Wang, Xi-Guang; Chotorlishvili, Levan; Berakdar, Jamal
2017-07-01
We analyze the magnetic dynamics and particularlythe spin current in an open-circuit ferromagnetic insulator irradiated by two intense, phase-locked laser pulses. The interference of the laser beams generates a transient optical grating and a transient spatio-temporal temperature distribution. Both effects lead to elastic and heat waves at the surface and into the bulk of the sample. The strain induced spin current as well as the thermally induced magnonic spin current are evaluated numerically on the basis of micromagnetic simulations using solutions of the heat equation. We observe that the thermo-elastically induced magnonic spin current propagates on a distance larger than the characteristic size of thermal profile, an effect useful for applications in remote detection of spin caloritronics phenomena. Our findings point out that exploiting strain adds a new twist to heat-assisted magnetic switching and spin-current generation for spintronic applications.
Nuclear spin dynamics in double quantum dots : Fixed points, transients, and intermittency
Rudner, M.S.; Koppens, F.H.L.; Folk, J.A.; Vandersypen, L.M.K.; Levitov, L.S.
2011-01-01
Transport through spin-blockaded quantum dots provides a means for electrical control and detection of nuclear spin dynamics in the host material. Although such experiments have become increasingly popular in recent years, interpretation of their results in terms of the underlying nuclear spin
Fang, Shaoyin; Zhu, Ruidan; Lai, Tianshu
2017-03-21
Spin relaxation dynamics of holes in intrinsic GaAs quantum wells is studied using time-resolved circular dichromatic absorption spectroscopy at room temperature. It is found that ultrafast dynamics is dominated by the cooperative contributions of band filling and many-body effects. The relative contribution of the two effects is opposite in strength for electrons and holes. As a result, transient circular dichromatic differential transmission (TCD-DT) with co- and cross-circularly polarized pump and probe presents different strength at several picosecond delay time. Ultrafast spin relaxation dynamics of excited holes is sensitively reflected in TCD-DT with cross-circularly polarized pump and probe. A model, including coherent artifact, thermalization of nonthermal carriers and the cooperative contribution of band filling and many-body effects, is developed, and used to fit TCD-DT with cross-circularly polarized pump and probe. Spin relaxation time of holes is achieved as a function of excited hole density for the first time at room temperature, and increases with hole density, which disagrees with a theoretical prediction based on EY spin relaxation mechanism, implying that EY mechanism may be not dominant hole spin relaxation mechanism at room temperature, but DP mechanism is dominant possibly.
Dynamic nuclear spin polarization
Energy Technology Data Exchange (ETDEWEB)
Stuhrmann, H B [GKSS-Forschungszentrum Geesthacht GmbH (Germany)
1996-11-01
Polarized neutron scattering from dynamic polarized targets has been applied to various hydrogenous materials at different laboratories. In situ structures of macromolecular components have been determined by nuclear spin contrast variation with an unprecedented precision. The experiments of selective nuclear spin depolarisation not only opened a new dimension to structural studies but also revealed phenomena related to propagation of nuclear spin polarization and the interplay of nuclear polarisation with the electronic spin system. The observation of electron spin label dependent nuclear spin polarisation domains by NMR and polarized neutron scattering opens a way to generalize the method of nuclear spin contrast variation and most importantly it avoids precontrasting by specific deuteration. It also likely might tell us more about the mechanism of dynamic nuclear spin polarisation. (author) 4 figs., refs.
Spin dynamics in electron synchrotrons
International Nuclear Information System (INIS)
Schmidt, Jan Felix
2017-01-01
Providing spin polarized particle beams with circular accelerators requires the consideration of depolarizing resonances which may significantly reduce the desired degree of polarization at specific beam energies. The corresponding spin dynamical effects are typically analyzed with numerical methods. In case of electron beams the influence of the emission of synchrotron radiation has to be taken into account. On short timescales, as in synchrotrons with a fast energy ramp or in damping rings, spin dynamics are investigated with spin tracking algorithms. This thesis presents the spin tracking code Polematrix as a versatile tool to study the impact of synchrotron radiation on spin dynamics. Spin tracking simulations have been performed based on the well established particle tracking code Elegant. The numerical studies demonstrate effects which are responsible for beam depolarization: Synchrotron side bands of depolarizing resonances and decoherence of spin precession. Polematrix can be utilized for any electron accelerator with minimal effort as it imports lattice files from the tracking programs MAD-X or Elegant. Polematrix has been published as open source software. Currently, the Electron Stretcher Accelerator ELSA at Bonn University is the only electron synchrotron worldwide providing a polarized beam. Integer and intrinsic depolarizing resonances are compensated with dedicated countermeasures during the fast energy ramp. Polarization measurements from ELSA demonstrate the particular spin dynamics of electrons and confirm the results of the spin tracking code Polematrix.
Spin-current emission governed by nonlinear spin dynamics.
Tashiro, Takaharu; Matsuura, Saki; Nomura, Akiyo; Watanabe, Shun; Kang, Keehoon; Sirringhaus, Henning; Ando, Kazuya
2015-10-16
Coupling between conduction electrons and localized magnetization is responsible for a variety of phenomena in spintronic devices. This coupling enables to generate spin currents from dynamical magnetization. Due to the nonlinearity of magnetization dynamics, the spin-current emission through the dynamical spin-exchange coupling offers a route for nonlinear generation of spin currents. Here, we demonstrate spin-current emission governed by nonlinear magnetization dynamics in a metal/magnetic insulator bilayer. The spin-current emission from the magnetic insulator is probed by the inverse spin Hall effect, which demonstrates nontrivial temperature and excitation power dependences of the voltage generation. The experimental results reveal that nonlinear magnetization dynamics and enhanced spin-current emission due to magnon scatterings are triggered by decreasing temperature. This result illustrates the crucial role of the nonlinear magnon interactions in the spin-current emission driven by dynamical magnetization, or nonequilibrium magnons, from magnetic insulators.
Magnetic Nanostructures Spin Dynamics and Spin Transport
Farle, Michael
2013-01-01
Nanomagnetism and spintronics is a rapidly expanding and increasingly important field of research with many applications already on the market and many more to be expected in the near future. This field started in the mid-1980s with the discovery of the GMR effect, recently awarded with the Nobel prize to Albert Fert and Peter Grünberg. The present volume covers the most important and most timely aspects of magnetic heterostructures, including spin torque effects, spin injection, spin transport, spin fluctuations, proximity effects, and electrical control of spin valves. The chapters are written by internationally recognized experts in their respective fields and provide an overview of the latest status.
Microscopic studies of nonlocal spin dynamics and spin transport (invited)
Energy Technology Data Exchange (ETDEWEB)
Adur, Rohan; Du, Chunhui; Cardellino, Jeremy; Scozzaro, Nicolas; Wolfe, Christopher S.; Wang, Hailong; Herman, Michael; Bhallamudi, Vidya P.; Pelekhov, Denis V.; Yang, Fengyuan; Hammel, P. Chris, E-mail: hammel@physics.osu.edu [Department of Physics, The Ohio State University, Columbus, Ohio 43210 (United States)
2015-05-07
Understanding the behavior of spins coupling across interfaces in the study of spin current generation and transport is a fundamental challenge that is important for spintronics applications. The transfer of spin angular momentum from a ferromagnet into an adjacent normal material as a consequence of the precession of the magnetization of the ferromagnet is a process known as spin pumping. We find that, in certain circumstances, the insertion of an intervening normal metal can enhance spin pumping between an excited ferromagnetic magnetization and a normal metal layer as a consequence of improved spin conductance matching. We have studied this using inverse spin Hall effect and enhanced damping measurements. Scanned probe magnetic resonance techniques are a complementary tool in this context offering high resolution magnetic resonance imaging, localized spin excitation, and direct measurement of spin lifetimes or damping. Localized magnetic resonance studies of size-dependent spin dynamics in the absence of lithographic confinement in both ferromagnets and paramagnets reveal the close relationship between spin transport and spin lifetime at microscopic length scales. Finally, detection of ferromagnetic resonance of a ferromagnetic film using the photoluminescence of nitrogen vacancy spins in neighboring nanodiamonds demonstrates long-range spin transport between insulating materials, indicating the complexity and generality of spin transport in diverse, spatially separated, material systems.
Microscopic studies of nonlocal spin dynamics and spin transport (invited)
Adur, Rohan; Du, Chunhui; Cardellino, Jeremy; Scozzaro, Nicolas; Wolfe, Christopher S.; Wang, Hailong; Herman, Michael; Bhallamudi, Vidya P.; Pelekhov, Denis V.; Yang, Fengyuan; Hammel, P. Chris
2015-05-01
Understanding the behavior of spins coupling across interfaces in the study of spin current generation and transport is a fundamental challenge that is important for spintronics applications. The transfer of spin angular momentum from a ferromagnet into an adjacent normal material as a consequence of the precession of the magnetization of the ferromagnet is a process known as spin pumping. We find that, in certain circumstances, the insertion of an intervening normal metal can enhance spin pumping between an excited ferromagnetic magnetization and a normal metal layer as a consequence of improved spin conductance matching. We have studied this using inverse spin Hall effect and enhanced damping measurements. Scanned probe magnetic resonance techniques are a complementary tool in this context offering high resolution magnetic resonance imaging, localized spin excitation, and direct measurement of spin lifetimes or damping. Localized magnetic resonance studies of size-dependent spin dynamics in the absence of lithographic confinement in both ferromagnets and paramagnets reveal the close relationship between spin transport and spin lifetime at microscopic length scales. Finally, detection of ferromagnetic resonance of a ferromagnetic film using the photoluminescence of nitrogen vacancy spins in neighboring nanodiamonds demonstrates long-range spin transport between insulating materials, indicating the complexity and generality of spin transport in diverse, spatially separated, material systems.
Microscopic studies of nonlocal spin dynamics and spin transport (invited)
International Nuclear Information System (INIS)
Adur, Rohan; Du, Chunhui; Cardellino, Jeremy; Scozzaro, Nicolas; Wolfe, Christopher S.; Wang, Hailong; Herman, Michael; Bhallamudi, Vidya P.; Pelekhov, Denis V.; Yang, Fengyuan; Hammel, P. Chris
2015-01-01
Understanding the behavior of spins coupling across interfaces in the study of spin current generation and transport is a fundamental challenge that is important for spintronics applications. The transfer of spin angular momentum from a ferromagnet into an adjacent normal material as a consequence of the precession of the magnetization of the ferromagnet is a process known as spin pumping. We find that, in certain circumstances, the insertion of an intervening normal metal can enhance spin pumping between an excited ferromagnetic magnetization and a normal metal layer as a consequence of improved spin conductance matching. We have studied this using inverse spin Hall effect and enhanced damping measurements. Scanned probe magnetic resonance techniques are a complementary tool in this context offering high resolution magnetic resonance imaging, localized spin excitation, and direct measurement of spin lifetimes or damping. Localized magnetic resonance studies of size-dependent spin dynamics in the absence of lithographic confinement in both ferromagnets and paramagnets reveal the close relationship between spin transport and spin lifetime at microscopic length scales. Finally, detection of ferromagnetic resonance of a ferromagnetic film using the photoluminescence of nitrogen vacancy spins in neighboring nanodiamonds demonstrates long-range spin transport between insulating materials, indicating the complexity and generality of spin transport in diverse, spatially separated, material systems
Dynamical spin accumulation in large-spin magnetic molecules
Płomińska, Anna; Weymann, Ireneusz; Misiorny, Maciej
2018-01-01
The frequency-dependent transport through a nanodevice containing a large-spin magnetic molecule is studied theoretically in the Kondo regime. Specifically, the effect of magnetic anisotropy on dynamical spin accumulation is of primary interest. Such accumulation arises due to finite components of frequency-dependent conductance that are off diagonal in spin. Here, employing the Kubo formalism and the numerical renormalization group method, we demonstrate that the dynamical transport properties strongly depend on the relative orientation of spin moments in electrodes of the device, as well as on intrinsic parameters of the molecule. In particular, the effect of dynamical spin accumulation is found to be greatly affected by the type of magnetic anisotropy exhibited by the molecule, and it develops for frequencies corresponding to the Kondo temperature. For the parallel magnetic configuration of the device, the presence of dynamical spin accumulation is conditioned by the interplay of ferromagnetic-lead-induced exchange field and the Kondo correlations.
Universal spin dynamics in quantum wires
Energy Technology Data Exchange (ETDEWEB)
Fajardo, E. A.; Zülicke, U.; Winkler, R.
2017-10-01
We discuss the universal spin dynamics in quasi-one-dimensional systems including the real spin in narrow-gap semiconductors like InAs and InSb, the valley pseudospin in staggered single-layer graphene, and the combination of real spin and valley pseudospin characterizing single-layer transition metal dichalcogenides (TMDCs) such as MoS2, WS2, MoS2, and WSe2. All these systems can be described by the same Dirac-like Hamiltonian. Spin-dependent observable effects in one of these systems thus have counterparts in each of the other systems. Effects discussed in more detail include equilibrium spin currents, current-induced spin polarization (Edelstein effect), and spin currents generated via adiabatic spin pumping. Our work also suggests that a long-debated spin-dependent correction to the position operator in single-band models should be absent.
Transient cognitive dynamics, metastability, and decision making.
Directory of Open Access Journals (Sweden)
Mikhail I Rabinovich
2008-05-01
Full Text Available The idea that cognitive activity can be understood using nonlinear dynamics has been intensively discussed at length for the last 15 years. One of the popular points of view is that metastable states play a key role in the execution of cognitive functions. Experimental and modeling studies suggest that most of these functions are the result of transient activity of large-scale brain networks in the presence of noise. Such transients may consist of a sequential switching between different metastable cognitive states. The main problem faced when using dynamical theory to describe transient cognitive processes is the fundamental contradiction between reproducibility and flexibility of transient behavior. In this paper, we propose a theoretical description of transient cognitive dynamics based on the interaction of functionally dependent metastable cognitive states. The mathematical image of such transient activity is a stable heteroclinic channel, i.e., a set of trajectories in the vicinity of a heteroclinic skeleton that consists of saddles and unstable separatrices that connect their surroundings. We suggest a basic mathematical model, a strongly dissipative dynamical system, and formulate the conditions for the robustness and reproducibility of cognitive transients that satisfy the competing requirements for stability and flexibility. Based on this approach, we describe here an effective solution for the problem of sequential decision making, represented as a fixed time game: a player takes sequential actions in a changing noisy environment so as to maximize a cumulative reward. As we predict and verify in computer simulations, noise plays an important role in optimizing the gain.
High-field spin dynamics of antiferromagnetic quantum spin chains
DEFF Research Database (Denmark)
Enderle, M.; Regnault, L.P.; Broholm, C.
2000-01-01
present recent work on the high-field spin dynamics of the S = I antiferromagnetic Heisenberg chains NENP (Haldane ground state) and CsNiCl3 (quasi-1D HAF close to the quantum critical point), the uniform S = 1/2 chain CTS, and the spin-Peierls system CuGeO3. (C) 2000 Elsevier Science B,V. All rights...
Transient charging and discharging of spin-polarized electrons in a quantum dot
DEFF Research Database (Denmark)
De Souza, Fabricio; Leao, S.A.; Gester, R. M.
2007-01-01
We study spin-polarized transient transport in a quantum dot coupled to two ferromagnetic leads subjected to a rectangular bias voltage pulse. Time-dependent spin-resolved currents, occupations, spin accumulation, and tunneling magnetoresistance TMR are calculated using both nonequilibrium Green ...
Laser spectroscopy and dynamics of transient species
Energy Technology Data Exchange (ETDEWEB)
Clouthier, D.J. [Univ. of Kentucky, Lexington (United States)
1993-12-01
The goal of this program is to study the vibrational and electronic spectra and excited state dynamics of a number of transient sulfur and oxygen species. A variety of supersonic jet techniques, as well as high resolution FT-IR and intracavity dye laser spectroscopy, have been applied to these studies.
Dynamics of Coupled Quantum Spin Chains
International Nuclear Information System (INIS)
Schulz, H.J.
1996-01-01
Static and dynamical properties of weakly coupled antiferromagnetic spin chains are treated using a mean-field approximation for the interchain coupling and exact results for the resulting effective one-dimensional problem. Results for staggered magnetization, Nacute eel temperature, and spin wave excitations are in agreement with experiments on KCuF 3 . The existence of a narrow longitudinal mode is predicted. The results are in agreement with general scaling arguments, contrary to spin wave theory. copyright 1996 The American Physical Society
THE EFFECT OF TRANSIENT ACCRETION ON THE SPIN-UP OF MILLISECOND PULSARS
Energy Technology Data Exchange (ETDEWEB)
Bhattacharyya, Sudip; Chakrabarty, Deepto, E-mail: sudip@tifr.res.in [Department of Astronomy and Astrophysics, Tata Institute of Fundamental Research, 1 Homi Bhabha Road, Colaba, Mumbai 400005 (India)
2017-01-20
A millisecond pulsar is a neutron star that has been substantially spun up by accretion from a binary companion. A previously unrecognized factor governing the spin evolution of such pulsars is the crucial effect of nonsteady or transient accretion. We numerically compute the evolution of accreting neutron stars through a series of outburst and quiescent phases, considering the drastic variation of the accretion rate and the standard disk–magnetosphere interaction. We find that, for the same long-term average accretion rate, X-ray transients can spin up pulsars to rates several times higher than can persistent accretors, even when the spin-down due to electromagnetic radiation during quiescence is included. We also compute an analytical expression for the equilibrium spin frequency in transients, by taking spin equilibrium to mean that no net angular momentum is transferred to the neutron star in each outburst cycle. We find that the equilibrium spin rate for transients, which depends on the peak accretion rate during outbursts, can be much higher than that for persistent sources. This explains our numerical finding. This finding implies that any meaningful study of neutron star spin and magnetic field distributions requires the inclusion of the transient accretion effect, since most accreting neutron star sources are transients. Our finding also implies the existence of a submillisecond pulsar population, which is not observed. This may point to the need for a competing spin-down mechanism for the fastest-rotating accreting pulsars, such as gravitational radiation.
Relativistic fluid dynamics with spin
Florkowski, Wojciech; Friman, Bengt; Jaiswal, Amaresh; Speranza, Enrico
2018-04-01
Using the conservation laws for charge, energy, momentum, and angular momentum, we derive hydrodynamic equations for the charge density, local temperature, and fluid velocity, as well as for the polarization tensor, starting from local equilibrium distribution functions for particles and antiparticles with spin 1/2. The resulting set of differential equations extends the standard picture of perfect-fluid hydrodynamics with a conserved entropy current in a minimal way. This framework can be used in space-time analyses of the evolution of spin and polarization in various physical systems including high-energy nuclear collisions. We demonstrate that a stationary vortex, which exhibits vorticity-spin alignment, corresponds to a special solution of the spin-hydrodynamical equations.
Robust transient dynamics and brain functions
Directory of Open Access Journals (Sweden)
Mikhail I Rabinovich
2011-06-01
Full Text Available In the last few decades several concepts of Dynamical Systems Theory (DST have guided psychologists, cognitive scientists, and neuroscientists to rethink about sensory motor behavior and embodied cognition. A critical step in the progress of DST application to the brain (supported by modern methods of brain imaging and multi-electrode recording techniques has been the transfer of its initial success in motor behavior to mental function, i.e., perception, emotion, and cognition. Open questions from research in genetics, ecology, brain sciences, etc. have changed DST itself and lead to the discovery of a new dynamical phenomenon, i.e., reproducible and robust transients that are at the same time sensitive to informational signals. The goal of this review is to describe a new mathematical framework -heteroclinic sequential dynamics- to understand self-organized activity in the brain that can explain certain aspects of robust itinerant behavior. Specifically, we discuss a hierarchy of coarse-grain models of mental dynamics in the form of kinetic equations of modes. These modes compete for resources at three levels: (i within the same modality, (ii among different modalities from the same family (like perception, and (iii among modalities from different families (like emotion and cognition. The analysis of the conditions for robustness, i.e., the structural stability of transient (sequential dynamics, give us the possibility to explain phenomena like the finite capacity of our sequential working memory -a vital cognitive function-, and to find specific dynamical signatures -different kinds of instabilities- of several brain functions and mental diseases.
Spin dynamics on percolating networks
International Nuclear Information System (INIS)
Aeppli, G.; Guggenheim, H.; Uemura, Y.J.
1985-01-01
We have used inelastic neutron scattering to measure the order parameter relaxation rate GAMMA in the dilute, two-dimensional Ising antiferromagnet Rb 2 CoMg/sub 1-c/F 4 with c very close to the magnetic percolation threshold. Where kappa is the inverse magnetic correlation length, GAMMA approx. kappa/sup z/ with z = 2.4/sub -0.1//sup +0.2/. Our results are discussed in terms of current ideas about spin relaxation on fractals. 13 refs., 1 fig
The classical and quantum dynamics of molecular spins on graphene
Cervetti, Christian; Rettori, Angelo; Pini, Maria Gloria; Cornia, Andrea; Repollés, Ana; Luis, Fernando; Dressel, Martin; Rauschenbach, Stephan; Kern, Klaus; Burghard, Marko; Bogani, Lapo
2016-02-01
Controlling the dynamics of spins on surfaces is pivotal to the design of spintronic and quantum computing devices. Proposed schemes involve the interaction of spins with graphene to enable surface-state spintronics and electrical spin manipulation. However, the influence of the graphene environment on the spin systems has yet to be unravelled. Here we explore the spin-graphene interaction by studying the classical and quantum dynamics of molecular magnets on graphene. Whereas the static spin response remains unaltered, the quantum spin dynamics and associated selection rules are profoundly modulated. The couplings to graphene phonons, to other spins, and to Dirac fermions are quantified using a newly developed model. Coupling to Dirac electrons introduces a dominant quantum relaxation channel that, by driving the spins over Villain’s threshold, gives rise to fully coherent, resonant spin tunnelling. Our findings provide fundamental insight into the interaction between spins and graphene, establishing the basis for electrical spin manipulation in graphene nanodevices.
Multiple quantum spin dynamics of entanglement
International Nuclear Information System (INIS)
Doronin, Serge I.
2003-01-01
The dynamics of entanglement is investigated on the basis of exactly solvable models of multiple quantum (MQ) NMR spin dynamics. It is shown that the time evolution of MQ coherences of systems of coupled nuclear spins in solids is directly connected with dynamics of the quantum entanglement. We studied analytically the dynamics of entangled states for two- and three-spin systems coupled by the dipole-dipole interaction. In this case the dynamics of the quantum entanglement is uniquely determined by the time evolution of MQ coherences of the second order. The real part of the density matrix describing MQ dynamics in solids is responsible for MQ coherences of the zeroth order while its imaginary part is responsible for the second order. Thus, one can conclude that the dynamics of the entanglement is connected with transitions from the real part of the density matrix to the imaginary one, and vice versa. A pure state which generalizes the Greenberger-Horne-Zeilinger (GHZ) and W states is found. Different measures of the entanglement of this state are analyzed for tripartite systems
The Relevance of the Dynamic Stall Effect for Transient
DEFF Research Database (Denmark)
Jauch, Clemens; Sørensen, Poul; Bak-Jensen, Birgitte
2005-01-01
This article describes a methodology to quantify the influence of dynamic stall on transient fault operations of active-stall turbines. The model of the dynamic stall effect is introduced briefly. The behaviour of the dynamic stall model during a transient fault operation is described mathematica...
Magnetic monopole dynamics in spin ice.
Jaubert, L D C; Holdsworth, P C W
2011-04-27
One of the most remarkable examples of emergent quasi-particles is that of the 'fractionalization' of magnetic dipoles in the low energy configurations of materials known as 'spin ice' into free and unconfined magnetic monopoles interacting via Coulomb's 1/r law (Castelnovo et al 2008 Nature 451 42-5). Recent experiments have shown that a Coulomb gas of magnetic charges really does exist at low temperature in these materials and this discovery provides a new perspective on otherwise largely inaccessible phenomenology. In this paper, after a review of the different spin ice models, we present detailed results describing the diffusive dynamics of monopole particles starting both from the dipolar spin ice model and directly from a Coulomb gas within the grand canonical ensemble. The diffusive quasi-particle dynamics of real spin ice materials within the 'quantum tunnelling' regime is modelled with Metropolis dynamics, with the particles constrained to move along an underlying network of oriented paths, which are classical analogues of the Dirac strings connecting pairs of Dirac monopoles.
International Nuclear Information System (INIS)
Hagelberg, F.; Das, T.P.; Speidel, K.
1993-01-01
The transient field phenomenon has been ascribed to a polarization transfer between the electrons of the ionic projectiles and the surplus of majority spin electrons of the ferromagnetic host over the minority spin electrons. Earlier attempts to explain this crucial process failed to account for the order of magnitude of the experimentally observed transient field strengths. A recent model which proposes spin exchange scattering between bound projectile electrons and quasifree host electrons as the mechanism of polarization transfer arrives at the correct orders of magnitude but is in conflict with the weak velocity dependence of the experimental polarization, exhibiting a strongly decreasing behavior with increasing velocity. The new model presented here proposes spin exchange between the ionic shell and localized electrons of the ferromagnet as a more adequate approach to the problem. It is shown that calculations involving hydrogenlike ions explain the size of the experimentally observed polarization effects as well as their velocity dependence for various ion probes traversing thin iron foils
Singh, Madhav K.; Jha, Pradeep K.; Bhattacherjee, Aranya B.
2017-09-01
In this article, we study the spin and tunneling dynamics as a function of magnetic field in a one-dimensional GaAs double quantum dot with both the Dresselhaus and Rashba spin-orbit coupling. In particular, we consider different spatial widths for the spin-up and spin-down electronic states. We find that the spin dynamics is a superposition of slow as well as fast Rabi oscillations. It is found that the Rashba interaction strength as well as the external magnetic field strongly modifies the slow Rabi oscillations which is particularly useful for implementing solid state selective spin transport device.
Dynamics of an inhomogeneous anisotropic antiferromagnetic spin chain
International Nuclear Information System (INIS)
Daniel, M.; Amuda, R.
1994-11-01
We investigate the nonlinear spin excitations in the two sublattice model of a one dimensional classical continuum Heisenberg inhomogeneous antiferromagnetic spin chain. The dynamics of the inhomogeneous chain reduces to that of its homogeneous counterpart when the inhomogeneity assumes a particular form. Apart from the usual twists and pulses, we obtain some planar configurations representing the nonlinear dynamics of spins. (author). 12 refs
Muon spin rotation and other microscopic probes of spin-glass dynamics
International Nuclear Information System (INIS)
MacLaughlin, D.E.
1980-01-01
A number of different microscopic probe techniques have been employed to investigate the onset of the spin-glass state in dilute magnetic alloys. Among these are Moessbauer-effect spectroscopy, neutron scattering, ESR of the impurity spins, host NMR and, most recently, muon spin rotation and depolarization. Spin probes yield information on the microscopic static and dynamic behavior of the impurity spins, and give insight into both the spin freezing process and the nature of low-lying excitations in the ordered state. Microscopic probe experiments in spin glasses are surveyed, and the unique advantages of muon studies are emphasized
Spin-diffusions and diffusive molecular dynamics
Farmer, Brittan; Luskin, Mitchell; Plecháč, Petr; Simpson, Gideon
2017-12-01
Metastable configurations in condensed matter typically fluctuate about local energy minima at the femtosecond time scale before transitioning between local minima after nanoseconds or microseconds. This vast scale separation limits the applicability of classical molecular dynamics (MD) methods and has spurned the development of a host of approximate algorithms. One recently proposed method is diffusive MD which aims at integrating a system of ordinary differential equations describing the likelihood of occupancy by one of two species, in the case of a binary alloy, while quasistatically evolving the locations of the atoms. While diffusive MD has shown itself to be efficient and provide agreement with observations, it is fundamentally a model, with unclear connections to classical MD. In this work, we formulate a spin-diffusion stochastic process and show how it can be connected to diffusive MD. The spin-diffusion model couples a classical overdamped Langevin equation to a kinetic Monte Carlo model for exchange amongst the species of a binary alloy. Under suitable assumptions and approximations, spin-diffusion can be shown to lead to diffusive MD type models. The key assumptions and approximations include a well-defined time scale separation, a choice of spin-exchange rates, a low temperature approximation, and a mean field type approximation. We derive several models from different assumptions and show their relationship to diffusive MD. Differences and similarities amongst the models are explored in a simple test problem.
Spin dynamics in a two-dimensional quantum gas
DEFF Research Database (Denmark)
Pedersen, Poul Lindholm; Gajdacz, Miroslav; Deuretzbacher, Frank
2014-01-01
We have investigated spin dynamics in a two-dimensional quantum gas. Through spin-changing collisions, two clouds with opposite spin orientations are spontaneously created in a Bose-Einstein condensate. After ballistic expansion, both clouds acquire ring-shaped density distributions with superimp......We have investigated spin dynamics in a two-dimensional quantum gas. Through spin-changing collisions, two clouds with opposite spin orientations are spontaneously created in a Bose-Einstein condensate. After ballistic expansion, both clouds acquire ring-shaped density distributions...
Competition between Bose-Einstein Condensation and Spin Dynamics.
Naylor, B; Brewczyk, M; Gajda, M; Gorceix, O; Maréchal, E; Vernac, L; Laburthe-Tolra, B
2016-10-28
We study the impact of spin-exchange collisions on the dynamics of Bose-Einstein condensation by rapidly cooling a chromium multicomponent Bose gas. Despite relatively strong spin-dependent interactions, the critical temperature for Bose-Einstein condensation is reached before the spin degrees of freedom fully thermalize. The increase in density due to Bose-Einstein condensation then triggers spin dynamics, hampering the formation of condensates in spin-excited states. Small metastable spinor condensates are, nevertheless, produced, and they manifest in strong spin fluctuations.
Perturbation analysis of transient population dynamics using matrix projection models
DEFF Research Database (Denmark)
Stott, Iain
2016-01-01
Non-stable populations exhibit short-term transient dynamics: size, growth and structure that are unlike predicted long-term asymptotic stable, stationary or equilibrium dynamics. Understanding transient dynamics of non-stable populations is important for designing effective population management...... these methods to know exactly what is being measured. Despite a wealth of existing methods, I identify some areas that would benefit from further development....
Quantum dynamics of nuclear spins and spin relaxation in organic semiconductors
Mkhitaryan, V. V.; Dobrovitski, V. V.
2017-06-01
We investigate the role of the nuclear-spin quantum dynamics in hyperfine-induced spin relaxation of hopping carriers in organic semiconductors. The fast-hopping regime, when the carrier spin does not rotate much between subsequent hops, is typical for organic semiconductors possessing long spin coherence times. We consider this regime and focus on a carrier random-walk diffusion in one dimension, where the effect of the nuclear-spin dynamics is expected to be the strongest. Exact numerical simulations of spin systems with up to 25 nuclear spins are performed using the Suzuki-Trotter decomposition of the evolution operator. Larger nuclear-spin systems are modeled utilizing the spin-coherent state P -representation approach developed earlier. We find that the nuclear-spin dynamics strongly influences the carrier spin relaxation at long times. If the random walk is restricted to a small area, it leads to the quenching of carrier spin polarization at a nonzero value at long times. If the random walk is unrestricted, the carrier spin polarization acquires a long-time tail, decaying as 1 /√{t } . Based on the numerical results, we devise a simple formula describing the effect quantitatively.
Nonequilibrium Spin Dynamics in a Trapped Fermi Gas with Effective Spin-Orbit Interactions
International Nuclear Information System (INIS)
Stanescu, Tudor D.; Zhang Chuanwei; Galitski, Victor
2007-01-01
We consider a trapped atomic system in the presence of spatially varying laser fields. The laser-atom interaction generates a pseudospin degree of freedom (referred to simply as spin) and leads to an effective spin-orbit coupling for the fermions in the trap. Reflections of the fermions from the trap boundaries provide a physical mechanism for effective momentum relaxation and nontrivial spin dynamics due to the emergent spin-orbit coupling. We explicitly consider evolution of an initially spin-polarized Fermi gas in a two-dimensional harmonic trap and derive nonequilibrium behavior of the spin polarization. It shows periodic echoes with a frequency equal to the harmonic trapping frequency. Perturbations, such as an asymmetry of the trap, lead to the suppression of the spin echo amplitudes. We discuss a possible experimental setup to observe spin dynamics and provide numerical estimates of relevant parameters
Electrical detection of magnetization dynamics via spin rectification effects
Energy Technology Data Exchange (ETDEWEB)
Harder, Michael, E-mail: michael.harder@umanitoba.ca; Gui, Yongsheng, E-mail: ysgui@physics.umanitoba.ca; Hu, Can-Ming, E-mail: hu@physics.umanitoba.ca
2016-11-23
The purpose of this article is to review the current status of a frontier in dynamic spintronics and contemporary magnetism, in which much progress has been made in the past decade, based on the creation of a variety of micro and nanostructured devices that enable electrical detection of magnetization dynamics. The primary focus is on the physics of spin rectification effects, which are well suited for studying magnetization dynamics and spin transport in a variety of magnetic materials and spintronic devices. Intended to be intelligible to a broad audience, the paper begins with a pedagogical introduction, comparing the methods of electrical detection of charge and spin dynamics in semiconductors and magnetic materials respectively. After that it provides a comprehensive account of the theoretical study of both the angular dependence and line shape of electrically detected ferromagnetic resonance (FMR), which is summarized in a handbook format easy to be used for analysing experimental data. We then review and examine the similarity and differences of various spin rectification effects found in ferromagnetic films, magnetic bilayers and magnetic tunnel junctions, including a discussion of how to properly distinguish spin rectification from the spin pumping/inverse spin Hall effect generated voltage. After this we review the broad applications of rectification effects for studying spin waves, nonlinear dynamics, domain wall dynamics, spin current, and microwave imaging. We also discuss spin rectification in ferromagnetic semiconductors. The paper concludes with both historical and future perspectives, by summarizing and comparing three generations of FMR spectroscopy which have been developed for studying magnetization dynamics.
Low temperature spin wave dynamics in classical Heisenberg chains
International Nuclear Information System (INIS)
Heller, P.; Blume, M.
1977-11-01
A detailed and quantitative study of the low-temperature spin-wave dynamics was made for the classical Heisenberg-coupled chain using computer simulation. Results for the spin-wave damping rates and the renormalization of the spin-wave frequencies are presented and compared with existing predictions
Belt conveyor dynamics in transient operation for speed control
He, D.; Pang, Y.; Lodewijks, G.
2016-01-01
Belt conveyors play an important role in continuous dry bulk material transport, especially at the mining industry. Speed control is expected to reduce the energy consumption of belt conveyors. Transient operation is the operation of increasing or decreasing conveyor speed for speed control. According to literature review, current research rarely takes the conveyor dynamics in transient operation into account. However, in belt conveyor speed control, the conveyor dynamic behaviors are signifi...
Self-consistent treatment of spin and magnetization dynamic effect in spin transfer switching
International Nuclear Information System (INIS)
Guo Jie; Tan, Seng Ghee; Jalil, Mansoor Bin Abdul; Koh, Dax Enshan; Han, Guchang; Meng, Hao
2011-01-01
The effect of itinerant spin moment (m) dynamic in spin transfer switching has been ignored in most previous theoretical studies of the magnetization (M) dynamics. Thus in this paper, we proposed a more refined micromagnetic model of spin transfer switching that takes into account in a self-consistent manner of the coupled m and M dynamics. The numerical results obtained from this model further shed insight on the switching profiles of m and M, both of which show particular sensitivity to parameters such as the anisotropy field, the spin torque field, and the initial deviation between m and M.
Turbofan compressor dynamics during afterburner transients
Kurkov, A. P.
1976-01-01
The effects of afterburner light-off and shut-down transients on the compressor stability are investigated. The reported experimental results are based on detailed high response pressure and temperature measurements on the TF30-P-3 turbofan engine. The tests were performed in an altitude test chamber simulating high altitude engine operation. It is shown that during both types of transients, flow breaks down in the forward part of the fan bypass duct. At a sufficiently low engine inlet pressure this resulted in a compressor stall. Complete flow breakdown within the compressor was preceded by a rotating stall. At some locations in the compressor, rotating stall cells initially extended only through part of the blade span. For the shutdown transient the time between first and last detected occurrence of rotating stall is related to the flow Reynolds number. An attempt was made to deduce the number and speed of propagation of rotating stall cells.
Tachikawa, Takashi; Kobori, Yasuhiro; Akiyama, Kimio; Katsuki, Akio; Steiner, Ulrich; Tero-Kubota, Shozo
2002-01-01
The spin dynamics of the duroquinone anion radical generated by photoinduced electron transfer reactions from triplet erythrosin B to duroquinone has been studied by using transient absorption and pulsed FT-EPR spectroscopy. Triplet exciplex formation as the reaction intermediate is verified by the observation of spin orbit coupling induced electron spin polarization. The kinetic parameters for exciplex formation and the intrinsic enhancement factors of electron spin polarization are determin...
Spin Interactions and Spin Dynamics in Electronic Nanostructures
2006-08-31
041302(R) (2005). 30. “Room-temperature spin coherence in ZnO ,” S. Ghosh, V. Sih, W. H. Lau, D. D. Awschalom, S.-Y. Bae, S. Wang, S. Vaidya. and G...Yazdani, Journal of Superconductivity: Incorporating Novel Magnetism 18, 23 (2005). 32. “Room-temperature spin coherence in ZnO ,” S. Ghosh, V. Sih, W...C. Ralph, invited lecture presented by at 2005 Electrochemistry Gordon Research Conference, February 20-25, 2005, Ventura, CA 94. “Tools for Studying
Dynamics of dimer and z spin component fluctuations in spin-1/2 XY chain
Directory of Open Access Journals (Sweden)
P.Hlushak
2005-01-01
Full Text Available One-dimensional quantum spin-1/2 XY models admit the rigorous analysis not only of their static properties (i.e. the thermodynamic quantities and the equal-time spin correlation functions but also of their dynamic properties (i.e. the different-time spin correlation functions, the dynamic susceptibilities, the dynamic structure factors. This becomes possible after exploiting the Jordan-Wigner transformation which reduces the spin model to a model of spinless noninteracting fermions. A number of dynamic quantities (e.g. related to transverse spin operator or dimer operator fluctuations are entirely determined by two-fermion excitations and can be examined in much detail.
Spin dynamics in electron synchrotrons; Spindynamik in Elektronensynchrotronen
Energy Technology Data Exchange (ETDEWEB)
Schmidt, Jan Felix
2017-07-14
Providing spin polarized particle beams with circular accelerators requires the consideration of depolarizing resonances which may significantly reduce the desired degree of polarization at specific beam energies. The corresponding spin dynamical effects are typically analyzed with numerical methods. In case of electron beams the influence of the emission of synchrotron radiation has to be taken into account. On short timescales, as in synchrotrons with a fast energy ramp or in damping rings, spin dynamics are investigated with spin tracking algorithms. This thesis presents the spin tracking code Polematrix as a versatile tool to study the impact of synchrotron radiation on spin dynamics. Spin tracking simulations have been performed based on the well established particle tracking code Elegant. The numerical studies demonstrate effects which are responsible for beam depolarization: Synchrotron side bands of depolarizing resonances and decoherence of spin precession. Polematrix can be utilized for any electron accelerator with minimal effort as it imports lattice files from the tracking programs MAD-X or Elegant. Polematrix has been published as open source software. Currently, the Electron Stretcher Accelerator ELSA at Bonn University is the only electron synchrotron worldwide providing a polarized beam. Integer and intrinsic depolarizing resonances are compensated with dedicated countermeasures during the fast energy ramp. Polarization measurements from ELSA demonstrate the particular spin dynamics of electrons and confirm the results of the spin tracking code Polematrix.
Spin dynamics under local gauge fields in chiral spin-orbit coupling systems
International Nuclear Information System (INIS)
Tan, S.G.; Jalil, M.B.A.; Fujita, T.; Liu, X.J.
2011-01-01
Research highlights: → We derive a modified LLG equation in magnetic systems with spin-orbit coupling (SOC). → Our results are applied to magnetic multilayers, and DMS and magnetic Rashba systems. → SOC mediated magnetization switching is predicted in rare earth metals (large SOC). → The magnetization trajectory and frequency can be modulated by applied voltage. → This facilitates potential application as tunable microwave oscillators. - Abstract: We present a theoretical description of local spin dynamics in magnetic systems with a chiral spin texture and finite spin-orbit coupling (SOC). Spin precession about the relativistic effective magnetic field in a SOC system gives rise to a non-Abelian SU(2) gauge field reminiscent of the Yang-Mills field. In addition, the adiabatic relaxation of electron spin along the local spin yields an U(1) x U(1) topological gauge (Berry) field. We derive the corresponding equation of motion i.e. modified Landau-Lifshitz-Gilbert (LLG) equation, for the local spin under the influence of these effects. Focusing on the SU(2) gauge, we obtain the spin torque magnitude, and the amplitude and frequency of spin oscillations in this system. Our theoretical estimates indicate significant spin torque and oscillations in systems with large spin-orbit coupling, which may be utilized in technological applications such as current-induced magnetization-switching and tunable microwave oscillators.
NMR studies of spin dynamics in cuprates
International Nuclear Information System (INIS)
Takigawa, M.; Mitzi, D.B.
1994-01-01
The authors report recent NMR results in cuprates. The oxygen Knight shift and the Cu nuclear spin-lattice relaxation rate in Bi 2.1 Sr 1.94 Ca 0.88 Cu 2.07 O 8+σ single crystals revealed a gapless superconducting state, which can be most naturally explained by a d-wave pairing state and the intrinsic disorder in this material. The Cu nuclear spin-spin relaxation rate in underdoped YBa 2 Cu 3 O 6.63 shows distinct temperature dependence from the spin-lattice relaxation rate, providing direct evidence for a pseudo spin-gap near the antiferromagnetic wave vector
NMR studies of spin dynamics in cuprates
Takigawa, M.; Mitzi, D. B.
1994-04-01
We report recent NMR results in cuprates. The oxygen Knight shift and the Cu nuclear spin-lattice relaxation rate in Bi2.1Sr1.94Ca0.88Cu2.07O8+δ single crystals revealed a gapless superconducting state, which can be most naturally explained by a d-wave pairing state and the intrinsic disorder in this material. The Cu nuclear spin-spin relaxation rate in underdoped YBa2Cu3O6.63 shows distinct temperature dependence from the spin-lattice relaxation rate, providing direct evidence for a pseudo spin-gap near the antiferromagnetic wave vector.
Bifurcation analysis of magnetization dynamics driven by spin transfer
International Nuclear Information System (INIS)
Bertotti, G.; Magni, A.; Bonin, R.; Mayergoyz, I.D.; Serpico, C.
2005-01-01
Nonlinear magnetization dynamics under spin-polarized currents is discussed by the methods of the theory of nonlinear dynamical systems. The fixed points of the dynamics are calculated. It is shown that there may exist 2, 4, or 6 fixed points depending on the values of the external field and of the spin-polarized current. The stability of the fixed points is analyzed and the conditions for the occurrence of saddle-node and Hopf bifurcations are determined
Bifurcation analysis of magnetization dynamics driven by spin transfer
Energy Technology Data Exchange (ETDEWEB)
Bertotti, G. [IEN Galileo Ferraris, Strada delle Cacce 91, 10135 Turin (Italy); Magni, A. [IEN Galileo Ferraris, Strada delle Cacce 91, 10135 Turin (Italy); Bonin, R. [Dipartimento di Fisica, Politecnico di Torino, Corso degli Abbruzzi, 10129 Turin (Italy)]. E-mail: bonin@ien.it; Mayergoyz, I.D. [Department of Electrical and Computer Engineering, University of Maryland, College Park, Maryland 20742 (United States); Serpico, C. [Department of Electrical Engineering, University of Napoli Federico II, via Claudio 21, 80125 Naples (Italy)
2005-04-15
Nonlinear magnetization dynamics under spin-polarized currents is discussed by the methods of the theory of nonlinear dynamical systems. The fixed points of the dynamics are calculated. It is shown that there may exist 2, 4, or 6 fixed points depending on the values of the external field and of the spin-polarized current. The stability of the fixed points is analyzed and the conditions for the occurrence of saddle-node and Hopf bifurcations are determined.
Study of a spur gear dynamic behavior in transient regime
Khabou, M. T.; Bouchaala, N.; Chaari, F.; Fakhfakh, T.; Haddar, M.
2011-11-01
In this paper the dynamic behavior of a single stage spur gear reducer in transient regime is studied. Dynamic response of the single stage spur gear reducer is investigated at different rotating velocities. First, gear excitation is induced by the motor torque and load variation in addition to the fluctuation of meshing stiffness due to the variation of input rotational speed. Then, the dynamic response is computed using the Newmark method. After that, a parameter study is made on spur gear powered in the first place by an electric motor and in the second place by four strokes four cylinders diesel engine. Dynamic responses come to confirm a significant influence of the transient regime on the dynamic behavior of a gear set, particularly in the case of engine acyclism condition.
Binary black holes: Spin dynamics and gravitational recoil
International Nuclear Information System (INIS)
Herrmann, Frank; Hinder, Ian; Shoemaker, Deirdre M.; Laguna, Pablo; Matzner, Richard A.
2007-01-01
We present a study of spinning black hole binaries focusing on the spin dynamics of the individual black holes as well as on the gravitational recoil acquired by the black hole produced by the merger. We consider two series of initial spin orientations away from the binary orbital plane. In one of the series, the spins are antialigned; for the second series, one of the spins points away from the binary along the line separating the black holes. We find a remarkable agreement between the spin dynamics predicted at 2nd post-Newtonian order and those from numerical relativity. For each configuration, we compute the kick of the final black hole. We use the kick estimates from the series with antialigned spins to fit the parameters in the Kidder kick formula, and verify that the recoil in the direction of the orbital angular momentum is ∝sinθ and on the orbital plane ∝cosθ, with θ the angle between the spin directions and the orbital angular momentum. We also find that the black hole spins can be well estimated by evaluating the isolated horizon spin on spheres of constant coordinate radius
IMPROVING THE MODEL OF EMISSION FROM SPINNING DUST: EFFECTS OF GRAIN WOBBLING AND TRANSIENT SPIN-UP
International Nuclear Information System (INIS)
Hoang, Thiem; Lazarian, A.; Draine, B. T.
2010-01-01
Observations continue to support the interpretation of the anomalous microwave foreground as electric dipole radiation from spinning dust grains as proposed by Draine and Lazarian. In this paper, we present a refinement of the original model by improving the treatment of a number of physical effects. First, we consider a disk-like grain rotating with angular velocity at an arbitrary angle with respect to the grain symmetry axis (i.e., grain wobbling) and derive the rotational damping and excitation coefficients arising from infrared emission, plasma-grain interactions, and electric dipole emission. The angular velocity distribution and the electric dipole emission spectrum for disk-like grains is calculated using the Langevin equation, for cases both with and without fast internal relaxation. Our results show that for fast internal relaxation, the peak emissivity of spinning dust, compared to earlier studies, increases by a factor of ∼2 for the warm neutral medium (WNM), the warm ionized medium (WIM), the cold neutral medium (CNM), and the photodissociation region, and by a factor ∼4 for reflection nebulae. The frequency at the emission peak also increases by factors ∼1.4 to ∼2 for these media. Without internal relaxation, the increase of emissivity is comparable, but the emission spectrum is more extended to higher frequency. The increased emission results from the non-sphericity of grain shape and from the anisotropy in damping and excitation along directions parallel and perpendicular to the grain symmetry axis. Second, we provide a detailed numerical study including transient spin-up of grains by single-ion collisions. The range of grain size in which single-ion collisions are important is identified. The impulses broaden the emission spectrum and increase the peak emissivity for the CNM, WNM, and WIM, although the increases are not as large as those due to the grain wobbling. In addition, we present an improved treatment of rotational excitation and
Polarized neutron inelastic scattering experiments on spin dynamics
International Nuclear Information System (INIS)
Kakurai, Kazuhisa
2016-01-01
The principles of polarized neutron scattering are introduced and examples of polarized neutron inelastic scattering experiments on spin dynamics investigation are presented. These examples should demonstrate the importance of the polarized neutron utilization for the investigation of non-trivial magnetic ground and excited states in frustrated and low dimensional quantum spin systems. (author)
SD-CAS: Spin Dynamics by Computer Algebra System.
Filip, Xenia; Filip, Claudiu
2010-11-01
A computer algebra tool for describing the Liouville-space quantum evolution of nuclear 1/2-spins is introduced and implemented within a computational framework named Spin Dynamics by Computer Algebra System (SD-CAS). A distinctive feature compared with numerical and previous computer algebra approaches to solving spin dynamics problems results from the fact that no matrix representation for spin operators is used in SD-CAS, which determines a full symbolic character to the performed computations. Spin correlations are stored in SD-CAS as four-entry nested lists of which size increases linearly with the number of spins into the system and are easily mapped into analytical expressions in terms of spin operator products. For the so defined SD-CAS spin correlations a set of specialized functions and procedures is introduced that are essential for implementing basic spin algebra operations, such as the spin operator products, commutators, and scalar products. They provide results in an abstract algebraic form: specific procedures to quantitatively evaluate such symbolic expressions with respect to the involved spin interaction parameters and experimental conditions are also discussed. Although the main focus in the present work is on laying the foundation for spin dynamics symbolic computation in NMR based on a non-matrix formalism, practical aspects are also considered throughout the theoretical development process. In particular, specific SD-CAS routines have been implemented using the YACAS computer algebra package (http://yacas.sourceforge.net), and their functionality was demonstrated on a few illustrative examples. Copyright © 2010 Elsevier Inc. All rights reserved.
International Nuclear Information System (INIS)
Nishibayashi, K.; Aoshima, I.; Souma, I.; Murayama, A.; Oka, Y.
2006-01-01
Dynamics of spin injection has been investigated in a double quantum well (DQW) composed of a diluted magnetic semiconductor by the pump-probe transient absorption spectroscopy in magnetic field. The DQW consists of a non-magnetic well (NMW) of CdTe and a magnetic well (MW) of Cd 0.92 Mn 0.08 Te. The MW shows a transient absorption saturation in the exciton band for more than 200 ps after the optical pumping, while the exciton photoluminescence does not arise from the MW. In the NMW, the circular polarization degree of the transient absorption saturation shows an increase with increasing time. The results are interpreted by the individual tunneling of spin-polarized electrons and holes from the MW to the NMW with different tunneling times. Depolarization processes of the carrier spins in the MW and the NMW are also discussed
Spin dynamics in tunneling decay of a metastable state
Ban, Yue; Sherman, E. Ya.
2012-01-01
We analyze spin dynamics in the tunneling decay of a metastable localized state in the presence of spin-orbit coupling. We find that the spin polarization at short time scales is affected by the initial state while at long time scales both the probability- and the spin density exhibit diffraction-in-time phenomenon. We find that in addition to the tunneling time the tunneling in general can be characterized by a new parameter, the tunneling length. Although the tunneling length is independent...
Numerical analysis of power system transients and dynamics
Ametani, Akihiro
2015-01-01
This book describes the three major power system transient and dynamics simulation tools based on a circuit-theory based approach which are most widely used all over the world (EMTP-ATP, EMTP-RV and EMTDC/PSCAD), together with other powerful simulation tools such as XTAP.
Transient Dynamics Analysis of The Reachstacker Speader Based On ANSYS
Directory of Open Access Journals (Sweden)
Shu Yu Feng
2016-01-01
Full Text Available Reachstacker is an indispensable handling machinery, it will inevitably lead to unbalanced force at the job site. This paper does transient dynamics analysis for the spreader mechanism, which is one of the most significance key components. We get dynamic response of the spreader in lifting instant, results not only provide a reference for designers to understand the mechanical characteristics of spreader comprehensively, but also bedding for the future research.
NMR with generalized dynamics of spin and spatial coordinates
International Nuclear Information System (INIS)
Lee, Chang Jae.
1987-11-01
This work is concerned with theoretical and experimental aspects of the generalized dynamics of nuclear spin and spatial coordinates under magnetic-field pulses and mechanical motions. The main text begins with an introduction to the concept of ''fictitious'' interactions. A systematic method for constructing fictitious spin-1/2 operators is given. The interaction of spins with a quantized-field is described. The concept of the fictitious interactions under the irradiation of multiple pulses is utilized to design sequences for selectively averaging linear and bilinear operators. Relations between the low-field sequences and high-field iterative schemes are clarified. These relations and the transformation properties of the spin operators are exploited to develop schemes for heteronuclear decoupling of multi-level systems. The resulting schemes are evaluated for heteronuclear decoupling of a dilute spin-1/2 from a spin-1 in liquid crystal samples and from a homonuclear spin-1/2 pair in liquids. A relation between the spin and the spatial variables is discussed. The transformation properties of the spin operators are applied to spatial coordinates and utilized to develop methods for removing the orientational dependence responsible for line broadening in a powder sample. Elimination of the second order quadrupole effects, as well as the first order anisotropies is discussed. It is shown that various sources of line broadening can effectively be eliminated by spinning and/or hopping the sample about judiciously chosen axes along with appropriate radio-frequency pulse sequences
Dynamically Decoupled 13C Spins in Hyperpolarized Nanodiamond
Rej, Ewa; Gaebel, Torsten; Boele, Thomas; Waddington, David; Reilly, David
The spin-spin relaxation time, T2, which determines how long a quantum state remains coherent, is an important factor for many applications ranging from MRI to quantum computing. A common technique used in quantum information technology to extend the T2, involves averaging out certain noise spectra via dynamical decoupling sequences. Depending on the nature of the noise in the system, specific sequences, such as CPMG, UDD or KDD, can be tailored to optimize T2. Here we combine hyperpolarization techniques and dynamical decoupling sequences to extend the T2 of 13C nuclear spins in nanodiamond by three orders of magnitude.
International Nuclear Information System (INIS)
Weber, Christopher P.
2005-01-01
Spin diffusion in n-GaAs quantum wells, as measured by our optical transient-grating technique, is strongly suppressed relative to that of charge. Over a broad range of temperatures and dopings, the suppression of Ds relative to Dc agrees quantitatively with the prediction of ''spin Coulomb dra'' theory, which takes into account the exchange of spin in electron-electron collisions. Moreover, the spin-diffusion length, Ls, is a nearly constant 1 micrometer over the same range of T and n, despite Ds's varying by nearly two orders of magnitude. This constancy supports the D'yakonov-Perel'-Kachorovskii model of spin relaxation through interrupted precessional dephasing in the spin-orbit field
Energy Technology Data Exchange (ETDEWEB)
Weber, Christopher Phillip [Univ. of California, Berkeley, CA (United States)
2005-01-01
Spin diffusion in n-GaAs quantum wells, as measured by our optical transient-grating technique, is strongly suppressed relative to that of charge. Over a broad range of temperatures and dopings, the suppression of Ds relative to Dc agrees quantitatively with the prediction of ''spin Coulomb dra'' theory, which takes into account the exchange of spin in electron-electron collisions. Moreover, the spin-diffusion length, Ls, is a nearly constant 1 micrometer over the same range of T and n, despite Ds's varying by nearly two orders of magnitude. This constancy supports the D'yakonov-Perel'-Kachorovskii model of spin relaxation through interrupted precessional dephasing in the spin-orbit field.
Spin Dynamics in Highly Spin Polarized Co1-xFexS2
Hoch, Michael J. R.; Kuhns, Philip L.; Moulton, William G.; Reyes, Arneil P.; Lu, Jun; Wang, Lan; Leighton, Chris
2006-09-01
Highly spin polarized or half-metallic systems are of considerable current interest because of their potential for spin injection in spintronics applications. The ferromagnet (FM) CoS2 is close to being a half-metal. Recent theoretical and experimental work has shown that the alloys Co1-xFexS2 (0.07 < x < 0.9) are highly spin polarized at low temperatures. The Fe concentration may be used to tune the spin polarization. Using 59Co FM- NMR we have investigated the spin dynamics in this family of alloys and have obtained information on the evolution of the d-band density of states at the Fermi level with x in the range 0 to 0.3. The results are compared with available theoretical predictions.
Dynamical decoupling assisted acceleration of two-spin evolution in XY spin-chain environment
Energy Technology Data Exchange (ETDEWEB)
Wei, Yong-Bo; Zou, Jian [School of Physics, Beijing Institute of Technology, Beijing 100081 (China); Wang, Zhao-Ming [Department of Physics, Ocean University of China, Qingdao 266100 (China); Shao, Bin, E-mail: sbin610@bit.edu.cn [School of Physics, Beijing Institute of Technology, Beijing 100081 (China); Li, Hai [School of Information and Electronic Engineering, Shandong Institute of Business and Technology, Yantai 264000 (China)
2016-01-28
We study the speed-up role of dynamical decoupling in an open system, which is modeled as two central spins coupled to their own XY spin-chain environment. We show that the fast bang–bang pulses can suppress the system evolution, which manifests the quantum Zeno effect. In contrast, with the increasing of the pulse interval time, the bang–bang pulses can enhance the decay of the quantum speed limit time and induce the speed-up process, which displays the quantum anti-Zeno effect. In addition, we show that the random pulses can also induce the speed-up of quantum evolution. - Highlights: • We propose a scheme to accelerate the dynamical evolution of central spins in an open system. • The quantum speed limit of central spins can be modulated by changing pulse frequency. • The random pulses can play the same role as the regular pulses do for small perturbation.
Transient dynamic crack propagation in gas pressurised pipelines
International Nuclear Information System (INIS)
Caldis, E.S.; Owen, D.R.J.; Taylor, C.
1983-01-01
The prime limitation of dynamic fracture analysis is the lack of a fundamental crack advance theory which can be easily and economically adopted for use with numerical models. The necessity for the inclusion of inertia effects in the solution of certain problem classes is now evident, but most transient dynamic fracture models considered to date include (of necessity) some intuitive/empirical parameters with a frequent need of a priori knowledge of experimental solutions. The particular problem considered in this study is Mode I transient dynamic crack propagation in gas pressurised pipelines. The steel pipe is modelled using thin shell Semiloof finite elements and its transient response is coupled to a one-dimensional finite element model of the compressible gas equations, incorporating a lateral gas flow parameter. The pipe is governed by the usual dynamic equilibrium equation which is discretised in the time domain by a central difference explicit algorithm. The compressible gas response is modelled by the Continuity and Momentum equations and time discretisation is performed by means of a fully backward difference scheme in time. (orig./GL)
Yoshitake, Junki; Nasu, Joji; Motome, Yukitoshi
2016-10-07
Experimental identification of quantum spin liquids remains a challenge, as the pristine nature is to be seen in asymptotically low temperatures. We here theoretically show that the precursor of quantum spin liquids appears in the spin dynamics in the paramagnetic state over a wide temperature range. Using the cluster dynamical mean-field theory and the continuous-time quantum Monte Carlo method, which are newly developed in the Majorana fermion representation, we calculate the dynamical spin structure factor, relaxation rate in nuclear magnetic resonance, and magnetic susceptibility for the honeycomb Kitaev model whose ground state is a canonical example of the quantum spin liquid. We find that dynamical spin correlations show peculiar temperature and frequency dependence even below the temperature where static correlations saturate. The results provide the experimentally accessible symptoms of the fluctuating fractionalized spins evincing the quantum spin liquids.
Coupled spin, elastic and charge dynamics in magnetic nanostructures
Kamra, A.
2015-01-01
In this Thesis, I address the interaction of magnetic degrees of freedom with charge current and elastic dynamics in hybrid systems composed of magnetic and non-magnetic materials. The objective, invariably, is to control and study spin dynamics using charge and elastic degrees of freedom. In
Production of entropy on simplified dynamics in spin glass systems
Saakyan, D B
2001-01-01
In models of spin glasses one eliminates condition of extreme based on one of the order parameters. On the basis of the available expression for static sum one derived the effective hamiltonian for parameter and the appropriate energy. Relaxation of the system is studied as energy exchange between the degree of freedom related to the order slow parameter and with the rest of the system. At that level one may indicate point of glass capture within phase space on the basis of the static solutions. One studies p-spin model without magnetic field in case of replica symmetry violation. One studies dynamics of p-spin glass in magnetic field in replica-symmetrical phase. One studied model of spins with quadratic interaction when dynamic constants had temperature differing from temperature of space
Spin tunnelling dynamics for spin-1 Bose-Einstein condensates in a swept magnetic field
International Nuclear Information System (INIS)
Wang Guanfang; Fu Libin; Liu Jie
2008-01-01
We investigate the spin tunnelling of spin-1 Bose-Einstein condensates in a linearly swept magnetic field with a mean-field treatment. We focus on the two typical alkali Bose atoms 87 Rb and 23 Na condensates and study their tunnelling dynamics according to the sweep rates of the external magnetic fields. In the adiabatic (i.e. slowly sweeping) and sudden (i.e. fast sweeping) limits, no tunnelling is observed. For the case of moderate sweep rates, the tunnelling dynamics is found to be very sensitive to the sweep rates, so the plots of tunnelling probability versus sweep rate only become resolvable at a resolution of 10 -4 G s -1 . Moreover, a conserved quantity standing for the magnetization in experiments is found to affect dramatically the dynamics of the spin tunnelling. Theoretically we have given a complete interpretation of the above findings, and our studies could stimulate the experimental study of spinor Bose-Einstein condensates
Quantum Computation and Quantum Spin Dynamics
Raedt, Hans De; Michielsen, Kristel; Hams, Anthony; Miyashita, Seiji; Saito, Keiji
2001-01-01
We analyze the stability of quantum computations on physically realizable quantum computers by simulating quantum spin models representing quantum computer hardware. Examples of logically identical implementations of the controlled-NOT operation are used to demonstrate that the results of a quantum
Spin dynamics in bulk CdTe at room temperature
International Nuclear Information System (INIS)
Nahalkova, P.; Nemec, P.; Sprinzl, D.; Belas, E.; Horodysky, P.; Franc, J.; Hlidek, P.; Maly, P.
2006-01-01
In this paper, we report on the room temperature dynamics of spin-polarized carriers in undoped bulk CdTe. Platelets of CdTe with different concentration of preparation-induced dislocations were prepared by combining the mechanical polishing and chemical etching. Using the polarization-resolved pump-probe experiment in transmission geometry, we have observed a systematic decrease of both the signal polarization and the electron spin dephasing time (from 52 to 36 ps) with the increased concentration of defects. We have suggested that the Elliot-Yafet mechanism might be the dominant spin dephasing mechanism in platelets of CdTe at room temperature
Optically induced dynamic nuclear spin polarisation in diamond
International Nuclear Information System (INIS)
Scheuer, Jochen; Naydenov, Boris; Jelezko, Fedor; Schwartz, Ilai; Chen, Qiong; Plenio, Martin B; Schulze-Sünninghausen, David; Luy, Burkhard; Carl, Patrick; Höfer, Peter; Retzker, Alexander; Sumiya, Hitoshi; Isoya, Junichi
2016-01-01
The sensitivity of magnetic resonance imaging (MRI) depends strongly on nuclear spin polarisation and, motivated by this observation, dynamical nuclear spin polarisation has recently been applied to enhance MRI protocols (Kurhanewicz et al 2011 Neoplasia 13 81). Nuclear spins associated with the 13 C carbon isotope (nuclear spin I = 1/2) in diamond possess uniquely long spin lattice relaxation times (Reynhardt and High 2011 Prog. Nucl. Magn. Reson. Spectrosc. 38 37). If they are present in diamond nanocrystals, especially when strongly polarised, they form a promising contrast agent for MRI. Current schemes for achieving nuclear polarisation, however, require cryogenic temperatures. Here we demonstrate an efficient scheme that realises optically induced 13 C nuclear spin hyperpolarisation in diamond at room temperature and low ambient magnetic field. Optical pumping of a nitrogen-vacancy centre creates a continuously renewable electron spin polarisation which can be transferred to surrounding 13 C nuclear spins. Importantly for future applications we also realise polarisation protocols that are robust against an unknown misalignment between magnetic field and crystal axis. (paper)
Entanglement dephasing dynamics driven by a bath of spins
International Nuclear Information System (INIS)
Xu Jie; Jing Jun; Yu Ting
2011-01-01
We have studied the entanglement dynamics for a two-qubit system coupled to a spin environment of different configurations by a z-x-type interaction. Quantum dynamics of the models considered in this paper is solved analytically. Moreover, we show that simple and concise results may be obtained when certain approximations are properly made. Our purpose is to find out how the entanglement of a central spin system is affected by the pre-designed factors of the system and its environment, such as their initial states and the coupling constants between the system and its environment. Clearly, how the system is coupled to its environment will inevitably change the feature of entanglement evolution of the central spin system. Our major findings include the following: (i) the entanglement of the system of interest is sensitive to the number of spins in the environment, (ii) the initial states of the environment can profoundly affect the dynamics of the entanglement of the central spin system and (iii) the entangled environment can speed up the decay and revival of the entanglement of the central spin system. Our results exhibit some interesting features that have not been found for a bosonic environment.
