WorldWideScience

Sample records for transient flow conditions

  1. Transient burnout in flow reduction condition

    International Nuclear Information System (INIS)

    Iwamura, Takamichi; Kuroyanagi, Toshiyuki

    1981-01-01

    A transient flow reduction burnout experiment was conducted with water in a uniformly heated, vertically oriented tube. Test pressures ranged from 0.5 to 3.9 MPa. An analytical method was developed to obtain transient burnout conditions at the exit. A simple correlation to predict the deviation of the transient burnout mass velocity at the tube exit from the steady state mass velocity obtained as a function of steam-water density ratio and flow reduction rate. The correlation was also compared with the other data. (author)

  2. Study of transient burnout under flow reduction condition

    International Nuclear Information System (INIS)

    Iwamura, Takamichi

    1986-09-01

    Transient burnout characteristics of a fuel rod under a rapid flow reduction condition of a light water reactor were experimentally and analytically studied. The test sections were uniformly heated vertical tube and annulus with the heated length of 800 mm. Test pressures ranged 0.5 ∼ 3.9 MPa, heat fluxes 2,160 ∼ 3,860 KW/m 2 , and flow reduction rates 0.44 ∼ 770 %/s. The local flow condition during flow reduction transients were calculated with a separate flow model. The two-fluid/three-field thermal-hydraulic code, COBRA/TRAC, was also used to investigate the liquid film behavior on the heated surface. The major results obtained in the present study are as follows: The onset of burnout under a rapid flow reduction condition was caused by a liquid film dryout on the heated surface. With increasing flow reduction rate beyond a threshold, the burnout mass velocity at the inlet became lower than the steady-state burnout mass velocity. This is explained by the fact that the vapor flow rate continues to increase due to the delay of boiling boundary movement and the resultant high vapor velocity sustains the liquid film flow after the inlet flow rate reaches the steady-state burnout flow rate. The ratio of inlet burnout mass velocities between flow reduction transient and steady-state became smaller with increasing system pressure because of the lower vapor velocity due to the lower vapor specific volume. Flow reduction burnout occurred when the outlet quality agreed with the steady-state burnout quality within 10 %, suggesting that the local condition burnout model can be used for flow reduction transients. Based on this model, a method to predict the time to burnout under a flow reduction condition in a uniformly heated tube was developed. The calculated times to burnout agreed well with some experimental results obtained by the Author, Cumo et al., and Moxon et al. (author)

  3. Transient burnout under rapid flow reduction condition

    International Nuclear Information System (INIS)

    Iwamura, Takamichi

    1987-01-01

    Burnout characteristics were experimentally studied using uniformly heated tube and annular test sections under rapid flow reduction conditions. Observations indicated that the onset of burnout under a flow reduction transient is caused by the dryout of a liquid film on the heated surface. The decrease in burnout mass velocity at the channel inlet with increasing flow reduction rate is attributed to the fact that the vapor flow rate continues to increase and sustain the liquid film flow after the inlet flow rate reaches the steady-state burnout flow rate. This is because the movement of the boiling boundary cannot keep up with the rapid reduction of inlet flow rate. A burnout model for the local condition could be applied to the burnout phenomena with the flow reduction under pressures of 0.5 ∼ 3.9 MPa and flow reduction rates of 0.6 ∼ 35 %/s. Based on this model, a method to predict the burnout time under a flow reduction condition was presented. The calculated burnout times agreed well with experimental results obtained by some investigators. (author)

  4. Study of transient burnout characteristics under flow reduction condition

    International Nuclear Information System (INIS)

    Iwamura, Takamichi; Kuroyanagi, Toshiyuki

    1984-03-01

    As part of a study of the thermal behavior of fuel rods during Power-Cooling-Mismatch (PCM) accidents in light water reactors, burnout characteristics in a uniformly heated, vertically oriented tube or annulus, under flow reduction condition, were experimentally studied. Test pressures ranged 0.1--3.9 MPa and flow reduction rates 0.44--1100%/s. An analytical method is developed to obtain the local mass velocity during a transient condition. The major results are as follows: With increasing flow reduction rate beyond a threshold, transient burnout mass velocity at the inlet was lower than that in steady state tests under the experimental pressures. The higher system pressure resulted in the less transient effects. At pressures higher than 2.0 MPa and flow reduction rates lower than 20%/s, the local burnout mass velocity agreed with the steady state burnout mass velocity, whereas the local burnout mass velocity became higher than the steady state burnout mass velocity at flow reduction rates higher than 20%/s. At pressures lower than 1 MPa, with increasing flow reduction rate beyond the threshold value of 2%/s, the local burnout mass velocity was lower than the steady state burnout mass velocity. An empirical correlation is presented to give the ratio of the transient to the steady state burnout mass velocities at the burnout location as a function of the steam-water density ratio and the flow reduction rate. The experimental results by Cumo et al. agree with the correlation. The correlation, however, cannot predict the experimental results at higher flow reduction rates beyond 40%/s. (author)

  5. Application of a film flow model to predicting burnout under transient conditions

    International Nuclear Information System (INIS)

    Leslie, D.C.; Kirby, G.J.

    1967-08-01

    The film flow model developed previously has been generalised to transient situations by assuming that only convection is changed by the transient; evaporation, deposition and entrainment are assumed to be unaffected. A computer code TRABUT computes the time behaviour of the mass velocity and the quality by the method of characteristics, and then integrates the film flow equations along the same characteristics until the point of burn-out or zero film flow is reached. The time delay between the onset of a transient and burn-out has been computed both for flux and flow transients. These computations have been compared with those made using the standard local conditions hypothesis. The film flow model gives shorter delays in almost all cases, but the difference would not be detectable with present experimental techniques. (author)

  6. Transient flow combustion

    Science.gov (United States)

    Tacina, R. R.

    1984-01-01

    Non-steady combustion problems can result from engine sources such as accelerations, decelerations, nozzle adjustments, augmentor ignition, and air perturbations into and out of the compressor. Also non-steady combustion can be generated internally from combustion instability or self-induced oscillations. A premixed-prevaporized combustor would be particularly sensitive to flow transients because of its susceptability to flashback-autoignition and blowout. An experimental program, the Transient Flow Combustion Study is in progress to study the effects of air and fuel flow transients on a premixed-prevaporized combustor. Preliminary tests performed at an inlet air temperature of 600 K, a reference velocity of 30 m/s, and a pressure of 700 kPa. The airflow was reduced to 1/3 of its original value in a 40 ms ramp before flashback occurred. Ramping the airflow up has shown that blowout is more sensitive than flashback to flow transients. Blowout occurred with a 25 percent increase in airflow (at a constant fuel-air ratio) in a 20 ms ramp. Combustion resonance was found at some conditions and may be important in determining the effects of flow transients.

  7. Modelling and transient simulation of water flow in pipelines using WANDA Transient software

    Directory of Open Access Journals (Sweden)

    P.U. Akpan

    2017-09-01

    Full Text Available Pressure transients in conduits such as pipelines are unsteady flow conditions caused by a sudden change in the flow velocity. These conditions might cause damage to the pipelines and its fittings if the extreme pressure (high or low is experienced within the pipeline. In order to avoid this occurrence, engineers usually carry out pressure transient analysis in the hydraulic design phase of pipeline network systems. Modelling and simulation of transients in pipelines is an acceptable and cost effective method of assessing this problem and finding technical solutions. This research predicts the pressure surge for different flow conditions in two different pipeline systems using WANDA Transient simulation software. Computer models were set-up in WANDA Transient for two different systems namely; the Graze experiment (miniature system and a simple main water riser system based on some initial laboratory data and system parameters. The initial laboratory data and system parameters were used for all the simulations. Results obtained from the computer model simulations compared favourably with the experimental results at Polytropic index of 1.2.

  8. Flow transients experiments with refrigerant-12

    International Nuclear Information System (INIS)

    Celata, G.P.; D'Annibale, F.; Farello, G.E.; Setaro, T.

    1986-01-01

    Flow transients have been investigated in a wide range of thermal-hydraulics situations with Refrigerannt-12. Six pressures (including the reference to PWR and BWR characteristic liquid to vapour densities ratios), several periods of the flowrate transients coastdown during the simulated flow decays, and different specific mass flowrate have been studied emploiyng a circular duct test section (Dsub(i)=7,5 mm). Two heated lengths of the test section have been considered (L = 2300 and 1180 mm). Experimental data have shown the complete inadequacy of steady-state critical heat flux correlations in predicting the onset of boiling crisis during fast flow transients (half-flow decay time, tsub(h)lt5.0-6.0 s). The flow transient does not show dependence, in terms of DNB conditions ,upon the length of the test section: the ratio between transient and steady-state critical mass flowrate is not dependent on the tested geometry. The time interval from the start of the flowrate transient to the onset of DNB (time to crisis), has been experimentally determined for all the runs. Data analysis for a better theoretical prediction of the phenomenon has been accomplished, and a design correlation for DNB conditons and time to crisis prediction has been proposed

  9. Transient flow analysis of integrated valve opening process

    Energy Technology Data Exchange (ETDEWEB)

    Sun, Xinming; Qin, Benke; Bo, Hanliang, E-mail: bohl@tsinghua.edu.cn; Xu, Xingxing

    2017-03-15

    Highlights: • The control rod hydraulic driving system (CRHDS) is a new type of built-in control rod drive technology and the integrated valve (IV) is the key control component. • The transient flow experiment induced by IV is conducted and the test results are analyzed to get its working mechanism. • The theoretical model of IV opening process is established and applied to get the changing rule of the transient flow characteristic parameters. - Abstract: The control rod hydraulic driving system (CRHDS) is a new type of built-in control rod drive technology and the IV is the key control component. The working principle of integrated valve (IV) is analyzed and the IV hydraulic experiment is conducted. There is transient flow phenomenon in the valve opening process. The theoretical model of IV opening process is established by the loop system control equations and boundary conditions. The valve opening boundary condition equation is established based on the IV three dimensional flow field analysis results and the dynamic analysis of the valve core movement. The model calculation results are in good agreement with the experimental results. On this basis, the model is used to analyze the transient flow under high temperature condition. The peak pressure head is consistent with the one under room temperature and the pressure fluctuation period is longer than the one under room temperature. Furthermore, the changing rule of pressure transients with the fluid and loop structure parameters is analyzed. The peak pressure increases with the flow rate and the peak pressure decreases with the increase of the valve opening time. The pressure fluctuation period increases with the loop pipe length and the fluctuation amplitude remains largely unchanged under different equilibrium pressure conditions. The research results lay the base for the vibration reduction analysis of the CRHDS.

  10. Analysis of forced convective transient boiling by homogeneous model of two-phase flow

    International Nuclear Information System (INIS)

    Kataoka, Isao

    1985-01-01

    Transient forced convective boiling is of practical importance in relation to the accident analysis of nuclear reactor etc. For large length-to-diameter ratio, the transient boiling characteristics are predicted by transient two-phase flow calculations. Based on homogeneous model of two-phase flow, the transient forced convective boiling for power and flow transients are analysed. Analytical expressions of various parameters of transient two-phase flow have been obtained for several simple cases of power and flow transients. Based on these results, heat flux, velocity and time at transient CHF condition are predicted analytically for step and exponential power increases, and step, exponential and linear velocity decreases. The effects of various parameters on heat flux, velocity and time at transient CHF condition have been clarified. Numerical approach combined with analytical method is proposed for more complicated cases. Solution method for pressure transient are also described. (author)

  11. Heat transfer in turbocharger turbines under steady, pulsating and transient conditions

    International Nuclear Information System (INIS)

    Burke, R.D.; Vagg, C.R.M.; Chalet, D.; Chesse, P.

    2015-01-01

    Highlights: • Compare turbine heat transfer correlations from different studies. • Compare heat transfer for a same turbine on-engine and on gas-stand. • Analyse heat transfer under steady and transient operating conditions. • Gas stand heat transfer correlations are transferrable to engine conditions. • Heat flows can be reversed compared to steady conditions during transients. - Abstract: Heat transfer is significant in turbochargers and a number of mathematical models have been proposed to account for the heat transfer, however these have predominantly been validated under steady flow conditions. A variable geometry turbocharger from a 2.2 L Diesel engine was studied, both on gas stand and on-engine, under steady and transient conditions. The results showed that heat transfer accounts for at least 20% of total enthalpy change in the turbine and significantly more at lower mechanical powers. A convective heat transfer correlation was derived from experimental measurements to account for heat transfer between the gases and the turbine housing and proved consistent with those published from other researchers. This relationship was subsequently shown to be consistent between engine and gas stand operation: using this correlation in a 1D gas dynamics simulation reduced the turbine outlet temperature error from 33 °C to 3 °C. Using the model under transient conditions highlighted the effect of housing thermal inertia. The peak transient heat flow was strongly linked to the dynamics of the turbine inlet temperature: for all increases, the peak heat flow was higher than under thermally stable conditions due to colder housing. For all decreases in gas temperature, the peak heat flow was lower and for temperature drops of more than 100 °C the heat flow was reversed during the transient

  12. Transient two-phase flow

    International Nuclear Information System (INIS)

    Hsu, Y.Y.

    1974-01-01

    The following papers related to two-phase flow are summarized: current assumptions made in two-phase flow modeling; two-phase unsteady blowdown from pipes, flow pattern in Laval nozzle and two-phase flow dynamics; dependence of radial heat and momentum diffusion; transient behavior of the liquid film around the expanding gas slug in a vertical tube; flooding phenomena in BWR fuel bundles; and transient effects in bubble two-phase flow. (U.S.)

  13. Current capabilities of transient two-phase flow instruments

    International Nuclear Information System (INIS)

    Solbrig, C.W.; Kondic, N.N.

    1979-01-01

    The measurement of two phase flow phenomena in transient conditions representative of a Loss-of-Coolant Accident requires the use of sophisticated instruments and the further development of other instruments. Measurements made in large size pipes are often flow regime dependent. The flow regimes encountered depend upon the system geometry, transient effects, heat transfer, etc. The geometries in which these measurements must be made, the instruments which are currently used, new instruments being developed, the facilities used to calibrate these instruments, and the improvements which must be made to measurement capabilities are described

  14. Pitot tube and drag body measurements in transient steam--water flows

    International Nuclear Information System (INIS)

    Fincke, J.R.; Deason, V.A.; Dacus, M.W.

    1979-01-01

    The use of full-flow drag devices and rakes of water-cooled Pitot tubes to measure the transient two-phase mass flow during loss-of-coolant experiments in pressurized water reactor (PWR) environments has been developed. Mass flow rate measurements have been obtained in high temperature and pressure environments, similar to PWRs, under transient conditions. Comparisons of the measured time integrated value of mass flow to the known system mass before depressurization are made

  15. New transient-flow modelling of a multiple-fractured horizontal well

    International Nuclear Information System (INIS)

    Jia, Yong-Lu; Wang, Ben-Cheng; Nie, Ren-Shi; Wang, Dan-Ling

    2014-01-01

    A new transient-flow modelling of a multiple-fractured horizontal well is presented. Compared to conventional modelling, the new modelling considered more practical physical conditions, such as various inclined angles for different fractures, different fracture intervals, different fracture lengths and partially penetrating fractures to formation. A kind of new mathematical method, including a three-dimensional eigenvalue and orthogonal transform, was created to deduce the exact analytical solutions of pressure transients for constant-rate production in real space. In order to consider a wellbore storage coefficient and skin factor, we used a Laplace-transform approach to convert the exact analytical solutions to the solutions in Laplace space. Then the numerical solutions of pressure transients in real space were gained using a Stehfest numerical inversion. Standard type curves were plotted to describe the transient-flow characteristics. Flow regimes were clearly identified from type curves. Furthermore, the differences between the new modelling and the conventional modelling in pressure transients were especially compared and discussed. Finally, an example application to show the accordance of the new modelling with real conditions was implemented. Our new modelling is different from, but more practical than, conventional modelling. (paper)

  16. A calculation method for transient flow distribution of SCWR(CSR1000)

    International Nuclear Information System (INIS)

    Chen, Juan; Zhou, Tao; Chen, Jie; Liu, Liang; Muhammad, Ali Shahzad; Muhammad, Zeeshan Ali; Xia, Bangyang

    2017-01-01

    The supercritical water reactor CSR1000 is selected for the study. A parallel channel flow transient flow distribution module is developed, which is used for solving unsteady nonlinear equations. The incorporated programs of SCAC-CSR1000 are executed on normal and abnormal operating conditions. The analysis shows that: 1. Transient flow distribution can incorporate parallel channel flow calculation, with an error less than 0.1%; 2. After a total loss of coolant flow, the flow of each channel shows a downward trend; 3. In the event of introducing a traffic accident, the first coolant flow shows an increasing trend.

  17. Transient flow conditions in probabilistic wellhead protection: importance and ways to manage spatial and temporal uncertainty in capture zone delineation

    Science.gov (United States)

    Enzenhoefer, R.; Rodriguez-Pretelin, A.; Nowak, W.

    2012-12-01

    "From an engineering standpoint, the quantification of uncertainty is extremely important not only because it allows estimating risk but mostly because it allows taking optimal decisions in an uncertain framework" (Renard, 2007). The most common way to account for uncertainty in the field of subsurface hydrology and wellhead protection is to randomize spatial parameters, e.g. the log-hydraulic conductivity or porosity. This enables water managers to take robust decisions in delineating wellhead protection zones with rationally chosen safety margins in the spirit of probabilistic risk management. Probabilistic wellhead protection zones are commonly based on steady-state flow fields. However, several past studies showed that transient flow conditions may substantially influence the shape and extent of catchments. Therefore, we believe they should be accounted for in the probabilistic assessment and in the delineation process. The aim of our work is to show the significance of flow transients and to investigate the interplay between spatial uncertainty and flow transients in wellhead protection zone delineation. To this end, we advance our concept of probabilistic capture zone delineation (Enzenhoefer et al., 2012) that works with capture probabilities and other probabilistic criteria for delineation. The extended framework is able to evaluate the time fraction that any point on a map falls within a capture zone. In short, we separate capture probabilities into spatial/statistical and time-related frequencies. This will provide water managers additional information on how to manage a well catchment in the light of possible hazard conditions close to the capture boundary under uncertain and time-variable flow conditions. In order to save computational costs, we take advantage of super-positioned flow components with time-variable coefficients. We assume an instantaneous development of steady-state flow conditions after each temporal change in driving forces, following

  18. Transient disturbance growth in flows over convex surfaces

    Science.gov (United States)

    Karp, Michael; Hack, M. J. Philipp

    2017-11-01

    Flows over curved surfaces occur in a wide range of applications including airfoils, compressor and turbine vanes as well as aerial, naval and ground vehicles. In most of these applications the surface has convex curvature, while concave surfaces are less common. Since monotonic boundary-layer flows over convex surfaces are exponentially stable, they have received considerably less attention than flows over concave walls which are destabilized by centrifugal forces. Non-modal mechanisms may nonetheless enable significant disturbance growth which can make the flow susceptible to secondary instabilities. A parametric investigation of the transient growth and secondary instability of flows over convex surfaces is performed. The specific conditions yielding the maximal transient growth and strongest instability are identified. The effect of wall-normal and spanwise inflection points on the instability process is discussed. Finally, the role and significance of additional parameters, such as the geometry and pressure gradient, is analyzed.

  19. CHF during flow rate, pressure and power transients in heated channels

    International Nuclear Information System (INIS)

    Celata, G.P.; Cumo, M.

    1987-01-01

    The behaviour of forced two-phase flows following inlet flow rate, pressure and power transients is presented here with reference to experiments performed with a R-12 loop. A circular duct, vertical test section (L = 2300 mm; D = 7.5 mm) instrumented with fluid (six) and wall (twelve) thermocouples has been employed. Transients have been carried out performing several values of flow decays (exponential decrease), depressurization rates (exponential decrease) and power inputs (step-wise increase). Experimental data have shown the complete inadequacy of steady-state critical heat flux correlations in predicting the onset of boiling crisis during fast transients. Data analysis for a better theoretical prediction of CHF occurrence during transient conditions has been accomplished, and design correlations for critical heat flux and time-to-crisis predictions have been proposed for the different types of transients

  20. Burnout characteristics under flow reduction condition

    International Nuclear Information System (INIS)

    Iwamura, Takamichi; Kuroyanagai, Toshiyuki

    1982-01-01

    Burnout characteristics in a uniformly heated, vertically oriented tube, under flow reduction condition, were experimentally studied. Test pressures ranged 0.5 -- 3.9 MPa and flow reduction rates 0.6 -- 35%/s. An analytical method was developed to obtain the local mass velocity during a transient condition. The local mass velocity at the burnout location with an increasing flow reduction rate was slightly different from that measured in steady state tests. The system pressure had a significant effect on the difference. An empirical correlation was presented to give the ratio between the transient and steady state burnout mass velocities at the burnout location as a function of the steam-water density ratio and the flow reduction rate. Experimental results of previous work were compared with this correlation. (author)

  1. Performance evaluation of a drag-disc turbine transducer and three-beam gamma densitometer under transient two-phase flow conditions

    International Nuclear Information System (INIS)

    Nalezny, C.L.; Chen, L.L.; Solbrig, C.W.

    1979-01-01

    One of the primary variables measured in the Loss-of-Fluid Test (LOFT) Program is mass flow rate. LOFT uses drag-disc turbine tranducers (DTT) and a three-beam gamma densitometer to measure parameters from which mass flow may be computed. The transducer combination was performance tested under transient conditions in the blowdown loop at the LOFT Test Support Facility (LTSF). The performance tests consisted of three partial blowdowns of different durations starting from the same initial conditions. The reference mean mass flow rate was determined by measuring the amount of water required to reestablish initial conditions after each partial blowdown. The average mass flow rates computed from the output of the drag disc, turbine, and gamma densitometer were compared to the reference mean mass flow rates over three blowdown intervals. The tests indicated that the equal phase velocity mass measurement model provided excellent results through the use of the turbine and densitometer, and drag disc and densitometer when the phase velocities were nearly equal

  2. Impact of typical steady-state conditions and transient conditions on flow ripple and its test accuracy for axial piston pump

    Science.gov (United States)

    Xu, Bing; Hu, Min; Zhang, Junhui

    2015-09-01

    The current research about the flow ripple of axial piston pump mainly focuses on the effect of the structure of parts on the flow ripple. Therein, the structure of parts are usually designed and optimized at rated working conditions. However, the pump usually has to work in large-scale and time-variant working conditions. Therefore, the flow ripple characteristics of pump and analysis for its test accuracy with respect to variant steady-state conditions and transient conditions in a wide range of operating parameters are focused in this paper. First, a simulation model has been constructed, which takes the kinematics of oil film within friction pairs into account for higher accuracy. Afterwards, a test bed which adopts Secondary Source Method is built to verify the model. The simulation and tests results show that the angular position of the piston, corresponding to the position where the peak flow ripple is produced, varies with the different pressure. The pulsating amplitude and pulsation rate of flow ripple increase with the rise of pressure and the variation rate of pressure. For the pump working at a constant speed, the flow pulsation rate decreases dramatically with the increasing speed when the speed is less than 27.78% of the maximum speed, subsequently presents a small decrease tendency with the speed further increasing. With the rise of the variation rate of speed, the pulsating amplitude and pulsation rate of flow ripple increase. As the swash plate angle augments, the pulsating amplitude of flow ripple increases, nevertheless the flow pulsation rate decreases. In contrast with the effect of the variation of pressure, the test accuracy of flow ripple is more sensitive to the variation of speed. It makes the test accuracy above 96.20% available for the pulsating amplitude of pressure deviating within a range of ±6% from the mean pressure. However, with a variation of speed deviating within a range of ±2% from the mean speed, the attainable test

  3. Evaluation of LWR fuel rod behavior under operational transient conditions

    International Nuclear Information System (INIS)

    Nakamura, M.; Hiramoto, K.; Maru, A.

    1984-01-01

    To evaluate the effects of fission gas flow and diffusion in the fuel-cladding gap on fuel rod thermal and mechanical behaviors in light water reactor (LWR) fuel rods under operational transient conditions, computer sub-programs which can calculate the gas flow and diffusion have been developed and integrated into the LWR fuel rod performance code BEAF. This integrated code also calculates transient temperature distribution in the fuel-pellet and cladding. The integrated code was applied to an analysis of Inter Ramp Project data, which showed that by taking into account the gas flow and diffusion effects, the calculated cladding damage indices predicted for the failed rods in the ramp test were consistent with iodine-SCC (Stress Corrosion Cracking) failure conditions which were obtained from out-of-reactor pressurized tube experiments with irradiated Zircaloy claddings. This consistency was not seen if the gas flow and diffusion effects were neglected. Evaluation were also made for the BWR 8x8 RJ fuel rod temperatures under power ramp conditions. (orig.)

  4. Temperature transient response measurement in flowing water

    International Nuclear Information System (INIS)

    Rainbird, J.C.

    1980-01-01

    A specially developed procedure is described for determining the thermal transient response of thermocouples and other temperature transducers when totally immersed in flowing water. The high velocity heat transfer conditions associated with this facility enable thermocouple response times to be predicted in other fluids. These predictions can be confirmed by electrical analogue experiments. (author)

  5. Numerical Investigation of Transient Flow in a Prototype Centrifugal Pump during Startup Period

    Science.gov (United States)

    Zhang, Yu-Liang; Zhu, Zu-Chao; Dou, Hua-Shu; Cui, Bao-Ling; Li, Yi; Zhou, Zhao-Zhong

    2017-05-01

    Transient performance of pumps during transient operating periods, such as startup and stopping, has drawn more and more attentions recently due to the growing engineering needs. During the startup period of a pump, the performance parameters such as the flow rate and head would vary significantly in a broad range. Therefore, it is very difficult to accurately specify the unsteady boundary conditions for a pump alone to solve the transient flow in the absence of experimental results. The closed-loop pipe system including a centrifugal pump is built to accomplish the self-coupling calculation. The three-dimensional unsteady incompressible viscous flow inside the passage of the pump during startup period is numerically simulated using the dynamic mesh method. Simulation results show that there are tiny fluctuations in the flow rate even under stable operating conditions and this can be attributed to influence of the rotor-stator interaction. At the very beginning of the startup, the rising speed of the flow rate is lower than that of the rotational speed. It is also found that it is not suitable to predict the transient performance of pumps using the calculation method of quasi-steady flow, especially at the earlier period of the startup.

  6. Uncertainty in simulated groundwater-quality trends in transient flow

    Science.gov (United States)

    Starn, J. Jeffrey; Bagtzoglou, Amvrossios; Robbins, Gary A.

    2013-01-01

    In numerical modeling of groundwater flow, the result of a given solution method is affected by the way in which transient flow conditions and geologic heterogeneity are simulated. An algorithm is demonstrated that simulates breakthrough curves at a pumping well by convolution-based particle tracking in a transient flow field for several synthetic basin-scale aquifers. In comparison to grid-based (Eulerian) methods, the particle (Lagrangian) method is better able to capture multimodal breakthrough caused by changes in pumping at the well, although the particle method may be apparently nonlinear because of the discrete nature of particle arrival times. Trial-and-error choice of number of particles and release times can perhaps overcome the apparent nonlinearity. Heterogeneous aquifer properties tend to smooth the effects of transient pumping, making it difficult to separate their effects in parameter estimation. Porosity, a new parameter added for advective transport, can be accurately estimated using both grid-based and particle-based methods, but predictions can be highly uncertain, even in the simple, nonreactive case.

  7. Transient flow characteristics of nuclear reactor coolant pump in recessive cavitation transition process

    International Nuclear Information System (INIS)

    Wang Xiuli; Yuan Shouqi; Zhu Rongsheng; Yu Zhijun

    2013-01-01

    The numerical simulation calculation of the transient flow characteristics of nuclear reactor coolant pump in the recessive cavitation transition process in the nuclear reactor coolant pump impeller passage is conducted by CFX, and the transient flow characteristics of nuclear reactor coolant pump in the transition process from reducing the inlet pressure at cavitation-born conditions to NPSHc condition is studied and analyzed. The flow field analysis shows that, in the recessive cavitation transition process, the speed diversification at the inlet is relative to the bubble increasing, and makes the speed near the blade entrance increase when the bubble phase region becomes larger. The bubble generation and collapse will affect the the speed fluctuation near the entrance. The vorticity close to the blade entrance gradually increasing is influenced by the bubble phase, and the collapse of bubble generated by cavitation will reduce the vorticity from the collapse to impeller outlet. Pump asymmetric structure causes the asymmetry of the flow, velocity and outlet pressure distribution within every impeller flow passage, which cause the asymmetry of the transient radial force. From the dimensionless t/T = 0.6, the bubble phase starts to have impact on the impeller transient radial force, and results in the irregular fluctuations. (authors)

  8. Reduced-order modellin for high-pressure transient flow of hydrogen-natural gas mixture

    Science.gov (United States)

    Agaie, Baba G.; Khan, Ilyas; Alshomrani, Ali Saleh; Alqahtani, Aisha M.

    2017-05-01

    In this paper the transient flow of hydrogen compressed-natural gas (HCNG) mixture which is also referred to as hydrogen-natural gas mixture in a pipeline is numerically computed using the reduced-order modelling technique. The study on transient conditions is important because the pipeline flows are normally in the unsteady state due to the sudden opening and closure of control valves, but most of the existing studies only analyse the flow in the steady-state conditions. The mathematical model consists in a set of non-linear conservation forms of partial differential equations. The objective of this paper is to improve the accuracy in the prediction of the HCNG transient flow parameters using the Reduced-Order Modelling (ROM). The ROM technique has been successfully used in single-gas and aerodynamic flow problems, the gas mixture has not been done using the ROM. The study is based on the velocity change created by the operation of the valves upstream and downstream the pipeline. Results on the flow characteristics, namely the pressure, density, celerity and mass flux are based on variations of the mixing ratio and valve reaction and actuation time; the ROM computational time cost advantage are also presented.

  9. Three dimensional neutronic/thermal-hydraulic coupled simulation of MSR in transient state condition

    International Nuclear Information System (INIS)

    Zhou, Jianjun; Zhang, Daling; Qiu, Suizheng; Su, Guanghui; Tian, Wenxi; Wu, Yingwei

    2015-01-01

    Highlights: • Developed a three dimensional neutronic/thermal-hydraulic coupled transient analysis code for MSR. • Investigated the neutron distribution and thermal-hydraulic characters of the core under transient condition. • Analyzed three different transient conditions of inlet temperature drop, reactivity jump and pump coastdown. - Abstract: MSR (molten salt reactor) use liquid molten salt as coolant and fuel solvent, which was the only one liquid reactor of six Generation IV reactor types. As a liquid reactor the physical property of reactor was significantly influenced by fuel salt flow and the conventional analysis methods applied in solid fuel reactors are not applicable for this type of reactors. The present work developed a three dimensional neutronic/thermal-hydraulic coupled code investigated the neutronics and thermo-hydraulics characteristics of the core in transient condition based on neutron diffusion theory and numerical heat transfer. The code consists of two group neutron diffusion equations for fast and thermal neutron fluxes and six group balance equations for delayed neutron precursors. The code was separately validated by neutron benchmark and flow and heat transfer benchmark. Three different transient conditions was analyzed with inlet temperature drop, reactivity jump and pump coastdown. The results provide some valuable information in design and research this kind of reactor

  10. Three dimensional neutronic/thermal-hydraulic coupled simulation of MSR in transient state condition

    Energy Technology Data Exchange (ETDEWEB)

    Zhou, Jianjun [School of Nuclear Science and Technology, Xi’an Jiaotong University, Xianning Road, 28, Xi’an 710049, Shaanxi (China); College of Mechanical and Power Engineering, China Three Gorges University, No 8, Daxue road, Yichang, Hubei 443002 (China); Zhang, Daling, E-mail: dlzhang@mail.xjtu.edu.cn [School of Nuclear Science and Technology, Xi’an Jiaotong University, Xianning Road, 28, Xi’an 710049, Shaanxi (China); Qiu, Suizheng; Su, Guanghui; Tian, Wenxi; Wu, Yingwei [School of Nuclear Science and Technology, Xi’an Jiaotong University, Xianning Road, 28, Xi’an 710049, Shaanxi (China)

    2015-02-15

    Highlights: • Developed a three dimensional neutronic/thermal-hydraulic coupled transient analysis code for MSR. • Investigated the neutron distribution and thermal-hydraulic characters of the core under transient condition. • Analyzed three different transient conditions of inlet temperature drop, reactivity jump and pump coastdown. - Abstract: MSR (molten salt reactor) use liquid molten salt as coolant and fuel solvent, which was the only one liquid reactor of six Generation IV reactor types. As a liquid reactor the physical property of reactor was significantly influenced by fuel salt flow and the conventional analysis methods applied in solid fuel reactors are not applicable for this type of reactors. The present work developed a three dimensional neutronic/thermal-hydraulic coupled code investigated the neutronics and thermo-hydraulics characteristics of the core in transient condition based on neutron diffusion theory and numerical heat transfer. The code consists of two group neutron diffusion equations for fast and thermal neutron fluxes and six group balance equations for delayed neutron precursors. The code was separately validated by neutron benchmark and flow and heat transfer benchmark. Three different transient conditions was analyzed with inlet temperature drop, reactivity jump and pump coastdown. The results provide some valuable information in design and research this kind of reactor.

  11. Transient analysis of multifailure conditions by using PWR plant simulator

    International Nuclear Information System (INIS)

    Morisaki, Hidetoshi; Yokobayashi, Masao.

    1984-11-01

    This report describes results of the analysis of abnormal transients caused by multifailures using a PWR plant simulator. The simulator is based on an existing 822MWe power plant with 3 loops, and designed to cover wide range of plant operation from cold shutdown to full power at the end of life. Various malfunctions to simulate abnormal conditions caused by equipment failures are provided. In this report, features of abnormal transients caused by concurrence of malfunctions are discussed. The abnormal conditions studied are leak of primary coolant, loss of charging and feedwater flows, and control systems failure. From the results, it was observed that transient responses caused by some of the malfunctions are almost same as the addition of behaviors caused by each single malfunction. Therefore, it can be said that kinds of malfunctions which are concurrent may be estimated from transient characteristics of each single malfunction. (author)

  12. Simulation of transient fluid flow in mold region during steel continuous casting

    International Nuclear Information System (INIS)

    Liu, R; Thomas, B G; Sengupta, J

    2012-01-01

    A system of models has been developed to study transient flow during continuous casting and applied to simulate an event of multiple stopper-rod movements. It includes four sub-models to incorporate different aspects in this transient event. A three-dimensional (3-D) porous-flow model of the nozzle wall calculates the rate argon gas flow into the liquid steel, and the initial mean bubble size is estimated. Transient CFD models simulate multiphase flow of steel and gas bubbles in the Submerged Entry Nozzle (SEN) and mold and have been validated with experimental data from both nail dipping and Sub-meniscus Velocity Control (SVC) measurements. To obtain the transient inlet boundary conditions for the simulation, two semi-empirical models, a stopper-rod-position based model and a metal-level-based model, predict the liquid steel flow rate through the SEN based on recorded plant data. Finally the model system was applied to study the effects of stopper rod movements on SEN/mold flow patterns. Meniscus level fluctuations were calculated using a simple pressure method and compared well with plant measurements. Insights were gained from the simulation results to explain the cause of meniscus level fluctuations and the formation of sliver defects during stopper rod movements.

  13. Transient performance of flow in PWR reactor circuits

    International Nuclear Information System (INIS)

    Hirdes, V.R.T.R.; Carajilescov, P.

    1988-12-01

    Generally, PWR's are designed with several primary loops, each one provided with a pump to circulate the coolant through the core. If one or more of these pumps fail, there would be a decrease in reactor flow rate which cause coolant phase change in the core and components overheating. The present work establishes a simulation model for pump failure in PWR's and the SARDAN-FLOW computes code was developed, considering any combination of such failures. Based on the data of Angra I, several accident and operational transient conditions were simulated. (author) [pt

  14. Analysis of steady state and transient two-phase flows in downwardly inclined lines

    International Nuclear Information System (INIS)

    Crawford, T.J.

    1983-01-01

    A study of steady-state and transient two-phase flows in downwardly inclined lines is described. Steady-state flow patterns maps are presented using Freon-113 as the working fluid to provide new high density vapors. These flow maps with high density vapor serve to significantly extend the investigations of steady-state downward two-phase flow patterns. Physical models developed which successfully predicted the onset or location of various flow pattern transitions. A new simplified criterion that would be useful to designers and experimenters is offered for the onset of dispersed flow. A new empirical holdup correlation and a new bubble diameter/flow rate correlation are also proposed. Flow transients in vertical downward lines were studied to investigate the possible formation of intermediate or spurious flow patterns that would not be seen at steady-state conditions. Void fraction behavior during the transients was modeled by using the dynamic slip equation from the transient analysis code RETRAN. Physical models of interfacial area were developed and compared with models and data from literature. There was satisfactory agreement between the models of the present study and the literature models and data. The concentration parameter of the drift flux model was evaluated for vertical downward flow. These new values of the flow dependent parameter were different from those previously proposed in the literature for use in upward flows, and made the drift flux model suitable for use in upward or downward flow lines

  15. Critical power characteristics in 37-rod tight lattice bundles under transient conditions

    International Nuclear Information System (INIS)

    Liu, Wei; Kureta, Masatoshi; Tamai, Hidesada; Ohnuki, Akira; Akimoto, Hajime

    2007-01-01

    Critical power characteristics in the postulated abnormal transient processes that may be possibly met in the operation of Innovative Water Reactor for Flexible Fuel Cycle (FLWR) were investigated for the design of the FLWR core. Transient Boiling Transition (BT) tests were carried out using two sets of 37-rod tight lattice rod bundles (rod diameter: 13 mm; rod clearance: 1.3 mm or 1.0 mm) at Japan Atomic Energy Agency (JAEA) under the conditions covering the FLWR operating condition (P ex =7.2 MPa, T in =556 K) for mass velocity G=400-800 kg/(m 2 s). For the postulated power increase and flow decrease transients, no obvious change of the critical power against the steady one was observed. The traditional quasi-steady characteristic was confirmed to be working for the postulated power increase and flow decrease transients. The experiments were analyzed with TRAC-BF1 code, where the JAEA newest critical power correlation for the tight lattice rod bundles was implemented for the BT judgment. The TRAC-BF1 code showed good prediction for the occurrence or the non occurrence of the BT and for the exact BT starting time. The tranditional quasi-steady state prediction of the BT in transient process was confirmed to be applicable for the postulated abnormal transient processes in the tight lattice rod bundles. (author)

  16. HYTRAN: hydraulic transient code for investigating channel flow stability

    International Nuclear Information System (INIS)

    Kao, H.S.; Cardwell, W.R.; Morgan, C.D.

    1976-01-01

    HYTRAN is an analytical program used to investigate the possibility of hydraulic oscillations occurring in a reactor flow channel. The single channel studied is ordinarily the hot channel in the reactor core, which is parallel to other channels and is assumed to share a constant pressure drop with other channels. Since the channel of highest thermal state is studied, provision is made for two-phase flow that can cause a flow instability in the channel. HYTRAN uses the CHATA(1) program to establish a steady-state condition. A heat flux perturbation is then imposed on the channel, and the flow transient is calculated as a function of time

  17. Investigation on transient flow of a centrifugal charging pump in the process of high pressure safety injection

    Energy Technology Data Exchange (ETDEWEB)

    Zhang, Fan, E-mail: zhangfan4060@gmail.com; Yuan, Shouqi; Fu, Qiang; Tao, Yi

    2015-11-15

    Highlights: • The transient flow characteristics of the charging pump with the first stage impeller in the HPSI process have been investigated numerically by CFD. • The hydraulic performance of the charging pump during the HPSI are discussed, andthe absolute errors between the simulated and measured results are analyzed in the paper. • Pressure fluctuation in the impeller and flow pattern in the impeller were studied in the HPSI process. It is influenced little at the beginning of the HPSI process while fluctuates strongly in the end of the HPSI process. - Abstract: In order to investigate the transient flow characteristics of the centrifugal charging pump during the transient transition process of high pressure safety injection (HPSI) from Q = 148 m{sup 3}/h to Q = 160 m{sup 3}/h, numerical simulation and experiment are implemented in this study. The transient flow rate, which is the most important factor, is obtained from the experiment and works as the boundary condition to accurately accomplish the numerical simulation in the transient process. Internal characteristics under the variable operating conditions are analyzed through the transient simulation. The results shows that the absolute error between the simulated and measured heads is less than 2.26% and the absolute error between the simulated and measured efficiency is less than 2.04%. Pressure fluctuation in the impeller is less influenced by variable flow rate in the HPSI process, while flow pattern in the impeller is getting better and better with the flow rate increasing. As flow rate increases, fluid blocks on the tongue of the volute and it strikes in this area at large flow rate. Correspondingly, the pressure fluctuation is intense and vortex occurs gradually during this period, which obviously lowers the efficiency of the pump. The contents of the current work can provide references for the design optimization and fluid control of the pump used in the transient process of variable operating

  18. Investigation on transient flow of a centrifugal charging pump in the process of high pressure safety injection

    International Nuclear Information System (INIS)

    Zhang, Fan; Yuan, Shouqi; Fu, Qiang; Tao, Yi

    2015-01-01

    Highlights: • The transient flow characteristics of the charging pump with the first stage impeller in the HPSI process have been investigated numerically by CFD. • The hydraulic performance of the charging pump during the HPSI are discussed, andthe absolute errors between the simulated and measured results are analyzed in the paper. • Pressure fluctuation in the impeller and flow pattern in the impeller were studied in the HPSI process. It is influenced little at the beginning of the HPSI process while fluctuates strongly in the end of the HPSI process. - Abstract: In order to investigate the transient flow characteristics of the centrifugal charging pump during the transient transition process of high pressure safety injection (HPSI) from Q = 148 m"3/h to Q = 160 m"3/h, numerical simulation and experiment are implemented in this study. The transient flow rate, which is the most important factor, is obtained from the experiment and works as the boundary condition to accurately accomplish the numerical simulation in the transient process. Internal characteristics under the variable operating conditions are analyzed through the transient simulation. The results shows that the absolute error between the simulated and measured heads is less than 2.26% and the absolute error between the simulated and measured efficiency is less than 2.04%. Pressure fluctuation in the impeller is less influenced by variable flow rate in the HPSI process, while flow pattern in the impeller is getting better and better with the flow rate increasing. As flow rate increases, fluid blocks on the tongue of the volute and it strikes in this area at large flow rate. Correspondingly, the pressure fluctuation is intense and vortex occurs gradually during this period, which obviously lowers the efficiency of the pump. The contents of the current work can provide references for the design optimization and fluid control of the pump used in the transient process of variable operating conditions.

  19. Analysis and computer simulation for transient flow in complex system of liquid piping

    International Nuclear Information System (INIS)

    Mitry, A.M.

    1985-01-01

    This paper is concerned with unsteady state analysis and development of a digital computer program, FLUTRAN, that performs a simulation of transient flow behavior in a complex system of liquid piping. The program calculates pressure and flow transients in the liquid filled piping system. The analytical model is based on the method of characteristics solution to the fluid hammer continuity and momentum equations. The equations are subject to wide variety of boundary conditions to take into account the effect of hydraulic devices. Water column separation is treated as a boundary condition with known head. Experimental tests are presented that exhibit transients induced by pump failure and valve closure in the McGuire Nuclear Station Low Level Intake Cooling Water System. Numerical simulation is conducted to compare theory with test data. Analytical and test data are shown to be in good agreement and provide validation of the model

  20. Transient response in granular bounded heap flows

    Science.gov (United States)

    Xiao, Hongyi; Ottino, Julio M.; Lueptow, Richard M.; Umbanhowar, Paul B.

    2017-11-01

    Heap formation, a canonical granular flow, is common in industry and is also found in nature. Here, we study the transition between steady flow states in quasi-2D bounded heaps by suddenly changing the feed rate from one fixed value to another. During the transition, in both experiments and discrete element method simulations, an additional wedge of flowing particles propagates over the rising free surface. The downstream edge of the wedge - the wedge front - moves downstream with velocity inversely proportional to the square root of time. An additional longer duration transient process continues after the wedge front reaches the downstream wall. The transient flux profile during the entire transition is well modeled by a diffusion-like equation derived from local mass balance and a local linear relation between the flux and the surface slope. Scalings for the transient kinematics during the flow transitions are developed based on the flux profiles. Funded by NSF Grant CBET-1511450.

  1. A Guide for Using the Transient Ground-Water Flow Model of the Death Valley Regional Ground-Water Flow System, Nevada and California

    Energy Technology Data Exchange (ETDEWEB)

    Joan B. Blainey; Claudia C. Faunt, and Mary C. Hill

    2006-05-16

    This report is a guide for executing numerical simulations with the transient ground-water flow model of the Death Valley regional ground-water flow system, Nevada and California using the U.S. Geological Survey modular finite-difference ground-water flow model, MODFLOW-2000. Model inputs, including observations of hydraulic head, discharge, and boundary flows, are summarized. Modification of the DVRFS transient ground-water model is discussed for two common uses of the Death Valley regional ground-water flow system model: predictive pumping scenarios that extend beyond the end of the model simulation period (1998), and model simulations with only steady-state conditions.

  2. Transient critical heat flux under flow coast-down in vertical annulus with non-uniform heat flux distribution

    International Nuclear Information System (INIS)

    Moon, S.K.; Chun, S.Y.; Choi, K.Y.; Yang, S.K.

    2001-01-01

    An experimental study on transient critical heat flux (CHF) under flow coast-down has been performed for water flow in a non-uniformly heated vertical annulus under low flow and a wide range of pressure conditions. The objectives of this study are to systematically investigate the effect of the flow transient on the CHF and to compare the transient CHF with steady state CHF. The transient CHF experiments have been performed for three kinds of flow transient modes based on the coast-down data of the Kori 3/4 nuclear power plant reactor coolant pump. Most of the CHFs occurred in the annular-mist flow regime. Thus, it means that the possible CHF mechanism might be the liquid film dryout in the annular-mist flow regime. For flow transient mode with the smallest flow reduction rate, the time-to-CHF is the largest. At the same inlet subcooling, system pressure and heat flux, the effect of the initial mass flux on the critical mass flux can be negligible. However, the effect of the initial mass flux on the time-to-CHF becomes large as the heat flux decreases. Usually, the critical mass flux is large for slow flow reduction. There is a pressure effect on the ratio of the transient CHF data to steady state CHF data. Some conventional correlations show relatively better CHF prediction results for high system pressure, high quality and slow transient modes than for low system pressure, low quality and fast transient modes. (author)

  3. Transient phenomena in multiphase flow

    International Nuclear Information System (INIS)

    Afgan, N.H.

    1988-01-01

    This book is devoted to formulation of the two-phase system. Emphasis is given to classical instantaneous equations of mass momentum and energy for local conditions and respective averaging procedures and their relevance to the structure of transfer laws. In formulating an equation for a two-velocity continuum, two-phase dispersed flow, two-velocity and local inertial effects associated with contraction and expansion of the mixture have been considered. Particular attention is paid to the effects of interface topology and area concentration as well as the latter's dependence on interfacial transfer laws. Also covered are low bubble concentrations in basic nonuniform unsteady flow where interactions between bubbles are negligible but where the effects of bubbles must still be considered. Special emphasis has been given to the pairwise interaction of the bubble and respective hydrodynamic equations describing the motion of a pair of spherical bubbles through a liquid This book introduces turbulence phenomena in two-phase flow and related problems of phase distribution in two-phase flow. This includes an extensive survey of turbulence and phase distribution models in transient two-phase flow. It is shown that if the turbulent structure of the continuous phase of bubbly two-phase is either measured or can be predicted, then the observed lateral phase distribution can be determined by using an multidimensional two-fluid model in which all lateral forces are properly modeled

  4. Which key properties controls the preferential transport in the vadose zone under transient hydrological conditions

    Science.gov (United States)

    Groh, J.; Vanderborght, J.; Puetz, T.; Gerke, H. H.; Rupp, H.; Wollschlaeger, U.; Stumpp, C.; Priesack, E.; Vereecken, H.

    2015-12-01

    Understanding water flow and solute transport in the unsaturated zone is of great importance for an appropriate land use management strategy. The quantification and prediction of water and solute fluxes through the vadose zone can help to improve management practices in order to limit potential risk on our fresh water resources. Water related solute transport and residence time is strongly affected by preferential flow paths in the soil. Water flow in soils depends on soil properties and site factors (climate or experiment conditions, land use) and are therefore important factors to understand preferential solute transport in the unsaturated zone. However our understanding and knowledge of which on-site properties or conditions define and enhance preferential flow and transport is still poor and mostly limited onto laboratory experimental conditions (small column length and steady state boundary conditions). Within the TERENO SOILCan lysimeter network, which was designed to study the effects of climate change on soil functions, a bromide tracer was applied on 62 lysimeter at eight different test sites between Dec. 2013 and Jan. 2014. The TERENO SOILCan infrastructure offers the unique possibility to study the occurrence of preferential flow and transport of various soil types under different natural transient hydrological conditions and land use (crop, bare and grassland) at eight TERENO SOILCan observatories. Working with lysimeter replicates at each observatory allows defining the spatial variability of preferential transport and flow. Additionally lysimeters in the network were transferred within and between observatories in order to subject them to different rainfall and temperature regimes and enable us to relate the soil type susceptibility of preferential flow and transport not only to site specific physical and land use properties, but also to different transient boundary conditions. Comparison and statistical analysis between preferential flow indicators 5

  5. Death Valley regional groundwater flow system, Nevada and California-Hydrogeologic framework and transient groundwater flow model

    Science.gov (United States)

    Belcher, Wayne R.; Sweetkind, Donald S.

    2010-01-01

    A numerical three-dimensional (3D) transient groundwater flow model of the Death Valley region was developed by the U.S. Geological Survey for the U.S. Department of Energy programs at the Nevada Test Site and at Yucca Mountain, Nevada. Decades of study of aspects of the groundwater flow system and previous less extensive groundwater flow models were incorporated and reevaluated together with new data to provide greater detail for the complex, digital model. A 3D digital hydrogeologic framework model (HFM) was developed from digital elevation models, geologic maps, borehole information, geologic and hydrogeologic cross sections, and other 3D models to represent the geometry of the hydrogeologic units (HGUs). Structural features, such as faults and fractures, that affect groundwater flow also were added. The HFM represents Precambrian and Paleozoic crystalline and sedimentary rocks, Mesozoic sedimentary rocks, Mesozoic to Cenozoic intrusive rocks, Cenozoic volcanic tuffs and lavas, and late Cenozoic sedimentary deposits of the Death Valley regional groundwater flow system (DVRFS) region in 27 HGUs. Information from a series of investigations was compiled to conceptualize and quantify hydrologic components of the groundwater flow system within the DVRFS model domain and to provide hydraulic-property and head-observation data used in the calibration of the transient-flow model. These studies reevaluated natural groundwater discharge occurring through evapotranspiration (ET) and spring flow; the history of groundwater pumping from 1913 through 1998; groundwater recharge simulated as net infiltration; model boundary inflows and outflows based on regional hydraulic gradients and water budgets of surrounding areas; hydraulic conductivity and its relation to depth; and water levels appropriate for regional simulation of prepumped and pumped conditions within the DVRFS model domain. Simulation results appropriate for the regional extent and scale of the model were provided

  6. Transient compressible flows in porous media

    International Nuclear Information System (INIS)

    Morrison, F.A. Jr.

    1975-09-01

    Transient compressible flow in porous media was investigated analytically. The major portion of the investigation was directed toward improving and understanding of dispersion in these flows and developing rapid accurate numerical techniques for predicting the extent of dispersion. The results are of interest in the containment of underground nuclear experiments. The transient one-dimensional transport of a trace component in a gas flow is analyzed. A conservation equation accounting for the effects of convective transport, dispersive transport, and decay, is developed. This relation, as well as a relation governing the fluid flow, is used to predict trace component concentration as a function of position and time. A detailed analysis of transport associated with the isothermal flow of an ideal gas is done. Because the governing equations are nonlinear, numerical calculations are performed. The ideal gas flow is calculated using a highly stable implicit iterative procedure with an Eulerian mesh. In order to avoid problems of anomolous dispersion associated with finite difference calculation, trace component convection and dispersion are calculated using a Lagrangian mesh. Details of the Eulerian-Lagrangian numerical technique are presented. Computer codes have been developed and implemented on the Lawrence Livermore Laboratory computer system

  7. Analysis of the transient compressible vapor flow in heat pipes

    Science.gov (United States)

    Jang, J. H.; Faghri, A.; Chang, W. S.

    1989-01-01

    The transient compressible one-dimensional vapor flow dynamics in a heat pipe is modeled. The numerical results are obtained by using the implicit non-iterative Beam-Warming finite difference method. The model is tested for simulated heat pipe vapor flow and actual vapor flow in cylindrical heat pipes. A good comparison of the present transient results for the simulated heat pipe vapor flow with the previous results of a two-dimensional numerical model is achieved and the steady state results are in agreement with the existing experimental data. The transient behavior of the vapor flow under subsonic, sonic, and supersonic speeds and high mass flow rates are successfully predicted. The one-dimensional model also describes the vapor flow dynamics in cylindrical heat pipes at high temperatures.

  8. Analysis of the transient compressible vapor flow in heat pipe

    International Nuclear Information System (INIS)

    Jang, J.H.; Faghri, A.; Chang, W.S.

    1989-07-01

    The transient compressible one-dimensional vapor flow dynamics in a heat pipe is modeled. The numerical results are obtained by using the implicit non-iterative Beam-Warming finite difference method. The model is tested for simulated heat pipe vapor flow and actual vapor flow in cylindrical heat pipes. A good comparison of the present transient results for the simulated heat pipe vapor flow with the previous results of a two-dimensional numerical model is achieved and the steady state results are in agreement with the existing experimental data. The transient behavior of the vapor flow under subsonic, sonic, and supersonic speeds and high mass flow rates are successfully predicted. The one-dimensional model also describes the vapor flow dynamics in cylindrical heat pipes at high temperatures

  9. Analysis of the transient compressible vapor flow in heat pipe

    Science.gov (United States)

    Jang, Jong Hoon; Faghri, Amir; Chang, Won Soon

    1989-01-01

    The transient compressible one-dimensional vapor flow dynamics in a heat pipe is modeled. The numerical results are obtained by using the implicit non-iterative Beam-Warming finite difference method. The model is tested for simulated heat pipe vapor flow and actual flow in cylindrical heat pipes. A good comparison of the present transient results for the simulated heat pipe vapor flow with the previous results of a two-dimensional numerical model is achieved and the steady state results are in agreement with the existing experimental data. The transient behavior of the vapor flow under subsonic, sonic, and supersonic speeds and high mass flow rates are successfully predicted. The one-dimensional model also describes the vapor flow dynamics in cylindrical heat pipes at high temperatures.

  10. Analysis of flow induced valve operation and pressure wave propagation for single and two-phase flow conditions

    International Nuclear Information System (INIS)

    Nagel, H.

    1986-01-01

    The flow induced valve operation is calculated for single and two-phase flow conditions by the fluid dynamic computer code DYVRO and results are compared to experimental data. The analysis show that the operational behaviour of the valves is not only dependent on the condition of the induced flow, but also the pipe flow can cause a feedback as a result of the induced pressure waves. For the calculation of pressure wave propagation in pipes of which the operation of flow induced valves has a considerable influence it is therefore necessary to have a coupled analysis of the pressure wave propagation and the operational behaviour of the valves. The analyses of the fast transient transfer from steam to two-phase flow show a good agreement with experimental data. Hence even these very high loads on pipes resulting from such fluid dynamic transients can be calculated realistically. (orig.)

  11. Measurements of flow-rate transients in one-phase liquid flow

    International Nuclear Information System (INIS)

    Mueller-Roos, J.

    1975-01-01

    A report is given on a method to determine flow-rate transients in a one-phase flow. Periodic temperature signals are superposed on the flow, from which flow times are calculated through correlation each over a half period. The evaluation is carried out according to the digitalization 'off-line' on a large computer. Rate peaks of over 100% within 1.9 s were qualitatively and quantitatively well represented. (orig./LH) [de

  12. Transient and steady-state flows in shock tunnels

    Energy Technology Data Exchange (ETDEWEB)

    Hannemann, K. [Deutsche Forschungsanstalt fuer Luft- und Raumfahrt e.V. (DLR), Goettingen (Germany); Jacobs, P.A. [Queensland Univ., Brisbane (Australia). Dept. of Mechanical Engineering; Thomas, A.; McIntyre, T.J. [Queensland Univ., Brisbane, QLD. (Australia). Dept. of Physics

    1999-12-01

    Due to the difficulty of measuring all necessary flow quantities in the nozzle reservoir and the test section of high enthalpy shock tunnels, indirect computational methods are necessary to estimate the required flow parameters. In addition to steady state flow computations of the nozzle flow and the flow past wind tunnel models it is necessary to investigate the transient flow in the facility in order to achieve a better understanding of its performance. These transient effects include the nozzle starting flow, the interaction of the shock tube boundary layers and the reflected shock, thermal losses in the shock reflection region and the developing boundary layers in the expanding section of the nozzle. Additionally, the nonequilibrium chemical and thermal relaxation models which are used to compute high enthalpy flows have to be validated with appropriate experimental data. (orig.)

  13. Transient and steady-state flows in shock tunnels

    Energy Technology Data Exchange (ETDEWEB)

    Hannemann, K. (Deutsche Forschungsanstalt fuer Luft- und Raumfahrt e.V. (DLR), Goettingen (Germany)); Jacobs, P.A. (Queensland Univ., Brisbane (Australia). Dept. of Mechanical Engineering); Thomas, A.; McIntyre, T.J. (Queensland Univ., Brisbane, QLD. (Australia). Dept. of Physics)

    1999-01-01

    Due to the difficulty of measuring all necessary flow quantities in the nozzle reservoir and the test section of high enthalpy shock tunnels, indirect computational methods are necessary to estimate the required flow parameters. In addition to steady state flow computations of the nozzle flow and the flow past wind tunnel models it is necessary to investigate the transient flow in the facility in order to achieve a better understanding of its performance. These transient effects include the nozzle starting flow, the interaction of the shock tube boundary layers and the reflected shock, thermal losses in the shock reflection region and the developing boundary layers in the expanding section of the nozzle. Additionally, the nonequilibrium chemical and thermal relaxation models which are used to compute high enthalpy flows have to be validated with appropriate experimental data. (orig.)

  14. Transient performance of flow in circuits of PWR type reactors

    International Nuclear Information System (INIS)

    Hirdes, V.R.; Carajilescov, P.

    1988-09-01

    Generally, PWR's are designed with several primary loops, each one provided with a pump to circulate the coolant through the core. If one or more of these pumps fail, there would be a decrease in reactor flow rate which could cause coolant phase change in the core and components overheating. The present work establishes a simulation model for pump failure in PWR's and the SARDAN-FLOW computes code was developed, considering any combination of such failures. Based on the data of Angra I, several accident and operational transient conditions were simulated. (author) [pt

  15. The effects of transient conditions on the onset of intermittent dryout during blowdown

    Energy Technology Data Exchange (ETDEWEB)

    Statham, B.A., E-mail: stathaba@mcmaster.ca; Novog, D.R., E-mail: novog@mcmaster.ca

    2017-06-15

    Highlights: • This papers presents the results of an experimental investigation of transient critical heat flux in high quality and intermediate pressure water. • In existing literature conclusions vary from those showing no effect of transient conditions to results which show 30–40% improvement in CHF. • Along with new CHF data points in the liquid film dominated flow regime, the authors provide a methodology for producing bias free estimates of CHF based on existing correlations. • With these bias free CHF estimates, comparisons are made between transient and steady-state CHF at comparable local conditions. • The work concludes that based on consistently collected and analyzed data that quasi-steady CHF experiments adequately predict transient CHF using the same local thermalhydraulic conditions. - Abstract: For a given set of conditions in a boiling system the point of liquid film dryout or departure from nucleate boiling corresponds to the change from convective or nucleate boiling to transition or film boiling. This change is associated with a rapid deterioration of the heat transfer coefficient and the heat flux at this transition is denoted the critical heat flux (CHF). Computer models used to predict station transients and CHF rely heavily on empirical correlations to predict the CHF. Liquid film CHF data are usually obtained using a quasi-steady method wherein the heat flux is incremented in small steps with each step being allowed to reach a new equilibrium until an abnormal temperature increase is detected on the experimental surfaces. In applying a correlation derived from steady-state experiments to transient analyses these codes implicitly assume that dryout will occur for the same local conditions during transients as during steady state conditions. There is some disagreement in literature as to the validity of this hypothesis. This paper provides new steady-state and transient experimental data for CHF in water at intermediate pressures

  16. Sample problem calculations related to two-phase flow transients in a PWR relief-piping network

    International Nuclear Information System (INIS)

    Shin, Y.W.; Wiedermann, A.H.

    1981-03-01

    Two sample problems related with the fast transients of water/steam flow in the relief line of a PWR pressurizer were calculated with a network-flow analysis computer code STAC (System Transient-Flow Analysis Code). The sample problems were supplied by EPRI and are designed to test computer codes or computational methods to determine whether they have the basic capability to handle the important flow features present in a typical relief line of a PWR pressurizer. It was found necessary to implement into the STAC code a number of additional boundary conditions in order to calculate the sample problems. This includes the dynamics of the fluid interface that is treated as a moving boundary. This report describes the methodologies adopted for handling the newly implemented boundary conditions and the computational results of the two sample problems. In order to demonstrate the accuracies achieved in the STAC code results, analytical solutions are also obtained and used as a basis for comparison

  17. Transient flows in rectangular MHD ducts under the influence of suddenly changing applied magnetic fields

    International Nuclear Information System (INIS)

    Kobayashi, Junichi

    1979-01-01

    The study on the transient flow characteristics in MHD ducts under orthogonal magnetic field is divided into handling two problems: the problem of changing pressure gradient in a uniform orthogonal magnetic field and the problem in which the orthogonal magnetic field itself changes with time. The former has been investigated by many persons, but the latter has not been investigated so often as the former because of its difficulty of handling. In addition, if it is intended to grasp properly the transient flow characteristics in actual MHD ducts, it will be also important that the effects of the electric conductivity of side walls and aspect ratio are clarified. In other words, this paper deals with the problem in which a uniform orthogonal magnetic field is suddenly applied in such manner as Heaviside's step function to or removed from the conductive fluids flowing in sufficiently long rectangular MHD ducts. First, the MHD fundamental equations are described, then they are normalized to give boundary conditions and initial conditions. Next, the transient flow and the derived magnetic field characteristics are numerically analyzed by the difference calculus, and thus the effects of conductor, insulated wall, aspect ratio, Hartmann number, magnetic Prandtl number and others on the above characteristics are clarified. (Wakatsuki, Y.)

  18. Flow reduction transient burnout in a vertical tube, (2)

    International Nuclear Information System (INIS)

    Iwamura, Takamichi; Kuroyanagi, Toshiyuki

    1980-08-01

    Transient behavior of boiling two-phase flow was calculated by separate flow to analyze flow reduction burnout experiment in a vertical tube, 10 mm diameter and 800 mm long. The ranges of experimental conditions were pressure 0.5 -- 3.9 MPa, heat flux 2.16 -- 3.86 x 10 6 W/m 2 , inlet subcooling 50 -- 100 0 C, burnout mass velocity 770 -- 1300 kg/s.m 2 , and flow reduction rate 0.6 -- 190%/sec. The results reached were as follows: 1) As the low resuction rate reached below 2%/sec, the burnout mass velocity at outlet G sub(Bo)sup(out) and at inlet G sub(Bo)sup(t) became nearly equal to steady state burnout mass velocity G sub(Bo)sup(s) under all experimental conditions. 2) The difference between G sub(Bo)sup(out) and G sub(Bo)sup(t) became greater, at greater flow reduction rate. 3) For the experimental conditions of 2 to 3.9 MPa pressure and the flow reduction rate of 2 to 20%/sec, G sub(Bo)sup(out)/G sub(Bo)sup(s) was nearly equal to unity, while G sub(Bo)sup(t)/G sub(Bo)sup(s) was between 0.9 and 1.0. For a flow reduction rate greater than 20%/sec, G sub(Bo)sup(out)/G sub(Bo)sup(s) became a slightly greater than unity. 4) For pressure lower than 1 MPa and the flow reduction rate greater than 2%/sec, G sub(Bo)sup(out)/G sub(Bo)sup(s) became less than unity. (author)

  19. Gulping phenomena in transient countercurrent two-phase flow

    International Nuclear Information System (INIS)

    Tehrani, Ali A.K.

    2001-04-01

    Apart from previous work on countercurrent gas-liquid flow, transient tank drainage through horizontal off-take pipes is described, including experimental procedure, flow pattern on observations and countercurrent flow limitation results. A separate chapter is devoted to countercurrent two-phase flow in a pressurised water reactor hot-leg scaled model. Results concerning low head flooding, high head and loss of bowl flooding, transient draining of the steam generator and pressure variation and bubble detachment are presented. The following subjects are covered as well: draining of sealed tanks of vertical pipes, unsteady draining of closed vessel via vertical tube, unsteady filling of a closed vessel via vertical tube from a constant head reservoir. Practical significance of the results obtained is discussed

  20. Transient analysis of air-water two-phase flow in channels and bends

    International Nuclear Information System (INIS)

    Khan, H.J.; Ye, W.; Pertmer, G.A.

    1992-01-01

    The algorithm used in this paper is the Newton Block Gauss Seidel method, which has been applied to both simple and complex flow conditions in two-phase flow. This paper contains a description of difference techniques and an iterative solution algorithm that is used to solve the field and constitutive equations of the two-fluid model. In practice, this solution procedure has been proven to be stable and capable of generating solutions in problems where other schemes have failed. The method converges rapidly for reasonable error tolerances and is easily extended to three-dimensional geometries. Using air-water as the two-phase medium, transient flow behavior in several geometries of interest are shown. Flow through a vertical channel with flow obstruction, large U bends, and 90-deg bends are being demonstrated with variation of inlet void fraction and slip ratio. Significant changes in the velocity and void distribution profiles have been observed. Various regions of flow recirculation are obtained in the flow domain for each phase. The phasic velocity and void distributions are dominated by gravity-induced phase separation causing air to accumulate in the upper region. The influence of inlet slip ratio and interfacial momentum transfer on the transient flow profile has been demonstrated in detail

  1. Frictional resistance of adiabatic two-phase flow in narrow rectangular duct under rolling conditions

    International Nuclear Information System (INIS)

    Xing, Dianchuan; Yan, Changqi; Sun, Licheng; Jin, Guangyuan; Tan, Sichao

    2013-01-01

    Highlights: ► Two-phase flow frictional resistance in narrow duct in rolling is studied. ► Frictional resistance behaviors in rolling are divided into three regions. ► Transient frictional pressure drop fluctuates synchronously with rolling motion. ► Conventional correlations are evaluated against experimental data in rolling motion. ► New correlation for transient frictional resistance in rolling motion is developed. - Abstract: Frictional resistance of air-water two-phase flow in a narrow rectangular duct subjected to rolling motion was investigated experimentally. Time-averaged and transient frictional pressure drop under rolling condition were compared with conventional correlation in laminar flow region (Re l l ⩽ 1400) and turbulent flow region (Re l > 1400) respectively. The result shows that, despite no influence on time-averaged frictional resistance, rolling motion does induce periodical fluctuation of the pressure drop in laminar and transition flow regions. Transient frictional pressure drop fluctuates synchronously with the rolling motion both in laminar and in transition flow region, while it is nearly invariable in turbulent flow region. The fluctuation amplitude of the Relative frictional pressure gradient decreases with the increasing of the superficial velocities. Lee and Lee (2002) correlation and Chisholm (1967) correlation could satisfactorily predict time-averaged frictional pressure drop under rolling conditions, whereas poorly predict the transient frictional pressure drop when it fluctuates periodically. A new correlation with better accuracy for predicting the transient frictional pressure drop in rolling motion is achieved by modifying the Chisholm (1967) correlation on the basis of analyzing the present experimental results with a great number of data points

  2. Death Valley regional ground-water flow system, Nevada and California -- hydrogeologic framework and transient ground-water flow model

    Science.gov (United States)

    Belcher, Wayne R.

    2004-01-01

    A numerical three-dimensional (3D) transient ground-water flow model of the Death Valley region was developed by the U.S. Geological Survey for the U.S. Department of Energy programs at the Nevada Test Site and at Yucca Mountain, Nevada. Decades of study of aspects of the ground-water flow system and previous less extensive ground-water flow models were incorporated and reevaluated together with new data to provide greater detail for the complex, digital model. A 3D digital hydrogeologic framework model (HFM) was developed from digital elevation models, geologic maps, borehole information, geologic and hydrogeologic cross sections, and other 3D models to represent the geometry of the hydrogeologic units (HGUs). Structural features, such as faults and fractures, that affect ground-water flow also were added. The HFM represents Precambrian and Paleozoic crystalline and sedimentary rocks, Mesozoic sedimentary rocks, Mesozoic to Cenozoic intrusive rocks, Cenozoic volcanic tuffs and lavas, and late Cenozoic sedimentary deposits of the Death Valley Regional Ground-Water Flow System (DVRFS) region in 27 HGUs. Information from a series of investigations was compiled to conceptualize and quantify hydrologic components of the ground-water flow system within the DVRFS model domain and to provide hydraulic-property and head-observation data used in the calibration of the transient-flow model. These studies reevaluated natural ground-water discharge occurring through evapotranspiration and spring flow; the history of ground-water pumping from 1913 through 1998; ground-water recharge simulated as net infiltration; model boundary inflows and outflows based on regional hydraulic gradients and water budgets of surrounding areas; hydraulic conductivity and its relation to depth; and water levels appropriate for regional simulation of prepumped and pumped conditions within the DVRFS model domain. Simulation results appropriate for the regional extent and scale of the model were

  3. The effect of the virtual mass force term on the stability of transient two-phase flow analysis

    International Nuclear Information System (INIS)

    Watanabe, Tadashi; Hirano, Masashi; Tanabe, Fumiya

    1989-08-01

    The effect of the virtual mass force term on the stability of transient two-phase flow analysis is studied. The objective form of the virtual mass acceleration is used. The virtual mass coefficient is determined from the stability condition of basic equations against infinitesimal high wave-number perturbations. The parameter is chosen so that a reasonable agreement between the analytical and experimental sound speed in two-phase flows can be obtained. A one-dimensional sedimentation problem is simulated by the MINCS code which is a tool for transient two-phase flow analysis. The stability analysis is performed for the numerical procedure. It is shown that calculated results are stabilized so long as the virtual mass coefficient satisfies the stability condition of differential equations. (author)

  4. Prediction of flow recirculation in a blanket assembly under worst-case natural-convection conditions

    International Nuclear Information System (INIS)

    Khan, E.U.; Rector, D.R.

    1982-01-01

    Reactor fuel and blanket assemblies within a Liquid Metal Fast Breeder Reactor (LMFBR) can be subjected to severe radial heat flux gradients. At low-flow conditions, with power-to-flow ratios of nearly the same magnitude as design conditions, buoyancy forces cause flow redistribution to the side of a bundle with the higher heat generation rate. Recirculation of fluid within a rod bundle can occur during a natural convection transient because of the combined effect of flow coastdown and buoyancy-induced redistribution. An important concern is whether recirculation leads to high coolant temperatures. For this reason, the COBRA-WC code was developed with the capability of modeling recirculating flows. Experiments have been conducted in a 2 x 6 rod bundle for flow and power transients to study recirculation in the mixed-convection (forced cooled) and natural-convection regimes. The data base developed was used to validate the recirculation module in the COBRA-WC code. COBRA-WC code calculations were made to predict flow and temperature distributions in a typical LMFBR blanket assembly for the worst-case, natural-circulation transient

  5. Present status of numerical analysis on transient two-phase flow

    International Nuclear Information System (INIS)

    Akimoto, Masayuki; Hirano, Masashi; Nariai, Hideki.

    1987-01-01

    The Special Committee for Numerical Analysis of Thermal Flow has recently been established under the Japan Atomic Energy Association. Here, some methods currently used for numerical analysis of transient two-phase flow are described citing some information given in the first report of the above-mentioned committee. Many analytical models for transient two-phase flow have been proposed, each of which is designed to describe a flow by using differential equations associated with conservation of mass, momentum and energy in a continuous two-phase flow system together with constructive equations that represent transportation of mass, momentum and energy though a gas-liquid interface or between a liquid flow and the channel wall. The author has developed an analysis code, called MINCS, that serves for systematic examination of conservation equation and constructive equations for two-phase flow models. A one-dimensional, non-equilibrium two-liquid flow model that is used as the basic model for the code is described. Actual procedures for numerical analysis is shown and some problems concerning transient two-phase analysis are described. (Nogami, K.)

