WorldWideScience

Sample records for transformation induced ductility

  1. Combined model of strain-induced phase transformation and orthotropic damage in ductile materials at cryogenic temperatures

    CERN Document Server

    Garion, Cedric

    2003-01-01

    Ductile materials (like stainless steel or copper) show at cryogenic temperatures three principal phenomena: serrated yielding (discontinuous in terms of dsigma/depsilon), plastic strain-induced phase transformations and evolution of ductile damage. The present paper deals exclusively with the two latter cases. Thus, it is assumed that the plastic flow is perfectly smooth. Both in the case of damage evolution and for the gamma-alpha prime phase transformation, the principal mechanism is related to the formation of plastic strain fields. In the constitutive modeling of both phenomena, a crucial role is played by the accumulated plastic strain, expressed by the Odqvist parameter p. Following the general trends, both in the literature concerning the phase transformation and the ductile damage, it is assumed that the rate of transformation and the rate of damage are proportional to the accumulated plastic strain rate. The gamma-alpha prime phase transformation converts the initially homogenous material to a two-p...

  2. Plastic Strain Induced Damage Evolution and Martensitic Transformation in Ductile Materials at Cryogenic Temperatures

    CERN Document Server

    Garion, C

    2002-01-01

    The Fe-Cr-Ni stainless steels are well known for their ductile behaviour at cryogenic temperatures. This implies development and evolution of plastic strain fields in the stainless steel components subjected to thermo-mechanical loads at low temperatures. The evolution of plastic strain fields is usually associated with two phenomena: ductile damage and strain induced martensitic transformation. Ductile damage is described by the kinetic law of damage evolution. Here, the assumption of isotropic distribution of damage (microcracks and microvoids) in the Representative Volume Element (RVE) is made. Formation of the plastic strain induced martensite (irreversible process) leads to the presence of quasi-rigid inclusions of martensite in the austenitic matrix. The amount of martensite platelets in the RVE depends on the intensity of the plastic strain fields and on the temperature. The evolution of the volume fraction of martensite is governed by a kinetic law based on the accumulated plastic strain. Both of thes...

  3. Plastic strain induced damage evolution and martensitic transformation in ductile materials at cryogenic temperatures

    International Nuclear Information System (INIS)

    Garion, C.; Skoczen, B.T.

    2002-01-01

    The Fe-Cr-Ni stainless steels are well known for their ductile behavior at cryogenic temperatures. This implies development and evolution of plastic strain fields in the stainless steel components subjected to thermo-mechanical loads at low temperatures. The evolution of plastic strain fields is usually associated with two phenomena: ductile damage and strain induced martensitic transformation. Ductile damage is described by the kinetic law of damage evolution. Here, the assumption of isotropic distribution of damage (microcracks and microvoids) in the Representative Volume Element (RVE) is made. Formation of the plastic strain induced martensite (irreversible process) leads to the presence of quasi-rigid inclusions of martensite in the austenitic matrix. The amount of martensite platelets in the RVE depends on the intensity of the plastic strain fields and on the temperature. The evolution of the volume fraction of martensite is governed by a kinetic law based on the accumulated plastic strain. Both of these irreversible phenomena, associated with the dissipation of plastic power, are included into the constitutive model of stainless steels at cryogenic temperatures. The model is tested on the thin-walled corrugated shells (known as bellows expansion joints) used in the interconnections of the Large Hadron Collider, the new proton storage ring being constructed at present at CERN

  4. Interstitial atoms enable joint twinning and transformation induced plasticity in strong and ductile high-entropy alloys.

    Science.gov (United States)

    Li, Zhiming; Tasan, Cemal Cem; Springer, Hauke; Gault, Baptiste; Raabe, Dierk

    2017-01-12

    High-entropy alloys (HEAs) consisting of multiple principle elements provide an avenue for realizing exceptional mechanical, physical and chemical properties. We report a novel strategy for designing a new class of HEAs incorporating the additional interstitial element carbon. This results in joint activation of twinning- and transformation-induced plasticity (TWIP and TRIP) by tuning the matrix phase's instability in a metastable TRIP-assisted dual-phase HEA. Besides TWIP and TRIP, such alloys benefit from massive substitutional and interstitial solid solution strengthening as well as from the composite effect associated with its dual-phase structure. Nanosize particle formation and grain size reduction are also utilized. The new interstitial TWIP-TRIP-HEA thus unifies all metallic strengthening mechanisms in one material, leading to twice the tensile strength compared to a single-phase HEA with similar composition, yet, at identical ductility.