Experimental investigation of transient thermoelastic effects in dynamic fracture
International Nuclear Information System (INIS)
Rittel, D.
1997-01-01
Thermoelastic effects in fracture are generally considered to be negligible at the benefit of the conversion of plastic work into heat. For the case of dynamic crack initiation, the experimental and theoretical emphasis has been put on the temperature rise associated with crack-tip plasticity. Nevertheless, earlier experimental work with polymers has shown that thermoelastic cooling precedes the temperature rise at the tip of a propagating crack (Fuller et al., 1975). Transient thermoelastic effects at the tip of a dynamically loaded crack have been theoretically assessed and shown to be significant when thermal conductivity is initially neglected. However, the fundamental question of the relation between crack initiation and thermal fields, both of transient nature, is still open. In this paper, we present an experimental investigation of the thermoelastic effect at the tip of fatigue cracks subjected to mixed-mode (dominant mode 1) dynamic loading. The material is commercial polymethylmethacrylate as an example of 'brittle' material. The applied loads, crack-tip temperatures and fracture time are simultaneously monitored to provide a more complete image of dynamic crack initiation. The corresponding evolution of the stress intensity factors is calculated by a hybrid-experimental numerical model. The results show that substantial crack-tip cooling develops initially to an extent which corroborates theoretical estimates. This effect is followed by a temperature rise. Fracture is shown to initiate during the early cooling phase, thus emphasizing the relevance of the phenomenon to dynamic crack initiation in this material as probably in other materials. (author)
International Nuclear Information System (INIS)
Goepfert, A.
1994-01-01
This thesis develops a new model, and related numerical methods, to describe classical time-dependent many-body systems interacting through central forces, spin-orbit forces and spin-spin forces. The model is based on two-particle interactions. The two-body forces consist of attractive and repulsive parts. In this model the investigated multi-particle systems are self-bound. Also the total potential of the whole ensemble is derived from the two-particle potential and is not imposed 'from outside'. Each particle has the three degrees of freedom of its centre-of-mass motion and the spin degree of freedom. The model allows for the particles to be either charged or uncharged. Furthermore, each particle has an angular momentum, an intrinsic spin, and a magnetic dipole moment. Through the electromagnetic forces between these charges and moments there arise dynamical couplings between them. The internal interactions between the charges and moments are well described by electromagnetic coupling mechanisms. In fact, compared to conventional classical molecular dynamics calculations in van der Waals clusters, which have no spin degrees of freedom, or for Heisenberg spin Systems, which have no orbital degrees of freedom, the model presented here contains both types of degrees of freedom with a highly non-trivial coupling. The model allows to study the fundamental effects resulting from the dynamical coupling of the spin and the orbital-motion sub-systems. In particular, the dynamics of the particle mass points show a behaviour basically different from the one of particles in a potential with only central forces. Furthermore, a special type of quenching procedure was invented, which tends to drive the multi-particle Systems into states with highly periodic, non-ergodic behaviour. Application of the model to cluster simulations has provided evidence that the model can also be used to investigate items like solid-to-liquid phase transitions (melting), isomerism and specific heat
NMR study of spin dynamics in mesoscopic molecular clusters
Borsa, Ferdinando
1998-03-01
Recent published and umpublished work regarding the magnetic properties and the spin dynamics of molecules containing rings of 6,8 and 10 spins and of molecules containing clusters of 8 and 12 spins are reviewed. The 1H nuclear spin-lattice relaxation rate (NSLR) and the Muon Spin Resonance relaxation in Mn12 (A.Lascialfari, D.Gatteschi, F.Borsa, A.Shastri, Z.H.Jang and P.Carretta, Phys.Rev. B 1 January 1998) and Fe8 clusters are presented and discussed with regards to the high temperature spin dynamics of the Mn (Fe) magnetic moments and with regards to the low temperature superparamagnetic behavior. 1H and 63Cu NMR results are presented for two "quantum" spin rings : Cu6 and Cu8. The Cu6 is a weakly coupled (J/k=60K) ferromagnetic S=1/2 spin ring while Cu8 is a strongly coupled (J/k greater than 400K) antiferromagnetic S=1/2 spin ring.The dependence of the NSRL from temperature and from applied magnetic field are analyzed in terms of the calculated magnetic energy levels of the magnetic ring. The values of the energy gap between the ground state and the first excited state are extracted from the exponential decrease of the NSLR as the temperature is lowered. The results in the Cu ( S=1/2) "quantum" rings are compared with the results in "quantum" chains and ladders and with the results in "classical" Fe (S=5/2) antiferromagnetic rings : Fe6 and Fe10 (A.Lascialfari, D.Gatteschi, F.Borsa and A.Cornia , Phys.Rev. 55B,14341,1997) ).
Dynamics of magnetization in ferromagnet with spin-transfer torque
Li, Zai-Dong; He, Peng-Bin; Liu, Wu-Ming
2014-11-01
We review our recent works on dynamics of magnetization in ferromagnet with spin-transfer torque. Driven by constant spin-polarized current, the spin-transfer torque counteracts both the precession driven by the effective field and the Gilbert damping term different from the common understanding. When the spin current exceeds the critical value, the conjunctive action of Gilbert damping and spin-transfer torque leads naturally the novel screw-pitch effect characterized by the temporal oscillation of domain wall velocity and width. Driven by space- and time-dependent spin-polarized current and magnetic field, we expatiate the formation of domain wall velocity in ferromagnetic nanowire. We discuss the properties of dynamic magnetic soliton in uniaxial anisotropic ferromagnetic nanowire driven by spin-transfer torque, and analyze the modulation instability and dark soliton on the spin wave background, which shows the characteristic breather behavior of the soliton as it propagates along the ferromagnetic nanowire. With stronger breather character, we get the novel magnetic rogue wave and clarify its formation mechanism. The generation of magnetic rogue wave mainly arises from the accumulation of energy and magnons toward to its central part. We also observe that the spin-polarized current can control the exchange rate of magnons between the envelope soliton and the background, and the critical current condition is obtained analytically. At last, we have theoretically investigated the current-excited and frequency-adjusted ferromagnetic resonance in magnetic trilayers. A particular case of the perpendicular analyzer reveals that the ferromagnetic resonance curves, including the resonant location and the resonant linewidth, can be adjusted by changing the pinned magnetization direction and the direct current. Under the control of the current and external magnetic field, several magnetic states, such as quasi-parallel and quasi-antiparallel stable states, out
Spin Glasses : Statics and Dynamics : Summer School
Bovier, Anton
2009-01-01
Over the last decade, spin glass theory has turned from a fascinating part of t- oretical physics to a ?ourishing and rapidly growing subject of probability theory as well. These developments have been triggered to a large part by the mathem- ical understanding gained on the fascinating and previously mysterious “Parisi solution” of the Sherrington–Kirkpatrick mean ?eld model of spin glasses, due to the work of Guerra, Talagrand, and others. At the same time, new aspects and applications of the methods developed there have come up. The presentvolumecollects a number of reviewsaswellas shorterarticlesby lecturers at a summer school on spin glasses that was held in July 2007 in Paris. These articles range from pedagogical introductions to state of the art papers, covering the latest developments. In their whole, they give a nice overview on the current state of the ?eld from the mathematical side. The review by Bovier and Kurkova gives a concise introduction to mean ?eld models, starting with the Curie–...
Experimental evidence for dynamic scaling in spin glasses
Pappas, C; Ehlers, G; Campbell, I A
2002-01-01
Dynamics is the key to the understanding of glassy transitions. A detailed analysis of s(Q,t) in the spin glass system Au sub 0 sub . sub 8 sub 6 Fe sub 0 sub . sub 1 sub 4 shows that at T sub g the autocorrelation function decays as t sup - sup x , with x propor to 0.12. Above T sub g , s(Q,t) is then described by the form proposed by Ogielski: t sup - sup x exp(-(t/tau sub 0) supbeta). These results agree with predictions of large scale numerical simulations and are a direct confirmation of dynamic scaling in spin glasses. (orig.)
Shapiro like steps reveals molecular nanomagnets’ spin dynamics
International Nuclear Information System (INIS)
Abdollahipour, Babak; Abouie, Jahanfar; Ebrahimi, Navid
2015-01-01
We present an accurate way to detect spin dynamics of a nutating molecular nanomagnet by inserting it in a tunnel Josephson junction and studying the current voltage (I-V) characteristic. The spin nutation of the molecular nanomagnet is generated by applying two circularly polarized magnetic fields. We demonstrate that modulation of the Josephson current by the nutation of the molecular nanomagnet’s spin appears as a stepwise structure like Shapiro steps in the I-V characteristic of the junction. Width and heights of these Shapiro-like steps are determined by two parameters of the spin nutation, frequency and amplitude of the nutation, which are simply tuned by the applied magnetic fields
The su(2 vertical bar 3) dynamic spin chain
International Nuclear Information System (INIS)
Beisert, Niklas
2004-01-01
The complete one-loop, planar dilatation operator of the N=4 superconformal gauge theory was recently derived and shown to be integrable. Here, we present further compelling evidence for a generalisation of this integrable structure to higher orders of the coupling constant. For that we consider the su(2 vertical bar 3) subsector and investigate the restrictions imposed on the spin chain Hamiltonian by the symmetry algebra. This allows us to uniquely fix the energy shifts up to the three-loop level and thus prove the correctness of a conjecture in hep-th/0303060. A novel aspect of this spin chain model is that the higher-loop Hamiltonian, as for N=4 SYM in general, does not preserve the number of spin sites. Yet this dynamic spin chain appears to be integrable
Hexagonal type Ising nanowire with mixed spins: Some dynamic behaviors
International Nuclear Information System (INIS)
Kantar, Ersin; Kocakaplan, Yusuf
2015-01-01
The dynamic behaviors of a mixed spin (1/2–1) hexagonal Ising nanowire (HIN) with core–shell structure in the presence of a time dependent magnetic field are investigated by using the effective-field theory with correlations based on the Glauber-type stochastic dynamics (DEFT). According to the values of interaction parameters, temperature dependence of the dynamic magnetizations, the hysteresis loop areas and the dynamic correlations are investigated to characterize the nature (first- or second-order) of the dynamic phase transitions (DPTs). Dynamic phase diagrams, including compensation points, are also obtained. Moreover, from the thermal variations of the dynamic total magnetization, the five compensation types can be found under certain conditions, namely the Q-, R-, S-, P-, and N-types. - Highlights: • Dynamic behaviors of mixed spin HIN system are obtained within the EFT. • The system exhibits i, p and nm fundamental phases. • The dynamic phase diagrams are presented in (h, T), (D, T), (Δ S , T) and (r, T) planes. • The dynamic phase diagrams exhibit the dynamic tricritical point (TCP). • Different dynamic compensation types are obtained
Spin dynamics of paramagnetic centers with anisotropic g tensor and spin of 1/2
Maryasov, Alexander G.; Bowman, Michael K.
2012-08-01
The influence of g tensor anisotropy on spin dynamics of paramagnetic centers having real or effective spin of 1/2 is studied. The g anisotropy affects both the excitation and the detection of EPR signals, producing noticeable differences between conventional continuous-wave (cw) EPR and pulsed EPR spectra. The magnitudes and directions of the spin and magnetic moment vectors are generally not proportional to each other, but are related to each other through the g tensor. The equilibrium magnetic moment direction is generally parallel to neither the magnetic field nor the spin quantization axis due to the g anisotropy. After excitation with short microwave pulses, the spin vector precesses around its quantization axis, in a plane that is generally not perpendicular to the applied magnetic field. Paradoxically, the magnetic moment vector precesses around its equilibrium direction in a plane exactly perpendicular to the external magnetic field. In the general case, the oscillating part of the magnetic moment is elliptically polarized and the direction of precession is determined by the sign of the g tensor determinant (g tensor signature). Conventional pulsed and cw EPR spectrometers do not allow determination of the g tensor signature or the ellipticity of the magnetic moment trajectory. It is generally impossible to set a uniform spin turning angle for simple pulses in an unoriented or 'powder' sample when g tensor anisotropy is significant.
Spin dynamics of the itinerant helimagnet MnSi studied by positive muon spin relaxation
International Nuclear Information System (INIS)
Kadono, R.; Matsuzaki, T.; Yamazaki, T.; Kreitzman, S.R.; Brewer, J.H.
1990-03-01
The local magnetic fields and spin dynamics of the itinerant helimagnet MnSi(T c ≅ 29.5 K) have been studied experimentally using positive muon spin rotation/relaxation (μ + SR) methods. In the ordered phase (T c ), zero-field μSR was used to measure the hyperfine fields at the muon sites as well as the muon spin-lattice relaxation time T 1 μ . Two magnetically inequivalent interstitial μ + sites were found with hyperfine coupling constants A hf (1) = -3.94 kOe/μ B and A hf (2) = -6.94 kOe/μ B , respectively. In the paramagnetic phase (T > T c ), the muon-nuclear spin double relaxation technique was used to simultaneously but independently determine the spin-lattice relaxation time T 1 Mn of 55 Mn spins and that of positive muons (T 1 μ ) over a wide temperature range (T c 1 Mn and T 1 μ in both phases shows systematic deviations from the predictions of self-consistent renormalization (SCR) theory. (author)
Quantum dynamics of spin qubits in optically active quantum dots
International Nuclear Information System (INIS)
Bechtold, Alexander
2017-01-01
The control of solid-state qubits for quantum information processing requires a detailed understanding of the mechanisms responsible for decoherence. During the past decade a considerable progress has been achieved for describing the qubit dynamics in relatively strong external magnetic fields. However, until now it has been impossible to experimentally test many theoretical predictions at very low magnetic fields and uncover mechanisms associated with reduced coherence times of spin qubits in solids. In particular, the role of the quadrupolar coupling of nuclear spins in this process is to date poorly understood. In the framework of this thesis, a spin memory device is utilized to optically prepare individual electron spin qubits in a single InGaAs quantum dot. After storages over timescales extending into the microsecond range the qubit��s state is read out to monitor the impact of the environment on it the spin dynamics. By performing such pump-probe experiments, the dominant electron spin decoherence mechanisms are identified in a wide range of external magnetic fields (0-5 T) and lattice temperatures of ∝10 K. The results presented in this thesis show that, without application of external magnetic fields the initially orientated electron spin rapidly loses its polarization due to precession around the fluctuating Overhauser field with a dispersion of 10.5 mT. The inhomogeneous dephasing time associated with these hyperfine mediated dynamics is of the order of T * 2 =2 ns. Over longer timescales, an unexpected stage of central spin relaxation is observed, namely the appearance of a second feature in the relaxation curve around T Q =750 ns. By comparison with theoretical simulations, this additional decoherence channel is shown to arise from coherent dynamics in the nuclear spin bath itself. Such coherent dynamics are induced by a quadrupolar coupling of the nuclear spins to the strain induced electric field gradients in the quantum dot. These processes
Transient dynamic and inelastic analysis of shells of revolution
International Nuclear Information System (INIS)
Svalbonas, V.
1975-01-01
Advances in the limits of structural use in the aerospace and nuclear power industries over the past years have increased the requirements upon the applicable analytical computer programs to include accurate capabilities for inelastic and transient dynamic analyses. In many minds, however, this advanced capability is unequivocally linked with the large scale, general purpose, finite element programs. This idea is also combined with the view that, therefore, such analyses are prohibitively expensive and should be relegated to the 'last resort' classification. While this, in the general sense, may indeed be the case, if however, the user needs only to analyze structures falling into limited categories, he may find that a variety of smaller special purpose programs are available, which do not put an undue strain upon his resources. One such structural category is shells of revolution. This survey of programs will concentrate upon the analytical tools which have been developed predominantly for shells of revolution. The survey will be subdivided into three parts: a) consideration of programs for transient dynamic analysis, b) consideration of programs for inelastic analysis, and finally, c) consideration of programs capable of dynamic plasticity analysis. In each part, programs based upon finite difference, finite element, and numerical integration methods will be considered. The programs will be compared on the basis of analytical capabilities, and ease of idealization and use. In each part of the survey sample problems will be utilized to exemplify the state-of-the-art. (orig.) [de
Investigation of transient dynamics of capillary assisted particle assembly yield
Energy Technology Data Exchange (ETDEWEB)
Virganavičius, D. [Institute of Materials Science, Kaunas University of Technology, K. Baršausko St. 59, Kaunas LT-51423 (Lithuania); Laboratory of Micro- and Nanotechnology, Paul Scherrer Institut, 5232 Villigen PSI (Switzerland); Juodėnas, M. [Institute of Materials Science, Kaunas University of Technology, K. Baršausko St. 59, Kaunas LT-51423 (Lithuania); Tamulevičius, T., E-mail: tomas.tamulevicius@ktu.lt [Institute of Materials Science, Kaunas University of Technology, K. Baršausko St. 59, Kaunas LT-51423 (Lithuania); Department of Physics, Kaunas University of Technology, Studentų St. 50, Kaunas LT-51368 (Lithuania); Schift, H. [Laboratory of Micro- and Nanotechnology, Paul Scherrer Institut, 5232 Villigen PSI (Switzerland); Tamulevičius, S. [Institute of Materials Science, Kaunas University of Technology, K. Baršausko St. 59, Kaunas LT-51423 (Lithuania); Department of Physics, Kaunas University of Technology, Studentų St. 50, Kaunas LT-51368 (Lithuania)
2017-06-01
Highlights: • Regular particles arrays were assembled by capillary force assisted deposition. • Deposition yield dynamics was investigated at different thermal velocity regimes. • Yield transient behavior was approximated with logistic function. • Pattern density influence for switching behavior was assessed. - Abstract: In this paper, the transient behavior of the particle assembly yield dynamics when switching from low yield to high yield deposition at different velocity and thermal regimes is investigated. Capillary force assisted particle assembly (CAPA) using colloidal suspension of green fluorescent 270 nm diameter polystyrene beads was performed on patterned poly (dimethyl siloxane) substrates using a custom-built deposition setup. Two types of patterns with different trapping site densities were used to assess CAPA process dynamics and the influence of pattern density and geometry on the deposition yield transitions. Closely packed 300 nm diameter circular pits ordered in hexagonal arrangement with 300 nm pitch, and 2 × 2 mm{sup 2} square pits with 2 μm spacing were used. 2-D regular structures of the deposited particles were investigated by means of optical fluorescence and scanning electron microscopy. The fluorescence micrographs were analyzed using a custom algorithm enabling to identify particles and calculate efficiency of the deposition performed at different regimes. Relationship between the spatial distribution of particles in transition zone and ambient conditions was evaluated and quantified by approximation of the yield profile with a logistic function.
Solar wind dynamic pressure variations and transient magnetospheric signatures
International Nuclear Information System (INIS)
Sibeck, D.G.; Baumjohann, W.
1989-01-01
Contrary to the prevailing popular view, we find some transient ground events with bipolar north-south signatures are related to variations in solar wind dynamic pressure and not necessarily to magnetic merging. We present simultaneous solar wind plasma observations for two previously reported transient ground events observed at dayside auroral latitudes. During the first event, originally reported by Lanzerotti et al. [1987], conjugate ground magnetometers recorded north-south magetic field deflections in the east-west and vertical directions. The second event was reported by Todd et al. [1986], we noted ground rader observations indicating strong northward then southward ionospheric flows. The events were associated with the postulated signatures of patchy, sporadic, merging of magnetosheath and magnetospheric magnetic field lines at the dayside magnetospause, known as flux transfer events. Conversely, we demonstrate that the event reported by Lanzerotti et al. was accompanied by a sharp increase in solar wind dynamic pressure, a magnetospheric compression, and a consequent ringing of the magnetospheric magnetic field. The event reported by Todd et al. was associated with a brief but sharp increase in the solar wind dynamic pressure. copyright American Geophysical Union 1989
Particle spin dynamics as the grassmann variant of classical mechanics
International Nuclear Information System (INIS)
Berezin, F.A.; Marinov, M.S.
1976-01-01
A generalization of the calssical mechanics is presented. The dynamical variables are assumed to be elements of an algebra with anticommuting generators (The Grassmann algebra). The action functional and the Poisson brackets are defined. The equations of motion are deduced from the variational principle. The dynamics is described also by means of the Liouville equation for the phase-space distribution. The canonical quantization lead phase-space path integral approach to the quantum theory is also formulated. The theory is applied to describe the particle spin. Classical description of the spin precession and of the spin-orbital forces is given. The phase-space distribution and the interaction with an external field are also considered
On the stochastic dynamics of disordered spin models
International Nuclear Information System (INIS)
Semerjian, G.; Montanari, A.; Cugliandolo, L.F.
2003-09-01
In this article we discuss several aspects of the stochastic dynamics of spin models. The paper has two independent parts. Firstly, we explore a few properties of the multi-point correlations and responses of generic systems evolving in equilibrium with a thermal bath. We propose a fluctuation principle that allows us to derive fluctuation-dissipation relations for many-time correlations and linear responses. We also speculate on how these features will be modified in systems evolving slowly out of equilibrium, as finite-dimensional or dilute spin-glasses. Secondly, we present a formalism that allows one to derive a series of approximated equations that determine the dynamics of disordered spin models on random (hyper) graphs. (author)
Torque converter transient characteristics prediction using computational fluid dynamics
International Nuclear Information System (INIS)
Yamaguchi, T; Tanaka, K
2012-01-01
The objective of this research is to investigate the transient torque converter performance used in an automobile. A new technique in computational fluid dynamics is introduced, which includes the inertia of the turbine in a three dimensional simulation of the torque converter during a launch condition. The simulation results are compared to experimental test data with good agreement across the range of data. In addition, the simulated flow structure inside the torque converter is visualized and compared to results from a steady-state calculation.
Spin dynamics in polarized neutron interferometry
International Nuclear Information System (INIS)
Buchelt, R.J.
2000-05-01
Since its first implementation in 1974, perfect crystal neutron interferometry has become an extremely successful method applicable to a variety of research fields. Moreover, it proved as an illustrative and didactically valuable experiment for the demonstration of the fundamental principles of quantum mechanics, the neutron being an almost ideal probe for the detection of various effects, as it interacts by all four forces of nature. For instance, the first experimental verification of the 4-pi-periodicity of spinor wave functions was performed with perfect crystal neutron interferometry, and it remains the only method known which demonstrates the quantum mechanical wave-particle-duality of massive particles at a macroscopic separation of the coherent matter waves of several centimeters. A particular position is taken herein by polarized neutron interferometry, which as a collective term comprises all techniques and experiments which not only aim at the coherent splitting and macroscopic separation of neutron beams in the interferometer with the purpose of their separate treatment, but which aim to do so with explicit employment of the spin-magnetic properties of the neutron as a fermion. Remarkable aspects may arise, for example, if nuclear and magnetic potentials are concurrently applied to a partial beam of the interferometer: among other results, it is found that - in perfect agreement to the theoretical predictions - the neutron beam leaving the interferometer features non-zero polarization, even if the incident neutron beam, and hence either of the partial beams, is unpolarized. The main emphasis of the present work lies on the development of an appropriate formalism that describes the effect of simultaneous occurrence of nuclear and magnetic interaction on the emerging intensity and polarization for an arbitrary number of sequential magnetic regions, so-called domains. The confrontation with subtle theoretical problems was inevitable during the experimental
Magnetization dynamics of imprinted non-collinear spin textures
Energy Technology Data Exchange (ETDEWEB)
Streubel, Robert, E-mail: r.streubel@ifw-dresden.de; Kopte, Martin; Makarov, Denys, E-mail: d.makarov@ifw-dresden.de [Institute for Integrative Nanosciences, IFW Dresden, 01069 Dresden (Germany); Fischer, Peter [Center for X-Ray Optics, Lawrence Berkeley National Laboratory, Berkeley, California 94720 (United States); Physics Department, UC Santa Cruz, Santa Cruz, California 95064 (United States); Schmidt, Oliver G. [Institute for Integrative Nanosciences, IFW Dresden, 01069 Dresden (Germany); Material Systems for Nanoelectronics, Chemnitz University of Technology, 09107 Chemnitz (Germany)
2015-09-14
We study the magnetization dynamics of non-collinear spin textures realized via imprint of the magnetic vortex state in soft permalloy into magnetically hard out-of-plane magnetized Co/Pd nanopatterned heterostructures. Tuning the interlayer exchange coupling between soft- and hard-magnetic subsystems provides means to tailor the magnetic state in the Co/Pd stack from being vortex- to donut-like with different core sizes. While the imprinted vortex spin texture leads to the dynamics similar to the one observed for vortices in permalloy disks, the donut-like state causes the appearance of two gyrofrequencies characteristic of the early and later stages of the magnetization dynamics. The dynamics are described using the Thiele equation supported by the full scale micromagnetic simulations by taking into account an enlarged core size of the donut states compared to magnetic vortices.
Spin dynamics in storage rings and linear accelerators
International Nuclear Information System (INIS)
Irwin, J.
1994-04-01
The purpose of these lectures is to survey the subject of spin dynamics in accelerators: to give a sense of the underlying physics, the typical analytic and numeric methods used, and an overview of results achieved. Consideration will be limited to electrons and protons. Examples of experimental and theoretical results in both linear and circular machines are included
Spin dynamics in storage rings and linear accelerators
Energy Technology Data Exchange (ETDEWEB)
Irwin, J. [Stanford Univ., CA (United States)
1994-12-01
The purpose of these lectures is to survey the subject of spin dynamics in accelerators: to give a sense of the underlying physics, the typical analytic and numeric methods used, and an overview of results achieved. Consideration will be limited to electrons and protons. Examples of experimental and theoretical results in both linear and circular machines are included.
Anomalous quantum critical spin dynamics in YFe2Al10
Huang, K.; Tan, C.; Zhang, J.; Ding, Z.; MacLaughlin, D. E.; Bernal, O. O.; Ho, P.-C.; Baines, C.; Wu, L. S.; Aronson, M. C.; Shu, L.
2018-04-01
We report results of a muon spin relaxation (μ SR ) study of YFe2Al10 , a quasi-two-dimensional (2D) nearly ferromagnetic metal in which unconventional quantum critical behavior is observed. No static Fe2 + magnetism, with or without long-range order, is found down to 19 mK. The dynamic muon spin relaxation rate λ exhibits power-law divergences in temperature and magnetic field, the latter for fields that are too weak to affect the electronic spin dynamics directly. We attribute this to the proportionality of λ (ωμ,T ) to the dynamic structure factor S (ωμ,T ) , where ωμ≈105-107s-1 is the muon Zeeman frequency. These results suggest critical divergences of S (ωμ,T ) in both temperature and frequency. Power-law scaling and a 2D dissipative quantum XY model both yield forms for S (ω ,T ) that agree with neutron scattering data (ω ≈1012s-1 ). Extrapolation to μ SR frequencies agrees semiquantitatively with the observed temperature dependence of λ (ωμ,T ) , but predicts frequency independence for ωμ≪T , in extreme disagreement with experiment. We conclude that the quantum critical spin dynamics of YFe2Al10 is not well understood at low frequencies.
Increasing Spin Coherence in Nanodiamond via Dynamic Nuclear Polarization
Gaebel, Torsten; Rej, Ewa; Boele, Thomas; Waddington, David; Reilly, David
Nanodiamonds are of interest for quantum information technology, as metrological sensors, and more recently as a probe of biological environments. Here we present results examining how intrinsic defects can be used for dynamic nuclear polarization that leads to a dramatic increase in both T1 and T2 for 13C spins in nanodiamond. Mechanisms to explain this enhancement are discussed.
Multi spin-flip dynamics: a solution of the one-dimensional Ising model
International Nuclear Information System (INIS)
Novak, I.
1990-01-01
The Glauber dynamics of interacting Ising spins (the single spin-flip dynamics) is generalized to p spin-flip dynamics with a simultaneous flip of up to p spins in a single configuration move. The p spin-flip dynamics is studied of the one-dimensional Ising model with uniform nearest-neighbour interaction. For this case, an exact relation is given for the time dependence of magnetization. It was found that the critical slowing down in this model could be avoided when p spin-flip dynamics with p>2 was considered. (author). 17 refs
Dynamic remedial action scheme using online transient stability analysis
Shrestha, Arun
Economic pressure and environmental factors have forced the modern power systems to operate closer to their stability limits. However, maintaining transient stability is a fundamental requirement for the operation of interconnected power systems. In North America, power systems are planned and operated to withstand the loss of any single or multiple elements without violating North American Electric Reliability Corporation (NERC) system performance criteria. For a contingency resulting in the loss of multiple elements (Category C), emergency transient stability controls may be necessary to stabilize the power system. Emergency control is designed to sense abnormal conditions and subsequently take pre-determined remedial actions to prevent instability. Commonly known as either Remedial Action Schemes (RAS) or as Special/System Protection Schemes (SPS), these emergency control approaches have been extensively adopted by utilities. RAS are designed to address specific problems, e.g. to increase power transfer, to provide reactive support, to address generator instability, to limit thermal overloads, etc. Possible remedial actions include generator tripping, load shedding, capacitor and reactor switching, static VAR control, etc. Among various RAS types, generation shedding is the most effective and widely used emergency control means for maintaining system stability. In this dissertation, an optimal power flow (OPF)-based generation-shedding RAS is proposed. This scheme uses online transient stability calculation and generator cost function to determine appropriate remedial actions. For transient stability calculation, SIngle Machine Equivalent (SIME) technique is used, which reduces the multimachine power system model to a One-Machine Infinite Bus (OMIB) equivalent and identifies critical machines. Unlike conventional RAS, which are designed using offline simulations, online stability calculations make the proposed RAS dynamic and adapting to any power system
Dynamics of the conservative and dissipative spin-orbit problem
Celletti, A; Lega, E
2006-01-01
We investigate the dynamics of the spin--orbit coupling under different settings. First we consider the conservative problem, and then we add a dissipative torque as provided by MacDonald's or Darwin's models. By means of frequency analysis and of the computation of the maximum Lyapunov indicator we explore the different dynamical behaviors associated to the main resonances. In particular we focus on the 1:1 and 3:2 resonances in which the Moon and Mercury are actually trapped.
Dynamical phase transitions in spin models and automata
International Nuclear Information System (INIS)
Derrida, B.
1989-01-01
Some of the models and methods developed in the study of the dynamics of spin models and automata are described. Special attention is given to the distance method which consists of comparing the time evolution of two configurations. The method is used to obtain the phase boundary between a frozen and a chaotic phase in the case of deterministic models. For stochastic systems the method is used to obtain dynamical phase transitions
Exploring the dynamics about the glass transition by muon spin relaxation and muon spin rotation
International Nuclear Information System (INIS)
Bermejo, F J; Bustinduy, I; Cox, S F J; Lord, J S; Cabrillo, C; Gonzalez, M A
2006-01-01
The capability of muon spin rotation and muon spin relaxation to explore dynamics in the vicinity of the glass transition is illustrated by results pertaining to three materials exhibiting two different glass-forming abilities. Measurements under transverse magnetic fields enable us to monitor the dynamics of muonium-labelled closed-shell molecules within the microsecond range. The results display the onset of stochastic molecular motions taking place upon crossing from below the glass-transition temperature. In turn, the molecular dynamics of radicals formed by addition of atomic muonium to unsaturated organic molecules can also be explored up to far shorter times by means of relaxation measurements under longitudinal fields. The technique is then shown to be capable of singling out stochastic reorientational motions from others, which usually are strongly coupled to them and usually dominate the material response when measured using higher-frequency probes such as neutron and light scattering
J-Specific Dynamics in AN Optical Centrifuge Using Transient IR Spectroscopy
Murray, Matthew J.; Liu, Qingnan; Toro, Carlos; Mullin, Amy S.
2013-06-01
Quantum state-specific dynamics are reported for a number of CO_{2} rotational states in an optical centrifuge. The optical centrifuge results from combining oppositely-chirped ultrafast laser pulses and spinning CO_{2} molecules into extremely high rotational states with J≈220. Collisions of centrifuged molecules induce depletion of population from low-J states (J=0 and 36) and lead to appearance of population in high J states (J=36, 54 and 76). Transient Doppler-broadened line profiles for individual CO_{2} states reveal that the depletion populations have narrow velocity distributions with translational temperatures significantly colder than 300 K. Molecules that appear in the higher rotational states have broad velocity distributions, showing that both rotational and translational energy are imparted in collisions of the centrifuged molecules. These results show that substantial amounts of angular momentum persist after many collisions and that translational energy exchange continues for several thousand collisions.
International Nuclear Information System (INIS)
Zevenhoven, Koos C. J.; Ilmoniemi, Risto J.; Dong, Hui; Clarke, John
2015-01-01
Pulse-induced transients such as eddy currents can cause problems in measurement techniques where a signal is acquired after an applied preparatory pulse. In ultra-low-field magnetic resonance imaging, performed in magnetic fields typically of the order of 100 μT, the signal-to-noise ratio is enhanced in part by prepolarizing the proton spins with a pulse of much larger magnetic field and in part by detecting the signal with a Superconducting QUantum Interference Device (SQUID). The pulse turn-off, however, can induce large eddy currents in the shielded room, producing an inhomogeneous magnetic-field transient that both seriously distorts the spin dynamics and exceeds the range of the SQUID readout. It is essential to reduce this transient substantially before image acquisition. We introduce dynamical cancellation (DynaCan), a technique in which a precisely designed current waveform is applied to a separate coil during the later part and turn off of the polarizing pulse. This waveform, which bears no resemblance to the polarizing pulse, is designed to drive the eddy currents to zero at the precise moment that the polarizing field becomes zero. We present the theory used to optimize the waveform using a detailed computational model with corrections from measured magnetic-field transients. SQUID-based measurements with DynaCan demonstrate a cancellation of 99%. Dynamical cancellation has the great advantage that, for a given system, the cancellation accuracy can be optimized in software. This technique can be applied to both metal and high-permeability alloy shielded rooms, and even to transients other than eddy currents
Computer studies of multiple-quantum spin dynamics
Energy Technology Data Exchange (ETDEWEB)
Murdoch, J.B.
1982-11-01
The excitation and detection of multiple-quantum (MQ) transitions in Fourier transform NMR spectroscopy is an interesting problem in the quantum mechanical dynamics of spin systems as well as an important new technique for investigation of molecular structure. In particular, multiple-quantum spectroscopy can be used to simplify overly complex spectra or to separate the various interactions between a nucleus and its environment. The emphasis of this work is on computer simulation of spin-system evolution to better relate theory and experiment.
Photo-Induced Spin Dynamics in Semiconductor Quantum Wells.
Miah, M Idrish
2009-01-17
We experimentally investigate the dynamics of spins in GaAs quantum wells under applied electric bias by photoluminescence (PL) measurements excited with circularly polarized light. The bias-dependent circular polarization of PL (P(PL)) with and without magnetic field is studied. The P(PL) without magnetic field is found to be decayed with an enhancement of increasing the strength of the negative bias. However, P(PL) in a transverse magnetic field shows oscillations under an electric bias, indicating that the precession of electron spin occurs in quantum wells. The results are discussed based on the electron-hole exchange interaction in the electric field.
Photo-Induced Spin Dynamics in Semiconductor Quantum Wells
Directory of Open Access Journals (Sweden)
Miah M
2009-01-01
Full Text Available Abstract We experimentally investigate the dynamics of spins in GaAs quantum wells under applied electric bias by photoluminescence (PL measurements excited with circularly polarized light. The bias-dependent circular polarization of PL (P PL with and without magnetic field is studied. TheP PLwithout magnetic field is found to be decayed with an enhancement of increasing the strength of the negative bias. However,P PLin a transverse magnetic field shows oscillations under an electric bias, indicating that the precession of electron spin occurs in quantum wells. The results are discussed based on the electron–hole exchange interaction in the electric field.
Computer studies of multiple-quantum spin dynamics
International Nuclear Information System (INIS)
Murdoch, J.B.
1982-11-01
The excitation and detection of multiple-quantum (MQ) transitions in Fourier transform NMR spectroscopy is an interesting problem in the quantum mechanical dynamics of spin systems as well as an important new technique for investigation of molecular structure. In particular, multiple-quantum spectroscopy can be used to simplify overly complex spectra or to separate the various interactions between a nucleus and its environment. The emphasis of this work is on computer simulation of spin-system evolution to better relate theory and experiment
Nonlinear dynamics and chaotic behaviour of spin wave instabilities
Energy Technology Data Exchange (ETDEWEB)
Rezende, S M; Aguiar, F.M. de.
1986-09-01
Recent experiments revealed that spin wave instabilities driven by microwave fields, either parallel or transverse to the static magnetic field, display chaotic dynamics similar to other physical systems. A theory based on the coupled nonlinear equations of motion for two spin wave modes is presented which explains most features of the experimental observations. The model predicts subharmonic routes to chaos that depend on the parameter values. For certain parameters the system exhibits a Feigenbaum scenario characteristic of one-dimensional maps. Other parameters lead to different subharmonic routes indicative of multidimensional behavior, as observed in some experiments.
Zhong, J-Q; Patterson, M D; Wettlaufer, J S
2010-07-23
We observe the transient formation of a ringed pattern state during spin up of an evaporating fluid on a time scale of order a few Ekman spin up times. The ringed state is probed using infrared thermometry and particle image velocimetry and it is demonstrated to be a consequence of the transient balance between Coriolis and viscous forces which dominate inertia, each of which are extracted from the measured velocity field. The breakdown of the ringed state is quantified in terms of the antiphasing of these force components which drives a Kelvin-Helmholtz instability and we show that the resulting vortex grid spacing scales with the ring wavelength. This is the fundamental route to quasi-two-dimensional turbulent vortex flow and thus may have implications in astrophysics and geophysics wherein rotating convection is ubiquitous.
Spin-dynamics in a p(bar p) ring
International Nuclear Information System (INIS)
Pisent, A.
1990-01-01
In this paper after a short introduction on the main concepts of spin dynamics, like the conservation of the polarization as a stability condition, the depolarizing resonances and their care by the Siberian Snake schema, two particular applications are discussed. In the European hadron Facility, and in the other future hadron machines in the same range of energies (30--40 Gev), the polarization in the main ring can be maintained using a Siberian Snake. We shall discuss the design of such a device. As a second example is considered the Spin Splitter, a proposed experiment with the aim of polarizing bar p. Also in this case the spin stability is realized by the Siberian Snake schema
Spinning Flight Dynamics of Frisbees, Boomerangs, Samaras, and Skipping Stones
Lorenz, Ralph D
2006-01-01
More frisbees are sold each year than baseballs, basketballs, and footballs combined. Yet these familiar flying objects have subtle and clever aerodynamic and gyrodynamic properties which are only recently being documented by wind tunnel and other studies. In common with other rotating bodies discussed in this readily accessible book, they are typically not treated in textbooks of aeronautics and the literature is scattered in a variety of places. This book develops the theme of disc-wings and spinning aerospace vehicles in parallel. Many readers will have enjoyed these vehicles and their dynamics in recreational settings, so this book will be of wide interest. In addition to spinning objects of various shapes, several exotic manned aircraft with disc platforms have been proposed and prototypes built - these include a Nazi ‘secret weapon’ and the De Havilland Avrocar, also discussed in the book. Boomerangs represent another category of spinning aerodynamic body whose behavior can only be understood by cou...
Effects of finite size on spin glass dynamics
Sato, Tetsuya; Komatsu, Katsuyoshi
2010-12-01
In spite of comprehensive studies to clarify a variety of interesting phenomena of spin glasses, their understanding has been insufficiently established. To overcome such a problem, fabrication of a mesoscopic spin glass system, whose dynamics can be observed over the entire range to the equilibrium, is useful. In this review the challenges of research that has been performed up to now in this direction and our recent related studies are introduced. We have established to study the spin glass behaviour in terms of droplet picture using nanofabricated mesoscopic samples to some extent, but some problems that should be clarified have been left. Finally, the direction of some new studies is proposed to solve the problems.
Epidemic Dynamics in Open Quantum Spin Systems
Pérez-Espigares, Carlos; Marcuzzi, Matteo; Gutiérrez, Ricardo; Lesanovsky, Igor
2017-10-01
We explore the nonequilibrium evolution and stationary states of an open many-body system that displays epidemic spreading dynamics in a classical and a quantum regime. Our study is motivated by recent experiments conducted in strongly interacting gases of highly excited Rydberg atoms where the facilitated excitation of Rydberg states competes with radiative decay. These systems approximately implement open quantum versions of models for population dynamics or disease spreading where species can be in a healthy, infected or immune state. We show that in a two-dimensional lattice, depending on the dominance of either classical or quantum effects, the system may display a different kind of nonequilibrium phase transition. We moreover discuss the observability of our findings in laser driven Rydberg gases with particular focus on the role of long-range interactions.
Spin dynamics of large-spin fermions in a harmonic trap
Energy Technology Data Exchange (ETDEWEB)
Xu, Junjun; Feng, Tongtong; Gu, Qiang, E-mail: qgu@ustb.edu.cn
2017-04-15
Understanding the collective dynamics in a many-body system has been a central task in condensed matter physics. To achieve this task, we develop a Hartree–Fock theory to study the collective oscillations of spinor Fermi system, motivated by recent experiment on spin-9/2 fermions. We observe an oscillation period shoulder for small rotation angles. Different from previous studies, where the shoulder is found connected to the resonance from periodic to running phase, here the system is always in a running phase in the two-body phase space. This shoulder survives even in the many-body oscillations, which could be tested in the experiments. We also show how these collective oscillations evolve from two- to many-body. Our theory provides an alternative way to understand the collective dynamics in large-spin Fermi systems.
Dynamic-angle spinning and double rotation of quadrupolar nuclei
International Nuclear Information System (INIS)
Mueller, K.T.; California Univ., Berkeley, CA
1991-07-01
Nuclear magnetic resonance (NMR) spectroscopy of quadrupolar nuclei is complicated by the coupling of the electric quadrupole moment of the nucleus to local variations in the electric field. The quadrupolar interaction is a useful source of information about local molecular structure in solids, but it tends to broaden resonance lines causing crowding and overlap in NMR spectra. Magic- angle spinning, which is routinely used to produce high resolution spectra of spin-1/2 nuclei like carbon-13 and silicon-29, is incapable of fully narrowing resonances from quadrupolar nuclei when anisotropic second-order quadrupolar interactions are present. Two new sample-spinning techniques are introduced here that completely average the second-order quadrupolar coupling. Narrow resonance lines are obtained and individual resonances from distinct nuclear sites are identified. In dynamic-angle spinning (DAS) a rotor containing a powdered sample is reoriented between discrete angles with respect to high magnetic field. Evolution under anisotropic interactions at the different angles cancels, leaving only the isotropic evolution of the spin system. In the second technique, double rotation (DOR), a small rotor spins within a larger rotor so that the sample traces out a complicated trajectory in space. The relative orientation of the rotors and the orientation of the larger rotor within the magnetic field are selected to average both first- and second-order anisotropic broadening. The theory of quadrupolar interactions, coherent averaging theory, and motional narrowing by sample reorientation are reviewed with emphasis on the chemical shift anisotropy and second-order quadrupolar interactions experienced by half-odd integer spin quadrupolar nuclei. The DAS and DOR techniques are introduced and illustrated with application to common quadrupolar systems such as sodium-23 and oxygen-17 nuclei in solids
Dynamic-angle spinning and double rotation of quadrupolar nuclei
Energy Technology Data Exchange (ETDEWEB)
Mueller, K.T. (Lawrence Berkeley Lab., CA (United States) California Univ., Berkeley, CA (United States). Dept. of Chemistry)
1991-07-01
Nuclear magnetic resonance (NMR) spectroscopy of quadrupolar nuclei is complicated by the coupling of the electric quadrupole moment of the nucleus to local variations in the electric field. The quadrupolar interaction is a useful source of information about local molecular structure in solids, but it tends to broaden resonance lines causing crowding and overlap in NMR spectra. Magic- angle spinning, which is routinely used to produce high resolution spectra of spin-{1/2} nuclei like carbon-13 and silicon-29, is incapable of fully narrowing resonances from quadrupolar nuclei when anisotropic second-order quadrupolar interactions are present. Two new sample-spinning techniques are introduced here that completely average the second-order quadrupolar coupling. Narrow resonance lines are obtained and individual resonances from distinct nuclear sites are identified. In dynamic-angle spinning (DAS) a rotor containing a powdered sample is reoriented between discrete angles with respect to high magnetic field. Evolution under anisotropic interactions at the different angles cancels, leaving only the isotropic evolution of the spin system. In the second technique, double rotation (DOR), a small rotor spins within a larger rotor so that the sample traces out a complicated trajectory in space. The relative orientation of the rotors and the orientation of the larger rotor within the magnetic field are selected to average both first- and second-order anisotropic broadening. The theory of quadrupolar interactions, coherent averaging theory, and motional narrowing by sample reorientation are reviewed with emphasis on the chemical shift anisotropy and second-order quadrupolar interactions experienced by half-odd integer spin quadrupolar nuclei. The DAS and DOR techniques are introduced and illustrated with application to common quadrupolar systems such as sodium-23 and oxygen-17 nuclei in solids.
Spin dynamics of electron beams in circular accelerators
International Nuclear Information System (INIS)
Boldt, Oliver
2014-04-01
Experiments using high energy beams of spin polarized, charged particles still prove to be very helpful in disclosing a deeper understanding of the fundamental structure of matter. An important aspect is to control the beam properties, such as brilliance, intensity, energy, and degree of spin polarization. In this context, the present studies show various numerical calculations of the spin dynamics of high energy electron beams in circular accelerators. Special attention has to be paid to the emission of synchrotron radiation, that occurs when deflecting charged particles on circular orbits. In the presence of the fluctuation of the kinetic energy due to the photon emission, each electron spin moves non-deterministically. This stochastic effect commonly slows down the speed of all numeric estimations. However, the shown simulations cover - using appropriate approximations - trackings for the motion of thousands of electron spins for up to thousands of turns. Those calculations are validated and complemented by empirical investigations at the electron stretcher facility ELSA of the University of Bonn. They can largely be extended to other boundary conditions and thus, can be consulted for new accelerator layouts.
Transient Beam Dynamics in the LBL 2 MV Injector
International Nuclear Information System (INIS)
Henestroza, E; Grote, D
1999-01-01
A driver-scale injector for the Heavy Ion Fusion Accelerator project has been built at LBL. This machine has exceeded the design goals of high voltage (> 2 MV), high current (> 0.8 A of K + ) and low normalized emittance (< 1 π mm-mr). The injector consists of a 750 keV gun pre-injector followed by an electrostatic quadrupole accelerator (ESQ) which provides strong (alternating gradient) focusing for the space-charge dominated beam, and simultaneously accelerates the ions to 2 MeV. A matching section is being built to match the beam to the electrostatic accelerator ELISE. The gun preinjector, designed to hold up to 1 MV with minimal breakdown risks, consists of a hot aluminosilicate source with a large curved emitting surface surrounded by a thick ''extraction electrode''. During beam turn-on the voltage at the source is biased from a negative potential, enough to reverse the electric field on the emitting surface and avoid emission, to a positive potential to start extracting the beam; it stays constant for about 1 (micro)s, and is reversed to turn-off the emission. Since the Marx voltage applied on the accelerating quadrupoles and the main pre-injector gap is a long, constant pulse (several (micro)s), the transient behavior is dominated by the extraction pulser voltage time profile. The transient longitudinal dynamics of the beam in the injector was simulated by running the Particle in Cell codes GYMNOS and WARP3d in a time dependent mode. The generalization and its implementation in WAIW3d of a method proposed by Lampel and Tiefenback to eliminate transient oscillations in a one-dimensional planar diode will be presented
Spin-motive Force Induced by Domain Wall Dynamics in the Antiferromagnetic Spin Valve
Sugano, Ryoko; Ichimura, Masahiko; Takahashi, Saburo; Maekawa, Sadamichi; Crest Collaboration
2014-03-01
In spite of no net magnetization in antiferromagnetic (AF) textures, the local magnetic properties (Neel magnetization) can be manipulated in a similar fashion to ferromagnetic (F) ones. It is expected that, even in AF metals, spin transfer torques (STTs) lead to the domain wall (DW) motion and that the DW motion induces spin-motive force (SMF). In order to study the Neel magnetization dynamics and the resultant SMF, we treat the nano-structured F1/AF/F2 junction. The F1 and F2 leads behave as a spin current injector and a detector, respectively. Each F lead is fixed in the different magnetization direction. Torsions (DW in AF) are introduced reflecting the fixed magnetization of two F leads. We simulated the STT-induced Neel magnetization dynamics with the injecting current from F1 to F2 and evaluate induced SMF. Based on the adiabatic electron dynamics in the AF texture, Langevin simulations are performed at finite temperature. This research was supported by JST, CREST, Japan.
Coherent spin-rotational dynamics of oxygen superrotors
Milner, Alexander A.; Korobenko, Aleksey; Milner, Valery
2014-09-01
We use state- and time-resolved coherent Raman spectroscopy to study the rotational dynamics of oxygen molecules in ultra-high rotational states. While it is possible to reach rotational quantum numbers up to N≈ 50 by increasing the gas temperature to 1500 K, low population levels and gas densities result in correspondingly weak optical response. By spinning {{O}2} molecules with an optical centrifuge, we efficiently excite extreme rotational states with N≤slant 109 in high-density room temperature ensembles. Fast molecular rotation results in the enhanced robustness of the created rotational wave packets against collisions, enabling us to observe the effects of weak spin-rotation coupling in the coherent rotational dynamics of oxygen. The decay rate of spin-rotational coherence due to collisions is measured as a function of the molecular angular momentum and its dependence on the collisional adiabaticity parameter is discussed. We find that at high values of N, the rotational decoherence of oxygen is much faster than that of the previously studied non-magnetic nitrogen molecules, pointing at the effects of spin relaxation in paramagnetic gases.
Nonlinear quantum dynamics in diatomic molecules: Vibration, rotation and spin
International Nuclear Information System (INIS)
Yang, Ciann-Dong; Weng, Hung-Jen
2012-01-01
Highlights: ► This paper reveals the internal nonlinear dynamics embedded in a molecular quantum state. ► Analyze quantum molecular dynamics in a deterministic way, while preserving the consistency with probability interpretation. ► Molecular vibration–rotation interaction and spin–orbital coupling are considered simultaneously. ► Spin is just the remnant angular motion when orbital angular momentum is zero. ► Spin is the “zero dynamics” of nonlinear quantum dynamics. - Abstract: For a given molecular wavefunction Ψ, the probability density function Ψ ∗ Ψ is not the only information that can be extracted from Ψ. We point out in this paper that nonlinear quantum dynamics of a diatomic molecule, completely consistent with the probability prediction of quantum mechanics, does exist and can be derived from the quantum Hamilton equations of motion determined by Ψ. It can be said that the probability density function Ψ ∗ Ψ is an external representation of the quantum state Ψ, while the related Hamilton dynamics is an internal representation of Ψ, which reveals the internal mechanism underlying the externally observed random events. The proposed internal representation of Ψ establishes a bridge between nonlinear dynamics and quantum mechanics, which allows the methods and tools already developed by the former to be applied to the latter. Based on the quantum Hamilton equations of motion derived from Ψ, vibration, rotation and spin motions of a diatomic molecule and the interactions between them can be analyzed simultaneously. The resulting dynamic analysis of molecular motion is compared with the conventional probability analysis and the consistency between them is demonstrated.
Dynamical spin structure factors of α-RuCl3
Suzuki, Takafumi; Suga, Sei-ichiro
2018-03-01
Honeycomb-lattice magnet α-RuCl3 is considered to be a potential candidate of realizing Kitaev spin liquid, although this material undergoes a phase transition to the zigzag magnetically ordered state at T N ∼ 7 K. Quite recently, inelastic neutron-scattering experiments using single crystal α-RuCl3 have unveiled characteristic dynamical properties. We calculate dynamical spin structure factors of three ab-initio models for α-RuCl3 with an exact numerical diagonalization method. We also calculate temperature dependences of the specific heat by employing thermal pure quantum states. We compare our numerical results with the experiments and discuss characteristics obtained by using three ab-initio models.
Breakdown of Spin-Waves in Anisotropic Magnets: Spin Dynamics in α-RuCl3
Winter, Stephen; Riedl, Kira; Honecker, Andreas; Valenti, Roser
α -RuCl3 has recently emerged as a promising candidate for realizing the hexagonal Kitaev model in a real material. Similar to the related iridates (e.g. Na2IrO3), complex magnetic interactions arise from a competition between various similar energy scales, including spin-orbit coupling (SOC), Hund's coupling, and crystal-field splitting. Due to this complexity, the correct spin Hamiltonians for such systems remain hotly debated. For α-RuCl3, a combination of ab-initio calculations, microscopic considerations, and analysis of the static magnetic response have suggested off-diagonal couplings (Γ ,Γ') and long-range interactions in addition to the expected Kitaev exchange. However, the effect of such additional terms on the dynamic response remains unclear. In this contribution, we discuss the recently measured inelastic neutron scattering response in the context of realistic proposals for the microscopic spin Hamiltonian. We conclude that the observed scattering continuum, which has been taken as a signature of Kitaev spin liquid physics, likely persists over a broad range of parameters.
Control of Spin Wave Dynamics in Spatially Twisted Magnetic Structures
2017-06-27
control the spin wave dynamics of magnetic structures twisted spatially, we prepared the exchange-coupled films with the hard magnetic L10-FePt and...information writing of magnetic storage and spintronic applications. Introduction and Objective: Recent rapid progress in the research field of nano...scaled bilayer elements is also an important aim of this project. Approach/Method: The exchange-coupled films with the hard magnetic L10-FePt and
Second post-Newtonian Lagrangian dynamics of spinning compact binaries
Energy Technology Data Exchange (ETDEWEB)
Huang, Li; Wu, Xin [Nanchang University, Department of Physics and Institute of Astronomy, Nanchang (China); Ma, DaZhu [Hubei University for Nationalities, School of Science, Enshi (China)
2016-09-15
The leading-order spin-orbit coupling is included in a post-Newtonian Lagrangian formulation of spinning compact binaries, which consists of the Newtonian term, first post-Newtonian (1PN) and 2PN non-spin terms and 2PN spin-spin coupling. This leads to a 3PN spin-spin coupling occurring in the derived Hamiltonian. The spin-spin couplings are mainly responsible for chaos in the Hamiltonians. However, the 3PN spin-spin Hamiltonian is small and has different signs, compared with the 2PN spin-spin Hamiltonian equivalent to the 2PN spin-spin Lagrangian. As a result, the probability of the occurrence of chaos in the Lagrangian formulation without the spin-orbit coupling is larger than that in the Lagrangian formulation with the spin-orbit coupling. Numerical evidences support this claim. (orig.)
Anghel, S.; Passmann, F.; Singh, A.; Ruppert, C.; Poshakinskiy, A. V.; Tarasenko, S. A.; Moore, J. N.; Yusa, G.; Mano, T.; Noda, T.; Li, X.; Bristow, A. D.; Betz, M.
2018-03-01
Electron spin transport and dynamics are investigated in a single, high-mobility, modulation-doped, GaAs quantum well using ultrafast two-color Kerr-rotation microspectroscopy, supported by qualitative kinetic theory simulations of spin diffusion and transport. Evolution of the spins is governed by the Dresselhaus bulk and Rashba structural inversion asymmetries, which manifest as an effective magnetic field that can be extracted directly from the experimental coherent spin precession. A spin-precession length λSOI is defined as one complete precession in the effective magnetic field. It is observed that application of (i) an out-of-plane electric field changes the spin decay time and λSOI through the Rashba component of the spin-orbit coupling, (ii) an in-plane magnetic field allows for extraction of the Dresselhaus and Rashba parameters, and (iii) an in-plane electric field markedly modifies both the λSOI and diffusion coefficient.
Belykh, V. V.; Kavokin, K. V.; Yakovlev, D. R.; Bayer, M.
2017-12-01
The evolution of the electron spin dynamics as consequence of carrier delocalization in n -type GaAs is investigated by the recently developed extended pump-probe Kerr/Faraday rotation spectroscopy. We find that isolated electrons localized on donors demonstrate a prominent difference between the longitudinal and transverse spin relaxation rates in a magnetic field, which is almost absent in the metallic phase. The inhomogeneous transverse dephasing time T2* of the spin ensemble strongly increases upon electron delocalization as a result of motional narrowing that can be induced by increasing either the donor concentration or the temperature. An unexpected relation between T2* and the longitudinal spin relaxation time T1 is found, namely, that their product is about constant, as explained by the magnetic field effect on the spin diffusion. We observe a two-stage longitudinal spin relaxation, which suggests the establishment of spin temperature in the system of exchange-coupled donor-bound electrons.
Boom or bust? A comparative analysis of transient population dynamics in plants
DEFF Research Database (Denmark)
Stott, Iain; Franco, Miguel; Carslake, David
2010-01-01
researchers as further possible effectors of complicated dynamics. Previously published methods of transient analysis have tended to require knowledge of initial population structure. However, this has been overcome by the recent development of the parametric Kreiss bound (which describes how large...... a population must become before reaching its maximum possible transient amplification following a disturbance) and the extension of this and other transient indices to simultaneously describe both amplified and attenuated transient dynamics. We apply the Kreiss bound and other transient indices to a data base...... worrying artefact of basic model parameterization. Synthesis. Transient indices describe how big or how small plant populations can get, en route to long-term stable rates of increase or decline. The patterns we found in the potential for transient dynamics, across many species of plants, suggest...
Dynamical TAP equations for non-equilibrium Ising spin glasses
DEFF Research Database (Denmark)
Roudi, Yasser; Hertz, John
2011-01-01
We derive and study dynamical TAP equations for Ising spin glasses obeying both synchronous and asynchronous dynamics using a generating functional approach. The system can have an asymmetric coupling matrix, and the external fields can be time-dependent. In the synchronously updated model, the TAP...... equations take the form of self consistent equations for magnetizations at time t+1, given the magnetizations at time t. In the asynchronously updated model, the TAP equations determine the time derivatives of the magnetizations at each time, again via self consistent equations, given the current values...... of the magnetizations. Numerical simulations suggest that the TAP equations become exact for large systems....
Dynamical sensitivity control of a single-spin quantum sensor.
Lazariev, Andrii; Arroyo-Camejo, Silvia; Rahane, Ganesh; Kavatamane, Vinaya Kumar; Balasubramanian, Gopalakrishnan
2017-07-26
The Nitrogen-Vacancy (NV) defect in diamond is a unique quantum system that offers precision sensing of nanoscale physical quantities at room temperature beyond the current state-of-the-art. The benchmark parameters for nanoscale magnetometry applications are sensitivity, spectral resolution, and dynamic range. Under realistic conditions the NV sensors controlled by conventional sensing schemes suffer from limitations of these parameters. Here we experimentally show a new method called dynamical sensitivity control (DYSCO) that boost the benchmark parameters and thus extends the practical applicability of the NV spin for nanoscale sensing. In contrast to conventional dynamical decoupling schemes, where π pulse trains toggle the spin precession abruptly, the DYSCO method allows for a smooth, analog modulation of the quantum probe's sensitivity. Our method decouples frequency selectivity and spectral resolution unconstrained over the bandwidth (1.85 MHz-392 Hz in our experiments). Using DYSCO we demonstrate high-accuracy NV magnetometry without |2π| ambiguities, an enhancement of the dynamic range by a factor of 4 · 10 3 , and interrogation times exceeding 2 ms in off-the-shelf diamond. In a broader perspective the DYSCO method provides a handle on the inherent dynamics of quantum systems offering decisive advantages for NV centre based applications notably in quantum information and single molecule NMR/MRI.
Zhang, Qihan; Fan, Xiaolong; Zhou, Hengan; Kong, Wenwen; Zhou, Shiming; Gui, Y. S.; Hu, C.-M.; Xue, Desheng
2018-02-01
Spin pumping (SP) and spin rectification due to spin Hall magnetoresistance (SMR) can result in a dc resonant voltage signal, when magnetization in ferromagnetic insulator/nonmagnetic structures experiences ferromagnetic resonance. Since the two effects are often interrelated, quantitative identification of them is important for studying the dynamic nonlocal spin transport through an interface. In this letter, the key difference between SP and SMR rectification was investigated from the viewpoint of spin dynamics. The phase-dependent nature of SMR rectification, which is the fundamental characteristic distinguishing it from SP, was tested by a well-designed experiment. In this experiment, two identical yttrium iron garnet/Pt strips with a π phase difference in dynamic magnetization show the same SP signals and inverse SMR signals.
International Nuclear Information System (INIS)
Alvarez, Gonzalo A.; Levstein, Patricia R.; Pastawski, Horacio M.
2007-01-01
We have observed an environmentally induced quantum dynamical phase transition in the dynamics of a two-spin experimental swapping gate [G.A. Alvarez, E.P. Danieli, P.R. Levstein, H.M. Pastawski, J. Chem. Phys. 124 (2006) 194507]. There, the exchange of the coupled states vertical bar ↑,↓> and vertical bar ↓,↑> gives an oscillation with a Rabi frequency b/ℎ (the spin-spin coupling). The interaction, ℎ/τ SE with a spin-bath degrades the oscillation with a characteristic decoherence time. We showed that the swapping regime is restricted only to bτ SE > or approx. ℎ. However, beyond a critical interaction with the environment the swapping freezes and the system enters to a Quantum Zeno dynamical phase where relaxation decreases as coupling with the environment increases. Here, we solve the quantum dynamics of a two-spin system coupled to a spin-bath within a Liouville-von Neumann quantum master equation and we compare the results with our previous work within the Keldysh formalism. Then, we extend the model to a three interacting spin system where only one is coupled to the environment. Beyond a critical interaction the two spins not coupled to the environment oscillate with the bare Rabi frequency and relax more slowly. This effect is more pronounced when the anisotropy of the system-environment (SE) interaction goes from a purely XY to an Ising interaction form
Ultrafast dynamics of photoexcited charge and spin currents in semiconductor nanostructures
Meier, Torsten; Pasenow, Bernhard; Duc, Huynh Thanh; Vu, Quang Tuyen; Haug, Hartmut; Koch, Stephan W.
2007-02-01
Employing the quantum interference among one- and two-photon excitations induced by ultrashort two-color laser pulses it is possible to generate charge and spin currents in semiconductors and semiconductor nanostructures on femtosecond time scales. Here, it is reviewed how the excitation process and the dynamics of such photocurrents can be described on the basis of a microscopic many-body theory. Numerical solutions of the semiconductor Bloch equations (SBE) provide a detailed description of the time-dependent material excitations. Applied to the case of photocurrents, numerical solutions of the SBE for a two-band model including many-body correlations on the second-Born Markov level predict an enhanced damping of the spin current relative to that of the charge current. Interesting effects are obtained when the scattering processes are computed beyond the Markovian limit. Whereas the overall decay of the currents is basically correctly described already within the Markov approximation, quantum-kinetic calculations show that memory effects may lead to additional oscillatory signatures in the current transients. When transitions to coupled heavy- and light-hole valence bands are incorporated into the SBE, additional charge and spin currents, which are not described by the two-band model, appear.
Spin and orbital exchange interactions from Dynamical Mean Field Theory
Energy Technology Data Exchange (ETDEWEB)
Secchi, A., E-mail: a.secchi@science.ru.nl [Radboud University, Institute for Molecules and Materials, 6525 AJ Nijmegen (Netherlands); Lichtenstein, A.I., E-mail: alichten@physnet.uni-hamburg.de [Universitat Hamburg, Institut für Theoretische Physik, Jungiusstraße 9, D-20355 Hamburg (Germany); Katsnelson, M.I., E-mail: m.katsnelson@science.ru.nl [Radboud University, Institute for Molecules and Materials, 6525 AJ Nijmegen (Netherlands)
2016-02-15
We derive a set of equations expressing the parameters of the magnetic interactions characterizing a strongly correlated electronic system in terms of single-electron Green's functions and self-energies. This allows to establish a mapping between the initial electronic system and a spin model including up to quadratic interactions between the effective spins, with a general interaction (exchange) tensor that accounts for anisotropic exchange, Dzyaloshinskii–Moriya interaction and other symmetric terms such as dipole–dipole interaction. We present the formulas in a format that can be used for computations via Dynamical Mean Field Theory algorithms. - Highlights: • We give formulas for the exchange interaction tensor in strongly correlated systems. • Interactions are written in terms of electronic Green's functions and self-energies. • The method is suitable for a Dynamical Mean Field Theory implementation. • No quenching of the orbital magnetic moments is assumed. • Spin and orbital contributions to magnetism can be computed separately.
Part I: Spin wave dynamics in YIG spheres
International Nuclear Information System (INIS)
Anon.