  6. The Transient Elliptic Flow of Power-Law Fluid in Fractal Porous Media

    Institute of Scientific and Technical Information of China (English)

    宋付权; 刘慈群

    2002-01-01

    The steady oil production and pressure distribution formulae of vertically fractured well for power-law non-Newtonian fluid were derived on the basis of the elliptic flow model in fractal reservoirs. The corresponding transient flow in fractal reservoirs was studied by numerical differentiation method: the influence of fractal index to transient pressure of vertically fractured well was analyzed. Finally the approximate analytical solution of transient flow was given by average mass conservation law. The study shows that using elliptic flow method to analyze the flow of vertically fractured well is a simple method.

  7. Transient two-dimensional flow in porous media

    International Nuclear Information System (INIS)

    Sharpe, L. Jr.

    1979-01-01

    The transient flow of an isothermal ideal gas from the cavity formed by an underground nuclear explosion is investigated. A two-dimensional finite element method is used in analyzing the gas flow. Numerical results of the pressure distribution are obtained for both the stemming column and the surrounding porous media

  8. Analysis of the one-dimensional transient compressible vapor flow in heat pipes

    Science.gov (United States)

    Jang, Jong H.; Faghri, Amir; Chang, Won S.

    1991-01-01

    The transient compressible one-dimensional vapor flow dynamics in a heat pipe is modeled. The numerical results are obtained by using the implicit non-iterative Beam-Warming finite difference method. The model is tested for simulated heat pipe vapor flow and actual vapor flow in cylindrical heat pipes. A good comparison of the present transient results for the simulated heat pipe vapor flow with the previous results of a two-dimensional numerical model is achieved and the steady state results are in agreement with the existing experimental data. The transient behavior of the vapor flow under subsonic, sonic, and supersonic speeds as well as high mass flow rates are successfully predicted.

  9. Transient well flow in leaky multiple-aquifer systems

    Science.gov (United States)

    Hemker, C. J.

    1985-10-01

    A previously developed eigenvalue analysis approach to groundwater flow in leaky multiple aquifers is used to derive exact solutions for transient well flow problems in leaky and confined systems comprising any number of aquifers. Equations are presented for the drawdown distribution in systems of infinite extent, caused by wells penetrating one or more of the aquifers completely and discharging each layer at a constant rate. Since the solution obtained may be regarded as a combined analytical-numerical technique, a type of one-dimensional modelling can be applied to find approximate solutions for several complicating conditions. Numerical evaluations are presented as time-drawdown curves and include effects of storage in the aquitard, unconfined conditions, partially penetrating wells and stratified aquifers. The outcome of calculations for relatively simple systems compares very well with published corresponding results. The proposed multilayer solution can be a valuable tool in aquifer test evaluation, as it provides the analytical expression required to enable the application of existing computer methods to the determination of aquifer characteristics.

  10. RETRAN nonequilibrium two-phase flow model for operational transient analyses

    International Nuclear Information System (INIS)

    Paulsen, M.P.; Hughes, E.D.

    1982-01-01

    The field balance equations, flow-field models, and equation of state for a nonequilibrium two-phase flow model for RETRAN are given. The differential field balance model equations are: (1) conservation of mixture mass; (2) conservation of vapor mass; (3) balance of mixture momentum; (4) a dynamic-slip model for the velocity difference; and (5) conservation of mixture energy. The equation of state is formulated such that the liquid phase may be subcooled, saturated, or superheated. The vapor phase is constrained to be at the saturation state. The dynamic-slip model includes wall-to-phase and interphase momentum exchanges. A mechanistic vapor generation model is used to describe vapor production under bulk subcooling conditions. The speed of sound for the mixture under nonequilibrium conditions is obtained from the equation of state formulation. The steady-state and transient solution methods are described

  11. One-dimensional transient unequal velocity two-phase flow by the method of characteristics

    International Nuclear Information System (INIS)

    Rasouli, F.

    1981-01-01

    An understanding of two-phase flow is important when one is analyzing the accidental loss of coolant or when analyzing industrial processes. If a pipe in the steam generator of a nuclear reactor breaks, the flow will remain critical (or choked) for almost the entire blowdown. For this reason the knowledge of the two-phase maximum (critical) flow rate is important. A six-equation model--consisting of two continuity equations, two energy equations, a mixture momentum equation, and a constitutive relative velocity equation--is solved numerically by the method of characteristics for one-dimensional, transient, two-phase flow systems. The analysis is also extended to the special case of transient critical flow. The six-equation model is used to study the flow of a nonequilibrium sodium-argon system in a horizontal tube in which the nonequilibrium sodium-argon system in a horizontal tube in which the critical flow condition is at the entrance. A four-equation model is used to study the pressure-pulse propagation rate in an isothermal air-water system, and the results that are found are compared with the experimental data. Proper initial and boundary conditions are obtained for the blowdown problem. The energy and mass exchange relations are evaluated by comparing the model predictions with results of void-fraction and heat-transfer experiments. A simplified two-equation model is obtained for the special case of two incompressible phases. This model is used in the preliminary analysis of batch sedimentation. It is also used to predict the shock formation in the gas-solid fluidized bed

  12. Scaling of two-phase flow transients using reduced pressure system and simulant fluid

    International Nuclear Information System (INIS)

    Kocamustafaogullari, G.; Ishii, M.

    1987-01-01

    Scaling criteria for a natural circulation loop under single-phase flow conditions are derived. Based on these criteria, practical applications for designing a scaled-down model are considered. Particular emphasis is placed on scaling a test model at reduced pressure levels compared to a prototype and on fluid-to-fluid scaling. The large number of similarty groups which are to be matched between modell and prototype makes the design of a scale model a challenging tasks. The present study demonstrates a new approach to this clasical problen using two-phase flow scaling parameters. It indicates that a real time scaling is not a practical solution and a scaled-down model should have an accelerated (shortened) time scale. An important result is the proposed new scaling methodology for simulating pressure transients. It is obtained by considerung the changes of the fluid property groups which appear within the two-phase similarity parameters and the single-phase to two-phase flow transition prameters. Sample calculations are performed for modeling two-phase flow transients of a high pressure water system by a low-pressure water system or a Freon system. It is shown that modeling is possible for both cases for simulation pressure transients. However, simulation of phase change transitions is not possible by a reduced pressure water system without distortion in either power or time. (orig.)

  13. Manual for operation of the multipurpose thermalhydraulic test facility TOPFLOW (Transient Two Phase Flow Test Facility)

    International Nuclear Information System (INIS)

    Beyer, M.; Carl, H.; Schuetz, H.; Pietruske, H.; Lenk, S.

    2004-07-01

    The Forschungszentrum Rossendorf (FZR) e. V. is constructing a new large-scale test facility, TOPFLOW, for thermalhydraulic single effect tests. The acronym stands for transient two phase flow test facility. It will mainly be used for the investigation of generic and applied steady state and transient two phase flow phenomena and the development and validation of models of computational fluid dynamic (CFD) codes. The manual of the test facility must always be available for the staff in the control room and is restricted condition during operation of personnel and also reconstruction of the facility. (orig./GL)

  14. Transient gas flow through layered porous media

    International Nuclear Information System (INIS)

    Morrison, F.A. Jr.

    1975-01-01

    Low Reynolds number isothermal flow of an ideal gas through layered porous material was investigated analytically. Relations governing the transient flow in one dimension are obtained. An implicit, iterative, unconditionally stable finite difference scheme is developed for calculation of such flows. A computer code, SIROCCO, employing this technique has been written and implemented on the LLL computer system. A listing of the code is included. This code may be effectively applied to the evaluation of stemming plans for underground nuclear experiments. (U.S.)

  15. Transient heat transfer for helium gas flowing over a horizontal cylinder with exponentially increasing heat input

    International Nuclear Information System (INIS)

    Liu, Qiusheng; Fukuda, Katsuya

    2003-01-01

    The transient heat transfer coefficients for forced convection flow of helium gas over a horizontal cylinder were measured under wide experimental conditions. The platinum cylinder with a diameter of 1.0 mm was used as test heater and heated by electric current with an exponentially increasing heat input of Q 0 exp(t/τ). The gas flow velocities ranged from 5 to 35 m/s, the gas temperatures ranged from 25 to 80degC, and the periods of heat generation rate, τ, ranged from 40 ms to 20 s. The surface superheat and heat flux increase exponentially as the heat generation rate increases with the exponential function. It was clarified that the heat transfer coefficient approaches the quasi-steady-state one for the period τ longer than about 1 s, and it becomes higher for the period shorter than around 1 s. The transient heat transfer shows less dependence on the gas flowing velocity when the period becomes very shorter. The gas temperature in this study shows little influence on the heat transfer coefficient. Semi-empirical correlation for quasi-steady-state heat transfer was obtained based on the experimental data. The ratios of transient Nusselt number Nu tr to quasi-steady-state Nusselt number Nu st at various periods, flow velocities, and gas temperatures were obtained. The heat transfer shifts to the quasi-steady-state heat transfer for longer periods and shifts to the transient heat transfer for shorter periods at the same flow velocity. It also approaches the quasi-steady-state one for higher flow velocity at the same period. Empirical correlation for transient heat transfer was also obtained based on the experimental data. (author)

  16. MINET, Transient Fluid Flow and Heat Transfer Power Plant Network Analysis

    International Nuclear Information System (INIS)

    Van Tuyle, G.J.

    2002-01-01

    1 - Description of program or function: MINET (Momentum Integral Network) was developed for the transient analysis of intricate fluid flow and heat transfer networks, such as those found in the balance of plant in power generating facilities. It can be utilized as a stand-alone program or interfaced to another computer program for concurrent analysis. Through such coupling, a computer code limited by either the lack of required component models or large computational needs can be extended to more fully represent the thermal hydraulic system thereby reducing the need for estimating essential transient boundary conditions. The MINET representation of a system is one or more networks of volumes, segments, and boundaries linked together via heat exchangers only, i.e., heat can transfer between networks, but fluids cannot. Volumes are used to represent tanks or other volume components, as well as locations in the system where significant flow divisions or combinations occur. Segments are composed of one or more pipes, pumps, heat exchangers, turbines, and/or valves each represented by one or more nodes. Boundaries are simply points where the network interfaces with the user or another computer code. Several fluids can be simulated, including water, sodium, NaK, and air. 2 - Method of solution: MINET is based on a momentum integral network method. Calculations are performed at two levels, the network level (volumes) and the segment level. Equations conserving mass and energy are used to calculate pressure and enthalpy within volumes. An integral momentum equation is used to calculate the segment average flow rate. In-segment distributions of mass flow rate and enthalpy are calculated using local equations of mass and energy. The segment pressure is taken to be the linear average of the pressure at both ends. This method uses a two-plus equation representation of the thermal hydraulic behavior of a system of heat exchangers, pumps, pipes, valves, tanks, etc. With the

  17. Ambiguous hydraulic heads and 14C activities in transient regional flow.

    Science.gov (United States)

    Schwartz, Franklin W; Sudicky, Edward A; McLaren, Robert G; Park, Young-Jin; Huber, Matthew; Apted, Mick

    2010-01-01

    A regional flow and transport model is used to explore the implications of significant variability in Pleistocene and Holocene climates on hydraulic heads and (14)C activity. Simulations involve a 39 km slice of the Death Valley Flow System through Yucca Mountain toward the Amargosa Desert. The long-time scale over which infiltration has changed (tens-of-thousands of years) is matched by the large physical extent of the flow system (many tens-of-kilometers). Estimated paleo-infiltration rates were estimated using a juniper pollen percentage that extends from the last interglacial (LIG) period (approximately 120 kyrbp) to present. Flow and (14)C transport simulations show that groundwater flow changes markedly as a function of paleoclimate. At the last glacial maximum (LGM, 21 kyrbp), the recharge to the flow system was about an order-of-magnitude higher than present, and water table was more than 100 m higher. With large basin time constants, flow is complicated because hydraulic heads at a given location reflect conditions of the past, but at another location the flow may reflect present conditions. This complexity is also manifested by processes that depend on flow, for example (14)C transport. Without a model that accounts for the historical transients in recharge for at least the last 20,000 years, there is no simple way to deconvolve the (14)C dates to explain patterns of flow.

  18. A new transiently chaotic flow with ellipsoid equilibria

    Science.gov (United States)

    Panahi, Shirin; Aram, Zainab; Jafari, Sajad; Pham, Viet-Thanh; Volos, Christos; Rajagopal, Karthikeyan

    2018-03-01

    In this article, a simple autonomous transiently chaotic flow with cubic nonlinearities is proposed. This system represents some unusual features such as having a surface of equilibria. We shall describe some dynamical properties and behaviours of this system in terms of eigenvalue structures, bifurcation diagrams, time series, and phase portraits. Various behaviours of this system such as periodic and transiently chaotic dynamics can be shown by setting special parameters in proper values. Our system belongs to a newly introduced category of transiently chaotic systems: systems with hidden attractors. Transiently chaotic behaviour of our proposed system has been implemented and tested by the OrCAD-PSpise software. We have found a proper qualitative similarity between circuit and simulation results.

  19. Characterization of transient groundwater flow through a high arch dam foundation during reservoir impounding

    Directory of Open Access Journals (Sweden)

    Yifeng Chen

    2016-08-01

    Full Text Available Even though a large number of large-scale arch dams with height larger than 200 m have been built in the world, the transient groundwater flow behaviors and the seepage control effects in the dam foundations under difficult geological conditions are rarely reported. This paper presents a case study on the transient groundwater flow behaviors in the rock foundation of Jinping I double-curvature arch dam, the world's highest dam of this type to date that has been completed. Taking into account the geological settings at the site, an inverse modeling technique utilizing the time series measurements of both hydraulic head and discharge was adopted to back-calculate the permeability of the foundation rocks, which effectively improves the uniqueness and reliability of the inverse modeling results. The transient seepage flow in the dam foundation during the reservoir impounding was then modeled with a parabolic variational inequality (PVI method. The distribution of pore water pressure, the amount of leakage, and the performance of the seepage control system in the dam foundation during the entire impounding process were finally illustrated with the numerical results.

  20. Simulation of non-isothermal transient flow in gas pipeline

    Energy Technology Data Exchange (ETDEWEB)

    Ferreira Junior, Luis Carlos; Soares, Matheus; Lima, Enrique Luis; Pinto, Jose Carlos [Coordenacao dos Programas de Pos-graduacao de Engenharia (COPPE/UFRJ), Rio de Janeiro, RJ (Brazil). Programa de Engenharia Quimica; Muniz, Cyro; Pires, Clarissa Cortes; Rochocz, Geraldo [ChemTech, Rio de Janeiro, RJ (Brazil)

    2009-07-01

    Modeling of gas pipeline usually considers that the gas flow is isothermal (or adiabatic) and that pressure changes occur instantaneously (quasi steady state approach). However, these assumptions are not valid in many important transient applications (changes of inlet and outlet flows/pressures, starting and stopping of compressors, changes of controller set points, among others). Besides, the gas properties are likely to depend simultaneously on the pipe position and on the operation time. For this reason, a mathematical model is presented and implemented in this paper in order to describe the gas flow in pipeline when pressure and temperature transients cannot be neglected. The model is used afterwards as a tool for reconciliation of available measured data. (author)

  1. FLATT - a computer programme for calculating flow and temperature transients in nuclear fuels

    International Nuclear Information System (INIS)

    Venkat Raj, V.; Koranne, S.M.

    1976-01-01

    FLATT is a computer code written in Fortran language for BESM-6 computer. The code calculates the flow transients in the coolant circuit of a nuclear reactor, caused by pump failure, and the consequent temperature transients in the fuel, clad, and the coolant. In addition any desired flow transient can be fed into the programme and the resulting temperature transients can be calculated. A case study is also presented. (author)

  2. Transient flow characteristics of a high speed rotary valve

    Science.gov (United States)

    Browning, Patrick H.

    Pressing economic and environmental concerns related to the performance of fossil fuel burning internal combustion engines have revitalized research in more efficient, cleaner burning combustion methods such as homogeneous charge compression ignition (HCCI). Although many variations of such engines now exist, several limiting factors have restrained the full potential of HCCI. A new method patented by West Virginia University (WVU) called Compression Ignition by Air Injection (CIBAI) may help broaden the range of effective HCCI operation. The CIBAI process is ideally facilitated by operating two synchronized piston-cylinders mounted head-to-head with one of the cylinders filled with a homogeneous mixture of air and fuel and the other cylinder filled with air. A specialized valve called the cylinder connecting valve (CCV) separates the two cylinders, opens just before reaching top dead center (TDC), and allows the injection air into the charge to achieve autoignition. The CCV remains open during the entire power stroke such that upon ignition the rapid pressure rise in the charge cylinder forces mass flow back through the CCV into the air-only cylinder. The limited mass transfer between the cylinders through the CCV limits the theoretical auto ignition timing capabilities and thermal efficiency of the CIBAI cycle. Research has been performed to: (1) Experimentally measure the transient behavior of a potential CCV design during valve opening between two chambers maintained at constant pressure and again at constant volume; (2) Develop a modified theoretical CCV mass flow model based upon the measured cold flow valve performance that is capable of predicting the operating conditions required for successful mixture autoignition; (3) Make recommendations for future CCV designs to maximize CIBAI combustion range. Results indicate that the modified-ball CCV design offers suitable transient flow qualities required for application to the CIBAI concept. Mass injection events

  3. Thermohydraulics in rod bundles and critical heat flux in transient conditions in a tube

    International Nuclear Information System (INIS)

    Courtaud, M.; Roumy, R.

    1975-01-01

    After the determination of the scaling factor of Stevens's similitude for the pressure range of pressurized water vectors by comparison of critical heat flux data in from and in water, some examples of studies performed with freon are shown. The efficiency of the mixing vanes of spacer grids has been determined on the mixing phenomenon in single phase on critical heat flux. A calculation performed with the code FLICA using subchannel analysis on freon data transposed in water is in good agreement with the experiment. The influence of the number of spacer grids has been also shown. Critical heat fluxes have been determined in water at 140 bar in steady state and transient conditions on two tubular test sections. During the transient tests the flow rate was reduced by half in 0.5 seconds and the reincreased heat flux and inlet temperature remaining constant. These tests have shown the validity of the method which consists in using a critical heat flux correlation determined in steady state conditions applied with local transient conditions of enthalpy and mass velocity computed with the FLICA code [fr

  4. Transient heat transfer for forced convection flow of helium gas

    International Nuclear Information System (INIS)

    Liu, Qiusheng; Fukuda, Katsuya; Sasaki, Kenji; Yamamoto, Manabu

    1999-01-01

    Transient heat transfer coefficients for forced convection flow of helium gas over a horizontal cylinder were measured using a forced convection test loop. The platinum heater with a diameter of 1.0 mm was heated by electric current with an exponential increase of Q 0 exp(t/τ). It was clarified that the heat transfer coefficient approaches the steady-state one for the period τ over 1 s, and it becomes higher for the period of τ shorter than 1 s. The transient heat transfer shows less dependent on the gas flowing velocity when the period becomes very shorter. Semi-empirical correlations for steady-state and transient heat transfer were developed based on the experimental data. (author)

  5. Effect of automatic recirculation flow control on the transient response for Lungmen ABWR plant

    Energy Technology Data Exchange (ETDEWEB)

    Tzang, Y.-C., E-mail: yctzang@aec.gov.t [National Tsing Hua University, Department of Engineering and System Science, Hsinchu 30013, Taiwan (China); Chiang, R.-F.; Ferng, Y.-M.; Pei, B.-S. [National Tsing Hua University, Department of Engineering and System Science, Hsinchu 30013, Taiwan (China)

    2009-12-15

    In this study the automatic mode of the recirculation flow control system (RFCS) for the Lungmen ABWR plant has been modeled and incorporated into the basic RETRAN-02 system model. The integrated system model is then used to perform the analyses for the two transients in which the automatic RFCS is involved. The two transients selected are: (1) one reactor internal pump (RIP) trip, and (2) loss of feedwater heating. In general, the integrated system model can predict well the response of key system parameters, including neutron flux, steam dome pressure, heat flux, RIP flow, core inlet flow, feedwater flow, steam flow, and reactor water level. The transients are also analyzed for manual RFCS case, between the automatic RFCS and the manual RFCS cases, comparisons of the transient response for the key system parameter show that the difference of transient response can be clearly identified. Also, the results show that the DELTACPR (delta critical power ratio) for the transients analyzed may not be less limiting for the automatic RFCS case under certain combination of control system settings.

  6. Characteristic behavior of bubbles and slugs in transient two-phase flow using image-processing method

    International Nuclear Information System (INIS)

    Goto, Shoji; Ishizaki, Yasuo; Ohashi, Hirotada; Akiyama, Mamoru

    1995-01-01

    Simulation of transient two-phase flow has been performed by solving transient hydrodynamic equations. However, constitution relations used in this simulation are primarily based on steady-state experimental results. Thus it is important to understand the transient behavior of bubbles and slugs, in particular, transient behavior of the void fraction, the interfacial area and the flow pattern, to confirm the applicability of the present simulation method and to advance two-phase flow simulation further. The present study deals with measurement of transient two-phase flow. We have measured local and instantaneous void fractions using imaging techniques, and compared the experimental data with simulation results. (author)

  7. Tackling complex turbulent flows with transient RANS

    NARCIS (Netherlands)

    Kenjeres, S.; Hanjalic, K.

    2009-01-01

    This article reviews some recent applications of the transient-Reynoldsaveraged Navier–Stokes (T-RANS) approach in simulating complex turbulent flows dominated by externally imposed body forces, primarily by thermal buoyancy and the Lorentz force. The T-RANS aims at numerical resolving unsteady

  8. Influence of thermal buoyancy on vertical tube bundle thermal density head predictions under transient conditions

    International Nuclear Information System (INIS)

    Lin, H.C.; Kasza, K.E.

    1984-01-01

    The thermal-hydraulic behavior of an LMFBR system under various types of plant transients is usually studied using one-dimensional (1-D) flow and energy transport models of the system components. Many of the transient events involve the change from a high to a low flow with an accompanying change in temperature of the fluid passing through the components which can be conductive to significant thermal bouyancy forces. Thermal bouyancy can exert its influence on system dynamic energy transport predictions through alterations of flow and thermal distributions which in turn can influence decay heat removal, system-response time constants, heat transport between primary and secondary systems, and thermal energy rejection at the reactor heat sink, i.e., the steam generator. In this paper the results from a comparison of a 1-D model prediction and experimental data for vertical tube bundle overall thermal density head and outlet temperature under transient conditions causing varying degrees of thermal bouyancy are presented. These comparisons are being used to generate insight into how, when, and to what degree thermal buoyancy can cause departures from 1-D model predictions

  9. Safety analysis of loss of flow transients in a typical research reactor by RELAP5/MOD3.3

    International Nuclear Information System (INIS)

    Di Maro, B.; Pierro, F.; Adorni, M.; Bousbia Salah, A.; D'Auria, F.

    2003-01-01

    The main aim of the following study is to assess the RELAP5/MOD3.3 code capability in simulating transient dynamic behaviour in nuclear research reactors. For this purpose typical loss of flow transient in a representative MTR (Metal Test Reactor) fuel type Research Reactor is considered. The transient herein considered is a sudden pump trip followed by the opening of a safety valve in order to allow passive decay heat removal by natural convection. During such transient the coolant flow decay, originally downward, leads to a flow reversal and the cooling process of the core passes from forced, mixed and finally to natural circulation. This fact makes it suitable for evaluating the new features of RELAP5 to simulate such specific operating conditions. The instantaneous reactor power is derived through the point kinetic calculation, both protected and unprotected cases are considered (with and without Scram). The results obtained from this analysis were also compared with previous results obtained by old version RELAP5/MOD2 code. (author)

  10. Analytical model for power plant condenser for transients and off-normal operating conditions

    International Nuclear Information System (INIS)

    Thangamani, I.; Dutta, Anu; Chakraborty, G.; Ghosh, A.K.

    2006-11-01

    A computer code for power plant condenser dynamic analysis has been developed based on a lumped parameter approach considering time dependent mass and energy conservation equations over the control volumes for the shell side as well as tube side fluids. Effects of heat transfer on condenser structure and hot well level transients were considered in the analysis. Suitable heat transfer coefficient recommended by various standards and codes were employed. The code was used to analyze the condenser performance during steady state as well as transient (load rejection or turbine trip) conditions. The condenser performance is predicted in terms of condenser back pressure, shell side steam temperature and tube side coolant exit temperature with respect to time. As a part of parametric studies, the effect of change in tube side coolant flow rate and inlet temperature was also studied. The analysis predicted that up to 47% of rated coolant flow rate on the tube side (for design conditions), the steam dumping can be continued without condenser isolation. The paper describes the detailed methodology adopted for the condenser modeling and presents the results obtained from the different parametric studies and code validation. (author)

  11. A point implicit time integration technique for slow transient flow problems

    Energy Technology Data Exchange (ETDEWEB)

    Kadioglu, Samet Y., E-mail: kadioglu@yildiz.edu.tr [Department of Mathematical Engineering, Yildiz Technical University, 34210 Davutpasa-Esenler, Istanbul (Turkey); Berry, Ray A., E-mail: ray.berry@inl.gov [Idaho National Laboratory, P.O. Box 1625, MS 3840, Idaho Falls, ID 83415 (United States); Martineau, Richard C. [Idaho National Laboratory, P.O. Box 1625, MS 3840, Idaho Falls, ID 83415 (United States)

    2015-05-15

    Highlights: • This new method does not require implicit iteration; instead it time advances the solutions in a similar spirit to explicit methods. • It is unconditionally stable, as a fully implicit method would be. • It exhibits the simplicity of implementation of an explicit method. • It is specifically designed for slow transient flow problems of long duration such as can occur inside nuclear reactor coolant systems. • Our findings indicate the new method can integrate slow transient problems very efficiently; and its implementation is very robust. - Abstract: We introduce a point implicit time integration technique for slow transient flow problems. The method treats the solution variables of interest (that can be located at cell centers, cell edges, or cell nodes) implicitly and the rest of the information related to same or other variables are handled explicitly. The method does not require implicit iteration; instead it time advances the solutions in a similar spirit to explicit methods, except it involves a few additional function(s) evaluation steps. Moreover, the method is unconditionally stable, as a fully implicit method would be. This new approach exhibits the simplicity of implementation of explicit methods and the stability of implicit methods. It is specifically designed for slow transient flow problems of long duration wherein one would like to perform time integrations with very large time steps. Because the method can be time inaccurate for fast transient problems, particularly with larger time steps, an appropriate solution strategy for a problem that evolves from a fast to a slow transient would be to integrate the fast transient with an explicit or semi-implicit technique and then switch to this point implicit method as soon as the time variation slows sufficiently. We have solved several test problems that result from scalar or systems of flow equations. Our findings indicate the new method can integrate slow transient problems very

  12. A point implicit time integration technique for slow transient flow problems

    International Nuclear Information System (INIS)

    Kadioglu, Samet Y.; Berry, Ray A.; Martineau, Richard C.

    2015-01-01

    Highlights: • This new method does not require implicit iteration; instead it time advances the solutions in a similar spirit to explicit methods. • It is unconditionally stable, as a fully implicit method would be. • It exhibits the simplicity of implementation of an explicit method. • It is specifically designed for slow transient flow problems of long duration such as can occur inside nuclear reactor coolant systems. • Our findings indicate the new method can integrate slow transient problems very efficiently; and its implementation is very robust. - Abstract: We introduce a point implicit time integration technique for slow transient flow problems. The method treats the solution variables of interest (that can be located at cell centers, cell edges, or cell nodes) implicitly and the rest of the information related to same or other variables are handled explicitly. The method does not require implicit iteration; instead it time advances the solutions in a similar spirit to explicit methods, except it involves a few additional function(s) evaluation steps. Moreover, the method is unconditionally stable, as a fully implicit method would be. This new approach exhibits the simplicity of implementation of explicit methods and the stability of implicit methods. It is specifically designed for slow transient flow problems of long duration wherein one would like to perform time integrations with very large time steps. Because the method can be time inaccurate for fast transient problems, particularly with larger time steps, an appropriate solution strategy for a problem that evolves from a fast to a slow transient would be to integrate the fast transient with an explicit or semi-implicit technique and then switch to this point implicit method as soon as the time variation slows sufficiently. We have solved several test problems that result from scalar or systems of flow equations. Our findings indicate the new method can integrate slow transient problems very

  13. A parallel finite-volume finite-element method for transient compressible turbulent flows with heat transfer

    International Nuclear Information System (INIS)

    Masoud Ziaei-Rad

    2010-01-01

    In this paper, a two-dimensional numerical scheme is presented for the simulation of turbulent, viscous, transient compressible flows in the simultaneously developing hydraulic and thermal boundary layer region. The numerical procedure is a finite-volume-based finite-element method applied to unstructured grids. This combination together with a new method applied for the boundary conditions allows for accurate computation of the variables in the entrance region and for a wide range of flow fields from subsonic to transonic. The Roe-Riemann solver is used for the convective terms, whereas the standard Galerkin technique is applied for the viscous terms. A modified κ-ε model with a two-layer equation for the near-wall region combined with a compressibility correction is used to predict the turbulent viscosity. Parallel processing is also employed to divide the computational domain among the different processors to reduce the computational time. The method is applied to some test cases in order to verify the numerical accuracy. The results show significant differences between incompressible and compressible flows in the friction coefficient, Nusselt number, shear stress and the ratio of the compressible turbulent viscosity to the molecular viscosity along the developing region. A transient flow generated after an accidental rupture in a pipeline was also studied as a test case. The results show that the present numerical scheme is stable, accurate and efficient enough to solve the problem of transient wall-bounded flow.

  14. Influence of transient flow on the mobility of strontium in unsaturated sand column

    International Nuclear Information System (INIS)

    Mazet, P.

    2008-10-01

    The reactive transport of 85 Sr was studied on laboratory columns, focusing on the influence of transient unsaturated flow (cycles of infiltration and redistribution) associated with controlled geochemistry (constant concentrations of major elements and stable strontium in water). An original experimental tool (gamma attenuation system) allows us to follow at the same time the variations of humidity of the soil and the migration of radionuclide, in a non-destroying and definite way. First stage of this study concerned the implementation of the experimental tool to measure transient hydraulic events within the columns of sand. Several experiments of transport of 85 Sr were then performed with different water condition (saturated, unsaturated, permanent and transient flow). Experimental results were simulated using the computer codes HYDRUS-1D (phenomenological approach with partition coefficient K d ) and HYTEC (mechanistic geochemical/transport approach). Confrontation between experience and modelling shows that, for our operating conditions, transfer of 85 Sr can be predicted with an 'operational' approach using: 1) simplified geochemical model with partition coefficient K d concerning interactive reaction with the soil (K d value determined independently on saturated column, with the same water geochemistry), 2) permanent saturated (or unsaturated) flow, taking into account the cumulated infiltrated water during unsaturated transient hydraulic events concerning hydrodynamic. Generalization of these results (area of validity) suggests that the 'cumulated infiltrated water + K d ' approach can be use, for controlled water geochemistry, when the numerical value of K d is fairly strong (K d ≥≥1), and that it is insensitive to the value of the water content. Moreover, the presence of immobile water (∼10%) recorded with tritium transport, is undetectable with strontium. Explanation of this result is allocated to the different characteristic time residence

  15. Unified fluid flow model for pressure transient analysis in naturally fractured media

    International Nuclear Information System (INIS)

    Babak, Petro; Azaiez, Jalel

    2015-01-01

    Naturally fractured reservoirs present special challenges for flow modeling with regards to their internal geometrical structure. The shape and distribution of matrix porous blocks and the geometry of fractures play key roles in the formulation of transient interporosity flow models. Although these models have been formulated for several typical geometries of the fracture networks, they appeared to be very dissimilar for different shapes of matrix blocks, and their analysis presents many technical challenges. The aim of this paper is to derive and analyze a unified approach to transient interporosity flow models for slightly compressible fluids that can be used for any matrix geometry and fracture network. A unified fractional differential transient interporosity flow model is derived using asymptotic analysis for singularly perturbed problems with small parameters arising from the assumption of a much smaller permeability of the matrix blocks compared to that of the fractures. This methodology allowed us to unify existing transient interporosity flow models formulated for different shapes of matrix blocks including bounded matrix blocks, unbounded matrix cylinders with any orthogonal crossection, and matrix slabs. The model is formulated using a fractional order diffusion equation for fluid pressure that involves Caputo derivative of order 1/2 with respect to time. Analysis of the unified fractional derivative model revealed that the surface area-to-volume ratio is the key parameter in the description of the flow through naturally fractured media. Expressions of this parameter are presented for matrix blocks of the same geometrical shape as well as combinations of different shapes with constant and random sizes. Numerical comparisons between the predictions of the unified model and those obtained from existing transient interporosity ones for matrix blocks in the form of slabs, spheres and cylinders are presented for linear, radial and spherical flow types for

  16. Transient well flow in vertically heterogeneous aquifers

    Science.gov (United States)

    Hemker, C. J.

    1999-11-01

    A solution for the general problem of computing well flow in vertically heterogeneous aquifers is found by an integration of both analytical and numerical techniques. The radial component of flow is treated analytically; the drawdown is a continuous function of the distance to the well. The finite-difference technique is used for the vertical flow component only. The aquifer is discretized in the vertical dimension and the heterogeneous aquifer is considered to be a layered (stratified) formation with a finite number of homogeneous sublayers, where each sublayer may have different properties. The transient part of the differential equation is solved with Stehfest's algorithm, a numerical inversion technique of the Laplace transform. The well is of constant discharge and penetrates one or more of the sublayers. The effect of wellbore storage on early drawdown data is taken into account. In this way drawdowns are found for a finite number of sublayers as a continuous function of radial distance to the well and of time since the pumping started. The model is verified by comparing results with published analytical and numerical solutions for well flow in homogeneous and heterogeneous, confined and unconfined aquifers. Instantaneous and delayed drainage of water from above the water table are considered, combined with the effects of partially penetrating and finite-diameter wells. The model is applied to demonstrate that the transient effects of wellbore storage in unconfined aquifers are less pronounced than previous numerical experiments suggest. Other applications of the presented solution technique are given for partially penetrating wells in heterogeneous formations, including a demonstration of the effect of decreasing specific storage values with depth in an otherwise homogeneous aquifer. The presented solution can be a powerful tool for the analysis of drawdown from pumping tests, because hydraulic properties of layered heterogeneous aquifer systems with

  17. Evaluation of core modeling effect on transients for multi-flow zone design of SFR

    International Nuclear Information System (INIS)

    Shin, Andong; Choi, Yong Won

    2016-01-01

    SFR core is composed of different types of assemblies including fuel driver, reflector, blanket, control, safety drivers and other drivers. Modeling of different types of assemblies is inevitable in general. But modeling of core flow zones of with different channels needs a lot of effort and could be a challenge for system code modeling due to its limitation on the number of modeling components. In this study, core modeling effect on SFR transient was investigated with flow-zone model and averaged inner core channel model to improve modeling efficiency and validation of simplified core model for EBR-II loss of flow transient case with the modified TRACE code for SFRs. Core modeling effect on the loss flow transient was analyzed with flow-zoned channel model, single averaged inner core model and highest flow channel with averaged inner core channel model for EBR-II SHRT-17 test core. Case study showed that estimations of transient pump and channel flow as well as channel outlet temperatures were similar for all cases macroscopically. Comparing the result of the base case (flow-zone channel inner core model) and the case 2 (highest flow channel considered averaged inner core channel model), flow and channel outlet temperature response were closer than the case1 (single averaged inner core model)

  18. Evaluation of core modeling effect on transients for multi-flow zone design of SFR

    Energy Technology Data Exchange (ETDEWEB)

    Shin, Andong; Choi, Yong Won [Korea Institute of Nuclear Safety, Daejeon (Korea, Republic of)

    2016-10-15

    SFR core is composed of different types of assemblies including fuel driver, reflector, blanket, control, safety drivers and other drivers. Modeling of different types of assemblies is inevitable in general. But modeling of core flow zones of with different channels needs a lot of effort and could be a challenge for system code modeling due to its limitation on the number of modeling components. In this study, core modeling effect on SFR transient was investigated with flow-zone model and averaged inner core channel model to improve modeling efficiency and validation of simplified core model for EBR-II loss of flow transient case with the modified TRACE code for SFRs. Core modeling effect on the loss flow transient was analyzed with flow-zoned channel model, single averaged inner core model and highest flow channel with averaged inner core channel model for EBR-II SHRT-17 test core. Case study showed that estimations of transient pump and channel flow as well as channel outlet temperatures were similar for all cases macroscopically. Comparing the result of the base case (flow-zone channel inner core model) and the case 2 (highest flow channel considered averaged inner core channel model), flow and channel outlet temperature response were closer than the case1 (single averaged inner core model)

  19. Simulation of corrosion product activity in pressurized water reactors under flow rate transients

    International Nuclear Information System (INIS)

    Mirza, Anwar M.; Mirza, Nasir M.; Mir, Imran

    1998-01-01

    Simulation of coolant activation due to corrosion products and impurities in a typical pressurized water reactor has been done under flow rate transients. Employing time dependent production and losses of corrosion products in the primary coolant path an approach has been developed to calculate the coolant specific activity. Results for 24 Na, 56 Mn, 59 Fe, 60 Co and 99Mo show that the specific activity in primary loop approaches equilibrium value under normal operating conditions fairly rapidly. Predominant corrosion product activity is due to Mn-56. Parametric studies at full power for various ramp decreases in flow rate show initial decline in the activity and then a gradual rise to relatively higher saturation values. The minimum value and the time taken to reach the minima are strong functions of the slope of linear decrease in flow rate. In the second part flow rate coastdown was allowed to occur at different flow half-times. The reactor scram was initiated at 90% of the normal flow rate. The results show that the specific activity decreases and the rate of decrease depends on pump half time and the reactor scram conditions

  20. Study on numerical methods for transient flow induced by speed-changing impeller of fluid machinery

    International Nuclear Information System (INIS)

    Wu, Dazhuan; Chen, Tao; Wang, Leqin; Cheng, Wentao; Sun, Youbo

    2013-01-01

    In order to establish a reliable numerical method for solving the transient rotating flow induced by a speed-changing impeller, two numerical methods based on finite volume method (FVM) were presented and analyzed in this study. Two-dimensional numerical simulations of incompressible transient unsteady flow induced by an impeller during starting process were carried out respectively by using DM and DSR methods. The accuracy and adaptability of the two methods were evaluated by comprehensively comparing the calculation results. Moreover, an intensive study on the application of DSR method was conducted subsequently. The results showed that transient flow structure evolution and transient characteristics of the starting impeller are obviously affected by the starting process. The transient flow can be captured by both two methods, and the DSR method shows a higher computational efficiency. As an application example, the starting process of a mixed-flow pump was simulated by using DSR method. The calculation results were analyzed by comparing with the experiment data.

  1. Evaluation of transient natural circulation behavior during accident in low power/shutdown condition of YGN units 3/4

    International Nuclear Information System (INIS)

    Bang, Young Seok; Kim, Kap; Seul, Kwang Won; Kim, Hho Jung

    1997-01-01

    A transient natural circulation behavior during a LOCA at hot-standby operation is evaluated for YGN Units 3/4. The plant initial condition is determined within the EOP limitation as suitable to hot-standby mode and the transient scenario is prepared as relevant to evaluation of transient natural circulation. A 0.4% cold leg break with loss of off-site power is calculated with RELAP5/MOD3.2, whose predictability has been verified for SBLOCA natural circulation test, S-NC-8B. Through one hour transient analysis, it is found that the plant has its own decay heat removal capability by natural circulation following a LOCA at hot-standby mode. Additional calculation is performed to investigate an effect of HPSI flow on natural circulation

  2. Critical heat flux phenomena in flow boiling during step wise and ramp wise power transients

    International Nuclear Information System (INIS)

    Celata, G.P.; Cumo, M.; D'Annibale, F.; Farello, G.E.; Abou Said, S.

    1987-01-01

    The present paper deals with the results of an experimental investigation of the forced flow critical heat flux during power transients in a vertically heated channel. Experiments were carried out with a Refrigerant-12 1oop employing a circular test section which was electrically and uniformly heated. The power transients were performed with the step-wise and ramp-wise increase of the power to the test section. The test parameters included several values of the initial power (before the transient) and the final power (at the end of the transient) in the case of step-wise transients and the slope of the ramp in the case of ramp-wise transients. The pressure and specific mass flow rate, which were kept constant during the power transient,were varied from 1.2 to 2.7 MPa and 850 to 1500 Kg/sm 2 , respectively. Correlations of the experimental data for the time-to-crisis in terms of the independent parameters of the system are also proposed and verified for different values of pressure,mass flow rate, and inlet subcooling

  3. Thermal-hydraulic analysis of PWR cores in transient condition

    International Nuclear Information System (INIS)

    Silva Galetti, M.R. da.

    1984-01-01

    A calculational methodology for thermal - hydraulic analysis of PWR cores under steady-state and transient condition was selected and made available to users. An evaluation of the COBRA-IIIP/MIT code, used for subchannel analysis, was done through comparison of the code results with experimental data on steady state and transient conditions. As a result, a comparison study allowing spatial and temporal localization of critical heat flux was obtained. A sensitivity study of the simulation model to variations in some empirically determined parameter is also presented. Two transient cases from Angra I FSAR were analysed, showing the evolution of minimum DNBR with time. (Author) [pt

  4. The boundary condition at the valve for numerical modelling of transient pipe flow with fluid structure interaction

    Science.gov (United States)

    Henclik, S.

    2014-08-01

    Transient flows in pipes (water hammer = WH) do appear in various situations and the accompanying pressure waves may involve serious perturbations in system functioning. To model these effects properly in the case of elastic pipe the dynamic fluid-structure interaction (FSI) should be taken into account. Fluid-structure couplings appear in various manners and the junction coupling is considered to be the strongest. This effect can be especially significant if the pipe can move as a whole body, which is possible when all its supports are not rigid. In the current paper a similar effect is numerically modelled. The pipe is fixed rigidly, but the valve at the end has a spring-dashpot mounting system, thus its motion is possible when WH is excited by the valve closuring. The boundary condition at the moving valve is modelled as a differential equation of motion. The valve hydraulic characteristics during closuring period are assumed by a time dependence of its loss factor. Preliminary numerical tests of that algorithm were done with an own computer program and it was found that the proper valve fixing system may produce significant lowering of WH pressures.

  5. Boiling and burnout phenomena under transient heat input, 1

    International Nuclear Information System (INIS)

    Aoki, Shigebumi; Kozawa, Yoshiyuki; Iwasaki, Hideaki.

    1976-01-01

    In order to simulate the thermo-hydrodynamic conditions at reactor power excursions, a test piece was placed in a forced convective channel and heated with exponential power inputs. The boiling heat transfer and the burnout heat flux under the transient heat input were measured, and pressure and water temperature changes in the test section were recorded at the same time. Following experimental results were obtained; (1) Transient boiling heat transfer characteristics at high heat flux stayed on the stationary nucleate boiling curve of each flow condition, or extrapolated line of the curves. (2) Transient burnout heat flux increased remarkably with decreasing heating-time-constant, when the flow rate was lower and the subcooling was higher. (3) Transient burnout phenomena were expressed with the relation of (q sub(max) - q sub(sBO)) tau = constant at several flow conditions. This relation was derived from the stationary burnout mechanism of pool boiling. (auth.)

  6. Transient simulation of hydropower station with consideration of three-dimensional unsteady flow in turbine

    International Nuclear Information System (INIS)

    Huang, W D; Fan, H G; Chen, N X

    2012-01-01

    To study the interaction between the transient flow in pipe and the unsteady turbulent flow in turbine, a coupled model of the transient flow in the pipe and three-dimensional unsteady flow in the turbine is developed based on the method of characteristics and the fluid governing equation in the accelerated rotational relative coordinate. The load-rejection process under the closing of guide vanes of the hydraulic power plant is simulated by the coupled method, the traditional transient simulation method and traditional three-dimensional unsteady flow calculation method respectively and the results are compared. The pressure, unit flux and rotation speed calculated by three methods show a similar change trend. However, because the elastic water hammer in the pipe and the pressure fluctuation in the turbine have been considered in the coupled method, the increase of pressure at spiral inlet is higher and the pressure fluctuation in turbine is stronger.

  7. Transient simulation of hydropower station with consideration of three-dimensional unsteady flow in turbine

    Science.gov (United States)

    Huang, W. D.; Fan, H. G.; Chen, N. X.

    2012-11-01

    To study the interaction between the transient flow in pipe and the unsteady turbulent flow in turbine, a coupled model of the transient flow in the pipe and three-dimensional unsteady flow in the turbine is developed based on the method of characteristics and the fluid governing equation in the accelerated rotational relative coordinate. The load-rejection process under the closing of guide vanes of the hydraulic power plant is simulated by the coupled method, the traditional transient simulation method and traditional three-dimensional unsteady flow calculation method respectively and the results are compared. The pressure, unit flux and rotation speed calculated by three methods show a similar change trend. However, because the elastic water hammer in the pipe and the pressure fluctuation in the turbine have been considered in the coupled method, the increase of pressure at spiral inlet is higher and the pressure fluctuation in turbine is stronger.

  8. Theoretical and experimental studies on transient heat transfer for forced convection flow of helium gas over a horizontal cylinder

    International Nuclear Information System (INIS)

    Liu Qiusheng; Katsuya Fukuda; Zhang Zheng

    2005-01-01

    Forced convection transient heat transfer for helium gas at various periods of exponential increase of heat input to a horizontal cylinder (heater) was theoretically and experimentally studied. In the theoretical study, transient heat transfer was numerically solved based on a turbulent flow model. It was clarified that the surface superheat and heat flux increase exponentially as the heat generation rate increases with the exponential function. The temperature distribution near the cylinder becomes larger as the surface temperature increases. The values of numerical solution for surface temperature and heat flux agree well with the experimental data for the cylinder diameter of 1 mm. However, the heat flux shows difference from the experimental values for the cylinder diameters of 0.7 mm and 2.0 mm. In the experimental studies, the authors measured heat flux, surface temperature, and transient heat transfer coefficients for forced convection flow of helium gas over horizontal cylinders under wide experimental conditions. The platinum cylinders with diameters of 1.0 mm, 0.7 mm, and 2.0 mm were used as test heaters and heated by electric current with an exponential increase of Q 0exp (t/τ) . The gas flow velocities ranged from 2 to 10 m/s, the gas temperatures ranged from 303 to 353 K, and the periods ranged from 50 ms to 20 s. It was clarified that the heat transfer coefficient approaches the quasi-steady-state one for the period τ longer than about 1 s, and it becomes higher for the period shorter than around 1 s. The transient heat transfer shows less dependence on the gas flowing velocity when the period becomes very shorter. The heat transfer shifts to the quasi-steady-state heat transfer for longer periods and shifts to the transient heat transfer for shorter periods at the same flow velocity. It also approaches the quasi-steady-state one for higher flow velocity at the same period. The transient heat transfer coefficients show significant dependence on

  9. Influence of Base Oil Polarity on the Transient Shear Flow of Biodegradable Lubricating Greases

    Directory of Open Access Journals (Sweden)

    Martin Fiedler

    2015-09-01

    Full Text Available The scope of this study is to elucidate the physical mechanisms influencing the transient flow behavior of lubricating greases based on biogenic oleochemicals from a polarity point of view. This includes the mutually interacting influence of base oil polarity and thickening agents on the rheologically-measured mechanical structural degradation in transient shear flow. Due to the high temperature dependence of Keesom forces in the background of polar-active bond mechanisms, the analysis of the transient flow response as a function of temperature allows to attribute the observed influences to differences in base oil polarity. In general, clay-thickened greases show a greater tendency to be rheologically influenced by base oil polarities than soap-thickened lubricating greases.

  10. Calculation of sample problems related to two-phase flow blowdown transients in pressure relief piping of a PWR pressurizer

    International Nuclear Information System (INIS)

    Shin, Y.W.; Wiedermann, A.H.

    1984-02-01

    A method was published, based on the integral method of characteristics, by which the junction and boundary conditions needed in computation of a flow in a piping network can be accurately formulated. The method for the junction and boundary conditions formulation together with the two-step Lax-Wendroff scheme are used in a computer program; the program in turn, is used here in calculating sample problems related to the blowdown transient of a two-phase flow in the piping network downstream of a PWR pressurizer. Independent, nearly exact analytical solutions also are obtained for the sample problems. Comparison of the results obtained by the hybrid numerical technique with the analytical solutions showed generally good agreement. The good numerical accuracy shown by the results of our scheme suggest that the hybrid numerical technique is suitable for both benchmark and design calculations of PWR pressurizer blowdown transients

  11. On mathematical modelling and numerical simulation of transient compressible flow across open boundaries

    Energy Technology Data Exchange (ETDEWEB)

    Rian, Kjell Erik

    2003-07-01

    In numerical simulations of turbulent reacting compressible flows, artificial boundaries are needed to obtain a finite computational domain when an unbounded physical domain is given. Artificial boundaries which fluids are free to cross are called open boundaries. When calculating such flows, non-physical reflections at the open boundaries may occur. These reflections can pollute the solution severely, leading to inaccurate results, and the generation of spurious fluctuations may even cause the numerical simulation to diverge. Thus, a proper treatment of the open boundaries in numerical simulations of turbulent reacting compressible flows is required to obtain a reliable solution for realistic conditions. A local quasi-one-dimensional characteristic-based open-boundary treatment for the Favre-averaged governing equations for time-dependent three-dimensional multi-component turbulent reacting compressible flow is presented. A k-{epsilon} model for turbulent compressible flow and Magnussen's EDC model for turbulent combustion is included in the analysis. The notion of physical boundary conditions is incorporated in the method, and the conservation equations themselves are applied on the boundaries to complement the set of physical boundary conditions. A two-dimensional finite-difference-based computational fluid dynamics code featuring high-order accurate numerical schemes was developed for the numerical simulations. Transient numerical simulations of the well-known, one-dimensional shock-tube problem, a two-dimensional pressure-tower problem in a decaying turbulence field, and a two-dimensional turbulent reacting compressible flow problem have been performed. Flow- and combustion-generated pressure waves seem to be well treated by the non-reflecting subsonic open-boundary conditions. Limitations of the present open-boundary treatment are demonstrated and discussed. The simple and solid physical basis of the method makes it both favourable and relatively easy to

  12. A flow cell for transient voltammetry and in situ grazing incidence X-ray diffraction characterization of electrocrystallized cadmium(II) tetracyanoquinodimethane

    Energy Technology Data Exchange (ETDEWEB)

    Veder, Jean-Pierre [Nanochemistry Research Institute, Department of Chemistry, Curtin University, GPO Box U1987, Perth, Western Australia 6845 (Australia); Nafady, Ayman [School of Chemistry, Monash University, Clayton, Victoria 3800 (Australia); Clarke, Graeme [Nanochemistry Research Institute, Department of Chemistry, Curtin University, GPO Box U1987, Perth, Western Australia 6845 (Australia); Williams, Ross P. [Centre for Materials Research, Department of Imaging and Applied Physics, Curtin University, GPO Box U1987, Perth, Western Australia 6845 (Australia); De Marco, Roland, E-mail: r.demarco@curtin.edu.a [Nanochemistry Research Institute, Department of Chemistry, Curtin University, GPO Box U1987, Perth, Western Australia 6845 (Australia); Bond, Alan M. [School of Chemistry, Monash University, Clayton, Victoria 3800 (Australia)

    2011-01-01

    An easy to fabricate and versatile cell that can be used with a variety of electrochemical techniques, also meeting the stringent requirement for undertaking cyclic voltammetry under transient conditions in in situ electrocrystallization studies and total external reflection X-ray analysis, has been developed. Application is demonstrated through an in situ synchrotron radiation-grazing incidence X-ray diffraction (SR-GIXRD) characterization of electrocrystallized cadmium (II)-tetracyanoquinodimethane material, Cd(TCNQ){sub 2}, from acetonitrile (0.1 mol dm{sup -3} [NBu{sub 4}][PF{sub 6}]). Importantly, this versatile cell design makes SR-GIXRD suitable for almost any combination of total external reflection X-ray analysis (e.g., GIXRF and GIXRD) and electrochemical perturbation, also allowing its application in acidic, basic, aqueous, non-aqueous, low and high flow pressure conditions. Nevertheless, the cell design separates the functions of transient voltammetry and SR-GIXRD measurements, viz., voltammetry is performed at high flow rates with a substantially distended window to minimize the IR (Ohmic) drop of the electrolyte, while SR-GIXRD is undertaken using stop-flow conditions with a very thin layer of electrolyte to minimize X-ray absorption and scattering by the solution.

  13. FIX-II/2032, BWR Pump Trip Experiment 2032, Simulation Mass Flow and Power Transients

    International Nuclear Information System (INIS)

    1988-01-01

    1 - Description of test facility: In the FIX-II pump trip experiments, mass flow and power transients were simulated subsequent to a total loss of power to the recirculation pumps in an internal pump boiling water reactor. The aim was to determine the initial power limit to give dryout in the fuel bundle for the specified transient. In addition, the peak cladding temperature was measured and the rewetting was studied. 2 - Description of test: Pump trip experiment 2032 was a part of test group 2, i.e. the mass flow transient was to simulate the pump coast down with a pump inertia of 11.3 kg.m -2 . The initial power in the 36-rod bundle was 4.44 MW which gave dryout after 1.4 s from the start of the flow transient. A maximum rod cladding temperature of 457 degrees C was measured. Rewetting was obtained after 7.6 s. 3 - Experimental limitations or shortcomings: No ECCS injection systems

  14. Hot-wire air flow meter for gasoline fuel-injection system. Calculation of air mass in cylinder during transient condition; Gasoline funsha system yo no netsusenshiki kuki ryuryokei. Kato untenji no cylinder juten kukiryo no keisan

    Energy Technology Data Exchange (ETDEWEB)

    Oyama, Y [Hitachi Car Engineering, Ltd., Tokyo (Japan); Nishimura, Y; Osuga, M; Yamauchi, T [Hitachi, Ltd., Tokyo (Japan)

    1997-10-01

    Air flow characteristics of hot-wire air flow meters for gasoline fuel-injection systems with supercharging and exhaust gas recycle during transient conditions were investigated to analyze a simple method for calculating air mass in cylinder. It was clarified that the air mass in cylinder could be calculated by compensating for the change of air mass in intake system by using aerodynamic models of intake system. 3 refs., 6 figs., 1 tab.

  15. Transient three-phase three-component flow. Pt. 3

    International Nuclear Information System (INIS)

    Kolev, N.I.

    1986-05-01

    A mathematical model of a transient three-dimensional three-phase three-component flow described by three-velocity fields in porous body is presented. A combination of separated mass and energy equations together with mixture momentum equations for the flow is used. The mixture equations are used in diffusion form with the assumption that the diffusion velocity can be calculated from empirical correlations. An analytical coupling between the governing equations is developed for calculation of the pressure field. The system is discretized semiimplicitly in 3D-cylindrical space and different solution methods for the algebraic problem are presented. Finally, numerical examples and comparisons with experimental data demonstrate that the method presented is a powerful tool for numerical multiphase flow simulation. (orig.) [de

  16. Prandtl number variation on transient forced convection flow in a ...

    African Journals Online (AJOL)

    user

    2Manufacturing Engineering Department, The Public Authority for Applied Education and ... A transient numerical study is conducted to investigate the transport .... The model describes a valve where it is possible to direct the flow into one.

  17. Transient well flow in layered aquifer systems: the uniform well-face drawdown solution.

    NARCIS (Netherlands)

    Hemker, C.J.

    1999-01-01

    Previously a hybrid analytical-numerical solution for the general problem of computing transient well flow in vertically heterogeneous aquifers was proposed by the author. The radial component of flow was treated analytically, while the finite-difference technique was used for the vertical flow

  18. Two-dimensional finite element solution for the simultaneous transport of water and solutes through a nonhomogeneous aquifer under transient saturated unsaturated flow conditions

    International Nuclear Information System (INIS)

    Gureghian, A.B.

    1979-01-01

    A mathematical model of ground water transport through an aquifer is presented. The solute of interest is a metal tracer or radioactive material which may undergo decay through a sorbing unconfined aquifer. The subject is developed under the following headings: flow equation, solute equation, boundary conditions, finite element formulation, element formulation, solution scheme (flow equation, solute equation), results and discussions, water movement in a ditch drained aquifer under transient state, water and solute movement in a homogeneous and unsaturated soil, transport of 226 Ra in nonhomogeneous aquifer, tailings pond lined, and tailings pond unlined. It is concluded that this mathematical model may have a wide variety of applications. The uranium milling industry may find it useful to evaluate the hydrogeological suitability of their disposal sites. It may prove suited for the design of clay disposal ponds destined to hold hazardous liquids. It may also provide a means of estimating the long-term impact of radionuclides or other pollutants on the quality of ground water. 31 references, 9 figures, 3 tables

  19. Performance assessment of mass flow rate measurement capability in a large scale transient two-phase flow test system

    International Nuclear Information System (INIS)

    Nalezny, C.L.; Chapman, R.L.; Martinell, J.S.; Riordon, R.P.; Solbrig, C.W.

    1979-01-01

    Mass flow is an important measured variable in the Loss-of-Fluid Test (LOFT) Program. Large uncertainties in mass flow measurements in the LOFT piping during LOFT coolant experiments requires instrument testing in a transient two-phase flow loop that simulates the geometry of the LOFT piping. To satisfy this need, a transient two-phase flow loop has been designed and built. The load cell weighing system, which provides reference mass flow measurements, has been analyzed to assess its capability to provide the measurements. The analysis consisted of first performing a thermal-hydraulic analysis using RELAP4 to compute mass inventory and pressure fluctuations in the system and mass flow rate at the instrument location. RELAP4 output was used as input to a structural analysis code SAPIV which is used to determine load cell response. The computed load cell response was then smoothed and differentiated to compute mass flow rate from the system. Comparison between computed mass flow rate at the instrument location and mass flow rate from the system computed from the load cell output was used to evaluate mass flow measurement capability of the load cell weighing system. Results of the analysis indicate that the load cell weighing system will provide reference mass flows more accurately than the instruments now in LOFT

  20. Plate heat exchanger - inertia flywheel performance in loss of flow transient

    International Nuclear Information System (INIS)

    Abou-El-Maaty, Talal; Abd-El-Hady, Amr

    2009-01-01

    One of the most versatile types of heat exchangers used is the plate heat exchanger. It has principal advantages over other heat exchangers in that plates can be added and/or removed easily in order to change the area available for heat transfer and therefore its overall performance. The cooling systems of Egypt's second research reactor (ETRR 2) use this type of heat exchanger for cooling purposes in its primary core cooling and pool cooling systems. In addition to the change in the number of heat exchanger cooling channels, the effect of changing the amount of mass flow rate on the heat exchanger performance is an important issues in this study. The inertia flywheel mounted on the primary core cooling system pump with the plate heat exchanger plays an important role in the case of loss of flow transients. The PARET code is used to simulate the effect of loss of flow transients on the reactor core. Hence, the core outlet temperature with the pump-flywheel flow coast down is fed into the plate heat exchanger model developed to estimate the total energy transferred to the cooling tower, the primary side heat exchanger temperature variation, the transmitted heat exchanger power, and the heat exchanger effectiveness. In addition, the pressure drop in both, the primary side and secondary side of the plate heat exchanger is calculated in all simulated transients because their values have limits beyond which the heat exchanger is useless. (orig.)

  1. Transient well flow in layered aquifer systems: the uniform well-face drawdown solution

    Science.gov (United States)

    Hemker, C. J.

    1999-11-01

    Previously a hybrid analytical-numerical solution for the general problem of computing transient well flow in vertically heterogeneous aquifers was proposed by the author. The radial component of flow was treated analytically, while the finite-difference technique was used for the vertical flow component only. In the present work the hybrid solution has been modified by replacing the previously assumed uniform well-face gradient (UWG) boundary condition in such a way that the drawdown remains uniform along the well screen. The resulting uniform well-face drawdown (UWD) solution also includes the effects of a finite diameter well, wellbore storage and a thin skin, while partial penetration and vertical heterogeneity are accommodated by the one-dimensional discretization. Solutions are proposed for well flow caused by constant, variable and slug discharges. The model was verified by comparing wellbore drawdowns and well-face flux distributions with published numerical solutions. Differences between UWG and UWD well flow will occur in all situations with vertical flow components near the well, which is demonstrated by considering: (1) partially penetrating wells in confined aquifers, (2) fully penetrating wells in unconfined aquifers with delayed response and (3) layered aquifers and leaky multiaquifer systems. The presented solution can be a powerful tool for solving many well-hydraulic problems, including well tests, flowmeter tests, slug tests and pumping tests. A computer program for the analysis of pumping tests, based on the hybrid analytical-numerical technique and UWG or UWD conditions, is available from the author.

  2. Transient flows occurring during the accelerated crucible rotation technique

    International Nuclear Information System (INIS)

    Horowitz, Atara; Horowitz, Yigal

    1992-11-01

    The transient flows occurring after a change in the angular velocity of the cylindrical container are described. The dependence of the transient (known as spin-up or spin-down time) on experimental parameters as kinematic viscosity, cylinder dimensions and the cylinder's initial and final angular velocities are elucidates by a review of the literature. It is emphasized that with large Rossby numbers the spin-up time is longer and the amount of fluid mixing is greater than small and moderate Rossby numbers. It is also elucidated that most crystal growth crucibles cannot be considered as infinitely-long cylinders for the evaluation of the fluid dynamics (authors)

  3. NALAP: an LMFBR system transient code

    International Nuclear Information System (INIS)

    Martin, B.A.; Agrawal, A.K.; Albright, D.C.; Epel, L.G.; Maise, G.

    1975-07-01

    NALAP is a LMFBR system transient code. This code, adapted from the light water reactor transient code RELAP 3B, simulates thermal-hydraulic response of sodium cooled fast breeder reactors when subjected to postulated accidents such as a massive pipe break as well as a variety of other upset conditions that do not disrupt the system geometry. Various components of the plant are represented by control volumes. These control volumes are connected by junctions some of which may be leak or fill junctions. The fluid flow equations are modeled as compressible, single-stream flow with momentum flux in one dimension. The transient response is computed by integrating the thermal-hydraulic conservation equations from user-initialized operating conditions by an implicit numerical scheme. Point kinetics approximation is used to represent the time dependent heat generation in the reactor core

  4. Contribution to the theoretical study of transient two-phase flows

    International Nuclear Information System (INIS)

    Achard, J.L.

    1978-12-01

    The work presented in this paper has been given rise from the existence of violent boiling phenomena of the coolant that have been revealed by reactor safety studies with water and sodium. The aim as to describe in a basic mammer, one of these phenomena called ''chugging'' or ''choucage''. The experimental part of this work concerns two original works concerning the temperature measurement at the wall; a device is proposed to evaluate the contact resistance and the thermal inertia of the thermocouple; from the measurements that have been obtained, the flux the wall transfers to the flow and the temperature of the internal wall surface are deduced. A statistical method is developed for dispersed two-phase flow study, to establish: 1) a mass transfer law, 2) a law of change of the flow configuration. The proposed model contains: 1) for the dispersed phase (vapor bubbles), the basic momentum transport equations; 2) for the continuous phase (liquid), the transport equations of the classical formulation. The statistical formulation introduces the interaction phenomenon between the phases before applying the operation of the average (homogenization method); it allows to introduce the coalescence phenomena of bubbles. Finally, structures of exchange laws for transient laminar flows are proposed: transient linear momentum exchange law; possible structures of heat exchange laws [fr

  5. Study on transient hydrodynamic performance and cavitation characteristic of high-speed mixed-flow pump

    International Nuclear Information System (INIS)

    Chen, T; Liu, Y L; Sun, Y B; Wang, L Q; Wu, D Z

    2013-01-01

    In order to analyse the hydrodynamic performance and cavitation characteristic of a high-speed mixed-flow pump during transient operations, experimental studies were carried out. The transient hydrodynamic performance and cavitation characteristics of the mixed-flow pump with guide vane during start-up operation processes were tested on the pump performance test-bed. Performance tests of the pump were carried out under various inlet pressures and speed-changing operations. The real-time instantaneous external characteristics such as rotational speed, hydraulic head, flow rate, suction pressure and discharge pressure of the pump were measured. Based on the experimental results, the effect of fluid acceleration on the hydrodynamic performances and cavitation characteristics of the mixed-flow pump were analysed and evaluated

  6. Development and calibration of instruments for measurements in transient two-phase flow

    International Nuclear Information System (INIS)

    Banerjee, S.; Heidrick, T.R.

    1981-01-01

    For validation and development of theoretical models for transient two-phase flow, it is necessary to measure local and cross-sectionally averaged thermalhydraulic parameters. Of these parameters, void fraction and mass velocity are the most difficult to measure. In this paper, we present our recent work on various techniques for determining these quantities. The possibility of determining flow regime by using fast neutron transmission is discussed. The development of a miniaturized electrical resistivity probe for measuring local void fraction is described, together with calibrations obtained by integrating the void fraction profile and comparing the cross-sectionally averaged void fraction with direct measurements using two quick closing valves. Results on the calibration of combinations of full-flow turbine meters, Pitot tube rakes and gamma densitometers for measuring cross-sectionally averaged mass velocity in steady steam-water flow are presented. The results are interpreted with a simple model using single-phase calibration factors for the Pitot tube rakes and turbine meters. Calibration experiments were also done in transient steam-water flows and interpretation of the results with the steady state models is also discussed

  7. Two-dimensional computational modeling of high-speed transient flow in gun tunnel

    Science.gov (United States)

    Mohsen, A. M.; Yusoff, M. Z.; Hasini, H.; Al-Falahi, A.

    2018-03-01

    In this work, an axisymmetric numerical model was developed to investigate the transient flow inside a 7-meter-long free piston gun tunnel. The numerical solution of the gun tunnel was carried out using the commercial solver Fluent. The governing equations of mass, momentum, and energy were discretized using the finite volume method. The dynamic zone of the piston was modeled as a rigid body, and its motion was coupled with the hydrodynamic forces from the flow solution based on the six-degree-of-freedom solver. A comparison of the numerical data with the theoretical calculations and experimental measurements of a ground-based gun tunnel facility showed good agreement. The effects of parameters such as working gases and initial pressure ratio on the test conditions in the facility were examined. The pressure ratio ranged from 10 to 50, and gas combinations of air-air, helium-air, air-nitrogen, and air-CO2 were used. The results showed that steady nozzle reservoir conditions can be maintained for a longer duration when the initial conditions across the diaphragm are adjusted. It was also found that the gas combination of helium-air yielded the highest shock wave strength and speed, but a longer test time was achieved in the test section when using the CO2 test gas.

  8. Mountain scale modeling of transient, coupled gas flow, heat transfer and carbon-14 migration

    International Nuclear Information System (INIS)

    Lu, Ning; Ross, B.

    1993-01-01

    We simulate mountain-scale coupled heat transfer and gas flow at Yucca Mountain. A coupled rock-gas flow and heat transfer model, TGIF2, is used to simulate mountain-scale two-dimensional transient heat transfer and gas flow. The model is first verified against an analytical solution for the problem of an infinite horizontal layer of fluid heated from below. Our numerical results match very well with the analytical solution. Then, we obtain transient temperature and gas flow distributions inside the mountain. These distributions are used by a transient semianalytical particle tracker to obtain carbon-14 travel times for particles starting at different locations within the repository. Assuming that the repository is filled with 30-year-old waste at an initial areal power density of 57 kw/acre, we find that repository temperatures remain above 60 degrees C for more than 10,000 years. Carbon-14 travel times to the surface are mostly less than 1000 years, for particles starting at any time within the first 10,000 years

  9. Transcranial magnetic stimulation-induced global propagation of transient phase resetting associated with directional information flow

    Directory of Open Access Journals (Sweden)

    Masahiro eKawasaki

    2014-03-01

    Full Text Available Electroencephalogram (EEG phase synchronization analyses can reveal large-scale communication between distant brain areas. However, it is not possible to identify the directional information flow between distant areas using conventional phase synchronization analyses. In the present study, we applied transcranial magnetic stimulation (TMS to the occipital area in subjects who were resting with their eyes closed, and analyzed the spatial propagation of transient TMS-induced phase resetting by using the transfer entropy (TE, to quantify the causal and directional flow of information. The time-frequency EEG analysis indicated that the theta (5 Hz phase locking factor (PLF reached its highest value at the distant area (the motor area in this study, with a time lag that followed the peak of the transient PLF enhancements of the TMS-targeted area at the TMS onset. PPI (phase-preservation index analyses demonstrated significant phase resetting at the TMS-targeted area and distant area. Moreover, the TE from the TMS-targeted area to the distant area increased clearly during the delay that followed TMS onset. Interestingly, the time lags were almost coincident between the PLF and TE results (152 vs. 165 ms, which provides strong evidence that the emergence of the delayed PLF reflects the causal information flow. Such tendencies were observed only in the higher-intensity TMS condition, and not in the lower-intensity or sham TMS conditions. Thus, TMS may manipulate large-scale causal relationships between brain areas in an intensity-dependent manner. We demonstrated that single-pulse TMS modulated global phase dynamics and directional information flow among synchronized brain networks. Therefore, our results suggest that single-pulse TMS can manipulate both incoming and outgoing information in the TMS-targeted area associated with functional changes.

  10. Effects of transient conditions on exhaust emissions from two non-road diesel engines

    International Nuclear Information System (INIS)

    Lindgren, M.; Hansson, P.-A.

    2004-01-01

    Growing interest in quantifying and reducing the amount of engine emissions of carbon monoxide, hydrocarbons, and nitrogen oxides loading the environment has led to increasingly tighter environmental regulations. However, current non-road emission standards are performed according to a steady-state test cycle, which does not include transient effects and thus underestimates the amount of emissions produced in real use of the engine. This study quantifies the effects of transients in engine speed and torque on the fuel consumption and emissions from two diesel engines intended for non-road mobile machinery. Fuel consumption and emissions from the engines were measured in an engine dynamometer during various transient load conditions. The results showed that during fast transients, the measured fuel consumption was up to twice as high as the corresponding steady-state load conditions. The effects of transients on emissions of nitrogen oxides were even greater, as were the effects of transient load increase with increasing transient conditions i. e. rate of change. The results showed that the effect of transients on fuel consumption and emissions were also dependent on the type of diesel injection pump and the engine equipment used. Furthermore, the results indicated that the air/fuel ratio was an important contributor to the emission formation process during transient loads. (Author)

  11. Improved Flow Modeling in Transient Reactor Safety Analysis Computer Codes

    International Nuclear Information System (INIS)

    Holowach, M.J.; Hochreiter, L.E.; Cheung, F.B.

    2002-01-01

    A method of accounting for fluid-to-fluid shear in between calculational cells over a wide range of flow conditions envisioned in reactor safety studies has been developed such that it may be easily implemented into a computer code such as COBRA-TF for more detailed subchannel analysis. At a given nodal height in the calculational model, equivalent hydraulic diameters are determined for each specific calculational cell using either laminar or turbulent velocity profiles. The velocity profile may be determined from a separate CFD (Computational Fluid Dynamics) analysis, experimental data, or existing semi-empirical relationships. The equivalent hydraulic diameter is then applied to the wall drag force calculation so as to determine the appropriate equivalent fluid-to-fluid shear caused by the wall for each cell based on the input velocity profile. This means of assigning the shear to a specific cell is independent of the actual wetted perimeter and flow area for the calculational cell. The use of this equivalent hydraulic diameter for each cell within a calculational subchannel results in a representative velocity profile which can further increase the accuracy and detail of heat transfer and fluid flow modeling within the subchannel when utilizing a thermal hydraulics systems analysis computer code such as COBRA-TF. Utilizing COBRA-TF with the flow modeling enhancement results in increased accuracy for a coarse-mesh model without the significantly greater computational and time requirements of a full-scale 3D (three-dimensional) transient CFD calculation. (authors)

  12. The ionospheric signature of transient dayside reconnection and the associated pulsed convection return flow

    Directory of Open Access Journals (Sweden)

    S. E. Milan

    Full Text Available Three SuperDARN coherent HF radars are employed to investigate the excitation of convection in the dayside high-latitude ionosphere in response to transient reconnection occurring in the cusp region. This study demonstrates the existence of transient antisunward-propagating backscatter features at the expected location of the ionospheric footprint of the cusp region, which have a repetition rate near 10 min. These are interpreted as the ionospheric signature of flux transfer events. Moreover, transient sunward-propagating regions of backscatter are observed in the convection return flow regions of both the pre- and post-noon sectors. These patches are observed to propagate towards the noon sector from at least as far around the auroral zone as 07 MLT in the pre-noon sector and 17 MLT in the post-noon sector, travelling with a velocity of approximately 1.5 to 2 km s-1. These return flow patches have a repetition rate similar to that of the transient features observed at local noon. While providing supporting evidence for the impulsive nature of convection flow, the observation of sunward-propagating features in the return flow region is not consistent with current conceptual models of the excitation of convection.