  5. Investigation of phase transformations in ductile cast iron of differential scanning calorimetry

    International Nuclear Information System (INIS)

    Przeliorz, R; Piatkowski, J

    2011-01-01

    The effect of heating rate on phase transformations to austenite range in ductile cast iron of the EN-GJS-450-10 grade was investigated. For studies of phase transformations, the technique of differential scanning calorimetry (DSC) was used. Micro structure was examined by optical microscopy. The calorimetric examinations have proved that on heating three transformations occur in this grade of ductile iron, viz. magnetic transformation at the Curie temperature, pearlite→austenite transformation and ferrite→austenite transformation. An increase in the heating rate shifts the pearlite→austenite and ferrite→austenite transformations to higher temperature range. At the heating rate of 5 and 15 deg. C min -1 , local extrema have been observed to occur: for pearlite→austenite transformation at 784 deg. C and 795 deg. C, respectively, and for ferrite+ graphite →austenite transformation at 805 deg. C and 821 deg. C, respectively. The Curie temperature of magnetic transformation was extrapolated to a value of 740 deg. C. Each transformation is related with a specific thermal effect. The highest value of enthalpy is accompanying the ferrite→austenite transformation, the lowest occurs in the case of pearlite→austenite transformation.

  6. Ductility of Nanostructured Bainite

    Directory of Open Access Journals (Sweden)

    Lucia Morales-Rivas

    2016-12-01

    Full Text Available Nanostructured bainite is a novel ultra-high-strength steel-concept under intensive current research, in which the optimization of its mechanical properties can only come from a clear understanding of the parameters that control its ductility. This work reviews first the nature of this composite-like material as a product of heat treatment conditions. Subsequently, the premises of ductility behavior are presented, taking as a reference related microstructures: conventional bainitic steels, and TRIP-aided steels. The ductility of nanostructured bainite is then discussed in terms of work-hardening and fracture mechanisms, leading to an analysis of the three-fold correlation between ductility, mechanically-induced martensitic transformation, and mechanical partitioning between the phases. Results suggest that a highly stable/hard retained austenite, with mechanical properties close to the matrix of bainitic ferrite, is advantageous in order to enhance ductility.

  7. Sample Size Induced Brittle-to-Ductile Transition of Single-Crystal Aluminum Nitride

    Science.gov (United States)

    2015-08-01

    ARL-RP-0528 ● AUG 2015 US Army Research Laboratory Sample Size Induced Brittle-to- Ductile Transition of Single-Crystal Aluminum...originator. ARL-RP-0528 ● AUG 2015 US Army Research Laboratory Sample Size Induced Brittle-to- Ductile Transition of Single-Crystal...Sample Size Induced Brittle-to- Ductile Transition of Single-Crystal Aluminum Nitride 5a. CONTRACT NUMBER 5b. GRANT NUMBER 5c. PROGRAM ELEMENT

  8. Application of Differential Scanning Calorimetry (DSC in study of phase transformations in ductile iron

    Directory of Open Access Journals (Sweden)

    R. Przeliorz

    2010-04-01

    Full Text Available The effect of heating rate on phase transformations to austenite range in ductile iron of the EN-GJS-450-10 grade was investigated. For studies of phase transformations, the technique of differential scanning calorimetry (DSC was used. Microstructure was examined by optical microscopy. The calorimetric examinations have proved that on heating three transformations occur in this grade of ductile iron, viz. magnetic transformation at the Curie temperature, pearlite→austenite transformation and ferrite→austenite transformation. An increase in the heating rate shifts the pearlite→austenite and ferrite→austenite transformations to higher temperature range. At the heating rate of 5 and 15°C/min, local extrema have been observed to occur: for pearlite→austenite transformation at 784°C and 795°C, respectively, and for ferrite→austenite transformation at 805°C and 821°C, respectively. The Curie temperature of magnetic transformation was extrapolated to a value of 740°C. Each transformation is related with a specific thermal effect. The highest value of enthalpy is accompanying the ferrite→austenite transformation, the lowest occurs in the case of pearlite→austenite transformation.