1987-01-01
An experimental study is made of the interactions between spin wave modes excited in a sphere of yttrium iron garnet by pumping the Suhl subsidiary absorption with microwaves. The dynamical behavior of the magnetization is observed under high resolution by varying the dc field and microwave pump power. Varied behavior is found: (1) onset of the Suhl instability by excitation of a single spin wave mode; (2) when two or more modes are excited, interactions lead to auto-oscillations displaying period-doubling to chaos; (3) quasiperiodicity, locking, and chaos occur when three or more modes are excited; (4) abrupt transition to wide band power spectra (i.e., turbulence), with hysteresis; (5) irregular relaxation oscillations and aperiodic spiking behavior. A theoretical model is developed using the plane wave approximation obtaining the lowest order nonlinear interaction terms between the excited modes. Extension of this analysis to the true spherical spin-modes is discussed. Bifurcation behavior is examined, and dynamical behavior is numerically computed and compared to the experimental data. A theory is developed regarding the nature of the experimentally observed relaxation oscillations and spiking behavior based on the interaction of ''weak'' and ''strong'' modes, and this is demonstrated in the numerical simulations for two modes. Quasiperiodicity is shown to occur in the numerical study when at least 3 modes are excited with appropriate parameter values. A possible mechanism for generating microwave subharmonics at half of the pumping frequency is discussed. 57 refs., 25 figs., 5 tabs
International Nuclear Information System (INIS)
Trifunac, A.D.
1981-01-01
Structure and dynamics of transient radicals in pulse radiolysis can be studied by time resolved EPR and NMR techniques. EPR study of kinetics and relaxation is illustrated. The NMR detection of nuclear resonance in transient radicals is a new method which allows the study of hyperfine coupling, population dynamics, radical kinetics, and reaction mechanism. 9 figures
Energy Technology Data Exchange (ETDEWEB)
Melnikov, N.B., E-mail: melnikov@cs.msu.su [Lomonosov Moscow State University, Moscow 119991 (Russian Federation); Reser, B.I., E-mail: reser@imp.uran.ru [Miheev Institute of Metal Physics, Ural Branch of Russian Academy of Sciences, Ekaterinburg 620990 (Russian Federation); Paradezhenko, G.V., E-mail: gparadezhenko@cs.msu.su [Lomonosov Moscow State University, Moscow 119991 (Russian Federation)
2016-08-01
To study the spin-density correlations in the ferromagnetic metals above the Curie temperature, we relate the spin correlator and neutron scattering cross-section. In the dynamic spin-fluctuation theory, we obtain explicit expressions for the effective and local magnetic moments and spatial spin-density correlator. Our theoretical results are demonstrated by the example of bcc Fe. The effective and local moments are found in good agreement with results of polarized neutron scattering experiment over a wide temperature range. The calculated short-range order is small (up to 4 Å) and slowly decreases with temperature.
Dynamics of spins in semiconductor quantum wells under drift
International Nuclear Information System (INIS)
Idrish Miah, M.
2009-01-01
The dynamics of spins in semiconductor quantum wells under applied electric bias has been investigated by photoluminescence (PL) spectroscopy. The bias-dependent polarization of PL (P PL ) was measured at different temperatures. The P PL was found to decay with an enhancement of increasing the strength of the negative bias, with an exception occurred for a low value of the negative bias. The P PL was also found to depend on the temperature. The P PL in the presence of a transverse magnetic field was also studied. The results showed that P PL in the magnetic field oscillates under an applied bias, demonstrating that the dephasing of electron spin occurs during the drift transport in semiconductor quantum wells.
Dynamics of spins in semiconductor quantum wells under drift
Energy Technology Data Exchange (ETDEWEB)
Idrish Miah, M., E-mail: m.miah@griffith.edu.a [Nanoscale Science and Technology Centre, Griffith University, Nathan, Brisbane, QLD 4111 (Australia); School of Biomolecular and Physical Sciences, Griffith University, Nathan, Brisbane, QLD 4111 (Australia); Department of Physics, University of Chittagong, Chittagong 4331 (Bangladesh)
2009-09-15
The dynamics of spins in semiconductor quantum wells under applied electric bias has been investigated by photoluminescence (PL) spectroscopy. The bias-dependent polarization of PL (P{sub PL}) was measured at different temperatures. The P{sub PL} was found to decay with an enhancement of increasing the strength of the negative bias, with an exception occurred for a low value of the negative bias. The P{sub PL} was also found to depend on the temperature. The P{sub PL} in the presence of a transverse magnetic field was also studied. The results showed that P{sub PL} in the magnetic field oscillates under an applied bias, demonstrating that the dephasing of electron spin occurs during the drift transport in semiconductor quantum wells.
Dynamics of chiral oscillations: a comparative analysis with spin flipping
International Nuclear Information System (INIS)
Bernardini, A E
2006-01-01
Chiral oscillation as well as spin flipping effects correspond to quantum phenomena of fundamental importance in the context of particle physics and, in particular, of neutrino physics. From the point of view of first quantized theories, we are specifically interested in pointing out the differences between chirality and helicity by obtaining their dynamic equations for a fermionic Dirac-type particle (neutrino). We also identify both effects when the non-minimal coupling with an external (electro)magnetic field in the neutrino interacting Lagrangian is taken into account. We demonstrate that, however, there is no constraint between chiral oscillations, when it takes place in vacuum, and the process of spin flipping related to the helicity quantum number, which does not take place in vacuum. To conclude, we show that the origin of chiral oscillations (in vacuum) can be interpreted as projections of very rapid oscillations of position onto the longitudinal direction of momentum
Dynamics of carrions in the spin-fermion model
International Nuclear Information System (INIS)
Kuzemskij, A.L.; Marvakov, D.
1996-01-01
The spectrum of hole quasiparticles (carrions) and the role of magnetic correlations has been considered in the framework of spin-fermion (Kondo-Heisenberg) model by means of the equation-of-motion method. The hole quasiparticle dynamics has been discussed for t-J model and compared with that of for spin-fermion model to determine how the one- and two-magnon processes define the true nature of carriers in HTSC. For this Kondo-Heisenberg-type model it was clearly pointed out on the self-energy level, beyond Hartree-Fock approximation, that two-magnon processes can play a role for the formation of the superconducting state. 60 refs
Static properties and spin dynamics of the ferromagnetic spin-1 Bose gas in a magnetic field
International Nuclear Information System (INIS)
Kis-Szabo, Krisztian; Szepfalusy, Peter; Szirmai, Gergely
2005-01-01
The properties of spin-1 Bose gases with ferromagnetic interactions in the presence of a nonzero magnetic field are studied. The equation of state and thermodynamic quantities are worked out with the help of a mean-field approximation. The phase diagram besides Bose-Einstein condensation contains a first-order transition where two values of the magnetization coexist. The dynamics is investigated with the help of the random phase approximation. The soft mode corresponding to the critical point of the magnetic phase transition is found to behave like in conventional theory
Constrained dynamics of universally coupled massive spin 2-spin 0 gravities
International Nuclear Information System (INIS)
Pitts, J Brian
2006-01-01
The 2-parameter family of massive variants of Einsteins gravity (on a Minkowski background) found by Ogievetsky and Polubarinov by excluding lower spins can also be derived using universal coupling. A Dirac-Bergmann constrained dynamics analysis seems not to have been presented for these theories, the Freund-Maheshwari-Schonberg special case, or any other massive gravity beyond the linear level treated by Marzban, Whiting and van Dam. Here the Dirac-Bergmann apparatus is applied to these theories. A few remarks are made on the question of positive energy. Being bimetric, massive gravities have a causality puzzle, but it appears soluble by the introduction and judicious use of gauge freedom
Spin dynamics in 122-type iron-based superconductors
International Nuclear Information System (INIS)
Park, Jitae
2012-01-01
In this thesis, we present the experimental data on four different iron-based SC materials. It is mainly about the magnetic-dynamics study in the FeSC that is assumed to be among the most crucial ingredients for superconductivity in this system. Thus, the main goal of this thesis is to figure out the exact relationship between spin dynamics and superconductivity, and then further to realize what is the contribution of magnetic fluctuations for superconductivity by providing experimental data for modeling a microscopic mechanism of electron pairing in the FeSC system. In Chap. 2, we first discuss basic characteristics of FeSC, such as crystal structure and electron band-structure by briefly reviewing the relevant literature. Then, an introduction about magnetic and SC phases will follow based on the generic phase diagram. Details about current understanding of magnetic ground state in the parent compounds will be discussed in terms of spin-wave excitations which would be important when we are considering the spin dynamics in doped materials. To study magnetic dynamics in FeSC, we employed the inelastic-neutron-scattering (INS) method which can uniquely probe the underlying spin dynamics in the four dimensional energy and momentum space in a wide range. By taking advantage of the well developed theory for the magnetic neutron-scattering process, one can quantify the imaginary part of spin susceptibility that is an essential physical quantity the description of elementary magnetic excitations and can be compared with theoretical calculations directly. Moreover, the technique's energy-resolving scale spans over the most relevant energy range of magnetic fluctuations (from 0 to 100 meV). For these reasons, neutron scattering is a very powerful technique for magnetism study, and we introduce how neutron-scattering experiment works theoretically and practically in Chap. 3. For a slightly underdoped Ba 1-x K x Fe 2 As 2 compound, we report the phase separation between
Spin dynamics in 122-type iron-based superconductors
Energy Technology Data Exchange (ETDEWEB)
Park, Jitae
2012-07-16
In this thesis, we present the experimental data on four different iron-based SC materials. It is mainly about the magnetic-dynamics study in the FeSC that is assumed to be among the most crucial ingredients for superconductivity in this system. Thus, the main goal of this thesis is to figure out the exact relationship between spin dynamics and superconductivity, and then further to realize what is the contribution of magnetic fluctuations for superconductivity by providing experimental data for modeling a microscopic mechanism of electron pairing in the FeSC system. In Chap. 2, we first discuss basic characteristics of FeSC, such as crystal structure and electron band-structure by briefly reviewing the relevant literature. Then, an introduction about magnetic and SC phases will follow based on the generic phase diagram. Details about current understanding of magnetic ground state in the parent compounds will be discussed in terms of spin-wave excitations which would be important when we are considering the spin dynamics in doped materials. To study magnetic dynamics in FeSC, we employed the inelastic-neutron-scattering (INS) method which can uniquely probe the underlying spin dynamics in the four dimensional energy and momentum space in a wide range. By taking advantage of the well developed theory for the magnetic neutron-scattering process, one can quantify the imaginary part of spin susceptibility that is an essential physical quantity the description of elementary magnetic excitations and can be compared with theoretical calculations directly. Moreover, the technique's energy-resolving scale spans over the most relevant energy range of magnetic fluctuations (from 0 to 100 meV). For these reasons, neutron scattering is a very powerful technique for magnetism study, and we introduce how neutron-scattering experiment works theoretically and practically in Chap. 3. For a slightly underdoped Ba{sub 1-x}K{sub x}Fe{sub 2}As{sub 2} compound, we report the phase
Shaking of reinforced concrete structures subjected to transient dynamic analysis
International Nuclear Information System (INIS)
Rouzaud, Christophe
2015-01-01
In the design of nuclear engineering structures security and safety present a crucial aspect. Civil engineering design and the qualification of materials to dynamic loads must consider the accelerations which they undergo. These accelerations could integrate seismic activity and shaking movements consecutive to aircraft impact with higher cut-off frequency. Current methodologies for assessing this shock are based on transient analyses using classical finite element method associated with explicit numerical schemes or projection on modal basis, often linear. In both cases, to represent in meaningful way a medium-frequency content, it should implement a mesh refinement which is hardly compatible with the size of models of the civil engineering structures. In order to extend industrial methodologies used and to allow a better representation of the behavior of the structure in medium-frequency, an approach coupling a temporal and non-linear analysis for shock area with a frequency approach to treatment of shaking with VTCR (Variational Theory of Complex Rays) has been used. The aim is to use the computational efficiency of the implemented strategy, including medium frequency to describe the nuclear structures to aircraft impact. (author)
Orbital and spin dynamics of intraband electrons in quantum rings driven by twisted light.
Quinteiro, G F; Tamborenea, P I; Berakdar, J
2011-12-19
We theoretically investigate the effect that twisted light has on the orbital and spin dynamics of electrons in quantum rings possessing sizable Rashba spin-orbit interaction. The system Hamiltonian for such a strongly inhomogeneous light field exhibits terms which induce both spin-conserving and spin-flip processes. We analyze the dynamics in terms of the perturbation introduced by a weak light field on the Rasha electronic states, and describe the effects that the orbital angular momentum as well as the inhomogeneous character of the beam have on the orbital and the spin dynamics.
On the spin-axis dynamics of a Moonless Earth
Energy Technology Data Exchange (ETDEWEB)
Li, Gongjie; Batygin, Konstantin, E-mail: gli@cfa.harvard.edu [Harvard-Smithsonian Center for Astrophysics, The Institute for Theory and Computation, 60 Garden Street, Cambridge, MA 02138 (United States)
2014-07-20
The variation of a planet's obliquity is influenced by the existence of satellites with a high mass ratio. For instance, Earth's obliquity is stabilized by the Moon and would undergo chaotic variations in the Moon's absence. In turn, such variations can lead to large-scale changes in the atmospheric circulation, rendering spin-axis dynamics a central issue for understanding climate. The relevant quantity for dynamically forced climate change is the rate of chaotic diffusion. Accordingly, here we re-examine the spin-axis evolution of a Moonless Earth within the context of a simplified perturbative framework. We present analytical estimates of the characteristic Lyapunov coefficient as well as the chaotic diffusion rate and demonstrate that even in absence of the Moon, the stochastic change in Earth's obliquity is sufficiently slow to not preclude long-term habitability. Our calculations are consistent with published numerical experiments and illustrate the putative system's underlying dynamical structure in a simple and intuitive manner.
Spin dynamics of EuS in the paramagnetic phase
International Nuclear Information System (INIS)
Chaudhury, R.; Shastry, B.S.
1988-07-01
The spin dynamics of the semiclassical Heisenberg model on the fcc lattice, with ferromagnetic interaction in the first neighbour shell, anti-ferromagnetic interaction in the second neighbour shell and which undergoes a ferromagnetic transition, is studied in the paramagnetic phase at the temperature 1.1 T c using the Monte-Carlo molecular dynamics technique. The important quantities calculated are the dynamic structure function S(q-vector,ω) and the spin auto-correlation function i (O)·S-vector i (t)>. Our results for S(q-vector,ω) show the existence of purely diffusive modes in the low q regime. For q-vector close to the zone boundary, our calculated S(q-vector,ω) shows multi-peaked structure, signifying damped propagating modes. This result disagrees with the theoretical predictions of Young and Shastry and also of Lindgard. Our results for S(q-vector,ω) in the entire q-vector-space are in good qualitative and quantitative agreement with the recent neutron scattering experiments of Boni et al. and also Bohn et al. Our calculated auto-correlation function shows a diffusive behaviour temporally. (author). 15 refs, 5 figs
Cone Algorithm of Spinning Vehicles under Dynamic Coning Environment
Directory of Open Access Journals (Sweden)
Shuang-biao Zhang
2015-01-01
Full Text Available Due to the fact that attitude error of vehicles has an intense trend of divergence when vehicles undergo worsening coning environment, in this paper, the model of dynamic coning environment is derived firstly. Then, through investigation of the effect on Euler attitude algorithm for the equivalency of traditional attitude algorithm, it is found that attitude error is actually the roll angle error including drifting error and oscillating error, which is induced directly by dynamic coning environment and further affects the pitch angle and yaw angle through transferring. Based on definition of the cone frame and cone attitude, a cone algorithm is proposed by rotation relationship to calculate cone attitude, and the relationship between cone attitude and Euler attitude of spinning vehicle is established. Through numerical simulations with different conditions of dynamic coning environment, it is shown that the induced error of Euler attitude fluctuates by the variation of precession and nutation, especially by that of nutation, and the oscillating frequency of roll angle error is twice that of pitch angle error and yaw angle error. In addition, the rotation angle is more competent to describe the spinning process of vehicles under coning environment than Euler angle gamma, and the real pitch angle and yaw angle are calculated finally.
Dynamics of the two-spin spin-boson model with a common bath
Energy Technology Data Exchange (ETDEWEB)
Deng, Tianrui [Division of Materials Science, Nanyang Technological University, Singapore 639798 (Singapore); Centre for Optical and Electromagnetic Research, Zhejiang Provincial Key Laboratory for Sensing Technologies, Zhejiang University, Hangzhou 310058 (China); Yan, Yiying; Chen, Lipeng; Zhao, Yang, E-mail: YZhao@ntu.edu.sg [Division of Materials Science, Nanyang Technological University, Singapore 639798 (Singapore)
2016-04-14
Dynamics of the two-spin spin-boson model in the presence of Ohmic and sub-Ohmic baths is investigated by employing a multitude of the Davydov D{sub 1} trial states, also known as the multi-D{sub 1} Ansatz. Its accuracy in dynamics simulations of the two-spin SBM is improved significantly over the single D{sub 1} Ansatz, especially in the weak to moderately strong coupling regime. Validity of the multi-D{sub 1} Ansatz for various coupling strengths is also systematically examined by making use of the deviation vector which quantifies how faithfully the trial state obeys the Schrödinger equation. The time evolution of population difference and entanglement has been studied for various initial conditions and coupling strengths. Careful comparisons are carried out between our approach and three other methods, i.e., the time-dependent numerical renormalization group (TD-NRG) approach, the Bloch-Redfield theory, and a method based on a variational master equation. For strong coupling, the multi-D{sub 1} trial state yields consistent results as the TD-NRG approach in the Ohmic regime while the two disagree in the sub-Ohmic regime, where the multi-D{sub 1} trial state is shown to be more accurate. For weak coupling, the multi-D{sub 1} trial state agrees with the two master-equation methods in the presence of both Ohmic and sub-Ohmic baths, but shows considerable differences with the TD-NRG approach in the presence of a sub-Ohmic bath, calling into question the validity of the TD-NRG results at long times in the literature.
Supersymmetry and pseudoclassical dynamics of particle with any spin
International Nuclear Information System (INIS)
Srivastava, P.P.
1976-12-01
The use of anticommuting c-numbers in describing physical systems and their simmetries has recently drawn much interest. Supersymmetry among bosons and fermions can be given an adequate formulation using them. Applications to Hamiltonian dynamics of electron adapting Dirac's method of handling singular Lagrangians were quite successful. An extension to particle of any spin following the systematic treatment of Casalbuoni et al. is discussed here. Formulation of Bargmann and Wigner for relativistic particle is obtained on quantization in self-consistent manner. It may be remarked that some of the Dirac brackets between anticommuting variables are required to go to commutators instead of anticommutators
Spin dynamics in high-TC superconducting cuprates
International Nuclear Information System (INIS)
Bourges, Ph.
2003-07-01
This work is dedicated to the detailed investigations of the magnetic resonance peak in the superconducting state of cuprates. The existence of such a peak could be the signature of a mechanism linked to magnetism that could explain high critical temperature superconductivity. Inelastic neutron scattering is an adequate tool for the understanding of cuprate properties because it reveals magnetic fluctuations whose behaviour and variety depend strongly on temperature and on the level of doping. The last part of this work is dedicated to the study of spin dynamics in YBa 2 Cu 3 O 6+x system
Transient computational homogenization for heterogeneous materials under dynamic excitation
Pham, N.K.H.; Kouznetsova, V.; Geers, M.G.D.
2013-01-01
This paper presents a novel transient computational homogenization procedure that is suitable for the modelling of the evolution in space and in time of materials with non-steady state microstructure, such as metamaterials. This transient scheme is an extension of the classical (first-order)
Weber, Stefan; Kothe, Gerd; Norris, James R.
1997-04-01
The influence of anisotropic hyperfine interaction on transient nutation electron paramagnetic resonance (EPR) of light-induced spin-correlated radical pairs is studied theoretically using the density operator formalism. Analytical expressions for the time evolution of the transient EPR signal during selective microwave excitation of single transitions are derived for a model system comprised of a weakly coupled radical pair and one hyperfine-coupled nucleus with I=1/2. Zero-quantum electron coherence and single-quantum nuclear coherence are created as a result of the sudden light-induced generation of the radical pair state from a singlet-state precursor. Depending on the relative sizes of the nuclear Zeeman frequency and the secular and pseudo-secular parts of the hyperfine coupling, transitions between levels with different nuclear spin orientations are predicted to modulate the time-dependent EPR signal. These modulations are in addition to the well-known transient nutations and electron zero-quantum precessions. Our calculations provide insight into the mechanism of recent experimental observations of coherent nuclear modulations in the time-resolved EPR signals of doublets and radical pairs. Two distinct mechanisms of the modulations are presented for various microwave magnetic field strengths. The first modulation scheme arises from electron and nuclear coherences initiated by the laser excitation pulse and is "read out" by the weak microwave magnetic field. While the relative modulation depth of these oscillations with respect to the signal intensity is independent of the Rabi frequency, ω1, the frequencies of this coherence phenomenon are modulated by the effective microwave amplitude and determined by the nuclear Zeeman interaction and hyperfine coupling constants as well as the electron-electron spin exchange and dipolar interactions between the two radical pair halves. In a second mechanism the modulations are both created and detected by the microwave
Information-flux approach to multiple-spin dynamics
International Nuclear Information System (INIS)
Di Franco, C.; Paternostro, M.; Kim, M. S.; Palma, G. M.
2007-01-01
We introduce and formalize the concept of information flux in a many-body register as the influence that the dynamics of a specific element receive from any other element of the register. By quantifying the information flux in a protocol, we can design the most appropriate initial state of the system and, noticeably, the distribution of coupling strengths among the parts of the register itself. The intuitive nature of this tool and its flexibility, which allow for easily manageable numerical approaches when analytic expressions are not straightforward, are greatly useful in interacting many-body systems such as quantum spin chains. We illustrate the use of this concept in quantum cloning and quantum state transfer and we also sketch its extension to nonunitary dynamics
Nuclear spin dynamics in soap solutions and related systems
International Nuclear Information System (INIS)
Bloom, M.
1973-01-01
Soap molecules consist of a hydrophilic head and a hydrophobic lipid tail. For example, potassium laureate, the soap molecule on which the most complete study of nuclear spin dynamics has been made has the chemical formula KCOO(CH 2 ) 10 CH 3 . High concentration (greater than or approximately equal to 20% soap molecules by weight) soap solutions in water form ordered, liquid crystal structures in which the polar heads are arranged on regular surfaces which define a lattice having long range order. The soap molecules diffuse very rapidly parallel to the surfaces and undergo rapid conformational changes. Studies of T 1 , Tsub(1p) and Tsub(D) have indicated a wide spectrum of correlation times associated with these changes. Because of the orientational order of the soap molecules, the dipolar interactions between nuclear spins on a single molecule are not averaged to zero by the molecular motions. Thus, it is possible to use NMR techniques normally applied to solids (i.e. transfer of Zeeman into dipolar order, etc.) to study their static and dynamical properties. These systems are unusual in that they are basically one-dimensional systems in which the effective, time-averaged, dipolar coupling constants become progressively stronger for protons closer to the polar heads ot the molecules. A review will be presented of the experimental and theoretical NMR work performed on such systems to date. (author)
Transients and burn dynamics in advanced tokamak fusion reactors
International Nuclear Information System (INIS)
Mantsinen, M.J.; Salomaa, R.R.E.
1994-01-01
Transient behavior of D 3 He-tokamak reactors is investigated numerically using a zero-dimensional code with prescribed profiles. Pure D 3 He start-up is compared to DT-assisted and DT-ignited start-ups. We have considered two categories of transients which could extinguish steady fusion burn: fuelling interruptions and sudden confinement changes similar to the L → H transients occurring in present-day tokamaks. Shutdown with various current and density ramp-down scenarios are studied, too. (author)
EURDYN, Nonlinear Transient Analysis of Structure with Dynamic Loads
International Nuclear Information System (INIS)
Donea, J.; Giuliani, S.; Halleux, J.P.
1987-01-01
1 - Description of program or function: The EURDYN computer codes are under development at JRC-Ispra since 1973 for the simulation of non- linear dynamic response of fast-reactor components submitted to impulsive loading due to abnormal working conditions. They are thus mainly used in reactor safety analysis but can apply to other fields. Indeed the codes compute the elasto-plastic transient response of 2-D and thin 3-D structures submitted to fast dynamic loading generated by explosions, impacts... and represented by time dependent pressures, concentrated loads and prescribed displacements, or by initial speeds. Two releases of the structural computer codes EURDYN 01 (2-D beams and triangles and axisymmetric conical shells and triangular tori), 02 (axisymmetric and 2-D quadratic iso-parametric elements) and 03 (triangular plate elements) have already been produced in 1976(1) and 1980(2). They include material (elasto-plasticity using the classical flow theory approach) and geometrical (large displacements and rotations treated by a co-rotational technique) nonlinearities. The present version (Release 3) has been completed mid-1982 and is documented in EUR 8357 EN. The new features of Release 3, as compared to the former ones, roughly consist in: - full large strain capability for 9-node iso-parametric elements (EURDYN 02), - generalized array dimensions, - introduction of the radial return algorithm for elasto-plastic material modelling, - extension of the energy check facility to the case of prescribed displacements, - possible interface to a post-processing package including time plot facilities (TPLOT). The theoretical aspects can be found in refs. 2,4,5,6,7,8. 2 - Method of solution: - Finite element space discretization. - Explicit time integration. - Lumped masses. - EURDYN 01: 2-D co-rotational formulation including constant strain triangles (plane or axisymmetric), beams and conical shells, this last element being particularly useful for the study of thin
A simple dynamic model and transient simulation of the nuclear power reactor on microcomputers
Energy Technology Data Exchange (ETDEWEB)
Han, Yang Gee; Park, Cheol [Korea Atomic Energy Research Institute, Taejon (Korea, Republic of)
1997-12-31
A simple dynamic model is developed for the transient simulation of the nuclear power reactor. The dynamic model includes the normalized neutron kinetics model with reactivity feedback effects and the core thermal-hydraulics model. The main objective of this paper demonstrates the capability of the developed dynamic model to simulate various important variables of interest for a nuclear power reactor transient. Some representative results of transient simulations show the expected trends in all cases, even though no available data for comparison. In this work transient simulations are performed on a microcomputer using the DESIRE/N96T continuous system simulation language which is applicable to nuclear power reactor transient analysis. 3 refs., 9 figs. (Author)
A simple dynamic model and transient simulation of the nuclear power reactor on microcomputers
Energy Technology Data Exchange (ETDEWEB)
Han, Yang Gee; Park, Cheol [Korea Atomic Energy Research Institute, Taejon (Korea, Republic of)
1998-12-31
A simple dynamic model is developed for the transient simulation of the nuclear power reactor. The dynamic model includes the normalized neutron kinetics model with reactivity feedback effects and the core thermal-hydraulics model. The main objective of this paper demonstrates the capability of the developed dynamic model to simulate various important variables of interest for a nuclear power reactor transient. Some representative results of transient simulations show the expected trends in all cases, even though no available data for comparison. In this work transient simulations are performed on a microcomputer using the DESIRE/N96T continuous system simulation language which is applicable to nuclear power reactor transient analysis. 3 refs., 9 figs. (Author)
Energy Technology Data Exchange (ETDEWEB)
Baranowski, M.; Misiewicz, J. [Laboratory for Optical Spectroscopy of Nanostructures, Department of Experimental Physics, Wroclaw University of Technology, Wybrzeze, Wyspianskiego 27, 50-370 Wroclaw (Poland)
2015-10-21
We report theoretical studies of spin polarization dynamics in dilute nitride semiconductors. We develop a commonly used rate equation model [Lagarde et al., Phys. Status Solidi A 204, 208 (2007) and Kunold et al. Phys. Rev. B 83, 165202 (2011)] to take into account the influence of shallow localizing states on the temperature dependence of spin polarization dynamics and a spin filtering effect. Presented investigations show that the experimentally observed temperature dependence of a spin polarization lifetime in dilute nitrides can be related to the electron capture process by shallow localizing states without paramagnetic properties. This process reduces the efficiency of spin filtering effect by deep paramagnetic centers, especially at low temperatures.
Spin dynamics in relativistic ionization with highly charged ions in super-strong laser fields
International Nuclear Information System (INIS)
Klaiber, Michael; Yakaboylu, Enderalp; Bauke, Heiko; Hatsagortsyan, Karen Z; Müller, Carsten; Paulus, Gerhard G
2014-01-01
Spin dynamics and induced spin effects in above-threshold ionization of hydrogenlike highly charged ions in super-strong laser fields are investigated. Spin-resolved ionization rates in the tunnelling regime are calculated by employing two versions of a relativistic Coulomb-corrected strong-field approximation (SFA). An intuitive simpleman model is developed which explains the derived scaling laws for spin flip and spin asymmetry effects. The intuitive model as well as our ab initio numerical simulations support the analytical results for the spin effects obtained in the dressed SFA where the impact of the laser field on the electron spin evolution in the bound state is taken into account. In contrast, the standard SFA is shown to fail in reproducing spin effects in ionization even at a qualitative level. The anticipated spin-effects are expected to be measurable with modern laser techniques combined with an ion storage facility. (paper)
Energy Technology Data Exchange (ETDEWEB)
Schmidt, Deborah; Crawford, Fronefield; Gilpin, Claire [Department of Physics and Astronomy, Franklin and Marshall College, P.O. Box 3003, Lancaster, PA 17604 (United States); Langston, Glen [National Radio Astronomy Observatory, P.O. Box 2, Green Bank, WV 24944 (United States)
2013-04-15
We have searched 75 unidentified radio sources selected from the NRAO VLA Sky Survey catalog for the presence of rapidly spinning pulsars and short, dispersed radio bursts. The sources are radio bright, have no identifications or optical source coincidences, are more than 5% linearly polarized, and are spatially unresolved in the catalog. If these sources are fast-spinning pulsars (e.g., sub-millisecond pulsars), previous large-scale pulsar surveys may have missed detection due to instrumental and computational limitations, eclipsing effects, or diffractive scintillation. The discovery of a sub-millisecond pulsar would significantly constrain the neutron star equation of state and would have implications for models predicting a rapid slowdown of highly recycled X-ray pulsars to millisecond periods from, e.g., accretion disk decoupling. These same sources were previously searched unsuccessfully for pulsations at 610 MHz with the Lovell Telescope at Jodrell Bank. This new search was conducted at a different epoch with a new 800 MHz backend on the NRAO 43 m Telescope at a center frequency of 1200 MHz. Our search was sensitive to sub-millisecond pulsars in highly accelerated binary systems and to short transient pulses. No periodic or transient signals were detected from any of the target sources. We conclude that diffractive scintillation, dispersive smearing, and binary acceleration are unlikely to have prevented detection of the large majority of the sources if they are pulsars, though we cannot rule out eclipsing, nulling or intermittent emission, or radio interference as possible factors for some non-detections. Other (speculative) possibilities for what these sources might include radio-emitting magnetic cataclysmic variables or older pulsars with aligned magnetic and spin axes.
Reconsidering the boundary conditions for a dynamic, transient mode I crack problem
Leise, Tanya; Walton, Jay; Gorb, Yuliya
2008-01-01
. In particular, a transient compressive stress wave travels along the crack faces, moving outward from the loading region on the crack face. This does not occur in the quasistatic or steady state problems, and is a special feature of the transient dynamic problem
Dynamics of spin-flip photon-assisted tunneling
Braakman, F.R.; Danon, J.; Schreiber, L.R.; Wegscheider, W.; Vandersypen, L.M.K.
2014-01-01
We present time-resolved measurements of spin-flip photon-assisted tunneling and spin-flip relaxation in a doubly occupied double quantum dot. The photon-assisted excitation rate as a function of magnetic field indicates that spin-orbit coupling is the dominant mechanism behind the spin-flip under
Gonzalez-Ballestero, C.; Schröder, Florian A. Y. N.; Chin, Alex W.
2017-09-01
We study the dynamics of the biased sub-Ohmic spin-boson model by means of a time-dependent variational matrix product state (TDVMPS) algorithm. The evolution of both the system and the environment is obtained in the weak- and the strong-coupling regimes, respectively characterized by damped spin oscillations and by a nonequilibrium process where the spin freezes near its initial state, which are explicitly shown to arise from a variety of reactive environmental quantum dynamics. We also explore the rich phenomenology of the intermediate-coupling case, a nonperturbative regime where the system shows a complex dynamical behavior, combining features of both the weakly and the strongly coupled case in a sequential, time-retarded fashion. Our work demonstrates the potential of TDVMPS methods for exploring otherwise elusive, nonperturbative regimes of complex open quantum systems, and points to the possibilities of exploiting the qualitative, real-time modification of quantum properties induced by nonequilibrium bath dynamics in ultrafast transient processes.
International Nuclear Information System (INIS)
Micotti, E.; Lascialfari, A.; Rigamonti, A.; Aldrovandi, S.; Caneschi, A.; Gatteschi, D.; Bogani, L.
2004-01-01
The spin dynamics in the helical chain Co(hfac) 2 NITPhOMe has been investigated by 1 H NMR and μSR relaxation. In the temperature range 15< T<60 K, the results are consistent with the relaxation of the homogeneous magnetization. For T≤15 K, NMR and μSR evidence a second spin relaxation mechanism, undetected by the magnetization measurements. From the analysis of these data, insights on this novel relaxation process are derived
Micotti, E.; Lascialfari, A.; Rigamonti, A.; Aldrovandi, S.; Caneschi, A.; Gatteschi, D.; Bogani, L.
2004-05-01
The spin dynamics in the helical chain Co(hfac) 2NITPhOMe has been investigated by 1H NMR and μSR relaxation. In the temperature range 15
Energy Technology Data Exchange (ETDEWEB)
Radu, I.E.
2006-03-15
This thesis presents the femtosecond laser-induced electron, lattice and spin dynamics on two representative rare-earth systems: The ferromagnetic gadolinium Gd(0001) and the paramagnetic yttrium Y(0001) metals. The employed investigation tools are the time-resolved linear reflectivity and second-harmonic generation, which provide complementary information about the bulk and surface/interface dynamics, respectively. The femtosecond laser excitation of the exchange-split surface state of Gd(0001) triggers simultaneously the coherent vibrational dynamics of the lattice and spin subsystems in the surface region at a frequency of 3 THz. The coherent optical phonon corresponds to the vibration of the topmost atomic layer against the underlying bulk along the normal direction to the surface. The coupling mechanism between phonons and magnons is attributed to the modulation of the exchange interaction J between neighbour atoms due to the coherent lattice vibration. This leads to an oscillatory motion of the magnetic moments having the same frequency as the lattice vibration. Thus these results reveal a new type of phonon-magnon coupling mediated by the modulation of the exchange interaction and not by the conventional spin-orbit interaction. Moreover, we show that coherent spin dynamics in the THz frequency domain is achievable, which is at least one order of magnitude faster than previously reported. The laser-induced (de)magnetization dynamics of the ferromagnetic Gd(0001) thin films have been studied. Upon photo-excitation, the nonlinear magneto-optics measurements performed in this work show a sudden drop in the spin polarization of the surface state by more than 50% in a <100 fs time interval. Under comparable experimental conditions, the time-resolved photoemission studies reveal a constant exchange splitting of the surface state. The ultrafast decrease of spin polarization can be explained by the quasi-elastic spin-flip scattering of the hot electrons among spin
Spin-charge coupled dynamics driven by a time-dependent magnetization
Tölle, Sebastian; Eckern, Ulrich; Gorini, Cosimo
2017-03-01
The spin-charge coupled dynamics in a thin, magnetized metallic system are investigated. The effective driving force acting on the charge carriers is generated by a dynamical magnetic texture, which can be induced, e.g., by a magnetic material in contact with a normal-metal system. We consider a general inversion-asymmetric substrate/normal-metal/magnet structure, which, by specifying the precise nature of each layer, can mimic various experimentally employed setups. Inversion symmetry breaking gives rise to an effective Rashba spin-orbit interaction. We derive general spin-charge kinetic equations which show that such spin-orbit interaction, together with anisotropic Elliott-Yafet spin relaxation, yields significant corrections to the magnetization-induced dynamics. In particular, we present a consistent treatment of the spin density and spin current contributions to the equations of motion, inter alia, identifying a term in the effective force which appears due to a spin current polarized parallel to the magnetization. This "inverse-spin-filter" contribution depends markedly on the parameter which describes the anisotropy in spin relaxation. To further highlight the physical meaning of the different contributions, the spin-pumping configuration of typical experimental setups is analyzed in detail. In the two-dimensional limit the buildup of dc voltage is dominated by the spin-galvanic (inverse Edelstein) effect. A measuring scheme that could isolate this contribution is discussed.
Many-body dynamics of holes in a driven, dissipative spin chain of Rydberg superatoms
Letscher, Fabian; Petrosyan, David; Fleischhauer, Michael
2017-11-01
Strong, long-range interactions between atoms in high-lying Rydberg states can suppress multiple Rydberg excitations within a micron-sized trapping volume and yield sizable Rydberg level shifts at larger distances. Ensembles of atoms in optical microtraps then form Rydberg superatoms with collectively enhanced transition rates to the singly excited state. These superatoms can represent mesoscopic, strongly interacting spins. We study a regular array of such effective spins driven by a laser field tuned to compensate the interaction-induced level shifts between neighboring superatoms. During the initial transient, a few excited superatoms seed a cascade of resonantly facilitated excitation of large clusters of superatoms. Due to spontaneous decay, the system then relaxes to the steady state having nearly universal Rydberg excitation density {ρ }{{R}}=2/3. This state is characterized by highly non-trivial equilibrium dynamics of quasi-particles—excitation holes in the lattice of Rydberg excited superatoms. We derive an effective many-body model that accounts for hole mobility as well as continuous creation and annihilation of holes upon collisions with each other. We find that holes exhibit a nearly incompressible liquid phase with highly sub-Poissonian number statistics and finite-range density-density correlations.
Higher-order spin and charge dynamics in a quantum dot-lead hybrid system.
Otsuka, Tomohiro; Nakajima, Takashi; Delbecq, Matthieu R; Amaha, Shinichi; Yoneda, Jun; Takeda, Kenta; Allison, Giles; Stano, Peter; Noiri, Akito; Ito, Takumi; Loss, Daniel; Ludwig, Arne; Wieck, Andreas D; Tarucha, Seigo
2017-09-22
Understanding the dynamics of open quantum systems is important and challenging in basic physics and applications for quantum devices and quantum computing. Semiconductor quantum dots offer a good platform to explore the physics of open quantum systems because we can tune parameters including the coupling to the environment or leads. Here, we apply the fast single-shot measurement techniques from spin qubit experiments to explore the spin and charge dynamics due to tunnel coupling to a lead in a quantum dot-lead hybrid system. We experimentally observe both spin and charge time evolution via first- and second-order tunneling processes, and reveal the dynamics of the spin-flip through the intermediate state. These results enable and stimulate the exploration of spin dynamics in dot-lead hybrid systems, and may offer useful resources for spin manipulation and simulation of open quantum systems.
Coercivity of magneto-optical media by spin dynamics
International Nuclear Information System (INIS)
Suits, J.C.
1990-01-01
Spin dynamics computer simulations have been carried out to study the effect of pinning on domain-wall motion in TbFeCo-like media. These calculations were done on a 30x30x1 mesh, where the spin direction at each lattice site was calculated with the Landau--Lifshitz--Gilbert equation. The simulations were made in an IBM 3090 mainframe--personal computer environment where the result of the calculation is a movie that runs at three frames/second on an AT and shows graphically the domain-wall--defect interaction. The domain wall is caused to move in an external field toward a defect, and the maximum field that pins the domain wall was observed. The defects have finite length and zero magnetization, which correspond to voids or nonmagnetic second phase in the media. The simulation shows that small defects on the order of 100 A in size can pin walls with pinning strength appropriate to the coercivity of magneto-optical media, i.e., local coercivities in the range 1--10 kOe. For sufficiently high fields a single wall may break up into two separate sections at the defect, and then join together beyond the defect to become a single wall again. For rectangular defects, the coercivity depends strongly and nearly linearly on defect length (parallel to the domain-wall surface) and only weakly on defect width for widths greater than about 50 A (perpendicular to the wall surface)
Silaev, M. A.
2018-06-01
We develop a theory based on the formalism of quasiclassical Green's functions to study the spin dynamics in superfluid ^3He. First, we derive kinetic equations for the spin-dependent distribution function in the bulk superfluid reproducing the results obtained earlier without quasiclassical approximation. Then, we consider spin dynamics near the surface of fully gapped ^3He-B-phase taking into account spin relaxation due to the transitions in the spectrum of localized fermionic states. The lifetimes of longitudinal and transverse spin waves are calculated taking into account the Fermi-liquid corrections which lead to a crucial modification of fermionic spectrum and spin responses.
Vertical axis wind turbine drive train transient dynamics
Clauss, D. B.; Carne, T. G.
1982-01-01
Start up of a vertical axis wind turbine causes transient torque oscillations in the drive train with peak torques which may be over two and one half times the rated torque of the turbine. A computer code, based on a lumped parameter model of the drive train, was developed and tested for the low cost 17 meter turbine; the results show excellent agreement with field data. The code was used to predict the effect of a slip clutch on transient torque oscillations. It was demonstrated that a slip clutch located between the motor and brake can reduce peak torques by thirty eight percent.
A new and unifying approach to spin dynamics and beam polarization in storage rings
International Nuclear Information System (INIS)
Heinemann, K.; Ellison, J.A.
2014-09-01
With this paper we extend our studies on polarized beams by distilling tools from the theory of principal bundles. Four major theorems are presented, one which ties invariant fields with the notion of normal form, one which allows one to compare different invariant fields, and two that relate the existence of invariant fields to the existence of certain invariant sets and relations between them. We then apply the theory to the dynamics of spin-1/2 and spin-1 particles and their density matrices describing statistically the particle-spin content of bunches. Our approach thus unifies the spin-vector dynamics from the T-BMT equation with the spin-tensor dynamics and other dynamics. This unifying aspect of our approach relates the examples elegantly and uncovers relations between the various underlying dynamical systems in a transparent way.
Electrical manipulation of dynamic magnetic impurity and spin texture of helical Dirac fermions
Wang, Rui-Qiang; Zhong, Min; Zheng, Shi-Han; Yang, Mou; Wang, Guang-Hui
2016-05-01
We have theoretically investigated the spin inelastic scattering of helical electrons off a high-spin nanomagnet absorbed on a topological surface. The nanomagnet is treated as a dynamic quantum spin and driven by the spin transfer torque effect. We proposed a mechanism to electrically manipulate the spin texture of helical Dirac fermions rather than by an external magnetic field. By tuning the bias voltage and the direction of impurity magnetization, we present rich patterns of spin texture, from which important fingerprints exclusively associated with the spin helical feature are obtained. Furthermore, it is found that the nonmagnetic potential can create the resonance state in the spin density with different physics as the previously reported resonance of charge density.
Dynamics in photosynthetic transient complexes studied by paramagnetic NMR spectroscopy
Scanu, Sandra
2013-01-01
This PhD thesis focuses on fundamental aspects of protein-protein interactions. A multidisciplinary methodology for the detection and visualization of transient, lowly-populated encounter protein complexes is described. The new methodology combined paramagnetic NMR spectroscopy with computational
Belt conveyor dynamics in transient operation for speed control
He, D.; Pang, Y.; Lodewijks, G.
2016-01-01
Belt conveyors play an important role in continuous dry bulk material transport, especially at the mining industry. Speed control is expected to reduce the energy consumption of belt conveyors. Transient operation is the operation of increasing or decreasing conveyor speed for speed control.
Dynamics of domain wall driven by spin-transfer torque
International Nuclear Information System (INIS)
Chureemart, P.; Evans, R. F. L.; Chantrell, R. W.
2011-01-01
Spin-torque switching of magnetic devices offers new technological possibilities for data storage and integrated circuits. We have investigated domain-wall motion in a ferromagnetic thin film driven by a spin-polarized current using an atomistic spin model with a modified Landau-Lifshitz-Gilbert equation including the effect of the spin-transfer torque. The presence of the spin-transfer torque is shown to create an out-of-plane domain wall, in contrast to the external-field-driven case where an in-plane wall is found. We have investigated the effect of the spin torque on domain-wall displacement, domain-wall velocity, and domain-wall width, as well as the equilibration time in the presence of the spin-transfer torque. We have shown that the minimum spin-current density, regarded as the critical value for domain-wall motion, decreases with increasing temperature.
Dynamic magnetic hysteresis behavior and dynamic phase transition in the spin-1 Blume-Capel model
Energy Technology Data Exchange (ETDEWEB)
Deviren, Bayram, E-mail: bayram.deviren@nevsehir.edu.tr [Department of Physics, Nevsehir University, 50300 Nevsehir (Turkey); Keskin, Mustafa [Department of Physics, Erciyes University, 38039 Kayseri (Turkey)
2012-03-15
The nature (time variation) of response magnetization m(wt) of the spin-1 Blume-Capel model in the presence of a periodically varying external magnetic field h(wt) is studied by employing the effective-field theory (EFT) with correlations as well as the Glauber-type stochastic dynamics. We determine the time variations of m(wt) and h(wt) for various temperatures, and investigate the dynamic magnetic hysteresis behavior. We also investigate the temperature dependence of the dynamic magnetization, hysteresis loop area and correlation near the transition point in order to characterize the nature (first- or second-order) of the dynamic transitions as well as obtain the dynamic phase transition temperatures. The hysteresis loops are obtained for different reduced temperatures and we find that the areas of the loops are decreasing with the increasing of the reduced temperatures. We also present the dynamic phase diagrams and compare the results of the EFT with the results of the dynamic mean-field approximation. The phase diagrams exhibit many dynamic critical points, such as tricritical ( Bullet ), zero-temperature critical (Z), triple (TP) and multicritical (A) points. According to values of Hamiltonian parameters, besides the paramagnetic (P), ferromagnetic (F) fundamental phases, one coexistence or mixed phase region, (F+P) and the reentrant behavior exist in the system. The results are in good agreement with some experimental and theoretical results. - Highlights: Black-Right-Pointing-Pointer Kinetic spin-1 Blume-Capel model is studied using the effective-field theory. Black-Right-Pointing-Pointer We investigated the dynamic magnetic hysteresis behavior. Black-Right-Pointing-Pointer Dynamic magnetization, hysteresis loop area and correlation are investigated. Black-Right-Pointing-Pointer System exhibits tricritical, zero-temperature, triple and multicritical points. Black-Right-Pointing-Pointer We present the dynamic phase diagrams and compare the results of the EFT
Transient Dynamic Mechanical Analysis of Resilin-based Elastomeric Hydrogels
Li, Linqing; Kiick, Kristi
2014-04-01
The outstanding high-frequency properties of emerging resilin-like polypeptides (RLPs) have motivated their development for vocal fold tissue regeneration and other applications. Recombinant RLP hydrogels show efficient gelation, tunable mechanical properties, and display excellent extensibility, but little has been reported about their transient mechanical properties. In this manuscript, we describe the transient mechanical behavior of new RLP hydrogels investigated via both sinusoidal oscillatory shear deformation and uniaxial tensile testing. Oscillatory stress relaxation and creep experiments confirm that RLP-based hydrogels display significantly reduced stress relaxation and improved strain recovery compared to PEG-based control hydrogels. Uniaxial tensile testing confirms the negligible hysteresis, reversible elasticity and superior resilience (up to 98%) of hydrated RLP hydrogels, with Young’s modulus values that compare favorably with those previously reported for resilin and that mimic the tensile properties of the vocal fold ligament at low strain (engineering applications, of a range of RLP hydrogels.
Low-energy-state dynamics of entanglement for spin systems
International Nuclear Information System (INIS)
Jafari, R.
2010-01-01
We develop the ideas of the quantum renormalization group and quantum information by exploring the low-energy-state dynamics of entanglement resources of a system close to its quantum critical point. We demonstrate that low-energy-state dynamical quantities of one-dimensional magnetic systems can show a quantum phase transition point and show scaling behavior in the vicinity of the transition point. To present our idea, we study the evolution of two spin entanglements in the one-dimensional Ising model in the transverse field. The system is initialized as the so-called thermal ground state of the pure Ising model. We investigate the evolution of the generation of entanglement with increasing magnetic field. We obtain that the derivative of the time at which the entanglement reaches its maximum with respect to the transverse field diverges at the critical point and its scaling behaviors versus the size of the system are the same as the static ground-state entanglement of the system.
Tracking excited-state charge and spin dynamics in iron coordination complexes
DEFF Research Database (Denmark)
Zhang, Wenkai; Alonso-Mori, Roberto; Bergmann, Uwe
2014-01-01
to spin state, can elucidate the spin crossover dynamics of [Fe(2,2'-bipyridine)(3)](2+) on photoinduced metal-to-ligand charge transfer excitation. We are able to track the charge and spin dynamics, and establish the critical role of intermediate spin states in the crossover mechanism. We anticipate......Crucial to many light-driven processes in transition metal complexes is the absorption and dissipation of energy by 3d electrons(1-4). But a detailed understanding of such non-equilibrium excited-state dynamics and their interplay with structural changes is challenging: a multitude of excited...... states and possible transitions result in phenomena too complex to unravel when faced with the indirect sensitivity of optical spectroscopy to spin dynamics(5) and the flux limitations of ultrafast X-ray sources(6,7). Such a situation exists for archetypal poly-pyridyl iron complexes, such as [Fe(2...
Excited-State Dynamics of Carotenoids Studied by Femtosecond Transient Absorption Spectroscopy
International Nuclear Information System (INIS)
Lee, Ingu; Pang, Yoonsoo; Lee, Sebok
2014-01-01
Carotenoids, natural antenna pigments in photosynthesis share a symmetric backbone of conjugated polyenes. Contrary to the symmetric and almost planar geometries of carotenoids, excited state structure and dynamics of carotenoids are exceedingly complex. In this paper, recent infrared and visible transient absorption measurements and excitation dependent dynamics of 8'-apo-β-caroten-8'-al and 7',7'-dicyano-7'-apo-β-carotene will be reviewed. The recent visible transient absorption measurements of 8'-apo-β-caroten-8'-al in polar and nonpolar solvents will also be introduced to emphasize the complex excited-state dynamics and unsolved problems in the S 2 and S 1 excited states
Spatiotemporal dynamics of the spin transition in [Fe (HB(tz)3) 2] single crystals
Ridier, Karl; Rat, Sylvain; Shepherd, Helena J.; Salmon, Lionel; Nicolazzi, William; Molnár, Gábor; Bousseksou, Azzedine
2017-10-01
The spatiotemporal dynamics of the spin transition have been thoroughly investigated in single crystals of the mononuclear spin-crossover (SCO) complex [Fe (HB (tz )3)2] (tz = 1 ,2 ,4-triazol-1-yl) by optical microscopy. This compound exhibits an abrupt spin transition centered at 334 K with a narrow thermal hysteresis loop of ˜1 K (first-order transition). Most single crystals of this compound reveal exceptional resilience upon repeated switching (several hundred cycles), which allowed repeatable and quantitative measurements of the spatiotemporal dynamics of the nucleation and growth processes to be carried out. These experiments revealed remarkable properties of the thermally induced spin transition: high stability of the thermal hysteresis loop, unprecedented large velocities of the macroscopic low-spin/high-spin phase boundaries up to 500 µm/s, and no visible dependency on the temperature scan rate. We have also studied the dynamics of the low-spin → high-spin transition induced by a local photothermal excitation generated by a spatially localized (Ø = 2 μ m ) continuous laser beam. Interesting phenomena have been evidenced both in quasistatic and dynamic conditions (e.g., threshold effects and long incubation periods, thermal activation of the phase boundary propagation, stabilization of the crystal in a stationary biphasic state, and thermal cutoff frequency). These measurements demonstrated the importance of thermal effects in the transition dynamics, and they enabled an accurate determination of the thermal properties of the SCO compound in the framework of a simple theoretical model.
Directory of Open Access Journals (Sweden)
Phillip Weinberg, Marin Bukov
2017-02-01
Full Text Available We present a new open-source Python package for exact diagonalization and quantum dynamics of spin(-photon chains, called QuSpin, supporting the use of various symmetries in 1-dimension and (imaginary time evolution for chains up to 32 sites in length. The package is well-suited to study, among others, quantum quenches at finite and infinite times, the Eigenstate Thermalisation hypothesis, many-body localisation and other dynamical phase transitions, periodically-driven (Floquet systems, adiabatic and counter-diabatic ramps, and spin-photon interactions. Moreover, QuSpin's user-friendly interface can easily be used in combination with other Python packages which makes it amenable to a high-level customisation. We explain how to use QuSpin using four detailed examples: (i Standard exact diagonalisation of XXZ chain (ii adiabatic ramping of parameters in the many-body localised XXZ model, (iii heating in the periodically-driven transverse-field Ising model in a parallel field, and (iv quantised light-atom interactions: recovering the periodically-driven atom in the semi-classical limit of a static Hamiltonian.
Probing carrier dynamics of individual layers in a heterostructure using transient reflectivity
Energy Technology Data Exchange (ETDEWEB)
Khan, Salahuddin; Jayabalan, J., E-mail: jjaya@rrcat.gov.in; Singh, Asha; Yogi, Rachana; Chari, Rama [Laser Physics Applications Section, Raja Ramanna Centre for Advanced Technology, Indore 452013 (India)
2015-09-21
We report the wavelength dependent transient reflectivity measurements in AlGaAs-GaAs heterostructures having two-dimensional electron (or hole) gas near the interface. Using a multilayer model for transient reflectivity, we show that the magnitude and sign of contributions from the carriers in two-dimensional electron (or hole) gas and GaAs to the total signal depends on the wavelength. Further, it has been shown that it is possible to study the carrier dynamics in a given layer of a heterostructure by performing transient reflectivity at specific wavelengths.
Probing carrier dynamics of individual layers in a heterostructure using transient reflectivity
International Nuclear Information System (INIS)
Khan, Salahuddin; Jayabalan, J.; Singh, Asha; Yogi, Rachana; Chari, Rama
2015-01-01
We report the wavelength dependent transient reflectivity measurements in AlGaAs-GaAs heterostructures having two-dimensional electron (or hole) gas near the interface. Using a multilayer model for transient reflectivity, we show that the magnitude and sign of contributions from the carriers in two-dimensional electron (or hole) gas and GaAs to the total signal depends on the wavelength. Further, it has been shown that it is possible to study the carrier dynamics in a given layer of a heterostructure by performing transient reflectivity at specific wavelengths
Spin echo dynamics under an applied drift field in graphene nanoribbon superlattices
Energy Technology Data Exchange (ETDEWEB)
Prabhakar, Sanjay, E-mail: sprabhakar@wlu.ca [M 2NeT Laboratory, Wilfrid Laurier University, 75 University Avenue West, Waterloo, Ontario N2L 3C5 (Canada); Melnik, Roderick [M 2NeT Laboratory, Wilfrid Laurier University, 75 University Avenue West, Waterloo, Ontario N2L 3C5 (Canada); Gregorio Millan Institute, Universidad Carlos III de Madrid, 28911 Leganes (Spain); Bonilla, Luis L. [Gregorio Millan Institute, Universidad Carlos III de Madrid, 28911 Leganes (Spain); Raynolds, James E. [Drinker Biddle and Reath LLP, Washington, DC 20005 (United States)
2013-12-02
We investigate the evolution of spin dynamics in graphene nanoribbon superlattices (GNSLs) with armchair and zigzag edges in the presence of a drift field. We determine the exact evolution operator and show that it exhibits spin echo phenomena due to rapid oscillations of the quantum states along the ribbon. The evolution of the spin polarization is accompanied by strong beating patterns. We also provide detailed analysis of the band structure of GNSLs with armchair and zigzag edges.
Spin echo dynamics under an applied drift field in graphene nanoribbon superlattices
International Nuclear Information System (INIS)
Prabhakar, Sanjay; Melnik, Roderick; Bonilla, Luis L.; Raynolds, James E.
2013-01-01
We investigate the evolution of spin dynamics in graphene nanoribbon superlattices (GNSLs) with armchair and zigzag edges in the presence of a drift field. We determine the exact evolution operator and show that it exhibits spin echo phenomena due to rapid oscillations of the quantum states along the ribbon. The evolution of the spin polarization is accompanied by strong beating patterns. We also provide detailed analysis of the band structure of GNSLs with armchair and zigzag edges
Liu, Gui-Bin; Liu, Bang-Gui
2010-01-01
In this paper, we combine thermal effects with Landau-Zener (LZ) quantum tunneling effects in a dynamical Monte Carlo (DMC) framework to produce satisfactory magnetization curves of single-molecule magnet (SMM) systems. We use the giant spin approximation for SMM spins and consider regular lattices of SMMs with magnetic dipolar interactions (MDI). We calculate spin reversal probabilities from thermal-activated barrier hurdling, direct LZ tunneling, and thermal-assisted LZ tunnelings in the pr...
Directory of Open Access Journals (Sweden)
Alex Förster
Full Text Available Transient global amnesia (TGA is a transitory, short-lasting neurological disorder characterized by a sudden onset of antero- and retrograde amnesia. Perfusion abnormalities in TGA have been evaluated mainly by use of positron emission tomography (PET or single-photon emission computed tomography (SPECT. In the present study we explore the value of dynamic susceptibility contrast perfusion-weighted MRI (PWI in TGA in the acute phase.From a MRI report database we identified TGA patients who underwent MRI including PWI in the acute phase and compared these to control subjects. Quantitative perfusion maps (cerebral blood flow (CBF and volume (CBV were generated and analyzed by use of Signal Processing In NMR-Software (SPIN. CBF and CBV values in subcortical brain regions were assessed by use of VOI created in FIRST, a model-based segmentation tool in the Oxford Centre for Functional Magnetic Resonance Imaging of the Brain (FMRIB Software Library (FSL.Five TGA patients were included (2 men, 3 women. On PWI, no relevant perfusion alterations were found by visual inspection in TGA patients. Group comparisons for possible differences between TGA patients and control subjects showed significant lower rCBF values bilaterally in the hippocampus, in the left thalamus and globus pallidus as well as bilaterally in the putamen and the left caudate nucleus. Correspondingly, significant lower rCBV values were observed bilaterally in the hippocampus and the putamen as well as in the left caudate nucleus. Group comparisons for possible side differences in rCBF and rCBV values in TGA patients revealed a significant lower rCBV value in the left caudate nucleus.Mere visual inspection of PWI is not sufficient for the assessment of perfusion changes in TGA in the acute phase. Group comparisons with healthy control subjects might be useful to detect subtle perfusion changes on PWI in TGA patients. However, this should be confirmed in larger data sets and serial PWI
Spin dynamics in the anisotropic spin glass Fe2TiO5
DEFF Research Database (Denmark)
Yeshurun, Y.; Tholence, J. L.; Kjems, Jørgen
1985-01-01
We have studied spin-freezing phenomena along the magnetic easy axis of the insulating spin glass Fe2TiOS by magnetisation, AC susceptibility and neutron scattering experiments. The characteristic measurement time for these techniques varies over more than fourteen orders of magnitude. The results...
Real-Space Application of the Mean-Field Description of Spin-Glass Dynamics
International Nuclear Information System (INIS)
Barrat, Alain; Berthier, Ludovic
2001-01-01
The out of equilibrium dynamics of finite dimensional spin glasses is considered from a point of view going beyond the standard 'mean-field theory' versus 'droplet picture' debate of the past decades. The main predictions of both theories concerning the spin-glass dynamics are discussed. It is shown, in particular, that predictions originating from mean-field ideas concerning the violations of the fluctuation-dissipation theorem apply quantitatively, provided one properly takes into account the role of a spin-glass coherence length, which plays a central role in the droplet picture. Dynamics in a uniform magnetic field is also briefly discussed
The dynamic behavior of the SUPER-PHENIX reactor under unprotected transient
International Nuclear Information System (INIS)
Gouriou, A.; Francillon, E.; Kayser, G.; Malenfer, G.; Languille, A.
1982-01-01
Due to design changes and progress on the knowledge of feed-back effects, a reactualization of the dynamic behavior of SUPER-PHENIX under unprotected transients was undertaken. We present the main data on feed-back characteristics and the results of dynamic calculations. With the present state of knowledge, the former conclusion is confirmed: the dynamic evolution is very slow and no irreversible phenomena happen in the short term
Beam and spin dynamics of hadron beams in intermediate-energy ring accelerators
International Nuclear Information System (INIS)
Lehrach, Andreas
2008-01-01
In this thesis beam and spin dynamics of ring accelerators are described. After a general theoretical treatment methods for the beam optimization and polarization conservation are discussed. Then experiments on spin manipulation at the COSY facility are considered. Finally the beam simulation and accelerator lay-out for the HESR with regards to the FAIR experiment are described. (HSI)
Spin dynamics of the Kondo insulator CeNiSn approaching the metallic phase
DEFF Research Database (Denmark)
Schröder, A.; Aeppli, G.; Mason, T.E.
1997-01-01
The spin dynamics of Kondo insulators has been studied by high-resolution magnetic neutron spectroscopy at a triple-axes spectrometer on CeNi1-xCuxSn single crystals using a vertical 9 T magnet. While upon doping (x = 0.13) the spin gap of the Kondo insulator CeNiSn collapses at the transition to...
Anomalous magnetic structure and spin dynamics in magnetoelectric LiFePO_{4}
DEFF Research Database (Denmark)
Toft-Petersen, Rasmus; Reehuis, Manfred; Jensen, Thomas Bagger Stibius
2015-01-01
We report significant details of the magnetic structure and spin dynamics of LiFePO4 obtained by single-crystal neutron scattering. Our results confirm a previously reported collinear rotation of the spins away from the principal b axis, and they determine that the rotation is toward the a axis...
Wang, Li; Zhao, Hui; Pan, Lin Yun; Weng, Yu Xiang; Nakato, Yoshihiro; Tamai, Naoto
2010-12-01
Carrier dynamics of titanic acid nanotubes (phase of H2Ti2O5.H2O) deposited on a quartz plate was examined by visible/near-IR transient absorption spectroscopy with an ultraviolet excitation. The carrier dynamics of titanic acid nanotubes follows the fast trapping process which attributed to the intrinsic tubular structure, the relaxation of shallow trapped carriers and the recombination as a second-order kinetic process. Transient absorption of titanic acid nanotubes was dominated by the absorption of surface-trapped holes in visible region around 500 nm, which was proved by the faster decay dynamics in the presence of polyvinyl alcohol as a hole-scavenger. However, the slow relaxation of free carriers was much more pronounced in the TiO2 single crystals, as compared with the transient absorption spectra of titanic acid nanotubes under the similar excitation.
Spin dynamics on cyclic iron wheels in high magnetic fields
International Nuclear Information System (INIS)
Schnelzer, Lars
2008-01-01
In the present thesis the spin dynamics of cyclic spin-cluster compounds, the so called ''ferric wheels'' were studied by means of the NMR. In the iron wheels Li/Na rate at Fe 6 (tea) 6 and Cs rate at Fe 8 (tea) 8 as probes of NMR both the protons and the centrally lying alkali atoms 7 Li, 23 Na, and 133 Cs were available. For this purpose measurements in the magnetic field region up to B=20 T and at temperatures between room temperature and T=50 mK were performed. The longitudinal relaxation rate was temperature dependently studied at two field values on the lithium cluster and a frequency independent maximum of the relaxation rate at a temperature of T∼30 K resulted. Different behaviour showed the measurement on the sodium cluster. the longitudinal relaxation rate slopes linearly with the temperature and shows no maximum. The two quadrupole satellites of the 23 Na could be resolved. From the distance of the satellites to the central transition both on the field gradient of the iron ring and on the orientation of the symmetry axis to the external magnetic field could be concluded. The determined field gradient of the Na rate at Fe 6 (tea) 6 of eq=4.78(11).10 20 V/m 2 was in very good agreement with the present theoretically calculated value. The orientation of the crystal was determined to θ(c,B)=62.8 . The very low splitting of the 7 Li NMR spectrum of the lithium cluster allows to give as upper limit for the value of the field gradient eq=1.82(11).10 20 V/m 2 . From the seven lines of the cesium spectrum theoretically to be expected five were resolved. The evaluation yielded for the cesium ring a value of eq=-1.3(1).10 21 V/m 2 . The study of the field-dependent line position of the 23 Na NMR line led to the determination of the parameter of the transferred hyperfine interaction to A tHf /2π=140 kHz. For the first time on a cyclic iron cluster a level crossing could be studied by means of the central ion. The temperature dependence of the longitudinal
Introduction to the Explicit Finite Element Method for Nonlinear Transient Dynamics
Wu, Shen R
2012-01-01
A systematic introduction to the theories and formulations of the explicit finite element method As numerical technology continues to grow and evolve with industrial applications, understanding the explicit finite element method has become increasingly important, particularly in the areas of crashworthiness, metal forming, and impact engineering. Introduction to the Explicit FiniteElement Method for Nonlinear Transient Dynamics is the first book to address specifically what is now accepted as the most successful numerical tool for nonlinear transient dynamics. The book aids readers in master
Role of Orbital Dynamics in Spin Relaxation and Weak Antilocalization in Quantum Dots
Zaitsev, Oleg; Frustaglia, Diego; Richter, Klaus
2005-01-01
We develop a semiclassical theory for spin-dependent quantum transport to describe weak (anti)localization in quantum dots with spin-orbit coupling. This allows us to distinguish different types of spin relaxation in systems with chaotic, regular, and diffusive orbital classical dynamics. We find, in particular, that for typical Rashba spin-orbit coupling strengths, integrable ballistic systems can exhibit weak localization, while corresponding chaotic systems show weak antilocalization. We further calculate the magnetoconductance and analyze how the weak antilocalization is suppressed with decreasing quantum dot size and increasing additional in-plane magnetic field.
