others estimate the stellar density or some proxy thereof. In this paper, we extend upon this second approach, exploring the use of independently calculated stellar densities to identify the most promising transiting exoplanet candidates. We use a set of CoRoT candidates and the set of known transiting exoplanets to examine the potential of this approach. In particular, we note the possibilities inherent in the high-precision photometry from space missions, which can detect stellar asteroseismic pulsations from which accurate stellar densities can be extracted without additional observations.

  10. Preparing for TESS: Precision Ground-based Light-curves of Newly Discovered Transiting Exoplanets

    Science.gov (United States)

    Li, Yiting; Stefansson, Gudmundur; Mahadevan, Suvrath; Monson, Andy; Hebb, Leslie; Wisniewski, John; Huehnerhoff, Joseph

    2018-01-01

    NASA’s Transiting Exoplanet Survey Satellite (TESS), to be launched in early 2018, is expected to catalog a myriad of transiting exoplanet candidates ranging from Earth-sized to gas giants, orbiting a diverse range of stellar types in the solar neighborhood. In particular, TESS will find small planets orbiting the closest and brightest stars, and will enable detailed atmospheric characterizations of planets with current and future telescopes. In the TESS era, ground-based follow-up resources will play a critical role in validating and confirming the planetary nature of the candidates TESS will discover. Along with confirming the planetary nature of exoplanet transits, high precision ground-based transit observations allow us to put further constraints on exoplanet orbital parameters and transit timing variations. In this talk, we present new observations of transiting exoplanets recently discovered by the K2 mission, using the optical diffuser on the 3.5m ARC Telescope at Apache Point Observatory. These include observations of the mini-Neptunes K2-28b and K2-104b orbiting early-to-mid M-dwarfs. In addition, other recent transit observations performed using the robotic 30cm telescope at Las Campanas Observatory in Chile will be presented.

  11. PLANET HUNTERS. VIII. CHARACTERIZATION OF 41 LONG-PERIOD EXOPLANET CANDIDATES FROM KEPLER ARCHIVAL DATA

    International Nuclear Information System (INIS)

    Wang, Ji; Fischer, Debra A.; Picard, Alyssa; Schmitt, Joseph R.; Boyajian, Tabetha S.; Barclay, Thomas; Ma, Bo; Bowler, Brendan P.; Riddle, Reed; Jek, Kian J.; LaCourse, Daryll; Simister, Dean Joseph; Grégoire, Boscher; Babin, Sean P.; Poile, Trevor; Jacobs, Thomas Lee; Baranec, Christoph; Law, Nicholas M.; Lintott, Chris; Schawinski, Kevin

    2015-01-01

    The census of exoplanets is incomplete for orbital distances larger than 1 AU. Here, we present 41 long-period planet candidates in 38 systems identified by Planet Hunters based on Kepler archival data (Q0–Q17). Among them, 17 exhibit only one transit, 14 have two visible transits, and 10 have more than three visible transits. For planet candidates with only one visible transit, we estimate their orbital periods based on transit duration and host star properties. The majority of the planet candidates in this work (75%) have orbital periods that correspond to distances of 1–3 AU from their host stars. We conduct follow-up imaging and spectroscopic observations to validate and characterize planet host stars. In total, we obtain adaptive optics images for 33 stars to search for possible blending sources. Six stars have stellar companions within 4″. We obtain high-resolution spectra for 6 stars to determine their physical properties. Stellar properties for other stars are obtained from the NASA Exoplanet Archive and the Kepler Stellar Catalog by Huber et al. We validate 7 planet candidates that have planet confidence over 0.997 (3σ level). These validated planets include 3 single-transit planets (KIC-3558849b, KIC-5951458b, and KIC-8540376c), 3 planets with double transits (KIC-8540376b, KIC-9663113b, and KIC-10525077b), and 1 planet with four transits (KIC-5437945b). This work provides assessment regarding the existence of planets at wide separations and the associated false positive rate for transiting observation (17%–33%). More than half of the long-period planets with at least three transits in this paper exhibit transit timing variations up to 41 hr, which suggest additional components that dynamically interact with the transiting planet candidates. The nature of these components can be determined by follow-up radial velocity and transit observations

  12. PLANET HUNTERS. VIII. CHARACTERIZATION OF 41 LONG-PERIOD EXOPLANET CANDIDATES FROM KEPLER ARCHIVAL DATA

    Energy Technology Data Exchange (ETDEWEB)

    Wang, Ji; Fischer, Debra A.; Picard, Alyssa; Schmitt, Joseph R.; Boyajian, Tabetha S. [Department of Astronomy, Yale University, New Haven, CT 06511 (United States); Barclay, Thomas [NASA Ames Research Center, M/S 244-30, Moffett Field, CA 94035 (United States); Ma, Bo [Department of Astronomy, University of Florida, 211 Bryant Space Science Center, Gainesville, FL 32611-2055 (United States); Bowler, Brendan P.; Riddle, Reed [California Institute of Technology, 1200 East California Boulevard, Pasadena, CA 91101 (United States); Jek, Kian J.; LaCourse, Daryll; Simister, Dean Joseph; Grégoire, Boscher; Babin, Sean P.; Poile, Trevor; Jacobs, Thomas Lee; Baranec, Christoph [Institute for Astronomy, University of Hawai‘i at Mānoa, Hilo, HI 96720-2700 (United States); Law, Nicholas M. [Department of Physics and Astronomy, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599-3255 (United States); Lintott, Chris [Oxford Astrophysics, Denys Wilkinson Building, Keble Road, Oxford OX1 3RH (United Kingdom); Schawinski, Kevin [Institute for Astronomy, Department of Physics, ETH Zurich, Wolfgang-Pauli-Strasse 27, CH-8093 Zurich (Switzerland); and others

    2015-12-20

    The census of exoplanets is incomplete for orbital distances larger than 1 AU. Here, we present 41 long-period planet candidates in 38 systems identified by Planet Hunters based on Kepler archival data (Q0–Q17). Among them, 17 exhibit only one transit, 14 have two visible transits, and 10 have more than three visible transits. For planet candidates with only one visible transit, we estimate their orbital periods based on transit duration and host star properties. The majority of the planet candidates in this work (75%) have orbital periods that correspond to distances of 1–3 AU from their host stars. We conduct follow-up imaging and spectroscopic observations to validate and characterize planet host stars. In total, we obtain adaptive optics images for 33 stars to search for possible blending sources. Six stars have stellar companions within 4″. We obtain high-resolution spectra for 6 stars to determine their physical properties. Stellar properties for other stars are obtained from the NASA Exoplanet Archive and the Kepler Stellar Catalog by Huber et al. We validate 7 planet candidates that have planet confidence over 0.997 (3σ level). These validated planets include 3 single-transit planets (KIC-3558849b, KIC-5951458b, and KIC-8540376c), 3 planets with double transits (KIC-8540376b, KIC-9663113b, and KIC-10525077b), and 1 planet with four transits (KIC-5437945b). This work provides assessment regarding the existence of planets at wide separations and the associated false positive rate for transiting observation (17%–33%). More than half of the long-period planets with at least three transits in this paper exhibit transit timing variations up to 41 hr, which suggest additional components that dynamically interact with the transiting planet candidates. The nature of these components can be determined by follow-up radial velocity and transit observations.

  13. The WASP-South search for transiting exoplanets

    Directory of Open Access Journals (Sweden)

    Queloz D.

    2011-02-01

    Full Text Available Since 2006 WASP-South has been scanning the Southern sky for transiting exoplanets. Combined with Geneva Observatory radial velocities we have so far found over 30 transiting exoplanets around relatively bright stars of magnitude 9–13. We present a status report for this ongoing survey.

  14. Conducting Research from Small University Observatories: Investigating Exoplanet Candidates

    Science.gov (United States)

    Moreland, Kimberly D.

    2018-01-01

    Kepler has to date discovered 4,496 exoplanet candidates, but only half are confirmed, and only a handful are thought to be Earth sized and in the habitable zone. Planet verification often involves extensive follow-up observations, which are both time and resource intensive. The data set collected by Kepler is massive and will be studied for decades. University/small observatories, such as the one at Texas State University, are in a good position to assist with the exoplanet candidate verification process. By preforming extended monitoring campaigns, which are otherwise cost ineffective for larger observatories, students gain valuable research experience and contribute valuable data and results to the scientific community.

  15. New tools and improvements in the Exoplanet Transit Database

    Directory of Open Access Journals (Sweden)

    Pejcha O.

    2011-02-01

    Full Text Available Comprehensive collection of the available light curves, prediction possibilities and the online model fitting procedure, that are available via Exoplanet Transit Database became very popular in the community. In this paper we summarized the changes, that we made in the ETD during last year (including the Kepler candidates into the prediction section, modeling of an unknown planet in the model-fit section and some other small improvements. All this new tools cannot be found in the main ETD paper.

  16. Transiting Exoplanet Survey Satellite (TESS)

    Science.gov (United States)

    Ricker, G. R.; Clampin, M.; Latham, D. W.; Seager, S.; Vanderspek, R. K.; Villasenor, J. S.; Winn, J. N.

    2012-01-01

    The Transiting Exoplanet Survey Satellite (TESS) will discover thousands of exoplanets in orbit around the brightest stars in the sky. In a two-year survey, TESS will monitor more than 500,000 stars for temporary drops in brightness caused by planetary transits. This first-ever spaceborne all-sky transit survey will identify planets ranging from Earth-sized to gas giants, around a wide range of stellar types and orbital distances. No ground-based survey can achieve this feat. A large fraction of TESS target stars will be 30-100 times brighter than those observed by Kepler satellite, and therefore TESS . planets will be far easier to characterize with follow-up observations. TESS will make it possible to study the masses, sizes, densities, orbits, and atmospheres of a large cohort of small planets, including a sample of rocky worlds in the habitable zones of their host stars. TESS will provide prime targets for observation with the James Webb Space Telescope (JWST), as well as other large ground-based and space-based telescopes of the future. TESS data will be released with minimal delay (no proprietary period), inviting immediate community-wide efforts to study the new planets. The TESS legacy will be a catalog of the very nearest and brightest main-sequence stars hosting transiting exoplanets, thus providing future observers with the most favorable targets for detailed investigations.

  17. Exoplanet Transits of Stellar Active Regions

    Science.gov (United States)

    Giampapa, Mark S.; Andretta, Vincenzo; Covino, Elvira; Reiners, Ansgar; Esposito, Massimiliano

    2018-01-01

    We report preliminary results of a program to obtain high spectral- and temporal-resolution observations of the neutral helium triplet line at 1083.0 nm in transiting exoplanet systems. The principal objective of our program is to gain insight on the properties of active regions, analogous to solar plages, on late-type dwarfs by essentially using exoplanet transits as high spatial resolution probes of the stellar surface within the transit chord. The 1083 nm helium line is a particularly appropriate diagnostic of magnetized areas since it is weak in the quiet photosphere of solar-type stars but appears strongly in absorption in active regions. Therefore, during an exoplanet transit over the stellar surface, variations in its absorption equivalent width can arise that are functions of the intrinsic strength of the feature in the active region and the known relative size of the exoplanet. We utilized the Galileo Telescope and the GIANO-B near-IR echelle spectrograph to obtain 1083 nm spectra during transits in bright, well-known systems that include HD 189733, HD 209458, and HD 147506 (HAT-P-2). We also obtained simultaneous auxiliary data on the same telescope with the HARPS-N UV-Visible echelle spectrograph. We will present preliminary results from our analysis of the observed variability of the strength of the He I 1083 nm line during transits.Acknowledgements: Based on observations made with the Italian Telescopio Nazionale Galileo (TNG) operated on the island of La Palma by the Fundación Galileo Galilei of the INAF (Istituto Nazionale di Astrofisica) at the Spanish Observatorio del Roque de los Muchachos of the Instituto de Astrofisica de Canarias. The NSO is operated by AURA under a cooperative agreement with the NSF.

  18. Characterizing Gaint Exoplanets through Multiwavelength Transit Observations

    Science.gov (United States)

    Kasper, David; Cole, Jackson L.; Gardner, Cristilyn N.; Garver, Bethany R.; Jarka, Kyla L.; Kar, Aman; McGough, Aylin M.; PeQueen, David J.; Rivera, Daniel Ivan; Jang-Condell, Hannah; Kobulnicky, Henry A.; Dale, Daniel A.

    2018-01-01

    Observing the characteristics of giant exoplanets is possible with ground-based telescopes and modern observational methods. We are performing characterizations of multiple giant exoplanets based on 85 allotted nights of transit observations with the 2.3 m Wyoming Infrared Observatory using Sloan filters. In particular, constraints can be made on the atmospheres of our targets from the wavelength (in)dependence in the depth of the transit observations. We present early multiwavelength photometric results on the exoplanet HD 189733 b with comparison to literature sources to exemplify the methodology employed. In total, 15 exoplanets were observed across multiple wavelengths. The majority of the observing allotted to the project was completed as part of the 2017 Summer REU at the University of Wyoming. This work will significantly contribute to the growing number of observed atmospheres and influence interpretation of future WFIRST, JWST, and TESS targets. This work is supported by the National Science Foundation under REU grant AST 1560461.

  19. FINESSE & CASE: Two Proposed Transiting Exoplanet Missions

    Science.gov (United States)

    Zellem, Robert Thomas; FINESSE and CASE Science Team

    2018-01-01

    The FINESSE mission concept and the proposed CASE Mission of Opportunity, both recently selected by NASA’s Explorer program to proceed to Step 2, would conduct the first characterizations of exoplanet atmospheres for a statistically significant population. FINESSE would determine whether our Solar System is typical or exceptional, the key characteristics of the planet formation mechanism, and what establishes global planetary climate by spectroscopically surveying 500 exoplanets, ranging from terrestrials with extended atmospheres to sub-Neptunes to gas giants. FINESSE’s broad, instantaneous spectral coverage from 0.5-5 microns and capability to survey hundreds of exoplanets would enable follow-up exploration of TESS discoveries and provide a broader context for interpreting detailed JWST observations. Similarly, CASE, a NASA Mission of Opportunity contribution to ESA’s dedicated transiting exoplanet spectroscopy mission ARIEL, would observe 1000 warm transiting gas giants, Neptunes, and super-Earths, using visible to near-IR photometry and spectroscopy. CASE would quantify the occurrence rate of atmospheric aerosols (clouds and hazes) and measure the geometric albedos of the targets in the ARIEL survey. Thus, with the selection of either of these two missions, NASA would ensure access to critical data for the U.S. exoplanet science community.

  20. Kepler Data Validation I: Architecture, Diagnostic Tests, and Data Products for Vetting Transiting Planet Candidates

    Science.gov (United States)

    Twicken, Joseph D.; Catanzarite, Joseph H.; Clarke, Bruce D.; Giroud, Forrest; Jenkins, Jon M.; Klaus, Todd C.; Li, Jie; McCauliff, Sean D.; Seader, Shawn E.; Tennenbaum, Peter; hide

    2018-01-01

    The Kepler Mission was designed to identify and characterize transiting planets in the Kepler Field of View and to determine their occurrence rates. Emphasis was placed on identification of Earth-size planets orbiting in the Habitable Zone of their host stars. Science data were acquired for a period of four years. Long-cadence data with 29.4 min sampling were obtained for approx. 200,000 individual stellar targets in at least one observing quarter in the primary Kepler Mission. Light curves for target stars are extracted in the Kepler Science Data Processing Pipeline, and are searched for transiting planet signatures. A Threshold Crossing Event is generated in the transit search for targets where the transit detection threshold is exceeded and transit consistency checks are satisfied. These targets are subjected to further scrutiny in the Data Validation (DV) component of the Pipeline. Transiting planet candidates are characterized in DV, and light curves are searched for additional planets after transit signatures are modeled and removed. A suite of diagnostic tests is performed on all candidates to aid in discrimination between genuine transiting planets and instrumental or astrophysical false positives. Data products are generated per target and planet candidate to document and display transiting planet model fit and diagnostic test results. These products are exported to the Exoplanet Archive at the NASA Exoplanet Science Institute, and are available to the community. We describe the DV architecture and diagnostic tests, and provide a brief overview of the data products. Transiting planet modeling and the search for multiple planets on individual targets are described in a companion paper. The final revision of the Kepler Pipeline code base is available to the general public through GitHub. The Kepler Pipeline has also been modified to support the Transiting Exoplanet Survey Satellite (TESS) Mission which is expected to commence in 2018.

  1. Kepler Data Validation I—Architecture, Diagnostic Tests, and Data Products for Vetting Transiting Planet Candidates

    Science.gov (United States)

    Twicken, Joseph D.; Catanzarite, Joseph H.; Clarke, Bruce D.; Girouard, Forrest; Jenkins, Jon M.; Klaus, Todd C.; Li, Jie; McCauliff, Sean D.; Seader, Shawn E.; Tenenbaum, Peter; Wohler, Bill; Bryson, Stephen T.; Burke, Christopher J.; Caldwell, Douglas A.; Haas, Michael R.; Henze, Christopher E.; Sanderfer, Dwight T.

    2018-06-01

    The Kepler Mission was designed to identify and characterize transiting planets in the Kepler Field of View and to determine their occurrence rates. Emphasis was placed on identification of Earth-size planets orbiting in the Habitable Zone of their host stars. Science data were acquired for a period of four years. Long-cadence data with 29.4 min sampling were obtained for ∼200,000 individual stellar targets in at least one observing quarter in the primary Kepler Mission. Light curves for target stars are extracted in the Kepler Science Data Processing Pipeline, and are searched for transiting planet signatures. A Threshold Crossing Event is generated in the transit search for targets where the transit detection threshold is exceeded and transit consistency checks are satisfied. These targets are subjected to further scrutiny in the Data Validation (DV) component of the Pipeline. Transiting planet candidates are characterized in DV, and light curves are searched for additional planets after transit signatures are modeled and removed. A suite of diagnostic tests is performed on all candidates to aid in discrimination between genuine transiting planets and instrumental or astrophysical false positives. Data products are generated per target and planet candidate to document and display transiting planet model fit and diagnostic test results. These products are exported to the Exoplanet Archive at the NASA Exoplanet Science Institute, and are available to the community. We describe the DV architecture and diagnostic tests, and provide a brief overview of the data products. Transiting planet modeling and the search for multiple planets on individual targets are described in a companion paper. The final revision of the Kepler Pipeline code base is available to the general public through GitHub. The Kepler Pipeline has also been modified to support the Transiting Exoplanet Survey Satellite (TESS) Mission which is expected to commence in 2018.

  2. Searching for exoplanets using artificial intelligence

    Science.gov (United States)

    Pearson, Kyle A.; Palafox, Leon; Griffith, Caitlin A.

    2018-02-01

    In the last decade, over a million stars were monitored to detect transiting planets. Manual interpretation of potential exoplanet candidates is labor intensive and subject to human error, the results of which are difficult to quantify. Here we present a new method of detecting exoplanet candidates in large planetary search projects which, unlike current methods uses a neural network. Neural networks, also called "deep learning" or "deep nets" are designed to give a computer perception into a specific problem by training it to recognize patterns. Unlike past transit detection algorithms deep nets learn to recognize planet features instead of relying on hand-coded metrics that humans perceive as the most representative. Our convolutional neural network is capable of detecting Earth-like exoplanets in noisy time-series data with a greater accuracy than a least-squares method. Deep nets are highly generalizable allowing data to be evaluated from different time series after interpolation without compromising performance. As validated by our deep net analysis of Kepler light curves, we detect periodic transits consistent with the true period without any model fitting. Our study indicates that machine learning will facilitate the characterization of exoplanets in future analysis of large astronomy data sets.

  3. A Theory of Exoplanet Transits with Light Scattering

    Energy Technology Data Exchange (ETDEWEB)

    Robinson, Tyler D., E-mail: tydrobin@ucsc.edu [Department of Astronomy and Astrophysics, University of California, Santa Cruz, CA 95064 (United States)

    2017-02-20

    Exoplanet transit spectroscopy enables the characterization of distant worlds, and will yield key results for NASA's James Webb Space Telescope . However, transit spectra models are often simplified, omitting potentially important processes like refraction and multiple scattering. While the former process has seen recent development, the effects of light multiple scattering on exoplanet transit spectra have received little attention. Here, we develop a detailed theory of exoplanet transit spectroscopy that extends to the full refracting and multiple scattering case. We explore the importance of scattering for planet-wide cloud layers, where the relevant parameters are the slant scattering optical depth, the scattering asymmetry parameter, and the angular size of the host star. The latter determines the size of the “target” for a photon that is back-mapped from an observer. We provide results that straightforwardly indicate the potential importance of multiple scattering for transit spectra. When the orbital distance is smaller than 10–20 times the stellar radius, multiple scattering effects for aerosols with asymmetry parameters larger than 0.8–0.9 can become significant. We provide examples of the impacts of cloud/haze multiple scattering on transit spectra of a hot Jupiter-like exoplanet. For cases with a forward and conservatively scattering cloud/haze, differences due to multiple scattering effects can exceed 200 ppm, but shrink to zero at wavelength ranges corresponding to strong gas absorption or when the slant optical depth of the cloud exceeds several tens. We conclude with a discussion of types of aerosols for which multiple scattering in transit spectra may be important.

  4. A Catalog of Cool Dwarf Targets for the Transiting Exoplanet Survey Satellite

    Science.gov (United States)

    Muirhead, Philip S.; Dressing, Courtney D.; Mann, Andrew W.; Rojas-Ayala, Bárbara; Lépine, Sébastien; Paegert, Martin; De Lee, Nathan; Oelkers, Ryan

    2018-04-01

    We present a catalog of cool dwarf targets (V-J> 2.7, T eff ≲ 4000 K) and their stellar properties for the upcoming Transiting Exoplanet Survey Satellite (TESS), for the purpose of determining which cool dwarfs should be observed using two minute observations. TESS has the opportunity to search tens of thousands of nearby, cool, late K- and M-type dwarfs for transiting exoplanets, an order of magnitude more than current or previous transiting exoplanet surveys, such as Kepler, K2, and ground-based programs. This necessitates a new approach to choosing cool dwarf targets. Cool dwarfs are chosen by collating parallax and proper motion catalogs from the literature and subjecting them to a variety of selection criteria. We calculate stellar parameters and TESS magnitudes using the best possible relations from the literature while maintaining uniformity of methods for the sake of reproducibility. We estimate the expected planet yield from TESS observations using statistical results from the Kepler mission, and use these results to choose the best targets for two minute observations, optimizing for small planets for which masses can conceivably be measured using follow-up Doppler spectroscopy by current and future Doppler spectrometers. The catalog is available in machine readable format and is incorporated into the TESS Input Catalog and TESS Candidate Target List until a more complete and accurate cool dwarf catalog identified by ESA’s Gaia mission can be incorporated.

  5. Glowing Hot Transiting Exoplanet Discovered

    Science.gov (United States)

    2003-04-01

    VLT Spectra Indicate Shortest-Known-Period Planet Orbiting OGLE-TR-3 Summary More than 100 exoplanets in orbit around stars other than the Sun have been found so far. But while their orbital periods and distances from their central stars are well known, their true masses cannot be determined with certainty, only lower limits. This fundamental limitation is inherent in the common observational method to discover exoplanets - the measurements of small and regular changes in the central star's velocity, caused by the planet's gravitational pull as it orbits the star. However, in two cases so far, it has been found that the exoplanet's orbit happens to be positioned in such a way that the planet moves in front of the stellar disk, as seen from the Earth. This "transit" event causes a small and temporary dip in the star's brightness, as the planet covers a small part of its surface, which can be observed. The additional knowledge of the spatial orientation of the planetary orbit then permits a direct determination of the planet's true mass. Now, a group of German astronomers [1] have found a third star in which a planet, somewhat larger than Jupiter, but only half as massive, moves in front of the central star every 28.5 hours . The crucial observation of this solar-type star, designated OGLE-TR-3 [2] was made with the high-dispersion UVES spectrograph on the Very Large Telescope (VLT) at the ESO Paranal Observatory (Chile). It is the exoplanet with the shortest period found so far and it is very close to the star, only 3.5 million km away. The hemisphere that faces the star must be extremely hot, about 2000 °C and the planet is obviously losing its atmosphere at high rate . PR Photo 10a/03 : The star OGLE-TR-3 . PR Photo 10b/03 : VLT UVES spectrum of OGLE-TR-3. PR Photo 10c/03 : Relation between stellar brightness and velocity (diagram). PR Photo 10d/03 : Observed velocity variation of OGLE-TR-3. PR Photo 10e/03 : Observed brightness variation of OGLE-TR-3. The search

  6. TWO NEARBY SUB-EARTH-SIZED EXOPLANET CANDIDATES IN THE GJ 436 SYSTEM

    International Nuclear Information System (INIS)

    Stevenson, Kevin B.; Harrington, Joseph; Lust, Nate B.; Blecic, Jasmina; Hardy, Ryan A.; Cubillos, Patricio; Campo, Christopher J.; Lewis, Nikole K.; Montagnier, Guillaume; Moses, Julianne I.; Visscher, Channon

    2012-01-01

    We report the detection of UCF-1.01, a strong exoplanet candidate with a radius 0.66 ± 0.04 times that of Earth (R ⊕ ). This sub-Earth-sized planet transits the nearby M-dwarf star GJ 436 with a period of 1.365862 ± 8 × 10 –6 days. We also report evidence of a 0.65 ± 0.06 R ⊕ exoplanet candidate (labeled UCF-1.02) orbiting the same star with an undetermined period. Using the Spitzer Space Telescope, we measure the dimming of light as the planets pass in front of their parent star to assess their sizes and orbital parameters. If confirmed today, UCF-1.01 and UCF-1.02 would be designated GJ 436c and GJ 436d, respectively, and would be part of the first multiple-transiting-planet system outside of the Kepler field. Assuming Earth-like densities of 5.515 g cm –3 , we predict both candidates to have similar masses (∼0.28 Earth-masses, M ⊕ , 2.6 Mars-masses) and surface gravities of ∼0.65 g (where g is the gravity on Earth). UCF-1.01's equilibrium temperature (T eq , where emitted and absorbed radiation balance for an equivalent blackbody) is 860 K, making the planet unlikely to harbor life as on Earth. Its weak gravitational field and close proximity to its host star imply that UCF-1.01 is unlikely to have retained its original atmosphere; however, a transient atmosphere is possible if recent impacts or tidal heating were to supply volatiles to the surface. We also present additional observations of GJ 436b during secondary eclipse. The 3.6 μm light curve shows indications of stellar activity, making a reliable secondary eclipse measurement impossible. A second non-detection at 4.5 μm supports our previous work in which we find a methane-deficient and carbon monoxide-rich dayside atmosphere.

  7. Two nearby Sub-Earth-sized Exoplanet Candidates in the GJ 436 System

    Science.gov (United States)

    Stevenson, Kevin B.; Harrington, Joseph; Lust, Nate B.; Lewis, Nikole K.; Montagnier, Guillaume; Moses, Julianne I.; Visscher, Channon; Blecic, Jasmina; Hardy, Ryan A.; Cubillos, Patricio; Campo, Christopher J.

    2012-08-01

    We report the detection of UCF-1.01, a strong exoplanet candidate with a radius 0.66 ± 0.04 times that of Earth (R ⊕). This sub-Earth-sized planet transits the nearby M-dwarf star GJ 436 with a period of 1.365862 ± 8 × 10-6 days. We also report evidence of a 0.65 ± 0.06 R ⊕ exoplanet candidate (labeled UCF-1.02) orbiting the same star with an undetermined period. Using the Spitzer Space Telescope, we measure the dimming of light as the planets pass in front of their parent star to assess their sizes and orbital parameters. If confirmed today, UCF-1.01 and UCF-1.02 would be designated GJ 436c and GJ 436d, respectively, and would be part of the first multiple-transiting-planet system outside of the Kepler field. Assuming Earth-like densities of 5.515 g cm-3, we predict both candidates to have similar masses (~0.28 Earth-masses, M ⊕, 2.6 Mars-masses) and surface gravities of ~0.65 g (where g is the gravity on Earth). UCF-1.01's equilibrium temperature (T eq, where emitted and absorbed radiation balance for an equivalent blackbody) is 860 K, making the planet unlikely to harbor life as on Earth. Its weak gravitational field and close proximity to its host star imply that UCF-1.01 is unlikely to have retained its original atmosphere; however, a transient atmosphere is possible if recent impacts or tidal heating were to supply volatiles to the surface. We also present additional observations of GJ 436b during secondary eclipse. The 3.6 μm light curve shows indications of stellar activity, making a reliable secondary eclipse measurement impossible. A second non-detection at 4.5 μm supports our previous work in which we find a methane-deficient and carbon monoxide-rich dayside atmosphere.

  8. Transiting exoplanets: From planet statistics to their physical nature

    Directory of Open Access Journals (Sweden)

    Rauer H.

    2011-02-01

    Full Text Available The colloquium "Detection and Dynamics of Transiting Exoplanets" was held at the Observatoire de Haute-Provence and discussed the status of transiting exoplanet investigations in a 4.5 day meeting. Topics addressed ranged from planet detection, a discussion on planet composition and interior structure, atmospheres of hot-Jupiter planets, up to the effect of tides and the dynamical evolution of planetary systems. Here, I give a summary of the recent developments of transiting planet detections and investigations discussed at this meeting.

  9. PLANETARY TRANSIT CANDIDATES IN THE CSTAR FIELD: ANALYSIS OF THE 2008 DATA

    Energy Technology Data Exchange (ETDEWEB)

    Wang, Songhu; Zhang, Hui; Zhou, Ji-Lin; Yang, Ming; Liu, Huigen; Meng, Zeyang [School of Astronomy and Space Science and Key Laboratory of Modern Astronomy and Astrophysics in Ministry of Education, Nanjing University, Nanjing 210093 (China); Zhou, Xu; Fan, Zhou; Liu, Qiang; Ma, Jun [National Astronomical Observatories, Chinese Academy of Sciences, Beijing 100012 (China); Wang, Lifan; Feng, Long-Long [Purple Mountain Observatory, Chinese Academy of Sciences, Nanjing 210008 (China); Bayliss, D.; Zhou, G. [Research School of Astronomy and Astrophysics, Australian National University, Canberra, ACT 2611 (Australia); Ashley, M. C. B.; Lawrence, J. S.; Luong-Van, D. M.; Storey, J. W. V.; Wittenmyer, R. A. [School of Physics, University of New South Wales, NSW 2052 (Australia); Gong, Xuefei, E-mail: zhoujl@nju.edu.cn, E-mail: zhouxu@bao.ac.cn [Nanjing Institute of Astronomical Optics and Technology, Nanjing 210042 (China); and others

    2014-04-01

    The Chinese Small Telescope ARray (CSTAR) is a group of four identical, fully automated, static 14.5 cm telescopes. CSTAR is located at Dome A, Antarctica and covers 20 deg{sup 2} of sky around the South Celestial Pole. The installation is designed to provide high-cadence photometry for the purpose of monitoring the quality of the astronomical observing conditions at Dome A and detecting transiting exoplanets. CSTAR has been operational since 2008, and has taken a rich and high-precision photometric data set of 10,690 stars. In the first observing season, we obtained 291,911 qualified science frames with 20 s integrations in the i band. Photometric precision reaches ∼4 mmag at 20 s cadence at i = 7.5 and is ∼20 mmag at i = 12. Using robust detection methods, 10 promising exoplanet candidates were found. Four of these were found to be giants using spectroscopic follow-up. All of these transit candidates are presented here along with the discussion of their detailed properties as well as the follow-up observations.

  10. The Transiting Exoplanet Community Early Release Science Program for JWST

    Science.gov (United States)

    Berta-Thompson, Zachory K.; Batalha, Natalie M.; Stevenson, Kevin B.; Bean, Jacob; Sing, David K.; Crossfield, Ian; Knutson, Heather; Line, Michael R.; Kreidberg, Laura; Desert, Jean-Michel; Wakeford, Hannah; Crouzet, Nicolas; Moses, Julianne I.; Benneke, Björn; Kempton, Eliza; Lopez-Morales, Mercedes; Parmentier, Vivien; Gibson, Neale; Schlawin, Everett; Fraine, Jonathan; Kendrew, Sarah; Transiting Exoplanet Community ERS Team

    2018-06-01

    The James Webb Space Telescope offers astronomers the opportunity to observe the composition, structure, and dynamics of transiting exoplanet atmospheres with unprecedented detail. However, such observations require very precise time-series spectroscopic monitoring of bright stars and present unique technical challenges. The Transiting Exoplanet Community Early Release Science Program for JWST aims to help the community understand and overcome these technical challenges as early in the mission as possible, and to enable exciting scientific discoveries through the creation of public exoplanet atmosphere datasets. With observations of three hot Jupiters spanning a range of host star brightnesses, this program will exercise time-series modes with all four JWST instruments and cover a full suite of transiting planet characterization geometries (transits, eclipses, and phase curves). We designed the observational strategy through an open and transparent community effort, with contributions from an international collaboration of over 100 experts in exoplanet observations, theory, and instrumentation. Community engagement with the project will be centered around open Data Challenge activities using both simulated and real ERS data, for exoplanet scientists to cross-validate and improve their analysis tools and theoretical models. Recognizing that the scientific utility of JWST will be determined not only by its hardware and software but also by the community of people who use it, we take an intentional approach toward crafting an inclusive collaboration and encourage new participants to join our efforts.

  11. Model-independent Exoplanet Transit Spectroscopy

    Science.gov (United States)

    Aronson, Erik; Piskunov, Nikolai

    2018-05-01

    We propose a new data analysis method for obtaining transmission spectra of exoplanet atmospheres and brightness variation across the stellar disk from transit observations. The new method is capable of recovering exoplanet atmosphere absorption spectra and stellar specific intensities without relying on theoretical models of stars and planets. We simultaneously fit both stellar specific intensity and planetary radius directly to transit light curves. This allows stellar models to be removed from the data analysis. Furthermore, we use a data quality weighted filtering technique to achieve an optimal trade-off between spectral resolution and reconstruction fidelity homogenizing the signal-to-noise ratio across the wavelength range. Such an approach is more efficient than conventional data binning onto a low-resolution wavelength grid. We demonstrate that our analysis is capable of reproducing results achieved by using an explicit quadratic limb-darkening equation and that the filtering technique helps eliminate spurious spectral features in regions with strong telluric absorption. The method is applied to the VLT FORS2 observations of the exoplanets GJ 1214 b and WASP-49 b, and our results are in agreement with previous studies. Comparisons between obtained stellar specific intensity and numerical models indicates that the method is capable of accurately reconstructing the specific intensity. The proposed method enables more robust characterization of exoplanetary atmospheres by separating derivation of planetary transmission and stellar specific intensity spectra (that is model-independent) from chemical and physical interpretation.

  12. Zodiacal Exoplanets in Time (ZEIT). V. A Uniform Search for Transiting Planets in Young Clusters Observed by K2

    Science.gov (United States)

    Rizzuto, Aaron C.; Mann, Andrew W.; Vanderburg, Andrew; Kraus, Adam L.; Covey, Kevin R.

    2017-12-01

    Detection of transiting exoplanets around young stars is more difficult than for older systems owing to increased stellar variability. Nine young open cluster planets have been found in the K2 data, but no single analysis pipeline identified all planets. We have developed a transit search pipeline for young stars that uses a transit-shaped notch and quadratic continuum in a 12 or 24 hr window to fit both the stellar variability and the presence of a transit. In addition, for the most rapid rotators ({P}{rot}Pleiades, Hyades, Praesepe) and conduct a uniform search of the members. We identify all known transiting exoplanets in the clusters, 17 eclipsing binaries, one transiting planet candidate orbiting a potential Pleiades member, and three orbiting unlikely members of the young clusters. Limited injection recovery testing on the known planet hosts indicates that for the older Praesepe systems we are sensitive to additional exoplanets as small as 1-2 R ⊕, and for the larger Upper Scorpius planet host (K2-33) our pipeline is sensitive to ˜4 R ⊕ transiting planets. The lack of detected multiple systems in the young clusters is consistent with the expected frequency from the original Kepler sample, within our detection limits. With a robust pipeline that detects all known planets in the young clusters, occurrence rate testing at young ages is now possible.

  13. Discovery of a Transiting Adolescent Sub-Neptune Exoplanet in the Cas-Tau Association With K2

    Science.gov (United States)

    Mamajek, Eric; David, Trevor; Bieryla, Allyson; Bristow, Makennah; Ciardi, David; Cody, Ann Marie; Crossfield, Ian; Fulton, Benjamin; Jasmine Gonzales, Erica; Hillenbrand, Lynne; Hirsch, Lea; Howard, Andrew; Isaacson, Howard; Latham, David W.; Petigura, Erik; Rebull, Luisa; Schlieder, Joshua; Stauffer, John; Vanderburg, Andrew; Vasisht, Gautam

    2018-01-01

    The role of stellar age in the measured properties and occurrence rates of exoplanets is not well understood. This is in part due to a paucity of young planets and the uncertainties in age-dating for most exoplanet host stars. Exoplanets belonging to coeval stellar populations, young or old, are particularly useful as benchmarks for studies aiming to constrain the evolutionary timescales relevant for planets. Such timescales may concern orbital migration, gravitational contraction, or photo-evaporation, among other mechanisms. Here we report the serendipitous discovery of a transiting sub-Neptune from K2 photometry of a K-type star that is a new candidate member of the nearby young Cas-Tau association. The size of the planet (3.0 +/- 0.5 Earth radii) and its age (~50-90 Myr) make it an intriguing test case for photo-evaporation models, which predict enhanced atmospheric mass loss during early evolutionary stages.

  14. Follow-Up Photometry of Kelt Transiting Planet Candidates

    Science.gov (United States)

    Stephens, Denise C.; Joner, Michael D.; Hintz, Eric G.; Martin, Trevor; Spencer, Alex; Kelt Follow-Up Network (FUN) Team

    2017-10-01

    We have three telescopes at BYU that we use to follow-up possible transiting planet canidates for the KELT team. These telescopes were used to collect data on Kelt-16b and Kelt-9b, which is the hottest known exoplanet. More recently we used the newest of these telescopes, a robotic 8-inch telescope on the roof of our building, to confirm the most recent Kelt planet that will be published soon. This research has been ideal for the teaching and training of undergraduate students in the art of photometric observing and data reduction. In this presentation I will highlight how we are using our membership in the Kelt team to further the educational objective of our undergraduate astronomy program, while contributing meaningful science to the ever growing field of exoplanet discovery. I will also highlight a few of the more interesting Kelt planets and the minimum telescope requirements for detecting these planets. I will then discuss the sensitivities required to follow-up future TESS candidates, which may be of interest to others interested in joining the TESS follow-up teams.

  15. Chasing Small Exoplanets with Ground-Based Near-Infrared Transit Photometry

    Science.gov (United States)

    Colon, K. D.; Barentsen, G.; Vinicius, Z.; Vanderburg, A.; Coughlin, J.; Thompson, S.; Mullally, F.; Barclay, T.; Quintana, E.

    2017-11-01

    I will present results from a ground-based survey to measure the infrared radius and other properties of small K2 exoplanets and candidates. The survey is preparation for upcoming discoveries from TESS and characterization with JWST.

  16. Community Targets for JWST's Early Release Science Program: Evaluation of Transiting Exoplanet WASP-63b.

    Science.gov (United States)

    Kilpatrick, Brian; Cubillos, Patricio; Bruno, Giovanni; Lewis, Nikole K.; Stevenson, Kevin B.; Wakeford, Hannah; Blecic, Jasmina; Burrows, Adam Seth; Deming, Drake; Heng, Kevin; Line, Michael R.; Madhusudhan, Nikku; Morley, Caroline; Waldmann, Ingo P.; Transiting Exoplanet Early Release Science Community

    2017-06-01

    We present observations of the Hubble Space Telescope (HST) ``A Preparatory Program to Identify the Single Best Transiting Exoplanet for JWST Early Release Science" for WASP-63b, one of the community targets proposed for the James Webb Space Telescope (JWST) Early Release Science (ERS) program. A large collaboration of transiting exoplanet scientists identified a set of ``community targets" which meet a certain set of criteria for ecliptic latitude, period, host star brightness, well constrained orbital parameters, and strength of spectroscopic features. WASP-63b was one of the targets identified as a potential candidate for the ERS program. It is presented as an inflated planet with a large signal. It will be accessible to JWST approximately six months after the planned start of Cycle 1/ERS in April 2019 making it an ideal candidate should there be any delays in the JWST timetable. Here, we observe WASP-63b to evaluate its suitability as the best target to test the capabilities of JWST. Ideally, a clear atmosphere will be best suited for bench marking the instruments ability to detect spectroscopic features. We can use the strength of the water absorption feature at 1.4 μm as a way to determine the presence of obscuring clouds/hazes. The results of atmospheric retrieval are presented along with a discussion on the suitability of WASP-63b as the best target to be observed during the ERS Program.

  17. Towards Automatic Classification of Exoplanet-Transit-Like Signals: A Case Study on Kepler Mission Data

    Science.gov (United States)

    Valizadegan, Hamed; Martin, Rodney; McCauliff, Sean D.; Jenkins, Jon Michael; Catanzarite, Joseph; Oza, Nikunj C.

    2015-08-01

    Building new catalogues of planetary candidates, astrophysical false alarms, and non-transiting phenomena is a challenging task that currently requires a reviewing team of astrophysicists and astronomers. These scientists need to examine more than 100 diagnostic metrics and associated graphics for each candidate exoplanet-transit-like signal to classify it into one of the three classes. Considering that the NASA Explorer Program's TESS mission and ESA's PLATO mission survey even a larger area of space, the classification of their transit-like signals is more time-consuming for human agents and a bottleneck to successfully construct the new catalogues in a timely manner. This encourages building automatic classification tools that can quickly and reliably classify the new signal data from these missions. The standard tool for building automatic classification systems is the supervised machine learning that requires a large set of highly accurate labeled examples in order to build an effective classifier. This requirement cannot be easily met for classifying transit-like signals because not only are existing labeled signals very limited, but also the current labels may not be reliable (because the labeling process is a subjective task). Our experiments with using different supervised classifiers to categorize transit-like signals verifies that the labeled signals are not rich enough to provide the classifier with enough power to generalize well beyond the observed cases (e.g. to unseen or test signals). That motivated us to utilize a new category of learning techniques, so-called semi-supervised learning, that combines the label information from the costly labeled signals, and distribution information from the cheaply available unlabeled signals in order to construct more effective classifiers. Our study on the Kepler Mission data shows that semi-supervised learning can significantly improve the result of multiple base classifiers (e.g. Support Vector Machines, Ada

  18. Transit Recovery of Kepler-167e: Providing JWST with an Unprecedented Jupiter-analog Exoplanet Target

    Science.gov (United States)

    Dalba, Paul; Muirhead, Philip; Tamburo, Patrick

    2018-05-01

    The Kepler Mission has uncovered a handful of long-period transiting exoplanets that orbit in the cold outer reaches of their systems, despite their low transit probabilities. Recent work suggests that cold gas giant exoplanet atmospheres are amenable to transmission spectroscopy (the analysis of the transit depth versus wavelength) enabling novel tests of planetary formation and evolution theories. Of particular scientific interest is Kepler-167e, a low-eccentricity Jupiter-analog exoplanet with a 1,071-day orbital period residing well beyond the snow-line. Transmission spectroscopy of Kepler-167e from JWST can reveal the composition of this planet's atmosphere, constrain its heavy-element abundance, and identify atmospheric photochemical processes. JWST characterization also enables unprecedented direct comparison with Jupiter and Saturn, which show a striking diversity in physical properties that is best investigated through comparative exoplanetology. Since Kepler only observed two transits of Kepler-167e, it is not known if this exoplanet exhibits transit timing variations (TTVs). About half of Kepler's long-period exoplanets have TTVs of up to 40 hours. Such a large uncertainty jeopardizes attempts to characterize the atmosphere of this unique Jovian exoplanet with JWST. To mitigate this risk, the upcoming third transit of Kepler-167e must be observed to test for TTVs. We propose a simple 10-hour, single-channel observation to capture ingress or egress of the next transit of Kepler-167e in December 2018. In the absence of TTVs, our observation will reduce the ephemeris uncertainty from an unknown value to approximately 3 minutes, thereby removing the risk in future transit observations with JWST. The excellent photometric precision of Spitzer is sufficient to identify the transit of Kepler-167e. Given the timing and nature of this program, Spitzer is the only observatory--on the ground or in space--that can make this pivotal observation.

  19. Exoplanets: A New Era of Comparative Planetology

    Science.gov (United States)

    Meadows, Victoria

    2014-11-01

    We now know of over 1700 planets orbiting other stars, and several thousand additional planetary candidates. These discoveries have the potential to revolutionize our understanding of planet formation and evolution, while providing targets for the search for life beyond the Solar System. Exoplanets display a larger diversity of planetary types than those seen in our Solar System - including low-density, low-mass objects. They are also found in planetary system architectures very different from our own, even for stars similar to our Sun. Over 20 potentially habitable planets are now known, and half of the M dwarfs stars in our Galaxy may harbor a habitable planet. M dwarfs are plentiful, and they are therefore the most likely habitable planet hosts, but their planets will have radiative and gravitational interactions with their star and sibling planets that are unlike those in our Solar System. Observations to characterize the atmospheres and surfaces of exoplanets are extremely challenging, and transit transmission spectroscopy has been used to measure atmospheric composition for a handful of candidates. Frustratingly, many of the smaller exoplanets have flat, featureless spectra indicative of planet-wide haze or clouds. The James Webb Space Telescope and future ground-based telescopes will improve transit transmission characterization, and enable the first search for signs of life in terrestrial exoplanet atmospheres. Beyond JWST, planned next-generation space telescopes will directly image terrestrial exoplanets, allowing surface and atmospheric characterization that is more robust to haze. Until these observations become available, there is a lot that we can do as planetary scientists to inform required measurements and future data interpretation. Solar System planets can be used as validation targets for extrasolar planet observations and models. The rich heritage of planetary science models can also be used to explore the potential diversity of exoplanet

  20. NO TIMING VARIATIONS OBSERVED IN THIRD TRANSIT OF SNOW-LINE EXOPLANET KEPLER-421b

    International Nuclear Information System (INIS)

    Dalba, Paul A.; Muirhead, Philip S.

    2016-01-01

    We observed Kepler-421 during the anticipated third transit of the snow-line exoplanet Kepler-421b in order to constrain the existence and extent of transit timing variations (TTVs). Previously, the Kepler spacecraft only observed two transits of Kepler-421b, leaving the planet’s transit ephemeris unconstrained. Our visible light, time-series observations from the 4.3 m Discovery Channel Telescope were designed to capture pre-transit baseline and the partial transit of Kepler-421b, barring significant TTVs. We use the light curves to assess the probabilities of various transit models using both the posterior odds ratio and the Bayesian Information Criterion, and find that a transit model with no TTVs is favored to 3.6 σ confidence. These observations suggest that Kepler-421b is either alone in its system or is only experiencing minor dynamic interactions with an unseen companion. With the Kepler-421b ephemeris constrained, we calculate future transit times and discuss the opportunity to characterize the atmosphere of this cold, long-period exoplanet via transmission spectroscopy. Our investigation emphasizes the difficulties associated with observing long-period exoplanet transits and the consequences that arise from failing to refine transit ephemerides.

  1. The Kepler and K2 Near-Infrared Transit Survey (KNITS)

    Science.gov (United States)

    Colon, Knicole; Rodriguez, Joseph E.; Barentsen, Geert; Cardoso, Jose Vinicius de Miranda; Vanderburg, Andrew

    2018-01-01

    NASA's Kepler mission discovered a plethora of transiting exoplanets after observing a single region of the Galaxy for four years. After a second reaction wheel failed, NASA's Kepler spacecraft was repurposed as K2 to observe different fields along the ecliptic in ~80 day campaigns. To date, K2 has discovered ~130 exoplanets along with another ~400 candidates. The exoplanets that have been confirmed or validated from Kepler and K2 have been primarily subject to spectroscopic observations, high-resolution imaging, or statistical methods. However, most of these, along with all the remaining candidate exoplanets, have had no follow-up transit photometry. In addition, recent studies have shown that for single-planet systems, statistical validation alone can be unreliable and additional follow-up observations are required to reveal the true nature of the system. I will present the latest results from an ongoing program to use the 3.5-meter WIYN telescope at Kitt Peak National Observatory for near-infrared transit photometry of Kepler and K2 exoplanets and candidates. Our program of high-precision, high-cadence, high-spatial-resolution near-infrared transit photometry is providing new measurements of the transit ephemerides and planetary radii as well as weeding out false positives lurking within the candidate lists. To date, 25 K2 and 5 Kepler targets have been observed with WIYN. I will also describe upcoming observations with WIYN that will take place in January 2018 as part of a campaign to observe exoplanet transits in the near-infrared simultaneously with the Kepler spacecraft during K2 Campaign 16. Our program ultimately provides a vetted sample of exoplanets that could be targeted in the future by NASA’s James Webb Space Telescope (JWST) and also demonstrates WIYN’s capabilities for observations of exoplanets to be discovered by NASA's all-sky Transiting Exoplanet Survey Satellite (TESS).Data presented herein were obtained at the WIYN Observatory from

  2. Searching for Exoplanets using Artificial Intelligence

    Science.gov (United States)

    Pearson, Kyle Alexander; Palafox, Leon; Griffith, Caitlin Ann

    2017-10-01

    In the last decade, over a million stars were monitored to detect transiting planets. The large volume of data obtained from current and future missions (e.g. Kepler, K2, TESS and LSST) requires automated methods to detect the signature of a planet. Manual interpretation of potential exoplanet candidates is labor intensive and subject to human error, the results of which are difficult to quantify. Here we present a new method of detecting exoplanet candidates in large planetary search projects which, unlike current methods uses a neural network. Neural networks, also called ``deep learning'' or ``deep nets'', are a state of the art machine learning technique designed to give a computer perception into a specific problem by training it to recognize patterns. Unlike past transit detection algorithms, the deep net learns to characterize the data instead of relying on hand-coded metrics that humans perceive as the most representative. Exoplanet transits have different shapes, as a result of, e.g. the planet's and stellar atmosphere and transit geometry. Thus, a simple template does not suffice to capture the subtle details, especially if the signal is below the noise or strong systematics are present. Current false-positive rates from the Kepler data are estimated around 12.3% for Earth-like planets and there has been no study of the false negative rates. It is therefore important to ask how the properties of current algorithms exactly affect the results of the Kepler mission and, future missions such as TESS, which flies next year. These uncertainties affect the fundamental research derived from missions, such as the discovery of habitable planets, estimates of their occurrence rates and our understanding about the nature and evolution of planetary systems.

  3. Characterizing Rosetta Stone Exoplanets with JWST Transit Spectroscopy

    Science.gov (United States)

    Lewis, Nikole K.; Clampin, Mark; Seager, Sara; Valenti, Jeff A.; Mountain, Matt; JWST Telescope Scientist GTO Team

    2017-06-01

    JWST will for the first time provide for spectroscopic (R > 100) observation of systems hosting transiting exoplanets over the critical wavelength range from 0.6 to 28.5 microns. Our team will take advantage of JWST's spectral coverage and resolution to characterize a small number of exoplanets in exquisite detail. We plan to focus our efforts on single representative members of the hot-Jupiter, warm-Neptune, and temperate-Earth populations in both transmission and emission over the full wavelength range of JWST. Our JWST observations will hopefully become 'Rosetta Stones' that will serve as benchmarks for further observations of planets within each representative population and a lasting legacy of the JWST mission. Here we will describe our observational plan and how we turned our science goals into an implemented Cycle 1 JWST program.

  4. Qatar Exoplanet Survey: Qatar-6b—A Grazing Transiting Hot Jupiter

    Science.gov (United States)

    Alsubai, Khalid; Tsvetanov, Zlatan I.; Latham, David W.; Bieryla, Allyson; Esquerdo, Gilbert A.; Mislis, Dimitris; Pyrzas, Stylianos; Foxell, Emma; McCormac, James; Baranec, Christoph; Vilchez, Nicolas P. E.; West, Richard; Esamdin, Ali; Dang, Zhenwei; Dalee, Hani M.; Al-Rajihi, Amani A.; Al-Harbi, Abeer Kh.

    2018-02-01

    We report the discovery of Qatar-6b, a new transiting planet identified by the Qatar Exoplanet Survey (QES). The planet orbits a relatively bright (V = 11.44), early-K main-sequence star at an orbital period of P ∼ 3.506 days. An SED fit to available multi-band photometry, ranging from the near-UV to the mid-IR, yields a distance of d = 101 ± 6 pc to the system. From a global fit to follow-up photometric and spectroscopic observations, we calculate the mass and radius of the planet to be M P = 0.67 ± 0.07 M J and R P = 1.06 ± 0.07 R J, respectively. We use multi-color photometric light curves to show that the transit is grazing, making Qatar-6b one of the few exoplanets known in a grazing transit configuration. It adds to the short list of targets that offer the best opportunity to look for additional bodies in the host planetary system through variations in the transit impact factor and duration.

  5. False Positives in Exoplanet Detection

    Science.gov (United States)

    Leuquire, Jacob; Kasper, David; Jang-Condell, Hannah; Kar, Aman; Sorber, Rebecca; Suhaimi, Afiq; KELT (Kilodegree Extremely Little Telescope)

    2018-06-01

    Our team at the University of Wyoming uses a 0.6 m telescope at RBO (Red Buttes Observatory) to help confirm results on potential exoplanet candidates from low resolution, wide field surveys shared by the KELT (Kilodegree Extremely Little Telescope) team. False positives are common in this work. We carry out transit photometry, and this method comes with special types of false positives. The most common false positive seen at the confirmation level is an EB (eclipsing binary). Low resolution images are great in detecting multiple sources for photometric dips in light curves, but they lack the precision to decipher single targets at an accurate level. For example, target star KC18C030621 needed RBO’s photometric precision to determine there was a nearby EB causing exoplanet type light curves. Identifying false positives with our telescope is important work because it helps eliminate the waste of time taken by more expensive telescopes trying to rule out negative candidate stars. It also furthers the identification of other types of photometric events, like eclipsing binaries, so they can be studied on their own.

  6. Engaging Undergraduate Students in Transiting Exoplanet Research with Small Telescopes

    Science.gov (United States)

    Stephens, Denise C.; Stoker, E.; Gaillard, C.; Ranquist, E.; Lara, P.; Wright, K.

    2013-10-01

    Brigham Young University has a relatively large undergraduate physics program with 300 to 360 physics majors. Each of these students is required to be engaged in a research group and to produce a senior thesis before graduating. For the astronomy professors, this means that each of us is mentoring at least 4-6 undergraduate students at any given time. For the past few years I have been searching for meaningful research projects that make use of our telescope resources and are exciting for both myself and my students. We first started following up Kepler Objects of Interest with our 0.9 meter telescope, but quickly realized that most of the transits we could observe were better analyzed with Kepler data and were false positive objects. So now we have joined a team that is searching for transiting planets, and my students are using our 16" telescope to do ground based follow-up on the hundreds of possible transiting planet candidates produced by this survey. In this presentation I will describe our current telescopes, the observational setup, and how we use our telescopes to search for transiting planets. I'll describe some of the software the students have written. I'll also explain how to use the NASA Exoplanet Archive to gather data on known transiting planets and Kepler Objects of Interests. These databases are useful for determining the observational limits of your small telescopes and teaching your students how to reduce and report data on transiting planets. Once that is in place, you are potentially ready to join existing transiting planet missions by doing ground-based follow-up. I will explain how easy it can be to implement this type of research at any high school, college, or university with a small telescope and CCD camera.

  7. Dusty tails of evaporating exoplanets. I. Constraints on the dust composition

    NARCIS (Netherlands)

    van Lieshout, R.; Min, M.; Dominik, C.

    2014-01-01

    Context. Recently, two exoplanet candidates have been discovered, KIC 12557548b and KOI-2700b, whose transit profiles show evidence of a comet-like tail of dust trailing the planet, thought to be fed by the evaporation of the planet’s surface. Aims. We aim to put constraints on the composition of

  8. Stellar Companions of Exoplanet Host Stars in K2

    Science.gov (United States)

    Matson, Rachel; Howell, Steve; Horch, Elliott; Everett, Mark

    2018-01-01

    Stellar multiplicity has significant implications for the detection and characterization of exoplanets. A stellar companion can mimic the signal of a transiting planet or distort the true planetary radii, leading to improper density estimates and over-predicting the occurrence rates of Earth-sized planets. Determining the fraction of exoplanet host stars that are also binaries allows us to better determine planetary characteristics as well as establish the relationship between binarity and planet formation. Using high-resolution speckle imaging to obtain diffraction limited images of K2 planet candidate host stars we detect stellar companions within one arcsec and up to six magnitudes fainter than the host star. By comparing our observed companion fraction to TRILEGAL star count simulations, and using the known detection limits of speckle imaging, we find the binary fraction of K2 planet host stars to be similar to that of Kepler host stars and solar-type field stars. Accounting for stellar companions in exoplanet studies is therefore essential for deriving true stellar and planetary properties as well as maximizing the returns for TESS and future exoplanet missions.

  9. Exploring the Diversity of Exoplanet Atmospheres Using Ground-Based Transit Spectroscopy

    Science.gov (United States)

    Bean, Jacob

    This is a proposal to fund an observational study of the atmospheres of exoplanets in order to improve our understanding of the nature and origins of these mysterious worlds. The observations will be performed using our new approach for ground-based transit spectroscopy measurements that yields space-telescope quality data. We will also carry out supporting theoretical calculations with new abundance retrieval codes to interpret the measurements. Our project includes a survey of giant exoplanets, and intensive study of especially compelling exoplanets. For the survey, optical and near-infrared transmission spectra, and near-infrared emission spectra will be measured for giant exoplanets with a wide range of estimated temperatures, heavy element abundance, and mass. This comprehensive characterization of a large sample of these planets is now crucial to investigate such issues for their atmospheres as the carbon-to-oxygen ratios and overall metallicities, cause of thermal inversions, and prevalence and nature of high-altitude hazes. The intensive study of compelling individual planets will focus on low-mass (M spectroscopy, and leveraging its particular sensitivity to the atmospheric scale height. Observations for the project will be carried out with Magellan, Keck, Gemini, and VLT. The team has institutional access to Magellan and Keck, and a demonstrated record of obtaining time on Gemini and VLT for these observations through public channels. This proposal is highly relevant for current and future NASA projects. We are seeking to understand the diversity of exoplanets revealed by planet searches like Kepler and the Eta-Earth survey. Our observations will complement, extend, and provide context for similar observations with HST and Spitzer. We will investigate the fundamental nature of the closest kin to Earth-size exoplanets, and this is an important foundation that must be laid down before studying habitable planets with JWST and a future TPF-like mission.

  10. POLARIMETRIC DETECTION OF EXOPLANETS TRANSITING T AND L BROWN DWARFS

    International Nuclear Information System (INIS)

    Sengupta, Sujan

    2016-01-01

    While scattering of light by atoms and molecules yields large amounts of polarization at the B-band of both T and L dwarfs, scattering by dust grains in the cloudy atmosphere of L dwarfs gives rise to significant polarization at the far-optical and infrared wavelengths where these objects are much brighter. However, the observable disk-averaged polarization should be zero if the clouds are uniformly distributed and the object is spherically symmetric. Therefore, in order to explain the observed large polarization of several L dwarfs, rotation-induced oblateness or horizontally inhomogeneous cloud distribution in the atmosphere is invoked. On the other hand, when an extra-solar planet of Earth-size or larger transits the brown dwarf along the line of sight, the asymmetry induced during the transit gives rise to a net non-zero, time-dependent polarization. Employing atmospheric models for a range of effective temperature and surface gravity appropriate for T and L dwarfs, I derive the time-dependent polarization profiles of these objects during the transit phase and estimate the peak amplitude of polarization that occurs during the inner contact points of the transit ingress/egress phase. It is found that peak polarization in the range of 0.2%–1.0% at I and J band may arise of cloudy L dwarfs occulted by Earth-size or larger exoplanets. Such an amount of polarization is higher than what can be produced by rotation-induced oblateness of even rapidly rotating L dwarfs. Hence, I suggest that time-resolved imaging polarization could be a potential technique for detecting transiting exoplanets around L dwarfs.

  11. POLARIMETRIC DETECTION OF EXOPLANETS TRANSITING T AND L BROWN DWARFS

    Energy Technology Data Exchange (ETDEWEB)

    Sengupta, Sujan, E-mail: sujan@iiap.res.in [Indian Institute of Astrophysics, Koramangala 2nd Block, Bangalore 560 034 (India)

    2016-10-01

    While scattering of light by atoms and molecules yields large amounts of polarization at the B-band of both T and L dwarfs, scattering by dust grains in the cloudy atmosphere of L dwarfs gives rise to significant polarization at the far-optical and infrared wavelengths where these objects are much brighter. However, the observable disk-averaged polarization should be zero if the clouds are uniformly distributed and the object is spherically symmetric. Therefore, in order to explain the observed large polarization of several L dwarfs, rotation-induced oblateness or horizontally inhomogeneous cloud distribution in the atmosphere is invoked. On the other hand, when an extra-solar planet of Earth-size or larger transits the brown dwarf along the line of sight, the asymmetry induced during the transit gives rise to a net non-zero, time-dependent polarization. Employing atmospheric models for a range of effective temperature and surface gravity appropriate for T and L dwarfs, I derive the time-dependent polarization profiles of these objects during the transit phase and estimate the peak amplitude of polarization that occurs during the inner contact points of the transit ingress/egress phase. It is found that peak polarization in the range of 0.2%–1.0% at I and J band may arise of cloudy L dwarfs occulted by Earth-size or larger exoplanets. Such an amount of polarization is higher than what can be produced by rotation-induced oblateness of even rapidly rotating L dwarfs. Hence, I suggest that time-resolved imaging polarization could be a potential technique for detecting transiting exoplanets around L dwarfs.

  12. Direct Imaging Confirmation and Characterization of a Dust-Enshrouded Candidate Exoplanet Orbiting Fomalhaut

    OpenAIRE

    Currie, Thayne; Debes, John; Rodigas, Timothy J.; Burrows, Adam; Itoh, Yoichi; Fukagawa, Misato; Kenyon, Scott; Kuchner, Marc; Matsumura, Soko

    2012-01-01

    We present Subaru/IRCS J band data for Fomalhaut and a (re)reduction of archival 2004--2006 HST/ACS data first presented by Kalas et al. (2008). We confirm the existence of a candidate exoplanet, Fomalhaut b, in both the 2004 and 2006 F606W data sets at a high signal-to-noise. Additionally, we confirm the detection at F814W and present a new detection in F435W. Fomalhaut b's space motion may be consistent with it being in an apsidally-aligned, non debris ring-crossing orbit, although new astr...

  13. Observations and modeling of the transiting exoplanets XO-2b, HAT-P-18b, and WASP-80b

    Directory of Open Access Journals (Sweden)

    Kjurkchieva Diana P.

    2017-01-01

    Full Text Available We present photometric observations and transit solutions of the exoplanets XO-2b, HAT-P-18b and WASP 80b. Our solution of the XO-2b transit gave system parameters whose values are close to those of the previous studies. The solutions of the new transits of HAT-P-18b and WASP 80b differ from the previous ones by bigger stellar and planet radii. We obtained new values of the target initial epochs corresponding to slightly different periods. Our investigation reaffirmed that small telescopes can be used successfully for the study of exoplanets orbiting stars brighter than 13 mag.

  14. What asteroseismology can do for exoplanets

    Directory of Open Access Journals (Sweden)

    Van Eylen Vincent

    2015-01-01

    Full Text Available We describe three useful applications of asteroseismology in the context of exoplanet science: (1 the detailed characterisation of exoplanet host stars; (2 the measurement of stellar inclinations; and (3 the determination of orbital eccentricity from transit duration making use of asteroseismic stellar densities. We do so using the example system Kepler-410 [1]. This is one of the brightest (V = 9.4 Kepler exoplanet host stars, containing a small (2.8 R⊕ transiting planet in a long orbit (17.8 days, and one or more additional non-transiting planets as indicated by transit timing variations. The validation of Kepler-410 (KOI-42 was complicated due to the presence of a companion star, and the planetary nature of the system was confirmed after analyzing a Spitzer transit observation as well as ground-based follow-up observations.

  15. Exoplanet habitability.

    Science.gov (United States)

    Seager, Sara

    2013-05-03

    The search for exoplanets includes the promise to eventually find and identify habitable worlds. The thousands of known exoplanets and planet candidates are extremely diverse in terms of their masses or sizes, orbits, and host star type. The diversity extends to new kinds of planets, which are very common yet have no solar system counterparts. Even with the requirement that a planet's surface temperature must be compatible with liquid water (because all life on Earth requires liquid water), a new emerging view is that planets very different from Earth may have the right conditions for life. The broadened possibilities will increase the future chances of discovering an inhabited world.

  16. De-Trending K2 Exoplanet Targets for High Spacecraft Motion

    Science.gov (United States)

    Saunders, Nicholas; Luger, Rodrigo; Barnes, Rory

    2018-01-01

    despite increased motion. We further discuss how these methods can be applied to upcoming space telescope missions, such as the Transiting Exoplanet Survey Satellite (TESS), to improve future detection and characterization of exoplanet candidates.

  17. Toward Detection of Exoplanetary Rings via Transit Photometry: Methodology and a Possible Candidate

    Energy Technology Data Exchange (ETDEWEB)

    Aizawa, Masataka; Masuda, Kento; Suto, Yasushi [Department of Physics, The University of Tokyo, Tokyo, 113-0033 (Japan); Uehara, Sho [Department of Physics, Tokyo Metropolitan University, Tokyo 192-4397 (Japan); Kawahara, Hajime, E-mail: aizawa@utap.phys.s.u-tokyo.ac.jp [Department of Earth and Planetary Science, The University of Tokyo, Tokyo 113-0033 (Japan)

    2017-04-01

    The detection of a planetary ring of exoplanets remains one of the most attractive, but challenging, goals in the field of exoplanetary science. We present a methodology that implements a systematic search for exoplanetary rings via transit photometry of long-period planets. This methodology relies on a precise integration scheme that we develop to compute a transit light curve of a ringed planet. We apply the methodology to 89 long-period planet candidates from the Kepler data so as to estimate, and/or set upper limits on, the parameters of possible rings. While the majority of our samples do not have sufficient signal-to-noise ratios (S/Ns) to place meaningful constraints on ring parameters, we find that six systems with higher S/Ns are inconsistent with the presence of a ring larger than 1.5 times the planetary radius, assuming a grazing orbit and a tilted ring. Furthermore, we identify five preliminary candidate systems whose light curves exhibit ring-like features. After removing four false positives due to the contamination from nearby stars, we identify KIC 10403228 as a reasonable candidate for a ringed planet. A systematic parameter fit of its light curve with a ringed planet model indicates two possible solutions corresponding to a Saturn-like planet with a tilted ring. There also remain two other possible scenarios accounting for the data; a circumstellar disk and a hierarchical triple. Due to large uncertain factors, we cannot choose one specific model among the three.

  18. DISCRIMINATING BETWEEN CLOUDY, HAZY, AND CLEAR SKY EXOPLANETS USING REFRACTION

    Energy Technology Data Exchange (ETDEWEB)

    Misra, Amit K.; Meadows, Victoria S. [Astronomy Department, University of Washington, Seattle, WA 98195 (United States)

    2014-11-01

    We propose a method to distinguish between cloudy, hazy, and clear sky (free of clouds and hazes) exoplanet atmospheres that could be applicable to upcoming large aperture space- and ground-based telescopes such as the James Webb Space Telescope (JWST) and the European Extremely Large Telescope (E-ELT). These facilities will be powerful tools for characterizing transiting exoplanets, but only after a considerable amount of telescope time is devoted to a single planet. A technique that could provide a relatively rapid means of identifying haze-free targets (which may be more valuable targets for characterization) could potentially increase the science return for these telescopes. Our proposed method utilizes broadband observations of refracted light in the out-of-transit spectrum. Light refracted through an exoplanet atmosphere can lead to an increase of flux prior to ingress and subsequent to egress. Because this light is transmitted at pressures greater than those for typical cloud and haze layers, the detection of refracted light could indicate a cloud- or haze-free atmosphere. A detection of refracted light could be accomplished in <10 hr for Jovian exoplanets with JWST and <5 hr for super-Earths/mini-Neptunes with E-ELT. We find that this technique is most effective for planets with equilibrium temperatures between 200 and 500 K, which may include potentially habitable planets. A detection of refracted light for a potentially habitable planet would strongly suggest the planet was free of a global cloud or haze layer, and therefore a promising candidate for follow-up observations.

  19. DISCRIMINATING BETWEEN CLOUDY, HAZY, AND CLEAR SKY EXOPLANETS USING REFRACTION

    International Nuclear Information System (INIS)

    Misra, Amit K.; Meadows, Victoria S.

    2014-01-01

    We propose a method to distinguish between cloudy, hazy, and clear sky (free of clouds and hazes) exoplanet atmospheres that could be applicable to upcoming large aperture space- and ground-based telescopes such as the James Webb Space Telescope (JWST) and the European Extremely Large Telescope (E-ELT). These facilities will be powerful tools for characterizing transiting exoplanets, but only after a considerable amount of telescope time is devoted to a single planet. A technique that could provide a relatively rapid means of identifying haze-free targets (which may be more valuable targets for characterization) could potentially increase the science return for these telescopes. Our proposed method utilizes broadband observations of refracted light in the out-of-transit spectrum. Light refracted through an exoplanet atmosphere can lead to an increase of flux prior to ingress and subsequent to egress. Because this light is transmitted at pressures greater than those for typical cloud and haze layers, the detection of refracted light could indicate a cloud- or haze-free atmosphere. A detection of refracted light could be accomplished in <10 hr for Jovian exoplanets with JWST and <5 hr for super-Earths/mini-Neptunes with E-ELT. We find that this technique is most effective for planets with equilibrium temperatures between 200 and 500 K, which may include potentially habitable planets. A detection of refracted light for a potentially habitable planet would strongly suggest the planet was free of a global cloud or haze layer, and therefore a promising candidate for follow-up observations

  20. KEPLER EXOPLANET CANDIDATE HOST STARS ARE PREFERENTIALLY METAL RICH

    International Nuclear Information System (INIS)

    Schlaufman, Kevin C.; Laughlin, Gregory

    2011-01-01

    We find that Kepler exoplanet candidate (EC) host stars are preferentially metal rich, including the low-mass stellar hosts of small-radius ECs. The last observation confirms a tentative hint that there is a correlation between the metallicity of low-mass stars and the presence of low-mass and small-radius exoplanets. In particular, we compare the J-H-g-r color-color distribution of Kepler EC host stars with a control sample of dwarf stars selected from the ∼150, 000 stars observed during Q1 and Q2 of the Kepler mission but with no detected planets. We find that at J - H = 0.30 characteristic of solar-type stars, the average g-r color of stars that host giant ECs is 4σ redder than the average color of the stars in the control sample. At the same J - H color, the average g-r color of solar-type stars that host small-radius ECs is indistinguishable from the average color of the stars in the control sample. In addition, we find that at J - H = 0.62 indicative of late K dwarfs, the average g-r color of stars that host small-radius ECs is 4σ redder than the average color of the stars in the control sample. These offsets are unlikely to be caused by differential reddening, age differences between the two populations, or the presence of giant stars in the control sample. Stellar models suggest that the first color offset is due to a 0.2 dex enhancement in [Fe/H] of the giant EC host population at M * ∼ 1 M sun , while Sloan photometry of M 67 and NGC 6791 suggests that the second color offset is due to a similar [Fe/H] enhancement of the small-radius EC host population at M * ∼ 0.7 M sun . These correlations are a natural consequence of the core-accretion model of planet formation.

  1. Exoplanets

    Science.gov (United States)

    Seager, S.

    2010-12-01

    This is a unique time in human history - for the first time, we are on the technological brink of being able to answer questions that have been around for thousands of years: Are there other planets like Earth? Are they common? Do any have signs of life? The field of exoplanets is rapidly moving toward answering these questions with the discovery of hundreds of exoplanets now pushing toward lower and lower masses; the Kepler Space Telescope with its yield of small planets; plans to use the James Webb Space Telescope (launch date 2014) to study atmospheres of a subset of super Earths; and ongoing development for technology to directly image true Earth analogs. Theoretical studies in dynamics, planet formation, and physical characteristics provide the needed framework for prediction and interpretation. People working outside of exoplanets often ask if the field of exoplanets is like a dot.com bubble that will burst, deflating excitement and progress. In my opinion, exciting discoveries and theoretical advances will continue indefinitely in the years ahead, albeit at a slower pace than in the first decade. The reason is that observations uncover new kinds and new populations of exoplanets -- and these observations rely on technological development that usually takes over a decade to mature. For example, in the early 2000s all but one exoplanet was discovered by the radial velocity technique. At that time, many groups around the world were working on wide-field transit surveys. But it was not until recently, a decade into the twenty-first century, that the transit technique is responsible for almost one-quarter of known exoplanets. The planet discovery techniques astrometry (as yet to find a planet) and direct imaging have not yet matured; when they do, they will uncover planets within a new parameter space of planet mass and orbital characteristics. In addition, people are working hard to improve the precision for existing planet discovery techniques to detect lower

  2. The Automation and Exoplanet Orbital Characterization from the Gemini Planet Imager Exoplanet Survey

    Science.gov (United States)

    Jinfei Wang, Jason; Graham, James; Perrin, Marshall; Pueyo, Laurent; Savransky, Dmitry; Kalas, Paul; arriaga, Pauline; Chilcote, Jeffrey K.; De Rosa, Robert J.; Ruffio, Jean-Baptiste; Sivaramakrishnan, Anand; Gemini Planet Imager Exoplanet Survey Collaboration

    2018-01-01

    The Gemini Planet Imager (GPI) Exoplanet Survey (GPIES) is a multi-year 600-star survey to discover and characterize young Jovian exoplanets and their planet forming environments. For large surveys like GPIES, it is critical to have a uniform dataset processed with the latest techniques and calibrations. I will describe the GPI Data Cruncher, an automated data processing framework that is able to generate fully reduced data minutes after the data are taken and can also reprocess the entire campaign in a single day on a supercomputer. The Data Cruncher integrates into a larger automated data processing infrastructure which syncs, logs, and displays the data. I will discuss the benefits of the GPIES data infrastructure, including optimizing observing strategies, finding planets, characterizing instrument performance, and constraining giant planet occurrence. I will also discuss my work in characterizing the exoplanets we have imaged in GPIES through monitoring their orbits. Using advanced data processing algorithms and GPI's precise astrometric calibration, I will show that GPI can achieve one milliarcsecond astrometry on the extensively-studied planet Beta Pic b. With GPI, we can confidently rule out a possible transit of Beta Pic b, but have precise timings on a Hill sphere transit, and I will discuss efforts to search for transiting circumplanetary material this year. I will also discuss the orbital monitoring of other exoplanets as part of GPIES.

  3. Toward the detection of exoplanet transits with polarimetry

    Energy Technology Data Exchange (ETDEWEB)

    Wiktorowicz, Sloane J. [NASA Sagan Fellow. (United States); Laughlin, Gregory P., E-mail: sloanew@ucolick.org [Department of Astronomy and Astrophysics, University of California, Santa Cruz, CA 95064 (United States)

    2014-11-01

    In contrast to photometric transits, whose peak signal occurs at mid-transit due to occultation of the brightest region of the disk, polarimetric transits provide a signal upon ingress and egress due to occultation of the polarized stellar limb. Limb polarization, the bright corollary to limb darkening, arises from the 90° scattering angle and low optical depth experienced by photons at the limb. In addition to the ratio R {sub p}/R {sub *}, the amplitude of a polarimetric transit is expected to be controlled by the strength and width of the stellar limb polarization profile, which depend on the scattering-to-total opacity ratio at the stellar limb. We present a short list of the systems providing the highest expected signal-to-noise ratio for detection of this effect, and we draw particular attention to HD 80606b. This planet is spin/orbit misaligned, has a three-hour ingress, and has a bright parent star, which make it an attractive target. We report on test observations of an HD 80606b ingress with the POLISH2 polarimeter at the Lick Observatory Shane 3 m telescope. We conclude that unmodeled telescope systematic effects prevented polarimetric detection of this event. We outline a roadmap for further refinements of exoplanet polarimetry, whose eventual success will require a further factor of ten reduction in systematic noise.

  4. Results and lessons from the GMOS survey of transiting exoplanet atmospheres

    Science.gov (United States)

    Todorov, Kamen; Desert, Jean-Michel; Huitson, Catherine; Bean, Jacob; Fortney, Jonathan; Bergmann, Marcel; Stevenson, Kevin

    2018-01-01

    We present results from the first comprehensive survey program dedicated to probing transiting exoplanet atmospheres using transmission spectroscopy with a multi-object spectrograph (MOS). Our four-years survey focussed on ten close-in giant planets for which the wavelength dependent transit depths in the visible were measured with Gemini/GMOS. We present the complete analysis of all the targets observed (50 transits, 300 hours), and the challenges to overcome to achieve the best spectrophotometric precision (200-500 ppm / 10 nm). We also present the main results and conclusions from this survey. We show that the precision achieved by this survey permits to distinguish hazy atmospheres from cloud-free ones. We discuss the challenges faced by such an experiment, and the lessons learnt for future MOS survey. We lay out the challenges facing future ground based MOS transit surveys aiming for the atmospheric characterization of habitable worlds, and utilizing the next generation of multi-object spectrographs mounted on extremely large ground based telescopes (ELT, TMT).

  5. Planetary Candidates Observed by Kepler. VIII. A Fully Automated Catalog with Measured Completeness and Reliability Based on Data Release 25

    DEFF Research Database (Denmark)

    Thompson, Susan E.; Coughlin, Jeffrey L.; Hoffman, Kelsey

    2018-01-01

    We present the Kepler Object of Interest (KOI) catalog of transiting exoplanets based on searching 4 yr of Kepler time series photometry (Data Release 25, Q1-Q17). The catalog contains 8054 KOIs, of which 4034 are planet candidates with periods between 0.25. and 632. days. Of these candidates, 219...... simulated data sets and measured how well it was able to separate TCEs caused by noise from those caused by low signal-to-noise transits. We discuss the Robovetter and the metrics it uses to sort TCEs. For orbital periods less than 100 days the Robovetter completeness (the fraction of simulated transits...... FGK-dwarf stars, the Robovetter is 76.7% complete and the catalog is 50.5% reliable. The KOI catalog, the transit fits, and all of the simulated data used to characterize this catalog are available at the NASA Exoplanet Archive....

  6. Leveraging Ensemble Dynamical Properties to Prioritize Exoplanet Follow-Up Observations

    Science.gov (United States)

    Ballard, Sarah

    2017-01-01

    The number of transiting exoplanets now exceeds several thousand, enabling ensemble studies of the dynamical properties of exoplanetary systems. We require a mixture model of dynamical conditions (whether frozen in from formation or sculpted by planet-planet interactions) to recover Kepler's yield of transiting planets. Around M dwarfs, which will be predominate sites of exoplanet follow-up atmospheric study in the next decade, even a modest orbital eccentricity can sterilize a planet. I will describe efforts to link cheap observables, such as number of transiting planets and presence of transit timing variations, to eccentricity and mutual inclination in exoplanet systems. The addition of a second transiting planet, for example, halves the expected orbital eccentricity. For the vast majority of TESS targets, the light curve alone will furnish the sum total of data about the exoplanet. Extracting information about orbital properties from these light curves will help prioritize precious follow-up resources.

  7. The effects of refraction on transit transmission spectroscopy: application to Earth-like exoplanets

    Energy Technology Data Exchange (ETDEWEB)

    Misra, Amit; Meadows, Victoria [Astronomy Department, University of Washington, Box 351580, Seattle, WA 98195 (United States); Crisp, Dave, E-mail: amit0@astro.washington.edu [NAI Virtual Planetary Laboratory, Seattle, WA (United States)

    2014-09-01

    We quantify the effects of refraction in transit transmission spectroscopy on spectral absorption features and on temporal variations that could be used to obtain altitude-dependent spectra for planets orbiting stars of different stellar types. We validate our model against altitude-dependent transmission spectra of the Earth from ATMOS and against lunar eclipse spectra from Pallé et al. We perform detectability studies to show the potential effects of refraction on hypothetical observations of Earth analogs with the James Webb Space Telescope NIRSPEC. Due to refraction, there will be a maximum tangent pressure level that can be probed during transit for each given planet-star system. We show that because of refraction, for an Earth-analog planet orbiting in the habitable zone of a Sun-like star only the top 0.3 bars of the atmosphere can be probed, leading to a decrease in the signal-to-noise ratio (S/N) of absorption features by 60%, while for an Earth-analog planet orbiting in the habitable zone of an M5V star it is possible to probe almost the entire atmosphere with minimal decreases in S/N. We also show that refraction can result in temporal variations in the transit transmission spectrum which may provide a way to obtain altitude-dependent spectra of exoplanet atmospheres. Additionally, the variations prior to ingress and subsequent to egress provide a way to probe pressures greater than the maximum tangent pressure that can be probed during transit. Therefore, probing the maximum range of atmospheric altitudes, and in particular the near-surface environment of an Earth-analog exoplanet, will require looking at out-of-transit refracted light in addition to the in-transit spectrum.

  8. The effects of refraction on transit transmission spectroscopy: application to Earth-like exoplanets

    International Nuclear Information System (INIS)

    Misra, Amit; Meadows, Victoria; Crisp, Dave

    2014-01-01

    We quantify the effects of refraction in transit transmission spectroscopy on spectral absorption features and on temporal variations that could be used to obtain altitude-dependent spectra for planets orbiting stars of different stellar types. We validate our model against altitude-dependent transmission spectra of the Earth from ATMOS and against lunar eclipse spectra from Pallé et al. We perform detectability studies to show the potential effects of refraction on hypothetical observations of Earth analogs with the James Webb Space Telescope NIRSPEC. Due to refraction, there will be a maximum tangent pressure level that can be probed during transit for each given planet-star system. We show that because of refraction, for an Earth-analog planet orbiting in the habitable zone of a Sun-like star only the top 0.3 bars of the atmosphere can be probed, leading to a decrease in the signal-to-noise ratio (S/N) of absorption features by 60%, while for an Earth-analog planet orbiting in the habitable zone of an M5V star it is possible to probe almost the entire atmosphere with minimal decreases in S/N. We also show that refraction can result in temporal variations in the transit transmission spectrum which may provide a way to obtain altitude-dependent spectra of exoplanet atmospheres. Additionally, the variations prior to ingress and subsequent to egress provide a way to probe pressures greater than the maximum tangent pressure that can be probed during transit. Therefore, probing the maximum range of atmospheric altitudes, and in particular the near-surface environment of an Earth-analog exoplanet, will require looking at out-of-transit refracted light in addition to the in-transit spectrum.

  9. CHEOPS: a space telescope for ultra-high precision photometry of exoplanet transits

    Science.gov (United States)

    Cessa, V.; Beck, T.; Benz, W.; Broeg, C.; Ehrenreich, D.; Fortier, A.; Peter, G.; Magrin, D.; Pagano, I.; Plesseria, J.-Y.; Steller, M.; Szoke, J.; Thomas, N.; Ragazzoni, R.; Wildi, F.

    2017-11-01

    The CHaracterising ExOPlanet Satellite (CHEOPS) is a joint ESA-Switzerland space mission dedicated to search for exoplanet transits by means of ultra-high precision photometry whose launch readiness is expected end 2017. The CHEOPS instrument will be the first space telescope dedicated to search for transits on bright stars already known to host planets. By being able to point at nearly any location on the sky, it will provide the unique capability of determining accurate radii for a subset of those planets for which the mass has already been estimated from ground-based spectroscopic surveys. CHEOPS will also provide precision radii for new planets discovered by the next generation ground-based transits surveys (Neptune-size and smaller). The main science goals of the CHEOPS mission will be to study the structure of exoplanets with radii typically ranging from 1 to 6 Earth radii orbiting bright stars. With an accurate knowledge of masses and radii for an unprecedented sample of planets, CHEOPS will set new constraints on the structure and hence on the formation and evolution of planets in this mass range. To reach its goals CHEOPS will measure photometric signals with a precision of 20 ppm in 6 hours of integration time for a 9th magnitude star. This corresponds to a signal to noise of 5 for a transit of an Earth-sized planet orbiting a solar-sized star (0.9 solar radii). This precision will be achieved by using a single frame-transfer backside illuminated CCD detector cool down at 233K and stabilized within {10 mK . The CHEOPS optical design is based on a Ritchey-Chretien style telescope with 300 mm effective aperture diameter, which provides a defocussed image of the target star while minimizing straylight using a dedicated field stop and baffle system. As CHEOPS will be in a LEO orbit, straylight suppression is a key point to allow the observation of faint stars. The telescope will be the only payload on a spacecraft platform providing pointing stability of

  10. Transit Timing Observations from Kepler: III. Confirmation of 4 Multiple Planet Systems by a Fourier-Domain Study of Anti-correlated Transit Timing Variations

    Energy Technology Data Exchange (ETDEWEB)

    Steffen, Jason H.; /Fermilab; Fabrycky, Daniel C.; /Lick Observ.; Ford, Eric B.; /Florida U.; Carter, Joshua A.; /Harvard-Smithsonian Ctr. Astrophys.; Fressin, Francois; /Harvard-Smithsonian Ctr. Astrophys.; Holman, Matthew J.; /Harvard-Smithsonian Ctr. Astrophys.; Lissauer, Jack J.; /NASA, Ames; Rowe, Jason F.; /SETI Inst., Mtn. View /NASA, Ames; Ragozzine, Darin; /Harvard-Smithsonian Ctr. Astrophys.; Welsh, William F.; /Caltech; Borucki, William J.; /NASA, Ames /UC, Santa Barbara

    2012-01-01

    We present a method to confirm the planetary nature of objects in systems with multiple transiting exoplanet candidates. This method involves a Fourier-domain analysis of the deviations in the transit times from a constant period that result from dynamical interactions within the system. The combination of observed anticorrelations in the transit times and mass constraints from dynamical stability allow us to claim the discovery of four planetary systems, Kepler-25, Kepler-26, Kepler-27 and Kepler-28, containing eight planets and one additional planet candidate.