  9. Unexpected pressure induced ductileness tuning in sulfur doped polycrystalline nickel metal

    Directory of Open Access Journals (Sweden)

    Cheng Guo

    2018-02-01

    Full Text Available The sulfur induced embrittlement of polycrystalline nickel (Ni metal has been a long-standing mystery. It is suggested that sulfur impurity makes ductile Ni metal brittle in many industry applications due to various mechanisms, such as impurity segregation and disorder-induced melting etc. Here we report an observation that the most ductile measurement occurs at a critical sulfur doping concentration, 14 at.% at pressure from 14 GPa up to 29 GPa through texture evolution analysis. The synchrotron-based high pressure texturing measurements using radial diamond anvil cell (rDAC X-ray diffraction (XRD techniques reveal that the activities of slip systems in the polycrystalline nickel metal are affected by sulfur impurities and external pressures, giving rise to the changes in the plastic deformation of the nickel metal. Dislocation dynamics (DD simulation on dislocation density and velocity further confirms the pressure induced ductilization changes in S doped Ni metal. This observation and simulation suggests that the ductilization of the doped polycrystalline nickel metal can be optimized by engineering the sulfur concentration under pressure, shedding a light on tuning the mechanical properties of this material for better high pressure applications.

  10. Unexpected pressure induced ductileness tuning in sulfur doped polycrystalline nickel metal

    Science.gov (United States)

    Guo, Cheng; Yang, Yan; Tan, Liuxi; Lei, Jialin; Guo, Shengmin; Chen, Bin; Yan, Jinyuan; Yang, Shizhong

    2018-02-01

    The sulfur induced embrittlement of polycrystalline nickel (Ni) metal has been a long-standing mystery. It is suggested that sulfur impurity makes ductile Ni metal brittle in many industry applications due to various mechanisms, such as impurity segregation and disorder-induced melting etc. Here we report an observation that the most ductile measurement occurs at a critical sulfur doping concentration, 14 at.% at pressure from 14 GPa up to 29 GPa through texture evolution analysis. The synchrotron-based high pressure texturing measurements using radial diamond anvil cell (rDAC) X-ray diffraction (XRD) techniques reveal that the activities of slip systems in the polycrystalline nickel metal are affected by sulfur impurities and external pressures, giving rise to the changes in the plastic deformation of the nickel metal. Dislocation dynamics (DD) simulation on dislocation density and velocity further confirms the pressure induced ductilization changes in S doped Ni metal. This observation and simulation suggests that the ductilization of the doped polycrystalline nickel metal can be optimized by engineering the sulfur concentration under pressure, shedding a light on tuning the mechanical properties of this material for better high pressure applications.

  11. Experimental study of discontinuous plastic flow, phase transformation and micro-damage evolution in ductile materials at cryogenic temperatures

    CERN Document Server

    Marcinek, Dawid Jarosław; Sgobba, S

    2009-01-01

    The present Thesis deals with three low temperature phenomena occurring in ductile materials subjected to mechanical loads: serrated yielding, plastic strain induced γ-α’ phase transformation and evolution of micro-damage: - the Thesis explains the physical mechanisms governing each phenomenon at the micro and macroscopic levels; - the document describes in detail the advanced laboratory equipment needed for cryogenic experiments; - the results of tests carried out with unique precision and focused on serrated yielding and evolution of micro-damage (the observations were made with different strain rates and with the use of different materials) are presented; - validation of suitable kinetic laws and identification of parameters for tested materials is carried out.