    Key words. Ionosphere (plasma convection · Magnetospheric physics (magnetopause · cusp · and boundary layers; magnetosphere-ionosphere interactions

  13. Fractional governing equations of transient groundwater flow in confined aquifers with multi-fractional dimensions in fractional time

    Directory of Open Access Journals (Sweden)

    M. L. Kavvas

    2017-10-01

    Full Text Available Using fractional calculus, a dimensionally consistent governing equation of transient, saturated groundwater flow in fractional time in a multi-fractional confined aquifer is developed. First, a dimensionally consistent continuity equation for transient saturated groundwater flow in fractional time and in a multi-fractional, multidimensional confined aquifer is developed. For the equation of water flux within a multi-fractional multidimensional confined aquifer, a dimensionally consistent equation is also developed. The governing equation of transient saturated groundwater flow in a multi-fractional, multidimensional confined aquifer in fractional time is then obtained by combining the fractional continuity and water flux equations. To illustrate the capability of the proposed governing equation of groundwater flow in a confined aquifer, a numerical application of the fractional governing equation to a confined aquifer groundwater flow problem was also performed.

  14. Simulation of a boiler in transient operating conditions on a digital computer

    International Nuclear Information System (INIS)

    Micheau, P.; Dahan, G.; Naudin, P.

    1974-01-01

    Resolving a more general problem, studied for Electricite de France, the mathematical model of the boiler of a nuclear power plant was determined for transient and steady state operating conditions. This gas-water heat exchanger is of counter-flow type. The boundary conditions considered for the fluids are: pressure, mass-flow, and temperature at the inlet, and pressure at the outlet. The two passes gas and water are assumed to be monodimensional, and the separating wall to be so thin that it is not necessary to take into account the temperature drop across it. In the energy equation for the gas, the terms of pressure with respect to position were neglected and also the terms of kinetic energy. The following assumptions were considered for the water pass: the pressure is uniform troughout the boiler, the shear stress at the interface between liquid and vapour is negligible, throughout the boiling zone, the heat exchange coefficient is uniform. The set of equations which forms the model has been resolved by a discretization method. The characteristic magnitudes for the fluids were defined at the boundaries of the meshes, the temperatures of the wall are those in the centre of the meshes. At any time, the model allows the determination of the characteristic magnitudes of the two fluids and the walls, starting from the boundary conditions which vary with time, in a finite number of points. On the gas side, the velocities may cancel themselves at and change direction. On the water steam side, the flow must have a unique direction. Satisfying results concerning some operating conditions have been obtained [fr

  15. Mitigation of thermal transients by tube bundle inlet plenum design

    International Nuclear Information System (INIS)

    Oras, J.J.; Kasza, K.E.

    1984-06-01

    A multiphase program aimed at investigating the importance of thermal buoyancy to LMFBR steam-generator and heat-exchanger thermal hydraulics under low-flow transient conditions is being conducted in the Argonne Mixing Components Test Facility (MCTF) on a 60 0 sector shell-side flow model of the Westinghouse straight-tube steam generator being developed under the US/DOE large-component development program. A series of shell-side constant-flow thermal-downramp transient tests have been conducted focusing on the phenomenon of thermal-buoyancy-induced-flow channeling. In addition, it was discovered that a shell-inlet flow-distribution plenum can play a significant role in mitigating the severity of a thermal transient entering a steam generator or heat exchanger

  16. Transient Stefan flow and thermophoresis around an evaporating droplet

    International Nuclear Information System (INIS)

    Vittori, O.

    1984-01-01

    The particle scavening efficiency of vapour-grown ice crystals falling from mixed clouds proves to be very high. Stefan flow, an aerodynamic flow originating in the fluid surrounding evaporating or condensing bodies, pushes airborne particles away from the surface of the supercooled droplets evaporating in the vicinity of an ice crystal. The particle Brownian flux towards the surface of the ice crystal (terminal velocity of about 1 m s -1 ) is, therefore, enhanced. However, the efficiency of this process of airborne-particle removal is strongly reduced as a consequence of the cooling of the evaporating droplet which produces a ''thermal force'', thermophoresis, which counteracts the particle Stefan flow. At the surface of an evaporating droplet in a quasi-equilibrium state, the two airborne-particle velocity fields practically balance each other. This counteracting effect on particle motion needs to be evaluated in the transient case. An approach is presented which consists of reformulating the transient heat and mass transfer problem in such a way as to convert it into a purely heat transfer problem having a known analytical solution. The approach is discussed and found to be correct. The results of the computations show that the counteracting role of thermophoresis on Stefan-flow particle motion during the residence time of supercooled droplets in the vicinity of an ice crystal (from 10 -5 to 10 -4 s), which is also the time in which evaporation takes place, is considerably weak. It turns out to be practically negligible for large droplets (radius >= 8x10 -4 cm)

  17. Classifier-ensemble incremental-learning procedure for nuclear transient identification at different operational conditions

    Energy Technology Data Exchange (ETDEWEB)

    Baraldi, Piero, E-mail: piero.baraldi@polimi.i [Dipartimento di Energia - Sezione Ingegneria Nucleare, Politecnico di Milano, via Ponzio 34/3, 20133 Milano (Italy); Razavi-Far, Roozbeh [Dipartimento di Energia - Sezione Ingegneria Nucleare, Politecnico di Milano, via Ponzio 34/3, 20133 Milano (Italy); Zio, Enrico [Dipartimento di Energia - Sezione Ingegneria Nucleare, Politecnico di Milano, via Ponzio 34/3, 20133 Milano (Italy); Ecole Centrale Paris-Supelec, Paris (France)

    2011-04-15

    An important requirement for the practical implementation of empirical diagnostic systems is the capability of classifying transients in all plant operational conditions. The present paper proposes an approach based on an ensemble of classifiers for incrementally learning transients under different operational conditions. New classifiers are added to the ensemble where transients occurring in new operational conditions are not satisfactorily classified. The construction of the ensemble is made by bagging; the base classifier is a supervised Fuzzy C Means (FCM) classifier whose outcomes are combined by majority voting. The incremental learning procedure is applied to the identification of simulated transients in the feedwater system of a Boiling Water Reactor (BWR) under different reactor power levels.

  18. Classifier-ensemble incremental-learning procedure for nuclear transient identification at different operational conditions

    International Nuclear Information System (INIS)

    Baraldi, Piero; Razavi-Far, Roozbeh; Zio, Enrico

    2011-01-01

    An important requirement for the practical implementation of empirical diagnostic systems is the capability of classifying transients in all plant operational conditions. The present paper proposes an approach based on an ensemble of classifiers for incrementally learning transients under different operational conditions. New classifiers are added to the ensemble where transients occurring in new operational conditions are not satisfactorily classified. The construction of the ensemble is made by bagging; the base classifier is a supervised Fuzzy C Means (FCM) classifier whose outcomes are combined by majority voting. The incremental learning procedure is applied to the identification of simulated transients in the feedwater system of a Boiling Water Reactor (BWR) under different reactor power levels.

  19. The effect of retarding torque during a flow transient for Tehran Research Reactor

    Energy Technology Data Exchange (ETDEWEB)

    Farhadi, Kazem, E-mail: kfarhadi@aeoi.org.ir [Engineering Science Research Group, Nuclear Science Research School, Nuclear Science and Technology Research Institute, AEOI, P.O. Box 11365-3486, Tehran (Iran, Islamic Republic of)

    2011-02-15

    The primary cooling system of the Tehran Research Reactor (TRR) has been analysed for a possible flow transient phenomenon caused by power cut-off. All the components of the TRR primary cooling loop that offer resistance to the coolant flow are physically modelled. Differential equations of motion for the coolant in the primary piping of the TRR and for the rotating parts of the centrifugal pump are then derived. The equation of flow motion is solved simultaneously with momentum conservation equation of the rotating parts of the pump which predicts the TRR pump speed during the flow transient. Electrical and mechanical losses are measured for the TRR three-phase induction motor in order to calculate the motor retarding torque during the event. The results of the present study are compared with the other similar primary loop results. The present model shows good agreement with the existing experimental and theoretical studies.

  20. Transient dynamics of the flow around a NACA 0015 airfoil using fluidic vortex generators

    Energy Technology Data Exchange (ETDEWEB)

    Siauw, W.L. [Institut Pprime, CNRS - Universite de Poitiers - ENSMA, UPR 3346, Departement Fluides, Thermique, Combustion, ENSMA - Teleport 2, 1 Avenue Clement Ader, BP 40109, F-86961 Futuroscope Chasseneuil Cedex (France); Bonnet, J.-P., E-mail: Jean-Paul.Bonnet@univ-poitiers.f [Institut Pprime, CNRS - Universite de Poitiers - ENSMA, UPR 3346, Departement Fluides, Thermique, Combustion, CEAT, 43 rue de l' Aerodrome, F-86036 Poitiers Cedex (France); Tensi, J., E-mail: Jean.Tensi@lea.univ-poitiers.f [Institut Pprime, CNRS - Universite de Poitiers - ENSMA, UPR 3346, Departement Fluides, Thermique, Combustion, ENSMA - Teleport 2, 1 Avenue Clement Ader, BP 40109, F-86961 Futuroscope Chasseneuil Cedex (France); Cordier, L., E-mail: Laurent.Cordier@univ-poitiers.f [Institut Pprime, CNRS - Universite de Poitiers - ENSMA, UPR 3346, Departement Fluides, Thermique, Combustion, CEAT, 43 rue de l' Aerodrome, F-86036 Poitiers Cedex (France); Noack, B.R., E-mail: Bernd.Noack@univ-poitiers.f [Institut Pprime, CNRS - Universite de Poitiers - ENSMA, UPR 3346, Departement Fluides, Thermique, Combustion, CEAT, 43 rue de l' Aerodrome, F-86036 Poitiers Cedex (France); Cattafesta, L., E-mail: cattafes@ufl.ed [Florida Center for Advanced Aero-Propulsion (FCAAP), Department of Mechanical and Aerospace Engineering, University of Florida, 231 MAE-A, Gainesville, FL 32611 (United States)

    2010-06-15

    The unsteady activation or deactivation of fluidic vortex generators on a NACA 0015 airfoil is studied to understand the transient dynamics of flow separation control. The Reynolds number is high enough and the boundary layer is tripped, so the boundary layer is fully turbulent prior to separation. Conditional PIV of the airfoil wake is obtained phase-locked to the actuator trigger signal, allowing reconstruction of the transient processes. When the actuators are impulsively turned on, the velocity field in the near wake exhibit a complex transient behavior associated with the formation and shedding of a starting vortex. When actuation is stopped, a more gradual process of the separation dynamics is found. These results are in agreement with those found in the literature in comparable configurations. Proper Orthogonal Decomposition of phase-locked velocity fields reveals low-dimensional transient dynamics for the attachment and separation processes, with 98% of the fluctuation energy captured by the first four modes. The behavior is quantitatively well captured by a four-dimensional dynamical system with the corresponding mode amplitudes. Analysis of the first temporal POD modes accurately determines typical time scales for attachment and separation processes to be respectively t{sup +}=10 and 20 in conventional non-dimensional values. This study adds to experimental investigations of this scale with essential insight for the targeted closed-loop control.

  1. Transient Air-Water Flow and Air Demand following an Opening Outlet Gate

    Directory of Open Access Journals (Sweden)

    James Yang

    2018-01-01

    Full Text Available In Sweden, the dam-safety guidelines call for an overhaul of many existing bottom outlets. During the opening of an outlet gate, understanding the transient air-water flow is essential for its safe operation, especially under submerged tailwater conditions. Three-dimensional CFD simulations are undertaken to examine air-water flow behaviors at both free and submerged outflows. The gate, hoisted by wire ropes and powered by AC, opens at a constant speed. A mesh is adapted to follow the gate movement. At the free outflow, the CFD simulations and model tests agree well in terms of outlet discharge capacity. Larger air vents lead to more air supply; the increment becomes, however, limited if the vent area is larger than 10 m2. At the submerged outflow, a hydraulic jump builds up in the conduit when the gate reaches approximately 45% of its full opening. The discharge is affected by the tailwater and slightly by the flow with the hydraulic jump. The flow features strong turbulent mixing of air and water, with build-up and break-up of air pockets and collisions of defragmented water bodies. The air demand rate is several times as much as required by steady-state hydraulic jump with free surface.

  2. On the theoretical–numerical study of the ITER Upper Port Plug structure hydraulic behaviour under steady state and draining and drying transient conditions

    International Nuclear Information System (INIS)

    Di Maio, P.A.; Paradiso, D.; Dell’Orco, G.; Pitcher, C.S.; Kalish, M.

    2011-01-01

    Highlights: ► UPP TS hydraulic behaviour has been investigated under steady state and D and D transient conditions. ► A thermal–hydraulic system code has been adopted and a UPP TS model has been set-up and validated against results of steady state CFD analyses. ► The TS steady state hydraulic characteristic functions have been derived for two coolant flow paths showing that right plate inlet one is the most promising. ► Draining simulations indicate that the 4 MPa injection pressure is high enough to drain almost completely the circuit in a reasonable time (∼6 s). ► Results indicate that right plate inlet flow path allows the TS complete draining, eliminating the need for the drying procedure. - Abstract: The ITER diagnostic Upper Port Plug (UPP) is a water-cooled stainless steel structure aimed to integrate within vacuum vessel the plasma diagnostic systems, shielding them from neutron and photon irradiation. Due to the very intense heat loads expected, a proper cooling circuit has been designed to ensure an adequate UPP cooling with an acceptable thermal rise and an unduly high pumping power and to perform its draining and drying procedure by injection of pressurized nitrogen. A theoretical research activity has been launched at the Department of Nuclear Engineering of the University of Palermo aiming to investigate the hydraulic behaviour of the UPP Trapezoid Section cooling circuit under steady state conditions and during its draining and drying transient procedure. The research activity has been performed following a theoretical–computational approach and adopting the RELAP5 thermal–hydraulic system code. The Trapezoid Section cooling circuit characteristic functions have been derived under steady state conditions at various coolant temperatures for both the coolant flow paths at the present under consideration for this circuit. The distributions of coolant mass flow rates along the channels of the cooling circuit have been calculated too

  3. Transient calibration of a groundwater-flow model of Chimacum Creek Basin and vicinity, Jefferson County, Washington: a supplement to Scientific Investigations Report 2013-5160

    Science.gov (United States)

    Jones, Joseph L.; Johnson, Kenneth H.

    2013-01-01

    A steady-state groundwater-flow model described in Scientific Investigations Report 2013-5160, ”Numerical Simulation of the Groundwater-Flow System in Chimacum Creek Basin and Vicinity, Jefferson County, Washington” was developed to evaluate potential future impacts of growth and of water-management strategies on water resources in the Chimacum Creek Basin. This supplement to that report describes the unsuccessful attempt to perform a calibration to transient conditions on the model. The modeled area is about 64 square miles on the Olympic Peninsula in northeastern Jefferson County, Washington. The geologic setting for the model area is that of unconsolidated deposits of glacial and interglacial origin typical of the Puget Sound Lowlands. The hydrogeologic units representing aquifers are Upper Aquifer (UA, roughly corresponding to recessional outwash) and Lower Aquifer (LA, roughly corresponding to advance outwash). Recharge from precipitation is the dominant source of water to the aquifer system; discharge is primarily to marine waters below sea level and to Chimacum Creek and its tributaries. The model is comprised of a grid of 245 columns and 313 rows; cells are a uniform 200 feet per side. There are six model layers, each representing one hydrogeologic unit: (1) Upper Confining unit (UC); (2) Upper Aquifer unit (UA); (3) Middle Confining unit (MC); (4) Lower Aquifer unit (LA); (5) Lower Confining unit (LC); and (6) Bedrock unit (OE). The transient simulation period (October 1994–September 2009) was divided into 180 monthly stress periods to represent temporal variations in recharge, discharge, and storage. An attempt to calibrate the model to transient conditions was unsuccessful due to instabilities stemming from oscillations in groundwater discharge to and recharge from streamflow in Chimacum Creek. The model as calibrated to transient conditions has mean residuals and standard errors of 0.06 ft ±0.45 feet for groundwater levels and 0.48 ± 0.06 cubic

  4. Large Eddy Simulation of Transient Flow, Solidification, and Particle Transport Processes in Continuous-Casting Mold

    Science.gov (United States)

    Liu, Zhongqiu; Li, Linmin; Li, Baokuan; Jiang, Maofa

    2014-07-01

    The current study developed a coupled computational model to simulate the transient fluid flow, solidification, and particle transport processes in a slab continuous-casting mold. Transient flow of molten steel in the mold is calculated using the large eddy simulation. An enthalpy-porosity approach is used for the analysis of solidification processes. The transport of bubble and non-metallic inclusion inside the liquid pool is calculated using the Lagrangian approach based on the transient flow field. A criterion of particle entrapment in the solidified shell is developed using the user-defined functions of FLUENT software (ANSYS, Inc., Canonsburg, PA). The predicted results of this model are compared with the measurements of the ultrasonic testing of the rolled steel plates and the water model experiments. The transient asymmetrical flow pattern inside the liquid pool exhibits quite satisfactory agreement with the corresponding measurements. The predicted complex instantaneous velocity field is composed of various small recirculation zones and multiple vortices. The transport of particles inside the liquid pool and the entrapment of particles in the solidified shell are not symmetric. The Magnus force can reduce the entrapment ratio of particles in the solidified shell, especially for smaller particles, but the effect is not obvious. The Marangoni force can play an important role in controlling the motion of particles, which increases the entrapment ratio of particles in the solidified shell obviously.

  5. Analysis of transient and hysteresis behavior of cross-flow heat exchangers under variable fluid mass flow rate for data center cooling applications

    International Nuclear Information System (INIS)

    Gao, Tianyi; Murray, Bruce; Sammakia, Bahgat

    2015-01-01

    Effective thermal management of data centers is an important aspect of reducing the energy required for the reliable operation of data processing and communications equipment. Liquid and hybrid (air/liquid) cooling approaches are becoming more widely used in today's large and complex data center facilities. Examples of these approaches include rear door heat exchangers, in-row and overhead coolers and direct liquid cooled servers. Heat exchangers are primary components of liquid and hybrid cooling systems, and the effectiveness of a heat exchanger strongly influences the thermal performance of a cooling system. Characterizing and modeling the dynamic behavior of heat exchangers is important for the design of cooling systems, especially for control strategies to improve energy efficiency. In this study, a dynamic thermal model is solved numerically in order to predict the transient response of an unmixed–unmixed crossflow heat exchanger, of the type that is widely used in data center cooling equipment. The transient response to step and ramp changes in the mass flow rate of both the hot and cold fluid is investigated. Five model parameters are varied over specific ranges to characterize the transient performance. The parameter range investigated is based on available heat exchanger data. The thermal response to the magnitude, time period and initial and final conditions of the transient input functions is studied in detail. Also, the hysteresis associated with the fluid mass flow rate variation is investigated. The modeling results and performance data are used to analyze specific dynamic performance of heat exchangers used in practical data center cooling applications. - Highlights: • The transient performance of a crossflow heat exchanger was modeled and studied. • This study provides design information for data center thermal management. • The time constant metric was used to study the impacts of many variable inputs. • The hysteresis behavior

  6. Loss-of-flow transient characterization in carbide-fueled LMFBRs

    International Nuclear Information System (INIS)

    Rothrock, R.B.; Morgan, M.M.; Baars, R.E.; Elson, J.S.; Wray, M.L.

    1985-01-01

    One of the benefits derived from the use of carbide fuel in advanced Liquid Metal Fast Breeder Reactors (LMFBRs) is a decreased vulnerability to certain accidents. This can be achieved through the combination of advanced fuel performance with the enhanced reactivity feedback effects and passive shutdown cooling systems characteristic of the current 'inherently safe' plant concepts. The calculated core response to an unprotected loss of flow (ULOF) accident has frequently been used as a benchmark test of these designs, and the advantages of a high-conductivity fuel in relation to this type of transient have been noted in previous analyses. To evaluate this benefit in carbide-fueled LMFBRs incorporating representative current plant design features, limited calculations have been made of a ULOF transient in a small ('modular') carbide-fueled LMFBR

  7. Characterization of the startup transient electrokinetic flow in rectangular channels of arbitrary dimensions, zeta potential distribution, and time-varying pressure gradient.

    Science.gov (United States)

    Miller, Andrew; Villegas, Arturo; Diez, F Javier

    2015-03-01

    The solution to the startup transient EOF in an arbitrary rectangular microchannel is derived analytically and validated experimentally. This full 2D transient solution describes the evolution of the flow through five distinct periods until reaching a final steady state. The derived analytical velocity solution is validated experimentally for different channel sizes and aspect ratios under time-varying pressure gradients. The experiments used a time resolved micro particle image velocimetry technique to calculate the startup transient velocity profiles. The measurements captured the effect of time-varying pressure gradient fields derived in the analytical solutions. This is tested by using small reservoirs at both ends of the channel which allowed a time-varying pressure gradient to develop with a time scale on the order of the transient EOF. Results showed that under these common conditions, the effect of the pressure build up in the reservoirs on the temporal development of the transient startup EOF in the channels cannot be neglected. The measurements also captured the analytical predictions for channel walls made of different materials (i.e., zeta potentials). This was tested in channels that had three PDMS and one quartz wall, resulting in a flow with an asymmetric velocity profile due to variations in the zeta potential between the walls. © 2014 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  8. An analysis of transient flow in upland watersheds: interactions between structure and process

    Science.gov (United States)

    David Lawrence Brown

    1995-01-01

    The physical structure and hydrological processes of upland watersheds interact in response to forcing functions such as rainfall, leading to storm runoff generation and pore pressure evolution. Transient fluid flow through distinct flow paths such as the soil matrix, macropores, saprolite, and bedrock may be viewed as a consequence of such interactions. Field...

  9. Transient Fuel Behavior and Failure Condition in the CABRI-2 Experiments

    International Nuclear Information System (INIS)

    Sato, Ikken; Lemoine, Francette; Struwe, Dankward

    2004-01-01

    In the CABRI-2 program, 12 tests were performed under various transient conditions covering a wide range of accident scenarios using two types of preirradiated fast breeder reactor (FBR) fuel pins with different smear densities and burnups. For each fuel, a nonfailure-transient test was performed, and it provided basic information such as fuel thermal condition, fuel swelling, and gas release. From the failure tests, information on failure mode, failure time, and axial location was obtained. Based on this information, failure conditions such as fuel enthalpy and cladding temperature were evaluated. These failure conditions were compared with the CABRI-1 tests in which different fuels as well as different transient conditions were used. This comparison, together with supporting information available from existing in-pile and out-of-pile experiments, allowed an effective understanding on failure mechanisms depending on fuel and transient conditions. It is concluded that pellet-cladding mechanical interaction (PCMI) due to fuel thermal expansion and fission-gas-induced swelling is playing an important role on mechanical clad loading especially with high smear density and low fuel-heating-rate conditions. At very high heating-rate conditions, there is no sufficient time to allow significant fuel swelling, so that cavity pressurization with fuel melting becomes the likely failure mechanism. Fuel smear density and fission-gas retention have a strong impact both on PCMI and cavity pressurization. Furthermore, pin failure is strongly dependent on cladding temperature, which plays an important role in the axial failure location. With the low smear-density fuel, considerable PCMI mitigation is possible leading to a high failure threshold as well as in-pin molten-fuel relocation along the central hole. However, even with the low smear density fuel, PCMI failure could take place with an elevated cladding-temperature condition. On the other hand, in case of a sufficiently long

  10. Numerical Analysis of S-CO{sub 2} Test Loop Transient Conditions near the Critical Point of CO{sub 2}

    Energy Technology Data Exchange (ETDEWEB)

    Bae, Seong Jun; Oh, Bongseong; Ahn, Yoonhan; Baik, Seongjoon; Lee, Jekyoung; Lee, Jeong Ik [KAIST, Daejeon (Korea, Republic of)

    2016-05-15

    It was identified that controlling CO{sub 2} compressor operation near the critical point is one of the most important issues to operate a S-CO{sub 2} Brayton cycle with a high efficiency. Despite the growing interest in the S-CO{sub 2} Brayton cycle, a few previous research on the transient analysis of the S-CO{sub 2} system has been conducted previously. Moreover, previous studies have some limitation in the modelled test facility, and the experiment was not performed to observe specific scenario. The KAIST research team has conducted S-CO{sub 2} system transient experiments with the CO{sub 2} compressing test facility called SCO{sub 2}PE (Supercritical CO{sub 2} Pressurizing Experiment) at KAIST In this study, authors use the transient analysis code GAMMA (Gas Multidimensional Multicomponent mixture Analysis) code for analyzing the experiment. Two transient scenarios were selected in this study; over cooling and under cooling situations. The selected transient situation is of particular interest since the compressor inlet conditions start to drift away from the critical point of CO{sub 2}. The results represent that the GAMMA code can simulate the S-CO{sub 2} test facility, SCO{sub 2}PE. However, as shown in the cooling water flow rate increasing scenario, the GAMMA code shows calculation error when the phase change occurs. Furthermore, although the results of the cooling water flow rate decrease case shows reasonable agreement with the experimental data, there are still some unexplained differences between the experimental data and the GAMMA code prediction.

  11. Fractional governing equations of transient groundwater flow in confined aquifers with multi-fractional dimensions in fractional time

    OpenAIRE

    M. L. Kavvas; T. Tu; A. Ercan; J. Polsinelli

    2017-01-01

    Using fractional calculus, a dimensionally consistent governing equation of transient, saturated groundwater flow in fractional time in a multi-fractional confined aquifer is developed. First, a dimensionally consistent continuity equation for transient saturated groundwater flow in fractional time and in a multi-fractional, multidimensional confined aquifer is developed. For the equation of water flux within a multi-fractional multidimensional confined aquifer, a dimensionally...

  12. A simple heat transfer model for a heat flux plate under transient conditions

    International Nuclear Information System (INIS)

    Ryan, L.; Dale, J.D.

    1985-01-01

    Heat flux plates are used for measuring rates of heat transfer through surfaces under steady state and transient conditions. Their usual construction is to have a resistive layer bounded by thermopiles and an exterior layer for protection. If properly designed and constructed a linear relationship between the thermopile generated voltage and heat flux results and calibration under steady state conditions is straight forward. Under transient conditions however the voltage output from a heat flux plate cannot instantaneously follow the heat flux because of the thermal capacitance of the plate and the resulting time lag. In order to properly interpret the output of a heat flux plate used under transient conditions a simple heat transfer model was constructed and tested. (author)

  13. Transient flow analysis of the single cylinder for the control rod hydraulic driving system

    International Nuclear Information System (INIS)

    Sun, Xinming; Qin, Benke; Bo, Hanliang

    2017-01-01

    Highlights: • The control rod hydraulic driving system(CRHDS) is a new type of built-in control rod drive technology. The hydraulic cylinder is the main component of the CRHDS. • Transient flow phenomenon in the CRHDS is studied by experiments under different working conditions. • The working mechanism of the hydraulic cylinder step motion and the key characteristic parameters are analyzed based on the experimental results. - Abstract: The control rod hydraulic driving system (CRHDS) is a new type of built-in control rod drive technology. In the CRHDS the pulse flow from the pump into the hydraulic cylinder of the control rod hydraulic drive mechanism (CRHDM) is regulated by the integrated valve to perform the step motion of the reactor control rod. Transient flow occurs in the CRHDS during control rod step motion process which is studied by experiments. The time-history curves of flow rate, pressure and inner cylinder displacement were analyzed, and the results show that the water hammer pressure peak during the step-up motion is high, while there are no obvious pressure fluctuations in the corresponding step-down motion. In the step-up process, the pressure fluctuation amplitude increases with the increase of CRHDS driving pressure. The step-up time and the pressure increasing time before step-up decreases with the driving pressure. The step-up pressure increases with the driving pressure. In the step-down process, the step-down time, the step-down pressure and the pressure decreasing time before step-down do not change with the increase of the driving pressure. The experimental results lay the base for the working principle and vibration reduction analysis of the CRHDS and it’s also helpful for improvement of the working performance of the key facilities and instruments of the CRHDS loop.

  14. Transient Characteristics of a Fluidic Device for Circulatory Jet Flow.

    Science.gov (United States)

    Phan, Hoa Thanh; Dinh, Thien Xuan; Bui, Phong Nhu; Dau, Van Thanh

    2018-03-13

    In this paper, we report on the design, simulation, and experimental analysis of a miniaturized device that can generate multiple circulated jet flows. The device is actuated by a lead zirconate titanate (PZT) diaphragm. The flows in the device were studied using three-dimensional transient numerical simulation with the programmable open source OpenFOAM and was comparable to the experimental result. Each flow is verified by two hotwires mounted at two positions inside each consisting chamber. The experiment confirmed that the flow was successfully created, and it demonstrated good agreement with the simulation. In addition, a prospective application of the device as an angular rate sensor is also demonstrated. The device is robust, is minimal in size, and can contribute to the development of multi-axis fluidic inertial sensors, fluidic amplifiers, gas mixing, coupling, and analysis.

  15. SCORE-EVET: a computer code for the multidimensional transient thermal-hydraulic analysis of nuclear fuel rod arrays

    International Nuclear Information System (INIS)

    Benedetti, R.L.; Lords, L.V.; Kiser, D.M.

    1978-02-01

    The SCORE-EVET code was developed to study multidimensional transient fluid flow in nuclear reactor fuel rod arrays. The conservation equations used were derived by volume averaging the transient compressible three-dimensional local continuum equations in Cartesian coordinates. No assumptions associated with subchannel flow have been incorporated into the derivation of the conservation equations. In addition to the three-dimensional fluid flow equations, the SCORE-EVET code ocntains: (a) a one-dimensional steady state solution scheme to initialize the flow field, (b) steady state and transient fuel rod conduction models, and (c) comprehensive correlation packages to describe fluid-to-fuel rod interfacial energy and momentum exchange. Velocity and pressure boundary conditions can be specified as a function of time and space to model reactor transient conditions such as a hypothesized loss-of-coolant accident (LOCA) or flow blockage

  16. Investigation of combined free and forced convection in a 2 x 6 rod bundle during controlled flow transients

    International Nuclear Information System (INIS)

    Bates, J.M.; Khan, E.U.

    1980-10-01

    An experimental study was performed to obtain local fluid velocity and temperature measurements in the mixed (combined free and forced) convection regime for specific flow coastdown transients. A brief investigation of steady-state flows for the purely free-convection regime was also completed. The study was performed using an electrically heated 2 x 6 rod bundle contained in a flow housing. In addition a transient data base was obtained for evaluating the COBRA-WC thermal-hydraulic computer program

  17. Estimation of the quantification uncertainty from flow injection and liquid chromatography transient signals in inductively coupled plasma mass spectrometry

    International Nuclear Information System (INIS)

    Laborda, Francisco; Medrano, Jesus; Castillo, Juan R.

    2004-01-01

    The quality of the quantitative results obtained from transient signals in high-performance liquid chromatography-inductively coupled plasma mass spectrometry (HPLC-ICPMS) and flow injection-inductively coupled plasma mass spectrometry (FI-ICPMS) was investigated under multielement conditions. Quantification methods were based on multiple-point calibration by simple and weighted linear regression, and double-point calibration (measurement of the baseline and one standard). An uncertainty model, which includes the main sources of uncertainty from FI-ICPMS and HPLC-ICPMS (signal measurement, sample flow rate and injection volume), was developed to estimate peak area uncertainties and statistical weights used in weighted linear regression. The behaviour of the ICPMS instrument was characterized in order to be considered in the model, concluding that the instrument works as a concentration detector when it is used to monitorize transient signals from flow injection or chromatographic separations. Proper quantification by the three calibration methods was achieved when compared to reference materials, although the double-point calibration allowed to obtain results of the same quality as the multiple-point calibration, shortening the calibration time. Relative expanded uncertainties ranged from 10-20% for concentrations around the LOQ to 5% for concentrations higher than 100 times the LOQ

  18. The calculation of dryout during flow and pressure transients

    International Nuclear Information System (INIS)

    James, P.W.; Whalley, P.B.

    1981-01-01

    The method for predicting dryout in a round tube by means of an annular flow model (Whalley et al 1974) is extended to cover the case where both inlet mass flux and pressure are time-dependent. The qualitative effects of an inlet pressure transient are assessed by performing a 'numerical experiment' and it is found that the predictions of the model represent reasonable physical trends. The relative merits of wo numerical solution schemes are also discussed

  19. Transient two-phase performance of LOFT reactor coolant pumps

    International Nuclear Information System (INIS)

    Chen, T.H.; Modro, S.M.

    1983-01-01

    Performance characteristics of Loss-of-Fluid Test (LOFT) reactor coolant pumps under transient two-phase flow conditions were obtained based on the analysis of two large and small break loss-of-coolant experiments conducted at the LOFT facility. Emphasis is placed on the evaluation of the transient two-phase flow effects on the LOFT reactor coolant pump performance during the first quadrant operation. The measured pump characteristics are presented as functions of pump void fraction which was determined based on the measured density. The calculated pump characteristics such as pump head, torque (or hydraulic torque), and efficiency are also determined as functions of pump void fractions. The importance of accurate modeling of the reactor coolant pump performance under two-phase conditions is addressed. The analytical pump model, currently used in most reactor analysis codes to predict transient two-phase pump behavior, is assessed

  20. Transient behaviour of main coolant pump in nuclear power plants

    International Nuclear Information System (INIS)

    Delja, A.

    1986-01-01

    A basic concept of PWR reactor coolant pump thermo-hydraulic modelling in transient and accident operational condition is presented. The reactor coolant pump is a component of the nuclear steam supply system which forces the coolant through the reactor and steam generator, maintaining design heat transfer condition. The pump operating conditions have strong influence on the flow and thermal behaviour of NSSS, both in the stationary and nonstationary conditions. A mathematical model of the reactor coolant pump is formed by using dimensionless homologous relations in the four-quadrant regimes: normal pump, turbine, dissipation and reversed flow. Since in some operational regimes flow of mixture, liquid and steam may occur, the model has additional correction members for two-phase homologous relations. Modular concept has been used in developing computer program. The verification is performed on the simulation loss of offsite power transient and obtained results are presented. (author)

  1. AMPTRACT: an algebraic model for computing pressure tube circumferential and steam temperature transients under stratified channel coolant conditions

    International Nuclear Information System (INIS)

    Gulshani, P.; So, C.B.

    1986-10-01

    In a number of postulated accident scenarios in a CANDU reactor, some of the horizontal fuel channels are predicted to experience periods of stratified channel coolant condition which can lead to a circumferential temperature gradient around the pressure tube. To study pressure tube strain and integrity under stratified flow channel conditions, it is, necessary to determine the pressure tube circumferential temperature distribution. This paper presents an algebraic model, called AMPTRACT (Algebraic Model for Pressure Tube TRAnsient Circumferential Temperature), developed to give the transient temperature distribution in a closed form. AMPTRACT models the following modes of heat transfer: radiation from the outermost elements to the pressure tube and from the pressure to calandria tube, convection between the fuel elements and the pressure tube and superheated steam, and circumferential conduction from the exposed to submerged part of the pressure tube. An iterative procedure is used to solve the mass and energy equations in closed form for axial steam and fuel-sheath transient temperature distributions. The one-dimensional conduction equation is then solved to obtain the pressure tube circumferential transient temperature distribution in a cosine series expansion. In the limit of large times and in the absence of convection and radiation to the calandria tube, the predicted pressure tube temperature distribution reduces identically to a parabolic profile. In this limit, however, radiation cannot be ignored because the temperatures are generally high. Convection and radiation tend to flatten the parabolic distribution

  2. A numerical method for a transient two-fluid model

    International Nuclear Information System (INIS)

    Le Coq, G.; Libmann, M.

    1978-01-01

    The transient boiling two-phase flow is studied. In nuclear reactors, the driving conditions for the transient boiling are a pump power decay or/and an increase in heating power. The physical model adopted for the two-phase flow is the two fluid model with the assumption that the vapor remains at saturation. The numerical method for solving the thermohydraulics problems is a shooting method, this method is highly implicit. A particular problem exists at the boiling and condensation front. A computer code using this numerical method allow the calculation of a transient boiling initiated by a steady state for a PWR or for a LMFBR

  3. Impaired vascular function after exposure to diesel exhaust generated at urban transient running conditions

    Directory of Open Access Journals (Sweden)

    Westerholm Roger

    2010-07-01

    Full Text Available Abstract Background Traffic emissions including diesel engine exhaust are associated with increased respiratory and cardiovascular morbidity and mortality. Controlled human exposure studies have demonstrated impaired vascular function after inhalation of exhaust generated by a diesel engine under idling conditions. Objectives To assess the vascular and fibrinolytic effects of exposure to diesel exhaust generated during urban-cycle running conditions that mimic ambient 'real-world' exposures. Methods In a randomised double-blind crossover study, eighteen healthy male volunteers were exposed to diesel exhaust (approximately 250 μg/m3 or filtered air for one hour during intermittent exercise. Diesel exhaust was generated during the urban part of the standardized European Transient Cycle. Six hours post-exposure, vascular vasomotor and fibrinolytic function was assessed during venous occlusion plethysmography with intra-arterial agonist infusions. Measurements and Main Results Forearm blood flow increased in a dose-dependent manner with both endothelial-dependent (acetylcholine and bradykinin and endothelial-independent (sodium nitroprusside and verapamil vasodilators. Diesel exhaust exposure attenuated the vasodilatation to acetylcholine (P Conclusion Exposure to diesel exhaust generated under transient running conditions, as a relevant model of urban air pollution, impairs vasomotor function and endogenous fibrinolysis in a similar way as exposure to diesel exhaust generated at idling. This indicates that adverse vascular effects of diesel exhaust inhalation occur over different running conditions with varying exhaust composition and concentrations as well as physicochemical particle properties. Importantly, exposure to diesel exhaust under ETC conditions was also associated with a novel finding of impaired of calcium channel-dependent vasomotor function. This implies that certain cardiovascular endpoints seem to be related to general diesel

  4. Development of an Experimental Data Base to Validate Compressor-Face Boundary Conditions Used in Unsteady Inlet Flow Computations

    Science.gov (United States)

    Sajben, Miklos; Freund, Donald D.

    1998-01-01

    The ability to predict the dynamics of integrated inlet/compressor systems is an important part of designing high-speed propulsion systems. The boundaries of the performance envelope are often defined by undesirable transient phenomena in the inlet (unstart, buzz, etc.) in response to disturbances originated either in the engine or in the atmosphere. Stability margins used to compensate for the inability to accurately predict such processes lead to weight and performance penalties, which translate into a reduction in vehicle range. The prediction of transients in an inlet/compressor system requires either the coupling of two complex, unsteady codes (one for the inlet and one for the engine) or else a reliable characterization of the inlet/compressor interface, by specifying a boundary condition. In the context of engineering development programs, only the second option is viable economically. Computations of unsteady inlet flows invariably rely on simple compressor-face boundary conditions (CFBC's). Currently, customary conditions include choked flow, constant static pressure, constant axial velocity, constant Mach number or constant mass flow per unit area. These conditions are straightforward extensions of practices that are valid for and work well with steady inlet flows. Unfortunately, it is not at all likely that any flow property would stay constant during a complex system transient. At the start of this effort, no experimental observation existed that could be used to formulate of verify any of the CFBC'S. This lack of hard information represented a risk for a development program that has been recognized to be unacceptably large. The goal of the present effort was to generate such data. Disturbances reaching the compressor face in flight may have complex spatial structures and temporal histories. Small amplitude disturbances may be decomposed into acoustic, vorticity and entropy contributions that are uncoupled if the undisturbed flow is uniform. This study

  5. Transient response in granular quasi-two-dimensional bounded heap flow.

    Science.gov (United States)

    Xiao, Hongyi; Ottino, Julio M; Lueptow, Richard M; Umbanhowar, Paul B

    2017-10-01

    We study the transition between steady flows of noncohesive granular materials in quasi-two-dimensional bounded heaps by suddenly changing the feed rate. In both experiments and simulations, the primary feature of the transition is a wedge of flowing particles that propagates downstream over the rising free surface with a wedge front velocity inversely proportional to the square root of time. An additional longer duration transient process continues after the wedge front reaches the downstream wall. The entire transition is well modeled as a moving boundary problem with a diffusionlike equation derived from local mass balance and a local relation between the flux and the surface slope.

  6. Flow regimes and mechanistic modeling of critical heat flux under subcooled flow boiling conditions

    Science.gov (United States)

    Le Corre, Jean-Marie

    Thermal performance of heat flux controlled boiling heat exchangers are usually limited by the Critical Heat Flux (CHF) above which the heat transfer degrades quickly, possibly leading to heater overheating and destruction. In an effort to better understand the phenomena, a literature review of CHF experimental visualizations under subcooled flow boiling conditions was performed and systematically analyzed. Three major types of CHF flow regimes were identified (bubbly, vapor clot and slug flow regime) and a CHF flow regime map was developed, based on a dimensional analysis of the phenomena and available data. It was found that for similar geometric characteristics and pressure, a Weber number (We)/thermodynamic quality (x) map can be used to predict the CHF flow regime. Based on the experimental observations and the review of the available CHF mechanistic models under subcooled flow boiling conditions, hypothetical CHF mechanisms were selected for each CHF flow regime, all based on a concept of wall dry spot overheating, rewetting prevention and subsequent dry spot spreading. It is postulated that a high local wall superheat occurs locally in a dry area of the heated wall, due to a cyclical event inherent to the considered CHF two-phase flow regime, preventing rewetting (Leidenfrost effect). The selected modeling concept has the potential to span the CHF conditions from highly subcooled bubbly flow to early stage of annular flow. A numerical model using a two-dimensional transient thermal analysis of the heater undergoing nucleation was developed to mechanistically predict CHF in the case of a bubbly flow regime. In this type of CHF two-phase flow regime, the high local wall superheat occurs underneath a nucleating bubble at the time of bubble departure. The model simulates the spatial and temporal heater temperature variations during nucleation at the wall, accounting for the stochastic nature of the boiling phenomena. The model has also the potential to evaluate

  7. CANDU fuel behaviour under transient conditions

    International Nuclear Information System (INIS)

    Segel, A.W.L.

    1979-04-01

    The Canadian R and D program to understand CANDU fuel behaviour under transient conditions is described. Fuel sheath behaviour studies have led to the development of a model of transient plastic strain in inert gas, which integrates the deformation due to several mechanisms. Verification tests demonstrated that on average the model overpredicts strain by 20%. From oxidation kinetics studies a sheath failure embrittlement criterion based on oxygen distribution has been developed. We have also established a rate equation for high-temperature stress-dependent crack formation due to embrittlement of the sheath by beryllium. An electric, simulated fuel element is being used in laboratory tests to characterize the behaviour of fuel in the horizontal. In-reactor, post-dryout tests have been done for several years. There is an axially-segmented, axisymmetric fuel element model in place and a fully two-dimensional code is under development. Laboratory testing of bundles, in its early stages, deals with the effects of geometric distortion and sheath-to-sheath interaction. In-reactor, post-dryout tests of CANDU fuel bundles with extensive central UO 2 melting did not result in fuel fragmentation nor damage to the pressure tube. (author)

  8. Separative performance transients in a gas centrifuge

    International Nuclear Information System (INIS)

    Olander, D.R.

    1979-01-01

    A general method has been developed to calculate the behavior of the exit compositions from a gas centrifuge under unsteady conditions. The method utilizes the basic enrichment gradient equations derived by Cohen, which, in this case, contain time derivatives of the partial 235 U inventories. These partial differential equations are converted to ordinary differential equations by a linear approximation to the axial concentration distribution for use in the inventory terms only. With this simplification, analytical solution is possible for the feed concentration transient. The transient driven by a change in the feed flow rate, however, requires numerical solution. For analysis of ideal cascades in the unsteady state, the transient flow and separation characteristics of the centrifuge must be combined with total uranium and 235 U material balances on each stage

  9. MINET: transient analysis of fluid-flow and heat-transfer networks

    International Nuclear Information System (INIS)

    Van Tuyle, G.J.; Guppy, J.G.; Nepsee, T.C.

    1983-01-01

    MINET, a computer code developed for the steady-state and transient analysis of fluid-flow and heat-transfer networks, is described. The code is based on a momentum integral network method, which offers significant computational advantages in the analysis of large systems, such as the balance of plant in a power-generating facility. An application is discussed in which MINET is coupled to the Super System Code (SSC), an advanced generic code for the transient analysis of loop- or pool-type LMFBR systems. In this application, the ability of the Clinch River Breeder Reactor Plant to operate in a natural circulation mode following an assumed loss of all electric power, was assessed. Results from the MINET portion of the calculations are compared against those generated independently by the Clinch River Project, using the DEMO code

  10. Numerical methods and transition investigation of transient flows around a pitching hydrofoil

    International Nuclear Information System (INIS)

    Wu, Q; Wang, G Y; Huang, B

    2013-01-01

    The numerical simulations for a NACA66 hydrofoil are performed by using the standard k-ω SST turbulence model and revised γ-Re θ transition model respectively. The simulation results are compared with the experimental results, and the hydrodynamic property and the fluid structure during the pitching process is studied. It is revealed that, compared with the standard k-ω SST turbulence model, the revised γ-Re θ transition model is able to present the hydrodynamic property and the fluid structure of the transient flow around a pitching hydrofoil more accurately, and better predict the separation and transition process in the boundary layer. The transient flow process around a pitching hydrofoil can be divided into 5 parts. At small angle of attack, transition is observed at the leading edge of the foil, resulting in the inflection of dynamic property curves. As the angle of attack increases, a clockwise trailing edge vortex expands toward the leading edge of the foil. At high angles of attack, large-scale load fluctuations are observed due to the stall caused by separation of the leading edge vortex. The flow transitions back to laminar during the downward pitching process

  11. Study of transient and permanent flow in the event of natural convection in a confined environment

    International Nuclear Information System (INIS)

    Tenchine, Denis.

    1978-01-01

    This report deals with natural convection in a confined environment, in connection with the studies on the safety of nuclear reactors of the sodium cooled breeder type (possibilities of removing the residual power of the fuel by natural convection in the liquid sodium). These natural convection exchanges develop in a confined environment between various sodium volumes separated by metallic structures. The study covered a cavity heated by the roof or by the bottom and cooled laterally. The results are compared with those achieved along heating plates, vertical or horizontal, in an infinite medium and the effect of the thermal limit conditions are highlighted by comparison with the case of bottom heated and roof cooled cavities. Placed in a bidimensional geometry situation, with water as fluid, this leads to tackling the problems of similitude between water and sodium flows. A digital code has been developed in plane bidimensional geometry with a laminar and permanent flow. A description is given of the 'BIDIM' experimental rig as well as the measuring and display devices. A permanent flow study of the two previously mentioned configurations produces references for the analysis of transient flows, particularly in the case of the heating bottom (field of medium temperatures and medium exchange coefficient). The turbulence intensity and frequency distribution determinations of the temperature changes are given. Then the determinations of the temperature changes are given. Then the determinations in transient flow are dealt with in the case of the heating bottom. The cavity being initially cold, a power rise is initiated in the heating plates and the establishment and growth of natural convection and the change in the field of medium temperatures and exchange coefficient are studied [fr

  12. EVENT, Explosive Transients in Flow Networks

    International Nuclear Information System (INIS)

    Andrae, R.W.; Tang, P.K.; Bolstad, J.W.; Gregory, W.S.

    1985-01-01

    1 - Description of problem or function: A major concern of the chemical, nuclear, and mining industries is the occurrence of an explosion in one part of a facility and subsequent transmission of explosive effects through the ventilation system. An explosive event can cause performance degradation of the ventilation system or even structural failures. A more serious consequence is the release of hazardous materials to the environment if vital protective devices such as air filters, are damaged. EVENT was developed to investigate the effects of explosive transients through fluid-flow networks. Using the principles of fluid mechanics and thermodynamics, governing equations for the conservation of mass, energy, and momentum are formulated. These equations are applied to the complete network subdivided into two general components: nodes and branches. The nodes represent boundaries and internal junctions where the conservation of mass and energy applies. The branches can be ducts, valves, blowers, or filters. Since in EVENT the effect of the explosion, not the characteristics of the explosion itself, is of interest, the transient is simulated in the simplest possible way. A rapid addition of mass and energy to the system at certain locations is used. This representation is adequate for all of the network except the region where the explosion actually occurs. EVENT84 is a modification of EVENT which includes a new explosion chamber model subroutine based on the NOL BLAST program developed at the Naval Ordnance Laboratory, Silver Spring, Maryland. This subroutine calculates the confined explosion near-field parameters and supplies the time functions of energy and mass injection. Solid-phase or TNT-equivalent explosions (which simulate 'point source' explosions in nuclear facilities) as well as explosions in gas-air mixtures can be simulated. The four types of explosions EVENT84 simulates are TNT, hydrogen in air, acetylene in air, and tributyl phosphate (TBP or 'red oil

  13. Groundwater flow modelling of periods with periglacial and glacial climate conditions - Forsmark

    International Nuclear Information System (INIS)

    Vidstrand, Patrik; Follin, Sven; Zugec, Nada

    2010-12-01

    As a part of the license application for a final repository for spent nuclear fuel at Forsmark, the Swedish Nuclear Fuel and Waste Management Company (SKB) has undertaken a series of groundwater flow modelling studies. These represent time periods with different hydraulic conditions and the simulations carried out contribute to the overall evaluation of the repository design and long-term radiological safety. The groundwater flow modelling study reported here comprises a coupled thermal-hydraulic-chemical (T-H-C) analysis of periods with periglacial and glacial climate conditions. Hydraulic-mechanical (H-M) issues are also handled but no coupled flow modelling is done. The objective of the report is to provide bounding hydrogeological estimates at different stages during glaciation and deglaciation of a glacial cycle for subsequent use in safety assessment applications within SKB's project SR-Site. Three cases with different climate conditions are analysed here: (i) Temperate case, (ii) Glacial case without permafrost, and (iii) Glacial case with permafrost. The glacial periods are transient and encompass approximately 19,000 years. The simulation results comprise residual fluid pressures, Darcy fluxes, and water salinities, as well as advective transport performance measures obtained by particle tracking such as flow path lengths, travel times and flow-related transport resistances. The modelling is accompanied by a sensitivity study that addresses the impact of the following matters: the direction of the ice sheet advance, the speed of the ice sheet margin, the bedrock hydraulic and transport properties, the temperature at the ice-subsurface interface close to the ice sheet margin, and the initial hydrochemical conditions

  14. Groundwater flow modelling of periods with periglacial and glacial climate conditions - Forsmark

    Energy Technology Data Exchange (ETDEWEB)

    Vidstrand, Patrik (TerraSolve AB, Floda (Sweden)); Follin, Sven (SF GeoLogic AB, Taeby (Sweden)); Zugec, Nada (Bergab, Stockholm (Sweden))

    2010-12-15

    As a part of the license application for a final repository for spent nuclear fuel at Forsmark, the Swedish Nuclear Fuel and Waste Management Company (SKB) has undertaken a series of groundwater flow modelling studies. These represent time periods with different hydraulic conditions and the simulations carried out contribute to the overall evaluation of the repository design and long-term radiological safety. The groundwater flow modelling study reported here comprises a coupled thermal-hydraulic-chemical (T-H-C) analysis of periods with periglacial and glacial climate conditions. Hydraulic-mechanical (H-M) issues are also handled but no coupled flow modelling is done. The objective of the report is to provide bounding hydrogeological estimates at different stages during glaciation and deglaciation of a glacial cycle for subsequent use in safety assessment applications within SKB's project SR-Site. Three cases with different climate conditions are analysed here: (i) Temperate case, (ii) Glacial case without permafrost, and (iii) Glacial case with permafrost. The glacial periods are transient and encompass approximately 19,000 years. The simulation results comprise residual fluid pressures, Darcy fluxes, and water salinities, as well as advective transport performance measures obtained by particle tracking such as flow path lengths, travel times and flow-related transport resistances. The modelling is accompanied by a sensitivity study that addresses the impact of the following matters: the direction of the ice sheet advance, the speed of the ice sheet margin, the bedrock hydraulic and transport properties, the temperature at the ice-subsurface interface close to the ice sheet margin, and the initial hydrochemical conditions.

  15. Improved inter-assembly heat transfer modeling under low flow conditions for the Super System Code (SSC)

    International Nuclear Information System (INIS)

    Horak, W.C.; Guppy, J.G.

    1984-01-01

    The Super System Code (SSC) was developed at the Brookhaven National Laboratory (BNL) for the thermal hydraulic analysis of natural circulation transients, operational transients, and other system wide transients in nuclear power plants. SSC is a generic, best estimate code that models the in-vessel components, heat transport loops, plant protection systems and plant control systems. SSC also simulates the balance of plant when interfaced with the MINET code. SSC has been validated against both numerical and experimental data bases and is now used by several outside users. An important area of interest in LMFBR transient analysis is the prediction of the response of the reactor core under low flow conditions, such as experienced during a natural circulation event. Under these circumstances there are many physical phenomena which must be modeled to provide an adequate representation by a computer code simulation. The present version of SSC contains numerous models which account for most of the major phenomena. However, one area where the present model in SSC is being improved is in the representation of heat transfer and buoyancy effects under low flow operation. To properly improve the present version, the addition of models to represent certain inter-assembly effects is required

  16. Groundwater flow modelling of periods with periglacial and glacial climate conditions - Laxemar

    Energy Technology Data Exchange (ETDEWEB)

    Vidstrand, Patrik (TerraSolve AB, Floda (Sweden)); Rhen, Ingvar (SWECO Environment AB, Falun (Sweden)); Zugec, Nada (Bergab, Goeteborg (Sweden))

    2010-12-15

    As a part of the license application for a final repository for spent nuclear fuel at Forsmark, the Swedish Nuclear Fuel and Waste Management Company (SKB) has undertaken a series of groundwater flow modelling studies. These represent time periods with different hydraulic conditions and the simulations carried out contribute to the overall evaluation of the repository design and long-term radiological safety. This report is concerned with the modelling of a repository at the Laxemar-Simpevarp site during periglacial and glacial climate conditions as a comparison to corresponding modelling carried out for Forsmark /Vidstrand et al. 2010/. The groundwater flow modelling study reported here comprises a coupled thermal-hydraulic-chemical (T-H-C) analysis of periods with periglacial and glacial climate conditions. The objective of the report is to provide bounding hydrogeological estimates at different stages during glaciation and deglaciation of a glacial cycle at Laxemar. Three cases with different climate conditions are analysed here: (i) Temperate case, (ii) Glacial case without permafrost, and (iii) Glacial case with permafrost. The glacial periods are transient and encompass approximately 13,000 years. The simulation results comprise pressures, Darcy fluxes, and water salinities, as well as advective transport performance measures obtained by particle tracking such as flow path lengths, travel times and flow-related transport resistances. The modelling is accompanied by a sensitivity study that addresses the impact of the following matters: the direction of the ice sheet advance and the bedrock hydraulic and transport properties

  17. Instrumentation to Monitor Transient Periodic Developing Flow in Non-Newtonian Slurries

    Energy Technology Data Exchange (ETDEWEB)

    Bamberger, Judith A.; Enderlin, Carl W.

    2013-11-15

    Staff at Pacific Northwest National Laboratory have conducted mixing and mobilization experiments with non-Newtonian slurries that exhibit Bingham plastic and shear thinning behavior and shear strength. This paper describes measurement techniques applied to identify the interface between flowing and stationary regions of non-Newtonian slurries that are subjected to transient, periodic, developing flows. Techniques were developed to identify the boundary between the flowing and stationary regions, time to mix, characteristic velocities of the flow field produced by the symmetrically spaced nozzles, and the velocity of the upwell formed in the center of the tank by the intersection of flow from four symmetrically spaced nozzles that impinge upon the tank floor. Descriptions of the instruments and instrument performance are presented. These techniques were an effective approach to characterize mixing phenomena, determine mixing energy required to fully mobilize vessel contents and to determine mixing times for process evaluation.

  18. Visualizing the transient electroosmotic flow and measuring the zeta potential of microchannels with a micro-PIV technique.

    Science.gov (United States)

    Yan, Deguang; Nguyen, Nam-Trung; Yang, Chun; Huang, Xiaoyang

    2006-01-14

    We have demonstrated a transient micro particle image velocimetry (micro-PIV) technique to measure the temporal development of electroosmotic flow in microchannels. Synchronization of different trigger signals for the laser, the CCD camera, and the high-voltage switch makes this measurement possible with a conventional micro-PIV setup. Using the transient micro-PIV technique, we have further proposed a method on the basis of inertial decoupling between the particle electrophoretic motion and the fluid electroosmotic flow to determine the electrophoretic component in the particle velocity and the zeta potential of the channel wall. It is shown that using the measured zeta potentials, the theoretical predictions agree well with the transient response of the electroosmotic velocities measured in this work.

  19. Effect of vortex generators on the closing transient flow of bileaflet mechanical heart valves

    Science.gov (United States)

    Murphy, David; Dasi, Lakshmi; Yoganathan, Ajit; Glezer, Ari

    2006-11-01

    The time-periodic closing of bileaflet mechanical heart valves is accompanied by a strong flow transient that is associated with the formation of a counter-rotating vortex pair near the b-datum line of leaflet edges. The strong transitory shear that is generated by these vortices may be damaging to blood elements and may result in platelet activation. In the present work, these flow transients are mitigated using miniature vortex generator arrays that are embedded on the surface of the leaflets. Two vortex generator designs were investigated: one design comprised staggered rectangular fins and the other one staggered hemispheres. The closing transients in the absence and presence of the passive vortex generators are characterized using phase locked PIV measurements. The study utilizes a 25 mm St. Jude Medical valve placed in the aortic position of the Georgia Tech left heart simulator. Measurements of the velocity field in the center plane of the leaflets demonstrate that the dynamics of the transient vortices that precede the formation of the leakage jets can be significantly altered and controlled by relatively simple passive modifications of existing valve designs. Human blood experiments validated the effectiveness of miniature vortex generators in reducing thrombus formation by over 42 percent.

  20. The effect of code user and boundary conditions on RELAP calculations of MTR research reactor transient scenarios

    Directory of Open Access Journals (Sweden)

    Khedr Ahmed

    2005-01-01

    Full Text Available The safety evaluation of nuclear power and re search reactors is a very important step before their construction and during their operation. This evaluation based on the best estimate calculations requires qualified codes qualified users, and qualified nodalizations. The effect of code users on the RELAP5 results during the analysis of loss of flow transient in MTR research reactors is presented in this pa per. To clarify this effect, two nodalizations for research reactor different in the simulation of the open water surface boundary conditions of the reactor pool have been used. Very different results are obtained with few choices for code users. The core natural circulation flow with the be ginning of core boiling doesn't stop but in creases. The in creasing in the natural circulation flow shifts out the boiling from the core and the clad temperature decreases be low the local saturation temperature.

  1. Simulation of protected and unprotected loss of flow transients in a WWER-1000 reactor based on the Drift-Flux model

    Energy Technology Data Exchange (ETDEWEB)

    Baghban, Ghonche [Atomic Energy Organization of Iran, Tehran (Iran, Islamic Republic of). Nuclear Science and Technology Research Inst.; Shayesteh, Mohsen [Imam Hussein Univ., Tehran (Iran, Islamic Republic of). Dept. of Physics; Bahonar, Majid [Islamic Azad Univ., Tehran (Iran, Islamic Republic of). Dept. of Nuclear Engineering

    2017-03-15

    In view of the importance of studying coolant transient behavior in a nuclear reactor, this work is devoted to the thermal-hydraulic analysis of protected and unprotected loss of flow transients in a WWER-1000 reactor. A series of corresponding mathematical and physical models based on the four-equation Drift-Flux model has been applied. Based on a multi-channel approach, the core has been divided into different regions. Each region has different characteristics as represented in a single fuel pin with its associated coolant channel. Appropriate initial and boundary conditions have been considered and two situations of tripping four and two primary pumps in a protected core in addition to situation of tripping all four pumps in an unprotected core have been analyzed. For each transient, a full range of thermal-hydraulic parameters has been obtained. For verification of the proposed model, the results have been compared with those of the RELAP5/MOD3 and Bushehr nuclear power plant Final Safety Analysis Report (FSAR). A good agreement between results has been attained for the aforementioned transients.

  2. Runaway transient simulation of a model Kaplan turbine

    Energy Technology Data Exchange (ETDEWEB)

    Liu, S; Liu, D; Wu, Y [State Key Laboratory of Hydroscience and Engineering, Department of Thermal Eng., Tsinghua University, Beijing, 100084 (China); Zhou, D [Water Conservancy and Hydropower Eng., Hohai University, Nanjing. 210098 (China); Nishi, M, E-mail: liushuhong@tsinghua.edu.c [Kyushu Inst. Tech. Senior Academy, Kitakyushu, 804-8550 (Japan)

    2010-08-15

    The runaway transient is a typical transient process of a hydro power unit, where the rotational speed of a turbine runner rapidly increases up to the runaway speed under a working head as the guide vanes cannot be closed due to some reason at the load rejection. In the present paper, the characteristics of the runaway transient of a model Kaplan turbine having ns = 479(m-kW) is simulated by using a time-dependent CFD technique where equation of rotational motion of runner, continuity equation and unsteady RANS equations with RNG k-{epsilon} turbulence model are solved iteratively. In the calculation, unstructured mesh is used to the whole flow passage, which consists of several sub-domains: entrance, casing, stay vanes + guide vanes, guide section, runner and draft tube. And variable speed sliding mesh technique is used to exchange interface flow information between moving part and stationary part, and three-dimensional unstructured dynamic mesh technique is also adopted to ensure mesh quality. Two cases were treated in the simulation of runaway transient characteristics after load rejection: one is the rated operating condition as the initial condition, and the other is the condition at the maximum head. Regarding the runaway speed, the experimental speed is 1.45 times the initial speed and the calculation is 1.47 times the initial for the former case. In the latter case, the experiment and the calculation are 1.67 times and 1.69 times respectively. From these results, it is recognized that satisfactorily prediction will be possible by using the present numerical method. Further, numerical results show that the swirl in the draft-tube flow becomes stronger in the latter part of the transient process so that a vortex rope will occur in the draft tube and its precession will cause the pressure fluctuations which sometimes affect the stability of hydro power system considerably.

  3. Runaway transient simulation of a model Kaplan turbine

    Science.gov (United States)

    Liu, S.; Zhou, D.; Liu, D.; Wu, Y.; Nishi, M.

    2010-08-01

    The runaway transient is a typical transient process of a hydro power unit, where the rotational speed of a turbine runner rapidly increases up to the runaway speed under a working head as the guide vanes cannot be closed due to some reason at the load rejection. In the present paper, the characteristics of the runaway transient of a model Kaplan turbine having ns = 479(m-kW) is simulated by using a time-dependent CFD technique where equation of rotational motion of runner, continuity equation and unsteady RANS equations with RNG k-epsilon turbulence model are solved iteratively. In the calculation, unstructured mesh is used to the whole flow passage, which consists of several sub-domains: entrance, casing, stay vanes + guide vanes, guide section, runner and draft tube. And variable speed sliding mesh technique is used to exchange interface flow information between moving part and stationary part, and three-dimensional unstructured dynamic mesh technique is also adopted to ensure mesh quality. Two cases were treated in the simulation of runaway transient characteristics after load rejection: one is the rated operating condition as the initial condition, and the other is the condition at the maximum head. Regarding the runaway speed, the experimental speed is 1.45 times the initial speed and the calculation is 1.47 times the initial for the former case. In the latter case, the experiment and the calculation are 1.67 times and 1.69 times respectively. From these results, it is recognized that satisfactorily prediction will be possible by using the present numerical method. Further, numerical results show that the swirl in the draft-tube flow becomes stronger in the latter part of the transient process so that a vortex rope will occur in the draft tube and its precession will cause the pressure fluctuations which sometimes affect the stability of hydro power system considerably.

  4. Runaway transient simulation of a model Kaplan turbine

    International Nuclear Information System (INIS)

    Liu, S; Liu, D; Wu, Y; Zhou, D; Nishi, M

    2010-01-01

    The runaway transient is a typical transient process of a hydro power unit, where the rotational speed of a turbine runner rapidly increases up to the runaway speed under a working head as the guide vanes cannot be closed due to some reason at the load rejection. In the present paper, the characteristics of the runaway transient of a model Kaplan turbine having ns = 479(m-kW) is simulated by using a time-dependent CFD technique where equation of rotational motion of runner, continuity equation and unsteady RANS equations with RNG k-ε turbulence model are solved iteratively. In the calculation, unstructured mesh is used to the whole flow passage, which consists of several sub-domains: entrance, casing, stay vanes + guide vanes, guide section, runner and draft tube. And variable speed sliding mesh technique is used to exchange interface flow information between moving part and stationary part, and three-dimensional unstructured dynamic mesh technique is also adopted to ensure mesh quality. Two cases were treated in the simulation of runaway transient characteristics after load rejection: one is the rated operating condition as the initial condition, and the other is the condition at the maximum head. Regarding the runaway speed, the experimental speed is 1.45 times the initial speed and the calculation is 1.47 times the initial for the former case. In the latter case, the experiment and the calculation are 1.67 times and 1.69 times respectively. From these results, it is recognized that satisfactorily prediction will be possible by using the present numerical method. Further, numerical results show that the swirl in the draft-tube flow becomes stronger in the latter part of the transient process so that a vortex rope will occur in the draft tube and its precession will cause the pressure fluctuations which sometimes affect the stability of hydro power system considerably.

  5. Transient heat transfer into superfluid helium under confined conditions

    International Nuclear Information System (INIS)

    Filippov, Yu.P.; Miklyaev, V.M.; Sergeev, I.A.

    1988-01-01

    Transient thermal processes at solid-HeII interface at input of step pulse of heat load was investigated. Particular attention is given to the study of influence of geometry of experimental specimen upon the heat transfer dynamics. Abrupt breakdown of highly efficient transfer modes caused by the developmet of superfluid turbulence under confined condition is revealed, and accompanying temperature shift is registered. Some characteristic parameters are selected, their dependence on experimental conditions is established

  6. SCORE-EVET: a computer code for the multidimensional transient thermal-hydraulic analysis of nuclear fuel rod arrays. [BWR; PWR

    Energy Technology Data Exchange (ETDEWEB)

    Benedetti, R. L.; Lords, L. V.; Kiser, D. M.

    1978-02-01

    The SCORE-EVET code was developed to study multidimensional transient fluid flow in nuclear reactor fuel rod arrays. The conservation equations used were derived by volume averaging the transient compressible three-dimensional local continuum equations in Cartesian coordinates. No assumptions associated with subchannel flow have been incorporated into the derivation of the conservation equations. In addition to the three-dimensional fluid flow equations, the SCORE-EVET code ocntains: (a) a one-dimensional steady state solution scheme to initialize the flow field, (b) steady state and transient fuel rod conduction models, and (c) comprehensive correlation packages to describe fluid-to-fuel rod interfacial energy and momentum exchange. Velocity and pressure boundary conditions can be specified as a function of time and space to model reactor transient conditions such as a hypothesized loss-of-coolant accident (LOCA) or flow blockage.

  7. PATs Operating in Water Networks under Unsteady Flow Conditions: Control Valve Manoeuvre and Overspeed Effect

    Directory of Open Access Journals (Sweden)

    Modesto Pérez-Sánchez

    2018-04-01

    Full Text Available The knowledge of transient conditions in water pressurized networks equipped with pump as turbines (PATs is of the utmost importance and necessary for the design and correct implementation of these new renewable solutions. This research characterizes the water hammer phenomenon in the design of PAT systems, emphasizing the transient events that can occur during a normal operation. This is based on project concerns towards a stable and efficient operation associated with the normal dynamic behaviour of flow control valve closure or by the induced overspeed effect. Basic concepts of mathematical modelling, characterization of control valve behaviour, damping effects in the wave propagation and runaway conditions of PATs are currently related to an inadequate design. The precise evaluation of basic operating rules depends upon the system and component type, as well as the required safety level during each operation.

  8. Transient thermal hydraulic analysis of the IAEA 10 MW MTR reactor during Loss of Flow Accident to investigate the flow inversion

    International Nuclear Information System (INIS)

    AL-Yahia, Omar S.; Albati, Mohammad A.; Park, Jonghark; Chae, Heetaek; Jo, Daeseong

    2013-01-01

    Highlights: • Transient analyses of a slow and fast LOFA were investigated. • A reactor kinetic and thermal hydraulic coupled model was developed. • Based on force balance, the flow rate during flow inversion was determined. • Flow inversion in a hot channel occurred earlier than in an average channel. • Two temperature peaks were observed during both slow and fast LOFA. - Abstract: Transient analyses of the IAEA 10 MW MTR reactor are investigated during a fast and slow Loss of Flow Accident (LOFA) with a neutron kinetic and thermal hydraulic coupling model. A spatial-dependent thermal hydraulic technique is adopted for analyzing the local thermal hydraulic parameters and hotspot location during a flow inversion. The flow rate through the channel is determined in terms of a balance between driving and preventing forces. Friction and buoyancy forces act as resistance of the flow before a flow inversion while buoyancy force becomes the driving force after a flow inversion. By taking into account the buoyancy effect to determine the flow rate, the difference in the flow inversion time between hot and average channels is investigated: a flow inversion occurs earlier in the hot channel than in an average channel. Furthermore, the movement of the hotspot location before and after a flow inversion is investigated for a slow and fast LOFA. During a flow inversion, two temperature peaks are observed: (1) the first temperature peak is at the initiation of the LOFA, and (2) the second temperature peak is when a flow inversion occurs. The maximum temperature of the cladding is found at the second temperature peak for both LOFA analyses, and is lower than the saturation temperature

  9. Obtaining and utilizing contaminant arrival distributions in transient flow systems

    International Nuclear Information System (INIS)

    Anon.

    1977-01-01

    The versatility of the new contaminant arrival distributions for determining environmental consequences of subsurface pollution problems is demonstrated through application to a transient flow system. Though some of the four phases of the hydrologic evaluations are more complicated because of the time-dependence of the flow and input contaminant concentrations, the arrival distributions still effectively summarize the data required to determine the environmental implications. These arrival distributions yield two graphs or tabular sets of data giving the consequences of the subsurface pollution problems in a simple and direct form. Accordingly, the public control authorities would be able to use these results to choose alternatives or initiate corrective actions, depending on the indicated environmental consequences

  10. On the potential importance of transient air flow in advective radon entry into buildings

    International Nuclear Information System (INIS)

    Narasimhan, T.N.; Tsang, Y.W.; Holman, H.Y.

    1990-01-01

    The authors have investigated, using a mathematical model, the temporal variations of air flux within the soil mass surrounding a basement in the presence of time dependent periodic variations of barometric pressure and a persistent under-pressure at the basement. The results of transient air flow show that for a homogeneous soil medium, the effects of barometric fluctuations are most significant in the cases where soil permeability to air is low and the fluctuation frequency is high. In these cases, the barometric fluctuation can greatly enhance the magnitude of fluxes as well as introduce flow direction reversals from surrounding soil into the basement. These large fluxes with direction reversals have strong implications in regard to advective transport of radon. The results suggest that the transient oscillations have to be accounted for in quantifying radon entry into buildings. In the actual field set up, the transient behavior will be further influenced by soil permeability heterogeneity, by soil moisture variations, and by the effects of multiple periodic components in the barometric pressure fluctuations

  11. Fission product transport and behavior during two postulated loss of flow transients in the air

    International Nuclear Information System (INIS)

    Adams, J.P.; Carboneau, M.L.