  11. The Colorado Ultraviolet Transit Experiment (CUTE): Observing Mass Loss on Short-Period Exoplanets

    Science.gov (United States)

    Egan, Arika; Fleming, Brian; France, Kevin

    2018-06-01

    The Colorado Ultraviolet Transit Experiment (CUTE) is an NUV spectrograph packaged into a 6U CubeSat, designed to characterize the interaction between exoplanetary atmospheres and their host stars. CUTE will conduct a transit spectroscopy survey, gathering data over multiple transits on more than 12 short-period exoplanets with a range of masses and radii. The instrument will characterize the spectral properties of the transit light curves to atomic and molecular absorption features predicted to exist in the upper atmospheres of these planets, including Mg I, Mg II, Fe II, and OH. The shape and evolution of these spectral light curves will be used to quantify mass loss rates, the stellar drives of that mass loss, and the possible existence of exoplanetary magnetic fiends. This poster presents the science motivation for CUTE, planned observation and data analysis methods, and expected results.

  12. Exoplanets Galore!

    Science.gov (United States)

    2000-05-01

    Eight New Very Low-Mass Companions to Solar-Type Stars Discovered at La Silla The intensive and exciting hunt for planets around other stars ("exoplanets") is continuing with great success in both hemispheres. Today, a team of astronomers of the Geneva Observatory [1] are announcing the discovery of no less than eight new, very-low mass companions to solar-type stars. The masses of these objects range from less than that of planet Saturn to about 15 times that of Jupiter. The new results were obtained by means of high-precision radial-velocity measurements with the CORALIE spectrometer at the Swiss 1.2-m Leonhard Euler telescope at the ESO La Silla Observatory. An earlier account of this research programme is available as ESO Press Release 18/98. Recent views of this telescope and its dome are available below as PR Photos 13a-c/00. This observational method is based on the detection of changes in the velocity of the central star , due to the changing direction of the gravitational pull from an (unseen) exoplanet as it orbits the star. The evaluation of the measured velocity variations allows to deduce the planet's orbit , in particular the period and the distance from the star, as well as a minimum mass [2]. The characteristics of the new objects are quite diverse. While six of them are most likely bona-fide exoplanets , two are apparently very low-mass brown-dwarfs (objects of sub-stellar mass without a nuclear energy source in their interior). From the first discovery of an exoplanet around the star 51 Pegasi in 1995 (by Michel Mayor and Didier Queloz of the present team), the exoplanet count is now already above 40. "The present discoveries complete and enlarge our still preliminary knowledge of extra-solar planetary systems, as well as the transition between planets and `brown dwarfs'" , say Mayor and Queloz, on behalf of the Swiss team. An overview of the new objects ESO PR Photo 12/00 ESO PR Photo 12/00 [Preview - JPEG: 400 x 242 pix - 76k] [Normal - JPEG

  13. Using multi-disciplinary optimization and numerical simulation on the transiting exoplanet survey satellite

    Science.gov (United States)

    Stoeckel, Gerhard P.; Doyle, Keith B.

    2017-08-01

    The Transiting Exoplanet Survey Satellite (TESS) is an instrument consisting of four, wide fieldof- view CCD cameras dedicated to the discovery of exoplanets around the brightest stars, and understanding the diversity of planets and planetary systems in our galaxy. Each camera utilizes a seven-element lens assembly with low-power and low-noise CCD electronics. Advanced multivariable optimization and numerical simulation capabilities accommodating arbitrarily complex objective functions have been added to the internally developed Lincoln Laboratory Integrated Modeling and Analysis Software (LLIMAS) and used to assess system performance. Various optical phenomena are accounted for in these analyses including full dn/dT spatial distributions in lenses and charge diffusion in the CCD electronics. These capabilities are utilized to design CCD shims for thermal vacuum chamber testing and flight, and verify comparable performance in both environments across a range of wavelengths, field points and temperature distributions. Additionally, optimizations and simulations are used for model correlation and robustness optimizations.

  14. Exoplanet Peer-Learning Exercises for Introductory Astronomy Courses

    Science.gov (United States)

    Wisniewski, John P.; Larson, A.

    2010-01-01

    While exoplanet research has witnessed explosive growth over the past decade with over 350 exoplanets identified to date (http://exoplanet.eu), few education and public outreach tools capable of bringing the techniques and results of exoplanet science into the classroom have been developed. To help reduce this shortcoming, we have been developing and implementing a series of exoplanet-related active-learning exercises to be used in non-astronomy major introductory settings, including think-pair-share questions and peer-learning activities. We discuss some of these activities which we have field tested in undergraduate classes at the University of Washington. We also discuss our efforts to engage students in these classes in obtaining and analyzing astronomical observations of exoplanet host stars to identify and characterize exoplanet transit events. JPW acknowledges support from NSF Astronomy & Astrophysics Postdoctoral Fellowship AST 08-02230.

  15. Radial velocity follow-up of CoRoT transiting exoplanets

    Directory of Open Access Journals (Sweden)

    Deleuil M.

    2011-02-01

    Full Text Available We report on the results from the radial-velocity follow-up program performed to establish the planetary nature and to characterize the transiting candidates discovered by the space mission CoRoT. We use the SOPHIE at OHP, HARPS at ESO and the HIRES at Keck spectrographs to collect spectra and high-precision radial velocity (RV measurements for several dozens different candidates from CoRoT. We have measured the Rossiter-McLaughlin effect of several confirmed planets, especially CoRoT-1b which revealed that it is another highly inclined system. Such high-precision RV data are necessary for the discovery of new transiting planets. Furthermore, several low mass planet candidates have emerged from our Keck and HARPS data.

  16. TRANSIT TIMING OBSERVATIONS FROM KEPLER. V. TRANSIT TIMING VARIATION CANDIDATES IN THE FIRST SIXTEEN MONTHS FROM POLYNOMIAL MODELS

    Energy Technology Data Exchange (ETDEWEB)

    Ford, Eric B. [Astronomy Department, University of Florida, 211 Bryant Space Sciences Center, Gainesville, FL 32111 (United States); Ragozzine, Darin; Holman, Matthew J. [Harvard-Smithsonian Center for Astrophysics, 60 Garden Street, Cambridge, MA 02138 (United States); Rowe, Jason F.; Barclay, Thomas; Borucki, William J.; Bryson, Stephen T.; Caldwell, Douglas A.; Kinemuchi, Karen; Koch, David G.; Lissauer, Jack J.; Still, Martin; Tenenbaum, Peter [NASA Ames Research Center, Moffett Field, CA 94035 (United States); Steffen, Jason H. [Fermilab Center for Particle Astrophysics, P.O. Box 500, MS 127, Batavia, IL 60510 (United States); Batalha, Natalie M. [Department of Physics and Astronomy, San Jose State University, San Jose, CA 95192 (United States); Fabrycky, Daniel C. [UCO/Lick Observatory, University of California, Santa Cruz, CA 95064 (United States); Gautier, Thomas N. [Jet Propulsion Laboratory/California Institute of Technology, Pasadena, CA 91109 (United States); Ibrahim, Khadeejah A.; Uddin, Kamal [Orbital Sciences Corporation/NASA Ames Research Center, Moffett Field, CA 94035 (United States); Kjeldsen, Hans, E-mail: eford@astro.ufl.edu [Department of Physics and Astronomy, Aarhus University, DK-8000 Aarhus C (Denmark); and others

    2012-09-10

    Transit timing variations provide a powerful tool for confirming and characterizing transiting planets, as well as detecting non-transiting planets. We report the results of an updated transit timing variation (TTV) analysis for 1481 planet candidates based on transit times measured during the first sixteen months of Kepler observations. We present 39 strong TTV candidates based on long-term trends (2.8% of suitable data sets). We present another 136 weaker TTV candidates (9.8% of suitable data sets) based on the excess scatter of TTV measurements about a linear ephemeris. We anticipate that several of these planet candidates could be confirmed and perhaps characterized with more detailed TTV analyses using publicly available Kepler observations. For many others, Kepler has observed a long-term TTV trend, but an extended Kepler mission will be required to characterize the system via TTVs. We find that the occurrence rate of planet candidates that show TTVs is significantly increased ({approx}68%) for planet candidates transiting stars with multiple transiting planet candidates when compared to planet candidates transiting stars with a single transiting planet candidate.

  17. Amateur observations of exoplanets in Finland: History and recent activities

    Science.gov (United States)

    Mäkelä, V.; Haukka, H.; Oksanen, A.; Kehusmaa, P.; Hentunen, V.-P.

    2017-09-01

    Exoplanet have been observed by Finnish amateur astronomers already 17 years. Recently there are two active observers, but the interest to photometric observations on exoplanet transits is increasing in Finland.

  18. Non-detection of Previously Reported Transits of HD 97658b with MOST Photometry

    DEFF Research Database (Denmark)

    Dragomir, Diana; Matthews, Jaymie M.; Howard, Andrew W.

    2012-01-01

    The radial velocity-discovered exoplanet HD 97658b was recently announced to transit, with a derived planetary radius of 2.93 ± 0.28 R ⊕. As a transiting super-Earth orbiting a bright star, this planet would make an attractive candidate for additional observations, including studies of its atmosp...

  19. Open-source Software for Exoplanet Atmospheric Modeling

    Science.gov (United States)

    Cubillos, Patricio; Blecic, Jasmina; Harrington, Joseph

    2018-01-01

    I will present a suite of self-standing open-source tools to model and retrieve exoplanet spectra implemented for Python. These include: (1) a Bayesian-statistical package to run Levenberg-Marquardt optimization and Markov-chain Monte Carlo posterior sampling, (2) a package to compress line-transition data from HITRAN or Exomol without loss of information, (3) a package to compute partition functions for HITRAN molecules, (4) a package to compute collision-induced absorption, and (5) a package to produce radiative-transfer spectra of transit and eclipse exoplanet observations and atmospheric retrievals.

  20. Standardizing Exoplanet Analysis with the Exoplanet Characterization Tool Kit (ExoCTK)

    Science.gov (United States)

    Fowler, Julia; Stevenson, Kevin B.; Lewis, Nikole K.; Fraine, Jonathan D.; Pueyo, Laurent; Bruno, Giovanni; Filippazzo, Joe; Hill, Matthew; Batalha, Natasha; Wakeford, Hannah; Bushra, Rafia

    2018-06-01

    Exoplanet characterization depends critically on analysis tools, models, and spectral libraries that are constantly under development and have no single source nor sense of unified style or methods. The complexity of spectroscopic analysis and initial time commitment required to become competitive is prohibitive to new researchers entering the field, as well as a remaining obstacle for established groups hoping to contribute in a comparable manner to their peers. As a solution, we are developing an open-source, modular data analysis package in Python and a publicly facing web interface including tools that address atmospheric characterization, transit observation planning with JWST, JWST corongraphy simulations, limb darkening, forward modeling, and data reduction, as well as libraries of stellar, planet, and opacity models. The foundation of these software tools and libraries exist within pockets of the exoplanet community, but our project will gather these seedling tools and grow a robust, uniform, and well-maintained exoplanet characterization toolkit.

  1. CHARACTERIZING TRANSITING EXOPLANET ATMOSPHERES WITH JWST

    Energy Technology Data Exchange (ETDEWEB)

    Greene, Thomas P. [NASA Ames Research Center, Space Science and Astrobiology Division, M.S. 245-6, Moffett Field, CA 94035 (United States); Line, Michael R.; Montero, Cezar; Fortney, Jonathan J. [Department of Astronomy and Astrophysics, University of California, Santa Cruz, CA 95064 (United States); Lustig-Yaeger, Jacob [Department of Astronomy, Box 351580, University of Washington, Seattle, WA 98195 (United States); Luther, Kyle, E-mail: tom.greene@nasa.gov [Department of Physics, University of California, 366 LeConte Hall MC 7300, Berkeley, CA 94720 (United States)

    2016-01-20

    We explore how well spectra from the James Webb Space Telescope (JWST) will likely constrain bulk atmospheric properties of transiting exoplanets. We start by modeling the atmospheres of archetypal hot Jupiter, warm Neptune, warm sub-Neptune, and cool super-Earth planets with atmospheres that are clear, cloudy, or of high mean molecular weight (HMMW). Next we simulate the λ = 1–11 μm transmission and emission spectra of these systems for several JWST instrument modes for single-transit or single-eclipse events. We then perform retrievals to determine how well temperatures and molecular mixing ratios (CH{sub 4}, CO, CO{sub 2}, H{sub 2}O, NH{sub 3}) can be constrained. We find that λ = 1–2.5 μm transmission spectra will often constrain the major molecular constituents of clear solar-composition atmospheres well. Cloudy or HMMW atmospheres will often require full 1–11 μm spectra for good constraints, and emission data may be more useful in cases of sufficiently high F{sub p} and high F{sub p}/F{sub *}. Strong temperature inversions in the solar-composition hot-Jupiter atmosphere should be detectable with 1–2.5+ μm emission spectra, and 1–5+ μm emission spectra will constrain the temperature–pressure profiles of warm planets. Transmission spectra over 1–5+ μm will constrain [Fe/H] values to better than 0.5 dex for the clear atmospheres of the hot and warm planets studied. Carbon-to-oxygen ratios can be constrained to better than a factor of 2 in some systems. We expect that these results will provide useful predictions of the scientific value of single-event JWST spectra until its on-orbit performance is known.

  2. Spectroscopy of Exoplanet Atmospheres with the FINESSE Explorer

    Science.gov (United States)

    Deroo, Pieter; Swain, Mark R.; Green, Robert O.

    2012-01-01

    FINESSE (Fast INfrared Exoplanet Spectroscopic Survey Explorer) will provide uniquely detailed information on the growing number of newly discovered planets by characterizing their atmospheric composition and temperature structure. This NASA Explorer mission, selected for a competitive Phase A study, is unique in its breath and scope thanks to broad instantaneous spectroscopy from the optical to the mid-IR (0.7 - 5 micron), with a survey of exoplanets measured in a consistent, uniform way. For 200 transiting exoplanets ranging from Terrestrial to Jovians, FINESSE will measure the chemical composition and temperature structure of their atmospheres and trace changes over time with exoplanet longitude. The mission will do so by measuring the spectroscopic time series for a primary and secondary eclipse over the exoplanet orbital phase curve. With spectrophotometric precision being a key enabling aspect for combined light exoplanet characterization, FINESSE is designed to produce spectrophotometric precision of better than 100 parts-per-million per spectral channel without the need for decorrelation. The exceptional stability of FINESSE will even allow the mission to characterize non-transiting planets, potentially as part of FINESSE's Participating Scientist Program. In this paper, we discuss the flow down from the target availability to observations and scheduling to the analysis and calibration of the data and how it enables FINESSE to be the mission that will truly expand the new field of comparative exoplanetology.

  3. Characterizing Exoplanet Habitability with Emission Spectroscopy

    Science.gov (United States)

    Robinson, Tyler

    2018-01-01

    Results from NASA’s Kepler mission and other recent exoplanet surveys have demonstrated that potentially habitable exoplanets are relatively common, especially in the case of low-mass stellar hosts. The next key question that must be addressed for such planets is whether or not these worlds are actually habitable, implying they could sustain surface liquid water. Only through investigations of the potential habitability of exoplanets and through searches for biosignatures from these planets will we be able to understand if the emergence of life is a common phenomenon in our galaxy. Emission spectroscopy for transiting exoplanets (sometimes called secondary eclipse spectroscopy) is a powerful technique that future missions will use to study the atmospheres and surfaces of worlds orbiting in the habitable zones of nearby, low-mass stars. Emission observations that span the mid-infrared wavelength range for potentially habitable exoplanets provide opportunities to detect key habitability and life signatures, and also allow observers to probe atmospheric and surface temperatures. This presentation will outline the case for using emission spectroscopy to understand if an exoplanet can sustain surface liquid water, which is believed to be a critical precursor to the origin of life.

  4. The Exoplanet Characterization ToolKit (ExoCTK)

    Science.gov (United States)

    Stevenson, Kevin; Fowler, Julia; Lewis, Nikole K.; Fraine, Jonathan; Pueyo, Laurent; Valenti, Jeff; Bruno, Giovanni; Filippazzo, Joseph; Hill, Matthew; Batalha, Natasha E.; Bushra, Rafia

    2018-01-01

    The success of exoplanet characterization depends critically on a patchwork of analysis tools and spectroscopic libraries that currently require extensive development and lack a centralized support system. Due to the complexity of spectroscopic analyses and initial time commitment required to become productive, there are currently a limited number of teams that are actively advancing the field. New teams with significant expertise, but without the proper tools, face prohibitively steep hills to climb before they can contribute. As a solution, we are developing an open-source, modular data analysis package in Python and a publicly facing web interface focused primarily on atmospheric characterization of exoplanets and exoplanet transit observation planning with JWST. The foundation of these software tools and libraries exist within pockets of the exoplanet community. Our project will gather these seedling tools and grow a robust, uniform, and well maintained exoplanet characterization toolkit.

  5. New Developments At The Science Archives Of The NASA Exoplanet Science Institute

    Science.gov (United States)

    Berriman, G. Bruce

    2018-06-01

    The NASA Exoplanet Science Institute (NExScI) at Caltech/IPAC is the science center for NASA's Exoplanet Exploration Program and as such, NExScI operates three scientific archives: the NASA Exoplanet Archive (NEA) and Exoplanet Follow-up Observation Program Website (ExoFOP), and the Keck Observatory Archive (KOA).The NASA Exoplanet Archive supports research and mission planning by the exoplanet community by operating a service that provides confirmed and candidate planets, numerous project and contributed data sets and integrated analysis tools. The ExoFOP provides an environment for exoplanet observers to share and exchange data, observing notes, and information regarding the Kepler, K2, and TESS candidates. KOA serves all raw science and calibration observations acquired by all active and decommissioned instruments at the W. M. Keck Observatory, as well as reduced data sets contributed by Keck observers.In the coming years, the NExScI archives will support a series of major endeavours allowing flexible, interactive analysis of the data available at the archives. These endeavours exploit a common infrastructure based upon modern interfaces such as JuypterLab and Python. The first service will enable reduction and analysis of precision radial velocity data from the HIRES Keck instrument. The Exoplanet Archive is developing a JuypterLab environment based on the HIRES PRV interactive environment. Additionally, KOA is supporting an Observatory initiative to develop modern, Python based pipelines, and as part of this work, it has delivered a NIRSPEC reduction pipeline. The ensemble of pipelines will be accessible through the same environments.

  6. Examining the Potential of LSST to Contribute to Exoplanet Discovery

    Science.gov (United States)

    Lund, Michael B.; Pepper, Joshua; Jacklin, Savannah; Stassun, Keivan G.

    2018-01-01

    The Large Synoptic Survey Telescope (LSST), currently under construction in Chile with scheduled first light in 2019, will be one of the major sources of data in the next decade and is one of the top priorities expressed in the last Decadal Survey. As LSST is intended to cover a range of science questions, and so the LSST community is still working on optimizing the observing strategy of the survey. With a survey area that will cover half the sky in 6 bands providing photometric data on billions of stars from 16th to 24th magnitude, LSST has the ability to be leveraged to help contribute to exoplanet science. In particular, LSST has the potential to detect exoplanets around stellar populations that are not normally usually included in transiting exoplanet searches. This includes searching for exoplanets around red and white dwarfs and stars in the galactic plane and bulge, stellar clusters, and potentially even the Magellanic Clouds. In probing these varied stellar populations, relative exoplanet frequency can be examined, and in turn, LSST may be able to provide fresh insight into how stellar environment can play a role in planetary formation rates.Our initial work on this project has been to demonstrate that even with the limitations of the LSST cadence, exoplanets would be recoverable and detectable in the LSST photometry, and to show that exoplanets indeed worth including in discussions of variable sources that LSST can contribute to. We have continued to expand this work to examine exoplanets around stars in belonging to various stellar populations, both to show the types of systems that LSST is capable of discovering, and to determine the potential exoplanet yields using standard algorithms that have already been implemented in transiting exoplanet searches, as well as how changes to LSST's observing schedule may impact both of these results.

  7. Light from Exoplanets: Present and Future

    Science.gov (United States)

    Deming, Leo

    2010-01-01

    Measurements using the Spitzer Space Telescope have revealed thermal emission from planets orbiting very close to solar-type stars, primarily transiting "hot Jupiter" exoplanets. The thermal emission spectrum of these worlds has been measured by exploiting their secondary eclipse. Also, during transit of the planet, absorption signatures from atoms and molecules in the planet's atmosphere are imprinted onto the spectrum of the star. Results to date from transit and eclipse studies show that the hot Jupiters often have significant haze and cloud components in their atmospheres, and the temperature structure can often be inverted, i.e. temperature is rising with height. New and very strongly irradiated examples of hot Jupiters have been found that are being stripped of their atmospheres by tidal forces from the star. In parallel, transiting superEarth exoplanets are being discovered, and their atmospheres should also be amenable to study using transit techniques. The 2014 launch of the James Webb Space Telescope will clarify the physical nature of hot Jupiters, and will extend transit and eclipse studies to superEarths orbiting in the habitable zones of lower main sequence stars.

  8. Trajectory Design to Mitigate Risk on the Transiting Exoplanet Survey Satellite (TESS) Mission

    Science.gov (United States)

    Dichmann, Donald

    2016-01-01

    The Transiting Exoplanet Survey Satellite (TESS) will employ a highly eccentric Earth orbit, in 2:1 lunar resonance, reached with a lunar flyby preceded by 3.5 phasing loops. The TESS mission has limited propellant and several orbit constraints. Based on analysis and simulation, we have designed the phasing loops to reduce delta-V and to mitigate risk due to maneuver execution errors. We have automated the trajectory design process and use distributed processing to generate and to optimize nominal trajectories, check constraint satisfaction, and finally model the effects of maneuver errors to identify trajectories that best meet the mission requirements.

  9. Blend Analysis of HATNet Transit Candidates

    Directory of Open Access Journals (Sweden)

    Bakos G.Á.

    2011-02-01

    Full Text Available Candidate transiting planet systems discovered by wide-field groundbased surveys must go through an intensive follow-up procedure to distinguish the true transiting planets from the much more common false positives. Especially pernicious are configurations of three or more stars which produce radial velocity and light curves that are similar to those of single stars transited by a planet. In this contribution we describe the methods used by the HATNet team to reject these blends, giving a few illustrative examples.

  10. A New Window into Escaping Exoplanet Atmospheres: 10830 Å Line of Helium

    Science.gov (United States)

    Oklopčić, Antonija; Hirata, Christopher M.

    2018-03-01

    Observational evidence for escaping exoplanet atmospheres has been obtained for a few exoplanets to date. It comes from strong transit signals detected in the ultraviolet, most notably in the wings of the hydrogen Lyα (Lyα) line. However, the core of the Lyα line is often heavily affected by interstellar absorption and geocoronal emission, limiting the information about the atmosphere that can be extracted from that part of the spectrum. Transit observations in atomic lines that are (a) sensitive enough to trace the rarefied gas in the planetary wind and (b) do not suffer from significant extinction by the interstellar medium could enable more detailed observations, and thus provide better constraints on theoretical models of escaping atmospheres. The absorption line of a metastable state of helium at 10830 Å could satisfy both of these conditions for some exoplanets. We develop a simple 1D model of escaping planetary atmospheres containing hydrogen and helium. We use it to calculate the density profile of helium in the 23S metastable excited state and the expected in-transit absorption at 10830 Å for two exoplanets known to have escaping atmospheres. Our results indicate that exoplanets similar to GJ 436b and HD 209458b should exhibit enhanced transit depths at 10830 Å, with ∼8% and ∼2% excess absorption in the line core, respectively.

  11. ASTEP South: An Antarctic Search for Transiting ExoPlanets around the celestial South pole

    OpenAIRE

    Crouzet , Nicolas; Guillot , Tristan; Agabi , Karim; Rivet , Jean-Pierre; Bondoux , Erick; Challita , Zalpha; Fanteï-Caujolle , Yan; Fressin , François; Mékarnia , Djamel; Schmider , François-Xavier; Valbousquet , Franck; Blazit , Alain; Bonhomme , Serge; Abe , Lyu; Daban , Jean-Baptiste

    2009-01-01

    ASTEP South is the first phase of the ASTEP project (Antarctic Search for Transiting ExoPlanets). The instrument is a fixed 10 cm refractor with a 4kx4k CCD camera in a thermalized box, pointing continuously a 3.88 degree x 3.88 degree field of view centered on the celestial South pole. ASTEP South became fully functional in June 2008 and obtained 1592 hours of data during the 2008 Antarctic winter. The data are of good quality but the analysis has to account for changes in the point spread f...

  12. Directly imaged L-T transition exoplanets in the mid-infrared {sup ,}

    Energy Technology Data Exchange (ETDEWEB)

    Skemer, Andrew J.; Hinz, Philip M.; Morzinski, Katie M.; Leisenring, Jarron M.; Close, Laird M.; Bailey, Vanessa P.; Defrere, Denis; Follette, Katherine B.; Males, Jared R.; Rodigas, Timothy J. [Steward Observatory, Department of Astronomy, University of Arizona, 933 North Cherry Avenue, Tucson, AZ 85721 (United States); Marley, Mark S. [NASA Ames Research Center, MS-245-3, Moffett Field, CA 94035 (United States); Skrutskie, Michael F. [Department of Astronomy, University of Virginia, 530 McCormick Road, Charlottesville, VA 22904 (United States); Saumon, Didier [Los Alamos National Laboratory, Mail Stop F663, Los Alamos, NM 87545 (United States); Briguglio, Runa; Esposito, Simone; Puglisi, Alfio; Xompero, Marco [Istituto Nazionale di Astrofisica, Osservatorio Astrofisico di Arcetri Largo E. Fermi 5 50125 Firenze (Italy); Hill, John M. [Large Binocular Telescope Observatory, University of Arizona, 933 North Cherry Avenue, Tucson, AZ 85721 (United States)

    2014-09-01

    Gas-giant planets emit a large fraction of their light in the mid-infrared (≳3 μm), where photometry and spectroscopy are critical to our understanding of the bulk properties of extrasolar planets. Of particular importance are the L- and M-band atmospheric windows (3-5 μm), which are the longest wavelengths currently accessible to ground-based, high-contrast imagers. We present binocular LBT adaptive optics (AO) images of the HR 8799 planetary system in six narrow-band filters from 3 to 4 μm, and a Magellan AO image of the 2M1207 planetary system in a broader 3.3 μm band. These systems encompass the five known exoplanets with luminosities consistent with L → T transition brown dwarfs. Our results show that the exoplanets are brighter and have shallower spectral slopes than equivalent temperature brown dwarfs in a wavelength range that contains the methane fundamental absorption feature (spanned by the narrow-band filters and encompassed by the broader 3.3 μm filter). For 2M1207 b, we find that thick clouds and non-equilibrium chemistry caused by vertical mixing can explain the object's appearance. For the HR 8799 planets, we present new models that suggest the atmospheres must have patchy clouds, along with non-equilibrium chemistry. Together, the presence of a heterogeneous surface and vertical mixing presents a picture of dynamic planetary atmospheres in which both horizontal and vertical motions influence the chemical and condensate profiles.

  13. K2-231 b: A Sub-Neptune Exoplanet Transiting a Solar Twin in Ruprecht 147

    Science.gov (United States)

    Curtis, Jason Lee; Vanderburg, Andrew; Torres, Guillermo; Kraus, Adam L.; Huber, Daniel; Mann, Andrew W.; Rizzuto, Aaron C.; Isaacson, Howard; Howard, Andrew W.; Henze, Christopher E.; Fulton, Benjamin J.; Wright, Jason T.

    2018-04-01

    We identify a sub-Neptune exoplanet (R p = 2.5 ± 0.2 {R}\\oplus ) transiting a solar twin in the Ruprecht 147 star cluster (3 Gyr, 300 pc, [Fe/H] = +0.1 dex). The ∼81 day light curve for EPIC 219800881 (V = 12.71) from K2 Campaign 7 shows six transits with a period of 13.84 days, a depth of ∼0.06%, and a duration of ∼4 hr. Based on our analysis of high-resolution MIKE spectra, broadband optical and NIR photometry, the cluster parallax and interstellar reddening, and isochrone models from PARSEC, Dartmouth, and MIST, we estimate the following properties for the host star: M ⋆ = 1.01 ± 0.03 {M}ȯ , R ⋆ = 0.95 ± 0.03 {R}ȯ , and {T}{{eff}} = 5695 ± 50 K. This star appears to be single based on our modeling of the photometry, the low radial velocity (RV) variability measured over nearly 10 yr, and Keck/NIRC2 adaptive optics imaging and aperture-masking interferometry. Applying a probabilistic mass–radius relation, we estimate that the mass of this planet is M p = 7 + 5 – 3 {M}\\oplus , which would cause an RV semi-amplitude of K = 2 ± 1 {\\text{m s}}-1 that may be measurable with existing precise RV facilities. After statistically validating this planet with BLENDER, we now designate it K2-231b, making it the second substellar object to be discovered in Ruprecht 147 and the first planet; it joins the small but growing ranks of 22 other planets and three candidates found in open clusters.

  14. PHOTOMETRIC AND SPECTRAL SIGNATURES OF THREE-DIMENSIONAL MODELS OF TRANSITING GIANT EXOPLANETS

    International Nuclear Information System (INIS)

    Burrows, A.; Spiegel, D. S.; Rauscher, E.; Menou, K.

    2010-01-01

    Using a three-dimensional general circulation model, we create dynamical model atmospheres of a representative transiting giant exoplanet, HD 209458b. We post-process these atmospheres with an opacity code to obtain transit radius spectra during the primary transit. Using a spectral atmosphere code, we integrate over the face of the planet seen by an observer at various orbital phases and calculate light curves as a function of wavelength and for different photometric bands. The products of this study are generic predictions for the phase variations of a zero-eccentricity giant planet's transit spectrum and of its light curves. We find that for these models the temporal variations in all quantities and the ingress/egress contrasts in the transit radii are small (<1.0%). Moreover, we determine that the day/night contrasts and phase shifts of the brightness peaks relative to the ephemeris are functions of photometric band. The J, H, and K bands are shifted most, while the IRAC bands are shifted least. Therefore, we verify that the magnitude of the downwind shift in the planetary 'hot spot' due to equatorial winds is strongly wavelength dependent. The phase and wavelength dependence of light curves, as well as the associated day/night contrasts, can be used to constrain the circulation regime of irradiated giant planets and to probe different pressure levels of a hot Jupiter atmosphere. We posit that though our calculations focus on models of HD 209458b, similar calculations for other transiting hot Jupiters in low-eccentricity orbits should yield transit spectra and light curves of a similar character.

  15. Characterization and Validation of Transiting Planets in the TESS SPOC Pipeline

    Science.gov (United States)

    Twicken, Joseph D.; Caldwell, Douglas A.; Davies, Misty; Jenkins, Jon Michael; Li, Jie; Morris, Robert L.; Rose, Mark; Smith, Jeffrey C.; Tenenbaum, Peter; Ting, Eric; Wohler, Bill

    2018-06-01

    Light curves for Transiting Exoplanet Survey Satellite (TESS) target stars will be extracted and searched for transiting planet signatures in the Science Processing Operations Center (SPOC) Science Pipeline at NASA Ames Research Center. Targets for which the transiting planet detection threshold is exceeded will be processed in the Data Validation (DV) component of the Pipeline. The primary functions of DV are to (1) characterize planets identified in the transiting planet search, (2) search for additional transiting planet signatures in light curves after modeled transit signatures have been removed, and (3) perform a comprehensive suite of diagnostic tests to aid in discrimination between true transiting planets and false positive detections. DV data products include extensive reports by target, one-page summaries by planet candidate, and tabulated transit model fit and diagnostic test results. DV products may be employed by humans and automated systems to vet planet candidates identified in the Pipeline. TESS will launch in 2018 and survey the full sky for transiting exoplanets over a period of two years. The SPOC pipeline was ported from the Kepler Science Operations Center (SOC) codebase and extended for TESS after the mission was selected for flight in the NASA Astrophysics Explorer program. We describe the Data Validation component of the SPOC Pipeline. The diagnostic tests exploit the flux (i.e., light curve) and pixel time series associated with each target to support the determination of the origin of each purported transiting planet signature. We also highlight the differences between the DV components for Kepler and TESS. Candidate planet detections and data products will be delivered to the Mikulski Archive for Space Telescopes (MAST); the MAST URL is archive.stsci.edu/tess. Funding for the TESS Mission has been provided by the NASA Science Mission Directorate.

  16. TRANSMISSION SPECTRUM OF EARTH AS A TRANSITING EXOPLANET FROM THE ULTRAVIOLET TO THE NEAR-INFRARED

    Energy Technology Data Exchange (ETDEWEB)

    Betremieux, Y. [Max-Planck-Institut fuer Astronomie, Koenigstuhl 17, D-69117 Heidelberg (Germany); Kaltenegger, L., E-mail: betremieux@mpia.de, E-mail: kaltenegger@mpia.de [Harvard-Smithsonian Center for Astrophysics, 60 Garden street, Cambridge MA 02138 (United States)

    2013-08-01

    Transmission spectroscopy of exoplanets is a tool to characterize rocky planets and explore their habitability. Using the Earth itself as a proxy, we model the atmospheric cross section as a function of wavelength, and show the effect of each atmospheric species, Rayleigh scattering, and refraction from 115 to 1000 nm. Clouds do not significantly affect this picture because refraction prevents the lowest 12.75 km of the atmosphere, in a transiting geometry for an Earth-Sun analog, to be sampled by a distant observer. We calculate the effective planetary radius for the primary eclipse spectrum of an Earth-like exoplanet around a Sun-like star. Below 200 nm, ultraviolet (UV) O{sub 2} absorption increases the effective planetary radius by about 180 km, versus 27 km at 760.3 nm, and 14 km in the near-infrared (NIR) due predominantly to refraction. This translates into a 2.6% change in effective planetary radius over the UV-NIR wavelength range, showing that the UV is an interesting wavelength range for future space missions.

  17. Trajectory Design Enhancements to Mitigate Risk for the Transiting Exoplanet Survey Satellite (TESS)

    Science.gov (United States)

    Dichmann, Donald; Parker, Joel; Nickel, Craig; Lutz, Stephen

    2016-01-01

    The Transiting Exoplanet Survey Satellite (TESS) will employ a highly eccentric Earth orbit, in 2:1 lunar resonance, which will be reached with a lunar flyby preceded by 3.5 phasing loops. The TESS mission has limited propellant and several constraints on the science orbit and on the phasing loops. Based on analysis and simulation, we have designed the phasing loops to reduce delta-V (DV) and to mitigate risk due to maneuver execution errors. We have automated the trajectory design process and use distributed processing to generate and optimal nominal trajectories; to check constraint satisfaction; and finally to model the effects of maneuver errors to identify trajectories that best meet the mission requirements.

  18. Transiting Exoplanet Monitoring Project (TEMP). II. Refined System Parameters and Transit Timing Analysis of HAT-P-33b

    Science.gov (United States)

    Wang, Yong-Hao; Wang, Songhu; Liu, Hui-Gen; Hinse, Tobias C.; Laughlin, Gregory; Wu, Dong-Hong; Zhang, Xiaojia; Zhou, Xu; Wu, Zhenyu; Zhou, Ji-Lin; Wittenmyer, R. A.; Eastman, Jason; Zhang, Hui; Hori, Yasunori; Narita, Norio; Chen, Yuanyuan; Ma, Jun; Peng, Xiyan; Zhang, Tian-Meng; Zou, Hu; Nie, Jun-Dan; Zhou, Zhi-Min

    2017-08-01

    We present 10 R-band photometric observations of eight different transits of the hot Jupiter HAT-P-33b, which has been targeted by our Transiting Exoplanet Monitoring Project. The data were obtained by two telescopes at the Xinglong Station of National Astronomical Observatories of China (NAOC) from 2013 December through 2016 January, and exhibit photometric scatter of 1.6{--}3.0 {mmag}. After jointly analyzing the previously published photometric data, radial-velocity (RV) measurements, and our new light curves, we revisit the system parameters and orbital ephemeris for the HAT-P-33b system. Our results are consistent with the published values except for the planet to star radius ratio ({R}{{P}}/{R}* ), the ingress/egress duration (τ) and the total duration (T 14), which together indicate a slightly shallower and shorter transit shape. Our results are based on more complete light curves, whereas the previously published work had only one complete transit light curve. No significant anomalies in Transit Timing Variations (TTVs) are found, and we place upper mass limits on potential perturbers, largely supplanting the loose constraints provided by the extant RV data. The TTV limits are stronger near mean-motion resonances, especially for the low-order commensurabilities. We can exclude the existence of a perturber with mass larger than 0.6, 0.3, 0.5, 0.5, and 0.3 {M}\\oplus near the 1:3, 1:2, 2:3, 3:2, and 2:1 resonances, respectively.

  19. A Search for Exoplanets in Short-Period Binary Star Systems

    Directory of Open Access Journals (Sweden)

    Ronald Kaitchuck

    2012-03-01

    Full Text Available This paper reports the progress of a search for exoplanets with S-type orbits in short-period binary star systems. The selected targets have stellar orbital periods of just a few days. These systems are eclipsing binaries so that exoplanet transits, if planets exist, will be highly likely. We report the results for seven binary star systems.

  20. The Habitable Exoplanet Imaging Mission (HabEx)

    Science.gov (United States)

    Mennesson, B.

    2017-12-01

    The Habitable-Exoplanet Imaging Mission (HabEx) is a candidate flagship mission being studied by NASA and the astrophysics community in preparation for the 2020 Decadal Survey. The HabEx mission concept is a large ( 4 to 6.5m) diffraction-limited optical space telescope, providing unprecedented resolution and contrast in the optical, with likely extensions into the near UV and near infrared domains. One of the primary goals of HabEx is to answer fundamental questions in exoplanet science, searching for and characterizing potentially habitable worlds, providing the first complete "family portraits" of planets around our nearest Sun-like neighbors and placing the solar system in the context of a diverse set of exoplanets. We report here on our team's early efforts in defining a scientifically compelling HabEx mission that is technologically executable, and timely for the next decade. In particular, we present preliminary architectures trade study results, quantifying technical requirements and predicting scientific outcome for a small number of design reference missions. We describe here our currently favorite "hybrid" architecture and its expected capabilities in terms of low resolution (R= 70 to 140) reflected light spectroscopic measurements and orbit determination. Results are shown for different types of exoplanets, including potentially habitable exoplanets located within the snow line of nearby main sequence stars. This research was carried out at the Jet Propulsion Laboratory, California Institute of Technology, under a contract with the National Aeronautics and Space Administration.

  1. BIOSIGNATURE GASES IN H{sub 2}-DOMINATED ATMOSPHERES ON ROCKY EXOPLANETS

    Energy Technology Data Exchange (ETDEWEB)

    Seager, S.; Bains, W.; Hu, R. [Department of Earth, Atmospheric, and Planetary Sciences, Massachusetts Institute of Technology, 77 Massachusetts Avenue, Cambridge, MA 02139 (United States)

    2013-11-10

    Super-Earth exoplanets are being discovered with increasing frequency and some will be able to retain stable H{sub 2}-dominated atmospheres. We study biosignature gases on exoplanets with thin H{sub 2} atmospheres and habitable surface temperatures, using a model atmosphere with photochemistry and a biomass estimate framework for evaluating the plausibility of a range of biosignature gas candidates. We find that photochemically produced H atoms are the most abundant reactive species in H{sub 2} atmospheres. In atmospheres with high CO{sub 2} levels, atomic O is the major destructive species for some molecules. In Sun-Earth-like UV radiation environments, H (and in some cases O) will rapidly destroy nearly all biosignature gases of interest. The lower UV fluxes from UV-quiet M stars would produce a lower concentration of H (or O) for the same scenario, enabling some biosignature gases to accumulate. The favorability of low-UV radiation environments to accumulate detectable biosignature gases in an H{sub 2} atmosphere is closely analogous to the case of oxidized atmospheres, where photochemically produced OH is the major destructive species. Most potential biosignature gases, such as dimethylsulfide and CH{sub 3}Cl, are therefore more favorable in low-UV, as compared with solar-like UV, environments. A few promising biosignature gas candidates, including NH{sub 3} and N{sub 2}O, are favorable even in solar-like UV environments, as these gases are destroyed directly by photolysis and not by H (or O). A more subtle finding is that most gases produced by life that are fully hydrogenated forms of an element, such as CH{sub 4} and H{sub 2}S, are not effective signs of life in an H{sub 2}-rich atmosphere because the dominant atmospheric chemistry will generate such gases abiologically, through photochemistry or geochemistry. Suitable biosignature gases in H{sub 2}-rich atmospheres for super-Earth exoplanets transiting M stars could potentially be detected in transmission

  2. DIRECT IMAGING CONFIRMATION AND CHARACTERIZATION OF A DUST-ENSHROUDED CANDIDATE EXOPLANET ORBITING FOMALHAUT

    International Nuclear Information System (INIS)

    Currie, Thayne; Debes, John; Rodigas, Timothy J.; Burrows, Adam; Itoh, Yoichi; Fukagawa, Misato; Kenyon, Scott J.; Kuchner, Marc; Matsumura, Soko

    2012-01-01

    We present Subaru/IRCS J-band data for Fomalhaut and a (re)reduction of archival 2004-2006 HST/ACS data first presented by Kalas et al. We confirm the existence of a candidate exoplanet, Fomalhaut b, in both the 2004 and 2006 F606W data sets at a high signal-to-noise ratio. Additionally, we confirm the detection at F814W and present a new detection in F435W. Fomalhaut b's space motion may be consistent with it being in an apsidally aligned, non-debris ring-crossing orbit, although new astrometry is required for firmer conclusions. We cannot confirm that Fomalhaut b exhibits 0.7-0.8 mag variability cited as evidence for planet accretion or a semi-transient dust cloud. The new, combined optical spectral energy distribution and IR upper limits confirm that emission identifying Fomalhaut b originates from starlight scattered by small dust, but this dust is most likely associated with a massive body. The Subaru and IRAC/4.5 μm upper limits imply M J , still consistent with the range of Fomalhaut b masses needed to sculpt the disk. Fomalhaut b is very plausibly 'a planet identified from direct imaging' even if current images of it do not, strictly speaking, show thermal emission from a directly imaged planet.

  3. Auto-Vetting Transiting Planet Candidates Identified by the Kepler Pipeline

    Science.gov (United States)

    Jenkins, Jon M.; McCauliff, Sean; Burke, Christopher; Seader, Shawn; Twicken, Joseph; Klaus, Todd; Sanderfer, Dwight; Srivastava, Ashok; Haas, Michael R.

    2014-04-01

    The Kepler Mission simultaneously measures the brightness of more than 150,000 stars every 29.4 minutes primarily for the purpose of transit photometry. Over the course of its 3.5-year primary mission Kepler has observed over 190,000 distinct stars, announcing 2,321 planet candidates, 2,165 eclipsing binaries, and 105 confirmed planets. As Kepler moves into its 4-year extended mission, the total number of transit-like features identified in the light curves has increased to as many as ~18,000. This number of signals has become intractable for human beings to inspect by eye in a thorough and timely fashion. To mitigate this problem we are developing machine learning approaches to perform the task of reviewing the diagnostics for each transit signal candidate to establish a preliminary list of planetary candidates ranked from most credible to least credible. Our preliminary results indicate that random forests can classify potential transiting planet signatures with an accuracy of more than 98.6% as measured by the area under a receiver-operating curve.

  4. Transit timing observations from Kepler. V. Transit timing variation candidates in the first sixteen months from polynomial models

    DEFF Research Database (Denmark)

    Ford, E.B.; Ragozzine, D.; Holman, M.J.

    2012-01-01

    Transit timing variations provide a powerful tool for confirming and characterizing transiting planets, as well as detecting non-transiting planets. We report the results of an updated transit timing variation (TTV) analysis for 1481 planet candidates based on transit times measured during...... that several of these planet candidates could be confirmed and perhaps characterized with more detailed TTV analyses using publicly available Kepler observations. For many others, Kepler has observed a long-term TTV trend, but an extended Kepler mission will be required to characterize the system via TTVs. We...

  5. ARCHITECTURE AND DYNAMICS OF KEPLER'S CANDIDATE MULTIPLE TRANSITING PLANET SYSTEMS

    Energy Technology Data Exchange (ETDEWEB)

    Lissauer, Jack J.; Jenkins, Jon M.; Borucki, William J.; Bryson, Stephen T.; Howell, Steve B. [NASA Ames Research Center, Moffett Field, CA 94035 (United States); Ragozzine, Darin; Holman, Matthew J.; Carter, Joshua A. [Harvard-Smithsonian Center for Astrophysics, Cambridge, MA 02138 (United States); Fabrycky, Daniel C.; Fortney, Jonathan J. [Department of Astronomy and Astrophysics, University of California, Santa Cruz, CA 95064 (United States); Steffen, Jason H. [Fermilab Center for Particle Astrophysics, Batavia, IL 60510 (United States); Ford, Eric B. [211 Bryant Space Science Center, University of Florida, Gainesville, FL 32611 (United States); Shporer, Avi [Las Cumbres Observatory Global Telescope Network, Santa Barbara, CA 93117 (United States); Rowe, Jason F.; Quintana, Elisa V.; Caldwell, Douglas A. [SETI Institute/NASA Ames Research Center, Moffett Field, CA 94035 (United States); Batalha, Natalie M. [Department of Physics and Astronomy, San Jose State University, San Jose, CA 95192 (United States); Ciardi, David [Exoplanet Science Institute/Caltech, Pasadena, CA 91125 (United States); Dunham, Edward W. [Lowell Observatory, Flagstaff, AZ 86001 (United States); Gautier, Thomas N. III, E-mail: Jack.Lissauer@nasa.gov [Jet Propulsion Laboratory, California Institute of Technology, Pasadena, CA 91109 (United States); and others

    2011-11-01

    About one-third of the {approx}1200 transiting planet candidates detected in the first four months of Kepler data are members of multiple candidate systems. There are 115 target stars with two candidate transiting planets, 45 with three, 8 with four, and 1 each with five and six. We characterize the dynamical properties of these candidate multi-planet systems. The distribution of observed period ratios shows that the vast majority of candidate pairs are neither in nor near low-order mean-motion resonances. Nonetheless, there are small but statistically significant excesses of candidate pairs both in resonance and spaced slightly too far apart to be in resonance, particularly near the 2:1 resonance. We find that virtually all candidate systems are stable, as tested by numerical integrations that assume a nominal mass-radius relationship. Several considerations strongly suggest that the vast majority of these multi-candidate systems are true planetary systems. Using the observed multiplicity frequencies, we find that a single population of planetary systems that matches the higher multiplicities underpredicts the number of singly transiting systems. We provide constraints on the true multiplicity and mutual inclination distribution of the multi-candidate systems, revealing a population of systems with multiple super-Earth-size and Neptune-size planets with low to moderate mutual inclinations.

  6. The Effect of Stellar Contamination on Transmission Spectra of Low-mass Exoplanets

    Science.gov (United States)

    Rackham, Benjamin V.; Apai, Daniel; Giampapa, Mark S.

    2017-10-01

    Transmission spectroscopy offers the exciting possibility of studying terrestrial exoplanet atmospheres in the near-term future. The Transiting Exoplanet Survey Satellite (TESS), scheduled for launch next year, is expected to discover thousands of transiting exoplanets around bright host stars, including an estimated twenty habitable zone super-Earths. The brightness of the TESS host stars, combined with refined observational strategies and near-future facilities, will enable searches for atmospheric signatures from smaller and cooler exoplanets. These observations, however, will be increasingly subject to noise introduced by heterogeneities in the host star photospheres, such as star spots and faculae. In short, the transmission spectroscopy method relies on the assumption that the spectrum of the transit chord does not differ from that of the integrated stellar disk or, if it does, the contribution of photospheric heterogeneities to the transmission spectrum can be constrained by variability monitoring. However, any axisymmetric populations of spots and faculae will strongly affect transmission spectra, and their presence cannot be deduced from monitoring efforts. A clear need exists for a more robust understanding of stellar contamination on transmission spectra. Here we summarize our work on the impact of heterogeneous stellar photospheres on transmission spectra and detail implications for atmospheric characterization efforts. By modeling spot and faculae distributions in stellar photospheres, we find that spot-covering fractions extrapolated from observed variability amplitudes are significantly underestimated. Likewise, corrections based on variability monitoring likely fall short of the actual stellar spectral contamination. We provide examples of contamination spectra for typical levels of stellar activity across a range of spectral types. For M dwarfs, molecular absorption features in spots and faculae can imprint apparent features in transmission spectra

  7. A Research-Informed Approach to Teaching About Exoplanet Detection in STEM Classrooms

    Science.gov (United States)

    Brissenden, Gina; Wallace, C. S.; Prather, E. E.; Traub, W. A.; Greene, W. M.; Biferno, A. A.

    2014-01-01

    JPL’s NASA Exoplanet Exploration Program’s (ExEP) Public Engagement Program, in collaboration with the Center for Astronomy Education (CAE), is engaged in a research and curriculum development program to bring the science of exoplanet detection into STEM classrooms. In recent years, there has been a significant increase in the number of astronomers pursuing research related to exoplanets, along with a significant increase in interest amongst students and the general public regarding the topic of exoplanets. CAE has previously developed a curriculum unit (including Think-Pair-Share questions and a Lecture-Tutorial) to help students develop a deeper understanding of the Doppler method for detecting extrasolar planets. To date, there is a nearly nonexistent research base on students’ conceptual and reasoning difficulties related to the science of the transit and gravitational microlensing methods for detecting extrasolar planets. Appropriate for physical science classrooms from middle school to the introductory college level, the learner-centered active engagement activities we are developing are going through an iterative research and assessment process to ensure that they enable students to achieve increased conceptual understandings and reasoning skills in these areas. In this talk, we will report on our development process for two new Lecture-Tutorials that help students learn about the transit and gravitational microlensing methods for finding exoplanets.

  8. First Temperate Exoplanet Sized Up

    Science.gov (United States)

    2010-03-01

    Combining observations from the CoRoT satellite and the ESO HARPS instrument, astronomers have discovered the first "normal" exoplanet that can be studied in great detail. Designated Corot-9b, the planet regularly passes in front of a star similar to the Sun located 1500 light-years away from Earth towards the constellation of Serpens (the Snake). "This is a normal, temperate exoplanet just like dozens we already know, but this is the first whose properties we can study in depth," says Claire Moutou, who is part of the international team of 60 astronomers that made the discovery. "It is bound to become a Rosetta stone in exoplanet research." "Corot-9b is the first exoplanet that really does resemble planets in our solar system," adds lead author Hans Deeg. "It has the size of Jupiter and an orbit similar to that of Mercury." "Like our own giant planets, Jupiter and Saturn, the planet is mostly made of hydrogen and helium," says team member Tristan Guillot, "and it may contain up to 20 Earth masses of other elements, including water and rock at high temperatures and pressures." Corot-9b passes in front of its host star every 95 days, as seen from Earth [1]. This "transit" lasts for about 8 hours, and provides astronomers with much additional information on the planet. This is fortunate as the gas giant shares many features with the majority of exoplanets discovered so far [2]. "Our analysis has provided more information on Corot-9b than for other exoplanets of the same type," says co-author Didier Queloz. "It may open up a new field of research to understand the atmospheres of moderate- and low-temperature planets, and in particular a completely new window in our understanding of low-temperature chemistry." More than 400 exoplanets have been discovered so far, 70 of them through the transit method. Corot-9b is special in that its distance from its host star is about ten times larger than that of any planet previously discovered by this method. And unlike all such

  9. Centroid vetting of transiting planet candidates from the Next Generation Transit Survey

    Science.gov (United States)

    Günther, Maximilian N.; Queloz, Didier; Gillen, Edward; McCormac, James; Bayliss, Daniel; Bouchy, Francois; Walker, Simon. R.; West, Richard G.; Eigmüller, Philipp; Smith, Alexis M. S.; Armstrong, David J.; Burleigh, Matthew; Casewell, Sarah L.; Chaushev, Alexander P.; Goad, Michael R.; Grange, Andrew; Jackman, James; Jenkins, James S.; Louden, Tom; Moyano, Maximiliano; Pollacco, Don; Poppenhaeger, Katja; Rauer, Heike; Raynard, Liam; Thompson, Andrew P. G.; Udry, Stéphane; Watson, Christopher A.; Wheatley, Peter J.

    2017-11-01

    The Next Generation Transit Survey (NGTS), operating in Paranal since 2016, is a wide-field survey to detect Neptunes and super-Earths transiting bright stars, which are suitable for precise radial velocity follow-up and characterization. Thereby, its sub-mmag photometric precision and ability to identify false positives are crucial. Particularly, variable background objects blended in the photometric aperture frequently mimic Neptune-sized transits and are costly in follow-up time. These objects can best be identified with the centroiding technique: if the photometric flux is lost off-centre during an eclipse, the flux centroid shifts towards the centre of the target star. Although this method has successfully been employed by the Kepler mission, it has previously not been implemented from the ground. We present a fully automated centroid vetting algorithm developed for NGTS, enabled by our high-precision autoguiding. Our method allows detecting centroid shifts with an average precision of 0.75 milli-pixel (mpix), and down to 0.25 mpix for specific targets, for a pixel size of 4.97 arcsec. The algorithm is now part of the NGTS candidate vetting pipeline and automatically employed for all detected signals. Further, we develop a joint Bayesian fitting model for all photometric and centroid data, allowing to disentangle which object (target or background) is causing the signal, and what its astrophysical parameters are. We demonstrate our method on two NGTS objects of interest. These achievements make NGTS the first ground-based wide-field transit survey ever to successfully apply the centroiding technique for automated candidate vetting, enabling the production of a robust candidate list before follow-up.

  10. Exoplanet atmospheres physical processes

    CERN Document Server

    Seager, Sara

    2010-01-01

    Over the past twenty years, astronomers have identified hundreds of extrasolar planets--planets orbiting stars other than the sun. Recent research in this burgeoning field has made it possible to observe and measure the atmospheres of these exoplanets. This is the first textbook to describe the basic physical processes--including radiative transfer, molecular absorption, and chemical processes--common to all planetary atmospheres, as well as the transit, eclipse, and thermal phase variation observations that are unique to exoplanets. In each chapter, Sara Seager offers a conceptual introduction, examples that combine the relevant physics equations with real data, and exercises. Topics range from foundational knowledge, such as the origin of atmospheric composition and planetary spectra, to more advanced concepts, such as solutions to the radiative transfer equation, polarization, and molecular and condensate opacities. Since planets vary widely in their atmospheric properties, Seager emphasizes the major p...

  11. Prospects for Ground-Based Detection and Follow-up of TESS-Discovered Exoplanets

    Science.gov (United States)

    Varakian, Matthew; Deming, Drake

    2018-01-01

    The Transiting Exoplanet Survey Satellite (TESS) will monitor over 200,000 main sequence dwarf stars for exoplanetary transits, with the goal of discovering small planets orbiting stars that are bright enough for follow-up observations. We here evaluate the prospects for ground-based transit detection and follow-up of the TESS-discovered planets. We focus particularly on the TESS planets that only transit once during each 27.4 day TESS observing window per region, and we calculate to what extent ground-based recovery of additional transits will be possible. Using simulated exoplanet systems from Sullivan et al. and assuming the use of a 60-cm telescope at a high quality observing site, we project the S/N ratios for transits of such planets. We use Phoenix stellar models for stars with surface temperatures from 2500K to 12000K, and we account for limb darkening, red atmospheric noise, and missed transits due to the day-night cycle and poor weather.

  12. DIRECT IMAGING CONFIRMATION AND CHARACTERIZATION OF A DUST-ENSHROUDED CANDIDATE EXOPLANET ORBITING FOMALHAUT

    Energy Technology Data Exchange (ETDEWEB)

    Currie, Thayne [Department of Astronomy and Astrophysics, University of Toronto, Toronto, ON (Canada); Debes, John [Space Telescope Science Institute, Baltimore, MD (United States); Rodigas, Timothy J. [Steward Observatory, University of Arizona, Tucson, AZ (United States); Burrows, Adam [Department of Astrophysical Sciences, Princeton University, Princeton, NJ (United States); Itoh, Yoichi [Nishi-Harima Observatory, University of Hyogo, Kobe (Japan); Fukagawa, Misato [Department of Earth and Space Sciences, Osaka University, Osaka (Japan); Kenyon, Scott J. [Smithsonian Astrophysical Observatory, Cambridge, MA (United States); Kuchner, Marc [Stellar and Exoplanets Laboratory, NASA-Goddard Space Flight Center, Greenbelt, MD (United States); Matsumura, Soko, E-mail: currie@astro.utoronto.ca [Department of Astronomy, University of Maryland-College Park, College Park, MD (United States)

    2012-12-01

    We present Subaru/IRCS J-band data for Fomalhaut and a (re)reduction of archival 2004-2006 HST/ACS data first presented by Kalas et al. We confirm the existence of a candidate exoplanet, Fomalhaut b, in both the 2004 and 2006 F606W data sets at a high signal-to-noise ratio. Additionally, we confirm the detection at F814W and present a new detection in F435W. Fomalhaut b's space motion may be consistent with it being in an apsidally aligned, non-debris ring-crossing orbit, although new astrometry is required for firmer conclusions. We cannot confirm that Fomalhaut b exhibits 0.7-0.8 mag variability cited as evidence for planet accretion or a semi-transient dust cloud. The new, combined optical spectral energy distribution and IR upper limits confirm that emission identifying Fomalhaut b originates from starlight scattered by small dust, but this dust is most likely associated with a massive body. The Subaru and IRAC/4.5 {mu}m upper limits imply M < 2 M{sub J} , still consistent with the range of Fomalhaut b masses needed to sculpt the disk. Fomalhaut b is very plausibly 'a planet identified from direct imaging' even if current images of it do not, strictly speaking, show thermal emission from a directly imaged planet.

  13. Planetary transit candidates in the CoRoT-SRc01 field

    DEFF Research Database (Denmark)

    Erikson, A.; Santerne, A.; Renner, S.

    2012-01-01

    Context. CoRoT is a pioneering space mission whose primary goals are stellar seismology and extrasolar planets search. Its surveys of large stellar fields generate numerous planetary candidates whose lightcurves have transit-like features. An extensive analytical and observational follow-up effort...... is undertaken to classify these candidates. Aims. We present the list of planetary transit candidates from the CoRoT LRa01 star field in the Monoceros constellation toward the Galactic anti-center direction. The CoRoT observations of LRa01 lasted from 24 October 2007 to 3 March 2008. Methods. We acquired...... and analyzed 7470 chromatic and 3938 monochromatic lightcurves. Instrumental noise and stellar variability were treated with several filtering tools by different teams from the CoRoT community. Different transit search algorithms were applied to the lightcurves. Results. Fifty-one stars were classified...

  14. ASTEP: Towards the detection and characterization of exoplanets from Dome C

    Directory of Open Access Journals (Sweden)

    Rauer H.

    2011-02-01

    Full Text Available The ASTEP project (Antarctic Search for Transiting ExoPlanets, aims at testing the quality of the Dome C site in Antarctica for photometry in the visible, as well as detecting and characterizing transiting exoplanets. A dedicated telescope, ASTEP400, has been developped and installed at Concordia. The first campaign took place during the winter 2010, and the telescope functionned nominally during all the winter. A first analysis of the data leads to a precision of 189 and 205 ppm for WASP-19 and WASP-18 respectively, for continuous observations during 1 month. This shows that extremely high precision photometry is achievable from Dome C.

  15. Asteroseismology of the Transiting Exoplanet Host HD 17156 with Hubble Space Telescope Fine Guidance Sensor

    DEFF Research Database (Denmark)

    Gilliland, Ronald L.; McCullough, Peter R.; Nelan, Edmund P.

    2011-01-01

    light curve. Using the density constraint from asteroseismology, and stellar evolution modeling results in M * = 1.285 ± 0.026 M sun, R * = 1.507 ± 0.012 R sun, and a stellar age of 3.2 ± 0.3 Gyr. Based on observations with the NASA/ESA Hubble Space Telescope, obtained at the Space Telescope Science......Observations conducted with the Fine Guidance Sensor on the Hubble Space Telescope (HST) providing high cadence and precision time-series photometry were obtained over 10 consecutive days in 2008 December on the host star of the transiting exoplanet HD 17156b. During this time, 1.0 × 1012 photons...... Institute, which is operated by AURA, Inc., under NASA contract NAS 5-26555....

  16. Photometric Exoplanet Characterization and Multimedia Astronomy Communication

    Science.gov (United States)

    Cartier, Kimberly M. S.

    The transit method of detecting exoplanets has dominated the search for distant worlds since the success of the Kepler space telescope and will continue to lead the field after the launch of the Transiting Exoplanet Survey Satellite in 2018. But detections are just the beginning. Transit light curves can only reveal a limited amount of information about a planet, and that information is almost entirely dependent on the properties of the host star or stars. This dissertation discusses follow-up techniques to more precisely characterize transiting planets using photometric observations. A high-resolution follow-up imaging program using the Hubble Space Telescope (HST) searched for previously unknown stars nearby the hosts of small and cool Kepler exoplanets and observed a higher-than-expected occurrence rate of stellar multiplicity. The rate of previously unknown stellar multiples has strong implications for the size and habitability of the orbiting planets. Three systems with newly discovered stellar multiplicity, Kepler-296 (2 stars, 5 planets), KOI-2626 (3 stars, 1 planet), and KOI-3049 (2 stars, 1 planet), were characterized in more detail. In the cases of Kepler-296 and KOI-2626, some of the planets lost their previous habitable zone status because of host star ambiguity. Next, the ultra-short period, ultra-hot Jupiter WASP-103b was used as a casestudy to test for the presence of a stratospheric temperature inversion through dayside emission spectroscopy using HST. WASP-103b's near-infrared emission spectrum is consistent with an isothermal or thermally-inverted atmosphere and shows no significant broadband water absorption feature. Detection of an anomalously strong "super- Rayleigh" slope in its optical transmission spectrum prompted follow-up transmission spectroscopy of WASP-103b's atmosphere using the MINiature Radial Velocity Array (MINERVA), which tentatively verified the unexplained "super-Rayleigh" spectral slope. The final follow-up technique for

  17. Automatic vetting of planet candidates from ground based surveys: Machine learning with NGTS

    Science.gov (United States)

    Armstrong, David J.; Günther, Maximilian N.; McCormac, James; Smith, Alexis M. S.; Bayliss, Daniel; Bouchy, François; Burleigh, Matthew R.; Casewell, Sarah; Eigmüller, Philipp; Gillen, Edward; Goad, Michael R.; Hodgkin, Simon T.; Jenkins, James S.; Louden, Tom; Metrailler, Lionel; Pollacco, Don; Poppenhaeger, Katja; Queloz, Didier; Raynard, Liam; Rauer, Heike; Udry, Stéphane; Walker, Simon R.; Watson, Christopher A.; West, Richard G.; Wheatley, Peter J.

    2018-05-01

    State of the art exoplanet transit surveys are producing ever increasing quantities of data. To make the best use of this resource, in detecting interesting planetary systems or in determining accurate planetary population statistics, requires new automated methods. Here we describe a machine learning algorithm that forms an integral part of the pipeline for the NGTS transit survey, demonstrating the efficacy of machine learning in selecting planetary candidates from multi-night ground based survey data. Our method uses a combination of random forests and self-organising-maps to rank planetary candidates, achieving an AUC score of 97.6% in ranking 12368 injected planets against 27496 false positives in the NGTS data. We build on past examples by using injected transit signals to form a training set, a necessary development for applying similar methods to upcoming surveys. We also make the autovet code used to implement the algorithm publicly accessible. autovet is designed to perform machine learned vetting of planetary candidates, and can utilise a variety of methods. The apparent robustness of machine learning techniques, whether on space-based or the qualitatively different ground-based data, highlights their importance to future surveys such as TESS and PLATO and the need to better understand their advantages and pitfalls in an exoplanetary context.

  18. 32 New Exoplanets Found

    Science.gov (United States)

    2009-10-01

    oday, at an international ESO/CAUP exoplanet conference in Porto, the team who built the High Accuracy Radial Velocity Planet Searcher, better known as HARPS, the spectrograph for ESO's 3.6-metre telescope, reports on the incredible discovery of some 32 new exoplanets, cementing HARPS's position as the world's foremost exoplanet hunter. This result also increases the number of known low-mass planets by an impressive 30%. Over the past five years HARPS has spotted more than 75 of the roughly 400 or so exoplanets now known. "HARPS is a unique, extremely high precision instrument that is ideal for discovering alien worlds," says Stéphane Udry, who made the announcement. "We have now completed our initial five-year programme, which has succeeded well beyond our expectations." The latest batch of exoplanets announced today comprises no less than 32 new discoveries. Including these new results, data from HARPS have led to the discovery of more than 75 exoplanets in 30 different planetary systems. In particular, thanks to its amazing precision, the search for small planets, those with a mass of a few times that of the Earth - known as super-Earths and Neptune-like planets - has been given a dramatic boost. HARPS has facilitated the discovery of 24 of the 28 planets known with masses below 20 Earth masses. As with the previously detected super-Earths, most of the new low-mass candidates reside in multi-planet systems, with up to five planets per system. In 1999, ESO launched a call for opportunities to build a high resolution, extremely precise spectrograph for the ESO 3.6-metre telescope at La Silla, Chile. Michel Mayor, from the Geneva Observatory, led a consortium to build HARPS, which was installed in 2003 and was soon able to measure the back-and-forward motions of stars by detecting small changes in a star's radial velocity - as small as 3.5 km/hour, a steady walking pace. Such a precision is crucial for the discovery of exoplanets and the radial velocity method

  19. Extending and Characterizing an Exoplanet System in a Pristine Chain of Resonances

    Science.gov (United States)

    Christiansen, Jessie; Gorjian, Varoujan; Hardegree-Ullman, Kevin; Livingston, John; Dressing, Courtney; Barclay, Thomas; Lintott, Chris; Ciardi, David; Barentson, Geert; Kristiansen, Martti; Crossfield, Ian; Benneke, Bjorn; Howard, Andrew

    2018-01-01

    The K2-138 (EPIC 245950175; 2MASS J23154776-1050590) exoplanet system was recently identified in the K2 mission campaign 12 data (Christiansen et al. 2018). The moderately bright (K=10.3) K1V star hosts at least five sub-Neptune planets (1.6-3.3 Re) in a compact configuration, all with periods shorter than 13 days. The five confirmed planets in the system form an unbroken chain of near first-order mean motion resonances, with each successive pair of planets having close to a 3:2 commensurability; this is the longest such chain as yet discovered. The K2 data contain two additional transits which, if confirmed as due to a sixth planet, could extend the chain even further. Due to the proximity of the K2-138 planets to mean motion resonances, it is an ideal target to search for transit timing variations (TTVs). In order to further both of these time-critical and important science cases, we propose for DDT time to capture a third transit of the candidate sixth planet, and also observe a chance nearby cluster of three transits of planets b, c, and d. (12hr for the 6th planet was approved.)

  20. Trajectory Design for the Transiting Exoplanet Survey Satellite (TESS)

    Science.gov (United States)

    Dichmann, Donald J.; Parker, Joel; Williams, Trevor; Mendelsohn, Chad

    2014-01-01

    The Transiting Exoplanet Survey Satellite (TESS) is a National Aeronautics and Space Administration (NASA) mission launching in 2017. TESS will travel in a highly eccentric orbit around Earth, with initial perigee radius near 17 Earth radii (Re) and apogee radius near 59 Re. The orbit period is near 2:1 resonance with the Moon, with apogee nearly 90 degrees out-of-phase with the Moon, in a configuration that has been shown to be operationally stable. TESS will execute phasing loops followed by a lunar flyby, with a final maneuver to achieve 2:1 resonance with the Moon. The goals of a resonant orbit with long-term stability, short eclipses and limited oscillations of perigee present significant challenges to the trajectory design. To rapidly assess launch opportunities, we adapted the SWM76 launch window tool to assess the TESS mission constraints. To understand the long-term dynamics of such a resonant orbit in the Earth-Moon system we employed Dynamical Systems Theory in the Circular Restricted 3-Body Problem (CR3BP). For precise trajectory analysis we use a high-fidelity model and multiple shooting in the General Mission Analysis Tool (GMAT) to optimize the maneuver delta-V and meet mission constraints. Finally we describe how the techniques we have developed can be applied to missions with similar requirements.

  1. A New Way to Confirm Planet Candidates

    Science.gov (United States)

    Kohler, Susanna

    2016-05-01

    automated batch processing of a large number of candidates.In a recently published study the results of which were announced yesterday the teamapplied their code to the entire catalog of 7,470 Kepler objects of interest.New Planets and False PositivesThe teams code was able to successfully evaluate the total false-positive probability (FPP) for 7,056 of the objects of interest. Of these, 428 objects previously identified as candidates were found to have FPP of more than 90%, suggesting that they are most likely false positives.Periods and radii of candidate and confirmed planets in the Kepler Objects of Interest catalog. Blue circles have previously been identified as confirmed planets. Candidates (orange) are shaded by false positive probability; more transparent means more likely to be a false positive. [Morton et al. 2016]In contrast, 1,935 candidates were found to have FPP of less than 1%, and were therefore declared validated planets. Of these confirmations, 1,284 were previously unconfirmed, more than doubling Keplers previous catalog of 1,041 confirmed planets. Morton and collaborators believe that 9 of these newly confirmed planets may fall within the habitable zone of their host stars.While the announcement of 1,284 newly confirmed planets is huge, the analysis presented in this study is the real news. The code used is publicly available and can be applied to any transiting exoplanet candidate. This means that this analysis technique can be used to find batches of exoplanets in data from the extended Kepler mission (K2) or from the future TESS and PLATO transit missions.CitationTimothy D. Morton et al 2016 ApJ 822 86. doi:10.3847/0004-637X/822/2/86

  2. Exoplanet Biosignatures: Observational Prospects

    Science.gov (United States)

    Angerhausen, Daniel; Deitrick, Russell; Domagal-Goldman, Shawn; Grenfell, John Lee; Hori, Yasunori; Kane, Stephen R.; Pallé, Enric; Rauer, Heike; Siegler, Nicholas; Stapelfeldt, Karl; Stevenson, Kevin B.

    2018-01-01

    Abstract Exoplanet hunting efforts have revealed the prevalence of exotic worlds with diverse properties, including Earth-sized bodies, which has fueled our endeavor to search for life beyond the Solar System. Accumulating experiences in astrophysical, chemical, and climatological characterization of uninhabitable planets are paving the way to characterization of potentially habitable planets. In this paper, we review our possibilities and limitations in characterizing temperate terrestrial planets with future observational capabilities through the 2030s and beyond, as a basis of a broad range of discussions on how to advance “astrobiology” with exoplanets. We discuss the observability of not only the proposed biosignature candidates themselves but also of more general planetary properties that provide circumstantial evidence, since the evaluation of any biosignature candidate relies on its context. Characterization of temperate Earth-sized planets in the coming years will focus on those around nearby late-type stars. The James Webb Space Telescope (JWST) and later 30-meter-class ground-based telescopes will empower their chemical investigations. Spectroscopic studies of potentially habitable planets around solar-type stars will likely require a designated spacecraft mission for direct imaging, leveraging technologies that are already being developed and tested as part of the Wide Field InfraRed Survey Telescope (WFIRST) mission. Successful initial characterization of a few nearby targets will be an important touchstone toward a more detailed scrutiny and a larger survey that are envisioned beyond 2030. The broad outlook this paper presents may help develop new observational techniques to detect relevant features as well as frameworks to diagnose planets based on the observables. Key Words: Exoplanets—Biosignatures—Characterization—Planetary atmospheres—Planetary surfaces. Astrobiology 18, 739–778. PMID:29938537

  3. High-precision ground-based photometry of exoplanets

    Directory of Open Access Journals (Sweden)

    de Mooij Ernst J.W.

    2013-04-01

    Full Text Available High-precision photometry of transiting exoplanet systems has contributed significantly to our understanding of the properties of their atmospheres. The best targets are the bright exoplanet systems, for which the high number of photons allow very high signal-to-noise ratios. Most of the current instruments are not optimised for these high-precision measurements, either they have a large read-out overhead to reduce the readnoise and/or their field-of-view is limited, preventing simultaneous observations of both the target and a reference star. Recently we have proposed a new wide-field imager for the Observatoir de Mont-Megantic optimised for these bright systems (PI: Jayawardhana. The instruments has a dual beam design and a field-of-view of 17' by 17'. The cameras have a read-out time of 2 seconds, significantly reducing read-out overheads. Over the past years we have obtained significant experience with how to reach the high precision required for the characterisation of exoplanet atmospheres. Based on our experience we provide the following advice: Get the best calibrations possible. In the case of bad weather, characterise the instrument (e.g. non-linearity, dome flats, bias level, this is vital for better understanding of the science data. Observe the target for as long as possible, the out-of-transit baseline is as important as the transit/eclipse itself. A short baseline can lead to improperly corrected systematic and mis-estimation of the red-noise. Keep everything (e.g. position on detector, exposure time as stable as possible. Take care that the defocus is not too strong. For a large defocus, the contribution of the total flux from the sky-background in the aperture could well exceed that of the target, resulting in very strict requirements on the precision at which the background is measured.

  4. Illusion and reality in the atmospheres of exoplanets

    Science.gov (United States)

    Deming, L. Drake; Seager, Sara

    2017-01-01

    The atmospheres of exoplanets reveal all their properties beyond mass, radius, and orbit. Based on bulk densities, we know that exoplanets larger than 1.5 Earth radii must have gaseous envelopes and, hence, atmospheres. We discuss contemporary techniques for characterization of exoplanetary atmospheres. The measurements are difficult, because—even in current favorable cases—the signals can be as small as 0.001% of the host star's flux. Consequently, some early results have been illusory and not confirmed by subsequent investigations. Prominent illusions to date include polarized scattered light, temperature inversions, and the existence of carbon planets. The field moves from the first tentative and often incorrect conclusions, converging to the reality of exoplanetary atmospheres. That reality is revealed using transits for close-in exoplanets and direct imaging for young or massive exoplanets in distant orbits. Several atomic and molecular constituents have now been robustly detected in exoplanets as small as Neptune. In our current observations, the effects of clouds and haze appear ubiquitous. Topics at the current frontier include the measurement of heavy element abundances in giant planets, detection of carbon-based molecules, measurement of atmospheric temperature profiles, definition of heat circulation efficiencies for tidally locked planets, and the push to detect and characterize the atmospheres of super-Earths. Future observatories for this quest include the James Webb Space Telescope and the new generation of extremely large telescopes on the ground. On a more distant horizon, NASA's study concepts for the Habitable Exoplanet Imaging Mission (HabEx) and the Large UV/Optical/Infrared Surveyor (LUVOIR) missions could extend the study of exoplanetary atmospheres to true twins of Earth.

  5. Exoplanets search and characterization with the SOPHIE spectrograph at OHP

    Directory of Open Access Journals (Sweden)

    Hébrard G.

    2011-02-01

    Full Text Available Several programs of exoplanets search and characterization have been started with SOPHIE at the 1.93-m telescope of Haute-Provence Observatory, France. SOPHIE is an environmentally stabilized echelle spectrograph dedicated to high-precision radial velocity measurements. The objectives of these programs include systematic searches for exoplanets around different types of stars, characterizations of planet-host stars, studies of transiting planets through RossiterMcLaughlin effect, follow-up observations of photometric surveys. The instrument SOPHIE and a review of its latest results are presented here.

  6. Exoplanet Yield Estimation for Decadal Study Concepts using EXOSIMS

    Science.gov (United States)

    Morgan, Rhonda; Lowrance, Patrick; Savransky, Dmitry; Garrett, Daniel

    2016-01-01

    The anticipated upcoming large mission study concepts for the direct imaging of exo-earths present an exciting opportunity for exoplanet discovery and characterization. While these telescope concepts would also be capable of conducting a broad range of astrophysical investigations, the most difficult technology challenges are driven by the requirements for imaging exo-earths. The exoplanet science yield for these mission concepts will drive design trades and mission concept comparisons.To assist in these trade studies, the Exoplanet Exploration Program Office (ExEP) is developing a yield estimation tool that emphasizes transparency and consistent comparison of various design concepts. The tool will provide a parametric estimate of science yield of various mission concepts using contrast curves from physics-based model codes and Monte Carlo simulations of design reference missions using realistic constraints, such as solar avoidance angles, the observatory orbit, propulsion limitations of star shades, the accessibility of candidate targets, local and background zodiacal light levels, and background confusion by stars and galaxies. The python tool utilizes Dmitry Savransky's EXOSIMS (Exoplanet Open-Source Imaging Mission Simulator) design reference mission simulator that is being developed for the WFIRST Preliminary Science program. ExEP is extending and validating the tool for future mission concepts under consideration for the upcoming 2020 decadal review. We present a validation plan and preliminary yield results for a point design.

  7. Over 100 Validated and Candidate Planets Orbiting Bright Stars in K2 Campaigns 0-10

    Science.gov (United States)

    Mayo, Andrew; Vanderburg, Andrew; Latham, David; Bieryla, Allyson; Morton, Timothy

    2018-01-01

    Since 2014, NASA's K2 mission has observed large portions of the ecliptic plane in search of transiting planets and has detected hundreds of planet candidates. With observations planned until at least early 2018, K2 will continue to identify more planet candidates. We present here over 250 planet candidates observed during Campaigns 0-10 of the K2 mission that are orbiting stars brighter than 13th magnitude and for which we have obtained high-resolution spectra. We analyze these candidates using the VESPA package in order to calculate the false positive probability (FPP), and find that more than half are validated with a FPP less than 0.1%. We show that like the population of planets found during the original Kepler mission, large planets discovered by K2 tend to orbit metal-rich stars. We also show tentative evidence of a gap in the planet radius distribution. We compare our sample to the Kepler candidate sample investigated by Fulton and collaborators and conclude that more planets are required to confirm the gap. This work, in addition to increasing the population of validated K2 planets and providing new targets for follow-up observations, will also serve as a framework for validating candidates from upcoming K2 campaigns and the Transiting Exoplanet Survey Satellite (TESS), expected to launch in 2018.

  8. Exoplanets Detection, Formation, Properties, Habitability

    CERN Document Server

    Mason, John W

    2008-01-01

    This edited, multi-author volume will be an invaluable introduction and reference to all key aspects in the field of exoplanet research. The reviews cover: Detection methods and properties of known exoplanets, Detection of extrasolar planets by gravitational microlensing. The formation and evolution of terrestrial planets in protoplanetary and debris disks. The brown dwarf-exoplanet connection. Formation, migration mechanisms and properties of hot Jupiters. Dynamics of multiple exoplanet systems. Doppler exoplanet surveys. Searching for exoplanets in the stellar graveyard. Formation and habitability of extra solar planets in multiple star systems. Exoplanet habitats and the possibilities for life. Moons of exoplanets: habitats for life. Contributing authors: •Rory Barnes •David P. Bennett •Jian Ge •Nader Haghighipour •Patrick Irwin •Hugh Jones •Victoria Meadows •Stanimir Metchev •I. Neill Reid •George Rieke •Caleb Scharf •Steinn Sigurdsson

  9. Kepler’s DR25 Most Earth-like Planet Candidates: What To Know Before You Go

    Science.gov (United States)

    Thompson, Susan E.; Kepler Team

    2018-01-01

    The Kepler mission’s latest catalog of planet candidates (data release 25 KOI catalog at the NASA exoplanet archive) was released in June of 2017. The catalog contains 4034 candidates including a significant population of terrestrial-size planets in the habitable zone of FGK dwarf stars. I will highlight what we know about these planet candidates in the DR25 catalog and discuss some of the caveats when working with these detections. Specifically, I will discuss how the noise in the Kepler light curves (from both the instrument and the stars) is known to occasionally produce weak, transit-like signals. We use simulations of this noise to measure how often these signals sneak into the catalog. I will also demonstrate ways to select a high-reliability sample using information available in the catalog. Such considerations may prove useful for anyone planning to use these planet candidates for occurrence rate calculations, choosing targets for follow-up, or deciding which planet to visit on his/her next holiday.

  10. Transiting Planets from Kepler, K2 & TESS

    Science.gov (United States)

    Lissauer, Jack

    2018-01-01

    NASA's Kepler spacecraft, launched in 2009, has been a resounding success. More than 4000 planet candidates have been identified using data from Kepler primary mission, which ended in 2013, and greater than 2000 of these candidates have been verified as bona fide exoplanets. After the loss of two reaction wheels ended the primary mission, the Kepler spacecraft was repurposed in 2014 to observe many fields on the sky for short periods. This new mission, dubbed K2, has led to the discovery of greater than 600 planet candidates, approximately 200 of which have been verified to date; most of these exoplanets are closer to us than the majority of exoplanets discovered by the primary Kepler mission. TESS, launching in 2018, will survey most of the sky for exoplanets, with emphasis on those orbiting nearby and/or bright host stars, making these planets especially well-suited for follow-up observations with other observatories to characterize atmospheric compositions and other properties. More than one-third of the planet candidates found by NASA's are associated with target stars that have more than one planet candidate, and such 'multis' account for the majority of candidates that have been verified as true planets. The large number of multis tells us that flat multiplanet systems like our Solar System are common. Virtually all of the candidate planetary systems are stable, as tested by numerical integrations that assume a physically motivated mass-radius relationship. Statistical studies performed on these candidate systems reveal a great deal about the architecture of planetary systems, including the typical spacing of orbits and flatness. The characteristics of several of the most interesting confirmed Kepler & K2 multi-planet systems will also be discussed.

  11. GROUND-BASED TRANSIT OBSERVATIONS OF THE SUPER-EARTH 55 Cnc e

    Energy Technology Data Exchange (ETDEWEB)

    De Mooij, E. J. W. [Astronomy and Astrophysics, University of Toronto, Toronto (Canada); López-Morales, M. [Harvard-Smithsonian Center for Astrophysics, 60 Garden Street, Cambridge, MA (United States); Karjalainen, R.; Hrudkova, M. [Isaac Newton Group of Telescopes, La Palma (Spain); Jayawardhana, Ray, E-mail: demooij@astro.utoronto.ca [Physics and Astronomy, York University, Toronto (Canada)

    2014-12-20

    We report the first ground-based detections of the shallow transit of the super-Earth exoplanet 55 Cnc e using a 2 m class telescope. Using differential spectrophotometry, we observed one transit in 2013 and another in 2014, with average spectral resolutions of ∼700 and ∼250, spanning the Johnson BVR photometric bands. We find a white light planet-to-star radius ratio of 0.0190{sub −0.0027}{sup +0.0023} from the 2013 observations and 0.0200{sub −0.0018}{sup +0.0017} from the 2014 observations. The two data sets combined result in a radius ratio of 0.0198{sub −0.0014}{sup +0.0013}. These values are all in agreement with previous space-based results. Scintillation noise in the data prevents us from placing strong constraints on the presence of an extended hydrogen-rich atmosphere. Nevertheless, our detections of 55 Cnc e in transit demonstrate that moderate-sized telescopes on the ground will be capable of routine follow-up observations of super-Earth candidates discovered by the Transiting Exoplanet Survey Satellite around bright stars. We expect it also will be possible to place constraints on the atmospheric characteristics of those planets by devising observational strategies to minimize scintillation noise.

  12. Planetary transit candidates in Corot-IRa01 field

    Science.gov (United States)

    Carpano, S.; Cabrera, J.; Alonso, R.; Barge, P.; Aigrain, S.; Almenara, J.-M.; Bordé, P.; Bouchy, F.; Carone, L.; Deeg, H. J.; de La Reza, R.; Deleuil, M.; Dvorak, R.; Erikson, A.; Fressin, F.; Fridlund, M.; Gondoin, P.; Guillot, T.; Hatzes, A.; Jorda, L.; Lammer, H.; Léger, A.; Llebaria, A.; Magain, P.; Moutou, C.; Ofir, A.; Ollivier, M.; Janot-Pacheco, E.; Pätzold, M.; Pont, F.; Queloz, D.; Rauer, H.; Régulo, C.; Renner, S.; Rouan, D.; Samuel, B.; Schneider, J.; Wuchterl, G.

    2009-10-01

    Context: CoRoT is a pioneering space mission devoted to the analysis of stellar variability and the photometric detection of extrasolar planets. Aims: We present the list of planetary transit candidates detected in the first field observed by CoRoT, IRa01, the initial run toward the Galactic anticenter, which lasted for 60 days. Methods: We analysed 3898 sources in the coloured bands and 5974 in the monochromatic band. Instrumental noise and stellar variability were taken into account using detrending tools before applying various transit search algorithms. Results: Fifty sources were classified as planetary transit candidates and the most reliable 40 detections were declared targets for follow-up ground-based observations. Two of these targets have so far been confirmed as planets, CoRoT-1b and CoRoT-4b, for which a complete characterization and specific studies were performed. The CoRoT space mission, launched on December 27th 2006, has been developed and is operated by CNES, with contributions from Austria, Belgium, Brazil, ESA, Germany, and Spain. Four French laboratories associated with the CNRS (LESIA, LAM, IAS ,OMP) collaborate with CNES on the satellite development. First CoRoT data are available to the public from the CoRoT archive: http://idoc-corot.ias.u-psud.fr.

  13. Monte Carlo Analysis as a Trajectory Design Driver for the Transiting Exoplanet Survey Satellite (TESS) Mission

    Science.gov (United States)

    Nickel, Craig; Parker, Joel; Dichmann, Don; Lebois, Ryan; Lutz, Stephen

    2016-01-01

    The Transiting Exoplanet Survey Satellite (TESS) will be injected into a highly eccentric Earth orbit and fly 3.5 phasing loops followed by a lunar flyby to enter a mission orbit with lunar 2:1 resonance. Through the phasing loops and mission orbit, the trajectory is significantly affected by lunar and solar gravity. We have developed a trajectory design to achieve the mission orbit and meet mission constraints, including eclipse avoidance and a 30-year geostationary orbit avoidance requirement. A parallelized Monte Carlo simulation was performed to validate the trajectory after injecting common perturbations, including launch dispersions, orbit determination errors, and maneuver execution errors. The Monte Carlo analysis helped identify mission risks and is used in the trajectory selection process.