  12. Thermomechanical treatment of austempered ductile iron

    Directory of Open Access Journals (Sweden)

    A. A. Nofal

    2007-11-01

    Full Text Available The production of lightweight ferrous castings with increased strength properties became unavoidable facing the serious challenge of lighter aluminum and magnesium castings. The relatively new ferrous casting alloy ADI offers promising strength prospects, and the thermo-mechanical treatment of ductile iron may suggest a new route for production of thin-wall products. This work aims at studying the influence of thermomechanical treatment, either by ausforming just after quenching and before the onset of austempering reaction or by cold rolling after austempering. In the first part of this work, ausforming of ADI up to 25% reduction in height during a rolling operation was found to add a mechanical processing component compared to the conventional ADI heat treatment, thus increasing the rate of ausferrite formation and leading to a much finer and more homogeneous ausferrite product. The kinetics of ausferrite formation was studied using both metallographic as well as XRD-techniques. The effect of ausforming on the strength was quite dramatic (up to 70% and 50% increase in the yield and ultimate strength respectively. A mechanism involving both a refined microstructural scale and an elevated dislocation density was suggested. Nickel is added to ADI to increase hardenability of thick section castings, while ausforming to higher degrees of deformation is necessary to alleviate the deleterious effect of alloy segregation on ductility. In the second part of this work, the influence of cold rolling (CR on the mechanical properties and structural characteristics of ADI was investigated. The variation in properties was related to the amount of retained austenite (γr and its mechanically induced ransformation. In the course of tensile deformation of ADI, transformation induced plasticity (TRIP takes place, indicated by the increase of the instantaneous value of strain-hardening exponent with tensile strain. The amount of retained austenite was found to

  13. Novel ferrite–austenite duplex lightweight steel with 77% ductility by transformation induced plasticity and twinning induced plasticity mechanisms

    International Nuclear Information System (INIS)

    Sohn, Seok Su; Choi, Kayoung; Kwak, Jai-Hyun; Kim, Nack J.; Lee, Sunghak

    2014-01-01

    The need for lightweight materials has been an important issue in automotive industries to reduce greenhouse gas emission and to improve fuel efficiency. In addition, automotive steels require an excellent combination of strength and ductility to sustain automotive structures and to achieve complex shapes, but the traditional approach to obtain a reduction in weight from down-gauged steels with high strength has many limitations. Here, we present a new ferrite–austenite duplex lightweight steel containing a low-density element, Al; this steel exhibits tensile elongation up to 77% as well as high tensile strength (734 MPa). The enhanced properties are attributed to the simultaneous formation of deformation-induced martensites and deformation twins and the additional plasticity due to deformation twinning in austenite grains having optimal mechanical stability. The present work gives a promise for automotive applications requiring excellent properties as well as reduced specific weight

  14. The Influence of the Induced Ferrite and Precipitates of Ti-bearing Steel on the Ductility of Continuous Casting Slab

    Science.gov (United States)

    Qian, Guoyu; Cheng, Guoguang; Hou, Zibing

    2015-11-01

    In order to investigate the loss of the ductility of Ti-bearing ship plate steel under 1000 °C, where the ductility begins to reduce rapidly, so the hot ductility of Ti-bearing ship plate steel has been obtained using the Gleeble 1500 thermal-mechanical simulator and also the studies about the effect of grain boundary ferrite films and precipitates containing Ti on the ductility has been carried out. The result showed that the TiN particles precipitating at 950 °C with a larger size and smaller volume fraction cannot effectively suppress the occurrence of recrystallization and the ductility still retains at a high level, although R.A. value presents a certain degree of decline compared with 1000 °C. A large number of smaller Ti(C,N) particles precipitate at 900 °C and can induce the formation of a very small amount of fine grain boundary ferrite, which deteriorates the adhesion strength of the grain boundary, so the R.A. value rapidly reduces to less than 50%. When the temperature falls to close Ae3 (827 °C), the amount of the grain boundary ferrite films increase due to the ferrite phase transformation, but the ferrite film thickness becomes more uneven at the same time, which results in the increase of strain concentration and plays a leading role in causing the decrease of ductility, so the R.A. value has been kept less than 40% as the temperature cooling to 800 °C from 850 °C. When the temperature further decreases, the ductility starts to recover due to the increase of average ferrite film thickness to a greater degree which greatly reduces the strain concentration of the grain boundary.