    1991-01-01

    This document discusses fission product behavior during two postulated loss-of-flow accidents (leading to high- and low-pressure core degradation, respectively) in the Advanced Test Reactor (ATR). These transients are designated ATR Transient LCPI5 (high-pressure) and LPP9 (low-pressure). Normally, transients of this nature would be easily mitigated using existing safety systems and procedures. In these analyses, failure of these safety systems was assumed so that core degradation and fission product release could be analyzed. A probabilistic risk assessment indicated that the probability of occurrence for these two transients is of the order of 10 -5 and 10 -7 per reactor year for LCP15 and LPP9, respectively

  12. Transient molecular orientation and rheology in flow aligning thermotropic liquid crystalline polymers

    International Nuclear Information System (INIS)

    Ugaz, Victor M.; Burghardt, Wesley R.; Zhou, Weijun; Kornfield, Julia A.

    2001-01-01

    Quantitative measurements of molecular orientation and rheology are reported for various transient shear flows of a nematic semiflexible copolyether. Unlike the case of lyotropic liquid crystalline polymers (LCPs), whose structure and rheology in shear are dominated by director tumbling, this material exhibits flow aligning behavior. The observed behavior is quite similar to that seen in a copolyester that we have recently studied [Ugaz and Burghardt (1998)], suggesting that flow aligning dynamics may predominate in main-chain thermotropes that incorporate significant chain flexibility. Since the flow aligning regime has received little attention in previous attempts to model the rheology of textured, polydomain LCPs, we attempt to determine whether available models are capable of predicting the orientation and stress response of this class of LCP. We first examine the predictions of the polydomain Ericksen model, an adaptation of Ericksen's transversely isotropic fluid model which accounts for the polydomain distribution of director orientation while neglecting distortional elasticity. This simple model captures a number of qualitative and quantitative features associated with the evolution of orientation and stress during shear flow inception, but cannot cope with reversing flows. To consider the possible role of distortional elasticity in the re-orientation dynamics upon reversal, we evaluate the mesoscopically averaged domain theory of Larson and Doi [Larson and Doi (1991)], which incorporates a phenomenological description of distortional elastic effects. To date, their approach to account for polydomain structure has only been applied to describe tumbling LCPs. We find that it captures the qualitative transient orientation response to flow reversals, but is less successful in describing the evolution of stresses. This is linked to the decoupling approximation adopted during the model's development. Finally, a modified polydomain Ericksen model is introduced

  13. Simulations of the design basis accident at conditions of power increase and the o transient of MSIV at overpressure conditions of the Laguna Verde Power Station

    International Nuclear Information System (INIS)

    Araiza M, E.; Nunez C, A.

    2001-01-01

    This document presents the analysis of the simulation of the loss of coolant accident at uprate power conditions, that is 2027 MWt (105% of the current rated power of 1931MWt). This power was reached allowing an increase in the turbine steam flow rate without changing the steam dome pressure value at its rated conditions (1020 psiaJ. There are also presented the results of the simulation of the main steam isolation va/ve transient at overpressure conditions 1065 psia and 1067 MWt), for Laguna Verde Nuclear Power Station. Both simulations were performed with the best estimate computer code TRA C BF1. The results obtained in the loss of coolant accident show that the emergency core coolant systems can recover the water level in the core before fuel temperature increases excessively, and that the peak pressure reached in the drywell is always below its design pressure. Therefore it is concluded that the integrity of the containment is not challenged during a loss of coolant accident at uprate power conditions.The analysis of the main steam isolation valve transients at overpressure conditions, and the analysis of the particular cases of the failure of one to six safety relief valves to open, show that the vessel peak pressures are below the design pressure and have no significant effect on vessel integrity. (Author)

  14. Transient Fluid Flow Modeling in Fractured Aquifer of Sechahoon Iron Mine Using Finite Element Method

    Directory of Open Access Journals (Sweden)

    Mojtaba Darabi

    2016-06-01

    Full Text Available Considering the fact that a large volume of iron reserve in the Sechahoon Iron Mine in Yazd Province has located under the water table, it is necessary to conduct a comprehensive study on water flow within the pit and its surroundings. The conceptual model of the aquifer was created using surface and underground geological information compared with water table data of the area of interest. In the data preparation stages, in order to create the numerical model, Logan and Lufran tests were studied to determine the hydrodynamic coefficients of the layers, precipitation and evaporation were investigated, and fractures and faults of the region, as a medium for flow channels in the hard formation, were also studied. The model was created in a transient state between 2000 and 2014. To validate its results, the water table was measured 4 times in the last 4 months of 2014. Considering the complexities in the heterogeneous fractured aquifer of the study area, numerical modeling results for the basin in a transient state present 90 percent correlation with field studies. Having investigated the water balance in the region, the boundary condition of the model was determined as the input water from the eastern south and the runoff water in the western north of the region. Since the general trend of faults in the area is north-south, variation in the water table is slight on north-south and intense on the east-west direction. On the other hand, due to the fact that the maximum flow is along the faults and fractures, the water table contour lines in different locations over the region are closed.

  15. Transient flow assurance for determination of operational control of heavy oil pipelines

    Energy Technology Data Exchange (ETDEWEB)

    Cabrejo, Victor [TransCanada Pipelines Ltd, (Canada); Mohitpour, Mo [Tempsys Pipeline Solutions Inc., (Canada)

    2010-07-01

    Pipeline transmission systems have been designed traditionally using steady state simulations. Steady state simulation provided sufficient values for simple systems, but is limited in dealing with surges in flow rates, loss of facilities and facility operation. A dynamic approach is required to test the capacity of a system for various fluids. This paper investigated the use of transient analysis of liquid pipelines in order to improve the design of these pipelines and to achieve operational benefits. The transient method and its use are discussed. Dynamic analysis was applied to the Keystone Pipeline Project. The purpose of the study was first to determine the system capacity and data for transportation of Heavy DilBit, and then to implement batch transportation of a volume of synthetic crude oil. It was found that the use of transient modeling in design and operational assessment of a liquid pipeline ensures system capability, control, safety and integrity.

  16. Intuitive Visualization of Transient Flow: Towards a Full 3D Tool

    Science.gov (United States)

    Michel, Isabel; Schröder, Simon; Seidel, Torsten; König, Christoph

    2015-04-01

    Visualization of geoscientific data is a challenging task especially when targeting a non-professional audience. In particular, the graphical presentation of transient vector data can be a significant problem. With STRING Fraunhofer ITWM (Kaiserslautern, Germany) in collaboration with delta h Ingenieurgesellschaft mbH (Witten, Germany) developed a commercial software for intuitive 2D visualization of 3D flow problems. Through the intuitive character of the visualization experts can more easily transport their findings to non-professional audiences. In STRING pathlets moving with the flow provide an intuition of velocity and direction of both steady-state and transient flow fields. The visualization concept is based on the Lagrangian view of the flow which means that the pathlets' movement is along the direction given by pathlines. In order to capture every detail of the flow an advanced method for intelligent, time-dependent seeding of the pathlets is implemented based on ideas of the Finite Pointset Method (FPM) originally conceived at and continuously developed by Fraunhofer ITWM. Furthermore, by the same method pathlets are removed during the visualization to avoid visual cluttering. Additional scalar flow attributes, for example concentration or potential, can either be mapped directly to the pathlets or displayed in the background of the pathlets on the 2D visualization plane. The extensive capabilities of STRING are demonstrated with the help of different applications in groundwater modeling. We will discuss the strengths and current restrictions of STRING which have surfaced during daily use of the software, for example by delta h. Although the software focusses on the graphical presentation of flow data for non-professional audiences its intuitive visualization has also proven useful to experts when investigating details of flow fields. Due to the popular reception of STRING and its limitation to 2D, the need arises for the extension to a full 3D tool

  17. Busy period analysis, rare events and transient behavior in fluid flow models

    Directory of Open Access Journals (Sweden)

    Søren Asmussen

    1994-01-01

    Full Text Available We consider a process {(Jt,Vt}t≥0 on E×[0,∞, such that {Jt} is a Markov process with finite state space E, and {Vt} has a linear drift ri on intervals where Jt=i and reflection at 0. Such a process arises as a fluid flow model of current interest in telecommunications engineering for the purpose of modeling ATM technology. We compute the mean of the busy period and related first passage times, show that the probability of buffer overflow within a busy cycle is approximately exponential, and give conditioned limit theorems for the busy cycle with implications for quick simulation. Further, various inequalities and approximations for transient behavior are given. Also explicit expressions for the Laplace transform of the busy period are found. Mathematically, the key tool is first passage probabilities and exponential change of measure for Markov additive processes.

  18. On conditions and parameters important to model sensitivity for unsaturated flow through layered, fractured tuff

    International Nuclear Information System (INIS)

    Prindle, R.W.; Hopkins, P.L.

    1990-10-01

    The Hydrologic Code Intercomparison Project (HYDROCOIN) was formed to evaluate hydrogeologic models and computer codes and their use in performance assessment for high-level radioactive-waste repositories. This report describes the results of a study for HYDROCOIN of model sensitivity for isothermal, unsaturated flow through layered, fractured tuffs. We investigated both the types of flow behavior that dominate the performance measures and the conditions and model parameters that control flow behavior. We also examined the effect of different conceptual models and modeling approaches on our understanding of system behavior. The analyses included single- and multiple-parameter variations about base cases in one-dimensional steady and transient flow and in two-dimensional steady flow. The flow behavior is complex even for the highly simplified and constrained system modeled here. The response of the performance measures is both nonlinear and nonmonotonic. System behavior is dominated by abrupt transitions from matrix to fracture flow and by lateral diversion of flow. The observed behaviors are strongly influenced by the imposed boundary conditions and model constraints. Applied flux plays a critical role in determining the flow type but interacts strongly with the composite-conductivity curves of individual hydrologic units and with the stratigraphy. One-dimensional modeling yields conservative estimates of distributions of groundwater travel time only under very limited conditions. This study demonstrates that it is wrong to equate the shortest possible water-travel path with the fastest path from the repository to the water table. 20 refs., 234 figs., 10 tabs

  19. Effect of power oscillations on suppression pool heating during ATWS [Anticipated Transients Without Scram] conditions

    International Nuclear Information System (INIS)

    Wulff, W.; Cheng, H.S.; Mallen, A.N.

    1990-01-01

    Nine selected Anticipated Transients Without Scram (ATWS) have been simulated on the BNL Engineering Plant Analyzer (EPA), to determine how power and flow oscillations, similar to those that did or could have occurred at the LaSalle-2 boiling Water Reactor (BWR), could affect the rate of Pressure Suppression Pool heating. It has been determined that the pool can reach its temperature limit of 80 degree C in 4.3 min. after Turbine Trip without Bypass, if the feedwater pumps are not tripped. The pool will not reach its limit, if Boron is injected, even when oscillations are encountered. Simultaneous turbine and recirculation pump trips, introduced under stable conditions, can lead to instability. 2 refs., 17 figs., 9 tabs

  20. Back-flow ripples in troughs downstream of unit bars: Formation, preservation and value for interpreting flow conditions

    OpenAIRE

    Herbert, Christopher; Alexander, Jan; Martinez De Alvaro, Maria

    2015-01-01

    Back-flow ripples are bedforms created within the lee-side eddy of a larger bedform with migration directions opposed or oblique to that of the host bedform. In the flume experiments described in this article, back-flow ripples formed in the trough downstream of a unit bar and changed with mean flow velocity; varying from small incipient back-flow ripples at low velocities, to well-formed back-flow ripples with greater velocity, to rapidly migrating transient back-flow ripples formed at the g...

  1. Capturing 2D transient surface data of granular flows against obstacles with an RGB-D sensor

    Science.gov (United States)

    Caviedes-Voullieme, Daniel; Juez, Carmelo; Murillo, Javier; Garcia-Navarro, Pilar

    2014-05-01

    Landslides are an ubiquitous natural hazard, and therefore human infrastructure and settlements are often at risk in mountainous regions. In order to better understand and predict landslides, systematic studies of the phenomena need to be undertaken. In particular, computational tools which allow for analysis of field problems require to be thoroughly tested, calibrated and validated under controlled conditions. And to do so, it is necessary for such controlled experiments to be fully characterized in the same terms as the numerical model requires. This work presents an experimental study of dry granular flow over a rough bed with topography which resembles a mountain valley. It has an upper region with a very high slope. The geometry of the bed describes a fourth order polynomial curve, with a low point with zero slope, and afterwards a short region with adverse slope. Obstacles are present in the lower regions which are used as model geometries of human structures. The experiments consisted of a sudden release a mass of sand on the upper region, and allowing it to flow downslope. Furthermore, it has been frequent in previous studies to measure final states of the granular mass at rest, but seldom has transient data being provided, and never for the entire field. In this work we present transient measurements of the moving granular surfaces, obtained with a consumer-grade RGB-D sensor. The sensor, developed for the videogame industry, allows to measure the moving surface of the sand, thus obtaining elevation fields. The experimental results are very consistent and repeatable. The measured surfaces clearly show the distinctive features of the granular flow around the obstacles and allow to qualitatively describe the different flow patterns. More importantly, the quantitative description of the granular surface allows for benchmarking and calibration of predictive numerical models, key in scaling the small-scale experimental knowledge into the field.

  2. Control-rod, pressure and flow-induced accident and transient analysis of a direct-cycle, supercritical-pressure, light-water-cooled fast breeder reactor

    International Nuclear Information System (INIS)

    Kitoh, Kazuaki; Koshizuka, Seiichi; Oka, Yoshiaki

    1996-01-01

    The features of the direct-cycle, supercritical-pressure, light-water-cooled fast breeder reactor (SCFBR) are high thermal efficiency and simple reactor system. The safety principle is basically the same as that of an LWR since it is a water-cooled reactor. Maintaining the core flow is the basic safety requirement of the reactor, since its coolant system is the one through type. The transient behaviors at control rod, pressure and flow-induced abnormalities are analyzed and presented in this paper. The results of flow-induced transients of SCFBR were reported at ICONE-3, though pressure change was neglected. The change of fuel temperature distribution is also considered for the analysis of the rapid reactivity-induced transients such as control rod withdrawal. Total loss of flow and pump seizure are analyzed as the accidents. Loss of load, control rod withdrawal from the normal operation, loss of feedwater heating, inadvertent start of an auxiliary feedwater pump, partial loss of coolant flow and loss of external power are analyzed as the transients. The behavior of the flow-induced transients is not so much different from the analyses assuming constant pressure. Fly wheels should be equipped with the feedwater pumps to prolong the coast-down time more than 10s and to cope with the total loss of flow accident. The coolant density coefficient of the SCFBR is less than one tenth of a BWR in which the recirculation flow is used for the power control. The over pressurization transients at the loss of load is not so severe as that of a BWR. The power reaches 120%. The minimum deterioration heat flux ratio (MDHFR) and the maximum pressure are sufficiently lower than the criteria; MDHFR above 1.0 and pressure ratio below 1.10 of 27.5 MPa, maximum pressure for operation. Among the reactivity abnormalities, the control rod withdrawal transient from the normal operation is analyzed

  3. Transient computational fluid dynamics analysis of emergency core cooling injection at natural circulation conditions

    International Nuclear Information System (INIS)

    Scheuerer, Martina; Weis, Johannes

    2012-01-01

    Highlights: ► Pressurized thermal shocks are important phenomena for plant life extension and aging. ► The thermal-hydraulics of PTS have been studied experimentally and numerically. ► In the Large Scale Test Facility a loss of coolant accident was investigated. ► CFD software is validated to simulate the buoyancy driven flow after ECC injection. - Abstract: Within the framework of the European Nuclear Reactor Integrated Simulation Project (NURISP), computational fluid dynamics (CFD) software is validated for the simulation of the thermo-hydraulics of pressurized thermal shocks. A proposed validation experiment is the test series performed within the OECD ROSA V project in the Large Scale Test Facility (LSTF). The LSTF is a 1:48 volume-scaled model of a four-loop Westinghouse pressurized water reactor (PWR). ROSA V Test 1-1 investigates temperature stratification under natural circulation conditions. This paper describes calculations which were performed with the ANSYS CFD software for emergency core cooling injection into one loop at single-phase flow conditions. Following the OECD/NEA CFD Best Practice Guidelines (Mahaffy, 2007) the influence of grid resolution, discretisation schemes, and turbulence models (shear stress transport and Reynolds stress model) on the mixing in the cold leg were investigated. A half-model was used for these simulations. The transient calculations were started from a steady-state solution at natural circulation conditions. The final calculations were obtained in a complete model of the downcomer. The results are in good agreement with data.

  4. Steam-generator-tube-rupture transients for pressurized-water reactors

    International Nuclear Information System (INIS)

    Dobranich, D.; Henninger, R.J.; DeMuth, N.S.

    1982-01-01

    Steam generator tube ruptures with and without concurrent main-steam-line break are investigated for pressurized water reactors supplied by the major US vendors. The goal of these analyses is to provide thermodynamic and flow conditions for the determination of iodine transport to the environment and to provide an evaluation of the adequacy of the plant safety systems and operating procedures for controlling these transients. The automatic safety systems of the plant were found to be adequate for the mitigation of these transients. Emergency injection system flows equilibrated with the leakage flows and prevented core uncovery. Sufficient time was afforded by the plant safety systems for the operators to identify the problem and to take appropriate measures

  5. Deterioration of mechanical properties of high strength structural steel S460N under transient state fire condition

    International Nuclear Information System (INIS)

    Qiang, Xuhong; Bijlaard, Frans S.K.; Kolstein, Henk

    2012-01-01

    Highlights: ► Mechanical properties of S460N under transient state fire condition are obtained. ► Elevated-temperature mechanical properties of steels are dependent on steel grades. ► No design standard is applicable to HSS S460N under transient state fire condition. ► Specific statements on various HSS in fire should be proposed in design standards. ► Research results offer accurate material property for structural design engineers. -- Abstract: 911 World Trade Centre Tragedy put fire safety of constructional steel structures into question. Since then, more and more research attention has been paid to the elevated-temperature mechanical properties of structural steels, which is a critical basis of evaluating the fire performance of steel structures. In the literature the available mechanical properties of structural steels under fire conditions were mainly obtained from steady state test method, as steady state test method is easier to perform than transient state test method and offers stress–strain curves directly. However, the transient state fire condition is considered to be more realistic to represent the real condition when constructions are exposed to fire. In order to reveal the deterioration of mechanical properties of the commonly used high strength structural steel S460N under transient state fire condition, tensile tests were conducted under various constant stress levels up to 800 MPa. The reduction factors of elastic modulus, yield and ultimate strengths of S460N under transient state fire condition were obtained and compared with current leading design standards and available literature. The application of such accurate elevated-temperature mechanical properties reduction factors of S460N can ensure a safe fire-resistance design and evaluation of steel structures with high strength steel S460N under transient state fire condition. This experimental study also supports other relative research on fire performance of steel structures with

  6. Transient flows of the solar wind associated with small-scale solar activity in solar minimum

    Science.gov (United States)

    Slemzin, Vladimir; Veselovsky, Igor; Kuzin, Sergey; Gburek, Szymon; Ulyanov, Artyom; Kirichenko, Alexey; Shugay, Yulia; Goryaev, Farid

    The data obtained by the modern high sensitive EUV-XUV telescopes and photometers such as CORONAS-Photon/TESIS and SPHINX, STEREO/EUVI, PROBA2/SWAP, SDO/AIA provide good possibilities for studying small-scale solar activity (SSA), which is supposed to play an important role in heating of the corona and producing transient flows of the solar wind. During the recent unusually weak solar minimum, a large number of SSA events, such as week solar flares, small CMEs and CME-like flows were observed and recorded in the databases of flares (STEREO, SWAP, SPHINX) and CMEs (LASCO, CACTUS). On the other hand, the solar wind data obtained in this period by ACE, Wind, STEREO contain signatures of transient ICME-like structures which have shorter duration (<10h), weaker magnetic field strength (<10 nT) and lower proton temperature than usual ICMEs. To verify the assumption that ICME-like transients may be associated with the SSA events we investigated the number of weak flares of C-class and lower detected by SPHINX in 2009 and STEREO/EUVI in 2010. The flares were classified on temperature and emission measure using the diagnostic means of SPHINX and Hinode/EIS and were confronted with the parameters of the solar wind (velocity, density, ion composition and temperature, magnetic field, pitch angle distribution of the suprathermal electrons). The outflows of plasma associated with the flares were identified by their coronal signatures - CMEs (only in few cases) and dimmings. It was found that the mean parameters of the solar wind projected to the source surface for the times of the studied flares were typical for the ICME-like transients. The results support the suggestion that weak flares can be indicators of sources of transient plasma flows contributing to the slow solar wind at solar minimum, although these flows may be too weak to be considered as separate CMEs and ICMEs. The research leading to these results has received funding from the European Union’s Seventh Programme

  7. LDV measurement, flow visualization and numerical analysis of flow distribution in a close-coupled catalytic converter

    International Nuclear Information System (INIS)

    Kim, Duk Sang; Cho, Yong Seok

    2004-01-01

    Results from an experimental study of flow distribution in a Close-coupled Catalytic Converter (CCC) are presented. The experiments were carried out with a flow measurement system specially designed for this study under steady and transient flow conditions. A pitot tube was a tool for measuring flow distribution at the exit of the first monolith. The flow distribution of the CCC was also measured by LDV system and flow visualization. Results from numerical analysis are also presented. Experimental results showed that the flow uniformity index decreases as flow Reynolds number increases. In steady flow conditions, the flow through each exhaust pipe made some flow concentrations on a specific region of the CCC inlet. The transient test results showed that the flow through each exhaust pipe in the engine firing order, interacted with each other to ensure that the flow distribution was uniform. The results of numerical analysis were qualitatively accepted with experimental results. They supported and helped explain the flow in the entry region of CCC

  8. CFD Tools for Design and Simulation of Transient Flows in Hypersonic Facilities

    Science.gov (United States)

    2010-03-24

    enthalpy shock tunnel. The Aeronautical Journal, 95(949):324–334, 1991. [6] K. Hannemann , R. Krek, and G. Eitelberg. Latest calibration results of the HEG...K. Hannemann , P. A. Jacobs, J. M. Austin, A. Thomas, and T. J. McIntyre. Transient and steady-state flow in a small shock tube. In A. Paull et al

  9. Analysis of metallic fuel pin behaviors under transient conditions of liquid metal reactors

    International Nuclear Information System (INIS)

    Nam, Cheol; Kwon, Hyoung Mun; Hwang, Woan

    1999-02-01

    Transient behavior of metallic fuel pins in liquid metal reactor is quite different to that in steady state conditions. Even in transient conditions, the fuel may behave differently depending on its accident situation and/or accident sequence. This report describes and identifies the possible and hypothetical transient events at the aspects of fuel pin behavior. Furthermore, the transient experiments on HT9 clad metallic fuel have been analyzed, and then failure assessments are performed based on accident classes. As a result, the failure mechanism of coolant-related accidents, such as LOF, is mainly due to plenum pressure and cladding thinning caused by eutectic penetration. In the reactivity-related accidents, such as TOP, the reason to cladding failure is believed to be the fuel swelling as well as plenum pressure. The probabilistic Weibull analysis is performed to evaluate the failure behavior of HT9 clad-metallic fuel pin on coolant related accidents.The Weibull failure function is derived as a function of cladding CDF. Using the function, a sample calculation for the ULOF accident of EBR-II fuel is performed, and the results indicate that failure probability is less the 0.3%. Further discussion on failure criteria of accident condition is provided. Finally, it is introduced the state-of-arts for developing computer codes of reactivity-related fuel pin behavior. The development efforts for a simple model to predict transient fuel swelling is described, and the preliminary calculation results compared to hot pressing test results in literature.This model is currently under development, and it is recommended in the future that the transient swelling model will be combined with the cladding model and the additional development for post-failure behavior of fuel pin is required. (Author). 36 refs., 9 tabs., 18 figs

  10. Transient Wave Scattering and Its Influence on Transient Analysis and Leak Detection in Urban Water Supply Systems: Theoretical Analysis and Numerical Validation

    Directory of Open Access Journals (Sweden)

    Huan-Feng Duan

    2017-10-01

    Full Text Available This paper investigates the impacts of non-uniformities of pipe diameter (i.e., an inhomogeneous cross-sectional area along pipelines on transient wave behavior and propagation in water supply pipelines. The multi-scale wave perturbation method is firstly used to derive analytical solutions for the amplitude evolution of transient pressure wave propagation in pipelines, considering regular and random variations of cross-sectional area, respectively. The analytical analysis is based on the one-dimensional (1D transient wave equation for pipe flow. Both derived results show that transient waves can be attenuated and scattered significantly along the longitudinal direction of the pipeline due to the regular and random non-uniformities of pipe diameter. The obtained analytical results are then validated by extensive 1D numerical simulations under different incident wave and non-uniform pipe conditions. The comparative results indicate that the derived analytical solutions are applicable and useful to describe the wave scattering effect in complex pipeline systems. Finally, the practical implications and influence of wave scattering effects on transient flow analysis and transient-based leak detection in urban water supply systems are discussed in the paper.

  11. CFD investigation of flow inversion in typical MTR research reactor undergoing thermal-hydraulic transients

    International Nuclear Information System (INIS)

    Salama, Amgad

    2011-01-01

    Highlights: → The 3D, CFD simulation of FLOFA accident in the generic IAEA 10 MW research reactor is carried out. → The different flow and heat transfer mechanisms involved in this process were elucidated. → The transition between these mechanisms during the course of FLOFA is discussed and investigated. → The interesting inversion process upon the transition from downward flow to upward flow is shown. → The temperature field and the friction coefficient during the whole transient process were shown. - Abstract: Three dimensional CFD full simulations of the fast loss of flow accident (FLOFA) of the IAEA 10 MW generic MTR research reactor are conducted. In this system the flow is initially downward. The transient scenario starts when the pump coasts down exponentially with a time constant of 1 s. As a result the temperatures of the heating element, the clad, and the coolant rise. When the flow reaches 85% of its nominal value the control rod system scrams and the power drops sharply resulting in the temperatures of the different components to drop. As the coolant flow continues to drop, the decay heat causes the temperatures to increase at a slower rate in the beginning. When the flow becomes laminar, the rate of temperature increase becomes larger and when the pumps completely stop a flow inversion occurs because of natural convection. The temperature will continue to rise at even higher rates until natural convection is established, that is when the temperatures settle off. The interesting 3D patterns of the flow during the inversion process are shown and investigated. The temperature history is also reported and is compared with those estimated by one-dimensional codes. Generally, very good agreement is achieved which provides confidence in the modeling approach.

  12. SSYST, Modular System for Transient Fuel Rod Behaviour Under Accident Condition

    International Nuclear Information System (INIS)

    Gulden, W.; Meyder, R.; Borgwaldt, H.

    1987-01-01

    1 - Description of problem or function: SSYST is a code system for analyzing transient fuel rod behaviour under off-normal conditions, developed jointly by the Institut fuer Kernenergetik und Energie-systeme (IKE), Stuttgart, and Kernforschungszentrum Karlsruhe (KfK) under contract for the Projekt Nukleare Sicherheit (PNS) at KfK. Main differences versus codes with similar applications are: (1) an open-ended modular code organisation; (2) a preference for simple models, wherever possible. While feature (1) makes SSYST a very flexible tool, easily adapted to changing requirements, feature (2) leads to short execution times. The analysis of transient rod behaviour under LOCA boundary conditions takes 2 minutes CPU time on IBM 3033, so that extensive parametric studies are feasible. Main differences between SSYST-3 and previous versions are related to a general clean-up of the code system, which reduces the implementation effort: - advanced modules for cladding deformation and oxidation and reflooding conditions are included; - an input processor thoroughly checks all input data

  13. Flow in air conditioned rooms

    DEFF Research Database (Denmark)

    Nielsen, Peter V.

    1974-01-01

    Flow in air conditioned r ooms is examined by means of model experiments . The different gearnetries giving unsteady, steady three- dimensional and steady twodimensional flow are determined . Velacity profiles and temperature profiles are measured in some of the geometries. A numerical solution...... of the flow equations is demonstrated and the flow in air conditioned rooms in case of steady two dimensional flow is predi cted. Compari son with measured results is shown i n the case of small Archimedes numbers, and predictions are shown at high Archimedes numbers. A numerical prediction of f low and heat...

  14. Final Report - Durable Catalysts for Fuel Cell Protection during Transient Conditions

    Energy Technology Data Exchange (ETDEWEB)

    Atanasoski, Radoslav [3M Company, St. Paul, MN (United States); van der Vliet, Dennis [3M Company, St. Paul, MN (United States); Cullen, David [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States); Atanasoska, Ljiljana [3M Company, St. Paul, MN (United States)

    2015-01-26

    The objective of this project was to develop catalysts that will enable proton exchange membranes (PEM) fuel cell systems to weather the damaging conditions in the fuel cell at voltages beyond the thermodynamic stability of water during the transient periods of start-up/shut-down and fuel starvation. Such catalysts are required to make it possible for the fuel cell to satisfy the 2015 DOE targets for performance and durability. The project addressed a key issue of importance for successful transition of PEM fuel cell technology from development to pre-commercial phase. This issue is the failure of the catalyst and the other thermodynamically unstable membrane electrode assembly (MEA) components during start-up/shut-down and local fuel starvation at the anode, commonly referred to as transient conditions. During these periods the electrodes can reach potentials higher than the usual 1.23V upper limit during normal operation. The most logical way to minimize the damage from such transient events is to minimize the potential seen by the electrodes. At lower positive potentials, increased stability of the catalysts themselves and reduced degradation of the other MEA components is expected.

  15. Availability analysis of a turbocharged diesel engine operating under transient load conditions

    International Nuclear Information System (INIS)

    Rakopoulos, C.D.; Giakoumis, E.G.

    2004-01-01

    A computer analysis is developed for studying the energy and availability performance of a turbocharged diesel engine, operating under transient load conditions. The model incorporates many novel features for the simulation of transient operation, such as detailed analysis of mechanical friction, separate consideration for the processes of each cylinder during a cycle ('multi-cylinder' model) and mathematical modeling of the fuel pump. This model has been validated against experimental data taken from a turbocharged diesel engine, located at the authors' laboratory and operated under transient conditions. The availability terms for the diesel engine and its subsystems are analyzed, i.e. cylinder for both the open and closed parts of the cycle, inlet and exhaust manifolds, turbocharger and aftercooler. The present analysis reveals, via multiple diagrams, how the availability properties of the diesel engine and its subsystems develop during the evolution of the engine cycles, assessing the importance of each property. In particular the irreversibilities term, which is absent from any analysis based solely on the first-law of thermodynamics, is given in detail as regards transient response as well as the rate and cumulative terms during a cycle, revealing the magnitude of contribution of all the subsystems to the total availability destruction

  16. Transient flows in active porous media

    DEFF Research Database (Denmark)

    Kosmidis, Lefteris I.; Jensen, Kaare Hartvig

    2017-01-01

    Stimuli-responsivematerials that modify their shape in response to changes in environmental conditions-such as solute concentration, temperature, pH, and stress-are widespread in nature and technology. Applications include micro- and nanoporous materials used in filtration and flow control. The p...

  17. Modeling of Transient Nectar Flow in Hummingbird Tongues

    Science.gov (United States)

    Rico-Guevara, Alejandro; Fan, Tai-Hsi; Rubega, Margaret

    2015-11-01

    We demonstrate that hummingbirds do not pick up floral nectar via capillary action. The long believed capillary rise models were mistaken and unable to predict the dynamic nectar intake process. Instead, hummingbird's tongue acts as an elastic micropump. Nectar is drawn into the tongue grooves during elastic expansion after the grooves are squeezed flat by the beak. The new model is compared with experimental data from high-speed videos of 18 species and tens of individuals of wild hummingbirds. Self-similarity and transitions of short-to-long time behaviours have been resolved for the nectar flow driven by expansive filling. The transient dynamics is characterized by the relative contributions of negative excess pressure and the apparent area modulus of the tongue grooves.

  18. Reconsidering the boundary conditions for a dynamic, transient mode I crack problem

    KAUST Repository

    Leise, Tanya

    2008-11-01

    A careful examination of a dynamic mode I crack problem leads to the conclusion that the commonly used boundary conditions do not always hold in the case of an applied crack face loading, so that a modification is required to satisfy the equations. In particular, a transient compressive stress wave travels along the crack faces, moving outward from the loading region on the crack face. This does not occur in the quasistatic or steady state problems, and is a special feature of the transient dynamic problem that is important during the time interval immediately following the application of crack face loading. We demonstrate why the usual boundary conditions lead to a prediction of crack face interpenetration, and then examine how to modify the boundary condition for a semi-infinite crack with a cohesive zone. Numerical simulations illustrate the resulting approach.

  19. THEBES: a thermal hydraulic code for the calculation of transient two phase flow in bundle geometry

    International Nuclear Information System (INIS)

    Camous, F.

    1983-01-01

    The three dimensional thermal hydraulic code THEBES, capable to calculate transient boiling of sodium in rod bundles is described here. THEBES, derived from the transient single phase code SABRE-2A, was developed in CADARACHE by the SIES to analyse the SCARABEE N loss of flow experiments. This paper also presents the results of tests which were performed against various types of experiments: (1) transient boiling in a 7 pin bundle simulating a partial blockage at the bottom of a subassembly (rapid transient SCARABEE 7.2 experiment), (2) transient boiling in a 7 pin bundle simulating a coolant coast down (slow transient SCARABEE 7.3 experiment), (3) steady local and generalised boiling in a 19 pin bundle (GR 19 I experiment), (4) transient boiling in a 19 pin bundle simulating a coolant coast down (GR 19 I experiment), (5) steady local boiling in a 37 pin bundle with internal blockage (MOL 7C experiment). Excellent agreement was found between calculated and experimental results for these different situations. Our conclusion is that THEBES is able to calculate transient boiling of sodium in rod bundles in a quite satisfying way

  20. Transient magnetoviscosity of dilute ferrofluids

    International Nuclear Information System (INIS)

    Soto-Aquino, Denisse; Rinaldi, Carlos

    2011-01-01

    The magnetic field induced change in the viscosity of a ferrofluid, commonly known as the magnetoviscous effect and parameterized through the magnetoviscosity, is one of the most interesting and practically relevant aspects of ferrofluid phenomena. Although the steady state behavior of ferrofluids under conditions of applied constant magnetic fields has received considerable attention, comparatively little attention has been given to the transient response of the magnetoviscosity to changes in the applied magnetic field or rate of shear deformation. Such transient response can provide further insight into the dynamics of ferrofluids and find practical application in the design of devices that take advantage of the magnetoviscous effect and inevitably must deal with changes in the applied magnetic field and deformation. In this contribution Brownian dynamics simulations and a simple model based on the ferrohydrodynamics equations are applied to explore the dependence of the transient magnetoviscosity for two cases: (I) a ferrofluid in a constant shear flow wherein the magnetic field is suddenly turned on, and (II) a ferrofluid in a constant magnetic field wherein the shear flow is suddenly started. Both simulations and analysis show that the transient approach to a steady state magnetoviscosity can be either monotonic or oscillatory depending on the relative magnitudes of the applied magnetic field and shear rate. - Research Highlights: →Rotational Brownian dynamics simulations were used to study the transient behavior of the magnetoviscosity of ferrofluids. →Damped and oscillatory approach to steady state magnetoviscosity was observed for step changes in shear rate and magnetic field. →A model based on the ferrohydrodynamics equations qualitatively captured the damped and oscillatory features of the transient response →The transient behavior is due to the interplay of hydrodynamic, magnetic, and Brownian torques on the suspended particles.

  1. Transient computational fluid dynamics analysis of emergency core cooling injection at natural circulation conditions

    Energy Technology Data Exchange (ETDEWEB)

    Scheuerer, Martina, E-mail: Martina.Scheuerer@grs.de [Gesellschaft fuer Anlagen- und Reaktorsicherheit, Forschungsinstitute, 85748 Garching (Germany); Weis, Johannes, E-mail: Johannes.Weis@grs.de [Gesellschaft fuer Anlagen- und Reaktorsicherheit, Forschungsinstitute, 85748 Garching (Germany)

    2012-12-15

    Highlights: Black-Right-Pointing-Pointer Pressurized thermal shocks are important phenomena for plant life extension and aging. Black-Right-Pointing-Pointer The thermal-hydraulics of PTS have been studied experimentally and numerically. Black-Right-Pointing-Pointer In the Large Scale Test Facility a loss of coolant accident was investigated. Black-Right-Pointing-Pointer CFD software is validated to simulate the buoyancy driven flow after ECC injection. - Abstract: Within the framework of the European Nuclear Reactor Integrated Simulation Project (NURISP), computational fluid dynamics (CFD) software is validated for the simulation of the thermo-hydraulics of pressurized thermal shocks. A proposed validation experiment is the test series performed within the OECD ROSA V project in the Large Scale Test Facility (LSTF). The LSTF is a 1:48 volume-scaled model of a four-loop Westinghouse pressurized water reactor (PWR). ROSA V Test 1-1 investigates temperature stratification under natural circulation conditions. This paper describes calculations which were performed with the ANSYS CFD software for emergency core cooling injection into one loop at single-phase flow conditions. Following the OECD/NEA CFD Best Practice Guidelines (Mahaffy, 2007) the influence of grid resolution, discretisation schemes, and turbulence models (shear stress transport and Reynolds stress model) on the mixing in the cold leg were investigated. A half-model was used for these simulations. The transient calculations were started from a steady-state solution at natural circulation conditions. The final calculations were obtained in a complete model of the downcomer. The results are in good agreement with data.

  2. Investigation of natural circulation instability and transients in passively safe novel modular reactor

    Science.gov (United States)

    Shi, Shanbin

    The Purdue Novel Modular Reactor (NMR) is a new type small modular reactor (SMR) that belongs to the design of boiling water reactor (BWR). Specifically, the NMR is one third the height and area of a conventional BWR reactor pressure vessel (RPV) with an electric output of 50 MWe. The fuel cycle length of the NMR-50 is extended up to 10 years due to optimized neutronics design. The NMR-50 is designed with double passive engineering safety system. However, natural circulation BWRs (NCBWR) could experience certain operational difficulties due to flow instabilities that occur at low pressure and low power conditions. Static instabilities (i.e. flow excursion (Ledinegg) instability and flow pattern transition instability) and dynamic instabilities (i.e. density wave instability and flashing/condensation instability) pose a significant challenge in two-phase natural circulation systems. In order to experimentally study the natural circulation flow instability, a proper scaling methodology is needed to build a reduced-size test facility. The scaling analysis of the NMR uses a three-level scaling method, which was developed and applied for the design of the Purdue Multi-dimensional Integral Test Assembly (PUMA). Scaling criteria is derived from dimensionless field equations and constitutive equations. The scaling process is validated by the RELAP5 analysis for both steady state and startup transients. A new well-scaled natural circulation test facility is designed and constructed based on the scaling analysis of the NMR-50. The experimental facility is installed with different equipment to measure various thermal-hydraulic parameters such as pressure, temperature, mass flow rate and void fraction. Characterization tests are performed before the startup transient tests and quasi-steady tests to determine the loop flow resistance. The controlling system and data acquisition system are programmed with LabVIEW to realize the real-time control and data storage. The thermal

  3. Transient behavior of redox flow battery connected to circuit based on global phase structure

    Science.gov (United States)

    Mannari, Toko; Hikihara, Takashi

    A Redox Flow Battery (RFB) is one of the promising energy storage systems in power grid. An RFB has many advantages such as a quick response, a large capacity, and a scalability. Due to these advantages, an RFB can operate in mixed time scale. Actually, it has been demonstrated that an RFB can be used for load leveling, compensating sag, and smoothing the output of the renewable sources. An analysis on transient behaviors of an RFB is a key issue for these applications. An RFB is governed by electrical, chemical, and fluid dynamics. The hybrid structure makes the analysis difficult. To analyze transient behaviors of an RFB, the exact model is necessary. In this paper, we focus on a change in a concentration of ions in the electrolyte, and simulate the change with a model which is mainly based on chemical kinetics. The simulation results introduces transient behaviors of an RFB in a response to a load variation. There are found three kinds of typical transient behaviors including oscillations. As results, it is clarified that the complex transient behaviors, due to slow and fast dynamics in the system, arise by the quick response to load.

  4. Is the measurement of inferior thyroid artery blood flow velocity by color-flow Doppler ultrasonography useful for differential diagnosis between gestational transient thyrotoxicosis and Graves' disease? A prospective study.

    Science.gov (United States)

    Zuhur, Sayid Shafi; Ozel, Alper; Velet, Selvinaz; Buğdacı, Mehmet Sait; Cil, Esra; Altuntas, Yüksel

    2012-01-01

    To determine the role of peak systolic velocity, end-diastolic velocity and resistance indices of both the right and left inferior thyroid arteries measured by color-flow Doppler ultrasonography for a differential diagnosis between gestational transient thyrotoxicosis and Graves' disease during pregnancy. The right and left inferior thyroid artery-peak systolic velocity, end-diastolic velocity and resistance indices of 96 patients with thyrotoxicosis (41 with gestational transient thyrotoxicosis, 31 age-matched pregnant patients with Graves' disease and 24 age- and sex-matched non-pregnant patients with Graves' disease) and 25 age and sex-matched healthy euthyroid subjects were assessed with color-flow Doppler ultrasonography. The right and left inferior thyroid artery-peak systolic and end-diastolic velocities in patients with gestational transient thyrotoxicosis were found to be significantly lower than those of pregnant patients with Graves' disease and higher than those of healthy euthyroid subjects. However, the right and left inferior thyroid artery peak systolic and end-diastolic velocities in pregnant patients with Graves' disease were significantly lower than those of non-pregnant patients with Graves' disease. The right and left inferior thyroid artery peak systolic and end-diastolic velocities were positively correlated with TSH-receptor antibody levels. We found an overlap between the inferior thyroid artery-blood flow velocities in a considerable number of patients with gestational transient thyrotoxicosis and pregnant patients with Graves' disease. This study suggests that the measurement of inferior thyroid artery-blood flow velocities with color-flow Doppler ultrasonography does not have sufficient sensitivity and specificity to be recommended as an initial diagnostic test for a differential diagnosis between gestational transient thyrotoxicosis and Graves' disease during pregnancy.

  5. 4. Workshop - Measurement techniques of stationary and transient multiphase flow

    International Nuclear Information System (INIS)

    Prasser, H.M.

    2001-05-01

    In November 2000, the 4th Workshop on Measurement Techniques for Stationary and Transient Multiphase Flows took place in Rossendorf. Three previous workshops of this series were national meetings; this time participants from different countries took part. The programme comprised 14 oral presentations, 9 of which are included in these proceedings in full length. A special highlight of the meeting was the main lecture ''Ultrasonic doppler method for bubbly flow measurement'' of Professor Masanori Aritomi, Dr. Hiroshige Kikura and Dr. Yumiko Suzuki. The workshop again dealt with high-resolution phase distribution and phase velocity measurement techniques based on electrical conductivity, ultrasound, laser light and high-speed cinematography. A number of presentations were dedicated to the application of wire-mesh sensors developed by FZR for different applications used by the Technical Universities of Delft and Munich and the Tokyo Institute of Technology. (orig.)

  6. Considerations for transient stability, fault capacity and power flow study of offsite power system

    Energy Technology Data Exchange (ETDEWEB)

    Shin, M C; Kim, C W; Gwon, M H; Park, C W; Lee, K W; Kim, H M; Lee, G Y; Joe, P H [Sungkyunkwan Univ., Seoul (Korea, Republic of)

    1994-04-15

    By study of power flow calculation, fault capacity calculation and stability analysis according to connection of two units YGN 3 and 4 to KEPCO power system, we have conclusions as follows. As the result of power flow calculation, at peak load, the voltage change of each bus is very small when YGN 3 and 4 is connected with KEPCO power system. At base load, installation of phase modifing equipment is necessary in Seoul, Kyungki province where load is concentrated because bus voltage rises by increasing of charge capacity caused installation of underground cables. As the result of fault capacity calculation, fault capacity is increased because fault current increases when two units YGN 3 and 4 is connected with KEPCO power system. But it is enough to operate with presenting circuits breaker rated capacity. Transient stability studies have been conducted on the YK N/P generators 3 and 4 using a digital computer program. Three phase short faults have been simulated at the YK N/P 345[KV] bus with the resulting outage of transmission circuits. Several fault clearing times are applied: 6 cycles, 12 cycles, 15 cycles. The study results demonstrate that the transient stability of YK N/P is adequate to maintain stable for three phase short faults cleared within 12 cycles. The study results also demonstrate that the transient stability of YK N/P is stable for machine removals except 4-machine removal. In addition, the study shows that the transient stability analysis is implemented for the case of load.

  7. Characterizing hydraulic fractures in shale gas reservoirs using transient pressure tests

    Directory of Open Access Journals (Sweden)

    Cong Wang

    2015-06-01

    This work presents an unconventional gas reservoir simulator and its application to quantify hydraulic fractures in shale gas reservoirs using transient pressure data. The numerical model incorporates most known physical processes for gas production from unconventional reservoirs, including two-phase flow of liquid and gas, Klinkenberg effect, non-Darcy flow, and nonlinear adsorption. In addition, the model is able to handle various types and scales of fractures or heterogeneity using continuum, discrete or hybrid modeling approaches under different well production conditions of varying rate or pressure. Our modeling studies indicate that the most sensitive parameter of hydraulic fractures to early transient gas flow through extremely low permeability rock is actually the fracture-matrix contacting area, generated by fracturing stimulation. Based on this observation, it is possible to use transient pressure testing data to estimate the area of fractures generated from fracturing operations. We will conduct a series of modeling studies and present a methodology using typical transient pressure responses, simulated by the numerical model, to estimate fracture areas created or to quantity hydraulic fractures with traditional well testing technology. The type curves of pressure transients from this study can be used to quantify hydraulic fractures in field application.

  8. Transient coupled calculations of the Molten Salt Fast Reactor using the Transient Fission Matrix approach

    Energy Technology Data Exchange (ETDEWEB)

    Laureau, A., E-mail: laureau.axel@gmail.com; Heuer, D.; Merle-Lucotte, E.; Rubiolo, P.R.; Allibert, M.; Aufiero, M.

    2017-05-15

    Highlights: • Neutronic ‘Transient Fission Matrix’ approach coupled to the CFD OpenFOAM code. • Fission Matrix interpolation model for fast spectrum homogeneous reactors. • Application for coupled calculations of the Molten Salt Fast Reactor. • Load following, over-cooling and reactivity insertion transient studies. • Validation of the reactor intrinsic stability for normal and accidental transients. - Abstract: In this paper we present transient studies of the Molten Salt Fast Reactor (MSFR). This generation IV reactor is characterized by a liquid fuel circulating in the core cavity, requiring specific simulation tools. An innovative neutronic approach called “Transient Fission Matrix” is used to perform spatial kinetic calculations with a reduced computational cost through a pre-calculation of the Monte Carlo spatial and temporal response of the system. Coupled to this neutronic approach, the Computational Fluid Dynamics code OpenFOAM is used to model the complex flow pattern in the core. An accurate interpolation model developed to take into account the thermal hydraulics feedback on the neutronics including reactivity and neutron flux variation is presented. Finally different transient studies of the reactor in normal and accidental operating conditions are detailed such as reactivity insertion and load following capacities. The results of these studies illustrate the excellent behavior of the MSFR during such transients.

  9. Transient coupled calculations of the Molten Salt Fast Reactor using the Transient Fission Matrix approach

    International Nuclear Information System (INIS)

    Laureau, A.; Heuer, D.; Merle-Lucotte, E.; Rubiolo, P.R.; Allibert, M.; Aufiero, M.

    2017-01-01

    Highlights: • Neutronic ‘Transient Fission Matrix’ approach coupled to the CFD OpenFOAM code. • Fission Matrix interpolation model for fast spectrum homogeneous reactors. • Application for coupled calculations of the Molten Salt Fast Reactor. • Load following, over-cooling and reactivity insertion transient studies. • Validation of the reactor intrinsic stability for normal and accidental transients. - Abstract: In this paper we present transient studies of the Molten Salt Fast Reactor (MSFR). This generation IV reactor is characterized by a liquid fuel circulating in the core cavity, requiring specific simulation tools. An innovative neutronic approach called “Transient Fission Matrix” is used to perform spatial kinetic calculations with a reduced computational cost through a pre-calculation of the Monte Carlo spatial and temporal response of the system. Coupled to this neutronic approach, the Computational Fluid Dynamics code OpenFOAM is used to model the complex flow pattern in the core. An accurate interpolation model developed to take into account the thermal hydraulics feedback on the neutronics including reactivity and neutron flux variation is presented. Finally different transient studies of the reactor in normal and accidental operating conditions are detailed such as reactivity insertion and load following capacities. The results of these studies illustrate the excellent behavior of the MSFR during such transients.

  10. Immersed transient eddy current flow metering: a calibration-free velocity measurement technique for liquid metals

    Science.gov (United States)

    Krauter, N.; Stefani, F.

    2017-10-01

    Eddy current flow meters are widely used for measuring the flow velocity of electrically conducting fluids. Since the flow induced perturbations of a magnetic field depend both on the geometry and the conductivity of the fluid, extensive calibration is needed to get accurate results. Transient eddy current flow metering has been developed to overcome this problem. It relies on tracking the position of an impressed eddy current system that is moving with the same velocity as the conductive fluid. We present an immersed version of this measurement technique and demonstrate its viability by numerical simulations and a first experimental validation.

  11. Immersed transient eddy current flow metering: a calibration-free velocity measurement technique for liquid metals

    International Nuclear Information System (INIS)

    Krauter, N; Stefani, F

    2017-01-01

    Eddy current flow meters are widely used for measuring the flow velocity of electrically conducting fluids. Since the flow induced perturbations of a magnetic field depend both on the geometry and the conductivity of the fluid, extensive calibration is needed to get accurate results. Transient eddy current flow metering has been developed to overcome this problem. It relies on tracking the position of an impressed eddy current system that is moving with the same velocity as the conductive fluid. We present an immersed version of this measurement technique and demonstrate its viability by numerical simulations and a first experimental validation. (paper)

  12. Numerical analysis of steady and transient natural convection in an enclosed cavity

    Science.gov (United States)

    Mehedi, Tanveer Hassan; Tahzeeb, Rahat Bin; Islam, A. K. M. Sadrul

    2017-06-01

    The paper presents the numerical simulation of natural convection heat transfer of air inside an enclosed cavity which can be helpful to find out the critical width of insulation in air insulated walls seen in residential buildings and industrial furnaces. Natural convection between two walls having different temperatures have been simulated using ANSYS FLUENT 12.0 in both steady and transient conditions. To simulate different heat transfer and fluid flow conditions, Rayleigh number ranging from 103 to 105 has been maintained (i.e. Laminar flow.) In case of steady state analysis, the CFD predictions were in very good agreement with the reviewed literature. Transient simulation process has been performed by using User Defined Functions, where the temperature of the hot wall varies with time linearly. To obtain and compare the heat transfer properties, Nusselt number has been calculated at the hot wall at different conditions. The buoyancy driven flow characteristics have been investigated by observing the flow pattern in a graphical manner. The characteristics of the system at different temperature differences between the wall has been observed and documented.

  13. Theoretical and experimental studies on transient forced convection heat transfer of helium gas

    International Nuclear Information System (INIS)

    Liu, Qiusheng; Fukuda, Katsuya; Shibahara, Makoto

    2008-01-01

    Forced convection transient heat transfer for helium gas at various periods of exponential increase of heat input to a horizontal cylinder and a plate (ribbon) one was experimentally and theoretically studied. In the experimental studies, the authors measured heat flux, surface temperature, and transient heat transfer coefficients for forced convection flow of helium gas over a horizontal cylinder and a plate (ribbon) one under wide experimental conditions. Empirical correlations for quasi-steady-state heat transfer and transient heat transfer were obtained based on the experimental data. In the theoretical study, transient heat transfer was numerically solved based on a turbulent flow model. The values of numerical solution for surface temperature and heat flux were compared and discussed with authors' experimental data. (author)

  14. Investigation of Natural Circulation Instability and Transients in Passively Safe Small Modular Reactors

    Energy Technology Data Exchange (ETDEWEB)

    Ishii, Mamoru [Purdue Univ., West Lafayette, IN (United State

    2016-11-30

    The NEUP funded project, NEUP-3496, aims to experimentally investigate two-phase natural circulation flow instability that could occur in Small Modular Reactors (SMRs), especially for natural circulation SMRs. The objective has been achieved by systematically performing tests to study the general natural circulation instability characteristics and the natural circulation behavior under start-up or design basis accident conditions. Experimental data sets highlighting the effect of void reactivity feedback as well as the effect of power ramp-up rate and system pressure have been used to develop a comprehensive stability map. The safety analysis code, RELAP5, has been used to evaluate experimental results and models. Improvements to the constitutive relations for flashing have been made in order to develop a reliable analysis tool. This research has been focusing on two generic SMR designs, i.e. a small modular Simplified Boiling Water Reactor (SBWR) like design and a small integral Pressurized Water Reactor (PWR) like design. A BWR-type natural circulation test facility was firstly built based on the three-level scaling analysis of the Purdue Novel Modular Reactor (NMR) with an electric output of 50 MWe, namely NMR-50, which represents a BWR-type SMR with a significantly reduced reactor pressure vessel (RPV) height. The experimental facility was installed with various equipment to measure thermalhydraulic parameters such as pressure, temperature, mass flow rate and void fraction. Characterization tests were performed before the startup transient tests and quasi-steady tests to determine the loop flow resistance. The control system and data acquisition system were programmed with LabVIEW to realize the realtime control and data storage. The thermal-hydraulic and nuclear coupled startup transients were performed to investigate the flow instabilities at low pressure and low power conditions for NMR-50. Two different power ramps were chosen to study the effect of startup

  15. Safety aspects of forced flow cooldown transients in modular high temperature gas-cooled reactors

    International Nuclear Information System (INIS)

    Kroeger, P.G.

    1992-01-01

    During some of the design basis accidents in Modular High Temperature Gas Cooled Reactors (MHTGRs) the main Heat Transport System (HTS) and the Shutdown Cooling System (SCS), are assumed to have failed. Decay heat is then removed by the passive Reactor Cavity Cooling System (RCCS) only. If either forced flow cooling system becomes available during such a transient, its restart could significantly reduce the down-time. This paper uses the THATCH code to examine whether such restart, during a period of elevated core temperatures, can be accomplished within safe limits for fuel and metal component temperatures. If the reactor is scrammed, either system can apparently be restarted at any time, without exceeding any safe limits. However, under unscrammed conditions a restart of forced cooling can lead to recriticality, with fuel and metal temperatures significantly exceeding the safety limits

  16. Transient convective heat transfer to laminar flow from a flat plate with constant heat capacity

    International Nuclear Information System (INIS)

    Hanawa, Juichi

    1980-01-01

    Most basic transient heat transfer problem is the transient response characteristics of forced convection heat transfer in the flow along a flat plate or in a tube. In case of the laminar flow along a flat plate, the profile method using steady temperature distribution has been mostly adopted, but its propriety has not been clarified yet. About the unsteady heat transfer in the laminar flow along a flat plate, the analysis or experiment evaluating the heat capacity of the flat plate exactly was never carried out. The purpose of this study is to determine by numerical calculation the unsteady characteristics of the boundary layer in laminar flow and to confirm them by experiment concerning the unsteady heat transfer when a flat plate with a certain heat capacity is placed in parallel in uniform flow and given a certain quantity of heat generation suddenly. The basic equation and the solution are given, and the method of numerical calculation and the result are explained. The experimental setup and method, and the experimental results are shown. Both results were in good agreement, and the response of wall temperature, the response of Nusselt number and the change of temperature distribution in course of time were able to be determined by applying Laplace transformation and numerical Laplace inverse transformation to the equation. (Kako, I.)

  17. Transient and stationary eddies in differing GCM climates

    International Nuclear Information System (INIS)

    Hall, N.M.J.; Valdes, P.J.

    1994-01-01

    The response of transients to changing forcing/boundary conditions can be just as striking as the response of mean fields such as surface temperature. Indeed the two are intimately linked and the extent to which the transients are either controlled by, or shape the mean flow is difficult to quantify. Diagnostics are presented from several GCM equilibrium climate simulations using the UGAMP GCM. These include representations of the present climate: The Last Glacial Maximum and the Jurassic climate (150 M years ago). Changes in the distribution of transient eddy activity are compared with changes in low level baroclinicity to assess the direct response of the storm tracks to local conditions. Budget calculations are also presented to identify the changing roles of different components of the atmospheric circulation in transporting heat and moisture from equator to pole

  18. Parameters, which effect the mass flow in the PRHRS under a natural convection condition

    International Nuclear Information System (INIS)

    Chung, Y. J.; Lee, G. H.; Kim, H. C.; Kim, K. K.; Zee, S. Q.

    2004-01-01

    Small and medium sized integral type reactors for the diverse utilization of nuclear energy are getting much attention from the international nuclear community. They diversify the peaceful uses of nuclear energy in the areas of seawater desalination, district heating, industrial heat-generation process and ship propulsion. The SMART (System integrated Modular Advanced ReacTor) is a small modular integral type pressurized water reactor, which was developed for the dual purposes application of seawater desalination and small-scaled power generation in KOREA. The reactor is designed for a forced convection core cooling during start-up and normal operating conditions and for a natural circulation core cooling during accidental conditions. The main safety objective of the SMART is to increase the degree of inherent safety features by advanced designs such as a passive residual heat removal system (PRHRS). The passive residual heat removal system removes the core decay heat and sensible heat by a natural circulation in the case of emergency conditions. This study focuses on the flow behavior in the passive residual heat removal system of the integral reactor. The system necessitates a hydraulic head to achieve the required natural circulation flow rate, which in turn, may cause a larger two-phase pressure drop and flow oscillation. Also, it is of interest to investigate the complex effects of the boiling and condensation in such low frequency thermo-hydraulic oscillations. Thermal hydraulic analysis for the passive residual heat removal system has been carried out by means of the MARS code for a full range of reactor operating conditions. The MARS code has been developed at the Korea Atomic Energy Research Institute by consolidating and restructuring the RELAP5/MOD3.2 and COBRA-TF which has the capabilities of analyzing the one-dimensional or three-dimensional best estimated thermal-hydraulic system and the fuel responses of the light water reactor transients. A selected

  19. LLUVIA-II: A program for two-dimensional, transient flow through partially saturated porous media

    International Nuclear Information System (INIS)

    Eaton, R.R.; Hopkins, P.L.

    1992-08-01

    LLUVIA-II is a program designed for the efficient solution of two- dimensional transient flow of liquid water through partially saturated, porous media. The code solves Richards equation using the method-of-lines procedure. This document describes the solution procedure employed, input data structure, output, and code verification

  20. The application of model with lumped parameters for transient condition analyses of NPP

    International Nuclear Information System (INIS)

    Stankovic, B.; Stevanovic, V.

    1985-01-01

    The transient behaviour of NPP Krsko during the accident of pressurizer spray valve stuck open has been simulated y lumped parameters model of the PWR coolant system components, developed at the faculty of Mechanical Engineering, University of Belgrade. The elementary volumes which are characterised by the process and state parameters, and by junctions which are characterised by the geometrical and flow parameters are basic structure of physical model. The process parameters obtained by the model RESI, show qualitative agreement with the measured valves, in a degree in which the actions of reactor safety engineered system and emergency core cooling system are adequately modelled; in spite of the elementary physical model structure and only the modelling of thermal process in reactor core and equilibrium conditions of pressurizer and steam generator. The pressurizer pressure and liquid level predicted by the non-equilibrium pressurizer model SOP show good agreement until the HIPS (high pressure pumps) is activated. (author)

  1. Experimental and numerical investigation of the coolant mixing during fast deboration transients

    International Nuclear Information System (INIS)

    Hoehne, T.; Rohde, U.; Weiss, F.P.

    1999-01-01

    For the analysis of boron dilution transients and main steam line break scenarios the modeling of the coolant mixing inside the reactor vessel is important, because the reactivity insertion strongly depends on boron acid concentration or the coolant temperature distribution. Calculations for steady state flow conditions for the VVER-440 were performed with a CFD code (CFX-4). The comparison with experimental data and an analytical mixing model which is implemented in the neutron-kinetic code DYN3D showed a good agreement for near-nominal conditions. First experiments at the Rossendorf Mixing Test Facility ROCOM were performed simulating the start-up of the first main coolant pump. The reference reactor for the geometrically 1:5 scaled Plexiglas model is the German Konvoi type PWR. After demonstrating the capability of the CFD code to simulate these complicated flow transients, calculations were performed for the start-up of the first pump in a VVER-440 type reactor. These calculations are a first step of understanding the coolant mixing in the RPV of a VVER-440 type reactor under transient conditions. The results of the calculation show a very complex flow in the downcomer. A high downcomer of VVER-440 and the existence of the lower control rod chamber support coolant mixing is concluded. (author)

  2. 4. Workshop - Measurement techniques of stationary and transient multiphase flow

    Energy Technology Data Exchange (ETDEWEB)

    Prasser, H.M. (ed.)

    2001-05-01

    In November 2000, the 4th Workshop on Measurement Techniques for Stationary and Transient Multiphase Flows took place in Rossendorf. Three previous workshops of this series were national meetings; this time participants from different countries took part. The programme comprised 14 oral presentations, 9 of which are included in these proceedings in full length. A special highlight of the meeting was the main lecture ''Ultrasonic doppler method for bubbly flow measurement'' of Professor Masanori Aritomi, Dr. Hiroshige Kikura and Dr. Yumiko Suzuki. The workshop again dealt with high-resolution phase distribution and phase velocity measurement techniques based on electrical conductivity, ultrasound, laser light and high-speed cinematography. A number of presentations were dedicated to the application of wire-mesh sensors developed by FZR for different applications used by the Technical Universities of Delft and Munich and the Tokyo Institute of Technology. (orig.)

  3. Numerical method for solution of transient, homogeneous, equilibrium, two-phase flows in one space dimension

    International Nuclear Information System (INIS)

    Shin, Y.W.; Wiedermann, A.H.

    1979-10-01

    A solution method is presented for transient, homogeneous, equilibrium, two-phase flows of a single-component fluid in one space dimension. The method combines a direct finite-difference procedure and the method of characteristics. The finite-difference procedure solves the interior points of the computing domain; the boundary information is provided by a separate procedure based on the characteristics theory. The solution procedure for boundary points requires information in addition to the physical boundary conditions. This additional information is obtained by a new procedure involving integration of characteristics in the hodograph plane. Sample problems involving various combinations of basic boundary types are calculated for two-phase water/steam mixtures and single-phase nitrogen gas, and compared with independent method-of-characteristics solutions using very fine characteristic mesh. In all cases, excellent agreement is demonstrated

  4. Minimizing transient influence in WHPA delineation: An optimization approach for optimal pumping rate schemes

    Science.gov (United States)

    Rodriguez-Pretelin, A.; Nowak, W.

    2017-12-01

    For most groundwater protection management programs, Wellhead Protection Areas (WHPAs) have served as primarily protection measure. In their delineation, the influence of time-varying groundwater flow conditions is often underestimated because steady-state assumptions are commonly made. However, it has been demonstrated that temporary variations lead to significant changes in the required size and shape of WHPAs. Apart from natural transient groundwater drivers (e.g., changes in the regional angle of flow direction and seasonal natural groundwater recharge), anthropogenic causes such as transient pumping rates are of the most influential factors that require larger WHPAs. We hypothesize that WHPA programs that integrate adaptive and optimized pumping-injection management schemes can counter transient effects and thus reduce the additional areal demand in well protection under transient conditions. The main goal of this study is to present a novel management framework that optimizes pumping schemes dynamically, in order to minimize the impact triggered by transient conditions in WHPA delineation. For optimizing pumping schemes, we consider three objectives: 1) to minimize the risk of pumping water from outside a given WHPA, 2) to maximize the groundwater supply and 3) to minimize the involved operating costs. We solve transient groundwater flow through an available transient groundwater and Lagrangian particle tracking model. The optimization problem is formulated as a dynamic programming problem. Two different optimization approaches are explored: I) the first approach aims for single-objective optimization under objective (1) only. The second approach performs multiobjective optimization under all three objectives where compromise pumping rates are selected from the current Pareto front. Finally, we look for WHPA outlines that are as small as possible, yet allow the optimization problem to find the most suitable solutions.

  5. TRUMP, Steady-State and Transient 1-D, 2-D and 3-D Potential Flow, Temperature Distribution

    International Nuclear Information System (INIS)

    Elrod, D.C.; Turner, W.D.

    1981-01-01

    1 - Description of problem or function: TRUMP solves a general non- linear parabolic partial differential equation describing flow in various kinds of potential fields, such as fields of temperature, pressure, or electricity and magnetism; simultaneously, it will solve two additional equations representing, in thermal problems, heat production by decomposition of two reactants having rate constants with a general Arrhenius temperature dependence. Steady- state and transient flow in one, two, or three dimensions are considered in geometrical configurations having simple or complex shapes and structures. Problem parameters may vary with spatial position, time, or primary dependent variables--temperature, pressure, or field strength. Initial conditions may vary with spatial position, and among the criteria that may be specified for ending a problem are upper and lower limits on the size of the primary dependent variable, upper limits on the problem time or on the number of time-steps or on the computer time, and attainment of steady state. 2 - Method of solution: Solutions may be obtained by use of explicit- or implicit-difference equations, or by an optimized combination of both. 3 - Restrictions on the complexity of the problem: The program currently provides for maxima of: 40 materials, 5 reactants, 105 surface conditions, 20 boundary nodes, 16 entries per tabulated function (table-length)

  6. Numerical simulation of time-dependent deformations under hygral and thermal transient conditions

    International Nuclear Information System (INIS)

    Roelfstra, P.E.

    1987-01-01

    Some basic concepts of numerical simulation of the formation of the microstructure of HCP are outlined. The aim is to replace arbitrary terms like aging by more realistic terms like bond density in the xerogel and bonds between hydrating particles of HCP. Actual state parameters such as temperature, humidity and degree of hydration can be determined under transient hygral and thermal conditions by solving numerically a series of appropriate coupled differential equations with given boundary conditions. Shrinkage of a composite structure without crack formation, based on calculated moisture distributions, has been determined with numerical concrete codes. The influence of crack formation, tensile strain-hardening and softening on the total deformation of a quasi-homogeneous drying material has been studied by means of model based on FEM. The difference between shrinkage without crack formation and shrinkage with crack formation can be quantified. Drying shrinkage and creep of concrete cannot be separated. The total deformation depends on the superimposed stress fields. Transient hygral deformation can be realistically predicted if the concept of point properties is applied rigorously. Transient thermal deformation has to be dealt with in the same way. (orig./HP)

  7. Simple method of calculating the transient thermal performance of composite material and its applicable condition

    Institute of Scientific and Technical Information of China (English)

    张寅平; 梁新刚; 江忆; 狄洪发; 宁志军

    2000-01-01

    Degree of mixing of composite material is defined and the condition of using the effective thermal diffusivity for calculating the transient thermal performance of composite material is studied. The analytical result shows that for a prescribed precision of temperature, there is a condition under which the transient temperature distribution in composite material can be calculated by using the effective thermal diffusivity. As illustration, for the composite material whose temperatures of both ends are constant, the condition is presented and the factors affecting the relative error of calculated temperature of composite materials by using effective thermal diffusivity are discussed.

  8. Failure analysis of carbide fuels under transient overpower (TOP) conditions

    International Nuclear Information System (INIS)

    Nguyen, D.H.

    1980-06-01

    The failure of carbide fuels in the Fast Test Reactor (FTR) under Transient Overpower (TOP) conditions has been examined. The Beginning-of-Cycle Four (BOC-4) all-oxide base case, at $.50/sec ramp rate was selected as the reference case. A coupling between the advanced fuel performance code UNCLE-T and HCDA Code MELT-IIIA was necessary for the analysis. UNCLE-T was used to determine cladding failure and fuel preconditioning which served as initial conditions for MELT-III calculations. MELT-IIIA determined the time of molten fuel ejection from fuel pin

  9. Adaptive Time Stepping for Transient Network Flow Simulation in Rocket Propulsion Systems

    Science.gov (United States)

    Majumdar, Alok K.; Ravindran, S. S.

    2017-01-01

    Fluid and thermal transients found in rocket propulsion systems such as propellant feedline system is a complex process involving fast phases followed by slow phases. Therefore their time accurate computation requires use of short time step initially followed by the use of much larger time step. Yet there are instances that involve fast-slow-fast phases. In this paper, we present a feedback control based adaptive time stepping algorithm, and discuss its use in network flow simulation of fluid and thermal transients. The time step is automatically controlled during the simulation by monitoring changes in certain key variables and by feedback. In order to demonstrate the viability of time adaptivity for engineering problems, we applied it to simulate water hammer and cryogenic chill down in pipelines. Our comparison and validation demonstrate the accuracy and efficiency of this adaptive strategy.

  10. 2. Workshop 'Measuring Systems for Steady-State and Transient Multiphase Flows'; 2. Workshop 'Messtechnik fuer stationaere und transiente Mehrphasenstroemungen'

    Energy Technology Data Exchange (ETDEWEB)

    Prasser, H.M. [ed.

    1998-11-01

    The 2nd Workshop on measuring systems for steady-state and transient multiphase flows was held at Rossendorf on September 24/25, 1988. 14 Papers were presented, whose subjects ranged from optical and radiometric methods to impedance sensors, hot film probes and model-assisted methods of measurement. In the field of computer simulation of multiphase flow, a trend towards 3D models was identified which makes higher demands on the spatial and time resolution and on the information volume to be acquired and processed. [German] Vom 24.-25. September 1998 fand in Rossendorf der 2. Workshop ueber Messtechnik fuer stationaere und transiente Mehrphasenstroemungen statt. Es standen 14 Vortraege auf dem Programm, das Spektrum reichte von optischen ueber radiometrische Methoden bis hin zu verschiedenen Impedanzsensoren, Heissfilmsonden und modellgestuetzten Messverfahren. Auf dem Gebiet der Computersimulation von Mehrphasenstroemungen zeichnet sich zunehmend der Uebergang zu dreidimensionalen Modellen ab. Hieraus ergeben sich neue Anforderungen an die Messtechnik, sowohl hinsichtlich der raeumlich-zeitlichen Aufloesung als auch was den Umfang der zu erfassenden Informationen betrifft. (orig./AKF)

  11. 2D transient granular flows over obstacles: experimental and numerical work

    Science.gov (United States)

    Juez, Carmelo; Caviedes-Voullième, Daniel; Murillo, Javier; García-Navarro, Pilar

    2016-04-01

    Landslides are an ubiquitous natural hazard, and therefore human infrastructure and settlements are often at risk in mountainous regions. In order to better understand and predict landslides, systematic studies of the phenomena need to be undertaken. In particular, computational tools which allow for analysis of field problems require to be thoroughly tested, calibrated and validated under controlled conditions. And to do so, it is necessary for such controlled experiments to be fully characterized in the same terms as the numerical model requires. This work presents an experimental study of dry granular flow over a rough bed with topography which resembles a mountain valley. It has an upper region with a very high slope. The geometry of the bed describes a fourth order polynomial curve, with a low point with zero slope, and afterwards a short region with adverse slope. Obstacles are present in the lower regions which are used as model geometries of human structures. The experiments consisted of a sudden release a mass of sand on the upper region, and allowing it to flow downslope. Furthermore, it has been frequent in previous studies to measure final states of the granular mass at rest, but seldom has transient data being provided, and never for the entire field. In this work we present transient measurements of the moving granular surfaces, obtained with a consumer-grade RGB-D sensor. The sensor, developed for the videogame industry, allows to measure the moving surface of the sand, thus obtaining elevation fields. The experimental results are very consistent and repeatable. The measured surfaces clearly show the distinctive features of the granular flow around the obstacles and allow to qualitatively describe the different flow patterns. More importantly, the quantitative description of the granular surface allows for benchmarking and calibration of predictive numerical models, key in scaling the small-scale experimental knowledge into the field. In addition, as

  12. Impact of meander geometry and stream flow events on residence times and solute transport in the intra-meander flow

    Science.gov (United States)

    Nasir Mahmood, Muhammad; Schmidt, Christian; Trauth, Nico

    2017-04-01

    Stream morphological features, in combination with hydrological variability play a key role in water and solute exchange across surface and subsurface waters. Meanders are prominent morphological features within stream systems which exhibit unique hydrodynamics. The water surface elevation difference across the inner bank of a meander induces lateral hyporheic exchange within the intra-meander region. This hyporheic flow is characterized by considerably prolonged flow paths and residence times (RT) compared to smaller scales of hyporheic exchange. In this study we examine the impact of different meander geometries on the intra-meander hyporheic flow field and solute mobilization under both steady state and transient flow conditions. We developed a number of artificial meander shape scenarios, representing various meander evolution stages, ranging from a typical initial to advanced stage (near cut off ) meander. Three dimensional steady state numerical groundwater flow simulations including the unsaturated zone were performed for the intra-meander region. The meandering stream was implemented in the model by adjusting the top layers of the modelling domain to the streambed elevation and assigning linearly decreasing head boundary conditions to the streambed cells. Residence times for the intra-meander region were computed by advective particle tracking across the inner bank of meander. Selected steady state cases were extended to transient flow simulations to evaluate the impact of stream discharge events on the temporal behavior of the water exchange and solute transport in the intra-meander region. The transient stream discharge was simulated for a number of discharge events of variable duration and peak height using the surface water model HEC-RAS. Transient hydraulic heads obtained from the surface water model were applied as transient head boundary conditions to the streambed cells of the groundwater model. A solute concentration source was added in the

  13. The effect of transient conditions on synovial fluid protein aggregation lubrication.

    Science.gov (United States)

    Myant, Connor William; Cann, Philippa

    2014-06-01

    Little is known about the prevailing lubrication mechanisms in artificial articular joints and the way in which these mechanisms determine implant performance. The authors propose that interfacial film formation is determined by rheological changes local to the contact and is driven by aggregation of synovial fluid proteins within the contact inlet region. A direct relationship between contact film thickness and size of the protein aggregation within the inlet region has been observed. In this paper the latest experimental observations of the protein aggregation mechanism are presented for conditions which more closely mimic joint kinematics and loading. Lubricant films were measured for a series of bovine calf serum solutions for CoCrMo femoral component sliding against a glass disc. An optical interferometric apparatus was employed to study the effects of transient motion on lubricant film formation. Central film thickness was measured as a function of time for a series of transient entrainment conditions; start-up motion, steady-state and non-steady-state uni-directional sliding, and bi-directional sliding. The size of the inlet aggregations was found to be dependent upon the type of transient condition. Thick protective protein films were observed to build up within the main contact region for all uni-directional tests. In contrast the inlet aggregation was not observed for bi-directional tests. Contact film thickness and wear was found to be directly proportional to the presence of the inlet protein phase. The inlet phase and contact films were found to be fragile when disrupted by surface scratches or subjected to reversal of the sliding direction. Copyright © 2014 Elsevier Ltd. All rights reserved.