  14. TESS Follow-up Observing Programs at the University of Wyoming

    Science.gov (United States)

    Jang-Condell, Hannah; Kasper, David; Kar, Aman; Sorber, Rebecca; Hancock, Daniel A.; Leuquire, Jacob D.; Suhaimi, Afiq; Kobulnicky, Henry A.; Pierce, Michael; Pilachowski, Catherine A.

    2018-06-01

    The Transiting Exoplanet Survey Satellite (TESS), launched in Spring 2018, will detect thousands of new exoplanet candidates. These candidates will need to be vetted by ground-based observatories to rule out false positives. The Observatories at the University of Wyoming are well-positioned to take active roles in TESS Follow-Up Observing Program (TFOP) Working Groups. The 0.6-m Red Buttes Observatory has already demonstrated its capability to do precision photometric monitoring of transiting exoplanet targets as a participant in the Kilodegree Extremely Little Telescope Follow-Up Network (KELT-FUN). A new echelle spectrograph, Fiber High-Resolution Echelle (FHiRE), being built for the 2.3-m Wyoming InfraRed Observatory (WIRO), will enable precision radial velocity measurements of exoplanet candidates. Over 180 nights/year at both observatories will be available to our team to undertake follow-up observations of TESS Objects of Interest (TOIs). We anticipate making significant contributions to new exoplanet discoveries in the era of TESS.

  15. A Cubesat Payload for Exoplanet Detection

    Directory of Open Access Journals (Sweden)

    Marcella Iuzzolino

    2017-03-01

    Full Text Available The search for undiscovered planets outside the solar system is a scientific topic that is rapidly spreading into the astrophysical and engineering communities. In this framework, the design of an innovative payload to detect exoplanets from a nano-sized space platform, like a 3U cubesat, is presented. The selected detection method is photometric transit, and the payload aims to detect flux decrements down to ~0.01% with a precision of 12 ppm. The payload design is also aimed at false positive recognition. The solution consists of a four-facets pyramid on the top of the payload, to allow for measurement redundancy and low-resolution spectral dispersion of the star images. The innovative concept is the use of a small and cheap platform for a relevant astronomical mission. The faintest observable target star has V-magnitude equal to 3.38. Despite missions aimed at ultra-precise photometry from microsatellites (e.g., MOST, BRITE, the transit of exoplanets orbiting very bright stars has not yet been surveyed photometrically from space, since any observation from a small/medium sized (30 cm optical aperture telescope would saturate the detector. This cubesat mission can provide these missing measurements. This work is set up as a demonstrative project to verify the feasibility of the payload concept.

  16. Exploring exoplanet populations with NASA's Kepler Mission.

    Science.gov (United States)

    Batalha, Natalie M

    2014-09-02

    The Kepler Mission is exploring the diversity of planets and planetary systems. Its legacy will be a catalog of discoveries sufficient for computing planet occurrence rates as a function of size, orbital period, star type, and insolation flux. The mission has made significant progress toward achieving that goal. Over 3,500 transiting exoplanets have been identified from the analysis of the first 3 y of data, 100 planets of which are in the habitable zone. The catalog has a high reliability rate (85-90% averaged over the period/radius plane), which is improving as follow-up observations continue. Dynamical (e.g., velocimetry and transit timing) and statistical methods have confirmed and characterized hundreds of planets over a large range of sizes and compositions for both single- and multiple-star systems. Population studies suggest that planets abound in our galaxy and that small planets are particularly frequent. Here, I report on the progress Kepler has made measuring the prevalence of exoplanets orbiting within one astronomical unit of their host stars in support of the National Aeronautics and Space Administration's long-term goal of finding habitable environments beyond the solar system.

  17. Atmospheric Retrievals from Exoplanet Observations and Simulations with BART

    Science.gov (United States)

    Harrington, Joseph

    This project will determine the observing plans needed to retrieve exoplanet atmospheric composition and thermal profiles over a broad range of planets, stars, instruments, and observing modes. Characterizing exoplanets is hard. The dim planets orbit bright stars, giving orders of magnitude more relative noise than for solar-system planets. Advanced statistical techniques are needed to determine what the data can - and more importantly cannot - say. We therefore developed Bayesian Atmospheric Radiative Transfer (BART). BART explores the parameter space of atmospheric chemical abundances and thermal profiles using Differential-Evolution Markov-Chain Monte Carlo. It generates thousands of candidate spectra, integrates over observational bandpasses, and compares to data, generating a statistical model for an atmosphere's composition and thermal structure. At best, it gives abundances and thermal profiles with uncertainties. At worst, it shows what kinds of planets the data allow. It also gives parameter correlations. BART is open-source, designed for community use and extension (http://github.com/exosports/BART). Three arXived PhD theses (papers in publication) provide technical documentation, tests, and application to Spitzer and HST data. There are detailed user and programmer manuals and community support forums. Exoplanet analysis techniques must be tested against synthetic data, where the answer is known, and vetted by statisticians. Unfortunately, this has rarely been done, and never sufficiently. Several recent papers question the entire body of Spitzer exoplanet observations, because different analyses of the same data give different results. The latest method, pixel-level decorrelation, produces results that diverge from an emerging consensus. We do not know the retrieval problem's strengths and weaknesses relative to low SNR, red noise, low resolution, instrument systematics, or incomplete spectral line lists. In observing eclipses and transits, we assume

  18. HIDING IN THE SHADOWS. II. COLLISIONAL DUST AS EXOPLANET MARKERS

    International Nuclear Information System (INIS)

    Dobinson, Jack; Leinhardt, Zoë M.; Lines, Stefan; Carter, Philip J.; Dodson-Robinson, Sarah E.; Teanby, Nick A.

    2016-01-01

    Observations of the youngest planets (∼1–10 Myr for a transitional disk) will increase the accuracy of our planet formation models. Unfortunately, observations of such planets are challenging and time-consuming to undertake, even in ideal circumstances. Therefore, we propose the determination of a set of markers that can preselect promising exoplanet-hosting candidate disks. To this end, N-body simulations were conducted to investigate the effect of an embedded Jupiter-mass planet on the dynamics of the surrounding planetesimal disk and the resulting creation of second-generation collisional dust. We use a new collision model that allows fragmentation and erosion of planetesimals, and dust-sized fragments are simulated in a post-process step including non-gravitational forces due to stellar radiation and a gaseous protoplanetary disk. Synthetic images from our numerical simulations show a bright double ring at 850 μm for a low-eccentricity planet, whereas a high-eccentricity planet would produce a characteristic inner ring with asymmetries in the disk. In the presence of first-generation primordial dust these markers would be difficult to detect far from the orbit of the embedded planet, but would be detectable inside a gap of planetary origin in a transitional disk

  19. Validation of Kepler's multiple planet candidates. II. Refined statistical framework and descriptions of systems of special interest

    International Nuclear Information System (INIS)

    Lissauer, Jack J.; Bryson, Stephen T.; Rowe, Jason F.; Jontof-Hutter, Daniel; Borucki, William J.; Marcy, Geoffrey W.; Kolbl, Rea; Agol, Eric; Carter, Joshua A.; Torres, Guillermo; Ford, Eric B.; Gilliland, Ronald L.; Star, Kimberly M.; Steffen, Jason H.

    2014-01-01

    We extend the statistical analysis performed by Lissauer et al. in 2012, which demonstrates that the overwhelming majority of Kepler candidate multiple transiting systems (multis) represents true transiting planets, and we develop therefrom a procedure to validate large numbers of planet candidates in multis as bona fide exoplanets. We show that this statistical framework correctly estimates the abundance of false positives already identified around Kepler targets with multiple sets of transit-like signatures based on their abundance around targets with single sets of transit-like signatures. We estimate the number of multis that represent split systems of one or more planets orbiting each component of a binary star system. We use the high reliability rate for multis to validate more than one dozen particularly interesting multi-planet systems herein. Hundreds of additional multi-planet systems are validated in a companion paper by Rowe et al. We note that few very short period (P < 1.6 days) planets orbit within multiple transiting planet systems and discuss possible reasons for their absence. There also appears to be a shortage of planets with periods exceeding a few months in multis.

  20. Validation of Kepler's multiple planet candidates. II. Refined statistical framework and descriptions of systems of special interest

    Energy Technology Data Exchange (ETDEWEB)

    Lissauer, Jack J.; Bryson, Stephen T.; Rowe, Jason F.; Jontof-Hutter, Daniel; Borucki, William J. [NASA Ames Research Center, Moffett Field, CA 94035 (United States); Marcy, Geoffrey W.; Kolbl, Rea [Astronomy Department, University of California, Berkeley, CA 94720 (United States); Agol, Eric [Department of Astronomy, Box 351580, University of Washington, Seattle, WA 98195 (United States); Carter, Joshua A.; Torres, Guillermo [Harvard-Smithsonian Center for Astrophysics, 60 Garden Street, Cambridge, MA 02138 (United States); Ford, Eric B.; Gilliland, Ronald L.; Star, Kimberly M. [Department of Astronomy and Astrophysics, 525 Davey Laboratory, The Pennsylvania State University, University Park, PA 16802 (United States); Steffen, Jason H., E-mail: Jack.Lissauer@nasa.gov [Department of Physics and Astronomy/CIERA, Northwestern University, 2145 Sheridan Road, Evanston, IL 60208 (United States)

    2014-03-20

    We extend the statistical analysis performed by Lissauer et al. in 2012, which demonstrates that the overwhelming majority of Kepler candidate multiple transiting systems (multis) represents true transiting planets, and we develop therefrom a procedure to validate large numbers of planet candidates in multis as bona fide exoplanets. We show that this statistical framework correctly estimates the abundance of false positives already identified around Kepler targets with multiple sets of transit-like signatures based on their abundance around targets with single sets of transit-like signatures. We estimate the number of multis that represent split systems of one or more planets orbiting each component of a binary star system. We use the high reliability rate for multis to validate more than one dozen particularly interesting multi-planet systems herein. Hundreds of additional multi-planet systems are validated in a companion paper by Rowe et al. We note that few very short period (P < 1.6 days) planets orbit within multiple transiting planet systems and discuss possible reasons for their absence. There also appears to be a shortage of planets with periods exceeding a few months in multis.

  1. Enabling Technologies for Characterizing Exoplanet Systems with Exo-C

    Science.gov (United States)

    Cahoy, Kerri Lynn; Belikov, Ruslan; Stapelfeldt, Karl R.; Chakrabarti, Supriya; Trauger, John T.; Serabyn, Eugene; McElwain, Michael W.; Pong, Christopher M.; Brugarolas, Paul

    2015-01-01

    requirements) and to integrate these subsystems together for a hardware-in-the-loop end-to-end demonstration, the overall readiness of the suite of enabling technologies makes a compelling case for Exo-C among the exoplanet direct imaging mission candidates.

  2. Chromospheric and Transition Region Emission Properties of G, K, and M dwarf Exoplanet Host Stars

    Science.gov (United States)

    France, Kevin; Arulanantham, Nicole; Fossati, Luca; Lanza, A. F.; Linsky, Jeffrey L.; Redfield, Seth; Loyd, Robert; Schneider, Christian

    2018-01-01

    Exoplanet magnetic fields have proven notoriously hard to detect, despite theoretical predictions of substantial magnetic field strengths on close-in extrasolar giant planets. It has been suggested that stellar and planetary magnetic field interactions can manifest as enhanced stellar activity relative to nominal age-rotation-activity relationships for main sequence stars or enhanced activity on stars hosting short-period massive planets. In a recent study of M and K dwarf exoplanet host stars, we demonstrated a significant correlation between the relative luminosity in high-temperature stellar emission lines (L(ion)/L_Bol) and the “star-planet interaction strength”, M_plan/a_plan. Here, we expand on that work with a survey of G, K, and M dwarf exoplanet host stars obtained in two recent far-ultraviolet spectroscopic programs with the Hubble Space Telescope. We have measured the relative luminosities of stellar lines C II, Si III, Si IV, and N V (formation temperatures from 30,000 – 150,000 K) in a sample of ~60 exoplanet host stars and an additional ~40 dwarf stars without known planets. We present results on star-planet interaction signals as a function of spectral type and line formation temperature, as well as a statistical comparison of stars with and without planets.

  3. The Transit Monitoring in the South (TraMoS project

    Directory of Open Access Journals (Sweden)

    López-Morales Mercedes

    2013-04-01

    Full Text Available We present the Transit Monitoring in the South (TraMoS project. TraMoS has monitored transits of 30 exoplanets with telescopes located in Chile since 2008, whit the following goals: (1 to refine the physical and/or orbital parameters of those exoplanet system, and (2 to search for variations in the mid-times of the transits and in other parameters such as orbital inclination or transit's depth, that could indicate the presence of additional bodies in the system. We highlight here the first results of TraMoS in three selected exoplanets.

  4. Observing the ExoEarth: Simulating the Retrieval of Exoplanet Parameters Using DSCOVR

    Science.gov (United States)

    Kane, S.; Cowan, N. B.; Domagal-Goldman, S. D.; Herman, J. R.; Robinson, T.; Stine, A.

    2017-12-01

    The field of exoplanets has rapidly expanded from detection to include exoplanet characterization. This has been enabled by developments such as the detection of terrestrial-sized planets and the use of transit spectroscopy to study exoplanet atmospheres. Studies of rocky planets are leading towards the direct imaging of exoplanets and the development of techniques to extract their intrinsic properties. The importance of properties such as rotation, albedo, and obliquity are significant since they inform planet formation theories and are key input parameters for Global Circulation Models used to determine surface conditions, including habitability. Thus, a complete characterization of exoplanets for understanding habitable climates requires the ability to measure these key planetary parameters. The retrieval of planetary rotation rates, albedos, and obliquities from highly undersampled imaging data can be honed using satellites designed to study the Earth's atmosphere. In this talk I will describe how the Deep Space Climate Observatory (DSCOVR) provides a unique opportunity to test such retrieval methods using data for the sunlit hemisphere of the Earth. Our methods use the high-resolution DSCOVR-EPIC images to simulate the Earth as an exoplanet, by deconvolving the images to match a variety of expected exoplanet mission requirements, and by comparing EPIC data with the cavity radiometer data from DSCOVR-NISTAR that views the Earth as a single pixel. Through this methodology, we are creating a grid of retrieval states as a function of image resolution, observing cadence, passband, etc. Our modeling of the DSCOVR data will provide an effective baseline from which to develop tools that can be applied to a variety of exoplanet imaging data.

  5. Design Considerations: Falcon M Dwarf Habitable Exoplanet Survey

    Science.gov (United States)

    Polsgrove, Daniel; Novotny, Steven; Della-Rose, Devin J.; Chun, Francis; Tippets, Roger; O'Shea, Patrick; Miller, Matthew

    2016-01-01

    The Falcon Telescope Network (FTN) is an assemblage of twelve automated 20-inch telescopes positioned around the globe, controlled from the Cadet Space Operations Center (CSOC) at the US Air Force Academy (USAFA) in Colorado Springs, Colorado. Five of the 12 sites are currently installed, with full operational capability expected by the end of 2016. Though optimized for studying near-earth objects to accomplish its primary mission of Space Situational Awareness (SSA), the Falcon telescopes are in many ways similar to those used by ongoing and planned exoplanet transit surveys targeting individual M dwarf stars (e.g., MEarth, APACHE, SPECULOOS). The network's worldwide geographic distribution provides additional potential advantages. We have performed analytical and empirical studies exploring the viability of employing the FTN for a future survey of nearby late-type M dwarfs tailored to detect transits of 1-2REarth exoplanets in habitable-zone orbits . We present empirical results on photometric precision derived from data collected with multiple Falcon telescopes on a set of nearby (survey design parameters is also described, including an analysis of site-specific weather data, anticipated telescope time allocation and the percentage of nearby M dwarfs with sufficient check stars within the Falcons' 11' x 11' field-of-view required to perform effective differential photometry. The results of this ongoing effort will inform the likelihood of discovering one (or more) habitable-zone exoplanets given current occurrence rate estimates over a nominal five-year campaign, and will dictate specific survey design features in preparation for initiating project execution when the FTN begins full-scale automated operations.

  6. Exoplanet Population Distribution from Kepler Data

    Science.gov (United States)

    Traub, Wesley A.

    2015-08-01

    The underlying population of exoplanets around stars in the Kepler sample can be inferred by binning the Kepler planets in radius and period, invoking an empirical noise model, assuming a model exoplanet distribution function, randomly assigning planets to each of the Kepler target stars, asking whether each planet’s transit signal could be detected by Kepler, binning the resulting simulated detections, comparing the simulations with the observed data sample, and iterating on the model parameters until a satisfactory fit is obtained. The process is designed to simulate Kepler’s observing procedure. The key assumption is that the distribution function is continuous and the product of separable functions of period and radius. Any additional suspected biases in the sample can be handled by adjusting the noise model. The first advantage of this overall procedure is that the actual detection process is simulated as closely as possible, on a target by target basis, so the resulting estimated population should be closer to the actual population than by any other method of analysis. The second advantage is that the resulting distribution function can be extended to values of period and radius that go beyond the sample space, including, for example, application to estimating eta-sub-Earth, and also estimating the expected science yields of future direct-imaging exoplanet missions such as WFIRST-AFTA.

  7. Assembly, alignment and test of the Transiting Exoplanet Survey Satellite (TESS) optical assemblies

    Science.gov (United States)

    Balonek, Gregory; Brown, Joshua J.; Andre, James E.; Chesbrough, Christian D.; Chrisp, Michael P.; Dalpiaz, Michael; Lennon, Joseph; Richards, B. C.; Clark, Kristin E.

    2017-08-01

    The Transiting Exoplanet Survey Satellite (TESS) will carry four visible waveband, seven-element, refractive F/1.4 lenses, each with a 34 degree diagonal field of view. This paper describes the methods used for the assembly, alignment and test of the four flight optical assemblies. Prior to commencing the build of the four flight optical assemblies, a Risk Reduction Unit (RRU) was successfully assembled and tested [1]. The lessons learned from the RRU were applied to the build of the flight assemblies. The main modifications to the flight assemblies include the inking of the third lens element stray light mitigation, tighter alignment tolerances, and diamond turning for critical mechanical surfaces. Each of the optical assemblies was tested interferometrically and measured with a low coherence distance measuring interferometer (DMI) to predict the optimal shim thickness between the lens assembly and detector before -75°C environmental testing. In addition to individual test data, environmental test results from prior assemblies allow for the exploration of marginal performance differences between each of the optical assemblies.

  8. An integrated payload design for the Exoplanet Characterisation Observatory (EChO)

    DEFF Research Database (Denmark)

    Swinyard, Bruce; Tinetti, Giovanna; Tennyson, Jonathan

    2012-01-01

    by ESA in the context of a medium class mission within the Cosmic Vision programme for launch post 2020. The payload suite is required to provide simultaneous coverage from the visible to the mid-infrared and must be highly stable and effectively operate as a single instrument. In this paper we describe......The Exoplanet Characterisation Observatory (EChO) is a space mission dedicated to undertaking spectroscopy of transiting exoplanets over the widest wavelength range possible. It is based around a highly stable space platform with a 1.2 m class telescope. The mission is currently being studied...

  9. The Next Generation Transit Survey (NGTS)

    Science.gov (United States)

    Wheatley, Peter J.; West, Richard G.; Goad, Michael R.; Jenkins, James S.; Pollacco, Don L.; Queloz, Didier; Rauer, Heike; Udry, Stéphane; Watson, Christopher A.; Chazelas, Bruno; Eigmüller, Philipp; Lambert, Gregory; Genolet, Ludovic; McCormac, James; Walker, Simon; Armstrong, David J.; Bayliss, Daniel; Bento, Joao; Bouchy, François; Burleigh, Matthew R.; Cabrera, Juan; Casewell, Sarah L.; Chaushev, Alexander; Chote, Paul; Csizmadia, Szilárd; Erikson, Anders; Faedi, Francesca; Foxell, Emma; Gänsicke, Boris T.; Gillen, Edward; Grange, Andrew; Günther, Maximilian N.; Hodgkin, Simon T.; Jackman, James; Jordán, Andrés; Louden, Tom; Metrailler, Lionel; Moyano, Maximiliano; Nielsen, Louise D.; Osborn, Hugh P.; Poppenhaeger, Katja; Raddi, Roberto; Raynard, Liam; Smith, Alexis M. S.; Soto, Maritza; Titz-Weider, Ruth

    2018-04-01

    We describe the Next Generation Transit Survey (NGTS), which is a ground-based project searching for transiting exoplanets orbiting bright stars. NGTS builds on the legacy of previous surveys, most notably WASP, and is designed to achieve higher photometric precision and hence find smaller planets than have previously been detected from the ground. It also operates in red light, maximizing sensitivity to late K and early M dwarf stars. The survey specifications call for photometric precision of 0.1 per cent in red light over an instantaneous field of view of 100 deg2, enabling the detection of Neptune-sized exoplanets around Sun-like stars and super-Earths around M dwarfs. The survey is carried out with a purpose-built facility at Cerro Paranal, Chile, which is the premier site of the European Southern Observatory (ESO). An array of twelve 20 cm f/2.8 telescopes fitted with back-illuminated deep-depletion CCD cameras is used to survey fields intensively at intermediate Galactic latitudes. The instrument is also ideally suited to ground-based photometric follow-up of exoplanet candidates from space telescopes such as TESS, Gaia and PLATO. We present observations that combine precise autoguiding and the superb observing conditions at Paranal to provide routine photometric precision of 0.1 per cent in 1 h for stars with I-band magnitudes brighter than 13. We describe the instrument and data analysis methods as well as the status of the survey, which achieved first light in 2015 and began full-survey operations in 2016. NGTS data will be made publicly available through the ESO archive.

  10. The LEECH Exoplanet Imaging Survey: Characterization of the Coldest Directly Imaged Exoplanet, GJ 504 b, and Evidence for Superstellar Metallicity

    Science.gov (United States)

    Skemer, Andrew J.; Morley, Caroline V.; Zimmerman, Neil T.; Skrutskie, Michael F.; Leisenring, Jarron; Buenzli, Esther; Bonnefoy, Mickael; Bailey, Vanessa; Hinz, Philip; Defrére, Denis; Esposito, Simone; Apai, Dániel; Biller, Beth; Brandner, Wolfgang; Close, Laird; Crepp, Justin R.; De Rosa, Robert J.; Desidera, Silvano; Eisner, Josh; Fortney, Jonathan; Freedman, Richard; Henning, Thomas; Hofmann, Karl-Heinz; Kopytova, Taisiya; Lupu, Roxana; Maire, Anne-Lise; Males, Jared R.; Marley, Mark; Morzinski, Katie; Oza, Apurva; Patience, Jenny; Rajan, Abhijith; Rieke, George; Schertl, Dieter; Schlieder, Joshua; Stone, Jordan; Su, Kate; Vaz, Amali; Visscher, Channon; Ward-Duong, Kimberly; Weigelt, Gerd; Woodward, Charles E.

    2016-02-01

    As gas giant planets and brown dwarfs radiate away the residual heat from their formation, they cool through a spectral type transition from L to T, which encompasses the dissipation of cloud opacity and the appearance of strong methane absorption. While there are hundreds of known T-type brown dwarfs, the first generation of directly imaged exoplanets were all L type. Recently, Kuzuhara et al. announced the discovery of GJ 504 b, the first T dwarf exoplanet. GJ 504 b provides a unique opportunity to study the atmosphere of a new type of exoplanet with a ˜500 K temperature that bridges the gap between the first directly imaged planets (˜1000 K) and our own solar system's Jupiter (˜130 K). We observed GJ 504 b in three narrow L-band filters (3.71, 3.88, and 4.00 μm), spanning the red end of the broad methane fundamental absorption feature (3.3 μm) as part of the LBTI Exozodi Exoplanet Common Hunt (LEECH) exoplanet imaging survey. By comparing our new photometry and literature photometry with a grid of custom model atmospheres, we were able to fit GJ 504 b's unusual spectral energy distribution for the first time. We find that GJ 504 b is well fit by models with the following parameters: Teff = 544 ± 10 K, g Germany. LBT Corporation partners are the University of Arizona on behalf of the Arizona university system; Istituto Nazionale di Astrophisica, Italy; LBT Beteiligungsgesellschaft, Germany, representing the Max-Planck Society, the Astrophysical Institute Potsdam, and Heidelberg University; The Ohio State University, and the Research Corporation, on behalf of the University of Notre Dame, University of Minnesota, and University of Virginia.

  11. The Effect of Starspots on Detectability of Exoplanet Atmospheres

    Science.gov (United States)

    Hofmann, Ryan; Berta-Thompson, Zachory

    2018-01-01

    Transmission spectroscopy is an effective tool for detecting and characterizing the atmospheres of transiting extrasolar planets. However, the presence of cool spots on a planet’s host star can be a source of uncertainty that is difficult to account for. Cool starspots introduce wavelength-dependent features and noise into the transmission spectrum of an orbiting exoplanet. For sufficiently cool stars, especially M dwarfs, this could cause false detections of water and other species in the planet’s atmosphere. To understand the extent of this problem, we use a combination of PHOENIX model spectra and the starspot simulation code MACULA to simulate the effects of starspots on observed transmission spectra for a wide variety of stars and spot configurations. By comparing the simulated DoTV (Depth of Transit Variation) due to starspots with models of the expected DoTV from exoplanet atmospheres with a given composition, we can estimate the level of effect the starspots have on the detectability of various atmospheres. For example, our results indicate for TRAPPIST-1’s planets that while the large amplitude absorption features from a H/He-rich atmosphere should be easily detectable, a pure water atmosphere would be much harder to distinguish from starspot noise. Consequently, proper characterization of exoplanet atmospheres, especially around cool, active host stars, requires a proper understanding of the star’s spot properties and suitable methods for reducing or removing spot-induced brightness fluctuations as a source of noise.

  12. New exoplanets from the SuperWASP-North survey

    Directory of Open Access Journals (Sweden)

    Keenan F.

    2011-02-01

    Full Text Available We present the current status of the WASP search for transiting exoplanets, focusing on recent planet discoveries from SuperWASP-North and the joint equatorial region (-20≤Dec≤+20 observed by both WASP telescopes. We report the results of monitoring of WASP planets, and discuss how these contribute to our understanding of planet properties and their diversity.

  13. An abundance of small exoplanets around stars with a wide range of metallicities

    DEFF Research Database (Denmark)

    Buchhave, Lars A.; Latham, David W.; Johansen, Anders

    2012-01-01

    of the host stars of 226 small exoplanet candidates discovered by NASAs Kepler mission, including objects that are comparable in size to the terrestrial planets in the Solar System. We find that planets with radii less than four Earth radii form around host stars with a wide range of metallicities (but...

  14. Transit and radial velocity survey efficiency comparison for a habitable zone Earth

    International Nuclear Information System (INIS)

    Burke, Christopher J.; McCullough, P. R.

    2014-01-01

    Transit and radial velocity searches are two techniques for identifying nearby extrasolar planets to Earth that transit bright stars. Identifying a robust sample of these exoplanets around bright stars for detailed atmospheric characterization is a major observational undertaking. In this study we describe a framework that answers the question of whether a transit or radial velocity survey is more efficient at finding transiting exoplanets given the same amount of observing time. Within the framework we show that a transit survey's window function can be approximated using the hypergeometric probability distribution. We estimate the observing time required for a transit survey to find a transiting Earth-sized exoplanet in the habitable zone (HZ) with an emphasis on late-type stars. We also estimate the radial velocity precision necessary to detect the equivalent HZ Earth-mass exoplanet that also transits when using an equal amount of observing time as the transit survey. We find that a radial velocity survey with σ rv ∼ 0.6 m s –1 precision has comparable efficiency in terms of observing time to a transit survey with the requisite photometric precision σ phot ∼ 300 ppm to find a transiting Earth-sized exoplanet in the HZ of late M dwarfs. For super-Earths, a σ rv ∼ 2.0 m s –1 precision radial velocity survey has comparable efficiency to a transit survey with σ phot ∼ 2300 ppm.

  15. Binary catalogue of exoplanets

    Science.gov (United States)

    Schwarz, Richard; Bazso, Akos; Zechner, Renate; Funk, Barbara

    2016-02-01

    Since 1995 there is a database which list most of the known exoplanets (The Extrasolar Planets Encyclopaedia at http://exoplanet.eu/). With the growing number of detected exoplanets in binary and multiple star systems it became more important to mark and to separate them into a new database, which is not available in the Extrasolar Planets Encyclopaedia. Therefore we established an online database (which can be found at: http://www.univie.ac.at/adg/schwarz/multiple.html) for all known exoplanets in binary star systems and in addition for multiple star systems, which will be updated regularly and linked to the Extrasolar Planets Encyclopaedia. The binary catalogue of exoplanets is available online as data file and can be used for statistical purposes. Our database is divided into two parts: the data of the stars and the planets, given in a separate list. We describe also the different parameters of the exoplanetary systems and present some applications.

  16. Exploring exoplanet populations with NASA’s Kepler Mission

    Science.gov (United States)

    Batalha, Natalie M.

    2014-01-01

    The Kepler Mission is exploring the diversity of planets and planetary systems. Its legacy will be a catalog of discoveries sufficient for computing planet occurrence rates as a function of size, orbital period, star type, and insolation flux. The mission has made significant progress toward achieving that goal. Over 3,500 transiting exoplanets have been identified from the analysis of the first 3 y of data, 100 planets of which are in the habitable zone. The catalog has a high reliability rate (85–90% averaged over the period/radius plane), which is improving as follow-up observations continue. Dynamical (e.g., velocimetry and transit timing) and statistical methods have confirmed and characterized hundreds of planets over a large range of sizes and compositions for both single- and multiple-star systems. Population studies suggest that planets abound in our galaxy and that small planets are particularly frequent. Here, I report on the progress Kepler has made measuring the prevalence of exoplanets orbiting within one astronomical unit of their host stars in support of the National Aeronautics and Space Administration’s long-term goal of finding habitable environments beyond the solar system. PMID:25049406

  17. A Low-mass Exoplanet Candidate Detected by K2 Transiting the Praesepe M Dwarf JS 183

    Science.gov (United States)

    Pepper, Joshua; Gillen, Ed; Parviainen, Hannu; Hillenbrand, Lynne A.; Cody, Ann Marie; Aigrain, Suzanne; Stauffer, John; Vrba, Frederick J.; David, Trevor; Lillo-Box, Jorge; Stassun, Keivan G.; Conroy, Kyle E.; Pope, Benjamin J. S.; Barrado, David

    2017-04-01

    We report the discovery of a repeating photometric signal from a low-mass member of the Praesepe open cluster that we interpret as a Neptune-sized transiting planet. The star is JS 183 (HSHJ 163, EPIC 211916756), with T eff = 3325 ± 100 K, M * = 0.44 ± 0.04 M ⊙, R * = 0.44 ± 0.03 R ⊙, and {log}{g}* = 4.82+/- 0.06. The planet has an orbital period of 10.134588 days and a radius of R P = 0.32 ± 0.02 R J. Since the star is faint at V = 16.5 and J = 13.3, we are unable to obtain a measured radial velocity orbit, but we can constrain the companion mass to below about 1.7 M J, and thus well below the planetary boundary. JS 183b (since designated as K2-95b) is the second transiting planet found with K2 that resides in a several-hundred-megayear open cluster; both planets orbit mid-M dwarf stars and are approximately Neptune sized. With a well-determined stellar density from the planetary transit, and with an independently known metallicity from its cluster membership, JS 183 provides a particularly valuable test of stellar models at the fully convective boundary. We find that JS 183 is the lowest-density transit host known at the fully convective boundary, and that its very low density is consistent with current models of stars just above the fully convective boundary but in tension with the models just below the fully convective boundary.

  18. The Search for Hot Jupiters using Red Buttes Observatory

    Science.gov (United States)

    Sorber, Rebecca L.; Kar, Aman; Hancock, Daniel A.; Leuquire, Jacob D.; Suhaimi, Afiq; Kasper, David; Jang-Condell, Hannah

    2018-01-01

    The goal of this research is to use the University of Wyoming’s Red Buttes Observatory (RBO) to perform manual, remote, or automated observations of transiting exoplanet candidates. The data contributes to discovery of star systems that include never before identified exoplanets. RBO houses a 0.6-meter telescope and is located approximately 10 miles south of the University of Wyoming’s campus. Our targets are catalogued by the KELT (Kilodegree Extremely Little Telescope) Survey, a photometric search for transiting exoplanets around bright main sequence stars. The KELT Follow-up Network (KELT-FUN), a collaboration of small-aperture telescope users located all over the world, confirms new exoplanet candidates. As part of KELT-FUN, students use the RBO to monitor candidates identified by the KELT team. RBO typically detects transits around stars that are 8-12 in V magnitude, with transit durations of ~1-4 hours and full depth relative changes in brightness above 2 mmags. Using AstroImageJ, we process the data and we look for any indication of a transit occurrence in the processed lightcurve which might confirm the presence of the potential exoplanet. Our team has contributed over 50 light curves to KELT-FUN to date. We are able to compare our data with simultaneous observations by other members of KELT-FUN to maximize the utility of our observations. This project gives undergraduates an authentic scientific research experience, learning how to operate an observatory, process data, and participate in a scientific collaboration.

  19. Validation of Kepler's multiple planet candidates. III. Light curve analysis and announcement of hundreds of new multi-planet systems

    International Nuclear Information System (INIS)

    Rowe, Jason F.; Bryson, Stephen T.; Lissauer, Jack J.; Jontof-Hutter, Daniel; Mullally, Fergal; Howell, Steve B.; Borucki, William J.; Haas, Michael; Huber, Daniel; Thompson, Susan E.; Quintana, Elisa; Barclay, Thomas; Still, Martin; Marcy, Geoffrey W.; Issacson, Howard; Gilliland, Ronald L.; Ford, Eric; Steffen, Jason H.; Fortney, Jonathan; Gautier, T. N. III

    2014-01-01

    The Kepler mission has discovered more than 2500 exoplanet candidates in the first two years of spacecraft data, with approximately 40% of those in candidate multi-planet systems. The high rate of multiplicity combined with the low rate of identified false positives indicates that the multiplanet systems contain very few false positive signals due to other systems not gravitationally bound to the target star. False positives in the multi-planet systems are identified and removed, leaving behind a residual population of candidate multi-planet transiting systems expected to have a false positive rate less than 1%. We present a sample of 340 planetary systems that contain 851 planets that are validated to substantially better than the 99% confidence level; the vast majority of these have not been previously verified as planets. We expect ∼two unidentified false positives making our sample of planet very reliable. We present fundamental planetary properties of our sample based on a comprehensive analysis of Kepler light curves, ground-based spectroscopy, and high-resolution imaging. Since we do not require spectroscopy or high-resolution imaging for validation, some of our derived parameters for a planetary system may be systematically incorrect due to dilution from light due to additional stars in the photometric aperture. Nonetheless, our result nearly doubles the number verified exoplanets.

  20. Lifting Transit Signals from the Kepler Noise Floor. I. Discovery of a Warm Neptune

    Science.gov (United States)

    Kunimoto, Michelle; Matthews, Jaymie M.; Rowe, Jason F.; Hoffman, Kelsey

    2018-01-01

    Light curves from the 4-year Kepler exoplanet hunting mission have been searched for transits by NASA’s Kepler team and others, but there are still important discoveries to be made. We have searched the light curves of 400 Kepler Objects of Interest (KOIs) to find transit signals down to signal-to-noise ratio (S/N) ∼ 6, which is under the limit of S/N ∼ 7.1 that has been commonly adopted as a strict threshold to distinguish between a transit candidate and false alarm. We detect four new and convincing planet candidates ranging in radius from near-Mercury-size to slightly larger than Neptune. We highlight the discovery of KOI-408.05 (period = 637 days; radius = 4.9 R ⊕ incident flux = 0.6 S ⊕), a planet candidate within its host star’s Habitable Zone. We dub this planet a “warm Neptune,” a likely volatile-rich world that deserves closer inspection. KOI-408.05 joins 21 other confirmed and candidate planets in the current Kepler sample with semimajor axes a > 1.4 au. These discoveries are significant as a demonstration that the S/N threshold for detection used by the Kepler project is open to debate.

  1. Planetary transit candidates in CoRoT LRa01 field

    DEFF Research Database (Denmark)

    Carone, L.; Gandolfi, D.; Cabrera, J.

    2012-01-01

    We present the list of planetary transit candidates from the CoRoT LRa01 star field in the Monoceros constellation toward the Galactic anti-center direction. The CoRoT observations of LRa01 lasted from 24 October 2007 to 3 March 2008. We acquired and analyzed 7470 chromatic and 3938 monochromatic...... lightcurves. Instrumental noise and stellar variability were treated with several filtering tools by different teams from the CoRoT community. Different transit search algorithms were applied to the lightcurves. (2 data files)....

  2. Computer-aided discovery of debris disk candidates: A case study using the Wide-Field Infrared Survey Explorer (WISE) catalog

    Science.gov (United States)

    Nguyen, T.; Pankratius, V.; Eckman, L.; Seager, S.

    2018-04-01

    Debris disks around stars other than the Sun have received significant attention in studies of exoplanets, specifically exoplanetary system formation. Since debris disks are major sources of infrared emissions, infrared survey data such as the Wide-Field Infrared Survey (WISE) catalog potentially harbors numerous debris disk candidates. However, it is currently challenging to perform disk candidate searches for over 747 million sources in the WISE catalog due to the high probability of false positives caused by interstellar matter, galaxies, and other background artifacts. Crowdsourcing techniques have thus started to harness citizen scientists for debris disk identification since humans can be easily trained to distinguish between desired artifacts and irrelevant noises. With a limited number of citizen scientists, however, increasing data volumes from large surveys will inevitably lead to analysis bottlenecks. To overcome this scalability problem and push the current limits of automated debris disk candidate identification, we present a novel approach that uses citizen science results as a seed to train machine learning based classification. In this paper, we detail a case study with a computer-aided discovery pipeline demonstrating such feasibility based on WISE catalog data and NASA's Disk Detective project. Our approach of debris disk candidates classification was shown to be robust under a wide range of image quality and features. Our hybrid approach of citizen science with algorithmic scalability can facilitate big data processing for future detections as envisioned in future missions such as the Transiting Exoplanet Survey Satellite (TESS) and the Wide-Field Infrared Survey Telescope (WFIRST).

  3. A SEARCH FOR ADDITIONAL PLANETS IN THE NASA EPOXI OBSERVATIONS OF THE EXOPLANET SYSTEM GJ 436

    International Nuclear Information System (INIS)

    Ballard, Sarah; Christiansen, Jessie L.; Charbonneau, David; Holman, Matthew J.; Fabrycky, Daniel; Deming, Drake; Barry, Richard K.; Kuchner, Marc J.; Livengood, Timothy A.; Hewagama, Tilak; A'Hearn, Michael F.; Wellnitz, Dennis D.; Sunshine, Jessica M.; Hampton, Don L.; Lisse, Carey M.; Seager, Sara; Veverka, Joseph F.

    2010-01-01

    We present time series photometry of the M dwarf transiting exoplanet system GJ 436 obtained with the Extrasolar Planet Observation and Characterization (EPOCh) component of the NASA EPOXI mission. We conduct a search of the high-precision time series for additional planets around GJ 436, which could be revealed either directly through their photometric transits or indirectly through the variations these second planets induce on the transits of the previously known planet. In the case of GJ 436, the presence of a second planet is perhaps indicated by the residual orbital eccentricity of the known hot Neptune companion. We find no candidate transits with significance higher than our detection limit. From Monte Carlo tests of the time series, we rule out transiting planets larger than 1.5 R + interior to GJ 436b with 95% confidence and larger than 1.25 R + with 80% confidence. Assuming coplanarity of additional planets with the orbit of GJ 436b, we cannot expect that putative planets with orbital periods longer than about 3.4 days will transit. However, if such a planet were to transit, we would rule out planets larger than 2.0 R + with orbital periods less than 8.5 days with 95% confidence. We also place dynamical constraints on additional bodies in the GJ 436 system, independent of radial velocity measurements. Our analysis should serve as a useful guide for similar analyses of transiting exoplanets for which radial velocity measurements are not available, such as those discovered by the Kepler mission. From the lack of observed secular perturbations, we set upper limits on the mass of a second planet as small as 10 M + in coplanar orbits and 1 M + in non-coplanar orbits close to GJ 436b. We present refined estimates of the system parameters for GJ 436. We find P = 2.64389579 ± 0.00000080 d, R * = 0.437 ± 0.016 R sun , and R p = 3.880 ± 0.147 R + . We also report a sinusoidal modulation in the GJ 436 light curve that we attribute to star spots. This signal is

  4. Laboratory Studies of Planetary Hazes: composition of cool exoplanet atmospheric aerosols with very high resolution mass spectrometry

    Science.gov (United States)

    Moran, Sarah E.; Horst, Sarah; He, Chao; Flandinet, Laurene; Moses, Julianne I.; Orthous-Daunay, Francois-Regis; Vuitton, Veronique; Wolters, Cedric; Lewis, Nikole

    2017-10-01

    We present first results of the composition of laboratory-produced exoplanet haze analogues. With the Planetary HAZE Research (PHAZER) Laboratory, we simulated nine exoplanet atmospheres of varying initial gas phase compositions representing increasing metallicities (100x, 1000x, and 10000x solar) and exposed them to three different temperature regimes (600, 400, and 300 K) with two different “instellation” sources (a plasma source and a UV lamp). The PHAZER exoplanet experiments simulate a temperature and atmospheric composition phase space relevant to the expected planetary yield of the Transiting Exoplanet Survey Satellite (TESS) mission as well as recently discovered potentially habitable zone exoplanets in the TRAPPIST-1, LHS-1140, and Proxima Centauri systems. Upon exposure to the energy sources, all of these experiments produced aerosol particles, which were collected in a dry nitrogen glove box and then analyzed with an LTQ Orbitrap XL™ Hybrid Ion Trap-Orbitrap Mass Spectrometer utilizing m/z ranging from 50 to 1000. The collected aerosol samples were found to contain complex organics. Constraining the composition of these aerosols allows us to better understand the photochemical and dynamical processes ongoing in exoplanet atmospheres. Moreover, these data can inform our telescope observations of exoplanets, which is of critical importance as we enter a new era of exoplanet atmosphere observation science with the upcoming launch of the James Webb Space Telescope. The molecular makeup of these haze particles provides key information for understanding exoplanet atmospheric spectra, and constraining the structure and behavior of clouds, hazes, and other aerosols is at the forefront of exoplanet atmosphere science.

  5. First Solid Evidence for a Rocky Exoplanet - Mass and density of smallest exoplanet finally measured

    Science.gov (United States)

    2009-09-01

    "starspots" (just like sunspots on our Sun), which are cooler regions on the surface of the star. Therefore, the main signal is linked to the rotation of the star, with makes one complete revolution in about 23 days. To get an answer, astronomers had to call upon the best exoplanet-hunting device in the world, the High Accuracy Radial velocity Planet Searcher (HARPS) spectrograph attached to the ESO 3.6-metre telescope at the La Silla Observatory in Chile. "Even though HARPS is certainly unbeaten when it comes to detecting small exoplanets, the measurements of CoRoT-7b proved to be so demanding that we had to gather 70 hours of observations on the star," says co-author François Bouchy. HARPS delivered, allowing the astronomers to tease out the 20.4-hour signal in the data. This figure led them to infer that CoRoT-7b has a mass of about five Earth masses, placing it in rare company as one of the lightest exoplanets yet found. "Since the planet's orbit is aligned so that we see it crossing the face of its parent star - it is said to be transiting - we can actually measure, and not simply infer, the mass of the exoplanet, which is the smallest that has been precisely measured for an exoplanet [3]," says team member Claire Moutou. "Moreover, as we have both the radius and the mass, we can determine the density and get a better idea of the internal structure of this planet." With a mass much closer to that of Earth than, for example, ice giant Neptune's 17 Earth masses, CoRoT-7b belongs to the category of "super-Earth" exoplanets. About a dozen of these bodies have been detected, though in the case of CoRoT-7b, this is the first time that the density has been measured for such a small exoplanet. The calculated density is close to Earth's, suggesting that the planet's composition is similarly rocky. "CoRoT-7b resulted in a 'tour de force' of astronomical measurements. The superb light curves of the space telescope CoRoT gave us the best radius measurement, and HARPS the best mass

  6. Kepler's Final Survey Catalog

    Science.gov (United States)

    Mullally, S. E.

    2017-12-01

    The Kepler mission was designed to detect transiting exoplanets and has succeeded in finding over 4000 candidates. These candidates include approximately 50 terrestrial-sized worlds near to the habitable zone of their GKM dwarf stars (shown in figure against the stellar temperature). However not all transit detections are created equal. False positives, such as background eclipsing binaries, can mimic the signal of a transiting planet. Additionally, at Kepler's detection limit noise, either from the star or from the detector, can create signals that also mimic a transiting planet. For the data release 25 Kepler catalog we simulated these false alarms and determined how often known false alarms are called candidates. When this reliability information is combined with our studies of catalog completeness, this catalog can be used to understand the occurrence rate of exoplanets, even for the small, temperate planet candidates found by Kepler. I will discuss the automated methods we used to create and characterize this latest catalog, highlighting how we balanced the completeness and reliability of the long period candidates. While Kepler has been very successful at detecting transiting terrestrial-sized exoplanets, many of these detections are around stars that are too dim for successful follow-up work. Future missions will pick up where Kepler left off and find small planets around some of the brightest and smallest stars.

  7. [1012.5676] The Exoplanet Orbit Database

    Science.gov (United States)

    : The Exoplanet Orbit Database Authors: Jason T Wright, Onsi Fakhouri, Geoffrey W. Marcy, Eunkyu Han present a database of well determined orbital parameters of exoplanets. This database comprises parameters, and the method used for the planets discovery. This Exoplanet Orbit Database includes all planets

  8. Advances in Telescope and Detector Technologies - Impacts on the Study and Understanding of Binary Star and Exoplanet Systems

    Science.gov (United States)

    Guinan, Edward F.; Engle, Scott; Devinney, Edward J.

    2012-04-01

    Current and planned telescope systems (both on the ground and in space) as well as new technologies will be discussed with emphasis on their impact on the studies of binary star and exoplanet systems. Although no telescopes or space missions are primarily designed to study binary stars (what a pity!), several are available (or will be shortly) to study exoplanet systems. Nonetheless those telescopes and instruments can also be powerful tools for studying binary and variable stars. For example, early microlensing missions (mid-1990s) such as EROS, MACHO and OGLE were initially designed for probing dark matter in the halos of galaxies but, serendipitously, these programs turned out to be a bonanza for the studies of eclipsing binaries and variable stars in the Magellanic Clouds and in the Galactic Bulge. A more recent example of this kind of serendipity is the Kepler Mission. Although Kepler was designed to discover exoplanet transits (and so far has been very successful, returning many planetary candidates), Kepler is turning out to be a ``stealth'' stellar astrophysics mission returning fundamentally important and new information on eclipsing binaries, variable stars and, in particular, providing a treasure trove of data of all types of pulsating stars suitable for detailed Asteroseismology studies. With this in mind, current and planned telescopes and networks, new instruments and techniques (including interferometers) are discussed that can play important roles in our understanding of both binary star and exoplanet systems. Recent advances in detectors (e.g. laser frequency comb spectrographs), telescope networks (both small and large - e.g. Super-WASP, HAT-net, RoboNet, Las Combres Observatory Global Telescope (LCOGT) Network), wide field (panoramic) telescope systems (e.g. Large Synoptic Survey Telescope (LSST) and Pan-Starrs), huge telescopes (e.g. the Thirty Meter Telescope (TMT), the Overwhelming Large Telescope (OWL) and the Extremely Large Telescope (ELT

  9. A search for transit timing variation

    Directory of Open Access Journals (Sweden)

    Kramm U.

    2011-02-01

    Full Text Available Photometric follow-ups of transiting exoplanets (TEPs may lead to discoveries of additional, less massive bodies in extrasolar systems. This is possible by detecting and then analysing variations in transit timing of transiting exoplanets. In 2009 we launched an international observing campaign, the aim of which is to detect and characterise signals of transit timing variation (TTV in selected TEPs. The programme is realised by collecting data from 0.6-2.2-m telescopes spread worldwide at different longitudes. We present our observing strategy and summarise first results for WASP-3b with evidence for a 15 Earth-mass perturber in an outer 2:1 orbital resonance.

  10. System Geometries and Transit/Eclipse Probabilities

    Directory of Open Access Journals (Sweden)

    Howard A.

    2011-02-01

    Full Text Available Transiting exoplanets provide access to data to study the mass-radius relation and internal structure of extrasolar planets. Long-period transiting planets allow insight into planetary environments similar to the Solar System where, in contrast to hot Jupiters, planets are not constantly exposed to the intense radiation of their parent stars. Observations of secondary eclipses additionally permit studies of exoplanet temperatures and large-scale exo-atmospheric properties. We show how transit and eclipse probabilities are related to planet-star system geometries, particularly for long-period, eccentric orbits. The resulting target selection and observational strategies represent the principal ingredients of our photometric survey of known radial-velocity planets with the aim of detecting transit signatures (TERMS.

  11. Galactic cosmic ray-induced radiation dose on terrestrial exoplanets.

    Science.gov (United States)

    Atri, Dimitra; Hariharan, B; Grießmeier, Jean-Mathias

    2013-10-01

    This past decade has seen tremendous advancements in the study of extrasolar planets. Observations are now made with increasing sophistication from both ground- and space-based instruments, and exoplanets are characterized with increasing precision. There is a class of particularly interesting exoplanets that reside in the habitable zone, which is defined as the area around a star where the planet is capable of supporting liquid water on its surface. Planetary systems around M dwarfs are considered to be prime candidates to search for life beyond the Solar System. Such planets are likely to be tidally locked and have close-in habitable zones. Theoretical calculations also suggest that close-in exoplanets are more likely to have weaker planetary magnetic fields, especially in the case of super-Earths. Such exoplanets are subjected to a high flux of galactic cosmic rays (GCRs) due to their weak magnetic moments. GCRs are energetic particles of astrophysical origin that strike the planetary atmosphere and produce secondary particles, including muons, which are highly penetrating. Some of these particles reach the planetary surface and contribute to the radiation dose. Along with the magnetic field, another factor governing the radiation dose is the depth of the planetary atmosphere. The higher the depth of the planetary atmosphere, the lower the flux of secondary particles will be on the surface. If the secondary particles are energetic enough, and their flux is sufficiently high, the radiation from muons can also impact the subsurface regions, such as in the case of Mars. If the radiation dose is too high, the chances of sustaining a long-term biosphere on the planet are very low. We have examined the dependence of the GCR-induced radiation dose on the strength of the planetary magnetic field and its atmospheric depth, and found that the latter is the decisive factor for the protection of a planetary biosphere.

  12. Scalable Gaussian Processes and the search for exoplanets

    CERN Multimedia

    CERN. Geneva

    2015-01-01

    Gaussian Processes are a class of non-parametric models that are often used to model stochastic behavior in time series or spatial data. A major limitation for the application of these models to large datasets is the computational cost. The cost of a single evaluation of the model likelihood scales as the third power of the number of data points. In the search for transiting exoplanets, the datasets of interest have tens of thousands to millions of measurements with uneven sampling, rendering naive application of a Gaussian Process model impractical. To attack this problem, we have developed robust approximate methods for Gaussian Process regression that can be applied at this scale. I will describe the general problem of Gaussian Process regression and offer several applicable use cases. Finally, I will present our work on scaling this model to the exciting field of exoplanet discovery and introduce a well-tested open source implementation of these new methods.

  13. Beyond Kepler: Direct Imaging of Exoplanets

    Science.gov (United States)

    Belikov, Ruslan

    2018-01-01

    The exoplanets field has been revolutionizing astronomy over the past 20+ years and shows no signs of stopping. The next big wave of exoplanet science may come from direct imaging of exoplanets. Several (non-habitable) exoplanets have already been imaged from the ground and NASA is planning an instrument for its 2020s flagship mission (WFIRST) to directly image large exoplanets. One of the key goals of the field is the detection and characterization of "Earth 2.0", i.e. a rocky planet with an atmosphere capable of supporting life. This appears possible with several potential instruments in the late 2020s such as WFIRST with a starshade, Extremely Large Telescopes (ELTs) from the ground, or one of NASA possible flagship missions in the 2030s (HabEx or LUVOIR). Also, if an Earth-like planet exists around Alpha Centauri (A or B), it may be possible to directly image it in the next approx. 5 years with a small space mission such as the Alpha Centauri Exoplanet Satellite (ACESat). I will describe the current challenges and opportunities in this exciting field, as well as the work we are doing at the Exoplanet Technologies group to enable this exciting science.

  14. Orbital misalignment of the Neptune-mass exoplanet GJ 436b with the spin of its cool star

    Science.gov (United States)

    Bourrier, Vincent; Lovis, Christophe; Beust, Hervé; Ehrenreich, David; Henry, Gregory W.; Astudillo-Defru, Nicola; Allart, Romain; Bonfils, Xavier; Ségransan, Damien; Delfosse, Xavier; Cegla, Heather M.; Wyttenbach, Aurélien; Heng, Kevin; Lavie, Baptiste; Pepe, Francesco

    2018-01-01

    The angle between the spin of a star and the orbital planes of its planets traces the history of the planetary system. Exoplanets orbiting close to cool stars are expected to be on circular, aligned orbits because of strong tidal interactions with the stellar convective envelope. Spin–orbit alignment can be measured when the planet transits its star, but such ground-based spectroscopic measurements are challenging for cool, slowly rotating stars. Here we report the three-dimensional characterization of the trajectory of an exoplanet around an M dwarf star, derived by mapping the spectrum of the stellar photosphere along the chord transited by the planet. We find that the eccentric orbit of the Neptune-mass exoplanet GJ 436b is nearly perpendicular to the stellar equator. Both eccentricity and misalignment, surprising around a cool star, can result from dynamical interactions (via Kozai migration) with a yet-undetected outer companion. This inward migration of GJ 436b could have triggered the atmospheric escape that now sustains its giant exosphere.

  15. THE LEECH EXOPLANET IMAGING SURVEY: CHARACTERIZATION OF THE COLDEST DIRECTLY IMAGED EXOPLANET, GJ 504 b, AND EVIDENCE FOR SUPERSTELLAR METALLICITY

    Energy Technology Data Exchange (ETDEWEB)

    Skemer, Andrew J.; Leisenring, Jarron; Bailey, Vanessa; Hinz, Philip; Defrére, Denis; Apai, Dániel; Close, Laird; Eisner, Josh [Steward Observatory, University of Arizona, 933 North Cherry Ave. Tucson, AZ 85721 (United States); Morley, Caroline V.; Fortney, Jonathan [University of California, Santa Cruz, 1156 High St. Santa Cruz, CA 95064 (United States); Zimmerman, Neil T.; Buenzli, Esther; Bonnefoy, Mickael; Biller, Beth; Brandner, Wolfgang [Max Planck Institute for Astronomy, Königstuhl 17, 69117 Heidelberg (Germany); Skrutskie, Michael F. [University of Virginia, 530 McCormick Rd., Charlottesville, VA 22904 (United States); Esposito, Simone [Istituto Nazionale di Astrofisica-Arcetri Astrophysical Observatory, Largo Enrico Fermi 5, 50125, Florence (Italy); Crepp, Justin R. [Notre Dame University, 225 Nieuwland Science Hall, Notre Dame, IN 46556 (United States); De Rosa, Robert J. [Arizona State University, 781 South Terrace Rd, Tempe, AZ 85281 (United States); Desidera, Silvano [Istituto Nazionale di Astrofisica-Padova Astronomical Observatory, Vicolo dell’Osservatorio 5, 35122 Padova (Italy); and others

    2016-02-01

    As gas giant planets and brown dwarfs radiate away the residual heat from their formation, they cool through a spectral type transition from L to T, which encompasses the dissipation of cloud opacity and the appearance of strong methane absorption. While there are hundreds of known T-type brown dwarfs, the first generation of directly imaged exoplanets were all L type. Recently, Kuzuhara et al. announced the discovery of GJ 504 b, the first T dwarf exoplanet. GJ 504 b provides a unique opportunity to study the atmosphere of a new type of exoplanet with a ∼500 K temperature that bridges the gap between the first directly imaged planets (∼1000 K) and our own solar system's Jupiter (∼130 K). We observed GJ 504 b in three narrow L-band filters (3.71, 3.88, and 4.00 μm), spanning the red end of the broad methane fundamental absorption feature (3.3 μm) as part of the LBTI Exozodi Exoplanet Common Hunt (LEECH) exoplanet imaging survey. By comparing our new photometry and literature photometry with a grid of custom model atmospheres, we were able to fit GJ 504 b's unusual spectral energy distribution for the first time. We find that GJ 504 b is well fit by models with the following parameters: T{sub eff} = 544 ± 10 K, g < 600 m s{sup −2}, [M/H] = 0.60 ± 0.12, cloud opacity parameter of f{sub sed} = 2–5, R = 0.96 ± 0.07 R{sub Jup}, and log(L) = −6.13 ± 0.03 L{sub ⊙}, implying a hot start mass of 3–30 M{sub jup} for a conservative age range of 0.1–6.5 Gyr. Of particular interest, our model fits suggest that GJ 504 b has a superstellar metallicity. Since planet formation can create objects with nonstellar metallicities, while binary star formation cannot, this result suggests that GJ 504 b formed like a planet, not like a binary companion.

  16. The Gemini Planet Imager Exoplanet Survey

    Science.gov (United States)

    Macintosh, Bruce

    The Gemini Planet Imager (GPI) is a next-generation coronagraph constructed for the Gemini Observatory. GPI will see first light this fall. It will be the most advanced planet-imaging system in operation - an order of magnitude more sensitive than any current instrument, capable of detecting and spectroscopically characterizing young Jovian planets 107 times fainter than their parent star at separations of 0.2 arcseconds. GPI was built from the beginning as a facility-class survey instrument, and the observatory will employ it that way. Our team has been selected by Gemini Observatory to carry out an 890-hour program - the GPI Exoplanet Survey (GPIES) campaign from 2014-2017. We will observe 600 stars spanning spectral types A-M. We will use published young association catalogs and a proprietary list in preparation that adds several hundred new young (pc) and adolescent (pc) stars. The range of separations studied by GPI is completely inaccessible to Doppler and transit techniques (even with Kepler or TESS)— GPI offers a new window into planet formation. We will use GPI to produce the first-ever robust census of giant planet populations in the 5-50 AU range, allowing us to: 1) illuminate the formation pathways of Jovian planets; 2) reconstruct the early dynamical evolution of systems, including migration mechanisms and the interaction with disks and belts of debris; and 3) bridge the gap between Jupiter and the brown dwarfs with the first examples of cool low- gravity planetary atmospheres. Simulations predict this survey will discover approximately 50 exoplanets, increasing the number of exoplanet images by an order of magnitude, enough for statistical investigation. This Origins of Solar Systems proposal will support the execution of the GPI Exoplanet Survey campaign. We will develop tools needed to execute the survey efficiently. We will refine the existing GPI data pipeline to a final version that robustly removes residual speckle artifacts and provides

  17. Direct Detection of Polarized, Scattered Light from Exoplanets

    Science.gov (United States)

    Laughlin, Gregory

    We propose to radically advance the state of exoplanet characterization, which lags dramatically behind exoplanet discovery. We propose to directly detect scattered light from the atmospheres of close-in, highly eccentric, and extended/non-spherical exoplanets and thereby determine the following: orbital inclination (and therefore masses free of the M sin i mass ambiguity), geometric albedo, presence or lack of hazes and cloud layers, and scattering particle size and composition. Such measurements are crucial to the understanding of exoplanet atmospheres, because observations with NASA s Hubble, Spitzer, and Kepler space telescopes present the following questions: 1) Do exoplanets have highly reflective haze layers? 2) How does the upper atmospheric composition differ between exoplanets with and without thermal inversions? 3) What are the optical manifestations of the extreme heating of highly eccentric exoplanets? 4) Are the atmospheres of certain exoplanets truly escaping their Roche lobes? Using the POLISH2 polarimeter developed by the Postdoctoral Associate (Wiktorowicz) for the Lick 3-m telescope, we propose to monitor the linear polarization state of exoplanet host stars at the part per million level. POLISH2 consistently delivers nearly photon shot noise limited measurements with this precision. In addition, the simultaneous full-Stokes measurements of POLISH2 and the equatorial mount of the Lick 3-m telescope ensure that systematic effects are mitigated to the part per million level. Indeed, we find the accuracy of the POLISH2 polarimeter to be 0.1 parts per million. This instrument and telescope represent the highest precision polarimeter in the world for exoplanet research. We present potential detection of polarized, scattered light from the HD 189733b, Tau Boo b, and WASP-12b exoplanets. We propose to observe hot Jupiters on circular orbits, highly eccentric exoplanets, exoplanets with extended or non-spherical scattering surfaces, and 55 Cnc e, the

  18. Eccentricity from transit photometry

    DEFF Research Database (Denmark)

    Van Eylen, Vincent; Albrecht, Simon

    2015-01-01

    and can be described by a Rayleigh distribution with $\\sigma$ = 0.049 $\\pm$ 0.013. This is in full agreement with solar system eccentricities, but in contrast to the eccentricity distributions previously derived for exoplanets from radial velocity studies. Our findings are helpful in identifying which...... (TTVs), and we present some previously unreported TTVs. Finally transit durations help distinguish between false positives and true planets and we use our measurements to confirm six new exoplanets....

  19. KEPLER-10 c: A 2.2 EARTH RADIUS TRANSITING PLANET IN A MULTIPLE SYSTEM

    International Nuclear Information System (INIS)

    Fressin, Francois; Torres, Guillermo; Desert, Jean-Michel; Charbonneau, David; Holman, Matthew J.; Batalha, Natalie M.; Fortney, Jonathan J.; Fabrycky, Daniel C.; Rowe, Jason F.; Allen, Christopher; Borucki, William J.; Bryson, Stephen T.; Henze, Christopher E.; Brown, Timothy M.; Ciardi, David R.; Cochran, William D.; Deming, Drake; Dunham, Edward W.; Gautier III, Thomas N.; Gilliland, Ronald L.

    2011-01-01

    The Kepler mission has recently announced the discovery of Kepler-10 b, the smallest exoplanet discovered to date and the first rocky planet found by the spacecraft. A second, 45 day period transit-like signal present in the photometry from the first eight months of data could not be confirmed as being caused by a planet at the time of that announcement. Here we apply the light curve modeling technique known as BLENDER to explore the possibility that the signal might be due to an astrophysical false positive (blend). To aid in this analysis we report the observation of two transits with the Spitzer Space Telescope at 4.5 μm. When combined, they yield a transit depth of 344 ± 85 ppm that is consistent with the depth in the Kepler passband (376 ± 9 ppm, ignoring limb darkening), which rules out blends with an eclipsing binary of a significantly different color than the target. Using these observations along with other constraints from high-resolution imaging and spectroscopy, we are able to exclude the vast majority of possible false positives. We assess the likelihood of the remaining blends, and arrive conservatively at a false alarm rate of 1.6 x 10 -5 that is small enough to validate the candidate as a planet (designated Kepler-10 c) with a very high level of confidence. The radius of this object is measured to be R p = 2.227 +0.052 -0.057 R + (in which the error includes the uncertainty in the stellar properties), but currently available radial-velocity measurements only place an upper limit on its mass of about 20 M + . Kepler-10 c represents another example (with Kepler-9 d and Kepler-11 g) of statistical 'validation' of a transiting exoplanet, as opposed to the usual 'confirmation' that can take place when the Doppler signal is detected or transit timing variations are measured. It is anticipated that many of Kepler's smaller candidates will receive a similar treatment since dynamical confirmation may be difficult or impractical with the sensitivity of

  20. Integrated Exoplanet Modeling with the GSFC Exoplanet Modeling & Analysis Center (EMAC)

    Science.gov (United States)

    Mandell, Avi M.; Hostetter, Carl; Pulkkinen, Antti; Domagal-Goldman, Shawn David

    2018-01-01

    Our ability to characterize the atmospheres of extrasolar planets will be revolutionized by JWST, WFIRST and future ground- and space-based telescopes. In preparation, the exoplanet community must develop an integrated suite of tools with which we can comprehensively predict and analyze observations of exoplanets, in order to characterize the planetary environments and ultimately search them for signs of habitability and life.The GSFC Exoplanet Modeling and Analysis Center (EMAC) will be a web-accessible high-performance computing platform with science support for modelers and software developers to host and integrate their scientific software tools, with the goal of leveraging the scientific contributions from the entire exoplanet community to improve our interpretations of future exoplanet discoveries. Our suite of models will include stellar models, models for star-planet interactions, atmospheric models, planet system science models, telescope models, instrument models, and finally models for retrieving signals from observational data. By integrating this suite of models, the community will be able to self-consistently calculate the emergent spectra from the planet whether from emission, scattering, or in transmission, and use these simulations to model the performance of current and new telescopes and their instrumentation.The EMAC infrastructure will not only provide a repository for planetary and exoplanetary community models, modeling tools and intermodal comparisons, but it will include a "run-on-demand" portal with each software tool hosted on a separate virtual machine. The EMAC system will eventually include a means of running or “checking in” new model simulations that are in accordance with the community-derived standards. Additionally, the results of intermodal comparisons will be used to produce open source publications that quantify the model comparisons and provide an overview of community consensus on model uncertainties on the climates of

  1. A Library of ATMO Forward Model Transmission Spectra for Hot Jupiter Exoplanets

    Science.gov (United States)

    Goyal, Jayesh M.; Mayne, Nathan; Sing, David K.; Drummond, Benjamin; Tremblin, Pascal; Amundsen, David S.; Evans, Thomas; Carter, Aarynn L.; Spake, Jessica; Baraffe, Isabelle; hide

    2017-01-01

    We present a grid of forward model transmission spectra, adopting an isothermal temperature-pressure profile, alongside corresponding equilibrium chemical abundances for 117 observationally significant hot exoplanets (equilibrium temperatures of 547-2710 K). This model grid has been developed using a 1D radiative-convective-chemical equilibrium model termed ATMO, with up-to-date high-temperature opacities. We present an interpretation of observations of 10 exoplanets, including best-fitting parameters and X(exp 2) maps. In agreement with previous works, we find a continuum from clear to hazy/cloudy atmospheres for this sample of hot Jupiters. The data for all the 10 planets are consistent with subsolar to solar C/O ratio, 0.005 to 10 times solar metallicity and water rather than methane-dominated infrared spectra. We then explore the range of simulated atmospheric spectra for different exoplanets, based on characteristics such as temperature, metallicity, C/O ratio, haziness and cloudiness. We find a transition value for the metallicity between 10 and 50 times solar, which leads to substantial changes in the transmission spectra. We also find a transition value of C/O ratio, from water to carbon species dominated infrared spectra, as found by previous works, revealing a temperature dependence of this transition point ranging from approximately 0.56 to approximately 1-1.3 for equilibrium temperatures from approximately 900 to approximately 2600 K. We highlight the potential of the spectral features of HCN and C2H2 to constrain the metallicities and C/O ratios of planets, using James Webb Space Telescope (JWST) observations. Finally, our entire grid (approximately 460 000 simulations) is publicly available and can be used directly with the JWST simulator PandExo for planning observations.

  2. A library of ATMO forward model transmission spectra for hot Jupiter exoplanets

    Science.gov (United States)

    Goyal, Jayesh M.; Mayne, Nathan; Sing, David K.; Drummond, Benjamin; Tremblin, Pascal; Amundsen, David S.; Evans, Thomas; Carter, Aarynn L.; Spake, Jessica; Baraffe, Isabelle; Nikolov, Nikolay; Manners, James; Chabrier, Gilles; Hebrard, Eric

    2018-03-01

    We present a grid of forward model transmission spectra, adopting an isothermal temperature-pressure profile, alongside corresponding equilibrium chemical abundances for 117 observationally significant hot exoplanets (equilibrium temperatures of 547-2710 K). This model grid has been developed using a 1D radiative-convective-chemical equilibrium model termed ATMO, with up-to-date high-temperature opacities. We present an interpretation of observations of 10 exoplanets, including best-fitting parameters and χ2 maps. In agreement with previous works, we find a continuum from clear to hazy/cloudy atmospheres for this sample of hot Jupiters. The data for all the 10 planets are consistent with subsolar to solar C/O ratio, 0.005 to 10 times solar metallicity and water rather than methane-dominated infrared spectra. We then explore the range of simulated atmospheric spectra for different exoplanets, based on characteristics such as temperature, metallicity, C/O ratio, haziness and cloudiness. We find a transition value for the metallicity between 10 and 50 times solar, which leads to substantial changes in the transmission spectra. We also find a transition value of C/O ratio, from water to carbon species dominated infrared spectra, as found by previous works, revealing a temperature dependence of this transition point ranging from ˜0.56 to ˜1-1.3 for equilibrium temperatures from ˜900 to ˜2600 K. We highlight the potential of the spectral features of HCN and C2H2 to constrain the metallicities and C/O ratios of planets, using James Webb Space Telescope (JWST) observations. Finally, our entire grid (˜460 000 simulations) is publicly available and can be used directly with the JWST simulator PandExo for planning observations.

  3. Qatar Exoplanet Survey

    DEFF Research Database (Denmark)

    Alsubai, Khalid; Mislis, Dimitris; Tsvetanov, Zlatan I.

    2017-01-01

    We report the discovery of Qatar-3b, Qatar-4b, and Qatar-5b, three new transiting planets identified by the Qatar Exoplanet Survey. The three planets belong to the hot Jupiter family, with orbital periods of PQ3b=2.50792 days, PQ4b=1.80539 days, and PQ5b=2.87923 days. Follow-up spectroscopic......3= 1.145±0.064 Ṁ, MQ4=0.896±0.048Ṁ, MQ5=1.128±0.056 Ṁ and RQ3=1.272±0.14 RṀ, RQ4=0.849±0.063 R , and RQ5=1.076±0.051 Ṙ for Qatar-3, 4, and 5 respectively. The V magnitudes of the three host stars are VQ3=12.88, VQ4=13.60, and VQ5=12.82. All three new planets can be classified as heavy hot Jupiters...

  4. A pilot investigation to constrain the presence of ring systems around transiting exoplanets

    Science.gov (United States)

    Hatchett, W. Timothy; Barnes, Jason W.; Ahlers, John P.; MacKenzie, Shannon M.; Hedman, Matthew M.

    2018-04-01

    We demonstrate a process by which to evaluate the presence of large, Saturn-like ring systems around transiting extrasolar giant planets. We use extrasolar planet candidate KOI-422.01 as an example around which to establish limits on the presence of ring systems. We find that the spherical-planet (no-rings) fit matches the lightcurve of KOI-422.01 better than a lightcurve with a planet having obliquity angles 90°, 60°, 45°, or 20°. Hence we find no evidence for rings around KOI-422.01, but the methods that we have developed can be used for more comprehensive ring searches in the future. If the Hedman (2015) low-temperature rings hypothesis is correct, then the first positive detection of exorings might require transits of very long period ( ≳ 10 yr) giant planets outside their stars' ice lines.

  5. An Analytic Model Approach to the Frequency of Exoplanets

    Science.gov (United States)

    Traub, Wesley A.

    2016-10-01

    The underlying population of exoplanets around stars in the Kepler sample can be inferred by a simulation that includes binning the Kepler planets in radius and period, invoking an empirical noise model, assuming a model exoplanet distribution function, randomly assigning planets to each of the Kepler target stars, asking whether each planet's transit signal could be detected by Kepler, binning the resulting simulated detections, comparing the simulations with the observed data sample, and iterating on the model parameters until a satisfactory fit is obtained. The process is designed to simulate the Kepler observing procedure. The key assumption is that the distribution function is the product of separable functions of period and radius. Any additional suspected biases in the sample can be handled by adjusting the noise model or selective editing of the range of input planets. An advantage of this overall procedure is that it is a forward calculation designed to simulate the observed data, subject to a presumed underlying population distribution, minimizing the effect of bin-to-bin fluctuations. Another advantage is that the resulting distribution function can be extended to values of period and radius that go beyond the sample space, including, for example, application to estimating eta-sub-Earth, and also estimating the expected science yields of future direct-imaging exoplanet missions such as WFIRST-AFTA.

  6. JUPITER AS AN EXOPLANET: UV TO NIR TRANSMISSION SPECTRUM REVEALS HAZES, A Na LAYER, AND POSSIBLY STRATOSPHERIC H{sub 2}O-ICE CLOUDS

    Energy Technology Data Exchange (ETDEWEB)

    Montañés-Rodríguez, Pilar; González-Merino, B.; Pallé, E. [Instituto de Astrofísica de Canarias, C/Vía Láctea s/n, E-38200 La Laguna (Spain); López-Puertas, Manuel [Departamento de Astrofísica, Universidad de La Laguna, Av., Astrofísico Francisco Sánchez, s/n, E-38206 La Laguna (Spain); García-Melendo, E., E-mail: pmr@iac.es [Instituto de Astrofísica de Andalucía (CSIC), Glorieta de la Astronomía s/n, E-18080 Granada (Spain)

    2015-03-01

    Currently, the analysis of transmission spectra is the most successful technique to probe the chemical composition of exoplanet atmospheres. However, the accuracy of these measurements is constrained by observational limitations and the diversity of possible atmospheric compositions. Here, we show the UV–VIS–IR transmission spectrum of Jupiter as if it were a transiting exoplanet, obtained by observing one of its satellites, Ganymede, while passing through Jupiter’s shadow, i.e., during a solar eclipse from Ganymede. The spectrum shows strong extinction due to the presence of clouds (aerosols) and haze in the atmosphere and strong absorption features from CH{sub 4}. More interestingly, the comparison with radiative transfer models reveals a spectral signature, which we attribute here to a Jupiter stratospheric layer of crystalline H{sub 2}O ice. The atomic transitions of Na are also present. These results are relevant for the modeling and interpretation of giant transiting exoplanets. They also open a new technique to explore the atmospheric composition of the upper layers of Jupiter’s atmosphere.

  7. CHEOPS: A transit photometry mission for ESA's small mission programme

    Directory of Open Access Journals (Sweden)

    Queloz D.

    2013-04-01

    Full Text Available Ground based radial velocity (RV searches continue to discover exoplanets below Neptune mass down to Earth mass. Furthermore, ground based transit searches now reach milli-mag photometric precision and can discover Neptune size planets around bright stars. These searches will find exoplanets around bright stars anywhere on the sky, their discoveries representing prime science targets for further study due to the proximity and brightness of their host stars. A mission for transit follow-up measurements of these prime targets is currently lacking. The first ESA S-class mission CHEOPS (CHaracterizing ExoPlanet Satellite will fill this gap. It will perform ultra-high precision photometric monitoring of selected bright target stars almost anywhere on the sky with sufficient precision to detect Earth sized transits. It will be able to detect transits of RV-planets by photometric monitoring if the geometric configuration results in a transit. For Hot Neptunes discovered from the ground, CHEOPS will be able to improve the transit light curve so that the radius can be determined precisely. Because of the host stars' brightness, high precision RV measurements will be possible for all targets. All planets observed in transit by CHEOPS will be validated and their masses will be known. This will provide valuable data for constraining the mass-radius relation of exoplanets, especially in the Neptune-mass regime. During the planned 3.5 year mission, about 500 targets will be observed. There will be 20% of open time available for the community to develop new science programmes.

  8. Exoplanet Observing: From Art to Science

    Science.gov (United States)

    Conti, Dennis M.; Gleeson, Jack

    2017-06-01

    This paper will review the now well-established best practices for conducting high precision exoplanet observing with small telescopes. The paper will also review the AAVSO's activities in promoting these best practices among the amateur astronomer community through training material and online courses, as well as through the establishment of an AAVSO Exoplanet Database. This latter development will be an essential element in supporting followup exoplanet observations for upcoming space telescope missions such as TESS and JWST.

  9. A simple model to describe intrinsic stellar noise for exoplanet detection around red giants

    DEFF Research Database (Denmark)

    North, Thomas S. H.; Chaplin, William J.; Gilliland, Ronald L.

    2017-01-01

    In spite of the huge advances in exoplanet research provided by the NASA Kepler Mission, there remain only a small number of transit detections around evolved stars. Here, we present a reformulation of the noise properties of red-giant stars, where the intrinsic stellar granulation and the stella...

  10. VUV-absorption cross section of CO2 at high temperatures and impact on exoplanet atmospheres

    Directory of Open Access Journals (Sweden)

    Venot Olivia

    2014-02-01

    Full Text Available Ultraviolet (UV absorption cross sections are an essential ingredient of photochemical atmosphere models. Exoplanet searches have unveiled a large population of short-period objects with hot atmospheres, very different from what we find in our solar system. Transiting exoplanets whose atmospheres can now be studied by transit spectroscopy receive extremely strong UV fluxes and have typical temperatures ranging from 400 to 2500 K. At these temperatures, UV photolysis cross section data are severely lacking. Our goal is to provide high-temperature absorption cross sections and their temperature dependency for important atmospheric compounds. This study is dedicated to CO2, which is observed and photodissociated in exoplanet atmospheres. We performed these measurements for the 115 - 200 nm range at 300, 410, 480, and 550 K. In the 195 - 230 nm range, we worked at seven temperatures between 465 and 800 K. We found that the absorption cross section of CO2 is very sensitive to temperature, especially above 160 nm. Within the studied range of temperature, the CO2 cross section can vary by more than two orders of magnitude. This, in particular, makes the absorption of CO2 significant up to wavelengths as high as 230 nm, while it is negligible above 200 nm at 300 K. To investigate the influence of these new data on the photochemistry of exoplanets, we implemented the measured cross section into a 1D photochemical model. The model predicts that accounting for this temperature dependency of CO2 cross section can affect the computed abundances of NH3, CO2, and CO by one order of magnitude in the atmospheres of hot Jupiter and hot Neptune.

  11. A Framework to Combine Low- and High-resolution Spectroscopy for the Atmospheres of Transiting Exoplanets

    NARCIS (Netherlands)

    Brogi, M.; Line, M.; Bean, J.; Désert, J.-M.; Schwarz, H.

    2017-01-01

    Current observations of the atmospheres of close-in exoplanets are predominantly obtained with two techniques: low-resolution spectroscopy with space telescopes and high-resolution spectroscopy from the ground. Although the observables delivered by the two methods are in principle highly

  12. Exoplanet's Figure and Its Interior

    Science.gov (United States)

    Mian, Zhang; Cheng-li, Huang

    2018-01-01

    Along with the development of the observing technology, the observation and study on the exoplanets' oblateness and apsidal precession have achieved significant progress. The oblateness of an exoplanet is determined by its interior density profile and rotation period. Between its Love number k2 and core size exists obviously a negative correlation. So oblateness and k2 can well constrain its interior structure. Starting from the Lane-Emden equation, the planet models based on different polytropic indices are built. Then the flattening factors are obtained by solving the Wavre's integro-differential equation. The result shows that the smaller the polytropic index, the faster the rotation, and the larger the oblateness. We have selected 469 exoplanets, which have simultaneously the observed or estimated values of radius, mass, and orbit period from the NASA (National Aeronautics and Space Administration) Exoplanet Archive, and calculated their flattening factors under the two assumptions: tidal locking and fixed rotation period of 10.55 hours. The result shows that the flattening factors are too small to be detected under the tidal locking assumption, and that 28% of exoplanets have the flattening factors larger than 0.1 under the fixed rotation period of 10.55 hours. The Love numbers under the different polytropic models are solved by the Zharkov's approach, and the relation between k2 and core size is discussed.

  13. A Physical Model-based Correction for Charge Traps in the Hubble Space Telescope ’s Wide Field Camera 3 Near-IR Detector and Its Applications to Transiting Exoplanets and Brown Dwarfs

    Energy Technology Data Exchange (ETDEWEB)

    Zhou, Yifan; Apai, Dániel; Schneider, Glenn [Department of Astronomy/Steward Observatory, The University of Arizona, 933 N. Cherry Avenue, Tucson, AZ 85721 (United States); Lew, Ben W. P., E-mail: yzhou@as.arizona.edu [Department of Planetary Science/Lunar and Planetary Laboratory, The University of Arizona, 1640 E. University Boulevard, Tucson, AZ 85718 (United States)

    2017-06-01

    The Hubble Space Telescope Wide Field Camera 3 (WFC3) near-IR channel is extensively used in time-resolved observations, especially for transiting exoplanet spectroscopy as well as brown dwarf and directly imaged exoplanet rotational phase mapping. The ramp effect is the dominant source of systematics in the WFC3 for time-resolved observations, which limits its photometric precision. Current mitigation strategies are based on empirical fits and require additional orbits to help the telescope reach a thermal equilibrium . We show that the ramp-effect profiles can be explained and corrected with high fidelity using charge trapping theories. We also present a model for this process that can be used to predict and to correct charge trap systematics. Our model is based on a very small number of parameters that are intrinsic to the detector. We find that these parameters are very stable between the different data sets, and we provide best-fit values. Our model is tested with more than 120 orbits (∼40 visits) of WFC3 observations and is proved to be able to provide near photon noise limited corrections for observations made with both staring and scanning modes of transiting exoplanets as well as for starting-mode observations of brown dwarfs. After our model correction, the light curve of the first orbit in each visit has the same photometric precision as subsequent orbits, so data from the first orbit no longer need to be discarded. Near-IR arrays with the same physical characteristics (e.g., JWST/NIRCam ) may also benefit from the extension of this model if similar systematic profiles are observed.

  14. Exoplanet Biosignatures: Future Directions

    OpenAIRE

    Walker, Sara I.; Bains, William; Cronin, Leroy; DasSarma, Shiladitya; Danielache, Sebastian; Domagal-Goldman, Shawn; Kacar, Betul; Kiang, Nancy Y.; Lenardic, Adrian; Reinhard, Christopher T.; Moore, William; Schwieterman, Edward W.; Shkolnik, Evgenya L.; Smith, Harrison B.

    2017-01-01

    Exoplanet science promises a continued rapid accumulation of new observations in the near future, energizing a drive to understand and interpret the forthcoming wealth of data to identify signs of life beyond our Solar System. The large statistics of exoplanet samples, combined with the ambiguity of our understanding of universal properties of life and its signatures, necessitate a quantitative framework for biosignature assessment Here, we introduce a Bayesian framework for guiding future di...

  15. Ground Based Support for Exoplanet Space Missions

    Science.gov (United States)

    Haukka, H.; Hentunen, V.-P.; Salmi, T.; Aartolahti, H.; Juutilainen, J.; Vilokki, H.; Nissinen, M.

    2011-10-01

    Taurus Hill Observatory (THO), observatory code A95, is an amateur observatory located in Varkaus, Finland. The observatory is maintained by the local astronomical association Warkauden Kassiopeia. THO research team has observed and measured various stellar objects and phenomena. Observatory has mainly focused to asteroid [1] and exoplanet light curve measurements, observing the gamma rays burst, supernova discoveries and monitoring [2] and long term monitoring projects [3]. In the early 2011 Europlanet NA1 and NA2 organized "Coordinated Observations of Exoplanets from Ground and Space"-workshop in Graz, Austria. The workshop gathered together proam astronomers who have the equipment to measure the light curves of the exoplanets. Also there were professional scientists working in the exoplanet field who attended to the workshop. The result of the workshop was to organize coordinated observation campaign for follow-up observations of exoplanets (e.g. CoRoT planets). Also coordinated observation campaign to observe stellar CME outbreaks was planned. THO has a lot of experience in field of exoplanet light curve measurements and therefore this campaign is very supported by the research team of the observatory. In next coming observing seasons THO will concentrate its efforts for this kind of campaigns.

  16. Architecture of Kepler's multi-transiting systems. II. New investigations with twice as many candidates

    Energy Technology Data Exchange (ETDEWEB)

    Fabrycky, Daniel C. [Department of Astronomy and Astrophysics, University of California, Santa Cruz, CA 95064 (United States); Lissauer, Jack J.; Rowe, Jason F.; Barclay, Thomas; Batalha, Natalie; Borucki, William; Jenkins, Jon M.; Li, Jie; Morris, Robert L.; Smith, Jeffrey C. [NASA Ames Research Center, Moffett Field, CA 94035 (United States); Ragozzine, Darin; Geary, John C.; Holman, Matthew J. [Harvard-Smithsonian Center for Astrophysics, 60 Garden Street, Cambridge, MA 02138 (United States); Steffen, Jason H. [Fermilab Center for Particle Astrophysics, P.O. Box 500, MS 127, Batavia, IL 60510 (United States); Agol, Eric [Department of Astronomy, University of Washington, P.O. Box 351580, Seattle, WA 98195 (United States); Ciardi, David R. [NASA Exoplanet Science Institute/Caltech, 770 South Wilson Avenue, MC 100-2, Pasadena, CA 91125 (United States); Ford, Eric B.; Morehead, Robert C. [Center for Exoplanets and Habitable Worlds, 525 Davey Laboratory, The Pennsylvania State University, University Park, PA 16802 (United States); Gautier, Thomas N.; Shporer, Avi, E-mail: fabrycky@uchicago.edu [Jet Propulsion Laboratory, California Institute of Technology, 4800 Oak Grove Drive, Pasadena, CA 91109 (United States); and others

    2014-08-01

    We report on the orbital architectures of Kepler systems having multiple-planet candidates identified in the analysis of data from the first six quarters of Kepler data and reported by Batalha et al. (2013). These data show 899 transiting planet candidates in 365 multiple-planet systems and provide a powerful means to study the statistical properties of planetary systems. Using a generic mass-radius relationship, we find that only two pairs of planets in these candidate systems (out of 761 pairs total) appear to be on Hill-unstable orbits, indicating ∼96% of the candidate planetary systems are correctly interpreted as true systems. We find that planet pairs show little statistical preference to be near mean-motion resonances. We identify an asymmetry in the distribution of period ratios near first-order resonances (e.g., 2:1, 3:2), with an excess of planet pairs lying wide of resonance and relatively few lying narrow of resonance. Finally, based upon the transit duration ratios of adjacent planets in each system, we find that the interior planet tends to have a smaller transit impact parameter than the exterior planet does. This finding suggests that the mode of the mutual inclinations of planetary orbital planes is in the range 1.°0-2.°2, for the packed systems of small planets probed by these observations.