  15. Hot ductility of medium carbon steel with vanadium

    International Nuclear Information System (INIS)

    Lee, Chang-Hoon; Park, Jun-Young; Chung, JunHo; Park, Dae-Bum; Jang, Jin-Young; Huh, Sungyul; Ju Kim, Sung; Kang, Jun-Yun; Moon, Joonoh; Lee, Tae-Ho

    2016-01-01

    Hot ductility of medium carbon steel containing 0.52 wt% of carbon and 0.11 wt% of vanadium was investigated using a hot tensile test performed up to fracture. The hot ductility was evaluated by measuring the reduction of area of the fractured specimens, which were strained at a variety of test temperatures in a range of 600–1100 °C at a strain rate of 2×10"−"3/s. The hot ductility was excellent in a temperature range of 950–1100 °C, followed by a decrease of the hot ductility below 950 °C. The hot ductility continued to drop as the temperature was lowered to 600 °C. The loss of hot ductility in a temperature range of 800–950 °C, which is above the Ae_3 temperature, was due to V(C,N) precipitation at austenite grain boundaries. The further decline of hot ductility between 700 °C and 750 °C resulted from the transformation of ferrite films decorating austenite grain boundaries. The hot ductility continued to decrease at 650 °C or less, owing to ferrite films and the pearlite matrix, which is harder than ferrite. The pearlite was transformed from austenite due to relatively high carbon content.

  16. The effect of pearlite on the hydrogen-induced ductility loss in ductile cast irons

    Science.gov (United States)

    Matsuo, T.

    2017-05-01

    Hydrogen energy systems, such as a hydrogen fuel cell vehicle and a hydrogen station, are rapidly developing to solve global environmental problems and resource problems. The available structural materials used for hydrogen equipments have been limited to only a few relatively expensive metallic materials that are tolerant for hydrogen embrittlement. Therefore, for the realization of a hydrogen society, it is important to expand the range of materials available for hydrogen equipment and thereby to enable the use of inexpensive common materials. Therefore, ductile cast iron was, in this study, focused as a structural material that could contribute to cost reduction of hydrogen equipment, because it is a low-cost material having good mechanical property comparable to carbon steels in addition to good castability and machinability. The strength and ductility of common ductile cast irons with a ferritic-pearlitic matrix can be controlled by the volume fraction of pearlitic phase. In the case of carbon steels, the susceptibility to hydrogen embrittlement increases with increase in the pearlite fraction. Toward the development of ferritic-pearlitic ductile cast iron with reasonable strength for hydrogen equipment, it is necessary to figure out the effect of pearlite on the hydrogen embrittlement of this cast iron. In this study, the tensile tests were conducted using hydrogen-precharged specimens of three kinds of ferritic-pearlitic ductile cast irons, JIS-FCD400, JIS-FCD450 and JIS-FCD700. Based on the results, the role of pearlite in characterizing the hydrogen embrittlement of ductile cast iron was discussed.

  17. Microstructure design of low alloy transformation-induced plasticity assisted steels

    Science.gov (United States)

    Zhu, Ruixian

    The microstructure of low alloy Transformation Induced Plasticity (TRIP) assisted steels has been systematically varied through the combination of computational and experimental methodologies in order to enhance the mechanical performance and to fulfill the requirement of the next generation Advanced High Strength Steels (AHSS). The roles of microstructural parameters, such as phase constitutions, phase stability, and volume fractions on the strength-ductility combination have been revealed. Two model alloy compositions (i.e. Fe-1.5Mn-1.5Si-0.3C, and Fe-3Mn-1Si-0.3C in wt%, nominal composition) were studied. Multiphase microstructures including ferrite, bainite, retained austenite and martensite were obtained through conventional two step heat treatment (i.e. intercritical annealing-IA, and bainitic isothermal transformation-BIT). The effect of phase constitution on the mechanical properties was first characterized experimentally via systematically varying the volume fractions of these phases through computational thermodynamics. It was found that martensite was the main phase to deteriorate ductility, meanwhile the C/VA ratio (i.e. carbon content over the volume fraction of austenite) could be another indicator for the ductility of the multiphase microstructure. Following the microstructural characterization of the multiphase alloys, two microstructural design criteria (i.e. maximizing ferrite and austenite, suppressing athermal martensite) were proposed in order to optimize the corresponding mechanical performance. The volume fraction of ferrite was maximized during the IA with the help of computational thermodyanmics. On the other hand, it turned out theoretically that the martensite suppression could not be avoided on the low Mn contained alloy (i.e. Fe- 1.5Mn-1.5Si-0.3C). Nevertheless, the achieved combination of strength (~1300MPa true strength) and ductility (˜23% uniform elongation) on the low Mn alloy following the proposed design criteria fulfilled the