Dynamics of a driven spin coupled to an antiferromagnetic spin bath
International Nuclear Information System (INIS)
Yuan Xiaozhong; Goan, Hsi-Sheng; Zhu, Ka-Di
2011-01-01
We study the behavior of the Rabi oscillations of a driven central spin (qubit) coupled to an antiferromagnetic spin bath (environment). It is found that the decoherence behavior of the central spin depends on the detuning, driving strength, qubit-bath coupling and an important factor Ω, associated with the number of coupled atoms, the detailed lattice structure and the temperature of the environment. If detuning exists, Rabi oscillations may show the behavior of collapses and revivals; however, if detuning is absent, such a behavior will not appear. We investigate the weighted frequency distribution of the time evolution of the central spin inversion and give a reasonable explanation of this phenomenon of collapses and revivals. We also discuss the decoherence and pointer states of the qubit from the perspective of von Neumann entropy. We found that the eigenstates of the qubit self-Hamiltonian emerge as pointer states in the weak system-environment coupling limit.
Paramagnetic Nanoparticles Leave Their Mark on Nuclear Spins of Transiently Adsorbed Proteins.
Zanzoni, Serena; Pedroni, Marco; D'Onofrio, Mariapina; Speghini, Adolfo; Assfalg, Michael
2016-01-13
The successful application of nanomaterials in biosciences necessitates an in-depth understanding of how they interface with biomolecules. Transient associations of proteins with nanoparticles (NPs) are accessible by solution NMR spectroscopy, albeit with some limitations. The incorporation of paramagnetic centers into NPs offers new opportunities to explore bio-nano interfaces. We propose NMR paramagnetic relaxation enhancement as a new tool to detect NP-binding surfaces on proteins with increased sensitivity, also extending the applicability of NMR investigations to heterogeneous biomolecular mixtures. The adsorption of ubiquitin on gadolinium-doped fluoride-based NPs produced residue-specific NMR line-broadening effects mapping to a contiguous area on the surface of the protein. Importantly, an identical paramagnetic fingerprint was observed in the presence of a competing protein-protein association equilibrium, exemplifying possible interactions taking place in crowded biological media. The interaction was further characterized using isothermal titration calorimetry and upconversion emission measurements. The data indicate that the used fluoride-based NPs are not biologically inert but rather are capable of biomolecular recognition.
Transient Flow Dynamics in Optical Micro Well Involving Gas Bubbles
Johnson, B.; Chen, C. P.; Jenkins, A.; Spearing, S.; Monaco, L. A.; Steele, A.; Flores, G.
2006-01-01
The Lab-On-a-Chip Application Development (LOCAD) team at NASA s Marshall Space Flight Center is utilizing Lab-On-a-Chip to support technology development specifically for Space Exploration. In this paper, we investigate the transient two-phase flow patterns in an optic well configuration with an entrapped bubble through numerical simulation. Specifically, the filling processes of a liquid inside an expanded chamber that has bubbles entrapped. Due to the back flow created by channel expansion, the entrapped bubbles tend to stay stationary at the immediate downstream of the expansion. Due to the huge difference between the gas and liquid densities, mass conservation issues associated with numerical diffusion need to be specially addressed. The results are presented in terms of the movement of the bubble through the optic well. Bubble removal strategies are developed that involve only pressure gradients across the optic well. Results show that for the bubble to be moved through the well, pressure pulsations must be utilized in order to create pressure gradients across the bubble itself.
Dynamical Negative Differential Resistance in Antiferromagnetically Coupled Few-Atom Spin Chains
Rolf-Pissarczyk, Steffen; Yan, Shichao; Malavolti, Luigi; Burgess, Jacob A. J.; McMurtrie, Gregory; Loth, Sebastian
2017-11-01
We present the appearance of negative differential resistance (NDR) in spin-dependent electron transport through a few-atom spin chain. A chain of three antiferromagnetically coupled Fe atoms (Fe trimer) was positioned on a Cu2 N /Cu (100 ) surface and contacted with the spin-polarized tip of a scanning tunneling microscope, thus coupling the Fe trimer to one nonmagnetic and one magnetic lead. Pronounced NDR appears at the low bias of 7 mV, where inelastic electron tunneling dynamically locks the atomic spin in a long-lived excited state. This causes a rapid increase of the magnetoresistance between the spin-polarized tip and Fe trimer and quenches elastic tunneling. By varying the coupling strength between the tip and Fe trimer, we find that in this transport regime the dynamic locking of the Fe trimer competes with magnetic exchange interaction, which statically forces the Fe trimer into its high-magnetoresistance state and removes the NDR.
DECREASING OF MECHANISMS DYNAMIC LOADING AT THE TRANSIENT STATE
Directory of Open Access Journals (Sweden)
V. S. Loveikin
2015-11-01
Full Text Available Purpose. It is necessary to select modes of motion to reduce the dynamic loads in the mechanisms. This choice should be made on optimization basis. The purpose of research is to study methods of synthesis regimes of mechanisms and machines motion that provide optimal modes of movement for terminal and integral criteria. Methodology. For research the one-mass dynamic model of the mechanism has been used. As optimization criteria the terminal and comprehensive integral criteria were used. The stated optimization problem has been solved using dynamic programming and variational calculation. The direct variation method, which allowed finding only approximate solution of the original problem of optimal control, has been used as well. Findings. The ways of ensuring the absolute minimum of terminal criterion have been set for each method of problem solving. The stated characteristics show softness changes of kinematic functions during braking of mechanism. They point to the absolute minimum of adopted terminal criterion in the calculation. Originality. It is necessary to introduce new variables in the system equations during the solving of optimal control problems using dynamic programming to achieve an absolute minimum of terminal criteria. In general, to achieve a minimum of n-order terminal criterion an optimization problem should find relatively (n+1-th order function. When optimization problems is solving by variational calculation in order to ensure a minimization of n-th order terminal criterion by selecting the appropriate boundary conditions, it is necessary to solve the Euler-Poisson 2(n+1-th order equation (subject to symmetric setting boundary conditions. It is a necessary condition for an extremum of the functional with the (n+1-th order integrant. Practical value. Minimizing of adopted terminal criterion in the calculation allows eliminate the brunt in kinematic gearing of mechanisms, which increases their operational life. In addition
Phase dynamics of oscillating magnetizations coupled via spin pumping
Taniguchi, Tomohiro
2018-05-01
A theoretical formalism is developed to simultaneously solve equation of motion of the magnetizations in two ferromagnets and the spin-pumping induced spin transport equation. Based on the formalism, a coupled motion of the magnetizations in a self-oscillation state is studied. The spin pumping is found to induce an in-phase synchronization of the magnetizations for the oscillation around the easy axis. For an out-of-plane self-oscillation around the hard axis, on the other hand, the spin pumping leads to an in-phase synchronization in a small current region, whereas an antiphase synchronization is excited in a large current region. An analytical theory based on the phase equation reveals that the phase difference between the magnetizations in a steady state depends on the oscillation direction, clockwise or counterclockwise, of the magnetizations.
Transients drive the demographic dynamics of plant populations in variable environments
DEFF Research Database (Denmark)
McDonald, Jenni L; Stott, Iain; Townley, Stuart
2016-01-01
clear patterns related to growth form. We find a surprising tendency for plant populations to boom rather than bust in response to temporal changes in vital rates and that stochastic growth rates increase with increasing tendency to boom. Synthesis. Transient dynamics contribute significantly...
Excited state dynamics of beta-carotene explored with dispersed multi-pulse transient absorption
Larsen, D.S.; Papagiannakis, E.; van Stokkum, I.H.M.; Vengris, M.; Kennis, J.T.M.; van Grondelle, R.
2003-01-01
The excited-state dynamics of β-carotene in hexane was studied with dispersed ultrafast transient absorption techniques. A new excited state is produced after blue-edge excitation. Pump-repump-probe and pump-dump-probe measurements identified and characterized this state, termed S‡, which exhibits a
Transient dynamics of the flow around a NACA 0015 airfoil using fluidic vortex generators
Energy Technology Data Exchange (ETDEWEB)
Siauw, W.L. [Institut Pprime, CNRS - Universite de Poitiers - ENSMA, UPR 3346, Departement Fluides, Thermique, Combustion, ENSMA - Teleport 2, 1 Avenue Clement Ader, BP 40109, F-86961 Futuroscope Chasseneuil Cedex (France); Bonnet, J.-P., E-mail: Jean-Paul.Bonnet@univ-poitiers.f [Institut Pprime, CNRS - Universite de Poitiers - ENSMA, UPR 3346, Departement Fluides, Thermique, Combustion, CEAT, 43 rue de l' Aerodrome, F-86036 Poitiers Cedex (France); Tensi, J., E-mail: Jean.Tensi@lea.univ-poitiers.f [Institut Pprime, CNRS - Universite de Poitiers - ENSMA, UPR 3346, Departement Fluides, Thermique, Combustion, ENSMA - Teleport 2, 1 Avenue Clement Ader, BP 40109, F-86961 Futuroscope Chasseneuil Cedex (France); Cordier, L., E-mail: Laurent.Cordier@univ-poitiers.f [Institut Pprime, CNRS - Universite de Poitiers - ENSMA, UPR 3346, Departement Fluides, Thermique, Combustion, CEAT, 43 rue de l' Aerodrome, F-86036 Poitiers Cedex (France); Noack, B.R., E-mail: Bernd.Noack@univ-poitiers.f [Institut Pprime, CNRS - Universite de Poitiers - ENSMA, UPR 3346, Departement Fluides, Thermique, Combustion, CEAT, 43 rue de l' Aerodrome, F-86036 Poitiers Cedex (France); Cattafesta, L., E-mail: cattafes@ufl.ed [Florida Center for Advanced Aero-Propulsion (FCAAP), Department of Mechanical and Aerospace Engineering, University of Florida, 231 MAE-A, Gainesville, FL 32611 (United States)
2010-06-15
The unsteady activation or deactivation of fluidic vortex generators on a NACA 0015 airfoil is studied to understand the transient dynamics of flow separation control. The Reynolds number is high enough and the boundary layer is tripped, so the boundary layer is fully turbulent prior to separation. Conditional PIV of the airfoil wake is obtained phase-locked to the actuator trigger signal, allowing reconstruction of the transient processes. When the actuators are impulsively turned on, the velocity field in the near wake exhibit a complex transient behavior associated with the formation and shedding of a starting vortex. When actuation is stopped, a more gradual process of the separation dynamics is found. These results are in agreement with those found in the literature in comparable configurations. Proper Orthogonal Decomposition of phase-locked velocity fields reveals low-dimensional transient dynamics for the attachment and separation processes, with 98% of the fluctuation energy captured by the first four modes. The behavior is quantitatively well captured by a four-dimensional dynamical system with the corresponding mode amplitudes. Analysis of the first temporal POD modes accurately determines typical time scales for attachment and separation processes to be respectively t{sup +}=10 and 20 in conventional non-dimensional values. This study adds to experimental investigations of this scale with essential insight for the targeted closed-loop control.
Theoretical models of the spin-dependent charge-carrier dynamics in metals and semiconductors
International Nuclear Information System (INIS)
Krauss, Michael
2010-01-01
This thesis is concerned with spin-dependent carrier dynamics in semiconductors and metals. We are especially interested in the dynamics on ultrashort timescales, which can be driven by ultrashort optical excitation, and use of a theoretical description in terms of the dynamical spin-density matrix. The first part of this thesis is concerned with spin-dependent carrier dynamics in bulk GaAs. For conduction electrons in GaAs, the most important mechanisms, by which an electron spin polarization can be destroyed, are the Dyakonov-Perel and Bir-Aronov-Pikus mechanisms. For the Dyakonov-Perel effect, our treatment is the first calculation of the dynamics of the spindensity matrix for bulk GaAs. From our microsopic calculation, we extract spin-dephasing times. In particular, we can describe the dependence of the spin-dephasing time for a wide range of n-doping concentrations and explain the spin-dephasing dynamics in and out of the motional-narrowing regime. For the Bir-Aronov-Pikus mechanism, i.e., the exchange interaction of electronics with holes, approximate relaxation times for limiting cases were derived about 30 years ago. We show that these approaches provide an incomplete picture of spin relaxation, and are only valid for high or low densities, whereas the microscopic calculation is capable of explaining the electronic dynamics also for intermediate doping densities, which are most interesting for typical experiments. The spin-dependent hole dynamics in GaAs is much faster than that of electrons, because the p-like hole bands experience the spin-orbit interaction directly, rather than through the interaction with other bands. The resulting spin relaxation is sometimes referred to as an Elliott-Yafet mechanism. For the first time, we present results for the microscopic dynamics of this mechanism for holes in bulk GaAs, and we discuss the different results that may be obtained with different measurement techniques. We also analyze the importance of ''spin hot
International Nuclear Information System (INIS)
Itai, Y.; Moss, A.A.; Goldberg, H.I.
1982-01-01
Dynamic computed tomography of hepatic tumors revealed a transient attenuation difference of the liver in a lobar or segmental distribution in three cases. The difference was most prominent during the hepatogram phase. It was attributed to siphonage of arterial blood by hepatic tumors in two cases, while an increase of arterial flow induced by portal vein occlusion was inferred in the other case. Results indicate dynamic computed tomography will be usful in analysis of geometrical hemodynamics
Investigation of transient dynamics of capillary assisted particle assembly yield
DEFF Research Database (Denmark)
Tamulevičius, S.; Virganavičius, D.; Juodėnas, M.
2017-01-01
diameter polystyrene beads was performed on patterned poly (dimethyl siloxane) substrates using a custom-built deposition setup. Two types of patterns with different trapping site densities were used to assess CAPA process dynamics and the influence of pattern density and geometry on the deposition yield....... The fluorescence micrographs were analyzed using a custom algorithm enabling to identify particles and calculate efficiency of the deposition performed at different regimes. Relationship between the spatial distribution of particles in transition zone and ambient conditions was evaluated and quantified...... by approximation of the yield profile with a logistic function....
Dynamics of High-Order Spin-Orbit Couplings about Linear Momenta in Compact Binary Systems*
International Nuclear Information System (INIS)
Huang Li; Wu Xin; Huang Guo-Qing; Mei Li-Jie
2017-01-01
This paper relates to the post-Newtonian Hamiltonian dynamics of spinning compact binaries, consisting of the Newtonian Kepler problem and the leading, next-to-leading and next-to-next-to-leading order spin-orbit couplings as linear functions of spins and momenta. When this Hamiltonian form is transformed to a Lagrangian form, besides the terms corresponding to the same order terms in the Hamiltonian, several additional terms, third post-Newtonian (3PN), 4PN, 5PN, 6PN and 7PN order spin-spin coupling terms, yield in the Lagrangian. That means that the Hamiltonian is nonequivalent to the Lagrangian at the same PN order but is exactly equivalent to the full Lagrangian without any truncations. The full Lagrangian without the spin-spin couplings truncated is integrable and regular. Whereas it is non-integrable and becomes possibly chaotic when any one of the spin-spin terms is dropped. These results are also supported numerically. (paper)
International Nuclear Information System (INIS)
Kuwahara, Tomotaka; Mori, Takashi; Saito, Keiji
2016-01-01
This work explores a fundamental dynamical structure for a wide range of many-body quantum systems under periodic driving. Generically, in the thermodynamic limit, such systems are known to heat up to infinite temperature states in the long-time limit irrespective of dynamical details, which kills all the specific properties of the system. In the present study, instead of considering infinitely long-time scale, we aim to provide a general framework to understand the long but finite time behavior, namely the transient dynamics. In our analysis, we focus on the Floquet–Magnus (FM) expansion that gives a formal expression of the effective Hamiltonian on the system. Although in general the full series expansion is not convergent in the thermodynamics limit, we give a clear relationship between the FM expansion and the transient dynamics. More precisely, we rigorously show that a truncated version of the FM expansion accurately describes the exact dynamics for a certain time-scale. Our theory reveals an experimental time-scale for which non-trivial dynamical phenomena can be reliably observed. We discuss several dynamical phenomena, such as the effect of small integrability breaking, efficient numerical simulation of periodically driven systems, dynamical localization and thermalization. Especially on thermalization, we discuss a generic scenario on the prethermalization phenomenon in periodically driven systems. -- Highlights: •A general framework to describe transient dynamics for periodically driven systems. •The theory is applicable to generic quantum many-body systems including long-range interacting systems. •Physical meaning of the truncation of the Floquet–Magnus expansion is rigorously established. •New mechanism of the prethermalization is proposed. •Revealing an experimental time-scale for which non-trivial dynamical phenomena can be reliably observed.
Energy Technology Data Exchange (ETDEWEB)
Kuwahara, Tomotaka, E-mail: tomotaka.phys@gmail.com [Department of Physics, Graduate School of Science, University of Tokyo, Bunkyo-ku, Tokyo 113-0033 (Japan); WPI, Advanced Institute for Materials Research, Tohoku University, Sendai 980-8577 (Japan); Mori, Takashi [Department of Physics, Graduate School of Science, University of Tokyo, Bunkyo-ku, Tokyo 113-0033 (Japan); Saito, Keiji [Department of Physics, Keio University, 3-14-1 Hiyoshi, Kohoku-ku, Yokohama, 223-8522 (Japan)
2016-04-15
This work explores a fundamental dynamical structure for a wide range of many-body quantum systems under periodic driving. Generically, in the thermodynamic limit, such systems are known to heat up to infinite temperature states in the long-time limit irrespective of dynamical details, which kills all the specific properties of the system. In the present study, instead of considering infinitely long-time scale, we aim to provide a general framework to understand the long but finite time behavior, namely the transient dynamics. In our analysis, we focus on the Floquet–Magnus (FM) expansion that gives a formal expression of the effective Hamiltonian on the system. Although in general the full series expansion is not convergent in the thermodynamics limit, we give a clear relationship between the FM expansion and the transient dynamics. More precisely, we rigorously show that a truncated version of the FM expansion accurately describes the exact dynamics for a certain time-scale. Our theory reveals an experimental time-scale for which non-trivial dynamical phenomena can be reliably observed. We discuss several dynamical phenomena, such as the effect of small integrability breaking, efficient numerical simulation of periodically driven systems, dynamical localization and thermalization. Especially on thermalization, we discuss a generic scenario on the prethermalization phenomenon in periodically driven systems. -- Highlights: •A general framework to describe transient dynamics for periodically driven systems. •The theory is applicable to generic quantum many-body systems including long-range interacting systems. •Physical meaning of the truncation of the Floquet–Magnus expansion is rigorously established. •New mechanism of the prethermalization is proposed. •Revealing an experimental time-scale for which non-trivial dynamical phenomena can be reliably observed.
Spin-orbit maps and electron spin dynamics for the luminosity upgrade project at HERA
International Nuclear Information System (INIS)
Berglund, G.Z.M.
2001-09-01
HERA is the high energy electron(positron)-proton collider at deutsches elektronen-synchrotron (DESY) in Hamburg. Following eight years of successful running, five of which were with a longitudinally spin polarized electron(positron) beam for the HERMES experiment, the rings have now been modified to increase the luminosity by a factor of about five and spin rotators have been installed for the H1 and ZEUS experiments. The modifications involve nonstandard configurations of overlapping magnetic fields and other aspects which have profound implications for the polarization. This thesis addresses the problem of calculating the polarization in the upgraded machine and the measures needed to maintain the polarization. A central topic is the construction of realistic spin-orbit transport maps for the regions of overlapping fields and their implementation in existing software. This is the first time that calculations with such fields have been possible. Using the upgraded software, calculations are presented for the polarization that can be expected in the upgraded machine and an analysis is made of the contributions to depolarization from the various parts of the machine. It is concluded that about 50% polarization should be possible. The key issues for tuning the machine are discussed. The last chapter deals with a separate topic, namely how to exploit a simple unitary model of spin motion to describe electron depolarization and thereby expose a misconception appearing in the literature. (orig.)
Transient Response Dynamic Module Modifications to Include Static and Kinetic Friction Effects
Misel, J. E.; Nenno, S. B.; Takahashi, D.
1984-01-01
A methodology that supports forced transient response dynamic solutions when both static and kinetic friction effects are included in a structural system model is described. Modifications that support this type of nonlinear transient response solution are summarized for the transient response dynamics (TRD) NASTRAN module. An overview of specific modifications for the NASTRAN processing subroutines, INITL, TRD1C, and TRD1D, are described with further details regarding inspection of nonlinear input definitions to define the type of nonlinear solution required, along with additional initialization requirements and specific calculation subroutines to successfully solve the transient response problem. The extension of the basic NASTRAN nonlinear methodology is presented through several stages of development to the point where constraint equations and residual flexibility effects are introduced into the finite difference Newmark-Beta recurrsion formulas. Particular emphasis is placed on cost effective solutions for large finite element models such as the Space Shuttle with friction degrees of freedom between the orbiter and payloads mounted in the cargo bay. An alteration to the dynamic finite difference equations of motion is discussed, which allows one to include friction effects at reasonable cost for large structural systems such as the Space Shuttle. Data are presented to indicate the possible impact of transient friction loads to the payload designer for the Space Shuttle. Transient response solution data are also included, which compare solutions without friction forces and those with friction forces for payloads mounted in the Space Shuttle cargo bay. These data indicate that payload components can be sensitive to friction induced loads.
Coherent Rabi Dynamics of a Superradiant Spin Ensemble in a Microwave Cavity
Rose, B. C.; Tyryshkin, A. M.; Riemann, H.; Abrosimov, N. V.; Becker, P.; Pohl, H.-J.; Thewalt, M. L. W.; Itoh, K. M.; Lyon, S. A.
2017-07-01
We achieve the strong-coupling regime between an ensemble of phosphorus donor spins in a highly enriched 28Si crystal and a 3D dielectric resonator. Spins are polarized beyond Boltzmann equilibrium using spin-selective optical excitation of the no-phonon bound exciton transition resulting in N =3.6 ×1 013 unpaired spins in the ensemble. We observe a normal mode splitting of the spin-ensemble-cavity polariton resonances of 2 g √{N }=580 kHz (where each spin is coupled with strength g ) in a cavity with a quality factor of 75 000 (γ ≪κ ≈60 kHz , where γ and κ are the spin dephasing and cavity loss rates, respectively). The spin ensemble has a long dephasing time (T2*=9 μ s ) providing a wide window for viewing the dynamics of the coupled spin-ensemble-cavity system. The free-induction decay shows up to a dozen collapses and revivals revealing a coherent exchange of excitations between the superradiant state of the spin ensemble and the cavity at the rate g √{N }. The ensemble is found to evolve as a single large pseudospin according to the Tavis-Cummings model due to minimal inhomogeneous broadening and uniform spin-cavity coupling. We demonstrate independent control of the total spin and the initial Z projection of the psuedospin using optical excitation and microwave manipulation, respectively. We vary the microwave excitation power to rotate the pseudospin on the Bloch sphere and observe a long delay in the onset of the superradiant emission as the pseudospin approaches full inversion. This delay is accompanied by an abrupt π -phase shift in the peusdospin microwave emission. The scaling of this delay with the initial angle and the sudden phase shift are explained by the Tavis-Cummings model.
Spin dynamics and Kondo physics in optical tweezers
Lin, Yiheng; Lester, Brian J.; Brown, Mark O.; Kaufman, Adam M.; Long, Junling; Ball, Randall J.; Isaev, Leonid; Wall, Michael L.; Rey, Ana Maria; Regal, Cindy A.
2016-05-01
We propose to use optical tweezers as a toolset for direct observation of the interplay between quantum statistics, kinetic energy and interactions, and thus implement minimum instances of the Kondo lattice model in systems with few bosonic rubidium atoms. By taking advantage of strong local exchange interactions, our ability to tune the spin-dependent potential shifts between the two wells and complete control over spin and motional degrees of freedom, we design an adiabatic tunneling scheme that efficiently creates a spin-singlet state in one well starting from two initially separated atoms (one atom per tweezer) in opposite spin state. For three atoms in a double-well, two localized in the lowest vibrational mode of each tweezer and one atom in an excited delocalized state, we plan to use similar techniques and observe resonant transfer of two-atom singlet-triplet states between the wells in the regime when the exchange coupling exceeds the mobile atom hopping. Moreover, we argue that such three-atom double-tweezers could potentially be used for quantum computation by encoding logical qubits in collective spin and motional degrees of freedom. Current address: Department of Physics, Harvard University, Cambridge, Massachusetts 02138, USA.
Spin currents and magnon dynamics in insulating magnets
Nakata, Kouki; Simon, Pascal; Loss, Daniel
2017-03-01
Nambu-Goldstone theorem provides gapless modes to both relativistic and nonrelativistic systems. The Nambu-Goldstone bosons in insulating magnets are called magnons or spin-waves and play a key role in magnetization transport. We review here our past works on magnetization transport in insulating magnets and also add new insights, with a particular focus on magnon transport. We summarize in detail the magnon counterparts of electron transport, such as the Wiedemann-Franz law, the Onsager reciprocal relation between the Seebeck and Peltier coefficients, the Hall effects, the superconducting state, the Josephson effects, and the persistent quantized current in a ring to list a few. Focusing on the electromagnetism of moving magnons, i.e. magnetic dipoles, we theoretically propose a way to directly measure magnon currents. As a consequence of the Mermin-Wagner-Hohenberg theorem, spin transport is drastically altered in one-dimensional antiferromagnetic (AF) spin-1/2 chains; where the Néel order is destroyed by quantum fluctuations and a quasiparticle magnon-like picture breaks down. Instead, the low-energy collective excitations of the AF spin chain are described by a Tomonaga-Luttinger liquid (TLL) which provides the spin transport properties in such antiferromagnets some universal features at low enough temperature. Finally, we enumerate open issues and provide a platform to discuss the future directions of magnonics.
Spin currents and magnon dynamics in insulating magnets
International Nuclear Information System (INIS)
Nakata, Kouki; Loss, Daniel; Simon, Pascal
2017-01-01
Nambu–Goldstone theorem provides gapless modes to both relativistic and nonrelativistic systems. The Nambu–Goldstone bosons in insulating magnets are called magnons or spin-waves and play a key role in magnetization transport. We review here our past works on magnetization transport in insulating magnets and also add new insights, with a particular focus on magnon transport. We summarize in detail the magnon counterparts of electron transport, such as the Wiedemann–Franz law, the Onsager reciprocal relation between the Seebeck and Peltier coefficients, the Hall effects, the superconducting state, the Josephson effects, and the persistent quantized current in a ring to list a few. Focusing on the electromagnetism of moving magnons, i.e. magnetic dipoles, we theoretically propose a way to directly measure magnon currents. As a consequence of the Mermin–Wagner–Hohenberg theorem, spin transport is drastically altered in one-dimensional antiferromagnetic (AF) spin-1/2 chains; where the Néel order is destroyed by quantum fluctuations and a quasiparticle magnon-like picture breaks down. Instead, the low-energy collective excitations of the AF spin chain are described by a Tomonaga–Luttinger liquid (TLL) which provides the spin transport properties in such antiferromagnets some universal features at low enough temperature. Finally, we enumerate open issues and provide a platform to discuss the future directions of magnonics. (paper)
A neural model for transient identification in dynamic processes with 'don't know' response
International Nuclear Information System (INIS)
Mol, Antonio C. de A.; Martinez, Aquilino S.; Schirru, Roberto
2003-01-01
This work presents an approach for neural network based transient identification which allows either dynamic identification or a 'don't know' response. The approach uses two 'jump' multilayer neural networks (NN) trained with the backpropagation algorithm. The 'jump' network is used because it is useful to dealing with very complex patterns, which is the case of the space of the state variables during some abnormal events. The first one is responsible for the dynamic identification. This NN uses, as input, a short set (in a moving time window) of recent measurements of each variable avoiding the necessity of using starting events. The other one is used to validate the instantaneous identification (from the first net) through the validation of each variable. This net is responsible for allowing the system to provide a 'don't know' response. In order to validate the method, a Nuclear Power Plant (NPP) transient identification problem comprising 15 postulated accidents, simulated for a pressurized water reactor (PWR), was proposed in the validation process it has been considered noisy data in order to evaluate the method robustness. Obtained results reveal the ability of the method in dealing with both dynamic identification of transients and correct 'don't know' response. Another important point studied in this work is that the system has shown to be independent of a trigger signal which indicates the beginning of the transient, thus making it robust in relation to this limitation
Sesti, Erika L.; Alaniva, Nicholas; Rand, Peter W.; Choi, Eric J.; Albert, Brice J.; Saliba, Edward P.; Scott, Faith J.; Barnes, Alexander B.
2018-01-01
We report magic angle spinning (MAS) up to 8.5 kHz with a sample temperature below 6 K using liquid helium as a variable temperature fluid. Cross polarization 13C NMR spectra exhibit exquisite sensitivity with a single transient. Remarkably, 1H saturation recovery experiments show a 1H T1 of 21 s with MAS below 6 K in the presence of trityl radicals in a glassy matrix. Leveraging the thermal spin polarization available at 4.2 K versus 298 K should result in 71 times higher signal intensity. Taking the 1H longitudinal relaxation into account, signal averaging times are therefore predicted to be expedited by a factor of >500. Computer assisted design (CAD) and finite element analysis were employed in both the design and diagnostic stages of this cryogenic MAS technology development. Computational fluid dynamics (CFD) models describing temperature gradients and fluid flow are presented. The CFD models bearing and drive gas maintained at 100 K, while a colder helium variable temperature fluid stream cools the center of a zirconia rotor. Results from the CFD were used to optimize the helium exhaust path and determine the sample temperature. This novel cryogenic experimental platform will be integrated with pulsed dynamic nuclear polarization and electron decoupling to interrogate biomolecular structure within intact human cells.
Excited-State Dynamics of Carotenoids Studied by Femtosecond Transient Absorption Spectroscopy
Energy Technology Data Exchange (ETDEWEB)
Lee, Ingu; Pang, Yoonsoo [Department of Physics and Photon Science, Gwangju (Korea, Republic of); Lee, Sebok [Gwangju Institute of Science and Technology, Gwangju (Korea, Republic of)
2014-03-15
Carotenoids, natural antenna pigments in photosynthesis share a symmetric backbone of conjugated polyenes. Contrary to the symmetric and almost planar geometries of carotenoids, excited state structure and dynamics of carotenoids are exceedingly complex. In this paper, recent infrared and visible transient absorption measurements and excitation dependent dynamics of 8'-apo-β-caroten-8'-al and 7',7'-dicyano-7'-apo-β-carotene will be reviewed. The recent visible transient absorption measurements of 8'-apo-β-caroten-8'-al in polar and nonpolar solvents will also be introduced to emphasize the complex excited-state dynamics and unsolved problems in the S{sub 2} and S{sub 1} excited states.
International Nuclear Information System (INIS)
Haag, M.; Brandt, B. van den; Eichhorn, T.R.; Hautle, P.; Wenckebach, W.Th.
2012-01-01
In a test of principle a neutron spin filter has been built, which is based on dynamic nuclear polarization (DNP) using photo-excited triplet states. This DNP method has advantages over classical concepts as the requirements for cryogenic equipment and magnets are much relaxed: the spin filter is operated in a field of 0.3 T at a temperature of about 100 K and has performed reliably over periods of several weeks. The neutron beam was also used to analyze the polarization of the target employed as a spin filter. We obtained an independent measurement of the proton spin polarization of ∼0.13 in good agreement with the value determined with NMR. Moreover, the neutron beam was used to measure the proton spin polarization as a function of position in the naphthalene sample. The polarization was found to be homogeneous, even at low laser power, in contradiction to existing models describing the photo-excitation process.
Kuwahara, Tomotaka; Mori, Takashi; Saito, Keiji
2016-04-01
This work explores a fundamental dynamical structure for a wide range of many-body quantum systems under periodic driving. Generically, in the thermodynamic limit, such systems are known to heat up to infinite temperature states in the long-time limit irrespective of dynamical details, which kills all the specific properties of the system. In the present study, instead of considering infinitely long-time scale, we aim to provide a general framework to understand the long but finite time behavior, namely the transient dynamics. In our analysis, we focus on the Floquet-Magnus (FM) expansion that gives a formal expression of the effective Hamiltonian on the system. Although in general the full series expansion is not convergent in the thermodynamics limit, we give a clear relationship between the FM expansion and the transient dynamics. More precisely, we rigorously show that a truncated version of the FM expansion accurately describes the exact dynamics for a certain time-scale. Our theory reveals an experimental time-scale for which non-trivial dynamical phenomena can be reliably observed. We discuss several dynamical phenomena, such as the effect of small integrability breaking, efficient numerical simulation of periodically driven systems, dynamical localization and thermalization. Especially on thermalization, we discuss a generic scenario on the prethermalization phenomenon in periodically driven systems.
Spin-cast bulk heterojunction solar cells: A dynamical investigation
Chou, Kang Wei
2013-02-22
Spin-coating is extensively used in the lab-based manufacture of organic solar cells, including most of the record-setting solution-processed cells. We report the first direct observation of photoactive layer formation as it occurs during spin-coating. The study provides new insight into mechanisms and kinetics of bulk heterojunction formation, which may be crucial for its successful transfer to scalable printing processes. Copyright © 2013 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
Spin-cast bulk heterojunction solar cells: A dynamical investigation
Chou, Kang Wei; Yan, Buyi; Li, Ruipeng; Li, Erqiang; Zhao, Kui; Anjum, Dalaver H.; Alvarez, Steven; Gassaway, Robert; Biocca, Alan K.; Thoroddsen, Sigurdur T; Hexemer, Alexander; Amassian, Aram
2013-01-01
Spin-coating is extensively used in the lab-based manufacture of organic solar cells, including most of the record-setting solution-processed cells. We report the first direct observation of photoactive layer formation as it occurs during spin-coating. The study provides new insight into mechanisms and kinetics of bulk heterojunction formation, which may be crucial for its successful transfer to scalable printing processes. Copyright © 2013 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
Analysis of thermally induced magnetization dynamics in spin-transfer nano-oscillators
Energy Technology Data Exchange (ETDEWEB)
D' Aquino, M., E-mail: daquino@uniparthenope.it [Department of Technology, University of Naples ' Parthenope' , 80143 Naples (Italy); Serpico, C. [Department of Engineering, University of Naples Federico II, 80125 Naples (Italy); Bertotti, G. [Istituto Nazionale di Ricerca Metrologica 10135 Torino (Italy); Bonin, R. [Politecnico di Torino - Sede di Verres, 11029 Verres (Aosta) (Italy); Mayergoyz, I.D. [ECE Department and UMIACS, University of Maryland, College Park, MD 20742 (United States)
2012-05-01
The thermally induced magnetization dynamics in the presence of spin-polarized currents injected into a spin-valve-like structure used as microwave spin-transfer nano-oscillator (STNO) is considered. Magnetization dynamics is described by the stochastic Landau-Lifshitz-Slonczewski (LLS) equation. First, it is shown that, in the presence of thermal fluctuations, the spectrum of the output signal of the STNO exhibits multiple peaks at low and high frequencies. This circumstance is associated with the occurrence of thermally induced transitions between stationary states and magnetization self-oscillations. Then, a theoretical approach based on the separation of time-scales is developed to obtain a stochastic dynamics only in the slow state variable, namely the energy. The stationary distribution of the energy and the aforementioned transition rates are analytically computed and compared with the results of direct integration of the LLS dynamics, showing very good agreement.
Dynamical Properties of a Diluted Dipolar-Interaction Heisenberg Spin Glass
International Nuclear Information System (INIS)
Zhang Kai-Cheng; Liu Yong; Chi Feng
2014-01-01
Up to now the chirality is seldom studied in the diluted spin glass although many investigations have been performed on the site-ordered Edwards—Anderson model. By simulation, we investigate the dynamical properties of both the spin-glass and the chiral-glass phases in a diluted dipolar system, which was manifested to have a spin-glass transition by recent numerical study. By scaling we find that both phases have the same aging behavior and closer aging parameter μ. Similarly, the domains grow in the same way and both phases have a closer barrier exponent Ψ. It means that both the spins and the chirality have the same dynamical properties and they may freeze at the same temperature. (condensed matter: electronic structure, electrical, magnetic, and optical properties)
Effects of three-body interactions on the dynamics of entanglement in spin chains
International Nuclear Information System (INIS)
Shi Cuihua; Wu Yinzhong; Li Zhenya
2009-01-01
With the consideration of three-body interaction, dynamics of pairwise entanglement in spin chains is studied. The dependence of pairwise entanglement dynamics on the type of coupling, and distance between the spins is analyzed in a finite chain for different initial states. It is found that, for an Ising chain, three-body interactions are not in favor of preparing entanglement between the nearest neighbor spins, while three-body interactions are favorable for creating entanglement between remote spins from a separable initial state. For an isotropic Heisenberg chain, the pairwise concurrence will decrease when three-body interactions are considered both for a separable initial state and for a maximally entangled initial state, however, three-body interactions will retard the decay of the concurrence in an Ising chain when the initial state takes the maximally entangled state.
Energy Technology Data Exchange (ETDEWEB)
Pohlit, Merlin, E-mail: pohlit@physik.uni-frankfurt.de; Porrati, Fabrizio; Huth, Michael; Müller, Jens [Institute of Physics, Goethe-University Frankfurt, Frankfurt/Main (Germany); Stockem, Irina; Schröder, Christian [Bielefeld Institute for Applied Materials Research, FH Bielefeld-University of Applied Sciences, Bielefeld (Germany)
2016-10-14
We study the magnetization dynamics of a spin ice cluster which is a building block of an artificial square spin ice fabricated by focused electron-beam-induced deposition both experimentally and theoretically. The spin ice cluster is composed of twelve interacting Co nanoislands grown directly on top of a high-resolution micro-Hall sensor. By employing micromagnetic simulations and a macrospin model, we calculate the magnetization and the experimentally investigated stray field emanating from a single nanoisland. The parameters determined from a comparison with the experimental hysteresis loop are used to derive an effective single-dipole macrospin model that allows us to investigate the dynamics of the spin ice cluster. Our model reproduces the experimentally observed non-deterministic sequences in the magnetization curves as well as the distinct temperature dependence of the hysteresis loop.
Quantum dynamics and entanglement of spins on a square lattice
DEFF Research Database (Denmark)
Christensen, Niels Bech; Rønnow, Henrik Moodysson; McMorrow, Desmond Francis
2007-01-01
in understanding quantum effects in one-dimensional quantum antiferromagnets, but a complete experimental description of even simple two-dimensional antiferromagnets is lacking. Here we describe a comprehensive set of neutron scattering measurements that reveal a non-spin-wave continuum and strong quantum effects...
First-principles approach to noncollinear magnetism: Towards spin dynamics
DEFF Research Database (Denmark)
Sharma, S.; Dewhurst, J.K.; Ambrosch-Draxl, C.
2007-01-01
A description of noncollinear magnetism in the framework of spin-density functional theory is presented for the exact exchange energy functional which depends explicitly on two-component spinor orbitals. The equations for the effective Kohn-Sham scalar potential and magnetic field are derived...
Spin Dynamics in (111) GaAs/AlGaAs Undoped Asymmetric Quantum Wells
International Nuclear Information System (INIS)
Wang Gang; Ye Hui-Qi; Shi Zhen-Wu; Wang Wen-Xin; Liu Bao-Li; Xavier Marie; Andrea Balocchi; Thierry Amand
2012-01-01
The electron spin dynamics is investigated by the time-resolved Kerr rotation technique in a pair of special GaAs/AlGaAs asymmetric quantum well samples grown on (111)-oriented substrates, whose structures are the same except for their opposite directions of potential asymmetry. A large difference of spin lifetimes between the two samples is observed at low temperature. This difference is interpreted in terms of a cancellation effect between the Dresselhaus spin-splitting term in the conduction band and another term induced by interface inversion asymmetry. The deviation decreases with the increasing temperature, and almost disappears when T > 100 K because the cubic Dresselhaus term becomes more important
Generating highly polarized nuclear spins in solution using dynamic nuclear polarization
DEFF Research Database (Denmark)
Wolber, J.; Ellner, F.; Fridlund, B.
2004-01-01
A method to generate strongly polarized nuclear spins in solution has been developed, using Dynamic Nuclear Polarization (DNP) at a temperature of 1.2K, and at a field of 3.354T, corresponding to an electron spin resonance frequency of 94GHz. Trityl radicals are used to directly polarize 13C...... and other low-γ nuclei. Subsequent to the DNP process, the solid sample is dissolved rapidly with a warm solvent to create a solution of molecules with highly polarized nuclear spins. Two main applications are proposed: high-resolution liquid state NMR with enhanced sensitivity, and the use...
Spin dynamics in a molecular ferrimagnetic ring, [Mn(hfac)2NITPh]6
International Nuclear Information System (INIS)
Itou, T.; Funahashi, S.; Oyamada, A.; Maegawa, S.; Fujita, K.; Amezawa, K.; Yamaguchi, R.
2007-01-01
We studied the spin dynamics of a ferrimagnetic ring [Mn(hfac) 2 NITPh] 6 with an S=12 ground state by means of H-NMR1 experiments under several fields. The spin-lattice relaxation rate increases monotonically with increasing temperature. This monotonous behavior is not reproduced by the calculation based on the lifetimes of eigenstates caused by the spin-phonon interaction. The relaxation rate is possibly caused by the dispersion resulting from the interaction between the clusters, which is far smaller than the interaction in the cluster but comparable to the nuclear Zeeman energy
Stochastic differential equations for quantum dynamics of spin-boson networks
International Nuclear Information System (INIS)
Mandt, Stephan; Sadri, Darius; Houck, Andrew A; Türeci, Hakan E
2015-01-01
A popular approach in quantum optics is to map a master equation to a stochastic differential equation, where quantum effects manifest themselves through noise terms. We generalize this approach based on the positive-P representation to systems involving spin, in particular networks or lattices of interacting spins and bosons. We test our approach on a driven dimer of spins and photons, compare it to the master equation, and predict a novel dynamic phase transition in this system. Our numerical approach has scaling advantages over existing methods, but typically requires regularization in terms of drive and dissipation. (paper)
Theory of spin and lattice wave dynamics excited by focused laser pulses
Shen, Ka; Bauer, Gerrit E. W.
2018-06-01
We develop a theory of spin wave dynamics excited by ultrafast focused laser pulses in a magnetic film. We take into account both the volume and surface spin wave modes in the presence of applied, dipolar and magnetic anisotropy fields and include the dependence on laser spot exposure size and magnetic damping. We show that the sound waves generated by local heating by an ultrafast focused laser pulse can excite a wide spectrum of spin waves (on top of a dominant magnon–phonon contribution). Good agreement with recent experiments supports the validity of the model.
Spin dynamics at level crossing in molecular AF rings probed by NMR
Energy Technology Data Exchange (ETDEWEB)
Lascialfari, A. E-mail: lascialfari@fisicavolta.unipv.it; Borsa, F.; Julien, M.-H.; Micotti, E.; Furukawa, Y.; Jang, Z.H.; Cornia, A.; Gatteschi, D.; Horvatic, M.; Van Slageren, J
2004-05-01
The low-temperature spin dynamics in molecular rings with a finite number (N{<=}10) of magnetic ions was studied by means of {sup 1}H NMR. When an external magnetic field (B) induces a crossing between energy levels, peaks are observed in the spin-lattice relaxation rate of protons, 1/T{sub 1}(B), at constant temperature. We discuss similarities and differences in the data from three different rings: Fe10, Fe6:Li and Cr8.
Spin dynamics at level crossing in molecular AF rings probed by NMR
International Nuclear Information System (INIS)
Lascialfari, A.; Borsa, F.; Julien, M.-H.; Micotti, E.; Furukawa, Y.; Jang, Z.H.; Cornia, A.; Gatteschi, D.; Horvatic, M.; Van Slageren, J.
2004-01-01
The low-temperature spin dynamics in molecular rings with a finite number (N≤10) of magnetic ions was studied by means of 1 H NMR. When an external magnetic field (B) induces a crossing between energy levels, peaks are observed in the spin-lattice relaxation rate of protons, 1/T 1 (B), at constant temperature. We discuss similarities and differences in the data from three different rings: Fe10, Fe6:Li and Cr8
External magnetic field induced anomalies of spin nuclear dynamics in thin antiferromagnetic films
International Nuclear Information System (INIS)
Tarasenko, S.V.
1995-01-01
It is shown that if the thickness of homogeneously magnetized plate of high-axial antiferromagnetic within H external magnetic field becomes lower the critical one, then the effect of dynamic magnetoelastic interaction on Soul-Nakamura exchange of nuclear spins results in formation of qualitatively new types of spreading nuclear spin waves no else compared neither within the model of unrestricted magnetic nor at H = 0 in case of thin plate of high-axial antiferromagnetic. 10 refs
International Nuclear Information System (INIS)
Moura, A.R.; Pereira, A.R.; Moura-Melo, W.A.; Pires, A.S.T.
2008-01-01
We develop an effective theory to study the skyrmion dynamics in the presence of a hole (removed spins from the lattice) in Neel ordered two-dimensional antiferromagnets with arbitrary spin value S. The general equation of motion for the 'mass center' of this structure is obtained. The frequency of small amplitude oscillations of pinned skyrmions around the defect center is calculated. It is proportional to the hole size and inversely proportional to the square of the skyrmion size
A linear dynamic model for rotor-spun composite yarn spinning process
International Nuclear Information System (INIS)
Yang, R H; Wang, S Y
2008-01-01
A linear dynamic model is established for the stable rotor-spun composite yarn spinning process. Approximate oscillating frequencies in the vertical and horizontal directions are obtained. By suitable choice of certain processing parameters, the mixture construction after the convergent point can be optimally matched. The presented study is expected to provide a general pathway to understand the motion of the rotor-spun composite yarn spinning process
Wang, Huihui; Bokarev, Sergey I.; Aziz, Saadullah G.; Kühn, Oliver
2017-08-01
Recent developments in attosecond spectroscopy yield access to the correlated motion of electrons on their intrinsic timescales. Spin-flip dynamics is usually considered in the context of valence electronic states, where spin-orbit coupling is weak and processes related to the electron spin are usually driven by nuclear motion. However, for core-excited states, where the core-hole has a nonzero angular momentum, spin-orbit coupling is strong enough to drive spin-flips on a much shorter timescale. Using density matrix-based time-dependent restricted active space configuration interaction including spin-orbit coupling, we address an unprecedentedly short spin-crossover for the example of L-edge (2p→3d) excited states of a prototypical Fe(II) complex. This process occurs on a timescale, which is faster than that of Auger decay (∼4 fs) treated here explicitly. Modest variations of carrier frequency and pulse duration can lead to substantial changes in the spin-state yield, suggesting its control by soft X-ray light.
Dynamical nuclear spin polarization induced by electronic current through double quantum dots
International Nuclear Information System (INIS)
Lopez-Monis, Carlos; Platero, Gloria; Inarrea, Jesus
2011-01-01
We analyse electron-spin relaxation in electronic transport through coherently coupled double quantum dots (DQDs) in the spin blockade regime. In particular, we focus on hyperfine (HF) interaction as the spin-relaxation mechanism. We pay special attention to the effect of the dynamical nuclear spin polarization induced by the electronic current on the nuclear environment. We discuss the behaviour of the electronic current and the induced nuclear spin polarization versus an external magnetic field for different HF coupling intensities and interdot tunnelling strengths. We take into account, for each magnetic field, all HF-mediated spin-relaxation processes coming from different opposite spin level approaches. We find that the current as a function of the external magnetic field shows a peak or a dip and that the transition from a current dip to a current peak behaviour is obtained by decreasing the HF coupling or by increasing the interdot tunnelling strength. We give a physical picture in terms of the interplay between the electrons tunnelling out of the DQD and the spin-flip processes due to the nuclear environment.
Two-level system in spin baths: Non-adiabatic dynamics and heat transport
Segal, Dvira
2014-04-01
We study the non-adiabatic dynamics of a two-state subsystem in a bath of independent spins using the non-interacting blip approximation, and derive an exact analytic expression for the relevant memory kernel. We show that in the thermodynamic limit, when the subsystem-bath coupling is diluted (uniformly) over many (infinite) degrees of freedom, our expression reduces to known results, corresponding to the harmonic bath with an effective, temperature-dependent, spectral density function. We then proceed and study the heat current characteristics in the out-of-equilibrium spin-spin-bath model, with a two-state subsystem bridging two thermal spin-baths of different temperatures. We compare the behavior of this model to the case of a spin connecting boson baths, and demonstrate pronounced qualitative differences between the two models. Specifically, we focus on the development of the thermal diode effect, and show that the spin-spin-bath model cannot support it at weak (subsystem-bath) coupling, while in the intermediate-strong coupling regime its rectifying performance outplays the spin-boson model.
Two-level system in spin baths: Non-adiabatic dynamics and heat transport
Energy Technology Data Exchange (ETDEWEB)
Segal, Dvira [Chemical Physics Theory Group, Department of Chemistry, University of Toronto, 80 Saint George St., Toronto, Ontario M5S 3H6 (Canada)
2014-04-28
We study the non-adiabatic dynamics of a two-state subsystem in a bath of independent spins using the non-interacting blip approximation, and derive an exact analytic expression for the relevant memory kernel. We show that in the thermodynamic limit, when the subsystem-bath coupling is diluted (uniformly) over many (infinite) degrees of freedom, our expression reduces to known results, corresponding to the harmonic bath with an effective, temperature-dependent, spectral density function. We then proceed and study the heat current characteristics in the out-of-equilibrium spin-spin-bath model, with a two-state subsystem bridging two thermal spin-baths of different temperatures. We compare the behavior of this model to the case of a spin connecting boson baths, and demonstrate pronounced qualitative differences between the two models. Specifically, we focus on the development of the thermal diode effect, and show that the spin-spin-bath model cannot support it at weak (subsystem-bath) coupling, while in the intermediate-strong coupling regime its rectifying performance outplays the spin-boson model.
International Nuclear Information System (INIS)
Kim, T.U.; Kim, S.; Woo, S.K.; Lee, J.W.; Lee, T.H.; Jeong, Y.J.; Heo, J.
2008-01-01
Aim: To evaluate the 'transient gastric perfusion defect' sign as a way of diagnosing portal hypertensive gastropathy (PHG) on multidetector computed tomography (CT). Materials and methods: Ninety-two consecutive patients with cirrhosis underwent three-phase CT and endoscopy. Endoscopy was performed within 3 days of the CT examination. As controls, 92 patients without clinical evidence of chronic liver diseases who underwent CT and endoscopy were enrolled; the findings at endoscopy were used as a reference standard for patients with PHG. Two radiologists who were unaware of the results of the endoscopy retrospectively interpreted the CT images. PHG was diagnosed on dynamic CT if the transient gastric perfusion defect sign was present. The transient gastric perfusion defect was defined as the presence of transient, segmental or subsegmental hypo-attenuating mucosa in the fundus or body of the stomach on hepatic arterial imaging that returned to normal attenuation on portal venous or equilibrium-phase imaging. The frequency of the transient gastric perfusion defect sign was compared between these two groups using Fisher's exact test. The frequency, sensitivity, specificity, positive predictive values, and negative predictive values of the transient gastric perfusion defect sign were also compared between patients with PHG and without PHG in the cirrhosis group. Results: Nine patients of 92 patients with cirrhosis were excluded because of previous procedure or motion artifact; the remaining 83 patients with cirrhosis were evaluated. In the cirrhosis group, 40 (48.1%) of 83 patients showed the transient gastric perfusion defect sign. In the control group, none of the 92 patients showed the transient gastric perfusion defect sign. In the cirrhotic group, the frequency of the transient gastric perfusion defect sign was significantly higher in the patients with PHG (75%, 36/48) than in patients without PHG (11.4%, 4/35). The sensitivity, specificity, positive predictive
Masuzawa, Toru; Ohta, Akiko; Tanaka, Nobuatu; Qian, Yi; Tsukiya, Tomonori
2009-01-01
The effect of the hydraulic force on magnetically levitated (maglev) pumps should be studied carefully to improve the suspension performance and the reliability of the pumps. A maglev centrifugal pump, developed at Ibaraki University, was modeled with 926 376 hexahedral elements for computational fluid dynamics (CFD) analyses. The pump has a fully open six-vane impeller with a diameter of 72.5 mm. A self-bearing motor suspends the impeller in the radial direction. The maximum pressure head and flow rate were 250 mmHg and 14 l/min, respectively. First, a steady-state analysis was performed using commercial code STAR-CD to confirm the model's suitability by comparing the results with the real pump performance. Second, transient analysis was performed to estimate the hydraulic force on the levitated impeller. The impeller was rotated in steps of 1 degrees using a sliding mesh. The force around the impeller was integrated at every step. The transient analysis revealed that the direction of the radial force changed dynamically as the vane's position changed relative to the outlet port during one circulation, and the magnitude of this force was about 1 N. The current maglev pump has sufficient performance to counteract this hydraulic force. Transient CFD analysis is not only useful for observing dynamic flow conditions in a centrifugal pump but is also effective for obtaining information about the levitation dynamics of a maglev pump.
General purpose dynamic Monte Carlo with continuous energy for transient analysis
Energy Technology Data Exchange (ETDEWEB)
Sjenitzer, B. L.; Hoogenboom, J. E. [Delft Univ. of Technology, Dept. of Radiation, Radionuclide and Reactors, Mekelweg 15, 2629JB Delft (Netherlands)
2012-07-01
For safety assessments transient analysis is an important tool. It can predict maximum temperatures during regular reactor operation or during an accident scenario. Despite the fact that this kind of analysis is very important, the state of the art still uses rather crude methods, like diffusion theory and point-kinetics. For reference calculations it is preferable to use the Monte Carlo method. In this paper the dynamic Monte Carlo method is implemented in the general purpose Monte Carlo code Tripoli4. Also, the method is extended for use with continuous energy. The first results of Dynamic Tripoli demonstrate that this kind of calculation is indeed accurate and the results are achieved in a reasonable amount of time. With the method implemented in Tripoli it is now possible to do an exact transient calculation in arbitrary geometry. (authors)
Reconsidering the boundary conditions for a dynamic, transient mode I crack problem
Leise, Tanya
2008-11-01
A careful examination of a dynamic mode I crack problem leads to the conclusion that the commonly used boundary conditions do not always hold in the case of an applied crack face loading, so that a modification is required to satisfy the equations. In particular, a transient compressive stress wave travels along the crack faces, moving outward from the loading region on the crack face. This does not occur in the quasistatic or steady state problems, and is a special feature of the transient dynamic problem that is important during the time interval immediately following the application of crack face loading. We demonstrate why the usual boundary conditions lead to a prediction of crack face interpenetration, and then examine how to modify the boundary condition for a semi-infinite crack with a cohesive zone. Numerical simulations illustrate the resulting approach.
Atomistic spin dynamics simulations on Mn-doped GaAs and CuMn
Energy Technology Data Exchange (ETDEWEB)
Hellsvik, Johan, E-mail: johan.hellsvik@fysik.uu.s [Department of Physics and Materials Science, Uppsala University, Box 530, SE-751 21 Uppsala (Sweden)
2010-01-01
The magnetic dynamical behavior of two random alloys have been investigated in atomistic spin dynamics (ASD) simulations. For both materials, magnetic exchange parameters calculated with first principles electronic structure methods were used. From experiments it is well known that CuMn is a highly frustrated magnetic system and a good manifestation of a Heisenberg spin glass. In our ASD simulations the behavior of the autocorrelation function indicate spin glass behavior. The diluted magnetic semiconductor (DMS) Mn-doped GaAs is engineered with hopes of high enough Curie temperatures to operate in spintronic devices. Impurities such as As antisites and Mn interstitials change the exhange couplings from being mainly ferromagnetic to also have antiferromagnetic components. We explore how the resulting frustration affects the magnetization dynamics for a varying rate of As antisites.
Fluid dynamics of giant resonances on high spin states
International Nuclear Information System (INIS)
Di Nardo, M.; Di Toro, M.; Giansiracusa, G.; Lombardo, U.; Russo, G.
1983-01-01
We describe giant resonances built on high spin states along the yrast line as scaling solutions of a linearized Vlasov equation in a rotating frame obtained from a TDHF theory in phase space. For oblate cranked solutions we get a shift and a splitting of the isoscalar giant resonances in terms of the angular velocity. Results are shown for 40 Ca and 168 Er. The relative CM strengths are also calculated. (orig.)
Spin dynamics in SiGe quantum dot lines and ring molecules
Zinovieva, A. F.; Nenashev, A. V.; Dvurechenskii, A. V.
2016-04-01
Semiconductor quantum dot (QD) structures can be used as a model for understanding the effect of the microscopic structure, symmetry of crystals, and molecules on their macroscopic properties. In this work, the results of two theoretical approaches demonstrate that the spin dynamics in ordered QD structures depends on the size, spatial configuration, and topology of the object built of QDs. It was shown that the spin dynamics in QD structures with the hopping regime of conductivity significantly differs from the spin dynamics in two-dimensional (2D) and three-dimensional (3D) structures being at the other side of the metal-insulator transition. The special character of the effective magnetic field δ H fluctuations appearing only during tunneling between quantum dots is responsible for the insensitivity of spin relaxation times to the magnitude of the external magnetic field in infinite QD structures (2D square lattice and 1D linear QD chain). In finite QD structures (QD rings and linear chains), an external magnetic field H0 is directly involved in the spin relaxation process and spin is lost due to interaction with a special combination of fields Δ H ˜[H0×δ H ]/δ H that leads to an unusual orientation dependence of ESR linewidth, recently observed for QD chains. It was shown that the ordering of QD structures can be used for the conservation of spin orientation. For 1D finite quantum dot chains, the ordering can provide the stabilization of all spin components Sx,Sy, and Sz, while for ringlike molecules only Sz polarization can be stabilized. The results obtained in this work can be useful for development of novel semiconductor devices and in quantum information processing.
Dynamics of gas-phase transient species studied by dissociative photodetachment of molecular anions
Lu, Zhou
2007-01-01
Gas-phase transient species, such as the CH₃CO₂ and HOCO free radicals, play important roles in combustion and environment chemistry. In this thesis work, the dynamics of these two radicals were studied by dissociative photodetachment (DPD) of the negative ions, CH₃CO₂-С and HOCO⁻, respectively. The experiments were carried out with a fast-ion-beam photoelectron-photofragment coincidence (PPC) spectrometer. Mass-selected molecular anions in a fast ion beam were intercepted by a linearly polar...
Complex dynamics and switching transients in periodically forced Filippov prey–predator system
International Nuclear Information System (INIS)
Tang, Guangyao; Qin, Wenjie; Tang, Sanyi
2014-01-01
Highlights: •We develop a Filippov prey–predator model with periodic forcing. •The sliding mode dynamics and its domain have been investigated. •The existence and stability of sliding periodic solution have been discussed. •The complex dynamics are addressed through bifurcation analyses. •Switching transients and their biological implications have been discussed. - Abstract: By employing threshold policy control (TPC) in combination with the definition of integrated pest management (IPM), a Filippov prey–predator model with periodic forcing has been proposed and studied, and the periodic forcing is affected by assuming a periodic variation in the intrinsic growth rate of the prey. This study aims to address how the periodic forcing and TPC affect the pest control. To do this, the sliding mode dynamics and sliding mode domain have been addressed firstly by using Utkin’s equivalent control method, and then the existence and stability of sliding periodic solution are investigated. Furthermore, the complex dynamics including multiple attractors coexistence, period adding sequences and chaotic solutions with respect to bifurcation parameters of forcing amplitude and economic threshold (ET) have been investigated numerically in more detail. Finally the switching transients associated with pest outbreaks and their biological implications have been discussed. Our results indicate that the sliding periodic solution could be globally stable, and consequently the prey or pest population can be controlled such that its density falls below the economic injury level (EIL). Moreover, the switching transients have both advantages and disadvantages concerning pest control, and the magnitude and frequency of switching transients depend on the initial values of both populations, forcing amplitude and ET
Quasiclassical methods for spin-charge coupled dynamics in low-dimensional systems
Energy Technology Data Exchange (ETDEWEB)
Corini, Cosimo
2009-06-12
Spintronics is a new field of study whose broad aim is the manipulation of the spin degrees of freedom in solid state systems. One of its main goals is the realization of devices capable of exploiting, besides the charge, the carriers' - and possibly the nuclei's - spin. The presence of spin-orbit coupling in a system enables the spin and charge degrees of freedom to ''communicate'', a favorable situation if one is to realize such devices. More importantly, it offers the opportunity of doing so by relying solely on electric fields, whereas magnetic fields are otherwise required. Eminent examples of versatile systems with built-in and variously tunable spin-orbit interaction are two-dimensional electron - or hole - gases. The study of spin-charge coupled dynamics in such a context faces a large number of open questions, both of the fundamental and of the more practical type. To tackle the problem we rely on the quasiclassical formalism. This is an approximate quantum-field theoretical formulation with a solid microscopic foundation, perfectly suited for describing phenomena at the mesoscopic scale, and bearing a resemblance to standard Boltzmann theory which makes for physical transparency. Originally born to deal with transport in electron-phonon systems, we first generalize it to the case in which spin-orbit coupling is present, and then move on to apply it to specific situations and phenomena. Among these, to the description of the spin Hall effect and of voltage induced spin polarizations in two-dimensional electron gases under a variety of conditions - stationary or time-dependent, in the presence of magnetic and non-magnetic disorder, in the bulk or in confined geometries -, and to the problem of spin relaxation in narrow wires. (orig.)
RosettaEPR: rotamer library for spin label structure and dynamics.
Directory of Open Access Journals (Sweden)
Nathan S Alexander
Full Text Available An increasingly used parameter in structural biology is the measurement of distances between spin labels bound to a protein. One limitation to these measurements is the unknown position of the spin label relative to the protein backbone. To overcome this drawback, we introduce a rotamer library of the methanethiosulfonate spin label (MTSSL into the protein modeling program Rosetta. Spin label rotamers were derived from conformations observed in crystal structures of spin labeled T4 lysozyme and previously published molecular dynamics simulations. Rosetta's ability to accurately recover spin label conformations and EPR measured distance distributions was evaluated against 19 experimentally determined MTSSL labeled structures of T4 lysozyme and the membrane protein LeuT and 73 distance distributions from T4 lysozyme and the membrane protein MsbA. For a site in the core of T4 lysozyme, the correct spin label conformation (Χ1 and Χ2 is recovered in 99.8% of trials. In surface positions 53% of the trajectories agree with crystallized conformations in Χ1 and Χ2. This level of recovery is on par with Rosetta performance for the 20 natural amino acids. In addition, Rosetta predicts the distance between two spin labels with a mean error of 4.4 Å. The width of the experimental distance distribution, which reflects the flexibility of the two spin labels, is predicted with a mean error of 1.3 Å. RosettaEPR makes full-atom spin label modeling available to a wide scientific community in conjunction with the powerful suite of modeling methods within Rosetta.
Quasiclassical methods for spin-charge coupled dynamics in low-dimensional systems
International Nuclear Information System (INIS)
Corini, Cosimo
2009-01-01
Spintronics is a new field of study whose broad aim is the manipulation of the spin degrees of freedom in solid state systems. One of its main goals is the realization of devices capable of exploiting, besides the charge, the carriers' - and possibly the nuclei's - spin. The presence of spin-orbit coupling in a system enables the spin and charge degrees of freedom to ''communicate'', a favorable situation if one is to realize such devices. More importantly, it offers the opportunity of doing so by relying solely on electric fields, whereas magnetic fields are otherwise required. Eminent examples of versatile systems with built-in and variously tunable spin-orbit interaction are two-dimensional electron - or hole - gases. The study of spin-charge coupled dynamics in such a context faces a large number of open questions, both of the fundamental and of the more practical type. To tackle the problem we rely on the quasiclassical formalism. This is an approximate quantum-field theoretical formulation with a solid microscopic foundation, perfectly suited for describing phenomena at the mesoscopic scale, and bearing a resemblance to standard Boltzmann theory which makes for physical transparency. Originally born to deal with transport in electron-phonon systems, we first generalize it to the case in which spin-orbit coupling is present, and then move on to apply it to specific situations and phenomena. Among these, to the description of the spin Hall effect and of voltage induced spin polarizations in two-dimensional electron gases under a variety of conditions - stationary or time-dependent, in the presence of magnetic and non-magnetic disorder, in the bulk or in confined geometries -, and to the problem of spin relaxation in narrow wires. (orig.)