  17. Architecture of Kepler's multi-transiting systems. II. New investigations with twice as many candidates

    International Nuclear Information System (INIS)

    Fabrycky, Daniel C.; Lissauer, Jack J.; Rowe, Jason F.; Barclay, Thomas; Batalha, Natalie; Borucki, William; Jenkins, Jon M.; Li, Jie; Morris, Robert L.; Smith, Jeffrey C.; Ragozzine, Darin; Geary, John C.; Holman, Matthew J.; Steffen, Jason H.; Agol, Eric; Ciardi, David R.; Ford, Eric B.; Morehead, Robert C.; Gautier, Thomas N.; Shporer, Avi

    2014-01-01

    We report on the orbital architectures of Kepler systems having multiple-planet candidates identified in the analysis of data from the first six quarters of Kepler data and reported by Batalha et al. (2013). These data show 899 transiting planet candidates in 365 multiple-planet systems and provide a powerful means to study the statistical properties of planetary systems. Using a generic mass-radius relationship, we find that only two pairs of planets in these candidate systems (out of 761 pairs total) appear to be on Hill-unstable orbits, indicating ∼96% of the candidate planetary systems are correctly interpreted as true systems. We find that planet pairs show little statistical preference to be near mean-motion resonances. We identify an asymmetry in the distribution of period ratios near first-order resonances (e.g., 2:1, 3:2), with an excess of planet pairs lying wide of resonance and relatively few lying narrow of resonance. Finally, based upon the transit duration ratios of adjacent planets in each system, we find that the interior planet tends to have a smaller transit impact parameter than the exterior planet does. This finding suggests that the mode of the mutual inclinations of planetary orbital planes is in the range 1.°0-2.°2, for the packed systems of small planets probed by these observations.

  18. A Search for Lost Planets in the Kepler Multi-Planet Systems and the Discovery of the Long-Period, Neptune-Sized Exoplanet Kepler-150 f

    Science.gov (United States)

    Schmitt, Joseph R.; Jenkins, Jon M.; Fischer, Debra A.

    2017-01-01

    The vast majority of the 4700 confirmed planets and planet candidates discovered by the Kepler space telescope were first found by the Kepler pipeline. In the pipeline, after a transit signal is found, all data points associated with those transits are removed, creating a Swiss cheese-like light curve full of holes, which is then used for subsequent transit searches. These holes could render an additional planet undetectable (or lost). We examine a sample of 114 stars with 3+ confirmed planets to see the effect that this Swiss cheesing may have. A simulation determined that the probability that a transiting planet is lost due to the transit masking is low, but non-neglible, reaching a plateau at approximately 3.3% lost in the period range of P = 400 - 500 days. We then model the transits in all quarters of each star and subtract out the transit signals, restoring the in-transit data points, and use the Kepler pipeline to search the transit-subtracted (i.e., transit-cleaned) light curves. However, the pipeline did not discover any credible new transit signals. This demonstrates the validity and robustness of the Kepler pipelines choice to use transit masking over transit subtraction. However, a follow-up visual search through all the transit-subtracted data, which allows for easier visual identification of new transits, revealed the existence of a new, Neptune-sized exoplanet. Kepler-150 f (P = 637.2 days, RP = 3.86 R earth) is confirmed using a combination of false positive probability analysis, transit duration analysis, and the planet multiplicity argument.

  19. A SEARCH FOR LOST PLANETS IN THE KEPLER MULTI-PLANET SYSTEMS AND THE DISCOVERY OF A LONG PERIOD, NEPTUNE-SIZED EXOPLANET KEPLER-150 F.

    Science.gov (United States)

    Schmitt, Joseph R; Jenkins, Jon M; Fischer, Debra A

    2017-04-01

    The vast majority of the 4700 confirmed planets and planet candidates discovered by the Kepler space telescope were first found by the Kepler pipeline. In the pipeline, after a transit signal is found, all data points associated with those transits are removed, creating a "Swiss cheese"-like light curve full of holes, which is then used for subsequent transit searches. These holes could render an additional planet undetectable (or "lost"). We examine a sample of 114 stars with 3+ confirmed planets to see the effect that this "Swiss cheesing" may have. A simulation determined that the probability that a transiting planet is lost due to the transit masking is low, but non-neglible, reaching a plateau at ~3.3% lost in the period range of P = 400 - 500 days. We then model the transits in all quarters of each star and subtract out the transit signals, restoring the in-transit data points, and use the Kepler pipeline to search the transit-subtracted (i.e., transit-cleaned) light curves. However, the pipeline did not discover any credible new transit signals. This demonstrates the validity and robustness of the Kepler pipeline's choice to use transit masking over transit subtraction. However, a follow-up visual search through all the transit-subtracted data, which allows for easier visual identification of new transits, revealed the existence of a new, Neptune-sized exoplanet. Kepler-150 f ( P = 637.2 days, R P = 3.86 R ⊕ ) is confirmed using a combination of false positive probability analysis, transit duration analysis, and the planet multiplicity argument.

  20. Identifying Exoplanets with Deep Learning: A Five-planet Resonant Chain around Kepler-80 and an Eighth Planet around Kepler-90

    Science.gov (United States)

    Shallue, Christopher J.; Vanderburg, Andrew

    2018-02-01

    NASA’s Kepler Space Telescope was designed to determine the frequency of Earth-sized planets orbiting Sun-like stars, but these planets are on the very edge of the mission’s detection sensitivity. Accurately determining the occurrence rate of these planets will require automatically and accurately assessing the likelihood that individual candidates are indeed planets, even at low signal-to-noise ratios. We present a method for classifying potential planet signals using deep learning, a class of machine learning algorithms that have recently become state-of-the-art in a wide variety of tasks. We train a deep convolutional neural network to predict whether a given signal is a transiting exoplanet or a false positive caused by astrophysical or instrumental phenomena. Our model is highly effective at ranking individual candidates by the likelihood that they are indeed planets: 98.8% of the time it ranks plausible planet signals higher than false-positive signals in our test set. We apply our model to a new set of candidate signals that we identified in a search of known Kepler multi-planet systems. We statistically validate two new planets that are identified with high confidence by our model. One of these planets is part of a five-planet resonant chain around Kepler-80, with an orbital period closely matching the prediction by three-body Laplace relations. The other planet orbits Kepler-90, a star that was previously known to host seven transiting planets. Our discovery of an eighth planet brings Kepler-90 into a tie with our Sun as the star known to host the most planets.

  1. The Light Source Problem: The Effect of Heterogeneous Stellar Photospheres on Searches for Transiting Exoplanet Biosignatures

    Science.gov (United States)

    Rackham, B. V.; Apai, D.; Giampapa, M. S.

    2017-11-01

    TESS will soon enable the study of terrestrial exoplanet atmospheres. However, spots and faculae in stellar photospheres can complicate these measurements by mimicking or masking atmospheric features. We detail our work to constrain this effect.

  2. HATS-36b and 24 Other Transiting/Eclipsing Systems from the HATSouth-K2 Campaign 7 Program

    Science.gov (United States)

    Bayliss, D.; Hartman, J. D.; Zhou, G.; Bakos, G. Á.; Vanderburg, A.; Bento, J.; Mancini, L.; Ciceri, S.; Brahm, R.; Jordán, A.; Espinoza, N.; Rabus, M.; Tan, T. G.; Penev, K.; Bhatti, W.; de Val-Borro, M.; Suc, V.; Csubry, Z.; Henning, Th.; Sarkis, P.; Lázár, J.; Papp, I.; Sári, P.

    2018-03-01

    We report on the result of a campaign to monitor 25 HATSouth candidates using the Kepler space telescope during Campaign 7 of the K2 mission. We discover HATS-36b (EPIC 215969174b, K2-145b), an eccentric (e=0.105+/- 0.028) hot Jupiter with a mass of 3.216+/- 0.062 {M}{{J}} and a radius of 1.235+/- 0.043 {R}{{J}}, which transits a solar-type G0V star (V = 14.386) in a 4.1752-day period. We also refine the properties of three previously discovered HATSouth transiting planets (HATS-9b, HATS-11b, and HATS-12b) and search the K2 data for TTVs and additional transiting planets in these systems. In addition, we also report on a further three systems that remain as Jupiter-radius transiting exoplanet candidates. These candidates do not have determined masses, however pass all of our other vetting observations. Finally, we report on the 18 candidates that we are now able to classify as eclipsing binary or blended eclipsing binary systems based on a combination of the HATSouth data, the K2 data, and follow-up ground-based photometry and spectroscopy. These range in periods from 0.7 day to 16.7 days, and down to 1.5 mmag in eclipse depths. Our results show the power of combining ground-based imaging and spectroscopy with higher precision space-based photometry, and serve as an illustration as to what will be possible when combining ground-based observations with TESS data.

  3. DiskDetective.org: Finding Homes for Exoplanets Through Citizen Science

    Science.gov (United States)

    Kuchner, Marc J.

    2016-01-01

    The Disk Detective project is scouring the data archive from the WISE all-sky survey to find new debris disks and protoplanetary disks-the dusty dens where exoplanets form and dwell. Volunteers on this citizen science website have already performed 1.6 million classifications, searching a catalog 8x the size of any published WISE survey. We follow up candidates using ground based telescopes in California, Arizona, Chile, Hawaii, and Argentina. We ultimately expect to increase the pool of known debris disks by approx. 400 and triple the solid angle in clusters of young stars examined with WISE, providing a unique new catalog of isolated disk stars, key planet-search targets, and candidate advanced extraterrestrial civilizations. Come to this talk to hear the news about our latest dusty discoveries and the trials and the ecstasy of launching a new citizen science project. Please bring your laptop or smartphone if you like!

  4. The Search for Exoplanets using Ultra-long Wavelength Radio Astronomy

    NARCIS (Netherlands)

    Bentum, Marinus Jan

    2017-01-01

    Recent studies on extra solar planets (exoplanets) provide us with a new glimpse into the Milky Way's composition. Exoplanets appear to be very typical around Sunlike stars. Most of these exoplanets are observed via indirect measurements. If a direct radio observation of the exoplanet's signal was

  5. Most sub-arcsecond companions of Kepler exoplanet candidate host stars are gravitationally bound

    International Nuclear Information System (INIS)

    Horch, Elliott P.; Howell, Steve B.; Everett, Mark E.; Ciardi, David R.

    2014-01-01

    Using the known detection limits for high-resolution imaging observations and the statistical properties of true binary and line-of-sight companions, we estimate the binary fraction of Kepler exoplanet host stars. Our speckle imaging programs at the WIYN 3.5 m and Gemini North 8.1 m telescopes have observed over 600 Kepler objects of interest and detected 49 stellar companions within ∼1 arcsec. Assuming binary stars follow a log-normal period distribution for an effective temperature range of 3000-10,000 K, then the model predicts that the vast majority of detected sub-arcsecond companions are long period (P > 50 yr), gravitationally bound companions. In comparing the model predictions to the number of real detections in both observational programs, we conclude that the overall binary fraction of host stars is similar to the 40%-50% rate observed for field stars.

  6. Exoplanet Observing: from Art to Science (Abstract)

    Science.gov (United States)

    Conti, D. M.; Gleeson, J.

    2017-12-01

    (Abstract only) This paper will review the now well-established best practices for conducting high precision exoplanet observing with small telescopes. The paper will also review the AAVSO's activities in promoting these best practices among the amateur astronomer community through training material and online courses, as well as through the establishment of an AAVSO Exoplanet Database. This latter development will be an essential element in supporting followup exoplanet observations for upcoming space telescope missions such as TESS and JWST.

  7. Astr 101 Students' Attitudes Towards Essays On Transits, Eclipses And Occultations

    Science.gov (United States)

    D'Cruz, Noella L.

    2012-05-01

    Joliet Junior College, Joliet, IL offers a one semester introductory astronomy course each semester. We teach over 110 primarily non-science major students each semester. We use proven active learning strategies such lecture tutorials, think-pair-share questions and small group discussions to help these students develop and retain a good understanding of astrophysical concepts. Occasionally, we offer projects that allow students to explore course topics beyond the classroom. We hope that such projects will increase students' interest in astronomy. We also hope that these assignments will help students to improve their critical thinking and writing skills. In Spring 12, we are offering three short individual essay assignments in our face-to-face sections. The essays focus on transits, eclipses and occultations to highlight the 2012 transit of Venus. For the first essay, students will find images of transit and occultation events using the Astronomy Picture of the Day website and describe their chosen events. In addition, students will predict how variations in certain physical and orbital parameters would alter their particular events. The second essay involves transits, eclipses and occultations observed by spacecraft. Students will describe their transit event, their spacecraft's mission, orbital path, how the orbital path was achieved, etc. The third essay deals with transiting exoplanets. Students will choose at least two exoplanets from an exoplanet database, one of which has been discovered through the transit method. This essay will enable students to learn about detecting exoplanets and how they compare with our solar system. Details of the essay assignments and students' reactions to them will be presented at the meeting.

  8. HELIUM ATMOSPHERES ON WARM NEPTUNE- AND SUB-NEPTUNE-SIZED EXOPLANETS AND APPLICATIONS TO GJ 436b

    Energy Technology Data Exchange (ETDEWEB)

    Hu, Renyu; Yung, Yuk L. [Jet Propulsion Laboratory, California Institute of Technology, Pasadena, CA 91109 (United States); Seager, Sara, E-mail: renyu.hu@jpl.nasa.gov [Department of Earth, Atmospheric and Planetary Sciences, Massachusetts Institute of Technology, Cambridge, MA 02139 (United States)

    2015-07-01

    Warm Neptune- and sub-Neptune-sized exoplanets in orbits smaller than Mercury’s are thought to have experienced extensive atmospheric evolution. Here we propose that a potential outcome of this atmospheric evolution is the formation of helium-dominated atmospheres. The hydrodynamic escape rates of Neptune- and sub-Neptune-sized exoplanets are comparable to the diffusion-limited escape rate of hydrogen, and therefore the escape is heavily affected by diffusive separation between hydrogen and helium. A helium atmosphere can thus be formed—from a primordial hydrogen–helium atmosphere—via atmospheric hydrodynamic escape from the planet. The helium atmosphere has very different abundances of major carbon and oxygen species from those of a hydrogen atmosphere, leading to distinctive transmission and thermal emission spectral features. In particular, the hypothesis of a helium-dominated atmosphere can explain the thermal emission spectrum of GJ 436b, a warm Neptune-sized exoplanet, while also being consistent with the transmission spectrum. This model atmosphere contains trace amounts of hydrogen, carbon, and oxygen, with the predominance of CO over CH{sub 4} as the main form of carbon. With our atmospheric evolution model, we find that if the mass of the initial atmosphere envelope is 10{sup −3} planetary mass, hydrodynamic escape can reduce the hydrogen abundance in the atmosphere by several orders of magnitude in ∼10 billion years. Observations of exoplanet transits may thus detect signatures of helium atmospheres and probe the evolutionary history of small exoplanets.

  9. HELIUM ATMOSPHERES ON WARM NEPTUNE- AND SUB-NEPTUNE-SIZED EXOPLANETS AND APPLICATIONS TO GJ 436b

    International Nuclear Information System (INIS)

    Hu, Renyu; Yung, Yuk L.; Seager, Sara

    2015-01-01

    Warm Neptune- and sub-Neptune-sized exoplanets in orbits smaller than Mercury’s are thought to have experienced extensive atmospheric evolution. Here we propose that a potential outcome of this atmospheric evolution is the formation of helium-dominated atmospheres. The hydrodynamic escape rates of Neptune- and sub-Neptune-sized exoplanets are comparable to the diffusion-limited escape rate of hydrogen, and therefore the escape is heavily affected by diffusive separation between hydrogen and helium. A helium atmosphere can thus be formed—from a primordial hydrogen–helium atmosphere—via atmospheric hydrodynamic escape from the planet. The helium atmosphere has very different abundances of major carbon and oxygen species from those of a hydrogen atmosphere, leading to distinctive transmission and thermal emission spectral features. In particular, the hypothesis of a helium-dominated atmosphere can explain the thermal emission spectrum of GJ 436b, a warm Neptune-sized exoplanet, while also being consistent with the transmission spectrum. This model atmosphere contains trace amounts of hydrogen, carbon, and oxygen, with the predominance of CO over CH 4 as the main form of carbon. With our atmospheric evolution model, we find that if the mass of the initial atmosphere envelope is 10 −3 planetary mass, hydrodynamic escape can reduce the hydrogen abundance in the atmosphere by several orders of magnitude in ∼10 billion years. Observations of exoplanet transits may thus detect signatures of helium atmospheres and probe the evolutionary history of small exoplanets

  10. Processing and Managing the Kepler Mission's Treasure Trove of Stellar and Exoplanet Data

    Science.gov (United States)

    Jenkins, Jon M.

    2016-01-01

    The Kepler telescope launched into orbit in March 2009, initiating NASAs first mission to discover Earth-size planets orbiting Sun-like stars. Kepler simultaneously collected data for 160,000 target stars at a time over its four-year mission, identifying over 4700 planet candidates, 2300 confirmed or validated planets, and over 2100 eclipsing binaries. While Kepler was designed to discover exoplanets, the long term, ultra- high photometric precision measurements it achieved made it a premier observational facility for stellar astrophysics, especially in the field of asteroseismology, and for variable stars, such as RR Lyraes. The Kepler Science Operations Center (SOC) was developed at NASA Ames Research Center to process the data acquired by Kepler from pixel-level calibrations all the way to identifying transiting planet signatures and subjecting them to a suite of diagnostic tests to establish or break confidence in their planetary nature. Detecting small, rocky planets transiting Sun-like stars presents a variety of daunting challenges, from achieving an unprecedented photometric precision of 20 parts per million (ppm) on 6.5-hour timescales, supporting the science operations, management, processing, and repeated reprocessing of the accumulating data stream. This paper describes how the design of the SOC meets these varied challenges, discusses the architecture of the SOC and how the SOC pipeline is operated and is run on the NAS Pleiades supercomputer, and summarizes the most important pipeline features addressing the multiple computational, image and signal processing challenges posed by Kepler.

  11. Ground-based observations of exoplanet atmospheres

    NARCIS (Netherlands)

    Mooij, Ernst Johan Walter de

    2011-01-01

    This thesis focuses on the properties of exoplanet atmospheres. The results for ground-based near-infrared secondary eclipse observations of three different exoplanets, TrES-3b, HAT-P-1b and WASP-33b, are presented which have been obtained with ground-based telescopes as part of the GROUSE project.

  12. Architecture of Kepler's Multi-transiting Systems: II. New investigations with twice as many candidates

    Energy Technology Data Exchange (ETDEWEB)

    Fabrycky, Daniel C.; Lissauer, Jack J.; Ragozzine, Darin; Rowe, Jason F.; Steffen, Jason H.; Agol, Eric; Barclay, Thomas; Batalha, Natalie; Borucki, William; Ciardi, David R.; Ford, Eric B.; Gautier, Thomas N.; Geary, John C.; Holman, Matthew J.; Jenkins, Jon M.; Li, Jie; Morehead, Robert C.; Morris, Robert L.; Shporer, Avi; Smith, Jeffrey C.; Still, Martin; Van Cleve, Jeffrey

    2014-07-16

    Having discovered 885 planet candidates in 361 multiple-planet systems, Kepler has made transits a powerful method for studying the statistics of planetary systems. The orbits of only two pairs of planets in these candidate systems are apparently unstable. This indicates that a high percentage of the candidate systems are truly planets orbiting the same star, motivating physical investigations of the population. Pairs of planets in this sample are typically not in orbital resonances. However, pairs with orbital period ratios within a few percent of a first-order resonance (e.g. 2:1, 3:2) prefer orbital spacings just wide of the resonance and avoid spacings just narrow of the resonance. Finally, we investigate mutual inclinations based on transit duration ratios. We infer that the inner planets of pairs tend to have a smaller impact parameter than their outer companions, suggesting these planetary systems are typically coplanar to within a few degrees.

  13. The Mass of the Candidate Exoplanet Companion to HD 33636 from Hubble Space Telescope Astrometry and High-Precision Radial Velocities

    Science.gov (United States)

    Bean, Jacob L.; McArthur, Barbara E.; Benedict, G. Fritz; Harrison, Thomas E.; Bizyaev, Dmitry; Nelan, Edmund; Smith, Verne V.

    2007-08-01

    We have determined a dynamical mass for the companion to HD 33636 that indicates it is a low-mass star instead of an exoplanet. Our result is based on an analysis of Hubble Space Telescope (HST) astrometry and ground-based radial velocity data. We have obtained high-cadence radial velocity measurements spanning 1.3 yr of HD 33636 with the Hobby-Eberly Telescope at McDonald Observatory. We combined these data with previously published velocities to create a data set that spans 9 yr. We used this data set to search for, and place mass limits on, the existence of additional companions in the HD 33636 system. Our high-precision astrometric observations of the system with the HST Fine Guidance Sensor 1r span 1.2 yr. We simultaneously modeled the radial velocity and astrometry data to determine the parallax, proper motion, and perturbation orbit parameters of HD 33636. Our derived parallax, πabs=35.6+/-0.2 mas, agrees within the uncertainties with the Hipparcos value. We find a perturbation period P=2117.3+/-0.8 days, semimajor axis aA=14.2+/-0.2 mas, and system inclination i=4.1deg+/-0.1deg. Assuming the mass of the primary star to be MA=1.02+/-0.03 Msolar, we obtain a companion mass MB=142+/-11 MJup=0.14+/-0.01 Msolar. The much larger true mass of the companion relative to its minimum mass estimated from the spectroscopic orbit parameters (Msini=9.3 MJup) is due to the nearly face-on orbit orientation. This result demonstrates the value of follow-up astrometric observations to determine the true masses of exoplanet candidates detected with the radial velocity method. Based on data obtained with the NASA/ESA Hubble Space Telescope (HST) and the Hobby-Eberly Telescope (HET). The HST observations were obtained at the Space Telescope Science Institute, which is operated by the Association of Universities for Research in Astronomy, Inc., under NASA contract NAS5-26555. The HET is a joint project of the University of Texas at Austin, Pennsylvania State University, Stanford

  14. The detectability of radio emission from exoplanets

    Science.gov (United States)

    Lynch, C. R.; Murphy, Tara; Lenc, E.; Kaplan, D. L.

    2018-05-01

    Like the magnetised planets in our Solar System, magnetised exoplanets should emit strongly at radio wavelengths. Radio emission directly traces the planetary magnetic fields and radio detections can place constraints on the physical parameters of these features. Large comparative studies of predicted radio emission characteristics for the known population of exoplanets help to identify what physical parameters could be key for producing bright, observable radio emission. Since the last comparative study, many thousands of exoplanets have been discovered. We report new estimates for the radio flux densities and maximum emission frequencies for the current population of known exoplanets orbiting pre-main sequence and main-sequence stars with spectral types F-M. The set of exoplanets predicted to produce observable radio emission are Hot Jupiters orbiting young stars. The youth of these system predicts strong stellar magnetic fields and/or dense winds, which are key for producing bright, observable radio emission. We use a new all-sky circular polarisation Murchison Widefield Array survey to place sensitive limits on 200 MHz emission from exoplanets, with 3σ values ranging from 4.0 - 45.0 mJy. Using a targeted Giant Metre Wave Radio Telescope observing campaign, we also report a 3σ upper limit of 4.5 mJy on the radio emission from V830 Tau b, the first Hot Jupiter to be discovered orbiting a pre-main sequence star. Our limit is the first to be reported for the low-frequency radio emission from this source.

  15. Colors of Alien Worlds from Direct Imaging Exoplanet Missions

    Science.gov (United States)

    Hu, Renyu

    2016-01-01

    Future direct-imaging exoplanet missions such as WFIRST will measure the reflectivity of exoplanets at visible wavelengths. Most of the exoplanets to be observed will be located further away from their parent stars than is Earth from the Sun. These "cold" exoplanets have atmospheric environments conducive for the formation of water and/or ammonia clouds, like Jupiter in the Solar System. I find the mixing ratio of methane and the pressure level of the uppermost cloud deck on these planets can be uniquely determined from their reflection spectra, with moderate spectral resolution, if the cloud deck is between 0.6 and 1.5 bars. The existence of this unique solution is useful for exoplanet direct imaging missions for several reasons. First, the weak bands and strong bands of methane enable the measurement of the methane mixing ratio and the cloud pressure, although an overlying haze layer can bias the estimate of the latter. Second, the cloud pressure, once derived, yields an important constraint on the internal heat flux from the planet, and thus indicating its thermal evolution. Third, water worlds having H2O-dominated atmospheres are likely to have water clouds located higher than the 10-3 bar pressure level, and muted spectral absorption features. These planets would occupy a confined phase space in the color-color diagrams, likely distinguishable from H2-rich giant exoplanets by broadband observations. Therefore, direct-imaging exoplanet missions may offer the capability to broadly distinguish H2-rich giant exoplanets versus H2O-rich super-Earth exoplanets, and to detect ammonia and/or water clouds and methane gas in their atmospheres.

  16. Constraining Exoplanet Habitability with HabEx

    Science.gov (United States)

    Robinson, Tyler

    2018-01-01

    The Habitable Exoplanet Imaging mission, or HabEx, is one of four flagship mission concepts currently under study for the upcoming 2020 Decadal Survey of Astronomy and Astrophysics. The broad goal of HabEx will be to image and study small, rocky planets in the Habitable Zones of nearby stars. Additionally, HabEx will pursue a range of other astrophysical investigations, including the characterization of non-habitable exoplanets and detailed observations of stars and galaxies. Critical to the capability of HabEx to understand Habitable Zone exoplanets will be its ability to search for signs of surface liquid water (i.e., habitability) and an active biosphere. Photometry and moderate resolution spectroscopy, spanning the ultraviolet through near-infrared spectral ranges, will enable constraints on key habitability-related atmospheric species and properties (e.g., surface pressure). In this poster, we will discuss approaches to detecting signs of habitability in reflected-light observations of rocky exoplanets. We will also present initial results for modeling experiments aimed at demonstrating the capabilities of HabEx to study and understand Earth-like worlds around other stars.

  17. Developing a user-friendly photometric software for exoplanets to increase participation in Citizen Science

    Science.gov (United States)

    Kokori, A.; Tsiaras, A.

    2017-09-01

    Previous research on Citizen Science projects agree that Citizen Science (CS) would serve as a way of both increasing levels of public understanding of science and public participation in scientific research. Historically, the concept of CS is not new, it dates back to the 20th century when citizens where making skilled observations, particularly in archaeology, ecology, and astronomy. Recently, the idea of CS has been improved due to technological progress and the arrival of Internet. The phrase "astronomy from the chair" that is being used in the literature highlights the extent of the convenience for analysing observational data. Citizen science benefits a variety of communities, such as scientific researchers, volunteers and STEM educators. Participating in CS projects is not only engaging the volunteers with the research goals of a science team, but is also helping them learning more about specialised scientific topics. In the case of astronomy, typical examples of CS projects are gathering observational data or/and analysing them. The Holomon Photometric Software (HOPS) is a user-friendly photometric software for exoplanets, with graphical representations, statistics, models, options are brought together into a single package. It was originally developed to analyse observations of transiting exoplanets obtained from the Holomon Astronomical Station of the Aristotle University of Thessaloniki. Here, we make the case that this software can be used as part of a CS project in analysing transiting exoplanets and producing light-curves. HOPS could contribute to the scientific data analysis but it could be used also as an educational tool for learning and visualizing photometry analyses of transiting exoplanets. Such a tool could be proven very efficient in the context of public participation in the research. In recent successful representative examples such as Galaxy Zoo professional astronomers cooperating with CS discovered a group of rare galaxies by using

  18. Improving Transit Predictions of Known Exoplanets with TERMS

    Directory of Open Access Journals (Sweden)

    Mahadevan S.

    2011-02-01

    Full Text Available Transiting planet discoveries have largely been restricted to the short-period or low-periastron distance regimes due to the bias inherent in the geometric transit probability. Through the refinement of planetary orbital parameters, and hence reducing the size of transit windows, long-period planets become feasible targets for photometric follow-up. Here we describe the TERMS project that is monitoring these host stars at predicted transit times.

  19. LkCa 15: A YOUNG EXOPLANET CAUGHT AT FORMATION?

    International Nuclear Information System (INIS)

    Kraus, Adam L.; Ireland, Michael J.

    2012-01-01

    Young and directly imaged exoplanets offer critical tests of planet-formation models that are not matched by radial velocity surveys of mature stars. These targets have been extremely elusive to date, with no exoplanets younger than 10-20 Myr and only a handful of direct-imaged exoplanets at all ages. We report the direct-imaging discovery of a likely (proto)planet around the young (∼2 Myr) solar analog LkCa 15, located inside a known gap in the protoplanetary disk (a 'transitional disk'). Our observations use non-redundant aperture masking interferometry at three epochs to reveal a faint and relatively blue point source (M K ' =9.1±0.2, K' – L' = 0.98 ± 0.22), flanked by approximately co-orbital emission that is red and resolved into at least two sources (M L ' =7.5±0.2, K' – L' = 2.7 ± 0.3; M L ' =7.4±0.2, K' – L' = 1.94 ± 0.16). We propose that the most likely geometry consists of a newly formed (proto)planet that is surrounded by dusty material. The nominal estimated mass is ∼6 M Jup according to the 1 Myr hot-start models. However, we argue based on its luminosity, color, and the presence of circumplanetary material that the planet has likely been caught at its epoch of assembly, and hence this mass is an upper limit due to its extreme youth and flux contributed by accretion. The projected separations (71.9 ± 1.6 mas, 100.7 ± 1.9 mas, and 88.2 ± 1.8 mas) and deprojected orbital radii (16, 21, and 19 AU) correspond to the center of the disk gap, but are too close to the primary star for a circular orbit to account for the observed inner edge of the outer disk, so an alternative explanation (i.e., additional planets or an eccentric orbit) is likely required. This discovery is the first direct evidence that at least some transitional disks do indeed host newly formed (or forming) exoplanetary systems, and the observed properties provide crucial insight into the gas giant formation process.

  20. Discovery, Characterization, and Dynamics of Transiting Exoplanets

    DEFF Research Database (Denmark)

    Van Eylen, Vincent

    2015-01-01

    of the planet Kepler-410A~b, a Neptune-sized planet in a 17 day orbit. Kepler-410 is composed of two stars, one of which hosts a transiting planet, and an additional non-transiting planet. The latter was discovered due to its gravitational influence on Kepler-410A~b, which causes a variation in the timing...

  1. Combining Photometry from Kepler and TESS to Improve Short-Period Exoplanet Characterization

    Science.gov (United States)

    Placek, Ben; Knuth, Kevin H.; Angerhausen, Daniel

    2016-01-01

    Planets emit thermal radiation and reflect incident light that they receive from their host stars. As a planet orbits its host star the photometric variations associated with these two effects produce very similar phase curves. If observed through only a single bandpass, this leads to a degeneracy between certain planetary parameters that hinder the precise characterization of such planets. However, observing the same planet through two different bandpasses gives much more information about the planet. Here we develop a Bayesian methodology for combining photometry from both Kepler and the Transiting Exoplanet Survey Satellite. In addition, we demonstrate via simulations that one can disentangle the reflected and thermally emitted light from the atmosphere of a hot-Jupiter as well as more precisely constrain both the geometric albedo and day-side temperature of the planet. This methodology can further be employed using various combinations of photometry from the James Webb Space Telescope, the Characterizing ExOplanet Satellite, or the PLATO mission.

  2. TRANSITING PLANETS WITH LSST. II. PERIOD DETECTION OF PLANETS ORBITING 1 M{sub ⊙} HOSTS

    Energy Technology Data Exchange (ETDEWEB)

    Jacklin, Savannah [Department of Astrophysics and Planetary Science, Villanova University, Villanova, PA 19085 (United States); Lund, Michael B.; Stassun, Keivan G. [Department of Physics and Astronomy, Vanderbilt University, Nashville, TN 37235 (United States); Pepper, Joshua [Department of Physics, Lehigh University, Bethlehem, PA 18015 (United States)

    2015-07-15

    The Large Synoptic Survey Telescope (LSST) will photometrically monitor ∼10{sup 9} stars for 10 years. The resulting light curves can be used to detect transiting exoplanets. In particular, as demonstrated by Lund et al., LSST will probe stellar populations currently undersampled in most exoplanet transit surveys, including out to extragalactic distances. In this paper we test the efficiency of the box-fitting least-squares (BLS) algorithm for accurately recovering the periods of transiting exoplanets using simulated LSST data. We model planets with a range of radii orbiting a solar-mass star at a distance of 7 kpc, with orbital periods ranging from 0.5 to 20 days. We find that standard-cadence LSST observations will be able to reliably recover the periods of Hot Jupiters with periods shorter than ∼3 days; however, it will remain a challenge to confidently distinguish these transiting planets from false positives. At the same time, we find that the LSST deep-drilling cadence is extremely powerful: the BLS algorithm successfully recovers at least 30% of sub-Saturn-size exoplanets with orbital periods as long as 20 days, and a simple BLS power criterion robustly distinguishes ∼98% of these from photometric (i.e., statistical) false positives.

  3. Preferred Hosts for Short-Period Exoplanets

    Science.gov (United States)

    Kohler, Susanna

    2015-12-01

    In an effort to learn more about how planets form around their host stars, a team of scientists has analyzed the population of Kepler-discovered exoplanet candidates, looking for trends in where theyre found.Planetary OccurrenceSince its launch in 2009, Kepler has found thousands of candidate exoplanets around a variety of star types. Especially intriguing is the large population of super-Earths and mini-Neptunes planets with masses between that of Earth and Neptune that have short orbital periods. How did they come to exist so close to their host star? Did they form in situ, or migrate inwards, or some combination of both processes?To constrain these formation mechanisms, a team of scientists led by Gijs Mulders (University of Arizona and NASAs NExSS coalition) analyzed the population of Kepler planet candidates that have orbital periods between 2 and 50 days.Mulders and collaborators used statistical reconstructions to find the average number of planets, within this orbital range, around each star in the Kepler field. They then determined how this planet occurrence rate changed for different spectral types and therefore the masses of the host stars: do low-mass M-dwarf stars host more or fewer planets than higher-mass, main-sequence F, G, or K stars?Challenging ModelsAuthors estimates for the occurrence rate for short-period planets of different radii around M-dwarfs (purple) and around F, G, and K-type stars (blue). [Mulders et al. 2015]The team found that M dwarfs, compared to F, G, or K stars, host about half as many large planets with orbital periods of P 50 days. But, surprisingly, they host significantly more small planets, racking up an average of 3.5 times the number of planets in the size range of 12.8 Earth-radii.Could it be that M dwarfs have a lower total mass of planets, but that mass is distributed into more, smaller planets? Apparently not: the authors show that the mass of heavy elements trapped in short-orbital-period planets is higher for M

  4. The possible false-detection of a transiting brown dwarf candidate in the overlapping fields of Kepler and MARVELS

    Science.gov (United States)

    Reyes, Alan; Ge, Jian; Thomas, Neil; Ma, Bo; Heslar, Michael Francis; SDSS-III MARVELS Team

    2016-01-01

    While searching for exoplanets via the transit method, it has been documented that the periodicity of an unresolved background eclipsing binary (BEB) can be misinterpreted as the orbital companion of a target star. We explore the possibility that this false-positive contamination method can also occur in Doppler surveys if the angular separation between a BEB and a selected primary is under a certain threshold, dependent on the fiber diameter of the spectrometer instrument. The case example of this investigation is a K2 giant in the constellation Cygnus, in the region of overlap of the Kepler and MARVELS surveys. This star was originally flagged for potentially having a 5.56d period companion as per the Kepler transit photometry. It was also imbricated with radial velocity (RV) observations performed by the SDSS-III MARVELS survey, in which Doppler information was extracted from along the dispersion direction of the fiducially-calibrated, post-pipeline-rendered spectra. The 5.56d period was corroborated after testing its probability against that of others via a Lomb-Scargle periodogram analysis. The pipeline mass determination yielded a ~17 MJupiter companion, within the characteristic mass-range of brown dwarfs. The MARVELS results seem to constitute an independent discovery, and hence confirmation, of the brown dwarf candidate. However, a later investigation conducted by EXPERT, intent upon refining the system's physical parameters, failed to identify the RV signal of any companion whatsoever. EXPERT, with its superior resolving power (R=30,000 vs R=11,000 in MARVELS), finer fiber width (1.2 vs 1.9 arcsec), and higher degree of precision (~10 m/s), was expected to finalize the confirmation, but now offers a major challenge to previous models of the system. Additionally, high-resolution adaptive optics imaging reveals the presence of a distinct, close-in object. The object may itself be an unbound BEB, and thus the source of the period signals reported by Kepler

  5. Planet Candidate Validation in K2 Crowded Fields

    Science.gov (United States)

    Rampalli, Rayna; Vanderburg, Andrew; Latham, David; Quinn, Samuel

    2018-01-01

    In just three years, the K2 mission has yielded some remarkable outcomes with the discovery of over 100 confirmed planets and 500 reported planet candidates to be validated. One challenge with this mission is the search for planets located in star-crowded regions. Campaign 13 is one such example, located towards the galactic plane in the constellation of Taurus. We subject the potential planetary candidates to a validation process involving spectroscopy to derive certain stellar parameters. Seeing-limited on/off imaging follow-up is also utilized in order to rule out false positives due to nearby eclipsing binaries. Using Markov chain Monte Carlo analysis, the best-fit parameters for each candidate are generated. These will be suitable for finding a candidate’s false positive probability through methods including feeding such parameters into the Validation of Exoplanet Signals using a Probabilistic Algorithm (VESPA). These techniques and results serve as important tools for conducting candidate validation and follow-up observations for space-based missions such as the upcoming TESS mission since TESS’s large camera pixels resemble K2’s star-crowded fields.

  6. Are "Habitable" Exoplanets Really Habitable? -A perspective from atmospheric loss

    Science.gov (United States)

    Dong, C.; Huang, Z.; Jin, M.; Lingam, M.; Ma, Y. J.; Toth, G.; van der Holst, B.; Airapetian, V.; Cohen, O.; Gombosi, T. I.

    2017-12-01

    In the last two decades, the field of exoplanets has witnessed a tremendous creative surge. Research in exoplanets now encompasses a wide range of fields ranging from astrophysics to heliophysics and atmospheric science. One of the primary objectives of studying exoplanets is to determine the criteria for habitability, and whether certain exoplanets meet these requirements. The classical definition of the Habitable Zone (HZ) is the region around a star where liquid water can exist on the planetary surface given sufficient atmospheric pressure. However, this definition largely ignores the impact of the stellar wind and stellar magnetic activity on the erosion of an exoplanet's atmosphere. Amongst the many factors that determine habitability, understanding the mechanisms of atmospheric loss is of paramount importance. We will discuss the impact of exoplanetary space weather on climate and habitability, which offers fresh insights concerning the habitability of exoplanets, especially those orbiting M-dwarfs, such as Proxima b and the TRAPPIST-1 system. For each case, we will demonstrate the importance of the exoplanetary space weather on atmospheric ion loss and habitability.

  7. The TESS Input Catalog and Selection of Targets for the TESS Transit Search

    Science.gov (United States)

    Pepper, Joshua; Stassun, Keivan G.; Paegert, Martin; Oelkers, Ryan; De Lee, Nathan Michael; Torres, Guillermo; TESS Target Selection Working Group

    2018-01-01

    The TESS mission will photometrically survey millions of the brightest stars over almost the entire the sky to detect transiting exoplanets. A key step to enable that search is the creation of the TESS Input Catalog (TIC), a compiled catalog of 700 million stars and galaxies with observed and calculated parameters. From the TIC we derive the Candidate Target List (CTL) to identify target stars for the 2-minute TESS postage stamps. The CTL is designed to identify the best stars for the detection of small planets, which includes all bright cool dwarf stars in the sky. I will describe the target selection strategy, the distribution of stars in the current CTL, and how both the TIC and CTL will expand and improve going forward.

  8. Earth as an Exoplanet: Lessons in Recognizing Planetary Habitability

    Science.gov (United States)

    Meadows, Victoria; Robinson, Tyler; Misra, Amit; Ennico, Kimberly; Sparks, William B.; Claire, Mark; Crisp, David; Schwieterman, Edward; Bussey, D. Ben J.; Breiner, Jonathan

    2015-01-01

    Earth will always be our best-studied example of a habitable world. While extrasolar planets are unlikely to look exactly like Earth, they may share key characteristics, such as oceans, clouds and surface inhomogeneity. Earth's globally-averaged characteristics can therefore help us to recognize planetary habitability in data-limited exoplanet observations. One of the most straightforward ways to detect habitability will be via detection of 'glint', specular reflectance from an ocean (Robinson et al., 2010). Other methods include undertaking a census of atmospheric greenhouse gases, or attempting to measure planetary surface temperature and pressure, to determine if liquid water would be feasible on the planetary surface. Here we present recent research on detecting planetary habitability, led by the NASA Astrobiology Institute's Virtual Planetary Laboratory Team. This work includes a collaboration with the NASA Lunar Science Institute on the detection of ocean glint and ozone absorption using Lunar Crater Observation and Sensing Satellite (LCROSS) Earth observations (Robinson et al., 2014). This data/model comparison provides the first observational test of a technique that could be used to determine exoplanet habitability from disk-integrated observations at visible and near-infrared wavelengths. We find that the VPL spectral Earth model is in excellent agreement with the LCROSS Earth data, and can be used to reliably predict Earth's appearance at a range of phases relevant to exoplanet observations. Determining atmospheric surface pressure and temperature directly for a potentially habitable planet will be challenging due to the lack of spatial-resolution, presence of clouds, and difficulty in spectrally detecting many bulk constituents of terrestrial atmospheres. Additionally, Rayleigh scattering can be masked by absorbing gases and absorption from the underlying surface. However, new techniques using molecular dimers of oxygen (Misra et al., 2014) and nitrogen

  9. Exoplanet Classification and Yield Estimates for Direct Imaging Missions

    Science.gov (United States)

    Kopparapu, Ravi Kumar; Hébrard, Eric; Belikov, Rus; Batalha, Natalie M.; Mulders, Gijs D.; Stark, Chris; Teal, Dillon; Domagal-Goldman, Shawn; Mandell, Avi

    2018-04-01

    Future NASA concept missions that are currently under study, like the Habitable Exoplanet Imaging Mission (HabEx) and the Large Ultra-violet Optical Infra Red Surveyor, could discover a large diversity of exoplanets. We propose here a classification scheme that distinguishes exoplanets into different categories based on their size and incident stellar flux, for the purpose of providing the expected number of exoplanets observed (yield) with direct imaging missions. The boundaries of this classification can be computed using the known chemical behavior of gases and condensates at different pressures and temperatures in a planetary atmosphere. In this study, we initially focus on condensation curves for sphalerite ZnS, {{{H}}}2{{O}}, {CO}}2, and {CH}}4. The order in which these species condense in a planetary atmosphere define the boundaries between different classes of planets. Broadly, the planets are divided into rocky planets (0.5–1.0 R ⊕), super-Earths (1.0–1.75 R ⊕), sub-Neptunes (1.75–3.5 R ⊕), sub-Jovians (3.5–6.0 R ⊕), and Jovians (6–14.3 R ⊕) based on their planet sizes, and “hot,” “warm,” and “cold” based on the incident stellar flux. We then calculate planet occurrence rates within these boundaries for different kinds of exoplanets, η planet, using the community coordinated results of NASA’s Exoplanet Program Analysis Group’s Science Analysis Group-13 (SAG-13). These occurrence rate estimates are in turn used to estimate the expected exoplanet yields for direct imaging missions of different telescope diameters.

  10. THE INFLUENCE OF THE EXTREME ULTRAVIOLET SPECTRAL ENERGY DISTRIBUTION ON THE STRUCTURE AND COMPOSITION OF THE UPPER ATMOSPHERE OF EXOPLANETS

    Energy Technology Data Exchange (ETDEWEB)

    Guo, J. H. [Yunnan Observatories, Chinese Academy of Sciences, P.O. Box 110, Kunming 650011 (China); Ben-Jaffel, Lotfi, E-mail: guojh@ynao.ac.cn, E-mail: bjaffel@iap.fr [Sorbonne Universités, UPMC Univ. Paris 6 et CNRS, UMR 7095, Institut Astrophysique de Paris, F-75014 Paris (France)

    2016-02-20

    By varying the profiles of stellar extreme ultraviolet (EUV) spectral energy distributions (SEDs), we tested the influences of stellar EUV SEDs on the physical and chemical properties of an escaping atmosphere. We apply our model to study four exoplanets: HD 189733b, HD 209458b, GJ 436b, and Kepler-11b. We find that the total mass loss rates of an exoplanet, which are determined mainly by the integrated fluxes, are moderately affected by the profiles of the EUV SED, but the composition and species distributions in the atmosphere can be dramatically modified by the different profiles of the EUV SED. For exoplanets with a high hydrodynamic escape parameter (λ), the amount of atomic hydrogen produced by photoionization at different altitudes can vary by one to two orders of magnitude with the variation of stellar EUV SEDs. The effect of photoionization of H is prominent when the EUV SED is dominated by the low-energy spectral region (400–900 Å), which pushes the transition of H/H{sup +} to low altitudes. In contrast, the transition of H/H{sup +} moves to higher altitudes when most photons are concentrated in the high-energy spectral region (50–400 Å). For exoplanets with a low λ, the lower temperatures of the atmosphere make many chemical reactions so important that photoionization alone can no longer determine the composition of the escaping atmosphere. For HD 189733b, it is possible to explain the time variability of Lyα between 2010 and 2011 by a change in the EUV SED of the host K-type star, yet invoking only thermal H i in the atmosphere.

  11. Characterization of extra-solar planets and their atmospheres (Spectroscopy of transits and atmospheric escape)

    International Nuclear Information System (INIS)

    Bourrier, Vincent

    2014-01-01

    Hot Jupiters are exo-planets so close to their star that their atmosphere can lose gas because of hydrodynamic escape. Transiting gaseous giants are an excellent way to understand this mechanism, but it is necessary to study other types of planets to determine its impact on the exo-planetary population. This thesis aims at using transit spectroscopy to observe the atmosphere of several exo-planets, to study their properties and to contribute to the characterization of hydrodynamic escape. UV lines observed with the Hubble telescope are analyzed with the numerical model of upper atmospheres we developed. Using the Ly-α line we identify energetic and dynamical interactions between the atmospheres of the hot Jupiters HD209458b and HD189733b and their stars. We study the dependence of the escape on the environment of a planet and on its physical properties, through the observation of a super-Earth and a warm Jupiter in the 55 Cnc system. Using observations of HD209458b, we show that magnesium lines are a window on the region of formation of hydrodynamic escape. We study the potential of transit spectroscopy in the near-UV to detect new cases of atmospheric escape. This mechanism is fostered by the proximity of a planet to its star, which makes it even more important to understand the formation and migration processes that can be traced in the alignment of a planetary system. Using measures from the spectrographs HARPS-N and SOPHIE we study the alignments of 55 Cnc e and the Kepler candidate KOI 12.01, whose planetary nature we also seek to validate. (author)

  12. The Transit Light Curve Project. VIII. Six Occultations of the Exoplanet TrES-3

    OpenAIRE

    Winn, Joshua N.; Holman, Matthew J.; Shporer, Avi; Fernandez, Jose; Mazeh, Tsevi; Latham, David W.; Charbonneau, David; Everett, Mark E.

    2008-01-01

    We present photometry of the exoplanet host star TrES-3 spanning six occultations (secondary eclipses) of its giant planet. No flux decrements were detected, leading to 99%-confidence upper limits on the planet-to-star flux ratio of 0.00024, 0.0005, and 0.00086 in the i, z, and R bands respectively. The corresponding upper limits on the planet's geometric albedo are 0.30, 0.62, and 1.07. The upper limit in the i band rules out the presence of highly reflective clouds, and is only a factor of ...

  13. Broadband polarimetry of exoplanets : modelling signals of surfaces, hazes and clouds

    NARCIS (Netherlands)

    Karalidi, Theodora

    2013-01-01

    It is less than 20 years since astronomers discovered the first exoplanet orbiting a Sun-like star. In this short period more than 770 confirmed exoplanets have been detected. With so many exoplanets the next step is their characterization. What is their atmosphere made of? Does it contain water

  14. TWO EXOPLANETS DISCOVERED AT KECK OBSERVATORY

    International Nuclear Information System (INIS)

    Valenti, Jeff A.; Fischer, Debra; Giguere, Matt; Isaacson, Howard; Marcy, Geoffrey W.; Howard, Andrew W.; Johnson, John A.; Henry, Gregory W.; Wright, Jason T.

    2009-01-01

    We present two exoplanets detected at Keck Observatory. HD 179079 is a G5 subgiant that hosts a hot Neptune planet with M sin i = 27.5 M + in a 14.48 days, low-eccentricity orbit. The stellar reflex velocity induced by this planet has a semiamplitude of K = 6.6 m s -1 . HD 73534 is a G5 subgiant with a Jupiter-like planet of M sin i = 1.1 M Jup and K = 16 m s -1 in a nearly circular 4.85 yr orbit. Both stars are chromospherically inactive and metal-rich. We discuss a known, classical bias in measuring eccentricities for orbits with velocity semiamplitudes, K, comparable to the radial velocity uncertainties. For exoplanets with periods longer than 10 days, the observed exoplanet eccentricity distribution is nearly flat for large amplitude systems (K > 80 m s -1 ), but rises linearly toward low eccentricity for lower amplitude systems (K > 20 m s -1 ).

  15. In Search of Stellar Music: Finding Pulsators for the TESS Mission

    Science.gov (United States)

    Richey-Yowell, Tyler; Pepper, Joshua; KELT Collaboration

    2017-01-01

    The Transiting Exoplanet Survey Satellite (TESS) will search for small transiting exoplanets orbiting bright stars. One of the additional mission objectives is to observe oscillating variable stars to precisely measure these stars’ masses, radii, and internal structures. Since TESS can observe only a limited number of stars with high enough cadence to detect these oscillations, it is necessary to identify candidates that will yield the most valuable results. Using data from the Kilodegree Extremely Little Telescope (KELT), we searched for bright stars showing oscillations to be included as TESS targets. We found 2,108 variable stars with B-V < 0.5 and P < 5 days. Further analysis will be carried out to establish final candidates. This project was funded by the National Science Foundation grant PHY-1359195 to the Lehigh University REU program.

  16. A Test of the Fundamental Physics Underlying Exoplanet Climate Models

    Science.gov (United States)

    Beatty, Thomas; Keating, Dylan; Cowan, Nick; Gaudi, Scott; Kataria, Tiffany; Fortney, Jonathan; Stassun, Keivan; Collins, Karen; Deming, Drake; Bell, Taylor; Dang, Lisa; Rogers, Tamara; Colon, Knicole

    2018-05-01

    A fundamental issue in how we understand exoplanet atmospheres is the assumed physical behavior underlying 3D global circulation models (GCMs). Modeling an entire 3D atmosphere is a Herculean task, and so in exoplanet GCMs we generally assume that there are no clouds, no magnetic effects, and chemical equilibrium (e.g., Kataria et al 2016). These simplifying assumptions are computationally necessary, but at the same time their exclusion allows for a large theoretical lee-way when comparing to data. Thus, though significant discrepancies exist between almost all a priori GCM predictions and their corresponding observations, these are assumed to be due to the lack of clouds, or atmospheric drag, or chemical disequilibrium, in the models (e.g., Wong et al. 2016, Stevenson et al. 2017, Lewis et al. 2017, Zhang et al. 2018). Since these effects compete with one another and have large uncertainties, this makes tests of the fundamental physics in GCMs extremely difficult. To rectify this, we propose to use 88.4 hours of Spitzer time to observe 3.6um and 4.5um phase curves of the transiting giant planet KELT-9b. KELT-9b has an observed dayside temperature of 4600K (Gaudi et al. 2017), which means that there will very likely be no clouds on the day- or nightside, and is hot enough that the atmosphere should be close to local chemical equilibrium. Additionally, we plan to leverage KELT-9b's high temperature to make the first measurement of global wind speed on an exoplanet (Bell & Cowan 2018), giving a constraint on atmospheric drag and magnetic effects. Combined, this means KELT-9b is close to a real-world GCM, without most of the effects present on lower temperature planets. Additionally, since KELT-9b orbits an extremely bright host star these will be the highest signal-to-noise ratio phase curves taken with Spitzer by more than a factor of two. This gives us a unique opportunity to make the first precise and direct investigation into the fundamental physics that are the

  17. Analytic Reflected Lightcurves for Exoplanets

    Science.gov (United States)

    Haggard, Hal M.; Cowan, Nicolas B.

    2018-04-01

    The disk-integrated reflected brightness of an exoplanet changes as a function of time due to orbital and rotational motion coupled with an inhomogeneous albedo map. We have previously derived analytic reflected lightcurves for spherical harmonic albedo maps in the special case of a synchronously-rotating planet on an edge-on orbit (Cowan, Fuentes & Haggard 2013). In this letter, we present analytic reflected lightcurves for the general case of a planet on an inclined orbit, with arbitrary spin period and non-zero obliquity. We do so for two different albedo basis maps: bright points (δ-maps), and spherical harmonics (Y_l^m-maps). In particular, we use Wigner D-matrices to express an harmonic lightcurve for an arbitrary viewing geometry as a non-linear combination of harmonic lightcurves for the simpler edge-on, synchronously rotating geometry. These solutions will enable future exploration of the degeneracies and information content of reflected lightcurves, as well as fast calculation of lightcurves for mapping exoplanets based on time-resolved photometry. To these ends we make available Exoplanet Analytic Reflected Lightcurves (EARL), a simple open-source code that allows rapid computation of reflected lightcurves.

  18. The exoplanet handbook

    National Research Council Canada - National Science Library

    Perryman, M. A. C

    2011-01-01

    .... It treats the many different techniques now available for exoplanet detection and characterisation, the broad range of underlying physics, the overlap with related topics in solar system and Earth sciences, and the concepts underpinning future developments. It emphasises the interconnection between the various topics, and provides extensive refe...

  19. THE LICK-CARNEGIE SURVEY: FOUR NEW EXOPLANET CANDIDATES

    International Nuclear Information System (INIS)

    Meschiari, Stefano; Laughlin, Gregory; Vogt, Steven S.; Rivera, Eugenio J.; Butler, R. Paul; Haghighipour, Nader; Jalowiczor, Peter

    2011-01-01

    We present new precise HIRES radial velocity (RV) data sets of five nearby stars obtained at Keck Observatory. HD 31253, HD 218566, HD 177830, HD 99492, and HD 74156 are host stars of spectral classes F through K and show RV variations consistent with new or additional planetary companions in Keplerian motion. The orbital parameters of the candidate planets in the five planetary systems span minimum masses of M sin i = 27.43 M + to 8.28 M J , periods of 17.05-4696.95 days and eccentricities ranging from circular to extremely eccentric (e ∼ 0.63). The fifth star, HD 74156, was known to have both a 52 day and a 2500 day planet, and was claimed to also harbor a third planet at 336 days, in apparent support of the 'Packed Planetary System' hypothesis. Our greatly expanded data set for HD 74156 provides strong confirmation of both the 52 day and 2500 day planets, but strongly contradicts the existence of a 336 day planet, and offers no significant evidence for any other planets in the system.

  20. Titania may produce abiotic oxygen atmospheres on habitable exoplanets.

    Science.gov (United States)

    Narita, Norio; Enomoto, Takafumi; Masaoka, Shigeyuki; Kusakabe, Nobuhiko

    2015-09-10

    The search for habitable exoplanets in the Universe is actively ongoing in the field of astronomy. The biggest future milestone is to determine whether life exists on such habitable exoplanets. In that context, oxygen in the atmosphere has been considered strong evidence for the presence of photosynthetic organisms. In this paper, we show that a previously unconsidered photochemical mechanism by titanium (IV) oxide (titania) can produce abiotic oxygen from liquid water under near ultraviolet (NUV) lights on the surface of exoplanets. Titania works as a photocatalyst to dissociate liquid water in this process. This mechanism offers a different source of a possibility of abiotic oxygen in atmospheres of exoplanets from previously considered photodissociation of water vapor in upper atmospheres by extreme ultraviolet (XUV) light. Our order-of-magnitude estimation shows that possible amounts of oxygen produced by this abiotic mechanism can be comparable with or even more than that in the atmosphere of the current Earth, depending on the amount of active surface area for this mechanism. We conclude that titania may act as a potential source of false signs of life on habitable exoplanets.

  1. Validation of small Kepler transiting planet candidates in or near the habitable zone

    DEFF Research Database (Denmark)

    Torres, Guillermo; Kane, Stephen R.; Rowe, Jason F.

    2017-01-01

    A main goal of NASA's Kepler Mission is to establish the frequency of potentially habitable Earth-size planets (). Relatively few such candidates identified by the mission can be confirmed to be rocky via dynamical measurement of their mass. Here we report an effort to validate 18 of them...... statistically using the BLENDER technique, by showing that the likelihood they are true planets is far greater than that of a false positive. Our analysis incorporates follow-up observations including high-resolution optical and near-infrared spectroscopy, high-resolution imaging, and information from...... the analysis of the flux centroids of the Kepler observations themselves. Although many of these candidates have been previously validated by others, the confidence levels reported typically ignore the possibility that the planet may transit a star different from the target along the same line of sight...

  2. Refraction in exoplanet atmospheres: Photometric signatures, implications for transmission spectroscopy, and search in Kepler data

    OpenAIRE

    Alp, Dennis; Demory, Brice-Olivier

    2017-01-01

    Refraction deflects photons that pass through atmospheres, which affects transit light curves. Refraction thus provides an avenue to probe physical properties of exoplanet atmospheres and to constrain the presence of clouds and hazes. In addition, an effective surface can be imposed by refraction, thereby limiting the pressure levels probed by transmission spectroscopy. The main objective of the paper is to model the effects of refraction on photometric light curves for realistic planets and ...

  3. The Gemini Planet Imager Exoplanet Survey

    Science.gov (United States)

    Nielsen, Eric L.; Macintosh, Bruce; Graham, James R.; Barman, Travis S.; Doyon, Rene; Fabrycky, Daniel; Fitzgerald, Michael P.; Kalas, Paul; Konopacky, Quinn M.; Marchis, Franck; Marley, Mark S.; Marois, Christian; Patience, Jenny; Perrin, Marshall D.; Oppenheimer, Rebecca; Song, Inseok; GPIES Team

    2017-01-01

    The Gemini Planet Imager Exoplanet Survey (GPIES) is one of the largest most sensitive direct imaging searches for exoplanets conducted to date, and having observed more than 300 stars the survey is halfway complete. We present highlights from the first half of the survey, including the discovery and characterization of the young exoplanet 51 Eri b and the brown dwarf HR 2562 B, new imaging of multiple disks, and resolving the young stellar binary V343 Nor for the first time. GPI has also provided new spectra and orbits of previous known planets and brown dwarfs and polarization measurements of a wide range of disks. Finally, we discuss the constraints placed by the first half of the GPIES campaign on the population of giant planets at orbital separations beyond that of Jupiter. Supported by NSF grants AST-0909188 and AST-1313718, AST-1411868, AST 141378, NNX11AF74G, and DGE-1232825, and by NASA grants NNX15AD95G/NEXSS and NNX11AD21G.

  4. THE TRANSIT TRANSMISSION SPECTRUM OF A COLD GAS GIANT PLANET

    Energy Technology Data Exchange (ETDEWEB)

    Dalba, Paul A.; Muirhead, Philip S.; Veyette, Mark J. [Department of Astronomy, Boston University, 725 Commonwealth Avenue, Boston, MA 02215 (United States); Fortney, Jonathan J. [Department of Astronomy and Astrophysics, University of California, Santa Cruz, CA 95064 (United States); Hedman, Matthew M. [Department of Physics, University of Idaho, Moscow, ID 83843 (United States); Nicholson, Philip D., E-mail: pdalba@bu.edu [Department of Astronomy, Cornell University, Ithaca, NY 14853 (United States)

    2015-12-01

    We use solar occultations observed by the Visual and Infrared Mapping Spectrometer on board the Cassini Spacecraft to extract the 1–5 μm transmission spectrum of Saturn, as if it were a transiting exoplanet. We detect absorption from methane, ethane, acetylene, aliphatic hydrocarbons, and possibly carbon monoxide, with peak-to-peak features of up to 90 parts-per-million despite the presence of ammonia clouds. We also find that atmospheric refraction, as opposed to clouds or haze, determines the minimum altitude that could be probed during mid-transit. Self-consistent exoplanet atmosphere models show good agreement with Saturn’s transmission spectrum but fail to reproduce a large absorption feature near 3.4 μm, likely caused by gaseous ethane and a C–H stretching mode of an unknown aliphatic hydrocarbon. This large feature is located in one of the Spitzer Space Telescope bandpasses and could alter interpretations of transmission spectra if not properly modeled. The large signal in Saturn’s transmission spectrum suggests that transmission spectroscopy of cold, long-period gaseous exoplanets should be possible with current and future observatories. Motivated by these results, we briefly consider the feasibility of  using a survey to search for and characterize cold exoplanets that are analogous to Jupiter and Saturn utilizing a target-of-opportunity approach.

  5. CLIMATE PATTERNS OF HABITABLE EXOPLANETS IN ECCENTRIC ORBITS AROUND M DWARFS

    Energy Technology Data Exchange (ETDEWEB)

    Wang, Yuwei; Hu, Yongyun [Laboratory for Climate and Ocean-Atmosphere Sciences, Department of Atmospheric and Oceanic Sciences, School of Physics, Peking University, Beijing 100871 China (China); Tian, Feng, E-mail: yyhu@pku.edu.cn [Ministry of Education Key Laboratory for Earth System Modeling, Center for Earth System Science, Tsinghua University, Beijing 100084 (China)

    2014-08-10

    Previous studies show that synchronous rotating habitable exoplanets around M dwarfs should have an ''eyeball'' climate pattern—a limited region of open water on the day side and ice on the rest of the planet. However, exoplanets with nonzero eccentricities could have spin-orbit resonance states different from the synchronous rotation state. Here, we show that a striped-ball climate pattern, with a global belt of open water at low and middle latitudes and ice over both polar regions, should be common on habitable exoplanets in eccentric orbits around M dwarfs. We further show that these different climate patterns can be observed by future exoplanet detection missions.

  6. Atmospheric Seasonality as an Exoplanet Biosignature

    Science.gov (United States)

    Olson, Stephanie L.; Schwieterman, Edward W.; Reinhard, Christopher T.; Ridgwell, Andy; Kane, Stephen R.; Meadows, Victoria S.; Lyons, Timothy W.

    2018-05-01

    Current investigations of exoplanet biosignatures have focused on static evidence of life, such as the presence of biogenic gases like O2 or CH4. However, the expected diversity of terrestrial planet atmospheres and the likelihood of both “false positives” and “false negatives” for conventional biosignatures motivate exploration of additional life detection strategies, including time-varying signals. Seasonal variation in atmospheric composition is a biologically modulated phenomenon on Earth that may occur elsewhere because it arises naturally from the interplay between the biosphere and time-variable insolation. The search for seasonality as a biosignature would avoid many assumptions about specific metabolisms and provide an opportunity to directly quantify biological fluxes—allowing us to characterize, rather than simply recognize, biospheres on exoplanets. Despite this potential, there have been no comprehensive studies of seasonality as an exoplanet biosignature. Here, we provide a foundation for further studies by reviewing both biological and abiological controls on the magnitude and detectability of seasonality of atmospheric CO2, CH4, O2, and O3 on Earth. We also consider an example of an inhabited world for which atmospheric seasonality may be the most notable expression of its biosphere. We show that life on a low O2 planet like the weakly oxygenated mid-Proterozoic Earth could be fingerprinted by seasonal variation in O3 as revealed in its UV Hartley–Huggins bands. This example highlights the need for UV capabilities in future direct-imaging telescope missions (e.g., LUVOIR/HabEx) and illustrates the diagnostic importance of studying temporal biosignatures for exoplanet life detection/characterization.

  7. An Observational Diagnostic for Distinguishing Between Clouds and Haze in Hot Exoplanet Atmospheres

    Science.gov (United States)

    Kempton, Eliza; Bean, Jacob; Parmentier, Vivien

    2018-01-01

    The nature of aerosols in hot exoplanet atmospheres is one of the primary vexing questions facing the exoplanet field. The complex chemistry, multiple formation pathways, and lack of easily identifiable spectral features associated with aerosols make it especially challenging to constrain their key properties. We present a transmission spectroscopy technique to identify the primary aerosol formation mechanism for the most highly irradiated hot Jupiters (HIHJs). The technique is based on the idea that the two key types of aerosols -- photochemically generated hazes and equilibrium condensate clouds -- are expected to form and persist in different regions of a highly irradiated planet's atmosphere. Haze can only be produced on the permanent daysides of tidally-locked hot Jupiters, and will be carried downwind by atmospheric dynamics to the evening terminator (seen as the trailing limb during transit). Clouds can only form in cooler regions on the night side and morning terminator of HIHJs (seen as the leading limb during transit). Because opposite limbs are expected to be impacted by different types of aerosols, ingress and egress spectra, which primarily probe opposing sides of the planet, will reveal the dominant aerosol formation mechanism. We show that the benchmark HIHJ, WASP-121b, has a transmission spectrum consistent with partial aerosol coverage and that ingress-egress spectroscopy would constrain the location and formation mechanism of those aerosols. In general, we find that observations with JWST and potentially with HST should be able to distinguish between clouds and haze for currently known HIHJs.

  8. Stargate: An Open Stellar Catalog for NASA Exoplanet Exploration

    Science.gov (United States)

    Tanner, Angelle

    NASA is invested in a number of space- and ground-based efforts to find extrasolar planets around nearby stars with the ultimate goal of discovering an Earth 2.0 viable for searching for bio-signatures in its atmosphere. With both sky-time and funding resources extremely precious it is crucial that the exoplanet community has the most efficient and functional tools for choosing which stars to observe and then deriving the physical properties of newly discovered planets via the properties of their host stars. Historically, astronomers have utilized a piecemeal set of archives such as SIMBAD, the Washington Double Star Catalog, various exoplanet encyclopedias and electronic tables from the literature to cobble together stellar and planetary parameters in the absence of corresponding images and spectra. The mothballed NStED archive was in the process of collecting such data on nearby stars but its course may have changed if it comes back to NASA mission specific targets and NOT a volume limited sample of nearby stars. This means there is void. A void in the available set of tools many exoplanet astronomers would appreciate to create comprehensive lists of the stellar parameters of stars in our local neighborhood. Also, we need better resources for downloading adaptive optics images and published spectra to help confirm new discoveries and find ideal target stars. With so much data being produced by the stellar and exoplanet community we have decided to propose for the creation of an open access archive in the spirit of the open exoplanet catalog and the Kepler Community Follow-up Program. While we will highly regulate and constantly validate the data being placed into our archive the open nature of its design is intended to allow the database to be updated quickly and have a level of versatility which is necessary in today's fast moving, big data exoplanet community. Here, we propose to develop the Stargate Open stellar catalog for NASA exoplanet exploration.

  9. Direct evidence for an evolving dust cloud in the exoplanet KIC 12557548 b

    Science.gov (United States)

    Bochinski, J. J.; Haswell, C. A.; Dhillon, V. S.; Littlefair, S. P.; Marsh, T. R.

    2014-04-01

    We present simultaneous multi-color optical photometry of the transiting exoplanet KIC 12557548 b which reveals, for the first time, the colour dependence of the transit depth. These depths are consistent with dust extinction as observed in the ISM, but require grain sizes comparable to the largest found in the ISM: 0.25μm - 1μm. This provides direct evidence in favour of the disrupting low-mass rocky planet model for this object. Our light curves also give the the highest-quality coverage of individual transits to date. The smooth low amplitude pre-ingress and post-egress features, and the sharp V-shaped transits noted and modelled in the phase-folded Kepler data are probably artefacts of averaging many transits of variable shape. Our light curves reveal instead a step-like shoulder in the egress. The transit shape overall is not too different from that caused by a circular disc of occulting material, suggesting that the bulk of the extincting dust is not significantly elongated along the orbital path. The changing wavelength-dependent transit depth offers an unprecedented opportunity to determine the composition of the disintegrating rocky body KIC 12557548 b. We detected 3 out-of-transit u' band events consistent with stellar flares. These could be signatures of star-planet interactions.

  10. EMPIRICAL CONSTRAINTS ON TROJAN COMPANIONS AND ORBITAL ECCENTRICITIES IN 25 TRANSITING EXOPLANETARY SYSTEMS

    International Nuclear Information System (INIS)

    Madhusudhan, N.; Winn, Joshua N.

    2009-01-01

    We present a search for Trojan companions to 25 transiting exoplanets. We use the technique of Ford and Gaudi, in which a difference is sought between the observed transit time and the transit time that is calculated by fitting a two-body Keplerian orbit to the radial-velocity data. This technique is sensitive to the imbalance of mass at the L4/L5 points of the planet-star orbit. No companions were detected above 2σ confidence. The median 2σ upper limit is 56 M + , and the most constraining limit is 2.8 M + for the case of GJ 436. A similar survey using forthcoming data from the Kepler satellite mission, along with the radial-velocity data that will be needed to confirm transit candidates, will be sensitive to 10-50 M + Trojan companions in the habitable zones of their parent stars. As a by-product of this study, we present empirical constraints on the eccentricities of the planetary orbits, including those which have previously been assumed to be circular. The limits on eccentricity are of interest for investigations of tidal circularization and for bounding possible systematic errors in the measured planetary radii and the predicted times of secondary eclipses.

  11. Tidal locking of habitable exoplanets

    Science.gov (United States)

    Barnes, Rory

    2017-12-01

    Potentially habitable planets can orbit close enough to their host star that the differential gravity across their diameters can produce an elongated shape. Frictional forces inside the planet prevent the bulges from aligning perfectly with the host star and result in torques that alter the planet's rotational angular momentum. Eventually the tidal torques fix the rotation rate at a specific frequency, a process called tidal locking. Tidally locked planets on circular orbits will rotate synchronously, but those on eccentric orbits will either librate or rotate super-synchronously. Although these features of tidal theory are well known, a systematic survey of the rotational evolution of potentially habitable exoplanets using classic equilibrium tide theories has not been undertaken. I calculate how habitable planets evolve under two commonly used models and find, for example, that one model predicts that the Earth's rotation rate would have synchronized after 4.5 Gyr if its initial rotation period was 3 days, it had no satellites, and it always maintained the modern Earth's tidal properties. Lower mass stellar hosts will induce stronger tidal effects on potentially habitable planets, and tidal locking is possible for most planets in the habitable zones of GKM dwarf stars. For fast-rotating planets, both models predict eccentricity growth and that circularization can only occur once the rotational frequency is similar to the orbital frequency. The orbits of potentially habitable planets of very late M dwarfs ([InlineEquation not available: see fulltext.]) are very likely to be circularized within 1 Gyr, and hence, those planets will be synchronous rotators. Proxima b is almost assuredly tidally locked, but its orbit may not have circularized yet, so the planet could be rotating super-synchronously today. The evolution of the isolated and potentially habitable Kepler planet candidates is computed and about half could be tidally locked. Finally, projected TESS planets

  12. Exoplanet Science in the Classroom: Learning Activities for an Introductory Physics Course

    Science.gov (United States)

    Della-Rose, Devin; Carlson, Randall; de La Harpe, Kimberly; Novotny, Steven; Polsgrove, Daniel

    2018-03-01

    Discovery of planets outside our solar system, known as extra-solar planets or exoplanets for short, has been at the forefront of astronomical research for over 25 years. Reports of new discoveries have almost become routine; however, the excitement surrounding them has not. Amazingly, as groundbreaking as exoplanet science is, the basic physics is quite accessible to first-year physics students, as discussed in previous TPT articles. To further illustrate this point, we developed an iOS application that generates synthetic exoplanet data to provide students and teachers with interactive learning activities. Using introductory physics concepts, we demonstrate how to estimate exoplanet mass, radius, and density from the app output. These calculations form the basis for a diverse range of classroom activities. We conclude with a summary of exoplanet science resources for teachers.

  13. Modeling Multi-wavelength Stellar Astrometry. III. Determination of the Absolute Masses of Exoplanets and Their Host Stars

    Science.gov (United States)

    Coughlin, J. L.; López-Morales, Mercedes

    2012-05-01

    Astrometric measurements of stellar systems are becoming significantly more precise and common, with many ground- and space-based instruments and missions approaching 1 μas precision. We examine the multi-wavelength astrometric orbits of exoplanetary systems via both analytical formulae and numerical modeling. Exoplanets have a combination of reflected and thermally emitted light that causes the photocenter of the system to shift increasingly farther away from the host star with increasing wavelength. We find that, if observed at long enough wavelengths, the planet can dominate the astrometric motion of the system, and thus it is possible to directly measure the orbits of both the planet and star, and thus directly determine the physical masses of the star and planet, using multi-wavelength astrometry. In general, this technique works best for, though is certainly not limited to, systems that have large, high-mass stars and large, low-mass planets, which is a unique parameter space not covered by other exoplanet characterization techniques. Exoplanets that happen to transit their host star present unique cases where the physical radii of the planet and star can be directly determined via astrometry alone. Planetary albedos and day-night contrast ratios may also be probed via this technique due to the unique signature they impart on the observed astrometric orbits. We develop a tool to examine the prospects for near-term detection of this effect, and give examples of some exoplanets that appear to be good targets for detection in the K to N infrared observing bands, if the required precision can be achieved.

  14. MODELING MULTI-WAVELENGTH STELLAR ASTROMETRY. III. DETERMINATION OF THE ABSOLUTE MASSES OF EXOPLANETS AND THEIR HOST STARS

    International Nuclear Information System (INIS)

    Coughlin, J. L.; López-Morales, Mercedes

    2012-01-01

    Astrometric measurements of stellar systems are becoming significantly more precise and common, with many ground- and space-based instruments and missions approaching 1 μas precision. We examine the multi-wavelength astrometric orbits of exoplanetary systems via both analytical formulae and numerical modeling. Exoplanets have a combination of reflected and thermally emitted light that causes the photocenter of the system to shift increasingly farther away from the host star with increasing wavelength. We find that, if observed at long enough wavelengths, the planet can dominate the astrometric motion of the system, and thus it is possible to directly measure the orbits of both the planet and star, and thus directly determine the physical masses of the star and planet, using multi-wavelength astrometry. In general, this technique works best for, though is certainly not limited to, systems that have large, high-mass stars and large, low-mass planets, which is a unique parameter space not covered by other exoplanet characterization techniques. Exoplanets that happen to transit their host star present unique cases where the physical radii of the planet and star can be directly determined via astrometry alone. Planetary albedos and day-night contrast ratios may also be probed via this technique due to the unique signature they impart on the observed astrometric orbits. We develop a tool to examine the prospects for near-term detection of this effect, and give examples of some exoplanets that appear to be good targets for detection in the K to N infrared observing bands, if the required precision can be achieved.

  15. Earth as an Exoplanet: Spectral Monitoring of an Inhabited Planet

    Science.gov (United States)

    Caldwell, D. A.; Marchis, F.; Batalha, N. M.; Cabrol, N. A.; Smith, J. C.

    2018-02-01

    We propose a spectrometer for the Deep Space Gateway to monitor Earth as an exoplanet. We will measure the variability with illumination phase, rotation, clouds, and season. Results will inform future searches for biomarkers on distant exoplanets.

  16. Homogeneous Photodynamical Analysis of Kepler's Multiply-Transiting Systems

    Science.gov (United States)

    Ragozzine, Darin

    To search for planets more like our own, NASA s Kepler Space Telescope ( Kepler ) discovered thousands of exoplanet candidates that cross in front of ( transit ) their parent stars (e.g., Twicken et al. 2016). The Kepler exoplanet data represent an incredible observational leap forward as evidenced by hundreds of papers with thousands of citations. In particular, systems with multiple transiting planets combine the determination of physical properties of exoplanets (e.g., radii), the context provided by the system architecture, and insights from orbital dynamics. Such systems are the most information-rich exoplanetary systems (Ragozzine & Holman 2010). Thanks to Kepler s revolutionary dataset, understanding these Multi-Transiting Systems (MTSs) enables a wide variety of major science questions. In conclusion, existing analyses of MTSs are incomplete and suboptimal and our efficient and timely proposal will provide significant scientific gains ( 100 new mass measurements and 100 updated mass measurements). Furthermore, our homogeneous analysis enables future statistical analyses, including those necessary to characterize the small planet mass-radius relation with implications for understanding the formation, evolution, and habitability of planets. The overarching goal of this proposal is a complete homogeneous investigation of Kepler MTSs to provide detailed measurements (or constraints) on exoplanetary physical and orbital properties. Current investigations do not exploit the full power of the Kepler data; here we propose to use better data (Short Cadence observations), better methods (photodynamical modeling), and a better statistical method (Bayesian Differential Evolution Markov Chain Monte Carlo) in a homogenous analysis of all 700 Kepler MTSs. These techniques are particularly valuable for understanding small terrestrial planets. We propose to extract the near-maximum amount of information from these systems through a series of three research objectives

  17. A CLOUDINESS INDEX FOR TRANSITING EXOPLANETS BASED ON THE SODIUM AND POTASSIUM LINES: TENTATIVE EVIDENCE FOR HOTTER ATMOSPHERES BEING LESS CLOUDY AT VISIBLE WAVELENGTHS

    Energy Technology Data Exchange (ETDEWEB)

    Heng, Kevin, E-mail: kevin.heng@csh.unibe.ch [University of Bern, Center for Space and Habitability, Sidlerstrasse 5, CH-3012, Bern (Switzerland)

    2016-07-20

    We present a dimensionless index that quantifies the degree of cloudiness of the atmosphere of a transiting exoplanet. Our cloudiness index is based on measuring the transit radii associated with the line center and wing of the sodium or potassium line. In deriving this index, we revisited the algebraic formulae for inferring the isothermal pressure scale height from transit measurements. We demonstrate that the formulae of Lecavelier et al. and Benneke and Seager are identical: the former is inferring the temperature while assuming a value for the mean molecular mass and the latter is inferring the mean molecular mass while assuming a value for the temperature. More importantly, these formulae cannot be used to distinguish between cloudy and cloud-free atmospheres. We derive values of our cloudiness index for a small sample of seven hot Saturns/Jupiters taken from Sing et al. We show that WASP-17b, WASP-31b, and HAT-P-1b are nearly cloud-free at visible wavelengths. We find the tentative trend that more irradiated atmospheres tend to have fewer clouds consisting of sub-micron-sized particles. We also derive absolute sodium and/or potassium abundances ∼10{sup 2} cm{sup −3} for WASP-17b, WASP-31b, and HAT-P-1b (and upper limits for the other objects). Higher-resolution measurements of both the sodium and potassium lines, for a larger sample of exoplanetary atmospheres, are needed to confirm or refute this trend.

  18. Worlds Beyond: A Strategy for the Detection and Characterization of Exoplanets

    Energy Technology Data Exchange (ETDEWEB)

    Lunine, J; Fischer, D; Hammel, H; Hillenbrand, L; Kasting, J; Laughlin, G; Macintosh, B; Marley, M; Melnick, G; Monet, D; Noecker, C; Peale, S; Quirrenbach, A; Seager, S; Winn, J

    2008-06-02

    This report is a comprehensive study of the search for and study of planets around other stars (exoplanets). The young but maturing field of exoplanets is perhaps one of the most compelling fields of study in science today--both because of the discoveries made to date on giant planets around other stars, and because the detection of planets just like our Earth ('Earth analogs') is at last within reach technologically. In the Report we outline the need for a vigorous research program in exoplanets to understand our place in the cosmos: whether planets like our home Earth are a common or rare outcome of cosmic evolution. The strategy we developed is intended to address the following fundamental questions, in priority order, within three distinct 5-yr long phases, over a 15 year period: (1) What are the physical characteristics of planets in the habitable zones around bright, nearby stars? (2) What is the architecture of planetary systems? (3) When, how and in what environments are planets formed? The Report recommends a two-pronged strategy for the detection and characterization of planets the size of the Earth. For stars much less massive and cooler than our Sun (M-dwarfs), existing ground-based techniques including radial velocity and transit searches, and space-based facilities both existing and under development such as Spitzer and JWST, are adequate for finding and studying planets close to the mass and size of the Earth. Conducted in parallel with the M-dwarf strategy is one for the more challenging observations of the hotter and brighter F, G, and K stars, some of which are very close in properties to our Sun, in which the frequency of Earth-sized planets is assessed with Corot and Kepler, but new space missions are required for detection and study of specific Earth-mass and Earth-sized objects. Our Task Force concludes that the development of a space-based astrometric mission, narrowly-focused to identify specific nearby stars with Earth

  19. VLT Detects First Superstorm on Exoplanet

    Science.gov (United States)

    2010-06-01

    Astronomers have measured a superstorm for the first time in the atmosphere of an exoplanet, the well-studied "hot Jupiter" HD209458b. The very high-precision observations of carbon monoxide gas show that it is streaming at enormous speed from the extremely hot day side to the cooler night side of the planet. The observations also allow another exciting "first" - measuring the orbital speed of the exoplanet itself, providing a direct determination of its mass. The results appear this week in the journal Nature. "HD209458b is definitely not a place for the faint-hearted. By studying the poisonous carbon monoxide gas with great accuracy we found evidence for a super wind, blowing at a speed of 5000 to 10 000 km per hour" says Ignas Snellen, who led the team of astronomers. HD209458b is an exoplanet of about 60% the mass of Jupiter orbiting a solar-like star located 150 light-years from Earth towards the constellation of Pegasus (the Winged Horse). Circling at a distance of only one twentieth the Sun-Earth distance, the planet is heated intensely by its parent star, and has a surface temperature of about 1000 degrees Celsius on the hot side. But as the planet always has the same side to its star, one side is very hot, while the other is much cooler. "On Earth, big temperature differences inevitably lead to fierce winds, and as our new measurements reveal, the situation is no different on HD209458b," says team member Simon Albrecht. HD209458b was the first exoplanet to be found transiting: every 3.5 days the planet moves in front of its host star, blocking a small portion of the starlight during a three-hour period. During such an event a tiny fraction of the starlight filters through the planet's atmosphere, leaving an imprint. A team of astronomers from the Leiden University, the Netherlands Institute for Space Research (SRON), and MIT in the United States, have used ESO's Very Large Telescope and its powerful CRIRES spectrograph to detect and analyse these faint

  20. Correcting Estimates of the Occurrence Rate of Earth-like Exoplanets for Stellar Multiplicity

    Science.gov (United States)

    Cantor, Elliot; Dressing, Courtney D.; Ciardi, David R.; Christiansen, Jessie

    2018-06-01

    One of the most prominent questions in the exoplanet field has been determining the true occurrence rate of potentially habitable Earth-like planets. NASA’s Kepler mission has been instrumental in answering this question by searching for transiting exoplanets, but follow-up observations of Kepler target stars are needed to determine whether or not the surveyed Kepler targets are in multi-star systems. While many researchers have searched for companions to Kepler planet host stars, few studies have investigated the larger target sample. Regardless of physical association, the presence of nearby stellar companions biases our measurements of a system’s planetary parameters and reduces our sensitivity to small planets. Assuming that all Kepler target stars are single (as is done in many occurrence rate calculations) would overestimate our search completeness and result in an underestimate of the frequency of potentially habitable Earth-like planets. We aim to correct for this bias by characterizing the set of targets for which Kepler could have detected Earth-like planets. We are using adaptive optics (AO) imaging to reveal potential stellar companions and near-infrared spectroscopy to refine stellar parameters for a subset of the Kepler targets that are most amenable to the detection of Earth-like planets. We will then derive correction factors to correct for the biases in the larger set of target stars and determine the true frequency of systems with Earth-like planets. Due to the prevalence of stellar multiples, we expect to calculate an occurrence rate for Earth-like exoplanets that is higher than current figures.

  1. A continuum from clear to cloudy hot-Jupiter exoplanets without primordial water depletion.

    Science.gov (United States)

    Sing, David K; Fortney, Jonathan J; Nikolov, Nikolay; Wakeford, Hannah R; Kataria, Tiffany; Evans, Thomas M; Aigrain, Suzanne; Ballester, Gilda E; Burrows, Adam S; Deming, Drake; Désert, Jean-Michel; Gibson, Neale P; Henry, Gregory W; Huitson, Catherine M; Knutson, Heather A; des Etangs, Alain Lecavelier; Pont, Frederic; Showman, Adam P; Vidal-Madjar, Alfred; Williamson, Michael H; Wilson, Paul A

    2016-01-07

    Thousands of transiting exoplanets have been discovered, but spectral analysis of their atmospheres has so far been dominated by a small number of exoplanets and data spanning relatively narrow wavelength ranges (such as 1.1-1.7 micrometres). Recent studies show that some hot-Jupiter exoplanets have much weaker water absorption features in their near-infrared spectra than predicted. The low amplitude of water signatures could be explained by very low water abundances, which may be a sign that water was depleted in the protoplanetary disk at the planet's formation location, but it is unclear whether this level of depletion can actually occur. Alternatively, these weak signals could be the result of obscuration by clouds or hazes, as found in some optical spectra. Here we report results from a comparative study of ten hot Jupiters covering the wavelength range 0.3-5 micrometres, which allows us to resolve both the optical scattering and infrared molecular absorption spectroscopically. Our results reveal a diverse group of hot Jupiters that exhibit a continuum from clear to cloudy atmospheres. We find that the difference between the planetary radius measured at optical and infrared wavelengths is an effective metric for distinguishing different atmosphere types. The difference correlates with the spectral strength of water, so that strong water absorption lines are seen in clear-atmosphere planets and the weakest features are associated with clouds and hazes. This result strongly suggests that primordial water depletion during formation is unlikely and that clouds and hazes are the cause of weaker spectral signatures.