  14. Thermohydraulic characteristics under some transient conditions of the Dalat Nuclear Research Reactor

    Energy Technology Data Exchange (ETDEWEB)

    Huy, Ngo Quang; Khang, Ngo Phu; An, Tran Khac; Nghiem, Huynh Ton [Nuclear Research Inst., Da Lat (Viet Nam)

    1994-10-01

    Some experimental and theoretical thermal hydraulic characteristics of the Dalat Nuclear Research Reactor are presented, together with some general assessments, from a thermal hydraulic point of view, of its safety under transient conditions. (author). 3 refs., 9 figs., 7 tabs.

  15. Pressurizer and steam-generator behavior under PWR transient conditions

    International Nuclear Information System (INIS)

    Wahba, A.B.; Berta, V.T.; Pointner, W.

    1983-01-01

    Experiments have been conducted in the Loss-of-Fluid Test (LOFT) pressurized water reactor (PWR), at the Idaho National Engineering Laboratory, in which transient phenomena arising from accident events with and without reactor scram were studied. The main purpose of the LOFT facility is to provide data for the development of computer codes for PWR transient analyses. Significant thermal-hydraulic differences have been observed between the measured and calculated results for those transients in which the pressurizer and steam generator strongly influence the dominant transient phenomena. Pressurizer and steam generator phenomena that occurred during four specific PWR transients in the LOFT facility are discussed. Two transients were accompanied by pressurizer inflow and a reduction of the heat transfer in the steam generator to a very small value. The other two transients were accompanied by pressurizer outflow while the steam generator behavior was controlled

  16. Experimental and numerical investigation of centrifugal pumps with asymmetric inflow conditions

    Science.gov (United States)

    Mittag, Sten; Gabi, Martin

    2015-11-01

    Most of the times pumps operate off best point states. Reasons are changes of operating conditions, modifications, pollution and wearout or erosion. As consequences non-rotational symmetric flows, transient operational conditions, increased risk of cavitation, decrease of efficiency and unpredictable wearout can appear. Especially construction components of centrifugal pumps, in particular intake elbows, contribute to this matter. Intake elbows causes additional losses and secondary flows, hence non-rotational velocity distributions as intake profile to the centrifugal pump. As a result the impeller vanes experience permanent changes of the intake flow angle and with it transient flow conditions in the blade channels. This paper presents the first results of a project, experimentally and numerically investigating the consequences of non-rotational inflow to leading edge flow conditions of a centrifugal pump. Therefore two pumpintake- elbow systems are compared, by only altering the intake elbow geometry: a common single bended 90° elbow and a numerically optimized elbow (improved regarding rotational symmetric inflow conditions and friction coefficient). The experiments are carried out, using time resolved stereoscopic PIV on a full acrylic pump with refractions index matched (RIM) working fluid. This allows transient investigations of the flow field simultaneously for all blade leading edges. Additional CFD results are validated and used to further support the investigation i.e. for comparing an analog pump system with ideal inflow conditions.

  17. Single- and two-phase flow modeling for coupled neutronics / thermal-hydraulics transient analysis of advanced sodium-cooled fast reactors

    International Nuclear Information System (INIS)

    Chenu, A.

    2011-10-01

    liquid film after dryout onset. The validation of the extended TRACE code has been achieved through the successful simulation of out-of-pile experiments. A review of available sodium boiling test data has first been carried out, and complementary tests have been selected to assess the quality of the different physical models like the pressure drop and cooling limits under quasi steady-state conditions, as well as the simulation of a loss-of-flow transient. The extended TRACE code has demonstrated its capacity to predict the main thermal-hydraulics characteristics such as the single- and two-phase pressure drop and heat transfer, as also the boiling inception, void fraction evolution and expansion of the boiling region, pressure evolution, as well as coolant and clad temperatures. The natural convection test conducted in 2009 in the Phenix reactor has been used to validate TRACE single-phase sodium flow modelling. Data from the Phenix test have been used for the validation of the FAST code system. Analyses based on a point-kinetics TRACE model and on coupled TRACE/PARCS 3D-kinetics modelling have enabled an in-depth understanding of the transient behaviour of a sodium-cooled fast reactor core, leading to potential improvements in the FAST code system. The experimental power evolution could be satisfactorily reproduced within the measurement uncertainties with both models, and the detailed analysis of the core neutronics has enabled one to define the most important reactivity feedbacks taking place during the considered transient. The developed tool has been applied to the simulation of a hypothetical, unprotected loss-of-flow event for one of the European SFR core concepts. This study has demonstrated the new calculation tool’s capability to adequately simulate the core response through the modelling of single- and two-phase sodium flow, coupled to 3D neutron kinetics. Thereby, the space-dependent reactivity feedbacks, such as the void and Doppler effects, have been

  18. Equilibrium and kinetic models for colloid release under transient solution chemistry conditions

    Science.gov (United States)

    We present continuum models to describe colloid release in the subsurface during transient physicochemical conditions. Our modeling approach relates the amount of colloid release to changes in the fraction of the solid surface area that contributes to retention. Equilibrium, kinetic, equilibrium and...

  19. Two-phase-flow models and their limitations

    International Nuclear Information System (INIS)

    Ishii, M.; Kocamustafaogullari, G.

    1982-01-01

    An accurate prediction of transient two-phase flow is essential to safety analyses of nuclear reactors under accident conditions. The fluid flow and heat transfer encountered are often extremely complex due to the reactor geometry and occurrence of transient two-phase flow. Recently considerable progresses in understanding and predicting these phenomena have been made by a combination of rigorous model development, advanced computational techniques, and a number of small and large scale supporting experiments. In view of their essential importance, the foundation of various two-phase-flow models and their limitations are discussed in this paper

  20. Research of the transient management in TQNPC

    International Nuclear Information System (INIS)

    Guo Longzhang; Lin Chuanqing

    2008-01-01

    Transient management is the basic technical subject in nuclear power plant. Since the Third Qinshan nuclear power company (TQNPC) successful completes the commissioning in 2003, the transient management work start at the transient management item selection and the flow definition. Now TQNPC have a complete transient management system and the management flow. In the last two years, TNQPC have finished the historic transient data collection for two units, and confirmed that the plant's key systems and equipments are at safe state. The development of the transient management subject would build a reliable foundation for the plant safe operation, plant lifetime management and periodic safety review. (author)

  1. CONVEC: a computer program for transient incompressible fluid flow based on quadratic finite elements. Part 1: theoretical aspects

    International Nuclear Information System (INIS)

    Laval, H.

    1981-01-01

    This report describes the theoretical and numerical aspects of the finite element computer code CONVEC designed for the transient analysis of two-dimensional plane or three-dimensional axisymmetric incompressible flows including the effects of heat transfer. The governing equations for the above class of problems are the time-dependent incompressible Navier-Stokes equations and the thermal energy equation. The general class of flow problems analysed by CONVEC is discussed and the equations for the initial-boundary value problem are represented. A brief description of the finite element method and the weighted residual formulation is presented. The numerical solution of the incompressible equations is achieved by using a fractional step method. The mass lumping process associated with an explicit time integration scheme is described. The time integration is analysed and the stability conditions are derived. Numerical applications are presented. Standard problems of natural and forced convection are solved and the solutions obtained are compared with other numerical solutions published in the literature

  2. PIV measurement of the complex and transient cross-flow over a circular cylinder

    International Nuclear Information System (INIS)

    Kuwabara, Joji; Someya, Satoshi; Okamoto, Koji

    2007-01-01

    This paper describe about measurement for the complex and transient cross-flow over a circular cylinder with the dynamic (time resolved) PIV (particle image velocimetry) techniques. The experiment was carried out water flow tunnel with a working section of 50x50 mm, at the Reynolds number 6.7 x 10 3 to 2.7 x 10 4 . This circular cylinder constructed with MEXFLON resin, the end of circular cylinder is rigidly supported and the other is free. The MEXFLON is fluorine resin; its refractive index is almost same as the water with high transparency. Very high speed water flow among the test section had been clearly visualized and captured by high speed camera. The fluctuations of the flow structure also are clearly obtained with high spatial and high temporal resolution, 512x512pixel with 10,000fps. It corresponds to set up number of thousands LDV array at the test section. Consequently, we found there are asynchronous vibration between parallel-ward and perpendicular-ward to main flow. (author)

  3. Three dimensional calculations of the primary coolant flow in a 900 MW PWR vessel. Numerical simulation of the accurate RCP start-up flow rate

    International Nuclear Information System (INIS)

    Martin, A.; Alvarez, D.; Cases, F.; Stelletta, S.

    1997-06-01

    This report explains the last results about the mixing in the 900 MW PWR vessels. The accurate fluid flow transient, induced by the RCP starting-up, is represented. In a first time, we present the Thermalhydraulic Finite Element Code N3S used for the 3D numerical computations. After that, results obtained for one reactor operation case are given. This case is dealing with the transient mixing of a clear plug in the vessel when one primary pump starts-up. A comparison made between two injection modes; a steady state fluid flow conditions or the accurate RCP transient fluid flow conditions. The results giving the local minimum of concentration and the time response of the mean concentration at the core inlet are compared. The results show the real importance of the unsteadiness characteristics of the fluid flow transport of the clear water plug. (author)

  4. Numberical Solution to Transient Heat Flow Problems

    Science.gov (United States)

    Kobiske, Ronald A.; Hock, Jeffrey L.

    1973-01-01

    Discusses the reduction of the one- and three-dimensional diffusion equation to the difference equation and its stability, convergence, and heat-flow applications under different boundary conditions. Indicates the usefulness of this presentation for beginning students of physics and engineering as well as college teachers. (CC)

  5. Investigation on in-vessel thermal transients in a fast breeder reactor

    International Nuclear Information System (INIS)

    Muramatsu, Toshiharu; Kasahara, Naoto

    1999-01-01

    Thermal stratification phenomena are observed in an upper plenum of liquid metal fast breeder reactors (LMFBRs) under reactor scram conditions, which give rise to thermal stress on structural components. Therefore it is important to evaluate characteristics of the phenomena in the design of the internal structures in an LMFBR plenum. To evaluate thermal stress characteristics for the inner barrel in a typical LMFBR upper plenum, numerical analysis was carried out with a multi-dimensional thermohydraulics code AQUA for a scram condition from full power operation conditions. Thereafter, thermal stress conditions for the inner barrel were evaluated by the use of a structural analysis code FINAS with the thermohydraulic results calculated by the AQUA code as boundary conditions. From the thermohydraulic analysis and the thermal stress analysis, the following results have been obtained. (1) A large axial temperature gradient was calculated at the region between the upper and lower flow holes located on the inner barrel. The axial position of the thermal stratification interface was fixed in the various circumferential directions. As for the comparison with a 40% operation condition, maximum temperature gradients at the lower flow hole region indicated a 2 times value of that in the 40% operation condition. (2) Transient thermal stratification phenomena were observed after 120 sec from the reactor scram in the numerical results. These tendencies on thermal stratification phenomena were sameness with the transient results from the 40% operation condition. (3) During the reactor trip from full power operation, large temperature gradient in both vertical and sectional direction are enforced around the lower flow hole, since there exists flow pass of low temperature sodium through this hole. As a result, the maximum thermal stress within 32.6 kg/mm 2 was predicted at the lower flow hole when considering stress concentration at the hole edge. (J.P.N.)

  6. Stability of infinite slopes under transient partially saturated seepage conditions

    Science.gov (United States)

    Godt, Jonathan W.; ŞEner-Kaya, BaşAk; Lu, Ning; Baum, Rex L.

    2012-05-01

    Prediction of the location and timing of rainfall-induced shallow landslides is desired by organizations responsible for hazard management and warnings. However, hydrologic and mechanical processes in the vadose zone complicate such predictions. Infiltrating rainfall must typically pass through an unsaturated layer before reaching the irregular and usually discontinuous shallow water table. This process is dynamic and a function of precipitation intensity and duration, the initial moisture conditions and hydrologic properties of the hillside materials, and the geometry, stratigraphy, and vegetation of the hillslope. As a result, pore water pressures, volumetric water content, effective stress, and thus the propensity for landsliding vary over seasonal and shorter time scales. We apply a general framework for assessing the stability of infinite slopes under transient variably saturated conditions. The framework includes profiles of pressure head and volumetric water content combined with a general effective stress for slope stability analysis. The general effective stress, or suction stress, provides a means for rigorous quantification of stress changes due to rainfall and infiltration and thus the analysis of slope stability over the range of volumetric water contents and pressure heads relevant to shallow landslide initiation. We present results using an analytical solution for transient infiltration for a range of soil texture and hydrological properties typical of landslide-prone hillslopes and show the effect of these properties on the timing and depth of slope failure. We follow by analyzing field-monitoring data acquired prior to shallow landslide failure of a hillside near Seattle, Washington, and show that the timing of the slide was predictable using measured pressure head and volumetric water content and show how the approach can be used in a forward manner using a numerical model for transient infiltration.

  7. ORTAP: a nuclear steam supply system simulation for the dynamic analysis of high temperature gas cooled reactor transients

    International Nuclear Information System (INIS)

    Cleveland, J.C.; Hedrick, R.A.; Ball, S.J.; Delene, J.G.

    1977-01-01

    ORTAP was developed to predict the dynamic behavior of the high temperature gas cooled reactor (HTGR) Nuclear Steam Supply System for normal operational transients and postulated accident conditions. It was developed for the Nuclear Regulatory Commission (NRC) as an independent means of obtaining conservative predictions of the transient response of HTGRs over a wide range of conditions. The approach has been to build sufficient detail into the component models so that the coupling between the primary and secondary systems can be accurately represented and so that transients which cover a wide range of conditions can be simulated. System components which are modeled in ORTAP include the reactor core, a typical reheater and steam generator module, a typical helium circulator and circulator turbine and the turbine generator plant. The major plant control systems are also modeled. Normal operational transients which can be analyzed with ORTAP include reactor start-up and shutdown, normal and rapid load changes. Upset transients which can be analyzed with ORTAP include reactor trip, turbine trip and sudden reduction in feedwater flow. ORTAP has also been used to predict plant response to emergency or faulted conditions such as primary system depressurization, loss of primary coolant flow and uncontrolled removal of control poison from the reactor core

  8. K-FIX: a computer program for transient, two-dimensional, two-fluid flow

    International Nuclear Information System (INIS)

    Rivard, W.C.; Torrey, M.D.

    1976-11-01

    The transient dynamics of two-dimensional, two-phase flow with interfacial exchange are calculated at all flow speeds using the K-FIX program. Each phase is described in terms of its own density, velocity, and temperature. The six field equations for the two phases couple through mass, momentum, and energy exchange. The equations are solved using an Eulerian finite difference technique that implicitly couples the rates of phase transitions, momentum, and energy exchange to determination of the pressure, density, and velocity fields. The implicit solution is accomplished iteratively without linearizing the equations, thus eliminating the need for numerous derivative terms. K-FIX is written in a highly modular form to be easily adaptable to a variety of problems. It is applied to growth of an isolated steam bubble in a superheated water pool

  9. FFTF fuel pin design procedure verification for transient operation

    International Nuclear Information System (INIS)

    Baars, R.E.

    1975-05-01

    The FFTF design procedures for evaluating fuel pin transient performance are briefly reviewed, and data where available are compared with design procedure predictions. Specifically, burst conditions derived from Fuel Cladding Transient Tester (FCTT) tests and from ANL loss-of-flow tests are compared with burst pressures computed using the design procedure upon which the cladding integrity limit was based. Failure times are predicted using the design procedure for evaluation of rapid reactivity insertion accidents, for five unterminated TREAT experiments in which well characterized fuel failures were deliberately incurred. (U.S.)

  10. Transient Flow Dynamics in Optical Micro Well Involving Gas Bubbles

    Science.gov (United States)

    Johnson, B.; Chen, C. P.; Jenkins, A.; Spearing, S.; Monaco, L. A.; Steele, A.; Flores, G.

    2006-01-01

    The Lab-On-a-Chip Application Development (LOCAD) team at NASA s Marshall Space Flight Center is utilizing Lab-On-a-Chip to support technology development specifically for Space Exploration. In this paper, we investigate the transient two-phase flow patterns in an optic well configuration with an entrapped bubble through numerical simulation. Specifically, the filling processes of a liquid inside an expanded chamber that has bubbles entrapped. Due to the back flow created by channel expansion, the entrapped bubbles tend to stay stationary at the immediate downstream of the expansion. Due to the huge difference between the gas and liquid densities, mass conservation issues associated with numerical diffusion need to be specially addressed. The results are presented in terms of the movement of the bubble through the optic well. Bubble removal strategies are developed that involve only pressure gradients across the optic well. Results show that for the bubble to be moved through the well, pressure pulsations must be utilized in order to create pressure gradients across the bubble itself.

  11. Effect of flow conditions on flow accelerated corrosion in pipe bends

    International Nuclear Information System (INIS)

    Mazhar, H.; Ching, C.Y.

    2015-01-01

    Flow Accelerated Corrosion (FAC) in piping systems is a safety and reliability problem in the nuclear industry. In this study, the pipe wall thinning rates and development of surface roughness in pipe bends are compared for single phase and two phase annular flow conditions. The FAC rates were measured using the dissolution of test sections cast from gypsum in water with a Schmidt number of 1280. The change in location and levels of maximum FAC under single phase and two phase flow conditions are examined. The comparison of the relative roughness indicates a higher effect for the surface roughness in single phase flow than in two phase flow. (author)

  12. Experimental study of a reverse flow catalytic converter for a duel fuel engine

    Energy Technology Data Exchange (ETDEWEB)

    Liu, B.; Checkel, M. D. [Alberta Univ., Dept. of Mechanical Engineering, Edmonton, ANB (Canada); Hayes, R. E. [Alberta Univ., Dept, of Chemical and Materials Engineering, Edmonton, AB, (Canada)

    2001-08-01

    Performance of a reverse flow catalytic converter for a methane/diesel dual fuel engine is evaluated under steady and transient engine conditions. The converter is of the monolith honeycomb type with palladium catalyst washcoat. Results of the reverse flow converter's performance was found to be superior for several steady state engine operations when compared to unidirectional flow operation. In transient operations following a step change in engine operating conditions, reverse flow was found to be better than unidirectional flow when the change in engine operation was such as to reduce the exhaust gas temperature. When exhaust gas temperature was increased, reverse flow decreased the rate of increase in the reactor temperature. Testing was done using the transient Japanese 6-Mode tests. Best results were achieved with a switch time in the five seconds to fifteen seconds range. 31 refs., 9 tabs., 24 figs.

  13. Connection and disconnection transients for micro-grids under unbalance load condition

    DEFF Research Database (Denmark)

    Rocabert, J.; Azevedo, Gustavo M.S.; Candela, I.

    2011-01-01

    in connection and disconnection transients. This paper focuses on the design of a method oriented to carry out a stable intentional disconnection, and later re-connection, of local grids from the main distribution grid in an intentional way; also under unbalance load condition. Seamless transfer between grid-connected......The recent grid integration of Distributed Energy Resources (DER) possibility the formation of intentional islands in the case of a grid fault conditions. For such island formation is required an active agent capable of governing the micro-grid connection state in a safe mode, especially...

  14. Sulfur driven nucleation mode formation in diesel exhaust under transient driving conditions.

    Science.gov (United States)

    Karjalainen, Panu; Rönkkö, Topi; Pirjola, Liisa; Heikkilä, Juha; Happonen, Matti; Arnold, Frank; Rothe, Dieter; Bielaczyc, Piotr; Keskinen, Jorma

    2014-02-18

    Sulfur driven diesel exhaust nucleation particle formation processes were studied in an aerosol laboratory, on engine dynamometers, and on the road. All test engines were equipped with a combination of a diesel oxidation catalyst (DOC) and a partial diesel particulate filter (pDPF). At steady operating conditions, the formation of semivolatile nucleation particles directly depended on SO2 conversion in the catalyst. The nucleation particle emission was most significant after a rapid increase in engine load and exhaust gas temperature. Results indicate that the nucleation particle formation at transient driving conditions does not require compounds such as hydrocarbons or sulfated hydrocarbons, however, it cannot be explained only by the nucleation of sulfuric acid. A real-world exhaust study with a heavy duty diesel truck showed that the nucleation particle formation occurs even with ultralow sulfur diesel fuel, even at downhill driving conditions, and that nucleation particles can contribute 60% of total particle number emissions. In general, due to sulfur storage and release within the exhaust aftertreatment systems and transients in driving, emissions of nucleation particles can even be the dominant part of modern diesel vehicle exhaust particulate number emissions.

  15. CFD research on runaway transient of pumped storage power station caused by pumping power failure

    International Nuclear Information System (INIS)

    Zhang, L G; Zhou, D Q

    2013-01-01

    To study runaway transient of pumped storage power station caused by pumping power failure, three dimensional unsteady numerical simulations were executed on geometrical model of the whole flow system. Through numerical calculation, the changeable flow configuration and variation law of some parameters such as unit rotate speed,flow rate and static pressure of measurement points were obtained and compared with experimental data. Numerical results show that runaway speed agrees well with experimental date and its error was 3.7%. The unit undergoes pump condition, brake condition, turbine condition and runaway condition with flow characteristic changing violently. In runaway condition, static pressure in passage pulses very strongly which frequency is related to runaway speed

  16. Numerical analysis of transient pressure variation in the condenser of a nuclear power station

    Energy Technology Data Exchange (ETDEWEB)

    Wang, Xinjun; Zhou, Zijie; Song, Zhao [Xi' an Jiaotong University, Xi' an (China); Lu, Qiankui; Li, Jiafu [Dong Fang Turbine Co., Ltd, Deyang (China)

    2016-02-15

    To research the characteristics of the transient variation of pressure in a nuclear power station condenser under accident condition, a mathematical model was established which simulated the cycling cooling water, heat transfer and pressure in the condenser. The calculation program of transient variation characteristics was established in Fortran language. The pump's parameter, cooling line's organization, check valve's feature and the parameter of siphonic water-collecting well are involved in the cooling water flow's mathematical model. The initial conditions of control volume are determined by the steady state of the condenser. The transient characteristics of a 1000 MW nuclear power station's condenser and cooling water system were examined. The results show that at the condition of plant-power suspension of pump, the cooling water flow rate decreases rapidly and refluxes, then fluctuates to 0. The variation of heat transfer coefficient in the condenser has three stages: at start it decreases sharply, then increases and decreases, and keeps constant in the end. Under three conditions (design, water and summer), the condenser pressure goes up in fluctuation. The time intervals between condenser's pressure signals under three conditions are about 26.4 s, which can fulfill the requirement for safe operation of nuclear power station.

  17. Steady and transient states of a two-phase counter current flow

    International Nuclear Information System (INIS)

    Siebert, S.

    1984-06-01

    The aim of this work is to estimate the efficiency of the counter current exchange between a heavy dispersed phase and a continous light phase in a pulse perforated plate column. From an experimental point, hydraulic measurements (retention ratio, droplet size) and residence time measurements (radioactive tracers). The model will be so applied to the calculation of retention ratios in steady conditions then of tracer concentrations in transient conditions. From a numerical point of view a fixed point type iteration then a method Runge Kutta are then adapted [fr

  18. Investigation on premature occurrence of critical heat flux under oscillatory flow and power conditions

    International Nuclear Information System (INIS)

    Vishnoi, A.K.; Dasgupta, A.; Chandraker, D.K.; Nayak, A.K.; Vijayan, P.K.

    2015-01-01

    Two-phase natural circulation loops have extensive applications in nuclear and process industries. One of the major concerns with natural circulation is the occurrence of the various types of flow instabilities, which can cause premature boiling crisis due to flow and power oscillations. In this work a transient computer code COPCOS (Code for Prediction of CHF under Oscillating flow and power condition) has been developed to predict the premature occurrence of CHF (critical heat flux) under oscillating flow and power. The code incorporates conduction equation of the fuel and coolant energy equation. For CHF prediction, CHF look-up table developed by Groeneveld is used. A facility named CHF and Instability Loop (CHIL) has been set up to study the effect of oscillatory flow on CHF. CHF and Instability Loop (CHIL) is a simple rectangular loop having a 10.5 mm ID and 1.2 m long test section. The flow through the test section is controlled by a canned motor pump using a Variable Frequency Drive (VFD). This leads to the ability of having a very precise control over flow oscillations which can be induced in the test section. The effect of frequency and amplitude of flow oscillation on occurrence of premature CHF has been investigated in this facility using COPCOS. Full paper covers details of COPCOS code, description of the facility and effect of frequency and the effect of oscillatory flow on CHF in the facility. (author)

  19. Nonlinear flow model for well production in an underground formation

    Directory of Open Access Journals (Sweden)

    J. C. Guo

    2013-05-01

    Full Text Available Fluid flow in underground formations is a nonlinear process. In this article we modelled the nonlinear transient flow behaviour of well production in an underground formation. Based on Darcy's law and material balance equations, we used quadratic pressure gradients to deduce diffusion equations and discuss the origins of nonlinear flow issues. By introducing an effective-well-radius approach that considers skin factor, we established a nonlinear flow model for both gas and liquid (oil or water. The liquid flow model was solved using a semi-analytical method, while the gas flow model was solved using numerical simulations because the diffusion equation of gas flow is a stealth function of pressure. For liquid flow, a series of standard log-log type curves of pressure transients were plotted and nonlinear transient flow characteristics were analyzed. Qualitative and quantitative analyses were used to compare the solutions of the linear and nonlinear models. The effect of nonlinearity upon pressure transients should not be ignored. For gas flow, pressure transients were simulated and compared with oil flow under the same formation and well conditions, resulting in the conclusion that, under the same volume rate production, oil wells demand larger pressure drops than gas wells. Comparisons between theoretical data and field data show that nonlinear models will describe fluid flow in underground formations realistically and accurately.

  20. Transient leak detection in crude oil pipelines

    Energy Technology Data Exchange (ETDEWEB)

    Beushausen, R.; Tornow, S.; Borchers, H. [Nord-West Oelleitung, Wilhelmshaven (Germany); Murphy, K.; Zhang, J. [Atmos International Ltd., Manchester (United Kingdom)

    2004-07-01

    Nord-West Oelleitung (NWO) operates 2 crude oil pipelines from Wilhemshaven to Koln and Hamburg respectively. German regulations for transporting flammable substances stipulate that 2 independent continuously working procedures be used to detect leaks. Leak detection pigs are used routinely to complement the surveillance system. This paper described the specific issues of transient leak detection in crude oil pipelines. It was noted that traditional methods have failed to detect leaks that occur immediately after pumps are turned on or off because the pressure wave generated by the transient dominates the pressure wave that results from the leak. Frequent operational changes in a pipeline are often accompanied by an increased number of false alarms and failure to detect leaks due to unsteady operations. NWO therefore decided to have the Atmos statistical pipeline leak detection (SPLD) system installed on their pipelines. The key to the SPLD system is the sequential probability ratio test. Comprehensive data validation is performed following reception of pipeline data from the supervisory control and data acquisition (SCADA) system. The validated data is then used to calculate the corrected flow imbalance, which is fed into the SPRT to determine if there is an increase in the flow imbalance. Pattern recognition is then used to distinguish a leak from operational changes. The SPLD is unique because it uses 3 computational pipeline monitoring methods simultaneously, namely modified volume balance, statistical analysis, and pressure and flow monitoring. The successful installation and testing of the SPLD in 2 crude oil pipelines was described along with the main difficulties associated with transient leaks. Field results were presented for both steady-state and transient conditions. 5 refs., 2 tabs., 16 figs.

  1. Transient analysis for a system with a tilted disc check valve

    International Nuclear Information System (INIS)

    Jeung, Jaesik; Lee, Kyukwang; Cho, Daegwan

    2014-01-01

    Check valves are used to prevent reverse flow conditions in a variety of systems in nuclear power plants. When a check valve is closed by a reverse flow, the transient load can jeopardize the structural integrity on the piping system and its supports. It may also damage intended function of the in-line components even though the severity of the load differs and depends strongly on types of the check valves. To incorporate the transient load in the piping system, it is very important to properly predict the system response to transients such as a check valve closure accompanied by pump trip and to evaluate the system transient. The one-dimensional transient simulation codes such as the RELAP5/MOD3.3 and TRACE were used. There has not been a single model that integrates the two codes to handle the behavior of a tilted disc check valve, which is designed to mitigate check valve slams by shorting the travel of the disc. In this paper a model is presented to predict the dynamic motion of a tilted disc check valve in the transient simulation using the RELAP5/MOD3.3 code and the model is incorporated in a system transient analysis using control variables of the code. In addition, transient analysis for Essential Service Water (ESW) system is performed using the proposed model and the associated load is evaluated for the system. (author)

  2. A study of transient flow turbulence generation during flame/wall interactions in explosions

    Science.gov (United States)

    Hargrave, G. K.; Jarvis, S.; Williams, T. C.

    2002-07-01

    Experimental data are presented for the turbulent velocity field generated during flame/solid wall interactions in explosions. The presence of turbulence in a flammable gas mixture can wrinkle a flame front, increasing the flame surface area and enhancing the burning rate. In congested process plant, any flame propagating through an accidental release of flammable mixture will encounter obstructions in the form of walls, pipe-work or storage vessels. The interaction between the gas movement and the obstacle creates turbulence by vortex shedding and local wake/recirculation, whereby the flame can be wrapped in on itself, increasing the surface area available for combustion. Particle image velocimetry (PIV) was used to characterize the turbulent flow field in the wake of the obstacles placed in the path of propagating flames. This allowed the quantification of the interaction of the propagating flame and the generated turbulent flow field. Due to the accelerating nature of the explosion flow field, the wake flows develop `transient' turbulent fields and PIV provided data to define the spatial and temporal variation of the velocity field ahead of the propagating flame, providing an understanding of the direct interaction between flow and flame.

  3. Study on Mechanism of Viscoelastic Polymer Transient Flow in Porous Media

    Directory of Open Access Journals (Sweden)

    Huiying Zhong

    2017-01-01

    Full Text Available Oil recovery, including conventional and viscous oil, can be improved significantly by flooding with polymer solutions. This chemical flooding method can increase oil production, and it can improve the macrodisplacement efficiency and microsweep efficiencies. In this study, we establish physical models that include the dead-end and complex models based on the pore-network pattern etched into glass, using the snappyHexMesh solver in OpenFOAM. These models capture the complexity and topology of porous media geometry. We establish a mathematical model for transient flows of viscoelastic polymers using computational fluid dynamics simulations, and we study the distributions of pressure and velocity for different elasticity scenarios and different flooding process. The results demonstrate that the pressure difference increases as the relaxation time decreases, before the flow reaches its steady state. For a steady flow, elasticity can give rise to an additional pressure difference, which increases with increasing elasticity. Thus, the characteristics of pressure difference vary before and after the flow becomes steady; this phenomenon is very important. Velocity contours become more widely spaced with elasticity increase. This suggests that elasticity of the polymer solutions contributes to the microsweep efficiency. The results of the study provide the necessary theoretical foundation for laboratory experiments and development of methods for polymer flooding and can be helpful for the design and selection of polymers for polymer flooding.

  4. Transient integral boundary layer method to calculate the translesional pressure drop and the fractional flow reserve in myocardial bridges

    Directory of Open Access Journals (Sweden)

    Möhlenkamp Stefan

    2006-06-01

    Full Text Available Abstract Background The pressure drop – flow relations in myocardial bridges and the assessment of vascular heart disease via fractional flow reserve (FFR have motivated many researchers the last decades. The aim of this study is to simulate several clinical conditions present in myocardial bridges to determine the flow reserve and consequently the clinical relevance of the disease. From a fluid mechanical point of view the pathophysiological situation in myocardial bridges involves fluid flow in a time dependent flow geometry, caused by contracting cardiac muscles overlying an intramural segment of the coronary artery. These flows mostly involve flow separation and secondary motions, which are difficult to calculate and analyse. Methods Because a three dimensional simulation of the haemodynamic conditions in myocardial bridges in a network of coronary arteries is time-consuming, we present a boundary layer model for the calculation of the pressure drop and flow separation. The approach is based on the assumption that the flow can be sufficiently well described by the interaction of an inviscid core and a viscous boundary layer. Under the assumption that the idealised flow through a constriction is given by near-equilibrium velocity profiles of the Falkner-Skan-Cooke (FSC family, the evolution of the boundary layer is obtained by the simultaneous solution of the Falkner-Skan equation and the transient von-Kármán integral momentum equation. Results The model was used to investigate the relative importance of several physical parameters present in myocardial bridges. Results have been obtained for steady and unsteady flow through vessels with 0 – 85% diameter stenosis. We compare two clinical relevant cases of a myocardial bridge in the middle segment of the left anterior descending coronary artery (LAD. The pressure derived FFR of fixed and dynamic lesions has shown that the flow is less affected in the dynamic case, because the distal

  5. Two-fluid model for transient analysis of slug flow in oil wells

    International Nuclear Information System (INIS)

    Cazarez-Candia, O.; Benitez-Centeno, O.C.; Espinosa-Paredes, G.

    2011-01-01

    In this work it is presented a transient, one-dimensional, adiabatic model for slug flow simulation, which appears when liquid (mixture of oil and water) and gas flow simultaneously through pipes. The model is formed by space and time averaged conservation equations for mass, momentum and energy for each phase, the numerical solution is based on the finite difference technique in the implicit scheme. Velocity, pressure, volumetric fraction and temperature profiles for both phases were predicted for inclination angles from the horizontal to the vertical position (unified model) and ascendant flow. Predictions from the model were validated using field data and ten correlations commonly used in the oil industry. The effects of gas heating or cooling, due to compression and expansion processes, on the predictions and numerical stability, were studied. It was found that when these effects are taken into account, a good behavior of temperature predictions and numerical stability are obtained. The model presents deviations lower than 14% regarding field data and it presents better predictions than most of the correlations.

  6. Two-fluid model for transient analysis of slug flow in oil wells

    Energy Technology Data Exchange (ETDEWEB)

    Cazarez-Candia, O., E-mail: ocazarez@imp.mx [Instituto Mexicano del Petroleo, Eje central Lazaro Cardenas No. 152, Col. San Bartolo Atepehuacan, Mexico D.F. 07730 (Mexico); Instituto Tecnologico de Zacatepec, Depto. de Metal-Mecanica, Calzada Tecnologico, No. 27, Zacatepec, Morelos 62780 (Mexico); Benitez-Centeno, O.C. [Centro Nacional de Investigacion y Desarrollo Tecnologico, Depto. de Mecanica, Interior Internado Palmira s/n, Col. Palmira, Cuernavaca, Morelos 62490 (Mexico); Espinosa-Paredes, G. [Area de Ingenieria en Recursos Energeticos, Universidad Autonoma Metropolitana-Iztapalapa, Av San Rafael Atlixco No 186, Col. Vicentina 55-534, Mexico D.F. 09340 (Mexico)

    2011-06-15

    In this work it is presented a transient, one-dimensional, adiabatic model for slug flow simulation, which appears when liquid (mixture of oil and water) and gas flow simultaneously through pipes. The model is formed by space and time averaged conservation equations for mass, momentum and energy for each phase, the numerical solution is based on the finite difference technique in the implicit scheme. Velocity, pressure, volumetric fraction and temperature profiles for both phases were predicted for inclination angles from the horizontal to the vertical position (unified model) and ascendant flow. Predictions from the model were validated using field data and ten correlations commonly used in the oil industry. The effects of gas heating or cooling, due to compression and expansion processes, on the predictions and numerical stability, were studied. It was found that when these effects are taken into account, a good behavior of temperature predictions and numerical stability are obtained. The model presents deviations lower than 14% regarding field data and it presents better predictions than most of the correlations.

  7. Two-phase flow characterisation by nuclear magnetic resonance

    International Nuclear Information System (INIS)

    Leblond, J.; Javelot, S.; Lebrun, D.; Lebon, L.

    1998-01-01

    The results presented in this paper demonstrate the performance of the PFGSE-NMR to obtain a complete characterisation of two-phase flows. Different methods are proposed to characterise air-water flows in different regimes: stationary two-phase flows and flows in transient condition. Finally a modified PFGSE is proposed to analyse the turbulence of air-water bubbly flow. (author)

  8. MaMiCo: Transient multi-instance molecular-continuum flow simulation on supercomputers

    Science.gov (United States)

    Neumann, Philipp; Bian, Xin

    2017-11-01

    We present extensions of the macro-micro-coupling tool MaMiCo, which was designed to couple continuum fluid dynamics solvers with discrete particle dynamics. To enable local extraction of smooth flow field quantities especially on rather short time scales, sampling over an ensemble of molecular dynamics simulations is introduced. We provide details on these extensions including the transient coupling algorithm, open boundary forcing, and multi-instance sampling. Furthermore, we validate the coupling in Couette flow using different particle simulation software packages and particle models, i.e. molecular dynamics and dissipative particle dynamics. Finally, we demonstrate the parallel scalability of the molecular-continuum simulations by using up to 65 536 compute cores of the supercomputer Shaheen II located at KAUST. Program Files doi:http://dx.doi.org/10.17632/w7rgdrhb85.1 Licensing provisions: BSD 3-clause Programming language: C, C++ External routines/libraries: For compiling: SCons, MPI (optional) Subprograms used: ESPResSo, LAMMPS, ls1 mardyn, waLBerla For installation procedures of the MaMiCo interfaces, see the README files in the respective code directories located in coupling/interface/impl. Journal reference of previous version: P. Neumann, H. Flohr, R. Arora, P. Jarmatz, N. Tchipev, H.-J. Bungartz. MaMiCo: Software design for parallel molecular-continuum flow simulations, Computer Physics Communications 200: 324-335, 2016 Does the new version supersede the previous version?: Yes. The functionality of the previous version is completely retained in the new version. Nature of problem: Coupled molecular-continuum simulation for multi-resolution fluid dynamics: parts of the domain are resolved by molecular dynamics or another particle-based solver whereas large parts are covered by a mesh-based CFD solver, e.g. a lattice Boltzmann automaton. Solution method: We couple existing MD and CFD solvers via MaMiCo (macro-micro coupling tool). Data exchange and

  9. CFD Analysis of Random Turbulent Flow Load in Steam Generator of APR1400 Under Normal Operation Condition

    International Nuclear Information System (INIS)

    Lim, Sang Gyu; You, Sung Chang; Kim, Han Gon

    2011-01-01

    Regulatory guide 1.20 revision 3 of the Nuclear Regulatory Committee (NRC) modifies guidance for vibration assessments of reactor internals and steam generator internals. The new guidance requires applicants to provide a preliminary analysis and evaluation of the design and performance of a facility, including the safety margins of during normal operation and transient conditions anticipated during the life of the facility. Especially, revision 3 require rigorous assessments of adverse flow effects in the steam dryer cased by flow-excited acoustic and structural resonances such as the abnormality from power-uprated BWR cases. For two nearly identical nuclear power plants, the steam system of one BWR plant experienced failure of steam dryers and the main steam system components when steam flow was increased by 16 percent for extended power uprate (EPU). The mechanisms of those failures have revealed that a small adverse flow changing from the prototype condition induced severe flow-excited acoustic and structural resonances, leading to structural failures. In accordance with the historical background, therefore, potential adverse flow effects should be evaluated rigorously for steam generator internals in both BWR and Pressurized Water Reactor (PWR). The Advanced Power Reactor 1400 (APR1400), an evolutionary light water reactor, increased the power by 7.7 percent from the design of the 'Valid Prototype', System80+. Thus, reliable evaluations of potential adverse flow effects on the steam generator of APR1400 are necessary according to the regulatory guide. This paper is part of the computational fluid dynamics (CFD) analysis results for evaluation of the adverse flow effect for the steam generator internals of APR1400, including a series of sensitivity analyses to enhance the reliability of CFD analysis and an estimation the effect of flow loads on the internals of the steam generator under normal operation conditions

  10. TRAC-PF1 analyses of potential pressurized-thermal-shock transients at a Combustion-Engineering PWR

    International Nuclear Information System (INIS)

    Koenig, J.E.; Spriggs, G.D.; Smith, R.C.

    1984-01-01

    Los Alamos is participating in a program to assess the risk of pressurized thermal shock (PTS) to a reactor vessel. Our role is to provide best-estimate thermal-hydraulic analyses of 12 postulated overcooling transients using TRAC-PF1. These transients are hypothetical and include multiple operator/equipment failures. Calvert Cliffs/Unit-1, a Combustion-Engineering plant, is the pressurized water reactor modeled for this study. The utility and the vendor supplied information for the comprehensive TRAC-PF1 model. Secondary and primary breaks from both hot-zero-power and full-power conditions were simulated for 7200 s (2 h). Low bulk temperatures and loop-flow stagnation while the system was at a high pressure were of particular interest for PTS analysis. Three transients produced primary temperatures below 405 K (270 0 F - the NRC screening criterion) with system repressurization. Six transients indicated flow stagnation would occur in one loop but not both. One transient showed flow stagnation might occur in both loops. Oak Ridge National Laboratory will do fracture-mechanics analysis using these TRAC-PF1 results and make the final determination of the risk of PTS

  11. The quasi-steady state of all-vanadium redox flow batteries: A scale analysis

    International Nuclear Information System (INIS)

    Sharma, A.K.; Vynnycky, M.; Ling, C.Y.; Birgersson, E.; Han, M.

    2014-01-01

    Highlights: • We present a transient 2D model for a VRFB (conservation of species and charge); • Carry out scale analysis of the species conservation equation; • Derive the condition characterizing the quasi-steadiness of VRFB operation; • Verify it by comparing charge-discharge curve with transient simulations. - Abstract: In general, mathematical models for all-vanadium redox flow batteries (VRFB) that seek to capture the transport phenomena are transient in nature. In this paper, we carry out scale analysis of VRFB operation and derive the conditions when it can be assumed to be quasi-steady state in nature, i.e., time-dependence only through a boundary condition. We find that it is true for typical tank volume and flow rate employed for VRFBs. The proposed analysis is generic and can also be employed for other types of redox flow batteries

  12. FARST: A computer code for the evaluation of FBR fuel rod behavior under steady-state/transient conditions

    International Nuclear Information System (INIS)

    Nakamura, M.; Sakagami, M.

    1984-01-01

    FARST, a computer code for the evaluation of fuel rod thermal and mechanical behavior under steady-state/transient conditions has been developed. The code characteristics are summarized as follows: (I) FARST evaluates the fuel rod behavior under the transient conditions. The code analyzes thermal and mechanical phenomena within a fuel rod, taking into account the temperature change in coolant surrounding the fuel rod. (II) Permanent strains such as plastic, creep and swelling strains as well as thermoelastic deformations can be analyzed by using the strain increment method. (III) Axial force and contact pressure which act on the fuel stack and cladding are analyzed based on the stick/slip conditions. (IV) FARST used a pellet swelling model which depends on the contact pressure between pellet and cladding, and an empirical pellet relocation model, designated as 'jump relocation model'. The code was successfully applied to analyses of the fuel rod irradiation data from pulse reactor for nuclear safety research in Cadarache (CABRI) and pulse reactor for nuclear safety research in Japan Atomic Energy Research Institute (NSRR). The code was further applied to stress analysis of a 1000 MW class large FBR plant fuel rod during transient conditions. The steady-state model which was used so far gave the conservative results for cladding stress during overpower transient, but underestimated the results for cladding stress during a rapid temperature decrease of coolant. (orig.)

  13. Calculation of pressure drop and flow redistribution in the LMFBR core

    International Nuclear Information System (INIS)

    Morgado, O.J.

    1984-01-01

    The flow redistribution through fuel assemblies of LMFBRs: for the correct calculation of mass flow rates and pressure drop, are studied. Using a quasi-static formulation of conservation equations of mass and energy, a computer program was developed to simulate any arbitrary number of flow channels, operating at different linear power levels. Therefore f flow channels, operating at different linear power levels. Therefore, it was possible to perform thermal transient calculations for the Clinch River reactor core. The results of the calculations agree with the data found in the literature and supply accurate information about flow redistribution, average temperature, and pressure drop in the core, when the reactor is operated at conditions from the designed flow conditions, as is always the case in a load changing operation, or during transients. (Autor) [pt

  14. Effects of transient and non-uniform distribution of heat flux on intensity of heat transfer and burnout conditions in the channels of nuclear reactors

    Energy Technology Data Exchange (ETDEWEB)

    Vitaly Osmachkin [Russian Research Center ' Kurchatov Institute' 1, Kurchatov sq, Moscow 123182 (Russian Federation)

    2005-07-01

    Full text of publication follows: The influence of power transient, changes of flow rate, inlet temperatures or pressure in cores of nuclear reactors on heat transfer and burnout conditions in channels depend on rate of such violations. Non-uniform distribution of the heat flux is also important factor for heat transfer and development of crisis phenomenon. Such effects may be significant for NPPs safety. But they have not yet generally accepted interpretation. Steady state approach is often recommended for use in calculations. In the paper a review of experimental observed so-called non-equilibrium effects is presented. The effects of space and time factors are displaying due delay in reformation turbulence intensity, velocity, temperatures or void fraction profiles, water film flow on the surface of heated channels. For estimation of such effect different methods are used. Modern computer codes based on two or three fluids approaches are considered as most effective. But simple and clear correlations may light up the mechanics of effects on heat transfer and improve general understanding of scale and significance of the transient events. In the paper the simplified methods for assessment the influence of lags in the development of distributions of parameters of flow, the relaxation of temporal or space violations are considered. They are compared with more sophisticated approaches. Velocities of disturbance fronts moving along the channels are discussed also. (author)

  15. Equilibrium and kinetic models for colloid release under transient solution chemistry conditions.

    Science.gov (United States)

    Bradford, Scott A; Torkzaban, Saeed; Leij, Feike; Simunek, Jiri

    2015-10-01

    We present continuum models to describe colloid release in the subsurface during transient physicochemical conditions. Our modeling approach relates the amount of colloid release to changes in the fraction of the solid surface area that contributes to retention. Equilibrium, kinetic, equilibrium and kinetic, and two-site kinetic models were developed to describe various rates of colloid release. These models were subsequently applied to experimental colloid release datasets to investigate the influence of variations in ionic strength (IS), pH, cation exchange, colloid size, and water velocity on release. Various combinations of equilibrium and/or kinetic release models were needed to describe the experimental data depending on the transient conditions and colloid type. Release of Escherichia coli D21g was promoted by a decrease in solution IS and an increase in pH, similar to expected trends for a reduction in the secondary minimum and nanoscale chemical heterogeneity. The retention and release of 20nm carboxyl modified latex nanoparticles (NPs) were demonstrated to be more sensitive to the presence of Ca(2+) than D21g. Specifically, retention of NPs was greater than D21g in the presence of 2mM CaCl2 solution, and release of NPs only occurred after exchange of Ca(2+) by Na(+) and then a reduction in the solution IS. These findings highlight the limitations of conventional interaction energy calculations to describe colloid retention and release, and point to the need to consider other interactions (e.g., Born, steric, and/or hydration forces) and/or nanoscale heterogeneity. Temporal changes in the water velocity did not have a large influence on the release of D21g for the examined conditions. This insensitivity was likely due to factors that reduce the applied hydrodynamic torque and/or increase the resisting adhesive torque; e.g., macroscopic roughness and grain-grain contacts. Our analysis and models improve our understanding and ability to describe the amounts

  16. Comparison of mass transport using average and transient rainfall boundary conditions

    International Nuclear Information System (INIS)

    Duguid, J.O.; Reeves, M.

    1976-01-01

    A general two-dimensional model for simulation of saturated-unsaturated transport of radionuclides in ground water has been developed and is currently being tested. The model is being applied to study the transport of radionuclides from a waste-disposal site where field investigations are currently under way to obtain the necessary model parameters. A comparison of the amount of tritium transported is made using both average and transient rainfall boundary conditions. The simulations indicate that there is no substantial difference in the transport for the two conditions tested. However, the values of dispersivity used in the unsaturated zone caused more transport above the water table than has been observed under actual conditions. This deficiency should be corrected and further comparisons should be made before average rainfall boundary conditions are used for long-term transport simulations

  17. Loss-of-feedwater transients in PWRs

    International Nuclear Information System (INIS)

    Burns, R.D. III.

    1980-01-01

    Recent severe accident sequence analysis (SASA) work in LASL's Multifault Accident Analysis Section has focused on loss-of-feedwater (LOFW) transients at a 4-loop Westinghouse nuclear power reactor. In all transients studied, the initiator was loss of main feedwater and reactor coolant pump (RCP) trip, caused by temporary loss of off-site power. Subsequent automatic actions included reactor scram, closure of the main steam isolation valves, and initiation of auxiliary feedwater (AFW) flow. TRAC-PD2 calculations were designed to study the consequences of AFW delivery rates below the minimum specified in the emergency operating procedures (EOPs) for the reference 4-loop plant. Six types of LOFW scenarios have been studied, including (1) zero AFW availability (nominal case), (2) initially zero AFW but full recovery after 2 h, (3) zero AFW with steam generator (SG) atmospheric relief valve (ARV) malfunction, (4) zero AFW with high pressure charging flow initiated after 2 h, and (5) zero AFW with delay in reactor scram. Additional cases were considered to study the effects of uncertainties in pressurizer heater/spray operation, operator manual initiation of high pressure charging flow, reactor initial conditions, and RCP and power coastdown characteristics. Nominal case results, rationale for selections of other cases, and lessons learned are summarized

  18. Transient Stability Improvement of IEEE 9 Bus System Using Power World Simulator

    Directory of Open Access Journals (Sweden)

    Kaur Ramandeep

    2016-01-01

    Full Text Available The improvement of transient stability of power system was one of the most challenging research areas in power engineer.The main aim of this paper was transient stability analysis and improvement of IEEE 9 bus system. These studies were computed using POWER WORLD SIMULATOR. The IEEE 9 bus system was modelled in power world simulator and load flow studies were performed to determine pre-fault conditions in the system using Newton-Raphson method. The transient stability analysis was carried out using Runga method during three-phase balanced fault. For the improvement transient stability, the general methods adopted were fast acting exciters, FACT devices and addition of parallel transmission line. These techniques play an important role in improving the transient stability, increasing transmission capacity and damping low frequency oscillations.

  19. A numerical method for transient gas-liquid two-phase flow using a general curvilinear coordinate system. 1. Governing equations and numerical method

    International Nuclear Information System (INIS)

    Tomiyama, Akio; Matsuoka, Toshiyuki.

    1995-01-01

    A simple numerical method for solving a transient incompressible two-fluid model was proposed in the present study. A general curvilinear coordinate system was adopted in this method for predicting transient flows in practical engineering devices. The simplicity of the present method is due to the fact that the field equations and constitutive equations were expressed in a tensor form in the general curvilinear coordinate system. When a conventional rectangular mesh is adopted in a calculation, the method reduces to a numerical method for a Cartesian coordinate system. As an example, the present method was applied to transient air-water bubbly flow in a vertical U-tube. It was confirmed that the effects of centrifugal and gravitational forces on the phase distribution in the U-tube were reasonably predicted. (author)

  20. On the use of hot-sphere anemometers in a highly transient flow in a double-skin facade

    DEFF Research Database (Denmark)

    Jensen, Rasmus Lund; Kalyanova, Olena; Hyldgård, Carl-Erik

    2007-01-01

    measured by the anemometer. Temperature compensation is the working principle of anemometers. The ability to compensate for different temperatures when exposed to solar radiation is investigated in a controlled environment using a powerful lamp as a radiant heat source. In the double-skin façade, both...... from the measurement of air velocity in the occupied zone. The velocity is higher and the flow is more transient, the anemometer is subjected to high loads of direct solar radiation and wide temperature ranges and, finally, the direction of the flow is important. The flow in the double-skin façade...

  1. Impacts of different rainfall patterns on hyporheic zone under transient conditions

    Science.gov (United States)

    Liu, Suning; Chui, Ting Fong May

    2018-06-01

    The hyporheic zone (HZ) plays an important role in stream ecology. Previous studies have mainly focused on the factors influencing the HZ in the steady state. However, the exchange between surface water and groundwater in the HZ can become transient during a storm. This study investigates the impacts of different rainfall patterns (varying in intensity and duration) on the HZ under transient conditions. A two-dimensional numerical model of a 10-m long and 2-m deep domain is developed, in which the streambed consists of a series of dunes. Brinkman-Darcy and Navier-Stokes equations are respectively solved for groundwater and surface water, and velocity and pressure are coupled at the interface (i.e., the streambed surface). To compare the results under different transient conditions, this study proposes two indicators, i.e., the influential time (IT, the time required for the HZ to return to its initial state once it starts to change) and the influential depth (ID, the maximum increment in the HZ depth). To detect the extent to which the HZ undergoes significant spatial changes, moving split-window and inflection point tests are conducted. The results indicate that rainfall intensity (RI) and rainfall duration (RD) both display logarithmic relationships with the IT and ID with high coefficients of determination, but only between certain lower and upper thresholds of the RI and RD. Moreover, the distributions of the IT and ID as a function of the RI and RD are mapped using the surface spline and kriging interpolation methods to facilitate future prediction of the IT and ID. In addition, it is observed that the IT has a linear negative correlation with the groundwater response while the ID is not affected by different groundwater responses. All of the derived relationships can be used to predict the impacts of a future rainfall event on the HZ.

  2. Transient analyses on the cooling channels of the DEMO HCPB blanket concept under accidental conditions

    International Nuclear Information System (INIS)

    Chen, Yuming; Ghidersa, Bradut-Eugen; Jin, Xue Zhou

    2016-01-01

    Highlights: • This paper presents transient CFD analyses on the cooling channels of the DEMO HCPB FW for accidental scenarios LOCA and LOFA. • In both LOCA & LOFA, the wall temperature increases quickly to an unacceptable level within seconds. • If the coolant flow rate is maintained at a half of nominal value in case of LOFA (partial LOFA), the wall temperature rises much slower, but will still leads to a damage of structure within minutes. • The simulated heat transfer coefficients were compared with empirical correlations. - Abstract: Helium Cooled Pebble Bed (HCPB) blanket concept is one of the DEMO (Demonstration Power Plant) blanket concepts running for the final DEMO design selection. In this paper, transient analyses on the cooling channels of the FW are carried out by means of CFD simulations for the selected accidental scenarios loss-of-coolant-accident (LOCA) and loss-of-flow-accident (LOFA). ANSYS-CFX is used for the simulations. The simulation results help to understand how fast the temperature of the FW can increase and what is the time window that is available until the temperature of the structural material reaches the design limit in order to be able to define a suitable protection strategy for the system. In view of later developments of the models, the heat transfer coefficients calculated with CFD are compared with the values predicted by two widely used correlations for turbulent pipe flows.

  3. Transient analyses on the cooling channels of the DEMO HCPB blanket concept under accidental conditions

    Energy Technology Data Exchange (ETDEWEB)

    Chen, Yuming, E-mail: Yuming.chen@kit.edu; Ghidersa, Bradut-Eugen; Jin, Xue Zhou

    2016-11-01

    Highlights: • This paper presents transient CFD analyses on the cooling channels of the DEMO HCPB FW for accidental scenarios LOCA and LOFA. • In both LOCA & LOFA, the wall temperature increases quickly to an unacceptable level within seconds. • If the coolant flow rate is maintained at a half of nominal value in case of LOFA (partial LOFA), the wall temperature rises much slower, but will still leads to a damage of structure within minutes. • The simulated heat transfer coefficients were compared with empirical correlations. - Abstract: Helium Cooled Pebble Bed (HCPB) blanket concept is one of the DEMO (Demonstration Power Plant) blanket concepts running for the final DEMO design selection. In this paper, transient analyses on the cooling channels of the FW are carried out by means of CFD simulations for the selected accidental scenarios loss-of-coolant-accident (LOCA) and loss-of-flow-accident (LOFA). ANSYS-CFX is used for the simulations. The simulation results help to understand how fast the temperature of the FW can increase and what is the time window that is available until the temperature of the structural material reaches the design limit in order to be able to define a suitable protection strategy for the system. In view of later developments of the models, the heat transfer coefficients calculated with CFD are compared with the values predicted by two widely used correlations for turbulent pipe flows.

  4. Transient cavitation in pipelines

    NARCIS (Netherlands)

    Kranenburg, C.

    1974-01-01

    The aim of the present study is to set up a one-dimensional mathematical model, which describes the transient flow in pipelines, taking into account the influence of cavitation and free gas. The flow will be conceived of as a three-phase flow of the liquid, its vapour and non-condensible gas. The

  5. Two-phase flow in the cooling circuit of a cryogenic rocket engine

    Science.gov (United States)

    Preclik, D.

    1992-07-01

    Transient two-phase flow was investigated for the hydrogen cooling circuit of the HM7 rocket engine. The nuclear reactor code ATHLET/THESEUS was adapted to cryogenics and applied to both principal and prototype experiments for validation and simulation purposes. The cooling circuit two-phase flow simulation focused on the hydrogen prechilling and pump transient phase prior to ignition. Both a single- and a multichannel model were designed and employed for a valve leakage flow, a nominal prechilling flow, and a prechilling with a subsequent pump-transient flow. The latter case was performed in order to evaluate the difference between a nominal and a delayed turbo-pump start-up. It was found that an extension of the nominal prechilling sequence in the order of 1 second is sufficient to finally provide for liquid injection conditions of hydrogen which, as commonly known, is undesirable for smooth ignition and engine starting transients.

  6. Modeling transient thermal hydraulic behavior of a thermionic fuel element for nuclear space reactors

    International Nuclear Information System (INIS)

    Al-Kheliewi, A.S.; Klein, A.C.

    1994-01-01

    A transient code (TFETC) for determining the temperature distribution throughout the radial and axial positions of a thermionic fuel element (TFE) during changes in operating conditions has been successfully developed and tested. A fully implicit method is used to solve the system of equations for temperatures at each time step. Presently, TFETC has the ability to handle the following transients: startup, loss of flow accidents, and shutdown. The code has been applied to the startup of the ATI single cell configuration which appears to start up and shut down in an orderly and reasonable fashion. No unexpected transient features were observed. The TFE also appears to function robustly under loss of flow accident conditions. It appears hat sufficient time is available to shut the reactor down safely without melting point the fuel. The model shows that during a complete loss of flow accident (without shutdown) the coolant reaches its boiling point in approximately 35 seconds. The fuel may exceed its melting point after this time as the NaK coolant will boil if the reactor is not shut down. For 1/2, 1/3, and 1/4 pump failures, the fuel temperatures never exceed the fuel melting point even if the reactor is not shut down

  7. Dynamic modelling for two-phase flow systems

    International Nuclear Information System (INIS)

    Guerra, M.A.

    1991-06-01

    Several models for two-phase flow have been studied, developing a thermal-hydraulic analysis code with one of these models. The program calculates, for one-dimensional cases with variable flow area, the transient behaviour of system process variables, when the boundary conditions (heat flux, flow rate, enthalpy and pressure) are functions of time. The modular structure of the code, eases the program growth. In fact, the present work is the basis for a general purpose accident and transient analysis code in nuclear reactors. Code verification has been made against RETRAN-02 results. Satisfactory results have been achieved with the present version of the code. (Author) [es

  8. ULTRAVIOLET SPECTROSCOPIC ANALYSIS OF TRANSIENT MASS FLOW OUTBURST IN U CEPHEI

    Energy Technology Data Exchange (ETDEWEB)

    Tupa, Peter R.; DeLeo, Gary G.; McCluskey, George E. [Physics Department, Lehigh University, Bethlehem, PA 18015 (United States); Kondo, Yoji [NASA Goddard Space Flight Center, Greenbelt, MD 20771 (United States); Sahade, Jorge [Facultad de Ciencias Astronómicas, Paseo del Bosque s/n, B1900FWA-La Plata (Argentina); Giménez, Alvaro [Centro de Astrobiologia, CSIC/INTA, Carretera de Torrejon a Ajalvir, E-28850 Torrejon de Ardoz (Madrid) (Spain); Caton, Daniel B., E-mail: pet205@lehigh.edu [Appalachian State University, Boone, NC 28608 (United States)

    2013-09-20

    Spectra from the International Ultraviolet Explorer taken in 1989 September over one full orbital period of U Cephei (U Cep, HD 5796) are analyzed. The TLUSTY and SYNSPEC stellar atmospheric simulation programs are used to generate synthetic spectra to which U Cep continuum levels are normalized. Absorption lines attributed to the photosphere are divided out to isolate mass flow and accretion spectra. A radial velocity curve is constructed for conspicuous gas stream features, and shows evidence for a transient flow during secondary eclipse with outward velocities ranging between 200 and 350 km s{sup –1}, and a number density of (3 ± 2) × 10{sup 10} cm{sup –3}. The validity of C IV 1548 and 1550 and Si IV 1393 and 1402 lines are re-examined in the context of extreme rotational blending effects. A G-star to B-star mass transfer rate of (5 ± 4) × 10{sup –9} M{sub ☉} yr{sup –1} is calculated as an approximate upper limit, and a model system is presented.

  9. ULTRAVIOLET SPECTROSCOPIC ANALYSIS OF TRANSIENT MASS FLOW OUTBURST IN U CEPHEI

    International Nuclear Information System (INIS)

    Tupa, Peter R.; DeLeo, Gary G.; McCluskey, George E.; Kondo, Yoji; Sahade, Jorge; Giménez, Alvaro; Caton, Daniel B.

    2013-01-01

    Spectra from the International Ultraviolet Explorer taken in 1989 September over one full orbital period of U Cephei (U Cep, HD 5796) are analyzed. The TLUSTY and SYNSPEC stellar atmospheric simulation programs are used to generate synthetic spectra to which U Cep continuum levels are normalized. Absorption lines attributed to the photosphere are divided out to isolate mass flow and accretion spectra. A radial velocity curve is constructed for conspicuous gas stream features, and shows evidence for a transient flow during secondary eclipse with outward velocities ranging between 200 and 350 km s –1 , and a number density of (3 ± 2) × 10 10 cm –3 . The validity of C IV 1548 and 1550 and Si IV 1393 and 1402 lines are re-examined in the context of extreme rotational blending effects. A G-star to B-star mass transfer rate of (5 ± 4) × 10 –9 M ☉ yr –1 is calculated as an approximate upper limit, and a model system is presented

  10. Consideration of loading conditions initiated by thermal transients in PWR pressure vessels

    International Nuclear Information System (INIS)

    Azodi; Glahn; Kersting; Schulz; Jansky.

    1983-01-01

    This report describes the present state of PWR-plants in the Federal Republic of Germany with respect to - the design of the primary pressure boundary - the analysis of thermal transients and resulting loads - the material conditions and neutron fluence - the requirements for protection against fast fracture. The experimental and analytical research and development programs are delineated together with some foreign R and D programs. It is shown that the parameters investigated (loading condition, crack shape and orientation etc.) cover a broad range. Extensive analytical investigations are emphasized. (orig./RW) [de

  11. Quantification of the transient mass flow rate in a simplex swirl injector

    International Nuclear Information System (INIS)

    Khil, Taeock; Kim, Sunghyuk; Cho, Seongho; Yoon, Youngbin

    2009-01-01

    When a heat release and acoustic pressure fluctuations are generated in a combustor by irregular and local combustions, these fluctuations affect the mass flow rate of the propellants injected through the injectors. In addition, variations of the mass flow rate caused by these fluctuations bring about irregular combustion, which is associated with combustion instability, so it is very important to identify a mass variation through the pressure fluctuation on the injector and to investigate its transfer function. Therefore, quantification of the variation of the mass flow rate generated in a simplex swirl injector via the injection pressure fluctuation was the subject of an initial study. To acquire the transient mass flow rate in the orifice with time, the axial velocity of flows and the liquid film thickness in the orifice were measured. The axial velocity was acquired through a theoretical approach after measuring the pressure in the orifice. In an effort to understand the flow area in the orifice, the liquid film thickness was measured by an electric conductance method. In the results, the mass flow rate calculated from the axial velocity and the liquid film thickness measured by the electric conductance method in the orifice was in good agreement with the mass flow rate acquired by the direct measuring method in a small error range within 1% in the steady state and within 4% for the average mass flow rate in a pulsated state. Also, the amplitude (gain) of the mass flow rate acquired by the proposed direct measuring method was confirmed using the PLLIF technique in the low pressure fluctuation frequency ranges with an error under 6%. This study shows that our proposed method can be used to measure the mass flow rate not only in the steady state but also in the unsteady state (or the pulsated state). Moreover, this method shows very high accuracy based on the experimental results

  12. URGAP: A gap conductance model for transient conditions

    International Nuclear Information System (INIS)

    Lassmann, K.; Pazdera, F.

    1983-01-01

    A gap conductance model, URGAP, has been developed with contributions from solid, fluid and radiation heat transfer components. Model parameters are easily available, independent of different combinations of material surfaces. The model parameters were fitted to 388 data points under reactor conditions. For model verification, another 274 data points of steel-steel and aluminium-aluminium interfaces, respectively, were used. For minor surface roughnesses normally prevailing in reactor fuel elements the model asymptotically yields Ross' and Stoute's model for the open gap, which is thus confirmed. Materials data were carefully checked over a wide range of temperatures. Special attention was paid to the contact term for high temperatures. Thus, the model can be applied to transients. The URGAP model is being used successfully in several codes (e.g. URANUS, SSYST). (author)

  13. Numerical solution of one-dimensional transient, two-phase flows with temporal fully implicit high order schemes: Subcooled boiling in pipes

    Energy Technology Data Exchange (ETDEWEB)

    López, R., E-mail: ralope1@ing.uc3m.es; Lecuona, A., E-mail: lecuona@ing.uc3m.es; Nogueira, J., E-mail: goriba@ing.uc3m.es; Vereda, C., E-mail: cvereda@ing.uc3m.es

    2017-03-15

    Highlights: • A two-phase flows numerical algorithm with high order temporal schemes is proposed. • Transient solutions route depends on the temporal high order scheme employed. • ESDIRK scheme for two-phase flows events exhibits high computational performance. • Computational implementation of the ESDIRK scheme can be done in a very easy manner. - Abstract: An extension for 1-D transient two-phase flows of the SIMPLE-ESDIRK method, initially developed for incompressible viscous flows by Ijaz is presented. This extension is motivated by the high temporal order of accuracy demanded to cope with fast phase change events. This methodology is suitable for boiling heat exchangers, solar thermal receivers, etc. The methodology of the solution consist in a finite volume staggered grid discretization of the governing equations in which the transient terms are treated with the explicit first stage singly diagonally implicit Runge-Kutta (ESDIRK) method. It is suitable for stiff differential equations, present in instant boiling or condensation processes. It is combined with the semi-implicit pressure linked equations algorithm (SIMPLE) for the calculation of the pressure field. The case of study consists of the numerical reproduction of the Bartolomei upward boiling pipe flow experiment. The steady-state validation of the numerical algorithm is made against these experimental results and well known numerical results for that experiment. In addition, a detailed study reveals the benefits over the first order Euler Backward method when applying 3rd and 4th order schemes, making emphasis in the behaviour when the system is subjected to periodic square wave wall heat function disturbances, concluding that the use of the ESDIRK method in two-phase calculations presents remarkable accuracy and computational advantages.

  14. Transient Calibration of a Variably-Saturated Groundwater Flow Model By Iterative Ensemble Smoothering: Synthetic Case and Application to the Flow Induced During Shaft Excavation and Operation of the Bure Underground Research Laboratory

    Science.gov (United States)

    Lam, D. T.; Kerrou, J.; Benabderrahmane, H.; Perrochet, P.

    2017-12-01

    The calibration of groundwater flow models in transient state can be motivated by the expected improved characterization of the aquifer hydraulic properties, especially when supported by a rich transient dataset. In the prospect of setting up a calibration strategy for a variably-saturated transient groundwater flow model of the area around the ANDRA's Bure Underground Research Laboratory, we wish to take advantage of the long hydraulic head and flowrate time series collected near and at the access shafts in order to help inform the model hydraulic parameters. A promising inverse approach for such high-dimensional nonlinear model, and which applicability has been illustrated more extensively in other scientific fields, could be an iterative ensemble smoother algorithm initially developed for a reservoir engineering problem. Furthermore, the ensemble-based stochastic framework will allow to address to some extent the uncertainty of the calibration for a subsequent analysis of a flow process dependent prediction. By assimilating the available data in one single step, this method iteratively updates each member of an initial ensemble of stochastic realizations of parameters until the minimization of an objective function. However, as it is well known for ensemble-based Kalman methods, this correction computed from approximations of covariance matrices is most efficient when the ensemble realizations are multi-Gaussian. As shown by the comparison of the updated ensemble mean obtained for our simplified synthetic model of 2D vertical flow by using either multi-Gaussian or multipoint simulations of parameters, the ensemble smoother fails to preserve the initial connectivity of the facies and the parameter bimodal distribution. Given the geological structures depicted by the multi-layered geological model built for the real case, our goal is to find how to still best leverage the performance of the ensemble smoother while using an initial ensemble of conditional multi

  15. Prolonged disturbances of regional cerebral blood flow in transient ischemic attacks

    International Nuclear Information System (INIS)

    Hartmann, A.