  18. Development of Nanostructured Austempered Ductile Cast Iron

    Science.gov (United States)

    Panneerselvam, Saranya

    Austempered Ductile Cast Iron is emerging as an important engineering materials in recent years because of its excellent combination of mechanical properties such as high strength with good ductility, good fatigue strength and fracture toughness together with excellent wear resistance. These combinations of properties are achieved by the microstructure consisting of acicular ferrite and high carbon austenite. Refining of the ausferritic microstructure will further enhance the mechanical properties of ADI and the presence of proeutectoid ferrite in the microstructure will considerably improve the ductility of the material. Thus, the focus of this investigation was to develop nanostructured austempered ductile cast iron (ADI) consisting of proeutectoid ferrite, bainitic ferrite and high carbon austenite and to determine its microstructure-property relationships. Compact tension and cylindrical tensile test samples were prepared as per ASTM standards, subjected to various heat treatments and the mechanical tests including the tensile tests, plane strain fracture toughness tests, hardness tests were performed as per ASTM standards. Microstructures were characterized by optical metallography, X-ray diffraction, SEM and TEM. Nanostructured ADI was achieved by a unique heat treatment consisting of austenitization at a high temperature and subsequent plastic deformation at the same austenitizing temperature followed by austempering. The investigation also examined the effect of cryogenic treatment, effect of intercritical austenitizing followed by single and two step austempering, effect of high temperature plastic deformation on the microstructure and mechanical properties of the low alloyed ductile cast iron. The mechanical and thermal stability of the austenite was also investigated. An analytical model has been developed to understand the crack growth process associated with the stress induced transformation of retained austenite to martensite.

  19. Hydride-induced degradation of hoop ductility in textured zirconium-alloy tubes: A theoretical analysis

    International Nuclear Information System (INIS)

    Qin, W.; Szpunar, J.A.; Kozinski, J.

    2012-01-01

    Hydride-induced degradation of hoop ductility in Zr-alloy tubular components has been studied for many years because of its importance in the nuclear industry. In this paper the role of intergranular and intragranular δ-hydrides in the degradation of ductility of the textured Zr-alloy tubes is investigated. The correlation among hydride distribution, orientation and morphology in the tubes is formulated based on thermodynamic modeling, and then analyzed. The results show that the applied stress, the crystallographic texture of α-Zr matrix, the grain-boundary structure, and the morphology and size of Zr grains simultaneously govern the site preference and the orientation of hydrides. A criterion is proposed to determine the threshold stress of hydride reorientation. The hoop ductility of the hydrided Zr tubes is discussed using the concept of macroscopic fracture strain. It is shown that the intergranular hydrides may be more deleterious to ductility than the intragranular ones. This work defines a general framework for understanding the relation of the microstructure of hydride-forming materials to embrittlement.

  20. Influence of radiation-induced segregation on ductility of a nickel-silicon alloy

    International Nuclear Information System (INIS)

    Packan, N.H.; Schroeder, H.; Kesternich, W.

    1986-01-01

    Flat tensile specimens 60 μm thick of Ni-8 at. % Si were irradiated to bulk damage levels of 0.1 to 0.3 dpa with either 7 MeV protons or 28 MeV alpha particles at 750 K. The alpha bombarded specimens incurred 750 at. ppM He per 0.1 dpa in the course of their damage-generating irradiation. Radiation-induced silicon segregation gave rise to Ni 3 Si layers at internal and external surfaces. Postirradiation tensile tests conducted either at 300 K or 720 K revealed fully ductile (chisel-edged) transgranular fracture profiles. There were no significant differences between the proton-bombarded specimens and the unbombarded controls, both exhibiting >25% total elongations, while the alpha-bombarded specimens showed ductile fractures with somewhat lower (17 to 18%) elongation values probably due to hardening caused by small helium bubbles. Certain specimens that were preimplanted with 250 to 1000 at. ppM He at 970 K to encourage intergranular failure and expose grain boundaries did fail intergranularly. It is concluded that radiation-induced silicon segregation does not cause intrinsic embrittlement