  2. MARVELS-1b: A SHORT-PERIOD, BROWN DWARF DESERT CANDIDATE FROM THE SDSS-III MARVELS PLANET SEARCH

    International Nuclear Information System (INIS)

    Lee, Brian L.; Ge Jian; Fleming, Scott W.; Mahadevan, Suvrath; Sivarani, Thirupathi; Stassun, Keivan G.; Gary, Bruce; Pepper, Joshua; Gaudi, B. Scott; Eastman, Jason D.; Siverd, Robert J.; Barnes, Rory; Laws, Chris; Wisniewski, John P.; Wright, Jason; Ghezzi, Luan; Ogando, Ricardo L. C.; Maia, Marcio A. G.; Da Costa, Luiz Nicolaci; Porto de Mello, G. F.

    2011-01-01

    We present a new short-period brown dwarf (BD) candidate around the star TYC 1240-00945-1. This candidate was discovered in the first year of the Multi-object APO Radial Velocity Exoplanets Large-area Survey (MARVELS), which is part of the Sloan Digital Sky Survey (SDSS) III, and we designate the BD as MARVELS-1b. MARVELS uses the technique of dispersed fixed-delay interferometery to simultaneously obtain radial velocity (RV) measurements for 60 objects per field using a single, custom-built instrument that is fiber fed from the SDSS 2.5 m telescope. From our 20 RV measurements spread over a ∼370 day time baseline, we derive a Keplerian orbital fit with semi-amplitude K = 2.533 ± 0.025 km s -1 , period P = 5.8953 ± 0.0004 days, and eccentricity consistent with circular. Independent follow-up RV data confirm the orbit. Adopting a mass of 1.37 ± 0.11 M sun for the slightly evolved F9 host star, we infer that the companion has a minimum mass of 28.0 ± 1.5 M Jup , a semimajor axis 0.071 ± 0.002 AU assuming an edge-on orbit, and is probably tidally synchronized. We find no evidence for coherent intrinsic variability of the host star at the period of the companion at levels greater than a few millimagnitudes. The companion has an a priori transit probability of ∼14%. Although we find no evidence for transits, we cannot definitively rule them out for companion radii ∼ Jup .

  3. Exoplanets and Multiverses (Abstract)

    Science.gov (United States)

    Trimble, V.

    2016-12-01

    (Abstract only) To the ancients, the Earth was the Universe, of a size to be crossed by a god in a day, by boat or chariot, and by humans in a lifetime. Thus an exoplanet would have been a multiverse. The ideas gradually separated over centuries, with gradual acceptance of a sun-centered solar system, the stars as suns likely to have their own planets, other galaxies beyond the Milky Way, and so forth. And whenever the community divided between "just one' of anything versus "many," the "manies" have won. Discoveries beginning in 1991 and 1995 have gradually led to a battalion or two of planets orbiting other stars, very few like our own little family, and to moderately serious consideration of even larger numbers of other universes, again very few like our own. I'm betting, however, on habitable (though not necessarily inhabited) exoplanets to be found, and habitable (though again not necessarily inhabited) universes. Only the former will yield pretty pictures.

  4. REDUCED ACTIVITY AND LARGE PARTICLES FROM THE DISINTEGRATING PLANET CANDIDATE KIC 12557548b

    Energy Technology Data Exchange (ETDEWEB)

    Schlawin, E.; Herter, T. [Astronomy Department, Cornell University, Ithaca, NY 14853 (United States); Zhao, M. [Astronomy and Astrophysics, Pennsylvania State University, University Park, PA 16802 (United States); Teske, J. K. [Carnegie DTM, Washington, DC 20015 (United States); Chen, H. [Astronomy Department, Boston University, Boston, MA 02215 (United States)

    2016-08-01

    The intriguing exoplanet candidate KIC 12557548b is believed to have a comet-like tail of dusty debris trailing a small rocky planet. The tail of debris scatters up to 1.3% of the stellar light in the Kepler observatory’s bandpass (0.42–0.9 μ m). Observing the tail’s transit depth at multiple wavelengths can reveal the composition and particle size of the debris, constraining the makeup and lifetime of the sub-Mercury planet. Early dust particle size predictions from the scattering of the comet-like tail pointed toward a dust size of ∼0.1 μ m for silicate compositions. These small particles would produce a much deeper optical transit depth than near-infrared transit depth. We measure a transmission spectrum for KIC 12557548b using the SpeX spectrograph (covering 0.8–2.4 μ m) simultaneously with the MORIS imager taking r ′ (0.63 μ m) photometry on the Infrared Telescope Facility for eight nights and one night in H band (1.63 μ m) using the Wide-field IR Camera at the Palomar 200 inch telescope. The infrared spectra are plagued by systematic errors, but we argue that sufficient precision is obtained when using differential spectroscopic calibration when combining multiple nights. The average differential transmission spectrum is flat, supporting findings that KIC 12557548b’s debris is likely composed of larger particles ≳0.5 μ m for pyroxene and olivine and ≳0.2 μ m for iron and corundum. The r ′ photometric transit depths are all below the average Kepler value, suggesting that the observations occurred during a weak period or that the mechanisms producing optical broadband transit depths are suppressed.

  5. Near-infrared Variability in the 2MASS Calibration Fields: A Search for Planetary Transit Candidates

    Science.gov (United States)

    Plavchan, Peter; Jura, M.; Kirkpatrick, J. Davy; Cutri, Roc M.; Gallagher, S. C.

    2008-01-01

    The Two Micron All Sky Survey (2MASS) photometric calibration observations cover approximately 6 square degrees on the sky in 35 'calibration fields,' each sampled in nominal photometric conditions between 562 and 3692 times during the 4 years of the 2MASS mission. We compile a catalog of variables from the calibration observations to search for M dwarfs transited by extrasolar planets. We present our methods for measuring periodic and nonperiodic flux variability. From 7554 sources with apparent K(sub s) magnitudes between 5.6 and 16.1, we identify 247 variables, including extragalactic variables and 23 periodic variables. We have discovered three M dwarf eclipsing systems, including two candidates for transiting extrasolar planets.

  6. Improving and Assessing Planet Sensitivity of the GPI Exoplanet Survey with a Forward Model Matched Filter

    Energy Technology Data Exchange (ETDEWEB)

    Ruffio, Jean-Baptiste; Macintosh, Bruce; Nielsen, Eric L.; Czekala, Ian; Bailey, Vanessa P.; Follette, Katherine B. [Kavli Institute for Particle Astrophysics and Cosmology, Stanford University, Stanford, CA, 94305 (United States); Wang, Jason J.; Rosa, Robert J. De; Duchêne, Gaspard [Astronomy Department, University of California, Berkeley CA, 94720 (United States); Pueyo, Laurent [Space Telescope Science Institute, Baltimore, MD, 21218 (United States); Marley, Mark S. [NASA Ames Research Center, Mountain View, CA, 94035 (United States); Arriaga, Pauline; Fitzgerald, Michael P. [Department of Physics and Astronomy, University of California, Los Angeles, CA, 90095 (United States); Barman, Travis [Lunar and Planetary Laboratory, University of Arizona, Tucson AZ, 85721 (United States); Bulger, Joanna [Subaru Telescope, NAOJ, 650 North A’ohoku Place, Hilo, HI 96720 (United States); Chilcote, Jeffrey [Dunlap Institute for Astronomy and Astrophysics, University of Toronto, Toronto, ON, M5S 3H4 (Canada); Cotten, Tara [Department of Physics and Astronomy, University of Georgia, Athens, GA, 30602 (United States); Doyon, Rene [Institut de Recherche sur les Exoplanètes, Départment de Physique, Université de Montréal, Montréal QC, H3C 3J7 (Canada); Gerard, Benjamin L. [University of Victoria, 3800 Finnerty Road, Victoria, BC, V8P 5C2 (Canada); Goodsell, Stephen J., E-mail: jruffio@stanford.edu [Gemini Observatory, 670 N. A’ohoku Place, Hilo, HI, 96720 (United States); and others

    2017-06-10

    We present a new matched-filter algorithm for direct detection of point sources in the immediate vicinity of bright stars. The stellar point-spread function (PSF) is first subtracted using a Karhunen-Loéve image processing (KLIP) algorithm with angular and spectral differential imaging (ADI and SDI). The KLIP-induced distortion of the astrophysical signal is included in the matched-filter template by computing a forward model of the PSF at every position in the image. To optimize the performance of the algorithm, we conduct extensive planet injection and recovery tests and tune the exoplanet spectra template and KLIP reduction aggressiveness to maximize the signal-to-noise ratio (S/N) of the recovered planets. We show that only two spectral templates are necessary to recover any young Jovian exoplanets with minimal S/N loss. We also developed a complete pipeline for the automated detection of point-source candidates, the calculation of receiver operating characteristics (ROC), contrast curves based on false positives, and completeness contours. We process in a uniform manner more than 330 data sets from the Gemini Planet Imager Exoplanet Survey and assess GPI typical sensitivity as a function of the star and the hypothetical companion spectral type. This work allows for the first time a comparison of different detection algorithms at a survey scale accounting for both planet completeness and false-positive rate. We show that the new forward model matched filter allows the detection of 50% fainter objects than a conventional cross-correlation technique with a Gaussian PSF template for the same false-positive rate.

  7. An Observational Diagnostic for Distinguishing between Clouds and Haze in Hot Exoplanet Atmospheres

    International Nuclear Information System (INIS)

    Kempton, Eliza M.-R.; Bean, Jacob L.; Parmentier, Vivien

    2017-01-01

    The nature of aerosols in hot exoplanet atmospheres is one of the primary vexing questions facing the exoplanet field. The complex chemistry, multiple formation pathways, and lack of easily identifiable spectral features associated with aerosols make it especially challenging to constrain their key properties. We propose a transmission spectroscopy technique to identify the primary aerosol formation mechanism for the most highly irradiated hot Jupiters (HIHJs). The technique is based on the expectation that the two key types of aerosols—photochemically generated hazes and equilibrium condensate clouds—are expected to form and persist in different regions of a highly irradiated planet’s atmosphere. Haze can only be produced on the permanent daysides of tidally locked hot Jupiters, and will be carried downwind by atmospheric dynamics to the evening terminator (seen as the trailing limb during transit). Clouds can only form in cooler regions on the nightside and morning terminator of HIHJs (seen as the leading limb during transit). Because opposite limbs are expected to be impacted by different types of aerosols, ingress and egress spectra, which primarily probe opposing sides of the planet, will reveal the dominant aerosol formation mechanism. We show that the benchmark HIHJ, WASP-121b, has a transmission spectrum consistent with partial aerosol coverage and that ingress–egress spectroscopy would constrain the location and formation mechanism of those aerosols. In general, using this diagnostic we find that observations with the James Webb Space Telescope and potentially with the Hubble Space Telescope should be able to distinguish between clouds and haze for currently known HIHJs.

  8. An Observational Diagnostic for Distinguishing between Clouds and Haze in Hot Exoplanet Atmospheres

    Energy Technology Data Exchange (ETDEWEB)

    Kempton, Eliza M.-R. [Department of Physics, Grinnell College, 1116 8th Avenue, Grinnell, IA 50112 (United States); Bean, Jacob L. [Department of Astronomy and Astrophysics, University of Chicago, 5640 S. Ellis Avenue, Chicago, IL 60637 (United States); Parmentier, Vivien, E-mail: kemptone@grinnell.edu [Department of Planetary Sciences and Lunar and Planetary Laboratory, The University of Arizona, Tucson, AZ 85721 (United States)

    2017-08-20

    The nature of aerosols in hot exoplanet atmospheres is one of the primary vexing questions facing the exoplanet field. The complex chemistry, multiple formation pathways, and lack of easily identifiable spectral features associated with aerosols make it especially challenging to constrain their key properties. We propose a transmission spectroscopy technique to identify the primary aerosol formation mechanism for the most highly irradiated hot Jupiters (HIHJs). The technique is based on the expectation that the two key types of aerosols—photochemically generated hazes and equilibrium condensate clouds—are expected to form and persist in different regions of a highly irradiated planet’s atmosphere. Haze can only be produced on the permanent daysides of tidally locked hot Jupiters, and will be carried downwind by atmospheric dynamics to the evening terminator (seen as the trailing limb during transit). Clouds can only form in cooler regions on the nightside and morning terminator of HIHJs (seen as the leading limb during transit). Because opposite limbs are expected to be impacted by different types of aerosols, ingress and egress spectra, which primarily probe opposing sides of the planet, will reveal the dominant aerosol formation mechanism. We show that the benchmark HIHJ, WASP-121b, has a transmission spectrum consistent with partial aerosol coverage and that ingress–egress spectroscopy would constrain the location and formation mechanism of those aerosols. In general, using this diagnostic we find that observations with the James Webb Space Telescope and potentially with the Hubble Space Telescope should be able to distinguish between clouds and haze for currently known HIHJs.

  9. INFLUENCE OF STELLAR FLARES ON THE CHEMICAL COMPOSITION OF EXOPLANETS AND SPECTRA

    Energy Technology Data Exchange (ETDEWEB)

    Venot, Olivia; Decin, Leen [Instituut voor Sterrenkunde, Katholieke Universiteit Leuven, Celestijnenlaan 200D, B-3001 Leuven (Belgium); Rocchetto, Marco [University College London, Department of Physics and Astronomy, Gower Street, London WC1E 6BT (United Kingdom); Carl, Shaun; Hashim, Aysha Roshni, E-mail: olivia.venot@kuleuven.be [Department of Quantum Chemistry and Physical Chemistry, Katholieke Universiteit Leuven, Celestijnenlaan 200F, B-3001 Leuven (Belgium)

    2016-10-20

    associated with an atmospheric pressure of 1 bar, which can lead to variations in planetary spectra (up to 150 ppm) if performed during transit. We find that each exoplanet has a post-flare steady-state composition that is significantly different from the pre-flare steady-state. We predict that these variations could be detectable with both current and future spectroscopic instruments, if sufficiently high signal-to-noise spectra are obtained.

  10. A Cloudy View of Exoplanets

    Science.gov (United States)

    Deming, Drake

    2010-01-01

    The lack of absorption features in the transmission spectrum of exoplanet GJ1214b rules out a hydrogen-rich atmosphere for the planet. It is consistent with an atmosphere rich in water vapour or abundant in clouds.

  11. CoRoT-2b: a Tidally Inflated, Young Exoplanet?

    Science.gov (United States)

    Guillot, Tristan; Havel, M.

    2009-09-01

    CoRoT-2b is among the most anomalously large transiting exoplanet known. Due to its large mass (3.3 Mjup), its large radius ( 1.5 Rjup) cannot be explained by standard evolution models. Recipes that work for other anomalously large exoplanets (e.g. HD209458b), such as invoking kinetic energy transport in the planetary interior or increased opacities, clearly fail for CoRoT-2b. Interestingly, the planet's parent star is an active star with a large fraction (7 to 20%) of spots and a rapid rotation (4.5 days). We first model the star's evolution to accurately constrain the planetary parameters. We find that the stellar activity has little influence on the star's evolution and inferred parameters. However, stellar evolution models point towards two kind of solutions for the star-planet system: (i) a very young system (20-40 Ma) with a star still undergoing pre-main sequence contraction, and a planet which could have a radius as low as 1.4 Rjup, or (ii) a young main-sequence star (40 to 500 Ma) with a planet that is slightly more inflated ( 1.5 Rjup). In either case, planetary evolution models require a significant added internal energy to explain the inferred planet size: from a minimum of 3x1028 erg/s in case (i), to up to 1.5x1029 erg/s in case (ii). We find that evolution models consistently including planet/star tides are able to reproduce the inferred radius but only for a short period of time ( 10 Ma). This points towards a young age for the star/planet system and dissipation by tides due to either circularization or synchronization of the planet. Additional observations of the star (infrared excess due to disk?) and of the planet (precise Rossiter effect, IR secondary eclispe) would be highly valuable to understand the early evolution of star-exoplanet systems.

  12. A map of the large day-night temperature gradient of a super-Earth exoplanet.

    Science.gov (United States)

    Demory, Brice-Olivier; Gillon, Michael; de Wit, Julien; Madhusudhan, Nikku; Bolmont, Emeline; Heng, Kevin; Kataria, Tiffany; Lewis, Nikole; Hu, Renyu; Krick, Jessica; Stamenković, Vlada; Benneke, Björn; Kane, Stephen; Queloz, Didier

    2016-04-14

    Over the past decade, observations of giant exoplanets (Jupiter-size) have provided key insights into their atmospheres, but the properties of lower-mass exoplanets (sub-Neptune) remain largely unconstrained because of the challenges of observing small planets. Numerous efforts to observe the spectra of super-Earths--exoplanets with masses of one to ten times that of Earth--have so far revealed only featureless spectra. Here we report a longitudinal thermal brightness map of the nearby transiting super-Earth 55 Cancri e (refs 4, 5) revealing highly asymmetric dayside thermal emission and a strong day-night temperature contrast. Dedicated space-based monitoring of the planet in the infrared revealed a modulation of the thermal flux as 55 Cancri e revolves around its star in a tidally locked configuration. These observations reveal a hot spot that is located 41 ± 12 degrees east of the substellar point (the point at which incident light from the star is perpendicular to the surface of the planet). From the orbital phase curve, we also constrain the nightside brightness temperature of the planet to 1,380 ± 400 kelvin and the temperature of the warmest hemisphere (centred on the hot spot) to be about 1,300 kelvin hotter (2,700 ± 270 kelvin) at a wavelength of 4.5 micrometres, which indicates inefficient heat redistribution from the dayside to the nightside. Our observations are consistent with either an optically thick atmosphere with heat recirculation confined to the planetary dayside, or a planet devoid of atmosphere with low-viscosity magma flows at the surface.

  13. M Dwarf Exoplanet Survey by the Falcon Telescope Network

    Science.gov (United States)

    Carlson, Randall E.

    2016-10-01

    The Falcon Telescope Network (FTN) consists of twelve automated 20-inch telescopes located around the globe. We control it at the US Air Force Academy in Colorado Springs, Colorado from the Cadet Space Operations Center. We have installed 10 of the 12 sites and anticipate full operational capability by the beginning of 2017. The network's worldwide geographic distribution provides advantages. The primary mission of the FTN is Space Situational Awareness and studying Near Earth Objects. However, we are employing the FTN with its 11' x 11' field-of-view for a five-year, M dwarf exoplanet survey. Specifically, we are searching for Earth-radius exoplanets. We describe the FTN, design considerations going into the FTN's M dwarf exoplanet survey including automated operations, and initial results of the survey.

  14. ON THE ORBIT OF EXOPLANET WASP-12b

    International Nuclear Information System (INIS)

    Campo, Christopher J.; Harrington, Joseph; Hardy, Ryan A.; Stevenson, Kevin B.; Nymeyer, Sarah; Lust, Nate B.; Blecic, Jasmina; Britt, Christopher B. T.; Bowman, William C.; Ragozzine, Darin; Anderson, David R.; Hellier, Coel; Maxted, Pierre F. L.; Collier-Cameron, Andrew; Wheatley, Peter J.; Loredo, Thomas J.; Deming, Drake; Hebb, Leslie; Pollaco, Don; West, Richard G.

    2011-01-01

    We observed two secondary eclipses of the exoplanet WASP-12b using the Infrared Array Camera on the Spitzer Space Telescope. The close proximity of WASP-12b to its G-type star results in extreme tidal forces capable of inducing apsidal precession with a period as short as a few decades. This precession would be measurable if the orbit had a significant eccentricity, leading to an estimate of the tidal Love number and an assessment of the degree of central concentration in the planetary interior. An initial ground-based secondary-eclipse phase reported by Lopez-Morales et al. (0.510 ± 0.002) implied eccentricity at the 4.5σ level. The spectroscopic orbit of Hebb et al. has eccentricity 0.049 ± 0.015, a 3σ result, implying an eclipse phase of 0.509 ± 0.007. However, there is a well-documented tendency of spectroscopic data to overestimate small eccentricities. Our eclipse phases are 0.5010 ± 0.0006 (3.6 and 5.8 μm) and 0.5006 ± 0.0007 (4.5 and 8.0 μm). An unlikely orbital precession scenario invoking an alignment of the orbit during the Spitzer observations could have explained this apparent discrepancy, but the final eclipse phase of Lopez-Morales et al. (0.510 ± +0.007 -0.006 ) is consistent with a circular orbit at better than 2σ. An orbit fit to all the available transit, eclipse, and radial-velocity data indicates precession at <1σ; a non-precessing solution fits better. We also comment on analysis and reporting for Spitzer exoplanet data in light of recent re-analyses.

  15. Dynamical measurements of the interior structure of exoplanets

    International Nuclear Information System (INIS)

    Becker, Juliette C.; Batygin, Konstantin

    2013-01-01

    Giant gaseous planets often reside on orbits in sufficient proximity to their host stars for the planetary quadrupole gravitational field to become non-negligible. In presence of an additional planetary companion, a precise characterization of the system's orbital state can yield meaningful constraints on the transiting planet's interior structure. However, such methods can require a very specific type of system. This paper explores the dynamic range of applicability of these methods and shows that interior structure calculations are possible for a wide array of orbital architectures. The HAT-P-13 system is used as a case study, and the implications of perturbations arising from a third distant companion on the feasibility of an interior calculation are discussed. We find that the method discussed here is likely to be useful in studying other planetary systems, allowing the possibility of an expanded survey of the interiors of exoplanets.

  16. Kepler AutoRegressive Planet Search (KARPS)

    Science.gov (United States)

    Caceres, Gabriel

    2018-01-01

    One of the main obstacles in detecting faint planetary transits is the intrinsic stellar variability of the host star. The Kepler AutoRegressive Planet Search (KARPS) project implements statistical methodology associated with autoregressive processes (in particular, ARIMA and ARFIMA) to model stellar lightcurves in order to improve exoplanet transit detection. We also develop a novel Transit Comb Filter (TCF) applied to the AR residuals which provides a periodogram analogous to the standard Box-fitting Least Squares (BLS) periodogram. We train a random forest classifier on known Kepler Objects of Interest (KOIs) using select features from different stages of this analysis, and then use ROC curves to define and calibrate the criteria to recover the KOI planet candidates with high fidelity. These statistical methods are detailed in a contributed poster (Feigelson et al., this meeting).These procedures are applied to the full DR25 dataset of NASA’s Kepler mission. Using the classification criteria, a vast majority of known KOIs are recovered and dozens of new KARPS Candidate Planets (KCPs) discovered, including ultra-short period exoplanets. The KCPs will be briefly presented and discussed.

  17. Transit Timing Variation analysis with Kepler light curves of KOI 227 and Kepler 93b

    Science.gov (United States)

    Dulz, Shannon; Reed, Mike

    2017-01-01

    By searching for transit signals in approximately 150,000 stars, NASA’s Kepler Space telescope found thousands of exoplanets over its primary mission from 2009 to 2013 (Tenenbaum et al. 2014, ApJS, 211, 6). Yet, a detailed follow-up examination of Kepler light curves may contribute more evidence on system dynamics and planetary atmospheres of these objects. Kepler’s continuous observing of these systems over the mission duration produced light curves of sufficient duration to allow for the search for transit timing variations. Transit timing variations over the course of many orbits may indicate a precessing orbit or the existence of a non-transiting third body such as another exoplanet. Flux contributions of the planet just prior to secondary eclipse may provide a measurement of bond albedo from the day-side of the transiting planet. Any asymmetries of the transit shape may indicate thermal asymmetries which can measure upper atmosphere motion of the planet. These two factors can constrain atmospheric models of close orbiting exoplanets. We first establish our procedure with the well-documented TTV system, KOI 227 (Nesvorny et al. 2014, ApJ, 790, 31). Using the test case of KOI 227, we analyze Kepler-93b for TTVs and day-side flux contributions. Kepler-93b is likely a rocky planet with R = 1.50 ± 0.03 Earth Radii and M = 2.59 ± 2.0 Earth Masses (Marcy et al. 2014, ApJS, 210, 20). This research is funded by a NASA EPSCoR grant.

  18. HIGH-RESOLUTION SATELLITE IMAGING OF THE 2004 TRANSIT OF VENUS AND ASYMMETRIES IN THE CYTHEREAN ATMOSPHERE

    International Nuclear Information System (INIS)

    Pasachoff, Jay M.; Schneider, Glenn; Widemann, Thomas

    2011-01-01

    This paper presents the only space-borne optical-imaging observations of the 2004 June 8 transit of Venus, the first such transit visible from Earth since AD 1882. The high-resolution, high-cadence satellite images we arranged from NASA's Transition Region and Coronal Explorer (TRACE) reveal the onset of visibility of Venus's atmosphere and give further information about the black-drop effect, whose causes we previously demonstrated from TRACE observations of a transit of Mercury. The atmosphere is gradually revealed before second contact and after third contact, resulting from the changing depth of atmospheric layers refracting the photospheric surface into the observer's direction. We use Venus Express observations to relate the atmospheric arcs seen during the transit to the atmospheric structure of Venus. Finally, we relate the transit images to current and future exoplanet observations, providing a sort of ground truth showing an analog in our solar system to effects observable only with light curves in other solar systems with the Kepler and CoRoT missions and ground-based exoplanet-transit observations.

  19. A TEMPERATURE AND ABUNDANCE RETRIEVAL METHOD FOR EXOPLANET ATMOSPHERES

    International Nuclear Information System (INIS)

    Madhusudhan, N.; Seager, S.

    2009-01-01

    We present a new method to retrieve molecular abundances and temperature profiles from exoplanet atmosphere photometry and spectroscopy. We run millions of one-dimensional (1D) atmosphere models in order to cover the large range of allowed parameter space. In order to run such a large number of models, we have developed a parametric pressure-temperature (P-T) profile coupled with line-by-line radiative transfer, hydrostatic equilibrium, and energy balance, along with prescriptions for non-equilibrium molecular composition and energy redistribution. The major difference from traditional 1D radiative transfer models is the parametric P-T profile, which essentially means adopting energy balance only at the top of the atmosphere and not in each layer. We see the parametric P-T model as a parallel approach to the traditional exoplanet atmosphere models that rely on several free parameters to encompass unknown absorbers and energy redistribution. The parametric P-T profile captures the basic physical features of temperature structures in planetary atmospheres (including temperature inversions), and fits a wide range of published P-T profiles, including those of solar system planets. We apply our temperature and abundance retrieval method to the atmospheres of two transiting exoplanets, HD 189733b and HD 209458b, which have the best Spitzer and Hubble Space Telescope data available. For HD 189733b, we find efficient day-night redistribution of energy in the atmosphere, and molecular abundance constraints confirming the presence of H 2 O, CO, CH 4 , and CO 2 . For HD 209458b, we confirm and constrain the dayside thermal inversion in an average 1D temperature profile. We also report independent detections of H 2 O, CO, CH 4 , and CO 2 on the dayside of HD 209458b, based on six-channel Spitzer photometry. We report constraints for HD 189733b due to individual data sets separately; a few key observations are variable in different data sets at similar wavelengths. Moreover, a

  20. The Radiation Environment of Exoplanet Atmospheres

    Directory of Open Access Journals (Sweden)

    Jeffrey L. Linsky

    2014-10-01

    Full Text Available Exoplanets are born and evolve in the radiation and particle environment created by their host star. The host star’s optical and infrared radiation heats the exoplanet’s lower atmosphere and surface, while the ultraviolet, extreme ultraviolet and X-radiation control the photochemistry and mass loss from the exoplanet’s upper atmosphere. Stellar radiation, especially at the shorter wavelengths, changes dramatically as a host star evolves leading to changes in the planet’s atmosphere and habitability. This paper reviews the present state of our knowledge concerning the time-dependent radiation emitted by stars with convective zones, that is stars with spectral types F, G, K, and M, which comprise nearly all of the host stars of detected exoplanets.

  1. Maximizing the ExoEarth candidate yield from a future direct imaging mission

    International Nuclear Information System (INIS)

    Stark, Christopher C.; Roberge, Aki; Mandell, Avi; Robinson, Tyler D.

    2014-01-01

    ExoEarth yield is a critical science metric for future exoplanet imaging missions. Here we estimate exoEarth candidate yield using single visit completeness for a variety of mission design and astrophysical parameters. We review the methods used in previous yield calculations and show that the method choice can significantly impact yield estimates as well as how the yield responds to mission parameters. We introduce a method, called Altruistic Yield Optimization, that optimizes the target list and exposure times to maximize mission yield, adapts maximally to changes in mission parameters, and increases exoEarth candidate yield by up to 100% compared to previous methods. We use Altruistic Yield Optimization to estimate exoEarth candidate yield for a large suite of mission and astrophysical parameters using single visit completeness. We find that exoEarth candidate yield is most sensitive to telescope diameter, followed by coronagraph inner working angle, followed by coronagraph contrast, and finally coronagraph contrast noise floor. We find a surprisingly weak dependence of exoEarth candidate yield on exozodi level. Additionally, we provide a quantitative approach to defining a yield goal for future exoEarth-imaging missions.

  2. Stellar magnetic activity and exoplanets

    Directory of Open Access Journals (Sweden)

    Vidotto A.A.

    2017-01-01

    Full Text Available It has been proposed that magnetic activity could be enhanced due to interactions between close-in massive planets and their host stars. In this article, I present a brief overview of the connection between stellar magnetic activity and exoplanets. Stellar activity can be probed in chromospheric lines, coronal emission, surface spot coverage, etc. Since these are manifestations of stellar magnetism, these measurements are often used as proxies for the magnetic field of stars. Here, instead of focusing on the magnetic proxies, I overview some recent results of magnetic field measurements using spectropolarimetric observations. Firstly, I discuss the general trends found between large-scale magnetism, stellar rotation, and coronal emission and show that magnetism seems to be correlated to the internal structure of the star. Secondly, I overview some works that show evidence that exoplanets could (or not act as to enhance the activity of their host stars.

  3. Relationship between Luminosity, Irradiance and Temperature of star on the orbital parameters of exoplanets

    Directory of Open Access Journals (Sweden)

    Pavel Pintr

    2013-05-01

    Full Text Available For 759 exoplanets detected by radial velocities method we found that distances of exoplanets from central star comply in general Schmidt law and these distances depend on the stellar surface temperature. Every stellar spectral class has a little different distribution. The Luminosity and the Irradiance has not effect on the distribution of distances of exoplanets. We have found the new formulas for calculation of effective temperature of exoplanets for spectral classes F, G, and K. These new formulas we can use for future calculation of habitable planets.

  4. A New Spin to Exoplanet Habitability Criteria

    Science.gov (United States)

    Georgoulis, M. K.; Patsourakos, S.

    2017-12-01

    We describe a physically- and statistically-based method to infer the near-Sun magnetic field of coronal mass ejections (CMEs) and then extrapolate it to the inner heliosphere and beyond. Besides a ballpark agreement with in-situ observations of interplanetary CMEs (ICMEs) at L1, we use our estimates to show that Earth does not seem to be at risk of an extinction-level atmospheric erosion or stripping by the magnetic pressure of extreme solar eruptions, even way above a Carrington-type event. This does not seem to be the case with exoplanets, however, at least those orbiting in the classically defined habitability zones of magnetically active dwarf stars at orbital radii of a small fraction of 1 AU. We show that the combination of stellar ICMEs and the tidally locking zone of mother stars, that quite likely does not allow these exoplanets to attain Earth-like magnetic fields to shield themselves, probably render the existence of a proper atmosphere in them untenable. We propose, therefore, a critical revision of habitability criteria in these cases that would limit the number of target exoplanets considered as potential biosphere hosts.

  5. Red-edge position of habitable exoplanets around M-dwarfs.

    Science.gov (United States)

    Takizawa, Kenji; Minagawa, Jun; Tamura, Motohide; Kusakabe, Nobuhiko; Narita, Norio

    2017-08-08

    One of the possible signs of life on distant habitable exoplanets is the red-edge, which is a rise in the reflectivity of planets between visible and near-infrared (NIR) wavelengths. Previous studies suggested the possibility that the red-edge position for habitable exoplanets around M-dwarfs may be shifted to a longer wavelength than that for Earth. We investigated plausible red-edge position in terms of the light environment during the course of the evolution of phototrophs. We show that phototrophs on M-dwarf habitable exoplanets may use visible light when they first evolve in the ocean and when they first colonize the land. The adaptive evolution of oxygenic photosynthesis may eventually also use NIR radiation, by one of two photochemical reaction centers, with the other center continuing to use visible light. These "two-color" reaction centers can absorb more photons, but they will encounter difficulty in adapting to drastically changing light conditions at the boundary between land and water. NIR photosynthesis can be more productive on land, though its evolution would be preceded by the Earth-type vegetation. Thus, the red-edge position caused by photosynthetic organisms on habitable M-dwarf exoplanets could initially be similar to that on Earth and later move to a longer wavelength.

  6. High Contrast Imaging of Exoplanets and Exoplanetary Systems with JWST

    Science.gov (United States)

    Hinkley, Sasha; Skemer, Andrew; Biller, Beth; Baraffe, I.; Bonnefoy, M.; Bowler, B.; Carter, A.; Chen, C.; Choquet, E.; Currie, T.; Danielski, C.; Fortney, J.; Grady, C.; Greenbaum, A.; Hines, D.; Janson, M.; Kalas, P.; Kennedy, G.; Kraus, A.; Lagrange, A.; Liu, M.; Marley, M.; Marois, C.; Matthews, B.; Mawet, D.; Metchev, S.; Meyer, M.; Millar-Blanchaer, M.; Perrin, M.; Pueyo, L.; Quanz, S.; Rameau, J.; Rodigas, T.; Sallum, S.; Sargent, B.; Schlieder, J.; Schneider, G.; Stapelfeldt, K.; Tremblin, P.; Vigan, A.; Ygouf, M.

    2017-11-01

    JWST will transform our ability to characterize directly imaged planets and circumstellar debris disks, including the first spectroscopic characterization of directly imaged exoplanets at wavelengths beyond 5 microns, providing a powerful diagnostic of cloud particle properties, atmospheric structure, and composition. To lay the groundwork for these science goals, we propose a 39-hour ERS program to rapidly establish optimal strategies for JWST high contrast imaging. We will acquire: a) coronagraphic imaging of a newly discovered exoplanet companion, and a well-studied circumstellar debris disk with NIRCam & MIRI; b) spectroscopy of a wide separation planetary mass companion with NIRSPEC & MIRI; and c) deep aperture masking interferometry with NIRISS. Our primary goals are to: 1) generate representative datasets in modes to be commonly used by the exoplanet and disk imaging communities; 2) deliver science enabling products to empower a broad user base to develop successful future investigations; and 3) carry out breakthrough science by characterizing exoplanets for the first time over their full spectral range from 2-28 microns, and debris disk spectrophotometry out to 15 microns sampling the 3 micron water ice feature. Our team represents the majority of the community dedicated to exoplanet and disk imaging and has decades of experience with high contrast imaging algorithms and pipelines. We have developed a collaboration management plan and several organized working groups to ensure we can rapidly and effectively deliver high quality Science Enabling Products to the community.

  7. Natural and artificial spectral edges in exoplanets

    Science.gov (United States)

    Lingam, Manasvi; Loeb, Abraham

    2017-09-01

    Technological civilizations may rely upon large-scale photovoltaic arrays to harness energy from their host star. Photovoltaic materials, such as silicon, possess distinctive spectral features, including an 'artificial edge' that is characteristically shifted in wavelength shortwards of the 'red edge' of vegetation. Future observations of reflected light from exoplanets would be able to detect both natural and artificial edges photometrically, if a significant fraction of the planet's surface is covered by vegetation or photovoltaic arrays, respectively. The stellar energy thus tapped can be utilized for terraforming activities by transferring heat and light from the day side to the night side on tidally locked exoplanets, thereby producing detectable artefacts.

  8. TERRESTRIAL, HABITABLE-ZONE EXOPLANET FREQUENCY FROM KEPLER

    International Nuclear Information System (INIS)

    Traub, Wesley A.

    2012-01-01

    Data from Kepler's first 136 days of operation are analyzed to determine the distribution of exoplanets with respect to radius, period, and host-star spectral type. The analysis is extrapolated to estimate the percentage of terrestrial, habitable-zone (HZ) exoplanets. The Kepler census is assumed to be complete for bright stars (magnitude 0.5 Earth radius and periods β–1 , with β ≅ 0.71 ± 0.08; and an extrapolation to longer periods gives the frequency of terrestrial planets in the HZs of FGK stars as η ⊕ ≅ (34 ± 14)%. Thus about one-third of FGK stars are predicted to have at least one terrestrial, HZ planet.

  9. Titania may produce abiotic oxygen atmospheres on habitable exoplanets

    OpenAIRE

    Norio Narita; Takafumi Enomoto; Shigeyuki Masaoka; Nobuhiko Kusakabe

    2015-01-01

    The search for habitable exoplanets in the Universe is actively ongoing in the field of astronomy. The biggest future milestone is to determine whether life exists on such habitable exoplanets. In that context, oxygen in the atmosphere has been considered strong evidence for the presence of photosynthetic organisms. In this paper, we show that a previously unconsidered photochemical mechanism by titanium (IV) oxide (titania) can produce abiotic oxygen from liquid water under near ultraviolet ...

  10. Habitable Exoplanet Imager Optical-Mechanical Design and Analysis

    Science.gov (United States)

    Gaskins, Jonathan; Stahl, H. Philip

    2017-01-01

    The Habitable Exoplanet Imager (HabEx) is a space telescope currently in development whose mission includes finding and spectroscopically characterizing exoplanets. Effective high-contrast imaging requires tight stability requirements of the mirrors to prevent issues such as line of sight and wavefront errors. PATRAN and NASTRAN were used to model updates in the design of the HabEx telescope and find how those updates affected stability. Most of the structural modifications increased first mode frequencies and improved line of sight errors. These studies will be used to help define the baseline HabEx telescope design.

  11. Prospects for Detecting Thermal Emission from Terrestrial Exoplanets with JWST

    Science.gov (United States)

    Kreidberg, Laura

    2018-01-01

    A plethora of nearby, terrestrial exoplanets has been discovered recently by ground-based surveys. Excitingly, some of these are in the habitable zones of their host stars, and may be hospitable for life. However, all the planets orbit small, cool stars and have considerably different irradiation environments from the Earth, making them vulnerable to atmospheric escape, erosion and collapse. Atmosphere characterization is therefore critical to assessing the planets' habitability. I will discuss possible JWST thermal emission measurements to determine the atmospheric properties of nearby terrestrial planets. I will focus on prospects for detecting physically motivated atmospheres for planets orbiting LHS 1140, GJ 1132, and TRAPPIST-1. I will also discuss the potential for using phase curve observations to determine whether an atmosphere has survived on the non-transiting planet Proxima b.

  12. New National Telescope at La Silla - TRAPPIST to Scout the Sky and Uncover Exoplanets and Comets

    Science.gov (United States)

    2010-06-01

    A new robotic telescope has had first light at ESO's La Silla Observatory, in Chile. TRAPPIST (TRAnsiting Planets and PlanetesImals Small Telescope) is devoted to the study of planetary systems through two approaches: the detection and characterisation of planets located outside the Solar System (exoplanets) and the study of comets orbiting around the Sun. The 60-cm telescope is operated from a control room in Liège, Belgium, 12 000 km away. "The two themes of the TRAPPIST project are important parts of an emerging interdisciplinary field of research - astrobiology - that aims at studying the origin and distribution of life in the Universe," explains Michaël Gillon, who is in charge of the exoplanet studies. "Terrestrial planets similar to our Earth are obvious targets for the search for life outside the Solar System, while comets are suspected to have played an important role in the appearance and development of life on our planet," adds his colleague Emmanuël Jehin, who leads the cometary part of the project. TRAPPIST will detect and characterise exoplanets by making high precision measurements of "brightness dips" that might possibly be caused by exoplanet transits. During such a transit, the observed brightness of the star decreases slightly because the planet blocks a part of the starlight. The larger the planet, the more of the light is blocked and the more the brightness of the star will decrease [1]. "ESO's La Silla Observatory on the outskirts of the Atacama Desert is certainly one of the best astronomical sites in the world," says Gillon. "And because it is already home to two superb exoplanet hunters, we couldn't have found a better place to install our robotic telescope." The astronomers behind the TRAPPIST initiative will work very closely with the teams using HARPS on the 3.6-metre telescope and CORALIE attached to the Swiss 1.2-metre Leonhard Euler Telescope, both at La Silla. TRAPPIST is a collaboration between the University of Liège and the

  13. Modeling the Cloudy Atmospheres of Cool Stars, Brown Dwarfs and Hot Exoplanets

    DEFF Research Database (Denmark)

    Juncher, Diana

    M-dwarfs are very attractive targets when searching for new exoplanets. Unfortunately, they are also very difficult to model since their temperatures are low enough for dust clouds to form in their atmospheres. Because the properties of an exoplanet cannot be determined without knowing the proper......M-dwarfs are very attractive targets when searching for new exoplanets. Unfortunately, they are also very difficult to model since their temperatures are low enough for dust clouds to form in their atmospheres. Because the properties of an exoplanet cannot be determined without knowing......-consistent cloudy atmosphere models that can be used to properly determine the stellar parameters of cool stars. With this enhanced model atmosphere code I have created a grid of cool, dusty atmosphere models ranging in effective temperatures from Teff = 2000 − 3000 K. I have studied the formation and structure...... of their clouds and found that their synthetic spectra fit the observed spectra of mid to late type M-dwarfs and early type L-dwarfs well. With additional development into even cooler regimes, they could be used to characterize the atmospheres of exoplanets and aid us in our search for the kind of chemical...

  14. Predicted Exoplanet Yields for the HabEx Mission Concept

    Science.gov (United States)

    Stark, Christopher; Mennesson, Bertrand; HabEx STDT

    2018-01-01

    The Habitable Exoplanet Imaging Mission (HabEx) is a concept for a flagship mission to directly image and characterize extrasolar planets around nearby stars and to enable a broad range of general astrophysics. The HabEx Science and Technology Definition Team (STDT) is currently studying two architectures for HabEx. Here we summarize the exoplanet science yield of Architecture A, a 4 m monolithic off-axis telescope that uses a vortex coronagraph and a 72m external starshade occulter. We summarize the instruments' capabilities, present science goals and observation strategies, and discuss astrophysical assumptions. Using a yield optimization code, we predict the yield of potentially Earth-like extrasolar planets that could be detected, characterized, and searched for signs of habitability and/or life by HabEx. We demonstrate that HabEx could also detect and characterize a wide variety of exoplanets while searching for potentially Earth-like planets.

  15. NExSS/NAI Joint ExoPAG SAG 16 Report on Remote Biosignatures for Exoplanets

    Science.gov (United States)

    Kiang, Nancy Y.; Parenteau, Mary Nicole; Domagal-Goldman, Shawn

    2017-01-01

    Future exoplanet observations will soon focus on the search for life beyond the Solar System. Exoplanet biosignatures to be sought are those with global, potentially detectable, impacts on a planet. Biosignatures occur in an environmental context in which geological, atmospheric, and stellar processes and interactions may work to enhance, suppress or mimic these biosignatures. Thus biosignature scienceis inherently interdisciplinary. Its advance is necessary to inform the design of the next flagship missions that will obtain spectra of habitable extrasolar planets. The NExSS NAI Joint Exoplanet Biosignatures Workshop Without Walls brought together the astrobiology, exoplanet, and mission concept communities to review, discuss, debate, and advance the science of remote detection of planetary biosignatures. The multi-meeting workshop began in June 2016, and was a process that engaged a broad range of experts across the interdisciplinary reaches of NASA's Nexus for Exoplanet System Science (NExSS) program, the NASA Astrobiology Institute (NAI), NASAs Exoplanet Exploration Program (ExEP), and international partners, such as the European Astrobiology Network Association (EANA) and Japans Earth Life Science Institute (ELSI). These groups spanned expertise in astronomy, planetary science, Earth sciences, heliophysics, biology, instrument mission development, and engineering.

  16. UTILITARIAN OPACITY MODEL FOR AGGREGATE PARTICLES IN PROTOPLANETARY NEBULAE AND EXOPLANET ATMOSPHERES

    International Nuclear Information System (INIS)

    Cuzzi, Jeffrey N.; Davis, Sanford S.; Estrada, Paul R.

    2014-01-01

    As small solid grains grow into larger ones in protoplanetary nebulae, or in the cloudy atmospheres of exoplanets, they generally form porous aggregates rather than solid spheres. A number of previous studies have used highly sophisticated schemes to calculate opacity models for irregular, porous particles with sizes much smaller than a wavelength. However, mere growth itself can affect the opacity of the medium in far more significant ways than the detailed compositional and/or structural differences between grain constituents once aggregate particle sizes exceed the relevant wavelengths. This physics is not new; our goal here is to provide a model that provides physical insight and is simple to use in the increasing number of protoplanetary nebula evolution and exoplanet atmosphere models appearing in recent years, yet quantitatively captures the main radiative properties of mixtures of particles of arbitrary size, porosity, and composition. The model is a simple combination of effective medium theory with small-particle closed-form expressions, combined with suitably chosen transitions to geometric optics behavior. Calculations of wavelength-dependent emission and Rosseland mean opacity are shown and compared with Mie theory. The model's fidelity is very good in all comparisons we have made except in cases involving pure metal particles or monochromatic opacities for solid particles with sizes comparable to the wavelength

  17. Exoplanets: The Hunt Continues!

    Science.gov (United States)

    2001-04-01

    Swiss Telescope at La Silla Very Successful Summary The intensive and exciting hunt for planets around other stars ( "exoplanets" ) is continuing with great success in both hemispheres. Today, an international team of astronomers from the Geneva Observatory and other research institutes [1] is announcing the discovery of no less than eleven new, planetary companions to solar-type stars, HD 8574, HD 28185, HD 50554, HD 74156, HD 80606, HD 82943, HD 106252, HD 141937, HD 178911B, HD 141937, among which two new multi-planet systems . The masses of these new objects range from slightly less than to about 10 times the mass of the planet Jupiter [2]. The new detections are based on measured velocity changes of the stars [3], performed with the CORALIE spectrometer on the Swiss 1.2-m Leonard Euler telescope at the ESO La Silla Observatory , as well as with instruments on telescopes at the Haute-Provence Observatory and on the Keck telescopes on Mauna Kea (Hawaii, USA). Some of the new planets are unusual: * a two-planet system (around the star HD 82943) in which one orbital period is nearly exactly twice as long as the other - cases like this (refered to as "orbital resonance") are well known in our own solar system; * another two-planet system (HD 74156), with a Jupiter-like planet and a more massive planet further out; * a planet with the most elongated orbit detected so far (HD 80606), moving between 5 and 127 million kilometers from the central star; * a giant planet moving in an orbit around its Sun-like central star that is very similar to the one of the Earth and whose potential satellites (in theory, at least) might be "habitable". At this moment, there are 63 know exoplanet candidates with minimum masses below 10 Jupiter masses, and 67 known objects with minimum masses below 17 Jupiter masses. The present team of astronomers has detected about half of these. PR Photo 13a/01 : Radial-velocity measurements of HD 82943, a two-planet system . PR Photo 13b/01 : Radial

  18. Exoplanet Biosignatures: Observational Prospects

    OpenAIRE

    Fujii, Yuka; Angerhausen, Daniel; Deitrick, Russell; Domagal-Goldman, Shawn; Grenfell, John Lee; Hori, Yasunori; Kane, Stephen R.; Palle, Enric; Rauer, Heike; Siegler, Nicholas; Stapelfeldt, Karl; Stevenson, Kevin B.

    2017-01-01

    Exoplanet hunting efforts have revealed the prevalence of exotic worlds with diverse properties, including temperate Earth-sized bodies, fueling our endeavor to search for life beyond the Solar System. Accumulating experiences in astrophysical, chemical, and climatological characterization of uninhabitable planets are paving the way to characterization of astrobiologically motivated targets. In this paper, we explore our roadmap toward the comprehensive assessment of temperate terrestrial pla...

  19. Catalogue of Exoplanets in Multiple-Star-Systems

    Science.gov (United States)

    Schwarz, Richard; Funk, Barbara; Bazsó, Ákos; Pilat-Lohinger, Elke

    2017-07-01

    Cataloguing the data of exoplanetary systems becomes more and more important, due to the fact that they conclude the observations and support the theoretical studies. Since 1995 there is a database which list most of the known exoplanets (The Extrasolar Planets Encyclopaedia is available at http://exoplanet.eu/ and described at Schneider et al. 2011). With the growing number of detected exoplanets in binary and multiple star systems it became more important to mark and to separate them into a new database. Therefore we started to compile a catalogue for binary and multiple star systems. Since 2013 the catalogue can be found at http://www.univie.ac.at/adg/schwarz/multiple.html (description can be found at Schwarz et al. 2016) which will be updated regularly and is linked to the Extrasolar Planets Encyclopaedia. The data of the binary catalogue can be downloaded as a file (.csv) and used for statistical purposes. Our database is divided into two parts: the data of the stars and the planets, given in a separate list. Every columns of the list can be sorted in two directions: ascending, meaning from the lowest value to the highest, or descending. In addition an introduction and help is also given in the menu bar of the catalogue including an example list.

  20. THE FREQUENCY OF LOW-MASS EXOPLANETS

    International Nuclear Information System (INIS)

    O'Toole, S. J.; Jones, H. R. A.; Tinney, C. G.; Bailey, J.; Wittenmyer, R. A.; Butler, R. P.; Marcy, G. W.; Carter, B.

    2009-01-01

    We report first results from the Anglo-Australian Telescope Rocky Planet Search-an intensive, high-precision Doppler planet search targeting low-mass exoplanets in contiguous 48 night observing blocks. On this run, we targeted 24 bright, nearby and intrinsically stable Sun-like stars selected from the Anglo-Australian Planet Search's main sample. These observations have already detected one low-mass planet reported elsewhere (HD 16417b), and here we reconfirm the detection of HD 4308b. Further, we have Monte Carlo simulated data from this run on a star-by-star basis to produce robust detection constraints. These simulations demonstrate clear differences in the exoplanet detectability functions from star to star due to differences in sampling, data quality and intrinsic stellar stability. They reinforce the importance of star-by-star simulation when interpreting the data from Doppler planet searches. These simulations indicate that for some of our target stars we are sensitive to close-orbiting planets as small as a few Earth masses. The two low-mass planets present in our 24-star sample indicate that the exoplanet minimum mass function at low masses is likely to be a flat α ∼ -1 (for dN/dM ∝ M α ) and that between 15% ± 10% (at α = -0.3) and 48% ± 34% (at α = -1.3) of stars host planets with orbital periods of less than 16 days and minimum masses greater than 3 M + .

  1. Archaeology and direct imaging of exoplanets

    Science.gov (United States)

    Campbell, John B.

    The search for extraterrestrial technology effectively began 45 years ago with Frank Drake's Project Ozma and a radioastronomy start to the search for extraterrestrial intelligence (SETI). Eventually searches began for possible interstellar probes in stable orbits in the Solar System, as well as for infrared excesses from possible Dyson spheres round Sun-like stars. Whilst the Cold War was still underway, some scientists looked for evidence of nuclear waste dumps and nuclear wars elsewhere in the Milky Way. None of this work was carried out by archaeologists, even though by their very nature archaeologists are experts in the detection of ancient technologies. The technologies being searched for would have been partly ancient in age though advanced in techniques and science. The development of ESA's Darwin and NASA's TPF for detection and imaging of Earth-like exoplanets in our galactic neighbourhood represents an opportunity for the testing of techniques for detecting signatures of technological activities. Ideally, both Darwin and TPF might be able to provide spectroscopic data on the chemistry and biochemistry of the atmospheres of Earth-like exoplanets, and thus to detect some of the signs of life. If this can be accomplished successfully, then in theory evidence for pollution and nuclear accidents and wars should be detectable. Some infrared signatures of ETT on or round exoplanets might be detectable. Direct visual imaging of ETT structures will probably not be feasible till we have extremely powerful interstellar telescopes or actually send orbital craft.

  2. The Frequency of Low-Mass Exoplanets

    Science.gov (United States)

    O'Toole, S. J.; Jones, H. R. A.; Tinney, C. G.; Butler, R. P.; Marcy, G. W.; Carter, B.; Bailey, J.; Wittenmyer, R. A.

    2009-08-01

    We report first results from the Anglo-Australian Telescope Rocky Planet Search—an intensive, high-precision Doppler planet search targeting low-mass exoplanets in contiguous 48 night observing blocks. On this run, we targeted 24 bright, nearby and intrinsically stable Sun-like stars selected from the Anglo-Australian Planet Search's main sample. These observations have already detected one low-mass planet reported elsewhere (HD 16417b), and here we reconfirm the detection of HD 4308b. Further, we have Monte Carlo simulated data from this run on a star-by-star basis to produce robust detection constraints. These simulations demonstrate clear differences in the exoplanet detectability functions from star to star due to differences in sampling, data quality and intrinsic stellar stability. They reinforce the importance of star-by-star simulation when interpreting the data from Doppler planet searches. These simulations indicate that for some of our target stars we are sensitive to close-orbiting planets as small as a few Earth masses. The two low-mass planets present in our 24-star sample indicate that the exoplanet minimum mass function at low masses is likely to be a flat α ~ -1 (for dN/dM vprop M α) and that between 15% ± 10% (at α = -0.3) and 48% ± 34% (at α = -1.3) of stars host planets with orbital periods of less than 16 days and minimum masses greater than 3 M ⊕.

  3. Towards a List of Molecules as Potential Biosignature Gases for the Search for Life on Exoplanets

    Science.gov (United States)

    Seager, Sara; Bains, William; Petkowski, Janusz

    2015-12-01

    Thousands of exoplanets are known to orbit nearby stars. Plans for the next generation of space-based and ground-based telescopes are fueling the anticipation that a precious few habitable planets can be identified in the coming decade. Even more highly anticipated is the chance to find signs of life on these habitable planets by way of biosignature gases. But which gases should we search for? We expand on the search of possible biosignature gases and go beyond those studied so far, which include O2, O3, N2O, and CH4, as well as secondary metabolites: methanethiol (CH3SH), dimethyl sulfide ((CH3)2S), methyl chloride (CH3Cl), and carbonyl sulfide (CSO).We present the results of a project to map the chemical space of life’s metabolic products. We have constructed a systematic survey of all possible stable volatile molecules (up to N=6 non-H atoms), and identified those made by life on Earth. Some (such as methyl chloride) are made by Earth life in sufficiently substantial quantities to be candidate biosignatures in an Earth-like exoplanet’s atmosphere; some, such as stibine (SbH3), are produced only in trace amounts. Some entire categories of molecules are not made by Earth life (such as the silanes); these and other absences from the list of biogenic volatiles point to functional patterns in biochemical space. Such patterns may be different for different biochemistry, and so we cannot rule out any small, stable molecule as a candidate biosignature gas. Our goal is for the community to use the list to study the chemicals that might be potential biosignature gases on exoplanets with atmospheres and surface environments different from Earth’s.

  4. Thermal Structure and Mantle Dynamics of Rocky Exoplanets

    Science.gov (United States)

    Wagner, F. W.; Tosi, N.; Hussmann, H.; Sohl, F.

    2011-12-01

    The confirmed detections of CoRoT-7b and Kepler-10b reveal that rocky exoplanets exist. Moreover, recent theoretical studies suggest that small planets beyond the Solar System are indeed common and many of them will be discovered by increasingly precise observational surveys in the years ahead. The knowledge about the interior structure and thermal state of exoplanet interiors provides crucial theoretical input not only for classification and characterization of individual planetary bodies, but also to better understand the origin and evolution of the Solar System and the Earth in general. These developments and considerations have motivated us to address several questions concerning thermal structure and interior dynamics of terrestrial exoplanets. In the present study, depth-dependent structural models of solid exoplanet interiors have been constructed in conjunction with a mixing length approach to calculate self-consistently the radial distribution of temperature and heat flux. Furthermore, 2-D convection simulations using the compressible anelastic approximation have been carried through to examine the effect of thermodynamic quantities (e.g., thermal expansivity) on mantle convection pattern within rocky planets more massive than the Earth. In comparison to parameterized convection models, our calculated results predict generally hotter planetary interiors, which are mainly attributed to a viscosity-regulating feedback mechanism involving temperature and pressure. We find that density and thermal conductivity increase with depth by a factor of two to three, however, thermal expansivity decreases by more than an order of magnitude across the mantle for planets as massive as CoRoT-7b or Kepler-10b. The specific heat capacity is observed to stay almost constant over an extended region of the lower mantle. The planform of mantle convection is strongly modified in the presence of depth-dependent thermodynamic quantities with hot upwellings (plumes) rising across

  5. HOMES - Holographic Optical Method for Exoplanet Spectroscopy

    Data.gov (United States)

    National Aeronautics and Space Administration — HOMES (Holographic Optical Method for Exoplanet Spectroscopy) is a space telescope that employs a double dispersion architecture, using a holographic optical element...

  6. Walking on Exoplanets: Is Star Wars Right?

    Science.gov (United States)

    Ballesteros, Fernando J.; Luque, B.

    2016-05-01

    As the number of detected extrasolar planets increases, exoplanet databases become a valuable resource, confirming some details about planetary formation but also challenging our theories with new, unexpected properties.

  7. Exoplanet Biosignatures: A Review of Remotely Detectable Signs of Life.

    Science.gov (United States)

    Schwieterman, Edward W; Kiang, Nancy Y; Parenteau, Mary N; Harman, Chester E; DasSarma, Shiladitya; Fisher, Theresa M; Arney, Giada N; Hartnett, Hilairy E; Reinhard, Christopher T; Olson, Stephanie L; Meadows, Victoria S; Cockell, Charles S; Walker, Sara I; Grenfell, John Lee; Hegde, Siddharth; Rugheimer, Sarah; Hu, Renyu; Lyons, Timothy W

    2018-05-04

    In the coming years and decades, advanced space- and ground-based observatories will allow an unprecedented opportunity to probe the atmospheres and surfaces of potentially habitable exoplanets for signatures of life. Life on Earth, through its gaseous products and reflectance and scattering properties, has left its fingerprint on the spectrum of our planet. Aided by the universality of the laws of physics and chemistry, we turn to Earth's biosphere, both in the present and through geologic time, for analog signatures that will aid in the search for life elsewhere. Considering the insights gained from modern and ancient Earth, and the broader array of hypothetical exoplanet possibilities, we have compiled a comprehensive overview of our current understanding of potential exoplanet biosignatures, including gaseous, surface, and temporal biosignatures. We additionally survey biogenic spectral features that are well known in the specialist literature but have not yet been robustly vetted in the context of exoplanet biosignatures. We briefly review advances in assessing biosignature plausibility, including novel methods for determining chemical disequilibrium from remotely obtainable data and assessment tools for determining the minimum biomass required to maintain short-lived biogenic gases as atmospheric signatures. We focus particularly on advances made since the seminal review by Des Marais et al. The purpose of this work is not to propose new biosignature strategies, a goal left to companion articles in this series, but to review the current literature, draw meaningful connections between seemingly disparate areas, and clear the way for a path forward. Key Words: Exoplanets-Biosignatures-Habitability markers-Photosynthesis-Planetary surfaces-Atmospheres-Spectroscopy-Cryptic biospheres-False positives. Astrobiology 18, xxx-xxx.

  8. ASTRO 850: Teaching Teachers about Exoplanets

    Science.gov (United States)

    Barringer, Daniel; Palma, Christopher

    2017-01-01

    The Earth and Space Science Partnership (ESSP) is a collaboration among Penn State scientists, science educators and seven school districts across Pennsylvania. Penn State also offers through its fully online World Campus the opportunity for In-Service science teachers to earn an M.Ed. degree in Earth Science, and we currently offer a required online astronomy course for that program. We have previously presented descriptions of how have incorporated research-based pedagogical practices into ESSP-sponsored workshops for in-service teachers (Palma et al. 2013), a pilot section of introductory astronomy for non-science majors (Palma et al. 2014), and into the design of an online elective course on exoplanets for the M.Ed. in Earth Science (Barringer and Palma, 2016). Here, we present the finished version of that exoplanet course, ASTRO 850. We gratefully acknowledge support from the NSF MSP program award DUE#0962792.

  9. SpeX Spectroscopy of Unresolved Very Low-Mass Binaries. I. Identification of Seventeen Candidate Binaries Straddling the L Dwarf/T Dwarf Transition

    OpenAIRE

    Burgasser, Adam J.; Cruz, Kelle L.; Cushing, Michael C.; Gelino, Christopher R.; Looper, Dagny L.; Faherty, Jacqueline K.; Kirkpatrick, J. Davy; Reid, I. Neill

    2009-01-01

    We report the identification of 17 candidate brown dwarf binaries whose components straddle the L dwarf/T dwarf transition. These sources were culled from a large near-infrared spectral sample of L and T dwarfs observed with the Infrared Telescope Facility SpeX spectrograph. Candidates were selected on the basis of spectral ratios which segregate known (resolved) L dwarf/T dwarf pairs from presumably single sources. Composite templates, constructed by combining 13581 pairs of absolute flux-ca...

  10. Technology Maturity for the Habitable-zone Exoplanet Imaging Mission (HabEx) Concept

    Science.gov (United States)

    Morgan, Rhonda; Warfield, Keith R.; Stahl, H. Philip; Mennesson, Bertrand; Nikzad, Shouleh; nissen, joel; Balasubramanian, Kunjithapatham; Krist, John; Mawet, Dimitri; Stapelfeldt, Karl; warwick, Steve

    2018-01-01

    HabEx Architecture A is a 4m unobscured telescope optimized for direct imaging and spectroscopy of potentially habitable exoplanets, and also enables a wide range of general astrophysics science. The exoplanet detection and characterization drives the enabling core technologies. A hybrid starlight suppression approach of a starshade and coronagraph diversifies technology maturation risk. In this poster we assess these exoplanet-driven technologies, including elements of coronagraphs, starshades, mirrors, jitter mitigation, wavefront control, and detectors. By utilizing high technology readiness solutions where feasible, and identifying required technology development that can begin early, HabEx will be well positioned for assessment by the community in 2020 Astrophysics Decadal Survey.

  11. A sub-Mercury-sized exoplanet

    NARCIS (Netherlands)

    Barclay, T.; et al., [Unknown; Hekker, S.

    2013-01-01

    Since the discovery of the first exoplanets1, 2, it has been known that other planetary systems can look quite unlike our own3. Until fairly recently, we have been able to probe only the upper range of the planet size distribution4, 5, and, since last year, to detect planets that are the size of

  12. WASP-121b: An ultrahot gas-giant exoplanet with a stratosphere

    Science.gov (United States)

    Kataria, Tiffany; Evans, Thomas M.; Sing, David; Goyal, Jayesh; Nikolov, Nikolay; Wakeford, Hannah R.; Deming, Drake; Marley, Mark S.; PanCET Team

    2018-01-01

    Stratospheres are ubiquitous in the atmospheres of solar system planets, and provide crucial information about an atmosphere’s chemical composition, vertical temperature structure, and energy budget. While it has been suggested that stratospheres could form in highly irradiated exoplanets, the extent to which this occurs has so far been unresolved both theoretically and observationally. Here we present secondary eclipse observations of the ultra-hot (Teq ~ 2500 K) gas giant exoplanet WASP-121b made using HST/WFC3 in spectroscopic mode across the 1.12-1.64 micron wavelength range. The spectrum is inconsistent with an isothermal atmosphere and has spectrally-resolved water features in emission, providing a detection of an exoplanet stratosphere at 5-sigma confidence. WASP-121b is one of the standout exoplanets available for atmospheric characterization, both in transmission and emission, due to its large radius (1.8 Rjup), high temperature, and bright host star (H=9.4mag). As such, we will also discuss follow-up observations of WASP-121b with HST and JWST to probe the longitudinal extent of its stratosphere, and the molecular absorbers that may produce it.

  13. Validation of Small Kepler Transiting Planet Candidates in or near the Habitable Zone

    Science.gov (United States)

    Torres, Guillermo; Kane, Stephen R.; Rowe, Jason F.; Batalha, Natalie M.; Henze, Christopher E.; Ciardi, David R.; Barclay, Thomas; Borucki, William J.; Buchhave, Lars A.; Crepp, Justin R.; Everett, Mark E.; Horch, Elliott P.; Howard, Andrew W.; Howell, Steve B.; Isaacson, Howard T.; Jenkins, Jon M.; Latham, David W.; Petigura, Erik A.; Quintana, Elisa V.

    2017-12-01

    A main goal of NASA’s Kepler Mission is to establish the frequency of potentially habitable Earth-size planets ({η }\\oplus ). Relatively few such candidates identified by the mission can be confirmed to be rocky via dynamical measurement of their mass. Here we report an effort to validate 18 of them statistically using the BLENDER technique, by showing that the likelihood they are true planets is far greater than that of a false positive. Our analysis incorporates follow-up observations including high-resolution optical and near-infrared spectroscopy, high-resolution imaging, and information from the analysis of the flux centroids of the Kepler observations themselves. Although many of these candidates have been previously validated by others, the confidence levels reported typically ignore the possibility that the planet may transit a star different from the target along the same line of sight. If that were the case, a planet that appears small enough to be rocky may actually be considerably larger and therefore less interesting from the point of view of habitability. We take this into consideration here and are able to validate 15 of our candidates at a 99.73% (3σ) significance level or higher, and the other three at a slightly lower confidence. We characterize the GKM host stars using available ground-based observations and provide updated parameters for the planets, with sizes between 0.8 and 2.9 R ⊕. Seven of them (KOI-0438.02, 0463.01, 2418.01, 2626.01, 3282.01, 4036.01, and 5856.01) have a better than 50% chance of being smaller than 2 R ⊕ and being in the habitable zone of their host stars.

  14. Marginalizing Instrument Systematics in HST WFC3 Transit Light Curves

    Science.gov (United States)

    Wakeford, H. R.; Sing, D. K.; Evans, T.; Deming, D.; Mandell, A.

    2016-03-01

    Hubble Space Telescope (HST) Wide Field Camera 3 (WFC3) infrared observations at 1.1-1.7 μm probe primarily the H2O absorption band at 1.4 μm, and have provided low-resolution transmission spectra for a wide range of exoplanets. We present the application of marginalization based on Gibson to analyze exoplanet transit light curves obtained from HST WFC3 to better determine important transit parameters such as Rp/R*, which are important for accurate detections of H2O. We approximate the evidence, often referred to as the marginal likelihood, for a grid of systematic models using the Akaike Information Criterion. We then calculate the evidence-based weight assigned to each systematic model and use the information from all tested models to calculate the final marginalized transit parameters for both the band-integrated and spectroscopic light curves to construct the transmission spectrum. We find that a majority of the highest weight models contain a correction for a linear trend in time as well as corrections related to HST orbital phase. We additionally test the dependence on the shift in spectral wavelength position over the course of the observations and find that spectroscopic wavelength shifts {δ }λ (λ ) best describe the associated systematic in the spectroscopic light curves for most targets while fast scan rate observations of bright targets require an additional level of processing to produce a robust transmission spectrum. The use of marginalization allows for transparent interpretation and understanding of the instrument and the impact of each systematic evaluated statistically for each data set, expanding the ability to make true and comprehensive comparisons between exoplanet atmospheres.

  15. Exoplanet Science in the Classroom: Learning Activities for an Introductory Physics Course

    Science.gov (United States)

    Della-Rose, Devin; Carlson, Randall; de La Harpe, Kimberly; Novotny, Steven; Polsgrove, Daniel

    2018-01-01

    Discovery of planets outside our solar system, known as extra-solar planets or exoplanets for short, has been at the forefront of astronomical research for over 25 years. Reports of new discoveries have almost become routine; however, the excitement surrounding them has not. Amazingly, as groundbreaking as exoplanet science is, the basic physics…

  16. Computation of the Transmitted and Polarized Scattered Fluxes by the Exoplanet HD 189733b in X-Rays

    Energy Technology Data Exchange (ETDEWEB)

    Marin, Frédéric [Astronomical Institute of the Academy of Sciences, Boční II 1401, CZ-14100 Prague (Czech Republic); Grosso, Nicolas, E-mail: frederic.marin@astro.unistra.fr [Université de Strasbourg, CNRS, Observatoire astronomique de Strasbourg, UMR 7550, F-67000 Strasbourg (France)

    2017-02-01

    Thousands of exoplanets have been detected, but only one exoplanetary transit was potentially observed in X-rays from HD 189733A. What makes the detection of exoplanets so difficult in this band? To answer this question, we run Monte-Carlo radiative transfer simulations to estimate the amount of X-ray flux reprocessed by HD 189733b. Despite its extended evaporating atmosphere, we find that the X-ray absorption radius of HD 189733b at 0.7 keV, which is the mean energy of the photons detected in the 0.25–2 keV energy band by XMM-Newton , is ∼1.01 times the planetary radius for an atmosphere of atomic hydrogen and helium (including ions), and produces a maximum depth of ∼2.1% at ∼±46 minutes from the center of the planetary transit on the geometrically thick and optically thin corona. We compute numerically in the 0.25–2 keV energy band that this maximum depth is only of ∼1.6% at ∼±47 minutes from the transit center, and not very sensitive to the metal abundance, assuming that adding metals in the atmosphere would not dramatically change the density–temperature profile. Regarding a direct detection of HD 189733b in X-rays, we find that the amount of flux reprocessed by the exoplanetary atmosphere varies with the orbital phase, spanning between three and five orders of magnitude fainter than the flux of the primary star. Additionally, the degree of linear polarization emerging from HD 189733b is <0.003%, with maximums detected near planetary greatest elongations. This implies that both the modulation of the X-ray flux with the orbital phase and the scatter-induced continuum polarization cannot be observed with current X-ray facilities.

  17. A SEMI-ANALYTICAL MODEL OF VISIBLE-WAVELENGTH PHASE CURVES OF EXOPLANETS AND APPLICATIONS TO KEPLER- 7 B AND KEPLER- 10 B

    Energy Technology Data Exchange (ETDEWEB)

    Hu, Renyu [Jet Propulsion Laboratory, California Institute of Technology, Pasadena, CA 91109 (United States); Demory, Brice-Olivier [Astrophysics Group, Cavendish Laboratory, J.J. Thomson Avenue, Cambridge CB3 0HE (United Kingdom); Seager, Sara; Lewis, Nikole [Department of Earth, Atmospheric and Planetary Sciences, Massachusetts Institute of Technology, Cambridge, MA 02139 (United States); Showman, Adam P., E-mail: renyu.hu@jpl.nasa.gov [Department of Planetary Sciences, University of Arizona, Tucson, AZ 85721 (United States)

    2015-03-20

    Kepler has detected numerous exoplanet transits by measuring stellar light in a single visible-wavelength band. In addition to detection, the precise photometry provides phase curves of exoplanets, which can be used to study the dynamic processes on these planets. However, the interpretation of these observations can be complicated by the fact that visible-wavelength phase curves can represent both thermal emission and scattering from the planets. Here we present a semi-analytical model framework that can be applied to study Kepler and future visible-wavelength phase curve observations of exoplanets. The model efficiently computes reflection and thermal emission components for both rocky and gaseous planets, considering both homogeneous and inhomogeneous surfaces or atmospheres. We analyze the phase curves of the gaseous planet Kepler- 7 b and the rocky planet Kepler- 10 b using the model. In general, we find that a hot exoplanet’s visible-wavelength phase curve having a significant phase offset can usually be explained by two classes of solutions: one class requires a thermal hot spot shifted to one side of the substellar point, and the other class requires reflective clouds concentrated on the same side of the substellar point. Particularly for Kepler- 7 b, reflective clouds located on the west side of the substellar point can best explain its phase curve. The reflectivity of the clear part of the atmosphere should be less than 7% and that of the cloudy part should be greater than 80%, and the cloud boundary should be located at 11° ± 3° to the west of the substellar point. We suggest single-band photometry surveys could yield valuable information on exoplanet atmospheres and surfaces.

  18. Exoplanet population inference and the abundance of Earth analogs from noisy, incomplete catalogs

    International Nuclear Information System (INIS)

    Foreman-Mackey, Daniel; Hogg, David W.; Morton, Timothy D.

    2014-01-01

    No true extrasolar Earth analog is known. Hundreds of planets have been found around Sun-like stars that are either Earth-sized but on shorter periods, or else on year-long orbits but somewhat larger. Under strong assumptions, exoplanet catalogs have been used to make an extrapolated estimate of the rate at which Sun-like stars host Earth analogs. These studies are complicated by the fact that every catalog is censored by non-trivial selection effects and detection efficiencies, and every property (period, radius, etc.) is measured noisily. Here we present a general hierarchical probabilistic framework for making justified inferences about the population of exoplanets, taking into account survey completeness and, for the first time, observational uncertainties. We are able to make fewer assumptions about the distribution than previous studies; we only require that the occurrence rate density be a smooth function of period and radius (employing a Gaussian process). By applying our method to synthetic catalogs, we demonstrate that it produces more accurate estimates of the whole population than standard procedures based on weighting by inverse detection efficiency. We apply the method to an existing catalog of small planet candidates around G dwarf stars. We confirm a previous result that the radius distribution changes slope near Earth's radius. We find that the rate density of Earth analogs is about 0.02 (per star per natural logarithmic bin in period and radius) with large uncertainty. This number is much smaller than previous estimates made with the same data but stronger assumptions.

  19. DETECTING INDUSTRIAL POLLUTION IN THE ATMOSPHERES OF EARTH-LIKE EXOPLANETS

    Energy Technology Data Exchange (ETDEWEB)

    Lin, Henry W. [Harvard College, Cambridge, MA 02138 (United States); Abad, Gonzalo Gonzalez; Loeb, Abraham, E-mail: henrylin@college.harvard.edu, E-mail: ggonzalezabad@cfa.harvard.edu, E-mail: aloeb@cfa.harvard.edu [Harvard-Smithsonian Center for Astrophysics, 60 Garden St., Cambridge, MA 02138 (United States)

    2014-09-01

    Detecting biosignatures, such as molecular oxygen in combination with a reducing gas, in the atmospheres of transiting exoplanets has been a major focus in the search for alien life. We point out that in addition to these generic indicators, anthropogenic pollution could be used as a novel biosignature for intelligent life. To this end, we identify pollutants in the Earth's atmosphere that have significant absorption features in the spectral range covered by the James Webb Space Telescope. We focus on tetrafluoromethane (CF{sub 4}) and trichlorofluoromethane (CCl{sub 3}F), which are the easiest to detect chlorofluorocarbons (CFCs) produced by anthropogenic activity. We estimate that ∼1.2 days (∼1.7 days) of total integration time will be sufficient to detect or constrain the concentration of CCl{sub 3}F (CF{sub 4}) to ∼10 times the current terrestrial level.

  20. KNOW THE STAR, KNOW THE PLANET. II. SPECKLE INTERFEROMETRY OF EXOPLANET HOST STARS

    International Nuclear Information System (INIS)

    Mason, Brian D.; Hartkopf, William I.; Raghavan, Deepak; Subasavage, John P.; Roberts, Lewis C.; Turner, Nils H.; Ten Brummelaar, Theo A.

    2011-01-01

    A study of the host stars to exoplanets is important for understanding their environment. To that end, we report new speckle observations of a sample of exoplanet host primaries. The bright exoplanet host HD 8673 (= HIP 6702) is revealed to have a companion, although at this time we cannot definitively establish the companion as physical or optical. The observing lists for planet searches and for these observations have for the most part been pre-screened for known duplicity, so the detected binary fraction is lower than what would otherwise be expected. Therefore, a large number of double stars were observed contemporaneously for verification and quality control purposes, to ensure that the lack of detection of companions for exoplanet hosts was valid. In these additional observations, 10 pairs are resolved for the first time and 60 pairs are confirmed. These observations were obtained with the USNO speckle camera on the NOAO 4 m telescopes at both KPNO and CTIO from 2001 to 2010.

  1. High Resolution Active Optics Observations from the Kepler Follow-up Observation Program

    Science.gov (United States)

    Gautier, Thomas N.; Ciardi, D. R.; Marcy, G. W.; Hirsch, L.

    2014-01-01

    The ground based follow-up observation program for candidate exoplanets discovered with the Kepler observatory has supported a major effort for high resolution imaging of candidate host stars using adaptive optics wave-front correction (AO), speckle imaging and lucky imaging. These images allow examination of the sky as close as a few tenths of an arcsecond from the host stars to detect background objects that might be the source of the Kepler transit signal instead of the host star. This poster reports on the imaging done with AO cameras on the Keck, Palomar 5m and Shane 3m (Lick Observatory) which have been used to obtain high resolution images of over 500 Kepler Object of Interest (KOI) exoplanet candidate host stars. All observations were made at near infrared wavelengths in the J, H and K bands, mostly using the host target star as the AO guide star. Details of the sensitivity to background objects actually attained by these observations and the number of background objects discovered are presented. Implications to the false positive rate of the Kepler candidates are discussed.

  2. Life Beyond the Solar System: Observation and Modeling of Exoplanet Environments

    OpenAIRE

    Del Genio, Anthony; Airapetian, Vladimir; Apai, Daniel; Batalha, Natalie; Brain, Dave; Danchi, William; Gelino, Dawn; Domagal-Goldman, Shawn; Fortney, Jonathan J.; Henning, Wade; Rushby, Andrew

    2018-01-01

    The search for life on planets outside our solar system has largely been the province of the astrophysics community until recently. A major development since the NASA Astrobiology Strategy 2015 document (AS15) has been the integration of other NASA science disciplines (planetary science, heliophysics, Earth science) with ongoing exoplanet research in astrophysics. The NASA Nexus for Exoplanet System Science (NExSS) provides a forum for scientists to collaborate across disciplines to accelerat...

  3. ALMOST ALL OF KEPLER'S MULTIPLE-PLANET CANDIDATES ARE PLANETS

    International Nuclear Information System (INIS)

    Lissauer, Jack J.; Rowe, Jason F.; Bryson, Stephen T.; Howell, Steve B.; Jenkins, Jon M.; Kinemuchi, Karen; Koch, David G.; Marcy, Geoffrey W.; Adams, Elisabeth; Fressin, Francois; Geary, John; Holman, Matthew J.; Ragozzine, Darin; Buchhave, Lars A.; Ciardi, David R.; Cochran, William D.; Fabrycky, Daniel C.; Ford, Eric B.; Morehead, Robert C.; Gilliland, Ronald L.

    2012-01-01

    We present a statistical analysis that demonstrates that the overwhelming majority of Kepler candidate multiple transiting systems (multis) indeed represent true, physically associated transiting planets. Binary stars provide the primary source of false positives among Kepler planet candidates, implying that false positives should be nearly randomly distributed among Kepler targets. In contrast, true transiting planets would appear clustered around a smaller number of Kepler targets if detectable planets tend to come in systems and/or if the orbital planes of planets encircling the same star are correlated. There are more than one hundred times as many Kepler planet candidates in multi-candidate systems as would be predicted from a random distribution of candidates, implying that the vast majority are true planets. Most of these multis are multiple-planet systems orbiting the Kepler target star, but there are likely cases where (1) the planetary system orbits a fainter star, and the planets are thus significantly larger than has been estimated, or (2) the planets orbit different stars within a binary/multiple star system. We use the low overall false-positive rate among Kepler multis, together with analysis of Kepler spacecraft and ground-based data, to validate the closely packed Kepler-33 planetary system, which orbits a star that has evolved somewhat off of the main sequence. Kepler-33 hosts five transiting planets, with periods ranging from 5.67 to 41 days.

  4. FIVE NEW TRANSIT EPOCHS OF THE EXOPLANET OGLE-TR-111b

    International Nuclear Information System (INIS)

    Hoyer, S.; Rojo, P.; Lopez-Morales, M.; DIaz, R. F.; Chambers, J.; Minniti, D.

    2011-01-01

    We report five new transit epochs of the extrasolar planet OGLE-TR-111b, observed in the v-HIGH and Bessell I bands with the FORS1 and FORS2 at the ESO Very Large Telescope between 2008 April and May. The new transits have been combined with all previously published transit data for this planet to provide a new transit timing variations (TTVs) analysis of its orbit. We find no TTVs with amplitudes larger than 1.5 minutes over a four-year observation time baseline, in agreement with the recent result by Adams et al. Dynamical simulations fully exclude the presence of additional planets in the system with masses greater than 1.3, 0.4, and 0.5 M + at the 3:2, 1:2, and 2:1 resonances, respectively. We also place an upper limit of about 30 M + on the mass of potential second planets in the region between the 3:2 and 1:2 mean-motion resonances.

  5. ASTEROSEISMIC DETERMINATION OF OBLIQUITIES OF THE EXOPLANET SYSTEMS KEPLER-50 AND KEPLER-65

    International Nuclear Information System (INIS)

    Chaplin, W. J.; Campante, T. L.; Davies, G. R.; Elsworth, Y.; Hekker, S.; Sanchis-Ojeda, R.; Winn, J. N.; Handberg, R.; Christensen-Dalsgaard, J.; Karoff, C.; Stello, D.; Bedding, T. R.; Basu, S.; Fischer, D. A.; Metcalfe, T. S.; Buchhave, L. A.; Cochran, W. D.; Gilliland, R. L.; Huber, D.; Isaacson, H.

    2013-01-01

    Results on the obliquity of exoplanet host stars—the angle between the stellar spin axis and the planetary orbital axis—provide important diagnostic information for theories describing planetary formation. Here we present the first application of asteroseismology to the problem of stellar obliquity determination in systems with transiting planets and Sun-like host stars. We consider two systems observed by the NASA Kepler mission which have multiple transiting small (super-Earth sized) planets: the previously reported Kepler-50 and a new system, Kepler-65, whose planets we validate in this paper. Both stars show rich spectra of solar-like oscillations. From the asteroseismic analysis we find that each host has its rotation axis nearly perpendicular to the line of sight with the sines of the angles constrained at the 1σ level to lie above 0.97 and 0.91, respectively. We use statistical arguments to show that coplanar orbits are favored in both systems, and that the orientations of the planetary orbits and the stellar rotation axis are correlated.

  6. WFIRST: The Exoplanet Microlensing Survey Tells Us Where We Can Find the Cool Planets

    Science.gov (United States)

    Bennett, David; Gaudi, B. Scott; WFIRST Microlensing Science Investigation Team

    2018-01-01

    The WFIRST Exoplanet microlensing survey will complete a demographic survey of all types of planets ranging from ~0.5 AU to planets that have become unbound from the stellar systems of their birth. WFIRST's sensitivity extends down below the mass of Mars (or 0.1 Earth masses,and it is sensitive to analogs of all the planets in the Solar System, except for Mercury. When combined with Kepler's statistical census of hot and warm planets in short period orbits, WFIRST's exoplanet microlensing survey will give us a complete picture the mass and separation distribution of all types of planets. The current plans for this survey are presented, and recent developments relating to the WFIRST exoplanet microlensing survey will be presented, including recent ground-based microlensing results that challenge current theories of planet formation. Opportunities for community involvement in the WFIRST exoplanet microlensing survey will be mentioned.

  7. Protoplanetary disks and exoplanets in scattered light

    NARCIS (Netherlands)

    Stolker, T.

    2017-01-01

    High-contrast imaging facilitates the direct detection of protoplanetary disks in scattered light and self-luminous exoplanets on long-period orbits. The combined power of extreme adaptive optics and differential imaging techniques delivers high spatial resolution images of disk morphologies down to

  8. Tapir: A web interface for transit/eclipse observability

    Science.gov (United States)

    Jensen, Eric

    2013-06-01

    Tapir is a set of tools, written in Perl, that provides a web interface for showing the observability of periodic astronomical events, such as exoplanet transits or eclipsing binaries. The package provides tools for creating finding charts for each target and airmass plots for each event. The code can access target lists that are stored on-line in a Google spreadsheet or in a local text file.

  9. Objev nové ELL proměnné hvězdy v souhvězdí Kentaura a možnost detekce nových exoplanet pomocí dalekohledu FRAM

    Czech Academy of Sciences Publication Activity Database

    Pintr, Pavel; Vápenka, David; Mašek, M.