    1985-01-01

    Regional cerebral blood flow (rCBF) was measured over both hemispheres in 20 patients with unilateral transient ischemic attacks (TIA) of the territory of the internal carotid artery on the day of the TIA. rCBF was estimated with the nontraumatic Xenon 133-inhalation technique using the initial slope index. 13 patients experienced their first TIA, 7 had several attacks. In 14 patients the first rCBF-measurement was performed during the presentation of clinical symptoms. The 2nd rCBF-measurement was done on day 2, the last one on day 7. Scans of the 15 patients studied with CT were normal. On day 1 mean rCBF of the TIA-side was significantly lower than that of the contralateral hemispheres. 22% of all areas showed a significant reduction of flow compared to mean rCBF. Mean rCBF of both the TIA- and the contralateral side was significantly reduced compared to the bi-hemispheric mean rCBF of a control group with no history of TIA or completed strokes but at least 2 risk factors for cerebrovascular disease. Whereas mean rCBF did not change in the contralateral side it increased significantly (+6.9%) in the TIA-side from day 1 to day 2 but not from there to day 7. This is reflected by the increase of the total number of ROI with normal flow from day 1 to day 2. Considering the actual flow and the flow course of that tissue which was believed to be responsible for the clinical symptoms the following regional patterns were observed: normal rCBF in 6 patients; early return to normal concomitant to the clinical course (n = 4)

  16. System transient analysis code development for low pressure and low power

    International Nuclear Information System (INIS)

    Kim, Hee Cheol

    1998-02-01

    A real time reactor system analysis code, ARTIST, based on drift flux model has been developed to investigate the transient system behavior under low pressure, low flow and low power conditions with noncondensable gas present in the system. The governing equations of the ARTIST code consist of three mass continuity equations (steam, liquid and noncondensable), two energy equations (gas and mixture) and one momentum equation (mixture) constituted with the drift flux model. The capability of ARTIST in predicting two-phase flow void distribution in the system has been validated against experimental data. The results of the ARTIST axial void distribution at low pressure and low flow, are far better than the results of both the homogeneous model of TASS code and the two-fluid model of RELAP5/MOD3 code. Also, RELAP5/MOD3 calculation shows the large amplitude of void fraction oscillations at low pressure. These results imply that interfacial momentum transfer terms in the two-fluid model formulation should be carefully constituted, especially for the low pressure condition due to the big density differences between steam and water. Thermal-hydraulic state solution scheme is developed when noncondensable gas exists. Numerical consistency and convergence of obtaining equilibrium state is tested with the ideal problems for various situations including very low partial pressure conditions. Calculated thermal-hydraulic state for each test shows consistent and expected behaviour. A new multi-layer back propagation network algorithm for calculating the departure from nucleate boiling ratio (DNBR) is developed and adopted in ARTIST code in order to have real-time DNBR evaluation by eliminating the tandem procedure of the transient DNBR calculation. The algorithm trained by different patterns generated by latin hypercube sampling method on the performance space is tested for the randomly sampled untrained data and the transient DNBR data. The uncertainty of the algorithm is

  17. Simulation and scaling for natural convection flow in a cavity with isothermal boundaries

    International Nuclear Information System (INIS)

    Jiracheewanun, S.; Armfield, S.W.; McBain, G.D.; Behnia, M.

    2005-01-01

    A numerical study of the transient two-dimensional natural convection flow within a differentially heated square cavity with iso-flux side walls and adiabatic top and bottom boundaries is presented. The governing equations are discretized using a non-staggered mesh and solved using a non-iterative fractional-step pressure correction method which provides second-order accuracy in both time and space. Results are obtained with the iso-flux boundary condition for Ra = 5.8 x 10 9 and Pr = 7.5. The results show that the transient flow features obtained for the iso-flux cavity are similar to the flow features for the isothermal case. However, the fully developed flow features of the iso-flux cavity are very different from the isothermal case. The scalings for the fully developed iso-flux boundary condition flow have been found to be different to those of the isothermal boundary condition flow. (authors)

  18. Pressure transient in liquid lines

    International Nuclear Information System (INIS)

    Sun, J.G.; Wang, X.Q.

    1995-01-01

    The pressure surge that results from a step change of flow in liquid pipelines, commonly known as water hammer, was analyzed by an eigenfunction method. A differential-integral Pressure wave equation and a linearized velocity equation were derived from the equations of mass and momentum conservation. Waveform distortion due to viscous dissipation and pipe-wall elastic expansion is characterized by a dimensionless transmission number K. The pressure surge condition, which is mathematically singular, was used in the solution procedure. The exact solutions from numerical calculation of the differential-integral equation provide a complete Pressure transient in the pipe. The problems are also calculated With the general-purpose computer code COMMIX, which solves the exact mass conservation equation and Navier-Stokes equations. These solutions were compared with published experimental results, and agreement was good. The effect of turbulence on the pressure transient is discussed in the light of COMMIX calculational results

  19. Direct Time Domain Numerical Analysis of Transient Behavior of a VLFS during Unsteady External Loads in Wave Condition

    Directory of Open Access Journals (Sweden)

    Yong Cheng

    2014-01-01

    Full Text Available The transient response of the VLFS subjected to arbitrary external load is systematically investigated by a direct time domain modal expansion method, in which the BEM solutions based on time domain Kelvin sources are used for hydrodynamic forces. In the analysis, the time domain free-surface Green functions with sufficient accuracy are rapidly evaluated in finite water depth by the interpolation-tabulation method, and the boundary integral equation with a quarter VLFS model is established taking advantage of symmetry of flow field and structure. The validity of the present method is verified by comparing with the time histories of vertical displacements of the VLFS during a mass drop and airplane landing and takeoff in still water conditions, respectively. Then the developed numerical scheme is used in wave conditions to study the combined action taking into account the mass drop/airplane landing/takeoff loads as well as incident wave action. It is found that the elevation of structural waves due to mass drop load can be significantly changed near the impact region, while the vertical motion of runway in wave conditions is dominant as compared with that only generated by airplane.

  20. Transient behaviour of small HTR for cogeneration

    International Nuclear Information System (INIS)

    Verkerk, E.C.; Van Heek, A.I.

    2000-01-01

    The Dutch market for combined generation of heat and power identifies a unit size of 40 MW thermal for the conceptual design of a nuclear cogeneration plant. The ACACIA system provides 14 MWe electricity combined with 17 t/h of high temperature steam (220 deg C, 10 bar) with a pebble-bed high temperature reactor directly coupled with a helium compressor and a helium turbine. The design of this small CHP unit that is used for industrial applications is mainly based on a pre-feasibility study in 1996, performed by a joint working group of five Dutch organisations, in which technical feasibility was shown. Thermal hydraulic and reactor physics analyses show favourable control characteristics during normal operation and a benign response to loss of helium coolant and loss of flow conditions. Throughout the response on these highly infrequent conditions, ample margin exists between the highest fuel temperatures and the temperature above which fuel degradation will occur. To come to quantitative statements about the ACACIA transient behaviour, a calculational coupling between the high temperature reactor core analysis code package PANTHER/DIREKT and the thermal hydraulic code RELAP5 for the energy conversion system has been made. This coupling offers a more realistic simulation of the entire system, since it removes the necessity of forcing boundary conditions on the simulation models at the data transfer points. In this paper, the models used for the dynamic components of the energy conversion system are described, and the results of the calculation for two operational transients in order to demonstrate the effects of the interaction between reactor core and its energy conversion system are shown. Several transient cases that are representative as operational transients for an HTR will be discussed, including one representing a load rejection case that shows the functioning of the control system, in particular the bypass valve. Another transient is a load following

  1. Simulation of horizontal pipe two-phase slug flows using the two-fluid model

    Energy Technology Data Exchange (ETDEWEB)

    Ortega Malca, Arturo J. [Pontificia Univ. Catolica do Rio de Janeiro, RJ (Brazil). Dept. de Engenharia Mecanica. Nucleo de Simulacao Termohidraulica de Dutos (SIMDUT); Nieckele, Angela O. [Pontificia Univ. Catolica do Rio de Janeiro, RJ (Brazil). Dept. de Engenharia Mecanica

    2005-07-01

    Slug flow occurs in many engineering applications, mainly in the transport of hydrocarbon fluids in pipelines. The intermittency of slug flow causes severe unsteady loading on the pipelines carrying the fluids, which gives rise to design problems. Therefore, it is important to be able to predict the onset and development of slug flow as well as slug characteristics. The present work consists in the simulation of two-phase flow in slug pattern through horizontal pipes using the two-fluid model in its transient and one-dimensional form. The advantage of this model is that the flow field is allowed to develop naturally from a given initial conditions as part of the transient calculation; the slug evolves automatically as a product of the computed flow development. Simulations are then carried out for a large number of flow conditions that lead a slug flow. (author)

  2. Ground-water flow in low permeability environments

    Science.gov (United States)

    Neuzil, Christopher E.

    1986-01-01

    Certain geologic media are known to have small permeability; subsurface environments composed of these media and lacking well developed secondary permeability have groundwater flow sytems with many distinctive characteristics. Moreover, groundwater flow in these environments appears to influence the evolution of certain hydrologic, geologic, and geochemical systems, may affect the accumulation of pertroleum and ores, and probably has a role in the structural evolution of parts of the crust. Such environments are also important in the context of waste disposal. This review attempts to synthesize the diverse contributions of various disciplines to the problem of flow in low-permeability environments. Problems hindering analysis are enumerated together with suggested approaches to overcoming them. A common thread running through the discussion is the significance of size- and time-scale limitations of the ability to directly observe flow behavior and make measurements of parameters. These limitations have resulted in rather distinct small- and large-scale approaches to the problem. The first part of the review considers experimental investigations of low-permeability flow, including in situ testing; these are generally conducted on temporal and spatial scales which are relatively small compared with those of interest. Results from this work have provided increasingly detailed information about many aspects of the flow but leave certain questions unanswered. Recent advances in laboratory and in situ testing techniques have permitted measurements of permeability and storage properties in progressively “tighter” media and investigation of transient flow under these conditions. However, very large hydraulic gradients are still required for the tests; an observational gap exists for typical in situ gradients. The applicability of Darcy's law in this range is therefore untested, although claims of observed non-Darcian behavior appear flawed. Two important nonhydraulic

  3. A quasi steady state method for solving transient Darcy flow in complex 3D fractured networks accounting for matrix to fracture flow

    Science.gov (United States)

    Nœtinger, B.

    2015-02-01

    Modeling natural Discrete Fracture Networks (DFN) receives more and more attention in applied geosciences, from oil and gas industry, to geothermal recovery and aquifer management. The fractures may be either natural, or artificial in case of well stimulation. Accounting for the flow inside the fracture network, and accounting for the transfers between the matrix and the fractures, with the same level of accuracy is an important issue for calibrating the well architecture and for setting up optimal resources recovery strategies. Recently, we proposed an original method allowing to model transient pressure diffusion in the fracture network only [1]. The matrix was assumed to be impervious. A systematic approximation scheme was built, allowing to model the initial DFN by a set of N unknowns located at each identified intersection between fractures. The higher N, the higher the accuracy of the model. The main assumption was using a quasi steady state hypothesis, that states that the characteristic diffusion time over one single fracture is negligible compared with the characteristic time of the macroscopic problem, e.g. change of boundary conditions. In that context, the lowest order approximation N = 1 has the form of solving a transient problem in a resistor/capacitor network, a so-called pipe network. Its topology is the same as the network of geometrical intersections between fractures. In this paper, we generalize this approach in order to account for fluxes from matrix to fractures. The quasi steady state hypothesis at the fracture level is still kept. Then, we show that in the case of well separated time scales between matrix and fractures, the preceding model needs only to be slightly modified in order to incorporate these fluxes. The additional knowledge of the so-called matrix to fracture transfer function allows to modify the mass matrix that becomes a time convolution operator. This is reminiscent of existing space averaged transient dual porosity models.

  4. Experimental and numerical study on single-phase flow characteristics of natural circulation system with heated narrow rectangular channel under rolling motion condition

    International Nuclear Information System (INIS)

    Yu, Shengzhi; Wang, Jianjun; Yan, Ming; Yan, Changqi; Cao, Xiaxin

    2017-01-01

    Highlights: • The phasic difference between flow rate and frictional pressure drop is negligible. • Effect mechanism of rolling motion on flow behaviors of NC is interpreted. • The startup model is proposed and verified. • Steady-state correlations are feasible to predict transient resistance. • The in-house code can simulate instantaneous flow behaviors of NC correctly. - Abstract: Effects of rolling motion on flow characteristics in a natural circulation system were investigated experimentally and numerically. The numerical results from validated code were mainly used to provide detailed information for the discussion and analysis of experimental results. The results indicate that under rolling motion condition, the phasic difference between flow rate and frictional pressure drop of narrow rectangular channel is negligible. Angular acceleration is the eigenvalue for the effects of rolling motion on flow rate under single-phase natural circulation condition. When angular acceleration is approximately equal, even though either the angle or the period of rolling motion is different, peak, trough and time-averaged values of flow rate are approximately equal. Under rolling motion and single-phase natural circulation conditions, the phenomenon that dimensionless time-averaged mass flow rate is smaller than that under steady state condition is controlled by the nonlinear relationship between mass flow rate and the resistance of loop. The factor also causes the result that the absolute difference of dimensionless flow rate between peak and steady state is smaller than that between trough and steady state. The startup model which is proposed in present paper can be used to predict the flow characteristics of single-phase natural circulation system at startup stage of rolling motion favorably. The self-developed code can simulate instantaneous flow characteristics of single-phase natural circulation system under rolling motion and steady state conditions

  5. Design and development of drag-disc flow meter for measurement of transient two-phase flow

    International Nuclear Information System (INIS)

    Sreenivas Rao, G.; Kukreja, V.; Dolas, P.K.; Venkat Raj, V.

    1989-01-01

    Experiments have been carried out to test the suitability of drag-disc flowmeter for measuring two-phase flow. Calibration tests carried out under single-phase and two-phase flow conditions have confirmed the suitability of the drag-disc flowmeter. The experimental work and the results obtained are presented and discussed in the paper. (author). 6 figs

  6. Biogeochemical Processes Responsible for the Enhanced Transport of Plutonium Under transient Unsaturated Ground Water Conditions

    Energy Technology Data Exchange (ETDEWEB)

    Fred J. Molz, III

    2010-05-28

    To better understand longer-term vadose zone transport in southeastern soils, field lysimeter experiments were conducted at the Savannah River Site (SRS) near Aiken, SC, in the 1980s. Each of the three lysimeters analyzed herein contained a filter paper spiked with different Pu solutions, and they were left exposed to natural environmental conditions (including the growth of annual weed grasses) for 11 years. The resulting Pu activity measurements from each lysimeter core showed anomalous activity distributions below the source, with significant migration of Pu above the source. Such results are not explainable by adsorption phenomena alone. A transient variably saturated flow model with root water uptake was developed and coupled to a soil reactive transport model. Somewhat surprisingly, the fully transient analysis showed results nearly identical to those of a much simpler steady flow analysis performed previously. However, all phenomena studied were unable to produce the upward Pu transport observed in the data. This result suggests another transport mechanism such as Pu uptake by roots and upward transport due to transpiration. Thus, the variably saturated flow and reactive transport model was extended to include uptake and transport of Pu within the root xylem, along with computational methodology and results. In the extended model, flow velocity in the soil was driven by precipitation input along with transpiration and drainage. Water uptake by the roots determined the flow velocity in the root xylem, and this along with uptake of Pu in the transpiration stream drove advection and dispersion of the two Pu species in the xylem. During wet periods with high potential evapotranspiration, maximum flow velocities through the xylem would approached 600 cm/hr, orders of magnitude larger that flow velocities in the soil. Values for parameters and the correct conceptual viewpoint for Pu transport in plant xylem was uncertain. This motivated further experiments devoted

  7. Biogeochemical Processes Responsible for the Enhanced Transport of Plutonium Under transient Unsaturated Ground Water Conditions

    International Nuclear Information System (INIS)

    Molz, Fred J. III

    2010-01-01

    To better understand longer-term vadose zone transport in southeastern soils, field lysimeter experiments were conducted at the Savannah River Site (SRS) near Aiken, SC, in the 1980s. Each of the three lysimeters analyzed herein contained a filter paper spiked with different Pu solutions, and they were left exposed to natural environmental conditions (including the growth of annual weed grasses) for 11 years. The resulting Pu activity measurements from each lysimeter core showed anomalous activity distributions below the source, with significant migration of Pu above the source. Such results are not explainable by adsorption phenomena alone. A transient variably saturated flow model with root water uptake was developed and coupled to a soil reactive transport model. Somewhat surprisingly, the fully transient analysis showed results nearly identical to those of a much simpler steady flow analysis performed previously. However, all phenomena studied were unable to produce the upward Pu transport observed in the data. This result suggests another transport mechanism such as Pu uptake by roots and upward transport due to transpiration. Thus, the variably saturated flow and reactive transport model was extended to include uptake and transport of Pu within the root xylem, along with computational methodology and results. In the extended model, flow velocity in the soil was driven by precipitation input along with transpiration and drainage. Water uptake by the roots determined the flow velocity in the root xylem, and this along with uptake of Pu in the transpiration stream drove advection and dispersion of the two Pu species in the xylem. During wet periods with high potential evapotranspiration, maximum flow velocities through the xylem would approached 600 cm/hr, orders of magnitude larger that flow velocities in the soil. Values for parameters and the correct conceptual viewpoint for Pu transport in plant xylem was uncertain. This motivated further experiments devoted

  8. Numerical simulation of the transient cavitating turbulent flows around the Clark-Y hydrofoil using modified partially averaged Navier-Stokes method

    Energy Technology Data Exchange (ETDEWEB)

    Huang, Renfang; Luo, Xianwu [Tsinghua University, Beijing (China); Ji, Bin [Wuhan University, Hubei (China)

    2017-06-15

    This paper presents the implementation and assessment of a modified Partially averaged Navier-Stokes (PANS) turbulence model which can successfully predict the transient cavitating turbulent flows. The proposed model treats the standard k-e model as the parent model, and its main distinctive features are to (1) formulate the unresolved-to-total kinetic energy ratio (f{sub k}) based on the local grid size as well as turbulence length scale, and (2) vary the f{sub k}-field both in space and time. Numerical simulation used the modified PANS model for the sheet/cloud cavitating flows around a three-dimensional Clark-Y hydrofoil. The available experimental data and calculations of the standard k-e model, the f{sub k} = 0.8 PANS model, the f{sub k} = 0.5 PANS model are also provided for comparisons. The results show that the modified PANS model accurately captures the transient cavitation features as observed in experiments, namely, the attached sheet cavity grows in the flow direction until to a maximum length and then it breaks into a highly turbulent cloud cavity with three-dimensional structures in nature. Time-averaged drag/lift coefficients together with the streamwise velocity profiles predicted by the proposed model are in good agreement with the experimental data, and improvements are shown when compared with results of the standard k-e model, the f{sub k} = 0.8 PANS model and the f{sub k} = 0.5 PANS model. Overall, the modified PANS model shows its encouraging capability of predicting the transient cavitating turbulent flows.

  9. An investigation of the flow dependence of temperature gradients near large vessels during steady state and transient tissue heating

    International Nuclear Information System (INIS)

    Kolios, M.C.; Worthington, A.E.; Hunt, J.W.; Holdsworth, D.W.; Sherar, M.D.

    1999-01-01

    Temperature distributions measured during thermal therapy are a major prognostic factor of the efficacy and success of the procedure. Thermal models are used to predict the temperature elevation of tissues during heating. Theoretical work has shown that blood flow through large blood vessels plays an important role in determining temperature profiles of heated tissues. In this paper, an experimental investigation of the effects of large vessels on the temperature distribution of heated tissue is performed. The blood flow dependence of steady state and transient temperature profiles created by a cylindrical conductive heat source and an ultrasound transducer were examined using a fixed porcine kidney as a flow model. In the transient experiments, a 20 s pulse of hot water, 30 deg. C above ambient, heated the tissues. Temperatures were measured at selected locations in steps of 0.1 mm. It was observed that vessels could either heat or cool tissues depending on the orientation of the vascular geometry with respect to the heat source and that these effects are a function of flow rate through the vessels. Temperature gradients of 6 deg. C mm -1 close to large vessels were routinely measured. Furthermore, it was observed that the temperature gradients caused by large vessels depended on whether the heating source was highly localized (i.e. a hot needle) or more distributed (i.e. external ultrasound). The gradients measured near large vessels during localized heating were between two and three times greater than the gradients measured during ultrasound heating at the same location, for comparable flows. Moreover, these gradients were more sensitive to flow variations for the localized needle heating. X-ray computed tomography data of the kidney vasculature were in good spatial agreement with the locations of all of the temperature variations measured. The three-dimensional vessel path observed could account for the complex features of the temperature profiles. The flow

  10. Do Students Experience Flow Conditions Online?

    Science.gov (United States)

    Meyer, Katrina A.; Jones, Stephanie J.

    2013-01-01

    This pilot study asked graduate students enrolled in higher education programs at two institutions to ascertain whether and to what extent they experienced nine flow-related conditions in two settings: (1) online courses or (2) surfing or gaming online. In both settings, flow was experienced "sometimes," although no significant…

  11. Transient internal characteristic study of a centrifugal pump during startup process

    International Nuclear Information System (INIS)

    Hu, F F; Ma, X D; Wu, D Z; Wang, L Q

    2012-01-01

    The transient process of a centrifugal pump existed in a variety of occasions. There were a lot of researches in the external characteristic in startup process and stopping process, but internal characteristics were less observed and studied. Study of the internal flow field had significant meanings. The performance of a pump could be evaluated and improved by revealing the flow field. In the other hand, the prediction of external characteristic was based on the correct analysis of the internal flow. In this paper, theoretical method and numerical simulation were used to study the internal characteristic of a centrifugal pump. The theoretical study showed that the relative flow in an impeller was composed of homogeneous flow and axial vortex flow. The vortex intensity was mainly determined by angular velocity of impeller, flow channel width and blade curvature. In order to get the internal flow field and observe the evolution of transient internal flow in the impeller, Computational Fluid Dynamics(CFD) were used to study the three-dimensional unsteady incompressible viscous flows in a centrifugal pump during starting period. The Dynamic Mesh (DM) method with non-conformal grid boundaries was applied to get the external characteristic and internal flow field. The simulate model included three pumps with different blade numbers and the same blade curvature. The relative velocity vector showed that there was a big axial vortex in impeller channel. At the beginning, the vortex was raised in the pressure side of the impeller outlet and with time went on, it shifted to the middle flow channel of the impeller and the vortex intensity increased. When the speed and flow rate reached a definite value, the influence of the axial vortex began to get smaller. The vortex developed faster when the flow channel got narrower. Due to the evolution of axial vortex, the slip factor during starting period was smaller than that in quasi-steady condition. As a result, transient head was

  12. Transient heat transfer to laminar flow from a flat plate with heat capacity

    International Nuclear Information System (INIS)

    Hanawa, Juichi

    1975-01-01

    As the most basic problem in transient heat transfer, a plate with heat capacity was studied, which is placed in uniform laminar flow in parallel with it, is initially at the same temperature as that of the fluid, and then abruptly is given a specific heating value. The equation of transient heat transfer in this case was solved by numerical calculation. The following matters were revealed. (1) The equation was able to be solved by the application of Laplace transformation and numerical inverse transformation. (2) Wall temperature when the heat capacity of a plate was zero initially agreed well with heat conduction solution. With increase of the heat capacity, the delay in wall temperature rise was increased. (3) Heat transfer rate in case of the heat capacity of zero initially agreed well with the heat-conduction solution. With increase of the heat capacity, the Nusselt number increased. (4) Temperature distribution in case of the heat capacity of zero initially agreed well with the heat-conduction solution. (Mori, K.)

  13. Embedded regional/Local-scale model of natural transients in saline groundwater flow. Illustrated using the Beberg Site

    International Nuclear Information System (INIS)

    Marsic, Niko; Hartley, Lee; Sanchez-Friera, Paula; Morvik, Arnfinn

    2002-04-01

    The main focus of this report is to develop and test a methodology for performing large simulations of transient variable density flow. Several developments were made to NAMMU to enable such calculations. The following lists the findings of this study: 1) Feasibility: it is numerically feasible to construct large (0.5 million elements) embedded models of transient variable density flow with a relatively fine mesh (about 35m) of the site-scale. 2) Stochastic simulation: performing stochastic realisations of long transients is just possible, although the requirements on CPU and disk to store the results for 100 realisations, say, would be significant. As an indication, about 19 realisations of the current model could be run on a Sun Enterprise 450 (4 x UltraSPARC-II 400MHz) computer in one week if all four processors are fully utilised. 3) Embedded grid: the nesting of a refined site-scale model (35m elements) within a coarser (100m) regional-scale mesh for variable density flow was tested successfully. It was found that grading the refinement around the site-scale to avoid a large step change in element size was beneficial for convergence and stability. This may be less of an issue if a more sophisticated pre conditioner was used. 4) Solver: the most efficient and stable scheme was obtained by decoupling the flow and transport equation at each time-step. GMRES (Generalised Minimum Residual) was the most robust conjugate gradient method for this problem. 5) Boundary conditions: a set of relatively complex non-linear boundary conditions had to be applied for both pressure and salinity on the top and vertical boundaries to give the system sufficient freedom to approximate realistic conditions over a large area and long times. It was important that both flow and a flux of salinity could cross each boundary, and that the direction and magnitude could evolve in time. 6) Calibration on salinity: model predictions of the salinity in the deep boreholes were used to calibrate

  14. RETRAN operational transient analysis of the Big Rock Point plant boiling water reactor

    International Nuclear Information System (INIS)

    Sawtelle, G.R.; Atchison, J.D.; Farman, R.F.; VandeWalle, D.J.; Bazydlo, H.G.

    1983-01-01

    Energy Incorporated used the RETRAN computer code to model and calculate nine Consumers Power Company Big Rock Point Nuclear Power Plant transients. RETRAN, a best-estimate, one-dimensional, homogeneous-flow thermal-equilibrium code, is applicable to FSAR Chapter 15 transients for Conditions 1 through IV. The BWR analyses were performed in accordance with USNRC Standard Review Plan criteria and in response to the USNRC Systematic Evaluation Program. The RETRAN Big Rock Point model was verified by comparison to plant startup test data. This paper discusses the unique modeling techniques used in RETRAN to model this steam-drum-type BWR. Transient analyses results are also presented

  15. Transient Seepage for Levee Engineering Analyses

    Science.gov (United States)

    Tracy, F. T.

    2017-12-01

    Historically, steady-state seepage analyses have been a key tool for designing levees by practicing engineers. However, with the advances in computer modeling, transient seepage analysis has become a potentially viable tool. A complication is that the levees usually have partially saturated flow, and this is significantly more complicated in transient flow. This poster illustrates four elements of our research in partially saturated flow relating to the use of transient seepage for levee design: (1) a comparison of results from SEEP2D, SEEP/W, and SLIDE for a generic levee cross section common to the southeastern United States; (2) the results of a sensitivity study of varying saturated hydraulic conductivity, the volumetric water content function (as represented by van Genuchten), and volumetric compressibility; (3) a comparison of when soils do and do not exhibit hysteresis, and (4) a description of proper and improper use of transient seepage in levee design. The variables considered for the sensitivity and hysteresis studies are pore pressure beneath the confining layer at the toe, the flow rate through the levee system, and a levee saturation coefficient varying between 0 and 1. Getting results for SEEP2D, SEEP/W, and SLIDE to match proved more difficult than expected. After some effort, the results matched reasonably well. Differences in results were caused by various factors, including bugs, different finite element meshes, different numerical formulations of the system of nonlinear equations to be solved, and differences in convergence criteria. Varying volumetric compressibility affected the above test variables the most. The levee saturation coefficient was most affected by the use of hysteresis. The improper use of pore pressures from a transient finite element seepage solution imported into a slope stability computation was found to be the most grievous mistake in using transient seepage in the design of levees.

  16. Transient analysis of DTT rakes

    International Nuclear Information System (INIS)

    Kamath, P.S.; Lahey, R.T. Jr.

    1981-01-01

    This paper presents an analytical model for the determination of the cross-sectionally averaged transient mass flux of a two-phase fluid flowing in a conduit instrumented by a Drag-Disk Turbine Transducer (DTT) Rake and a multibeam gamma densitometer. Parametric studies indicate that for a typical blowdown transient, dynamic effects such as rotor inertia can be important for the turbine-meter. In contrast, for the drag-disk, a frequency response analysis showed that the quasisteady solution is valid below a forcing frequency of about 10 Hz, which is faster than the time scale normally encountered during blowdowns. The model showed reasonably good agreement with full scale transient rake data, where the flow regimes were mostly homogeneous or stratified, thus indicating that the model is suitable for the analysis of a DTT rake. (orig.)

  17. Sodium boiling and mixed oxide fuel thermal behavior in FBR undercooling transients; W-1 SLSF experiment results

    International Nuclear Information System (INIS)

    Henderson, J.M.; Wood, S.A.; Knight, D.D.

    1981-01-01

    The W-1 Sodium Loop Safety Facility (SLSF) Experiment was conducted to study fuel pin heat release characteristics during a series of LMFBR Loss-of-Piping Integrity (LOPI) transients and to investigate a regime of coolant boiling during a second series of transients at low, medium and high bundle power levels. The LOPI transients produced no coolant boiling and showed only small changes in coolant temperatures as the test fuel microstructure changed from a fresh, unrestructured to a low burnup, restructured condition. During the last of seven boiling transients, intense coolant boiling produced inlet flow reversal, cladding dryout and moderate cladding melting

  18. Effect of load transients on SOFC operation—current reversal on loss of load

    Science.gov (United States)

    Gemmen, Randall S.; Johnson, Christopher D.

    The dynamics of solid oxide fuel cell (SOFC) operation have been considered previously, but mainly through the use of one-dimensional codes applied to co-flow fuel cell systems. In this paper several geometries are considered, including cross-flow, co-flow, and counter-flow. The details of the model are provided, and the model is compared with some initial experimental data. For parameters typical of SOFC operation, a variety of transient cases are investigated, including representative load increase and decrease and system shutdown. Of particular note for large load decrease conditions (e.g., shutdown) is the occurrence of reverse current over significant portions of the cell, starting from the moment of load loss up to the point where equilibrated conditions again provide positive current. Consideration is given as to when such reverse current conditions might most significantly impact the reliability of the cell.

  19. Colloid-Facilitated Transport of Cations in an Unsaturated Fractured Soil Under Transient Conditions

    Energy Technology Data Exchange (ETDEWEB)

    Ryan, Joseph [Univ. of Colorado, Boulder, CO (United States)

    2015-01-31

    Rainfall experiments were conducted using intact soil cores and an instrumented soil pedon to examine the effect of physical heterogeneity and rainfall characteristics on the mobilization of colloids, organic matter, cesium, and strontium in a fractured soil. To measure the spatial variability of infiltration of colloids and contaminants, samples were collected through a 19-port grid placed below the soil core in laboratory study and in 27 samplers at multiple depths in the soil pedon in the field study. Cesium and strontium were applied to the soil cores and the soil pedon prior to mobilization experiments. Rainwater solutions of multiple ionic strengths and organic matter concentrations were applied to the soil cores and soil pedon to mobilize in situ colloids, cesium, and strontium. The mobilization of colloids and metal cations occurred through preferential flow paths in the soil cores. Compared to steady rainfall, greater amounts of colloids were mobilized during rainfall interrupted by pauses, which indicates that the supply of colloids to be mobilized was replenished during the pauses. A maximum in the amount of mobilized colloids were mobilized during a rainfall following a pause of 2.5 d. Pauses of shorter or longer duration resulted in less colloid mobilization. Freeze-thaw cycles, a transient condition in winter, enhanced colloid mobilization and colloid-facilitated transport of cesium and strontium in the soil cores. The exchange of solutes between the soil matrix and macropores caused a hysteretic mobilization of colloids, cesium, and strontium during changes in ionic strength. Colloid-facilitated mobilization of cesium and strontium was important at low ionic strength in fractures where slow flow allowed greater exchange of flow between the fractures and the surrounding matrix. The release of cesium and strontium by cation exchange occurred at high ionic strength in fractures where there is a little exchange of pore water with the surrounding matrix

  20. Transient effects of tendon disconnection on the survivability of a TLP in moderate-strength hurricane conditions

    Directory of Open Access Journals (Sweden)

    Moo Hyun Kim

    2009-09-01

    Full Text Available The primary objective of this paper is to investigate the dynamic stability and survivability of a four-column classic TLP (tension-leg platform under less-than-extreme storm conditions where one or more tendons have been lost due to damage or disconnect. The transient responses of the platform and tendon tensions at the moment of disconnection are particularly underscored. The numerical simulation is based on the BE-FE hybrid hull-tendon-riser coupled dynamic analysis in time domain. Compared to the common industry practice of checking the system without a failed tendon in the beginning, the maximum tension on the neighboring tendon can be significantly increased at the moment of disconnection due to the snap-like transient effects, which can lead to unexpected failure of the total system. It is also found that the transient effects can be reduced with the presence of TTRs (top-tensioned risers with pneumatic tensioners. It is also seen that the TLP cannot survive in the 100-yr hurricane condition after losing one tendon.

  1. SOLA-VOF: a solution algorithm for transient fluid flow with multiple free boundaries

    International Nuclear Information System (INIS)

    Nichols, B.D.; Hirt, C.W.; Hotchkiss, R.S.

    1980-08-01

    In this report a simple, but powerful, computer program is presented for the solution of two-dimensional transient fluid flow with free boundaries. The SOLA-VOF program, which is based on the concept of a fractional volume of fluid (VOF), is more flexible and efficient than other methods for treating arbitrary free boundaries. SOLA-VOF has a variety of user options that provide capabilities for a wide range of applications. Its basic mode of operation is for single fluid calculations having multiple free surfaces. However, SOLA-VOF can also be used for calculations involving two fluids separated by a sharp interface. In either case, the fluids may be treated as incompressible or as having limited compressibility. Surface tension forces with wall adhesion are permitted in both cases. Internal obstacles may be defined by blocking out any desired combination of cells in the mesh, which is composed of rectangular cells of variable size. SOLA-VOF is an easy-to-use program. Its logical parts are isolated in separate subroutines, and numerous special features have been included to simplify its operation, such as an automatic time-step control, a flexible mesh generator, extensive output capabilities, a variety of optional boundary conditions, and instructive internal documentation

  2. Experimental study on transient boiling heat transfer

    International Nuclear Information System (INIS)

    Visentini, R.

    2012-01-01

    Boiling phenomena can be found in the everyday life, thus a lot of studies are devoted to them, especially in steady state conditions. Transient boiling is less known but still interesting as it is involved in the nuclear safety prevention. In this context, the present work was supported by the French Institute of Nuclear Safety (IRSN). In fact, the IRSN wanted to clarify what happens during a Reactivity-initiated Accident (RIA). This accident occurs when the bars that control the nuclear reactions break down and a high power peak is passed from the nuclear fuel bar to the surrounding fluid. The temperature of the nuclear fuel bar wall increases and the fluid vaporises instantaneously. Previous studies on a fuel bar or on a metal tube heated by Joule effect were done in the past in order to understand the rapid boiling phenomena during a RIA. However, the measurements were not really accurate because the measurement techniques were not able to follow rapid phenomena. The main goal of this work was to create an experimental facility able to simulate the RIA boiling conditions but at small scale in order to better understand the boiling characteristics when the heated-wall temperature increases rapidly. Moreover, the experimental set-up was meant to be able to produce less-rapid transients as well, in order to give information on transient boiling in general. The facility was built at the Fluid-Mechanics Institute of Toulouse. The core consists of a metal half-cylinder heated by Joule effect, placed in a half-annulus section. The inner half cylinder is made of a 50 microns thick stainless steel foil. Its diameter is 8 mm, and its length 200 mm. The outer part is a 34 mm internal diameter glass half cylinder. The semi-annular section is filled with a coolant, named HFE7000. The configuration allows to work in similarity conditions. The heated part can be place inside a loop in order to study the flow effect. The fluid temperature influence is taken into account as

  3. Pigging analysis for gas-liquid two phase flow in pipelines

    International Nuclear Information System (INIS)

    Kohda, K.; Suzukawa, Y.; Furukawa, H.

    1988-01-01

    A new method to analyze transient phenomena caused by pigging in gas-liquid two-phase flow is developed. During pigging, a pipeline is divided into three sections by two moving boundaries, namely the pig and the leading edge of the liquid slug in front of the pig. The basic equations are mass, momentum and energy conservation equations. The boundary conditions at the moving boundaries are determined from the mass conservation across the boundaries, etc. A finite difference method is used to solve the equations numerically. The method described above is also capable of analyzing transient two-phase flow caused by pressure and flow rate changes. Thus the over-all analysis of transient two-phase flow in pipelines becomes possible. A series of air-water two-phase flow pigging experiments was conducted using 105.3 mm diameter and 1436.5 m long test pipeline. The agreement between the measured and the calculated results is very good

  4. Network Flow Simulation of Fluid Transients in Rocket Propulsion Systems

    Science.gov (United States)

    Bandyopadhyay, Alak; Hamill, Brian; Ramachandran, Narayanan; Majumdar, Alok

    2011-01-01

    Fluid transients, also known as water hammer, can have a significant impact on the design and operation of both spacecraft and launch vehicle propulsion systems. These transients often occur at system activation and shutdown. The pressure rise due to sudden opening and closing of valves of propulsion feed lines can cause serious damage during activation and shutdown of propulsion systems. During activation (valve opening) and shutdown (valve closing), pressure surges must be predicted accurately to ensure structural integrity of the propulsion system fluid network. In the current work, a network flow simulation software (Generalized Fluid System Simulation Program) based on Finite Volume Method has been used to predict the pressure surges in the feed line due to both valve closing and valve opening using two separate geometrical configurations. The valve opening pressure surge results are compared with experimental data available in the literature and the numerical results compared very well within reasonable accuracy (< 5%) for a wide range of inlet-to-initial pressure ratios. A Fast Fourier Transform is preformed on the pressure oscillations to predict the various modal frequencies of the pressure wave. The shutdown problem, i.e. valve closing problem, the simulation results are compared with the results of Method of Characteristics. Most rocket engines experience a longitudinal acceleration, known as "pogo" during the later stage of engine burn. In the shutdown example problem, an accumulator has been used in the feed system to demonstrate the "pogo" mitigation effects in the feed system of propellant. The simulation results using GFSSP compared very well with the results of Method of Characteristics.

  5. Parametric analyses of DEMO Divertor using two dimensional transient thermal hydraulic modelling

    Science.gov (United States)

    Domalapally, Phani; Di Caro, Marco

    2018-05-01

    Among the options considered for cooling of the Plasma facing components of the DEMO reactor, water cooling is a conservative option because of its high heat removal capability. In this work a two-dimensional transient thermal hydraulic code is developed to support the design of the divertor for the projected DEMO reactor with water as a coolant. The mathematical model accounts for transient 2D heat conduction in the divertor section. Temperature-dependent properties are used for more accurate analysis. Correlations for single phase flow forced convection, partially developed subcooled nucleate boiling, fully developed subcooled nucleate boiling and film boiling are used to calculate the heat transfer coefficients on the channel side considering the swirl flow, wherein different correlations found in the literature are compared against each other. Correlation for the Critical Heat Flux is used to estimate its limit for a given flow conditions. This paper then investigates the results of the parametric analysis performed, whereby flow velocity, diameter of the coolant channel, thickness of the coolant pipe, thickness of the armor material, inlet temperature and operating pressure affect the behavior of the divertor under steady or transient heat fluxes. This code will help in understanding the basic parameterś effect on the behavior of the divertor, to achieve a better design from a thermal hydraulic point of view.

  6. On the application of the method of turbulent flow to transient and quasi-stationary flow calculations in high temperature reactors with spherical fuel elements

    International Nuclear Information System (INIS)

    Hoefer, I.

    1980-12-01

    For the calculation of flows in high-temperature reactors and of their temperature behavior the equations of the method of turbulent flow in the primitive form are derived for inhomogeneous regions. This system of equations is appropriate for the investigation of transient and quasi-stationary phenomena in pebble beds. By modification of the flow function in parallel arranged reflector channels a parallel flow can be simulated. For simplification the flow in region with a smaller pressure loss is assumed to be a potential flow. For the numerical solution of the time-dependent convective parts of the system of equations a number of explicit and implicit difference methods are compared. If the method using UP-WIND differences is taken to be an interpolation method the introduction of an extension becomes possible, which together with preliminary integration of the fictional terms allows to apply larger time steps. The algebraic system of equations for numerical calculation of a steady flow field also is established by formation of UP-WIND differences for the convective terms. By mathematical verification of some examples the applicability of the mathematical model for flow problems in pebble beds with forced or natural convection is shown. (orig.) [de

  7. Transient behavior of natural circulation for boiling two-phase flow, 2

    International Nuclear Information System (INIS)

    Aritomi, Masanori; Chiang, Jing-Hsien; Mori, Michitugu.

    1991-01-01

    In this set of experiments, natural circulation in boiling two-phase flow has been investigated for power transients, simulating the start-up process in a natural circulation BWR. This was done in order to understand the underlying mechanism of thermo-hydraulic instability which may appear during a start-up. In this paper, geysering is dealt with especially and the driving mechanism is clarified by investigating the stability related to effects of inlet velocity, subcooling, temperature in an outlet plenum and non-heated length between heated section and the outlet plenum. Furthermore, by considering these results and the operational experience in the Dodewaard reactor, recommendations on how the thermo-hydraulic instabilities can be prevented from occurring are proposed concerning a reactor configuration and start-up procedure for natural circulation BWRs. (author)

  8. Visual investigation of transient fuel behavior under a rapid heating condition

    International Nuclear Information System (INIS)

    Saito, Shinzo

    1981-10-01

    An in-reactor experimental research on fuel behavior under reactivity initiated accident (RIA) conditions is being conducted in the Nuclear Safety Research Reactor (NSRR). The optical system in which a non-browning lens periscope is directly installed in the test section was successfully developed for photographing transient fuel behavior. Several phenomena which had never been revealed before were observed in the slow motion pictures taken in the NSRR experiments which were performed in the water and air environments. As for incipient failure mechanism for an unirradiated fuel rod under RIA conditions, brittle fracture of the cladding during quenching is dominant. However, a split cracking possibly occurs during even red hot state of the cladding. It is considered that the crack is generated by the local internal pressure increase at the specified region blocked up due to the melting of the cladding inner surface. The film boiling is unexpectablly violent specially in the early stage of the transient, and film thickness becomes 5 -- 6 mm at maximum. The observed thick vapor film can not be explained by the conventional theory, but the effect of hydrogen which is produced by Zircaloy-water reaction is reasonably explained to form thick film in the report. The molten fuel was expelled from the cladding in the experiment which was performed in an air environment. The expelled fuel fragmented due to possibly initial motion effect, not mechanical collision effect, because Weber number is smaller than the critical value. (author)

  9. Turbofan compressor dynamics during afterburner transients

    Science.gov (United States)

    Kurkov, A. P.

    1976-01-01

    The effects of afterburner light-off and shut-down transients on the compressor stability are investigated. The reported experimental results are based on detailed high response pressure and temperature measurements on the TF30-P-3 turbofan engine. The tests were performed in an altitude test chamber simulating high altitude engine operation. It is shown that during both types of transients, flow breaks down in the forward part of the fan bypass duct. At a sufficiently low engine inlet pressure this resulted in a compressor stall. Complete flow breakdown within the compressor was preceded by a rotating stall. At some locations in the compressor, rotating stall cells initially extended only through part of the blade span. For the shutdown transient the time between first and last detected occurrence of rotating stall is related to the flow Reynolds number. An attempt was made to deduce the number and speed of propagation of rotating stall cells.

  10. Tungsten dust remobilization under steady-state and transient plasma conditions

    Directory of Open Access Journals (Sweden)

    S. Ratynskaia

    2017-08-01

    Full Text Available Remobilization is one of the most prominent unresolved fusion dust-relevant issues, strongly related to the lifetime of dust in plasma-wetted regions, the survivability of dust on hot plasma-facing surfaces and the formation of dust accumulation sites. A systematic cross-machine study has been initiated to investigate the remobilization of tungsten micron-size dust from tungsten surfaces implementing a newly developed technique based on controlled pre-adhesion by gas dynamics methods. It has been utilized in a number of devices and has provided new insights on remobilization under steady-state and transient conditions. The experiments are interpreted with contact mechanics theory and heat conduction models.

  11. Optimization of High-Resolution Continuous Flow Analysis for Transient Climate Signals in Ice Cores

    DEFF Research Database (Denmark)

    Bigler, Matthias; Svensson, Anders; Kettner, Ernesto

    2011-01-01

    Over the past two decades, continuous flow analysis (CFA) systems have been refined and widely used to measure aerosol constituents in polar and alpine ice cores in very high-depth resolution. Here we present a newly designed system consisting of sodium, ammonium, dust particles, and electrolytic...... meltwater conductivity detection modules. The system is optimized for high- resolution determination of transient signals in thin layers of deep polar ice cores. Based on standard measurements and by comparing sections of early Holocene and glacial ice from Greenland, we find that the new system features...

  12. Keeping the secret: Insights from repeated catchment-scale tracer experiments under transient conditions

    Science.gov (United States)

    Bogner, Christina; Hauhs, Michael; Lange, Holger

    2016-04-01

    Catchment-level tracer experiments are generally performed to identify site-specific hydrological response functions of the catchment. The existence and uniqueness of these response functions are hardly ever questioned. Here, we report on a series of replicated tracer experiments in two small first-order catchments, G1 (0.6 ha, roofed) and F4 (2.3 ha, without roof) at Gårdsjön in SW Sweden. The soils in both catchments are shallow (500 m2) the experiments were done without a roof mostly at transient conditions. The catchment F4 was equipped with a sprinkler system with a watering capacity of around 38-45 m3 day-1. Natural rainfall comes in addition. A bromide tracer solution was injected to groundwater at a single location about 40 m upstream the weir over a period of less than an hour, and was monitored using a set of groundwater tubes and the weir at the outlet over the following 4 days. In addition, discharge was measured. The experiments were repeated each summer from 2007 to 2015. While steady state conditions were guaranteed in G1, steady runoff has been achieved only four times in F4. We investigated tracer recovery rates against cumulated runoff since tracer application. Substantially different transit times and qualitatively different behaviour of the breakthrough curves were observed, even under steady state conditions. In G1, no single system response function could be identified in 5 replicates. Similarly, the catchment response functions in F4 under steady state differed between experiments. However, they remained in a similar range as in G1. Based on these results, we question the identifiability of flow paths and system properties, such as saturated water content or hydrologic transmissivity, at the catchment scale using tracer experiments. Rather, the series demonstrate the utter importance of the initial and boundary conditions which largely determine the response of the system to inert tracer pulses.

  13. Determination of the failure probability in the weld region of ap-600 vessel for transient condition

    International Nuclear Information System (INIS)

    Wahyono, I.P.

    1997-01-01

    Failure probability in the weld region of AP-600 vessel was determined for transient condition scenario. The type of transient is increase of the heat removal from primary cooling system due to sudden opening of safety valves or steam relief valves on the secondary cooling system or the steam generator. Temperature and pressure in the vessel was considered as the base of deterministic calculation of the stress intensity factor. Calculation of film coefficient of the convective heat transfers is a function of the transient time and water parameter. Pressure, material temperature, flaw depth and transient time are variables for the stress intensity factor. Failure probability consideration was done by using the above information in regard with the flaw and probability distributions of Octavia II and Marshall. Calculation of the failure probability by probability fracture mechanic simulation is applied on the weld region. Failure of the vessel is assumed as a failure of the weld material with one crack which stress intensity factor applied is higher than the critical stress intensity factor. VISA II code (Vessel Integrity Simulation Analysis II) was used for deterministic calculation and simulation. Failure probability of the material is 1.E-5 for Octavia II distribution and 4E-6 for marshall distribution for each transient event postulated. The failure occurred at the 1.7th menit of the initial transient under 12.53 ksi of the pressure

  14. Interfacial friction in low flowrate vertical annular flow

    International Nuclear Information System (INIS)

    Kelly, J.M.; Freitas, R.L.

    1993-01-01

    During boil-off and reflood transients in nuclear reactors, the core liquid inventory and inlet flowrate are largely determined by the interfacial friction in the reactor core. For these transients, annular flow occurs at relatively modest liquid flowrates and at the low heat fluxes typical of decay heat conditions. The resulting low vapor Reynolds numbers, are out of the data range used to develop the generally accepted interfacial friction relations for annular flow. In addition, most existing annular flow data comes from air/liquid adiabatic experiments with fully developed flows. By contrast, in a reactor core, the flow is continuously developing along the heated length as the vapor flowrate increases and the flow regimes evolve from bubbly to annular flow. Indeed, the entire annular flow regime may exist only over tens of L/D's. Despite these limitations, many of the advanced reactor safety analysis codes employ the Wallis model for interfacial friction in annular flow. Our analyses of the conditions existing at the end-of-reflood in the PERICLES tests have indicated that the Wallis model seriously underestimates the interfacial shear for low vapor velocity cocurrent upflow. To extend the annular flow data base to diabatic low flowrate conditions, the DADINE tests were re-analyzed. In these tests, both pressure drop and local cross-section averaged void fractions were measured. Thus, both the wall and interfacial shear can be deduced. Based on the results of this analysis, a new correlation is proposed for interfacial friction in annular flow. (authors). 5 figs., 12 refs

  15. Experimental demonstration of a semi-brittle origin for crustal strain transients

    Science.gov (United States)

    Reber, J. E.; Lavier, L. L.; Hayman, N. W.

    2015-12-01

    Tectonic motions that give rise to destructive earthquakes and enigmatic transient slip events are commonly explained by friction laws that describe slip on fault surfaces and gouge-filled zones. Friction laws with the added effects of pore fluid pressure, shear heating, and chemical reactions as currently applied do not take into account that over a wide range of pressure and temperature conditions rocks deform following a complex mixed brittle-ductile rheology. In semi-brittle materials, such as polymineralic rocks, elasto-plastic and visco-elastic defamation can be observed simultaneously in different phases of the material. Field observations of such semi-brittle rocks at the mesoscale have shown that for a given range of composition, temperature, and pressure, the formation of fluid-filled brittle fractures and veins can precede and accompany the development of localized ductile flow. We propose that the coexistence of brittle and viscous behavior controls some of the physical characteristics of strain transients and slow slip events. Here we present results from shear experiments on semi-brittle rock analogues investigating the effect of yield stress on fracture propagation and connection, and how this can lead to reoccurring strain transients. During the experiments we monitor the evolution of fractures and flow as well as the force development in the system. We show that the nature of localized slip and flow in semi-brittle materials depends on the initiation and formation of mode I and II fractures and does not involve frictional behavior, supporting an alternative mechanism for the development of tectonic strain transients.

  16. Evaluating the environmental consequences of groundwater contamination. IV. Obtaining and utilizing contaminant arrival distributions in transient flow systems

    International Nuclear Information System (INIS)

    Nelson, R.W.

    1978-01-01

    The versatility of the new contaminant arrival distributions for determining environmental consequences of subsurface pollution problems is demonstrated through application to a transient flow system. Though some of the four phases of the hydrologic evaluations are more complicated because of the time dependence of the flow and input contaminant concentrations, the arrival distributions still effectively summarize the data required to determine the environmental implications. These arrival distributions yield two graphs or tabular sets of data giving the consequences of the subsurface pollution problems in a simple and direct form. 4 refs

  17. Multi-level adaptive simulation of transient two-phase flow in heterogeneous porous media

    KAUST Repository

    Chueh, C.C.

    2010-10-01

    An implicit pressure and explicit saturation (IMPES) finite element method (FEM) incorporating a multi-level shock-type adaptive refinement technique is presented and applied to investigate transient two-phase flow in porous media. Local adaptive mesh refinement is implemented seamlessly with state-of-the-art artificial diffusion stabilization allowing simulations that achieve both high resolution and high accuracy. Two benchmark problems, modelling a single crack and a random porous medium, are used to demonstrate the robustness of the method and illustrate the capabilities of the adaptive refinement technique in resolving the saturation field and the complex interaction (transport phenomena) between two fluids in heterogeneous media. © 2010 Elsevier Ltd.

  18. Numerical Comparison of Various Methods of Transient Flow Calculation in Water Conveyance Systems with Pumping Station

    Directory of Open Access Journals (Sweden)

    Alireza Khoshfetrat

    2018-05-01

    Full Text Available Under transient flow condition, the behavior of water conveyance system varies according to their characteristics. In the present study, the pressure was measured using a fast and sensitive pressure gauge in Bukan and Piranshahr water conveyance system. The pressure simulation was conducted using Bentley Hammer software. The friction head loss was calculated by different methods. The results showed that Unsteady Vitkovsky method had minimum error comparing with other methods. Wave velocity increase had direct effect on maximum pressures while velocity decrease affected minimum pressures. In a shorter water conveyance system, the reduction of wave velocity had direct effect on maximum pressure. Destruction to the long conveyance system was more probable and maximum and minimum pressures occurred during the first period. Shorter conveyance system had more pressure fluctuations and the minimum pressure did not occur in the first period. Coincidence of periods happened at the beginning and continued untill the end of data recording in the longer conveyance system. However, as time passed by, such coincidence did not occure in shorter conveyance system.

  19. Estimating steady state and transient characteristics of molten salt natural circulation loop using CFD

    Energy Technology Data Exchange (ETDEWEB)

    Kudariyawar, J.Y. [Homi Bhabha National Institue, Mumbai (India); Vaidya, A.M.; Maheshwari, K.K.; Srivastava, A.K. [Reactor Engineering Division, Bhabha Atomic Research Center, Mumbai (India); Satyamurthy, P. [ATDS, Bhabha Atomic Research Center, Mumbai (India)

    2015-03-15

    The steady state and transient characteristics of a molten salt natural circulation loop (NCL) are obtained by 3D CFD simulations. The working fluid is a mixture of NaNO{sub 3} and KNO{sub 3} in 60:40 ratio. Simulation is performed using PHOENICS CFD software. The computational domain is discretized by a body fitted grid generated using in-built mesh generator. The CFD model includes primary side. Primary side fluid is subjected to heat addition in heater section, heat loss to ambient (in piping connecting heater and cooler) and to secondary side (in cooler section). Reynolds Averaged Navier Stokes equations are solved along with the standard k-ε turbulence model. Validation of the model is done by comparing the computed steady state Reynolds number with that predicted by various correlations proposed previously. Transient simulations were carried out to study the flow initiations transients for different heater powers and different configurations. Similarly the ''power raising'' transient is computed and compared with in-house experimental data. It is found that, using detailed information obtained from 3D transient CFD simulations, it is possible to understand the physics of oscillatory flow patterns obtained in the loop under certain conditions.

  20. Effects of alloy composition and flow condition on the flow accelerated corrosion in neutral water condition

    International Nuclear Information System (INIS)

    Satoh, Tomonori; Ugachi, Hirokazu; Tsukada, Takashi; Uchida, Shunsuke

    2008-01-01

    The major mechanism of Flow accelerated corrosion (FAC) is the dissolution of the protective oxide on carbon steel, which is enhanced by mass transfer and erosion under high flow velocity conditions. In this study, the effects of alloy composition and flow velocity on FAC of carbon steel were evaluated by measuring FAC rate of tube type carbon steel specimens in the neutral water condition at 150degC. Obtained results are summarized in follows. 1) High FAC rate was depended upon the v 1.2 in the tube type specimen made of the standard alloy. 2) FAC was mitigated for the carbon steel with more than 0.03% of Cr content. 3) FAC rate decreased as Ni content increased in more than 0.1% of Ni content. 4) The difference in chemical composition of oxide film between Ni added carbon steel and Cr added one was confirmed. The hematite rich oxide was observed for Ni added carbon steel. 5) The effects of Cu on FAC rate was not observed up to 0.1% of Cu content. (author)

  1. Governing equations of transient soil water flow and soil water flux in multi-dimensional fractional anisotropic media and fractional time

    OpenAIRE

    M. L. Kavvas; A. Ercan; J. Polsinelli

    2017-01-01

    In this study dimensionally consistent governing equations of continuity and motion for transient soil water flow and soil water flux in fractional time and in fractional multiple space dimensions in anisotropic media are developed. Due to the anisotropy in the hydraulic conductivities of natural soils, the soil medium within which the soil water flow occurs is essentially anisotropic. Accordingly, in this study the fractional dimensions in two horizontal and one vertical di...

  2. Accidents and transients analyses of a super fast reactor with single flow pass core

    International Nuclear Information System (INIS)

    Sutanto,; Oka, Yoshiaki

    2014-01-01

    Highlights: • Safety analysis of a Super FR with single flow pass core is conducted. • Loss of feed water flow leads to a direct effect on the loss of fuel channel flow. • The core pressure is sensitive to LOCA accidents due to the direct effect. • Small LOCA introduces a critical break. • The safety criteria for all selected events are satisfied. - Abstract: The supercritical water cooled fast reactor with single flow pass core has been designed to simplify refueling and the structures of upper and lower mixing plenums. To evaluate the safety performance, safety analysis has been conducted with regard to LOCA and non-LOCA accidents including transient events. Safety analysis results show that the safety criteria are satisfied for all selected events. The total loss of feed water flow is the most important accident which the maximum cladding surface temperature (MCST) is high due to a direct effect of the accident on the total loss of flow in all fuel assemblies. However, actuation of the ADS can mitigate the accident. Small LOCA also introduces a critical break at 7.8% break which results high MCST at BOC because the scram and ADS are not actuated. Early ADS actuation is effective to mitigate the accident. In large LOCA, 100% break LOCA results a high MCST of flooding phase at BOC due to high power peaking at the bottom part. Use of high injection flow rate by 2 LPCI units is effective to decrease the MCST

  3. Experimental data report for transient flow calibration facility tests IIB101, IIB102 and IIB201

    International Nuclear Information System (INIS)

    Wambach, J.L.

    1980-01-01

    Thermal-hydraulic response data are presented for the transient performance tests of a pitot tube rake (IIB201) and a modular drag disc-turbine transducer (DTT) rake (IIB101, IIB102). The tests were conducted in a system which provided full scale simulation of the pressure vessel and broken loop hot leg piping of the Loss of Fluid Test Facility (LOFT). A load cell system was used to provide a reference mass flow rate measurement

  4. Comparative study of heterogeneous and homogeneous LMFBR cores in some accident conditions

    International Nuclear Information System (INIS)

    Renard, A.; Evrard, G.

    1978-01-01

    An heterogeneous design and a homogeneous one of a LMFBR core with the same power and similar dimensions are compared from the safety point-of-view. The comparison is performed for several accident conditions, such as Loss-of-Flow and Transient Overpower, with the same failure criteria and model assumptions for both cores. Qualitative trends are deduced from the behaviour of the core designs in the investigated transient conditions. (author)

  5. The flow structure of jets from transient sources and implications for modeling short-duration explosive volcanic eruptions

    Science.gov (United States)

    Chojnicki, K. N.; Clarke, A. B.; Adrian, R. J.; Phillips, J. C.

    2014-12-01

    We used laboratory experiments to examine the rise process in neutrally buoyant jets that resulted from an unsteady supply of momentum, a condition that defines plumes from discrete Vulcanian and Strombolian-style eruptions. We simultaneously measured the analog-jet discharge rate (the supply rate of momentum) and the analog-jet internal velocity distribution (a consequence of momentum transport and dilution). Then, we examined the changes in the analog-jet velocity distribution over time to assess the impact of the supply-rate variations on the momentum-driven rise dynamics. We found that the analog-jet velocity distribution changes significantly and quickly as the supply rate varied, such that the whole-field distribution at any instant differed considerably from the time average. We also found that entrainment varied in space and over time with instantaneous entrainment coefficient values ranging from 0 to 0.93 in an individual unsteady jet. Consequently, we conclude that supply-rate variations exert first-order control over jet dynamics, and therefore cannot be neglected in models without compromising their capability to predict large-scale eruption behavior. These findings emphasize the fundamental differences between unsteady and steady jet dynamics, and show clearly that: (i) variations in source momentum flux directly control the dynamics of the resulting flow; (ii) impulsive flows driven by sources of varying flux cannot reasonably be approximated by quasi-steady flow models. New modeling approaches capable of describing the time-dependent properties of transient volcanic eruption plumes are needed before their trajectory, dilution, and stability can be reliably computed for hazards management.

  6. Off-wall boundary conditions for turbulent flows obtained from buffer-layer minimal flow units

    Science.gov (United States)

    Garcia-Mayoral, Ricardo; Pierce, Brian; Wallace, James

    2012-11-01

    There is strong evidence that the transport processes in the buffer region of wall-bounded turbulence are common across various flow configurations, even in the embryonic turbulence in transition (Park et al., Phys. Fl. 24). We use this premise to develop off-wall boundary conditions for turbulent simulations. Boundary conditions are constructed from DNS databases using periodic minimal flow units and reduced order modeling. The DNS data was taken from a channel at Reτ = 400 and a zero-pressure gradient transitional boundary layer (Sayadi et al., submitted to J . FluidMech .) . Both types of boundary conditions were first tested on a DNS of the core of the channel flow with the aim of extending their application to LES and to spatially evolving flows. 2012 CTR Summer Program.

  7. Computational analysis of the behaviour of nuclear fuel under steady state, transient and accident conditions

    International Nuclear Information System (INIS)

    2007-12-01

    Accident analysis is an important tool for ensuring the adequacy and efficiency of the provision in the defence in depth concept to cope with challenges to plant safety. Accident analysis is the milestone of the demonstration that the plant is capable of meeting any prescribed limits for radioactive releases and any other acceptable limits for the safe operation of the plant. It is used, by designers, utilities and regulators, in a number of applications such as: (a) licensing of new plants, (b) modification of existing plants, (c) analysis of operational events, (d) development, improvement or justification of the plant operational limits and conditions, and (e) safety cases. According to the defence in depth concept, the fuel rod cladding constitutes the first containment barrier of the fission products. Therefore, related safety objectives and associated criteria are defined, in order to ensure, at least for normal operation and anticipated transients, the integrity of the cladding, and for accident conditions, acceptable radiological consequences with regard to the postulated frequency of the accident, as usually identified in the safety analysis reports. Therefore, computational analysis of fuel behaviour under steady state, transient and accident conditions constitutes a major link of the safety case in order to justify the design and the safety of the fuel assemblies, as far as all relevant phenomena are correctly addressed and modelled. This publication complements the IAEA Safety Report on Accident Analysis for Nuclear Power Plants (Safety Report Series No. 23) that provides practical guidance for establishing a set of conceptual and formal methods and practices for performing accident analysis. Computational analysis of the behaviour of nuclear fuel under transient and accident conditions, including normal operation (e.g. power ramp rates) is developed in this publication. For design basis accidents, depending on the type of influence on a fuel element

  8. Flows in networks under fuzzy conditions

    CERN Document Server

    Bozhenyuk, Alexander Vitalievich; Kacprzyk, Janusz; Rozenberg, Igor Naymovich

    2017-01-01

    This book offers a comprehensive introduction to fuzzy methods for solving flow tasks in both transportation and networks. It analyzes the problems of minimum cost and maximum flow finding with fuzzy nonzero lower flow bounds, and describes solutions to minimum cost flow finding in a network with fuzzy arc capacities and transmission costs. After a concise introduction to flow theory and tasks, the book analyzes two important problems. The first is related to determining the maximum volume for cargo transportation in the presence of uncertain network parameters, such as environmental changes, measurement errors and repair work on the roads. These parameters are represented here as fuzzy triangular, trapezoidal numbers and intervals. The second problem concerns static and dynamic flow finding in networks under fuzzy conditions, and an effective method that takes into account the network’s transit parameters is presented here. All in all, the book provides readers with a practical reference guide to state-of-...

  9. Transient Simulation of Speed-No Load Conditions With An Open-Source Based C++ Code

    Science.gov (United States)

    Casartelli, E.; Mangani, L.; Romanelli, G.; Staubli, T.

    2014-03-01

    Modern reversible pump-turbines can start in turbine operation very quickly, i.e. within few minutes. Unfortunately no clear design rules for runners with a stable start-up are available, so that certain machines can present unstable characteristics which lead to oscillations in the hydraulic system during synchronization. The so-called S-shape, i.e. the unstable characteristic in turbine brake operation, is defined by the change of sign of the slope of the head curve. In order to assess and understand this kind of instabilities with CFD, fast and reliable methods are needed. Using a 360 degrees model including the complete machine from spiral casing to draft tube the capabilities of a newly developed in-house tool are presented. An ad-hoc simulation is performed from no-load conditions into the S-shape in transient mode and using moving-mesh capabilities, thus being able to capture the opening process of the wicket gates, for example like during start-up. Beside the presentation of the computational methodology, various phenomena encounterd are analyzed and discussed, comparing them with measured and previously computed data, in order to show the capabilities of the developed procedure. Insight in detected phenomena is also given for global data like frequencies of vortical structures and local flow patterns.

  10. Transient Simulation of Speed-No Load Conditions With An Open-Source Based C++ Code

    International Nuclear Information System (INIS)

    Casartelli, E; Mangani, L; Romanelli, G; Staubli, T

    2014-01-01

    Modern reversible pump-turbines can start in turbine operation very quickly, i.e. within few minutes. Unfortunately no clear design rules for runners with a stable start-up are available, so that certain machines can present unstable characteristics which lead to oscillations in the hydraulic system during synchronization. The so-called S-shape, i.e. the unstable characteristic in turbine brake operation, is defined by the change of sign of the slope of the head curve. In order to assess and understand this kind of instabilities with CFD, fast and reliable methods are needed. Using a 360 degrees model including the complete machine from spiral casing to draft tube the capabilities of a newly developed in-house tool are presented. An ad-hoc simulation is performed from no-load conditions into the S-shape in transient mode and using moving-mesh capabilities, thus being able to capture the opening process of the wicket gates, for example like during start-up. Beside the presentation of the computational methodology, various phenomena encounterd are analyzed and discussed, comparing them with measured and previously computed data, in order to show the capabilities of the developed procedure. Insight in detected phenomena is also given for global data like frequencies of vortical structures and local flow patterns

  11. Two-phase flow regimes and mechanisms of critical heat flux under subcooled flow boiling conditions

    International Nuclear Information System (INIS)

    Le Corre, Jean-Marie; Yao, Shi-Chune; Amon, Cristina H.

    2010-01-01

    A literature review of critical heat flux (CHF) experimental visualizations under subcooled flow boiling conditions was performed and systematically analyzed. Three major types of CHF flow regimes were identified (bubbly, vapor clot and slug flow regime) and a CHF flow regime map was developed, based on a dimensional analysis of the phenomena and available experimental information. It was found that for similar geometric characteristics and pressure, a Weber number (We)/thermodynamic quality (x) map can be used to predict the CHF flow regime. Based on the experimental observations and the review of the available CHF mechanistic models under subcooled flow boiling conditions, hypothetical CHF mechanisms were selected for each CHF flow regime, all based on a concept of wall dry spot overheating, rewetting prevention and subsequent dry spot spreading. Even though the selected concept has not received much attention (in term or theoretical developments and applications) as compared to other more popular DNB models, its basis have often been cited by experimental investigators and is considered by the authors as the 'most-likely' mechanism based on the literature review and analysis performed in this work. The selected modeling concept has the potential to span the CHF conditions from highly subcooled bubbly flow to early stage of annular flow and has been numerically implemented and validated in bubbly flow and coupled with one- and three-dimensional (CFD) two-phase flow codes, in a companion paper. [Le Corre, J.M., Yao, S.C., Amon, C.H., in this issue. A mechanistic model of critical heat flux under subcooled flow boiling conditions for application to one and three-dimensional computer codes. Nucl. Eng. Des.].

  12. Analysis of the Mannshan Unit 2 full load rejection transient

    International Nuclear Information System (INIS)

    Kang, J.C.; Pei, B.S.; Yu, G.P.; Yuann, R.Y.

    1987-01-01

    Mannshan Unit 2 is a Westinghouse three-loop pressurized water reactor with a rated core power of 2775 MW(thermal) and a rated core flow of 4702 kg/s. Before full power operation, a planned net load rejection was performed during the startup test by opening the main transformer highside breakers. The generator power rapidly reduced to station load. All 16 steam dump valves immediately popped open, and control bank-D rods automatically stepped in as the temperature difference T/sub avg/ - T/sub ref/ reached a programmed 2.8 0 C. Nuclear power decreased smoothly as control rods were inserted into the core. The pressurizer pressure and liquid levels also dropped. Neither safety injection nor reactor trip occurred during this transient. The test was done to verify that the whole system would function properly under a transient to keep the reactor from scramming and that the vessel integrity would also be protected. In this study, which is the preliminary stage of RELAP5/MOD2 transient simulation of the Mannshan PWR plants, system thermal-hydraulic response is tested first and isolated from the neutronic effects. The variation of core power versus time curve was extracted from the power test data to serve as a time varying boundary condition. The comparison of the analytical results of four major parameters (pressurizer pressure, average temperature of the core, steam dump flow rate, and feedwater flow rate) from RELAP5/MOD2 and the power test data is illustrated

  13. Fuel pin behavior under slow ramp-type transient-overpower conditions in the CABRI-FAST experiments

    International Nuclear Information System (INIS)

    Fukano, Yoshitaka; Onoda, Yuichi; Sato, Ikken; Charpenel, Jean

    2009-01-01

    In the CABRI-FAST experimental program, four in-pile tests were performed with slow power-ramp-type transient-overpower conditions (called hereafter as 'slow TOP') to study transient fuel pin behavior under inadvertent control rod withdrawal events in liquid metal cooled fast breeder reactors. Annular-pellet fuel pins were used in three tests, while a solid-pellet fuel pin was used in the other test. All of these pins were pre-irradiated in Phenix. The slow TOP test with a solid-pellet fuel pin was realized as a comparatory test against an existing test (E12) in the CABRI-2 program. In the CABRI-FAST test (BCF1), a power ramp rate of 3% Po/s was applied, while in the CABRI-2 test, 1% Po/s was adopted. Moreover, overpower condition was maintained for a few seconds beyond the observed pin failure in the BCF1 test. In spite of the different power ramp rates, evaluated fuel thermal conditions at the observed failure time are quite similar. The continued overpower condition in the BCF1 test resulted in gradual degradation of the pin structure providing information effective for evaluation of various accident scenarios. Three slow TOP tests with the annular fuel in the CABRI-FAST program resulted in no pin failure showing high failure threshold. Based on post-test examination data and a theoretical evaluation, it was concluded that intra-pin free spaces, such as central hole, macroscopic cracks and fuel-cladding gap effectively mitigated fuel cladding mechanical interaction. It was also clarified that cavity pressurization became effective only in case of very large amount of fuel melting. Furthermore, such cavity pressurization was effectively mitigated by a molten-fuel squirting into the upper blanket region pushing the blanket pellets upward. These CABRI FAST slow TOP tests, in combination with the existing CABRI and TREAT tests, provided an extended slow TOP test database with various fuel and transient conditions. (author)

  14. Modeling and Controlling Flow Transient in Pipeline Systems: Applied for Reservoir and Pump Systems Combined with Simple Surge Tank

    Directory of Open Access Journals (Sweden)

    Itissam ABUIZIAH

    2014-03-01

    Full Text Available When transient conditions (water hammer exist, the life expectancy of the system can be adversely impacted, resulting in pump and valve failures and catastrophic pipe rupture. Hence, transient control has become an essential requirement for ensuring safe operation of water pipeline systems. To protect the pipeline systems from transient effects, an accurate analysis and suitable protection devices should be used. This paper presents the problem of modeling and simulation of transient phenomena in hydraulic systems based on the characteristics method. Also, it provides the influence of using the protection devices to control the adverse effects due to excessive and low pressure occuring in the transient. We applied this model for two main pipeline systems: Valve and pump combined with a simple surge tank connected to reservoir. The results obtained by using this model indicate that the model is an efficient tool for water hammer analysis. Moreover, using a simple surge tank reduces the unfavorable effects of transients by reducing pressure fluctuations.

  15. Development of three dimensional transient analysis code STTA for SCWR core

    International Nuclear Information System (INIS)

    Wang, Lianjie; Zhao, Wenbo; Chen, Bingde; Yao, Dong; Yang, Ping

    2015-01-01

    Highlights: • A coupled three dimensional neutronics/thermal-hydraulics code STTA is developed for SCWR core transient analysis. • The Dynamic Link Libraries method is adopted for coupling computation for SCWR multi-flow core transient analysis. • The NEACRP-L-335 PWR benchmark problems are studied to verify STTA. • The SCWR rod ejection problems are studied to verify STTA. • STTA meets what is expected from a code for SCWR core 3-D transient preliminary analysis. - Abstract: A coupled three dimensional neutronics/thermal-hydraulics code STTA (SCWR Three dimensional Transient Analysis code) is developed for SCWR core transient analysis. Nodal Green’s Function Method based on the second boundary condition (NGFMN-K) is used for solving transient neutron diffusion equation. The SCWR sub-channel code ATHAS is integrated into NGFMN-K through the serial integration coupling approach. The NEACRP-L-335 PWR benchmark problem and SCWR rod ejection problems are studied to verify STTA. Numerical results show that the PWR solution of STTA agrees well with reference solutions and the SCWR solution is reasonable. The coupled code can be well applied to the core transients and accidents analysis with 3-D core model during both subcritical pressure and supercritical pressure operation

  16. Groundwater flow modelling under ice sheet conditions. Scoping calculations

    International Nuclear Information System (INIS)

    Jaquet, O.; Namar, R.; Jansson, P.