Phase-amplitude reduction of transient dynamics far from attractors for limit-cycling systems
Shirasaka, Sho; Kurebayashi, Wataru; Nakao, Hiroya
2017-02-01
Phase reduction framework for limit-cycling systems based on isochrons has been used as a powerful tool for analyzing the rhythmic phenomena. Recently, the notion of isostables, which complements the isochrons by characterizing amplitudes of the system state, i.e., deviations from the limit-cycle attractor, has been introduced to describe the transient dynamics around the limit cycle [Wilson and Moehlis, Phys. Rev. E 94, 052213 (2016)]. In this study, we introduce a framework for a reduced phase-amplitude description of transient dynamics of stable limit-cycling systems. In contrast to the preceding study, the isostables are treated in a fully consistent way with the Koopman operator analysis, which enables us to avoid discontinuities of the isostables and to apply the framework to system states far from the limit cycle. We also propose a new, convenient bi-orthogonalization method to obtain the response functions of the amplitudes, which can be interpreted as an extension of the adjoint covariant Lyapunov vector to transient dynamics in limit-cycling systems. We illustrate the utility of the proposed reduction framework by estimating the optimal injection timing of external input that efficiently suppresses deviations of the system state from the limit cycle in a model of a biochemical oscillator.
Khalili, S. M. R.; Shariyat, M.; Mokhtari, M.
2014-06-01
In this study, the central cracked aluminum plates repaired with two sided composite patches are investigated numerically for their response to static tensile and transient dynamic loadings. Contour integral method is used to define and evaluate the stress intensity factors at the crack tips. The reinforcement for the composite patches is carbon fibers. The effect of adhesive thickness and patch thickness and configuration in tensile loading case and pre-tension, pre-compression and crack length effect on the evolution of the mode I stress intensity factor (SIF) (KI) of the repaired structure under transient dynamic loading case are examined. The results indicated that KI of the central cracked plate is reduced by 1/10 to 1/2 as a result of the bonded composite patch repair in tensile loading case. The crack length and the pre-loads are more effective in repaired structure in transient dynamic loading case in which, the 100 N pre-compression reduces the maximum KI for about 40 %, and the 100 N pre-tension reduces the maximum KI after loading period, by about 196 %.
Energy Technology Data Exchange (ETDEWEB)
Keskin, Mustafa, E-mail: keskin@erciyes.edu.t [Department of Physics, Erciyes University, 38039 Kayseri (Turkey); Kantar, Ersin [Institute of Science, Erciyes University, 38039 Kayseri (Turkey)
2010-09-15
We study the existence of dynamic compensation temperatures in the mixed spin-1 and spin-3/2 Ising ferrimagnetic system Hamiltonian with bilinear and crystal-field interactions in the presence of a time-dependent oscillating external magnetic field on a hexagonal lattice. We employ the Glauber transitions rates to construct the mean-field dynamic equations. We investigate the time dependence of an average sublattice magnetizations, the thermal behavior of the dynamic sublattice magnetizations and the total magnetization. From these studies, we find the phases in the system, and characterize the nature (continuous or discontinuous) of transitions as well as obtain the dynamic phase transition (DPT) points and the dynamic compensation temperatures. We also present dynamic phase diagrams, including the compensation temperatures, in the five different planes. A comparison is made with the results of the available mixed spin Ising systems.
International Nuclear Information System (INIS)
Keskin, Mustafa; Kantar, Ersin
2010-01-01
We study the existence of dynamic compensation temperatures in the mixed spin-1 and spin-3/2 Ising ferrimagnetic system Hamiltonian with bilinear and crystal-field interactions in the presence of a time-dependent oscillating external magnetic field on a hexagonal lattice. We employ the Glauber transitions rates to construct the mean-field dynamic equations. We investigate the time dependence of an average sublattice magnetizations, the thermal behavior of the dynamic sublattice magnetizations and the total magnetization. From these studies, we find the phases in the system, and characterize the nature (continuous or discontinuous) of transitions as well as obtain the dynamic phase transition (DPT) points and the dynamic compensation temperatures. We also present dynamic phase diagrams, including the compensation temperatures, in the five different planes. A comparison is made with the results of the available mixed spin Ising systems.
Effect of thermal fluctuations in spin-torque driven magnetization dynamics
International Nuclear Information System (INIS)
Bonin, R.; Bertotti, G.; Serpico, C.; Mayergoyz, I.D.; D'Aquino, M.
2007-01-01
Nanomagnets with uniaxial symmetry driven by an external field and spin-polarized currents are considered. Anisotropy, applied field, and spin polarization are all aligned along the symmetry axis. Thermal fluctuations are described by adding a Gaussian white noise stochastic term to the Landau-Lifshitz-Gilbert equation for the deterministic dynamics. The corresponding Fokker-Planck equation is derived. It is shown that deterministic dynamics, thermal relaxation, and transition rate between stable states are governed by an effective potential including the effect of current injection
Effect of thermal fluctuations in spin-torque driven magnetization dynamics
Energy Technology Data Exchange (ETDEWEB)
Bonin, R. [INRiM, I-10135 Turin (Italy)]. E-mail: bonin@inrim.it; Bertotti, G. [INRiM, I-10135 Turin (Italy); Serpico, C. [Dipartimento di Ingegneria Elettrica, Universita di Napoli ' Federico II' I-80125 Naples (Italy); Mayergoyz, I.D. [Department of Electrical and Computer Engineering, University of Maryland, College Park, MD 20742 (United States); D' Aquino, M. [Dipartimento per le Tecnologie, Universita di Napoli ' Parthenope' , I-80133 Naples (Italy)
2007-09-15
Nanomagnets with uniaxial symmetry driven by an external field and spin-polarized currents are considered. Anisotropy, applied field, and spin polarization are all aligned along the symmetry axis. Thermal fluctuations are described by adding a Gaussian white noise stochastic term to the Landau-Lifshitz-Gilbert equation for the deterministic dynamics. The corresponding Fokker-Planck equation is derived. It is shown that deterministic dynamics, thermal relaxation, and transition rate between stable states are governed by an effective potential including the effect of current injection.
International Nuclear Information System (INIS)
Kudo, Kazue; Nakamura, Katsuhiro
2009-01-01
We investigate dynamical stability of the ground state against a time-periodic and spatially-inhomogeneous magnetic field for finite quantum XXZ spin chains. We use the survival probability as a measure of stability and demonstrate that it decays as P(t) ∝ t -1/2 under a certain condition. The dynamical properties should also be related to the level statistics of the XXZ spin chains with a constant spatially-inhomogeneous magnetic field. The level statistics depends on the anisotropy parameter and the field strength. We show how the survival probability depends on the anisotropy parameter, the strength and frequency of the field.
Energy Technology Data Exchange (ETDEWEB)
Vatansever, Erol [Dokuz Eylül University, Graduate School of Natural and Applied Sciences, TR-35160 Izmir (Turkey); Polat, Hamza, E-mail: hamza.polat@deu.edu.tr [Department of Physics, Dokuz Eylül University, TR-35160 Izmir (Turkey)
2015-10-15
Nonequilibrium phase transition properties of a mixed Ising ferrimagnetic model consisting of spin-1/2 and spin-3/2 on a square lattice under the existence of a time dependent oscillating magnetic field have been investigated by making use of Monte Carlo simulations with a single-spin flip Metropolis algorithm. A complete picture of dynamic phase boundary and magnetization profiles have been illustrated and the conditions of a dynamic compensation behavior have been discussed in detail. According to our simulation results, the considered system does not point out a dynamic compensation behavior, when it only includes the nearest-neighbor interaction, single-ion anisotropy and an oscillating magnetic field source. As the next-nearest-neighbor interaction between the spins-1/2 takes into account and exceeds a characteristic value which sensitively depends upon values of single-ion anisotropy and only of amplitude of external magnetic field, a dynamic compensation behavior occurs in the system. Finally, it is reported that it has not been found any evidence of dynamically first-order phase transition between dynamically ordered and disordered phases, which conflicts with the recently published molecular field investigation, for a wide range of selected system parameters. - Highlights: • Spin-1/2 and spin-3/2 Ising ferrimagnetic model is examined. • The system is exposed to time-dependent magnetic field. • Kinetic Monte Carlo simulation technique is used. • Any evidence of first-order phase transition has not been found.
Dynamic transient analysis of rupture disks by the finite-element method
International Nuclear Information System (INIS)
Hsieh, B.J.
1975-02-01
A finite element method utilizing the principle of virtual work in convected coordinates is used to analyze the axisymmetric dynamic transient response of rupture disks. This method can treat non-linearities arising both from inelastic material properties and large displacements/rotations provided that the convected strains are small. This report contains extensive calculations using a variety of rupture disk geometries and attempts to relate the static buckling of such disks to their dynamic response characteristics. A majority of the calculations treat the response of 18 inch disks typical of those currently considered for use in the Clinch River Breeder Reactor intermediate heat transport system
Curing dynamics of photopolymers measured by single-shot heterodyne transient grating method.
Arai, Mika; Fujii, Tomomi; Inoue, Hayato; Kuwahara, Shota; Katayama, Kenji
2013-01-01
The heterodyne transient grating (HD-TG) method was first applied to the curing dynamics measurement of photopolymers. The curing dynamics for various monomers including an initiator (2.5 vol%) was monitored optically via the refractive index change after a single UV pulse irradiation. We could obtain the polymerization time and the final change in the refractive index, and the parameters were correlated with the viscosity, molecular structure, and reaction sites. As the polymerization time was longer, the final refractive change was larger, and the polymerization time was explained in terms of the monomer properties.
Hole dynamics and spin currents after ionization in strong circularly polarized laser fields
International Nuclear Information System (INIS)
Barth, Ingo; Smirnova, Olga
2014-01-01
We apply the time-dependent analytical R-matrix theory to develop a movie of hole motion in a Kr atom upon ionization by strong circularly polarized field. We find rich hole dynamics, ranging from rotation to swinging motion. The motion of the hole depends on the final energy and the spin of the photoelectron and can be controlled by the laser frequency and intensity. Crucially, hole rotation is a purely non-adiabatic effect, completely missing in the framework of quasistatic (adiabatic) tunneling theories. We explore the possibility to use hole rotation as a clock for measuring ionization time. Analyzing the relationship between the relative phases in different ionization channels we show that in the case of short-range electron-core interaction the hole is always initially aligned along the instantaneous direction of the laser field, signifying zero delays in ionization. Finally, we show that strong-field ionization in circular fields creates spin currents (i.e. different flow of spin-up and spin-down density in space) in the ions. This phenomenon is intimately related to the production of spin-polarized electrons in strong laser fields Barth and Smirnova (2013 Phys. Rev. A 88 013401). We demonstrate that rich spin dynamics of electrons and holes produced during strong field ionization can occur in typical experimental conditions and does not require relativistic intensities or strong magnetic fields. (paper)
Spin wave dynamics in Heisenberg ferromagnetic/antiferromagnetic single-walled nanotubes
Energy Technology Data Exchange (ETDEWEB)
Mi, Bin-Zhou, E-mail: mbzfjerry2008@126.com [Department of Basic Curriculum, North China Institute of Science and Technology, Beijing 101601 (China); Department of Physics, School of Mathematics and Physics, University of Science and Technology Beijing, Beijing 100083 (China)
2016-09-15
The spin wave dynamics, including the magnetization, spin wave dispersion relation, and energy level splitting, of Heisenberg ferromagnetic/antiferromagnetic single-walled nanotubes are systematically calculated by use of the double-time Green’s function method within the random phase approximation. The role of temperature, diameter of the tube, and wave vector on spin wave energy spectrum and energy level splitting are carefully analyzed. There are two categories of spin wave modes, which are quantized and degenerate, and the total number of independent magnon branches is dependent on diameter of the tube, caused by the physical symmetry of nanotubes. Moreover, the number of flat spin wave modes increases with diameter of the tube rising. The spin wave energy and the energy level splitting decrease with temperature rising, and become zero as temperature reaches the critical point. At any temperature, the energy level splitting varies with wave vector, and for a larger wave vector it is smaller. When pb=π, the boundary of first Brillouin zone, spin wave energies are degenerate, and the energy level splittings are zero.
International Nuclear Information System (INIS)
Vladimirov, A.A.; Plakida, N.M.; Ihle, D.
2010-01-01
A microscopic theory of the dynamic spin susceptibility (DSS) in the superconducting state within the t-J model is presented. It is based on an exact representation for the DSS obtained by applying the Mori-type projection technique for the relaxation function in terms of Hubbard operators. The static spin susceptibility is evaluated by a sum-rule-conserving generalized mean-field approximation, while the self-energy is calculated in the mode-coupling approximation. The spectrum of spin excitations is studied in the underdoped and optimally doped regions. The DSS reveals a resonance mode (RM) at the antiferromagnetic wave vector Q=π(1,1) at low temperatures due to a strong suppression of the damping of spin excitations. This is explained by an involvement of spin excitations in the decay process besides the particle-hole continuum usually considered in random-phase-type approximations. The spin gap in the spin-excitation spectrum at Q plays a dominant role in limiting the decay in comparison with the superconducting gap which results in the observation of the RM even above T c in the underdoped region. A good agreement with inelastic neutron-scattering experiments on the RM in YBCO compounds is found
Crowell, Paul A.; Liu, Changjiang; Patel, Sahil; Peterson, Tim; Geppert, Chad C.; Christie, Kevin; Stecklein, Gordon; Palmstrøm, Chris J.
2016-10-01
A distinguishing feature of spin accumulation in ferromagnet-semiconductor devices is its precession in a magnetic field. This is the basis for detection techniques such as the Hanle effect, but these approaches become ineffective as the spin lifetime in the semiconductor decreases. For this reason, no electrical Hanle measurement has been demonstrated in GaAs at room temperature. We show here that by forcing the magnetization in the ferromagnet to precess at resonance instead of relying only on the Larmor precession of the spin accumulation in the semiconductor, an electrically generated spin accumulation can be detected up to 300 K. The injection bias and temperature dependence of the measured spin signal agree with those obtained using traditional methods. We further show that this new approach enables a measurement of short spin lifetimes (C. Liu, S. J. Patel, T. A. Peterson, C. C. Geppert, K. D. Christie, C. J. Palmstrøm, and P. A. Crowell, "Dynamic detection of electron spin accumulation in ferromagnet-semiconductor devices by ferromagnetic resonance," Nature Communications 7, 10296 (2016). http://dx.doi.org/10.1038/ncomms10296
High-Frequency Dynamics Modulated by Collective Magnetization Reversal in Artificial Spin Ice
Jungfleisch, Matthias B.; Sklenar, Joseph; Ding, Junjia; Park, Jungsik; Pearson, John E.; Novosad, Valentine; Schiffer, Peter; Hoffmann, Axel
2017-12-01
Spin-torque ferromagnetic resonance arises in heavy metal-ferromagnet heterostructures when an alternating charge current is passed through the bilayer stack. The methodology to detect the resonance is based on the anisotropic magnetoresistance, which is the change in the electrical resistance due to different orientations of the magnetization. In connected networks of ferromagnetic nanowires, known as artificial spin ice, the magnetoresistance is rather complex owing to the underlying collective behavior of the geometrically frustrated magnetic domain structure. Here, we demonstrate spin-torque ferromagnetic resonance investigations in a square artificial spin-ice system and correlate our observations to magnetotransport measurements. The experimental findings are described using a simulation approach that highlights the importance of the correlated dynamics response of the magnetic system. Our results open the possibility of designing reconfigurable microwave oscillators and magnetoresistive devices based on connected networks of nanomagnets.
High-Frequency Dynamics Modulated by Collective Magnetization Reversal in Artificial Spin Ice
Energy Technology Data Exchange (ETDEWEB)
Jungfleisch, Matthias B.; Sklenar, Joseph; Ding, Junjia; Park, Jungsik; Pearson, John E.; Novosad, Valentine; Schiffer, Peter; Hoffmann, Axel
2017-12-01
Spin-torque ferromagnetic resonance arises in heavy metal-ferromagnet heterostructures when an alternating charge current is passed through the bilayer stack. The methodology to detect the resonance is based on the anisotropic magnetoresistance, which is the change in the electrical resistance due to different orientations of the magnetization. In connected networks of ferromagnetic nanowires, known as artificial spin ice, the magnetoresistance is rather complex owing to the underlying collective behavior of the geometrically frustrated magnetic domain structure. Here, we demonstrate spin-torque ferromagnetic resonance investigations in a square artificial spin-ice system and correlate our observations to magneto-transport measurements. The experimental findings are described using a simulation approach that highlights the importance of the correlated dynamics response of the magnetic system. Our results open the possibility of designing reconfigurable microwave oscillators and magnetoresistive devices based on connected networks of nanomagnets.
Many-Body Quantum Spin Dynamics with Monte Carlo Trajectories on a Discrete Phase Space
Directory of Open Access Journals (Sweden)
J. Schachenmayer
2015-02-01
Full Text Available Interacting spin systems are of fundamental relevance in different areas of physics, as well as in quantum information science and biology. These spin models represent the simplest, yet not fully understood, manifestation of quantum many-body systems. An important outstanding problem is the efficient numerical computation of dynamics in large spin systems. Here, we propose a new semiclassical method to study many-body spin dynamics in generic spin lattice models. The method is based on a discrete Monte Carlo sampling in phase space in the framework of the so-called truncated Wigner approximation. Comparisons with analytical and numerically exact calculations demonstrate the power of the technique. They show that it correctly reproduces the dynamics of one- and two-point correlations and spin squeezing at short times, thus capturing entanglement. Our results open the possibility to study the quantum dynamics accessible to recent experiments in regimes where other numerical methods are inapplicable.
Energy Technology Data Exchange (ETDEWEB)
Jauch, Clemens; Soerensen, Poul; Jensen, Birgitte Bak
2005-06-15
This article describes a methodology to quantify the influence of dynamic stall on transient fault operations of active-stall turbines. The model of the dynamic stall effect is introduced briefly. The behaviour of the dynamic stall model during a transient fault operation is described mathematically, and from this its effect quantified. Two quantities are chosen to describe the influence of the dynamic stall effect: one is active power and the other is time delay. Subsequently a transient fault scenario is simulated with and without the dynamic stall effect and the differences discussed. From this comparison, the conclusion is drawn that the dynamic stall effect has some influence on the post-fault behaviour of the wind turbine, and it is hence suggested that the dynamic stall effect is considered if an active-stall wind turbine is to be modelled realistically. (Author)
Coupled problems in transient fluid and structural dynamics in nuclear engineering
International Nuclear Information System (INIS)
Krieg, R.
1978-01-01
Some important problems in coupled fluid-structural dynamics which occur in safety investigations of liquid metal fast breeder reactors (LMFBR). light water reactors and nuclear reprocessing plants are discussed and a classification of solution methods is introduced. A distinction is made between the step by step solution procedure, where available computer codes in fluid and structural dynamics are coupled, and advanced simultaneous solution methods, where the coupling is carried out at the level of the fundamental equations. Results presented include the transient deformation of a two-row pin bundle surrounded by an infinite fluid field, vapour explosions in a fluid container and containment distortions due to bubble collapse in the pressure suppression system of a boiling water reactor. A recently developed simultaneous solution method is presented in detail. Here the fluid dynamics (inviscid, incompressible fluid) is described by a singularity method which reduces the three-dimensional fluid dynamics problems to a two-dimensional formulation. In this way the three-dynamics fluid dynamics as well as the structural (shell) dynamics can be described essentially by common unknowns at the fluid-structural interface. The resulting equations for the coupled fluid-structural dynamics are analogous to to the equations of motion of the structural dynamics alone. (author)
A parallel algorithm for transient solid dynamics simulations with contact detection
International Nuclear Information System (INIS)
Attaway, S.; Hendrickson, B.; Plimpton, S.; Gardner, D.; Vaughan, C.; Heinstein, M.; Peery, J.
1996-01-01
Solid dynamics simulations with Lagrangian finite elements are used to model a wide variety of problems, such as the calculation of impact damage to shipping containers for nuclear waste and the analysis of vehicular crashes. Using parallel computers for these simulations has been hindered by the difficulty of searching efficiently for material surface contacts in parallel. A new parallel algorithm for calculation of arbitrary material contacts in finite element simulations has been developed and implemented in the PRONTO3D transient solid dynamics code. This paper will explore some of the issues involved in developing efficient, portable, parallel finite element models for nonlinear transient solid dynamics simulations. The contact-detection problem poses interesting challenges for efficient implementation of a solid dynamics simulation on a parallel computer. The finite element mesh is typically partitioned so that each processor owns a localized region of the finite element mesh. This mesh partitioning is optimal for the finite element portion of the calculation since each processor must communicate only with the few connected neighboring processors that share boundaries with the decomposed mesh. However, contacts can occur between surfaces that may be owned by any two arbitrary processors. Hence, a global search across all processors is required at every time step to search for these contacts. Load-imbalance can become a problem since the finite element decomposition divides the volumetric mesh evenly across processors but typically leaves the surface elements unevenly distributed. In practice, these complications have been limiting factors in the performance and scalability of transient solid dynamics on massively parallel computers. In this paper the authors present a new parallel algorithm for contact detection that overcomes many of these limitations
Spin dynamics in micron-sized magnetic elements using time-resolved XMCD-PEEM
International Nuclear Information System (INIS)
Fukumoto, K.; Kinoshita, T.
2011-01-01
Ultrafast dynamics of magnetic spin structures in ultrasmall ferromagnets is now a prominent topic concerning the next generation of memory devices. In particular, the unique dynamics of vortex spin structures in disk-shaped magnets has attracted much attention. To understand the mechanism and to explore even more unique features, we constructed a time-resolved X-ray magnetic circular dichroism (XMCD) with a photoelectron emission microscopy (PEEM) system onto the soft X-ray beamline BL25SU in SPring-8. We observed oscillatory motions of vortex cores after magnetic field pulses as reported in other articles. The time evolution of spin structures the fast magnetic field pulse was also successfully observed. We found that for disks with a larger radius, displacement of the vortex core was not linear with the field amplitude, and there was a delay of the core motion. At the same time, deformation of the vortex structures was observed. (author)
Dynamic Feedforward Control of a Diesel Engine Based on Optimal Transient Compensation Maps
Directory of Open Access Journals (Sweden)
Giorgio Mancini
2014-08-01
Full Text Available To satisfy the increasingly stringent emission regulations and a demand for an ever lower fuel consumption, diesel engines have become complex systems with many interacting actuators. As a consequence, these requirements are pushing control and calibration to their limits. The calibration procedure nowadays is still based mainly on engineering experience, which results in a highly iterative process to derive a complete engine calibration. Moreover, automatic tools are available only for stationary operation, to obtain control maps that are optimal with respect to some predefined objective function. Therefore, the exploitation of any leftover potential during transient operation is crucial. This paper proposes an approach to derive a transient feedforward (FF control system in an automated way. It relies on optimal control theory to solve a dynamic optimization problem for fast transients. A partially physics-based model is thereby used to replace the engine. From the optimal solutions, the relevant information is extracted and stored in maps spanned by the engine speed and the torque gradient. These maps complement the static control maps by accounting for the dynamic behavior of the engine. The procedure is implemented on a real engine and experimental results are presented along with the development of the methodology.
Transient Dynamics of Electric Power Systems: Direct Stability Assessment and Chaotic Motions
Chu, Chia-Chi
A power system is continuously experiencing disturbances. Analyzing, predicting, and controlling transient dynamics, which describe transient behaviors of the power system following disturbances, is a major concern in the planning and operation of a power utility. Important conclusions and decisions are made based on the result of system transient behaviors. As today's power network becomes highly interconnected and much more complex, it has become essential to enhance the fundamental understanding of transient dynamics, and to develop fast and reliable computational algorithms. In this thesis, we emphasize mathematical rigor rather than physical insight. Nonlinear dynamical system theory is applied to study two fundamental topics: direct stability assessment and chaotic motions. Conventionally, power system stability is determined by calculating the time-domain transient behaviors for a given disturbance. In contrast, direct methods identify whether or not the system will remain stable once the disturbance is removed by comparing the corresponding energy value of the post-fault system to a calculated threshold value. Direct methods not only avoid the time-consuming numerical integration of the time domain approach, but also provide a quantitative measure of the degree of system stability. We present a general framework for the theoretical foundations of direct methods. Canonical representations of network-reduction models as well as network-preserving models are proposed to facilitate the analysis and the construction of energy functions of various power system models. An advanced and practical method, called the boundary of stability region based controlling unstable equilibrium point method (BCU method), of computing the controlling unstable equilibrium point is proposed along with its theoretical foundation. Numerical solution algorithms capable of supporting on-line applications of direct methods are provided. Further possible improvements and enhancements are
Simulating transient dynamics of the time-dependent time fractional Fokker–Planck systems
Energy Technology Data Exchange (ETDEWEB)
Kang, Yan-Mei, E-mail: ymkang@mail.xjtu.edu.cn
2016-09-16
For a physically realistic type of time-dependent time fractional Fokker–Planck (FP) equation, derived as the continuous limit of the continuous time random walk with time-modulated Boltzmann jumping weight, a semi-analytic iteration scheme based on the truncated (generalized) Fourier series is presented to simulate the resultant transient dynamics when the external time modulation is a piece-wise constant signal. At first, the iteration scheme is demonstrated with a simple time-dependent time fractional FP equation on finite interval with two absorbing boundaries, and then it is generalized to the more general time-dependent Smoluchowski-type time fractional Fokker–Planck equation. The numerical examples verify the efficiency and accuracy of the iteration method, and some novel dynamical phenomena including polarized motion orientations and periodic response death are discussed. - Highlights: • An iteration method is proposed for the transient dynamics of time-dependent time fractional Fokker–Planck equations. • The method is based on Fourier Series solution and the multi-step transition probability formula. • With the time-modulated subdiffusion on finite interval as example, the polarized motion orientation is disclosed. • With the time-modulated subdiffusion within a confined potential as example, the death of dynamic response is observed.
Simulating transient dynamics of the time-dependent time fractional Fokker–Planck systems
International Nuclear Information System (INIS)
Kang, Yan-Mei
2016-01-01
For a physically realistic type of time-dependent time fractional Fokker–Planck (FP) equation, derived as the continuous limit of the continuous time random walk with time-modulated Boltzmann jumping weight, a semi-analytic iteration scheme based on the truncated (generalized) Fourier series is presented to simulate the resultant transient dynamics when the external time modulation is a piece-wise constant signal. At first, the iteration scheme is demonstrated with a simple time-dependent time fractional FP equation on finite interval with two absorbing boundaries, and then it is generalized to the more general time-dependent Smoluchowski-type time fractional Fokker–Planck equation. The numerical examples verify the efficiency and accuracy of the iteration method, and some novel dynamical phenomena including polarized motion orientations and periodic response death are discussed. - Highlights: • An iteration method is proposed for the transient dynamics of time-dependent time fractional Fokker–Planck equations. • The method is based on Fourier Series solution and the multi-step transition probability formula. • With the time-modulated subdiffusion on finite interval as example, the polarized motion orientation is disclosed. • With the time-modulated subdiffusion within a confined potential as example, the death of dynamic response is observed.
Dynamic characteristics of motor-gear system under load saltations and voltage transients
Bai, Wenyu; Qin, Datong; Wang, Yawen; Lim, Teik C.
2018-02-01
In this paper, a dynamic model of a motor-gear system is proposed. The model combines a nonlinear permeance network model (PNM) of a squirrel-cage induction motor and a coupled lateral-torsional dynamic model of a planetary geared rotor system. The external excitations including voltage transients and load saltations, as well as the internal excitations such as spatial effects, magnetic circuits topology and material nonlinearity in the motor, and time-varying mesh stiffness and damping in the planetary gear system are considered in the proposed model. Then, the simulation results are compared with those predicted by the electromechanical model containing a dynamic motor model with constant inductances. The comparison showed that the electromechanical system model with the PNM motor model yields more reasonable results than the electromechanical system model with the lumped-parameter electric machine. It is observed that electromechanical coupling effect can induce additional and severe gear vibrations. In addition, the external conditions, especially the voltage transients, will dramatically affect the dynamic characteristics of the electromechanical system. Finally, some suggestions are offered based on this analysis for improving the performance and reliability of the electromechanical system.
International Nuclear Information System (INIS)
Petrov, M. Yu.; Yakovlev, S. V.
2012-01-01
Two approaches to the description of spin dynamics of electron-nuclear system in quantum dots are compared: the quantum-mechanical one is based on direct diagonalization of the model Hamiltonian and semiclassical one is based on coupled equations for precession of mean electron spin and mean spin of nuclear spin fluctuations. The comparison was done for a model problem describing periodic excitation of electron-nuclear system by optical excitation. The computation results show that scattering of parameters related to fluctuation of the nuclear spin system leads to appearance of an ordered state in the system caused by periodic excitation and to the effect of electron-spin mode locking in an external magnetic field. It is concluded that both models can qualitatively describe the mode-locking effect, however give significantly different quantitative results. This may indicate the limited applicability of the precession model for describing the spin dynamics in quantum dots in the presence of optical pumping.
Simplified distributed parameters BWR dynamic model for transient and stability analysis
International Nuclear Information System (INIS)
Espinosa-Paredes, Gilberto; Nunez-Carrera, Alejandro; Vazquez-Rodriguez, Alejandro
2006-01-01
This paper describes a simplified model to perform transient and linear stability analysis for a typical boiling water reactor (BWR). The simplified transient model was based in lumped and distributed parameters approximations, which includes vessel dome and the downcomer, recirculation loops, neutron process, fuel pin temperature distribution, lower and upper plenums reactor core and pressure and level controls. The stability was determined by studying the linearized versions of the equations representing the BWR system in the frequency domain. Numerical examples are used to illustrate the wide application of the simplified BWR model. We concluded that this simplified model describes properly the dynamic of a BWR and can be used for safety analysis or as a first approach in the design of an advanced BWR
Winnerless competition principle and prediction of the transient dynamics in a Lotka-Volterra model
Afraimovich, Valentin; Tristan, Irma; Huerta, Ramon; Rabinovich, Mikhail I.
2008-12-01
Predicting the evolution of multispecies ecological systems is an intriguing problem. A sufficiently complex model with the necessary predicting power requires solutions that are structurally stable. Small variations of the system parameters should not qualitatively perturb its solutions. When one is interested in just asymptotic results of evolution (as time goes to infinity), then the problem has a straightforward mathematical image involving simple attractors (fixed points or limit cycles) of a dynamical system. However, for an accurate prediction of evolution, the analysis of transient solutions is critical. In this paper, in the framework of the traditional Lotka-Volterra model (generalized in some sense), we show that the transient solution representing multispecies sequential competition can be reproducible and predictable with high probability.
Degli Esposti, M.; Giardinà, C.; Graffi, S.; Isola, S.
2001-01-01
We consider the zero-temperature dynamics for the infinite-range, non translation invariant one-dimensional spin model introduced by Marinari, Parisi and Ritort to generate glassy behaviour out of a deterministic interaction. It is argued that there can be a large number of metastable (i.e.,
Imaging of propagation dynamics of optically-excited spin waves in a garnet film
International Nuclear Information System (INIS)
Hashimoto, Yusuke; Saitoh, Eiji
2016-01-01
We demonstrate the direct imaging of the propagation dynamics of the optically-excited spin waves in a garnet film observed with an all-optical pump-and-probe magneto-optical imaging technique having sub-pico second time-resolution, sub-micrometer spatial resolution, and milli-degrees of accuracy in the rotation angle of the light polarization. (author)
Learning nitrogen-vacancy electron spin dynamics on a silicon quantum photonic simulator
Wang, J.; Paesani, S.; Santagati, R.; Knauer, S.; Gentile, A. A.; Wiebe, N.; Petruzzella, M.; Laing, A.; Rarity, J. G.; O'Brien, J. L.; Thompson, M. G.
2017-01-01
We present the experimental demonstration of quantum Hamiltonian learning. Using an integrated silicon-photonics quantum simulator with the classical machine learning technique, we successfully learn the Hamiltonian dynamics of a diamond nitrogen-vacancy center's electron ground-state spin.
Chaotic dynamics of Heisenberg ferromagnetic spin chain with bilinear and biquadratic interactions
Blessy, B. S. Gnana; Latha, M. M.
2017-10-01
We investigate the chaotic dynamics of one dimensional Heisenberg ferromagnetic spin chain by constructing the Hamiltonian equations of motion. We present the trajectory and phase plots of the system with bilinear and also biquadratic interactions. The stability of the system is analysed in both cases by constructing the Jacobian matrix and by measuring the Lyapunov exponents. The results are illustrated graphically.
Three-dimensional Computational Fluid Dynamics Investigation of a Spinning Helicopter Slung Load
Theorn, J. N.; Duque, E. P. N.; Cicolani, L.; Halsey, R.
2005-01-01
After performing steady-state Computational Fluid Dynamics (CFD) calculations using OVERFLOW to validate the CFD method against static wind-tunnel data of a box-shaped cargo container, the same setup was used to investigate unsteady flow with a moving body. Results were compared to flight test data previously collected in which the container is spinning.
Coupled intertwiner dynamics: A toy model for coupling matter to spin foam models
Steinhaus, Sebastian
2015-01-01
The universal coupling of matter and gravity is one of the most important features of general relativity. In quantum gravity, in particular spin foams, matter couplings have been defined in the past, yet the mutual dynamics, in particular if matter and gravity are strongly coupled, are hardly explored, which is related to the definition of both matter and gravitational degrees of freedom on the discretisation. However extracting this mutual dynamics is crucial in testing the viability of the ...
Lagrangian dynamics of spinning particles and polarized media in general relativity
International Nuclear Information System (INIS)
Bailey, Ian.
1980-01-01
The dynamic laws governing spinning multipole test particles and polarized media with internal spin are derived from both variational principles and the multipole formalism of extended bodies. The general form of the Lagrangian equations of motion is derived for a spinning multipole particle in given external fields. The author then considers the dynamics of a continuous medium with internal spin and multipole structure. From a four-dimensional action integral the field equations relating to fields generated by the medium to its bulk properties are derived, together with the balance laws expressing conservation of total four-momentum and spin. A natural splitting of the total energy-momentum tensor into matter and field parts is adopted that leads to a generalized Minkowski electromagnetic energy tensor. In both the electromagnetic and the gravitational field equations the source terms contain polarization contributions. It is shown that the multipole formalism may be used to formulate the same equations of motion, balance laws and decomposition of total energy-momentum as those resulting from variational principles
Advances and applications of dynamic-angle spinning nuclear magnetic resonance
Energy Technology Data Exchange (ETDEWEB)
Baltisberger, Jay Harvey [Univ. of California, Berkeley, CA (United States)
1993-06-01
This dissertation describes nuclear magnetic resonance experiments and theory which have been developed to study quadrupolar nuclei (those nuclei with spin greater than one-half) in the solid state. Primarily, the technique of dynamic-angle spinning (DAS) is extensively reviewed and expanded upon in this thesis. Specifically, the improvement in both the resolution (two-dimensional pure-absorptive phase methods and DAS angle choice) and sensitivity (pulse-sequence development), along with effective spinning speed enhancement (again through choice of DAS conditions or alternative multiple pulse schemes) of dynamic-angle spinning experiment was realized with both theory and experimental examples. The application of DAS to new types of nuclei (specifically the {sup 87}Rb and {sup 85}Rb nuclear spins) and materials (specifically amorphous solids) has also greatly expanded the possibilities of the use of DAS to study a larger range of materials. This dissertation is meant to demonstrate both recent advances and applications of the DAS technique, and by no means represents a comprehensive study of any particular chemical problem.
Advances and applications of dynamic-angle spinning nuclear magnetic resonance
International Nuclear Information System (INIS)
Baltisberger, J.H.
1993-06-01
This dissertation describes nuclear magnetic resonance experiments and theory which have been developed to study quadrupolar nuclei (those nuclei with spin greater than one-half) in the solid state. Primarily, the technique of dynamic-angle spinning (DAS) is extensively reviewed and expanded upon in this thesis. Specifically, the improvement in both the resolution (two-dimensional pure-absorptive phase methods and DAS angle choice) and sensitivity (pulse-sequence development), along with effective spinning speed enhancement (again through choice of DAS conditions or alternative multiple pulse schemes) of dynamic-angle spinning experiment was realized with both theory and experimental examples. The application of DAS to new types of nuclei (specifically the 87 Rb and 85 Rb nuclear spins) and materials (specifically amorphous solids) has also greatly expanded the possibilities of the use of DAS to study a larger range of materials. This dissertation is meant to demonstrate both recent advances and applications of the DAS technique, and by no means represents a comprehensive study of any particular chemical problem
Wu, Xufei; Liu, Zeyu; Luo, Tengfei
2018-02-01
In recent years, the fundamental physics of spin-lattice (e.g., magnon-phonon) interaction has attracted significant experimental and theoretical interests given its potential paradigm-shifting impacts in areas like spin-thermoelectrics, spin-caloritronics, and spintronics. Modelling studies of the transport of magnons and phonons in magnetic crystals are very rare. In this paper, we use spin-lattice dynamics (SLD) simulations to model ferromagnetic crystalline iron, where the spin and lattice systems are coupled through the atomic position-dependent exchange function, and thus the interaction between magnons and phonons is naturally considered. We then present a method combining SLD simulations with spectral energy analysis to calculate the magnon and phonon harmonic (e.g., dispersion, specific heat, and group velocity) and anharmonic (e.g., scattering rate) properties, based on which their thermal conductivity values are calculated. This work represents an example of using SLD simulations to understand the transport properties involving coupled magnon and phonon dynamics.
Scaling Laws in the Transient Dynamics of Firefly-like Oscillators
International Nuclear Information System (INIS)
Rubido, N; Cabeza, C; Marti, A; Ramirez Avila, G M
2011-01-01
Fireflies constitute a paradigm of pulse-coupled oscillators. In order to tackle the problems related to synchronisation transients of pulse-coupled oscillators, a Light-Controlled Oscillator (LCO) model is presented. A single LCO constitutes a one-dimensional relaxation oscillator described by two distinct time-scales meant to mimic fireflies in the sense that: it is capable of emitting light in a pulse-like fashion and detect the emitted by others in order to adjust its oscillation. We present dynamical results for two interacting LCOs in the torus for all possible coupling configurations. Transient times to the synchronous limit cycle are obtained experimentally and numerically as a function of initial conditions and coupling strengths. Scaling laws are found based on dimensional analysis and critical exponents calculated, thus, global dynamic is restricted. Furthermore, an analytical orthogonal transformation that allows to calculate Floquet multipliers directly from the time series is presented. As a consequence, local dynamics is also fully characterized. This transformation can be easily extended to a system with an arbitrary number of interacting LCOs.
International Nuclear Information System (INIS)
Magalhaes, Mardson Alencar de Sa; Lira, Carlos Alberto Brayner de Oliveira; Silva, Mario Augusto Bezerra da
2011-01-01
The IRIS project has significantly advanced in the last few years in response to a demand for a new generation reactor, that could fulfill the essential requirements for a future nuclear power plant: better economics, safety-by-design, low proliferation risk and environmental sustainability. IRIS reactor is a integral type PWR in which all primary components are arranged inside the pressure vessel. This configuration involves important changes in relation to a conventional PWR. These changes require several studies to comply with the safe operational limits for the reactor. In this paper, a study has been conducted to develop a dynamic model (named MODIRIS) for transient analysis, implemented in the MATLAB'S software SIMULINK, allowing the analysis of IRIS behavior by considering the neutron point kinetics for power production. The methodology is based on generating a set of differential equations of neutronic and thermal-hydraulic balances which describes the dynamics of the primary circuit, as well as a set of differential equations describing the dynamics of secondary circuit. The equations and initialization parameters at full power were into the SIMULINK and the code was validated by the confrontation with RELAP simulations for a transient of feedwater reduction in the steam generators. (author)
Transient dynamic and inelastic analysis of shells of revolution - a survey of programs
International Nuclear Information System (INIS)
Svalbonas, V.
1976-01-01
Advances in the limits of structural use in the aerospace and nuclear power industries over the past years have increased the requirements upon the applicable analytical computer programs to include accurate capabilities for inelastic and transient dynamic analyses. In many minds, however, this advanced capability is unequivocally linked with the large scale, general purpose, finite element programs. This idea is also combined with the view that such analyses are therefore prohibitively expensive and should be relegated to the 'last resort' classification. While this, in the general sense, may indeed be the case, if the user needs only to analyze structures falling into limited categories, however, he may find that a variety of smaller special purpose programs are available which do not put an undue strain upon his resources. One such structural category is shells of revolution. This survey of programs concentrates upon the analytical tools which have been developed predominantly for shells of revolution. The survey is subdivided into three parts: (a) consideration of programs for transient dynamic analysis; (b) consideration of programs for inelastic analysis and finally; (c) consideration of programs capable of dynamic plasticity analysis. In each part, programs based upon finite difference, finite element, and numerical integration methods are considered. The programs are compared on the basis of analytical capabilities, and ease of idealization and use. In each part of the survey sample problems are utilized to exemplify the state-of-the-art. (Auth.)
International Nuclear Information System (INIS)
Faucher, V.
2014-01-01
This HDR is dedicated to the research in the framework of fast transient dynamics for industrial fluid-structure systems carried in the Laboratory of Dynamic Studies from CEA, implementing new numerical methods for the modelling of complex systems and the parallel solution of large coupled problems on supercomputers. One key issue for the proposed approaches is the limitation to its minimum of the number of non-physical parameters, to cope with constraints arising from the area of usage of the concepts: safety for both nuclear applications (CEA, EDF) and aeronautics (ONERA), protection of the citizen (EC/JRC) in particular. Kinematic constraints strongly coupling structures (namely through unilateral contact) or fluid and structures (with both conformant or non-conformant meshes depending on the geometrical situation) are handled through exact methods including Lagrange Multipliers, with consequences on the solution strategy to be dealt with. This latter aspect makes EPX, the simulation code where the methods are integrated, a singular tool in the community of fast transient dynamics software. The document mainly relies on a description of the modelling needs for industrial fast transient scenarios, for nuclear applications in particular, and the proposed solutions built in the framework of the collaboration between CEA, EDF (via the LaMSID laboratory) and the LaMCoS laboratory from INSA Lyon. The main considered examples are the tearing of the fluid-filled tank after impact, the Code Disruptive Accident for a Generation IV reactor or the ruin of reinforced concrete structures under impact. Innovative models and parallel algorithms are thus proposed, allowing to carry out with robustness and performance the corresponding simulations on supercomputers made of interconnected multi-core nodes, with a strict preservation of the quality of the physical solution. This was particularly the main point of the ANR RePDyn project (2010-2013), with CEA as the pilot. (author
International Nuclear Information System (INIS)
Wylie, Benjamin J.; Dzikovski, Boris G.; Pawsey, Shane; Caporini, Marc; Rosay, Melanie; Freed, Jack H.; McDermott, Ann E.
2015-01-01
We demonstrate that dynamic nuclear polarization of membrane proteins in lipid bilayers may be achieved using a novel polarizing agent: pairs of spin labels covalently bound to a protein of interest interacting at an intermolecular interaction surface. For gramicidin A, nitroxide tags attached to the N-terminal intermolecular interface region become proximal only when bimolecular channels forms in the membrane. We obtained signal enhancements of sixfold for the dimeric protein. The enhancement effect was comparable to that of a doubly tagged sample of gramicidin C, with intramolecular spin pairs. This approach could be a powerful and selective means for signal enhancement in membrane proteins, and for recognizing intermolecular interfaces
International Nuclear Information System (INIS)
Oppermann, R.; Rosenow, B.
1997-10-01
We report large effects of Parisi replica permutation symmetry breaking (RPSB) on elementary excitations of fermionic systems with frustrated magnetic interactions. The electronic density of states is obtained exactly in the zero temperature limit for (K = 1)- step RPSB together with relations for arbitrary breaking K, which lead to a new fermionic and dynamical Parisi solution at K = ∞. The Ward identity for charge conservation indicates RPSB-effects on the conductivity in metallic quantum spin glasses. This implies that RPSB is essential for any fermionic system showing spin glass sections within its phase diagram. An astonishing similarity with a neural network problem is also observed. (author)
Dynamical properties of three terminal magnetic tunnel junctions: Spintronics meets spin-orbitronics
Energy Technology Data Exchange (ETDEWEB)
Tomasello, R. [Department of Computer Science, Modeling, Electronics and System Science, University of Calabria, Rende (CS) (Italy); Carpentieri, M., E-mail: m.carpentieri@poliba.it [Department of Electrical and Information Engineering, Politecnico of Bari, via E. Orabona 4, I-70125 Bari (Italy); Finocchio, G. [Department of Electronic Engineering, Industrial Chemistry and Engineering, University of Messina, C.da di Dio, I-98166 Messina (Italy)
2013-12-16
This Letter introduces a micromagnetic model able to characterize the magnetization dynamics in three terminal magnetic tunnel junctions, where the effects of spin-transfer torque and spin-orbit torque are taken into account. Our results predict that the possibility to separate electrically those two torque sources is very promising from a technological point of view for both next generation of nanoscale spintronic oscillators and microwave detectors. A scalable synchronization scheme based on the parallel connection of those three terminal devices is also proposed.
Dynamical properties of three terminal magnetic tunnel junctions: Spintronics meets spin-orbitronics
International Nuclear Information System (INIS)
Tomasello, R.; Carpentieri, M.; Finocchio, G.
2013-01-01
This Letter introduces a micromagnetic model able to characterize the magnetization dynamics in three terminal magnetic tunnel junctions, where the effects of spin-transfer torque and spin-orbit torque are taken into account. Our results predict that the possibility to separate electrically those two torque sources is very promising from a technological point of view for both next generation of nanoscale spintronic oscillators and microwave detectors. A scalable synchronization scheme based on the parallel connection of those three terminal devices is also proposed
Polarized-neutron study of spin dynamics in the Kondo insulator YbB12.
Nemkovski, K S; Mignot, J-M; Alekseev, P A; Ivanov, A S; Nefeodova, E V; Rybina, A V; Regnault, L-P; Iga, F; Takabatake, T
2007-09-28
Inelastic neutron scattering experiments have been performed on the archetype compound YbB(12), using neutron polarization analysis to separate the magnetic signal from the phonon background. With decreasing temperature, components characteristic for a single-site spin-fluctuation dynamics are suppressed, giving place to specific, strongly Q-dependent, low-energy excitations near the spin-gap edge. This crossover is discussed in terms of a simple crystal-field description of the incoherent high-temperature state and a predominantly local mechanism for the formation of the low-temperature singlet ground state.
International Nuclear Information System (INIS)
Zhang, Hao; Chen, Diyi; Xu, Beibei; Wang, Feifei
2015-01-01
Graphical abstract: Nonlinear dynamic transfer coefficients are introduced to the hydro-turbine governing system. In the process of load reject ion transient, the nonlinear dynamical behaviors of the system are studied in detail. - Highlights: • A novel mathematical model of a hydro-turbine governing system is established. • The process of load rejection transient is considered. • Nonlinear dynamic transfer coefficients are introduced to the system. • The bifurcation diagram with the variable t has better engineering significance. • The nonlinear dynamical behaviors of the system are studied in detail. - Abstract: This article pays attention to the mathematical modeling of a hydro-turbine governing system in the process of load rejection transient. As a pioneer work, the nonlinear dynamic transfer coefficients are introduced in a penstock system. Considering a generator system, a turbine system and a governor system, we present a novel nonlinear dynamical model of a hydro-turbine governing system. Fortunately, for the unchanged of PID parameters, we acquire the stable regions of the governing system in the process of load rejection transient by numerical simulations. Moreover, the nonlinear dynamic behaviors of the governing system are illustrated by bifurcation diagrams, Poincare maps, time waveforms and phase orbits. More importantly, these methods and analytic results will present theoretical groundwork for allowing a hydropower station in the process of load rejection transient
Spin dynamics of superfluid 3He-B in a slab geometry
International Nuclear Information System (INIS)
Ishikawa, O.; Sasaki, Y.; Mizusaki, T.; Hirai, A.; Tsubota, M.
1989-01-01
The spin dynamics and the spin relaxation mechanisms of the superfluid 3 He-B were studied by using the NMR method in a slab geometry, where the superfluid 3 He-B was confined between narrow parallel plates with a gap smaller than the healing length of the n-texture and the magnetic field was applied and to the plates. The relaxation parameter in the Leggett-Takagi (LT) equations was determined from a line width measurement of the transverse CW NMR. By using the pulsed NMR method, spin dynamics were studied in the nonlinear region. The observed spin dynamics were in good agreement with a numerical calculation of the LT equations together with the relaxation parameter determined by the CW NMR. When the tipping angle became larger than a certain critical value, the superfluid 3 He-B entered the Brinkman-Smith (BS) state. In this case, they observed the slow relaxation process in the BS state and then the rapid recovery process from the BS state to the initial non-Leggett configuration. The slow process in the BS state was attributed to the surface relaxation mechanism due to the torque from the surface-field energy
Coupled intertwiner dynamics: A toy model for coupling matter to spin foam models
Steinhaus, Sebastian
2015-09-01
The universal coupling of matter and gravity is one of the most important features of general relativity. In quantum gravity, in particular spin foams, matter couplings have been defined in the past, yet the mutual dynamics, in particular if matter and gravity are strongly coupled, are hardly explored, which is related to the definition of both matter and gravitational degrees of freedom on the discretization. However, extracting these mutual dynamics is crucial in testing the viability of the spin foam approach and also establishing connections to other discrete approaches such as lattice gauge theories. Therefore, we introduce a simple two-dimensional toy model for Yang-Mills coupled to spin foams, namely an Ising model coupled to so-called intertwiner models defined for SU (2 )k. The two systems are coupled by choosing the Ising coupling constant to depend on spin labels of the background, as these are interpreted as the edge lengths of the discretization. We coarse grain this toy model via tensor network renormalization and uncover an interesting dynamics: the Ising phase transition temperature turns out to be sensitive to the background configurations and conversely, the Ising model can induce phase transitions in the background. Moreover, we observe a strong coupling of both systems if close to both phase transitions.
A new strategy for transient stability using augmented generator control and local dynamic braking
Energy Technology Data Exchange (ETDEWEB)
Dorsey, J; Jiang, H; Habetler, T [Georgia Inst. of Tech., Atlanta, GA (United States); Qu, Z [University of Central Florida, Orlando, FL (United States)
1994-12-31
A decentralized automatic control strategy for significantly improving the transient stability of a large power system is introduced. The strategy combines local dynamic braking and a straightforward augmentation of the existing turbine / governor control system that uses only local feedback. The brake resistor, which employs thick film, metal oxide technology, has no inductance and is of very low resistance, allowing its use during fault to show a generator`s acceleration. Simulation results using the 39 Bus New England system show that the strategy dramatically increases the global stability of a power system. (author) 15 refs., 7 figs., 1 tab.
DEFF Research Database (Denmark)
Kawasaki, Yu; Gavilano, Jorge L.; Keller, Lukas
2011-01-01
,0,1), independent of external magnetic fields for fields below a critical value H-c(T). The ordered moments of 2.18 mu(B) per Co ion are aligned along the crystallographic c axis. Within the screw chains, along the c axis, the moments are arranged antiferromagnetically. In the basal planes the spins are arranged......We report a neutron diffraction and muon spin relaxation mu SR study of static and dynamical magnetic properties of BaCo2V2O8, a quasi-one-dimensional spin-chain system. A proposed model for the antiferromagnetic structure includes: a propagation vector (k) over right arrow (AF) = (0...
Simulation of spin dynamics: a tool in MRI system development
International Nuclear Information System (INIS)
Stoecker, Tony; Vahedipour, Kaveh; Shah, N Jon
2011-01-01
Magnetic Resonance Imaging (MRI) is a routine diagnostic tool in the clinics and the method of choice in soft-tissue contrast medical imaging. It is an important tool in neuroscience to investigate structure and function of the living brain on a systemic level. The latter is one of the driving forces to further develop MRI technology, as neuroscience especially demands higher spatiotemporal resolution which is to be achieved through increasing the static main magnetic field, B 0 . Although standard MRI is a mature technology, ultra high field (UHF) systems, at B 0 ≥ 7 T, offer space for new technical inventions as the physical conditions dramatically change. This work shows that the development strongly benefits from computer simulations of the measurement process on the basis of a semi-classical, nuclear spin-1/2 treatment given by the Bloch equations. Possible applications of such simulations are outlined, suggesting new solutions to the UHF-specific inhomogeneity problems of the static main field as well as the high-frequency transmit field.
Energy Technology Data Exchange (ETDEWEB)
Micotti, E. E-mail: micotti@fisicavolta.unipv.it; Lascialfari, A.; Rigamonti, A.; Aldrovandi, S.; Caneschi, A.; Gatteschi, D.; Bogani, L
2004-05-01
The spin dynamics in the helical chain Co(hfac){sub 2}NITPhOMe has been investigated by {sup 1}H NMR and {mu}SR relaxation. In the temperature range 15
Gerber, Brian D.; Kendall, William L.
2016-01-01
The importance of transient dynamics of structured populations is increasingly recognized in ecology, yet these implications are not largely considered in conservation practices. We investigate transient and long-term population dynamics to demonstrate the process and utility of incorporating transient dynamics into conservation research and to better understand the population management of slow life-history species; these species can be theoretically highly sensitive to short- and long-term transient effects. We are specifically interested in the effects of anthropogenic removal of individuals from populations, such as caused by harvest, poaching, translocation, or incidental take. We use the sandhill crane (Grus canadensis) as an exemplar species; it is long-lived, has low reproduction, late maturity, and multiple populations are subject to sport harvest. We found sandhill cranes to have extremely high potential, but low likelihood for transient dynamics, even when the population is being harvested. The typically low population growth rate of slow life-history species appears to buffer against many perturbations causing large transient effects. Transient dynamics will dominate population trajectories of these species when stage structures are highly biased towards the younger and non-reproducing individuals, a situation that may be rare in established populations of long-lived animals. However, short-term transient population growth can be highly sensitive to vital rates that are relatively insensitive under equilibrium, suggesting that stage structure should be known if perturbation analysis is used to identify effective conservation strategies. For populations of slow life-history species that are not prone to large perturbations to their most productive individuals, population growth may be approximated by equilibrium dynamics.
Transient flows occurring during the accelerated crucible rotation technique
International Nuclear Information System (INIS)
Horowitz, Atara; Horowitz, Yigal
1992-11-01
The transient flows occurring after a change in the angular velocity of the cylindrical container are described. The dependence of the transient (known as spin-up or spin-down time) on experimental parameters as kinematic viscosity, cylinder dimensions and the cylinder's initial and final angular velocities are elucidates by a review of the literature. It is emphasized that with large Rossby numbers the spin-up time is longer and the amount of fluid mixing is greater than small and moderate Rossby numbers. It is also elucidated that most crystal growth crucibles cannot be considered as infinitely-long cylinders for the evaluation of the fluid dynamics (authors)
Wang, Yinghui; Wang, Yanting; Dev Verma, Sachin; Tan, Mingrui; Liu, Qinghui; Yuan, Qilin; Sui, Ning; Kang, Zhihui; Zhou, Qiang; Zhang, Han-Zhuang
2017-05-01
The concentration dependence of the carrier dynamics is a key parameter to describe the photo-physical properties of semiconductor films. Here, we investigate the carrier dynamics in the CsPbBr3 perovskite nanocrystal film by employing the transient grating (TG) technique with continuous bias light. The concentration of initial carriers is determined by the average number of photons per nanocrystals induced by pump light (⟨N⟩). The multi-body interaction would appear and accelerate the TG dynamics with ⟨N⟩. When ⟨N⟩ is more than 3.0, the TG dynamics slightly changes, which implies that the Auger recombination would be the highest order multi-body interaction in carrier recombination dynamics. The concentration of non-equilibrium carriers in the film is controlled by the average number of photons per nanocrystals excited by continuous bias light (⟨nne⟩). Increasing ⟨nne⟩ would improve the trapping-detrapping process by filling the trapping state, which would accelerate the carrier diffusion and add the complexity of the mono-molecular recombination mechanism. The results should be useful to further understand the mechanism of carrier dynamics in the CsPbBr3 perovskite nanocrystal film and of great importance for the operation of the corresponding optoelectronic devices.
Transient dynamic and modeling parameter sensitivity analysis of 1D solid oxide fuel cell model
International Nuclear Information System (INIS)
Huangfu, Yigeng; Gao, Fei; Abbas-Turki, Abdeljalil; Bouquain, David; Miraoui, Abdellatif
2013-01-01
Highlights: • A multiphysics, 1D, dynamic SOFC model is developed. • The presented model is validated experimentally in eight different operating conditions. • Electrochemical and thermal dynamic transient time expressions are given in explicit forms. • Parameter sensitivity is discussed for different semi-empirical parameters in the model. - Abstract: In this paper, a multiphysics solid oxide fuel cell (SOFC) dynamic model is developed by using a one dimensional (1D) modeling approach. The dynamic effects of double layer capacitance on the electrochemical domain and the dynamic effect of thermal capacity on thermal domain are thoroughly considered. The 1D approach allows the model to predict the non-uniform distributions of current density, gas pressure and temperature in SOFC during its operation. The developed model has been experimentally validated, under different conditions of temperature and gas pressure. Based on the proposed model, the explicit time constant expressions for different dynamic phenomena in SOFC have been given and discussed in detail. A parameters sensitivity study has also been performed and discussed by using statistical Multi Parameter Sensitivity Analysis (MPSA) method, in order to investigate the impact of parameters on the modeling accuracy
Transient and dynamic control of a variable speed wind turbine with synchronous generator
Energy Technology Data Exchange (ETDEWEB)
Jauch, Clemens [Riso National Laboratory, Wind Energy Department, PO Box 49, DK 4000 Roskilde, (Denmark)
2007-02-14
In this article, a controller for dynamic and transient control of a variable speed wind turbine with a full-scale converter-connected high-speed synchronous generator is presented. First, the phenomenon of drive train oscillations in wind turbines with full-scale converter-connected generators is discussed. Based on this discussion, a controller is presented that dampens these oscillations without impacting on the power that the wind turbine injects into the grid. Since wind turbines are increasingly demanded to take over power system stabilizing and control tasks, the presented wind turbine design is further enhanced to support the grid in transient grid events. A controller is designed that allows the wind turbine to ride through transient grid faults. Since such faults often cause power system oscillations, another controller is added that enables the turbine to participate in the damping of such oscillations. It is concluded that the controllers presented keep the wind turbine stable under any operating conditions, and that they are capable of adding substantial damping to the power system. (Author).
Magnetic ground state of low-doped manganites probed by spin dynamics under magnetic field
International Nuclear Information System (INIS)
Kober, P.; Hennion, M.; Moussa, F.; Ivanov, A.; Regnault, L.-P.; Pinsard, L.; Revcolevschi, A.
2004-01-01
We present a neutron scattering study of spin dynamics under magnetic field in La 0.9 Ca 0.1 MnO 3 . In zero field, the spin wave spectrum consists of two branches, a high and a low-energy one. In applied field, the high-energy branch splits into two branches due to twinned domains. The gap of the new intermediate-energy branch strongly decreases above a spin-flop transition that occurs for H//b and H>2 T. Furthermore, this branch, that we could attribute to the twinned domain H//b, shows a q-discontinuity under field. The low-energy branch, measurable only around ferromagnetic zone centers at H=0, appears at all q-values under field
Coupled dynamics of interacting spin-1 bosons in a double-well potential
Carvalho, D. W. S.; Foerster, A.; Gusmão, M. A.
2018-03-01
We present a detailed analysis of dynamical processes involving two or three particles in a double-well potential. Motivated by experimental realizations of such a system with optically trapped cold atoms, we focus on spin-1 bosons with special attention on the effects of a spin-dependent interaction in addition to the usual Hubbard-like repulsive one. For a sufficiently weak tunneling amplitude in comparison to the dominant Hubbard coupling, particle motion is strongly correlated, occurring only under fine-tuned relationships between well-depth asymmetry and interactions. We highlight processes involving tunneling of coupled particle pairs and triads, emphasizing the role of the spin-dependent interaction in resonance conditions.
Spin-coupled charge dynamics in layered manganite crystals
Tokura, Y; Ishikawa, T
1998-01-01
Anisotropic charge dynamics has been investigated for single crystals of layered manganites, La sub 2 sub - sub 2 sub x Sr sub 1 sub + sub 2 sub x Mn sub 2 O sub 7 (0.3<=X<=0.5). Remarkable variations in the magnetic structure and in the charge-transport properties are observed by changing the doping level x . A crystal with x = 0.3 behaves like a 2-dimensional ferromagnetic metal in the temperature region between approx 90 K and approx 270 K and shows an interplane tunneling magnetoresistance at lower temperatures which is sensitive to the interplane magnetic coupling between the adjacent MnO sub 2 bilayers. Optical probing of these layered manganites has also clarified the highly anisotropic and incoherent charge dynamics.
Debus, J.; Maksimov, A. A.; Dunker, D.; Yakovlev, D. R.; Tartakovskii, I. I.; Waag, A.; Bayer, M.
2010-08-01
The magnetization dynamics of the Mn spin system in an undoped (Zn,Mn)Se/BeTe type-II quantum well was studied by a time-resolved pump-probe photoluminescence technique. The Mn spin temperature was evaluated from the giant Zeeman shift of the exciton line in an external magnetic field of 3 T. The relaxation dynamics of the Mn spin temperature to the equilibrium temperature of the phonon bath after the pump-laser-pulse heating can be accelerated by the presence of free electrons. These electrons, generated by a control laser pulse, mediate the spin and energy transfer from the Mn spin system to the lattice and bypass the relatively slow direct spin-lattice relaxation of the Mn ions.
Immense Magnetic Response of Exciplex Light Emission due to Correlated Spin-Charge Dynamics
Wang, Yifei; Sahin-Tiras, Kevser; Harmon, Nicholas J.; Wohlgenannt, Markus; Flatté, Michael E.
2016-01-01
As carriers slowly move through a disordered energy landscape in organic semiconductors, tiny spatial variations in spin dynamics relieve spin blocking at transport bottlenecks or in the electron-hole recombination process that produces light. Large room-temperature magnetic-field effects (MFEs) ensue in the conductivity and luminescence. Sources of variable spin dynamics generate much larger MFEs if their spatial structure is correlated on the nanoscale with the energetic sites governing conductivity or luminescence such as in coevaporated organic blends within which the electron resides on one molecule and the hole on the other (an exciplex). Here, we show that exciplex recombination in blends exhibiting thermally activated delayed fluorescence produces MFEs in excess of 60% at room temperature. In addition, effects greater than 4000% can be achieved by tuning the device's current-voltage response curve by device conditioning. Both of these immense MFEs are the largest reported values for their device type at room temperature. Our theory traces this MFE and its unusual temperature dependence to changes in spin mixing between triplet exciplexes and light-emitting singlet exciplexes. In contrast, spin mixing of excitons is energetically suppressed, and thus spin mixing produces comparatively weaker MFEs in materials emitting light from excitons by affecting the precursor pairs. Demonstration of immense MFEs in common organic blends provides a flexible and inexpensive pathway towards magnetic functionality and field sensitivity in current organic devices without patterning the constituent materials on the nanoscale. Magnetic fields increase the power efficiency of unconditioned devices by 30% at room temperature, also showing that magnetic fields may increase the efficiency of the thermally activated delayed fluorescence process.
Immense Magnetic Response of Exciplex Light Emission due to Correlated Spin-Charge Dynamics
Directory of Open Access Journals (Sweden)
Yifei Wang
2016-02-01
Full Text Available As carriers slowly move through a disordered energy landscape in organic semiconductors, tiny spatial variations in spin dynamics relieve spin blocking at transport bottlenecks or in the electron-hole recombination process that produces light. Large room-temperature magnetic-field effects (MFEs ensue in the conductivity and luminescence. Sources of variable spin dynamics generate much larger MFEs if their spatial structure is correlated on the nanoscale with the energetic sites governing conductivity or luminescence such as in coevaporated organic blends within which the electron resides on one molecule and the hole on the other (an exciplex. Here, we show that exciplex recombination in blends exhibiting thermally activated delayed fluorescence produces MFEs in excess of 60% at room temperature. In addition, effects greater than 4000% can be achieved by tuning the device’s current-voltage response curve by device conditioning. Both of these immense MFEs are the largest reported values for their device type at room temperature. Our theory traces this MFE and its unusual temperature dependence to changes in spin mixing between triplet exciplexes and light-emitting singlet exciplexes. In contrast, spin mixing of excitons is energetically suppressed, and thus spin mixing produces comparatively weaker MFEs in materials emitting light from excitons by affecting the precursor pairs. Demonstration of immense MFEs in common organic blends provides a flexible and inexpensive pathway towards magnetic functionality and field sensitivity in current organic devices without patterning the constituent materials on the nanoscale. Magnetic fields increase the power efficiency of unconditioned devices by 30% at room temperature, also showing that magnetic fields may increase the efficiency of the thermally activated delayed fluorescence process.