    2015-01-01

    Roč. 60, č. 2 (2015), s. 65-68 ISSN 0447-6441 R&D Projects: GA MŠk(CZ) LO1206; GA ČR GA13-10365S Institutional support: RVO:61389021 Keywords : variable star * light curve * FRAM * period analysis * exoplanet transit Subject RIV: BN - Astronomy, Celestial Mechanics, Astrophysics http://jmo.fzu.cz/

  10. Gemini Planet Imager Exoplanet Survey: Key Results Two Years Into The Survey

    Science.gov (United States)

    Marchis, Franck; Rameau, Julien; Nielsen, Eric L.; De Rosa, Robert J.; Esposito, Thomas; Draper, Zachary H.; Macintosh, Bruce; Graham, James R.; GPIES

    2016-10-01

    The Gemini Planet Imager Exoplanet Survey (GPIES) is targeting 600 young, nearby stars using the GPI instrument. We report here on recent results obtained with this instrument from our team.Rameau et al. (ApJL, 822 2, L2, 2016) presented astrometric monitoring of the young exoplanet HD 95086 b obtained with GPI between 2013 and 2016. Efficient Monte Carlo techniques place preliminary constraints on the orbital parameters of HD 95086 b. Under the assumption of a coplanar planet-disk system, the periastron of HD 95086 b is beyond 51 AU. Therefore, HD 95086 b cannot carve the entire gap inferred from the measured infrared excess in the SED of HD 95086. Additional photometric and spectroscopic measurements reported by de Rosa et al. (2016, apJ, in press) showed that the spectral energy distribution of HD 95086 b is best fit by low temperature (T~800-1300 K), low surface gravity spectra from models which simulate high photospheric dust content. Its temperature is typical to L/T transition objects, but the spectral type is poorly constrained. HD 95086 b is an important exoplanet to test our models of atmospheric properties of young extrasolar planets.Direct detections of debris disk are keys to infer the collisional past and understand the formation of planetary systems. Two debris disks were recently studied with GPI:- Draper et al. (submitted to ApJ, 2016) show the resolved circumstellar debris disk around HD 111520 at a projected range of ~30-100 AU using both total and polarized H-band intensity. Structures in the disks such as a large brightness asymmetry and symmetric polarization fraction are seen. Additional data would confirm if a large disruption event from a stellar fly-by or planetary perturbations altered the disk density- Esposito et al. (submitted to ApJ, 2016) combined Keck NIRC2 data taken at 1.2-2.3 microns and GPI 1.6 micron total intensity and polarized light detections that probes down to projected separations less than 10 AU to show that the HD

  11. Revealing Fact or Fiction in Spitzer Exoplanet Phase Curve Trends

    Science.gov (United States)

    Bean, Jacob; Parmentier, Vivien; Mansfield, Megan; Cowan, Nicolas; Kempton, Eliza; Desert, Jean-Michel; Swain, Mark; Dang, Lisa; Bell, Taylor; Keating, Dylan; Zellem, Robert; Fortney, Jonathan; Line, Michael; Kreidberg, Laura; Stevenson, Kevin

    2018-05-01

    The constraints on energy transport in exoplanet atmospheres from phase curve observations is sure to be one of Spitzer's enduring legacies. However, with phase curves for 17 planets now observed we find that the previously observed trends are not coming into sharper focus. Instead, these trends in hot spot offset and day-night flux contrast vs. the fundamental planetary parameters expected to control the energy transport (e.g., irradiation and rotational period) are becoming more uncertain due to the recent discovery of outliers. At the same time, there is a growing understanding that a number of factors like magnetic fields, aerosols, and molecular chemistry could be confounding the search for these correlations. We propose a final phase curve program to advance our understanding of energy transport in transiting exoplanet atmospheres and to cement Spitzer's legacy on this topic. This program tackles the outstanding questions in this area with a comprehensive, two-pronged approach: (1) a survey of an additional 10 high signal-to-noise planets that span a broad parameter space and (2) a search for magnetic field-induced variability in the planet HAT-P-7b. The expanded survey will bring additional statistical power to the search for trends and will enable us to determine if the recently-detected outliers are indeed oddities or are instead actually representative of the intrinsic sample diversity. The variability search will test the hypothesis that the atmospheric dynamics of the partially ionized atmospheres of close-in planets are influenced by magnetic fields, which could explain the observed scatter around the existing trends. All observations will be performed at 4.5 microns, which is the consensus best channel for these measurements. The dataset from this program will provide vital context for JWST observations and will not be superseded until ARIEL flies more than a decade from now.

  12. A two-tiered approach to assessing the habitability of exoplanets.

    Science.gov (United States)

    Schulze-Makuch, Dirk; Méndez, Abel; Fairén, Alberto G; von Paris, Philip; Turse, Carol; Boyer, Grayson; Davila, Alfonso F; António, Marina Resendes de Sousa; Catling, David; Irwin, Louis N

    2011-12-01

    In the next few years, the number of catalogued exoplanets will be counted in the thousands. This will vastly expand the number of potentially habitable worlds and lead to a systematic assessment of their astrobiological potential. Here, we suggest a two-tiered classification scheme of exoplanet habitability. The first tier consists of an Earth Similarity Index (ESI), which allows worlds to be screened with regard to their similarity to Earth, the only known inhabited planet at this time. The ESI is based on data available or potentially available for most exoplanets such as mass, radius, and temperature. For the second tier of the classification scheme we propose a Planetary Habitability Index (PHI) based on the presence of a stable substrate, available energy, appropriate chemistry, and the potential for holding a liquid solvent. The PHI has been designed to minimize the biased search for life as we know it and to take into account life that might exist under more exotic conditions. As such, the PHI requires more detailed knowledge than is available for any exoplanet at this time. However, future missions such as the Terrestrial Planet Finder will collect this information and advance the PHI. Both indices are formulated in a way that enables their values to be updated as technology and our knowledge about habitable planets, moons, and life advances. Applying the proposed metrics to bodies within our Solar System for comparison reveals two planets in the Gliese 581 system, GJ 581 c and d, with an ESI comparable to that of Mars and a PHI between that of Europa and Enceladus.

  13. The First Atmospheric Characterization of a Habitable-Zone Exoplanet

    Science.gov (United States)

    Stevenson, Kevin; Bean, Jacob; Charbonneau, David; Desert, Jean-Michel; Fortney, Jonathan; Irwin, Jonathan; Kreidberg, Laura; Line, Michael; Montet, Ben; Morley, Caroline

    2015-10-01

    Exoplanet surveys have recently revealed nearby planets orbiting within stellar habitable zones. This highly-anticipated breakthrough brings us one step closer in our quest to identify cosmic biosignatures, the indicators of extrasolar life. To achieve our goal, we must first study the atmospheres of these temperate worlds to measure their compositions and determine the prevalence of obscuring clouds. Using observations from the K2 mission, Co-I Montet recently announced the discovery of a 2.2 Earth-radii planet within the habitable zone of its relatively bright, nearby M dwarf parent star, K2-18. This temperate world is currently the best habitable-zone target for atmospheric characterization. Congruent with currently planned HST observations, we propose a Spitzer program to measure the transmission spectrum of the first habitable-zone exoplanet. Both telescopes are essential to revealing K2-18b's chemical composition. In a cloud-free, hydrogen-dominated atmosphere, the precision achieved by these measurements will be sufficient to detect methane, ammonia, and water vapor, which are the dominant C, N, and O bearing species at these temperatures. In turn, elemental abundance constraints from a primordial atmosphere can tell us about the composition of a protoplanetary disk in which Earth-like planets could have formed. Conversely, if the atmosphere contains thick clouds then the multi-wavelength observations from K2, HST, and Spitzer will constrain the clouds' properties. Because temperature plays a key role in the formation of clouds, their detection within the atmosphere of this habitable-zone exoplanet would be an important signpost that serves as a guide to future investigations of smaller, rocky exoplanets. As K2 continues discovering more habitable-zone planets, it is imperative that we perform spectral reconnaissance with Spitzer to determine their physical characteristics and begin understanding the prevalence of potentially-obscuring clouds prior to the

  14. Probing Into the Atmosphere of the Young Exoplanet K2-25b

    Science.gov (United States)

    Chia Thao, Pa; Mann, Andrew

    2018-01-01

    Planets are most transformative during their early life, yet there remains little research on this developmental stage. In order to construct a more accurate picture of the diversity and evolution of planetary atmospheres, we present Spitzer infrared photometry of five transits both in 3.6 μm and 4.5 μm bands of the young exoplanet, K2-25b (650-800 Myr). To correct for the intra-pixel photometric response, we interpolated high-resolution sensitivity maps. Light curves were then created using a transit model and an MCMC framework to find the planet parameters in each wavelength. In comparison to atmospheric theoretical models, we find K2-25b unlikely to have a solar-metallicity atmosphere. However, observed through a full transmission spectrum, K2-25b is consistent with either a high-metallicity atmosphere or a cloudy/hazy layer. Further HST data would provide significantly more detail on the structure of the atmosphere. In a future project, we plan to apply this same method to a younger planet, K2-33b (11 Myr), to determine if cloudy/hazy atmospheres are primordial.

  15. 1st Advanced School on Exoplanetary Science : Methods of Detecting Exoplanets

    CERN Document Server

    Mancini, Luigi; Sozzetti, Alessandro

    2016-01-01

    In this book, renowned scientists describe the various techniques used to detect and characterize extrasolar planets, or exoplanets, with a view to unveiling the “tricks of the trade” of planet detection to a wider community. The radial velocity method, transit method, microlensing method, and direct imaging method are all clearly explained, drawing attention to their advantages and limitations and highlighting the complementary roles that they can play in improving the characterization of exoplanets’ physical and orbital properties. By probing the planetary frequency at different distances and in different conditions, these techniques are helping astrophysicists to reconstruct the scenarios of planetary formation and to give robust scientific answers to questions regarding the frequency of potentially habitable worlds. Twenty years have passed since the discovery of a Jupiter-mass companion to a main sequence star other than the Sun, heralding the birth of extrasolar planetary research; this book fully...

  16. Simulated JWST/NIRISS Transit Spectroscopy of Anticipated Tess Planets Compared to Select Discoveries from Space-based and Ground-based Surveys

    Science.gov (United States)

    Louie, Dana R.; Deming, Drake; Albert, Loic; Bouma, L. G.; Bean, Jacob; Lopez-Morales, Mercedes

    2018-04-01

    The Transiting Exoplanet Survey Satellite (TESS) will embark in 2018 on a 2 year wide-field survey mission, discovering over a thousand terrestrial, super-Earth and sub-Neptune-sized exoplanets ({R}pl}≤slant 4 {R}\\oplus ) potentially suitable for follow-up observations using the James Webb Space Telescope (JWST). This work aims to understand the suitability of anticipated TESS planet discoveries for atmospheric characterization by JWST’s Near InfraRed Imager and Slitless Spectrograph (NIRISS) by employing a simulation tool to estimate the signal-to-noise (S/N) achievable in transmission spectroscopy. We applied this tool to Monte Carlo predictions of the TESS expected planet yield and then compared the S/N for anticipated TESS discoveries to our estimates of S/N for 18 known exoplanets. We analyzed the sensitivity of our results to planetary composition, cloud cover, and presence of an observational noise floor. We find that several hundred anticipated TESS discoveries with radii 1.5 {R}\\oplus R}pl}≤slant 2.5 {R}\\oplus will produce S/N higher than currently known exoplanets in this radius regime, such as K2-3b or K2-3c. In the terrestrial planet regime, we find that only a few anticipated TESS discoveries will result in higher S/N than currently known exoplanets, such as the TRAPPIST-1 planets, GJ1132b, and LHS1140b. However, we emphasize that this outcome is based upon Kepler-derived occurrence rates, and that co-planar compact multi-planet systems (e.g., TRAPPIST-1) may be under-represented in the predicted TESS planet yield. Finally, we apply our calculations to estimate the required magnitude of a JWST follow-up program devoted to mapping the transition region between hydrogen-dominated and high molecular weight atmospheres. We find that a modest observing program of between 60 and 100 hr of charged JWST time can define the nature of that transition (e.g., step function versus a power law).

  17. An introduction to planets ours and others : from Earth to exoplanets

    CERN Document Server

    Encrenaz, Thérèse

    2014-01-01

    What is a planet? The answer seems obvious, but nonetheless the definition of a planet has continuously evolved over the centuries, and their number has changed following successive discoveries. The decision endorsed by the International Astronomical Union to remove Pluto from the list of planets in 2006 well illustrates the difficulty associated with their definition. The recent discovery of hundreds of exoplanets around nearby stars of our Galaxy opens a new and spectacular dimension to astrophysics. We presently know very little about the physical nature of exoplanets. In contrast, our knowledge of Solar System planets has made huge progress over the past decades, thanks, especially, to space planetary exploration. The purpose of this book is first to characterize what planets are, in their global properties and in their diversity. Then, this knowledge is used to try to imagine the physical nature of exoplanets, starting from the few parameters we know about them. Throughout this book, as we explore the su...

  18. Helium discovered in the tail of an exoplanet

    Science.gov (United States)

    Deming, Drake

    2018-05-01

    As the exoplanet WASP-107b orbits its host star, its atmosphere escapes to form a comet-like tail. Helium atoms detected in the escaping gases give astronomers a powerful tool for investigating exoplanetary atmospheres.

  19. The nature of the TRAPPIST-1 exoplanets

    Science.gov (United States)

    Grimm, Simon L.; Demory, Brice-Olivier; Gillon, Michaël; Dorn, Caroline; Agol, Eric; Burdanov, Artem; Delrez, Laetitia; Sestovic, Marko; Triaud, Amaury H. M. J.; Turbet, Martin; Bolmont, Émeline; Caldas, Anthony; Wit, Julien de; Jehin, Emmanuël; Leconte, Jérémy; Raymond, Sean N.; Grootel, Valérie Van; Burgasser, Adam J.; Carey, Sean; Fabrycky, Daniel; Heng, Kevin; Hernandez, David M.; Ingalls, James G.; Lederer, Susan; Selsis, Franck; Queloz, Didier

    2018-06-01

    Context. The TRAPPIST-1 system hosts seven Earth-sized, temperate exoplanets orbiting an ultra-cool dwarf star. As such, it represents a remarkable setting to study the formation and evolution of terrestrial planets that formed in the same protoplanetary disk. While the sizes of the TRAPPIST-1 planets are all known to better than 5% precision, their densities have significant uncertainties (between 28% and 95%) because of poor constraints on the planet's masses. Aims: The goal of this paper is to improve our knowledge of the TRAPPIST-1 planetary masses and densities using transit-timing variations (TTVs). The complexity of the TTV inversion problem is known to be particularly acute in multi-planetary systems (convergence issues, degeneracies and size of the parameter space), especially for resonant chain systems such as TRAPPIST-1. Methods: To overcome these challenges, we have used a novel method that employs a genetic algorithm coupled to a full N-body integrator that we applied to a set of 284 individual transit timings. This approach enables us to efficiently explore the parameter space and to derive reliable masses and densities from TTVs for all seven planets. Results: Our new masses result in a five- to eight-fold improvement on the planetary density uncertainties, with precisions ranging from 5% to 12%. These updated values provide new insights into the bulk structure of the TRAPPIST-1 planets. We find that TRAPPIST-1 c and e likely have largely rocky interiors, while planets b, d, f, g, and h require envelopes of volatiles in the form of thick atmospheres, oceans, or ice, in most cases with water mass fractions less than 5%.

  20. MODEL-INDEPENDENT STELLAR AND PLANETARY MASSES FROM MULTI-TRANSITING EXOPLANETARY SYSTEMS

    International Nuclear Information System (INIS)

    Montet, Benjamin T.; Johnson, John Asher

    2013-01-01

    Precise exoplanet characterization requires precise classification of exoplanet host stars. The masses of host stars are commonly estimated by comparing their spectra to those predicted by stellar evolution models. However, spectroscopically determined properties are difficult to measure accurately for stars that are substantially different from the Sun, such as M-dwarfs and evolved stars. Here, we propose a new method to dynamically measure the masses of transiting planets near mean-motion resonances and their host stars by combining observations of transit timing variations with radial velocity (RV) measurements. We derive expressions to analytically determine the mass of each member of the system and demonstrate the technique on the Kepler-18 system. We compare these analytic results to numerical simulations and find that the two are consistent. We identify eight systems for which our technique could be applied if follow-up RV measurements are collected. We conclude that this analysis would be optimal for systems discovered by next-generation missions similar to TESS or PLATO, which will target bright stars that are amenable to efficient RV follow-up.

  1. Surface Variability of Short-wavelength Radiation and Temperature on Exoplanets around M Dwarfs

    Energy Technology Data Exchange (ETDEWEB)

    Zhang, Xin; Tian, Feng [Ministry of Education Key Laboratory for Earth System Modeling, Department of Earth System Science, Tsinghua University, Beijing 100084 (China); Wang, Yuwei [Department of Atmospheric and Oceanic Sciences, McGill University, Montreal, QC H3A 0B9 (Canada); Dudhia, Jimy; Chen, Ming, E-mail: tianfengco@tsinghua.edu.cn [National Center for Atmospheric Research, Boulder, CO (United States)

    2017-03-10

    It is a common practice to use 3D General Circulation Models (GCM) with spatial resolution of a few hundred kilometers to simulate the climate of Earth-like exoplanets. The enhanced albedo effect of clouds is especially important for exoplanets in the habitable zones around M dwarfs that likely have fixed substellar regions and substantial cloud coverage. Here, we carry out mesoscale model simulations with 3 km spatial resolution driven by the initial and boundary conditions in a 3D GCM and find that it could significantly underestimate the spatial variability of both the incident short-wavelength radiation and the temperature at planet surface. Our findings suggest that mesoscale models with cloud-resolving capability be considered for future studies of exoplanet climate.

  2. Finding Exoplanets Using Point Spread Function Photometry on Kepler Data

    Science.gov (United States)

    Amaro, Rachael Christina; Scolnic, Daniel; Montet, Ben

    2018-01-01

    The Kepler Mission has been able to identify over 5,000 exoplanet candidates using mostly aperture photometry. Despite the impressive number of discoveries, a large portion of Kepler’s data set is neglected due to limitations using aperture photometry on faint sources in crowded fields. We present an alternate method that overcomes those restrictions — Point Spread Function (PSF) photometry. This powerful tool, which is already used in supernova astronomy, was used for the first time on Kepler Full Frame Images, rather than just looking at the standard light curves. We present light curves for stars in our data set and demonstrate that PSF photometry can at least get down to the same photometric precision as aperture photometry. As a check for the robustness of this method, we change small variables (stamp size, interpolation amount, and noise correction) and show that the PSF light curves maintain the same repeatability across all combinations for one of our models. We also present our progress in the next steps of this project, including the creation of a PSF model from the data itself and applying the model across the entire data set at once.

  3. MASSIVE SATELLITES OF CLOSE-IN GAS GIANT EXOPLANETS

    International Nuclear Information System (INIS)

    Cassidy, Timothy A.; Johnson, Robert E.; Mendez, Rolando; Arras, Phil; Skrutskie, Michael F.

    2009-01-01

    We study the orbits, tidal heating and mass loss from satellites around close-in gas giant exoplanets. The focus is on large satellites which are potentially observable by their transit signature. We argue that even Earth-size satellites around hot Jupiters can be immune to destruction by orbital decay; detection of such a massive satellite would strongly constrain theories of tidal dissipation in gas giants, in a manner complementary to orbital circularization. The star's gravity induces significant periodic eccentricity in the satellite's orbit. The resulting tidal heating rates, per unit mass, are far in excess of Io's and dominate radioactive heating out to planet orbital periods of months for reasonable satellite tidal Q. Inside planet orbital periods of about a week, tidal heating can completely melt the satellite. Lastly, we compute an upper limit to the satellite mass loss rate due to thermal evaporation from the surface, valid if the satellite's atmosphere is thin and vapor pressure is negligible. Using this upper limit, we find that although rocky satellites around hot Jupiters with orbital periods less than a few days can be significantly evaporated in their lifetimes, detectable satellites suffer negligible mass loss at longer orbital periods.

  4. Limits on stellar companions to exoplanet host stars with eccentric planets

    International Nuclear Information System (INIS)

    Kane, Stephen R.; Hinkel, Natalie R.; Howell, Steve B.; Horch, Elliott P.; Feng, Ying; Wright, Jason T.; Ciardi, David R.; Everett, Mark E.; Howard, Andrew W.

    2014-01-01

    Though there are now many hundreds of confirmed exoplanets known, the binarity of exoplanet host stars is not well understood. This is particularly true of host stars that harbor a giant planet in a highly eccentric orbit since these are more likely to have had a dramatic dynamical history that transferred angular momentum to the planet. Here we present observations of four exoplanet host stars that utilize the excellent resolving power of the Differential Speckle Survey Instrument on the Gemini North telescope. Two of the stars are giants and two are dwarfs. Each star is host to a giant planet with an orbital eccentricity >0.5 and whose radial velocity (RV) data contain a trend in the residuals to the Keplerian orbit fit. These observations rule out stellar companions 4-8 mag fainter than the host star at passbands of 692 nm and 880 nm. The resolution and field of view of the instrument result in exclusion radii of 0.''05-1.''4, which excludes stellar companions within several AU of the host star in most cases. We further provide new RVs for the HD 4203 system that confirm that the linear trend previously observed in the residuals is due to an additional planet. These results place dynamical constraints on the source of the planet's eccentricities, place constraints on additional planetary companions, and inform the known distribution of multiplicity amongst exoplanet host stars.

  5. Habitable Exoplanet Imaging Mission (HabEx): Architecture of the 4m Mission Concept

    Science.gov (United States)

    Kuan, Gary M.; Warfield, Keith R.; Mennesson, Bertrand; Kiessling, Alina; Stahl, H. Philip; Martin, Stefan; Shaklan, Stuart B.; amini, rashied

    2018-01-01

    The Habitable Exoplanet Imaging Mission (HabEx) study is tasked by NASA to develop a scientifically compelling and technologically feasible exoplanet direct imaging mission concept, with extensive general astrophysics capabilities, for the 2020 Decadal Survey in Astrophysics. The baseline architecture of this space-based observatory concept encompasses an unobscured 4m diameter aperture telescope flying in formation with a 72-meter diameter starshade occulter. This large aperture, ultra-stable observatory concept extends and enhances upon the legacy of the Hubble Space Telescope by allowing us to probe even fainter objects and peer deeper into the Universe in the same ultraviolet, visible, and near infrared wavelengths, and gives us the capability, for the first time, to image and characterize potentially habitable, Earth-sized exoplanets orbiting nearby stars. Revolutionary direct imaging of exoplanets will be undertaken using a high-contrast coronagraph and a starshade imager. General astrophysics science will be undertaken with two world-class instruments – a wide-field workhorse camera for imaging and multi-object grism spectroscopy, and a multi-object, multi-resolution ultraviolet spectrograph. This poster outlines the baseline architecture of the HabEx flagship mission concept.

  6. Lyman-alpha transit observations of the warm rocky exoplanet GJ1132b

    Science.gov (United States)

    Waalkes, William; Berta-Thompson, Zachory K.; Charbonneau, David; Irwin, Jonathan; Newton, Elisabeth; Dittmann, Jason; Bourrier, Vincent; Ehrenreich, David; Kempton, Eliza; Will

    2018-06-01

    GJ1132b is one of the few known Earth-sized planets, and at 12pc away it is also one of the closest known transiting planets. With an equilibrium temperature of 500 K, this planet is too hot to be habitable but we can use it to learn about the presence and volatile content of rocky planet atmospheres around M dwarf stars. Using Hubble STIS spectra obtained during primary transit, we search for a Lyman-α transit. If we were to observe a deep Lyman-α transit, that would indicate the presence of a neutral hydrogen envelope flowing from GJ1132b. On the other hand, ruling out deep absorption from neutral hydrogen may indicate that this planet has either retained its volatiles or lost them very early in the star’s life. We carry out this analysis by extracting 1D spectra from the STIS pipeline, splitting the time-tagged spectra into higher resolution samples, and producing light curves of the red and blue wings of the Lyman-α line. We fit for the baseline stellar flux and transit depths in order to constrain the characteristics of the cloud of neutral hydrogen gas that may surround the planet. We do not conclusively detect a transit but the results provide an upper limit for the transit depth. We also analyze the stellar variability and Lyman-α spectrum of GJ1132, a slowly-rotating 0.18 solar mass M dwarf with previously uncharacterized UV activity. Understanding the role that UV variability plays in planetary atmospheres and volatile retention is crucial to assess atmospheric evolution and the habitability of cooler rocky planets.

  7. EPOXI EXOPLANET TRANSIT OBS - HRIV CALIBRATED IMAGES V1.0

    Data.gov (United States)

    National Aeronautics and Space Administration — This data set set contains calibrated images of eight known transiting extrasolar planetary systems (hot Jupiters) acquired by the Deep Impact High Resolution...

  8. Lightning and Life on Exoplanets

    Science.gov (United States)

    Rimmer, Paul; Ardaseva, Aleksandra; Hodosan, Gabriella; Helling, Christiane

    2016-07-01

    Miller and Urey performed a ground-breaking experiment, in which they discovered that electric discharges through a low redox ratio gas of methane, ammonia, water vapor and hydrogen produced a variety of amino acids, the building blocks of proteins. Since this experiment, there has been significant interest on the connection between lightning chemistry and the origin of life. Investigation into the atmosphere of the Early Earth has generated a serious challenge for this project, as it has been determined both that Earth's early atmosphere was likely dominated by carbon dioxide and molecular nitrogen with only small amounts of hydrogen, having a very high redox ratio, and that discharges in gases with high redox ratios fail to yield more than trace amounts of biologically relevant products. This challenge has motivated several origin of life researchers to abandon lightning chemistry, and to concentrate on other pathways for prebiotic synthesis. The discovery of over 2000 exoplanets includes a handful of rocky planets within the habitable zones around their host stars. These planets can be viewed as remote laboratories in which efficient lightning driven prebiotic synthesis may take place. This is because many of these rocky exoplanets, called super-Earths, have masses significantly greater than that of Earth. This higher mass would allow them to more retain greater amounts hydrogen within their atmosphere, reducing the redox ratio. Discharges in super-Earth atmospheres can therefore result in a significant yield of amino acids. In this talk, I will discuss new work on what lightning might look like on exoplanets, and on lightning driven chemistry on super-Earths. Using a chemical kinetics model for a super-Earth atmosphere with smaller redox ratios, I will show that in the presence of lightning, the production of the amino acid glycine is enhanced up to a certain point, but with very low redox ratios, the production of glycine is again inhibited. I will conclude

  9. Characterizing Exoplanet Atmospheres : A Complete Line List for Phosphine

    Science.gov (United States)

    Sousa-Silva, C.; Yurchenko, S. N.; Tennyson, J.

    2013-09-01

    The ability to characterise the atmospheres of cool stars, brown dwarfs and exoplanets requires fundamental data for all species contributing significantly to their opacity. However, with notable exceptions such as water and ammonia, existing molecular line lists are not sufficiently accurate or complete to allow for a full spectroscopic analysis of these bodies. ExoMol (www.exomol.com [1]) is a project that aims to rectify this by generating comprehensive line lists for all molecules likely to be detected in the atmospheres of cool astrophysical objects in the foreseeable future. The spectral data is generated by employing ab initio quantum mechanical methods, performing empirical refinement based on experimental spectroscopic data and harnessing high performance computing. Here we present our work on phosphine, (PH3), an equilateral pyramidal molecule (the phosphorus analogue to ammonia). Phosphine is known to be important for the atmospheres of giant-planets, cool stars and many other astronomical bodies. Rotational transition features of phosphine have been found in the far- infrared spectra of Saturn and Jupiter [2, 3], where it is a marker for vertical convection zones. A computed room temperature line list of phosphine is presented here [4], illustrated in the accompanying figure 1. This line list is a precursor to a high temperature equivalent to be produced in the near future, necessary for the analysis of cool stars and brown dwarfs. All the transitions' energy levels and Einstein A-coefficients were computed using the program TROVE [5].

  10. Exoplanet Biosignatures: A Review of Remotely Detectable Signs of Life

    Science.gov (United States)

    Kiang, Nancy Y.; Parenteau, Mary N.; Harman, Chester E.; DasSarma, Shiladitya; Fisher, Theresa M.; Arney, Giada N.; Hartnett, Hilairy E.; Reinhard, Christopher T.; Olson, Stephanie L.; Meadows, Victoria S.; Cockell, Charles S.; Walker, Sara I.; Grenfell, John Lee; Hegde, Siddharth; Rugheimer, Sarah; Hu, Renyu; Lyons, Timothy W.

    2018-01-01

    Abstract In the coming years and decades, advanced space- and ground-based observatories will allow an unprecedented opportunity to probe the atmospheres and surfaces of potentially habitable exoplanets for signatures of life. Life on Earth, through its gaseous products and reflectance and scattering properties, has left its fingerprint on the spectrum of our planet. Aided by the universality of the laws of physics and chemistry, we turn to Earth's biosphere, both in the present and through geologic time, for analog signatures that will aid in the search for life elsewhere. Considering the insights gained from modern and ancient Earth, and the broader array of hypothetical exoplanet possibilities, we have compiled a comprehensive overview of our current understanding of potential exoplanet biosignatures, including gaseous, surface, and temporal biosignatures. We additionally survey biogenic spectral features that are well known in the specialist literature but have not yet been robustly vetted in the context of exoplanet biosignatures. We briefly review advances in assessing biosignature plausibility, including novel methods for determining chemical disequilibrium from remotely obtainable data and assessment tools for determining the minimum biomass required to maintain short-lived biogenic gases as atmospheric signatures. We focus particularly on advances made since the seminal review by Des Marais et al. The purpose of this work is not to propose new biosignature strategies, a goal left to companion articles in this series, but to review the current literature, draw meaningful connections between seemingly disparate areas, and clear the way for a path forward. Key Words: Exoplanets—Biosignatures—Habitability markers—Photosynthesis—Planetary surfaces—Atmospheres—Spectroscopy—Cryptic biospheres—False positives. Astrobiology 18, 663–708. PMID:29727196

  11. The pinwheel pupil discovery: exoplanet science & improved processing with segmented telescopes

    Science.gov (United States)

    Breckinridge, James Bernard

    2018-01-01

    In this paper, we show that by using a “pinwheel” architecture for the segmented primary mirror and curved supports for the secondary mirror, we can achieve a near uniform diffraction background in ground and space large telescope systems needed for high SNR exoplanet science. Also, the point spread function will be nearly rotationally symmetric, enabling improved digital image reconstruction. Large (>4-m) aperture space telescopes are needed to characterize terrestrial exoplanets by direct imaging coronagraphy. Launch vehicle volume constrains these apertures are segmented and deployed in space to form a large mirror aperture that is masked by the gaps between the hexagonal segments and the shadows of the secondary support system. These gaps and shadows over the pupil result in an image plane point spread function that has bright spikes, which may mask or obscure exoplanets.These telescope artifact mask faint exoplanets, making it necessary for the spacecraft to make a roll about the boresight and integrate again to make sure no planets are missed. This increases integration time, and requires expensive space-craft resources to do bore-sight roll.Currently the LUVOIR and HabEx studies have several significant efforts to develop special purpose A/O technology and to place complex absorbing apodizers over their Hex pupils to shape the unwanted diffracted light. These strong apodizers absorb light, decreasing system transmittance and reducing SNR. Implementing curved pupil obscurations will eliminate the need for the highly absorbing apodizers and thus result in higher SNR.Quantitative analysis of diffraction patterns that use the pinwheel architecture are compared to straight hex-segment edges with a straight-line secondary shadow mask to show a gain of over a factor of 100 by reducing the background. For the first-time astronomers are able to control and minimize image plane diffraction background “noise”. This technology will enable 10-m segmented

  12. TYCHO: Simulating Exoplanets Within Stellar Clusters

    Science.gov (United States)

    Glaser, Joseph Paul; Thornton, Jonathan; Geller, Aaron M.; McMillan, Stephen

    2018-01-01

    Recent surveys exploring nearby open clusters have yielded noticeable differences in the planetary population from that seen in the Field. This is surprising, as the two should be indistinguishable given currently accepted theories on how a majority of stars form within the Galaxy. Currently, the existence of this apparent deficit is not fully understood. While detection bias in previous observational surveys certainly contributes to this issue, the dynamical effects of star-star scattering must also be taken into account. However, this effect can only be investigated via computational simulations and current solutions of the multi-scale N-body problem are limited and drastically simplified.To remedy this, we aim to create a physically complete computational solution to explore the role of stellar close encounters and interplanetary interactions in producing the observed exoplanet populations for both open cluster stars and Field stars. To achieve this, TYCHO employs a variety of different computational techniques, including: multiple n-body integration methods; close-encounter handling; Monte Carlo scattering experiments; and a variety of observationally-backed initial condition generators. Herein, we discuss the current state of the code's implantation within the AMUSE framework and its applications towards present exoplanet surveys.

  13. INFERENCE OF INHOMOGENEOUS CLOUDS IN AN EXOPLANET ATMOSPHERE

    Energy Technology Data Exchange (ETDEWEB)

    Demory, Brice-Olivier; De Wit, Julien; Lewis, Nikole; Zsom, Andras; Seager, Sara [Department of Earth, Atmospheric and Planetary Sciences, Massachusetts Institute of Technology, 77 Massachusetts Avenue, Cambridge, MA 02139 (United States); Fortney, Jonathan [Department of Astronomy and Astrophysics, University of California, Santa Cruz, CA 95064 (United States); Knutson, Heather; Desert, Jean-Michel [Division of Geological and Planetary Sciences, California Institute of Technology, Pasadena, CA 91125 (United States); Heng, Kevin [Center for Space and Habitability, University of Bern, Sidlerstrasse 5, CH-3012, Bern (Switzerland); Madhusudhan, Nikku [Department of Physics and Department of Astronomy, Yale University, New Haven, CT 06520 (United States); Gillon, Michael [Institut d' Astrophysique et de Géophysique, Université de Liège, Allée du 6 Août, 17, Bat. B5C, B-4000 Liège 1 (Belgium); Barclay, Thomas [NASA Ames Research Center, M/S 244-30, Moffett Field, CA 94035 (United States); Parmentier, Vivien [Laboratoire J.-L. Lagrange, UMR 7293, Université de Nice-Sophia Antipolis, CNRS, Observatoire de la Côte d' Azur B.P. 4229, F-06304 Nice Cedex 4 (France); Cowan, Nicolas B., E-mail: demory@mit.edu [Department of Physics and Astronomy, Northwestern University, 2145 Sheridan Road, F165, Evanston, IL 60208 (United States)

    2013-10-20

    We present new visible and infrared observations of the hot Jupiter Kepler-7b to determine its atmospheric properties. Our analysis allows us to (1) refine Kepler-7b's relatively large geometric albedo of Ag = 0.35 ± 0.02, (2) place upper limits on Kepler-7b thermal emission that remains undetected in both Spitzer bandpasses and (3) report a westward shift in the Kepler optical phase curve. We argue that Kepler-7b's visible flux cannot be due to thermal emission or Rayleigh scattering from H{sub 2} molecules. We therefore conclude that high altitude, optically reflective clouds located west from the substellar point are present in its atmosphere. We find that a silicate-based cloud composition is a possible candidate. Kepler-7b exhibits several properties that may make it particularly amenable to cloud formation in its upper atmosphere. These include a hot deep atmosphere that avoids a cloud cold trap, very low surface gravity to suppress cloud sedimentation, and a planetary equilibrium temperature in a range that allows for silicate clouds to potentially form in the visible atmosphere probed by Kepler. Our analysis does not only present evidence of optically thick clouds on Kepler-7b but also yields the first map of clouds in an exoplanet atmosphere.

  14. A SEARCH FOR L/T TRANSITION DWARFS WITH Pan-STARRS1 AND WISE: DISCOVERY OF SEVEN NEARBY OBJECTS INCLUDING TWO CANDIDATE SPECTROSCOPIC VARIABLES

    International Nuclear Information System (INIS)

    Best, William M. J.; Liu, Michael C.; Magnier, Eugene A.; Aller, Kimberly M.; Burgett, W. S.; Chambers, K. C.; Hodapp, K. W.; Kaiser, N.; Kudritzki, R.-P.; Morgan, J. S.; Tonry, J. L.; Wainscoat, R. J.; Deacon, Niall R.; Dupuy, Trent J.; Redstone, Joshua; Price, P. A.

    2013-01-01

    We present initial results from a wide-field (30,000 deg 2 ) search for L/T transition brown dwarfs within 25 pc using the Pan-STARRS1 and Wide-field Infrared Survey Explorer (WISE) surveys. Previous large-area searches have been incomplete for L/T transition dwarfs, because these objects are faint in optical bands and have near-infrared (near-IR) colors that are difficult to distinguish from background stars. To overcome these obstacles, we have cross-matched the Pan-STARRS1 (optical) and WISE (mid-IR) catalogs to produce a unique multi-wavelength database for finding ultracool dwarfs. As part of our initial discoveries, we have identified seven brown dwarfs in the L/T transition within 9-15 pc of the Sun. The L9.5 dwarf PSO J140.2308+45.6487 and the T1.5 dwarf PSO J307.6784+07.8263 (both independently discovered by Mace et al.) show possible spectroscopic variability at the Y and J bands. Two more objects in our sample show evidence of photometric J-band variability, and two others are candidate unresolved binaries based on their spectra. We expect our full search to yield a well-defined, volume-limited sample of L/T transition dwarfs that will include many new targets for study of this complex regime. PSO J307.6784+07.8263 in particular may be an excellent candidate for in-depth study of variability, given its brightness (J = 14.2 mag) and proximity (11 pc)

  15. Disequilibrium biosignatures over Earth history and implications for detecting exoplanet life.

    Science.gov (United States)

    Krissansen-Totton, Joshua; Olson, Stephanie; Catling, David C

    2018-01-01

    Chemical disequilibrium in planetary atmospheres has been proposed as a generalized method for detecting life on exoplanets through remote spectroscopy. Among solar system planets with substantial atmospheres, the modern Earth has the largest thermodynamic chemical disequilibrium due to the presence of life. However, how this disequilibrium changed over time and, in particular, the biogenic disequilibria maintained in the anoxic Archean or less oxic Proterozoic eons are unknown. We calculate the atmosphere-ocean disequilibrium in the Precambrian using conservative proxy- and model-based estimates of early atmospheric and oceanic compositions. We omit crustal solids because subsurface composition is not detectable on exoplanets, unlike above-surface volatiles. We find that (i) disequilibrium increased through time in step with the rise of oxygen; (ii) both the Proterozoic and Phanerozoic may have had remotely detectable biogenic disequilibria due to the coexistence of O 2 , N 2 , and liquid water; and (iii) the Archean had a biogenic disequilibrium caused by the coexistence of N 2 , CH 4 , CO 2 , and liquid water, which, for an exoplanet twin, may be remotely detectable. On the basis of this disequilibrium, we argue that the simultaneous detection of abundant CH 4 and CO 2 in a habitable exoplanet's atmosphere is a potential biosignature. Specifically, we show that methane mixing ratios greater than 10 -3 are potentially biogenic, whereas those exceeding 10 -2 are likely biogenic due to the difficulty in maintaining large abiotic methane fluxes to support high methane levels in anoxic atmospheres. Biogenicity would be strengthened by the absence of abundant CO, which should not coexist in a biological scenario.

  16. On advanced estimation techniques for exoplanet detection and characterization using ground-based coronagraphs

    Science.gov (United States)

    Lawson, Peter R.; Poyneer, Lisa; Barrett, Harrison; Frazin, Richard; Caucci, Luca; Devaney, Nicholas; Furenlid, Lars; Gładysz, Szymon; Guyon, Olivier; Krist, John; Maire, Jérôme; Marois, Christian; Mawet, Dimitri; Mouillet, David; Mugnier, Laurent; Pearson, Iain; Perrin, Marshall; Pueyo, Laurent; Savransky, Dmitry

    2012-07-01

    The direct imaging of planets around nearby stars is exceedingly difficult. Only about 14 exoplanets have been imaged to date that have masses less than 13 times that of Jupiter. The next generation of planet-finding coronagraphs, including VLT-SPHERE, the Gemini Planet Imager, Palomar P1640, and Subaru HiCIAO have predicted contrast performance of roughly a thousand times less than would be needed to detect Earth-like planets. In this paper we review the state of the art in exoplanet imaging, most notably the method of Locally Optimized Combination of Images (LOCI), and we investigate the potential of improving the detectability of faint exoplanets through the use of advanced statistical methods based on the concepts of the ideal observer and the Hotelling observer. We propose a formal comparison of techniques using a blind data challenge with an evaluation of performance using the Receiver Operating Characteristic (ROC) and Localization ROC (LROC) curves. We place particular emphasis on the understanding and modeling of realistic sources of measurement noise in ground-based AO-corrected coronagraphs. The work reported in this paper is the result of interactions between the co-authors during a week-long workshop on exoplanet imaging that was held in Squaw Valley, California, in March of 2012.

  17. EXOPLANET CHARACTERIZATION BY PROXY: A TRANSITING 2.15 R⊕ PLANET NEAR THE HABITABLE ZONE OF THE LATE K DWARF KEPLER-61

    International Nuclear Information System (INIS)

    Ballard, Sarah; Charbonneau, David; Fressin, Francois; Torres, Guillermo; Irwin, Jonathan; Newton, Elisabeth; Desert, Jean-Michel; Crepp, Justin R.; Shporer, Avi; Mann, Andrew W.; Ciardi, David R.; Henze, Christopher E.; Bryson, Stephen T.; Howell, Steven B.; Horch, Elliott P.; Everett, Mark E.

    2013-01-01

    We present the validation and characterization of Kepler-61b: a 2.15 R ⊕ planet orbiting near the inner edge of the habitable zone of a low-mass star. Our characterization of the host star Kepler-61 is based upon a comparison with a set of spectroscopically similar stars with directly measured radii and temperatures. We apply a stellar prior drawn from the weighted mean of these properties, in tandem with the Kepler photometry, to infer a planetary radius for Kepler-61b of 2.15 ± 0.13 R ⊕ and an equilibrium temperature of 273 ± 13 K (given its period of 59.87756 ± 0.00020 days and assuming a planetary albedo of 0.3). The technique of leveraging the physical properties of nearby ''proxy'' stars allows for an independent check on stellar characterization via the traditional measurements with stellar spectra and evolutionary models. In this case, such a check had implications for the putative habitability of Kepler-61b: the planet is 10% warmer and larger than inferred from K-band spectral characterization. From the Kepler photometry, we estimate a stellar rotation period of 36 days, which implies a stellar age of >1 Gyr. We summarize the evidence for the planetary nature of the Kepler-61 transit signal, which we conclude is 30,000 times more likely to be due to a planet than a blend scenario. Finally, we discuss possible compositions for Kepler-61b with a comparison to theoretical models as well as to known exoplanets with similar radii and dynamically measured masses

  18. Exoplanet Searches by Future Deep Space Missions

    Directory of Open Access Journals (Sweden)

    Maccone C.

    2011-02-01

    Full Text Available The search for exoplanets could benefit from gravitational lensing if we could get to 550 AU from the Sun and beyond. This is because the gravitational lens of the Sun would highly intensify there any weak electromagnetic wave reaching the solar system from distant planets in the Galaxy (see Maccone 2009. The gravitational lens of the Sun, however, has a drawback: the solar Corona. Electrons in the Corona make electromagnetic waves diverge and this pushes the focus out to distances higher than 550 AU. Jupiter is the second larger mass in the solar system after the Sun, but in this focal game not only the mass matters: rather, what really matters is the ratio between the radius of the body squared and the mass of the body. In this regard, Jupiter qualifies as the second best choice for a space mission, requiring the spacecraft to reach 6,077 AU. In this paper, we study the benefit of exoplanet searches by deep space missions.

  19. ALMOST ALL OF KEPLER'S MULTIPLE-PLANET CANDIDATES ARE PLANETS

    Energy Technology Data Exchange (ETDEWEB)

    Lissauer, Jack J.; Rowe, Jason F.; Bryson, Stephen T.; Howell, Steve B.; Jenkins, Jon M.; Kinemuchi, Karen; Koch, David G. [NASA Ames Research Center, Moffett Field, CA 94035 (United States); Marcy, Geoffrey W. [Astronomy Department, University of California, Berkeley, CA 94720 (United States); Adams, Elisabeth; Fressin, Francois; Geary, John; Holman, Matthew J.; Ragozzine, Darin [Harvard-Smithsonian Center for Astrophysics, 60 Garden Street, Cambridge, MA 02138 (United States); Buchhave, Lars A. [Niels Bohr Institute, University of Copenhagen, DK-2100, Copenhagen (Denmark); Ciardi, David R. [Exoplanet Science Institute/Caltech, Pasadena, CA 91125 (United States); Cochran, William D. [Department of Astronomy, University of Texas, Austin, TX 78712 (United States); Fabrycky, Daniel C. [Department of Astronomy and Astrophysics, University of California, Santa Cruz, CA 95064 (United States); Ford, Eric B.; Morehead, Robert C. [University of Florida, 211 Bryant Space Science Center, Gainesville, FL 32611 (United States); Gilliland, Ronald L., E-mail: Jack.Lissauer@nasa.gov [Space Telescope Science Institute, Baltimore, MD 21218 (United States); and others

    2012-05-10

    We present a statistical analysis that demonstrates that the overwhelming majority of Kepler candidate multiple transiting systems (multis) indeed represent true, physically associated transiting planets. Binary stars provide the primary source of false positives among Kepler planet candidates, implying that false positives should be nearly randomly distributed among Kepler targets. In contrast, true transiting planets would appear clustered around a smaller number of Kepler targets if detectable planets tend to come in systems and/or if the orbital planes of planets encircling the same star are correlated. There are more than one hundred times as many Kepler planet candidates in multi-candidate systems as would be predicted from a random distribution of candidates, implying that the vast majority are true planets. Most of these multis are multiple-planet systems orbiting the Kepler target star, but there are likely cases where (1) the planetary system orbits a fainter star, and the planets are thus significantly larger than has been estimated, or (2) the planets orbit different stars within a binary/multiple star system. We use the low overall false-positive rate among Kepler multis, together with analysis of Kepler spacecraft and ground-based data, to validate the closely packed Kepler-33 planetary system, which orbits a star that has evolved somewhat off of the main sequence. Kepler-33 hosts five transiting planets, with periods ranging from 5.67 to 41 days.

  20. Physical constraints on the likelihood of life on exoplanets

    Science.gov (United States)

    Lingam, Manasvi; Loeb, Abraham

    2018-04-01

    One of the most fundamental questions in exoplanetology is to determine whether a given planet is habitable. We estimate the relative likelihood of a planet's propensity towards habitability by considering key physical characteristics such as the role of temperature on ecological and evolutionary processes, and atmospheric losses via hydrodynamic escape and stellar wind erosion. From our analysis, we demonstrate that Earth-sized exoplanets in the habitable zone around M-dwarfs seemingly display much lower prospects of being habitable relative to Earth, owing to the higher incident ultraviolet fluxes and closer distances to the host star. We illustrate our results by specifically computing the likelihood (of supporting life) for the recently discovered exoplanets, Proxima b and TRAPPIST-1e, which we find to be several orders of magnitude smaller than that of Earth.

  1. Simulated JWST/NIRISS Transit Spectroscopy of Anticipated TESS Planets Compared to Select Discoveries from Space-Based and Ground-Based Surveys

    Science.gov (United States)

    Louie, Dana; Deming, Drake; Albert, Loic; Bouma, Luke; Bean, Jacob; Lopez-Morales, Mercedes

    2018-01-01

    The Transiting Exoplanet Survey Satellite (TESS) will embark in 2018 on a 2-year wide-field survey mission of most of the celestial sky, discovering over a thousand super-Earth and sub-Neptune-sized exoplanets potentially suitable for follow-up observations using the James Webb Space Telescope (JWST). Bouma et al. (2017) and Sullivan et al. (2015) used Monte Carlo simulations to predict the properties of the planetary systems that TESS is likely to detect, basing their simulations upon Kepler-derived planet occurrence rates and photometric performance models for the TESS cameras. We employed a JWST Near InfraRed Imager and Slitless Spectrograph (NIRISS) simulation tool to estimate the signal-to-noise (S/N) that JWST/NIRISS will attain in transmission spectroscopy of these anticipated TESS discoveries, and we then compared the S/N for anticipated TESS discoveries to our estimates of S/N for 18 known exoplanets. We analyzed the sensitivity of our results to planetary composition, cloud cover, and presence of an observational noise floor. We find that only a few anticipated TESS discoveries in the terrestrial planet regime will result in better JWST/NIRISS S/N than currently known exoplanets, such as the TRAPPIST-1 planets, GJ1132b, or LHS1140b. However, we emphasize that this outcome is based upon Kepler-derived occurrence rates, and that co-planar compact systems (e.g. TRAPPIST-1) were not included in predicting the anticipated TESS planet yield. Furthermore, our results show that several hundred anticipated TESS discoveries in the super-Earth and sub-Neptune regime will produce S/N higher than currently known exoplanets such as K2-3b or K2-3c. We apply our results to estimate the scope of a JWST follow-up observation program devoted to mapping the transition region between high molecular weight and primordial planetary atmospheres.

  2. A FIRST COMPARISON OF KEPLER PLANET CANDIDATES IN SINGLE AND MULTIPLE SYSTEMS

    International Nuclear Information System (INIS)

    Latham, David W.; Quinn, Samuel N.; Carter, Joshua A.; Holman, Matthew J.; Rowe, Jason F.; Borucki, William J.; Bryson, Stephen T.; Howell, Steve B.; Batalha, Natalie M.; Brown, Timothy M.; Buchhave, Lars A.; Caldwell, Douglas A.; Christiansen, Jessie L.; Ciardi, David R.; Cochran, William D.; Dunham, Edward W.; Fabrycky, Daniel C.; Ford, Eric B.; Gautier, Thomas N. III; Gilliland, Ronald L.

    2011-01-01

    In this Letter, we present an overview of the rich population of systems with multiple candidate transiting planets found in the first four months of Kepler data. The census of multiples includes 115 targets that show two candidate planets, 45 with three, eight with four, and one each with five and six, for a total of 170 systems with 408 candidates. When compared to the 827 systems with only one candidate, the multiples account for 17% of the total number of systems, and one-third of all the planet candidates. We compare the characteristics of candidates found in multiples with those found in singles. False positives due to eclipsing binaries are much less common for the multiples, as expected. Singles and multiples are both dominated by planets smaller than Neptune; 69 +2 -3 % for singles and 86 +2 -5 % for multiples. This result, that systems with multiple transiting planets are less likely to include a transiting giant planet, suggests that close-in giant planets tend to disrupt the orbital inclinations of small planets in flat systems, or maybe even prevent the formation of such systems in the first place.

  3. COOL YOUNG STARS IN THE NORTHERN HEMISPHERE: β PICTORIS AND AB DORADUS MOVING GROUP CANDIDATES

    International Nuclear Information System (INIS)

    Schlieder, Joshua E.; Simon, Michal; Lépine, Sébastien

    2012-01-01

    As part of our continuing effort to identify new, low-mass members of nearby, young moving groups (NYMGs), we present a list of young, low-mass candidates in the northern hemisphere. We used our proven proper-motion selection procedure and ROSAT X-ray and GALEX-UV activity indicators to identify 204 young stars as candidate members of the β Pictoris and AB Doradus NYMGs. Definitive membership assignment of a given candidate will require a measurement of its radial velocity and distance. We present a simple system of indices to characterize the young candidates and help prioritize follow-up observations. New group members identified in this candidate list will be high priority targets for (1) exoplanet direct imaging searches, (2) the study of post-T-Tauri astrophysics, (3) understanding recent local star formation, and (4) the study of local galactic kinematics. Information available now allows us to identify eight likely new members in the list. Two of these, a late-K and an early-M dwarf, we find to be likely members of the β Pic group. The other six stars are likely members of the AB Dor moving group. These include an M dwarf triple system, and three very cool objects that may be young brown dwarfs, making them the lowest-mass, isolated objects proposed in the AB Dor moving group to date.

  4. Requirements and limits for life in the context of exoplanets

    Science.gov (United States)

    McKay, Christopher P.

    2014-09-01

    The requirements for life on Earth, its elemental composition, and its environmental limits provide a way to assess the habitability of exoplanets. Temperature is key both because of its influence on liquid water and because it can be directly estimated from orbital and climate models of exoplanetary systems. Life can grow and reproduce at temperatures as low as -15 °C, and as high as 122 °C. Studies of life in extreme deserts show that on a dry world, even a small amount of rain, fog, snow, and even atmospheric humidity can be adequate for photosynthetic production producing a small but detectable microbial community. Life is able to use light at levels less than 10-5 of the solar flux at Earth. UV or ionizing radiation can be tolerated by many microorganisms at very high levels and is unlikely to be life limiting on an exoplanet. Biologically available nitrogen may limit habitability. Levels of O2 over a few percent on an exoplanet would be consistent with the presence of multicellular organisms and high levels of O2 on Earth-like worlds indicate oxygenic photosynthesis. Other factors such as pH and salinity are likely to vary and not limit life over an entire planet or moon.

  5. KMTNet: A Cold Exoplanet Census Through a Global Microlensing Survey

    Science.gov (United States)

    Henderson, Calen B.; Gaudi, B. Scott; Han, Cheongho; Nataf, David; Skowron, Jan; Penny, Matthew; Gould, Andrew

    2015-01-01

    The unique sensitivity of gravitational microlensing to low-mass planets near and beyond the snow line makes it an indispensable tool for understanding the distribution and formation mechanisms of exoplanets. The Korean Microlensing Telescope Network (KMTNet) consists of three 1.6m telescopes each with a 4 deg2 field of view and will be dedicated to monitoring the Galactic Bulge in order to detect exoplanets via gravitational microlensing. With its relatively large aperture, large field of view, high (~10-minute) cadence, and near-complete longitudinal coverage of the Galactic Bulge for 8 months a year, KMTNet is expected to increase the the annual detection rate of exoplanets via microlensing by a factor of ~5 over current surveys, pushing down to the mass of Earth for bound and unbound planets. I will summarize the predicted yields of KMTNet's survey based on detailed simulations, highlighting its sensitivity to low-mass planets and its expected haul of free-floating planets. I will also describe the prospects for characterization of the exoplanetary systems KMTNet will detect, focusing on the variety of techniques current and future high-resolution facilities such as VLT, GMT, and JWST can use to measure the flux from the host stars and ultimately derive planet masses.

  6. A sub-Mercury-sized exoplanet

    OpenAIRE

    Barclay, Thomas; Ciardi, David; Howard, Andrew W.

    2013-01-01

    Since the discovery of the first exoplanets, it has been known that other planetary systems can look quite unlike our own. Until fairly recently, we have been able to probe only the upper range of the planet size distribution, and, since last year, to detect planets that are the size of Earth or somewhat smaller. Hitherto, no planets have been found that are smaller than those we see in the Solar System. Here we report a planet significantly smaller than Mercury. This tiny planet is the inner...

  7. Role of ocean heat transport in climates of tidally locked exoplanets around M dwarf stars.

    Science.gov (United States)

    Hu, Yongyun; Yang, Jun

    2014-01-14

    The distinctive feature of tidally locked exoplanets is the very uneven heating by stellar radiation between the dayside and nightside. Previous work has focused on the role of atmospheric heat transport in preventing atmospheric collapse on the nightside for terrestrial exoplanets in the habitable zone around M dwarfs. In the present paper, we carry out simulations with a fully coupled atmosphere-ocean general circulation model to investigate the role of ocean heat transport in climate states of tidally locked habitable exoplanets around M dwarfs. Our simulation results demonstrate that ocean heat transport substantially extends the area of open water along the equator, showing a lobster-like spatial pattern of open water, instead of an "eyeball." For sufficiently high-level greenhouse gases or strong stellar radiation, ocean heat transport can even lead to complete deglaciation of the nightside. Our simulations also suggest that ocean heat transport likely narrows the width of M dwarfs' habitable zone. This study provides a demonstration of the importance of exooceanography in determining climate states and habitability of exoplanets.

  8. Three body dynamics and its applications to exoplanets

    CERN Document Server

    Musielak, Zdzislaw

    2017-01-01

    This brief book provides an overview of the gravitational orbital evolution of few-body systems, in particular those consisting of three bodies. The authors present the historical context that begins with the origin of the problem as defined by Newton, which was followed up by Euler, Lagrange, Laplace, and many others. Additionally, they consider the modern works from the 20th and 21st centuries that describe the development of powerful analytical methods by Poincare and others. The development of numerical tools, including modern symplectic methods, are presented as they pertain to the identification of short-term chaos and long term integrations of the orbits of many astronomical architectures such as stellar triples, planets in binaries, and single stars that host multiple exoplanets. The book includes some of the latest discoveries from the Kepler and now K2 missions, as well as applications to exoplanets discovered via the radial velocity method. Specifically, the authors give a unique perspective in rel...

  9. MODELS OF NEPTUNE-MASS EXOPLANETS: EMERGENT FLUXES AND ALBEDOS

    International Nuclear Information System (INIS)

    Spiegel, David S.; Burrows, Adam; Ibgui, Laurent; Hubeny, Ivan; Milsom, John A.

    2010-01-01

    There are now many known exoplanets with Msin i within a factor of 2 of Neptune's, including the transiting planets GJ 436b and HAT-P-11b. Planets in this mass range are different from their more massive cousins in several ways that are relevant to their radiative properties and thermal structures. By analogy with Neptune and Uranus, they are likely to have metal abundances that are an order of magnitude or more greater than those of larger, more massive planets. This increases their opacity, decreases Rayleigh scattering, and changes their equation of state. Furthermore, their smaller radii mean that fluxes from these planets are roughly an order of magnitude lower than those of otherwise identical gas giant planets. Here, we compute a range of plausible radiative equilibrium models of GJ 436b and HAT-P-11b. In addition, we explore the dependence of generic Neptune-mass planets on a range of physical properties, including their distance from their host stars, their metallicity, the spectral type of their stars, the redistribution of heat in their atmospheres, and the possible presence of additional optical opacity in their upper atmospheres.

  10. A SEARCH FOR L/T TRANSITION DWARFS WITH Pan-STARRS1 AND WISE: DISCOVERY OF SEVEN NEARBY OBJECTS INCLUDING TWO CANDIDATE SPECTROSCOPIC VARIABLES

    Energy Technology Data Exchange (ETDEWEB)

    Best, William M. J.; Liu, Michael C.; Magnier, Eugene A.; Aller, Kimberly M.; Burgett, W. S.; Chambers, K. C.; Hodapp, K. W.; Kaiser, N.; Kudritzki, R.-P.; Morgan, J. S.; Tonry, J. L.; Wainscoat, R. J. [Institute for Astronomy, University of Hawaii at Manoa, Honolulu, HI 96822 (United States); Deacon, Niall R. [Max Planck Institute for Astronomy, Koenigstuhl 17, D-69117 Heidelberg (Germany); Dupuy, Trent J. [Harvard-Smithsonian Center for Astrophysics, 60 Garden Street, Cambridge, MA 02138 (United States); Redstone, Joshua [Facebook, 335 Madison Ave, New York, NY 10017-4677 (United States); Price, P. A., E-mail: wbest@ifa.hawaii.edu [Department of Astrophysical Sciences, Princeton University, Princeton, NJ 08544 (United States)

    2013-11-10

    We present initial results from a wide-field (30,000 deg{sup 2}) search for L/T transition brown dwarfs within 25 pc using the Pan-STARRS1 and Wide-field Infrared Survey Explorer (WISE) surveys. Previous large-area searches have been incomplete for L/T transition dwarfs, because these objects are faint in optical bands and have near-infrared (near-IR) colors that are difficult to distinguish from background stars. To overcome these obstacles, we have cross-matched the Pan-STARRS1 (optical) and WISE (mid-IR) catalogs to produce a unique multi-wavelength database for finding ultracool dwarfs. As part of our initial discoveries, we have identified seven brown dwarfs in the L/T transition within 9-15 pc of the Sun. The L9.5 dwarf PSO J140.2308+45.6487 and the T1.5 dwarf PSO J307.6784+07.8263 (both independently discovered by Mace et al.) show possible spectroscopic variability at the Y and J bands. Two more objects in our sample show evidence of photometric J-band variability, and two others are candidate unresolved binaries based on their spectra. We expect our full search to yield a well-defined, volume-limited sample of L/T transition dwarfs that will include many new targets for study of this complex regime. PSO J307.6784+07.8263 in particular may be an excellent candidate for in-depth study of variability, given its brightness (J = 14.2 mag) and proximity (11 pc)

  11. Discovery of KPS-1b, a Transiting Hot-Jupiter, with an Amateur Telescope Setup (Abstract)

    Science.gov (United States)

    Benni, P.; Burdanov, A.; Krushinsky, V.; Sokov, E.

    2018-06-01

    (Abstract only) Using readily available amateur equipment, a wide-field telescope (Celestron RASA, 279 mm f/2.2) coupled with a SBIG ST-8300M camera was set up at a private residence in a fairly light polluted suburban town thirty miles outside of Boston, Massachusetts. This telescope participated in the Kourovka Planet Search (KPS) prototype survey, along with a MASTER-II Ural wide field telescope near Yekaterinburg, Russia. One goal was to determine if higher resolution imaging ( 2 arcsec/pixel) with much lower sky coverage can practically detect exoplanet transits compared to the successful very wide-field exoplanet surveys (KELT, XO, WASP, HATnet, TrES, Qatar, etc.) which used an array of small aperture telescopes coupled to CCDs.

  12. KEPLER-21b: A 1.6 R{sub Earth} PLANET TRANSITING THE BRIGHT OSCILLATING F SUBGIANT STAR HD 179070

    Energy Technology Data Exchange (ETDEWEB)

    Howell, Steve B. [National Optical Astronomy Observatory, Tucson, AZ 85719 (United States); Rowe, Jason F.; Bryson, Stephen T. [NASA Ames Research Center, Moffett Field, CA 94035 (United States); Quinn, Samuel N. [Harvard-Smithsonian Center for Astrophysics, Cambridge, MA 02138 (United States); Marcy, Geoffrey W.; Isaacson, Howard [Department of Astronomy, University of California, Berkeley, CA 94720 (United States); Ciardi, David R. [NASA Exoplanet Science Institute/Caltech, Pasadena, CA 91125 (United States); Chaplin, William J.; Elsworth, Yvonne [School of Physics and Astronomy, University of Birmingham, Edgbaston, Birmingham B15 2TT (United Kingdom); Metcalfe, Travis S. [High Altitude Observatory and Scientific Computing Division, National Center for Atmospheric Research, Boulder, CO 80307 (United States); Monteiro, Mario J. P. F. G. [Centro de Astrofisica, Universidade do Porto, Rua das Estrelas, 4150-762 Porto (Portugal); Appourchaux, Thierry [Institut d' Astrophysique Spatiale, Universite Paris XI-CNRS (UMR8617), Batiment 121, 91405 Orsay Cedex (France); Basu, Sarbani [Department of Astronomy, Yale University, New Haven, CT 06520-8101 (United States); Creevey, Orlagh L. [Departamento de Astrofisica, Universidad de La Laguna, E-38206 La Laguna, Tenerife (Spain); Gilliland, Ronald L. [Space Telescope Science Institute, Baltimore, MD 21218 (United States); Quirion, Pierre-Olivier [Canadian Space Agency, 6767 Boulevard de l' Aeroport, Saint-Hubert, QC, J3Y 8Y9 (Canada); Stello, Denis [Sydney Institute for Astronomy (SIfA), School of Physics, University of Sydney, NSW 2006 (Australia); Kjeldsen, Hans; Christensen-Dalsgaard, Joergen [Department of Physics and Astronomy, Aarhus University, DK-8000 Aarhus C (Denmark); Garcia, Rafael A. [Laboratoire AIM, CEA/DSM-CNRS-Universite Paris Diderot-IRFU/SAp, 91191 Gif-sur-Yvette Cedex (France); and others

    2012-02-20

    We present Kepler observations of the bright (V = 8.3), oscillating star HD 179070. The observations show transit-like events which reveal that the star is orbited every 2.8 days by a small, 1.6 R{sub Earth} object. Seismic studies of HD 179070 using short cadence Kepler observations show that HD 179070 has a frequency-power spectrum consistent with solar-like oscillations that are acoustic p-modes. Asteroseismic analysis provides robust values for the mass and radius of HD 179070, 1.34 {+-} 0.06 M{sub Sun} and 1.86 {+-} 0.04 R{sub Sun }, respectively, as well as yielding an age of 2.84 {+-} 0.34 Gyr for this F5 subgiant. Together with ground-based follow-up observations, analysis of the Kepler light curves and image data, and blend scenario models, we conservatively show at the >99.7% confidence level (3{sigma}) that the transit event is caused by a 1.64 {+-} 0.04 R{sub Earth} exoplanet in a 2.785755 {+-} 0.000032 day orbit. The exoplanet is only 0.04 AU away from the star and our spectroscopic observations provide an upper limit to its mass of {approx}10 M{sub Earth} (2{sigma}). HD 179070 is the brightest exoplanet host star yet discovered by Kepler.

  13. LONG-LIVED CHAOTIC ORBITAL EVOLUTION OF EXOPLANETS IN MEAN MOTION RESONANCES WITH MUTUAL INCLINATIONS

    Energy Technology Data Exchange (ETDEWEB)

    Barnes, Rory; Deitrick, Russell; Quinn, Thomas R. [Astronomy Department, University of Washington, Box 951580, Seattle, WA 98195 (United States); Greenberg, Richard [Lunar and Planetary Laboratory, University of Arizona, 1629 E. University Boulevard, Tucson, AZ 86716 (United States); Raymond, Sean N., E-mail: rory@astro.washington.edu [NASA Astrobiology Institute-Virtual Planetary Laboratory Lead Team (United States)

    2015-03-10

    We present N-body simulations of resonant planets with inclined orbits that show chaotically evolving eccentricities and inclinations that can persist for at least 10 Gyr. A wide range of behavior is possible, from fast, low amplitude variations to systems in which eccentricities reach 0.9999 and inclinations 179.°9. While the orbital elements evolve chaotically, at least one resonant argument always librates. We show that the HD 73526, HD 45364, and HD 60532 systems may be in chaotically evolving resonances. Chaotic evolution is apparent in the 2:1, 3:1, and 3:2 resonances, and for planetary masses from lunar- to Jupiter-mass. In some cases, orbital disruption occurs after several gigayears, implying the mechanism is not rigorously stable, just long-lived relative to the main sequence lifetimes of solar-type stars. Planet-planet scattering appears to yield planets in inclined resonances that evolve chaotically in about 0.5% of cases. These results suggest that (1) approximate methods for identifying unstable orbital architectures may have limited applicability, (2) the observed close-in exoplanets may be produced during epochs of high eccentricit induced by inclined resonances, (3) those exoplanets' orbital planes may be misaligned with the host star's spin axis, (4) systems with resonances may be systematically younger than those without, (5) the distribution of period ratios of adjacent planets detected via transit may be skewed due to inclined resonances, and (6) potentially habitable planets may have dramatically different climatic evolution than Earth. The Gaia spacecraft is capable of discovering giant planets in these types of orbits.

  14. LONG-LIVED CHAOTIC ORBITAL EVOLUTION OF EXOPLANETS IN MEAN MOTION RESONANCES WITH MUTUAL INCLINATIONS

    International Nuclear Information System (INIS)

    Barnes, Rory; Deitrick, Russell; Quinn, Thomas R.; Greenberg, Richard; Raymond, Sean N.

    2015-01-01

    We present N-body simulations of resonant planets with inclined orbits that show chaotically evolving eccentricities and inclinations that can persist for at least 10 Gyr. A wide range of behavior is possible, from fast, low amplitude variations to systems in which eccentricities reach 0.9999 and inclinations 179.°9. While the orbital elements evolve chaotically, at least one resonant argument always librates. We show that the HD 73526, HD 45364, and HD 60532 systems may be in chaotically evolving resonances. Chaotic evolution is apparent in the 2:1, 3:1, and 3:2 resonances, and for planetary masses from lunar- to Jupiter-mass. In some cases, orbital disruption occurs after several gigayears, implying the mechanism is not rigorously stable, just long-lived relative to the main sequence lifetimes of solar-type stars. Planet-planet scattering appears to yield planets in inclined resonances that evolve chaotically in about 0.5% of cases. These results suggest that (1) approximate methods for identifying unstable orbital architectures may have limited applicability, (2) the observed close-in exoplanets may be produced during epochs of high eccentricit induced by inclined resonances, (3) those exoplanets' orbital planes may be misaligned with the host star's spin axis, (4) systems with resonances may be systematically younger than those without, (5) the distribution of period ratios of adjacent planets detected via transit may be skewed due to inclined resonances, and (6) potentially habitable planets may have dramatically different climatic evolution than Earth. The Gaia spacecraft is capable of discovering giant planets in these types of orbits

  15. The 'Wow' Signal, Drake Equation and Exoplanet Considerations

    Science.gov (United States)

    Wheeler, E.

    It has been 38 years since the most likely artificial transmission ever recorded from a possible extraterrestrial source was received [1, 2]. Using greatly improved technology, subsequent efforts by the Search for Extraterrestrial Intelligence (SETI) have continued, yet silence from space prevails [3]. This article examines whether the transmission was an artificial signal, and if so why it matters, to include the possibility that the modest technology used by the "Big Ear" receiver could have been accommodated by the source. The transmission and the ensuing long silence may be intended. This paper reconsiders the Drake equation, an estimate for the number of civilizations in our galaxy that may possess technology for interstellar signaling [4, 5], and shows that statement of the current alleged best estimate of two civilizations is not supported [6]. An alternate and original method suggests ~100 civilizations. It importantly relies on experience and detectable events, including recent astronomical evidence about exoplanets as cataloged by the European Exoplanet program and by the National Aeronautics and Space Administration (NASA) Exoplanet Science Institute [7, 8]. In addition it addresses major geological and astronomical occurrences that profoundly affected development of life on Earth and might apply similarly for Extraterrestrial Intelligence (ETI). The alternate approach is not intended to compute ETI precisely but to examine the possibility that, though vastly spread, it likely exists. The discussion anticipates difficulties in communication with an alien civilization, hardly an exercise in science fiction, and explores how international groups can participate in future specific response. One response might be to monitor the electromagnetic radiation spectral line of an element to be determined by consensus.

  16. Flux and polarization signals of spatially inhomogeneous gaseous exoplanets

    NARCIS (Netherlands)

    Karalidi, T.; Stam, D.M.; Guirado, D.

    2013-01-01

    Aims. We present numerically calculated, disk-integrated, spectropolarimetric signals of starlight that is reflected by vertically and horizontally inhomogeneous gaseous exoplanets. We include various spatial features that are present on Solar System’s gaseous planets: belts and zones, cyclonic

  17. Making the Most of Kepler Photometry: Characterizing Exoplanets through Phase Curve Analysis

    Directory of Open Access Journals (Sweden)

    Esteves Lisa J.

    2015-01-01

    Full Text Available The Kepler mission’s long-term monitoring of stars through high-precision photometry has not only revealed a plethora of exoplanet transits but also provided valuable data for characterizing a subset of these planets. Using over four years of Kepler observations, we have derived phase curves for over a dozen planets, and use these measurements to constrain their mass, brightness/temperature and energy redistribution between the day and the night sides. In our new study, we also investigate possible offsets of the peak brightness of the phase curve, which could be indicative of inhomogeneous clouds and/or substantial winds in the planet’s atmosphere. We find significant offsets for over a half-dozen planets. With this growing sample of measured phase curves, we are able to better examine the trends of hot Jupiter energy budgets and albedos, and for the first time relate these properties to the presence of clouds or winds on a planet.

  18. Optimal Electric Field Estimation for Exoplanet Imaging Observatories in Space

    Data.gov (United States)

    National Aeronautics and Space Administration — The discovery and characterization of Earth-like planets around other stars is a high priority in modern astronomy. While over 900 confirmed exoplanets have been...

  19. Habitable zone dependence on stellar parameter uncertainties

    International Nuclear Information System (INIS)

    Kane, Stephen R.

    2014-01-01

    An important property of exoplanetary systems is the extent of the Habitable Zone (HZ), defined as that region where water can exist in a liquid state on the surface of a planet with sufficient atmospheric pressure. Both ground- and space-based observations have revealed a plethora of confirmed exoplanets and exoplanetary candidates, most notably from the Kepler mission using the transit detection technique. Many of these detected planets lie within the predicted HZ of their host star. However, as is the case with the derived properties of the planets themselves, the HZ boundaries depend on how well we understand the host star. Here we quantify the uncertainties of HZ boundaries on the parameter uncertainties of the host star. We examine the distribution of stellar parameter uncertainties from confirmed exoplanet hosts and Kepler candidate hosts and translate these into HZ boundary uncertainties. We apply this to several known systems with an HZ planet to determine the uncertainty in their HZ status.

  20. Habitable zone dependence on stellar parameter uncertainties

    Energy Technology Data Exchange (ETDEWEB)

    Kane, Stephen R., E-mail: skane@sfsu.edu [Department of Physics and Astronomy, San Francisco State University, 1600 Holloway Avenue, San Francisco, CA 94132 (United States)

    2014-02-20

    An important property of exoplanetary systems is the extent of the Habitable Zone (HZ), defined as that region where water can exist in a liquid state on the surface of a planet with sufficient atmospheric pressure. Both ground- and space-based observations have revealed a plethora of confirmed exoplanets and exoplanetary candidates, most notably from the Kepler mission using the transit detection technique. Many of these detected planets lie within the predicted HZ of their host star. However, as is the case with the derived properties of the planets themselves, the HZ boundaries depend on how well we understand the host star. Here we quantify the uncertainties of HZ boundaries on the parameter uncertainties of the host star. We examine the distribution of stellar parameter uncertainties from confirmed exoplanet hosts and Kepler candidate hosts and translate these into HZ boundary uncertainties. We apply this to several known systems with an HZ planet to determine the uncertainty in their HZ status.

  1. The emergent 1.1-1.7 μm spectrum of the exoplanet COROT-2B as measured using the Hubble space telescope

    International Nuclear Information System (INIS)

    Wilkins, Ashlee N.; Deming, Drake; Madhusudhan, Nikku; Burrows, Adam; Knutson, Heather; McCullough, Peter; Ranjan, Sukrit

    2014-01-01

    We have used Hubble/WFC3 and the G141 grism to measure the secondary eclipse of the transiting, very hot Jupiter CoRoT-2b in the 1.1-1.7 μm spectral region. We find an eclipse depth averaged over this band equal to 395 −45 +69 parts per million, equivalent to a blackbody temperature of 1788 ± 18 K. We study and characterize several WFC3 instrumental effects, especially the 'hook' phenomenon described by Deming et al. We use data from several transiting exoplanet systems to find a quantitative relation between the amplitude of the hook and the exposure level of a given pixel. Although the uncertainties in this relation are too large to allow us to develop an empirical correction for our data, our study provides a useful guide for optimizing exposure levels in future WFC3 observations. We derive the planet's spectrum using a differential method. The planet-to-star contrast increases to longer wavelength within the WFC3 bandpass, but without water absorption or emission to a 3σ limit of 85 ppm. The slope of the WFC3 spectrum is significantly less than the slope of the best-fit blackbody. We compare all existing eclipse data for this planet to a blackbody spectrum, and to spectra from both solar abundance and carbon-rich (C/O = 1) models. A blackbody spectrum is an acceptable fit to the full data set. Extra continuous opacity due to clouds or haze, and flattened temperature profiles, are strong candidates to produce quasi-blackbody spectra, and to account for the amplitude of the optical eclipses. Our results show ambiguous evidence for a temperature inversion in this planet.

  2. The emergent 1.1-1.7 μm spectrum of the exoplanet COROT-2B as measured using the Hubble space telescope

    Energy Technology Data Exchange (ETDEWEB)

    Wilkins, Ashlee N.; Deming, Drake [Department of Astronomy, University of Maryland, College Park, MD 20742 (United States); Madhusudhan, Nikku [Yale Center for Astronomy and Astrophysics, Yale University, New Haven, CT 06511 (United States); Burrows, Adam [Department of Astrophysical Sciences, Princeton University, Princeton, NJ 08544-1001 (United States); Knutson, Heather [Division of Geological and Planetary Sciences, California Institute of Technology, Pasadena, CA 91125 (United States); McCullough, Peter [Space Telescope Science Institute, Baltimore, MD 21218 (United States); Ranjan, Sukrit, E-mail: awilkins@astro.umd.edu [Harvard-Smithsonian Center for Astrophysics, Cambridge, MA 02138 (United States)

    2014-03-10

    We have used Hubble/WFC3 and the G141 grism to measure the secondary eclipse of the transiting, very hot Jupiter CoRoT-2b in the 1.1-1.7 μm spectral region. We find an eclipse depth averaged over this band equal to 395{sub −45}{sup +69} parts per million, equivalent to a blackbody temperature of 1788 ± 18 K. We study and characterize several WFC3 instrumental effects, especially the 'hook' phenomenon described by Deming et al. We use data from several transiting exoplanet systems to find a quantitative relation between the amplitude of the hook and the exposure level of a given pixel. Although the uncertainties in this relation are too large to allow us to develop an empirical correction for our data, our study provides a useful guide for optimizing exposure levels in future WFC3 observations. We derive the planet's spectrum using a differential method. The planet-to-star contrast increases to longer wavelength within the WFC3 bandpass, but without water absorption or emission to a 3σ limit of 85 ppm. The slope of the WFC3 spectrum is significantly less than the slope of the best-fit blackbody. We compare all existing eclipse data for this planet to a blackbody spectrum, and to spectra from both solar abundance and carbon-rich (C/O = 1) models. A blackbody spectrum is an acceptable fit to the full data set. Extra continuous opacity due to clouds or haze, and flattened temperature profiles, are strong candidates to produce quasi-blackbody spectra, and to account for the amplitude of the optical eclipses. Our results show ambiguous evidence for a temperature inversion in this planet.

  3. The Ultraviolet Radiation Environment around M Dwarf Exoplanet Host Stars

    Science.gov (United States)

    France, Kevin; Froning, Cynthia S.; Linsky, Jeffrey L.; Roberge, Aki; Stocke, John T.; Tian, Feng; Bushinsky, Rachel; Desert, Jean-Michel; Mauas, Pablo; Mauas, Pablo; hide

    2013-01-01

    The spectral and temporal behavior of exoplanet host stars is a critical input to models of the chemistry and evolution of planetary atmospheres. Ultraviolet photons influence the atmospheric temperature profiles and production of potential biomarkers on Earth-like planets around these stars. At present, little observational or theoretical basis exists for understanding the ultraviolet spectra of M dwarfs, despite their critical importance to predicting and interpreting the spectra of potentially habitable planets as they are obtained in the coming decades. Using observations from the Hubble Space Telescope, we present a study of the UV radiation fields around nearby M dwarf planet hosts that covers both far-UV (FUV) and near-UV (NUV) wavelengths. The combined FUV+NUV spectra are publicly available in machine-readable format. We find that all six exoplanet host stars in our sample (GJ 581, GJ 876, GJ 436, GJ 832, GJ 667C, and GJ 1214) exhibit some level of chromospheric and transition region UV emission. No "UV-quiet" M dwarfs are observed. The bright stellar Lyman-alpha emission lines are reconstructed, and we find that the Lyman-alpha line fluxes comprise approximately 37%-75% of the total 1150-3100 A flux from most M dwarfs; approximately greater than 10(exp3) times the solar value. We develop an empirical scaling relation between Lyman-alpha and Mg II emission, to be used when interstellar H I attenuation precludes the direct observation of Lyman-alpha. The intrinsic unreddened flux ratio is F(Lyman-alpha)/F(Mg II) = 10(exp3). The F(FUV)/F(NUV) flux ratio, a driver for abiotic production of the suggested biomarkers O2 and O3, is shown to be approximately 0.5-3 for all M dwarfs in our sample, greather than 10(exp3) times the solar ratio. For the four stars with moderate signal-to-noise Cosmic Origins Spectrograph time-resolved spectra, we find UV emission line variability with amplitudes of 50%.500% on 10(exp2)-10(exp3) s timescales. This effect should be taken

  4. THE ULTRAVIOLET RADIATION ENVIRONMENT AROUND M DWARF EXOPLANET HOST STARS

    Energy Technology Data Exchange (ETDEWEB)

    France, Kevin; Froning, Cynthia S.; Stocke, John T.; Bushinsky, Rachel [Center for Astrophysics and Space Astronomy, University of Colorado, 389 UCB, Boulder, CO 80309 (United States); Linsky, Jeffrey L. [JILA, University of Colorado and NIST, 440 UCB, Boulder, CO 80309 (United States); Roberge, Aki [Exoplanets and Stellar Astrophysics Laboratory, NASA Goddard Space Flight Center, Greenbelt, MD 20771 (United States); Tian, Feng [Center for Earth System Sciences, Tsinghua University, Beijing 100084 (China); Desert, Jean-Michel [Division of Geological and Planetary Sciences, California Institute of Technology, Pasadena, CA 91125 (United States); Mauas, Pablo; Vieytes, Mariela [Instituto de Astronomsica del Espacio (CONICET-UBA), C.C. 67 Sucursal 28, 1428 Buenos Aires (Argentina); Walkowicz, Lucianne M., E-mail: kevin.france@colorado.edu [Department of Astrophysical Sciences, Princeton University, Princeton, NJ 08544 (United States)

    2013-02-15

    The spectral and temporal behavior of exoplanet host stars is a critical input to models of the chemistry and evolution of planetary atmospheres. Ultraviolet photons influence the atmospheric temperature profiles and production of potential biomarkers on Earth-like planets around these stars. At present, little observational or theoretical basis exists for understanding the ultraviolet spectra of M dwarfs, despite their critical importance to predicting and interpreting the spectra of potentially habitable planets as they are obtained in the coming decades. Using observations from the Hubble Space Telescope, we present a study of the UV radiation fields around nearby M dwarf planet hosts that covers both far-UV (FUV) and near-UV (NUV) wavelengths. The combined FUV+NUV spectra are publicly available in machine-readable format. We find that all six exoplanet host stars in our sample (GJ 581, GJ 876, GJ 436, GJ 832, GJ 667C, and GJ 1214) exhibit some level of chromospheric and transition region UV emission. No 'UV-quiet' M dwarfs are observed. The bright stellar Ly{alpha} emission lines are reconstructed, and we find that the Ly{alpha} line fluxes comprise {approx}37%-75% of the total 1150-3100 A flux from most M dwarfs; {approx}>10{sup 3} times the solar value. We develop an empirical scaling relation between Ly{alpha} and Mg II emission, to be used when interstellar H I attenuation precludes the direct observation of Ly{alpha}. The intrinsic unreddened flux ratio is F(Ly{alpha})/F(Mg II) = 10 {+-} 3. The F(FUV)/F(NUV) flux ratio, a driver for abiotic production of the suggested biomarkers O{sub 2} and O{sub 3}, is shown to be {approx}0.5-3 for all M dwarfs in our sample, >10{sup 3} times the solar ratio. For the four stars with moderate signal-to-noise Cosmic Origins Spectrograph time-resolved spectra, we find UV emission line variability with amplitudes of 50%-500% on 10{sup 2}-10{sup 3} s timescales. This effect should be taken into account in future UV

  5. Recovering the colour-dependent albedo of exoplanets with high-resolution spectroscopy: from ESPRESSO to the ELT.

    Science.gov (United States)

    Martins, J. H. C.; Figueira, P.; Santos, N. C.; Melo, C.; Garcia Muñoz, A.; Faria, J.; Pepe, F.; Lovis, C.

    2018-05-01

    The characterization of planetary atmospheres is a daunting task, pushing current observing facilities to their limits. The next generation of high-resolution spectrographs mounted on large telescopes - such as ESPRESSO@VLT and HIRES@ELT - will allow us to probe and characterize exoplanetary atmospheres in greater detail than possible to this point. We present a method that permits the recovery of the colour-dependent reflectivity of exoplanets from high-resolution spectroscopic observations. Determining the wavelength-dependent albedo will provide insight into the chemical properties and weather of the exoplanet atmospheres. For this work, we simulated ESPRESSO@VLT and HIRES@ELT high-resolution observations of known planetary systems with several albedo configurations. We demonstrate how the cross correlation technique applied to theses simulated observations can be used to successfully recover the geometric albedo of exoplanets over a range of wavelengths. In all cases, we were able to recover the wavelength dependent albedo of the simulated exoplanets and distinguish between several atmospheric models representing different atmospheric configurations. In brief, we demonstrate that the cross correlation technique allows for the recovery of exoplanetary albedo functions from optical observations with the next generation of high-resolution spectrographs that will be mounted on large telescopes with reasonable exposure times. Its recovery will permit the characterization of exoplanetary atmospheres in terms of composition and dynamics and consolidates the cross correlation technique as a powerful tool for exoplanet characterization.

  6. Characterization of exoplanet atmospheres using high-dispersion spectroscopy with the E-ELT and beyond

    Directory of Open Access Journals (Sweden)

    Snellen Ignas

    2013-04-01

    Full Text Available Ground-based high-dispersion (R ∼ 100,000 spectroscopy provides unique information on exoplanet atmospheres, inaccessible from space - even using the JWST or other future space telescopes. Recent successes in transmission- and dayside spectroscopy using CRIRES on the Very Large Telescope prelude the enormous discovery potential of high-dispersion spectrographs on the E-ELT, such as METIS in the thermal infrared, and HIRES in the optical/near-infrared. This includes the orbital inclination and masses of hundred(s of non-transiting planets, line-by-line molecular band spectra, planet rotation and global wind patterns, longitudinal spectral variations, and possibly isotopologue ratios. Thinking beyond the E-ELT, we advocate that ultimately a systematic search for oxygen in atmospheres of nearby Earth-like planets can be conducted using large arrays of relatively low-cost flux collector telescopes equipped with high-dispersion spectrographs.

  7. Searching for Strange Quark Matter Objects in Exoplanets

    Energy Technology Data Exchange (ETDEWEB)

    Huang, Y. F.; Yu, Y. B., E-mail: hyf@nju.edu.cn [Department of Astronomy, School of Astronomy and Space Science, Nanjing University, Nanjing 210023 (China)

    2017-10-20

    The true ground state of hadronic matter may be strange quark matter (SQM). Consequently, observed pulsars may actually be strange quark stars, but not neutron stars. However, proving or disproving the SQM hypothesis still remains a difficult problem to solve due to the similarity between the macroscopical characteristics of strange quark stars and neutron stars. Here, we propose a hopeful method to probe the existence of SQM. In the framework of the SQM hypothesis, strange quark dwarfs and even strange quark planets can also stably exist. Noting that SQM planets will not be tidally disrupted even when they get very close to their host stars due to their extreme compactness, we argue that we could identify SQM planets by searching for very close-in planets among extrasolar planetary systems. Especially, we should keep our eyes on possible pulsar planets with orbital radius less than ∼5.6 × 10{sup 10} cm and period less than ∼6100 s. A thorough search in the currently detected ∼2950 exoplanets around normal main-sequence stars has failed to identify any stable close-in objects that meet the SQM criteria, i.e., lying in the tidal disruption region for normal matter planets. However, the pulsar planet PSR J1719-1438B, with an orbital radius of ∼6 × 10{sup 10} cm and orbital period of 7837 s, is, encouragingly, found to be a good candidate.