    2010-10-01

    The potential impact of long-term climate changes has to be evaluated with respect to repository performance and safety. In particular, glacial periods of advancing and retreating ice sheet and prolonged permafrost conditions are likely to occur over the repository site. The growth and decay of ice sheets and the associated distribution of permafrost will affect the groundwater flow field and its composition. As large changes may take place, the understanding of groundwater flow patterns in connection to glaciations is an important issue for the geological disposal at long term. During a glacial period, the performance of the repository could be weakened by some of the following conditions and associated processes: - Maximum pressure at repository depth (canister failure). - Maximum permafrost depth (canister failure, buffer function). - Concentration of groundwater oxygen (canister corrosion). - Groundwater salinity (buffer stability). - Glacially induced earthquakes (canister failure). Therefore, the GAP project aims at understanding key hydrogeological issues as well as answering specific questions: - Regional groundwater flow system under ice sheet conditions. - Flow and infiltration conditions at the ice sheet bed. - Penetration depth of glacial meltwater into the bedrock. - Water chemical composition at repository depth in presence of glacial effects. - Role of the taliks, located in front of the ice sheet, likely to act as potential discharge zones of deep groundwater flow. - Influence of permafrost distribution on the groundwater flow system in relation to build-up and thawing periods. - Consequences of glacially induced earthquakes on the groundwater flow system. Some answers will be provided by the field data and investigations; the integration of the information and the dynamic characterisation of the key processes will be obtained using numerical modelling. Since most of the data are not yet available, some scoping calculations are performed using the

  17. Groundwater flow modelling under ice sheet conditions. Scoping calculations

    Energy Technology Data Exchange (ETDEWEB)

    Jaquet, O.; Namar, R. (In2Earth Modelling Ltd (Switzerland)); Jansson, P. (Dept. of Physical Geography and Quaternary Geology, Stockholm Univ., Stockholm (Sweden))

    2010-10-15

    The potential impact of long-term climate changes has to be evaluated with respect to repository performance and safety. In particular, glacial periods of advancing and retreating ice sheet and prolonged permafrost conditions are likely to occur over the repository site. The growth and decay of ice sheets and the associated distribution of permafrost will affect the groundwater flow field and its composition. As large changes may take place, the understanding of groundwater flow patterns in connection to glaciations is an important issue for the geological disposal at long term. During a glacial period, the performance of the repository could be weakened by some of the following conditions and associated processes: - Maximum pressure at repository depth (canister failure). - Maximum permafrost depth (canister failure, buffer function). - Concentration of groundwater oxygen (canister corrosion). - Groundwater salinity (buffer stability). - Glacially induced earthquakes (canister failure). Therefore, the GAP project aims at understanding key hydrogeological issues as well as answering specific questions: - Regional groundwater flow system under ice sheet conditions. - Flow and infiltration conditions at the ice sheet bed. - Penetration depth of glacial meltwater into the bedrock. - Water chemical composition at repository depth in presence of glacial effects. - Role of the taliks, located in front of the ice sheet, likely to act as potential discharge zones of deep groundwater flow. - Influence of permafrost distribution on the groundwater flow system in relation to build-up and thawing periods. - Consequences of glacially induced earthquakes on the groundwater flow system. Some answers will be provided by the field data and investigations; the integration of the information and the dynamic characterisation of the key processes will be obtained using numerical modelling. Since most of the data are not yet available, some scoping calculations are performed using the

  18. Analysis of fuel pin behavior under slow-ramp type transient overpower condition by using the fuel performance evaluation code 'FEMAXI-FBR'

    International Nuclear Information System (INIS)

    Tsuboi, Yasushi; Ninokata, Hisashi; Endo, Hiroshi; Ishizu, Tomoko; Tatewaki, Isao; Saito, Hiroaki

    2012-01-01

    FEMAXI-FBR has been developed as the one module of the core disruptive accident analysis code 'ASTERIA-FBR' in order to evaluate the mixed oxide (MOX) fuel performance under steady, transient and accident conditions of fast reactors consistently. On the basis of light water reactor (LWR) fuel performance evaluation code 'FEMAXI-6', FEMAXI-FBR develops specific models for the fast reactor fuel performance, such as restructuring, material migration during steady state and transient, melting cavity formation and pressure during accident, so that it can evaluate the fuel failure during accident. The analysis of test pin with slow transient over power test of CABRI-2 program was conducted from steady to transient. The test pin was pre-irradiated and tested under transient overpower with several % P 0 /s (P 0 : steady state power) of the power rate. Analysis results of the gas release ratio, pin failure time, and fuel melt radius were compared to measured values. The analysis results of the steady and transient performances were also compared with the measured values. The compared performances are gas release ratio, fuel restructuring for steady state and linear power and melt radius at failure during transient. This analysis result reproduces the measured value. It was concluded that FEMAXI-FBR is effective to evaluate fast reactor fuel performances from steady state to accident conditions. (author)

  19. Modeling and analysis of thermal-hydraulic response of uranium-aluminum reactor fuel plates under transient heatup conditions

    Energy Technology Data Exchange (ETDEWEB)

    Navarro-Valenti, S.; Kim, S.H.; Georgevich, V. [Oak Ridge National Lab., TN (United States)] [and others

    1995-09-01

    The purpose of this paper is to describe the analysis performed to predict the thermal behavior of fuel miniplates under rapid transient heatup conditions. The possibility of explosive boiling was considered, and it was concluded that the heating rates are not large enough for explosive boiling to occur. However, transient boiling effects were pronounced. Because of the complexity of transient pool boiling and the unavailability of experimental data for the situations studied, an approximation was made that predicted the data very well within the uncertainties present. If pool boiling from the miniplates had been assumed to be steady during the heating pulse, the experimental data would have been greatly overestimated. This fact demonstrates the importance of considering the transient nature of heat transfer in the analysis of reactivity excursion accidents. An additional contribution of the present work is that it provided data on highly subcooled steady nulceate boiling from the cooling portion of the thermocouple traces.

  20. A Conditionally Stable Scheme for a Transient Flow of a Non-Newtonian Fluid Saturating a Porous Medium

    KAUST Repository

    El-Amin, Mohamed

    2012-06-02

    The problem of thermal dispersion effects on unsteady free convection from an isothermal horizontal circular cylinder to a non-Newtonian fluid saturating a porous medium is examined numerically. The Darcy-Brinkman-Forchheimer model is employed to describe the flow field. The thermal diffusivity coefficient has been assumed to be the sum of the molecular diffusivity and the dynamic diffusivity due to mechanical dispersion. The simultaneous development of the momentum and thermal boundary layers are obtained by using finite difference method. The stability conditions are determined for each difference equation. Using an explicit finite difference scheme, solutions at each time-step have been found and then stepped forward in time until reaching steady state solution. Velocity and temperature profiles are shown graphically. It is found that as time approaches infinity, the values of friction factor and heat transfer coefficient approach the steady state values.

  1. A Conditionally Stable Scheme for a Transient Flow of a Non-Newtonian Fluid Saturating a Porous Medium

    KAUST Repository

    El-Amin, Mohamed; Salama, Amgad; Sun, Shuyu

    2012-01-01

    The problem of thermal dispersion effects on unsteady free convection from an isothermal horizontal circular cylinder to a non-Newtonian fluid saturating a porous medium is examined numerically. The Darcy-Brinkman-Forchheimer model is employed to describe the flow field. The thermal diffusivity coefficient has been assumed to be the sum of the molecular diffusivity and the dynamic diffusivity due to mechanical dispersion. The simultaneous development of the momentum and thermal boundary layers are obtained by using finite difference method. The stability conditions are determined for each difference equation. Using an explicit finite difference scheme, solutions at each time-step have been found and then stepped forward in time until reaching steady state solution. Velocity and temperature profiles are shown graphically. It is found that as time approaches infinity, the values of friction factor and heat transfer coefficient approach the steady state values.

  2. A study on the instability criterion for the stratified flow in horizontal pipe at cocurrent flow conditions

    Energy Technology Data Exchange (ETDEWEB)

    Sung, Chang Kyung [Korea Electric Power Research Institute, Taejon (Korea, Republic of)

    1998-12-31

    This paper presents a theoretical approach of the instability criterion from stratified to nonstratified flow in horizontal pipe at cocurrent flow conditions. The new theoretical instability criterion for the stratified and nonstratified flow transition in horizontal pipe has been developed by hyperbolic equations in two-phase flow. Critical flow condition criterion and onset of slugging at cocurrent flow condition correspond to zero and imaginary characteristics which occur when the hyperbolicity of a stratified two-phase flow is broken, respectively. Through comparison between results predicted by the present flow is broken, respectively. Through comparison between results predicted by the present theory and the Kukita et al. [1] experimental data of pipes, it is shown that they are in good agreement with data. 4 refs., 2 figs. (Author)

  3. A study on the instability criterion for the stratified flow in horizontal pipe at cocurrent flow conditions

    Energy Technology Data Exchange (ETDEWEB)

    Sung, Chang Kyung [Korea Electric Power Research Institute, Taejon (Korea, Republic of)

    1997-12-31

    This paper presents a theoretical approach of the instability criterion from stratified to nonstratified flow in horizontal pipe at cocurrent flow conditions. The new theoretical instability criterion for the stratified and nonstratified flow transition in horizontal pipe has been developed by hyperbolic equations in two-phase flow. Critical flow condition criterion and onset of slugging at cocurrent flow condition correspond to zero and imaginary characteristics which occur when the hyperbolicity of a stratified two-phase flow is broken, respectively. Through comparison between results predicted by the present flow is broken, respectively. Through comparison between results predicted by the present theory and the Kukita et al. [1] experimental data of pipes, it is shown that they are in good agreement with data. 4 refs., 2 figs. (Author)

  4. TACT1- TRANSIENT THERMAL ANALYSIS OF A COOLED TURBINE BLADE OR VANE EQUIPPED WITH A COOLANT INSERT

    Science.gov (United States)

    Gaugler, R. E.

    1994-01-01

    As turbine-engine core operating conditions become more severe, designers must develop more effective means of cooling blades and vanes. In order to design reliable, cooled turbine blades, advanced transient thermal calculation techniques are required. The TACT1 computer program was developed to perform transient and steady-state heat-transfer and coolant-flow analyses for cooled blades, given the outside hot-gas boundary condition, the coolant inlet conditions, the geometry of the blade shell, and the cooling configuration. TACT1 can analyze turbine blades, or vanes, equipped with a central coolant-plenum insert from which coolant-air impinges on the inner surface of the blade shell. Coolant-side heat-transfer coefficients are calculated with the heat transfer mode at each station being user specified as either impingement with crossflow, forced convection channel flow, or forced convection over pin fins. A limited capability to handle film cooling is also available in the program. The TACT1 program solves for the blade temperature distribution using a transient energy equation for each node. The nodal energy balances are linearized, one-dimensional, heat-conduction equations which are applied at the wall-outer-surface node, at the junction of the cladding and the metal node, and at the wall-inner-surface node. At the mid-metal node a linear, three-dimensional, heat-conduction equation is used. Similarly, the coolant pressure distribution is determined by solving the set of transfer momentum equations for the one-dimensional flow between adjacent fluid nodes. In the coolant channel, energy and momentum equations for one-dimensional compressible flow, including friction and heat transfer, are used for the elemental channel length between two coolant nodes. The TACT1 program first obtains a steady-state solution using iterative calculations to obtain convergence of stable temperatures, pressures, coolant-flow split, and overall coolant mass balance. Transient

  5. TRAC-PF1 analysis of LOFT steam-generator feedwater transient test L9-1

    International Nuclear Information System (INIS)

    Meier, J.K.

    1983-01-01

    The Transient Reactor Analysis Code (TRAC-PF1) calculations were compared to test data from Loss-of-Fluid Test (LOFT) L9-1, which was a loss-of-feedwater transient. This paper includes descriptions of the test and the TRAC input and compares the TRAC-calculated results with the test data. We conclude that the code predicted the experiment well, given the uncertainties in the boundary conditions. The analysis indicates the need to model all the flow paths and heat structures, and to improve the TRAC wall condensation heat-transfer model

  6. Transient Point Infiltration In The Unsaturated Zone

    Science.gov (United States)

    Buecker-Gittel, M.; Mohrlok, U.

    The risk assessment of leaking sewer pipes gets more and more important due to urban groundwater management and environmental as well as health safety. This requires the quantification and balancing of transport and transformation processes based on the water flow in the unsaturated zone. The water flow from a single sewer leakage could be described as a point infiltration with time varying hydraulic conditions externally and internally. External variations are caused by the discharge in the sewer pipe as well as the state of the leakage itself. Internal variations are the results of microbiological clogging effects associated with the transformation processes. Technical as well as small scale laboratory experiments were conducted in order to investigate the water transport from an transient point infiltration. From the technical scale experiment there was evidence that the water flow takes place under transient conditions when sewage infiltrates into an unsaturated soil. Whereas the small scale experiments investigated the hydraulics of the water transport and the associated so- lute and particle transport in unsaturated soils in detail. The small scale experiment was a two-dimensional representation of such a point infiltration source where the distributed water transport could be measured by several tensiometers in the soil as well as by a selective measurement of the discharge at the bottom of the experimental setup. Several series of experiments were conducted varying the boundary and initial con- ditions in order to derive the important parameters controlling the infiltration of pure water from the point source. The results showed that there is a significant difference between the infiltration rate in the point source and the discharge rate at the bottom, that could be explained by storage processes due to an outflow resistance at the bottom. This effect is overlayn by a decreasing water content decreases over time correlated with a decreasing infiltration

  7. Calculation of the fuel temperature field under heat release and heat conductance transient conditions

    International Nuclear Information System (INIS)

    Kazakov, E.K.; Chernukhina, G.M.

    1974-01-01

    Results of calculation of the temperature distribution in an annular fuel element at transient thermal conductivity and heat release values are given. The calculation has been carried out by the mesh technique with the third-order boundary conditions for the inner surface assumed and with heat fluxes and temperatures at the zone boundaries to be equal. Three variants of solving the problem of a stationary temperature field are considered for failed fuel elements with clad flaking or cracks. The results obtained show the nonuniformity of the fuel element temperature field to depend strongly on the perturbation parameter at transient thermal conductivity and heat release values. In case of can flaking at a short length, the core temperature rises quickly after flaking. While evaluating superheating, one should take into account the symmetry of can flaking [ru

  8. Fast reactor safety testing in Transient Reactor Test (TREAT) in the 1980s

    International Nuclear Information System (INIS)

    Wright, A.E.; Dutt, D.S.; Harrison, L.J.

    1990-01-01

    Several series of fast reactor safety tests were performed in TREAT during the 1980s. These focused on the transient behavior of full-length oxide fuels (US reference, UK reference, and US advanced design) and on modern metallic fuels. Most of the tests addressed fuel behavior under transient overpower or loss-of-flow conditions. The test series were the PFR/TREAT tests; the RFT, TS, CDT, and RX series on oxide fuels; and the M series on metallic fuels. These are described in terms of their principal results and relevance to analyses and safety evaluation. 4 refs., 3 tabs

  9. Comparison and verification of two computer programs used to analyze ventilation systems under accident conditions

    International Nuclear Information System (INIS)

    Hartig, S.H.; Wurz, D.E.; Arnitz, T.; Ruedinger, V.

    1985-01-01

    Two computer codes, TVENT and EVENT, which were developed at the Los Alamos National Laboratory (LANL) for the analysis of ventilation systems, have been modified to model air-cleaning systems that include active components with time-dependent flow-resistance characteristics. With both modified programs, fluid-dynamic transients were calculated for a test facility used to simulate accident conditions in air-cleaning systems. Experiments were performed in the test facility whereby flow and pressure transients were generated with the help of two quick-actuating air-stream control valves. The numerical calculations are compared with the test results. Although EVENT makes use of a more complex theoretical flow model than TVENT, the numerical simulations of both codes were found to be very similar for the flow conditions studied and to closely follow the experimental results

  10. Transient behaviour and control of the ACACIA plant

    International Nuclear Information System (INIS)

    Kikstra, J.F.; Heek, A.I. van; Verkooijen, A.H.M.

    2001-01-01

    This article deals with dynamic modelling and control of the ACACIA plant. A one-dimensional flow model describing the helium flow and the two-phase water flow is used through the whole plant, with different source terms in different pieces of equipment. A stage-by-stage model is produced for the radial compressor and axial turbine. Other models include the recuperator, water/helium heat exchangers, a natural convection evaporator, valves, etc. The models have been checked by comparison of the transient behavior with several other models, e.g. produced in RELAP. The dynamic behavior of this plant is analysed and a control structure is designed. First the requirements and options for a control system design are investigated. A number of possible control valve positions in the flowsheet are tested with transients in order to make an argued choice. The model is subsequently used to determine the optimal working conditions for different heat and power demands, these are used as set-points for the control system. Then the interaction between manipulated and controlled variables is mapped and based on this information a choice for coupling them in decentralised feedback control loops is made. This control structure is then tuned and tested. It can be concluded that both heat and power demand can be followed with acceptable performance over a wide range. (author)

  11. Transient Performance of Radiator on Engine Rpm Variation with AC Loading

    Directory of Open Access Journals (Sweden)

    Made Ricki Murti

    2012-11-01

    Full Text Available Radiator is one of heat exchanger applications that has a function to remove out of heat must be able to operate properly for allowed engine temperature limit. Vehicles that operate on the street usually driving with varying rpm so that the heat produced by the combustion process is not constant and then this study analyze the performance of radiators as a function of time (transient condition. Tests is done on the condition of operating the engine with five rpm variations, each for one hour with air conditioning load and without air-conditioning load. The data to be collected includ the inlet and outlet temperature of radiator and radiator fluid volume flow. The results obtained is heat exhausted rate as a performance radiator is increasing as with increasing of engine rpm and at load conditions with the AC produces heat exhausted rate is greater than AC without AC load. The heat exhausted rate in an hour of machine operation still shows the system operates at a transient condition due to there still exists a numerical increase in the heat exhausted rate as a function of time.

  12. Unsteady single-phase natural circulation flow mixing prediction using CATHARE three-dimensional capabilities

    Energy Technology Data Exchange (ETDEWEB)

    Salah, Anis Bousbia; Vlassenbroeck, Jacques [Bel V - Subsidiary of the Belgian Federal Agency for Nuclear Contro, Brussels (Belize)

    2017-04-15

    Coolant mixing under natural circulation flow regime constitutes a key parameter that may play a role in the course of an accidental transient in a nuclear pressurized water reactor. This issue has motivated some experimental investigations carried out within the OECD/NEA PKL projects. The aim was to assess the coolant mixing phenomenon in the reactor pressure vessel downcomer and the core lower plenum under several asymmetric steady and unsteady flow conditions, and to provide experimental data for code validations. Former studies addressed the mixing phenomenon using, on the one hand, one-dimensional computational approaches with cross flows that are not fully validated under transient conditions and, on the other hand, expensive computational fluid dynamic tools that are not always justified for large-scale macroscopic phenomena. In the current framework, an unsteady coolant mixing experiment carried out in the Rossendorf coolant mixing test facility is simulated using the three-dimensional porous media capabilities of the thermal–hydraulic system CATHARE code. The current study allows highlighting the current capabilities of these codes and their suitability for reproducing the main phenomena occurring during asymmetric transient natural circulation mixing conditions.

  13. Experimental calibration and validation of sewer/surface flow exchange equations in steady and unsteady flow conditions

    Science.gov (United States)

    Rubinato, Matteo; Martins, Ricardo; Kesserwani, Georges; Leandro, Jorge; Djordjević, Slobodan; Shucksmith, James

    2017-09-01

    The linkage between sewer pipe flow and floodplain flow is recognised to induce an important source of uncertainty within two-dimensional (2D) urban flood models. This uncertainty is often attributed to the use of empirical hydraulic formulae (the one-dimensional (1D) weir and orifice steady flow equations) to achieve data-connectivity at the linking interface, which require the determination of discharge coefficients. Because of the paucity of high resolution localised data for this type of flows, the current understanding and quantification of a suitable range for those discharge coefficients is somewhat lacking. To fulfil this gap, this work presents the results acquired from an instrumented physical model designed to study the interaction between a pipe network flow and a floodplain flow. The full range of sewer-to-surface and surface-to-sewer flow conditions at the exchange zone are experimentally analysed in both steady and unsteady flow regimes. Steady state measured discharges are first analysed considering the relationship between the energy heads from the sewer flow and the floodplain flow; these results show that existing weir and orifice formulae are valid for describing the flow exchange for the present physical model, and yield new calibrated discharge coefficients for each of the flow conditions. The measured exchange discharges are also integrated (as a source term) within a 2D numerical flood model (a finite volume solver to the 2D Shallow Water Equations (SWE)), which is shown to reproduce the observed coefficients. This calibrated numerical model is then used to simulate a series of unsteady flow tests reproduced within the experimental facility. Results show that the numerical model overestimated the values of mean surcharge flow rate. This suggests the occurrence of additional head losses in unsteady conditions which are not currently accounted for within flood models calibrated in steady flow conditions.

  14. A transient single particle model under FCI conditions

    Institute of Scientific and Technical Information of China (English)

    LI Xiao-Yan; SHANG Zhi; XU Ji-Jun

    2005-01-01

    The paper is focused on the coupling effect between film boiling heat transfer and evaporation drag around a hot-particle in cold liquid. Based on the continuity, momentum and energy equations of the vapor film, a transient two-dimensional single particle model has been established. This paper contains a detailed description of HPMC (High-temperature Particle Moving in Coolant) model for studying some aspects of the premixing stage of fuel-coolant interactions (FCIs). The transient process of high-temperature particles moving in coolant can be simulated. Comparisons between the experiment results and the calculations using HPMC model demonstrate that HPMC model achieves a good agreement in predicting the time-varying characteristic of high-temperature spheres moving in coolant.

  15. 3D numerical simulation of transient processes in hydraulic turbines

    International Nuclear Information System (INIS)

    Cherny, S; Chirkov, D; Lapin, V; Eshkunova, I; Bannikov, D; Avdushenko, A; Skorospelov, V

    2010-01-01

    An approach for numerical simulation of 3D hydraulic turbine flows in transient operating regimes is presented. The method is based on a coupled solution of incompressible RANS equations, runner rotation equation, and water hammer equations. The issue of setting appropriate boundary conditions is considered in detail. As an illustration, the simulation results for runaway process are presented. The evolution of vortex structure and its effect on computed runaway traces are analyzed.

  16. 3D numerical simulation of transient processes in hydraulic turbines

    Science.gov (United States)

    Cherny, S.; Chirkov, D.; Bannikov, D.; Lapin, V.; Skorospelov, V.; Eshkunova, I.; Avdushenko, A.

    2010-08-01

    An approach for numerical simulation of 3D hydraulic turbine flows in transient operating regimes is presented. The method is based on a coupled solution of incompressible RANS equations, runner rotation equation, and water hammer equations. The issue of setting appropriate boundary conditions is considered in detail. As an illustration, the simulation results for runaway process are presented. The evolution of vortex structure and its effect on computed runaway traces are analyzed.

  17. Transient stress control of aeroengine disks based on active thermal management

    International Nuclear Information System (INIS)

    Ding, Shuiting; Wang, Ziyao; Li, Guo; Liu, Chuankai; Yang, Liu

    2016-01-01

    Highlights: • The essence of cooling in turbine system is a process of thermal management. • Active thermal management is proposed to control transient stress of disks. • The correlation between thermal load and transient stress of disks is built. • Stress level can be declined by actively adjusting the thermal load distribution. • Artificial temperature gradient can be used to counteract stress from rotating. - Abstract: The physical essence of cooling in the turbine system is a process of thermal management. In order to overcome the limits of passive thermal management based on thermal protection, the concept of active thermal management based on thermal load redistribution has been proposed. On this basis, this paper focuses on a near real aeroengine disk during a transient process and studies the stress control mechanism of active thermal management in transient conditions by a semi-analytical method. Active thermal management is conducted by imposing extra heating energy on the disk hub, which is represented by the coefficient of extra heat flow η. The results show that the transient stress level can be effectively controlled by actively adjusting the thermal load distribution. The decline ratio of the peak equivalent stress of the disk hub can be 9.0% for active thermal management load condition (η = 0.2) compared with passive condition (η = 0), even at a rotation speed of 10,000 r/min. The reason may be that the temperature distribution of the disk turns into an artificial V-shape because of the extra heating energy on the hub, and the resulting thermal stresses induced by the negative temperature gradients counteract parts of the stress from rotating.

  18. Numerical analysis of the transient flow in a scroll refrigeration compressor

    Science.gov (United States)

    Sun, Shuaihui; Wu, Kai; Guo, Pengcheng; Luo, Xingqi

    2017-08-01

    In the present paper, the CFD technology is adopted to simulate the working process of a scroll refrigeration compressor with R22 as working fluid. The structural grids in the scroll compressor were updated continually during the solving process to cope with the movement boundaries of the fluid domain. The radial meshing clearance was 0.008 mm which was the same with that in the real prototype. The pressure, velocity and temperature distribution in chambers of compressor were computed. Also, the transient mass flux diagrams were calculated out. The results indicated that the pressure was asymmetrical in the two symmetrical suction chambers, because the suction port and passage were not absolutely symmetrical. The gradient of temperature was great in each working chamber due to leakage flow. Velocity vector distribution was asymmetrical in each pair of working chamber owing to the movement of orbiting scroll; the flow was complicated in the central working chamber. The movement of the orbiting scroll had different influence on the vortexes formation in each pair of compression chamber. The inlet and outlet mass flux fluctuated with the crank angle obviously. Because of the ‘cut-off’ of the refrigeration fluid in the suction chamber when the crank angle was larger than 220°, the inlet mass flux decreased remarkably. Finally, some useful advices were given to improve the performance of the scroll refrigeration compressor.

  19. Transient hydrodynamic finite-size effects in simulations under periodic boundary conditions

    Science.gov (United States)

    Asta, Adelchi J.; Levesque, Maximilien; Vuilleumier, Rodolphe; Rotenberg, Benjamin

    2017-06-01

    We use lattice-Boltzmann and analytical calculations to investigate transient hydrodynamic finite-size effects induced by the use of periodic boundary conditions. These effects are inevitable in simulations at the molecular, mesoscopic, or continuum levels of description. We analyze the transient response to a local perturbation in the fluid and obtain the local velocity correlation function via linear response theory. This approach is validated by comparing the finite-size effects on the steady-state velocity with the known results for the diffusion coefficient. We next investigate the full time dependence of the local velocity autocorrelation function. We find at long times a crossover between the expected t-3 /2 hydrodynamic tail and an oscillatory exponential decay, and study the scaling with the system size of the crossover time, exponential rate and amplitude, and oscillation frequency. We interpret these results from the analytic solution of the compressible Navier-Stokes equation for the slowest modes, which are set by the system size. The present work not only provides a comprehensive analysis of hydrodynamic finite-size effects in bulk fluids, which arise regardless of the level of description and simulation algorithm, but also establishes the lattice-Boltzmann method as a suitable tool to investigate such effects in general.

  20. Online recognition of the multiphase flow regime and study of slug flow in pipeline

    International Nuclear Information System (INIS)

    Guo Liejin; Bai Bofeng; Zhao Liang; Wang Xin; Gu Hanyang

    2009-01-01

    sensor performance. Among various flow patterns of gas-liquid flow, slug flow occurs frequently in the petroleum, chemical, civil and nuclear industries. In the offshore oil and gas field, the maximum slug length and its statistical distribution are very important for the design of separator and downstream processing facility at steady state operations. However transient conditions may be encountered in the production, such as operational upsets, start-up, shut-down, pigging and blowdown, which are key operational and safety issues related to oil field development. So it is necessary to have an understanding the flow parameters under transient conditions. In this paper, the evolution of slug length along a horizontal pipe in gas-liquid flow is also studied in details and then an experimental study of flowrate transients in slug flow is provided. Also, the special gas-liquid flow phenomena easily encountered in the life span of offshore oil fields, called severe slugging, is studied experimentally and some results are presented.

  1. R 12 two-phase flow in throttle capillaries in critical flow conditions

    International Nuclear Information System (INIS)

    Petry, G.

    1983-01-01

    In this dissertation, the state of knowledge on two phase flow, its use and measurement processes are given from an extensive search of the literature. In the experimental part of the work, a continuously working experimental circuit was built up, by which single component two phase flow can be examined in critical flow conditions. Using the maintenance equations, a system of equations was produced, by which the content of steam flow, the content of steam volume and the slip between the phases at the end corssection of the capillary can be determined. The transfer of the experimental results into the Baker diagram shows that the experimental values lie in the region of mist, bubble and foam flow. (orig.) [de

  2. Transients from initial conditions based on Lagrangian perturbation theory in N-body simulations II: the effect of the transverse mode

    International Nuclear Information System (INIS)

    Tatekawa, Takayuki

    2014-01-01

    We study the initial conditions for cosmological N-body simulations for precision cosmology. In general, Zel'dovich approximation has been applied for the initial conditions of N-body simulations for a long time. These initial conditions provide incorrect higher-order growth. These error caused by setting up the initial conditions by perturbation theory is called transients. We investigated the impact of transient on non-Gaussianity of density field by performing cosmological N-body simulations with initial conditions based on first-, second-, and third-order Lagrangian perturbation theory in previous paper. In this paper, we evaluates the effect of the transverse mode in the third-order Lagrangian perturbation theory for several statistical quantities such as power spectrum and non-Gaussianty. Then we clarified that the effect of the transverse mode in the third-order Lagrangian perturbation theory is quite small

  3. SSYST, a code-system for analysing transient LWR fuel rod behaviour under off-normal conditions

    International Nuclear Information System (INIS)

    Borgwaldt, H.; Gulden, W.

    1983-01-01

    SSYST is a code-system for analysing transient fuel rod behaviour under off-normal conditions, developed conjointly by the Institut fuer Kernenergetik und Energiesysteme (IKE), Stuttgart, and Kernforschungszentrum Karlsruhe (KfK) under contract of Projek Nukleare Sicherheit (PNS) at KfK. The main differences between SSYST and similar codes are (1) an open-ended modular code organisation, and (2) a preference for simple models, wherever possible. While the first feature makes SSYST a very flexible tool, easily adapted to changing requirements, the second feature leads to short execution times. The analysis of transient rod behaviour under LOCA boundary conditions takes 2 min cpu-time (IBM-3033), so that extensive parametric studies become possible. This paper gives an outline of the overall code organisation and a general overview of the physical models implemented. Besides explaining the routine application of SSYST in the analysis of loss-of-coolant accidents, examples are given of special applications which have led to a satisfactory understanding of the decisive influence of deviations from rotational symmetry on the fuel rod perimeter. (author)

  4. SSYST: A code-system for analyzing transient LWR fuel rod behaviour under off-normal conditions

    International Nuclear Information System (INIS)

    Borgwaldt, H.; Gulden, W.

    1983-01-01

    SSYST is a code-system for analyzing transient fuel rod behaviour under off-normal conditions, developed conjointly by the Institut fur Kernenergetik und Energiesysteme (IKE), Stuttgart, and Kernforschungszentrum Karlsruhe (KfK) under contract of Projekt Nukleare Sicherheit (PNS) at KfK. The main differences between SSYST and similar codes are an open-ended modular code organization, and a preference for simple models, wherever possible. While the first feature makes SSYST a very flexible tool, easily adapted to changing requirements, the second feature leads to short execution times. The analysis of transient rod behaviour under LOCA boundary conditions takes 2 min cpu-time (IBM-3033), so that extensive parametric studies become possible. This paper gives an outline of the overall code organisation and a general overview of the physical models implemented. Besides explaining the routine application of SSYST in the analysis of loss-of-coolant accidents, examples are given of special applications which have led to a satisfactory understanding of the decisive influence of deviations from rotational symmetry on the fuel rod perimeter

  5. Preferential flow occurs in unsaturated conditions

    Science.gov (United States)

    Nimmo, John R.

    2012-01-01

    Because it commonly generates high-speed, high-volume flow with minimal exposure to solid earth materials, preferential flow in the unsaturated zone is a dominant influence in many problems of infiltration, recharge, contaminant transport, and ecohydrology. By definition, preferential flow occurs in a portion of a medium – that is, a preferred part, whether a pathway, pore, or macroscopic subvolume. There are many possible classification schemes, but usual consideration of preferential flow includes macropore or fracture flow, funneled flow determined by macroscale heterogeneities, and fingered flow determined by hydraulic instability rather than intrinsic heterogeneity. That preferential flow is spatially concentrated associates it with other characteristics that are typical, although not defining: it tends to be unusually fast, to transport high fluxes, and to occur with hydraulic disequilibrium within the medium. It also has a tendency to occur in association with large conduits and high water content, although these are less universal than is commonly assumed. Predictive unsaturated-zone flow models in common use employ several different criteria for when and where preferential flow occurs, almost always requiring a nearly saturated medium. A threshold to be exceeded may be specified in terms of the following (i) water content; (ii) matric potential, typically a value high enough to cause capillary filling in a macropore of minimum size; (iii) infiltration capacity or other indication of incipient surface ponding; or (iv) other conditions related to total filling of certain pores. Yet preferential flow does occur without meeting these criteria. My purpose in this commentary is to point out important exceptions and implications of ignoring them. Some of these pertain mainly to macropore flow, others to fingered or funneled flow, and others to combined or undifferentiated flow modes.

  6. The three-dimensional transient two-phase flow computer programme BACCHUS-3D/TP

    International Nuclear Information System (INIS)

    Bottoni, M.; Dorr, B.; Homann, C.

    1992-04-01

    The three-dimensional single-phase flow version of the BACCHUS code, which describes the thermal behaviour of a coolant in hexagonal bundle geometry, developed earlier, provided the basis for the development of the two-phase flow version documented in this report. A detailed description is given of the two-phase Slip Model (SM), and of the Homogeneous Equilibrium Model (HEM) as a subcase, which presents several improvements from both viewpoints of physical modelling and numerical treatment, with respect to usual models found in the literature. The most advanced Separated Phases Model (SPM) is then described in all analytical details necessary to fully understand its implementation in the code. Poblems related to the link between the two above models into an integrated code version are then discussed. The code provides an additional option for modelling of active or passive, permeable or impermeable blockages. This option is documented separately. New numerical methods for solving the algebraic systems of equations derived from the linearization of the fundamental equations have completely superseded previous ones and are explained in detail. Eventually a section is dedicated to an overview of the code verification, made over several years, which goes from steady state single-phase unheated bundle experiments up to fast transient two-phase flow experiments in electrically heated 37-pin bundles. (orig.) [de

  7. A new oxidation flow reactor for measuring secondary aerosol formation of rapidly changing emission sources

    Science.gov (United States)

    Simonen, Pauli; Saukko, Erkka; Karjalainen, Panu; Timonen, Hilkka; Bloss, Matthew; Aakko-Saksa, Päivi; Rönkkö, Topi; Keskinen, Jorma; Dal Maso, Miikka

    2017-04-01

    Oxidation flow reactors (OFRs) or environmental chambers can be used to estimate secondary aerosol formation potential of different emission sources. Emissions from anthropogenic sources, such as vehicles, often vary on short timescales. For example, to identify the vehicle driving conditions that lead to high potential secondary aerosol emissions, rapid oxidation of exhaust is needed. However, the residence times in environmental chambers and in most oxidation flow reactors are too long to study these transient effects ( ˜ 100 s in flow reactors and several hours in environmental chambers). Here, we present a new oxidation flow reactor, TSAR (TUT Secondary Aerosol Reactor), which has a short residence time ( ˜ 40 s) and near-laminar flow conditions. These improvements are achieved by reducing the reactor radius and volume. This allows studying, for example, the effect of vehicle driving conditions on the secondary aerosol formation potential of the exhaust. We show that the flow pattern in TSAR is nearly laminar and particle losses are negligible. The secondary organic aerosol (SOA) produced in TSAR has a similar mass spectrum to the SOA produced in the state-of-the-art reactor, PAM (potential aerosol mass). Both reactors produce the same amount of mass, but TSAR has a higher time resolution. We also show that TSAR is capable of measuring the secondary aerosol formation potential of a vehicle during a transient driving cycle and that the fast response of TSAR reveals how different driving conditions affect the amount of formed secondary aerosol. Thus, TSAR can be used to study rapidly changing emission sources, especially the vehicular emissions during transient driving.

  8. Numerical investigation on transient flow and cavitation characteristic within nozzle during the oil drainage process for a high-pressure common-rail DI diesel engine

    International Nuclear Information System (INIS)

    Sun, Zuo-Yu; Li, Guo-Xiu; Yu, Yu-Song; Gao, Si-Chao; Gao, Guo-Xi

    2015-01-01

    Highlights: • The flow process within nozzle during oil drainage process were studied. • The effects of needle movement on flow characteristics were studied. • The cavitation characteristics in a transient flow were numerical studied. - Abstract: In the present investigation, the transient developments of flow and cavitation within an injector’s nozzle during the oil drainage process have been studied by numerical method for a high-pressure common-rail DI diesel engine, both the variation regulations of macro parameters (indicating flow characteristics and cavitation characteristics) and the distribution manners of important physical fields (indicating the cavitation evolution in the micro) have been obtained and analyzed. The obtained numerical results indicate that, during the oil drainage process, both mass flow rate and flow coefficient monotonously increase with declining variation rates, both averaged flow velocity and averaged turbulent kinetic energy also monotonously increase; however, to the curve of TKE-needle lift, there exist certain points give abrupt increase. The difference in TKE curve compared to averaged flow velocity is mainly attributed to the sudden variation of cavitation. Based upon the numerical results, the cavitation bubble will not be formed until the needle lift has been raised to a certain position due to the lower flow velocity and the lack of low (even negative) pressure zones. As needle rises, the primary bubbles are formed near the lower corner after nozzle’s entrance; but as needle further rises, the positions at where bubbles are formed have been transferred to the upper corner and then being blow downwards orifice as the increase of flow velocity

  9. Empirical method to calculate Clinch River Breeder Reactor (CRBR) inlet plenum transient temperatures

    International Nuclear Information System (INIS)

    Howarth, W.L.

    1976-01-01

    Sodium flow enters the CRBR inlet plenum via three loops or inlets. An empirical equation was developed to calculate transient temperatures in the CRBR inlet plenum from known loop flows and temperatures. The constants in the empirical equation were derived from 1/4 scale Inlet Plenum Model tests using water as the test fluid. The sodium temperature distribution was simulated by an electrolyte. Step electrolyte transients at 100 percent model flow were used to calculate the equation constants. Step electrolyte runs at 50 percent and 10 percent flow confirmed that the constants were independent of flow. Also, a transient was tested which varied simultaneously flow rate and electrolyte. Agreement of the test results with the empirical equation results was good which verifies the empirical equation

  10. Unsteady-state analysis of a counter-flow dew point evaporative cooling system

    KAUST Repository

    Lin, J.

    2016-07-19

    Understanding the dynamic behavior of the dew point evaporative cooler is crucial in achieving efficient cooling for real applications. This paper details the development of a transient model for a counter-flow dew point evaporative cooling system. The transient model approaching steady conditions agreed well with the steady state model. Additionally, it is able to accurately predict the experimental data within 4.3% discrepancy. The transient responses of the cooling system were investigated under different inlet air conditions. Temporal temperature and humidity profiles were analyzed for different transient and step responses. The key findings from this study include: (1) the response trend and settling time is markedly dependent on the inlet air temperature, humidity and velocity; (2) the settling time of the transient response ranges from 50 s to 300 s when the system operates under different inlet conditions; and (3) the average transient wet bulb effectiveness (1.00–1.06) of the system is observed to be higher than the steady state wet bulb effectiveness (1.01) for our range of study. © 2016 Elsevier Ltd

  11. Influencing Power Flow and Transient Stability by Static Synchronous Series Compensator

    Directory of Open Access Journals (Sweden)

    Md. Imran Azim

    2015-04-01

    Full Text Available In the present world, modern power system networks, being a complicated combination of generators, transmission lines, transformers, circuit breakers and other devices, are more vulnerable to various types of faults causing stability problems. Among these faults, transient fault is believed to be a major disturbance as it causes large damage to a sound system within a certain period of time. Therefore, the protection against transient faults, better known as transient stability control is one of the major considerations for the power system engineers. This paper presents the control approach in the transmission line during transient faults by means of Static Synchronous Series Compensator (SSSC in order to stabilize Single Machine Infinite Bus (SMIB system.  In this paper, SSSC is represented by variable voltage injection associated with the transformer leakage reactance and the voltage source. The comparative results depict that the swing curve of a system increases monotonically after the occurrence of transient faults However, SSSC is effective enough to make it stable after a while.

  12. Transient performance of S-prism

    International Nuclear Information System (INIS)

    Dubberley, A.E.; Boardman, C.E.; Gamble, R.E.; Hiu, M.M.; Lipps, A.J.; Wu, T.

    2001-01-01

    S-PRISM is an advanced Fast Reactor plant design that utilizes compact modular pool-type reactors sized to enable factory fabrication and an affordable prototype test of a single Nuclear Steam Supply System (NSSS) for design certification at minimum cost and risk. Based on the success of the previous DOE sponsored Advanced Liquid Metal Reactor (ALMR) program GE has continued to develop and assess the technical viability and economic potential of an up-rated plant called SuperPRISM (S-PRISM). This paper presents the results of transient analyses performed to assess the ability of S-PRISM to accommodate severe accident initiator events. A unique safety capability of S-PRISM is accommodation of the ''higher probability'' accident initiators that led to core melt accidents in prior large LMRs. These events, the Anticipated Transients Without Scram (ATWS) events, are thus the focus of passive safety confirmation analyses. The events included in this assessment are: Unprotected Loss of Flow, Unprotected Loss of Heat Sink, Unprotected Loss of Flow and Heat sink, Unprotected Transient Overpower and Unprotected Safe Shutdown Earthquake. (author)

  13. User's guide to HEATRAN: a computer program for three-dimensional transient fluid-flow and heat-transfer analysis

    International Nuclear Information System (INIS)

    Wong, C.N.C.; Cheng, S.K.; Todreas, N.E.

    1982-01-01

    This report provides the HEATRAN user with programming and input information. HEATRAN is a computer program which is written to analyze the transient three dimensional single phase incompressible fluid flow and heat transfer problem. In this report, the programming information is given first. This information includes details concerning the code and structure. The description of the required input variables is presented next. Following the input description, the sample problems are described and HEATRAN's results are presented

  14. Fuel Cooling in Absence of Forced Flow at Shutdown Condition with PHTS Partially Drained

    Energy Technology Data Exchange (ETDEWEB)

    Parasca, L.; Pecheanu, D.L., E-mail: laurentiu.parasca@cne.ro, E-mail: doru.pecheanu@cne.ro [Cernavoda Nuclear Power Plant, Cernavoda (Romania)

    2014-09-15

    During the plant outage for maintenance on primary side (e.g. for the main Heat Transport System pumps maintenance, the Steam Generators inspection), there are situations which require the primary heat transport system (HTS) drainage to a certain level for opening the circuit. The primary fuel heat sink for this configuration is provided by the shutdown cooling system (SDCS). In case of losing the forced cooling (e.g. due to the loss of SDCS, design basis earthquake-DBE), flow conditions in the reactor core may become stagnant. Inside the fuel channels, natural circulation phenomena known as Intermittent Buoyancy Induced Flow (IBIF) will initiate, providing an alternate heat sink mechanism for the fuel. However, this heat sink is effective only for a limited period of time (recall time). The recall time is defined as the elapsed time until the water temperature in the HTS headers exceeds a certain limit. Until then, compensatory measures need to be taken (e.g. by re-establishing the forced flow or initiate Emergency Core Cooling system injection) to preclude fuel failures. The present paper briefly presents the results of an analysis performed to demonstrate that fuel temperature remains within acceptable limits during IBIF transient. One of the objectives of this analysis was to determine the earliest moment since the reactor shut down when maintenance activities on the HTS can be started such that IBIF is effective in case of losing the forced circulation. The resulting peak fuel sheath and pressure tube temperatures due to fuel heat up shall be within the acceptable limits to preclude fuel defect or fuel channel defects.Thermalhydraulic circuit conditions were obtained using a CATHENA model for the primary side of HTS (drained to a certain level), an ECC system model and a system model for SDCS. A single channel model was developed in GOTHIC code for the fuel assessment analysis. (author)

  15. Simulation of the Three Mile Island transient in Semiscale

    International Nuclear Information System (INIS)

    Larson, T.K.; Loomis, G.G.; Shumway, R.W.

    1979-07-01

    This report presents the results of a preliminary review and analysis of the data obtained from eight simulations of the Three Mile Island Unit 2 Nuclear Power Generating Station transient (March 28, 1979) that have been conducted in the Semiscale Mod-3 System. The Semiscale simulations of the Three Mile Island (TMI) transient were basically conducted from the same sequence of events as those recorded in the plant. System initial conditions representative of those in the TMI system were established and the transient was initiated by terminating steam generator feedwater and steam valve flow. The steam generator secondaries were drained to control primary to secondary heat transfer. The pressurizer power operated relief valve, pressurizer code safety valve, and core power trip were operated on system pressure. High pressure safety injection was activated for about one minute during the Semiscale simulations. In addition, both primary loop coolant pumps were shut off in the Semiscale simulation at the same time that the Three Mile Island loop 2A pump was shut off

  16. VALIDATION OF SIMBAT-PWR USING STANDARD CODE OF COBRA-EN ON REACTOR TRANSIENT CONDITION

    Directory of Open Access Journals (Sweden)

    Muhammad Darwis Isnaini

    2016-03-01

    Full Text Available The validation of Pressurized Water Reactor typed Nuclear Power Plant simulator developed by BATAN (SIMBAT-PWR using standard code of COBRA-EN on reactor transient condition has been done. The development of SIMBAT-PWR has accomplished several neutronics and thermal-hydraulic calculation modules. Therefore, the validation of the simulator is needed, especially in transient reactor operation condition. The research purpose is for characterizing the thermal-hydraulic parameters of PWR1000 core, which be able to be applied or as a comparison in developing the SIMBAT-PWR. The validation involves the calculation of the thermal-hydraulic parameters using COBRA-EN code. Furthermore, the calculation schemes are based on COBRA-EN with fixed material properties and dynamic properties that calculated by MATPRO subroutine (COBRA-EN+MATPRO for reactor condition of startup, power rise and power fluctuation from nominal to over power. The comparison of the temperature distribution at nominal 100% power shows that the fuel centerline temperature calculated by SIMBAT-PWR has 8.76% higher result than COBRA-EN result and 7.70% lower result than COBRA-EN+MATPRO. In general, SIMBAT-PWR calculation results on fuel temperature distribution are mostly between COBRA-EN and COBRA-EN+MATPRO results. The deviations of the fuel centerline, fuel surface, inner and outer cladding as well as coolant bulk temperature in the SIMBAT-PWR and the COBRA-EN calculation, are due to the value difference of the gap heat transfer coefficient and the cladding thermal conductivity.

  17. OPR1000 RCP Flow Coastdown Analysis using SPACE Code

    Energy Technology Data Exchange (ETDEWEB)

    Lee, Dong-Hyuk; Kim, Seyun [KHNP CRI, Daejeon (Korea, Republic of)

    2016-10-15

    The Korean nuclear industry developed a thermal-hydraulic analysis code for the safety analysis of PWRs, named SPACE(Safety and Performance Analysis Code for Nuclear Power Plant). Current loss of flow transient analysis of OPR1000 uses COAST code to calculate transient RCS(Reactor Coolant System) flow. The COAST code calculates RCS loop flow using pump performance curves and RCP(Reactor Coolant Pump) inertia. In this paper, SPACE code is used to reproduce RCS flowrates calculated by COAST code. The loss of flow transient is transient initiated by reduction of forced reactor coolant circulation. Typical loss of flow transients are complete loss of flow(CLOF) and locked rotor(LR). OPR1000 RCP flow coastdown analysis was performed using SPACE using simplified nodalization. Complete loss of flow(4 RCP trip) was analyzed. The results show good agreement with those from COAST code, which is CE code for calculating RCS flow during loss of flow transients. Through this study, we confirmed that SPACE code can be used instead of COAST code for RCP flow coastdown analysis.

  18. Pulsatile atheroprone shear stress affects the expression of transient receptor potential channels in human endothelial cells

    DEFF Research Database (Denmark)

    Thilo, Florian; Vorderwülbecke, Bernd J; Marki, Alex

    2012-01-01

    in comparison with endothelial cells grown under static conditions. There was a significant association between the expression of TRPC6 and tumor necrosis factor-α mRNA in human vascular tissue. No-flow and atheroprone flow conditions are equally characterized by an increase in the expression of tumor necrosis......The goal of the study was to assess whether pulsatile atheroprone shear stress modulates the expression of transient receptor potential (TRP) channels, TRPC3, TRPC6, TRPM7, and TRPV1 mRNA, in human umbilical vascular endothelial cells. Exposure of cultured vascular endothelial cells to defined...

  19. DSMC Simulation of Separated Flows About Flared Bodies at Hypersonic Conditions

    Science.gov (United States)

    Moss, James N.

    2000-01-01

    This paper describes the results of a numerical study of interacting hypersonic flows at conditions that can be produced in ground-based test facilities. The computations are made with the direct simulation Monte Carlo (DSMC) method of Bird. The focus is on Mach 10 flows about flared axisymmetric configurations, both hollow cylinder flares and double cones. The flow conditions are those for which experiments have been or will be performed in the ONERA R5Ch low-density wind tunnel and the Calspan-University of Buffalo Research Center (CUBRC) Large Energy National Shock (LENS) tunnel. The range of flow conditions, model configurations, and model sizes provides a significant range of shock/shock and shock/boundary layer interactions at low Reynolds number conditions. Results presented will highlight the sensitivity of the calculations to grid resolution, contrast the differences in flow structure for hypersonic cold flows and those of more energetic but still low enthalpy flows, and compare the present results with experimental measurements for surface heating, pressure, and extent of separation.

  20. Computational simulation of two-dimensional transient natural convection in volumetrically heated square enclosure

    International Nuclear Information System (INIS)

    Vieira, Camila Braga; Jian Su

    2010-01-01

    Natural convection is a physical phenomenon that has been investigated in nuclear engineering so as to provide information about heat transfer in severe accident conditions involving nuclear reactors. This research reported transient natural convection of fluids with uniformly distributed volumetrically heat generation in square cavity with isothermal side walls and adiabatic top/bottom walls. Two Prandtl numbers were considered, 0:0321 and 0:71. Direct numerical simulations were applied in order to obtain results about the velocities of the fluid in directions x and y. These results were used in Fast Fourier Transform, which showed the periodic, quasi-chaotic and chaotic behavior of transient laminar flow. (author)

  1. Recharge and Lateral Groundwater Flow Boundary Conditions for the Saturated Zone Site-Scale Flow and Transport Model

    Energy Technology Data Exchange (ETDEWEB)

    B. Arnold; T. Corbet

    2001-12-18

    The purpose of the flow boundary conditions analysis is to provide specified-flux boundary conditions for the saturated zone (SZ) site-scale flow and transport model. This analysis is designed to use existing modeling and analysis results as the basis for estimated groundwater flow rates into the SZ site-scale model domain, both as recharge at the upper (water table) boundary and as underflow at the lateral boundaries. The objective is to provide consistency at the boundaries between the SZ site-scale flow model and other groundwater flow models. The scope of this analysis includes extraction of the volumetric groundwater flow rates simulated by the SZ regional-scale flow model to occur at the lateral boundaries of the SZ site-scale flow model and the internal qualification of the regional-scale model for use in this analysis model report (AMR). In addition, the scope includes compilation of information on the recharge boundary condition taken from three sources: (1) distributed recharge as taken from the SZ regional-scale flow model, (2) recharge below the area of the unsaturated zone (UZ) site-scale flow model, and (3) focused recharge along the Fortymile Wash channel.

  2. Analysis of transient thermal response in the outlet plenum of an LMFBR

    International Nuclear Information System (INIS)

    Yang, J.W.

    1976-05-01

    A two-zone mixing model based on the lumped-parameter approach was developed for the analysis of transient thermal response in the upper outlet plenum of an LMFBR. The one-dimensional turbulent jet flow equations were solved to determine the maximum penetration of the core flow. The maximum penetration is used as the criterion for dividing the sodium region into two mixing zones. The lumped-parameter model considers the transient sodium temperature affected by the thermal expansion of sodium, heat transfer with cover gas, heat capacity of different sections of metal and the addition of bypass flow into the plenum. Numerical calculations were performed for two cases. The first case corresponds to a normal scram followed by flow coast-down. The second case represents the double-ended pipe rupture at the inlet of cold leg followed by reactor scram. The results indicate that effects of flow stratification, chimney height, metal heat capacity and bypass flow are important for transient sodium temperature calculation. Thermal expansion of sodium and heat transfer with the cover gas does not play any significant role on sodium temperature. This two-zone mixing model will be a part of the thermohydraulic transient code SSC

  3. Hydro-dynamic Solute Transport under Two-Phase Flow Conditions.

    Science.gov (United States)

    Karadimitriou, Nikolaos K; Joekar-Niasar, Vahid; Brizuela, Omar Godinez

    2017-07-26

    There are abundant examples of natural, engineering and industrial applications, in which "solute transport" and "mixing" in porous media occur under multiphase flow conditions. Current state-of-the-art understanding and modelling of such processes are established based on flawed and non-representative models. Moreover, there is no direct experimental result to show the true hydrodynamics of transport and mixing under multiphase flow conditions while the saturation topology is being kept constant for a number of flow rates. With the use of a custom-made microscope, and under well-controlled flow boundary conditions, we visualized directly the transport of a tracer in a Reservoir-on-Chip (RoC) micromodel filled with two immiscible fluids. This study provides novel insights into the saturation-dependency of transport and mixing in porous media. To our knowledge, this is the first reported pore-scale experiment in which the saturation topology, relative permeability, and tortuosity were kept constant and transport was studied under different dynamic conditions in a wide range of saturation. The critical role of two-phase hydrodynamic properties on non-Fickian transport and saturation-dependency of dispersion are discussed, which highlight the major flaws in parametrization of existing models.

  4. Study of transient in-cylinder air motion under motoring condition with diesel engine; Diesel engine no motoring ji no tonai ryudo kaiseki

    Energy Technology Data Exchange (ETDEWEB)

    Kitasei, T; Nakagawa, T [Mitsubishi Motors Co., Tokyo (Japan); Yamazumi, N [Ryoyu Keisan Co., Tokyo (Japan)

    1997-10-01

    The transient in-cylinder air motion have been investigated for reducing exhaust emissions and improving engine performance. A commercial CFD code was used for this purpose. For analyzing under engine motoring condition, the numerical model has a moving piston, intake and exhaust ports with moving valves. As result, exhaust port performance may be analyzed under steady condition, but intake port performance have to be analyzed under unsteady condition. Because transient in-cylinder air motion during intake process is different from steady in-cylinder air motion under influence of piston surface and air viscosity. 4 refs., 11 figs.

  5. Torque converter transient characteristics prediction using computational fluid dynamics

    International Nuclear Information System (INIS)

    Yamaguchi, T; Tanaka, K

    2012-01-01

    The objective of this research is to investigate the transient torque converter performance used in an automobile. A new technique in computational fluid dynamics is introduced, which includes the inertia of the turbine in a three dimensional simulation of the torque converter during a launch condition. The simulation results are compared to experimental test data with good agreement across the range of data. In addition, the simulated flow structure inside the torque converter is visualized and compared to results from a steady-state calculation.

  6. Transient simulation in interior flow field of lobe pump

    International Nuclear Information System (INIS)

    Li, Y B; Sang, X H; Shen, H; Jia, K; Meng, Q W

    2013-01-01

    The subject of this paper is mainly focused on the development and control of the double folium and trifolium lobe pump profiles by using the principle of involute engagement and use CAD to get an accurate involute profile. We use the standard k-ε turbulence model and PISO algorithm based on CFD software FLUENT. The dynamic mesh and UDF technology is introduced to simulate the interior flow field inside a lobe pump, and the variation of interior flow field under the condition of the lobe rotating is analyzed. We also analyse the influence produced by the difference in lobes, and then reveal which lobe is best. The results show that dynamic variation of the interior flow field is easily obtained by dynamic mesh technology and the distribution of its pressure and velocity. Because of the small gaps existing between the rotors and pump case, the higher pressure area will flow into the lower area though the small gaps which cause the working area keep with higher pressure all the time. Both of the double folium and trifolium are existing the vortex during the rotting time and its position, size and shape changes all the time. The vortexes even disappear in a circle period and there are more vortexes in double folium lobe pump. The velocity and pressure pulsation of trifolium pump are lower than that of the double folium

  7. Transient peristaltic transport of grains in a liquid

    Directory of Open Access Journals (Sweden)

    Marconati Marco

    2017-01-01

    Full Text Available Pumping suspensions and pastes has always been a significant technological challenge in a number of industrial applications ranging from food processing to mining. Peristaltic pumps have become popular to pump and/or dose complex fluids, due to their robustness. During the transport of suspensions with peristaltic pumps, clogging issues may arise, particularly during transient operations. That is a matter of particular concern whenever the pumping device is used intermittently to generate flow only on demand. Further understanding of the transient dynamics of such systems and of the conditions that can lead to jamming would result in more robust peristaltic pump design. To achieve these goals, an experimental setup that simplifies the statorrotor assembly of a peristaltic hose pump was used. In this setup, a roller transfers momentum to a liquid suspension, upon application of a constant load. The evolution of the velocity of the roller was recorded for different concentrations of mono-dispersed spheres of different diameters. The flow is found not to be strongly dependent on the dispersed particle volume fraction, if the size of the suspended phase is comparable with the hose diameter. Conversely, the flow is strongly slowed down when their size is small and the particle concentration is increased. These findings could help improving the design of peristaltic pumps by a more appropriate sizing, given the diameter of the hose and that of the particles to be transported.

  8. Transient peristaltic transport of grains in a liquid

    Science.gov (United States)

    Marconati, Marco; Rault, Sharvari; Charkhi, Farshad; Burbidge, Adam; Engmann, Jan; Ramaioli, Marco

    2017-06-01

    Pumping suspensions and pastes has always been a significant technological challenge in a number of industrial applications ranging from food processing to mining. Peristaltic pumps have become popular to pump and/or dose complex fluids, due to their robustness. During the transport of suspensions with peristaltic pumps, clogging issues may arise, particularly during transient operations. That is a matter of particular concern whenever the pumping device is used intermittently to generate flow only on demand. Further understanding of the transient dynamics of such systems and of the conditions that can lead to jamming would result in more robust peristaltic pump design. To achieve these goals, an experimental setup that simplifies the statorrotor assembly of a peristaltic hose pump was used. In this setup, a roller transfers momentum to a liquid suspension, upon application of a constant load. The evolution of the velocity of the roller was recorded for different concentrations of mono-dispersed spheres of different diameters. The flow is found not to be strongly dependent on the dispersed particle volume fraction, if the size of the suspended phase is comparable with the hose diameter. Conversely, the flow is strongly slowed down when their size is small and the particle concentration is increased. These findings could help improving the design of peristaltic pumps by a more appropriate sizing, given the diameter of the hose and that of the particles to be transported.

  9. Experimental and theoretical studies of transient boiling and two-phase flow during the depressurisation of a simple glass vessel

    International Nuclear Information System (INIS)

    Ardron, K.H.; Furness, R.A.; Hall, P.C.

    1976-11-01

    Blowdown experiments using a glass pressure vessel containing saturated water at 4 bars have been performed to assist interpretation of the results of large scale experiments and aid understanding of the physical processes involved. Results have shown the strong dependence of depressurisation time, phase distribution and mass flow rate on the length to diameter ratio of the exit pipe. Preliminary observations of the flow regime in the discharge pipe are consistent with predictions of the flow regime map of Mandhane, Gregory and Aziz 1974. Different flow regimes have been observed at different axial positions along the pipe. Bubble growth rates during the non-equilibrium phase of blowdown are shown to be in reasonable agreement with a simple convective heat flux analysis previously used in blowdown calculations. The transient pressure and liquid distribution in the vessel have been compared with calculations using the blowdown code RELAP-UK. (U.K.)

  10. A theoretical prediction of critical heat flux in subcooled pool boiling during power transients

    International Nuclear Information System (INIS)

    Pasamehmetoglu, K.O.; Nelson, R.A.; Gunnerson, F.S.

    1988-01-01

    Understanding and predicting critical heat flux (CHF) behavior during steady-state and transient conditions are of fundamenatal interest in the design, operation, safety of boiling and two-phase flow devices. This paper discusses the results of a comprehensive theoretical study made specifically to model transient CHF behavior in subcooled pool boiling. This study is based upon a simplified steady-state CHF model in terms of the vapor mass growth period. The results obtained from this theory indicate favorable agreement with the experimental data from cylindrical heaters with small radii. The statistical nature of the vapor mass behavior in transient boiling also is considered and upper and lower limits for the current theory are established. Various factors that affect the discrepancy between the data and the theory are discussed

  11. Air-water flow measurement for ERVC conditions by LIF/PIV

    International Nuclear Information System (INIS)

    Yoon, Jong Woong; Jeong, Yong Hoon

    2016-01-01

    Critical heat flux (CHF) of the external reactor vessel wall is a safety limit that indicate the integrity of the reactor vessel during the situation. Many research conducted CHF experiments in the IVR-ERVC conditions. However, the flow velocity field which is an important factor in the CHF mechanism were not studied enough in the IVR-ERVC situations. In this study, flow measurements including velocity vector field and the liquid velocity in the IVR-ERVC conditions were studied. The air-water two phase flow loop simulating IVRERVC conditions was set up and liquid velocity field was measured by LIF/PIV technique in this study. The experiment was conducted with and without air injection conditions. For the air-water flow experiment, liquid velocity at the outside of two phase boundary layer became higher and the two phase boundary layer thickness became smaller when the mass flux increases. The velocity data obtained in this study are expected to improve the CHF correlation in the IVR-ERVC situations.

  12. Air-water flow measurement for ERVC conditions by LIF/PIV

    Energy Technology Data Exchange (ETDEWEB)

    Yoon, Jong Woong; Jeong, Yong Hoon [KAIST, Daejeon (Korea, Republic of)

    2016-05-15

    Critical heat flux (CHF) of the external reactor vessel wall is a safety limit that indicate the integrity of the reactor vessel during the situation. Many research conducted CHF experiments in the IVR-ERVC conditions. However, the flow velocity field which is an important factor in the CHF mechanism were not studied enough in the IVR-ERVC situations. In this study, flow measurements including velocity vector field and the liquid velocity in the IVR-ERVC conditions were studied. The air-water two phase flow loop simulating IVRERVC conditions was set up and liquid velocity field was measured by LIF/PIV technique in this study. The experiment was conducted with and without air injection conditions. For the air-water flow experiment, liquid velocity at the outside of two phase boundary layer became higher and the two phase boundary layer thickness became smaller when the mass flux increases. The velocity data obtained in this study are expected to improve the CHF correlation in the IVR-ERVC situations.

  13. Transient Droplet Behavior and Droplet Breakup during Bulk and Confined Shear Flow in Blends with One Viscoelastic Component: Experiments, Modelling and Simulations

    Science.gov (United States)

    Cardinaels, Ruth; Verhulst, Kristof; Renardy, Yuriko; Moldenaers, Paula

    2008-07-01

    The transient droplet deformation and droplet orientation after inception of shear, the shape relaxation after cessation of shear and droplet breakup during shear, are microscopically studied, both under bulk and confined conditions. The studied blends contain one viscoelastic Boger fluid phase. A counter rotating setup, based on a Paar Physica MCR300, is used for the droplet visualisation. For bulk shear flow, it is shown that the droplet deformation during startup of shear flow and the shape relaxation after cessation of shear flow are hardly influenced by droplet viscoelasticity, even at moderate to high capillary and Deborah numbers. The effects of droplet viscoelasticity only become visible close to the critical conditions and a novel break-up mechanism is observed. Matrix viscoelasticity has a more pronounced effect, causing overshoots in the deformation and significantly inhibiting relaxation. However, different applied capillary numbers prior to cessation of shear flow, with the Deborah number fixed, still result in a single master curve for shape retraction, as in fully Newtonian systems. The long tail in the droplet relaxation can be qualitatively described with a phenomenological model for droplet deformation, when using a 5-mode Giesekus model for the fluid rheology. It is found that the shear flow history significantly affects the droplet shape evolution and the breakup process in blends with one viscoelastic component. Confining a droplet between two plates accelerates the droplet deformation kinetics, similar to fully Newtonian systems. However, the increased droplet deformation, due to wall effects, causes the steady state to be reached at a later instant in time. Droplet relaxation is less sensitive to confinement, leading to slower relaxation kinetics only for highly confined droplets. For the blend with a viscoelastic droplet, a non-monotonous trend is found for the critical capillary number as a function of the confinement ratio. Finally

  14. Transient Droplet Behavior and Droplet Breakup during Bulk and Confined Shear Flow in Blends with One Viscoelastic Component: Experiments, Modelling and Simulations

    International Nuclear Information System (INIS)

    Cardinaels, Ruth; Verhulst, Kristof; Moldenaers, Paula; Renardy, Yuriko

    2008-01-01

    The transient droplet deformation and droplet orientation after inception of shear, the shape relaxation after cessation of shear and droplet breakup during shear, are microscopically studied, both under bulk and confined conditions. The studied blends contain one viscoelastic Boger fluid phase. A counter rotating setup, based on a Paar Physica MCR300, is used for the droplet visualisation. For bulk shear flow, it is shown that the droplet deformation during startup of shear flow and the shape relaxation after cessation of shear flow are hardly influenced by droplet viscoelasticity, even at moderate to high capillary and Deborah numbers. The effects of droplet viscoelasticity only become visible close to the critical conditions and a novel break-up mechanism is observed. Matrix viscoelasticity has a more pronounced effect, causing overshoots in the deformation and significantly inhibiting relaxation. However, different applied capillary numbers prior to cessation of shear flow, with the Deborah number fixed, still result in a single master curve for shape retraction, as in fully Newtonian systems. The long tail in the droplet relaxation can be qualitatively described with a phenomenological model for droplet deformation, when using a 5-mode Giesekus model for the fluid rheology. It is found that the shear flow history significantly affects the droplet shape evolution and the breakup process in blends with one viscoelastic component. Confining a droplet between two plates accelerates the droplet deformation kinetics, similar to fully Newtonian systems. However, the increased droplet deformation, due to wall effects, causes the steady state to be reached at a later instant in time. Droplet relaxation is less sensitive to confinement, leading to slower relaxation kinetics only for highly confined droplets. For the blend with a viscoelastic droplet, a non-monotonous trend is found for the critical capillary number as a function of the confinement ratio. Finally

  15. Laser/fluorescent dye flow visualization technique developed for system component thermal hydraulic studies

    International Nuclear Information System (INIS)

    Oras, J.J.; Kasza, K.E.

    1988-01-01

    A novel laser flow visualization technique is presented together with examples of its use in visualizing complex flow patterns and plans for its further development. This technique has been successfully used to study (1) the flow in a horizontal pipe subject to temperature transients, to view the formation and breakup of thermally stratified flow and to determine instantaneous velocity distributions in the same flow at various axial locations; (2) the discharge of a stratified pipe flow into a plenum exhibiting a periodic vortex pattern; and (3) the thermal-buoyancy-induced flow channeling on the shell side of a heat exchanger with glass tubes and shell. This application of the technique to heat exchangers is unique. The flow patterns deep within a large tube bundle can be studied under steady or transient conditions. This laser flow visualization technique constitutes a very powerful tool for studying single or multiphase flows in complex thermal system components

  16. FORE-2, Thermohydraulics and Space-Independent Reactor Kinetics for Transients

    International Nuclear Information System (INIS)

    Fox, J.N.; Lawler, B.E.; Butz, H.R.; Heames, T.J.

    1984-01-01

    1 - Description of problem or function: FORE2 is a coupled thermal hydraulics-point kinetics digital computer code designed to calculate significant reactor parameters under steady-state conditions, or as functions of time during transients. The transients may result from a programmed reactivity insertion or a power change. Variable inlet coolant flow rate and temperature are considered. The code calculates the reactor power, the individual reactivity feedbacks, and the temperature of coolant, cladding, fuel, structure, and additional material for up to seven axial positions in three channel types which represent radial zones of the reactor. The heat of fusion, accompanying fuel melting, the liquid metal voiding reactivity, and the spatial and the time variation of the fuel cladding gap coefficient due to changes in gap size are considered. 2 - Method of solution: FORE2 input consists of property data, geometry, power and flow distribution factors, external time varying functions, experimental coefficients, and termination data. The differential equations for fluid flow, heat transfer, and point neutronics are solved by explicit finite-difference procedures. 3 - Restrictions on the complexity of the problem: Reactor excursions which can be calculated are restricted to those transients in which the reactor is not substantially destroyed. As a general rule, changes in reactor geometry and composition during an excursion are limited to those cases in which the reactivity effects of the changes may be considered as small perturbations of the initial system. Thus, accidents involving large-scale disassembly and bulk meltdown of a core are not covered by FORE2. FORE2 is valid only while the core retains its initial geometry

  17. Effects of atmospheric pressure conditions on flow rate of an elastomeric infusion pump.

    Science.gov (United States)

    Wang, Jong; Moeller, Anna; Ding, Yuanpang Samuel

    2012-04-01

    The effects of pressure conditions, both hyperbaric and hypobaric, on the flow rate of an elastomeric infusion pump were investigated. The altered pressure conditions were tested with the restrictor outlet at two different conditions: (1) at the same pressure condition as the Infusor elastomeric balloon and (2) with the outlet exposed to ambient conditions. Five different pressure conditions were tested. These included ambient pressure (98-101 kilopascals [kPa]) and test pressures controlled to be 10 or 20 kPa below or 75 or 150 kPa above the ambient pressure. A theoretical calculation based on the principles of fluid mechanics was also used to predict the pump's flow rate at various ambient conditions. The conditions in which the Infusor elastomeric pump and restrictor outlet were at the same pressure gave rise to average flow rates within the ±10% tolerance of the calculated target flow rate of 11 mL/hr. The flow rate of the Infusor pump decreased when the pressure conditions changed from hypobaric to ambient. The flow rate increased when the pressure conditions changed from hyperbaric to ambient. The flow rate of the Infusor elastomeric pump was not affected when the balloon reservoir and restrictor outlet were at the same pressure. The flow rate varied from 58.54% to 377.04% of the labeled flow rate when the pressure applied to the reservoir varied from 20 kPa below to 150 kPa above the pressure applied to the restrictor outlet, respectively. The maximum difference between observed flow rates and those calculated by applying fluid mechanics was 4.9%.

  18. ERP-IV-A program for transient thermal-hydraulic analysis of PWR plant

    International Nuclear Information System (INIS)

    Dai Anguo; Tang Jiahuan; Qian Huifu; Gao Zhikang

    1987-12-01

    The author deal with the descriptions of physical model of transient process in PWR plant and the function of ERP-IV (ERR-IV Transient Thermo-Hydraulic Analysis Code). The code has been developed for safety analysis and design transient. The code is characterized by the multi-loop long-term, short term, wide-range plant simulation with the capability to analyze natural circulation condition. The description of ERP-IV includes following parts: reactor, primary coolant loops, pressurizer, steam generators, main steam system, turbine, feedwater system, steam dump, relive valves, and safety valves in secondary side, etc.. The code can use for accident analysis, such as loss of all A.C. power to power plant auxiliaries (a station blackout), loss of normal feedwater, loss of load, loss of condenser vacuum and other events causing a turbine trip, complete loss of forced reactor coolant flow, uncontrolled rod cluster control assembly bank withdrawal. It can also be used for accident analysis of the emergency and limiting conditions, such as feedwater line break and main steam line rupture. It can also be utilized as a tool for system design studies, component design, setpoint studies and design transition studies, etc

  19. Response of hyporheic zones to transient forcing

    Science.gov (United States)

    Singh, T.; Wu, L.; Gomez-Velez, J. D.; Krause, S.; Hannah, D. M.; Lewandowski, J.; Nuetzmann, G.