X-ray imaging of spin currents and magnetisation dynamics at the nanoscale
International Nuclear Information System (INIS)
Bonetti, Stefano
2017-01-01
Understanding how spins move in time and space is the aim of both fundamental and applied research in modern magnetism. Over the past three decades, research in this field has led to technological advances that have had a major impact on our society, while improving the understanding of the fundamentals of spin physics. However, important questions still remain unanswered, because it is experimentally challenging to directly observe spins and their motion with a combined high spatial and temporal resolution. In this article, we present an overview of the recent advances in x-ray microscopy that allow researchers to directly watch spins move in time and space at the microscopically relevant scales. We discuss scanning x-ray transmission microscopy (STXM) at resonant soft x-ray edges, which is available at most modern synchrotron light sources. This technique measures magnetic contrast through the x-ray magnetic circular dichroism (XMCD) effect at the resonant absorption edges, while focusing the x-ray radiation at the nanometre scale, and using the intrinsic pulsed structure of synchrotron-generated x-rays to create time-resolved images of magnetism at the nanoscale. In particular, we discuss how the presence of spin currents can be detected by imaging spin accumulation, and how the magnetisation dynamics in thin ferromagnetic films can be directly imaged. We discuss how a direct look at the phenomena allows for a deeper understanding of the the physics at play, that is not accessible to other, more indirect techniques. Finally, we present an overview of the exciting opportunities that lie ahead to further understand the fundamentals of novel spin physics, opportunities offered by the appearance of diffraction limited storage rings and free electron lasers. (topical review)
Leise, Tanya L.
2009-08-19
We consider the problem of the dynamic, transient propagation of a semi-infinite, mode I crack in an infinite elastic body with a nonlinear, viscoelastic cohesize zone. Our problem formulation includes boundary conditions that preclude crack face interpenetration, in contrast to the usual mode I boundary conditions that assume all unloaded crack faces are stress-free. The nonlinear viscoelastic cohesive zone behavior is motivated by dynamic fracture in brittle polymers in which crack propagation is preceeded by significant crazing in a thin region surrounding the crack tip. We present a combined analytical/numerical solution method that involves reducing the problem to a Dirichlet-to-Neumann map along the crack face plane, resulting in a differo-integral equation relating the displacement and stress along the crack faces and within the cohesive zone. © 2009 Springer Science+Business Media B.V.
Simulating transient dynamics of the time-dependent time fractional Fokker-Planck systems
Kang, Yan-Mei
2016-09-01
For a physically realistic type of time-dependent time fractional Fokker-Planck (FP) equation, derived as the continuous limit of the continuous time random walk with time-modulated Boltzmann jumping weight, a semi-analytic iteration scheme based on the truncated (generalized) Fourier series is presented to simulate the resultant transient dynamics when the external time modulation is a piece-wise constant signal. At first, the iteration scheme is demonstrated with a simple time-dependent time fractional FP equation on finite interval with two absorbing boundaries, and then it is generalized to the more general time-dependent Smoluchowski-type time fractional Fokker-Planck equation. The numerical examples verify the efficiency and accuracy of the iteration method, and some novel dynamical phenomena including polarized motion orientations and periodic response death are discussed.
Transient dynamics in cavity electromagnetically induced transparency with ion Coulomb crystals
Albert, Magnus; Dantan, Aurélien; Drewsen, Michael
2018-03-01
We experimentally investigate the transient dynamics of an optical cavity field interacting with large ion Coulomb crystals in a situation of electromagnetically induced transparency (EIT). EIT is achieved by injecting a probe field at the single photon level and a more intense control field with opposite circular polarization into the same mode of an optical cavity to couple Zeeman substates of a metastable level in ? ions. The EIT interaction dynamics are investigated both in the frequency-domain - by measuring the probe field steady state reflectivity spectrum - and in the time-domain - by measuring the progressive buildup of transparency. The experimental results are observed to be in excellent agreement with theoretical predictions taking into account the inhomogeneity of the control field in the interaction volume, and confirm the high degree of control on light-matter interaction that can be achieved with ion Coulomb crystals in optical cavities.
Charge Dynamics and Spin Blockade in a Hybrid Double Quantum Dot in Silicon
Directory of Open Access Journals (Sweden)
Matias Urdampilleta
2015-08-01
Full Text Available Electron spin qubits in silicon, whether in quantum dots or in donor atoms, have long been considered attractive qubits for the implementation of a quantum computer because of silicon’s “semiconductor vacuum” character and its compatibility with the microelectronics industry. While donor electron spins in silicon provide extremely long coherence times and access to the nuclear spin via the hyperfine interaction, quantum dots have the complementary advantages of fast electrical operations, tunability, and scalability. Here, we present an approach to a novel hybrid double quantum dot by coupling a donor to a lithographically patterned artificial atom. Using gate-based rf reflectometry, we probe the charge stability of this double quantum-dot system and the variation of quantum capacitance at the interdot charge transition. Using microwave spectroscopy, we find a tunnel coupling of 2.7 GHz and characterize the charge dynamics, which reveals a charge T_{2}^{*} of 200 ps and a relaxation time T_{1} of 100 ns. Additionally, we demonstrate a spin blockade at the inderdot transition, opening up the possibility to operate this coupled system as a singlet-triplet qubit or to transfer a coherent spin state between the quantum dot and the donor electron and nucleus.
Schemes of detecting nuclear spin correlations by dynamical decoupling based quantum sensing
Ma, Wen-Long Ma; Liu, Ren-Bao
Single-molecule sensitivity of nuclear magnetic resonance (NMR) and angstrom resolution of magnetic resonance imaging (MRI) are the highest challenges in magnetic microscopy. Recent development in dynamical decoupling (DD) enhanced diamond quantum sensing has enabled NMR of single nuclear spins and nanoscale NMR. Similar to conventional NMR and MRI, current DD-based quantum sensing utilizes the frequency fingerprints of target nuclear spins. Such schemes, however, cannot resolve different nuclear spins that have the same noise frequency or differentiate different types of correlations in nuclear spin clusters. Here we show that the first limitation can be overcome by using wavefunction fingerprints of target nuclear spins, which is much more sensitive than the ''frequency fingerprints'' to weak hyperfine interaction between the targets and a sensor, while the second one can be overcome by a new design of two-dimensional DD sequences composed of two sets of periodic DD sequences with different periods, which can be independently set to match two different transition frequencies. Our schemes not only offer an approach to breaking the resolution limit set by ''frequency gradients'' in conventional MRI, but also provide a standard approach to correlation spectroscopy for single-molecule NMR.
Energy Technology Data Exchange (ETDEWEB)
Boldt, Oliver
2014-04-15
Experiments using high energy beams of spin polarized, charged particles still prove to be very helpful in disclosing a deeper understanding of the fundamental structure of matter. An important aspect is to control the beam properties, such as brilliance, intensity, energy, and degree of spin polarization. In this context, the present studies show various numerical calculations of the spin dynamics of high energy electron beams in circular accelerators. Special attention has to be paid to the emission of synchrotron radiation, that occurs when deflecting charged particles on circular orbits. In the presence of the fluctuation of the kinetic energy due to the photon emission, each electron spin moves non-deterministically. This stochastic effect commonly slows down the speed of all numeric estimations. However, the shown simulations cover - using appropriate approximations - trackings for the motion of thousands of electron spins for up to thousands of turns. Those calculations are validated and complemented by empirical investigations at the electron stretcher facility ELSA of the University of Bonn. They can largely be extended to other boundary conditions and thus, can be consulted for new accelerator layouts.
Spin motive force driven by the magnetization dynamics in chiral magnets
International Nuclear Information System (INIS)
Ohe, Jun-ichiro; Shimada, Yuhki
2015-01-01
The magnetization dynamics induces the spin-dependent force on the conduction electrons via the s-d coupling. We have investigated numerically this force, so called 'spin-motive force', generated in chiral magnets forming the Skyrmion structure. We solve the Landau-Lifshitz-Gilbert equation and obtain the Skyrmion lattice structure (SkX) by introducing the Dzyaloshinskii-Moriya (DM) interaction. The corrective mode of the Skyrmion core is obtained by applying the in-plane AC magnetic field. The spin-motive force is generated perpendicular to the velocity of the Skyrmion core. The total voltage due to the spin-motive force is enhanced by the cascade effect of the voltage for each Skyrmion core. For the isolated magnetic disc system, the corrective mode of the Skyrmion lattice is modulated from that of the bulk system by the influence of the edge structure. The phase-locking motion of each Skyrmion core is obtained only in the lowest frequency mode in which the cascade effect of the spin-motive force still remain. (author)
Comprehensive study of the dynamics of a classical Kitaev Spin Liquid
Samarakoon, Anjana; Banerjee, Arnab; Batista, Cristian; Kamiya, Yoshitomo; Tennant, Alan; Nagler, Stephen
Quantum spin liquids (QSLs) have achieved great interest in both theoretical and experimental condensed matter physics due to their remarkable topological properties. Among many different candidates, the Kitaev model on the honeycomb lattice is a 2D prototypical QSL which can be experimentally studied in materials based on iridium or ruthenium.Here we study the spin-1/2 Kitaev model using classical Monte-Carlo and semiclassical spin dynamics of classical spins on a honeycomb lattice. Both real and reciprocal space pictures highlighting the differences and similarities of the results to the linear spin wave theory will be discussed in terms dispersion relations of the pure-Kitaev limit and beyond. Interestingly, this technique could capture some of the salient features of the exact quantum solution of the Kitaev model, such as features resembling the Majorana-like mode comparable to the Kitaev energy, which is spectrally narrowed compared to the quantum result, can be explained by magnon excitations on fluctuating onedimensional manifolds (loops). Hence the difference from the classical limit to the quantum limit can be understood by the fractionalization of a magnon to Majorana fermions. The calculations will be directly compared with our neutron scattering data on α-RuCl3 which is a prime candidate for experimental realization of Kitaev physics.
The magnetization dynamics of nano-contact spin-torque vortex oscillators
Keatley, Paul
The operation of nano-contact (NC) spin-torque vortex oscillators (STVOs) is underpinned by vortex gyration in response to spin-torque delivered by high density current passing through the magnetic layers of a spin valve. Gyration directly beneath the NC yields radio frequency (RF) emission through the giant magnetoresistance (GMR) effect, which can be readily detected electronically. The magnetization dynamics that extend beyond the NC perimeter contribute little to the GMR signal, but are crucial for synchronization of multiple NC-STVOs that share the same spin valve film. In this work time-resolved scanning Kerr microscopy (TRSKM) was used to directly image the extended dynamics of STVOs phase-locked to an injected RF current. In this talk the dynamics of single 250-nm diameter NCs, and a pair of 100-nm diameter NCs, will be presented. In general the Kerr images reveal well-defined localized and far-field dynamics, driven by spin-torque and RF current Oersted fields respectively. The RF frequency, RF Oersted field, direction of an in-plane magnetic field, and equilibrium magnetic state, all influenced the spatial character of the dynamics observed in single NCs. In the pair of NCs, two modes were observed in the RF emission. Kerr images revealed that a vortex was formed beneath each NC and that the mode with enhanced spectral amplitude and line quality appeared to be correlated with two localized regions oscillating with similar amplitude and phase, while a second weaker mode exhibited amplitude and phase differences. This suggests that the RF emission was generated by collective modes of vortex gyration dynamically coupled via magnetization dynamics and dipolar interactions of the shared magnetic layers. Within the constraints of injection locking, this work demonstrates that TRSKM can provide valuable insight into the spatial character and time-evolution of magnetization dynamics generated by NC-STVOs and the conditions that may favor their synchronization
Higher charges in dynamical spin chains for SYM theory
International Nuclear Information System (INIS)
Agarwal, Abhishek; Ferretti, Gabriele
2005-01-01
We construct, to the first two non-trivial orders, the next conserved charge in the su(2|3) sector of N = 4 Super Yang-Mills theory. This represents a test of integrability in a sector where the interactions change the number of sites of the chain. The expression for the charge is completely determined by the algebra and can be written in a diagrammatic form in terms of the interactions already present in the hamiltonian. It appears likely that this diagrammatic expression remains valid in the full theory and can be generalized to higher loops and higher charges thus helping in establishing complete integrability for these dynamical chains
Imaging Spin Dynamics on the Nanoscale using X-Ray Microscopy
Directory of Open Access Journals (Sweden)
Hermann eStoll
2015-04-01
Full Text Available The dynamics of emergent magnetic quasiparticles, such as vortices, domain walls, and bubbles are studied by scanning transmission x-ray microscopy (STXM, combining magnetic (XMCD contrast with about 25 nm lateral resolution as well as 70 ps time resolution. Essential progress in the understanding of magnetic vortex dynamics is achieved by vortex core reversal observed by sub-GHz excitation of the vortex gyromode, either by ac magnetic fields or spin transfer torque. The basic switching scheme for this vortex core reversal is the generation of a vortex-antivortex pair. Much faster vortex core reversal is obtained by exciting azimuthal spin wave modes with (multi-GHz rotating magnetic fields or orthogonal monopolar field pulses in x and y direction, down to 45 ps in duration. In that way unidirectional vortex core reversal to the vortex core 'down' or 'up' state only can be achieved with switching times well below 100 ps. Coupled modes of interacting vortices mimic crystal properties. The individual vortex oscillators determine the properties of the ensemble, where the gyrotropic mode represents the fundamental excitation. By self-organized state formation we investigate distinct vortex core polarization configurations and understand these eigenmodes in an extended Thiele model. Analogies with photonic crystals are drawn. Oersted fields and spin-polarized currents are used to excite the dynamics of domain walls and magnetic bubbles. From the measured phase and amplitude of the displacement of domain walls we deduce the size of the non-adiabatic spin-transfer torque. For sensing applications, the displacement of domain walls is studied and a direct correlation between domain wall velocity and spin structure is found. Finally the synchronous displacement of multiple domain walls using perpendicular field pulses is demonstrated as a possible paradigm shift for magnetic memory and logic applications.
Dynamic spin filtering at the Co/Alq3 interface mediated by weakly coupled second layer molecules
Droghetti, Andrea; Thielen, Philip; Rungger, Ivan; Haag, Norman; Großmann, Nicolas; Stöckl, Johannes; Stadtmüller, Benjamin; Aeschlimann, Martin; Sanvito, Stefano; Cinchetti, Mirko
2016-08-01
Spin filtering at organic-metal interfaces is often determined by the details of the interaction between the organic molecules and the inorganic magnets used as electrodes. Here we demonstrate a spin-filtering mechanism based on the dynamical spin relaxation of the long-living interface states formed by the magnet and weakly physisorbed molecules. We investigate the case of Alq3 on Co and, by combining two-photon photoemission experiments with electronic structure theory, show that the observed long-time spin-dependent electron dynamics is driven by molecules in the second organic layer. The interface states formed by physisorbed molecules are not spin-split, but acquire a spin-dependent lifetime, that is the result of dynamical spin-relaxation driven by the interaction with the Co substrate. Such spin-filtering mechanism has an important role in the injection of spin-polarized carriers across the interface and their successive hopping diffusion into successive molecular layers of molecular spintronics devices.
Sawai, Takatoshi; Yamaguchi, Yoji; Kitamura, Noriko; Date, Tomotsugu; Konishi, Shinya; Taga, Kazuya; Tanaka, Katsuhisa
2018-05-01
Two dimensional pulse-based electron spin transient nutation (2D-ESTN) spectroscopy is a powerful tool for determining the spin quantum number and has been applied to BaTiO3 fine powder in order to identify the origin of the continuous wave electron spin resonance (CW-ESR) signal around g = 2.00. The signal is frequently observed in BaTiO3 ceramics, and the correlation between the signal intensity and positive temperature coefficient of resistivity (PTCR) properties has been reported to date. The CW-ESR spectrum of BaTiO3 fine particles synthesized by the sol-gel method shows a typical asymmetric signal at g = 2.004. The 2D-ESTN measurements of the sample clearly reveal that the signal belongs to the S = 5/2 high spin state, indicating that the signal is not due to a point defect as suggested by a number of researchers but rather to a transition metal ion. Our elemental analysis, as well as previous studies, indicates that the origin of the g = 2.004 signal is due to the presence of an Fe3+ impurity. The D value (second-order fine structure parameter) reveals that the origin of the signal is an Fe3+ center with distant charge compensation. In addition, we show a peculiar temperature dependence of the CW-ESR spectrum, suggesting that the phase transition behavior of a BaTiO3 fine particle is quite different from that of a bulk single crystal. Our identification does not contradict a vacancy-mediated mechanism for PTCR. However, it is incorrect to use the signal at g = 2.00 as evidence to support the vacancy-mediated mechanism.
Spin-transfer torque induced dynamics of magnetic vortices in nanopillars
International Nuclear Information System (INIS)
Sluka, Volker
2011-01-01
The subject of this work are lithographically defined cylindrical nanopillars containing a stack of two Iron disks separated by a nonmagnetic spacer. The dimensions of the ferromagnetic disks are chosen such that at low magnetic fields, the so-called magnetic vortex is stabilized. In zero field, the magnetization of these objects is basically parallel to the disk plane and circulates the disk center. In doing so, the build-up of large in-plane stray fields is avoided. At the center of this distribution however, exchange forces turn the magnetization out of the disk plane, resulting in the formation of what is referred to as the vortex core. Magnetic vortices have attracted much attention in recent years. This interest is in large parts due to the highly interesting dynamic properties of these structures. In this work the static and dynamic properties of magnetic vortices and their behavior under the influence of spin-transfer torque are investigated. This is achieved by measuring the static and time dependent magnetoresistance under the influence of external magnetic fields. The samples allow the formation of a large variety of states. First, the focus is set on configurations, where one disk is in a vortex state while the other one is homogeneously magnetized. It is shown that spin-transfer torque excites the vortex gyrotropic mode in this configuration. The dependence of the mode frequency on the magnetic field is analyzed. The measurements show that as the vortex center of gyration shifts through the disk under the action of the magnetic field, the effective potential in which it is moving undergoes a change in shape. This shape change is reflected in a V-shaped field dependence of the gyration frequency. Analytical calculations are performed to investigate the effect of the asymmetry of the spin-transfer torque efficiency function on the vortex dynamics. It is shown that by means of asymmetry, spin-transfer torque can transfer energy to a gyrating vortex even
Energy Technology Data Exchange (ETDEWEB)
Dengre, Shanu; Sarkar, Rajib; Braeuninger, Sascha Albert; Brueckner, Felix; Materne, Philipp; Klauss, Hans-Henning [Institute for Solid State Physics, TU Dresden (Germany); Krizan, Jason W.; Cava, Robert J. [Department of Chemistry, Princeton University, Princeton, NJ (United States); Luetkens, Hubertus; Baines, Chris [Laboratory for Muon-Spin Spectroscopy, Paul Scherrer Institute, Villigen (Switzerland)
2016-07-01
{sup 23}Na -and {sup 19}F NMR, and μSR experiments are performed to explore the microscopic properties of NaSrCo{sub 2}F{sub 7}, which is a newly discovered magnetically frustrated pyrochlore with weak bond disorder and with a frustration index of f = 42. While {sup 23}Na and {sup 19}F NMR experiments clearly suggest the presence of quasi static field distribution below ∝3 K as reflected in the huge NMR line broadening and wipe out effect of NMR signal intensity, μSR experiments on the other hand remains passive to this spin frozen state. Both NMR and μSR results indicate the slowing down of the magnetic (spin) fluctuations upon cooling towards the NMR spin frozen state. μSR relaxation rate increases slightly below ∝ 3 K, and remains not only constant down to 20 mK, but also stands independent in longitudinal magnetic field upto 4000 G implying that the spin fluctuations are dynamic. These observations suggest the coexistence of partial spin frozen state and persistent spin dynamics in NaSrCo{sub 2}F{sub 7}.
Probing Ultrafast Electron Dynamics at Surfaces Using Soft X-Ray Transient Reflectivity Spectroscopy
Baker, L. Robert; Husek, Jakub; Biswas, Somnath; Cirri, Anthony
The ability to probe electron dynamics with surface sensitivity on the ultrafast time scale is critical for understanding processes such as charge separation, injection, and surface trapping that mediate efficiency in catalytic and energy conversion materials. Toward this goal, we have developed a high harmonic generation (HHG) light source for femtosecond soft x-ray reflectivity. Using this light source we investigated the ultrafast carrier dynamics at the surface of single crystalline α-Fe2O3, polycrystalline α-Fe2O3, and the mixed metal oxide, CuFeO2. We have recently demonstrated that CuFeO2 in particular is a selective catalyst for photo-electrochemical CO2 reduction to acetate; however, the role of electronic structure and charge carrier dynamics in mediating catalytic selectivity has not been well understood. Soft x-ray reflectivity measurements probe the M2,3, edges of the 3d transition metals, which provide oxidation and spin state resolution with element specificity. In addition to chemical state specificity, these measurements are also surface sensitive, and by independently simulating the contributions of the real and imaginary components of the complex refractive index, we can differentiate between surface and sub-surface contributions to the excited state spectrum. Accordingly, this work demonstrates the ability to probe ultrafast carrier dynamics in catalytic materials with element and chemical state specificity and with surface sensitivity.
I. Advances in NMR Signal Processing. II. Spin Dynamics in Quantum Dissipative Systems
Energy Technology Data Exchange (ETDEWEB)
Lin, Yung-Ya [Univ. of California, Berkeley, CA (United States)
1998-11-01
Part I. Advances in IVMR Signal Processing. Improvements of sensitivity and resolution are two major objects in the development of NMR/MRI. A signal enhancement method is first presented which recovers signal from noise by a judicious combination of a priordmowledge to define the desired feasible solutions and a set theoretic estimation for restoring signal properties that have been lost due to noise contamination. The effect of noise can be significantly mitigated through the process of iteratively modifying the noisy data set to the smallest degree necessary so that it possesses a collection of prescribed properties and also lies closest to the original data set. A novel detection-estimation scheme is then introduced to analyze noisy and/or strongly damped or truncated FIDs. Based on exponential modeling, the number of signals is detected based on information estimated using the matrix pencil method. theory and the spectral parameters are Part II. Spin Dynamics in body dipole-coupled systems Quantum Dissipative Systems. Spin dynamics in manyconstitutes one of the most fundamental problems in magnetic resonance and condensed-matter physics. Its many-spin nature precludes any rigorous treatment. ‘Therefore, the spin-boson model is adopted to describe in the rotating frame the influence of the dipolar local fields on a tagged spin. Based on the polaronic transform and a perturbation treatment, an analytical solution is derived, suggesting the existence of self-trapped states in the. strong coupling limit, i.e., when transverse local field >> longitudinal local field. Such nonlinear phenomena originate from the joint action of the lattice fluctuations and the reaction field. Under semiclassical approximation, it is found that the main effect of the reaction field is the renormalization of the Hamiltonian of interest. Its direct consequence is the two-step relaxation process: the spin is initially localized in a quasiequilibrium state, which is later detrapped by
Energy Technology Data Exchange (ETDEWEB)
Imanbaew, D.; Nosenko, Y. [Fachbereich Chemie, Technische Universität Kaiserslautern, Erwin-Schrödinger-Str. 52–54, 67663 Kaiserslautern (Germany); Forschungszentrum OPTIMAS, Erwin-Schrödinger-Str. 46, 67663 Kaiserslautern (Germany); Kerner, C. [Fachbereich Chemie, Technische Universität Kaiserslautern, Erwin-Schrödinger-Str. 52–54, 67663 Kaiserslautern (Germany); Chevalier, K.; Rupp, F. [Fachbereich Physik, Technische Universität Kaiserslautern, Erwin-Schrödinger-Str. 46, 67663 Kaiserslautern (Germany); Riehn, C., E-mail: riehn@chemie.uni-kl.de [Fachbereich Chemie, Technische Universität Kaiserslautern, Erwin-Schrödinger-Str. 52–54, 67663 Kaiserslautern (Germany); Forschungszentrum OPTIMAS, Erwin-Schrödinger-Str. 46, 67663 Kaiserslautern (Germany); Thiel, W.R. [Fachbereich Chemie, Technische Universität Kaiserslautern, Erwin-Schrödinger-Str. 52–54, 67663 Kaiserslautern (Germany); Diller, R. [Fachbereich Physik, Technische Universität Kaiserslautern, Erwin-Schrödinger-Str. 46, 67663 Kaiserslautern (Germany)
2014-10-17
Graphical abstract: - Highlights: • Ultrafast dynamics of new Ru(II) catalysts investigated in gas phase and solution. • Catalyst activation (HCl loss) achieved in ion trap by UV photoexcitation. • Electronic relaxation proceeds by IVR and IC followed by ground state dissociation. • No triplet formation in contrast to other Ru-polypyridine complexes. • Solvent prohibits catalyst activation in solution by fast vibrational cooling. - Abstract: We report studies on the excited state dynamics of new ruthenium(II) complexes [(η{sup 6}-cymene)RuCl(apypm)]PF{sub 6} (apypm=2-NR{sub 2}-4-(pyridine-2-yl)-pyrimidine, R=CH{sub 3} (1)/H (2)) which, in their active form [1{sup +}-HCl] and [2{sup +}-HCl], catalyze the transfer hydrogenation of arylalkyl ketones in the absence of a base. The investigations encompass femtosecond pump–probe transient mass spectrometry under isolated conditions and transient absorption spectroscopy in acetonitrile solution, both on the cations [(η{sup 6}-cymene)RuCl(apypm)]{sup +} (1{sup +}, 2{sup +}). Gas phase studies on mass selected ions were performed in an ESI ion trap mass spectrometer by transient photofragmentation, unambiguously proving the formation of the activated catalyst species [1{sup +}-HCl] or [2{sup +}-HCl] after photoexcitation being the only fragmentation channel. The primary excited state dynamics in the gas phase could be fitted to a biexponential decay, yielding time constants of <100 fs and 1–3 ps. Transient absorption spectroscopy performed in acetonitrile solution using femtosecond UV/Vis and IR probe laser pulses revealed additional deactivation processes on longer time scales (∼7–12 ps). However, the formation of the active catalyst species after photoexcitation could not be observed in solution. The results from both studies are compared to former CID investigations and DFT calculations concerning the activation mechanism.
Spin-wave dynamics in Invar Fe65Ni35 studied by small-angle polarized neutron scattering
Brück, E.H.; Grigoriev, S.V.; Deriglazov, V.V.; Okorokov, A.I.; Dijk van, N.H.; Klaasse, J.C.P.
2002-01-01
Abstract. Spin dynamics in Fe65Ni35 Invar alloy has been studied by left-right asymmetry of small-angle polarized neutron scattering below TC=485 K in external magnetic fields of H=0.05-0.25 T inclined relative to the incident beam. The spin-wave stiffness D and the damping & were obtained by
Spin-lattice dynamics simulation of external field effect on magnetic order of ferromagnetic iron
Directory of Open Access Journals (Sweden)
C. P. Chui
2014-03-01
Full Text Available Modeling of field-induced magnetization in ferromagnetic materials has been an active topic in the last dozen years, yet a dynamic treatment of distance-dependent exchange integral has been lacking. In view of that, we employ spin-lattice dynamics (SLD simulations to study the external field effect on magnetic order of ferromagnetic iron. Our results show that an external field can increase the inflection point of the temperature. Also the model provides a better description of the effect of spin correlation in response to an external field than the mean-field theory. An external field has a more prominent effect on the long range magnetic order than on the short range counterpart. Furthermore, an external field allows the magnon dispersion curves and the uniform precession modes to exhibit magnetic order variation from their temperature dependence.
Teng, Lihua; Jiang, Tianran; Wang, Xia; Lai, Tianshu
2018-05-01
Carrier recombination and electron spin relaxation dynamics in asymmetric n-doped (110) GaAs/AlGaAs quantum wells are investigated with time-resolved pump-probe spectroscopy. The experiment results reveal that the measured carrier recombination time depends strongly on the polarization of pump pulse. With the same pump photon flux densities, the recombination time of spin-polarized carriers is always longer than that of the spin-balanced carriers except at low pump photon flux densities, this anomaly originates from the polarization-sensitive nonlinear absorption effect. Differing from the traditional views, in the low carrier density regime, the D'yakonov-Perel' (DP) mechanism can be more important than the Bir-Aronov-Pikus (BAP) mechanism, since the DP mechanism takes effect, the spin relaxation time in (110) GaAs QWs is shortened obviously via asymmetric doping.
International Nuclear Information System (INIS)
Temizer, Ümüt
2014-01-01
In this study, the dynamic critical behavior of the mixed spin-1 and spin-3/2 Ising system on a bilayer square lattice is studied by using the Glauber-type stochastic dynamics for both ferromagnetic/ferromagnetic (FM/FM) and antiferromagnetic/ferromagnetic (AFM/FM) interactions in the presence of a time-varying external magnetic field. The dynamic equations describing the time-dependencies of the average magnetizations are derived from the Master equation. The phases in the system are obtained by solving these dynamic equations. The temperature dependence of the dynamic magnetizations is investigated in order to characterize the nature (first- or second-order) of the dynamic phase transitions and to obtain the dynamic phase transition temperatures. The dynamic phase diagrams are constructed in seven different planes for both FM/FM and AFM/FM interactions and the effects of the related interaction parameters on the dynamic phase diagrams are examined. It is found that the dynamic phase diagrams display many dynamic critical points, such as tricritical point, triple point (TP), quadruple point (QP), double critical end point (B), multicritical point (A) and tetracritical point (M). Moreover, the reentrant behavior is observed for AFM/FM interaction in the system. - Highlights: • The mixed spin (1, 3/2) Ising system is studied on a two-layer square lattice. • The Glauber transition rates are employed to construct the dynamic equations. • The dynamic phase diagrams are presented in seven different planes. • The system displays many dynamic critical points. • The reentrant behavior is observed for AFM/FM interaction
Spin dynamics in the single-ion magnet [Er(W5O18) 2 ] 9 -
Mariani, M.; Borsa, F.; Graf, M. J.; Sanna, S.; Filibian, M.; Orlando, T.; Sabareesh, K. P. V.; Cardona-Serra, S.; Coronado, E.; Lascialfari, A.
2018-04-01
In this work we present a detailed NMR and μ+SR investigation of the spin dynamics in the new hydrated sodium salt containing the single-ion magnet [Er(W5O18) 2 ] 9 -. The 1HNMR absorption spectra at various applied magnetic fields present a line broadening on decreasing temperature which indicates a progressive spin freezing of the single-molecule magnetic moments. The onset of quasistatic local magnetic fields, due to spin freezing, is observed also in the muon relaxation curves at low temperature. Both techniques yield a local field distribution of the order of 0.1-0.2 T, which appears to be of dipolar origin. On decreasing the temperature, a gradual loss of the 1HNMR signal intensity is observed, a phenomenon known as wipe-out effect. The effect is analyzed quantitatively on the basis of a simple model which relies on the enhancement of the NMR spin-spin, T2-1, relaxation rate due to the slowing down of the magnetic fluctuations. Measurements of spin-lattice relaxation rate T1-1 for 1HNMR and of the muon longitudinal relaxation rate λ show an increase as the temperature is lowered. However, while for the NMR case the signal is lost before reaching the very slow fluctuation region, the muon spin-lattice relaxation λ can be followed until very low temperatures and the characteristic maximum, reached when the electronic spin fluctuation frequency becomes of the order of the muon Larmor frequency, can be observed. At high temperatures, the data can be well reproduced with a simple model based on a single correlation time τ =τ0exp (Δ /T ) for the magnetic fluctuations. However, to fit the relaxation data for both NMR and μ+SR over the whole temperature and magnetic field range, one has to use a more detailed model that takes into account spin-phonon transitions among the E r3 + magnetic sublevels. A good agreement for both proton NMR and μ+SR relaxation is obtained, which confirms the validity of the energy level scheme previously calculated from an
On the dynamics of polymers in dense systems - Results of neutron spin echo spectroscopy
International Nuclear Information System (INIS)
Richter, D.
1997-01-01
One of the basic problems in the dynamics of polymers concerns the importance of geometrical or topological interactions which are directly related to the large scale molecular structures. In the famous reptation model these constraints are pictured in terms of a tube of localization following the average chain profile and confining the chain motion to the curve-linear tube. Recently studying the dynamic structure factor of a single labeled chain in a polymer melt by means of neutron spin echo spectroscopy (NSE) led to a direct observation of these tube constraints. Here I shall summarize these neutron spin echo experiments. I shall address the NSE technique, present results on the entropy driven segmental chain dynamics, discuss the dynamics of single chains in the melt where the chain length is increased through the transition to 'reptation' dynamics and display NSE measurements on long chain systems which revealed the molecular existence of the entanglement distance. Their magnitudes agree very well with tube diameters derived from dynamical mechanical measurements on the basis of the reptation model proving thereby the basic assumption of this Nobel Price winning concept
Energy Technology Data Exchange (ETDEWEB)
Koganezawa, K. [Mitsubishi Atomic Power Industries, Inc., Yokohama (Japan); Kushiyama, M. [Mitsubishi Atomic Power Industries, Inc., Yokohama (Japan); Niikura, S. [Mitsubishi Atomic Power Industries, Inc., Yokohama (Japan); Kudough, F. [Mitsubishi Atomic Power Industries, Inc., Yokohama (Japan); Onozuka, M. [Mitsubishi Heavy Industries Ltd., Yokohama (Japan); Koizumi, K. [Japan Atomic Energy Research Inst., Ibaraki (Japan)
1995-12-31
Transient electromagnetic and dynamic structural analyses of a blanket structure in the fusion experimental reactor (FER) under a plasma disruption event and a vertical displacement event (VDE) have been performed to investigate the dynamic structural characteristics and the feasibility of the structure. Coupling effects between eddy currents and dynamic deflections have also been taken into account in these analyses. In this study, the inboard blanket was employed because of our computer memory limitation. A 1/192 segment model of a full torus was analyzed using the analytical code, EDDYCUFF. In the plasma disruption event, the maximum magnetic pressure caused by eddy currents and poloidal fields was 1.2MPa. The maximum stress intensity by this magnetic pressure was 114MPa. In the VDE, the maximum magnetic pressure was 2.4MPa and the maximum stress intensity was 253MPa. This stress was somewhat beyond the allowable stress limit. Therefore, the blanket structure and support design should be reviewed to reduce the stress to a suitable value. In summary, the dynamic structural characteristics and design issues of the blanket structure have been identified. (orig.).
Dynamical scaling in polymer solutions investigated by the neutron spin echo technique
International Nuclear Information System (INIS)
Richter, D.; Ewen, B.
1979-01-01
Chain dynamics in polymer solutions was investigated by means of the recently developed neutron spin echo spectroscopy. - By this technique, it was possible for the first time to verify unambiguously the scaling predictions of the Zimm model in the case of single chain behaviour and to observe the cross over to many chain behaviour. The segmental diffusion of single chains exhibits deviations from a simple exponential law, indicating the importance of memory effects. (orig.) [de
Bioengineering Spin-Offs from Dynamical Systems Theory
Collins, J. J.
1997-03-01
Recently, there has been considerable interest in applying concepts and techniques from dynamical systems and statistical physics to physiological systems. In this talk, we present work dealing which two active topics in this area: stochastic resonance and (2) chaos control. Stochastic resonance is a phenomenon wherein the response of nonlinear system to a weak input signal is optimally enhanced by the presence of a particular level of noise. Here we demonstrate that noise-based techniques can be used to lower sensory detection thresholds in humans. We discuss how from a bioengineering and clinical standpoint, these developments may be particularly relevant for individuals with elevated sensory thresholds, such as older adults and patients with peripheral neuropathy. Chaos control techniques have been applied to a wide range of experimental systems, including biological preparations. The application of chaos control to biological systems has led to speculations that these methods may be clinically useful. Here we demonstrate that the principles of chaos control can be utilized to stabilize underlying unstable periodic orbits in non-chaotic biological systems. We discuss how from a bioengineering and clinical standpoint, these developments may be important for suppressing or eliminating certain types of cardiac arrhythmias.
RVB signatures in the spin dynamics of the square-lattice Heisenberg antiferromagnet
Ghioldi, E. A.; Gonzalez, M. G.; Manuel, L. O.; Trumper, A. E.
2016-03-01
We investigate the spin dynamics of the square-lattice spin-\\frac{1}{2} Heisenberg antiferromagnet by means of an improved mean-field Schwinger boson calculation. By identifying both, the long-range Néel and the RVB-like components of the ground state, we propose an educated guess for the mean-field magnetic excitation consisting on a linear combination of local and bond spin flips to compute the dynamical structure factor. Our main result is that when this magnetic excitation is optimized in such a way that the corresponding sum rule is fulfilled, we recover the low- and high-energy spectral weight features of the experimental spectrum. In particular, the anomalous spectral weight depletion at (π,0) found in recent inelastic neutron scattering experiments can be attributed to the interference of the triplet bond excitations of the RVB component of the ground state. We conclude that the Schwinger boson theory seems to be a good candidate to adequately interpret the dynamic properties of the square-lattice Heisenberg antiferromagnet.
International Nuclear Information System (INIS)
Asshoff, P.; Loeffler, W.; Fluegge, H.; Zimmer, J.; Mueller, J.; Westenfelder, B.; Hu, D. Z.; Schaadt, D. M.; Kalt, H.; Hetterich, M.
2010-01-01
We present time-resolved studies of the spin polarization dynamics during and after initialization through pulsed electrical spin injection into InGaAs quantum dots embedded in a p-i-n-type spin-injection light-emitting diode. Experiments are performed with pulse widths in the nanosecond range and a time-resolved single photon counting setup is used to detect the subsequent electroluminescence. We find evidence that the achieved spin polarization shows an unexpected temporal behavior, attributed mainly to many-carrier and non-equilibrium effects in the device.
Electron-spin dynamics in Mn-doped GaAs using time-resolved magneto-optical techniques
Akimov, I. A.; Dzhioev, R. I.; Korenev, V. L.; Kusrayev, Yu. G.; Zhukov, E. A.; Yakovlev, D. R.; Bayer, M.
2009-08-01
We study the electron-spin dynamics in p -type GaAs doped with magnetic Mn acceptors by means of time-resolved pump-probe and photoluminescence techniques. Measurements in transverse magnetic fields show a long spin-relaxation time of 20 ns that can be uniquely related to electrons. Application of weak longitudinal magnetic fields above 100 mT extends the spin-relaxation times up to microseconds which is explained by suppression of the Bir-Aronov-Pikus spin relaxation for the electron on the Mn acceptor.
Chapman, S. C.; Dods, J.; Gjerloev, J. W.
2017-12-01
Observations of how the solar wind interacts with earth's magnetosphere, and its dynamical response, are increasingly becoming a data analytics challenge. Constellations of satellites observe the solar corona, the upstream solar wind and throughout earth's magnetosphere. These data are multipoint in space and extended in time, so in principle are ideal for study using dynamical networks to characterize the full time evolving spatial pattern. We focus here on analysis of data from the full set of 100+ auroral ground based magnetometer stations that have been collated by SuperMAG. Spatio-temporal patterns of correlation between the magnetometer time series can be used to form a dynamical network [1]. The properties of the network can then be captured by (time dependent) network parameters. This offers the possibility of characterizing detailed spatio-temporal pattern by a few parameters, so that many events can then be compared [2] with each other. Whilst networks are in widespread use in the data analytics of societal and commercial data, there are additional challenges in their application to physical timeseries. Determining whether two nodes (here, ground based magnetometer stations) are connected in a network (seeing the same dynamics) requires normalization w.r.t. the detailed sensitivities and dynamical responses of specific observing stations and seasonal conductivity variations and we have developed methods to achieve this dynamical normalization. The detailed properties of the network capture time dependent spatial correlation in the magnetometer responses and we will show how this can be used to infer a transient current system response to magnetospheric activity. [l] Dods et al, J. Geophys. Res 120, doi:10.1002/2015JA02 (2015). [2] Dods et al, J. Geophys. Res. 122, doi:10.1002/2016JA02 (2017).
The dynamics of sediment size and transient erosional signals in heterogeneous lithologies
Lyons, N. J.; Gasparini, N. M.; Crosby, B. T.; Wehrs, K.; Willenbring, J. K.
2017-12-01
Sediment supply and transport dynamics convey, transform, and destroy climatic and tectonic signals in channels and depositional landforms. The South Fork Eel River (SFER) in the northern California Coast Ranges, USA exhibits characteristics suggestive of transient landscape adjustment: strath terraces, knickpoints, and headwater terrain eroding more slowly than downstream areas. A tectonically-induced uplift wave is commonly invoked as the driver of transience in this region. The wave is attributed to the northward migration of the Mendocino Triple Junction (MTJ). Nested basin-mean erosion rates calculated from 10Be detrital quartz sand increase down the mainstem of the SFER, roughly coinciding with the direction of MTJ migration. This erosion trend is attributed to the proportion of adjusted and unadjusted landscape portions upstream of the locations where the nested 10Be samples were collected. Adjusted and unadjusted landscape portions are separated by a broad knickzone that contains 28% of relief along the mainstem. Knickzone propagation and considerable stream incision is suggested by projection of the upper SFER above the knickzone through the highest flight of strath terraces. Field observations and outcomes of numerical simulations using the Landlab modeling framework are incompatible with uplift modeled as a wave. Alternative uplift and variable sediment flux scenarios more reliably predict the pattern of terraces, knickpoints, and accelerated erosion. In the natural landscape, landforms and erosion rates follow the patterns expected for transient erosion along the mainstem, although a local base level lowering signal is not resolvable in many tributaries. Topographic relief, presence of knickpoints, and rock properties differ in the SFER tributaries. The tributaries draining mélange are over-steepened by boulders detached from hillslopes by earthflows. Here, we propose a framework in which rock properties and sediment size are a key control upon
Transient beam dynamics in the Lawrence Berkeley Laboratory 2 MV injector
International Nuclear Information System (INIS)
Henestroza, E.
1996-01-01
A driver-scale injector for the heavy ion fusion accelerator project has been built at LBL. This machine has exceeded the design goals of high voltage (above 2 MV), high current (more than 0.8 A of K + ) and low normalized emittance (less than 1 π mm mrad). The injector consists of a 750 keV gun pre-injector followed by an electrostatic quadrupole accelerator which provides strong (alternating gradient) focusing for the space-charge-dominated beam, and simultaneously accelerates the ions to 2 MeV. A matching section is being built to match the beam to the electrostatic accelerator ELISE. The gun pre-injector, designed to hold up to 1 MV with minimal breakdown risks, consists of a hot alumino-silicate source with a large curved emitting surface surrounded by a thick ''extraction electrode''. During beam turn-on the voltage at the source is biased from a negative potential, enough to reverse the electric field on the emitting surface and to avoid emission, to a positive potential to start extracting the beam; it stays constant for about 1 μs, and is reversed to turn off the emission. Since the Marx voltage applied on the accelerating quadrupoles and the main pre-injector gap is a long, constant pulse (several microseconds), the transient behavior is dominated by the extraction pulser voltage time profile. The transient longitudinal dynamics of the beam in the injector was simulated by running the particle-in-cell codes GYMNOS and WARP3D in a time-dependent mode. The generalization and its implementation is WARP3D of a method proposed by Lampel and Tiefenback to eliminate transient oscillations in a one-dimensional planar diode will be presented. (orig.)
Dynamic Response in Transient Stress-Field Behavior Induced by Hydraulic Fracturing
Jenkins, Andrew
magnitude. These types of shifts are of great concern because they can impact subsequent fracture development causing non-uniform fracture propagation and the potential overlapping of fracture paths as they extend from the wellbore at the point of injection. The dynamics of stress variation that occur with respect to hydraulic fracturing is a somewhat new area of study. In order to accomplish the goals of this thesis and continue future research in this area a new transient model has been developed in order to asses these dynamic systems and determine their influence on fracture behavior. This applies the use of a fully coupled finite element method in 2-D using linear elastic fracture mechanics which is then expanded using displacement discontinuity to a cohesive zone model in 3-D. A static boundary element model was also used to determine stress fields surrounding static, predetermined fracture geometries. These models have been verified against analytical solutions for simple cases and are now being applied to more detailed case studies and analysis. These models have been briefly discussed throughout this thesis in order to give insight on their current capabilities and application as well as their future potential within this area of research. The majority of this work introduces transient stress field prediction to cases of single and multiple hydraulic fractures. The static assessment of these stresses is determined for verification of results to those found in publication which leads into these transient stress field variations. A new method has been developed and applied to the stress state prediction for the first time in a transient fracture model which is partly based upon a critical distance theory. These dynamic interactions can provide useful insight to pertinent issues within the petroleum and natural gas industry such as those to hydraulic fracturing fluid loss and induced seismic events, as well as to applications of efficiency and optimization of the
Static and dynamic spin fluctuations in the spin glass doping regime in La2-xSrxCuO4+y
International Nuclear Information System (INIS)
Birgeneau, R.J.; Belk, N.; Kastner, M.A.; Keimer, B.; Shirane, G.
1991-01-01
We review the results of neutron scattering studies of the static and dynamic spin fluctuations crystals of La 2-x Sr x CuO 4+δ in the doping regime intermediate between the Neel and superconducting regions. In this regime the in-plane resistance is linear in temperature down to ∼80 K with a crossover due to logarithmic conductance effects at lower temperatures. The static spin correlations are well-described by a simple model in which the inverse correlation length κ(x,T) =κ(x,0) + κ(0,T). The most dramatic new result is the discovery by Keimer et al. that the dynamic spin fluctuations exhibit a temperature dependence which is a simple function of ω/T for temperatures 10 K≤T≤500 K for a wide range of energies. This scaling leads to a natural explanation of a variety of normal state properties of the copper oxides. 21 refs., 4 figs
Cumulative quantum work-deficit versus entanglement in the dynamics of an infinite spin chain
Energy Technology Data Exchange (ETDEWEB)
Dhar, Himadri Shekhar [School of Physical Sciences, Jawaharlal Nehru University, New Delhi 110067 (India); Ghosh, Rupamanjari [School of Physical Sciences, Jawaharlal Nehru University, New Delhi 110067 (India); School of Natural Sciences, Shiv Nadar University, Gautam Budh Nagar, UP 203207 (India); Sen, Aditi [Harish-Chandra Research Institute, Chhatnag Road, Jhunsi, Allahabad 211019 (India); Sen, Ujjwal, E-mail: ujjwal@hri.res.in [Harish-Chandra Research Institute, Chhatnag Road, Jhunsi, Allahabad 211019 (India)
2014-03-01
We find that the dynamical phase transition (DPT) in nearest-neighbor bipartite entanglement of time-evolved states of the anisotropic infinite quantum XY spin chain, in a transverse time-dependent magnetic field, can be quantitatively characterized by the dynamics of an information-theoretic quantum correlation measure, namely, quantum work-deficit (QWD). We show that only those nonequilibrium states exhibit entanglement resurrection after death, on changing the field parameter during the DPT, for which the cumulative bipartite QWD is above a threshold. The results point to an interesting inter-relation between two quantum correlation measures that are conceptualized from different perspectives.
Dynamics of polymers in elongational flow studied by the neutron spin-echo technique
International Nuclear Information System (INIS)
Rheinstaedter, Maikel C.; Sattler, Rainer; Haeussler, Wolfgang; Wagner, Christian
2010-01-01
The nanoscale fluctuation dynamics of semidilute high molecular weight polymer solutions of polyethylenoxide (PEO) in D 2 O under non-equilibrium flow conditions were studied by the neutron spin-echo technique. The sample cell was in contraction flow geometry and provided a pressure driven flow with a high elongational component that stretched the polymers most efficiently. Neutron scattering experiments in dilute polymer solutions are challenging because of the low polymer concentration and corresponding small quasi-elastic signals. A relaxation process with relaxation times of about 10 ps was observed, which shows anisotropic dynamics with applied flow.
Resting state brain dynamics and its transients: a combined TMS-EEG study.
Bonnard, Mireille; Chen, Sophie; Gaychet, Jérôme; Carrere, Marcel; Woodman, Marmaduke; Giusiano, Bernard; Jirsa, Viktor
2016-08-04
The brain at rest exhibits a spatio-temporally rich dynamics which adheres to systematic behaviours that persist in task paradigms but appear altered in disease. Despite this hypothesis, many rest state paradigms do not act directly upon the rest state and therefore cannot confirm hypotheses about its mechanisms. To address this challenge, we combined transcranial magnetic stimulation (TMS) and electroencephalography (EEG) to study brain's relaxation toward rest following a transient perturbation. Specifically, TMS targeted either the medial prefrontal cortex (MPFC), i.e. part of the Default Mode Network (DMN) or the superior parietal lobule (SPL), involved in the Dorsal Attention Network. TMS was triggered by a given brain state, namely an increase in occipital alpha rhythm power. Following the initial TMS-Evoked Potential, TMS at MPFC enhances the induced occipital alpha rhythm, called Event Related Synchronisation, with a longer transient lifetime than TMS at SPL, and a higher amplitude. Our findings show a strong coupling between MPFC and the occipital alpha power. Although the rest state is organized around a core of resting state networks, the DMN functionally takes a special role among these resting state networks.
Nonequilibrium dynamics of spin-boson models from phase-space methods
Piñeiro Orioli, Asier; Safavi-Naini, Arghavan; Wall, Michael L.; Rey, Ana Maria
2017-09-01
An accurate description of the nonequilibrium dynamics of systems with coupled spin and bosonic degrees of freedom remains theoretically challenging, especially for large system sizes and in higher than one dimension. Phase-space methods such as the truncated Wigner approximation (TWA) have the advantage of being easily scalable and applicable to arbitrary dimensions. In this work we adapt the TWA to generic spin-boson models by making use of recently developed algorithms for discrete phase spaces [J. Schachenmayer, A. Pikovski, and A. M. Rey, Phys. Rev. X 5, 011022 (2015), 10.1103/PhysRevX.5.011022]. Furthermore we go beyond the standard TWA approximation by applying a scheme based on the Bogoliubov-Born-Green-Kirkwood-Yvon (BBGKY) hierarchy of equations to our coupled spin-boson model. This allows us, in principle, to study how systematically adding higher-order corrections improves the convergence of the method. To test various levels of approximation we study an exactly solvable spin-boson model, which is particularly relevant for trapped-ion arrays. Using TWA and its BBGKY extension we accurately reproduce the time evolution of a number of one- and two-point correlation functions in several dimensions and for an arbitrary number of bosonic modes.
Dynamic Spin-Lattice Coupling and Nematic Fluctuations in NaFeAs
Directory of Open Access Journals (Sweden)
Yu Li
2018-06-01
Full Text Available We use inelastic neutron scattering to study acoustic phonons and spin excitations in single crystals of NaFeAs, a parent compound of iron-pnictide superconductors. NaFeAs exhibits a tetragonal-to-orthorhombic structural transition at T_{s}≈58 K and a collinear antiferromagnetic order at T_{N}≈45 K. While longitudinal and out-of-plane transverse acoustic phonons behave as expected, the in-plane transverse acoustic phonons reveal considerable softening on cooling to T_{s} and then harden on approaching T_{N} before saturating below T_{N}. In addition, we find that spin-spin correlation lengths of low-energy magnetic excitations within the FeAs layer and along the c axis increase dramatically below T_{s} and show a weak anomaly across T_{N}. These results suggest that the electronic nematic phase present in the paramagnetic tetragonal phase is closely associated with dynamic spin-lattice coupling, possibly arising from the one-phonon–two-magnon mechanism.
Spin dynamics and exchange interactions in CuO measured by neutron scattering
Jacobsen, H.; Gaw, S. M.; Princep, A. J.; Hamilton, E.; Tóth, S.; Ewings, R. A.; Enderle, M.; Wheeler, E. M. Hétroy; Prabhakaran, D.; Boothroyd, A. T.
2018-04-01
The magnetic properties of CuO encompass several contemporary themes in condensed-matter physics, including quantum magnetism, magnetic frustration, magnetically-induced ferroelectricity, and orbital currents. Here we report polarized and unpolarized neutron inelastic scattering measurements which provide a comprehensive map of the cooperative spin dynamics in the low-temperature antiferromagnetic (AFM) phase of CuO throughout much of the Brillouin zone. At high energies (E ≳100 meV ), the spectrum displays continuum features consistent with the des Cloizeax-Pearson dispersion for an ideal S =1/2 Heisenberg AFM chain. At lower energies, the spectrum becomes more three dimensional, and we find that a linear spin-wave model for a Heisenberg AFM provides a very good description of the data, allowing for an accurate determination of the relevant exchange constants in an effective spin Hamiltonian for CuO. In the high-temperature helicoidal phase, there are features in the measured low-energy spectrum that we could not reproduce with a spin-only model. We discuss how these might be associated with the magnetically-induced multiferroic behavior observed in this phase.
NASA-VOF2D, 2-D Transient Free Surface Incompressible Fluid Dynamic
International Nuclear Information System (INIS)
Torrey, M.D.
1988-01-01
1 - Description of program or function: NASA-VOF2D is a two- dimensional, transient, free surface incompressible fluid dynamics program. It allows multiple free surfaces with surface tension and wall adhesion forces and has a partial cell treatment which allows curved boundaries and interior obstacles. 2 - Method of solution: NASA-VOF2D simulates incompressible flows with free surfaces using the volume-of-fluid (VOF) algorithm. This technique is based on the use of donor-acceptor differencing to track the free surface across an Eulerian grid. The complete Navier-Stokes equations in primitive variables for an incompressible fluid are solved by finite differences with surface tension and wall adhesion included. Optionally the pressure equation can be solved by a conjugate residual method rather than the successive over-relaxation (SOR) method
Role of the noise on the transient dynamics of an ecosystem of interacting species
Spagnolo, B.; La Barbera, A.
2002-11-01
We analyze the transient dynamics of an ecosystem described by generalized Lotka-Volterra equations in the presence of a multiplicative noise and a random interaction parameter between the species. We consider specifically three cases: (i) two competing species, (ii) three interacting species (one predator-two preys), (iii) n-interacting species. The interaction parameter in case (i) is a stochastic process which obeys a stochastic differential equation. We find noise delayed extinction of one of two species, which is akin to the noise-enhanced stability phenomenon. Other two noise-induced effects found are temporal oscillations and spatial patterns of the two competing species. In case (ii) the noise induces correlated spatial patterns of the predator and of the two preys concentrations. Finally, in case (iii) we find the asymptotic behavior of the time average of the ith population when the ecosystem is composed of a great number of interacting species.
Acoustics and voiding dynamics during SLSF simulations of LMFBR undercooling transients
International Nuclear Information System (INIS)
Anderson, T.T.; Kuzay, T.M.; Marr, W.W.; Miles, K.J.; Pedersen, D.R.; Thompson, D.H.; Wilson, R.E.
1978-01-01
The SLSF is the largest U.S. in-reactor test vehicle for steady-state and transient experiments in an environment typical of a LMFBR core. The SLSF experiment program, sponsored by the Department of Energy, contributes to the LMFBR safety assurance program by providing data on key phenomena that occur during postulated reactor accidents. This paper describes completed SLSF experiments, in-core instrumentation used, and methods of data interpretation to determine sodium boiling and voiding dynamics. Boiling inception is shown to be identifiable from several types of in-core instruments. Location of the boiling front and void growth derived from experimental data are compared with analytical predictions. These and other data form the basis to improve understanding of accidents and to validate or guide the development of accident analysis methods
Energy Technology Data Exchange (ETDEWEB)
Sjenitzer, Bart L.; Hoogenboom, J. Eduard, E-mail: B.L.Sjenitzer@TUDelft.nl, E-mail: J.E.Hoogenboom@TUDelft.nl [Delft University of Technology (Netherlands)
2011-07-01
A new Dynamic Monte Carlo method is implemented in the general purpose Monte Carlo code Tripoli 4.6.1. With this new method incorporated, a general purpose code can be used for safety transient analysis, such as the movement of a control rod or in an accident scenario. To make the Tripoli code ready for calculating on dynamic systems, the Tripoli scheme had to be altered to incorporate time steps, to include the simulation of delayed neutron precursors and to simulate prompt neutron chains. The modified Tripoli code is tested on two sample cases, a steady-state system and a subcritical system and the resulting neutron fluxes behave just as expected. The steady-state calculation has a constant neutron flux over time and this result shows the stability of the calculation. The neutron flux stays constant with acceptable variance. This also shows that the starting conditions are determined correctly. The sub-critical case shows that the code can also handle dynamic systems with a varying neutron flux. (author)
International Nuclear Information System (INIS)
Sjenitzer, Bart L.; Hoogenboom, J. Eduard
2011-01-01
A new Dynamic Monte Carlo method is implemented in the general purpose Monte Carlo code Tripoli 4.6.1. With this new method incorporated, a general purpose code can be used for safety transient analysis, such as the movement of a control rod or in an accident scenario. To make the Tripoli code ready for calculating on dynamic systems, the Tripoli scheme had to be altered to incorporate time steps, to include the simulation of delayed neutron precursors and to simulate prompt neutron chains. The modified Tripoli code is tested on two sample cases, a steady-state system and a subcritical system and the resulting neutron fluxes behave just as expected. The steady-state calculation has a constant neutron flux over time and this result shows the stability of the calculation. The neutron flux stays constant with acceptable variance. This also shows that the starting conditions are determined correctly. The sub-critical case shows that the code can also handle dynamic systems with a varying neutron flux. (author)
Ogunsua, Babalola
2018-04-01
In this study, the values of chaoticity and dynamical complexity parameters for some selected storm periods in the year 2011 and 2012 have been computed. This was done using detrended TEC data sets measured from Birnin-Kebbi, Torro and Enugu global positioning system (GPS) receiver stations in Nigeria. It was observed that the significance of difference (SD) values were mostly greater than 1.96 but surprisingly lower than 1.96 in September 29, 2011. The values of the computed SD were also found to be reduced in most cases just after the geomagnetic storm with immediate recovery a day after the main phase of the storm while the values of Lyapunov exponent and Tsallis entropy remains reduced due to the influence of geomagnetic storms. It was also observed that the value of Lyapunov exponent and Tsallis entropy reveals similar variation pattern during storm period in most cases. Also recorded surprisingly were lower values of these dynamical quantifiers during the solar flare event of August 8th and 9th of the year 2011. The possible mechanisms responsible for these observations were further discussed in this work. However, our observations show that the ionospheric effects of some other possible transient events other than geomagnetic storms can also be revealed by the variation of chaoticity and dynamical complexity.
Directory of Open Access Journals (Sweden)
Vesa J Kiviniemi
2009-07-01
Full Text Available Temporal blood oxygen level dependent (BOLD contrast signals in functional MRI during rest may be characterized by power spectral distribution (PSD trends of the form 1/f α. Trends with 1/f characteristics comprise fractal properties with repeating oscillation patterns in multiple time scales. Estimates of the fractal properties enable the quantification of phenomena that may otherwise be difficult to measure, such as transient, non-linear changes. In this study it was hypothesized that the fractal metrics of 1/f BOLD signal trends can map changes related to dynamic, multi-scale alterations in cerebral blood flow (CBF after a transient hyperventilation challenge. Twenty-three normal adults were imaged in a resting-state before and after hyperventilation. Different variables (1/f trend constant α, fractal dimension Df, and, Hurst exponent H characterizing the trends were measured from BOLD signals. The results show that fractal metrics of the BOLD signal follow the fractional Gaussian noise model, even during the dynamic CBF change that follows hyperventilation. The most dominant effect on the fractal metrics was detected in grey matter, in line with previous hyperventilation vaso-reactivity studies. The α was able to differentiate also blood vessels from grey matter changes. Df was most sensitive to grey matter. H correlated with default mode network areas before hyperventilation but this pattern vanished after hyperventilation due to a global increase in H. In the future, resting-state fMRI combined with fractal metrics of the BOLD signal may be used for analyzing multi-scale alterations of cerebral blood flow.
Kiviniemi, Vesa; Remes, Jukka; Starck, Tuomo; Nikkinen, Juha; Haapea, Marianne; Silven, Olli; Tervonen, Osmo
2009-01-01
Temporal blood oxygen level dependent (BOLD) contrast signals in functional MRI during rest may be characterized by power spectral distribution (PSD) trends of the form 1/f(alpha). Trends with 1/f characteristics comprise fractal properties with repeating oscillation patterns in multiple time scales. Estimates of the fractal properties enable the quantification of phenomena that may otherwise be difficult to measure, such as transient, non-linear changes. In this study it was hypothesized that the fractal metrics of 1/f BOLD signal trends can map changes related to dynamic, multi-scale alterations in cerebral blood flow (CBF) after a transient hyperventilation challenge. Twenty-three normal adults were imaged in a resting-state before and after hyperventilation. Different variables (1/f trend constant alpha, fractal dimension D(f), and, Hurst exponent H) characterizing the trends were measured from BOLD signals. The results show that fractal metrics of the BOLD signal follow the fractional Gaussian noise model, even during the dynamic CBF change that follows hyperventilation. The most dominant effect on the fractal metrics was detected in grey matter, in line with previous hyperventilation vaso-reactivity studies. The alpha was able to differentiate also blood vessels from grey matter changes. D(f) was most sensitive to grey matter. H correlated with default mode network areas before hyperventilation but this pattern vanished after hyperventilation due to a global increase in H. In the future, resting-state fMRI combined with fractal metrics of the BOLD signal may be used for analyzing multi-scale alterations of cerebral blood flow.
Numerical Investigations of Post-Newtonian Hamiltonian Dynamics for Spinning Compact Binaries
Zhong, S. Y.
2012-03-01
Spinning compact binaries, consisting of neutron stars or black holes, not only have rich dynamic phenomena of resonance and chaos, but also are the most promising source for detecting gravitational waves. There should be a certain relation between the dynamics of the gravitational bodies and the gravitational waveforms. Based on the least-squares correction, several manifold correction schemes like the single-scaling method and the dual-scaling method are designed to suppress numerical errors from 6 integrals of motion in a conservative post-Newtonian (PN) Hamiltonian of spinning compact binaries. Taking a fifth order Runge-Kutta algorithm as a basic integrator, we wonder whether the PN contributions, the spin effects, and the classification of orbits exert some influences on these correction schemes and the Nacozy's approach. It is found that they are almost the same in correcting the integrals for the pure Kepler problem. Once the third-order PN contributions are added to the pure orbital part, there are explicit differences of correction effectiveness among these methods. As an interesting case, the efficiency of correction is better for chaotic eccentric orbits than for quasicircular regular ones. In all cases tested, the new momentum-position dual-scaling scheme does always have the optimal performance. It costs a little but not much expensive additional computational cost when the spin effects exist, and several time-saving techniques are used. The corrected numerical results are more accurate than the uncorrected ones, so that chaos from the numerical errors can be avoided. See Phys. Rev. D 81, 104037 (2010) for more details. Lubich et al. (Phys. Rev. D 81, 104025 (2010)) presented a noncanonically symplectic integrator for the PN Hamiltonian of a spinning compact binary. However, the Euler mixed integrator is problematic because of its bad numerical stability.We improved the work by constructing the second-order and the fourth-order fixed symplectic
Arosio, Paolo; Corti, Maurizio; Mariani, Manuel; Orsini, Francesco; Bogani, Lapo; Caneschi, Andrea; Lago, Jorge; Lascialfari, Alessandro
2015-05-01
The spin dynamics of the molecular magnetic chain [Dy(hfac)3{NIT(C6H4OPh)}] were investigated by means of the Muon Spin Relaxation (μ+SR) technique. This system consists of a magnetic lattice of alternating Dy(III) ions and radical spins, and exhibits single-chain-magnet behavior. The magnetic properties of [Dy(hfac)3{NIT(C6H4OPh)}] have been studied by measuring the magnetization vs. temperature at different applied magnetic fields (H = 5, 3500, and 16500 Oe) and by performing μ+SR experiments vs. temperature in zero field and in a longitudinal applied magnetic field H = 3500 Oe. The muon asymmetry P(t) was fitted by the sum of three components, two stretched-exponential decays with fast and intermediate relaxation times, and a third slow exponential decay. The temperature dependence of the spin dynamics has been determined by analyzing the muon longitudinal relaxation rate λinterm(T), associated with the intermediate relaxing component. The experimental λinterm(T) data were fitted with a corrected phenomenological Bloembergen-Purcell-Pound law by using a distribution of thermally activated correlation times, which average to τ = τ0 exp(Δ/kBT), corresponding to a distribution of energy barriers Δ. The correlation times can be associated with the spin freezing that occurs when the system condenses in the ground state.