  8. Optimal Strategies for Probing Terrestrial Exoplanet Atmospheres with JWST

    Science.gov (United States)

    Batalha, Natasha E.; Lewis, Nikole K.; Line, Michael

    2018-01-01

    It is imperative that the exoplanet community determines the feasibility and the resources needed to yield high fidelity atmospheric compositions from terrestrial exoplanets. In particular, LHS 1140b and the TRAPPIST-1 system, already slated for observations by JWST’s Guaranteed Time Observers, will be the first two terrestrial planets observed by JWST. I will discuss optimal observing strategies for observing these two systems, focusing on the NIRSpec Prism (1-5μm) and the combination of NIRISS SOSS (1-2.7μm) and NIRSpec G395H (3-5μm). I will also introduce currently unsupported JWST readmodes that have the potential to greatly increase the precision on our atmospheric spectra. Lastly, I will use information content theory to compute the expected confidence interval on the retrieved abundances of key molecular species and temperature profiles as a function of JWST observing cycles.

  9. WFIRST: Exoplanet Data Challenge. Atmospheric retrieval results

    Science.gov (United States)

    Hildebrandt, Sergi; Turnbull, Margaret; Exoplanet Data Challenge Team

    2018-01-01

    We present the results of the Exoplanet Data Challenge for its first 2016/17 cycle and the current cycle 2. Some input spectra for extra-solar systems are processed through the WFIRST IFS instrument model, producing simulated data representative of the flight data. Atmospheric properties are then recovered using complex atmospheric models and multidimensional optimization. The results inform about WFIRST CGI ability to characterize exo-planetray atmospheres.

  10. EXOPLANET ALBEDO SPECTRA AND COLORS AS A FUNCTION OF PLANET PHASE, SEPARATION, AND METALLICITY

    International Nuclear Information System (INIS)

    Cahoy, Kerri L.; Marley, Mark S.; Fortney, Jonathan J.

    2010-01-01

    First generation space-based optical coronagraphic telescopes will obtain images of cool gas- and ice-giant exoplanets around nearby stars. Exoplanets lying at planet-star separations larger than about 1 AU-where an exoplanet can be resolved from its parent star-have spectra that are dominated by reflected light to beyond 1 μm and punctuated by molecular absorption features. Here, we consider how exoplanet albedo spectra and colors vary as a function of planet-star separation, metallicity, mass, and observed phase for Jupiter and Neptune analogs from 0.35 to 1 μm. We model Jupiter analogs with 1x and 3x the solar abundance of heavy elements, and Neptune analogs with 10x and 30x the solar abundance of heavy elements. Our model planets orbit a solar analog parent star at separations of 0.8 AU, 2 AU, 5 AU, and 10 AU. We use a radiative-convective model to compute temperature-pressure profiles. The giant exoplanets are found to be cloud-free at 0.8 AU, possess H 2 O clouds at 2 AU, and have both NH 3 and H 2 O clouds at 5 AU and 10 AU. For each model planet we compute moderate resolution (R = λ/Δλ ∼ 800) albedo spectra as a function of phase. We also consider low-resolution spectra and colors that are more consistent with the capabilities of early direct imaging capabilities. As expected, the presence and vertical structure of clouds strongly influence the albedo spectra since cloud particles not only affect optical depth but also have highly directional scattering properties. Observations at different phases also probe different volumes of atmosphere as the source-observer geometry changes. Because the images of the planets themselves will be unresolved, their phase will not necessarily be immediately obvious, and multiple observations will be needed to discriminate between the effects of planet-star separation, metallicity, and phase on the observed albedo spectra. We consider the range of these combined effects on spectra and colors. For example, we find that

  11. Laboratory Simulations on Haze Formation in Cool Exoplanet Atmospheres

    Science.gov (United States)

    He, Chao; Horst, Sarah; Lewis, Nikole; Yu, Xinting; McGuiggan, Patricia; Moses, Julianne I.

    2017-10-01

    The Kepler mission has shown that the most abundant types of planets are super-Earths and mini-Neptunes among ~3500 confirmed exoplanets, and these types of exoplanets are expected to exhibit a wide variety of atmospheric compositions. Recent transit spectra have demonstrated that clouds and/or hazes could play a significant role in these planetary atmospheres (Deming et al. 2013, Knutson et al. 2014, Kreidberg et al. 2014, Pont, et al. 2013). However, very little laboratory work has been done to understand the formation of haze over a broad range of atmospheric compositions. Here we conducted a series of laboratory simulations to investigate haze formation in a range of planetary atmospheres using our newly built Planetary HAZE Research (PHAZER) chamber (He et al. 2017). We ran experimental simulations for nine different atmospheres: three temperatures (300 K, 400 K, and 600 K) and three metallicities (100, 1000, and 10000 times solar metallicity) using AC glow discharge as an energy source to irradiate gas mixtures. We found that haze particles are formed in all nine experiments, but the haze production rates are dramatically different for different cases. We investigated the particle sizes of the haze particles deposited on quartz discs using atomic force microscopy (AFM). The AFM images show that the particle size varies from 30 nm to 200 nm. The haze particles are more uniform for 100x solar metallicity experiments (30 nm to 40 nm) while the particles sizes for 1000x and 10000x solar metallicity experiments have wider distributions (30 nm to 200 nm). The particle size affects the scattering of light, and thus the temperature structure of planetary atmospheres. The haze production rates and particle size distributions obtained here can serve as critical inputs to atmospheric physical and chemical tools to understand the exoplanetary atmospheres and help guide future TESS and JWST observations of super-Earths and mini-Neptunes.Ref:Deming, D., et al. 2013, Ap

  12. Orbital Dynamics of Candidate Transitional Millisecond Pulsar 3FGL J1544.6-1125: An unusually face-on system

    Science.gov (United States)

    Britt, Christopher T.; Strader, Jay; Chomiuk, Laura; Halpern, Jules P.; Tremou, Evangelina; Peacock, Mark; Salinas, Ricardo

    2018-01-01

    We present the orbital solution for the donor star of the candidate transitional millisecond pulsar 3FGL J1544.6-1125, currently observed as an accreting low-mass X-ray binary. The orbital period is 0.2415361(36) days, entirely consistent with the spectral classification of the donor star as a mid to late K dwarf. The semi-amplitude of the radial velocity curve is exceptionally low at K2=39.3+/-1.5 km s-1, implying a remarkably face-on inclination in the range 5-8o, depending on the neutron star and donor masses. After determining the veiling of the secondary, we derive a distance to the binary of 3.8+/-0.7 kpc, yielding a 0.3-10 keV X-ray luminosity of 6.1+/-1.9 x1033 erg s-1, similar to confirmed transitional millisecond pulsars. As face-on binaries rarely occur by chance, we discuss the possibility that Fermi-selected samples of transitional milli-second pulsars in the sub-luminous disk state are affected by beaming. By phasing emission line strength on the spectroscopic ephemeris, we find coherent variations, and argue that some optical light originates from emission from an asymmetric shock originating near the inner disk.

  13. A 1.1-1.9 GHz SETI SURVEY OF THE KEPLER FIELD. I. A SEARCH FOR NARROW-BAND EMISSION FROM SELECT TARGETS

    Energy Technology Data Exchange (ETDEWEB)

    Siemion, Andrew P. V.; Korpela, Eric; Werthimer, Dan; Cobb, Jeff; Lebofsky, Matt; Marcy, Geoffrey W. [University of California, Berkeley, 110 Sproul Hall, Berkeley, CA 94720 (United States); Demorest, Paul; Maddalena, Ron J.; Langston, Glen [National Radio Astronomy Observatory, 520 Edgemont Rd Charlottesville, VA 22903 (United States); Howard, Andrew W. [Institute for Astronomy, University of Hawaii, 640 North A' ohoku Place, 209 Hilo, HI 96720-2700 (United States); Tarter, Jill [SETI Institute, 189 Bernardo Ave 100 Mountain View, CA 94043 (United States)

    2013-04-10

    We present a targeted search for narrow-band (<5 Hz) drifting sinusoidal radio emission from 86 stars in the Kepler field hosting confirmed or candidate exoplanets. Radio emission less than 5 Hz in spectral extent is currently known to only arise from artificial sources. The stars searched were chosen based on the properties of their putative exoplanets, including stars hosting candidates with 380 K > T{sub eq} > 230 K, stars with five or more detected candidates or stars with a super-Earth (R{sub p} < 3 R{sub Circled-Plus }) in a >50 day orbit. Baseband voltage data across the entire band between 1.1 and 1.9 GHz were recorded at the Robert C. Byrd Green Bank Telescope between 2011 February and April and subsequently searched offline. No signals of extraterrestrial origin were found. We estimate that fewer than {approx}1% of transiting exoplanet systems host technological civilizations that are radio loud in narrow-band emission between 1 and 2 GHz at an equivalent isotropically radiated power (EIRP) of {approx}1.5 Multiplication-Sign 10{sup 21} erg s{sup -1}, approximately eight times the peak EIRP of the Arecibo Planetary Radar, and we limit the number of 1-2 GHz narrow-band-radio-loud Kardashev type II civilizations in the Milky Way to be <10{sup -6} M{sub Sun }{sup -1}. Here we describe our observations, data reduction procedures and results.

  14. FUNDAMENTAL PARAMETERS OF THE EXOPLANET HOST K GIANT STAR {iota} DRACONIS FROM THE CHARA ARRAY

    Energy Technology Data Exchange (ETDEWEB)

    Baines, Ellyn K. [Remote Sensing Division, Naval Research Laboratory, 4555 Overlook Avenue SW, Washington, DC 20375 (United States); McAlister, Harold A.; Ten Brummelaar, Theo A.; Turner, Nils H.; Sturmann, Judit; Sturmann, Laszlo; Goldfinger, P. J.; Farrington, Christopher D. [Center for High Angular Resolution Astronomy, Georgia State University, P.O. Box 3969, Atlanta, GA 30302-3969 (United States); Ridgway, Stephen T., E-mail: ellyn.baines@nrl.navy.mil [National Optical Astronomy Observatory, P.O. Box 26732, Tucson, AZ 85726-6732 (United States)

    2011-12-20

    We measured the angular diameter of the exoplanet host star {iota} Dra with Georgia State University's Center for High Angular Resolution Astronomy Array interferometer and, using the star's parallax and photometry from the literature, calculated its physical radius and effective temperature. We then combined our results with stellar oscillation frequencies from Zechmeister et al. and orbital elements from Kane et al. to determine the masses for the star and exoplanet. Our value for the central star's mass is 1.82 {+-} 0.23 M{sub Sun }, which means the exoplanet's minimum mass is 12.6 {+-} 1.1 M{sub Jupiter}. Using our new effective temperature, we recalculated the habitable zone for the system, though it is well outside the star-planet separation.

  15. Flux and polarisation spectra of water clouds on exoplanets

    NARCIS (Netherlands)

    Karalidi, T.; Stam, D.M.; Hovenier, J.W.

    2011-01-01

    Context. A crucial factor for a planet’s habitability is its climate. Clouds play an important role in planetary climates. Detecting and characterising clouds on an exoplanet is therefore crucial when addressing this planet’s habitability. Aims. We present calculated flux and polarisation spectra of

  16. Exoplanet Caught on the Move

    Science.gov (United States)

    2010-06-01

    observations, taken during autumn 2009, revealed the object on the other side of the disc after a period of hiding either behind or in front of the star (in which case it is hidden in the glare of the star). This confirmed that the source indeed was an exoplanet and that it was orbiting its host star. It also provided insights into the size of its orbit around the star. Images are available for approximately ten exoplanets, and the planet around Beta Pictoris (designated "Beta Pictoris b") has the smallest orbit known so far. It is located at a distance between 8 and 15 times the Earth-Sun separation - or 8-15 Astronomical Units - which is about the distance of Saturn from the Sun. "The short period of the planet will allow us to record the full orbit within maybe 15-20 years, and further studies of Beta Pictoris b will provide invaluable insights into the physics and chemistry of a young giant planet's atmosphere," says student researcher Mickael Bonnefoy. The planet has a mass of about nine Jupiter masses and the right mass and location to explain the observed warp in the inner parts of the disc. This discovery therefore bears some similarity to the prediction of the existence of Neptune by astronomers Adams and Le Verrier in the 19th century, based on observations of the orbit of Uranus. "Together with the planets found around the young, massive stars Fomalhaut and HR8799, the existence of Beta Pictoris b suggests that super-Jupiters could be frequent byproducts of planet formation around more massive stars," explains Gael Chauvin, a member of the team. Such planets disturb the discs around their stars, creating structures that should be readily observable with the Atacama Large Millimeter/submillimeter Array (ALMA), the revolutionary telescope being built by ESO together with international partners. A few other planetary candidates have been imaged, but they are all located further from their host star than Beta Pictoris b. If located in the Solar System, they all would

  17. Exoplanet Characterization With Spitzer Eclipses

    Science.gov (United States)

    Harrington, Joseph

    We will analyze our existing Spitzer eclipse data for 11 exoplanets (GJ 436b, WASP-8b, WASP-29b, WASP-11b, TrES-1, WASP-34b, WASP-43b, HD 209458b, HAT-P-30b, HAT-P-13b, and WASP-12b) along with all other Spitzer eclipse and transit data for these systems (723 hours of total data). In combination with transit results, these measurements reveal the surface fluxes emitted by the planets' atmospheres in the six Spitzer bandpasses (3.6, 4.5, 5.8, 8.0, 16, and 24 1-4m), as well as orbital eccentricity and in a few cases possibly even precession rate. The fluxes, in turn, can constrain atmospheric composition and thermal profiles. We propose here to analyze data for these planets using Monte Carlo-driven, radiative-transfer, model-fitting codes; to conduct aggregate analyses; and to develop and share statistical modeling tools. Secondary eclipses provide us with a unique way to characterize exoplanetary atmospheres. Since other techniques like spectroscopy divide the planetary signal into many channels, they require very high signal-to-noise ratio (S/N) and are only possible for a few planets. Broadband eclipse photometry is thus the only technique that can measure dozens of atmospheres and identify the mechanisms that cause planets at a given irradiation level to behave so differently from one another. Until JWST becomes available, the broad variety of Spitzer data that we already have in hand, along with observations from the Hubble Space Telescope and possibly SOFIA, are our best way to understand the wide diversity of exoplanetary atmospheres. Since 2010, the team has produced six papers from a new, highly modular pipeline that implements optimal methods for analysis of Spitzer photometric time series, and our efficiency is increasing. The sensitivity needed for these measurements is up to 100 times better than Spitzer's design criteria, so careful treatment of systematic error is critically important and first-order approximations rarely work. The new pipeline

  18. Thermal Infrared Imaging of Exoplanets

    International Nuclear Information System (INIS)

    Apai, Daniel

    2009-01-01

    High-contrast imaging remains the only way to search for and study weakly-irradiated giant exoplanets. We review here in brief a new high-contrast imaging technique that operates in the 3-5 μm window and show the exquisite sensitivity that can be reached using this technique. The two key advantages of the L-band high-contrast imaging are the superior image quality and the 2-to 4-magnitude gain in sensitivity provided by the red color of giant planets. Most excitingly, this method can be applied to constrain the yet-unexplored giant planet population at radii between 3 and 30 AU.

  19. Direct Imaging of a Cold Jovian Exoplanet in Orbit around the Sun-Like Star GJ 504

    Science.gov (United States)

    Kuzuhara, M.; Tamura, M.; Kudo, T.; Janson, M; Kandori, R.; Brandt, T. D.; Thalmann, C.; Spiegel, D.; Biller, B.; Carson, J.; hide

    2013-01-01

    Several exoplanets have recently been imaged at wide separations of >10 AU from their parent stars. These span a limited range of ages ( 0.5 mag), implying thick cloud covers. Furthermore, substantial model uncertainties exist at these young ages due to the unknown initial conditions at formation, which can lead to an order of magnitude of uncertainty in the modeled planet mass. Here, we report the direct imaging discovery of a Jovian exoplanet around the Sun-like star GJ 504, detected as part of the SEEDS survey. The system is older than all other known directly-imaged planets; as a result, its estimated mass remains in the planetary regime independent of uncertainties related to choices of initial conditions in the exoplanet modeling. Using the most common exoplanet cooling model, and given the system age of 160(+350/-60) Myr, GJ 504 b has an estimated mass of 4(+4.5/-1.0) Jupiter masses, among the lowest of directly imaged planets. Its projected separation of 43.5 AU exceeds the typical outer boundary of approx.. 30 AU predicted for the core accretion mechanism. GJ 504 b is also significantly cooler (510(+30/-20) K)) and has a bluer color (J - H = -0.23 mag) than previously imaged exoplanets, suggesting a largely cloud-free atmosphere accessible to spectroscopic characterization. Thus, it has the potential of providing novel insights into the origins of giant planets, as well as their atmospheric properties.

  20. A Bayesian approach shows no correlation between transit-depth and stellar metallicity for confirmed and candidates Kepler gas giants planets

    International Nuclear Information System (INIS)

    Nehmé, C; Sarkis, P

    2017-01-01

    Previous study to investigate the correlation between the transit depth and the stellar metallicity of Kepler’s (Q1-Q12) gas giant planets (radii of 5-20R ⊙ ) has led to a weakly significant negative correlation. We use the cumulative catalog of planets detected by the NASA Kepler mission Q1-Q17 catalog, as of April 2015, to perform a solid statistical analysis of this correlation. In the present work, we revise this correlation, within a Bayesian framework, for two large samples: sample A confirmed planets and sample B (confirmed + candidates). We expand a hierarchical method to account for false positives in the studied samples. Our statistical analysis reveals no correlation between the transit depth and the stellar metallicity. This has implications for planet formation theory and interior structure of giant planets. (paper)

  1. A modified CoRoT detrend algorithm and the discovery of a new planetary companion

    Science.gov (United States)

    Boufleur, Rodrigo C.; Emilio, Marcelo; Janot-Pacheco, Eduardo; Andrade, Laerte; Ferraz-Mello, Sylvio; do Nascimento, José-Dias, Jr.; de La Reza, Ramiro

    2018-01-01

    We present MCDA, a modification of the COnvection ROtation and planetary Transits (CoRoT) detrend algorithm (CDA) suitable to detrend chromatic light curves. By means of robust statistics and better handling of short-term variability, the implementation decreases the systematic light-curve variations and improves the detection of exoplanets when compared with the original algorithm. All CoRoT chromatic light curves (a total of 65 655) were analysed with our algorithm. Dozens of new transit candidates and all previously known CoRoT exoplanets were rediscovered in those light curves using a box-fitting algorithm. For three of the new cases, spectroscopic measurements of the candidates' host stars were retrieved from the ESO Science Archive Facility and used to calculate stellar parameters and, in the best cases, radial velocities. In addition to our improved detrend technique, we announce the discovery of a planet that orbits a 0.79_{-0.09}^{+0.08} R⊙ star with a period of 6.718 37 ± 0.000 01 d and has 0.57_{-0.05}^{+0.06} RJ and 0.15 ± 0.10 MJ. We also present the analysis of two cases in which parameters found suggest the existence of possible planetary companions.

  2. Verifying occulter deployment tolerances as part of NASA's technology development for exoplanet missions

    Science.gov (United States)

    Kasdin, N. J.; Lisman, D.; Shaklan, S.; Thomson, M.; Webb, D.; Cady, E.; Marks, G. W.; Lo, A.

    2013-09-01

    An external occulter is a satellite employing a large screen, or starshade, that flies in formation with a spaceborne telescope to provide the starlight suppression needed for detecting and characterizing exoplanets. Among the advantages of using an occulter are the broadband allowed for characterization and the removal of light before entering the observatory, greatly relaxing the requirements on the telescope and instrument. In support of NASA's Exoplanet Exploration Program and the Technology Development for Exoplanet Missions (TDEM), we recently completed a 2 year study of the manufacturability and metrology of starshade petals. In this paper we review the results of that successful first TDEM which demonstrated an occulter petal could be built and measured to an accuracy consistent with close to 10-10 contrast. We then present the results of our second TDEM to demonstrate the next critical technology milestone: precision deployment of the central truss and petals to the necessary accuracy. We show the deployment of an existing deployable truss outfitted with four sub-scale petals and a custom designed central hub.

  3. Challenges to Constraining Exoplanet Masses via Transmission Spectroscopy

    Energy Technology Data Exchange (ETDEWEB)

    Batalha, Natasha E. [Department of Astronomy and Astrophysics, Pennsylvania State University, State College, PA 16802 (United States); Kempton, Eliza M.-R. [Department of Physics, Grinnell College, 1116 8th Avenue, Grinnell, IA 50112 (United States); Mbarek, Rostom, E-mail: neb149@psu.edu [Department of Astronomy and Astrophysics, University of Chicago, 5640 South Ellis Avenue, Chicago, IL 60637 (United States)

    2017-02-10

    MassSpec , a method for determining the mass of a transiting exoplanet from its transmission spectrum alone, was proposed by de Wit and Seager. The premise of this method relies on the planet’s surface gravity being extracted from the transmission spectrum via its effect on the atmospheric scale height, which in turn determines the strength of absorption features. Here, we further explore the applicability of MassSpec to low-mass exoplanets—specifically those in the super-Earth size range for which radial velocity determinations of the planetary mass can be extremely challenging and resource intensive. Determining the masses of these planets is of the utmost importance because their nature is otherwise highly unconstrained. Without knowledge of the mass, these planets could be rocky, icy, or gas-dominated. To investigate the effects of planetary mass on transmission spectra, we present simulated observations of super-Earths with atmospheres made up of mixtures of H{sub 2}O and H{sub 2}, both with and without clouds. We model their transmission spectra and run simulations of each planet as it would be observed with James Webb Space Telescope using the NIRISS, NIRSpec, and MIRI instruments. We find that significant degeneracies exist between transmission spectra of planets with different masses and compositions, making it impossible to unambiguously determine the planet’s mass in many cases.

  4. Challenges to Constraining Exoplanet Masses via Transmission Spectroscopy

    International Nuclear Information System (INIS)

    Batalha, Natasha E.; Kempton, Eliza M.-R.; Mbarek, Rostom

    2017-01-01

    MassSpec , a method for determining the mass of a transiting exoplanet from its transmission spectrum alone, was proposed by de Wit and Seager. The premise of this method relies on the planet’s surface gravity being extracted from the transmission spectrum via its effect on the atmospheric scale height, which in turn determines the strength of absorption features. Here, we further explore the applicability of MassSpec to low-mass exoplanets—specifically those in the super-Earth size range for which radial velocity determinations of the planetary mass can be extremely challenging and resource intensive. Determining the masses of these planets is of the utmost importance because their nature is otherwise highly unconstrained. Without knowledge of the mass, these planets could be rocky, icy, or gas-dominated. To investigate the effects of planetary mass on transmission spectra, we present simulated observations of super-Earths with atmospheres made up of mixtures of H 2 O and H 2 , both with and without clouds. We model their transmission spectra and run simulations of each planet as it would be observed with James Webb Space Telescope using the NIRISS, NIRSpec, and MIRI instruments. We find that significant degeneracies exist between transmission spectra of planets with different masses and compositions, making it impossible to unambiguously determine the planet’s mass in many cases.

  5. THE PHOTOECCENTRIC EFFECT AND PROTO-HOT JUPITERS. I. MEASURING PHOTOMETRIC ECCENTRICITIES OF INDIVIDUAL TRANSITING PLANETS

    International Nuclear Information System (INIS)

    Dawson, Rebekah I.; Johnson, John Asher

    2012-01-01

    Exoplanet orbital eccentricities offer valuable clues about the history of planetary systems. Eccentric, Jupiter-sized planets are particularly interesting: they may link the 'cold' Jupiters beyond the ice line to close-in hot Jupiters, which are unlikely to have formed in situ. To date, eccentricities of individual transiting planets primarily come from radial-velocity measurements. Kepler has discovered hundreds of transiting Jupiters spanning a range of periods, but the faintness of the host stars precludes radial-velocity follow-up of most. Here, we demonstrate a Bayesian method of measuring an individual planet's eccentricity solely from its transit light curve using prior knowledge of its host star's density. We show that eccentric Jupiters are readily identified by their short ingress/egress/total transit durations—part of the 'photoeccentric' light curve signature of a planet's eccentricity—even with long-cadence Kepler photometry and loosely constrained stellar parameters. A Markov Chain Monte Carlo exploration of parameter posteriors naturally marginalizes over the periapse angle and automatically accounts for the transit probability. To demonstrate, we use three published transit light curves of HD 17156 b to measure an eccentricity of e = 0.71 +0.16 –0.09 , in good agreement with the discovery value e = 0.67 ± 0.08 based on 33 radial-velocity measurements. We present two additional tests using Kepler data. In each case, the technique proves to be a viable method of measuring exoplanet eccentricities and their confidence intervals. Finally, we argue that this method is the most efficient, effective means of identifying the extremely eccentric, proto-hot Jupiters predicted by Socrates et al.

  6. DIRECT IMAGING OF A COLD JOVIAN EXOPLANET IN ORBIT AROUND THE SUN-LIKE STAR GJ 504

    Energy Technology Data Exchange (ETDEWEB)

    Kuzuhara, M. [Department of Earth and Planetary Science, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo 113-0033 (Japan); Tamura, M.; Kandori, R.; Hori, Y.; Suzuki, R.; Suenaga, T.; Takahashi, Y. H.; Kwon, J. [National Astronomical Observatory of Japan, 2-21-1 Osawa, Mitaka, Tokyo 181-8588 (Japan); Kudo, T. [Subaru Telescope, National Astronomical Observatory of Japan, 650 North A' ohoku Place, Hilo, HI 96720 (United States); Janson, M.; Brandt, T. D.; Spiegel, D.; Burrows, A.; Turner, E. L.; Moro-Martin, A. [Department of Astrophysical Sciences, Princeton University, Peyton Hall, Ivy Lane, Princeton, NJ 08544 (United States); Thalmann, C. [Astronomical Institute ' ' Anton Pannekoek' ' , University of Amsterdam, Postbus 94249, 1090 GE, Amsterdam (Netherlands); Biller, B.; Henning, T. [Max Planck Institute for Astronomy, Koenigstuhl 17, D-69117 Heidelberg (Germany); Carson, J. [Department of Physics and Astronomy, College of Charleston, 58 Coming Street, Charleston, SC 29424 (United States); McElwain, M. W., E-mail: m.kuzuhara@nao.ac.jp [Exoplanets and Stellar Astrophysics Laboratory, Code 667, Goddard Space Flight Center, Greenbelt, MD 20771 (United States); and others

    2013-09-01

    Several exoplanets have recently been imaged at wide separations of >10 AU from their parent stars. These span a limited range of ages (<50 Myr) and atmospheric properties, with temperatures of 800-1800 K and very red colors (J - H > 0.5 mag), implying thick cloud covers. Furthermore, substantial model uncertainties exist at these young ages due to the unknown initial conditions at formation, which can lead to an order of magnitude of uncertainty in the modeled planet mass. Here, we report the direct-imaging discovery of a Jovian exoplanet around the Sun-like star GJ 504, detected as part of the SEEDS survey. The system is older than all other known directly imaged planets; as a result, its estimated mass remains in the planetary regime independent of uncertainties related to choices of initial conditions in the exoplanet modeling. Using the most common exoplanet cooling model, and given the system age of 160{sup +350}{sub -60} Myr, GJ 504b has an estimated mass of 4{sup +4.5}{sub -1.0} Jupiter masses, among the lowest of directly imaged planets. Its projected separation of 43.5 AU exceeds the typical outer boundary of {approx}30 AU predicted for the core accretion mechanism. GJ 504b is also significantly cooler (510{sup +30}{sub -20} K) and has a bluer color (J - H = -0.23 mag) than previously imaged exoplanets, suggesting a largely cloud-free atmosphere accessible to spectroscopic characterization. Thus, it has the potential of providing novel insights into the origins of giant planets as well as their atmospheric properties.

  7. Hot super-Earths stripped by their host stars

    OpenAIRE

    Lundkvist, M. S.; Kjeldsen, H.; Albrecht, S.; Davies, G. R.; Basu, S.; Huber, D.; Justesen, A. B.; Karoff, C.; Aguirre, V. Silva; Van Eylen, V.; Vang, C.; Arentoft, T.; Barclay, T.; Bedding, T. R.; Campante, T. L.

    2016-01-01

    Simulations predict that hot super-Earth sized exoplanets can have their envelopes stripped by photoevaporation, which would present itself as a lack of these exoplanets. However, this absence in the exoplanet population has escaped a firm detection. Here we demonstrate, using asteroseismology on a sample of exoplanets and exoplanet candidates observed during the Kepler mission that, while there is an abundance of super-Earth sized exoplanets with low incident fluxes, none are found with high...

  8. The CoRoT Exoplanet program: status & results

    Directory of Open Access Journals (Sweden)

    Moutou C.

    2011-02-01

    Full Text Available The CoRoT satellite is the first instrument hunting for planets from space. We will review the status of the CoRoT/Exoplanet program. We will then present the CoRoT exoplanetary systems and how they widen the range of properties of the close-in population and contribute to our understanding of the properties of planets.

  9. ESPRESSO: The next European exoplanet hunter

    Science.gov (United States)

    Pepe, F.; Molaro, P.; Cristiani, S.; Rebolo, R.; Santos, N. C.; Dekker, H.; Mégevand, D.; Zerbi, F. M.; Cabral, A.; Di Marcantonio, P.; Abreu, M.; Affolter, M.; Aliverti, M.; Allende Prieto, C.; Amate, M.; Avila, G.; Baldini, V.; Bristow, P.; Broeg, C.; Cirami, R.; Coelho, J.; Conconi, P.; Coretti, I.; Cupani, G.; D'Odorico, V.; De Caprio, V.; Delabre, B.; Dorn, R.; Figueira, P.; Fragoso, A.; Galeotta, S.; Genolet, L.; Gomes, R.; González Hernández, J. I.; Hughes, I.; Iwert, O.; Kerber, F.; Landoni, M.; Lizon, J.-L.; Lovis, C.; Maire, C.; Mannetta, M.; Martins, C.; Monteiro, M.; Oliveira, A.; Poretti, E.; Rasilla, J. L.; Riva, M.; Santana Tschudi, S.; Santos, P.; Sosnowska, D.; Sousa, S.; Spanó, P.; Tenegi, F.; Toso, G.; Vanzella, E.; Viel, M.; Zapatero Osorio, M. R.

    2014-01-01

    The acronym ESPRESSO stems for Echelle SPectrograph for Rocky Exoplanets and Stable Spectroscopic Observations; this instrument will be the next VLT high resolution spectrograph. The spectrograph will be installed at the Combined-Coudé Laboratory of the VLT and linked to the four 8.2 m Unit Telescopes (UT) through four optical Coudé trains. ESPRESSO will combine efficiency and extreme spectroscopic precision. ESPRESSO is foreseen to achieve a gain of two magnitudes with respect to its predecessor HARPS, and to improve the instrumental radial-velocity precision to reach the 10 cm s-1 level. It can be operated either with a single UT or with up to four UTs, enabling an additional gain in the latter mode. The incoherent combination of four telescopes and the extreme precision requirements called for many innovative design solutions while ensuring the technical heritage of the successful HARPS experience. ESPRESSO will allow to explore new frontiers in most domains of astrophysics that require precision and sensitivity. The main scientific drivers are the search and characterization of rocky exoplanets in the habitable zone of quiet, nearby G to M-dwarfs and the analysis of the variability of fundamental physical constants. The project passed the final design review in May 2013 and entered the manufacturing phase. ESPRESSO will be installed at the Paranal Observatory in 2016 and its operation is planned to start by the end of the same year.

  10. NEAT: an astrometric space telescope to search for habitable exoplanets in the solar neighborhood

    Science.gov (United States)

    Crouzier, A.; Malbet, F.; Kern, P.; Feautrier, P.; Preiss, O.; Martin, G.; Henault, F.; Stadler, E.; Lafrasse, S.; Behar, E.; Saintpe, M.; Dupont, J.; Potin, S.; Lagage, P.-O.; Cara, C.; Leger, A.; Leduigou, J.-M.; Shao, M.; Goullioud, R.

    2014-03-01

    The last decade has witnessed a spectacular development of exoplanet detection techniques, which led to an exponential number of discoveries and a great diversity of known exoplanets. However, it must be noted that the quest for the holy grail of astrobiology, i.e. a nearby terrestrial exoplanet in habitable zone around a solar type star, is still ongoing and proves to be very hard. Radial velocities will have to overcome stellar noise if there are to discover habitable planets around stars more massive than M ones. For very close systems, transits are impeded by their low geometrical probability. Here we present an alternative concept: space astrometry. NEAT (Nearby Earth Astrometric Telescope) is a concept of astrometric mission proposed to ESA which goal is to make a whole sky survey of close (less then 20 pc) planetary systems. The detection limit required for the instrument is the astrometric signal of an Earth analog (at 10 pc). Differential astrometry is a very interesting tool to detect nearby habitable exoplanets. Indeed, for F, G and K main sequence stars, the astrophysical noise is smaller than the astrometric signal, contrary to the case for radial velocities. The difficulty lies in the fact that the signal of an exo-Earth around a G type star at 10 pc is a tiny 0.3 micro arc sec, which is equivalent to a coin on the moon, seen from the Earth: the main challenge is related to instrumentation. In order to reach this specification, NEAT consists of two formation flying spacecraft at a 40m distance, one carries the mirror and the other one the focal plane. Thus NEAT has a configuration with only one optical surface: an off-axis parabola. Consequently, beamwalk errors are common to the whole field of view and have a small effect on differential astrometry. Moreover a metrology system projects young fringes on the focal plane, which can characterize the pixels whenever necessary during the mission. NEAT has two main scientific objectives: combined with

  11. PHOTOCHEMISTRY IN TERRESTRIAL EXOPLANET ATMOSPHERES. I. PHOTOCHEMISTRY MODEL AND BENCHMARK CASES

    Energy Technology Data Exchange (ETDEWEB)

    Hu Renyu; Seager, Sara; Bains, William, E-mail: hury@mit.edu [Department of Earth, Atmospheric and Planetary Sciences, Massachusetts Institute of Technology, Cambridge, MA 02139 (United States)

    2012-12-20

    We present a comprehensive photochemistry model for exploration of the chemical composition of terrestrial exoplanet atmospheres. The photochemistry model is designed from the ground up to have the capacity to treat all types of terrestrial planet atmospheres, ranging from oxidizing through reducing, which makes the code suitable for applications for the wide range of anticipated terrestrial exoplanet compositions. The one-dimensional chemical transport model treats up to 800 chemical reactions, photochemical processes, dry and wet deposition, surface emission, and thermal escape of O, H, C, N, and S bearing species, as well as formation and deposition of elemental sulfur and sulfuric acid aerosols. We validate the model by computing the atmospheric composition of current Earth and Mars and find agreement with observations of major trace gases in Earth's and Mars' atmospheres. We simulate several plausible atmospheric scenarios of terrestrial exoplanets and choose three benchmark cases for atmospheres from reducing to oxidizing. The most interesting finding is that atomic hydrogen is always a more abundant reactive radical than the hydroxyl radical in anoxic atmospheres. Whether atomic hydrogen is the most important removal path for a molecule of interest also depends on the relevant reaction rates. We also find that volcanic carbon compounds (i.e., CH{sub 4} and CO{sub 2}) are chemically long-lived and tend to be well mixed in both reducing and oxidizing atmospheres, and their dry deposition velocities to the surface control the atmospheric oxidation states. Furthermore, we revisit whether photochemically produced oxygen can cause false positives for detecting oxygenic photosynthesis, and find that in 1 bar CO{sub 2}-rich atmospheres oxygen and ozone may build up to levels that have conventionally been accepted as signatures of life, if there is no surface emission of reducing gases. The atmospheric scenarios presented in this paper can serve as the

  12. An ultrahot gas-giant exoplanet with a stratosphere.

    Science.gov (United States)

    Evans, Thomas M; Sing, David K; Kataria, Tiffany; Goyal, Jayesh; Nikolov, Nikolay; Wakeford, Hannah R; Deming, Drake; Marley, Mark S; Amundsen, David S; Ballester, Gilda E; Barstow, Joanna K; Ben-Jaffel, Lotfi; Bourrier, Vincent; Buchhave, Lars A; Cohen, Ofer; Ehrenreich, David; García Muñoz, Antonio; Henry, Gregory W; Knutson, Heather; Lavvas, Panayotis; Etangs, Alain Lecavelier des; Lewis, Nikole K; López-Morales, Mercedes; Mandell, Avi M; Sanz-Forcada, Jorge; Tremblin, Pascal; Lupu, Roxana

    2017-08-02

    Infrared radiation emitted from a planet contains information about the chemical composition and vertical temperature profile of its atmosphere. If upper layers are cooler than lower layers, molecular gases will produce absorption features in the planetary thermal spectrum. Conversely, if there is a stratosphere-where temperature increases with altitude-these molecular features will be observed in emission. It has been suggested that stratospheres could form in highly irradiated exoplanets, but the extent to which this occurs is unresolved both theoretically and observationally. A previous claim for the presence of a stratosphere remains open to question, owing to the challenges posed by the highly variable host star and the low spectral resolution of the measurements. Here we report a near-infrared thermal spectrum for the ultrahot gas giant WASP-121b, which has an equilibrium temperature of approximately 2,500 kelvin. Water is resolved in emission, providing a detection of an exoplanet stratosphere at 5σ confidence. These observations imply that a substantial fraction of incident stellar radiation is retained at high altitudes in the atmosphere, possibly by absorbing chemical species such as gaseous vanadium oxide and titanium oxide.

  13. Modeling of exoplanets interiors in the framework of future space missions

    Science.gov (United States)

    Brugger, B.; Mousis, O.; Deleuil, M.

    2017-12-01

    Probing the interior of exoplanets with known masses and radii is possible via the use of models of internal structure. Here we present a model able to handle various planetary compositions, from terrestrial bodies to ocean worlds or carbon-rich planets, and its application to the case of CoRoT-7b. Using the elemental abundances of an exoplanet’s host star, we significantly reduce the degeneracy limiting such models. This further constrains the type and state of material present at the surface, and helps estimating the composition of a secondary atmosphere that could form in these conditions through potential outgassing. Upcoming space missions dedicated to exoplanet characterization, such as PLATO, will provide accurate fundamental parameters of Earth-like planets orbiting in the habitable zone, for which our model is well adapted.

  14. Geoengineering on exoplanets

    Science.gov (United States)

    Lockley, Andrew

    2015-04-01

    Solar radiation management (SRM) geoengineering can be used to deliberately alter the Earth's radiation budget, by reflecting sunlight to space. SRM has been suggested as a response to Anthropogenic Global Warming (AGW), to partly or fully balance radiative forcing from AGW [1]. Approximately 22% of sun-like stars have Earth-like exoplanets[2]. Advanced civilisations may exist on these, and may use geoengineering for positive or negative radiative forcing. Additionally, terraforming projects [e.g. 3], may be used to expand alien habitable territory, or for resource management or military operations on non-home planets. Potential observations of alien geoengineering and terraforming may enable detection of technologically advanced alien civilisations, and may help identify widely-used and stable geoengineering technologies. This knowledge may assist the development of safe and stable geoengineering methods for Earth. The potential risks and benefits of possible alien detection of Earth-bound geoengineering schemes must be considered before deployment of terrestrial geoengineering schemes.

  15. Adaptive Optics Observations of Exoplanets, Brown Dwarfs, and Binary Stars

    Science.gov (United States)

    Hinkley, Sasha

    2012-04-01

    The current direct observations of brown dwarfs and exoplanets have been obtained using instruments not specifically designed for overcoming the large contrast ratio between the host star and any wide-separation faint companions. However, we are about to witness the birth of several new dedicated observing platforms specifically geared towards high contrast imaging of these objects. The Gemini Planet Imager, VLT-SPHERE, Subaru HiCIAO, and Project 1640 at the Palomar 5m telescope will return images of numerous exoplanets and brown dwarfs over hundreds of observing nights in the next five years. Along with diffraction-limited coronagraphs and high-order adaptive optics, these instruments also will return spectral and polarimetric information on any discovered targets, giving clues to their atmospheric compositions and characteristics. Such spectral characterization will be key to forming a detailed theory of comparative exoplanetary science which will be widely applicable to both exoplanets and brown dwarfs. Further, the prevalence of aperture masking interferometry in the field of high contrast imaging is also allowing observers to sense massive, young planets at solar system scales (~3-30 AU)- separations out of reach to conventional direct imaging techniques. Such observations can provide snapshots at the earliest phases of planet formation-information essential for constraining formation mechanisms as well as evolutionary models of planetary mass companions. As a demonstration of the power of this technique, I briefly review recent aperture masking observations of the HR 8799 system. Moreover, all of the aforementioned techniques are already extremely adept at detecting low-mass stellar companions to their target stars, and I present some recent highlights.

  16. TRANSITING THE SUN. II. THE IMPACT OF STELLAR ACTIVITY ON Lyα TRANSITS

    International Nuclear Information System (INIS)

    Llama, J.; Shkolnik, E. L.

    2016-01-01

    High-energy observations of the Sun provide an opportunity to test the limits of our ability to accurately measure the properties of transiting exoplanets in the presence of stellar activity. Here we insert the transit of a hot Jupiter into continuous disk integrated data of the Sun in Lyα from NASA’s Solar Dynamics Observatory/EVE instrument to assess the impact of stellar activity on the measured planet-to-star radius ratio (R p /R ⋆ ). In 75% of our simulated light curves, we measure the correct radius ratio; however, incorrect values can be measured if there is significant short-term variability in the light curve. The maximum measured value of R p /R ⋆ is 50% larger than the input value, which is much smaller than the large Lyα transit depths that have been reported in the literature, suggesting that for stars with activity levels comparable to the Sun, stellar activity alone cannot account for these deep transits. We ran simulations without a transit and found that stellar activity cannot mimic the Lyα transit of 55 Cancari b, strengthening the conclusion that this planet has a partially transiting exopshere. We were able to compare our simulations to more active stars by artificially increasing the variability in the Solar Lyα light curve. In the higher variability data, the largest value of R p /R ⋆ we measured is <3× the input value, which again is not large enough to reproduce the Lyα transit depth reported for the more active stars HD 189733 and GJ 436, supporting the interpretation that these planets have extended atmospheres and possible cometary tails

  17. Magnetic fields in Earth-like exoplanets and implications for habitability around M-dwarfs.

    Science.gov (United States)

    López-Morales, Mercedes; Gómez-Pérez, Natalia; Ruedas, Thomas

    2011-12-01

    We present estimations of dipolar magnetic moments for terrestrial exoplanets using the Olson & Christiansen (EPS Lett 250:561-571, 2006) scaling law and assuming their interior structure is similar to Earth. We find that the dipolar moment of fast rotating planets (where the Coriolis force dominates convection in the core), may amount up to ~80 times the magnetic moment of Earth, M ⊕, for at least part of the planets' lifetime. For slow rotating planets (where the force of inertia dominates), the dipolar magnetic moment only reaches up to ~1.5 M [symbol in text]. Applying our calculations to confirmed rocky exoplanets, we find that CoRoT-7b, Kepler-10b and 55 Cnc e can sustain dynamos up to ~18, 15 and 13 M [symbol in text], respectively. Our results also indicate that the magnetic moment of rocky exoplanets not only depends on rotation rate, but also on their formation history, thermal state, age, composition, and the geometry of the field. These results apply to all rocky planets, but have important implications for the particular case of planets in the Habitable Zone of M-dwarfs.

  18. #AltPlanets: Exploring the Exoplanet Catalogue with Neural Networks

    Science.gov (United States)

    Laneuville, M.; Tasker, E. J.; Guttenberg, N.

    2017-12-01

    The launch of Kepler in 2009 brought the number of known exoplanets into the thousands, in a growth explosion that shows no sign of abating. While the data available for individual planets is presently typically restricted to orbital and bulk properties, the quantity of data points allows the potential for meaningful statistical analysis. It is not clear how planet mass, radius, orbital path, stellar properties and neighbouring planets influence one another, therefore it seems inevitable that patterns will be missed simply due to the difficulty of including so many dimensions. Even simple trends may be overlooked if they fall outside our expectation of planet formation; a strong risk in a field where new discoveries have destroyed theories from the first observations of hot Jupiters. A possible way forward is to take advantage of the capabilities of neural network autoencoders. The idea of such algorithms is to learn a representation (encoding) of the data in a lower dimension space, without a priori knowledge about links between the elements. This encoding space can then be used to discover the strongest correlations in the original dataset.The key point is that trends identified by a neural network are independent of any previous analysis and pre-conceived ideas about physical processes. Results can reveal new relationships between planet properties and verify existing trends. We applied this concept to study data from the NASA Exoplanet Archive and while we have begun to explore the potential use of neural networks for exoplanet data, there are many possible extensions. For example, the network can produce a large number of 'alternative planets' whose statistics should match the current distribution. This larger dataset could highlight gaps in the parameter space or indicate observations are missing particular regimes. This could guide instrument proposals towards objects liable to yield the most information.

  19. The Palaeoclimate and Terrestrial Exoplanet Radiative Transfer Model Intercomparison Project (PALAEOTRIP: experimental design and protocols

    Directory of Open Access Journals (Sweden)

    C. Goldblatt

    2017-11-01

    Full Text Available Accurate radiative transfer calculation is fundamental to all climate modelling. For deep palaeoclimate, and increasingly terrestrial exoplanet climate science, this brings both the joy and the challenge of exotic atmospheric compositions. The challenge here is that most standard radiation codes for climate modelling have been developed for modern atmospheric conditions and may perform poorly away from these. The palaeoclimate or exoclimate modeller must either rely on these or use bespoke radiation codes, and in both cases rely on either blind faith or ad hoc testing of the code. In this paper, we describe the protocols for the Palaeoclimate and Terrestrial Exoplanet Radiative Transfer Model Intercomparison Project (PALAEOTRIP to systematically address this. This will compare as many radiation codes used for palaeoclimate or exoplanets as possible, with the aim of identifying the ranges of far-from-modern atmospheric compositions in which the codes perform well. This paper describes the experimental protocol and invites community participation in the project through 2017–2018.

  20. PLANETARY CANDIDATES FROM THE FIRST YEAR OF THE K2 MISSION

    Energy Technology Data Exchange (ETDEWEB)

    Vanderburg, Andrew; Latham, David W.; Bieryla, Allyson; Berlind, Perry; Calkins, Michael L.; Esquerdo, Gilbert A.; Welsh, Sophie; Johnson, John Asher [Harvard–Smithsonian Center for Astrophysics, 60 Garden St., Cambridge, MA 02138 (United States); Buchhave, Lars A., E-mail: avanderburg@cfa.harvard.edu [Centre for Star and Planet Formation, Natural History Museum of Denmark and Niels Bohr Institute, University of Copenhagen, Øster Voldgade 5-7, DK-1350 Copenhagen K (Denmark)

    2016-01-15

    The Kepler Space Telescope is currently searching for planets transiting stars along the ecliptic plane as part of its extended K2 mission. We processed the publicly released data from the first year of K2 observations (Campaigns 0, 1, 2, and 3) and searched for periodic eclipse signals consistent with planetary transits. Out of the 59,174 targets that we searched, we detect 234 planetary candidates around 208 stars. These candidates range in size from gas giants to smaller than the Earth, and range in orbital periods from hours to over a month. We conducted initial reconnaissance spectroscopy of 68 of the brighter candidate host stars, and present high-resolution optical spectra for these stars. We make all of our data products, including light curves, spectra, and vetting diagnostics available to users online.

  1. Searching for Exoplanets around X-Ray Binaries with Accreting White Dwarfs, Neutron Stars, and Black Holes

    Science.gov (United States)

    Imara, Nia; Di Stefano, Rosanne

    2018-05-01

    We recommend that the search for exoplanets around binary stars be extended to include X-ray binaries (XRBs) in which the accretor is a white dwarf, neutron star, or black hole. We present a novel idea for detecting planets bound to such mass transfer binaries, proposing that the X-ray light curves of these binaries be inspected for signatures of transiting planets. X-ray transits may be the only way to detect planets around some systems, while providing a complementary approach to optical and/or radio observations in others. Any planets associated with XRBs must be in stable orbits. We consider the range of allowable separations and find that orbital periods can be hours or longer, while transit durations extend upward from about a minute for Earth-radius planets, to hours for Jupiter-radius planets. The search for planets around XRBs could begin at once with existing X-ray observations of these systems. If and when a planet is detected around an X-ray binary, the size and mass of the planet may be readily measured, and it may also be possible to study the transmission and absorption of X-rays through its atmosphere. Finally, a noteworthy application of our proposal is that the same technique could be used to search for signals from extraterrestrial intelligence. If an advanced exocivilization placed a Dyson sphere or similar structure in orbit around the accretor of an XRB in order to capture energy, such an artificial structure might cause detectable transits in the X-ray light curve.

  2. Detection of the Secondary Eclipse of Exoplanet HAT P-11b

    Science.gov (United States)

    Barry, R. K.; Deming, L. D.; Bakos, G.; Harrington, J.; Madhusudhan, N.; Noyes, R.; Seager, S.

    2010-01-01

    We have successfully conducted secondary eclipse observations of exoplanet HAT-P-11b using the Spitzer Space Telescope. HAT-P-11b was, until very recently, the smallest transiting extrasolar planet yet found and one of only two known exo-Neptunes. We observed the system at 3.6 microns for a period of 22 hours centered on the anticipated secondary eclipse time, to detect the eclipse and determine its phase. Having detected the secondary eclipse, we are at present making a more focused series of observations in both the 3.6 and 4.5 micron bands to fully characterize it. HAT-P-11b has a period of 4.8878 days, radius of 0.422 RJ, mass of 0.081 MJ and semi-major axis 0.053 AU. Measurements of the secondary eclipse will serve to clarify two key issues; 1) the planetary brightness temperature and the nature of its atmosphere, and 2) the eccentricity of its orbit, with implications for its dynamical evolution. A precise determination of the orbit phase for the secondary eclipse will also be of great utility for Kepler observations of this system at visible wavelengths.

  3. Results of the astrometry and direct imaging testbed for exoplanet detection

    Science.gov (United States)

    Bendek, Eduardo A.; Belikov, Ruslan; Pluzhnik, Eugene; Guyon, Olivier; Milster, Thomas; Johnson, Lee; Finan, Emily; Knight, Justin; Rodack, Alexander

    2017-09-01

    Measuring masses of long-period planets around F, G, and K stars is necessary to characterize exoplanets and assess their habitability. Imaging stellar astrometry offers a unique opportunity to solve radial velocity system inclination ambiguity and determine exoplanet masses. The main limiting factor in sparse-field astrometry, besides photon noise, is the non-systematic dynamic distortions that arise from perturbations in the optical train. Even space optics suffer from dynamic distortions in the optical system at the sub-μas level. To overcome this limitation we propose a diffractive pupil that uses an array of dots on the primary mirror creating polychromatic diffraction spikes in the focal plane, which are used to calibrate the distortions in the optical system. By combining this technology with a high-performance coronagraph, measurements of planetary systems orbits and masses can be obtained faster and more accurately than by applying traditional techniques separately. In this paper, we present the results of the combined astrometry and and highcontrast imaging experiments performed at NASA Ames Research Center as part of a Technology Development for Exoplanet Missions program. We demonstrated 2.38x10-5 λ/D astrometric accuracy per axis and 1.72x10-7 raw contrast from 1.6 to 4.5 λ/D. In addition, using a simple average subtraction post-processing we demonstrated no contamination of the coronagraph field down to 4.79x10-9 raw contrast.

  4. Transit spectroscopy with GTC

    Directory of Open Access Journals (Sweden)

    Osorio M.R. Zapatero

    2013-04-01

    Full Text Available Thanks to different ground-based surveys and space missions, nowadays we have a fairly large sample of discovered extra-solar planets to study and, without a doubt, this number will increase in the future. One of the most succesful techniques that allows us to prove the physical properties and atmospheric composition of these exoplanets is transmission spectroscopy. The level of precision that is require to measure these effects provides a technical challenge that is solved by using big telescopes and stable instruments to reach low noise levels. In this article, we will discuss the use of the 10m class telescope GTC to observed planetary transits in spectroscopic mode and some of the results that we are currently obtaining.

  5. HabEx: Finding and characterizing Habitable Exoplanets with a potential future flagship astrophysics mission

    Science.gov (United States)

    Domagal-Goldman, S. D.; Gaudi, B. S.; Seager, S.; Mennesson, B.; Warfield, K.; Cahoy, K.; Feinberg, L. D.; Guyon, O.; Kasdin, N. J.; Mawet, D.; Robinson, T. D.; Rogers, L.; Scowen, P. A.; Somerville, R. S.; Stapelfeldt, K. R.; Stern, D.; Turnbull, M. C.; Marois, C.; Mouillet, D.; Prusti, T.; Quirrenbach, A.; Tamura, M.; Still, M.; Hudgins, D.

    2016-12-01

    HabEx - the Habitable Exoplanet Imager - is one of four flagship missions that NASA is studying in advance of the next Astrophysics Decadal Survey. The primary goal of HabEx will be to directly image and characterize rocky planets in the habitable zones of other stars. Specifically, HabEx aims to search for signs of liquid water oceans and biological activity on such worlds. Additionally, HabEx will also be able to pursue a range of other astrophysics investigations, including the study of non-habitable exoplanets, the study of Solar System objects, and observations of galaxies. The technical drivers for HabEx will be determined by the significant challenges associated with the direct imaging and characterization of potentially habitable exoplanets. This requires a large enough collecting area to collect light from these very dim targets, and the ability to block light from the dramatically brighter host star the planet orbits. There are multiple approaches to these challenges, and the goal of the HabEx study is to demonstrate that at least one can be executed with technologies that can be matured in time for a lunch in the 2030s. In this presentation, we will discuss the top-level exoplanet science goals of HabEx, and how those goals led to basic and preliminary architectural properties such as aperture size, starlight suppression technique, wavelength range, etc. We will then discuss how these architectural properties could allow for the astronomical study of other targets in and beyond the Solar System.

  6. Technology demonstration of starshade manufacturing for NASA's Exoplanet mission program

    Science.gov (United States)

    Kasdin, N. J.; Lisman, D.; Shaklan, S.; Thomson, M.; Cady, E.; Martin, S.; Marchen, L.; Vanderbei, R. J.; Macintosh, B.; Rudd, R. E.; Savransky, D.; Mikula, J.; Lynch, D.

    2012-09-01

    It is likely that the coming decade will see the development of a large visible light telescope with enabling technology for imaging exosolar Earthlike planets in the habitable zone of nearby stars. One such technology utilizes an external occulter, a satellite flying far from the telescope and employing a large screen, or starshade, to suppress the incoming starlight suffciently for detecting and characterizing exoplanets. This trades the added complexity of building the precisely shaped starshade and flying it in formation against simplifications in the telescope since extremely precise wavefront control is no longer necessary. In this paper we present the results of our project to design, manufacture, and measure a prototype occulter petal as part of NASA's first Technology Development for Exoplanet Missions program. We describe the mechanical design of the starshade and petal, the precision manufacturing tolerances, and the metrology approach. We demonstrate that the prototype petal meets the requirements and is consistent with a full-size occulter achieving better than 10-10 contrast.

  7. French presidential election: nuclear energy in candidates' program

    International Nuclear Information System (INIS)

    Le Ngoc, B.

    2017-01-01

    Generally right candidates consider nuclear energy as a chance for France because it is an industrial asset for the country, it releases no greenhouse gases and has given France its large energy independence. They are ready to reconsider the limitation imposed on the share of nuclear energy in the future energy mix and they want to reinforce research for next generations of reactors. The far-right candidate wishes to use nuclear energy massively to produce hydrogen in order to reduce by half the consumption of fossil energies in 20 years. Generally left candidates back the law on the energy transition that was passed during last legislature and that limits the nuclear power share to 50% while developing green energies. The far-left candidates wish a progressive and complete abandon of nuclear energy. All candidates wish a greater share of renewable energies in the future energy mix. (A.C.)

  8. SPECKLE CAMERA OBSERVATIONS FOR THE NASA KEPLER MISSION FOLLOW-UP PROGRAM

    International Nuclear Information System (INIS)

    Howell, Steve B.; Everett, Mark E.; Sherry, William; Horch, Elliott; Ciardi, David R.

    2011-01-01

    We present the first results from a speckle imaging survey of stars classified as candidate exoplanet host stars discovered by the Kepler mission. We use speckle imaging to search for faint companions or closely aligned background stars that could contribute flux to the Kepler light curves of their brighter neighbors. Background stars are expected to contribute significantly to the pool of false positive candidate transiting exoplanets discovered by the Kepler mission, especially in the case that the faint neighbors are eclipsing binary stars. Here, we describe our Kepler follow-up observing program, the speckle imaging camera used, our data reduction, and astrometric and photometric performance. Kepler stars range from R = 8 to 16 and our observations attempt to provide background non-detection limits 5-6 mag fainter and binary separations of ∼0.05-2.0 arcsec. We present data describing the relative brightness, separation, and position angles for secondary sources, as well as relative plate limits for non-detection of faint nearby stars around each of 156 target stars. Faint neighbors were found near 10 of the stars.

  9. Multiplicity and properties of Kepler planet candidates: High spatial imaging and RV studies*

    Directory of Open Access Journals (Sweden)

    Aceituno J.

    2013-04-01

    Full Text Available The Kepler space telescope is discovering thousands of new planet candidates. However, a follow up program is needed in order to reject false candidates and to fully characterize the bona-fide exoplanets. Our main aims are: 1./ Detect and analyze close companions inside the typical Kepler PSF to study if they are the responsible of the dim in the Kepler light curves, 2./ Study the change in the stellar and planetary parameters due to the presence of an unresolved object, 3./ Help to validate those Kepler Objects of Interest that do not present any object inside the Kepler PSF and 4./ Study the multiplicity rate in planet host candidates. Such a large sample of observed planet host candidates allows us to do statistics about the presence of close (visual or bounded companions to the harboring star. We present here Lucky Imaging observations for a total amount of 98 Kepler Objects of Interest. This technique is based on the acquisition of thousands of very short exposure time images. Then, a selection and combination of a small amount of the best quality frames provides a high resolution image with objects having a 0.1 arcsec PSF. We applied this technique to carry out observations in the Sloan i and Sloan z filters of our Kepler candidates. We find blended objects inside the Kepler PSF for a significant percentage of KOIs. On one hand, only 58.2% of the hosts do not present any object within 6 arcsec. On the other hand, we have found 19 companions closer than 3 arcsec in 17 KOIs. According to their magnitudes and i − z color, 8 of them could be physically bounded to the host star. We are also collecting high-spectral resolution spectroscopuy in order to derive the planet properties.

  10. PLANETARY CANDIDATES OBSERVED BY KEPLER IV: PLANET SAMPLE FROM Q1-Q8 (22 MONTHS)

    International Nuclear Information System (INIS)

    Burke, Christopher J.; Mullally, F.; Rowe, Jason F.; Thompson, Susan E.; Coughlin, Jeffrey L.; Caldwell, Douglas A.; Jenkins, Jon M.; Bryson, Stephen T.; Haas, Michael R.; Batalha, Natalie M.; Borucki, William J.; Christiansen, Jessie L.; Ciardi, David R.; Still, Martin; Barclay, Thomas; Chaplin, William J.; Clarke, Bruce D.; Cochran, William D.; Demory, Brice-Olivier; Esquerdo, Gilbert A.

    2014-01-01

    We provide updates to the Kepler planet candidate sample based upon nearly two years of high-precision photometry (i.e., Q1-Q8). From an initial list of nearly 13,400 threshold crossing events, 480 new host stars are identified from their flux time series as consistent with hosting transiting planets. Potential transit signals are subjected to further analysis using the pixel-level data, which allows background eclipsing binaries to be identified through small image position shifts during transit. We also re-evaluate Kepler Objects of Interest (KOIs) 1-1609, which were identified early in the mission, using substantially more data to test for background false positives and to find additional multiple systems. Combining the new and previous KOI samples, we provide updated parameters for 2738 Kepler planet candidates distributed across 2017 host stars. From the combined Kepler planet candidates, 472 are new from the Q1-Q8 data examined in this study. The new Kepler planet candidates represent ∼40% of the sample with R P ∼ 1 R ⊕ and represent ∼40% of the low equilibrium temperature (T eq < 300 K) sample. We review the known biases in the current sample of Kepler planet candidates relevant to evaluating planet population statistics with the current Kepler planet candidate sample

  11. Transiting Exoplanet Monitoring Project (TEMP). IV. Refined System Parameters, Transit Timing Variations, and Orbital Stability of the Transiting Planetary System HAT-P-25

    Science.gov (United States)

    Wang, Xian-Yu; Wang, Songhu; Hinse, Tobias C.; Li, Kai; Wang, Yong-Hao; Laughlin, Gregory; Liu, Hui-Gen; Zhang, Hui; Wu, Zhen-Yu; Zhou, Xu; Zhou, Ji-Lin; Hu, Shao-Ming; Wu, Dong-Hong; Peng, Xi-Yan; Chen, Yuan-Yuan

    2018-06-01

    We present eight new light curves of the transiting extra-solar planet HAT-P-25b obtained from 2013 to 2016 with three telescopes at two observatories. We use the new light curves, along with recent literature material, to estimate the physical and orbital parameters of the transiting planet. Specifically, we determine the mid-transit times (T C ) and update the linear ephemeris, T C[0] = 2456418.80996 ± 0.00025 [BJDTDB] and P = 3.65281572 ± 0.00000095 days. We carry out a search for transit timing variations (TTVs), and find no significant TTV signal at the ΔT = 80 s-level, placing a limit on the possible strength of planet–planet interactions (TTVG). In the course of our analysis, we calculate the upper mass-limits of the potential nearby perturbers. Near the 1:2, 2:1, and 3:1 resonances with HAT-P-25b, perturbers with masses greater than 0.5, 0.3, and 0.5 M ⊕ respectively, can be excluded. Furthermore, based on the analysis of TTVs caused by light travel time effect (LTTE) we also eliminate the possibility that a long-period perturber exists with M p > 3000 MJ within a = 11.2 au of the parent star.

  12. Detection of H2O and Evidence for TiO VO in an Ultra Hot Exoplanet Atmosphere.

    Science.gov (United States)

    Evans, Thomas M.; Sing, David K.; Wakeford, Hannah R.; Nikolov, Nikolay; Ballester, Gilda E.; Drummond, Benjamin; Kataria, Tiffany; Gibson, Neale P.; Amundsen, David S.; Spake, Jessica

    2016-01-01

    We present a primary transit observation for the ultra-hot (Teq approx. 2400 K) gas giant expolanet WASP-121b, made using the Hubble Space Telescope Wide Field Camera 3 in spectroscopic mode across the 1.12-1.64 micron wavelength range. The 1.4 microns water absorption band is detected at high confidence (5.4(sigma)) in the planetary atmosphere. We also reanalyze ground-based photometric light curves taken in the B, r', and z' filters. Significantly deeper transits are measured in these optical bandpasses relative to the near-infrared wavelengths. We conclude that scattering by high-altitude haze alone is unlikely to account for this difference and instead interpret it as evidence for titanium oxide and vanadium oxide absorption. Enhanced opacity is also inferred across the 1.12-1.3 micron wavelength range, possibly due to iron hydride absorption. If confirmed, WASP-121b will be the first exoplanet with titanium oxide, vanadium oxide, and iron hydride detected in transmission. The latter are important species in M/L dwarfs and their presence is likely to have a significant effect on the overall physics and chemistry of the atmosphere, including the production of a strong thermal inversion.

  13. The Habitable Zone Gallery 2.0: The Online Exoplanet System Visualization Suite

    Science.gov (United States)

    Chandler, C. O.; Kane, S. R.; Gelino, D. M.

    2017-11-01

    The Habitable Zone Gallery 2.0 provides new and improved visualization and data analysis tools to the exoplanet habitability community and beyond. Modules include interactive habitable zone plotting and downloadable 3D animations.

  14. Connecting HL Tau to the observed exoplanet sample

    Science.gov (United States)

    Simbulan, Christopher; Tamayo, Daniel; Petrovich, Cristobal; Rein, Hanno; Murray, Norman

    2017-08-01

    The Atacama Large Millimeter/submilimeter Array (ALMA) recently revealed a set of nearly concentric gaps in the protoplanetary disc surrounding the young star HL Tauri (HL Tau). If these are carved by forming gas giants, this provides the first set of orbital initial conditions for planets as they emerge from their birth discs. Using N-body integrations, we have followed the evolution of the system for 5 Gyr to explore the possible outcomes. We find that HL Tau initial conditions scaled down to the size of typically observed exoplanet orbits naturally produce several populations in the observed exoplanet sample. First, for a plausible range of planetary masses, we can match the observed eccentricity distribution of dynamically excited radial velocity giant planets with eccentricities >0.2. Secondly, we roughly obtain the observed rate of hot Jupiters around FGK stars. Finally, we obtain a large efficiency of planetary ejections of ≈2 per HL Tau-like system, but the small fraction of stars observed to host giant planets makes it hard to match the rate of free-floating planets inferred from microlensing observations. In view of upcoming Gaia results, we also provide predictions for the expected mutual inclination distribution, which is significantly broader than the absolute inclination distributions typically considered by previous studies.

  15. Microlens Array/Pinhole Mask to Suppress Starlight for Direct Exoplanet Detection

    Science.gov (United States)

    Zimmerman, Neil

    Direct imaging of habitable exoplanets is a key priority of NASA’s Astrophysics roadmap, “Enduring Quests, Daring Visions.” A coronagraphic starlight suppression system situated on a large space telescope offers a viable path to achieving this goal. This type of instrument is central to both the LUVOIR and HabEx mission concepts currently under study for the 2020 Decadal Survey. To directly image an Earth-like exoplanet, an instrument must be sensitive to objects ten billion times dimmer than their parent star. Advanced coronagraphs are designed to modify the shape of the star’s image so that it does not overwhelm the planet's light. Coronagraphs are complex to design and fabricate, tend to sacrifice a significant portion of the exoplanet light entering the telescope, and are highly sensitive to errors in the telescope. The proposed work reduces the demands on the coronagraph and its sensitivity to errors in the telescope, by changing how we implement optics in the spectrograph following the coronagraph. Through optical analysis and modeling, we have found that a microlens array with a specially arranged pattern of pinholes can suppress residual starlight in the scientific image after the coronagraph by more than two orders of magnitude. This added layer of starlight rejection could be used to relax the extreme observatory stability requirements for exo-Earth imaging applications, for example shifting the wavefront stability requirement from a few picometers to a few nanometers. Ultimately this translates to the instrument detecting and spectrally characterizing more exoplanets than a conventional coronagraph system. This microlens/pinhole concept is also compatible with starshadebased starlight suppression systems. The proposed microlens/pinhole device is entirely passive and augments the performance of existing coronagraph designs, while potentially reducing their cost and risk for mission implementation. Our APRA proposal would support a testbed

  16. Some inconvenient truths about biosignatures involving two chemical species on Earth-like exoplanets.

    Science.gov (United States)

    Rein, Hanno; Fujii, Yuka; Spiegel, David S

    2014-05-13

    The detection of strong thermochemical disequilibrium in the atmosphere of an extrasolar planet is thought to be a potential biosignature. In this article we present a previously unidentified kind of false positive that can mimic a disequilibrium or any other biosignature that involves two chemical species. We consider a scenario where the exoplanet hosts a moon that has its own atmosphere and neither of the atmospheres is in chemical disequilibrium. Our results show that the integrated spectrum of the planet and the moon closely resembles that of a single object in strong chemical disequilibrium. We derive a firm limit on the maximum spectral resolution that can be obtained for both directly imaged and transiting planets. The spectral resolution of even idealized space-based spectrographs that might be achievable in the next several decades is in general insufficient to break the degeneracy. Both chemical species can only be definitively confirmed in the same object if absorption features of both chemicals can be unambiguously identified and their combined depth exceeds 100%.

  17. Kepler Data Validation Time Series File: Description of File Format and Content

    Science.gov (United States)

    Mullally, Susan E.

    2016-01-01

    The Kepler space mission searches its time series data for periodic, transit-like signatures. The ephemerides of these events, called Threshold Crossing Events (TCEs), are reported in the TCE tables at the NASA Exoplanet Archive (NExScI). Those TCEs are then further evaluated to create planet candidates and populate the Kepler Objects of Interest (KOI) table, also hosted at the Exoplanet Archive. The search, evaluation and export of TCEs is performed by two pipeline modules, TPS (Transit Planet Search) and DV (Data Validation). TPS searches for the strongest, believable signal and then sends that information to DV to fit a transit model, compute various statistics, and remove the transit events so that the light curve can be searched for other TCEs. More on how this search is done and on the creation of the TCE table can be found in Tenenbaum et al. (2012), Seader et al. (2015), Jenkins (2002). For each star with at least one TCE, the pipeline exports a file that contains the light curves used by TPS and DV to find and evaluate the TCE(s). This document describes the content of these DV time series files, and this introduction provides a bit of context for how the data in these files are used by the pipeline.

  18. Verify Occulter Deployment Tolerances as Part of NASA's Technology Development for Exoplanet Missions

    Science.gov (United States)

    Kasdin, N. J.; Shaklan, S.; Lisman, D.; Thomson, M.; Webb, D.; Cady, E.; Marks, G. W.; Lo, A.

    2013-01-01

    In support of NASA's Exoplanet Exploration Program and the Technology Development for Exoplanet Missions (TDEM), we recently completed a 2 year study of the manufacturability and metrology of starshade petals. An external occult is a satellite employing a large screen, or starshade, that flies in formation with a spaceborne telescope to provide the starlight suppression needed for detecting and characterizing exoplanets. Among the advantages of using an occulter are the broadband allowed for characterization and the removal of light before entering the observatory, greatly relaxing the requirements on the telescope and instrument. This poster presents the results of our successful first TDEM that demonstrated an occulter petal could be built and measured to an accuracy consistent with close to 10^-10 contrast. We also present the progress in our second TDEM to demonstrate the next critical technology milestone: precision deployment of the central truss and petals to the necessary accuracy. We have completed manufacture of four sub-scale petals and a central hub to fit with an existing deployable truss. We show the plans for repeated stow and deploy tests of the assembly and the metrology to confirm that each deploy repeatably meets the absolute positioning requirements of the petals (better than 1.0 mm).

  19. Refraction in exoplanet atmospheres. Photometric signatures, implications for transmission spectroscopy, and search in Kepler data

    Science.gov (United States)

    Alp, D.; Demory, B.-O.

    2018-01-01

    Context. Refraction deflects photons that pass through atmospheres, which affects transit light curves. Refraction thus provides an avenue to probe physical properties of exoplanet atmospheres and to constrain the presence of clouds and hazes. In addition, an effective surface can be imposed by refraction, thereby limiting the pressure levels probed by transmission spectroscopy. Aims: The main objective of the paper is to model the effects of refraction on photometric light curves for realistic planets and to explore the dependencies on atmospheric physical parameters. We also explore under which circumstances transmission spectra are significantly affected by refraction. Finally, we search for refraction signatures in photometric residuals in Kepler data. Methods: We use the model of Hui & Seager (2002, ApJ, 572, 540) to compute deflection angles and refraction transit light curves, allowing us to explore the parameter space of atmospheric properties. The observational search is performed by stacking large samples of transit light curves from Kepler. Results: We find that out-of-transit refraction shoulders are the most easily observable features, which can reach peak amplitudes of 10 parts per million (ppm) for planets around Sun-like stars. More typical amplitudes are a few ppm or less for Jovians and at the sub-ppm level for super-Earths. In-transit, ingress, and egress refraction features are challenging to detect because of the short timescales and degeneracies with other transit model parameters. Interestingly, the signal-to-noise ratio of any refraction residuals for planets orbiting Sun-like hosts are expected to be similar for planets orbiting red dwarfs and ultra-cool stars. We also find that the maximum depth probed by transmission spectroscopy is not limited by refraction for weakly lensing planets, but that the incidence of refraction can vary significantly for strongly lensing planets. We find no signs of refraction features in the stacked Kepler

  20. Emergent Exoplanet Flux: Review of the Spitzer Results

    OpenAIRE

    Deming, Drake

    2008-01-01

    Observations using the Spitzer Space Telescope provided the first detections of photons from extrasolar planets. Spitzer observations are allowing us to infer the temperature structure, composition, and dynamics of exoplanet atmospheres. The Spitzer studies extend from many hot Jupiters, to the hot Neptune orbiting GJ436. Here I review the current status of Spitzer secondary eclipse observations, and summarize the results from the viewpoint of what is robust, what needs more work, and what th...

  1. A Bewildering and Dynamic Picture of Exoplanetary Systems Identified by the Kepler Mission (Invited)

    Science.gov (United States)

    Jenkins, J. M.

    2013-12-01

    Kepler vaulted into the heavens on March 7, 2009, initiating NASA's search for Earth-size planets orbiting Sun-like stars in the habitable zone, where liquid water could exist on a rocky planetary surface. In the 4 years since, a flood of photometric data of unprecedented precision and continuity on more than 190,000 stars has provoked a watershed of 134+ confirmed or validated planets, 3200+ planetary candidates (most sub-Neptune in size and many comparable to or smaller than Earth), and a revolution in asteroseismology and astrophysics. Recent discoveries include Kepler-62 with 5 planets total, of which 2 are in the habitable zone with radii of 1.4 and 1.7 Re. Approximately 500 of the stars in the Kepler survey with planets host multiple transiting planets: 43% of planet candidates have transiting siblings. Many of these multiple transiting planet systems are dynamically packed and are unlikely, therefore, to have formed in situ. These systems experienced strong migration and evolution to arrive at the configurations we observe today, with important implications for the time-variable habitability of these planets over their histories. The half dozen circumbinary transiting planet systems discovered by Kepler to date highlight the dynamic nature of the habitable zone in systems with multiple host stars where the habitable zone may change significantly on timescales commensurate with the orbital period of the binary. While the catalog of circumbinary planets is small at this point, it already possesses at least one example of an exoplanet in the habitable zone. This implies that the majority of habitable zone planets may be circumbinary planets given the high frequency of multiple star systems and the early detection of Kepler-47b. KIC-12557548 is most likely a disintegrating sub-Mercury-sized planet. While it was probably never habitable, it represents a unique example of the dynamic nature of planetary systems. These amazing discoveries challenge our conventional

  2. TRANSITING THE SUN. II. THE IMPACT OF STELLAR ACTIVITY ON Lyα TRANSITS

    Energy Technology Data Exchange (ETDEWEB)

    Llama, J.; Shkolnik, E. L., E-mail: joe.llama@lowell.edu [Lowell Observatory, 1400 W Mars Hill Road, Flagstaff, AZ 86001 (United States)

    2016-01-20

    High-energy observations of the Sun provide an opportunity to test the limits of our ability to accurately measure the properties of transiting exoplanets in the presence of stellar activity. Here we insert the transit of a hot Jupiter into continuous disk integrated data of the Sun in Lyα from NASA’s Solar Dynamics Observatory/EVE instrument to assess the impact of stellar activity on the measured planet-to-star radius ratio (R{sub p}/R{sub ⋆}). In 75% of our simulated light curves, we measure the correct radius ratio; however, incorrect values can be measured if there is significant short-term variability in the light curve. The maximum measured value of R{sub p}/R{sub ⋆} is 50% larger than the input value, which is much smaller than the large Lyα transit depths that have been reported in the literature, suggesting that for stars with activity levels comparable to the Sun, stellar activity alone cannot account for these deep transits. We ran simulations without a transit and found that stellar activity cannot mimic the Lyα transit of 55 Cancari b, strengthening the conclusion that this planet has a partially transiting exopshere. We were able to compare our simulations to more active stars by artificially increasing the variability in the Solar Lyα light curve. In the higher variability data, the largest value of R{sub p}/R{sub ⋆} we measured is <3× the input value, which again is not large enough to reproduce the Lyα transit depth reported for the more active stars HD 189733 and GJ 436, supporting the interpretation that these planets have extended atmospheres and possible cometary tails.

  3. Planetary Candidates Observed by Kepler, III: Analysis of the First 16 Months of Data

    Energy Technology Data Exchange (ETDEWEB)

    Batalha, Natalie M.; /San Jose State U.; Rowe, Jason F.; /NASA, Ames; Bryson, Stephen T.; /NASA, Ames; Barclay, Thomas; /NASA, Ames; Burke, Christopher J.; /NASA, Ames; Caldwell, Douglas A.; /NASA, Ames; Christiansen, Jessie L.; /NASA, Ames; Mullally, Fergal; /NASA, Ames; Thompson, Susan E.; /NASA, Ames; Brown, Timothy M.; /Las Cumbres Observ.; Dupree, Andrea K.; /Harvard-Smithsonian Ctr. Astrophys. /UC, Santa Cruz

    2012-02-01

    New transiting planet candidates are identified in sixteen months (May 2009 - September 2010) of data from the Kepler spacecraft. Nearly five thousand periodic transit-like signals are vetted against astrophysical and instrumental false positives yielding 1091 viable new planet candidates, bringing the total count up to over 2,300. Improved vetting metrics are employed, contributing to higher catalog reliability. Most notable is the noise-weighted robust averaging of multiquarter photo-center offsets derived from difference image analysis which identifies likely background eclipsing binaries. Twenty-two months of photometry are used for the purpose of characterizing each of the new candidates. Ephemerides (transit epoch, T{sub 0}, and orbital period, P) are tabulated as well as the products of light curve modeling: reduced radius (R{sub P}/R{sub {star}}), reduced semi-major axis (d/R{sub {star}}), and impact parameter (b). The largest fractional increases are seen for the smallest planet candidates (197% for candidates smaller than 2R{sub {circle_plus}} compared to 52% for candidates larger than 2R{sub {circle_plus}}) and those at longer orbital periods (123% for candidates outside of 50 day orbits versus 85% for candidates inside of 50 day orbits). The gains are larger than expected from increasing the observing window from thirteen months (Quarter 1 - Quarter 5) to sixteen months (Quarter 1 - Quarter 6). This demonstrates the benefit of continued development of pipeline analysis software. The fraction of all host stars with multiple candidates has grown from 17% to 20%, and the paucity of short-period giant planets in multiple systems is still evident. The progression toward smaller planets at longer orbital periods with each new catalog release suggests that Earth-size planets in the Habitable Zone are forthcoming if, indeed, such planets are abundant.

  4. HAT-P-26b: A Neptune-mass exoplanet with a well-constrained heavy element abundance.

    Science.gov (United States)

    Wakeford, Hannah R; Sing, David K; Kataria, Tiffany; Deming, Drake; Nikolov, Nikolay; Lopez, Eric D; Tremblin, Pascal; Amundsen, David S; Lewis, Nikole K; Mandell, Avi M; Fortney, Jonathan J; Knutson, Heather; Benneke, Björn; Evans, Thomas M

    2017-05-12

    A correlation between giant-planet mass and atmospheric heavy elemental abundance was first noted in the past century from observations of planets in our own Solar System and has served as a cornerstone of planet-formation theory. Using data from the Hubble and Spitzer Space Telescopes from 0.5 to 5 micrometers, we conducted a detailed atmospheric study of the transiting Neptune-mass exoplanet HAT-P-26b. We detected prominent H 2 O absorption bands with a maximum base-to-peak amplitude of 525 parts per million in the transmission spectrum. Using the water abundance as a proxy for metallicity, we measured HAT-P-26b's atmospheric heavy element content ([Formula: see text] times solar). This likely indicates that HAT-P-26b's atmosphere is primordial and obtained its gaseous envelope late in its disk lifetime, with little contamination from metal-rich planetesimals. Copyright © 2017, American Association for the Advancement of Science.

  5. Exoplanets, Exo-Solar Life, and Human Significance

    Science.gov (United States)

    Wiseman, Jennifer

    2011-01-01

    With the recent detection of over 500 extrasolar planets, the existence of "other worlds", perhaps even other Earths, is no longer in the realm of science fiction. The study of exoplanets rapidly moved from an activity on the fringe of astronomy to one of the highest priorities of the world's astronomical programs. Actual images of extrasolar planets were revealed over the past two years for the first time. NASA's Hubble Space Telescope is already characterizing the atmospheres of Jupiter-like planets, in other systems. And the recent launch of the NASA Kepler space telescope is enabling the first statistical assessment of how common solar systems like our own really are. As we begin to characterize these "other worlds" and assess their habitability, the question of the significance and uniqueness of life on Earth will impact our society as never before. I will provide a comprehensive overview of the techniques and status of exoplanet detection, followed by reflections as to the societal impact of finding out that Earths are common, or rare. Will finding other potentially habitable planets create another "Copernican Revolution"? Will perceptions of the significance of life on Earth change when we find other Earth-like planets? I will discuss the plans of the scientific community for future telescopes that will be abe to survey our solar neighborhood for Earth-like planets, study their atmospheres, and search for biological signs of life.

  6. Is There Life on Exoplanet Maja? A Demonstration for Schools

    Science.gov (United States)

    Planinsic, Gorazd; Marshall, Rick

    2012-01-01

    Astronomy and astrophysics are very popular with pupils, but the experimental work they can do tends to be rather limited. The search for life elsewhere in the Universe ("exobiology") has received an enormous boost since the detection of a rapidly increasing number of planets ("exoplanets") orbiting other stars in our galaxy. Recently (March…

  7. batman: BAsic Transit Model cAlculatioN in Python

    Science.gov (United States)

    Kreidberg, Laura

    2015-11-01

    I introduce batman, a Python package for modeling exoplanet transit light curves. The batman package supports calculation of light curves for any radially symmetric stellar limb darkening law, using a new integration algorithm for models that cannot be quickly calculated analytically. The code uses C extension modules to speed up model calculation and is parallelized with OpenMP. For a typical light curve with 100 data points in transit, batman can calculate one million quadratic limb-darkened models in 30 seconds with a single 1.7 GHz Intel Core i5 processor. The same calculation takes seven minutes using the four-parameter nonlinear limb darkening model (computed to 1 ppm accuracy). Maximum truncation error for integrated models is an input parameter that can be set as low as 0.001 ppm, ensuring that the community is prepared for the precise transit light curves we anticipate measuring with upcoming facilities. The batman package is open source and publicly available at https://github.com/lkreidberg/batman .

  8. High resolution transmission spectroscopy as a diagnostic for Jovian exoplanet atmospheres: constraints from theoretical models

    Energy Technology Data Exchange (ETDEWEB)

    Kempton, Eliza M.-R. [Department of Physics, Grinnell College, Grinnell, IA 50112 (United States); Perna, Rosalba [Department of Physics and Astronomy, Stony Brook University, Stony Brook, NY 11794 (United States); Heng, Kevin, E-mail: kemptone@grinnell.edu [University of Bern, Center for Space and Habitability, Sidlerstrasse 5, CH-3012 Bern (Switzerland)

    2014-11-01

    We present high resolution transmission spectra of giant planet atmospheres from a coupled three-dimensional (3D) atmospheric dynamics and transmission spectrum model that includes Doppler shifts which arise from winds and planetary motion. We model Jovian planets covering more than two orders of magnitude in incident flux, corresponding to planets with 0.9-55 day orbital periods around solar-type stars. The results of our 3D dynamical models reveal certain aspects of high resolution transmission spectra that are not present in simple one-dimensional (1D) models. We find that the hottest planets experience strong substellar to anti-stellar (SSAS) winds, resulting in transmission spectra with net blueshifts of up to 3 km s{sup –1}, whereas less irradiated planets show almost no net Doppler shifts. We find only minor differences between transmission spectra for atmospheres with temperature inversions and those without. Compared to 1D models, peak line strengths are significantly reduced for the hottest atmospheres owing to Doppler broadening from a combination of rotation (which is faster for close-in planets under the assumption of tidal locking) and atmospheric winds. Finally, high resolution transmission spectra may be useful in studying the atmospheres of exoplanets with optically thick clouds since line cores for very strong transitions should remain optically thick to very high altitude. High resolution transmission spectra are an excellent observational test for the validity of 3D atmospheric dynamics models, because they provide a direct probe of wind structures and heat circulation. Ground-based exoplanet spectroscopy is currently on the verge of being able to verify some of our modeling predictions, most notably the dependence of SSAS winds on insolation. We caution that interpretation of high resolution transmission spectra based on 1D atmospheric models may be inadequate, as 3D atmospheric motions can produce a noticeable effect on the absorption

  9. Searching for the Transit of the Earth-mass Exoplanet Proxima Centauri b in Antarctica: Preliminary Result

    Science.gov (United States)

    Liu, Hui-Gen; Jiang, Peng; Huang, Xingxing; Yu, Zhou-Yi; Yang, Ming; Jia, Minghao; Awiphan, Supachai; Pan, Xiang; Liu, Bo; Zhang, Hongfei; Wang, Jian; Li, Zhengyang; Du, Fujia; Li, Xiaoyan; Lu, Haiping; Zhang, Zhiyong; Tian, Qi-Guo; Li, Bin; Ji, Tuo; Zhang, Shaohua; Shi, Xiheng; Wang, Ji; Zhou, Ji-Lin; Zhou, Hongyan

    2018-01-01

    Proxima Centauri is known as the closest star to the Sun. Recently, radial velocity (RV) observations revealed the existence of an Earth-mass planet around it. With an orbital period of ∼11 days, Proxima Centauri b is probably in the habitable zone of its host star. We undertook a photometric monitoring campaign to search for its transit, using the Bright Star Survey Telescope at the Zhongshan Station in Antarctica. A transit-like signal appearing on 2016 September 8 has been tentatively identified. Its midtime, T C = 2,457,640.1990 ± 0.0017 HJD, is consistent with the predicted ephemeris based on the RV orbit in a 1σ confidence interval. Time-correlated noise is pronounced in the light curve of Proxima Centauri, affecting the detection of transits. We develop a technique, in a Gaussian process framework, to gauge the statistical significance of a potential transit detection. The tentative transit signal reported here has a confidence level of 2.5σ. Further detection of its periodic signals is necessary to confirm the planetary transit of Proxima Centauri b. We plan to monitor Proxima Centauri in the next polar night at Dome A in Antarctica, taking advantage of continuous darkness. Kipping et al. reported two tentative transit-like signals of Proxima Centauri b observed by the Microvariability and Oscillation of Stars space telescope in 2014 and 2015. The midtransit time of our detection is 138 minutes later than that predicted by their transit ephemeris. If all of the signals are real transits, the misalignment of the epochs plausibly suggests transit timing variations of Proxima Centauri b induced by an outer planet in this system.