  1. The Mechanism of High Ductility for Novel High-Carbon Quenching-Partitioning-Tempering Martensitic Steel

    Science.gov (United States)

    Qin, Shengwei; Liu, Yu; Hao, Qingguo; Wang, Ying; Chen, Nailu; Zuo, Xunwei; Rong, Yonghua

    2015-09-01

    In this article, a novel quenching-partitioning-tempering (Q-P-T) process was applied to treat Fe-0.6C-1.5Mn-1.5Si-0.6Cr-0.05Nb hot-rolled high-carbon steel and the microstructures including retained austenite fraction and the average dislocation densities in both martensite and retained austenite were characterized by X-ray diffraction, scanning electron microscopy, and transmission electron microscopy, respectively. The Q-P-T steel exhibits high strength (1950 MPa) and elongation (12.4 pct). Comparing with the steel treated by traditional quenching and tempering (Q&T) process, the mechanism of high ductility for high-carbon Q-P-T steel is revealed as follows. Much more retained austenite existing in Q-P-T steel than in Q&T one remarkably enhances the ductility by the following two effects: the dislocation absorption by retained austenite effect and the transformation-induced plasticity effect. Besides, lower dislocation density in martensite matrix produced by Q-P-T process plays an important role in the improvement of ductility. However, some thin plates of twin-type martensite embedded in dislocation-type martensite matrix in high-carbon Q-P-T steel affect the further improvement of ductility.

  2. Ductile Glass of Polyrotaxane Toughened by Stretch-Induced Intramolecular Phase Separation.

    Science.gov (United States)

    Kato, Kazuaki; Nemoto, Kaito; Mayumi, Koichi; Yokoyama, Hideaki; Ito, Kohzo

    2017-09-27

    A new class of ductile glasses is created from a thermoplastic polyrotaxane. The hard glass, which has a Young's modulus of 1 GPa, shows crazing, necking, and strain hardening with a total elongation of 330%. Stress concentration is prevented through a unique stretch-induced intramolecular phase separation of the cyclic components and the exposed backbone. In situ synchrotron X-ray scattering studies indicate that the backbone polymer chains slip through the cyclic components in the regions where the stress is concentrated.

  3. Improved ductility of a transformation-induced-plasticity steel by nanoscale austenite lamellae

    Energy Technology Data Exchange (ETDEWEB)

    Shen, Y.F., E-mail: shenyf@smm.neu.edu.cn [Key Laboratory for Anisotropy and Texture of Materials (MOE), School of Materials and Metallurgy, Northeastern University, Shenyang 110004 (China); Liu, Y.D. [Key Laboratory for Anisotropy and Texture of Materials (MOE), School of Materials and Metallurgy, Northeastern University, Shenyang 110004 (China); Sun, X. [Pacific Northwest National Laboratory, PO Box 999, Richland, WA 99352 (United States); Wang, Y.D.; Zuo, L. [Key Laboratory for Anisotropy and Texture of Materials (MOE), School of Materials and Metallurgy, Northeastern University, Shenyang 110004 (China); Misra, R.D.K. [Laboratory for Excellence in Advanced Steel Research, Center for Structural and Functional Materials, Institute for Materials Research and Innovation, University of Louisiana at Lafayette, P.O. Box 44130, Lafayette, LA 70504 (United States)

    2013-10-20

    TRIP (transformation-induced-plasticity) steel with a chemical composition of 0.19C–0.30Si–1.76Mn–1.52Al (weight percentage, wt%) have been treated by intercritical annealing and austempering process. The microstructures of the obtained samples consist of the ferrite, the bainite and the retained austenite phase. The volume fractions of the bainite and the retained austenite gradually increase with increasing the temperature of the intercritical annealing. Consequently, significantly different mechanical properties have been observed. The sample annealed at 820 °C (for 120 s) and partitioned at 400 °C (for 300 s) has the best combination of ultimate tensile strength (UTS, ∼682 MPa) and elongation to failure (∼70%) with about 26% of bainitic ferrite plates and 17% retained austenite in its microstructure. The retained austenite has a lamella morphology with 100‒300 nm in thickness and 2‒5 µm in length. On the contrary, the sample annealed at the same temperature without the partitioning process yields much lower UTS and elongation to failure.