    2017-12-01

    Exchange of water, solutes, and energy between river channels and hyporheic zones (HZs) modulates biogeochemical cycling, regulates stream temperature and impacts ecological structure and function. Numerical modelling of HZ processes is required as field observations are challenging for transient flow. To gain a deeper mechanistic understanding of the effects of transient discharge on hyporheic exchange, we performed a systematic analysis using numerical experiments. In this case, we vary (i) the characteristics of time-varying flood events; (ii) river bedform geometry; (iii) river hydraulic geometry; and (iv) the magnitude and direction of groundwater fluxes (neutral, gaining and losing conditions). We conceptualize the stream bed as a two-dimensional system. Whereby the flow is driven by a dynamically changing head distribution at the water-sediment interface and is modulated by steady groundwater flow. Our model estimates both net values for a single bedform and spatial distributions of (i) the flow field; (ii) mean residence times; and (iii) the concentration of a conservative tracer. A detailed sensitivity analysis was performed by changing channel slope, flood characteristics, groundwater upwelling/downwelling fluxes and biogeochemical time-scales in different bedforms such as ripples, dunes and alternating bars. Results show that change of parameters can have a substantial impact on exchange fluxes which can lead to the expansion, contraction, emergence and/or dissipation of HZs . Our results also reveal that groundwater fluxes have different impacts on HZs during flood events, depending on the channel slope and bedform topography. It is found that topographies with smaller aspect ratios and shallower slopes are more affected by groundwater upwelling/downwelling fluxes during flood events. The analysis of biogeochemical transformations shows that discharge events can potentially affects the efficiencies of nitrate removal. Taking into consideration multiple

  20. Hydraulic Darrieus turbines efficiency for free fluid flow conditions versus power farms conditions

    Energy Technology Data Exchange (ETDEWEB)

    Antheaume, Sylvain [Electricite de France, Recherche et Developpement, Laboratoire National d' Hydraulique et Environnement, 6 Quai Watier, 78400 Chatou (France); Maitre, Thierry; Achard, Jean-Luc [Laboratoire des Ecoulements Geophysiques et Industriels, BP 53, 38041 Grenoble (France)

    2008-10-15

    The present study deals with the efficiency of cross flow water current turbine for free stream conditions versus power farm conditions. In the first part, a single turbine for free fluid flow conditions is considered. The simulations are carried out with a new in house code which couples a Navier-Stokes computation of the outer flow field with a description of the inner flow field around the turbine. The latter is based on experimental results of a Darrieus wind turbine in an unbounded domain. This code is applied for the description of a hydraulic turbine. In the second part, the interest of piling up several turbines on the same axis of rotation to make a tower is investigated. Not only is it profitable because only one alternator is needed but the simulations demonstrate the advantage of the tower configuration for the efficiency. The tower is then inserted into a cluster of several lined up towers which makes a barge. Simulations show that the average barge efficiency rises as the distance between towers is decreased and as the number of towers is increased within the row. Thereby, the efficiency of a single isolated turbine is greatly increased when set both into a tower and into a cluster of several towers corresponding to possible power farm arrangements. (author)

  1. Characterization of transient discharges under atmospheric-pressure conditions applying nitrogen photoemission and current measurements

    International Nuclear Information System (INIS)

    Keller, Sandra; Rajasekaran, Priyadarshini; Bibinov, Nikita; Awakowicz, Peter

    2012-01-01

    The plasma parameters such as electron distribution function and electron density of three atmospheric-pressure transient discharges namely filamentary and homogeneous dielectric barrier discharges in air, and the spark discharge of an argon plasma coagulation (APC) system are determined. A combination of numerical simulation as well as diagnostic methods including current measurement and optical emission spectroscopy (OES) based on nitrogen emissions is used. The applied methods supplement each other and resolve problems, which arise when these methods are used individually. Nitrogen is used as a sensor gas and is admixed in low amount to argon for characterizing the APC discharge. Both direct and stepwise electron-impact excitation of nitrogen emissions are included in the plasma-chemical model applied for characterization of these transient discharges using OES where ambiguity arises in the determination of plasma parameters under specific discharge conditions. It is shown that the measured current solves this problem by providing additional information useful for the determination of discharge-specific plasma parameters. (paper)

  2. Coupled equations for transient water flow, heat flow, and ...

    Indian Academy of Sciences (India)

    interacting processes, including flow of fluids, deformation of porous materials, chemical reactions, and transport of ... systems involving the flow of water, heat, and deformation. Such systems are ..... Defined thus, αI is independent of boundary con- ditions in an ... perature change with free deformation at constant total stress ...

  3. Analyses of fluid flow and heat transfer inside calandria vessel of CANDU-6 reactor using CFD

    International Nuclear Information System (INIS)

    Yu, Seon Oh; Kim, Man Woong; Kim, Hho Jung

    2005-01-01

    In a CANDU (CANada Deuterium Uranium) reactor, fuel channel integrity depends on the coolability of the moderator as an ultimate heat sink under transient conditions such as a Loss Of Coolant Accident (LOCA) with coincident Loss Of Emergency Core Cooling (LOECC). as well as normal operating conditions. This study presents assessments of moderator thermal-hydraulic characteristics in the normal operating conditions and one transient condition for CANDU-6 reactors, using a general purpose three-dimensional computational fluid dynamics code. First, an optimized calculation scheme is obtained by many-sided comparisons of the predicted results with the related experimental data, and by evaluating the fluid flow and temperature distributions. Then, using the optimized scheme, analyses of real CANDU-6 in normal operating conditions and the transition condition have been performed. The present model successfully predicted the experimental results and also reasonably assessed the thermal-hydraulic characteristics of a real CANDU-6 with 380 fuel channels. A flow regime map with major parameters representing the flow pattern inside a calandria vessel has also proposed to be used as operational and/or regulatory guidelines

  4. Verification of the karst flow model under laboratory controlled conditions

    Science.gov (United States)

    Gotovac, Hrvoje; Andric, Ivo; Malenica, Luka; Srzic, Veljko

    2016-04-01

    Karst aquifers are very important groundwater resources around the world as well as in coastal part of Croatia. They consist of extremely complex structure defining by slow and laminar porous medium and small fissures and usually fast turbulent conduits/karst channels. Except simple lumped hydrological models that ignore high karst heterogeneity, full hydraulic (distributive) models have been developed exclusively by conventional finite element and finite volume elements considering complete karst heterogeneity structure that improves our understanding of complex processes in karst. Groundwater flow modeling in complex karst aquifers are faced by many difficulties such as a lack of heterogeneity knowledge (especially conduits), resolution of different spatial/temporal scales, connectivity between matrix and conduits, setting of appropriate boundary conditions and many others. Particular problem of karst flow modeling is verification of distributive models under real aquifer conditions due to lack of above-mentioned information. Therefore, we will show here possibility to verify karst flow models under the laboratory controlled conditions. Special 3-D karst flow model (5.6*2.6*2 m) consists of concrete construction, rainfall platform, 74 piezometers, 2 reservoirs and other supply equipment. Model is filled by fine sand (3-D porous matrix) and drainage plastic pipes (1-D conduits). This model enables knowledge of full heterogeneity structure including position of different sand layers as well as conduits location and geometry. Moreover, we know geometry of conduits perforation that enable analysis of interaction between matrix and conduits. In addition, pressure and precipitation distribution and discharge flow rates from both phases can be measured very accurately. These possibilities are not present in real sites what this model makes much more useful for karst flow modeling. Many experiments were performed under different controlled conditions such as different

  5. Trace analysis of loss of feedwater flow event in Lungmen ABWR

    International Nuclear Information System (INIS)

    Wang Jongrong; Lin Haotzu; Wang Weichen; Yang Shuming; Shih Chunkuan

    2009-01-01

    TRACE (TRAC/RELAP Advanced Computational Engine) model of Lungmen Nuclear Power Plant was used to analyze the Loss of Feedwater Flow transient as defined in Lungmen FSAR Chapter 15. The results were compared with those from FSAR and RETRAN02. Lungmen TRACE model will have two models: In model A, vessel is divided into 11 axial levels, 4 radial rings and 1 azimuthal sectors; In model B, vessel is divided into 11 axial levels, 4 radial rings, and 6 azimuthal sectors. The above models include feedwater control system, narrow range water level control system, and wide range water level control system. The loss of feedwater flow (LOFW) transient began with the trip of two operating feedwater pumps either from the pump mechanical/electric failure, or the operator human error, or high water level signal. Feedwater flow was assumed to descend to 0 in 5 seconds and led to the decrease of reactor water level. At L3 low water level setpoint, the system actuated reactor scram signal and RIP trip signal for RIPs not connected to the M/G set. At L2 low-low water level setpoint, the system would trip the other six RIPs. This paper compares those important thermal parameters at steady state, such as the dome pressure and temperature of reactor vessel, steam flow, feedwater flow, core flow, and RIP flow, etc.. It also compares system parameters under transient conditions, such as core thermal power, core flow, steam flow, feedwater flow, Narrow Range Water Level (NRWL), Wide Range Water Level (WRWL) and RIP flow, etc.. It was concluded that the steady state and transient results of TRACE calculations are in good agreement with those from RETRAN02. In summary, our studies concluded that Lungmen TRACE model is correct and accurate enough for future safety analysis applications. (author)

  6. Internal Nozzle Flow Simulations of Gasoline-Like Fuels under Diesel Operating Conditions

    Energy Technology Data Exchange (ETDEWEB)

    Torelli, R.; Som, S.; Pei, Y.; Zhang, Yu; Traver, Michael

    2017-05-15

    Spray formation in internal combustion engines with direct injection is strictly correlated with internal nozzle flow characteristics, which are in turn influenced by fuel physical properties and injector needle motion. This paper pre-sents a series of 3D simulations that model the in-nozzle flow in a 5-hole mini-sac diesel injector. Two gasoline-like naphtha fuels, namely full-range and light naphtha, were tested under operating conditions typical of diesel applica-tions and were compared with n-dodecane, selected from a palette used as diesel surrogates. Validated methodolo-gies from our previous work were employed to account for realistic needle motion. The multi-phase nature of the problem was described by the mixture model assumption with the Volume of Fluid method. Cavitation effects were included by means of the Homogeneous Relaxation Model and turbulence closure was achieved with the Standard k-ε model in an Unsteady Reynolds-Averaged Navier-Stokes formulation. The results revealed that injector perfor-mance and propensity to cavitation are influenced by the fuel properties. Analyses of several physical quantities were carried out to highlight the fuel-to-fuel differences in terms of mass flow rate, discharge coefficients, and fuel vapor volume fraction inside the orifices. A series of parametric investigations was also performed to assess the fuel response to varied fuel injection temperature, injection pressure, and cross-sectional orifice area. For all cases, the strict correlation between cavitation magnitude and saturation pressure was confirmed. Owing to their higher volatil-ity, the two gasoline-like fuels were characterized by higher cavitation across all the simulated conditions. Occur-rence of cavitation was mostly found at the needle seat and at the orifice inlets during the injection event’s transient, when very small gaps exist between the needle and its seat. This behavior tended to disappear at maximum needle lift, where cavitation was

  7. Numerical simulation of water flow and Nitrate transport through variably saturated porous media in laboratory condition using HYDRUS 2D

    Science.gov (United States)

    Jahangeer, F.; Gupta, P. K.; Yadav, B. K.

    2017-12-01

    Due to the reducing availability of water resources and the growing competition for water between residential, industrial, and agricultural users, increasing irrigation efficiency, by several methods like drip irrigation, is a demanding concern for agricultural experts. The understanding of the water and contaminants flow through the subsurface is needed for the sustainable irrigation water management, pollution assessment, polluted site remediation and groundwater recharge. In this study, the Windows-based computer software package HYDRUS-2D, which numerically simulates water and solute movement in two-dimensional, variably-saturated porous media, was used to evaluate the distribution of water and Nitrate in the sand tank. The laboratory and simulation experiments were conducted to evaluate the role of drainage, recharge flux, and infiltration on subsurface flow condition and subsequently, on nitrate movement in the subsurface. The water flow in the unsaturated zone model by Richards' equation, which was highly nonlinear and its parameters were largely dependent on the moisture content and pressure head of the partially saturated zone. Following different cases to be considered to evaluate- a) applying drainage and recharge flux to study domains, b) transient infiltration in a vertical soil column and c) subsequently, nitrate transport in 2D sand tank setup. A single porosity model was used for the simulation of water and nitrate flow in the study domain. The results indicate the transient water table position decreases as the time increase significantly by applying drainage flux at the bottom. Similarly, the water table positions in study domains increasing in the domain by applying recharge flux. Likewise, the water flow profile shows the decreasing water table elevation with increasing water content in the vertical domain. Moreover, the nitrate movement was dominated by advective flux and highly affected by the recharge flux in the vertical direction. The

  8. Performance assessment and transient optimization of air precooling in multi-stage solid desiccant air conditioning systems

    International Nuclear Information System (INIS)

    Gadalla, Mohamed; Saghafifar, Mohammad

    2016-01-01

    Highlights: • Studying three two-stage solid desiccant cooling systems using Maisotsenko cooler. • Proposing precooling to improve two-stage desiccant systems’ COP for humid climates. • Performing transient analysis for a two-stage solid desiccant cooler in UAE. • Optimizing daily performance of a two-stage solid desiccant cooler for UAE. - Abstract: Renewable energy is one of the most promising solutions to both energy and global warming crisis. Energy consumption can be minimized considerably by utilizing solar energy in air conditioning systems operation. One of the popular solar air conditioning technologies is desiccant air conditioning. Nonetheless, conventional desiccant air conditioning systems have a relatively low coefficient of performance (COP). In consequence, two-stage desiccant air-conditioning systems are proposed to improve desiccant air conditioning systems’ COP. Moreover, a recently commercialized cooling method named Maisotsenko cooling cycle which is capable of cooling air near to its dew point temperature is considered to be integrated within the proposed multi-stage desiccant cooling systems. In this paper, three new two-stage desiccant air conditioning systems incorporating Maisotsenko cooling cycle are proposed and investigated in details for hot and humid climates such as UAE. Furthermore, air precooling is considered to improve two stage desiccant air conditioning systems’ COP. Moreover, full transient analysis and optimization are carried out in UAE within June–October. The proposed system can minimize the required solar heating during noon time as the ambient air dry bulb temperature rises. Average COP of the system during electricity load peak hours (10:00–14:00) for all five considered and combined months is 1.77. Average rate of heat input required to operate the system and average building cooling load are determined to be 100.3 kW and 46.2 kW, respectively. Therefore, system average COP is computed to be 0.46.

  9. Ultrafast X-ray tomography for two-phase flow analysis in centrifugal pumps

    International Nuclear Information System (INIS)

    Schaefer, Thomas; Hampel, Uwe; Technische Univ. Dresden

    2017-01-01

    The unsteady behavior of gas-liquid two-phase flow in a centrifugal pump impeller has been visualized, using ultrafast X-ray tomography. Based on the reconstructed tomographic images an evaluation and detailed analysis of the flow conditions has been done. Here, the high temporal resolution of the tomographic images offered the opportunity to get a deep insight into the flow to perform a detailed description of the transient gas-liquid phase distribution inside the impeller. Significant properties of the occurring two-phase flow and characteristic flow patterns have been disclosed. Furthermore, the effects of different air entrainment conditions have been investigated and typical phase distributions inside the impeller have been shown.

  10. Ultrafast X-ray tomography for two-phase flow analysis in centrifugal pumps

    Energy Technology Data Exchange (ETDEWEB)

    Schaefer, Thomas [Helmholtz-Zentrum Dresden-Rossendorf, Dresden (Germany). Inst. of Fluid Dynamics; Hampel, Uwe [Helmholtz-Zentrum Dresden-Rossendorf, Dresden (Germany). Inst. of Fluid Dynamics; Technische Univ. Dresden (Germany). AREVA Endowed Chair of Imaging Techniques in Energy and Process Engineering

    2017-07-15

    The unsteady behavior of gas-liquid two-phase flow in a centrifugal pump impeller has been visualized, using ultrafast X-ray tomography. Based on the reconstructed tomographic images an evaluation and detailed analysis of the flow conditions has been done. Here, the high temporal resolution of the tomographic images offered the opportunity to get a deep insight into the flow to perform a detailed description of the transient gas-liquid phase distribution inside the impeller. Significant properties of the occurring two-phase flow and characteristic flow patterns have been disclosed. Furthermore, the effects of different air entrainment conditions have been investigated and typical phase distributions inside the impeller have been shown.

  11. COMETHE III-M for transient fuel rod behaviour prediction

    International Nuclear Information System (INIS)

    Billaux, M.; Vliet, J. van

    1983-01-01

    The COMETHE III-M version is being developed in order to provide fuel rod behaviour prediction capability both in steady-state and in transient situations. It also allows to estimate the fuel rod enthalpy evolution versus time or burnup which may be important in core-related safety studies. This paper describes the transient heat transfer models, including transient heat conduction inside the fuel rod, and a subchannel model providing transient flow as well as enthalpy calculation capability. Transient fission gas release is also modelled on basis of the change rate of oxide temperature. The models are illustrated by a few calculation examples. (author)

  12. Fluid flow in panel radiator under various conditions - thermographic visualisation

    Directory of Open Access Journals (Sweden)

    Bašta Jiří

    2012-04-01

    Full Text Available Thermographic investigation of a heating panel radiator under various conditions, especially with various heating water volume flow rate is described in this article. For a radiator type 10-500x1000 TBOE and for two levels of inlet water temperature (75 and 55 °C a set of thermal images of surface temperature patterns for various values of heating water volume flow rate was taken. The initial value of flow rate was derived from nominal heating output and recalculated to real conditions. An increase of volume flow rate higher than 15 % over the nominal recalculated value is for the studied cases easily detectable on the resulting thermal images.

  13. An analytical and experimental investigation of natural circulation transients in a model pressurized water reactor

    International Nuclear Information System (INIS)

    Massoud, M.

    1987-01-01

    Natural Circulation phenomena in a simulated PWR was investigated experimentally and analytically. The experimental investigation included determination of system characteristics as well as system response to the imposed transient under symmetric and asymmetric operations. System characteristics were used to obtain correlation for heat transfer coefficient in heat exchangers, system flow resistance, and system buoyancy heat. Asymmetric transients were imposed to study flow oscillation and possible instability. The analytical investigation encompassed development of mathematical model for single-phase, steady-state and transient natural circulation as well as modification of existing model for two-phase flow analysis of phenomena such as small break LOCA, high pressure coolant injection and pump coast down. The developed mathematical model for single-phase analysis was computer coded to simulate the imposed transients. The computer program, entitled ''Symmetric and Asymmetric Analysis of Single-Phase Flow (SAS),'' were employed to simulate the imposed transients. It closely emulated the system behavior throughout the transient and subsequent steady-state. Modifications for two-phase flow analysis included addition of models for once-through steam generator and electric heater rods. Both programs are faster than real time. Off-line, they can be used for prediction and training applications while on-line they serve for simulation and signal validation. The programs can also be used to determine the sensitivity of natural circulation behavior to variation of inputs such as secondary distribution and power transients

  14. Numerical simulation of countercurrent flow based on two-fluid model

    Energy Technology Data Exchange (ETDEWEB)

    Chen, H.D. [Institute of Nuclear Engineering and Technology, Sun Yat-sen University, Zhuhai 519082 (China); School of Electric Power, South China University of Technology, Guangzhou 510640 (China); Zhang, X.Y., E-mail: zxiaoying@mail.sysu.edu.cn [Institute of Nuclear Engineering and Technology, Sun Yat-sen University, Zhuhai 519082 (China)

    2017-03-15

    Highlights: • Using one-dimensional two-fluid model to help understanding counter-current flow two-phase flows. • Using surface tension model to make the one-dimensional two-fluid flow model well-posed. • Solving the governing equations with a modified SIMPLE algorithm. • Validating code with experimental data and applying it to vertical air/steam countercurrent flow condition - Abstract: In order to improve the understanding of counter-current two-phase flows, a transient analysis code is developed based on one-dimensional two-fluid model. A six equation model has been established and a two phase pressure model with surface tension term, wall drag force and interface shear terms have been used. Taking account of transport phenomenon, heat and mass transfer models of interface were incorporated. The staggered grids have been used in discretization of equations. For validation of the model and code, a countercurrent air-water problem in one experimental horizontal stratified flow has been considered firstly. Comparison of the computed results and the experimental one shows satisfactory agreement. As the full problem for investigation, one vertical pipe with countercurrent flow of steam-water and air-water at same boundary condition has been taken for study. The transient distribution of liquid fraction, liquid velocity and gas velocity for selected positions of steam-water and air-water problem were presented and discussed. The results show that these two simulations have similar transient behavior except that the distribution of gas velocity for steam-water problem have larger oscillation than the one for air-water. The effect of mesh size on wavy characteristics of interface surface was also investigated. The mesh size has significant influence on the simulated results. With the increased refinement, the oscillation gets stronger.

  15. Fringe-controlled biodegradation under dynamic conditions: Quasi 2-D flow-through experiments and reactive-transport modeling

    Science.gov (United States)

    Eckert, Dominik; Kürzinger, Petra; Bauer, Robert; Griebler, Christian; Cirpka, Olaf A.

    2015-01-01

    Biodegradation in contaminated aquifers has been shown to be most pronounced at the fringe of contaminant plumes, where mixing of contaminated water and ambient groundwater, containing dissolved electron acceptors, stimulates microbial activity. While physical mixing of contaminant and electron acceptor by transverse dispersion has been shown to be the major bottleneck for biodegradation in steady-state plumes, so far little is known on the effect of flow and transport dynamics (caused, e.g., by a seasonally fluctuating groundwater table) on biodegradation in these systems. Towards this end we performed experiments in quasi-two-dimensional flow-through microcosms on aerobic toluene degradation by Pseudomonas putida F1. Plume dynamics were simulated by vertical alteration of the toluene plume position and experimental results were analyzed by reactive-transport modeling. We found that, even after disappearance of the toluene plume for two weeks, the majority of microorganisms stayed attached to the sediment and regained their full biodegradation potential within two days after reappearance of the toluene plume. Our results underline that besides microbial growth, also maintenance and dormancy are important processes that affect biodegradation performance under transient environmental conditions and therefore deserve increased consideration in future reactive-transport modeling.

  16. TPX vacuum vessel transient thermal and stress conditions

    International Nuclear Information System (INIS)

    Feldshteyn, Y.; Dinkevich, S.; Feng, T.; Majumder, D.

    1995-01-01

    The TPX vacuum vessel provides the vacuum boundary for the plasma and the mechanical support for the internal components. Another function of the vacuum vessel is to contain neutron shielding water in the double wall space during normal operation. This double wall space serves as a heat reservoir for the entire vacuum vessel during bakeout. The vacuum vessel and the internal components are subjected to thermal stresses induced by a nonuniform temperature distribution within the structure during bakeout. A successful Conceptual Design Review in March 1993 has established superheated steam as the heating source of the vacuum vessel. A transient bakeout mode of the vacuum vessel and in-vessel components has been analyzed to evaluate transient period duration, proper temperature level, actual thermal stresses and performance of the steam equipment. Thermally, the vacuum vessel structure may be considered as an adiabatic system because it is perfectly insulated by the strong surrounding vacuum and multiple layers of superinsulation. Important aspects of the analysis are described herein

  17. Use of a Phase Transition Concept for Traffic Flow Condition Estimation

    Directory of Open Access Journals (Sweden)

    Larin Oleg N.

    2014-12-01

    Full Text Available The article covers the main models of traffic flow conditions, analyzes the condition estimation criteria, and provides the classification of models. The article provides the grounds for the use of the phase transition concept for traffic flow condition estimation. The models of the aggregate condition of free and congested traffic have been developed, the phase boundaries between free and congested traffic have been defined. Applicability conditions for the models of the aggregate condition of have been analyzed.

  18. Effect of transient liquid flow on retention characteristics of screen acquisition systems. [design of Space Shuttle feed system

    Science.gov (United States)

    Cady, E. C.

    1977-01-01

    A design analysis, is developed based on experimental data, to predict the effects of transient flow and pressure surges (caused either by valve or pump operation, or by boiling of liquids in warm lines) on the retention performance of screen acquisition systems. A survey of screen liquid acquisition system applications was performed to determine appropriate system environment and classification. A screen model was developed which assumed that the screen device was a uniformly distributed composite orthotropic structure, and which accounted for liquid inflow/outflow, gas ingestion quality, screen stress, and liquid spill. A series of 177 tests using 13 specimens (5 screen meshes, 4 screen device construction/backup methods, and 2 orientations) with three test fluids (isopropyl alcohol, Freon 114, and LH2) provided data which verified important features of the screen model and resulted in a design tool which could accurately predict the transient startup performance acquisition devices.

  19. System transient response to loss of off-site power

    International Nuclear Information System (INIS)

    Sozer, A.

    1990-01-01

    A simultaneous trip of the reactor, main circulation pumps, secondary coolant pumps, and pressurizer pump due to loss of off-site power at the High Flux Isotope Reactor (HFIR) located at the Oak Ridge National Laboratory (ORNL) has been analyzed to estimate available safety margin. A computer model based on the Modular Modeling System code has been used to calculate the transient response of the system. The reactor depressurizes from 482.7 psia down to about 23 psia in about 50 seconds and remains stable thereafter. Available safety margin has been estimated in terms of the incipient boiling heat flux ratio. It is a conservative estimate due to assumed less than available primary and secondary flows and higher than normal depressurization rate. The ratio indicates no incipient boiling conditions at the hot spot. No potential damage to the fuel is likely to occur during this transient. 2 refs., 6 figs

  20. Technical and QA plan: Boiling behavior during flow instability

    International Nuclear Information System (INIS)

    Coutts, D.A.

    1991-01-01

    The coolant flow in a nuclear reactor core under normal operating conditions is kept as a subcooled liquid. This coolant is evenly distributed throughout the multiple flow channels with a uniform pressure profile across each coolant flow channel. If the coolant flow is reduced, the flow through individual channels will also decrease. A decrease in coolant flow will result in higher coolant temperatures if the heat flux is not reduced. When flow is significantly decreased, localized boiling may occur. This localized boiling can restrict coolant flow and the ability to transfer heat out of the reactor system. The maximum operating power for the reactor may be limited by how the coolant system reacts to a flow instability. One of the methods to assure safe operation during a reducing flow transient, is to operate at a power level below that necessary to initiate a flow excursion. Several correlations have been used to predict the conditions which will proceed a flow excursion. These correlations rely on the steady state behavior of the coolant and are based on steady-state testing. There are two significant points which this project will try to identify. The first is when vapor first forms on the channel surface. This might be designated as the Nucleate Vapor Transition. (Steady state equivalent is ONB). The second is when the vapor formation rate is large enough to lead to flow instability and thermal excursion. This point might be designated as the Significant Vapor Transition. (Steady state equivalent is OSV). A correlation will be developed to relate established steady state relations with the behavior of transient systems

  1. Impact of anisotropic slip on transient three dimensional MHD flow of ferrofluid over an inclined radiate stretching surface

    Directory of Open Access Journals (Sweden)

    A.M. Rashad

    2017-04-01

    Full Text Available The present study explores the impact of anistropic slip on transient three dimensional MHD flow of Cobalt-kerosene ferrofluid over an inclined radiate stretching surface. The governing partial differential equations for this study are solved by the Thomas algorithm with finite-difference type. The impacts of several significant parameters on flow and heat transfer characteristics are exhibited graphically. The conclusion is revealed that the local Nusselt number is significantly promoted due to influence of thermal radiation whereas diminished with elevating the solid volume fraction, magnet parameter and slip factors. Further, the skin friction coefficients visualizes a considerable enhancement with boosting the magnet and radiation parameters, but a prominent reduction is recorded by elevating the solid volume fraction and slip factors.

  2. Regional cerebral blood flow in patients with transient ischemic attacks studied by Xenon-133 inhalation and emission tomography

    DEFF Research Database (Denmark)

    Vorstrup, S; Hemmingsen, R; Henriksen, L

    1983-01-01

    Cerebral blood flow CBF was studied in 14 patients with transient ischemic attacks TIA and arteriosclerotic neck vessel disease. CBF was measured by a rapidly rotating single photon emission computerized tomograph using Xenon-133 inhalation. This method yields images of 3 brain slices depicting CBF...... with no abnormality on the CT-scan. The abnormal blood flow pattern was found to be unchanged after clinically successful reconstructive vascular surgery. This suggests the presence of irreversible ischemic tissue damage without gross emollition (incomplete infarction). It is concluded, that TIAs are often harmful...... events, as no less than 9 of the 14 patients studied had evidence of complete and/or incomplete infarction. Thorough examination and rational therapy should be instituted as soon as possible to prevent further ischemic lesions....

  3. Mixing driven by transient buoyancy flows. I. Kinematics

    Science.gov (United States)

    Duval, W. M. B.; Zhong, H.; Batur, C.

    2018-05-01

    Mixing of two miscible liquids juxtaposed inside a cavity initially separated by a divider, whose buoyancy-driven motion is initiated via impulsive perturbation of divider motion that can generate the Richtmyer-Meshkov instability, is investigated experimentally. The measured Lagrangian history of interface motion that contains the continuum mechanics of mixing shows self-similar nearly Gaussian length stretch distribution for a wide range of control parameters encompassing an approximate Hele-Shaw cell to a three-dimensional cavity. Because of the initial configuration of the interface which is parallel to the gravitational field, we show that at critical initial potential energy mixing occurs through the stretching of the interface, which shows frontogenesis, and folding, owing to an overturning motion that results in unstable density stratification and produces an ideal condition for the growth of the single wavelength Rayleigh-Taylor instability. The initial perturbation of the interface and flow field generates the Kelvin-Helmholtz instability and causes kinks at the interface, which grow into deep fingers during overturning motion and unfold into local whorl structures that merge and self-organize into the Rayleigh-Taylor morphology (RTM) structure. For a range of parametric space that yields two-dimensional flows, the unfolding of the instability through a supercritical bifurcation yields an asymmetric pairwise structure exhibiting smooth RTM that transitions to RTM fronts with fractal structures that contain small length scales for increasing Peclet numbers. The late stage of the RTM structure unfolds into an internal breakwave that breaks down through wall and internal collision and sets up the condition for self-induced sloshing that decays exponentially as the two fluids become stably stratified with a diffusive region indicating local molecular diffusion.

  4. Polluted soil leaching: unsaturated conditions and flow rate effects

    Directory of Open Access Journals (Sweden)

    Chourouk Mathlouthi

    2017-04-01

    Full Text Available In this study, soil samples are extracted from a polluted site at different depths. Soils texture and pollutant presence are different with depth. Preliminary analyzes showed pollution by heavy metals. To simulate soil leaching operation in static condition, a series of leaching tests are conducted in laboratory column under conditions of upflow unsaturated soil. Electrical conductivity and pH measurements on the recovered leachate are performed. Different flow rates are tested. Comparison of different profiles shows that the dissolved pollutants are concentrated in the upper soil levels and disperse weakly in the lower parts which confirm the nature of anthropogenic pollution of heavy metals. Water mobilizes a high amount of dissolved ionic substances up to 80% of the initial concentration. The increase in flow rate requires more pore volume injected to achieve the maximum clearance rate. The down flow condition extracts a small amount of dissolved substances.

  5. An Irrotational Flow Field That Approximates Flat Plate Boundary Conditions

    OpenAIRE

    Ruffa, Anthony A.

    2004-01-01

    An irrotational solution is derived for the steady-state Navier-Stokes equations that approximately satisfies the boundary conditions for flow over a finite flat plate. The nature of the flow differs substantially from boundary layer flow, with severe numerical difficulties in some regions.

  6. Temperature-dependent transformation thermotics for unsteady states: Switchable concentrator for transient heat flow

    Energy Technology Data Exchange (ETDEWEB)

    Li, Ying, E-mail: 13110290008@fudan.edu.cn [Department of Mechanics and Engineering Science, Fudan University, Shanghai 200433 (China); Shen, Xiangying, E-mail: 13110190068@fudan.edu.cn [Department of Physics, State Key Laboratory of Surface Physics, and Collaborative Innovation Center of Advanced Microstructures, Fudan University, Shanghai 200433 (China); Huang, Jiping, E-mail: jphuang@fudan.edu.cn [Department of Physics, State Key Laboratory of Surface Physics, and Collaborative Innovation Center of Advanced Microstructures, Fudan University, Shanghai 200433 (China); Ni, Yushan, E-mail: niyushan@fudan.edu.cn [Department of Mechanics and Engineering Science, Fudan University, Shanghai 200433 (China)

    2016-04-22

    For manipulating heat flow efficiently, recently we established a theory of temperature-dependent transformation thermotics which holds for steady-state cases. Here, we develop the theory to unsteady-state cases by considering the generalized Fourier's law for transient thermal conduction. As a result, we are allowed to propose a new class of intelligent thermal metamaterial — switchable concentrator, which is made of inhomogeneous anisotropic materials. When environmental temperature is below or above a critical value, the concentrator is automatically switched on, namely, it helps to focus heat flux in a specific region. However, the focusing does not affect the distribution pattern of temperature outside the concentrator. We also perform finite-element simulations to confirm the switching effect according to the effective medium theory by assembling homogeneous isotropic materials, which bring more convenience for experimental fabrication than inhomogeneous anisotropic materials. This work may help to figure out new intelligent thermal devices, which provide more flexibility in controlling heat flow, and it may also be useful in other fields that are sensitive to temperature gradient, such as the Seebeck effect. - Highlights: • Established the unsteady-state temperature dependent transformation thermotics. • A thermal concentrator with switchable functionality. • An effective-medium design for experimental realization.

  7. Analysis of short-term reactor cavity transient

    International Nuclear Information System (INIS)

    Cheng, T.C.; Fischer, S.R.

    1981-01-01

    Following the transient of a hypothetical loss-of-coolant accident (LOCA) in a nuclear reactor, peak pressures are reached within the first 0.03 s at different locations inside the reactor cavity. Due to the complicated multidimensional nature of the reactor cavity, the short-term analysis of the LOCA transient cannot be performed by using traditional containment codes, such as CONTEMPT. The advanced containment code, BEACON/MOD3, developed at the Idaho National Engineering Laboratory (INEL), can be adapted for such analysis. This code provides Eulerian, one and two-dimensional, nonhomogeneous, nonequilibrium flow modeling as well as lumped parameter, homogeneous, equilibrium flow modeling for the solution of two-component, two-phase flow problems. The purpose of this paper is to demonstrate the capability of the BEACON code to analyze complex containment geometry such as a reactor cavity

  8. Workshop `Measurement technology for steady state and transient multi phase flows`; Workshop `Messtechnik fuer stationaere und transiente Mehrphasenstroemungen`

    Energy Technology Data Exchange (ETDEWEB)

    Prasser, H.M. [ed.

    1997-12-01

    There is hardly another area of physics which has a comparable multiplicity of phenomena, like flow in multi-phase mixtures. The wishes of experimenters regarding measurement technique are correspondingly great: Apart from the conventional parameters of pressure, temperature and speed of flow, as great a collection with resolution of the instantaneous phase distribution is required. Also, the phases themselves frequently consists of several components, whose concentration should also be measured. The enormous progress which has recently been made with laser optics and tomographic processes, must be compared with a long list of unsolved problems, above all where non-contact measurement is concerned. The attempts at solutions are multifarious, the need for the exchange of experience is great and the comparson of measurement processes with one another must be strengthened. The workshop has set itself these targets. (orig.) [Deutsch] Es gibt kaum ein anderes Gebiet der Physik, das eine vergleichbare Vielfalt der Erscheinungen aufweist wie Stroemungen von Mehrphasengemischen. Entsprechend gross sind die Wuensche der Experimentatoren hinsichtlich der Messtechnik: Neben den klassischen Parametern Druck, Temperatur und Stroemungsgeschwindigkeit wird eine moeglichst hoch aufloesende Erfassung der momentanen Phasenverteilung benoetigt. Ausserdem bestehen die Phasen selbst haeufig aus mehreren Komponenten, deren Konzentration ebenfalls gemessen werden soll. Den enormen Fortschritten, ie mit laseroptischen und tomographischen Verfahren in letzter Zeit gemacht wurden, steht nach wie vor eine lange Liste bisher ungeloester Aufgaben gegenueber, vor allen Dingen, wenn beruehrungslos gemessen werden soll. Die Loesungsansaetze sind vielfaeltig, der Bedarf an Erfahrungsaustausch ist gross, der Vergleich der Messverfahren untereinander muss verstaerkt werden. Diesen Zielen hatte sich der Workshop ``Messtechnik fuer tationaere und transiente Mehrphasenstroemungen`` verschrieben.

  9. Transient Characteristics of Free Piston Vuilleurnier Cycle Heat Pumps

    Science.gov (United States)

    Matsue, Junji; Fujimoto, Norioki; Shirai, Hiroyuki

    A dynamic analysis of a free piston Vuilleumier cycle heat pump was performed using a time-stepping integration method to investigate transient characteristics under power controlling. The nonlinear relationship between displacement and force for pistons was taken into account for the motion of reciprocating components. The force for pistons is mainly caused by the pressure change of working gas varying with piston displacements; moreover nonlinear viscous dissipative force due to the oscillating flow of working gas in heat exchangers and discontinuous damping force caused by solid friction at piston seals and rod seals are included. The displacements of pistons and pressure changes in the Vuilleumier cycle heat pump were integrated by an ideal isothermal thermodynamic relationship. It was assumed that the flow friction was proportional to the kinematic pressure of working gas, and that the solid friction at the seals was due to the functions of the working gas pressure and the tension of seal springs. In order to investigate the transient characteristics of a proposed free piston Vuilleumier cycle heat pump machine when hot-side working gas temperatures and alternate force were changed, some calculations were performed and discussed. These calculation results make clear transient characteristics at starting and power controlling. It was further found that only a small amount of starter power is required in particular conditions. During controlling, the machine becomes unstable when there is ar elatively large reduction in cooling or heating power. Therefore, an auxiliary device is additionally needed to obtain stable operation, such as al inear motor.

  10. Transient thermal-hydraulic characteristics analysis software for PWR nuclear power systems

    International Nuclear Information System (INIS)

    Wu Yingwei; Zhuang Chengjun; Su Guanghui; Qiu Suizheng

    2010-01-01

    A point reactor neutron kinetics model, a two-phase drift-flow U-tube steam generator model, an advanced non-equilibrium three regions pressurizer model, and a passive emergency core decay heat-removed system model are adopted in the paper to develop the computerized analysis code for PWR transient thermal-hydraulic characteristics, by Compaq Visual Fortran 6.0 language. Visual input, real-time processing and dynamic visualization output are achieved by Microsoft Visual Studio. NET language. The reliability verification of the soft has been conducted by RELAP 5, and the verification results show that the software is with high calculation precision, high calculation speed, modern interface, luxuriant functions and strong operability. The software was applied to calculate the transient accident conditions for QSNP, and the analysis results are significant to the practical engineering applications. (authors)

  11. Concentration of nanoparticles and/or microparticles in flow conditions by dielectrophoresis

    DEFF Research Database (Denmark)

    2017-01-01

    A device for concentration of nanoparticles and/or microparticles in liquid flow conditions by dielectrophoresis is disclosed in this invention.......A device for concentration of nanoparticles and/or microparticles in liquid flow conditions by dielectrophoresis is disclosed in this invention....

  12. Transient analysis of a variable speed rotary compressor

    International Nuclear Information System (INIS)

    Park, Youn Cheol

    2010-01-01

    A transient simulation model of a rolling piston type rotary compressor is developed to predict the dynamic characteristics of a variable speed compressor. The model is based on the principles of conservation, real gas equations, kinematics of the crankshaft and roller, mass flow loss due to leakage, and heat transfer. For the computer simulation of the compressor, the experimental data were obtained from motor performance tests at various operating frequencies. Using the developed model, re-expansion loss, friction loss, mass flow loss and heat transfer loss is estimated as a function of the crankshaft speed in a variable speed compressor. In addition, the compressor efficiency and energy losses are predicted at various compressor-operating frequencies. Since the transient state of the compressor strongly depends on the system, the developed model is combined with a transient system simulation program to get transient variations of the compression process in the system. Motor efficiency, mechanical efficiency, motor torque and volumetric efficiency are calculated with respect to variation of the driving frequency in a rotary compressor.

  13. Instrumentation for localized measurements in two-phase flow conditions

    International Nuclear Information System (INIS)

    Neff, G.G.; Averill, R.H.; Shurts, S.W.

    1979-01-01

    Three types of instrumentation that have been developed by EG and G Idaho, Inc., and its predecessor, Aerojet Nuclear company, at the Idaho National Engineering Laboratory to investigate two-phase flow phenomenon in a nuclear reactor at the Loss-of-Fluid Test (LOFT) facility are discussed: (a) a combination drag disc-turbine transducer (DTT), (b) a multibeam nuclear hardened gamma densitometer system, and (c) a conductivity sensitive liquid level transducer (LLT). The DTT obtains data on the complex problem of two-phase flow conditions in the LOFT primary coolant system during a loss-os-coolant experiment (LOCE). The discussion of the DTT describes how a turbine, measuring coolant velocity, and a drag disc, measuring coolant momentum flux, can provide valuable mass flow data. The nuclear hardened gamma densitometer is used to obtain density and flow regime information for two-phase flow in the LOFT primary coolant system during a LOCE. The LLT is used to measure water and steam conditions within the LOFT reactor core during a LOCE. The LLT design and the type of data obtained are described

  14. 3. Workshop on measuring instruments for steady and transient multiphase flow; 3. Workshop: Messtechnik fuer stationaere und transiente Mehrphasenstroemungen

    Energy Technology Data Exchange (ETDEWEB)

    Prasser, H.M. [ed.

    1999-12-01

    The emphasis of the conference was on methods of measurement that show spatial distributions of phase fractions and velocity, particle sizes and bubbles of the disperse phase. Among the methods described were 3D X-ray tomography, grid sensor measurement of velocity profiles, and simultaneous measurement of bubble sizes and gas and liquid flow rates using an optical particle tracking method. Also presented were interesting developments in the field of local probes, e.g. an electrodiffusion probe. Another new development was the attempt to use optical tomography for investigations of two-phase flows. [German] Am 14. Oktober 1999 wurde in Rossendorf die dritte Veranstaltung in einer Serie von Workshops ueber Messtechnik fuer stationaere und transiente Mehrphasenstroemungen durchgefuehrt. Dieses Jahr koennen wir auf 11 interessante Vortraege zurueckblicken. Besonders hervorzuheben sind die beiden Hauptvortraege, die von Herrn Professor Hetsroni aus Haifa und Herrn Dr. Sengpiel aus Karlsruhe gehalten wurden. Ihnen und allen anderen Vortragenden moechten wir herzlich fuer ihren Beitrag zum Gelingen des Workshops danken. Erneut lag ein wichtiger Schwerpunkt auf Messverfahren, die raeumliche Verteilungen von Phasenanteilen und Geschwindigkeiten sowie die Groesse von Partikeln bzw. Blasen der dispersen Phase zugaenglich machen. So wurde ueber einen dreidimensional arbeitenden Roentgentomographen, ein Verfahren zur Messung von Geschwindigkeitsprofilen mit Gittersensoren und eine Methode zur simultanen Messung von Blasengroessen sowie Feldern von Gas- und Fluessigkeitsgeschwindigkeit mit einer optischen Partikelverfolgungstechnik vorgetragen. Daneben wurden interessante Entwicklungen auf dem Gebiet der lokalen Sonden vorgestellt, wie z.B. eine Elektrodiffusionssonde. Neue messtechnische Ansaetze waren ebenfalls vertreten; hervorzuheben ist der Versuch, die Methode der optischen Tomographie fuer die Untersuchung von Zweiphasenstroemungen nutzbar zu machen. (orig.)

  15. Evaluation of heart tissue viability under redox-magnetohydrodynamics conditions: toward fine-tuning flow in biological microfluidics applications.

    Science.gov (United States)

    Cheah, Lih Tyng; Fritsch, Ingrid; Haswell, Stephen J; Greenman, John

    2012-07-01

    A microfluidic system containing a chamber for heart tissue biopsies, perfused with Krebs-Henseleit buffer containing glucose and antibiotic (KHGB) using peristaltic pumps and continuously stimulated, was used to evaluate tissue viability under redox-magnetohydrodynamics (redox-MHD) conditions. Redox-MHD possesses unique capabilities to control fluid flow using ionic current from oxidation and reduction processes at electrodes in a magnetic field, making it attractive to fine-tune fluid flow around tissues for "tissue-on-a-chip" applications. The manuscript describes a parallel setup to study two tissue samples simultaneously, and 6-min static incubation with Triton X100. Tissue viability was subsequently determined by assaying perfusate for lactate dehydrogenase (LDH) activity, where LDH serves as an injury marker. Incubation with KHGB containing 5 mM hexaammineruthenium(III) (ruhex) redox species with and without a pair of NdFeB magnets (∼ 0.39 T, placed parallel to the chamber) exhibited no additional tissue insult. MHD fluid flow, viewed by tracking microbeads with microscopy, occurred only when the magnet was present and stimulating electrodes were activated. Pulsating MHD flow with a frequency similar to the stimulating waveform was superimposed over thermal convection (from a hotplate) for Triton-KHGB, but fluid speed was up to twice as fast for ruhex-Triton-KHGB. A large transient ionic current, achieved when switching on the stimulating electrodes, generates MHD perturbations visible over varying peristaltic flow. The well-controlled flow methodology of redox-MHD is applicable to any tissue type, being useful in various drug uptake and toxicity studies, and can be combined equally with on- or off-device analysis modalities. Copyright © 2012 Wiley Periodicals, Inc.

  16. Effect of a Sulphate Transient on the EAC Crack Growth Behaviour of Low-Alloy RPV Steels under Simulated BWR Operating Conditions (CASTOC WP 3, PSI Test 1)

    Energy Technology Data Exchange (ETDEWEB)

    Ritter, S.; Seifert, H. P

    2002-03-01

    Within the CASTOC-project (5th EU FW programme), the environmentally-assisted crack (EAC) growth behaviour of low-alloy reactor pressure vessel (RPV) steels is experimentally investigated under simulated transient and steady-state boiling water reactor (BWR) power operation conditions by six European laboratories. Within WP 3 of this project, the Paul Scherrer Institut (PSI) investigates the effect of water chemistry transients on the EAC crack growth behaviour under periodical partial unloading (PPU) conditions. The present report is a summary of the first PSI test of WP 3 with a Na{sub 2}SO{sub 4} transient. In the first part of the report, the theoretical background on crack growth mechanisms, crack chemistry, mass transport and water chemistry transients as well as a brief literature survey on other water chemistry transient investigations is given. Furthermore, the experimental equipment and test procedure is presented, followed by a summary of the results of PSI test 1 of WP 3. Finally the results are discussed in detail and compared to literature data. In the first part of the experiment, an actively growing EAC crack was generated by PPU in oxygenated high-temperature, high-purity water (T = 288 {sup o}C, DO = 8 ppm, SO{sub 4}{sup 2-} < 0.6 ppb). Then a sulphate transient was applied. The duration ({approx} 300 h) and the amount of sulphate (SO{sub 4}{sup 2-} = 368 ppb) of the applied sulphate transient conservatively covered all sulphate transients, which might occur in BWR/normal water chemistry (NWC) practice. After the transient, outlet conductivity was lowered from ca. 1 {mu}S/cm to less than 0.15 {mu}S/cm within 2.6 h by a 'two-loop technique'. No accelerating effect of the sulphate transient on the EAC crack growth of both tested fracture mechanics specimens under highly oxidising BWR/NWC conditions was observed, making it impossible to deterrnine incubation or delay times. The EAC crack growth rates (CGR) before, during and after the

  17. Microbiologically induced corrosion of carbon steel under continuous flow conditions

    International Nuclear Information System (INIS)

    Tunaru, Mariana; Dragomir, Maria; Voicu, Anca

    2008-01-01

    Microbiologically induced corrosion is the label generally applied to corrosion involving the action of bacteria on metal surfaces. While different combinations of bacterial species, materials and chemical constituents are interrelated factors, stagnant water is the factor most often mentioned in reported cases. This paper presents the results obtained regarding the testing of microbiologically induced corrosion of carbon steel under continuous flow conditions in the presence of iron-oxidizing bacteria. The tests were performed on coupons of SA106gr.B exposed both in stagnant conditions and in flow conditions. The surfaces of these coupons were studied by metallographic technique, while the developed biofilms were analysed using microbiological technique. The correlation of all the results which were obtained emphasized that the minimizing the occurrence of stagnant or low-flow conditions can prove effective in reducing the risk of microbiologically induced corrosion in plant cooling-water systems. (authors)

  18. Analytical prediction and experimental verification of reactor safety system injection transient

    International Nuclear Information System (INIS)

    Roy, B.N.; Nomm, E.

    1991-01-01

    This paper describes the computer code that was developed for thermal hydraulic transient analysis of mixed phase fluid system and the flow tests that were carried out to validate the Code. A full scale test facility was designed to duplicate the Supplementary Shutdown System (SSS) of Savannah River Production Reactors. Several steady state and dynamic flow tests were conducted simulating the actual reactor injection transients. A dynamic multiphase fluid flow code was developed and validated with experimental results and utilized for system performance predictions and development of technical specifications for reactors. 3 refs

  19. Numerical simulation of transient, adiabatic, two-dimensional two-phase flow using the two-fluid model

    International Nuclear Information System (INIS)

    Neves Conti, T. das.

    1983-01-01

    A numerical method is developed to simulate adiabatic, transient, two-dimensional two-phase flow. The two-fluid model is used to obtain the mass and momentum conservation equations. These are solved by an iterative algorithm emphoying a time-marching scheme. Based on the corrective procedure of Hirt and Harlow a poisson equation is derived for the pressure field. This equation is finite-differenced and solved by a suitable matrix inversion technique. In the absence of experiment results several numerical tests were made in order to chec accuracy, convergence and stability of the proposed method. Several tests were also performed to check whether the behavior of void fraction and phasic velocities conforms with previous observations. (Author) [pt

  20. An analytical and experimental investigation of natural circulation transients in a model pressurized water reactor

    Energy Technology Data Exchange (ETDEWEB)

    Massoud, M

    1987-01-01

    Natural Circulation phenomena in a simulated PWR was investigated experimentally and analytically. The experimental investigation included determination of system characteristics as well as system response to the imposed transient under symmetric and asymmetric operations. System characteristics were used to obtain correlation for heat transfer coefficient in heat exchangers, system flow resistance, and system buoyancy heat. Asymmetric transients were imposed to study flow oscillation and possible instability. The analytical investigation encompassed development of mathematical model for single-phase, steady-state and transient natural circulation as well as modification of existing model for two-phase flow analysis of phenomena such as small break LOCA, high pressure coolant injection and pump coast down. The developed mathematical model for single-phase analysis was computer coded to simulate the imposed transients. The computer program, entitled ''Symmetric and Asymmetric Analysis of Single-Phase Flow (SAS),'' were employed to simulate the imposed transients. It closely emulated the system behavior throughout the transient and subsequent steady-state. Modifications for two-phase flow analysis included addition of models for once-through steam generator and electric heater rods. Both programs are faster than real time. Off-line, they can be used for prediction and training applications while on-line they serve for simulation and signal validation. The programs can also be used to determine the sensitivity of natural circulation behavior to variation of inputs such as secondary distribution and power transients.

  1. Identification of two-phase flow regimes under variable gravity conditions

    International Nuclear Information System (INIS)

    Kamiel S Gabriel; Huawei Han

    2005-01-01

    Full text of publication follows: Two-phase flow is becoming increasingly important as we move into new and more aggressive technologies in the twenty-first century. Some of its many applications include the design of efficient heat transport systems, the transfer and storage of cryogenic fluids, and condensation and flow boiling processes in heat exchangers and energy transport systems. Two-phase flow has many applications in reduced gravity environments experienced in orbiting spacecraft and earth observation satellites. Examples are heat transport systems, the transfer and storage of cryogenic fluids, and condensation and flow boiling processes in heat exchangers. A concave parallel plate capacitance sensor has been developed to measure void fraction for the purpose of objectively identifying flow regimes. The sensor has been used to collect void-fraction data at microgravity conditions aboard the NASA and ESA zero-gravity aircraft. It is shown that the flow regimes can be objectively determined from the probability density functions of the void fraction signals. It was shown that under microgravity conditions four flow regimes exist: bubbly flow, characterized by discrete gas bubbles flowing in the liquid; slug flow, consisting of Taylor bubbles separated by liquid slugs which may or may not contain several small gas bubbles; transitional flow, characterized by the liquid flowing as a film at the tube wall, and the gas phase flowing in the center with the frequent appearance of chaotic, unstable slugs; and annular flow in which the liquid flows as a film along the tube wall and the gas flows uninterrupted through the center. Since many two-phase flow models are flow regime dependent, a method that can accurately and objectively determine flow regimes is required. (authors)

  2. Identification of two-phase flow regimes under variable gravity conditions

    Energy Technology Data Exchange (ETDEWEB)

    Kamiel S Gabriel [University of Ontario Institute of Technology 2000 Simcoe Street North, Oshawa, ON L1H 7K4 (Canada); Huawei Han [Mechanical Engineering Department, University of Saskatchewan 57 Campus Dr., Saskatoon, Saskatchewan, S7N 5A9 (Canada)

    2005-07-01

    Full text of publication follows: Two-phase flow is becoming increasingly important as we move into new and more aggressive technologies in the twenty-first century. Some of its many applications include the design of efficient heat transport systems, the transfer and storage of cryogenic fluids, and condensation and flow boiling processes in heat exchangers and energy transport systems. Two-phase flow has many applications in reduced gravity environments experienced in orbiting spacecraft and earth observation satellites. Examples are heat transport systems, the transfer and storage of cryogenic fluids, and condensation and flow boiling processes in heat exchangers. A concave parallel plate capacitance sensor has been developed to measure void fraction for the purpose of objectively identifying flow regimes. The sensor has been used to collect void-fraction data at microgravity conditions aboard the NASA and ESA zero-gravity aircraft. It is shown that the flow regimes can be objectively determined from the probability density functions of the void fraction signals. It was shown that under microgravity conditions four flow regimes exist: bubbly flow, characterized by discrete gas bubbles flowing in the liquid; slug flow, consisting of Taylor bubbles separated by liquid slugs which may or may not contain several small gas bubbles; transitional flow, characterized by the liquid flowing as a film at the tube wall, and the gas phase flowing in the center with the frequent appearance of chaotic, unstable slugs; and annular flow in which the liquid flows as a film along the tube wall and the gas flows uninterrupted through the center. Since many two-phase flow models are flow regime dependent, a method that can accurately and objectively determine flow regimes is required. (authors)

  3. Influence of transient flow in the formation of condensate and in the calculation of steam line

    International Nuclear Information System (INIS)

    Bazzo, E.

    1989-01-01

    The piping design is analyzed in unsteady-state conditions, with the main goal of minimizing operational costs and initial investments of a plant. All heat losses are calculated by applying the control volume method. The results confirm the applicability of the method and show that the influence of the transient regime on the condensation rate and economical insulation thickness must be considered. (author)

  4. RELAP5 analyses of two hypothetical flow reversal events for the advanced neutron source reactor

    Energy Technology Data Exchange (ETDEWEB)

    Chen, N.C.J.; Wendel, M.W.; Yoder, G.L. Jr. [Oak Ridge National Lab., TN (United States)

    1995-09-01

    This paper presents RELAP5 results of two hypothetical, low flow transients analyzed as part of the Advanced Neutron Source Reactor safety program. The reactor design features four independent coolant loops (three active and one in standby), each containing a main curculation pump (with battery powered pony motor), heat exchanger, an accumulator, and a check valve. The first transient assumes one of these pumps fails, and additionally, that the check valve in that loop remains stuck in the open position. This accident is considered extremely unlikely. Flow reverses in this loop, reducing the core flow because much of the coolant is diverted from the intact loops back through the failed loop. The second transient examines a 102-mm-diam instantaneous pipe break near the core inlet (the worst break location). A break is assumed to occur 90 s after a total loss-of-offsite power. Core flow reversal occurs because accumulator injection overpowers the diminishing pump flow. Safety margins are evaluated against four thermal limits: T{sub wall}=T{sub sat}, incipient boiling, onset of significant void, and critical heat flux. For the first transient, the results show that these limits are not exceeded (at a 95% non-exceedance probability level) if the pony motor battery lasts 30 minutes (the present design value). For the second transient, the results show that the closest approach of the fuel surface temperature to the local saturation temperature during core flow reversal is about 39{degrees}C. Therefore the fuel remains cool during this transient. Although this work is done specifically for the ANSR geometry and operating conditions, the general conclusions may be applicable to other highly subcooled reactor systems.

  5. Transport of solutes under transient flow conditions – A case study – Yamuna river sub basin (Kosi Kalan to Agra

    Directory of Open Access Journals (Sweden)

    Arun Kumar

    2015-09-01

    Full Text Available The imbalance between incoming and outgoing salt causes salinization of soils and sub-soils that result in increasing the salinity of stream-flows and agriculture land. This salinization is a serious environmental hazard particularly in semi-arid and arid lands. In order to estimate the magnitude of the hazard posed by salinity, it is important to understand and identify the processes that control salt movement from the soil surface through the root zone to the ground water and stream flows. In the present study, Yamuna sub-basin (both sides of Gokul dam site has been selected which has two distinct climatic zones, sub-humid (upstream of Mathura and semi-arid region (downstream of Mathura. In the upstream, both surface and ground waters are used for irrigation, whereas in the downstream mostly groundwater is used. Both soils and ground waters are more saline in downstream parts of the study area. In this study we characterized the soil salinity and groundwater quality in both areas. An attempt is also made to model the distribution of potassium concentration in the soil profile in response to varying irrigation conditions using the Soil-Water Infiltration and Movement (SWIM model. Fair agreement was obtained between predicted and measured results indicating the applicability of the model.

  6. Rat muscle microvascular PO2 kinetics during the exercise off-transient.

    Science.gov (United States)

    McDonough, P; Behnke, B J; Kindig, C A; Poole, D C

    2001-05-01

    Dependent upon the relative speed of pulmonary oxygen consumption (VO2) and blood flow (Q) kinetics, the exercise off-transient may represent a condition of sub- or supra-optimal perfusion. To date, there are no direct measurements of the dynamics of the VO2/Q relationship within the muscle at the onset of the work/recovery transition. To address this issue, microvascular PO2 (PO2,m) dynamics were studied in the spinotrapezius muscles of 11 female Sprague-Dawley rats (weight approximately 220 g) during and following electrical stimulation (1 Hz) to assess the adequacy of Q. relative to VO2 post exercise. The exercise blood flow response (radioactive microspheres: muscle Q increased approximately 240 %), and post-exercise arterial blood pH (7.40 +/- 0.02) and blood lactate (1.3 +/- 0.4 mM x l(-1)) values were consistent with moderate-intensity exercise. Recovery PO2,m (i.e. off-transient) rose progressively until baseline values were achieved ((Delta)end-recovery exercise PO2,m, 14.0 +/- 1.9 Torr) and at no time fell below exercising PO2,m. The off-transient PO2,m was well fitted by a dual exponential model with both fast (tau = 25.4 +/- 5.1 s) and slow (tau = 71.2 +/- 34.2 s) components. Furthermore, there was a pronounced delay (54.9 +/- 10.7 s) before the onset of the slow component. These data, obtained at the muscle microvascular level, support the notion that muscle VO2 falls with faster kinetics than muscle Q during the off-transient, such that PO2,m increases systematically, though biphasically, during recovery.

  7. Transient core characteristics of small molten salt reactor coupling problem between heat transfer/flow and nuclear fission reaction

    International Nuclear Information System (INIS)

    Yamamoto, Takahisa; Mitachi, Koshi

    2004-01-01

    This paper performed the transient core analysis of a small Molten Salt Reactor (MSR). The emphasis is that the numerical model employed in this paper takes into account the interaction among fuel salt flow, nuclear reaction and heat transfer. The model consists of two group diffusion equations for fast and thermal neutron fluexs, balance equations for six-group delayed neutron precursors and energy conservation equations for fuel salt and graphite moderator. The results of transient analysis are that (1) fission reaction (heat generation) rate significantly increases soon after step reactivity insertion, e.g., the peak of fission reaction rate achieves about 2.7 times larger than the rated power 350 MW when the reactivity of 0.15% Δk/k 0 is inserted to the rated state, and (2) the self-control performance of the small MSR effectively works under the step reactivity insertion of 0.56% Δk/k 0 , putting the fission reaction rate back on the rated state. (author)

  8. Transient eddies and low frequency variability in the Northern Hemisphere winter climates of two GCMs

    International Nuclear Information System (INIS)

    Hansen, T.; Sutera, A.

    1994-01-01

    An aspect of the climate change problem that is also important to our understanding of the general circulation is the relative roles and interactions between baroclinic-scale transient eddies and the larger scale, lower frequency variability of the flow in midlatitudes. A question may be raised as to how a reduced (or enhanced) level of high-frequency transient eddy activity may influence the character of the large-scale flow. If the transient eddies play an important role in determining the large-scale flow patterns in the atmosphere, then we might expect a profound impact from a changed level of high frequency transient eddy activity on the large-scale flow. An opportunity to address this question is presented by the intercomparison of two general circulation models, the differences in whose formulations lie primarily in their physical parameterizations

  9. Development of a transient criticality evaluation method

    International Nuclear Information System (INIS)

    Pain, C.C.; Eaton, M.D.; Miles, B.; Ziver, A.K.; Gomes, J.L.M.A.; Umpleby, A.P.; Piggott, M.D.; Goddard, A.J.H.; Oliveira, C.R.E. de

    2005-01-01

    In developing a transient criticality evaluation method we model, in full spatial/temporal detail, the neutron fluxes and consequent power and the evolving material properties - their flows, energies, phase changes etc. These methods are embodied in the generic method FETCH code which is based as far as possible on basic principles and is capable of use in exploring safety-related situations somewhat beyond the range of experiment. FETCH is a general geometry code capable of addressing a range of criticality issues in fissile materials. The code embodies both transient radiation transport and transient fluid dynamics. Work on powders, granular materials, porous media and solutions is reviewed. The capability for modelling transient criticality for chemical plant, waste matrices and advanced reactors is also outlined. (author)

  10. Analytical model for transient fluid mixing in upper outlet plenum of an LMFBR

    International Nuclear Information System (INIS)

    Yang, J.W.; Agrawal, A.K.

    1976-01-01

    A two-zone mixing model based on the lumped-parameter approach was developed for the analysis of transient thermal response in the outlet plenum of an LMFBR. The maximum penetration of core flow is used as the criterion for dividing the sodium region into two mixing zones. The model considers the transient sodium temperature affected by the thermal expansion of sodium, heat transfer with cover gas, heat capacity of different sections of metal and the addition of by-pass flow into the plenum. The results of numerical calculations indicate that effects of flow stratification, chimney height, metal heat capacity and by-pass flow are important for transient sodium temperature calculation. Thermal expansion of sodium and heat transfer with the cover gas do not play any significant role on sodium temperature

  11. Measurement of Two-Phase Flow Characteristics Under Microgravity Conditions

    Science.gov (United States)

    Keshock, E. G.; Lin, C. S.; Edwards, L. G.; Knapp, J.; Harrison, M. E.; Xhang, X.

    1999-01-01

    This paper describes the technical approach and initial results of a test program for studying two-phase annular flow under the simulated microgravity conditions of KC-135 aircraft flights. A helical coil flow channel orientation was utilized in order to circumvent the restrictions normally associated with drop tower or aircraft flight tests with respect to two-phase flow, namely spatial restrictions preventing channel lengths of sufficient size to accurately measure pressure drops. Additionally, the helical coil geometry is of interest in itself, considering that operating in a microgravity environment vastly simplifies the two-phase flows occurring in coiled flow channels under 1-g conditions for virtually any orientation. Pressure drop measurements were made across four stainless steel coil test sections, having a range of inside tube diameters (0.95 to 1.9 cm), coil diameters (25 - 50 cm), and length-to-diameter ratios (380 - 720). High-speed video photographic flow observations were made in the transparent straight sections immediately preceding and following the coil test sections. A transparent coil of tygon tubing of 1.9 cm inside diameter was also used to obtain flow visualization information within the coil itself. Initial test data has been obtained from one set of KC-135 flight tests, along with benchmark ground tests. Preliminary results appear to indicate that accurate pressure drop data is obtainable using a helical coil geometry that may be related to straight channel flow behavior. Also, video photographic results appear to indicate that the observed slug-annular flow regime transitions agree quite reasonably with the Dukler microgravity map.

  12. Development of real time visual evaluation system for sodium transient thermohydraulic experiments

    International Nuclear Information System (INIS)

    Tanigawa, Shingo

    1990-01-01

    A real time visual evaluation system, the Liquid Metal Visual Evaluation System (LIVES), has been developed for the Plant Dynamics Test Loop facility at O-arai Engineering Center. This facility is designed to provide sodium transient thermohydraulic experimental data not only in a fuel subassembly but also in a plant wide system simulating abnormal or accident conditions in liquid metal fast breeder reactors. Since liquid metal sodium is invisible, measurements to obtain experimental data are mainly conducted by numerous thermo couples installed at various locations in the test sections and the facility. The transient thermohydraulic phenomena are a result of complicated interactions among global and local scale three-dimensional phenomena, and short- and long-time scale phenomena. It is, therefore, difficult to grasp intuitively thermohydraulic behaviors and to observe accurately both temperature distribution and flow condition solely by digital data or various types of analog data in evaluating the experimental results. For effectively conducting sodium transient experiments and for making it possible to observe exactly thermohydraulic phenomena, the real time visualization technique for transient thermohydraulics has been developed using the latest Engineering Work Station. The system makes it possible to observe and compare instantly the experiment and analytical results while experiment or analysis is in progress. The results are shown by not only the time trend curves but also the graphic animations. This paper shows an outline of the system and sample applications of the system. (author)

  13. Reconsidering the boundary conditions for a dynamic, transient mode I crack problem

    KAUST Repository

    Leise, Tanya; Walton, Jay; Gorb, Yuliya

    2008-01-01

    . In particular, a transient compressive stress wave travels along the crack faces, moving outward from the loading region on the crack face. This does not occur in the quasistatic or steady state problems, and is a special feature of the transient dynamic problem

  14. 3-D numerical modelling of groundwater flow for scenario-based ...

    African Journals Online (AJOL)

    The data related to piezometric water levels, canal gauges, well logs, meteorological and lithological information were collected from Punjab Irrigation Department (PID), Water and Power Development Authority (WAPDA). Groundwater flow models for both steady and transient conditions were set-up using FEFLOW-3D.

  15. Measurement of the Air Chance Rate and Ventilation Characteristics During Short Term Transient Phenomena

    DEFF Research Database (Denmark)

    Heiselberg, Per Kvols; Perino, M.

    2004-01-01

    Different measurement procedures are available for the experimental assessment of air change rates inside ventilated enclosures. These mainly consist of tracer gas techniques and can usually be applied to steady-state or moderately transient conditions and when a continous mixing of the indoor air...... ventilation. The results are critically compared with the air flow rates assessed through anemometric measurements. The measurement features, limitations, shortcomings and uncertainties are also discussed....... is assured throughout the test. However, due to the relatively slow response of the gas analysers, none of these procedures can usually be applied to fast transient phenomena that last 15 minutes or less. Moreover in many cases of natural ventilation strategies, the continuous mixing of the indoor air would...

  16. Categorization of flow conditions using Integral quantities for characterizing stagnation and recirculation

    International Nuclear Information System (INIS)

    Han, M.H.; Hwang, W.T.; Jeong, H.J.; Kim, E.H.

    2008-01-01

    This paper describes a method for categorizing an atmospheric flow condition of a site by using integral quantities for characterizing stagnation and recirculation. Authors have devised a method for categorizing flow conditions using distribution curves which represent the flow condition of the whole of Korea. It was found that the flow conditions for four nuclear power plant sites were good enough from a meteorological aspect. Among the four sites, Kori nuclear power plant site which is located at the south-eastern part of the Korean peninsular shows the best condition. Meteorological condition is the key factor for estimating the environmental effects of a nuclear facility. The devised method can be used for assessing the relative environmental risk of a nuclear facility with only meteorological data. And the devised categorization method can be used for choosing a suitable site for an industrial facility such as a nuclear power plant and a chemical complex. (author)

  17. HTGR-GT primary coolant transient resulting from postulated turbine deblading

    International Nuclear Information System (INIS)

    Cadwallader, G.J.; Deremer, R.K.

    1980-11-01

    The turbomachine is located within the primary coolant system of a nuclear closed cycle gas turbine plant (HTGR-GT). The deblading of the turbine can cause a rapid pressure equilibration transient that generates significant loads on other components in the system. Prediction of and design for this transient are important aspects of assuring the safety of the HTGR-GT. This paper describes the adaptation and use of the RATSAM program to analyze the rapid fluid transient throughout the primary coolant system during a spectrum of turbine deblading events. Included are discussions of (1) specific modifications and improvements to the basic RATSAM program, which is also briefly described; (2) typical results showing the expansion wave moving upstream from the debladed turbine through the primary coolant system; and (3) the effect on the transient results of different plenum volumes, flow resistances, times to deblade, and geometries that can choke the flow

  18. The effects of air stoichiometry and air excess ratio on the transient response of a PEMFC under load change conditions

    International Nuclear Information System (INIS)

    Kim, Bosung; Cha, Dowon; Kim, Yongchan

    2015-01-01

    Highlights: • Effects of controlling parameters on the transient response of a PEMFC are studied. • The transient response is measured by varying air stoichiometry and air excess ratio. • Voltage drop, undershoot, and voltage fluctuation are analyzed under the load change. • Optimal air stoichiometry and air excess ratio are suggested for stable operation. - Abstract: The transient response of a proton exchange membrane fuel cell (PEMFC) is an important issue for transportation applications. The objective of this study is to investigate the effects of operating and controlling parameters on the transient response of a PEMFC for achieving more stable cell performance under load change conditions. The transient response of a PEMFC was measured and analyzed by varying air stoichiometry, air humidity, and air excess ratio (AER). The optimal air stoichiometry and AER were determined to minimize the voltage drop, undershoot, and voltage fluctuation under the load change, while maintaining high cell performance. Based on the present data, the optimal air stoichiometry was determined to be between 2.0 and 2.5, and the optimal AER was suggested to be between 1.65 and 2.0

  19. Experimental data report for transient flow calibration facility tests IIIA101, IIIA102, IIIA201, and IIIA202

    International Nuclear Information System (INIS)

    Wambach, J.L.

    1980-01-01

    Thermal-hydraulic response data are presented for the transient performance tests of an ECC pitot tube rake (IIIA201, IIIA202) and both an ECC pitot tube rake and modular drag disc-turbine transducer (DTT) rake (IIIA101, IIIA102). The tests were conducted in a system which provided full scale simulation of the pressure vessel and intact loop cold leg piping of the Loss of Fluid Test Facility (LOFT). A load cell system was used to provide a reference mass flow rate measurement

  20. Pressure transients across HEPA filters

    International Nuclear Information System (INIS)

    Gregory, W.; Reynolds, G.; Ricketts, C.; Smith, P.R.

    1977-01-01

    Nuclear fuel cycle facilities require ventilation for health and safety reasons. High efficiency particulate air (HEPA) filters are located within ventilation systems to trap radioactive dust released in reprocessing and fabrication operations. Pressure transients within the air cleaning systems may be such that the effectiveness of the filtration system is questioned under certain accident conditions. These pressure transients can result from both natural and man-caused phenomena: atmospheric pressure drop caused by a tornado or explosions and nuclear excursions initiate pressure pulses that could create undesirable conditions across HEPA filters. Tornado depressurization is a relatively slow transient as compared to pressure pulses that result from combustible hydrogen-air mixtures. Experimental investigation of these pressure transients across air cleaning equipment has been undertaken by Los Alamos Scientific Laboratory and New Mexico State University. An experimental apparatus has been constructed to impose pressure pulses across HEPA filters. The experimental equipment is described as well as preliminary results using variable pressurization rates. Two modes of filtration of an aerosol injected upstream of the filter is examined. A laser instrumentation for measuring the aerosol release, during the transient, is described