  10. Automation of processing and photometric data analysis for transiting exoplanets observed with ESO NIR instrument HAWK-I

    Science.gov (United States)

    Blažek, M.; Kabáth, P.; Klocová, T.; Skarka, M.

    2018-04-01

    Nowadays, when amount of data still increases, it is necessary to automatise their processing. State-of-the-art instruments are capable to produce even tens of thousands of images during a single night. One of them is HAWK-I that is a part of Very Large Telescope of European Southern Observatory. This instrument works in near-infrared band. In my Master thesis, I dealt with developing a pipeline to process data obtained by the instrument. It is written in Python programming language using commands of IRAF astronomical software and it is developed directly for "Fast Photometry Mode" of HAWK-I. In this mode, a large number of data has been obtained during secondary eclipses of exoplanets by their host star. The pipeline was tested by a data set from sorting of the images to making a light curve. The data of WASP-18 system contained almost 40 000 images observed by using a filter centered at 2.09 μm wavelength and there is a plan to process other data sets. A goal of processing of WASP-18 and the other data sets is consecutive analysis of exoplanetary atmospheres of the observed systems.

  11. Assessing Ozone Detectability on Weakly Oxygenated Terrestrial Exoplanets

    Science.gov (United States)

    Schwieterman, Edward; Olson, Stephanie; Reinhard, Christopher; Ridgwell, Andy; Kane, Stephen R.; Meadows, Victoria; Lyons, Timothy

    2018-06-01

    Space-based telescope mission concepts currently under development by NASA would be capable of directly imaging exoplanets within the habitable zones of their host stars. The spectroscopic data from such missions could provide an opportunity to detect biosignatures. The strongest remotely detectable signature of life on our planet today is the photosynthetically produced oxygen (O2) in our atmosphere. However, recent studies of Earth’s geochemical proxy record suggest that for all but the last ~500 million years, atmospheric O2 would have been undetectable to a remote observer, a potential false negative for life. During an extended period in Earth’s middle history (2.0 – 0.7 billion years ago, Ga), O2 was likely present but in low concentrations, with pO2 estimates of ~ 0.1 – 1% of present-day levels. Recent biogeochemical modeling results have suggested methane (CH4) was likewise undetectably low during this period. Although O2 has a weak spectral impact in reflected light at abundances consistent with Earth’s middle history, O3 in photochemical equilibrium with that O2 would produce notable spectral features in the UV Hartley-Huggins band (~0.25 µm), with a weaker impact in the mid-IR band near 9.7 µm. Thus, taking Earth history as an informative example, there likely exists a category of exoplanets for which conventional biosignatures can only be identified in the UV. We use simulated observations to emphasize the importance of UV capabilities in the design of future space-based direct imaging telescopes such as HabEx or LUVOIR to detect O3 on planets with weakly oxygenated states. We also show that under low-O2 conditions, seasonal variations in O2 production and consumption by the biosphere could manifest as time-variable O3. Such seasonality in the Hartley-Huggins band provides both an opportunity and a challenge for remote life-detection studies because this biosignature may only be detectable intermittently over a planet’s orbital period

  12. LOW FALSE POSITIVE RATE OF KEPLER CANDIDATES ESTIMATED FROM A COMBINATION OF SPITZER AND FOLLOW-UP OBSERVATIONS

    International Nuclear Information System (INIS)

    Désert, Jean-Michel; Brown, Timothy M.; Charbonneau, David; Torres, Guillermo; Fressin, François; Ballard, Sarah; Latham, David W.; Bryson, Stephen T.; Borucki, William J.; Knutson, Heather A.; Batalha, Natalie M.; Deming, Drake; Ford, Eric B.; Fortney, Jonathan J.; Gilliland, Ronald L.; Seager, Sara

    2015-01-01

    NASA’s Kepler mission has provided several thousand transiting planet candidates during the 4 yr of its nominal mission, yet only a small subset of these candidates have been confirmed as true planets. Therefore, the most fundamental question about these candidates is the fraction of bona fide planets. Estimating the rate of false positives of the overall Kepler sample is necessary to derive the planet occurrence rate. We present the results from two large observational campaigns that were conducted with the Spitzer Space Telescope during the the Kepler mission. These observations are dedicated to estimating the false positive rate (FPR) among the Kepler candidates. We select a sub-sample of 51 candidates, spanning wide ranges in stellar, orbital, and planetary parameter space, and we observe their transits with Spitzer at 4.5 μm. We use these observations to measures the candidate’s transit depths and infrared magnitudes. An authentic planet produces an achromatic transit depth (neglecting the modest effect of limb darkening). Conversely a bandpass-dependent depth alerts us to the potential presence of a blending star that could be the source of the observed eclipse: a false positive scenario. For most of the candidates (85%), the transit depths measured with Kepler are consistent with the transit depths measured with Spitzer as expected for planetary objects, while we find that the most discrepant measurements are due to the presence of unresolved stars that dilute the photometry. The Spitzer constraints on their own yield FPRs between 5% and depending on the Kepler Objects of Interest. By considering the population of the Kepler field stars, and by combining follow-up observations (imaging) when available, we find that the overall FPR of our sample is low. The measured upper limit on the FPR of our sample is 8.8% at a confidence level of 3σ. This observational result, which uses the achromatic property of planetary transit signals that is not investigated

  13. LOW FALSE POSITIVE RATE OF KEPLER CANDIDATES ESTIMATED FROM A COMBINATION OF SPITZER AND FOLLOW-UP OBSERVATIONS

    Energy Technology Data Exchange (ETDEWEB)

    Désert, Jean-Michel; Brown, Timothy M. [CASA, Department of Astrophysical and Planetary Sciences, University of Colorado, 389-UCB, Boulder, CO 80309 (United States); Charbonneau, David; Torres, Guillermo; Fressin, François; Ballard, Sarah; Latham, David W. [Harvard-Smithsonian Center for Astrophysics, 60 Garden Street, Cambridge, MA 02138 (United States); Bryson, Stephen T.; Borucki, William J. [NASA Ames Research Center, Moffett Field, CA 94035 (United States); Knutson, Heather A. [Division of Geological and Planetary Sciences, California Institute of Technology, Pasadena, CA 91125 (United States); Batalha, Natalie M. [San Jose State University, San Jose, CA 95192 (United States); Deming, Drake [Department of Astronomy, University of Maryland, College Park, MD 20742-2421 (United States); Ford, Eric B. [University of Florida, Gainesville, FL 32611 (United States); Fortney, Jonathan J. [Department of Astronomy and Astrophysics, University of California, Santa Cruz, CA 95064 (United States); Gilliland, Ronald L. [Center for Exoplanets and Habitable Worlds, The Pennsylvania State University, University Park, PA 16802 (United States); Seager, Sara, E-mail: desert@colorado.edu [Massachusetts Institute of Technology, Cambridge, MA 02159 (United States)

    2015-05-01

    NASA’s Kepler mission has provided several thousand transiting planet candidates during the 4 yr of its nominal mission, yet only a small subset of these candidates have been confirmed as true planets. Therefore, the most fundamental question about these candidates is the fraction of bona fide planets. Estimating the rate of false positives of the overall Kepler sample is necessary to derive the planet occurrence rate. We present the results from two large observational campaigns that were conducted with the Spitzer Space Telescope during the the Kepler mission. These observations are dedicated to estimating the false positive rate (FPR) among the Kepler candidates. We select a sub-sample of 51 candidates, spanning wide ranges in stellar, orbital, and planetary parameter space, and we observe their transits with Spitzer at 4.5 μm. We use these observations to measures the candidate’s transit depths and infrared magnitudes. An authentic planet produces an achromatic transit depth (neglecting the modest effect of limb darkening). Conversely a bandpass-dependent depth alerts us to the potential presence of a blending star that could be the source of the observed eclipse: a false positive scenario. For most of the candidates (85%), the transit depths measured with Kepler are consistent with the transit depths measured with Spitzer as expected for planetary objects, while we find that the most discrepant measurements are due to the presence of unresolved stars that dilute the photometry. The Spitzer constraints on their own yield FPRs between 5% and depending on the Kepler Objects of Interest. By considering the population of the Kepler field stars, and by combining follow-up observations (imaging) when available, we find that the overall FPR of our sample is low. The measured upper limit on the FPR of our sample is 8.8% at a confidence level of 3σ. This observational result, which uses the achromatic property of planetary transit signals that is not investigated

  14. New Insights into the Nature of Transition Disks from a Complete Disk Survey of the Lupus Star-forming Region

    Science.gov (United States)

    van der Marel, Nienke; Williams, Jonathan P.; Ansdell, M.; Manara, Carlo F.; Miotello, Anna; Tazzari, Marco; Testi, Leonardo; Hogerheijde, Michiel; Bruderer, Simon; van Terwisga, Sierk E.; van Dishoeck, Ewine F.

    2018-02-01

    Transition disks with large dust cavities around young stars are promising targets for studying planet formation. Previous studies have revealed the presence of gas cavities inside the dust cavities, hinting at recently formed, giant planets. However, many of these studies are biased toward the brightest disks in the nearby star-forming regions, and it is not possible to derive reliable statistics that can be compared with exoplanet populations. We present the analysis of 11 transition disks with large cavities (≥20 au radius) from a complete disk survey of the Lupus star-forming region, using ALMA Band 7 observations at 0.″3 (22–30 au radius) resolution of the 345 GHz continuum, 13CO and C18O 3–2 observations, and the spectral energy distribution of each source. Gas and dust surface density profiles are derived using the physical–chemical modeling code DALI. This is the first study of transition disks of large cavities within a complete disk survey within a star-forming region. The dust cavity sizes range from 20 to 90 au radius, and in three cases, a gas cavity is resolved as well. The deep drops in gas density and large dust cavity sizes are consistent with clearing by giant planets. The fraction of transition disks with large cavities in Lupus is ≳ 11 % , which is inconsistent with exoplanet population studies of giant planets at wide orbits. Furthermore, we present a hypothesis of an evolutionary path for large massive disks evolving into transition disks with large cavities.

  15. Transit confirmation and improved stellar and planet parameters for the super-Earth HD 97658 b and its host star

    Energy Technology Data Exchange (ETDEWEB)

    Van Grootel, V.; Gillon, M.; Scuflaire, R. [Institut d' Astrophysique et de Géophysique, Université de Liège, 17 Allée du 6 Août, B-4000 Liège (Belgium); Valencia, D. [Department of Physical and Environmental Sciences, University of Toronto, 1265 Military Trail, Toronto, ON, M1C 1A4 (Canada); Madhusudhan, N.; Demory, B.-O.; Queloz, D. [Institute of Astronomy, University of Cambridge, Madingley Road, Cambridge CB3 0HA (United Kingdom); Dragomir, D. [Las Cumbres Observatory Global Telescope Network, 6740 Cortona Dr. Suite 102, Goleta, CA 93117 (United States); Howe, A. R.; Burrows, A. S. [Department of Astrophysical Sciences, Princeton University, Princeton, NJ 08544 (United States); Deming, D. [Department of Astronomy, University of Maryland, College Park, MD 20742-2421 (United States); Ehrenreich, D.; Lovis, C.; Mayor, M.; Pepe, F.; Segransan, D.; Udry, S. [Observatoire de Genève, Université de Genève, 51 Chemin des Maillettes, CH-1290 Sauverny (Switzerland); Seager, S., E-mail: valerie.vangrootel@ulg.ac.be [Department of Earth, Atmospheric and Planetary Sciences, Department of Physics, Massachusetts Institute of Technology, 77 Massachusetts Avenue, Cambridge, MA 02139 (United States)

    2014-05-01

    Super-Earths transiting nearby bright stars are key objects that simultaneously allow for accurate measurements of both their mass and radius, providing essential constraints on their internal composition. We present here the confirmation, based on Spitzer transit observations, that the super-Earth HD 97658 b transits its host star. HD 97658 is a low-mass (M {sub *} = 0.77 ± 0.05 M {sub ☉}) K1 dwarf, as determined from the Hipparcos parallax and stellar evolution modeling. To constrain the planet parameters, we carry out Bayesian global analyses of Keck-High Resolution Echelle Spectrometer (Keck-HIRES) radial velocities and Microvariability and Oscillations of STars (MOST) and Spitzer photometry. HD 97658 b is a massive (M{sub P}=7.55{sub −0.79}{sup +0.83} M{sub ⊕}) and large (R{sub P}=2.247{sub −0.095}{sup +0.098}R{sub ⊕} at 4.5 μm) super-Earth. We investigate the possible internal compositions for HD 97658 b. Our results indicate a large rocky component, of at least 60% by mass, and very little H-He components, at most 2% by mass. We also discuss how future asteroseismic observations can improve the knowledge of the HD 97658 system, in particular by constraining its age. Orbiting a bright host star, HD 97658 b will be a key target for upcoming space missions such as the Transiting Exoplanet Survey Satellite (TESS), the Characterizing Exoplanet Satellite (CHEOPS), the Planetary Transits and Oscillations of stars (PLATO), and the James Webb Space Telescope to characterize thoroughly its structure and atmosphere.

  16. Searching for Exoplanet Effects on the X-ray Spectrum of τ Boo

    Science.gov (United States)

    Wood, Brian; Laming, J. Martin

    2018-01-01

    We study the X-ray spectrum of the exoplanet host star τ Boo A (F7 V), in order to explore the possibility that its very close-in, massive exoplanet (Porb=3.31 days, m sin i=3.9 MJ) may be affecting the coronal emissions of this star. The star was observed recently by Chandra/LETGS for 92 ksec in three pieces between 2017 February 27 and 2017 March 5; and was previously observed by XMM for 65 ksec in 2003 June 24. The new Chandra observations allow us to resolve τ Boo A from its stellar companion, τ Boo B (M2 V), for the first time. The companion accounts for 21% of the system's total X-ray emission at the time of the Chandra observation. Nevertheless, our measurements of τ Boo A emission measures and coronal abundances from Chandra are reasonably consistent with previous measurements from XMM by Maggio et al. (2011, A&A, 527, A144), in which τ Boo A and B are not resolved. Covering planetary orbital phases 0.21-0.31, 0.44-0.49, and 0.69-0.86, the Chandra data show that τ Boo A's coronal X-ray spectrum does not vary significantly with planetary orbital phase. However, our analysis suggests that coronal abundances for τ Boo A are somewhat anomalous, with a significantly weaker "FIP effect" compared to similar stars without close-in exoplanets, particularly π3 Ori (F6 V).

  17. ECLIPSING BINARY SCIENCE VIA THE MERGING OF TRANSIT AND DOPPLER EXOPLANET SURVEY DATA-A CASE STUDY WITH THE MARVELS PILOT PROJECT AND SuperWASP

    International Nuclear Information System (INIS)

    Fleming, Scott W.; Ge Jian; De Lee, Nathan M.; Zhao Bo; Wan Xiaoke; Guo Pengcheng; Maxted, Pierre F. L.; Anderson, David R.; Hellier, Coel; Hebb, Leslie; Stassun, Keivan G.; Cargile, Phillip A.; Gary, Bruce; Ghezzi, Luan; Wisniewski, John; Porto de Mello, G. F.; Ferreira, Leticia; West, Richard G.; Mahadevan, Suvrath; Pollacco, Don

    2011-01-01

    Exoplanet transit and Doppler surveys discover many binary stars during their operation that can be used to conduct a variety of ancillary science. Specifically, eclipsing binary stars can be used to study the stellar mass-radius relationship and to test predictions of theoretical stellar evolution models. By cross-referencing 24 binary stars found in the MARVELS Pilot Project with SuperWASP photometry, we find two new eclipsing binaries, TYC 0272-00458-1 and TYC 1422-01328-1, which we use as case studies to develop a general approach to eclipsing binaries in survey data. TYC 0272-00458-1 is a single-lined spectroscopic binary for which we calculate a mass of the secondary and radii for both components using reasonable constraints on the primary mass through several different techniques. For a primary mass of M 1 = 0.92 ± 0.1 M sun , we find M 2 = 0.610 ± 0.036 M sun , R 1 = 0.932 ± 0.076 R sun , and R 2 = 0.559 ± 0.102 R sun , and find that both stars have masses and radii consistent with model predictions. TYC 1422-01328-1 is a triple-component system for which we can directly measure the masses and radii of the eclipsing pair. We find that the eclipsing pair consists of an evolved primary star (M 1 = 1.163 ± 0.034 M sun , R 1 = 2.063 ± 0.058 R sun ) and a G-type dwarf secondary (M 2 = 0.905 ± 0.067 M sun , R 2 = 0.887 ± 0.037 R sun ). We provide the framework necessary to apply this analysis to much larger data sets.

  18. EXOPLANET CHARACTERIZATION BY PROXY: A TRANSITING 2.15 R{sub Circled-Plus} PLANET NEAR THE HABITABLE ZONE OF THE LATE K DWARF KEPLER-61

    Energy Technology Data Exchange (ETDEWEB)

    Ballard, Sarah; Charbonneau, David; Fressin, Francois; Torres, Guillermo; Irwin, Jonathan; Newton, Elisabeth [University of Washington, Seattle, WA 98195 (United States); Desert, Jean-Michel; Crepp, Justin R.; Shporer, Avi [California Institute of Technology, Pasadena, CA 91125 (United States); Mann, Andrew W. [Institute for Astronomy, University of Hawai' i, Honolulu, HI 96822 (United States); Ciardi, David R. [NASA Exoplanet Science Institute/Caltech, Pasadena, CA 91125 (United States); Henze, Christopher E.; Bryson, Stephen T.; Howell, Steven B. [NASA Ames Research Center, Moffett Field, CA 94035 (United States); Horch, Elliott P. [Southern Connecticut State University, New Haven, CT 06515 (United States); Everett, Mark E., E-mail: sarahba@uw.edu [National Optical Astronomy Observatory, Tucson, AZ 85719 (United States)

    2013-08-20

    We present the validation and characterization of Kepler-61b: a 2.15 R{sub Circled-Plus} planet orbiting near the inner edge of the habitable zone of a low-mass star. Our characterization of the host star Kepler-61 is based upon a comparison with a set of spectroscopically similar stars with directly measured radii and temperatures. We apply a stellar prior drawn from the weighted mean of these properties, in tandem with the Kepler photometry, to infer a planetary radius for Kepler-61b of 2.15 {+-} 0.13 R{sub Circled-Plus} and an equilibrium temperature of 273 {+-} 13 K (given its period of 59.87756 {+-} 0.00020 days and assuming a planetary albedo of 0.3). The technique of leveraging the physical properties of nearby ''proxy'' stars allows for an independent check on stellar characterization via the traditional measurements with stellar spectra and evolutionary models. In this case, such a check had implications for the putative habitability of Kepler-61b: the planet is 10% warmer and larger than inferred from K-band spectral characterization. From the Kepler photometry, we estimate a stellar rotation period of 36 days, which implies a stellar age of >1 Gyr. We summarize the evidence for the planetary nature of the Kepler-61 transit signal, which we conclude is 30,000 times more likely to be due to a planet than a blend scenario. Finally, we discuss possible compositions for Kepler-61b with a comparison to theoretical models as well as to known exoplanets with similar radii and dynamically measured masses.

  19. TESS Data Processing and Quick-look Pipeline

    Science.gov (United States)

    Fausnaugh, Michael; Huang, Xu; Glidden, Ana; Guerrero, Natalia; TESS Science Office

    2018-01-01

    We describe the data analysis procedures and pipelines for the Transiting Exoplanet Survey Satellite (TESS). We briefly review the processing pipeline developed and implemented by the Science Processing Operations Center (SPOC) at NASA Ames, including pixel/full-frame image calibration, photometric analysis, pre-search data conditioning, transiting planet search, and data validation. We also describe data-quality diagnostic analyses and photometric performance assessment tests. Finally, we detail a "quick-look pipeline" (QLP) that has been developed by the MIT branch of the TESS Science Office (TSO) to provide a fast and adaptable routine to search for planet candidates in the 30 minute full-frame images.

  20. THE INFLUENCE OF MAGNETIC FIELD GEOMETRY ON THE FORMATION OF CLOSE-IN EXOPLANETS

    Energy Technology Data Exchange (ETDEWEB)

    Simon, Jacob B., E-mail: jbsimon.astro@gmail.com [Department of Space Studies, Southwest Research Institute, Boulder, CO 80302 (United States)

    2016-08-20

    Approximately half of Sun-like stars harbor exoplanets packed within a radius of ∼0.3 au, but the formation of these planets and why they form in only half of known systems are still not well understood. We employ a one-dimensional steady-state model to gain physical insight into the origin of these close-in exoplanets. We use Shakura and Sunyaev α values extracted from recent numerical simulations of protoplanetary disk accretion processes in which the magnitude of α , and thus the steady-state gas surface density, depend on the orientation of large-scale magnetic fields with respect to the disk’s rotation axis. Solving for the metallicity as a function of radius, we find that for fields anti-aligned with the rotation axis, the inner regions of our model disk often fall within a region of parameter space that is not suitable for planetesimal formation, whereas in the aligned case, the inner disk regions are likely to produce planetesimals through some combination of streaming instability and gravitational collapse, though the degree to which this is true depends on the assumed parameters of our model. More robustly, the aligned field case always produces higher concentrations of solids at small radii compared to the anti-aligned case. In the in situ formation model, this bimodal distribution of solid enhancement leads directly to the observed dichotomy in exoplanet orbital distances.

  1. kepler's dark worlds: A low albedo for an ensemble of Neptunian and Terran exoplanets

    Science.gov (United States)

    Jansen, Tiffany; Kipping, David

    2018-05-01

    Photometric phase curves provide an important window onto exoplanetary atmospheres and potentially even their surfaces. With similar amplitudes to occultations but far longer baselines, they have a higher sensitivity to planetary photons at the expense of a more challenging data reduction in terms of long-term stability. In this work, we introduce a novel non-parametric algorithm dubbed phasma to produce clean, robust exoplanet phase curves and apply it to 115 Neptunian and 50 Terran exoplanets observed by kepler. We stack the signals to further improve signal-to-noise, and measure an average Neptunian albedo of Ag greenhouse effect, our work implies that kepler's solid planets are unlikely to resemble cloudy Venusian analogs, but rather dark Mercurian rocks.

  2. A sub-Mercury-sized exoplanet.

    Science.gov (United States)

    Barclay, Thomas; Rowe, Jason F; Lissauer, Jack J; Huber, Daniel; Fressin, François; Howell, Steve B; Bryson, Stephen T; Chaplin, William J; Désert, Jean-Michel; Lopez, Eric D; Marcy, Geoffrey W; Mullally, Fergal; Ragozzine, Darin; Torres, Guillermo; Adams, Elisabeth R; Agol, Eric; Barrado, David; Basu, Sarbani; Bedding, Timothy R; Buchhave, Lars A; Charbonneau, David; Christiansen, Jessie L; Christensen-Dalsgaard, Jørgen; Ciardi, David; Cochran, William D; Dupree, Andrea K; Elsworth, Yvonne; Everett, Mark; Fischer, Debra A; Ford, Eric B; Fortney, Jonathan J; Geary, John C; Haas, Michael R; Handberg, Rasmus; Hekker, Saskia; Henze, Christopher E; Horch, Elliott; Howard, Andrew W; Hunter, Roger C; Isaacson, Howard; Jenkins, Jon M; Karoff, Christoffer; Kawaler, Steven D; Kjeldsen, Hans; Klaus, Todd C; Latham, David W; Li, Jie; Lillo-Box, Jorge; Lund, Mikkel N; Lundkvist, Mia; Metcalfe, Travis S; Miglio, Andrea; Morris, Robert L; Quintana, Elisa V; Stello, Dennis; Smith, Jeffrey C; Still, Martin; Thompson, Susan E

    2013-02-28

    Since the discovery of the first exoplanets, it has been known that other planetary systems can look quite unlike our own. Until fairly recently, we have been able to probe only the upper range of the planet size distribution, and, since last year, to detect planets that are the size of Earth or somewhat smaller. Hitherto, no planets have been found that are smaller than those we see in the Solar System. Here we report a planet significantly smaller than Mercury. This tiny planet is the innermost of three that orbit the Sun-like host star, which we have designated Kepler-37. Owing to its extremely small size, similar to that of the Moon, and highly irradiated surface, the planet, Kepler-37b, is probably rocky with no atmosphere or water, similar to Mercury.

  3. Waiting narratives of lung transplant candidates.

    Science.gov (United States)

    Yelle, Maria T; Stevens, Patricia E; Lanuza, Dorothy M

    2013-01-01

    Before 2005, time accrued on the lung transplant waiting list counted towards who was next in line for a donor lung. Then in 2005 the lung allocation scoring system was implemented, which meant the higher the illness severity scores, the higher the priority on the transplant list. Little is known of the lung transplant candidates who were listed before 2005 and were caught in the transition when the lung allocation scoring system was implemented. A narrative analysis was conducted to explore the illness narratives of seven lung transplant candidates between 2006 and 2007. Arthur Kleinman's concept of illness narratives was used as a conceptual framework for this study to give voice to the illness narratives of lung transplant candidates. Results of this study illustrate that lung transplant candidates expressed a need to tell their personal story of waiting and to be heard. Recommendation from this study calls for healthcare providers to create the time to enable illness narratives of the suffering of waiting to be told. Narrative skills of listening to stories of emotional suffering would enhance how healthcare providers could attend to patients' stories and hear what is most meaningful in their lives.

  4. Waiting Narratives of Lung Transplant Candidates

    Directory of Open Access Journals (Sweden)

    Maria T. Yelle

    2013-01-01

    Full Text Available Before 2005, time accrued on the lung transplant waiting list counted towards who was next in line for a donor lung. Then in 2005 the lung allocation scoring system was implemented, which meant the higher the illness severity scores, the higher the priority on the transplant list. Little is known of the lung transplant candidates who were listed before 2005 and were caught in the transition when the lung allocation scoring system was implemented. A narrative analysis was conducted to explore the illness narratives of seven lung transplant candidates between 2006 and 2007. Arthur Kleinman’s concept of illness narratives was used as a conceptual framework for this study to give voice to the illness narratives of lung transplant candidates. Results of this study illustrate that lung transplant candidates expressed a need to tell their personal story of waiting and to be heard. Recommendation from this study calls for healthcare providers to create the time to enable illness narratives of the suffering of waiting to be told. Narrative skills of listening to stories of emotional suffering would enhance how healthcare providers could attend to patients’ stories and hear what is most meaningful in their lives.

  5. Synthesizing exoplanet demographics from radial velocity and microlensing surveys. I. Methodology

    International Nuclear Information System (INIS)

    Clanton, Christian; Gaudi, B. Scott

    2014-01-01

    Motivated by the order of magnitude difference in the frequency of giant planets orbiting M dwarfs inferred by microlensing and radial velocity (RV) surveys, we present a method for comparing the statistical constraints on exoplanet demographics inferred from these methods. We first derive the mapping from the observable parameters of a microlensing-detected planet to those of an analogous planet orbiting an RV-monitored star. Using this mapping, we predict the distribution of RV observables for the planet population inferred from microlensing surveys, taking care to adopt reasonable priors for, and properly marginalize over, the unknown physical parameters of microlensing-detected systems. Finally, we use simple estimates of the detection limits for a fiducial RV survey to predict the number and properties of analogs of the microlensing planet population such an RV survey should detect. We find that RV and microlensing surveys have some overlap, specifically for super-Jupiter mass planets (m p ≳ 1 M Jup ) with periods between ∼3-10 yr. However, the steeply falling planetary mass function inferred from microlensing implies that, in this region of overlap, RV surveys should infer a much smaller frequency than the overall giant planet frequency (m p ≳ 0.1 M Jup ) inferred by microlensing. Our analysis demonstrates that it is possible to statistically compare and synthesize data sets from multiple exoplanet detection techniques in order to infer exoplanet demographics over wider regions of parameter space than are accessible to individual methods. In a companion paper, we apply our methodology to several representative microlensing and RV surveys to derive the frequency of planets around M dwarfs with orbits of ≲ 30 yr.

  6. Disequilibrium biosignatures over Earth history and implications for detecting exoplanet life

    Science.gov (United States)

    Krissansen-Totton, Joshua; Olson, Stephanie; Catling, David C.

    2018-01-01

    Chemical disequilibrium in planetary atmospheres has been proposed as a generalized method for detecting life on exoplanets through remote spectroscopy. Among solar system planets with substantial atmospheres, the modern Earth has the largest thermodynamic chemical disequilibrium due to the presence of life. However, how this disequilibrium changed over time and, in particular, the biogenic disequilibria maintained in the anoxic Archean or less oxic Proterozoic eons are unknown. We calculate the atmosphere-ocean disequilibrium in the Precambrian using conservative proxy- and model-based estimates of early atmospheric and oceanic compositions. We omit crustal solids because subsurface composition is not detectable on exoplanets, unlike above-surface volatiles. We find that (i) disequilibrium increased through time in step with the rise of oxygen; (ii) both the Proterozoic and Phanerozoic may have had remotely detectable biogenic disequilibria due to the coexistence of O2, N2, and liquid water; and (iii) the Archean had a biogenic disequilibrium caused by the coexistence of N2, CH4, CO2, and liquid water, which, for an exoplanet twin, may be remotely detectable. On the basis of this disequilibrium, we argue that the simultaneous detection of abundant CH4 and CO2 in a habitable exoplanet’s atmosphere is a potential biosignature. Specifically, we show that methane mixing ratios greater than 10−3 are potentially biogenic, whereas those exceeding 10−2 are likely biogenic due to the difficulty in maintaining large abiotic methane fluxes to support high methane levels in anoxic atmospheres. Biogenicity would be strengthened by the absence of abundant CO, which should not coexist in a biological scenario. PMID:29387792

  7. Advection of Potential Temperature in the Atmosphere of Irradiated Exoplanets: A Robust Mechanism to Explain Radius Inflation

    Science.gov (United States)

    Tremblin, P.; Chabrier, G.; Mayne, N. J.; Amundsen, D. S.; Baraffe, I.; Debras, F.; Drummond, B.; Manners, J.; Fromang, S.

    2017-01-01

    The anomalously large radii of strongly irradiated exoplanets have remained a major puzzle in astronomy. Based on a two-dimensional steady-state atmospheric circulation model, the validity of which is assessed by comparison to three-dimensional calculations, we reveal a new mechanism, namely the advection of the potential temperature due to mass and longitudinal momentum conservation, a process occurring in the Earth's atmosphere or oceans. In the deep atmosphere, the vanishing heating flux forces the atmospheric structure to converge to a hotter adiabat than the one obtained with 1D calculations, implying a larger radius for the planet. Not only do the calculations reproduce the observed radius of HD 209458b, but also reproduce the observed correlation between radius inflation and irradiation for transiting planets. Vertical advection of potential temperature induced by non-uniform atmospheric heating thus provides a robust mechanism to explain the inflated radii of irradiated hot Jupiters.

  8. Advection of Potential Temperature in the Atmosphere of Irradiated Exoplanets: A Robust Mechanism to Explain Radius Inflation

    International Nuclear Information System (INIS)

    Tremblin, P.; Chabrier, G.; Mayne, N. J.; Baraffe, I.; Debras, F.; Drummond, B.; Manners, J.; Amundsen, D. S.; Fromang, S.

    2017-01-01

    The anomalously large radii of strongly irradiated exoplanets have remained a major puzzle in astronomy. Based on a two-dimensional steady-state atmospheric circulation model, the validity of which is assessed by comparison to three-dimensional calculations, we reveal a new mechanism, namely the advection of the potential temperature due to mass and longitudinal momentum conservation, a process occurring in the Earth’s atmosphere or oceans. In the deep atmosphere, the vanishing heating flux forces the atmospheric structure to converge to a hotter adiabat than the one obtained with 1D calculations, implying a larger radius for the planet. Not only do the calculations reproduce the observed radius of HD 209458b, but also reproduce the observed correlation between radius inflation and irradiation for transiting planets. Vertical advection of potential temperature induced by non-uniform atmospheric heating thus provides a robust mechanism to explain the inflated radii of irradiated hot Jupiters.

  9. Advection of Potential Temperature in the Atmosphere of Irradiated Exoplanets: A Robust Mechanism to Explain Radius Inflation

    Energy Technology Data Exchange (ETDEWEB)

    Tremblin, P. [Maison de la Simulation, CEA-CNRS-INRIA-UPS-UVSQ, USR 3441, CEA Paris-Saclay, F-91191 Gif-Sur-Yvette (France); Chabrier, G.; Mayne, N. J.; Baraffe, I.; Debras, F.; Drummond, B.; Manners, J. [Astrophysics Group, University of Exeter, EX4 4QL Exeter (United Kingdom); Amundsen, D. S. [Department of Applied Physics and Applied Mathematics, Columbia University, New York, NY 10025 (United States); Fromang, S., E-mail: pascal.tremblin@cea.fr [Laboratoire AIM, CEA/DSM-CNRS-Université Paris 7, Irfu/Service d’Astrophysique, CEA Paris-Saclay, F-91191 Gif-sur-Yvette (France)

    2017-05-20

    The anomalously large radii of strongly irradiated exoplanets have remained a major puzzle in astronomy. Based on a two-dimensional steady-state atmospheric circulation model, the validity of which is assessed by comparison to three-dimensional calculations, we reveal a new mechanism, namely the advection of the potential temperature due to mass and longitudinal momentum conservation, a process occurring in the Earth’s atmosphere or oceans. In the deep atmosphere, the vanishing heating flux forces the atmospheric structure to converge to a hotter adiabat than the one obtained with 1D calculations, implying a larger radius for the planet. Not only do the calculations reproduce the observed radius of HD 209458b, but also reproduce the observed correlation between radius inflation and irradiation for transiting planets. Vertical advection of potential temperature induced by non-uniform atmospheric heating thus provides a robust mechanism to explain the inflated radii of irradiated hot Jupiters.

  10. LIGHT SCATTERING FROM EXOPLANET OCEANS AND ATMOSPHERES

    International Nuclear Information System (INIS)

    Zugger, M. E.; Kane, T. J.; Kasting, J. F.; Williams, D. M.; Philbrick, C. R.

    2010-01-01

    Orbital variation in reflected starlight from exoplanets could eventually be used to detect surface oceans. Exoplanets with rough surfaces, or dominated by atmospheric Rayleigh scattering, should reach peak brightness in full phase, orbital longitude (OL) = 180 0 , whereas ocean planets with transparent atmospheres should reach peak brightness in crescent phase near OL = 30 0 . Application of Fresnel theory to a planet with no atmosphere covered by a calm ocean predicts a peak polarization fraction of 1 at OL = 74 0 ; however, our model shows that clouds, wind-driven waves, aerosols, absorption, and Rayleigh scattering in the atmosphere and within the water column dilute the polarization fraction and shift the peak to other OLs. Observing at longer wavelengths reduces the obfuscation of the water polarization signature by Rayleigh scattering but does not mitigate the other effects. Planets with thick Rayleigh scattering atmospheres reach peak polarization near OL = 90 0 , but clouds and Lambertian surface scattering dilute and shift this peak to smaller OL. A shifted Rayleigh peak might be mistaken for a water signature unless data from multiple wavelength bands are available. Our calculations suggest that polarization alone may not positively identify the presence of an ocean under an Earth-like atmosphere; however, polarization adds another dimension which can be used, in combination with unpolarized orbital light curves and contrast ratios, to detect extrasolar oceans, atmospheric water aerosols, and water clouds. Additionally, the presence and direction of the polarization vector could be used to determine planet association with the star, and constrain orbit inclination.

  11. Observing Exoplanets with High-dispersion Coronagraphy. II. Demonstration of an Active Single-mode Fiber Injection Unit

    Energy Technology Data Exchange (ETDEWEB)

    Mawet, D.; Ruane, G.; Xuan, W.; Echeverri, D.; Klimovich, N.; Randolph, M.; Fucik, J.; Wang, J.; Dekany, R.; Delorme, J.-R. [Department of Astronomy, California Institute of Technology, 1200 East California Boulevard, MC 249-17, Pasadena, CA 91125 (United States); Wallace, J. K.; Vasisht, G.; Mennesson, B.; Choquet, E.; Serabyn, E., E-mail: dmawet@astro.caltech.edu [Jet Propulsion Laboratory, California Institute of Technology, 4800 Oak Grove Drive, Pasadena, CA 91109 (United States)

    2017-04-01

    High-dispersion coronagraphy (HDC) optimally combines high-contrast imaging techniques such as adaptive optics/wavefront control plus coronagraphy to high spectral resolution spectroscopy. HDC is a critical pathway toward fully characterizing exoplanet atmospheres across a broad range of masses from giant gaseous planets down to Earth-like planets. In addition to determining the molecular composition of exoplanet atmospheres, HDC also enables Doppler mapping of atmosphere inhomogeneities (temperature, clouds, wind), as well as precise measurements of exoplanet rotational velocities. Here, we demonstrate an innovative concept for injecting the directly imaged planet light into a single-mode fiber, linking a high-contrast adaptively corrected coronagraph to a high-resolution spectrograph (diffraction-limited or not). Our laboratory demonstration includes three key milestones: close-to-theoretical injection efficiency, accurate pointing and tracking, and on-fiber coherent modulation and speckle nulling of spurious starlight signal coupling into the fiber. Using the extreme modal selectivity of single-mode fibers, we also demonstrated speckle suppression gains that outperform conventional image-based speckle nulling by at least two orders of magnitude.

  12. PRE-SPECTROSCOPIC FALSE-POSITIVE ELIMINATION OF KEPLER PLANET CANDIDATES

    International Nuclear Information System (INIS)

    Batalha, Natalie M.; Rowe, Jason F.; Borucki, William J.; Koch, David G.; Lissauer, Jack J.; Gilliland, Ronald L.; Jenkins, Jon J.; Caldwell, Douglas; Dunham, Edward W.; Gautier, Thomas N.; Howell, Steve B.; Latham, David W.; Marcy, Geoff W.; Prsa, Andrej

    2010-01-01

    Ten days of commissioning data (Quarter 0) and 33 days of science data (Quarter 1) yield instrumental flux time series of ∼150,000 stars that were combed for transit events, termed threshold crossing events(TCE), each having a total detection statistic above 7.1σ. TCE light curves are modeled as star+planet systems. Those returning a companion radius smaller than 2R J are assigned a Kepler Object of Interest (KOI) number. The raw flux, pixel flux, and flux-weighted centroids of every KOI are scrutinized to assess the likelihood of being an astrophysical false positive versus the likelihood of being a planetary companion. This vetting using Kepler data is referred to as data validation (DV). Herein, we describe the DV metrics and graphics used to identify viable planet candidates amongst the KOIs. Light curve modeling tests for (1) the difference in depth of the odd- versus even-numbered transits, (2) evidence of ellipsoidal variations, and (3) evidence of a secondary eclipse event at phase = 0.5. Flux-weighted centroids are used to test for signals correlated with transit events with a magnitude and direction indicative of a background eclipsing binary. Centroid time series are complimented by analysis of images taken in-transit versus out-of-transit, the difference often revealing the pixel contributing the most to the flux change during transit. Examples are shown to illustrate each test. Candidates passing DV are submitted to ground-based observers for further false-positive elimination or confirmation/characterization.

  13. The metallicities of stars with and without transiting planets

    DEFF Research Database (Denmark)

    Buchhave, Lars A.; Latham, David W.

    2015-01-01

    Host star metallicities have been used to infer observational constraints on planet formation throughout the history of the exoplanet field. The giant planet metallicity correlation has now been widely accepted, but questions remain as to whether the metallicity correlation extends to the small...... terrestrial-sized planets. Here, we report metallicities for a sample of 518 stars in the Kepler field that have no detected transiting planets and compare their metallicity distribution to a sample of stars that hosts small planets (). Importantly, both samples have been analyzed in a homogeneous manner...... using the same set of tools (Stellar Parameters Classification tool). We find the average metallicity of the sample of stars without detected transiting planets to be and the sample of stars hosting small planets to be . The average metallicities of the two samples are indistinguishable within...

  14. Geometric effects on the flux and polarization signals of Jupiter-sized exoplanets

    NARCIS (Netherlands)

    Palmer (student TUDelft), Chris; Rossi, L.C.G.; Stam, D.M.

    2017-01-01

    The direct detection of reflected starlight from exoplanets marks the beginning of a new era in the characterization of extrasolar planetary atmospheres. The flux and in particular the linear polarization signals from such planets are sensitive to atmospheric structure and composition, but other

  15. An Earth-sized exoplanet with a Mercury-like composition

    Science.gov (United States)

    Santerne, A.; Brugger, B.; Armstrong, D. J.; Adibekyan, V.; Lillo-Box, J.; Gosselin, H.; Aguichine, A.; Almenara, J.-M.; Barrado, D.; Barros, S. C. C.; Bayliss, D.; Boisse, I.; Bonomo, A. S.; Bouchy, F.; Brown, D. J. A.; Deleuil, M.; Delgado Mena, E.; Demangeon, O.; Díaz, R. F.; Doyle, A.; Dumusque, X.; Faedi, F.; Faria, J. P.; Figueira, P.; Foxell, E.; Giles, H.; Hébrard, G.; Hojjatpanah, S.; Hobson, M.; Jackman, J.; King, G.; Kirk, J.; Lam, K. W. F.; Ligi, R.; Lovis, C.; Louden, T.; McCormac, J.; Mousis, O.; Neal, J. J.; Osborn, H. P.; Pepe, F.; Pollacco, D.; Santos, N. C.; Sousa, S. G.; Udry, S.; Vigan, A.

    2018-05-01

    Earth, Venus, Mars and some extrasolar terrestrial planets1 have a mass and radius that is consistent with a mass fraction of about 30% metallic core and 70% silicate mantle2. At the inner frontier of the Solar System, Mercury has a completely different composition, with a mass fraction of about 70% metallic core and 30% silicate mantle3. Several formation or evolution scenarios are proposed to explain this metal-rich composition, such as a giant impact4, mantle evaporation5 or the depletion of silicate at the inner edge of the protoplanetary disk6. These scenarios are still strongly debated. Here, we report the discovery of a multiple transiting planetary system (K2-229) in which the inner planet has a radius of 1.165 ± 0.066 Earth radii and a mass of 2.59 ± 0.43 Earth masses. This Earth-sized planet thus has a core-mass fraction that is compatible with that of Mercury, although it was expected to be similar to that of Earth based on host-star chemistry7. This larger Mercury analogue either formed with a very peculiar composition or has evolved, for example, by losing part of its mantle. Further characterization of Mercury-like exoplanets such as K2-229 b will help to put the detailed in situ observations of Mercury (with MESSENGER and BepiColombo8) into the global context of the formation and evolution of solar and extrasolar terrestrial planets.

  16. An Earth-sized exoplanet with a Mercury-like composition

    Science.gov (United States)

    Santerne, A.; Brugger, B.; Armstrong, D. J.; Adibekyan, V.; Lillo-Box, J.; Gosselin, H.; Aguichine, A.; Almenara, J.-M.; Barrado, D.; Barros, S. C. C.; Bayliss, D.; Boisse, I.; Bonomo, A. S.; Bouchy, F.; Brown, D. J. A.; Deleuil, M.; Delgado Mena, E.; Demangeon, O.; Díaz, R. F.; Doyle, A.; Dumusque, X.; Faedi, F.; Faria, J. P.; Figueira, P.; Foxell, E.; Giles, H.; Hébrard, G.; Hojjatpanah, S.; Hobson, M.; Jackman, J.; King, G.; Kirk, J.; Lam, K. W. F.; Ligi, R.; Lovis, C.; Louden, T.; McCormac, J.; Mousis, O.; Neal, J. J.; Osborn, H. P.; Pepe, F.; Pollacco, D.; Santos, N. C.; Sousa, S. G.; Udry, S.; Vigan, A.

    2018-03-01

    Earth, Venus, Mars and some extrasolar terrestrial planets1 have a mass and radius that is consistent with a mass fraction of about 30% metallic core and 70% silicate mantle2. At the inner frontier of the Solar System, Mercury has a completely different composition, with a mass fraction of about 70% metallic core and 30% silicate mantle3. Several formation or evolution scenarios are proposed to explain this metal-rich composition, such as a giant impact4, mantle evaporation5 or the depletion of silicate at the inner edge of the protoplanetary disk6. These scenarios are still strongly debated. Here, we report the discovery of a multiple transiting planetary system (K2-229) in which the inner planet has a radius of 1.165 ± 0.066 Earth radii and a mass of 2.59 ± 0.43 Earth masses. This Earth-sized planet thus has a core-mass fraction that is compatible with that of Mercury, although it was expected to be similar to that of Earth based on host-star chemistry7. This larger Mercury analogue either formed with a very peculiar composition or has evolved, for example, by losing part of its mantle. Further characterization of Mercury-like exoplanets such as K2-229 b will help to put the detailed in situ observations of Mercury (with MESSENGER and BepiColombo8) into the global context of the formation and evolution of solar and extrasolar terrestrial planets.

  17. Hazy Archean Earth as an Analog for Hazy Earthlike Exoplanets

    Science.gov (United States)

    Arney, Giada; Meadows, Victoria; Domagal-Goldman, Shawn; Claire, Mark; Schwieterman, Edward

    2015-01-01

    Hazy exoplanets may be common (Bean et al. 2010, Sing et al. 2011, Kreidberg et al 2014), and in our solar system, Venus and Titan have photochemically-produced hazes. There is evidence that Earth itself had a hydrocarbon haze in the Archean (Zerkle et al. 2012, Domagal-Goldman et al. 2008) with important climatic effects (Pavlov et al. 2001, Trainer et al. 2006, Haqq-Misra et al. 2008, Wolf and Toon 2012). We use a 1D coupled photochemical-climate model and a line-by-line radiative transfer model to investigate the climactic and spectral impacts of a fractal hydrocarbon haze on Archean Earth. The haze absorbs significantly at shorter wavelengths and can strongly suppress the Rayleigh scattering tail, a broadband effect that would be remotely detectable at low spectral resolution at wavelengths less than 0.5 μm. Hazes may have a more significant impact on transit transmission spectra. Using the transit transmission radiative transfer model developed by Misra et al. (2014) to generate hazy Archean spectra, we find that even a thin hydrocarbon haze masks the lower atmosphere from the visible into the near infrared where the haze optical depth exceeds unity. The transit transmission spectra we generate for hazy Archean Earth are steeply sloped like the Titan solar occultation spectrum observed by Robinson et al. (2014). Thick hazes can also cool the planet significantly: for example, the thick fractal haze generated around Archean Earth with 0.3% CH4, 1% CO2 and 1 ppm C2H6 cools the planet from roughly 290 K without the haze to below freezing with the haze. Finally, we investigate the impact of host star spectral type on haze formation, comparing the hazes generated around a solar-type star to those generated at an Earth analog planet around the M dwarf AD Leo. Our results indicate hazes around M dwarfs for the same initial atmospheric composition may be thinner due to decreased UV photolysis of methane and other hydrocarbons needed for haze formation. Earthlike

  18. Space missions to the exoplanets: Will they ever be possible

    Science.gov (United States)

    Genta, Giancarlo

    There is no doubt that the discovery of exoplanets has made interstellar space mission much more interesting than they were in the past. The possible discovery of a terrestrial type plane at a reasonable distance will give a strong impulse in this direction. However, there are doubts that such long range space mission will ever become feasible at all and, in case they will be, it is impossible to forecast a timeframe for them. At present, precursor interstellar missions are planned, but they fall way short from yielding interesting information about exoplanets, except perhaps in the case of missions to the focal line of the Sun’s gravitational lens, whose usefulness in this context is still to be demonstrated. They are anyway an essential step in the roadmap toward interstellar missions. Often the difficulties linked with interstellar missions are considered as related with the huge quantity of energy required for reaching the target star system within a reasonable timeframe. While this may well be a showstopper, it is not the only problem to be solved to make them possible. Two other issues are those linked with the probe’s autonomy and the telecommunications required to transmit large quantities of information at those distances. Missions to the exoplanets may be subdivided in the following categories: 1) robotic missions to the destination system, including flybys; 2) robotic missions including landing on an exoplanet; 3) robotic sample return missions; 4) human missions. The main problem to be solved for missions of type 1 is linked with propulsion and with energy availability, while autonomy (artificial intelligence) and telecommunication problems are more or less manageable with predictable technologies. Missions of type 2 are more demanding for what propulsion is concerned, but above all require a much larger artificial intelligence and also will generate a large amount of data, whose transmission back to Earth may become a problem. The suggestion of

  19. SETI OBSERVATIONS OF EXOPLANETS WITH THE ALLEN TELESCOPE ARRAY

    Energy Technology Data Exchange (ETDEWEB)

    Harp, G. R.; Richards, Jon; Tarter, Jill C.; Dreher, John; Jordan, Jane; Shostak, Seth; Smolek, Ken; Kilsdonk, Tom; Wilcox, Bethany R.; Wimberly, M. K. R.; Ross, John; Barott, W. C.; Ackermann, R. F.; Blair, Samantha [SETI Institute, Mountain View, CA 94043 (United States)

    2016-12-01

    We report radio SETI observations on a large number of known exoplanets and other nearby star systems using the Allen Telescope Array (ATA). Observations were made over about 19000 hr from 2009 May to 2015 December. This search focused on narrowband radio signals from a set totaling 9293 stars, including 2015 exoplanet stars and Kepler objects of interest and an additional 65 whose planets may be close to their habitable zones. The ATA observations were made using multiple synthesized beams and an anticoincidence filter to help identify terrestrial radio interference. Stars were observed over frequencies from 1 to 9 GHz in multiple bands that avoid strong terrestrial communication frequencies. Data were processed in near-real time for narrowband (0.7–100 Hz) continuous and pulsed signals with transmitter/receiver relative accelerations from −0.3 to 0.3 m s{sup −2}. A total of 1.9 × 10{sup 8} unique signals requiring immediate follow-up were detected in observations covering more than 8 × 10{sup 6} star-MHz. We detected no persistent signals from extraterrestrial technology exceeding our frequency-dependent sensitivity threshold of 180–310 × 10{sup −26} W m{sup −2}.

  20. Interactions between exoplanets and the winds of young stars

    Directory of Open Access Journals (Sweden)

    Vidotto A. A.

    2014-01-01

    Full Text Available The topology of the magnetic field of young stars is important not only for the investigation of magnetospheric accretion, but also responsible in shaping the large-scale structure of stellar winds, which are crucial for regulating the rotation evolution of stars. Because winds of young stars are believed to have enhanced mass-loss rates compared to those of cool, main-sequence stars, the interaction of winds with newborn exoplanets might affect the early evolution of planetary systems. This interaction can also give rise to observational signatures which could be used as a way to detect young planets, while simultaneously probing for the presence of their still elusive magnetic fields. Here, we investigate the interaction between winds of young stars and hypothetical planets. For that, we model the stellar winds by means of 3D numerical magnetohydrodynamic simulations. Although these models adopt simplified topologies of the stellar magnetic field (dipolar fields that are misaligned with the rotation axis of the star, we show that asymmetric field topologies can lead to an enhancement of the stellar wind power, resulting not only in an enhancement of angular momentum losses, but also intensifying and rotationally modulating the wind interactions with exoplanets.

  1. PyTranSpot: A tool for multiband light curve modeling of planetary transits and stellar spots

    Science.gov (United States)

    Juvan, Ines G.; Lendl, M.; Cubillos, P. E.; Fossati, L.; Tregloan-Reed, J.; Lammer, H.; Guenther, E. W.; Hanslmeier, A.

    2018-02-01

    Several studies have shown that stellar activity features, such as occulted and non-occulted starspots, can affect the measurement of transit parameters biasing studies of transit timing variations and transmission spectra. We present PyTranSpot, which we designed to model multiband transit light curves showing starspot anomalies, inferring both transit and spot parameters. The code follows a pixellation approach to model the star with its corresponding limb darkening, spots, and transiting planet on a two dimensional Cartesian coordinate grid. We combine PyTranSpot with a Markov chain Monte Carlo framework to study and derive exoplanet transmission spectra, which provides statistically robust values for the physical properties and uncertainties of a transiting star-planet system. We validate PyTranSpot's performance by analyzing eleven synthetic light curves of four different star-planet systems and 20 transit light curves of the well-studied WASP-41b system. We also investigate the impact of starspots on transit parameters and derive wavelength dependent transit depth values for WASP-41b covering a range of 6200-9200 Å, indicating a flat transmission spectrum.

  2. Detecting Exoplanets with the New Worlds Observer: The Problem of Exozodiacal Dust

    Science.gov (United States)

    Roberge, A.; Noecker, M. C.; Glassman, T. M.; Oakley, P.; Turnbull, M. C.

    2009-01-01

    Dust coming from asteroids and comets will strongly affect direct imaging and characterization of terrestrial planets in the Habitable Zones of nearby stars. Such dust in the Solar System is called the zodiacal dust (or 'zodi' for short). Higher levels of similar dust are seen around many nearby stars, confined in disks called debris disks. Future high-contrast images of an Earth-like exoplanet will very likely be background-limited by light scattered of both the local Solar System zodi and the circumstellar dust in the extrasolar system (the exozodiacal dust). Clumps in the exozodiacal dust, which are expected in planet-hosting systems, may also be a source of confusion. Here we discuss the problems associated with imaging an Earth-like planet in the presence of unknown levels of exozodiacal dust. Basic formulae for the exoplanet imaging exposure time as function of star, exoplanet, zodi, exozodi, and telescope parameters will be presented. To examine the behavior of these formulae, we apply them to the New Worlds Observer (NWO) mission. NWO is a proposed 4-meter UV/optical/near-IR telescope, with a free flying starshade to suppress the light from a nearby star and achieve the high contrast needed for detection and characterization of a terrestrial planet in the star's Habitable Zone. We find that NWO can accomplish its science goals even if exozodiacal dust levels are typically much higher than the Solar System zodi level. Finally, we highlight a few additional problems relating to exozodiacal dust that have yet to be solved.

  3. Characteristics of Planetary Candidates Observed by Kepler. II. Analysis of the First Four Months of Data

    Science.gov (United States)

    Borucki, William J.; Koch, David G.; Basri, Gibor; Batalha, Natalie; Brown, Timothy M.; Bryson, Stephen T.; Caldwell, Douglas; Christensen-Dalsgaard, Jørgen; Cochran, William D.; DeVore, Edna; Dunham, Edward W.; Gautier, Thomas N., III; Geary, John C.; Gilliland, Ronald; Gould, Alan; Howell, Steve B.; Jenkins, Jon M.; Latham, David W.; Lissauer, Jack J.; Marcy, Geoffrey W.; Rowe, Jason; Sasselov, Dimitar; Boss, Alan; Charbonneau, David; Ciardi, David; Doyle, Laurance; Dupree, Andrea K.; Ford, Eric B.; Fortney, Jonathan; Holman, Matthew J.; Seager, Sara; Steffen, Jason H.; Tarter, Jill; Welsh, William F.; Allen, Christopher; Buchhave, Lars A.; Christiansen, Jessie L.; Clarke, Bruce D.; Das, Santanu; Désert, Jean-Michel; Endl, Michael; Fabrycky, Daniel; Fressin, Francois; Haas, Michael; Horch, Elliott; Howard, Andrew; Isaacson, Howard; Kjeldsen, Hans; Kolodziejczak, Jeffery; Kulesa, Craig; Li, Jie; Lucas, Philip W.; Machalek, Pavel; McCarthy, Donald; MacQueen, Phillip; Meibom, Søren; Miquel, Thibaut; Prsa, Andrej; Quinn, Samuel N.; Quintana, Elisa V.; Ragozzine, Darin; Sherry, William; Shporer, Avi; Tenenbaum, Peter; Torres, Guillermo; Twicken, Joseph D.; Van Cleve, Jeffrey; Walkowicz, Lucianne; Witteborn, Fred C.; Still, Martin

    2011-07-01

    On 2011 February 1 the Kepler mission released data for 156,453 stars observed from the beginning of the science observations on 2009 May 2 through September 16. There are 1235 planetary candidates with transit-like signatures detected in this period. These are associated with 997 host stars. Distributions of the characteristics of the planetary candidates are separated into five class sizes: 68 candidates of approximately Earth-size (R p R ⊕), 288 super-Earth-size (1.25 R ⊕ R p R ⊕), 662 Neptune-size (2 R ⊕ R p R ⊕), 165 Jupiter-size (6 R ⊕ R p R ⊕), and 19 up to twice the size of Jupiter (15 R ⊕ R p R ⊕). In the temperature range appropriate for the habitable zone, 54 candidates are found with sizes ranging from Earth-size to larger than that of Jupiter. Six are less than twice the size of the Earth. Over 74% of the planetary candidates are smaller than Neptune. The observed number versus size distribution of planetary candidates increases to a peak at two to three times the Earth-size and then declines inversely proportional to the area of the candidate. Our current best estimates of the intrinsic frequencies of planetary candidates, after correcting for geometric and sensitivity biases, are 5% for Earth-size candidates, 8% for super-Earth-size candidates, 18% for Neptune-size candidates, 2% for Jupiter-size candidates, and 0.1% for very large candidates; a total of 0.34 candidates per star. Multi-candidate, transiting systems are frequent; 17% of the host stars have multi-candidate systems, and 34% of all the candidates are part of multi-candidate systems.

  4. CHARACTERISTICS OF PLANETARY CANDIDATES OBSERVED BY KEPLER. II. ANALYSIS OF THE FIRST FOUR MONTHS OF DATA

    International Nuclear Information System (INIS)

    Borucki, William J.; Koch, David G.; Bryson, Stephen T.; Lissauer, Jack J.; Basri, Gibor; Marcy, Geoffrey W.; Batalha, Natalie; Brown, Timothy M.; Caldwell, Douglas; DeVore, Edna; Jenkins, Jon M.; Christensen-Dalsgaard, Joergen; Cochran, William D.; Dunham, Edward W.; Gautier, Thomas N.; Geary, John C.; Latham, David W.; Gilliland, Ronald; Gould, Alan; Howell, Steve B.

    2011-01-01

    On 2011 February 1 the Kepler mission released data for 156,453 stars observed from the beginning of the science observations on 2009 May 2 through September 16. There are 1235 planetary candidates with transit-like signatures detected in this period. These are associated with 997 host stars. Distributions of the characteristics of the planetary candidates are separated into five class sizes: 68 candidates of approximately Earth-size (R p + ), 288 super-Earth-size (1.25 R + ≤ R p + ), 662 Neptune-size (2 R + ≤ R p + ), 165 Jupiter-size (6 R + ≤ R p + ), and 19 up to twice the size of Jupiter (15 R + ≤ R p + ). In the temperature range appropriate for the habitable zone, 54 candidates are found with sizes ranging from Earth-size to larger than that of Jupiter. Six are less than twice the size of the Earth. Over 74% of the planetary candidates are smaller than Neptune. The observed number versus size distribution of planetary candidates increases to a peak at two to three times the Earth-size and then declines inversely proportional to the area of the candidate. Our current best estimates of the intrinsic frequencies of planetary candidates, after correcting for geometric and sensitivity biases, are 5% for Earth-size candidates, 8% for super-Earth-size candidates, 18% for Neptune-size candidates, 2% for Jupiter-size candidates, and 0.1% for very large candidates; a total of 0.34 candidates per star. Multi-candidate, transiting systems are frequent; 17% of the host stars have multi-candidate systems, and 34% of all the candidates are part of multi-candidate systems.

  5. Discovery of a transiting planet near the snow-line

    International Nuclear Information System (INIS)

    Kipping, D. M.; Torres, G.; Buchhave, L. A.; Kenyon, S. J.; Henze, C.; Bryson, S. T.; Isaacson, H.; Kolbl, R.; Marcy, G. W.; Stassun, K.; Bastien, F.

    2014-01-01

    In most theories of planet formation, the snow-line represents a boundary between the emergence of the interior rocky planets and the exterior ice giants. The wide separation of the snow-line makes the discovery of transiting worlds challenging, yet transits would allow for detailed subsequent characterization. We present the discovery of Kepler-421b, a Uranus-sized exoplanet transiting a G9/K0 dwarf once every 704.2 days in a near-circular orbit. Using public Kepler photometry, we demonstrate that the two observed transits can be uniquely attributed to the 704.2 day period. Detailed light curve analysis with BLENDER validates the planetary nature of Kepler-421b to >4σ confidence. Kepler-421b receives the same insolation as a body at ∼2 AU in the solar system, as well as a Uranian albedo, which would have an effective temperature of ∼180 K. Using a time-dependent model for the protoplanetary disk, we estimate that Kepler-421b's present semi-major axis was beyond the snow-line after ∼3 Myr, indicating that Kepler-421b may have formed at its observed location.

  6. Discovery of a transiting planet near the snow-line

    Energy Technology Data Exchange (ETDEWEB)

    Kipping, D. M.; Torres, G.; Buchhave, L. A.; Kenyon, S. J. [Harvard-Smithsonian Center for Astrophysics, Cambridge, MA 02138 (United States); Henze, C.; Bryson, S. T. [NASA Ames Research Center, Moffett Field, CA 94035 (United States); Isaacson, H.; Kolbl, R.; Marcy, G. W. [University of California, Berkeley, CA 94720 (United States); Stassun, K. [Department of Physics and Astronomy, Vanderbilt University, 1807 Station B, Nashville, TN 37235 (United States); Bastien, F., E-mail: dkipping@cfa.harvard.edu [Physics Department, Fisk University, 1000 17th Ave. N, Nashville, TN 37208 (United States)

    2014-11-01

    In most theories of planet formation, the snow-line represents a boundary between the emergence of the interior rocky planets and the exterior ice giants. The wide separation of the snow-line makes the discovery of transiting worlds challenging, yet transits would allow for detailed subsequent characterization. We present the discovery of Kepler-421b, a Uranus-sized exoplanet transiting a G9/K0 dwarf once every 704.2 days in a near-circular orbit. Using public Kepler photometry, we demonstrate that the two observed transits can be uniquely attributed to the 704.2 day period. Detailed light curve analysis with BLENDER validates the planetary nature of Kepler-421b to >4σ confidence. Kepler-421b receives the same insolation as a body at ∼2 AU in the solar system, as well as a Uranian albedo, which would have an effective temperature of ∼180 K. Using a time-dependent model for the protoplanetary disk, we estimate that Kepler-421b's present semi-major axis was beyond the snow-line after ∼3 Myr, indicating that Kepler-421b may have formed at its observed location.

  7. Science Parametrics for Missions to Search for Earth-like Exoplanets by Direct Imaging

    Science.gov (United States)

    Brown, Robert A.

    2015-01-01

    We use Nt , the number of exoplanets observed in time t, as a science metric to study direct-search missions like Terrestrial Planet Finder. In our model, N has 27 parameters, divided into three categories: 2 astronomical, 7 instrumental, and 18 science-operational. For various "27-vectors" of those parameters chosen to explore parameter space, we compute design reference missions to estimate Nt . Our treatment includes the recovery of completeness c after a search observation, for revisits, solar and antisolar avoidance, observational overhead, and follow-on spectroscopy. Our baseline 27-vector has aperture D = 16 m, inner working angle IWA = 0.039'', mission time t = 0-5 yr, occurrence probability for Earth-like exoplanets η = 0.2, and typical values for the remaining 23 parameters. For the baseline case, a typical five-year design reference mission has an input catalog of ~4700 stars with nonzero completeness, ~1300 unique stars observed in ~2600 observations, of which ~1300 are revisits, and it produces N 1 ~ 50 exoplanets after one year and N 5 ~ 130 after five years. We explore offsets from the baseline for 10 parameters. We find that N depends strongly on IWA and only weakly on D. It also depends only weakly on zodiacal light for Z end-to-end efficiency for h > 0.2, and scattered starlight for ζ revisits, solar and antisolar avoidance, and follow-on spectroscopy are all important factors in estimating N.

  8. Visible nulling coronagraphy testbed development for exoplanet detection

    Science.gov (United States)

    Lyon, Richard G.; Clampin, Mark; Woodruff, Robert A.; Vasudevan, Gopal; Thompson, Patrick; Chen, Andrew; Petrone, Peter; Booth, Andrew; Madison, Timothy; Bolcar, Matthew; Noecker, M. Charley; Kendrick, Stephen; Melnick, Gary; Tolls, Volker

    2010-07-01

    Three of the recently completed NASA Astrophysics Strategic Mission Concept (ASMC) studies addressed the feasibility of using a Visible Nulling Coronagraph (VNC) as the prime instrument for exoplanet science. The VNC approach is one of the few approaches that works with filled, segmented and sparse or diluted aperture telescope systems and thus spans the space of potential ASMC exoplanet missions. NASA/Goddard Space Flight Center (GSFC) has a well-established effort to develop VNC technologies and has developed an incremental sequence of VNC testbeds to advance the this approach and the technologies associated with it. Herein we report on the continued development of the vacuum Visible Nulling Coronagraph testbed (VNT). The VNT is an ultra-stable vibration isolated testbed that operates under high bandwidth closed-loop control within a vacuum chamber. It will be used to achieve an incremental sequence of three visible light nulling milestones of sequentially higher contrasts of 108, 109 and 1010 at an inner working angle of 2*λ/D and ultimately culminate in spectrally broadband (>20%) high contrast imaging. Each of the milestones, one per year, is traceable to one or more of the ASMC studies. The VNT uses a modified Mach-Zehnder nulling interferometer, modified with a modified "W" configuration to accommodate a hex-packed MEMS based deformable mirror, a coherent fiber bundle and achromatic phase shifters. Discussed will be the optical configuration laboratory results, critical technologies and the null sensing and control approach.

  9. Orbital Dynamics and Habitability of Exoplanets

    Science.gov (United States)

    Deitrick, Russell J.

    With the discoveries of thousands of extra-solar planets, a handful of which are terrestrial in size and located within the "habitable zone" of their host stars, the discovery of another instance of life in the universe seems increasingly within our grasp. Yet, a number of difficulties remain--with current and developing technologies, the full characterization of a terrestrial atmosphere and, hence, the detection of biosignatures will be extraordinarily difficult and expensive. Furthermore, observations will be ambiguous, as recent developments have shown that there is no "smoking gun" for the presence of life. Ultimately, the interpretation of observations will depend heavily upon our understanding of life's fundamental properties and the physical context of a planet's observed properties. This thesis is devoted to a development of the latter quantity, physical context, focusing on a topic oft-neglected in theoretical works of habitability: orbital dynamics. I show a number of ways in which orbital dynamics can affect the habitability of exoplanets. This work highlights the crucial role of stability, mutual inclinations, and resonances, demonstrating how these properties influence atmospheric states. Studies of exoplanetary systems tend to assume that the planets are coplanar, however, the large mutual inclination of the planets orbiting upsilon Andromedae suggests that coplanarity is not always a valid assumption. In my study of this system, I show that the large inclination between planets c and d and their large eccentricities lead to dramatic orbital variations. Though there is almost certainly no habitable planet orbiting upsilon And, the existence of this system demonstrates that we should expect other such dynamically "hot" planetary systems, some of which may contain potentially habitable planets. Minute variations in a planet's orbit can lead to changes in the global temperature, and indeed, these variations seem to be intimately connected to Earth

  10. Searching for transits in the WTS with the difference imaging light curves

    Science.gov (United States)

    Zendejas Dominguez, Jesus

    2013-12-01

    The search for exo-planets is currently one of the most exiting and active topics in astronomy. Small and rocky planets are particularly the subject of intense research, since if they are suitably located from their host star, they may be warm and potentially habitable worlds. On the other hand, the discovery of giant planets in short-period orbits provides important constraints on models that describe planet formation and orbital migration theories. Several projects are dedicated to discover and characterize planets outside of our solar system. Among them, the Wide-Field Camera Transit Survey (WTS) is a pioneer program aimed to search for extra-solar planets, that stands out for its particular aims and methodology. The WTS has been in operation since August 2007 with observations from the United Kingdom Infrared Telescope, and represents the first survey that searches for transiting planets in the near-infrared wavelengths; hence the WTS is designed to discover planets around M-dwarfs. The survey was originally assigned about 200 nights, observing four fields that were selected seasonally (RA = 03, 07, 17 and 19h) during a year. The images from the survey are processed by a data reduction pipeline, which uses aperture photometry to construct the light curves. For the most complete field (19h-1145 epochs) in the survey, we produce an alternative set of light curves by using the method of difference imaging, which is a photometric technique that has shown important advantages when used in crowded fields. A quantitative comparison between the photometric precision achieved with both methods is carried out in this work. We remove systematic effects using the sysrem algorithm, scale the error bars on the light curves, and perform a comparison of the corrected light curves. The results show that the aperture photometry light curves provide slightly better precision for objects with J detect transits in the WTS light curves, we use a modified version of the box

  11. COLORS OF A SECOND EARTH: ESTIMATING THE FRACTIONAL AREAS OF OCEAN, LAND, AND VEGETATION OF EARTH-LIKE EXOPLANETS

    International Nuclear Information System (INIS)

    Fujii, Yuka; Kawahara, Hajime; Suto, Yasushi; Taruya, Atsushi; Fukuda, Satoru; Nakajima, Teruyuki; Turner, Edwin L.

    2010-01-01

    Characterizing the surfaces of rocky exoplanets via their scattered light will be an essential challenge in investigating their habitability and the possible existence of life on their surfaces. We present a reconstruction method for fractional areas of different surface types from the colors of an Earth-like exoplanet. We create mock light curves for Earth without clouds using empirical data. These light curves are fitted to an isotropic scattering model consisting of four surface types: ocean, soil, snow, and vegetation. In an idealized situation where the photometric errors are only photon shot noise, we are able to reproduce the fractional areas of those components fairly well. The results offer some hope for detection of vegetation via the distinct spectral feature of photosynthesis on Earth, known as the red edge. In our reconstruction method, Rayleigh scattering due to the atmosphere plays an important role, and for terrestrial exoplanets with an atmosphere similar to our Earth, it is possible to estimate the presence of oceans and an atmosphere simultaneously.

  12. Post-processing of high-contrast observations of exoplanets

    Directory of Open Access Journals (Sweden)

    Gladysz S.

    2011-07-01

    Full Text Available Post-processing of images delivered by the eXtreme Adaptive Optics (XAO instrumentation is a crucial step which can increase achievable contrast even by two orders of magnitude. In this communication I present a new class of algorithms for detection of extrasolar planets from a sequence of adaptive-optics-corrected images. In general, the methods discriminate between real sources and stellar PSF features based on statistics of recorded intensity. The methods are particularly useful in dealing with static speckles which are the greatest obstacle in detecting exoplanets.

  13. SEMI-EMPIRICAL MODELING OF THE PHOTOSPHERE, CHROMOPSHERE, TRANSITION REGION, AND CORONA OF THE M-DWARF HOST STAR GJ 832

    Energy Technology Data Exchange (ETDEWEB)

    Fontenla, J. M. [NorthWest Research Associates, Boulder, CO 80301 (United States); Linsky, Jeffrey L. [JILA, University of Colorado and NIST, Boulder, CO 80309-0440 (United States); Witbrod, Jesse [University of Colorado Boulder, CO 80309 (United States); France, Kevin [LASP, University of Colorado Boulder, CO 80309-0600 (United States); Buccino, A.; Mauas, Pablo; Vieytes, Mariela [Instituto de Astronomía y Física del Espacio (CONICET-UBA), C.C. 67, Sucursal 28, C1428EHA, Buenos Aires (Argentina); Walkowicz, Lucianne M., E-mail: johnf@digidyna.com, E-mail: jlinsky@jila.colorado.edu, E-mail: jesse.witbrod@colorado.edu, E-mail: kevin.france@lasp.colorado.edu, E-mail: abuccino@iafe.uba.ar, E-mail: pablo@iafe.uba.ar, E-mail: mariela@iafe.uba.ar, E-mail: LWalkowicz@adlerplanetarium.org [The Adler Planetarium, Chicago, IL 60605 (United States)

    2016-10-20

    Stellar radiation from X-rays to the visible provides the energy that controls the photochemistry and mass loss from exoplanet atmospheres. The important extreme ultraviolet (EUV) region (10–91.2 nm) is inaccessible and should be computed from a reliable stellar model. It is essential to understand the formation regions and physical processes responsible for the various stellar emission features to predict how the spectral energy distribution varies with age and activity levels. We compute a state-of-the-art semi-empirical atmospheric model and the emergent high-resolution synthetic spectrum of the moderately active M2 V star GJ 832 as the first of a series of models for stars with different activity levels. We construct a one-dimensional simple model for the physical structure of the star’s chromosphere, chromosphere-corona transition region, and corona using non-LTE radiative transfer techniques and many molecular lines. The synthesized spectrum for this model fits the continuum and lines across the UV-to-optical spectrum. Particular emphasis is given to the emission lines at wavelengths that are shorter than 300 nm observed with the Hubble Space Telescope , which have important effects on the photochemistry of the exoplanet atmospheres. The FUV line ratios indicate that the transition region of GJ 832 is more biased to hotter material than that of the quiet Sun. The excellent agreement of our computed EUV luminosity with that obtained by two other techniques indicates that our model predicts reliable EUV emission from GJ 832. We find that the unobserved EUV flux of GJ 832, which heats the outer atmospheres of exoplanets and drives their mass loss, is comparable to the active Sun.

  14. Investigating nearby exoplanets via interstellar radar

    Science.gov (United States)

    Scheffer, Louis K.

    2014-01-01

    Interstellar radar is a potential intermediate step between passive observation of exoplanets and interstellar exploratory missions. Compared with passive observation, it has the traditional advantages of radar astronomy. It can measure surface characteristics, determine spin rates and axes, provide extremely accurate ranges, construct maps of planets, distinguish liquid from solid surfaces, find rings and moons, and penetrate clouds. It can do this even for planets close to the parent star. Compared with interstellar travel or probes, it also offers significant advantages. The technology required to build such a radar already exists, radar can return results within a human lifetime, and a single facility can investigate thousands of planetary systems. The cost, although too high for current implementation, is within the reach of Earth's economy.

  15. A CENSUS OF ROTATION AND VARIABILITY IN L1495: A UNIFORM ANALYSIS OF TRANS-ATLANTIC EXOPLANET SURVEY LIGHT CURVES FOR PRE-MAIN-SEQUENCE STARS IN TAURUS

    International Nuclear Information System (INIS)

    Xiao Hongyu; Covey, Kevin R.; Lloyd, James P.; Rebull, Luisa; Charbonneau, David; Mandushev, Georgi; O'Donovan, Francis; Slesnick, Catherine

    2012-01-01

    We analyze light curves obtained by the Trans-atlantic Exoplanet Survey (TrES) for a field centered on the L1495 dark cloud in Taurus. The Spitzer Taurus Legacy Survey catalog identifies 179 bona fide Taurus members within the TrES field; 48 of the known Taurus members are detected by TrES, as well as 26 candidate members identified by the Spitzer Legacy team. We quantify the variability of each star in our sample using the ratio of the standard deviation of the original light curve (σ orig. ) to the standard deviation of a light curve that has been smoothed by 9 or 1001 epochs (σ 9 and σ 1001 , respectively). Known Taurus members typically demonstrate (σ orig. /σ 9 ) orig. /σ 1001 ) orig. /σ 9 ) ∼ 3.0 and (σ orig. /σ 1001 ) ∼ 10, as expected for light curves dominated by unstructured white noise. Of the 74 Taurus members/candidates with TrES light curves, we detect significant variability in 49 sources. Adapting a quantitative metric originally developed to assess the reliability of transit detections, we measure the amount of red and white noise in each light curve and identify 18 known or candidate Taurus members with highly significant period measurements. These appear to be the first periods measured for four of these sources (HD 282276, CX Tau, FP Tau, TrES J042423+265008), and in two other cases, the first non-aliased periods (LkCa 21 and DK Tau AB). For the remainder, the TrES measurements typically agree very well (δP < 1%) with previously reported values. Including periods measured at lower confidence for 15 additional sources, we report periods for 11 objects where no previous periods were found, including 8 confirmed Taurus members. We also identify 10 of the 26 candidate Taurus members that demonstrate variability levels consistent with being bona fide T Tauri stars. A Kolomgorov-Smirnov (K-S) test confirms that these new periods confirm the distinction between the rotation period distributions of stars with and without circumstellar

  16. Fully determined scaling laws for volumetrically heated convective systems, a tool for assessing habitability of exoplanets

    Science.gov (United States)

    Vilella, Kenny; Kaminski, Edouard

    2017-05-01

    The long-term habitability of a planet rises from its ability to generate and maintain an atmosphere through partial melting and volcanism. This question has been mainly addressed in the framework of plate tectonics, which may be too specific to apply to the wide range of internal dynamics expected for exoplanets, and even to the thermal evolution of the early Earth. Here we propose a more general theoretical approach of convection to build a regime diagram giving the conditions for partial melting to occur, in planetary bodies, as a function of key parameters that can be estimated for exoplanets, their size and internal heating rate. To that aim, we introduce a refined view of the Thermal Boundary Layer (TBL) in a convective system heated from within, that focuses on the temperature and thickness of the TBL at the top of the hottest temperature profiles, along which partial melting shall first occur. This ;Hottest Thermal Boundary Layer; (HotTBL) is first characterized using fully theoretical scaling laws based on the dynamics of thermal boundary layers. These laws are the first ones proposed in the literature that do not rely on empirical determinations of dimensionless constants and that apply to both low Rayleigh and high Rayleigh convective regimes. We show that the scaling laws can be successfully applied to planetary bodies by comparing their predictions to full numerical simulations of the Moon. We then use the scaling laws to build a regime diagram for exoplanets. Combined with estimates of internal heating in exoplanets, the regime diagram predicts that in the habitable zone partial melting occurs in planets younger than the Earth.

  17. APOSTLE: LONGTERM TRANSIT MONITORING AND STABILITY ANALYSIS OF XO-2b

    Energy Technology Data Exchange (ETDEWEB)

    Kundurthy, P.; Barnes, R.; Becker, A. C.; Agol, E.; Williams, B. F.; Rose, A. [Astronomy Department, University of Washington, Seattle, WA 98195 (United States); Gorelick, N. [Google Inc., Mountain View, CA 94043 (United States)

    2013-06-10

    The Apache Point Survey of Transit Lightcurves of Exoplanets (APOSTLE) observed 10 transits of XO-2b over a period of 3 yr. We present measurements that confirm previous estimates of system parameters like the normalized semi-major axis (a/R{sub *}), stellar density ({rho}{sub *}), impact parameter (b), and orbital inclination (i{sub orb}). Our errors on system parameters like a/R{sub *} and {rho}{sub *} have improved by {approx}40% compared to previous best ground-based measurements. Our study of the transit times show no evidence for transit timing variations (TTVs) and we are able to rule out co-planar companions with masses {>=}0.20 M{sub Circled-Plus} in low order mean motion resonance with XO-2b. We also explored the stability of the XO-2 system given various orbital configurations of a hypothetical planet near the 2:1 mean motion resonance. We find that a wide range of orbits (including Earth-mass perturbers) are both dynamically stable and produce observable TTVs. We find that up to 51% of our stable simulations show TTVs that are smaller than the typical transit timing errors ({approx}20 s) measured for XO-2b, and hence remain undetectable.

  18. THEY MIGHT BE GIANTS: LUMINOSITY CLASS, PLANET OCCURRENCE, AND PLANET-METALLICITY RELATION OF THE COOLEST KEPLER TARGET STARS

    Energy Technology Data Exchange (ETDEWEB)

    Mann, Andrew W.; Hilton, Eric J. [Institute for Astronomy, University of Hawaii, Honolulu, HI 96822 (United States); Gaidos, Eric [Department of Geology and Geophysics, University of Hawaii, Honolulu, HI 96822 (United States); Lepine, Sebastien, E-mail: amann@ifa.hawaii.edu [Department of Astrophysics, American Museum of Natural History, New York, NY 10024 (United States)

    2012-07-01

    We estimate the stellar parameters of late K- and early M-type Kepler target stars. We obtain medium-resolution visible spectra of 382 stars with K{sub P} - J > 2 ({approx_equal}K5 and later spectral type). We determine luminosity class by comparing the strength of gravity-sensitive indices (CaH, K I, Ca II, and Na I) to their strength in a sample of stars of known luminosity class. We find that giants constitute 96% {+-} 1% of the bright (K{sub P} < 14) Kepler target stars, and 7% {+-} 3% of dim (K{sub P} > 14) stars, significantly higher than fractions based on the stellar parameters quoted in the Kepler Input Catalog (KIC). The KIC effective temperatures are systematically (110{sup +15}{sub -35} K) higher than temperatures we determine from fitting our spectra to PHOENIX stellar models. Through Monte Carlo simulations of the Kepler exoplanet candidate population, we find a planet occurrence of 0.36 {+-} 0.08 when giant stars are properly removed, somewhat higher than when a KIC log g > 4 criterion is used (0.27 {+-} 0.05). Last, we show that there is no significant difference in g - r color (a probe of metallicity) between late-type Kepler stars with transiting Earth-to-Neptune-size exoplanet candidates and dwarf stars with no detected transits. We show that a previous claimed offset between these two populations is most likely an artifact of including a large number of misidentified giants.

  19. CHARACTERIZING THE COOL KOIs. VI. H- AND K-BAND SPECTRA OF KEPLER M DWARF PLANET-CANDIDATE HOSTS

    Energy Technology Data Exchange (ETDEWEB)

    Muirhead, Philip S. [Department of Astronomy, Boston University, 725 Commonwealth Avenue, Boston, MA 02215 (United States); Becker, Juliette; Price, Ellen M.; Thorp, Rachel; Riddle, Reed [California Institute of Technology, 1200 East California Boulevard, Pasadena, CA 91125 (United States); Feiden, Gregory A. [Department of Physics and Astronomy, Uppsala University, Box 516, SE-75120 Uppsala (Sweden); Rojas-Ayala, Bárbara [Centro de Astrofísica da Universidade do Porto, Rua das Estrelas, 4150-762 Oporto (Portugal); Vanderburg, Andrew; Johnson, John Asher [Harvard College Observatory, 60 Garden Street, Cambridge, MA 02138 (United States); Law, Nicholas M. [Department of Physics and Astronomy, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599-3255 (United States); Baranec, Christoph [Institute for Astronomy, University of Hawai' i at Mānoa, Hilo, HI 96720-2700 (United States); Hamren, Katherine [Department of Astronomy and Astrophysics, University of California, Santa Cruz, CA 95064 (United States); Schlawin, Everett; Lloyd, James P. [Department of Astronomy, Cornell University, Ithaca, NY 14583 (United States); Covey, Kevin R., E-mail: philipm@bu.edu [Lowell Observatory, 1400 W Mars Hill Road, Flagstaff, AZ 86001 (United States)

    2014-07-01

    We present H- and K-band spectra for late-type Kepler Objects of Interest (the {sup C}ool KOIs{sup )}: low-mass stars with transiting-planet candidates discovered by NASA's Kepler Mission that are listed on the NASA Exoplanet Archive. We acquired spectra of 103 Cool KOIs and used the indices and calibrations of Rojas-Ayala et al. to determine their spectral types, stellar effective temperatures, and metallicities, significantly augmenting previously published values. We interpolate our measured effective temperatures and metallicities onto evolutionary isochrones to determine stellar masses, radii, luminosities, and distances, assuming the stars have settled onto the main sequence. As a choice of isochrones, we use a new suite of Dartmouth predictions that reliably include mid-to-late M dwarf stars. We identify five M4V stars: KOI-961 (confirmed as Kepler 42), KOI-2704, KOI-2842, KOI-4290, and the secondary component to visual binary KOI-1725, which we call KOI-1725 B. We also identify a peculiar star, KOI-3497, which has Na and Ca lines consistent with a dwarf star but CO lines consistent with a giant. Visible-wavelength adaptive optics imaging reveals two objects within a 1 arcsec diameter; however, the objects' colors are peculiar. The spectra and properties presented in this paper serve as a resource for prioritizing follow-up observations and planet validation efforts for the Cool KOIs and are all available for download online using the ''data behind the figure'' feature.

  20. WASP-36b: A NEW TRANSITING PLANET AROUND A METAL-POOR G-DWARF, AND AN INVESTIGATION INTO ANALYSES BASED ON A SINGLE TRANSIT LIGHT CURVE

    Energy Technology Data Exchange (ETDEWEB)

    Smith, A. M. S.; Anderson, D. R.; Hellier, C.; Maxted, P. F. L.; Smalley, B.; Southworth, J. [Astrophysics Group, Keele University, Staffordshire, ST5 5BG (United Kingdom); Collier Cameron, A. [SUPA, School of Physics and Astronomy, University of St Andrews, North Haugh, Fife, KY16 9SS (United Kingdom); Gillon, M.; Jehin, E. [Institut d' Astrophysique et de Geophysique, Universite de Liege, Allee du 6 Aout, 17 Bat. B5C, Liege 1 (Belgium); Lendl, M.; Queloz, D.; Triaud, A. H. M. J.; Pepe, F.; Segransan, D.; Udry, S. [Observatoire de Geneve, Universite de Geneve, 51 Chemin des Maillettes, 1290 Sauverny (Switzerland); West, R. G. [Department of Physics and Astronomy, University of Leicester, Leicester, LE1 7RH (United Kingdom); Barros, S. C. C.; Pollacco, D. [Astrophysics Research Centre, School of Mathematics and Physics, Queen' s University, University Road, Belfast, BT7 1NN (United Kingdom); Street, R. A., E-mail: amss@astro.keele.ac.uk [Las Cumbres Observatory, 6740 Cortona Drive Suite 102, Goleta, CA 93117 (United States)

    2012-04-15

    We report the discovery, from WASP and CORALIE, of a transiting exoplanet in a 1.54 day orbit. The host star, WASP-36, is a magnitude V = 12.7, metal-poor G2 dwarf (T{sub eff} = 5959 {+-} 134 K), with [Fe/H] =-0.26 {+-} 0.10. We determine the planet to have mass and radius, respectively, 2.30 {+-} 0.07 and 1.28 {+-} 0.03 times that of Jupiter. We have eight partial or complete transit light curves, from four different observatories, which allow us to investigate the potential effects on the fitted system parameters of using only a single light curve. We find that the solutions obtained by analyzing each of these light curves independently are consistent with our global fit to all the data, despite the apparent presence of correlated noise in at least two of the light curves.