International Nuclear Information System (INIS)
Arosio, Paolo; Orsini, Francesco; Corti, Maurizio; Mariani, Manuel; Bogani, Lapo; Caneschi, Andrea; Lago, Jorge; Lascialfari, Alessandro
2015-01-01
The spin dynamics of the molecular magnetic chain [Dy(hfac) 3 (NIT(C 6 H 4 OPh))] were investigated by means of the Muon Spin Relaxation (μ + SR) technique. This system consists of a magnetic lattice of alternating Dy(III) ions and radical spins, and exhibits single-chain-magnet behavior. The magnetic properties of [Dy(hfac) 3 (NIT(C 6 H 4 OPh))] have been studied by measuring the magnetization vs. temperature at different applied magnetic fields (H = 5, 3500, and 16500 Oe) and by performing μ + SR experiments vs. temperature in zero field and in a longitudinal applied magnetic field H = 3500 Oe. The muon asymmetry P(t) was fitted by the sum of three components, two stretched-exponential decays with fast and intermediate relaxation times, and a third slow exponential decay. The temperature dependence of the spin dynamics has been determined by analyzing the muon longitudinal relaxation rate λ interm (T), associated with the intermediate relaxing component. The experimental λ interm (T) data were fitted with a corrected phenomenological Bloembergen-Purcell-Pound law by using a distribution of thermally activated correlation times, which average to τ = τ 0 exp(Δ/k B T), corresponding to a distribution of energy barriers Δ. The correlation times can be associated with the spin freezing that occurs when the system condenses in the ground state
Kinematical and dynamical aspects of higher-spin bound-state equations in holographic QCD
Energy Technology Data Exchange (ETDEWEB)
de Téramond, Guy F.; Dosch, Hans Günter; Brodsky, Stanley J.
2013-04-01
In this paper we derive holographic wave equations for hadrons with arbitrary spin starting from an effective action in a higher-dimensional space asymptotic to anti–de Sitter (AdS) space. Our procedure takes advantage of the local tangent frame, and it applies to all spins, including half-integer spins. An essential element is the mapping of the higher-dimensional equations of motion to the light-front Hamiltonian, thus allowing a clear distinction between the kinematical and dynamical aspects of the holographic approach to hadron physics. Accordingly, the nontrivial geometry of pure AdS space encodes the kinematics, and the additional deformations of AdS space encode the dynamics, including confinement. It thus becomes possible to identify the features of holographic QCD, which are independent of the specific mechanisms of conformal symmetry breaking. In particular, we account for some aspects of the striking similarities and differences observed in the systematics of the meson and baryon spectra.
Contrast-enhanced dynamic MR imaging of parasellar tumor using fast spin-echo sequence
International Nuclear Information System (INIS)
Kusunoki, Katsusuke; Ohue, Shiro; Ichikawa, Haruhisa; Saito, Masahiro; Sadamoto, Kazuhiko; Sakaki, Saburo; Miki, Hitoshi.
1995-01-01
We have applied a new dynamic MRI technique that uses a fast spin-echo sequence to parasellar tumors. This sequence has less susceptible effect and better spatial resolution than a gradient echo sequence, providing faster images than a short spin-echo sequence does. Image was obtained in the coronal or sagittal plane using a 1.5T clinical MRI system, and then, dynamic MR images were acquired every 10 to 20 sec after administration of Gd-DTPA (0.1 mmol/kg). The subjects were 12 patients (5 microadenomas, 5 macroadenomas and 2 Rathke's cleft cysts) and 5 normal volunteers. As for volunteers, the cavernous sinus, pituitary stalk and posterior pituitary gland were contrasted on the first image, followed by visualization of the proximal portion adjacent to the junction of the infundibulum and the anterior pituitary gland, and finally by contrasting the distal portion of the anterior pituitary gland. There was a difference with respect to tumor contrast between microadenomas and macroadenomas. In the case of the macroadenomas, the tumor was contrasted at the same time as, or faster than the anterior pituitary gland, while with the microadenomas the tumor was enhanced later than the anterior pituitary gland. No enhancement with contrast medium was seen in Rathke's cleft cysts. In addition, it was possible to differentiate a recurrent tumor from a piece of muscle placed at surgery since the images obtained by the fast spin-echo sequence were clearer than those obtained by gradient echo sequence. (author)
Zeisner, J.; Brockmann, M.; Zimmermann, S.; Weiße, A.; Thede, M.; Ressouche, E.; Povarov, K. Yu.; Zheludev, A.; Klümper, A.; Büchner, B.; Kataev, V.; Göhmann, F.
2017-07-01
We compare theoretical results for electron spin resonance (ESR) properties of the Heisenberg-Ising Hamiltonian with ESR experiments on the quasi-one-dimensional magnet Cu (py) 2Br2 (CPB). Our measurements were performed over a wide frequency and temperature range giving insight into the spin dynamics, spin structure, and magnetic anisotropy of this compound. By analyzing the angular dependence of ESR parameters (resonance shift and linewidth) at room temperature, we show that the two weakly coupled inequivalent spin-chain types inside the compound are well described by Heisenberg-Ising chains with their magnetic anisotropy axes perpendicular to the chain direction and almost perpendicular to each other. We further determine the full g tensor from these data. In addition, the angular dependence of the linewidth at high temperatures gives us access to the exponent of the algebraic decay of a dynamical correlation function of the isotropic Heisenberg chain. From the temperature dependence of static susceptibilities, we extract the strength of the exchange coupling (J /kB=52.0 K ) and the anisotropy parameter (δ ≈-0.02 ) of the model Hamiltonian. An independent compatible value of δ is obtained by comparing the exact prediction for the resonance shift at low temperatures with high-frequency ESR data recorded at 4 K . The spin structure in the ordered state implied by the two (almost) perpendicular anisotropy axes is in accordance with the propagation vector determined from neutron scattering experiments. In addition to undoped samples, we study the impact of partial substitution of Br by Cl ions on spin dynamics. From the dependence of the ESR linewidth on the doping level, we infer an effective decoupling of the anisotropic component J δ from the isotropic exchange J in these systems.
Coherent Dynamics of a Hybrid Quantum Spin-Mechanical Oscillator System
Lee, Kenneth William, III
previous demonstrations of a strain-mediated spin-mechanical interface and hence the system is largely uncharacterized. Second, fabricating high quality diamond mechanical oscillators is difficult due to the robust and chemically inert nature of diamond. Finally, engineering highly coherent NV centers with a coherent optical interface in nanostructured diamond remains an outstanding challenge. In this thesis, we theoretically and experimentally address each of these challenges, and show that with future improvements, this device is suitable for future quantum-enabled applications. First, we theoretically and experimentally demonstrate a dynamic, strain-mediated coupling between the spin and orbital degrees of freedom of the NV center and the driven mechanical motion of a single-crystal diamond cantilever. We employ Ramsey interferometry to demonstrate coherent, mechanical driving of the NV spin evolution. Using this interferometry technique, we present the first demonstration of nanoscale strain imaging, and quantitatively characterize the previously unknown spin-strain coupling constants. Next, we use the driven motion of the cantilever to perform deterministic control of the frequency and polarization dependence of the optical transitions of the NV center. Importantly, this experiment constitutes the first demonstration of on-chip control of both the frequency and polarization state of a single photon produced by a quantum emitter. In the final experiment, we use mechanical driving to engineer a series of spin ``clock" states and demonstrate a significant increase in the spin coherence time of the NV center. We conclude this thesis with a theoretical discussion of prospective applications for this device, including generation of non-classical mechanical states and spin-spin entanglement, as well as an evaluation of the current limitations of our devices, including a possible avenues for improvement to reach the regime of strong spin-phonon coupling.
Dynamical correlation functions of the quadratic coupling spin-Boson model
Zheng, Da-Chuan; Tong, Ning-Hua
2017-06-01
The spin-boson model with quadratic coupling is studied using the bosonic numerical renormalization group method. We focus on the dynamical auto-correlation functions {C}O(ω ), with the operator \\hat{O} taken as {\\hat{{{σ }}}}x, {\\hat{{{σ }}}}z, and \\hat{X}, respectively. In the weak-coupling regime α qualitatively, showing enhanced dephasing at the spin flip point. Project supported by the National Key Basic Research Program of China (Grant No. 2012CB921704), the National Natural Science Foundation of China (Grant No. 11374362), the Fundamental Research Funds for the Central Universities, China, and the Research Funds of Renmin University of China (Grant No. 15XNLQ03).
NMR magnetization exchange dynamics for three spin-1/2 systems
International Nuclear Information System (INIS)
Demco, D.E.; Filip, X.; Filip, C.
1997-01-01
The magnetization exchange dynamics in one-dimensional NMR exchange experiments performed with static samples is analyzed for the relevant case of three spin systems. The magnetization decays recorded in the experiments performed with different chemical shift filters for the short mixing times are derived analytically. In this regime the decay rates depend on the dipolar coupling between the spins belonging to different functional groups. The predictions of the theoretical model are compared with the magnetization exchange data obtained for cross-linked poly(styrene-co-butadiene) samples. The residual dipolar coupling between the functional CH- and CH2-groups of butadiene are measured from the magnetization exchange experiments in the short mixing time regime. (authors)
Collective spin correlations and entangled state dynamics in coupled quantum dots
Maslova, N. S.; Arseyev, P. I.; Mantsevich, V. N.
2018-02-01
Here we demonstrate that the dynamics of few-electron states in a correlated quantum-dot system coupled to an electronic reservoir is governed by the symmetry properties of the total system leading to the collective behavior of all the electrons. Time evolution of two-electron states in a correlated double quantum dot after coupling to the reservoir has been analyzed by means of kinetic equations for pseudoparticle occupation numbers with constraint on possible physical states. It was revealed that the absolute value of the spin correlation function and the degree of entanglement for two-electron states could considerably increase after coupling to the reservoir. The obtained results demonstrate the possibility of a controllable tuning of both the spin correlation function and the concurrence value in a coupled quantum-dot system by changing of the gate voltage applied to the barrier separating the dots.
Spin dynamics and implications for superconductivity. Some problems with the d-wave scenario
International Nuclear Information System (INIS)
Levin, K.; Zha, Y.; Radtke, R.J.; Si, Q.; Norman, M.R.; Schuettler, H.B.
1994-01-01
We review the spin dynamics of the normal state of the cuprates with special emphasis on neutron data in both the YBa 2 Cu 3 O 7-δ and La 2-x Sr x CuO 4 systems. When realistic models of the Fermi surface shapes are incorporated, along with a moderate degree of spin fluctuations, we find good semiquantitative agreement with experiment for both cuprates. Building on the success of this Fermi-liquid-based scheme, we explore the implications for d-wave pairing from a number of vantage points. We conclude that our present experimental and theoretical understanding is inadequate to confirm or refute the d-wave scenario. 26 refs., 6 figs
Dynamical systems with classical spin in the Einstein-Maxwell-Cartan theory
International Nuclear Information System (INIS)
Amorin, R.M. de.
1984-01-01
By using variational precedures, spinning charged particles and fluids, with magnetic dipole moment, are analysed. Electromagnetic and gravitational interactions are also dynamically considered. A relativistic formalism which describes the space-time as a Riemann-Cartan manifold caraccterized by curvature and torsion tensors was adopted. The specific features of the Einstein-Maxell-Cartan theory have been analised in detail for the considered models. Also the holonomy of the local Lorentz Frames and constraints has been studied, and as a consequence it has been possible to generate new equations of motion for particles with spin. It has also been possible to derive the complete differential system which includes the fluid, the electromagnetic, the curvature and the torsion fields. (author) [pt
Inhomogeneous quasi-adiabatic driving of quantum critical dynamics in weakly disordered spin chains
International Nuclear Information System (INIS)
Rams, Marek M; Mohseni, Masoud; Campo, Adolfo del
2016-01-01
We introduce an inhomogeneous protocol to drive a weakly disordered quantum spin chain quasi-adiabatically across a quantum phase transition and minimize the residual energy of the final state. The number of spins that simultaneously reach the critical point is controlled by the length scale in which the magnetic field is modulated, introducing an effective size that favors adiabatic dynamics. The dependence of the residual energy on this length scale and the velocity at which the magnetic field sweeps out the chain is shown to be nonmonotonic. We determine the conditions for an optimal suppression of the residual energy of the final state and show that inhomogeneous driving can outperform conventional adiabatic schemes based on homogeneous control fields by several orders of magnitude. (paper)
Energy Technology Data Exchange (ETDEWEB)
Keskin, Mustafa [Department of Physics, Erciyes University, 38039 Kayseri (Turkey)], E-mail: keskin@erciyes.edu.tr; Canko, Osman [Department of Physics, Erciyes University, 38039 Kayseri (Turkey); Kantar, Ersin [Institute of Science, Erciyes University, 38039 Kayseri (Turkey)
2009-06-15
We present a study, within a mean-field approximation, of the dynamics of a spin-1 metamagnetic Ising system with bilinear and biquadratic interactions in the presence of a time-dependent oscillating external magnetic field. First, we employ the Glauber transition rates to construct the set of mean-field dynamic equations. Then, we study the time variation of the average order parameters to find the phases in the system. We also investigate the thermal behavior of dynamic order parameters to characterize the nature (first- or second-order) of the dynamic transitions. The dynamic phase transitions are obtained and the phase diagrams are constructed in two different the planes. The phase diagrams contain a disordered and ordered phases, and four different mixed phases that strongly depend on interaction parameters. Phase diagrams also display one or two dynamic tricritical points, a dynamic double critical end and dynamic quadruple points. A comparison is made with the results of the other metamagnetic Ising systems.
International Nuclear Information System (INIS)
Keskin, Mustafa; Canko, Osman; Kantar, Ersin
2009-01-01
We present a study, within a mean-field approximation, of the dynamics of a spin-1 metamagnetic Ising system with bilinear and biquadratic interactions in the presence of a time-dependent oscillating external magnetic field. First, we employ the Glauber transition rates to construct the set of mean-field dynamic equations. Then, we study the time variation of the average order parameters to find the phases in the system. We also investigate the thermal behavior of dynamic order parameters to characterize the nature (first- or second-order) of the dynamic transitions. The dynamic phase transitions are obtained and the phase diagrams are constructed in two different the planes. The phase diagrams contain a disordered and ordered phases, and four different mixed phases that strongly depend on interaction parameters. Phase diagrams also display one or two dynamic tricritical points, a dynamic double critical end and dynamic quadruple points. A comparison is made with the results of the other metamagnetic Ising systems.
Near-membrane dynamics and capture of TRPM8 channels within transient confinement domains.
Directory of Open Access Journals (Sweden)
Luis A Veliz
Full Text Available BACKGROUND: The cold and menthol receptor, TRPM8, is a non-selective cation channel expressed in a subset of peripheral neurons that is responsible for neuronal detection of environmental cold stimuli. It was previously shown that members of the transient receptor potential (TRP family of ion channels are translocated toward the plasma membrane (PM in response to agonist stimulation. Because the spatial and temporal dynamics of cold receptor cell-surface residence may determine neuronal activity, we hypothesized that the movement of TRPM8 to and from the PM might be a regulated process. Single particle tracking (SPT is a useful tool for probing the organization and dynamics of protein constituents in the plasma membrane. METHODOLOGY/PRINCIPAL FINDINGS: We used SPT to study the receptor dynamics and describe membrane/near-membrane behavior of particles containing TRPM8-EGFP in transfected HEK-293T and F-11 cells. Cells were imaged using total internal reflection fluorescence (TIRF microscopy and the 2D and 3D trajectories of TRPM8 molecules were calculated by analyzing mean-square particle displacement against time. Four characteristic types of motion were observed: stationary mode, simple Brownian diffusion, directed motion, and confined diffusion. In the absence of cold or menthol to activate the channel, most TRPM8 particles move in network covering the PM, periodically lingering for 2-8 s in confined microdomains of about 800 nm radius. Removing cholesterol with methyl-beta-cyclodextrin (MβCD stabilizes TRPM8 motion in the PM and is correlated with larger TRPM8 current amplitude that results from an increase in the number of available channels without a change in open probability. CONCLUSIONS/SIGNIFICANCE: These results reveal a novel mechanism for regulating TRPM8 channel activity, and suggest that PM dynamics may play an important role in controlling electrical activity in cold-sensitive neurons.
Dynamical spin susceptibility in the TD-LDA and QSGW approximations
Energy Technology Data Exchange (ETDEWEB)
Schilfgaarde, Mark Van [Arizona State Univ., Mesa, AZ (United States); Kotani, Takao [Arizona State Univ., Mesa, AZ (United States)
2012-10-15
Abstract. This project was aimed at building the transverse dynamical spin susceptibility with the TD-LDA and the recently-developed Quasparticle Self-Consisent Approximations, which determines an optimum quasiparticle picture in a self-consistent manner within the GW approximation. Our main results were published into two papers, (J. Phys. Cond. Matt. 20, 95214 (2008), and Phys. Rev. B83, 060404(R) (2011). In the first paper we present spin wave dispersions for MnO, NiO, and -MnAs based on quasiparticle self-consistent GW approximation (QSGW). For MnO and NiO, QSGW results are in rather good agreement with experiments, in contrast to the LDA and LDA+U descriptions. For -MnAs, we find a collinear ferromagnetic ground state in QSGW, while this phase is unstable in the LDA. In the second, we apply TD-LDA to the CaFeAs_{2} the first attempt the first ab initio calculation of dynamical susceptibililty in a system with complex electronic structure Magnetic excitations in the striped phase of CaFe_{2}As_{2} are studied as a function of local moment amplitude. We find a new kind of excitation: sharp resonances of Stoner-like (itinerant) excitations at energies comparable to the ´eel temperature, originating largely from a narrow band of Fe d states near the Fermi level, and coexisting with more conventional (localized) spin waves. Both kinds of excitations can show multiple branches, highlighting the inadequacy of a description based on a localized spin model.
Ryczkowski, P.; Närhi, M.; Billet, C.; Merolla, J.-M.; Genty, G.; Dudley, J. M.
2018-04-01
Dissipative solitons are remarkably localized states of a physical system that arise from the dynamical balance between nonlinearity, dispersion and environmental energy exchange. They are the most universal form of soliton that can exist, and are seen in far-from-equilibrium systems in many fields, including chemistry, biology and physics. There has been particular interest in studying their properties in mode-locked lasers, but experiments have been limited by the inability to track the dynamical soliton evolution in real time. Here, we use simultaneous dispersive Fourier transform and time-lens measurements to completely characterize the spectral and temporal evolution of ultrashort dissipative solitons as their dynamics pass through a transient unstable regime with complex break-up and collisions before stabilization. Further insight is obtained from reconstruction of the soliton amplitude and phase and calculation of the corresponding complex-valued eigenvalue spectrum. These findings show how real-time measurements provide new insights into ultrafast transient dynamics in optics.
Directory of Open Access Journals (Sweden)
Yuyuan Zhang
2016-11-01
Full Text Available Melamine may have been an important prebiotic information carrier, but its excited-state dynamics, which determine its stability under UV radiation, have never been characterized. The ability of melamine to withstand the strong UV radiation present on the surface of the early Earth is likely to have affected its abundance in the primordial soup. Here, we studied the excited-state dynamics of melamine (a proto-nucleobase and its lysine derivative (a proto-nucleoside using the transient absorption technique with a UV pump, and UV and infrared probe pulses. For melamine, the excited-state population decays by internal conversion with a lifetime of 13 ps without coupling significantly to any photochemical channels. The excited-state lifetime of the lysine derivative is slightly longer (18 ps, but the dominant deactivation pathway is otherwise the same as for melamine. In both cases, the vast majority of excited molecules return to the electronic ground state on the aforementioned time scales, but a minor population is trapped in a long-lived triplet state.
Transient Dynamic Response of Delaminated Composite Rotating Shallow Shells Subjected to Impact
Directory of Open Access Journals (Sweden)
Amit Karmakar
2006-01-01
Full Text Available In this paper a transient dynamic finite element analysis is presented to study the response of delaminated composite pretwisted rotating shallow shells subjected to low velocity normal impact. Lagrange's equation of motion is used to derive the dynamic equilibrium equation and moderate rotational speeds are considered wherein the Coriolis effect is negligible. An eight noded isoparametric plate bending element is employed in the finite element formulation incorporating rotary inertia and effects of transverse shear deformation based on Mindlin's theory. To satisfy the compatibility of deformation and equilibrium of resultant forces and moments at the delamination crack front a multipoint constraint algorithm is incorporated which leads to unsymmetric stiffness matrices. The modified Hertzian contact law which accounts for permanent indentation is utilized to compute the contact force, and the time dependent equations are solved by Newmark's time integration algorithm. Parametric studies are performed in respect of location of delamination, angle of twist and rotational speed for centrally impacted graphite-epoxy composite cylindrical shells.
Mihailescu, M; Endo, H; Allgaier, J; Gompper, G; Stellbrink, J; Richter, D; Jakobs, B; Sottmann, T; Faragó, B
2002-01-01
Using neutron spin-echo (NSE) spectroscopy in combination with dynamic light scattering (DLS), we performed an extensive investigation of the bicontinuous phase in ternary water-surfactant-oil microemulsions, with extension to lamellar and droplet phases. The dynamical behavior of surfactant monolayers of decyl-polyglycol-ether (C sub 1 sub 0 E sub 4) molecules, or mixtures of surfactant with long amphiphilic block-copolymers of type poly-ethylene propylene/poly-ethylene oxide (PEP-PEO) was studied, under comparable conditions. The investigation techniques provide access to different length scales relative to the characteristic periodicity length of the microemulsion structure. Information on the elastic bending modulus is obtained from the local scale dynamics in view of existing theoretical descriptions and is found to be in accordance with small angle neutron scattering (SANS) studies. Evidence for the modified elastic properties and additional interaction of the amphiphilic layers due to the polymer is mo...
International Nuclear Information System (INIS)
Ammann, W.
1983-01-01
After a short introduction of the theory of dynamic plasticity, the possible applications of this theory on reinforced concrete structures under transient loading are discussed. Estimates can be obtained by relations giving lower and upper limits for dynamically loaded supporting beams. A procedure similar for the mode approximation method is described for the calculation of beams after a sudden failure of a support. (orig.) [de
Tian, J R; Shubayev, I; Demer, J L
2001-03-01
The vestibulo-ocular reflex (VOR) stabilizes gaze to permit clear vision during head movements. It has been supposed that VOR function might be inferred from dynamic visual acuity (DVA), the acuity during imposed head motion. We sought to determine effectiveness of DVA for detection and lateralization of unilateral vestibulopathy, using rigorous psychophysical methods. Seventeen normal and 11 unilaterally vestibulopathic subjects underwent measurement of optically best corrected DVA during head motion. A variable size letter "E" 6 m distant was displayed in oblique random orientations to determine binocular DVA by a computer controlled, forced choice method. Three types of whole-body yaw rotation were delivered by a servo-controlled chair synchronized with optotype presentation. Two types of motion were predictable: (1) steady-state 2.0-Hz rotation at 10-130 degrees/s peak velocity with repetitive optotype presentation only during head velocity exceeding 80% of peak; and (2) directionally predictable transients at peak accelerations of 1000, 1600 and 2800 degrees/s2 with optotype presentation for 300 ms. For neither of these predictable motions did DVA in vestibulopathic subjects significantly differ from normal, with suggestions from search coil recordings that this was due to predictive slow and saccadic eye movements. Unilaterally vestibulopathic subjects experienced a significant decrease in DVA from the static condition during ipsilesional rotation for all three peak head accelerations. Only during directionally unpredictable transients with 75 ms or 300 ms optotype presentation was the sensitivity of DVA in unilaterally vestibulopathic subjects significantly abnormal during ipsilesional rotation. The ipsilesional decrease in DVA with head motion was greater for 75 ms than 300 ms optotype presentation. Search coil recordings confirmed hypometric compensatory eye movements during DVA testing with unpredictable, ipsilesional rotation. Receiver
International Nuclear Information System (INIS)
Ertas, Mehmet; Keskin, Mustafa; Deviren, Bayram
2010-01-01
The dynamic phase transitions are studied in the spin-2 Ising model under a time-dependent oscillating magnetic field by using the effective-field theory with correlations. The effective-field dynamic equation is derived by employing the Glauber transition rates and the phases in the system are obtained by solving this dynamic equation. The nature (first- or second-order) of the dynamic phase transition is characterized by investigating the thermal behavior of the dynamic order parameter and the dynamic phase transition temperatures are obtained. The dynamic phase diagrams are presented in (T/zJ, h/zJ) plane.
Waiting time distribution revealing the internal spin dynamics in a double quantum dot
Ptaszyński, Krzysztof
2017-07-01
Waiting time distribution and the zero-frequency full counting statistics of unidirectional electron transport through a double quantum dot molecule attached to spin-polarized leads are analyzed using the quantum master equation. The waiting time distribution exhibits a nontrivial dependence on the value of the exchange coupling between the dots and the gradient of the applied magnetic field, which reveals the oscillations between the spin states of the molecule. The zero-frequency full counting statistics, on the other hand, is independent of the aforementioned quantities, thus giving no insight into the internal dynamics. The fact that the waiting time distribution and the zero-frequency full counting statistics give a nonequivalent information is associated with two factors. Firstly, it can be explained by the sensitivity to different timescales of the dynamics of the system. Secondly, it is associated with the presence of the correlation between subsequent waiting times, which makes the renewal theory, relating the full counting statistics and the waiting time distribution, no longer applicable. The study highlights the particular usefulness of the waiting time distribution for the analysis of the internal dynamics of mesoscopic systems.
Liang, Feng; Yang, Xiao-Dong; Zhang, Wei; Qian, Ying-Jing
2018-03-01
In this paper, a dynamical model of simply-supported spinning pipes conveying fluid with axial deployment is proposed and the transverse free vibration and stability for such a doubly gyroscopic system involving time-dependent parameters are investigated. The partial differential equations of motion are derived by the extended Hamilton principle and then truncated by the Galerkin technique. The time-variant frequencies, mode shapes and responses to initial conditions are comprehensively investigated to reveal the dynamical essence of the system. It is indicated that the qualitative stability evolution of the system mainly depends on the effect of fluid-structure interaction (FSI), while the spinning motion will enhance the pipe rigidity and eliminate the buckling instability. The dynamical evolution of a retracting pipe is almost inverse to that of the deploying one. The pipe possesses different mode configurations of spatial curves as the pipe length increases and some modal and response characteristics of the present system are found rather distinct from those of deploying cantilevered structures.
Optimal pulse spacing for dynamical decoupling in the presence of a purely dephasing spin bath
International Nuclear Information System (INIS)
Ajoy, Ashok; Alvarez, Gonzalo A.; Suter, Dieter
2011-01-01
Maintaining quantum coherence is a crucial requirement for quantum computation; hence protecting quantum systems against their irreversible corruption due to environmental noise is an important open problem. Dynamical decoupling (DD) is an effective method for reducing decoherence with a low control overhead. It also plays an important role in quantum metrology, where, for instance, it is employed in multiparameter estimation. While a sequence of equidistant control pulses [the Carr-Purcell-Meiboom-Gill (CPMG) sequence] has been ubiquitously used for decoupling, Uhrig recently proposed that a nonequidistant pulse sequence [the Uhrig dynamic decoupling (UDD) sequence] may enhance DD performance, especially for systems where the spectral density of the environment has a sharp frequency cutoff. On the other hand, equidistant sequences outperform UDD for soft cutoffs. The relative advantage provided by UDD for intermediate regimes is not clear. In this paper, we analyze the relative DD performance in this regime experimentally, using solid-state nuclear magnetic resonance. Our system qubits are 13 C nuclear spins and the environment consists of a 1 H nuclear spin bath whose spectral density is close to a normal (Gaussian) distribution. We find that in the presence of such a bath, the CPMG sequence outperforms the UDD sequence. An analogy between dynamical decoupling and interference effects in optics provides an intuitive explanation as to why the CPMG sequence performs better than any nonequidistant DD sequence in the presence of this kind of environmental noise.
International Nuclear Information System (INIS)
Lin, Ming-Fu; Neumark, Daniel M.; Gessner, Oliver; Leone, Stephen R.
2014-01-01
Strong-field induced ionization and dissociation dynamics of vinyl bromide, CH 2 =CHBr, are probed using femtosecond extreme ultraviolet (XUV) transient absorption spectroscopy. Strong-field ionization is initiated with an intense femtosecond, near infrared (NIR, 775 nm) laser field. Femtosecond XUV pulses covering the photon energy range of 50-72 eV probe the subsequent dynamics by measuring the time-dependent spectroscopic features associated with transitions of the Br (3d) inner-shell electrons to vacancies in molecular and atomic valence orbitals. Spectral signatures are observed for the depletion of neutral C 2 H 3 Br, the formation of C 2 H 3 Br + ions in their ground (X ~ ) and first excited (A ~ ) states, the production of C 2 H 3 Br ++ ions, and the appearance of neutral Br ( 2 P 3/2 ) atoms by dissociative ionization. The formation of free Br ( 2 P 3/2 ) atoms occurs on a timescale of 330 ± 150 fs. The ionic A ~ state exhibits a time-dependent XUV absorption energy shift of ∼0.4 eV within the time window of the atomic Br formation. The yield of Br atoms correlates with the yield of parent ions in the A ~ state as a function of NIR peak intensity. The observations suggest that a fraction of vibrationally excited C 2 H 3 Br + (A ~ ) ions undergoes intramolecular vibrational energy redistribution followed by the C–Br bond dissociation. The C 2 H 3 Br + (X ~ ) products and the majority of the C 2 H 3 Br ++ ions are relatively stable due to a deeper potential well and a high dissociation barrier, respectively. The results offer powerful new insights about orbital-specific electronic processes in high field ionization, coupled vibrational relaxation and dissociation dynamics, and the correlation of valence hole-state location and dissociation in polyatomic molecules, all probed simultaneously by ultrafast table-top XUV spectroscopy
Energy Technology Data Exchange (ETDEWEB)
Trifunac, A.D.
1981-01-01
Structure and dynamics of transient radicals in pulse radiolysis can be studied by time resolved EPR and NMR techniques. EPR study of kinetics and relaxation is illustrated. The NMR detection of nuclear resonance in transient radicals is a new method which allows the study of hyperfine coupling, population dynamics, radical kinetics, and reaction mechanism. 9 figures.
Persistent low-temperature spin dynamics in the mixed-valence iridate Ba3InIr2O9
Dey, Tusharkanti; Majumder, M.; Orain, J. C.; Senyshyn, A.; Prinz-Zwick, M.; Bachus, S.; Tokiwa, Y.; Bert, F.; Khuntia, P.; Büttgen, N.; Tsirlin, A. A.; Gegenwart, P.
2017-11-01
Using thermodynamic measurements, neutron diffraction, nuclear magnetic resonance, and muon spin relaxation, we establish putative quantum spin-liquid behavior in Ba3InIr2O9 , where unpaired electrons are localized on mixed-valence Ir2O9 dimers with Ir4.5 + ions. Despite the antiferromagnetic Curie-Weiss temperature on the order of 10 K, neither long-range magnetic order nor spin freezing are observed down to at least 20 mK, such that spins are short-range correlated and dynamic over nearly three decades in temperature. Quadratic power-law behavior of both the spin-lattice relaxation rate and specific heat indicates the gapless nature of the ground state. We envisage that this exotic behavior may be related to an unprecedented combination of the triangular and buckled honeycomb geometries of nearest-neighbor exchange couplings in the mixed-valence setting.
Heisterkamp, F.; Zhukov, E. A.; Greilich, A.; Yakovlev, D. R.; Korenev, V. L.; Pawlis, A.; Bayer, M.
2015-06-01
The spin dynamics of strongly localized donor-bound electrons in fluorine-doped ZnSe epilayers is studied using pump-probe Kerr rotation techniques. A method exploiting the spin inertia is developed and used to measure the longitudinal spin relaxation time T1 in a wide range of magnetic fields, temperatures, and pump densities. The T1 time of the donor-bound electron spin of about 1.6 μ s remains nearly constant for external magnetic fields varied from zero up to 2.5 T (Faraday geometry) and in a temperature range 1.8-45 K. These findings impose severe restrictions on possible spin relaxation mechanisms. In our opinion they allow us to rule out scattering between free and donor-bound electrons, jumping of electrons between different donor centers, scattering between phonons and donor-bound electrons, and with less certainty charge fluctuations in the environment of the donors caused by the 1.5 ps pulsed laser excitation.
Nakamura, Y.; Nishikawa, M.; Osawa, H.; Okamoto, Y.; Kanao, T.; Sato, R.
2018-05-01
In this article, we propose the detection method of the recorded data pattern by the envelope of the temporal magnetization dynamics of resonantly interacting spin-torque oscillator on the microwave assisted magnetic recording for three-dimensional magnetic recording. We simulate the envelope of the waveform from recorded dots with the staggered magnetization configuration, which are calculated by using a micromagnetic simulation. We study the data detection methods for the envelope and propose a soft-output Viterbi algorithm (SOVA) for partial response (PR) system as a signal processing system for three dimensional magnetic recording.
Phase diagram and quench dynamics of the cluster-XY spin chain.
Montes, Sebastián; Hamma, Alioscia
2012-08-01
We study the complete phase space and the quench dynamics of an exactly solvable spin chain, the cluster-XY model. In this chain, the cluster term and the XY couplings compete to give a rich phase diagram. The phase diagram is studied by means of the quantum geometric tensor. We study the time evolution of the system after a critical quantum quench using the Loschmidt echo. The structure of the revivals after critical quantum quenches presents a nontrivial behavior depending on the phase of the initial state and the critical point.
Dynamically induced spin-dependent interaction in the elastic scattering of heavy-ions
International Nuclear Information System (INIS)
Imanishi, B.; Oertzen, W. von.
1982-02-01
Dynamical polarization effect in heavy-ion elastic scattering is investigated in the framework of the coupled-reaction-channel theory. By using the adiabatic approximation at low incident energies, this effect is expressed as a spin-orbit (L vector.S vector) interaction with a L vector and S vector independent radial function. The strength of the (L vector.S vector) interaction calculated for the 12 C + 13 C system is in the same order of magnitude as deduced from experiments and is about two orders of magnitude larger than that obtained from the folding model calculation. (author)
Neutron spin echo spectroscopy. Its application to the study of the dynamics of polymers in solution
International Nuclear Information System (INIS)
Papoular, Robert
1992-06-01
This work focuses on Neutron Spin Echo (NSE) spectroscopy and on the NSE spectrometer MESS, which we have built at the L.L.B. (CE Saclay). After analyzing in detail the classical and quantum principles of this type of instrument, and illustrated them with optical analogies, we expound a simple formalism for the interpretation of polarized neutron experiments of the most general type. In a second part, we describe the MESS spectrometer extensively; its characteristics and performances as well as the first results obtained with this instrument. In particular, we include two papers showing how the neutron depolarization, spin rotation and echoes can be used to investigate high-Tc superconductors. The last part deals with the dynamics of Polymer-Polymer-Solvent ternary solutions and demonstrates how the Neutron Spin Echo technique becomes a privileged tool for such physico-chemical studies thanks to the joint use of NSE and contrast variation methods, coupled with the adequate ranges of time and scattering vectors accessible. Finally, we describe the specific case of partially deuterated polydimethyl-siloxane (PDMS) in semi-dilute solution in Toluene. We have experimentally and separately evidenced the cooperative and inter-diffusive diffusion modes predicted by the theory of Akcasu, Benoit, Benmouna et al. These results, obtained at the L.L.B. (CE Saclay) are the subject matter of the last paper included in this work. (author) [fr
Spin Dynamics and Quantum Tunneling in Fe8 Nanomagnet and in AFM Rings by NMR
International Nuclear Information System (INIS)
Seung-Ho-Baek
2004-01-01
In this thesis, our main interest has been to investigate the spin dynamics and quantum tunneling in single molecule magnets (SMMs), For this we have selected two different classes of SMMs: a ferrimagnetic total high spin S = 10 cluster Fe8 and antiferromagnetic (AFM) ring-type clusters. For Fe8, our efforts have been devoted to the investigation of the quantum tunneling of magnetization in the very low temperature region. The most remarkable experimental finding in Fe8 is that the nuclear spin-lattice relaxation rate (1/T l ) at low temperatures takes place via strong collision mechanism, and thus it allows to measure directly the tunneling rate vs T and H for the first time. For AFM rings, we have shown that 1/T l probes the thermal fluctuations of the magnetization in the intermediate temperature range. We find that the fluctuations are dominated by a single characteristic frequency which has a power law T-dependence indicative of fluctuations due to electron-acoustic phonon interactions
Spin Dynamics and Quantum Tunneling in Fe8 Nanomagnet and in AFM Rings by NMR
Energy Technology Data Exchange (ETDEWEB)
Ho-Baek, Seung [Iowa State Univ., Ames, IA (United States)
2004-01-01
In this thesis, our main interest has been to investigate the spin dynamics and quantum tunneling in single molecule magnets (SMMs), For this we have selected two different classes of SMMs: a ferrimagnetic total high spin S = 10 cluster Fe8 and antiferromagnetic (AFM) ring-type clusters. For Fe8, our efforts have been devoted to the investigation of the quantum tunneling of magnetization in the very low temperature region. The most remarkable experimental finding in Fe8 is that the nuclear spin-lattice relaxation rate (1/T{sub l}) at low temperatures takes place via strong collision mechanism, and thus it allows to measure directly the tunneling rate vs T and H for the first time. For AFM rings, we have shown that 1/T{sub l} probes the thermal fluctuations of the magnetization in the intermediate temperature range. We find that the fluctuations are dominated by a single characteristic frequency which has a power law T-dependence indicative of fluctuations due to electron-acoustic phonon interactions.
Spin dynamics and quantum tunneling in Fe8 nanomagnet and in AFM rings by NMR
Baek, Seung-Ho
In this thesis, our main interest has been to investigate the spin dynamics and quantum tunneling in single molecule magnets (SMMs). For this we have selected two different classes of SMMs: a ferromagnetic total high spin S = 10 cluster Fe8 and antiferromagnetic (AFM) ring-type clusters. For Fe8, our efforts have been devoted to the investigation of the quantum tunneling of magnetization in the very low temperature region. The most remarkable experimental finding in Fe8 is that the nuclear spin-lattice relaxation rate (1/T1) at low temperatures takes place via strong collision mechanism, and thus it allows to measure directly the tunneling rate vs. T and H for the first time. For AFM rings, we have shown that 1/T1 probes the thermal fluctuations of the magnetization in the intermediate temperature range. We find that the fluctuations are dominated by a single characteristic frequency which has a power-law T-dependence indicative of fluctuations due to electron-acoustic phonon interactions.
International Nuclear Information System (INIS)
Alvarez, Gonzalo A.; Suter, Dieter; Ajoy, Ashok; Peng Xinhua
2010-01-01
Avoiding the loss of coherence of quantum mechanical states is an important prerequisite for quantum information processing. Dynamical decoupling (DD) is one of the most effective experimental methods for maintaining coherence, especially when one can access only the qubit system and not its environment (bath). It involves the application of pulses to the system whose net effect is a reversal of the system-environment interaction. In any real system, however, the environment is not static, and therefore the reversal of the system-environment interaction becomes imperfect if the spacing between refocusing pulses becomes comparable to or longer than the correlation time of the environment. The efficiency of the refocusing improves therefore if the spacing between the pulses is reduced. Here, we quantify the efficiency of different DD sequences in preserving different quantum states. We use 13 C nuclear spins as qubits and an environment of 1 H nuclear spins as the environment, which couples to the qubit via magnetic dipole-dipole couplings. Strong dipole-dipole couplings between the proton spins result in a rapidly fluctuating environment with a correlation time of the order of 100 μs. Our experimental results show that short delays between the pulses yield better performance if they are compared with the bath correlation time. However, as the pulse spacing becomes shorter than the bath correlation time, an optimum is reached. For even shorter delays, the pulse imperfections dominate over the decoherence losses and cause the quantum state to decay.
Liu, Gui-Bin; Liu, Bang-Gui
2010-10-01
In this paper, we combine thermal effects with Landau-Zener (LZ) quantum tunneling effects in a dynamical Monte Carlo (DMC) framework to produce satisfactory magnetization curves of single-molecule magnet (SMM) systems. We use the giant spin approximation for SMM spins and consider regular lattices of SMMs with magnetic dipolar interactions (MDIs). We calculate spin-reversal probabilities from thermal-activated barrier hurdling, direct LZ tunneling, and thermal-assisted LZ tunnelings in the presence of sweeping magnetic fields. We do systematical DMC simulations for Mn12 systems with various temperatures and sweeping rates. Our simulations produce clear step structures in low-temperature magnetization curves, and our results show that the thermally activated barrier hurdling becomes dominating at high temperature near 3 K and the thermal-assisted tunnelings play important roles at intermediate temperature. These are consistent with corresponding experimental results on good Mn12 samples (with less disorders) in the presence of little misalignments between the easy axis and applied magnetic fields, and therefore our magnetization curves are satisfactory. Furthermore, our DMC results show that the MDI, with the thermal effects, have important effects on the LZ tunneling processes, but both the MDI and the LZ tunneling give place to the thermal-activated barrier hurdling effect in determining the magnetization curves when the temperature is near 3 K. This DMC approach can be applicable to other SMM systems and could be used to study other properties of SMM systems.
International Nuclear Information System (INIS)
Schuettler, H.; Norman, M.R.
1996-01-01
We compare the normal-state resistivities ρ and the critical temperatures T c for superconducting d x 2 -y 2 pairing due to antiferromagnetic (AF) spin fluctuation exchange in the context of two phenomenological dynamical spin susceptibility models for the cuprate high-T c materials, one based on fits to NMR data on Y-Ba-Cu-O (YBCO) proposed by Millis, Monien, and Pines (MMP) and Monthoux and Pines (MP), and the other based on fits to neutron scattering data on YBCO proposed by Radtke, Ullah, Levin, and Norman (RULN). Assuming comparable electronic bandwidths and resistivities in both models, we show that the RULN model gives a much lower d-wave T c (approx-lt 20 K) than the MMP model (with T c ∼100 K). We demonstrate that these profound differences in the T c close-quote s arise from fundamental differences in the spectral weight distributions of the two model susceptibilities at high (>100 meV) frequencies and are not primarily caused by differences in the calculational techniques employed by MP and RULN. Further neutron scattering experiments, to explore the spectral weight distribution at all wave vectors over a sufficiently large excitation energy range, will thus be of crucial importance to resolve the question whether AF spin fluctuation exchange can provide a viable mechanism to account for high-T c superconductivity. Limitations of the Migdal-Eliashberg approach in such models will be discussed. copyright 1996 The American Physical Society
Dynamics of interacting fermions under spin-orbit coupling in an optical lattice clock
Bromley, S. L.; Kolkowitz, S.; Bothwell, T.; Kedar, D.; Safavi-Naini, A.; Wall, M. L.; Salomon, C.; Rey, A. M.; Ye, J.
2018-04-01
Quantum statistics and symmetrization dictate that identical fermions do not interact via s-wave collisions. However, in the presence of spin-orbit coupling (SOC), fermions prepared in identical internal states with distinct momenta become distinguishable. The resulting strongly interacting system can exhibit exotic topological and pairing behaviours, many of which are yet to be observed in condensed matter systems. Ultracold atomic gases offer a promising pathway for simulating these rich phenomena, but until recently have been hindered by heating and losses. Here we enter a new regime of many-body interacting SOC in a fermionic optical lattice clock (OLC), where the long-lived electronic clock states mitigate unwanted dissipation. Using clock spectroscopy, we observe the precession of the collective magnetization and the emergence of spin-locking effects arising from an interplay between p-wave and SOC-induced exchange interactions. The many-body dynamics are well captured by a collective XXZ spin model, which describes a broad class of condensed matter systems ranging from superconductors to quantum magnets. Furthermore, our work will aid in the design of next-generation OLCs by offering a route for avoiding the observed large density shifts caused by SOC-induced exchange interactions.
Spatially and time-resolved magnetization dynamics driven by spin-orbit torques
Baumgartner, Manuel; Garello, Kevin; Mendil, Johannes; Avci, Can Onur; Grimaldi, Eva; Murer, Christoph; Feng, Junxiao; Gabureac, Mihai; Stamm, Christian; Acremann, Yves; Finizio, Simone; Wintz, Sebastian; Raabe, Jörg; Gambardella, Pietro
2017-10-01
Current-induced spin-orbit torques are one of the most effective ways to manipulate the magnetization in spintronic devices, and hold promise for fast switching applications in non-volatile memory and logic units. Here, we report the direct observation of spin-orbit-torque-driven magnetization dynamics in Pt/Co/AlOx dots during current pulse injection. Time-resolved X-ray images with 25 nm spatial and 100 ps temporal resolution reveal that switching is achieved within the duration of a subnanosecond current pulse by the fast nucleation of an inverted domain at the edge of the dot and propagation of a tilted domain wall across the dot. The nucleation point is deterministic and alternates between the four dot quadrants depending on the sign of the magnetization, current and external field. Our measurements reveal how the magnetic symmetry is broken by the concerted action of the damping-like and field-like spin-orbit torques and the Dzyaloshinskii-Moriya interaction, and show that reproducible switching events can be obtained for over 1012 reversal cycles.
International Nuclear Information System (INIS)
Singh, R.K.; Redlinger, R.; Breitung, W.
2005-09-01
Design and analysis of blast resistant structures is an important area of safety research in nuclear, aerospace, chemical process and vehicle industries. Institute for Nuclear and Energy Technologies (IKET) of Research Centre- Karlsruhe (Forschungszentrum Karlsruhe or FZK) in Germany is pursuing active research on the entire spectrum of safety evaluation for efficient hydrogen management in case of the postulated design basis and beyond the design basis severe accidents for nuclear and non-nuclear applications. This report concentrates on the consequence analysis of hydrogen combustion accidents with emphasis on the structural safety assessment. The transient finite element simulation results obtained for 2gm, 4gm, 8gm and 16gm hydrogen combustion experiments concluded recently on the test-cell structure are described. The frequencies and damping of the test-cell observed during the hammer tests and the combustion experiments are used for the present three dimensional finite element model qualification. For the numerical transient dynamic evaluation of the test-cell structure, the pressure time history data computed with CFD code COM-3D is used for the four combustion experiments. Detail comparisons of the present numerical results for the four combustion experiments with the observed time signals are carried out to evaluate the structural connection behavior. For all the combustion experiments excellent agreement is noted for the computed accelerations and displacements at the standard transducer locations, where the measurements were made during the different combustion tests. In addition inelastic analysis is also presented for the test-cell structure to evaluate the limiting impulsive and quasi-static pressure loads. These results are used to evaluate the response of the test cell structure for the postulated over pressurization of the test-cell due to the blast load generated in case of 64 gm hydrogen ignition for which additional sets of computations were
Spin dynamics in the single molecule magnet Ni4 under microwave irradiation
de Loubens, Gregoire
2009-03-01
Quantum mechanical effects such as quantum tunneling of magnetization (QTM) and quantum phase interference have been intensively studied in single molecule magnets (SMMs). These materials have also been suggested as candidates for qubits and are promising for molecular spintronics. Understanding decoherence and energy relaxation mechanisms in SMMs is then both of fundamental interest and important for the use of SMMs in applications. Interestingly, the single-spin relaxation rate due to direct process of a SMM embedded in an elastic medium can be derived without any unknown coupling constant [1]. Moreover, nontrivial relaxation mechanisms are expected from collective effects in SMM single crystals, such as phonon superradiance or phonon bottleneck. In order to investigate the spin relaxation between the two lowest lying spin-states of the S=4 single molecule magnet Ni4, we have developed an integrated sensor that combines a microstrip resonator and micro-Hall effect magnetometer on a chip [2]. This sensor enables both real time studies of magnetization dynamics under pulse irradiation as well as simultaneous measurements of the absorbed power and magnetization changes under continuous microwave irradiation. The latter technique permits the study of small deviations from equilibrium under steady state conditions, i.e. small amplitude cw microwave irradiation. This has been used to determine the energy relaxation rate of a Ni4 single crystal as a function of temperature at two frequencies, 10 and 27.8 GHz. A strong temperature dependence is observed below 1.5 K, which is not consistent with a direct spin-phonon relaxation process. The data instead suggest that the spin relaxation is dominated by a phonon bottleneck at low temperatures and occurs by an Orbach process involving excited spin-levels at higher temperatures [3]. Experimental results will be compared with detailed calculations of the relaxation rate using the density matrix equation with the relaxation
Wieser, R
2017-05-04
A self-consistent mean field theory is introduced and used to investigate the thermodynamics and spin dynamics of an S = 1 quantum spin system with a magnetic Skyrmion. The temperature dependence of the Skyrmion profile as well as the phase diagram are calculated. In addition, the spin dynamics of a magnetic Skyrmion is described by solving the time dependent Schrödinger equation with additional damping term. The Skyrmion annihilation process driven by an electric field is used to compare the trajectories of the quantum mechanical simulation with a semi-classical description for the spin expectation values using a differential equation similar to the classical Landau-Lifshitz-Gilbert equation.
Albert, Brice J; Pahng, Seong Ho; Alaniva, Nicholas; Sesti, Erika L; Rand, Peter W; Saliba, Edward P; Scott, Faith J; Choi, Eric J; Barnes, Alexander B
2017-10-01
Cryogenic sample temperatures can enhance NMR sensitivity by extending spin relaxation times to improve dynamic nuclear polarization (DNP) and by increasing Boltzmann spin polarization. We have developed an efficient heat exchanger with a liquid nitrogen consumption rate of only 90L per day to perform magic-angle spinning (MAS) DNP experiments below 85K. In this heat exchanger implementation, cold exhaust gas from the NMR probe is returned to the outer portion of a counterflow coil within an intermediate cooling stage to improve cooling efficiency of the spinning and variable temperature gases. The heat exchange within the counterflow coil is calculated with computational fluid dynamics to optimize the heat transfer. Experimental results using the novel counterflow heat exchanger demonstrate MAS DNP signal enhancements of 328±3 at 81±2K, and 276±4 at 105±2K. Copyright © 2017 Elsevier Inc. All rights reserved.
Clustering Effects on Dynamics in Ionomer Solutions: A Neutron Spin Echo Insight
Perahia, Dvora; Wijesinghe, Sidath; Senanayake, Manjula; Wickramasinghe, Anuradhi; Mohottalalage, Supun S.; Ohl, Michael
Ionizable blocks in ionomers associate into aggregates serving as physical cross-links and concurrently form transport pathways. The dynamics of ionomers underline their functionality. Incorporating small numbers of ionic groups into polymers significantly constraint their dynamics. Recent computational studies demonstrated a direct correlation between ionic cluster morphology and polymer dynamics. Here using neutron spin echo, we probe the segmental dynamics of polystyrene sulfonate (PSS) as the degree of sulfonation of the PSS and the solution dielectrics are varied. Specifically, 20Wt% PSS of 11,000 g/mol with polydispersity of 1.02 with 3% and 9% sulfonation were studies in toluene (dielectric constant ɛ = 2.8), a good solvent for polystyrene, and with 5Wt% of ethanol (ɛ = 24.3l) added. The dynamic structure factor S(q,t) was analyzed with a single exponential except for a limited q range where two time constants associated with constraint and mobile segments were detected. S(q,t) exhibits several distinctive time and length scales for the dynamics with a crossover appearing at the length scale of the ionic clusters. NSF DMR 1611136.
International Nuclear Information System (INIS)
Greentree, Andrew D.; Smith, T.B.; Echaniz, S.R. de; Durrant, A. V.; Marangos, J.P.; Segal, D.M.; Vaccaro, J.A.
2002-01-01
This paper presents a wide-ranging theoretical and experimental study of nonadiabatic transient phenomena in a Λ electromagnetically induced transparency system when a strong coupling field is rapidly switched on or off. The theoretical treatment uses a Laplace transform approach to solve the time-dependent density matrix equation. The experiments are carried out in a 87 Rb magneto-optical trap. The results show transient probe gain in parameter regions not previously studied, and provide insight into the transition dynamics between bare and dressed states
Roosen, David; Wegewijs, Maarten R.; Hofstetter, Walter
2008-02-01
We investigate the time-dependent Kondo effect in a single-molecule magnet (SMM) strongly coupled to metallic electrodes. Describing the SMM by a Kondo model with large spin S>1/2, we analyze the underscreening of the local moment and the effect of anisotropy terms on the relaxation dynamics of the magnetization. Underscreening by single-channel Kondo processes leads to a logarithmically slow relaxation, while finite uniaxial anisotropy causes a saturation of the SMM’s magnetization. Additional transverse anisotropy terms induce quantum spin tunneling and a pseudospin-1/2 Kondo effect sensitive to the spin parity.
Comment on ‘Adjacent spin operator dynamical structure factor of the S = 1/2 Heisenberg chain’
International Nuclear Information System (INIS)
De Gier, Jan
2012-01-01
We consider the paper ‘Adjacent spin operator dynamical structure factor of the S = 1/2 Heisenberg chain’, by Klauser, Mossel and Caux (2012 J. Stat. Mech. P03012) to be a new and important step in the numerical analysis of the correlation functions of quantum spin chains. The correlation functions considered in this paper were not previously computed, their analytical study is extremely complicated and the numerical results can be used for comparison with experiments. (news and perspectives)
Dynamical passage to approximate equilibrium shapes for spinning, gravitating rubble asteroids
Sharma, Ishan; Jenkins, James T.; Burns, Joseph A.
2009-03-01
Many asteroids are thought to be particle aggregates held together principally by self-gravity. Here we study — for static and dynamical situations — the equilibrium shapes of spinning asteroids that are permitted for rubble piles. As in the case of spinning fluid masses, not all shapes are compatible with a granular rheology. We take the asteroid to always be an ellipsoid with an interior modeled as a rigid-plastic, cohesion-less material with a Drucker-Prager yield criterion. Using an approximate volume-averaged procedure, based on the classical method of moments, we investigate the dynamical process by which such objects may achieve equilibrium. We first collapse our dynamical approach to its statical limit to derive regions in spin-shape parameter space that allow equilibrium solutions to exist. At present, only a graphical illustration of these solutions for a prolate ellipsoid following the Drucker-Prager failure law is available [Sharma, I., Jenkins, J.T., Burns, J.A., 2005a. Bull. Am. Astron. Soc. 37, 643; Sharma, I., Jenkins, J.T., Burns, J.A., 2005b. Equilibrium shapes of ellipsoidal soil asteroids. In: García-Rojo, R., Hermann, H.J., McNamara, S. (Eds.), Proceedings of the 5th International Conference on Micromechanics of Granular Media, vol. 1. A.A. Balkema, UK; Holsapple, K.A., 2007. Icarus 187, 500-509]. Here, we obtain the equilibrium landscapes for general triaxial ellipsoids, as well as provide the requisite governing formulae. In addition, we demonstrate that it may be possible to better interpret the results of Richardson et al. [Richardson, D.C., Elankumaran, P., Sanderson, R.E., 2005. Icarus 173, 349-361] within the context of a Drucker-Prager material. The graphical result for prolate ellipsoids in the static limit is the same as those of Holsapple [Holsapple, K.A., 2007. Icarus 187, 500-509] because, when worked out, his final equations will match ours. This is because, though the formalisms to reach these expressions differ, in statics
Directory of Open Access Journals (Sweden)
Kravets Victor V.
2016-05-01
Full Text Available One-dimensional dynamic design of a component characterized by inertia coefficient, elastic coefficient, and coefficient of energy dispersion. The component is affected by external action in the form of time-independent initial kinematic disturbances and varying ones. Mathematical model of component dynamics as well as a new form of analytical representation of transient in terms of one-dimensional problem of kinematic effect is provided. Dynamic design of a component is being carried out according to a theory of modal control.
Directory of Open Access Journals (Sweden)
Raphaël Gaudin
Full Text Available During HIV pathogenesis, infected macrophages behave as "viral reservoirs" that accumulate and retain virions within dedicated internal Virus-Containing Compartments (VCCs. The nature of VCCs remains ill characterized and controversial. Using wild-type HIV-1 and a replication-competent HIV-1 carrying GFP internal to the Gag precursor, we analyzed the biogenesis and evolution of VCCs in primary human macrophages. VCCs appear roughly 14 hours after viral protein synthesis is detected, initially contain few motile viral particles, and then mature to fill up with virions that become packed and immobile. The amount of intracellular Gag, the proportion of dense VCCs, and the density of viral particles in their lumen increased with time post-infection. In contrast, the secretion of virions, their infectivity and their transmission to T cells decreased overtime, suggesting that HIV-infected macrophages tend to pack and retain newly formed virions into dense compartments. A minor proportion of VCCs remains connected to the plasma membrane overtime. Surprisingly, live cell imaging combined with correlative light and electron microscopy revealed that such connections can be transient, highlighting their dynamic nature. Together, our results shed light on the late phases of the HIV-1 cycle and reveal some of its macrophage specific features.
PRONTO3D users` instructions: A transient dynamic code for nonlinear structural analysis
Energy Technology Data Exchange (ETDEWEB)
Attaway, S.W.; Mello, F.J.; Heinstein, M.W.; Swegle, J.W.; Ratner, J.A. [Sandia National Labs., Albuquerque, NM (United States); Zadoks, R.I. [Univ. of Texas, El Paso, TX (United States)
1998-06-01
This report provides an updated set of users` instructions for PRONTO3D. PRONTO3D is a three-dimensional, transient, solid dynamics code for analyzing large deformations of highly nonlinear materials subjected to extremely high strain rates. This Lagrangian finite element program uses an explicit time integration operator to integrate the equations of motion. Eight-node, uniform strain, hexahedral elements and four-node, quadrilateral, uniform strain shells are used in the finite element formulation. An adaptive time step control algorithm is used to improve stability and performance in plasticity problems. Hourglass distortions can be eliminated without disturbing the finite element solution using either the Flanagan-Belytschko hourglass control scheme or an assumed strain hourglass control scheme. All constitutive models in PRONTO3D are cast in an unrotated configuration defined using the rotation determined from the polar decomposition of the deformation gradient. A robust contact algorithm allows for the impact and interaction of deforming contact surfaces of quite general geometry. The Smooth Particle Hydrodynamics method has been embedded into PRONTO3D using the contact algorithm to couple it with the finite element method.
Dynamics of the sub-Ohmic spin-boson model: A time-dependent variational study
International Nuclear Information System (INIS)
Wu Ning; Duan Liwei; Zhao Yang; Li Xin
2013-01-01
The Dirac-Frenkel time-dependent variation is employed to probe the dynamics of the zero temperature sub-Ohmic spin-boson model with strong friction utilizing the Davydov D 1 ansatz. It is shown that initial conditions of the phonon bath have considerable influence on the dynamics. Counterintuitively, even in the very strong coupling regime, quantum coherence features still manage to survive under the polarized bath initial condition, while such features are absent under the factorized bath initial condition. In addition, a coherent-incoherent transition is found at a critical coupling strength α≈ 0.1 for s= 0.25 under the factorized bath initial condition. We quantify how faithfully our ansatz follows the Schrödinger equation, finding that the time-dependent variational approach is robust for strong dissipation and deep sub-Ohmic baths (s≪ 1).
Finite-temperature spin dynamics in a perturbed quantum critical Ising chain with an E₈ symmetry.
Wu, Jianda; Kormos, Márton; Si, Qimiao
2014-12-12
A spectrum exhibiting E₈ symmetry is expected to arise when a small longitudinal field is introduced in the transverse-field Ising chain at its quantum critical point. Evidence for this spectrum has recently come from neutron scattering measurements in cobalt niobate, a quasi-one-dimensional Ising ferromagnet. Unlike its zero-temperature counterpart, the finite-temperature dynamics of the model has not yet been determined. We study the dynamical spin structure factor of the model at low frequencies and nonzero temperatures, using the form factor method. Its frequency dependence is singular, but differs from the diffusion form. The temperature dependence of the nuclear magnetic resonance (NMR) relaxation rate has an activated form, whose prefactor we also determine. We propose NMR experiments as a means to further test the applicability of the E₈ description for CoNb₂O₆.
International Nuclear Information System (INIS)
Zaanen, J.; Horbach, M.L.; van Saarloos, W.
1996-01-01
Evidence is accumulating that the electron liquid in the cuprate superconductors is characterized by many-hole correlations of the charged magnetic domain-wall type. Here we focus on the strong-coupling limit where all holes are bound to domain walls. We assert that at high temperatures a classical domain-wall fluid is realized and show that the dynamics of such a fluid is characterized by spatial and temporal crossover scales set by temperature itself. The fundamental parameters of this fluid are such that the domain-wall motions dominate the low-frequency spin fluctuations and we derive predictions for the behavior of the dynamical magnetic susceptibility. We argue that a crossover occurs from a high-temperature classical to a low-temperature quantum regime, in direct analogy with helium. We discuss some general characteristics of the domain-wall quantum liquid, realized at low temperatures. copyright 1996 The American Physical Society
Application of a system modification technique to dynamic tuning of a spinning rotor blade
Spain, C. V.
1987-01-01
An important consideration in the development of modern helicopters is the vibratory response of the main rotor blade. One way to minimize vibration levels is to ensure that natural frequencies of the spinning main rotor blade are well removed from integer multiples of the rotor speed. A technique for dynamically tuning a finite-element model of a rotor blade to accomplish that end is demonstrated. A brief overview is given of the general purpose finite element system known as Engineering Analysis Language (EAL) which was used in this work. A description of the EAL System Modification (SM) processor is then given along with an explanation of special algorithms developed to be used in conjunction with SM. Finally, this technique is demonstrated by dynamically tuning a model of an advanced composite rotor blade.
Quantum dynamics of a particle with a spin-dependent velocity
International Nuclear Information System (INIS)
Aslangul, Claude
2005-01-01
We study the dynamics of a particle in continuous time and space, the displacement of which is governed by an internal degree of freedom (spin). In one definite limit, the so-called quantum random walk is recovered but, although quite simple, the model possesses a rich variety of dynamics and goes far beyond this problem. Generally speaking, our framework can describe the motion of an electron in a magnetic sea near the Fermi level when linearization of the dispersion law is possible, coupled to a transverse magnetic field. Quite unexpected behaviours are obtained. In particular, we find that when the initial wave packet is fully localized in space, the J z angular momentum component is frozen; this is an interesting example of an observable which, although it is not a constant of motion, has a constant expectation value. For a non-completely localized wave packet, the effect still occurs although less pronounced, and the spin keeps for ever memory of its initial state. Generally speaking, as time goes on, the spatial density profile looks rather complex, as a consequence of the competition between drift and precession, and displays various shapes according to the ratio between the Larmor period and the characteristic time of flight. The density profile gradually changes from a multimodal quickly moving distribution when the scattering rate is small, to a unimodal standing but flattening distribution in the opposite case
The co-evolutionary dynamics of directed network of spin market agents
Horváth, Denis; Kuscsik, Zoltán; Gmitra, Martin
2006-09-01
The spin market model [S. Bornholdt, Int. J. Mod. Phys. C 12 (2001) 667] is generalized by employing co-evolutionary principles, where strategies of the interacting and competitive traders are represented by local and global couplings between the nodes of dynamic directed stochastic network. The co-evolutionary principles are applied in the frame of Bak-Sneppen self-organized dynamics [P. Bak, K. Sneppen, Phys. Rev. Lett. 71 (1993) 4083] that includes the processes of selection and extinction actuated by the local (node) fitness. The local fitness is related to orientation of spin agent with respect to the instant magnetization. The stationary regime is formed due to the interplay of self-organization and adaptivity effects. The fat tailed distributions of log-price returns are identified numerically. The non-trivial model consequence is the evidence of the long time market memory indicated by the power-law range of the autocorrelation function of volatility with exponent smaller than one. The simulations yield network topology with broad-scale node degree distribution characterized by the range of exponents 1.3social networks.
Study of spin dynamics and damping on the magnetic nanowire arrays with various nanowire widths
Energy Technology Data Exchange (ETDEWEB)
Cho, Jaehun [Department of Physics, Inha University, Incheon, 402-751 (Korea, Republic of); Fujii, Yuya; Konioshi, Katsunori [Graduate School of Engineering Science, Osaka University, Toyonaka, Osaka 560-8531 (Japan); Yoon, Jungbum [Department of Electrical and Computer Engineering, National University of Singapore, Singapore 117576 (Singapore); Kim, Nam-Hui; Jung, Jinyong [Department of Physics, Inha University, Incheon, 402-751 (Korea, Republic of); Miwa, Shinji [Graduate School of Engineering Science, Osaka University, Toyonaka, Osaka 560-8531 (Japan); Jung, Myung-Hwa [Department of Physics, Sogang University, Seoul, 121-742 (Korea, Republic of); Suzuki, Yoshishige [Graduate School of Engineering Science, Osaka University, Toyonaka, Osaka 560-8531 (Japan); You, Chun-Yeol, E-mail: cyyou@inha.ac.kr [Department of Physics, Inha University, Incheon, 402-751 (Korea, Republic of)
2016-07-01
We investigate the spin dynamics including Gilbert damping in the ferromagnetic nanowire arrays. We have measured the ferromagnetic resonance of ferromagnetic nanowire arrays using vector-network analyzer ferromagnetic resonance (VNA-FMR) and analyzed the results with the micromagnetic simulations. We find excellent agreement between the experimental VNA-FMR spectra and micromagnetic simulations result for various applied magnetic fields. We find that the same tendency of the demagnetization factor for longitudinal and transverse conditions, N{sub z} (N{sub y}) increases (decreases) as increasing the nanowire width in the micromagnetic simulations while N{sub x} is almost zero value in transverse case. We also find that the Gilbert damping constant increases from 0.018 to 0.051 as the increasing nanowire width for the transverse case, while it is almost constant as 0.021 for the longitudinal case. - Highlights: • We investigate the spin dynamic properties in the ferromagnetic nanowire arrays. • The demagnetization factors have similar tendency with the prism geometry results. • The Gilbert damping constant is increased from 0.018 to 0.051 as the increasing nanowire width for the transverse. • The Gilbert damping constant is almost constant as 0.021 for the longitudinal case.
Model expressions for the spin-orbit interaction and phonon-mediated spin dynamics in quantum dots
Vaughan, M. P.; Rorison, J. M.
2018-01-01
Model expressions for the spin-orbit interaction in a quantum dot are obtained. The resulting form does not neglect cubic terms and allows for a generalized structural inversion asymmetry. We also obtain analytical expressions for the coupling between states for the electron-phonon interaction and use these to derive spin-relaxation rates, which are found to be qualitatively similar to those derived elsewhere in the literature. We find that, due to the inclusion of cubic terms, the Dresselhaus contribution to the ground state spin relaxation disappears for spherical dots. A comparison with previous theory and existing experimental results shows good agreement thereby presenting a clear analytical formalism for future developments. Comparative calculations for potential materials are presented.
International Nuclear Information System (INIS)
Cleveland, J.C.; Hedrick, R.A.; Ball, S.J.; Delene, J.G.
1977-01-01
ORTAP was developed to predict the dynamic behavior of the high temperature gas cooled reactor (HTGR) Nuclear Steam Supply System for normal operational transients and postulated accident conditions. It was developed for the Nuclear Regulatory Commission (NRC) as an independent means of obtaining conservative predictions of the transient response of HTGRs over a wide range of conditions. The approach has been to build sufficient detail into the component models so that the coupling between the primary and secondary systems can be accurately represented and so that transients which cover a wide range of conditions can be simulated. System components which are modeled in ORTAP include the reactor core, a typical reheater and steam generator module, a typical helium circulator and circulator turbine and the turbine generator plant. The major plant control systems are also modeled. Normal operational transients which can be analyzed with ORTAP include reactor start-up and shutdown, normal and rapid load changes. Upset transients which can be analyzed with ORTAP include reactor trip, turbine trip and sudden reduction in feedwater flow. ORTAP has also been used to predict plant response to emergency or faulted conditions such as primary system depressurization, loss of primary coolant flow and uncontrolled removal of control poison from the reactor core
Zhang, Dan; Hong, Bo; Gao, Shangkai; Röder, Brigitte
2017-05-01
While the behavioral dynamics as well as the functional network of sustained and transient attention have extensively been studied, their underlying neural mechanisms have most often been investigated in separate experiments. In the present study, participants were instructed to perform an audio-visual spatial attention task. They were asked to attend to either the left or the right hemifield and to respond to deviant transient either auditory or visual stimuli. Steady-state visual evoked potentials (SSVEPs) elicited by two task irrelevant pattern reversing checkerboards flickering at 10 and 15 Hz in the left and the right hemifields, respectively, were used to continuously monitor the locus of spatial attention. The amplitude and phase of the SSVEPs were extracted for single trials and were separately analyzed. Sustained attention to one hemifield (spatial attention) as well as to the auditory modality (intermodal attention) increased the inter-trial phase locking of the SSVEP responses, whereas briefly presented visual and auditory stimuli decreased the single-trial SSVEP amplitude between 200 and 500 ms post-stimulus. This transient change of the single-trial amplitude was restricted to the SSVEPs elicited by the reversing checkerboard in the spatially attended hemifield and thus might reflect a transient re-orienting of attention towards the brief stimuli. Thus, the present results demonstrate independent, but interacting neural mechanisms of sustained and transient attentional orienting.
Magnetic order, magnetic correlations, and spin dynamics in the pyrochlore antiferromagnet Er2Ti2O7
Dalmas de Réotier, P.; Yaouanc, A.; Chapuis, Y.; Curnoe, S. H.; Grenier, B.; Ressouche, E.; Marin, C.; Lago, J.; Baines, C.; Giblin, S. R.
2012-09-01
Er2Ti2O7 is believed to be a realization of an XY antiferromagnet on a frustrated lattice of corner-sharing regular tetrahedra. It is presented as an example of the order-by-disorder mechanism in which fluctuations lift the degeneracy of the ground state, leading to an ordered state. Here we report detailed measurements of the low-temperature magnetic properties of Er2Ti2O7, which displays a second-order phase transition at TN≃1.2 K with coexisting short- and long-range orders. Magnetic susceptibility studies show that there is no spin-glass-like irreversible effect. Heat capacity measurements reveal that the paramagnetic critical exponent is typical of a 3-dimensional XY magnet while the low-temperature specific heat sets an upper limit on the possible spin-gap value and provides an estimate for the spin-wave velocity. Muon spin relaxation measurements show the presence of spin dynamics in the nanosecond time scale down to 21 mK. This time range is intermediate between the shorter time characterizing the spin dynamics in Tb2Sn2O7, which also displays long- and short-range magnetic order, and the time scale typical of conventional magnets. Hence the ground state is characterized by exotic spin dynamics. We determine the parameters of a symmetry-dictated Hamiltonian restricted to the spins in a tetrahedron, by fitting the paramagnetic diffuse neutron scattering intensity for two reciprocal lattice planes. These data are recorded in a temperature region where the assumption that the correlations are limited to nearest neighbors is fair.
Singularities of the dynamical structure factors of the spin-1/2 XXX chain at finite magnetic field
Carmelo, J. M. P.; Sacramento, P. D.; Machado, J. D. P.; Campbell, D. K.
2015-10-01
We study the longitudinal and transverse spin dynamical structure factors of the spin-1/2 XXX chain at finite magnetic field h, focusing in particular on the singularities at excitation energies in the vicinity of the lower thresholds. While the static properties of the model can be studied within a Fermi-liquid like description in terms of pseudoparticles, our derivation of the dynamical properties relies on the introduction of a form of the ‘pseudofermion dynamical theory’ (PDT) of the 1D Hubbard model suitably modified for the spin-only XXX chain and other models with two pseudoparticle Fermi points. Specifically, we derive the exact momentum and spin-density dependences of the exponents {{\\zeta}τ}(k) controlling the singularities for both the longitudinal ≤ft(τ =l\\right) and transverse ≤ft(τ =t\\right) dynamical structure factors for the whole momentum range k\\in ]0,π[ , in the thermodynamic limit. This requires the numerical solution of the integral equations that define the phase shifts in these exponents expressions. We discuss the relation to neutron scattering and suggest new experiments on spin-chain compounds using a carefully oriented crystal to test our predictions.
Lerch, Michael T.; Horwitz, Joseph; McCoy, John; Hubbell, Wayne L.
2013-01-01
Excited states of proteins may play important roles in function, yet are difficult to study spectroscopically because of their sparse population. High hydrostatic pressure increases the equilibrium population of excited states, enabling their characterization [Akasaka K (2003) Biochemistry 42:10875–85]. High-pressure site-directed spin-labeling EPR (SDSL-EPR) was developed recently to map the site-specific structure and dynamics of excited states populated by pressure. To monitor global secondary structure content by circular dichroism (CD) at high pressure, a modified optical cell using a custom MgF2 window with a reduced aperture is introduced. Here, a combination of SDSL-EPR and CD is used to map reversible structural transitions in holomyoglobin and apomyoglobin (apoMb) as a function of applied pressure up to 2 kbar. CD shows that the high-pressure excited state of apoMb at pH 6 has helical content identical to that of native apoMb, but reversible changes reflecting the appearance of a conformational ensemble are observed by SDSL-EPR, suggesting a helical topology that fluctuates slowly on the EPR time scale. Although the high-pressure state of apoMb at pH 6 has been referred to as a molten globule, the data presented here reveal significant differences from the well-characterized pH 4.1 molten globule of apoMb. Pressure-populated states of both holomyoglobin and apoMb at pH 4.1 have significantly less helical structure, and for the latter, that may correspond to a transient folding intermediate. PMID:24248390
The Dynamic Monte Carlo Method for Transient Analysis of Nuclear Reactors
Sjenitzer, B.L.
2013-01-01
In this thesis a new method for the analysis of power transients in a nuclear reactor is developed, which is more accurate than the present state-of-the-art methods. Transient analysis is important tool when designing nuclear reactors, since they predict the behaviour of a reactor during changing
Dynamic behaviour of mono bucket foundations subjected to combined transient loading
DEFF Research Database (Denmark)
Nielsen, Søren Dam; Ibsen, Lars Bo; Nielsen, Benjaminn Nordahl
2015-01-01
This article presents the results from small scale testing, investigating the effect of transient combined loading of a bucketfoundation. The tests are performed inside a pressure tank at Aalborg University, Denmark. The bucket foundation was installed in dense water saturated sand and transient ...
Inhomogeneous Low Frequency Spin Dynamics in La1.65Eu0.2Sr0.15CuO4
International Nuclear Information System (INIS)
Curro, N. J.; Hammel, P. C.; Suh, B. J.; Huecker, M.; Buechner, B.; Ammerahl, U.; Revcolevschi, A.
2000-01-01
We report Cu and La nuclear magnetic resonance measurements in the title compound that reveal an inhomogeneous glassy behavior of the spin dynamics. A low temperature peak in the La spin lattice relaxation rate and the ''wipeout'' of Cu intensity both arise from these slow electronic spin fluctuations that reveal a distribution of activation energies. Inhomogeneous slowing of spin fluctuations appears to be a general feature of doped lanthanum cuprate. (c) 2000 The American Physical Society
Relationship between energy landscape and low-temperature dynamics of ±J spin glasses
International Nuclear Information System (INIS)
Kobe, S.; Krawczyk, J.
2004-01-01
Clusters and valleys in the exact low-energy landscape of finite Edwards-Anderson ±J spin glasses are related to the distribution of spin domains and free spins in the ground states. The time evolution of the spin correlation function reflects a walk through the landscape at a given temperature and shows typical glassy behaviour
International Nuclear Information System (INIS)
Schikorr, W.M.
2001-01-01
The neutron kinetic and the reactor dynamic behavior of Accelerator Driven Systems (ADS) is significantly different from those of conventional power reactor systems currently in use for the production of power. It is the objective of this study to examine and to demonstrate the intrinsic differences of the kinetic and dynamic behavior of accelerator driven systems to typical plant transient initiators in comparison to the known, kinetic and dynamic behavior of critical thermal and fast reactor systems. It will be shown that in sub-critical assemblies, changes in reactivity or in the external neutron source strength lead to an asymptotic power level essentially described by the instantaneous power change (i.e. prompt jump). Shutdown of ADS operating at high levels of sub-criticality, (i.e. k eff ∼0.99), without the support of reactivity control systems (such as control or safety rods), may be problematic in case the ability of cooling of the core should be impaired (i.e. loss of coolant flow). In addition, the dynamic behavior of sub-critical systems to typical plant transients such as protected or unprotected loss of flow (LOF) or heat sink (LOH) transients are not necessarily substantially different from the plant dynamic behavior of critical systems if the reactivity feedback coefficients of the ADS design are unfavorable. As expected, the state of sub-criticality and the temperature feedback coefficients, such as Doppler and coolant temperature coefficient, play dominant roles in determining the course and direction of plant transients. Should the combination of these safety coefficients be very unfavorable, not much additional margin in safety may be gained by making a critical system only sub-critical (i.e. k eff ∼0.95). A careful optimization procedure between the selected operating level of sub-criticality, the safety reactivity coefficients and the possible need for additional reactivity control systems seems, therefore, advisable during the early
Energy Technology Data Exchange (ETDEWEB)
Guo, Y. J. [School of Physics and Electronic Engineering, Jiangsu Second Normal University, Nanjing 210013 (China); Laboratory of Solid State Microstructures, Nanjing University, Nanjing 210093 (China); Gao, Y. J.; Ge, C. N [School of Physics and Electronic Engineering, Jiangsu Second Normal University, Nanjing 210013 (China); Guo, Y. Y. [College of Electronic Science and Engineering, Nanjing University of Posts and Telecommunications, Nanjing 210003 (China); Yan, Z. B.; Liu, J.-M., E-mail: liujm@nju.edu.cn [Laboratory of Solid State Microstructures, Nanjing University, Nanjing 210093 (China)
2015-05-07
In this work, the dynamics of a diatomic chain is investigated with ↑↑↓↓ spin order in which the dispersion relation characterizes the effect of magnetic interactions on the lattice dynamics. The optical or acoustic mode softening in the center or boundary of the Brillouin zone can be observed, indicating the transitions of ferroelectric state, antiferromagnetic state, or ferroelastic state. The coexistence of the multiferroic orders related to the ↑↑↓↓ spin order represents a type of intrinsic multiferroic with strong ferroelectric order and different microscopic mechanisms.
Elasto-dynamic analysis of spinning nanodisks via a surface energy-based model
Kiani, Keivan
2016-07-01
Using the surface elasticity theory of Gurtin and Murdoch, in-plane vibrations of annular nanodisks due to their rotary motion are explored. By the imposition of non-classical boundary conditions on the innermost and outermost surfaces and employing Hamilton’s principle, the unknown elasto-dynamic fields of the bulk zone are determined via the finite element method. The roles of both nanodisk geometry and surface effect on the natural frequencies are addressed. Subsequently, forced vibrations of spinning nanodisks with fixed-free and free-free boundary conditions are comprehensively examined. The obtained results show that the maximum dynamic elastic fields grow in a parabolic manner as the steady angular velocity increases. By increasing the outermost radius, the maximum dynamic elastic field is magnified and the influence of the surface effect on the results reduced. This work can be considered as a pivotal step towards optimal design and dynamic analysis of nanorotors with disk-like parts, which are one of the basic building blocks of the upcoming advanced nanotechnologies.
Spectrally narrowed leaky waveguide edge emission and transient electrluminescent dynamics of OLEDs
International Nuclear Information System (INIS)
Zhengqing, Gan
2010-01-01
In summary, there are two major research works presented in this dissertation. The first research project (Chapter 4) is spectrally narrowed edge emission from Organic Light Emitting Diodes. The second project (Chapter 5) is about transient electroluminescent dynamics in OLEDs. Chapter 1 is a general introduction of OLEDs. Chapter 2 is a general introduction of organic semiconductor lasers. Chapter 3 is a description of the thermal evaporation method for OLED fabrication. The detail of the first project was presented in Chapter 4. Extremely narrowed spectrum was observed from the edge of OLED devices. A threshold thickness exists, above which the spectrum is narrow, and below which the spectrum is broad. The FWHM of spectrum depends on the material of the organic thin films, the thickness of the organic layers, and length of the OLED device. A superlinear relationship between the output intensity of the edge emission and the length of the device was observed, which is probably due to the misalignment of the device edge and the optical fiber detector. The original motivation of this research is for organic semiconductor laser that hasn't been realized due to the extremely high photon absorption in OLED devices. Although we didn't succeed in fabricating an electrically pumped organic laser diode, we made a comprehensive research in edge emission of OLEDs which provides valuable results in understanding light distribution and propagation in OLED devices. Chapter 5 focuses on the second project. A strong spike was observed at the falling edge of a pulse, and a long tail followed. The spike was due to the recombination of correlated charge pair (CCP) created by trapped carriers in guest molecules of the recombination zone. When the bias was turned off, along with the decreasing of electric field in the device, the electric field induced quenching decreases and the recombination rate of the CCP increases which result in the spike. This research project provides a
Spectrally narrowed leaky waveguide edge emission and transient electrluminescent dynamics of OLEDs
Energy Technology Data Exchange (ETDEWEB)
Zhengqing, Gan [Iowa State Univ., Ames, IA (United States)
2010-01-01
In summary, there are two major research works presented in this dissertation. The first research project (Chapter 4) is spectrally narrowed edge emission from Organic Light Emitting Diodes. The second project (Chapter 5) is about transient electroluminescent dynamics in OLEDs. Chapter 1 is a general introduction of OLEDs. Chapter 2 is a general introduction of organic semiconductor lasers. Chapter 3 is a description of the thermal evaporation method for OLED fabrication. The detail of the first project was presented in Chapter 4. Extremely narrowed spectrum was observed from the edge of OLED devices. A threshold thickness exists, above which the spectrum is narrow, and below which the spectrum is broad. The FWHM of spectrum depends on the material of the organic thin films, the thickness of the organic layers, and length of the OLED device. A superlinear relationship between the output intensity of the edge emission and the length of the device was observed, which is probably due to the misalignment of the device edge and the optical fiber detector. The original motivation of this research is for organic semiconductor laser that hasn't been realized due to the extremely high photon absorption in OLED devices. Although we didn't succeed in fabricating an electrically pumped organic laser diode, we made a comprehensive research in edge emission of OLEDs which provides valuable results in understanding light distribution and propagation in OLED devices. Chapter 5 focuses on the second project. A strong spike was observed at the falling edge of a pulse, and a long tail followed. The spike was due to the recombination of correlated charge pair (CCP) created by trapped carriers in guest molecules of the recombination zone. When the bias was turned off, along with the decreasing of electric field in the device, the electric field induced quenching decreases and the recombination rate of the CCP increases which result in the spike. This research project provides
Tuning the presence of dynamical phase transitions in a generalized XY spin chain.
Divakaran, Uma; Sharma, Shraddha; Dutta, Amit
2016-05-01
We study an integrable spin chain with three spin interactions and the staggered field (λ) while the latter is quenched either slowly [in a linear fashion in time (t) as t/τ, where t goes from a large negative value to a large positive value and τ is the inverse rate of quenching] or suddenly. In the process, the system crosses quantum critical points and gapless phases. We address the question whether there exist nonanalyticities [known as dynamical phase transitions (DPTs)] in the subsequent real-time evolution of the state (reached following the quench) governed by the final time-independent Hamiltonian. In the case of sufficiently slow quenching (when τ exceeds a critical value τ_{1}), we show that DPTs, of the form similar to those occurring for quenching across an isolated critical point, can occur even when the system is slowly driven across more than one critical point and gapless phases. More interestingly, in the anisotropic situation we show that DPTs can completely disappear for some values of the anisotropy term (γ) and τ, thereby establishing the existence of boundaries in the (γ-τ) plane between the DPT and no-DPT regions in both isotropic and anisotropic cases. Our study therefore leads to a unique situation when DPTs may not occur even when an integrable model is slowly ramped across a QCP. On the other hand, considering sudden quenches from an initial value λ_{i} to a final value λ_{f}, we show that the condition for the presence of DPTs is governed by relations involving λ_{i},λ_{f}, and γ, and the spin chain must be swept across λ=0 for DPTs to occur.
Rodriguez, Carl L; Amaro-Seoane, Pau; Chatterjee, Sourav; Rasio, Frederic A
2018-04-13
We present models of realistic globular clusters with post-Newtonian dynamics for black holes. By modeling the relativistic accelerations and gravitational-wave emission in isolated binaries and during three- and four-body encounters, we find that nearly half of all binary black hole mergers occur inside the cluster, with about 10% of those mergers entering the LIGO/Virgo band with eccentricities greater than 0.1. In-cluster mergers lead to the birth of a second generation of black holes with larger masses and high spins, which, depending on the black hole natal spins, can sometimes be retained in the cluster and merge again. As a result, globular clusters can produce merging binaries with detectable spins regardless of the birth spins of black holes formed from massive stars. These second-generation black holes would also populate any upper mass gap created by pair-instability supernovae.
Energy Technology Data Exchange (ETDEWEB)
Kath, Matthias
2009-11-06
In this thesis the experimental study of the spin dynamics of solid {sup 3}He is described. By means of magnetization measurements above 3 mK a Curie-Weiss behaviour was found with {theta}{sub W}{approx}2.1 mK and by this an order parameter of J={theta}{sub W}k{sub B}/{approx}-0.5 Kk{sub B} was observed, while in the range of 1 to 3 mK a pure Curie behaviour was found. By means of NMR measurements the values of {tau}{sub 1}(6 mK)=240 ms{+-}12 ms and {tau}{sub 1}(1 mK){approx} 40 ms were determined, while spin-echo measurements yielded the spin-spin relaxation time {tau}{sub 2}(6 mK)=4540 {mu}s{+-}140 {mu}s. Furthermore neutron scattering studies were performed. (HSI)
Rodriguez, Carl L.; Amaro-Seoane, Pau; Chatterjee, Sourav; Rasio, Frederic A.
2018-04-01
We present models of realistic globular clusters with post-Newtonian dynamics for black holes. By modeling the relativistic accelerations and gravitational-wave emission in isolated binaries and during three- and four-body encounters, we find that nearly half of all binary black hole mergers occur inside the cluster, with about 10% of those mergers entering the LIGO/Virgo band with eccentricities greater than 0.1. In-cluster mergers lead to the birth of a second generation of black holes with larger masses and high spins, which, depending on the black hole natal spins, can sometimes be retained in the cluster and merge again. As a result, globular clusters can produce merging binaries with detectable spins regardless of the birth spins of black holes formed from massive stars. These second-generation black holes would also populate any upper mass gap created by pair-instability supernovae.
Institute of Scientific and Technical Information of China (English)
Yili Wang; Emilie Dieude-Fauvel; Steven K Dentel
2011-01-01
The changes in the physical characteristics of unconditioned and conditioned anaerobic digested sludge (ADS) biosolids,such as capillary suction time (CST),yield stress,average size and fractal dimensions,were investigated through a CST test,transient and dynamic rheological test and image analysis.The results showed that the optimum polymer dose range was observed when CST or its reciprocal value was employed as an indicator.There were good correlations between the yield stresses determined from both a controlled shear stress test and a strain amplitude sweep test.The yield stress and storage modulus (G') increased as the polymer dose increased in most cases.A frequency sweep test revealed that polymer conditioning could extend the frequency sweep ranges for their elastic behaviors over viscous behaviors as well as the gel-like structure in the linear viscoelastic range.These results implied that more deformation energy was stored in this rigid structure,and that elastic behavior became increasingly dominant with the addition of the polymer in most cases.In addition,both the average sizes and two-dimensional fractal dimensions for conditioned ADS biosolids presented a similar up-climax-down variation trend as the polymer doses increased,whereas the critical polymer doses at the highest average sizes or two-dimensional fractal dimensions,were different.Correlation analysis revealed that the conditioned ADS dewaterability was not correlated with the yield stresses,while the average sizes or the two-dimensional fractal dimensions for conditioned ADS biosolids could be taken as the indication parameters for ADS dewaterability.
Energy Technology Data Exchange (ETDEWEB)
Scheuerer, Martina, E-mail: Martina.Scheuerer@grs.de [Gesellschaft fuer Anlagen- und Reaktorsicherheit, Forschungsinstitute, 85748 Garching (Germany); Weis, Johannes, E-mail: Johannes.Weis@grs.de [Gesellschaft fuer Anlagen- und Reaktorsicherheit, Forschungsinstitute, 85748 Garching (Germany)
2012-12-15
Highlights: Black-Right-Pointing-Pointer Pressurized thermal shocks are important phenomena for plant life extension and aging. Black-Right-Pointing-Pointer The thermal-hydraulics of PTS have been studied experimentally and numerically. Black-Right-Pointing-Pointer In the Large Scale Test Facility a loss of coolant accident was investigated. Black-Right-Pointing-Pointer CFD software is validated to simulate the buoyancy driven flow after ECC injection. - Abstract: Within the framework of the European Nuclear Reactor Integrated Simulation Project (NURISP), computational fluid dynamics (CFD) software is validated for the simulation of the thermo-hydraulics of pressurized thermal shocks. A proposed validation experiment is the test series performed within the OECD ROSA V project in the Large Scale Test Facility (LSTF). The LSTF is a 1:48 volume-scaled model of a four-loop Westinghouse pressurized water reactor (PWR). ROSA V Test 1-1 investigates temperature stratification under natural circulation conditions. This paper describes calculations which were performed with the ANSYS CFD software for emergency core cooling injection into one loop at single-phase flow conditions. Following the OECD/NEA CFD Best Practice Guidelines (Mahaffy, 2007) the influence of grid resolution, discretisation schemes, and turbulence models (shear stress transport and Reynolds stress model) on the mixing in the cold leg were investigated. A half-model was used for these simulations. The transient calculations were started from a steady-state solution at natural circulation conditions. The final calculations were obtained in a complete model of the downcomer. The results are in good agreement with data.
International Nuclear Information System (INIS)
Lockwood, M.
1991-01-01
The suggestion is discussed that characteristic particle and field signatures at the dayside magnetopause, termed flux transfer events, are, in at least some cases, due to transient solar wind and/or magnetosheath dynamic pressure increases, rather than time-dependent magnetic reconnection. It is found that most individual cases of FTEs observed by a single spacecraft can, at least qualitatively, be explained by the pressure pulse model, provided a few rather unsatisfactory features of the predictions are explained in terms of measurement uncertainties. The most notable exceptions to this are some two-regime observations made by two satellites simultaneously, one on either side of the magnetopause. However, this configuration has not been frequently achieved for sufficient time, such observations are rare, and the relevant tests are still not conclusive. The strongest evidence that FTEs are produced by magnetic reconnection is the dependence of their occurence on the north-south component of the interplanetary magnetic field (IMF) or of the magnetosheath field. The pressure pulse model provides an explanation for this dependence in the case of magnetosheath FTEs, but does not apply to magnetosphere FTEs. The only surveys of magnetosphere FTEs have not employed the simultaneous IMF, but have shown that their occurence is strongly dependent on the north-south component of the magnetosheath field, as observed earlier/later on the same magnetopause crossing. This paper employs statistics on the variability of the IMF orientation to investigate the effects of IMF changes between the times of the magnetosheath and FTE observations. It is shown that the previously published results are consistent with magnetospheric FTEs being entirely absent when the magentosheath field is northward
NASA-VOF3D, 3-D Transient, Free Surface, Incompressible Fluid Dynamic
International Nuclear Information System (INIS)
Torrey, M.D.
1992-01-01
1 - Description of program or function: NASA-VOF3D is a three- dimensional, transient, free surface, incompressible fluid dynamics program. It is specifically designed to calculate confined flows in a low gravity environment in which surface physics must be accurately treated. It allows multiple free surfaces with surface tension and wall adhesion and includes a partial cell treatment that allows curved boundaries and internal obstacles. Variable mesh spacing is permitted in all three coordinate directions. Boundary conditions available are rigid free-slip wall, rigid no-slip, wall, continuative, periodic, and specified pressure outflow boundary. 2 - Method of solution: NASA-VOF3D simulates incompressible flows with free surfaces using the volume-of-fluid (VOF) algorithm. This technique is based on the use of donor-acceptor differencing to track the free surface across an Eulerian grid. The free surfaces are treated by introducing a function defined to be unity at any point occupied by the fluid and zero elsewhere. The complete Navier- Stokes equations for an incompressible fluid are solved by finite differences with surface tension effects included. Wall adhesion may be included or neglected as a user option. The pressures (and velocities) are advanced in time throughout the computing mesh by either a conjugate residual method or the successive over-relaxation (SOR) method. The conjugate residual method is vectorized for the Cray and uses a scaled coefficient matrix. 3 - Restrictions on the complexity of the problem: NASA-VOF3D is restricted to cylindrical coordinate representation of the geometry. A three-dimensional wall-adhesion procedure is available only for straight-walled containers
International Nuclear Information System (INIS)
Scheuerer, Martina; Weis, Johannes
2012-01-01
Highlights: ► Pressurized thermal shocks are important phenomena for plant life extension and aging. ► The thermal-hydraulics of PTS have been studied experimentally and numerically. ► In the Large Scale Test Facility a loss of coolant accident was investigated. ► CFD software is validated to simulate the buoyancy driven flow after ECC injection. - Abstract: Within the framework of the European Nuclear Reactor Integrated Simulation Project (NURISP), computational fluid dynamics (CFD) software is validated for the simulation of the thermo-hydraulics of pressurized thermal shocks. A proposed validation experiment is the test series performed within the OECD ROSA V project in the Large Scale Test Facility (LSTF). The LSTF is a 1:48 volume-scaled model of a four-loop Westinghouse pressurized water reactor (PWR). ROSA V Test 1-1 investigates temperature stratification under natural circulation conditions. This paper describes calculations which were performed with the ANSYS CFD software for emergency core cooling injection into one loop at single-phase flow conditions. Following the OECD/NEA CFD Best Practice Guidelines (Mahaffy, 2007) the influence of grid resolution, discretisation schemes, and turbulence models (shear stress transport and Reynolds stress model) on the mixing in the cold leg were investigated. A half-model was used for these simulations. The transient calculations were started from a steady-state solution at natural circulation conditions. The final calculations were obtained in a complete model of the downcomer. The results are in good agreement with data.
Charge and spin dynamics driven by ultrashort extreme broadband pulses: A theory perspective
Energy Technology Data Exchange (ETDEWEB)
Moskalenko, Andrey S., E-mail: andrey.moskalenko@uni-konstanz.de [Institut für Physik, Martin-Luther-Universität Halle-Wittenberg, 06099 Halle (Germany); Department of Physics and Center for Applied Photonics, University of Konstanz, 78457 Konstanz (Germany); Zhu, Zhen-Gang, E-mail: zgzhu@ucas.ac.cn [Institut für Physik, Martin-Luther-Universität Halle-Wittenberg, 06099 Halle (Germany); School of Electronic, Electrical and Communication Engineering, University of Chinese Academy of Sciences, Beijing 100049 (China); Berakdar, Jamal, E-mail: jamal.berakdar@physik.uni-halle.de [Institut für Physik, Martin-Luther-Universität Halle-Wittenberg, 06099 Halle (Germany)
2017-02-17
This article gives an overview on recent theoretical progress in controlling the charge and spin dynamics in low-dimensional electronic systems by means of ultrashort and ultrabroadband electromagnetic pulses. A particular focus is put on sub-cycle and single-cycle pulses and their utilization for coherent control. The discussion is mostly limited to cases where the pulse duration is shorter than the characteristic time scales associated with the involved spectral features of the excitations. The relevant current theoretical knowledge is presented in a coherent, pedagogic manner. We work out that the pulse action amounts in essence to a quantum map between the quantum states of the system at an appropriately chosen time moment during the pulse. The influence of a particular pulse shape on the post-pulse dynamics is reduced to several integral parameters entering the expression for the quantum map. The validity range of this reduction scheme for different strengths of the driving fields is established and discussed for particular nanostructures. Acting with a periodic pulse sequence, it is shown how the system can be steered to and largely maintained in predefined states. The conditions for this nonequilibrium sustainability are worked out by means of geometric phases, which are identified as the appropriate quantities to indicate quasistationarity of periodically driven quantum systems. Demonstrations are presented for the control of the charge, spin, and valley degrees of freedom in nanostructures on picosecond and subpicosecond time scales. The theory is illustrated with several applications to one-dimensional semiconductor quantum wires and superlattices, double quantum dots, semiconductor and graphene quantum rings. In the case of a periodic pulsed driving the influence of the relaxation and decoherence processes is included by utilizing the density matrix approach. The integrated and time-dependent spectra of the light emitted from the driven system deliver
International Nuclear Information System (INIS)
Muir, M.D.
1975-01-01
The design and design philosophy of a high performance, extremely versatile transient analyzer is described. This sub-system was designed to be controlled through the data acquisition computer system which allows hands off operation. Thus it may be placed on the experiment side of the high voltage safety break between the experimental device and the control room. This analyzer provides control features which are extremely useful for data acquisition from PPPL diagnostics. These include dynamic sample rate changing, which may be intermixed with multiple post trigger operations with variable length blocks using normal, peak to peak or integrate modes. Included in the discussion are general remarks on the advantages of adding intelligence to transient analyzers, a detailed description of the characteristics of the PPPL transient analyzer, a description of the hardware, firmware, control language and operation of the PPPL transient analyzer, and general remarks on future trends in this type of instrumentation both at PPPL and in general
McHaourab, Hassane S; Steed, P Ryan; Kazmier, Kelli
2011-11-09
Trapping membrane proteins in the confines of a crystal lattice obscures dynamic modes essential for interconversion between multiple conformations in the functional cycle. Moreover, lattice forces could conspire with detergent solubilization to stabilize a minor conformer in an ensemble thus confounding mechanistic interpretation. Spin labeling in conjunction with electron paramagnetic resonance (EPR) spectroscopy offers an exquisite window into membrane protein dynamics in the native-like environment of a lipid bilayer. Systematic application of spin labeling and EPR identifies sequence-specific secondary structures, defines their topology and their packing in the tertiary fold. Long range distance measurements (60 Å-80 Å) between pairs of spin labels enable quantitative analysis of equilibrium dynamics and triggered conformational changes. This review highlights the contribution of spin labeling to bridging structure and mechanism. Efforts to develop methods for determining structures from EPR restraints and to increase sensitivity and throughput promise to expand spin labeling applications in membrane protein structural biology. Copyright Â© 2011 Elsevier Ltd. All rights reserved.
Spin dynamics study of magnetic molecular clusters by means of Moessbauer spectroscopy
International Nuclear Information System (INIS)
Cianchi, L.; Del Giallo, F.; Spina, G.; Reiff, W.; Caneschi, A.
2002-01-01
Spin dynamics of the two magnetic molecular clusters Fe4 and Fe8, with four and eight Fe(III) ions, respectively, was studied by means of Moessbauer spectroscopy. The transition probabilities W's between the spin states of the ground multiplet were obtained from the fitting of the spectra. For the Fe4 cluster we found that, in the range from 1.38 to 77 K, the trend of W's versus the temperature corresponds to an Orbach's process involving an excited state with energy of about 160 K. For the Fe8, which, due to the presence of a low-energy excited state, could not be studied at temperatures greater than 20 K, the trend of W's in the range from 4 to 18 K seems to correspond to a direct process. The correlation functions of the magnetization were then calculated in terms of the W's. They have an exponential trend for the Fe4 cluster, while a small oscillating component is also present for the Fe8 cluster. For the first of the clusters, τ vs T (τ is the decay time of the magnetization) has a trend which, at low temperatures (T 15 K, τ follows the trend of W -1 . For the Fe8, τ follows an Arrhenius law, but with a prefactor which is smaller than the one obtained susceptibility measurements
Spin-valley dynamics of electrically driven ambipolar carbon-nanotube quantum dots
Osika, E. N.; Chacón, A.; Lewenstein, M.; Szafran, B.
2017-07-01
An ambipolar n-p double quantum dot defined by potential variation along a semiconducting carbon-nanotube is considered. We focus on the (1e,1h) charge configuration with a single excess electron of the conduction band confined in the n-type dot and a single missing electron in the valence band state of the p-type dot for which lifting of the Pauli blockade of the current was observed in the electric-dipole spin resonance (Laird et al 2013 Nat. Nanotechnol. 8 565). The dynamics of the system driven by periodic electric field is studied with the Floquet theory and the time-dependent configuration interaction method with the single-electron spin-valley-orbitals determined for atomistic tight-binding Hamiltonian. We find that the transitions lifting the Pauli blockade are strongly influenced by coupling to a vacuum state with an empty n dot and a fully filled p dot. The coupling shifts the transition energies and strongly modifies the effective g factors for axial magnetic field. The coupling is modulated by the bias between the dots but it appears effective for surprisingly large energy splitting between the (1e,1h) ground state and the vacuum (0e, 0h) state. Multiphoton transitions and high harmonic generation effects are also discussed.
Ponomaryov, A. N.; Schulze, E.; Wosnitza, J.; Lampen-Kelley, P.; Banerjee, A.; Yan, J.-Q.; Bridges, C. A.; Mandrus, D. G.; Nagler, S. E.; Kolezhuk, A. K.; Zvyagin, S. A.
2017-12-01
We present high-field electron spin resonance (ESR) studies of the honeycomb-lattice material α -RuCl3 , a prime candidate to exhibit Kitaev physics. Two modes of antiferromagnetic resonance were detected in the zigzag ordered phase, with magnetic field applied in the a b plane. A very rich excitation spectrum was observed in the field-induced quantum paramagnetic phase. The obtained data are compared with the results of recent numerical calculations, strongly suggesting a very unconventional multiparticle character of the spin dynamics in α -RuCl3 . The frequency-field diagram of the lowest-energy ESR mode is found consistent with the behavior of the field-induced energy gap, revealed by thermodynamic measurements.
Electron spin dynamics and optical orientation of Mn2+ ions in GaAs
Akimov, I. A.; Dzhioev, R. I.; Korenev, V. L.; Kusrayev, Yu. G.; Sapega, V. F.; Yakovlev, D. R.; Bayer, M.
2013-04-01
We present an overview of spin-related phenomena in GaAs doped with low concentration of Mn-acceptors (below 1018 cm-3). We use the combination of different experimental techniques such as spin-flip Raman scattering and time-resolved photoluminescence. This allows to evaluate the time evolution of both electron and Mn spins. We show that optical orientation of Mn ions is possible under application of weak magnetic field, which is required to suppress the manganese spin relaxation. The optically oriented Mn2+ ions maintain the spin and return part of the polarization back to the electron spin system providing a long-lived electron spin memory. This leads to a bunch of spectacular effects such as non-exponential electron spin decay and spin precession in the effective exchange fields.
Spin dynamics modeling in the AGS based on a stepwise ray-tracing method
Energy Technology Data Exchange (ETDEWEB)
Dutheil, Yann [Univ. of Grenoble (France)
2006-08-07
The AGS provides a polarized proton beam to RHIC. The beam is accelerated in the AGS from Gγ= 4.5 to Gγ = 45.5 and the polarization transmission is critical to the RHIC spin program. In the recent years, various systems were implemented to improve the AGS polarization transmission. These upgrades include the double partial snakes configuration and the tune jumps system. However, 100% polarization transmission through the AGS acceleration cycle is not yet reached. The current efficiency of the polarization transmission is estimated to be around 85% in typical running conditions. Understanding the sources of depolarization in the AGS is critical to improve the AGS polarized proton performances. The complexity of beam and spin dynamics, which is in part due to the specialized Siberian snake magnets, drove a strong interest for original methods of simulations. For that, the Zgoubi code, capable of direct particle and spin tracking through field maps, was here used to model the AGS. A model of the AGS using the Zgoubi code was developed and interfaced with the current system through a simple command: the AgsFromSnapRampCmd. Interfacing with the machine control system allows for fast modelization using actual machine parameters. Those developments allowed the model to realistically reproduce the optics of the AGS along the acceleration ramp. Additional developments on the Zgoubi code, as well as on post-processing and pre-processing tools, granted long term multiturn beam tracking capabilities: the tracking of realistic beams along the complete AGS acceleration cycle. Beam multiturn tracking simulations in the AGS, using realistic beam and machine parameters, provided a unique insight into the mechanisms behind the evolution of the beam emittance and polarization during the acceleration cycle. Post-processing softwares were developed to allow the representation of the relevant quantities from the Zgoubi simulations data. The Zgoubi simulations proved particularly
International Nuclear Information System (INIS)
Hennion, M.; Hennion, B.; Mirebeau, I.; Lequien, S.; Hippert, F.
1988-01-01
We report small angle (SANS) and inelastic neutron scattering in zero and applied field for a-FeMn, NiMn and AuFe at composition where both ferromagnetic and frustration characters occur. We discuss the field evolution of the transverse correlations which arise below T c . A study of the field sensitivity of the spin wave anomalies in a-FeMn is reported
Vortex-induced dynamic loads on a non-spinning volleyball
Qing-ding, Wei; Rong-sheng, Lin; Zhi-jie, Liu
1988-09-01
An experiment on vortex-induced dynamic loads on a non-spinning Volleyball was conducted in a wind tunnel. The flow past the Volleyball was visualized, and the aerodynamic load was measured by use of a strain gauge balance. The separation on the Volleyball was measured with hot-film. The experimental results suggest that under the action of an unstable tail vortex system the separation region is changeable, and that the fluctuation of drag and lateral forces is the same order of magnitude as the mean drag, no matter whether the seam of the Volleyball is symmetric or asymmetric, with regard to the flow. Based on the experimental data a numerical simulation of Volleyball swerve motion was made.
International Nuclear Information System (INIS)
Fernández-Pacheco, A.; Mansell, R.; Petit, D.; Lee, J. H.; Cowburn, R. P.; Ummelen, F. C.; Swagten, H. J. M.
2014-01-01
We have designed a bilayer synthetic antiferromagnet where the order of layer reversal can be selected by varying the sweep rate of the applied magnetic field. The system is formed by two ultra-thin ferromagnetic layers with different proximities to the spin reorientation transition, coupled antiferromagnetically using Ruderman-Kittel-Kasuya-Yosida interactions. The different dynamic magnetic reversal behavior of both layers produces a crossover in their switching fields for field rates in the kOe/s range. This effect is due to the different effective anisotropy of both layers, added to an appropriate asymmetric antiferromagnetic coupling between them. Field-rate controlled selective switching of perpendicular magnetic anisotropy layers as shown here can be exploited in sensing and memory applications.
A Study of Particle Beam Spin Dynamics for High Precision Experiments
Energy Technology Data Exchange (ETDEWEB)
Fiedler, Andrew J. [Northern Illinois Univ., DeKalb, IL (United States)
2017-05-01
In the search for physics beyond the Standard Model, high precision experiments to measure fundamental properties of particles are an important frontier. One group of such measurements involves magnetic dipole moment (MDM) values as well as searching for an electric dipole moment (EDM), both of which could provide insights about how particles interact with their environment at the quantum level and if there are undiscovered new particles. For these types of high precision experiments, minimizing statistical uncertainties in the measurements plays a critical role. \\\\ \\indent This work leverages computer simulations to quantify the effects of statistical uncertainty for experiments investigating spin dynamics. In it, analysis of beam properties and lattice design effects on the polarization of the beam is performed. As a case study, the beam lines that will provide polarized muon beams to the Fermilab Muon \\emph{g}-2 experiment are analyzed to determine the effects of correlations between the phase space variables and the overall polarization of the muon beam.
Differential diagnosis of extra-axial intracranial tumours by dynamic spin-echo MRI
International Nuclear Information System (INIS)
Joo, Y.G.; Korogi, Y.; Hirai, T.; Sakamoto, Y.; Sumi, M.; Takahashi, M.; Ushio, Y.
1995-01-01
Dynamic MRI was performed on 22 patients with extra-axial intracranial tumours. Serial images were obtained every 30 s for 3 min using a spin-echo sequence (TR 200, TE 15 ms) after rapid injection of Gd-DTPA, 0.1 mmol/kg body weight. The contrast medium enhancement ratio (CER) was correlated with the histology of the tumours. Meningiomas and extra-axial metastases showed a sharp rise, then a gradual decline. Although both had a definite early peak of CER, metastases showed a more rapid decline. Neuromas and extra-axial lymphoma showed a slow, steady increase with no peak within 180 s. This study indicates that the CER is helpful in the differentiation of extra-axial tumours. (orig.)
Wasserman, A. M.; Kasaikin, V. A.; Zakharova, Yu. A.; Aliev, I. I.; Baranovsky, V. Yu.; Doseva, V.; Yasina, L. L.
2002-04-01
Molecular dynamics and organization of the micellar phase of complexes of linear polyelectrolytes with ionogenic and non-ionogenic surfactants was studied by the ESR spin probe method. Complexes of polyacrylic acid (PAA) and sodium polystyrenesulfonate (PSS) with alkyltrimethylammonium bromides (ATAB), as well as complexes of poly- N, N'-dimethyldiallylammonium chloride (PDACL) with sodium dodecylsulfate (SDS) were studied. The micellar phase of such complexes is highly organized molecular system, molecular ordering of which near the polymeric chain is much higher than in the 'center' of the micelle, it depends on the polymer-detergent interaction, flexibility of polymeric chain and length of carbonic part of the detergent molecule. Complexes of polymethacrylic acid (PMAA) with non-ionic detergent (dodecyl-substituted polyethyleneglycol), show that the local mobility of surfactant in such complexes is significantly lower than in 'free' micelles and depends on the number of micellar particles participating in formation of complexes.
Cobb, C E; Hustedt, E J; Beechem, J M; Beth, A H
1993-01-01
An acyl spin-label derivative of 5-aminoeosin (5-SLE) was chemically synthesized and employed in studies of rotational dynamics of the free probe and of the probe when bound noncovalently to bovine serum albumin using the spectroscopic techniques of fluorescence anisotropy decay and electron paramagnetic resonance (EPR) and their long-lifetime counterparts phosphorescence anisotropy decay and saturation transfer EPR. Previous work (Beth, A. H., Cobb, C. E., and J. M. Beechem, 1992. Synthesis and characterization of a combined fluorescence, phosphorescence, and electron paramagnetic resonance probe. Society of Photo-Optical Instrumentation Engineers. Time-Resolved Laser Spectroscopy III. 504-512) has shown that the spin-label moiety only slightly altered the fluorescence and phosphorescence lifetimes and quantum yields of 5-SLE when compared with 5-SLE whose nitroxide had been reduced with ascorbate and with the diamagnetic homolog 5-acetyleosin. In the present work, we have utilized time-resolved fluorescence anisotropy decay and linear EPR spectroscopies to observe and quantitate the psec motions of 5-SLE in solution and the nsec motions of the 5-SLE-bovine serum albumin complex. Time-resolved phosphorescence anisotropy decay and saturation transfer EPR studies have been carried out to observe and quantitate the microseconds motions of the 5-SLE-albumin complex in glycerol/buffer solutions of varying viscosity. These latter studies have enabled a rigorous comparison of rotational correlation times obtained from these complementary techniques to be made with a single probe. The studies described demonstrate that it is possible to employ a single molecular probe to carry out the full range of fluorescence, phosphorescence, EPR, and saturation transfer EPR studies. It is anticipated that "dual" molecular probes of this general type will significantly enhance capabilities for extracting dynamics and structural information from macromolecules and their functional
A neural model for transient identification in dynamic processes with 'don't know' response
Energy Technology Data Exchange (ETDEWEB)
Mol, Antonio C. de A. E-mail: mol@ien.gov.br; Martinez, Aquilino S. E-mail: aquilino@lmp.ufrj.br; Schirru, Roberto E-mail: schirru@lmp.ufrj.br
2003-09-01
This work presents an approach for neural network based transient identification which allows either dynamic identification or a 'don't know' response. The approach uses two 'jump' multilayer neural networks (NN) trained with the backpropagation algorithm. The 'jump' network is used because it is useful to dealing with very complex patterns, which is the case of the space of the state variables during some abnormal events. The first one is responsible for the dynamic identification. This NN uses, as input, a short set (in a moving time window) of recent measurements of each variable avoiding the necessity of using starting events. The other one is used to validate the instantaneous identification (from the first net) through the validation of each variable. This net is responsible for allowing the system to provide a 'don't know' response. In order to validate the method, a Nuclear Power Plant (NPP) transient identification problem comprising 15 postulated accidents, simulated for a pressurized water reactor (PWR), was proposed in the validation process it has been considered noisy data in order to evaluate the method robustness. Obtained results reveal the ability of the method in dealing with both dynamic identification of transients and correct 'don't know' response. Another important point studied in this work is that the system has shown to be independent of a trigger signal which indicates the beginning of the transient, thus making it robust in relation to this limitation.
Energy Technology Data Exchange (ETDEWEB)
Ertas, Mehmet [Department of Physics, Erciyes University, 38039 Kayseri (Turkey); Institute of Science, Erciyes University, 38039 Kayseri (Turkey); Deviren, Bayram [Department of Physics, Nevsehir University, 50300 Nevsehir (Turkey); Keskin, Mustafa, E-mail: keskin@erciyes.edu.tr [Department of Physics, Erciyes University, 38039 Kayseri (Turkey)
2012-03-15
The dynamic phase transitions are studied in the kinetic spin-2 Blume-Capel model under a time-dependent oscillating magnetic field using the effective-field theory with correlations. The effective-field dynamic equation for the average magnetization is derived by employing the Glauber transition rates and the phases in the system are obtained by solving this dynamic equation. The nature (first- or second-order) of the dynamic phase transition is characterized by investigating the thermal behavior of the dynamic magnetization and the dynamic phase transition temperatures are obtained. The dynamic phase diagrams are constructed in the reduced temperature and magnetic field amplitude plane and are of seven fundamental types. Phase diagrams contain the paramagnetic (P), ferromagnetic-2 (F{sub 2}) and three coexistence or mixed phase regions, namely the F{sub 2}+P, F{sub 1}+P and F{sub 2}+F{sub 1}+P, which strongly depend on the crystal-field interaction (D) parameter. The system also exhibits the dynamic tricritical behavior. - Highlights: Black-Right-Pointing-Pointer Dynamic phase transitions are studied in spin-2 BC model using EFT. Black-Right-Pointing-Pointer Dynamic phase diagrams are constructed in (T/zJ, h/zJ) plane. Black-Right-Pointing-Pointer Seven fundamental types of dynamic phase diagrams are found in the system. Black-Right-Pointing-Pointer System exhibits dynamic tricritical behavior.
Memory-keeping effects and forgetfulness in the dynamics of a qubit coupled to a spin chain
International Nuclear Information System (INIS)
Apollaro, Tony J. G.; Di Franco, Carlo; Plastina, Francesco; Paternostro, Mauro
2011-01-01
Using recently proposed measures for non-Markovianity [H.-P. Breuer, E. M. Laine, and J. Piilo, Phys. Rev. Lett. 103, 210401 (2009)], we study the dynamics of a qubit coupled to a spin environment via an energy-exchange mechanism. We show the existence of a point, in the parameter space of the system, where the qubit dynamics is effectively Markovian and that such a point separates two regions with completely different dynamical behaviors. Indeed, our study demonstrates that the qubit evolution can in principle be tuned from a perfectly forgetful one to a deep non-Markovian regime where the qubit is strongly affected by the dynamical backaction of the environmental spins. By means of a theoretical quantum process tomography analysis, we provide a complete and intuitive characterization of the qubit channel.
Spin dynamics in the metallic state of the high Tc superconducting system YBa2Cu3O6+x
International Nuclear Information System (INIS)
Bourges, P.; Sidis, Y.; Regnault, L.P.; Henry, J.Y.; Burlet, P.
1994-01-01
The spin dynamics in single-crystals of YBa 2 Cu 3 O 6+x has been successfully investigated, by inelastic neutron scattering (INS) experiments, as a function of temperature in the metallic state over the whole doping range from the weakly-doped to the heavily-doped and the over-doped regimes. Dynamical AF-correlations persist in all the metallic states. The imaginary part of the magnetic susceptibility, χ '' , consists of two contributions which have different doping and temperature dependences. At low temperature, χ '' exhibits an energy gap in any superconducting samples which becomes much weaker close to the insulating-metallic transition. To emphasize the characteristic features of the spin dynamics in YBCO, INS results obtained elsewhere are compared with the experiments. Several theoretical approaches, which intend to describe the energy lineshape of the dynamical magnetic susceptibility, are also discussed. (authors). 6 figs., 51 refs
Coherent spin dynamics of an interwell excitonic gas in GaAs/AlGaAs coupled quantum wells
DEFF Research Database (Denmark)
Larionov, A. V.; Bisti, V. E.; Bayer, M.
2006-01-01
The spin dynamics of an interwell exciton gas has been investigated in n-i-n GaAs/AlGaAs coupled quantum wells. The time evolution kinetics of the interwell exciton photoluminescence has been measured under resonant excitation of the 1s heavy-hole intrawell exciton, using a pulsed tunable laser...
Fuson, Michael M.
2017-01-01
Laboratories studying the anisotropic rotational diffusion of bromobenzene using nuclear spin relaxation and molecular dynamics simulations are described. For many undergraduates, visualizing molecular motion is challenging. Undergraduates rarely encounter laboratories that directly assess molecular motion, and so the concept remains an…
International Nuclear Information System (INIS)
Salmon, L.; Licinio, A.; Jensen, M.R.; Blackledge, M.; Ortega Roldan, J.L.; Van Nuland, N.; Lescop, E.
2011-01-01
We have recently presented a titration approach for the determination of residual dipolar couplings (RDCs) from experimentally inaccessible complexes. Here, we extend this approach to the measurement of 15 N spin relaxation rates and demonstrate that this can provide long-range structural, dynamic, and kinetic information about these elusive systems. (authors)
Energy Technology Data Exchange (ETDEWEB)
Kostylev, M. [School of Physics, M013, University of Western Australia, Crawley, Perth 6009, Western Australia (Australia)
2014-06-21
In this work, we derive the interface exchange boundary conditions for the classical linear dynamics of magnetization in ferromagnetic layers with the interface Dzyaloshinskii-Moriya interaction (IDMI). We show that IDMI leads to pinning of dynamic magnetization at the interface. An unusual peculiarity of the IDMI-based pinning is that its scales as the spin-wave wave number. We incorporate these boundary conditions into an existing numerical model for the dynamics of the Damon-Eshbach spin wave in ferromagnetic films. IDMI affects the dispersion and the frequency non-reciprocity of the travelling Damon-Eshbach spin wave. For a broad range of film thicknesses L and wave numbers, the results of the numerical simulations of the spin wave dispersion are in a good agreement with a simple analytical expression, which shows that the contribution of IDMI to the dispersion scales as 1/L, similarly to the effect of other types of interfacial anisotropy. Suggestions to experimentalists how to detect the presence of IDMI in a spin wave experiment are given.
Dutta, D.; Becherer, M.; Bellaire, D.; Dietrich, F.; Gerhards, M.; Lefkidis, G.; Hübner, W.
2018-06-01
We experimentally and theoretically study the geometry, as well as the electronic and vibrational properties, of the heterotetranuclear magnetic cluster [Co3Ni (EtOH )] +, which is prepared in the gas phase with molecular beam expansion. We characterize the cluster and identify possible isomers through the comparison of experimentally observed infrared spectra with state-of-the-art quantum chemistry calculations, more specifically by focusing on the OH stretching frequency. Furthermore, we suggest ultrafast, laser-induced, local spin-flip scenarios on every Co atom, and report a cooperative effect, in which the spin density is localized on one Co atom, gets transiently transferred to another, and then bounces back pointing in the opposite direction. Finally, we predict a tolerance of the suggested scenarios with respect to the laser detuning of about 20 meV, which lies within an experimentally applicable range. Our joint investigation is an additional step toward the implementation of laser-controlled nanospintronic devices.
Sahu, Indra D; Craig, Andrew F; Dunagum, Megan M; McCarrick, Robert M; Lorigan, Gary A
2017-10-05
Site-directed spin labeling (SDSL) coupled with electron paramagnetic resonance (EPR) spectroscopy is a very powerful technique to study structural and dynamic properties of membrane proteins. The most widely used spin label is methanthiosulfonate (MTSL). However, the flexibility of this spin label introduces greater uncertainties in EPR measurements obtained for determining structures, side-chain dynamics, and backbone motion of membrane protein systems. Recently, a newer bifunctional spin label (BSL), 3,4-bis(methanethiosulfonylmethyl)-2,2,5,5-tetramethyl-2,5-dihydro-1H-pyrrol-1-yloxy, has been introduced to overcome the dynamic limitations associated with the MTSL spin label and has been invaluable in determining protein backbone dynamics and inter-residue distances due to its restricted internal motion and fewer size restrictions. While BSL has been successful in providing more accurate information about the structure and dynamics of several proteins, a detailed characterization of the spin label is still lacking. In this study, we characterized BSLs by performing CW-EPR spectral line shape analysis as a function of temperature on spin-labeled sites inside and outside of the membrane for the integral membrane protein KCNE1 in POPC/POPG lipid bilayers and POPC/POPG lipodisq nanoparticles. The experimental data revealed a powder pattern spectral line shape for all of the KCNE1-BSL samples at 296 K, suggesting the motion of BSLs approaches the rigid limit regime for these series of samples. BSLs were further utilized to report for the first time the distance measurement between two BSLs attached on an integral membrane protein KCNE1 in POPC/POPG lipid bilayers at room temperature using dipolar line broadening CW-EPR spectroscopy. The CW dipolar line broadening EPR data revealed a 15 ± 2 Å distance between doubly attached BSLs on KCNE1 (53/57-63/67) which is consistent with molecular dynamics modeling and the solution NMR structure of KCNE1 which yielded a
Dynamics of massless higher spins in the second order in curvatures
International Nuclear Information System (INIS)
Vasiliev, M.A.
1989-08-01
The consistent equations of motion of interacting fields of all spins s=0,1/2,1...∞ are constructed explicitly to the second order of the expansion in powers of the higher spin strengths. (author). 14 refs
Dynamics of massless higher spins in the second order in curvatures
Energy Technology Data Exchange (ETDEWEB)
Vasiliev, M A [International Centre for Theoretical Physics, Trieste (Italy)
1990-04-05
The consistent equations of motion of interacting massless fields of all spins s=0, 1/2, 1, ..., {infinity} are constructed explicitly to the second order of the expansion in powers of the higher spin strengths. (orig.).
International Nuclear Information System (INIS)
Amarteifio, E.; Wormsbecher, S.; Krix, M.; Demirel, S.; Braun, S.; Delorme, S.; Böckler, D.; Kauczor, H.-U.; Weber, M.-A.
2012-01-01
Objective: To quantify muscular micro-perfusion and arterial perfusion reserve in peripheral arterial disease (PAD) with dynamic contrast-enhanced ultrasound (CEUS) and transient arterial occlusion. Materials and methods: This study had local institutional review board approval and written informed consent was obtained from all subjects. We examined the dominant lower leg of 40 PAD Fontaine stage IIb patients (mean age, 65 years) and 40 healthy volunteers (mean age, 54 years) with CEUS (7 MHz; MI, 0.28) during continuous intravenous infusion of 4.8 mL microbubbles. Transient arterial occlusion at mid-thigh level simulated physical exercise. With time–CEUS–intensity curves obtained from regions of interest within calf muscles, we derived the maximum CEUS signal after occlusion (max) and its time (t max ), slope to maximum (m), vascular response after occlusion (AUC post ), and analysed accuracy, receiver operating characteristic (ROC) curves, and correlations with ankle-brachial index (ABI) and walking distance. Results: All parameters differed in PAD and volunteers (p max was delayed (31.2 ± 13.6 vs. 16.7 ± 8.5 s, p post as optimal parameter combination for diagnosing PAD and therefore impaired arterial perfusion reserve. Conclusions: Dynamic CEUS with transient arterial occlusion quantifies muscular micro-perfusion and arterial perfusion reserve. The technique is accurate to diagnose PAD.
Tsuchimoto, Masashi; Tanimura, Yoshitaka
2015-08-11
A system with many energy states coupled to a harmonic oscillator bath is considered. To study quantum non-Markovian system-bath dynamics numerically rigorously and nonperturbatively, we developed a computer code for the reduced hierarchy equations of motion (HEOM) for a graphics processor unit (GPU) that can treat the system as large as 4096 energy states. The code employs a Padé spectrum decomposition (PSD) for a construction of HEOM and the exponential integrators. Dynamics of a quantum spin glass system are studied by calculating the free induction decay signal for the cases of 3 × 2 to 3 × 4 triangular lattices with antiferromagnetic interactions. We found that spins relax faster at lower temperature due to transitions through a quantum coherent state, as represented by the off-diagonal elements of the reduced density matrix, while it has been known that the spins relax slower due to suppression of thermal activation in a classical case. The decay of the spins are qualitatively similar regardless of the lattice sizes. The pathway of spin relaxation is analyzed under a sudden temperature drop condition. The Compute Unified Device Architecture (CUDA) based source code used in the present calculations is provided as Supporting Information .
Magnetic order and spin dynamics in the heavy Fermion system YbNi{sub 4}P{sub 2}
Energy Technology Data Exchange (ETDEWEB)
Spehling, Johannes; Guenther, Marco; Yeche, Nicholas; Klauss, Hans-Henning [Institut fuer Festkoerperphysik, TU Dresden (Germany); Luetkens, Hubertus; Baines, Chris [Laboratory for Muonm Spin Spectroscopy, Paul Scherrer Institut, Villigen (Switzerland); Krellner, Cornelius; Geibel, Christoph; Steglich, Frank [Max-Planck-Institut fuer Chemische Physik Fester Stoffe, Dresden (Germany)
2012-07-01
A longstanding question in the field of quantum criticality relates to the possible existence of a ferromagnetic (FM) quantum critical point (QCP). At a QCP, collective quantum fluctuations tune the system continuously from a magnetically ordered to a non-magnetic ground state. However, so far no 4f-material with a FM QCP is found. Recently, in the HF metal YbNi{sub 4}P{sub 2} with a quasi 1D-electronic structure, FM quantum criticality above a low FM transition temperature of T{sub C}=170 mK was suggested. Our zero field muon spin relaxation on YbNi{sub 4}P{sub 2} proves static magnetic order with a strongly reduced ordered Yb{sup 3+} moment below T{sub C}. Above T{sub C}, the muon asymmetry function P(t,B) is dominated by quasi homogeneous spin fluctuations and exhibits a time-field scaling relation P(t,B)=P(t/B{sup {gamma}}) indicating cooperative critical spin dynamics. At T=190 mK, slightly above T{sub C}, {gamma}=0.81(5) K suggesting time-scale invariant power-law behavior for the dynamic electronic spin-spin autocorrelation function. The results are discussed in comparison with the AFM compound YbRh{sub 2}Si{sub 2}.
Energy Technology Data Exchange (ETDEWEB)
Khomitsky, D. V., E-mail: khomitsky@phys.unn.ru; Chubanov, A. A.; Konakov, A. A. [Lobachevsky National Research State University of Nizhny Novgorod, Department of Physics (Russian Federation)
2016-12-15
The dynamics of Dirac–Weyl spin-polarized wavepackets driven by a periodic electric field is considered for the electrons in a mesoscopic quantum dot formed at the edge of the two-dimensional HgTe/CdTe topological insulator with Dirac–Weyl massless energy spectra, where the motion of carriers is less sensitive to disorder and impurity potentials. It is observed that the interplay of strongly coupled spin and charge degrees of freedom creates the regimes of irregular dynamics in both coordinate and spin channels. The border between the regular and irregular regimes determined by the strength and frequency of the driving field is found analytically within the quasiclassical approach by means of the Ince–Strutt diagram for the Mathieu equation, and is supported by full quantum-mechanical simulations of the driven dynamics. The investigation of quasienergy spectrum by Floquet approach reveals the presence of non-Poissonian level statistics, which indicates the possibility of chaotic quantum dynamics and corresponds to the areas of parameters for irregular regimes within the quasiclassical approach. We find that the influence of weak disorder leads to partial suppression of the dynamical chaos. Our findings are of interest both for progress in the fundamental field of quantum chaotic dynamics and for further experimental and technological applications of spindependent phenomena in nanostructures based on topological insulators.
Energy Technology Data Exchange (ETDEWEB)
Griesbeck, Michael
2012-11-22
Since many years there has been great effort to explore the spin dynamics in low-dimensional electron systems embedded in GaAs/AlGaAs based heterostructures for the purpose of quantum computation and spintronics applications. Advances in technology allow for the design of high quality and well-defined two-dimensional electron systems (2DES), which are perfectly suited for the study of the underlying physics that govern the dynamics of the electron spin system. In this work, spin dynamics in high-mobility 2DES is studied by means of the all-optical time-resolved Kerr/Faraday rotation technique. In (001)-grown 2DES, a strong in-plane spin dephasing anisotropy is studied, resulting from the interference of comparable Rashba and Dresselhaus contributions to the spin-orbit field (SOF). The dependence of this anisotropy on parameters like the confinement length of the 2DES, the sample temperature, as well as the electron density is demonstrated. Furthermore, coherent spin dynamics of an ensemble of ballistically moving electrons is studied without and within an applied weak magnetic field perpendicular to the sample plane, which forces the electrons to move on cyclotron orbits. Finally, strongly anisotropic spin dynamics is investigated in symmetric (110)-grown 2DES, using the resonant spin amplification method. Here, extremely long out-of-plane spin dephasing times can be achieved, in consequence of the special symmetry of the Dresselhaus SOF.
International Nuclear Information System (INIS)
Kraabel, B.; Klimov, V. I.; Kohlman, R.; Xu, S.; Wang, H-L.; McBranch, D. W.
2000-01-01
Using subpicosecond transient absorption spectroscopy, we investigate the primary photoexcitations in thin films and solutions of several phenylene-based conjugated polymers and an oligomer. We identify several features in the transient absorption spectra and dynamics that are common to all of the materials which we studied from this family. The first spectral feature is a photoinduced absorption (PA) band peaking near 1 eV that has intensity-dependent dynamics that match the stimulated emission dynamics exactly over two orders of magnitude in excitation density. This band is associated with singlet intrachain excitons. The second spectral feature (observed only in thin films and aggregated solutions) is a PA band peaking near 1.8 eV, that is longer lived than the 1 eV exciton PA band, and that has dynamics that are independent (or weakly dependent) on excitation density. This feature is attributed to polarons, generated through a mechanism that is sample dependent. In pristine samples, polarons are generated via a mechanism that is quadratic in exciton density, whereas in photodegraded samples or samples doped with electron acceptors, the generation mechanism becomes linear in exciton density. (c) 2000 The American Physical Society