  4. Microstructure-based constitutive modeling of TRIP steel: Prediction of ductility and failure modes under different loading conditions

    International Nuclear Information System (INIS)

    Choi, K.S.; Liu, W.N.; Sun, X.; Khaleel, M.A.

    2009-01-01

    We study the ultimate ductility and failure modes of a commercial transformation-induced plasticity (TRIP) 800 steel under different loading conditions with an advanced microstructure-based finite-element analysis. The representative volume element (RVE) for the TRIP 800 under examination is developed based on an actual microstructure obtained from scanning electron microscopy. The ductile failure of the TRIP 800 under different loading conditions is predicted in the form of plastic strain localization without any prescribed failure criteria for the individual phases. This indicates that the microstructure-level inhomogeneity of the various constituent phases can be the key factor influencing the final ductility of the TRIP 800 steel under different loading conditions. Comparisons of the computational results with experimental measurements suggest that the microstructure-based modeling approach accurately captures the overall macroscopic behavior of the TRIP 800 steel under different loading and boundary conditions.

  5. In-situ studies of stress- and magnetic-field-induced phase transformation in a polymer-bonded Ni-Co-Mn-In composite

    International Nuclear Information System (INIS)

    Liu, D.M.; Nie, Z.H.; Wang, G.; Wang, Y.D.; Brown, D.E.; Pearson, J.; Liaw, P.K.; Ren, Y.

    2010-01-01

    A polymer-bonded Ni 45 Co 5 Mn 36.6 In 13.4 ferromagnetic shape-memory composite was fabricated, having magnetic-field-driven shape recovery properties. The thermo-magnetization curves of the composite suggested that the magnetic-field-induced reverse martensitic transformation occurs in the composite. The effects of temperature, stress, and magnetic-field on the phase transformation properties were systematically investigated using an in-situ high-energy X-ray diffraction technique. A temperature-induced reversible martensitic phase transformation was confirmed within the composite, showing a broad phase transformation interval. Stress-induced highly textured martensite was observed in the composite during uniaxial compressive loading, with a residual strain after unloading. The origin of the textured martensite can be explained by the grain-orientation-dependent Bain distortion energy. A recovery strain of ∼1.76% along the compression direction was evidenced in the pre-strained composite with an applied magnetic-field of 5 T. This recovery was caused by the magnetic-field-induced reverse martensitic phase transformation. The phase transformation properties of the ferromagnetic shape-memory composite, different from its bulk alloys, can be well explained by the Clausius-Clapeyron relation. The large magnetic-field-induced strain, together with good ductility and low cost, make the polymer-bonded Ni-Co-Mn-In composites potential candidates for magnetic-field-driven actuators.

  6. Chaotic state to self-organized critical state transition of serrated flow dynamics during brittle-to-ductile transition in metallic glass

    Energy Technology Data Exchange (ETDEWEB)

    Wang, C.; Wang, W. H.; Bai, H. Y., E-mail: hybai@aphy.iphy.ac.cn [Institute of Physics, Chinese Academy of Sciences, Beijing 100190 (China); Sun, B. A. [Centre for Advanced Structural Materials, Department of Mechanical and Biomedical Engineering, City University of Hong Kong, Kowloon Tong, Kowloon (Hong Kong)

    2016-02-07

    We study serrated flow dynamics during brittle-to-ductile transition induced by tuning the sample aspect ratio in a Zr-based metallic glass. The statistical analysis reveals that the serrated flow dynamics transforms from a chaotic state characterized by Gaussian-distribution serrations corresponding to stick-slip motion of randomly generated and uncorrelated single shear band and brittle behavior, into a self-organized critical state featured by intermittent scale-free distribution of shear avalanches corresponding to a collective motion of multiple shear bands and ductile behavior. The correlation found between serrated flow dynamics and plastic deformation might shed light on the plastic deformation dynamic and mechanism in metallic glasses.

  7. Stress-induced phase transformation and room temperature aging in Ti-Nb-Fe alloys

    Energy Technology Data Exchange (ETDEWEB)

    Cai, S.; Schaffer, J.E. [Fort Wayne Metals Research Products Corp, 9609 Ardmore Ave., Fort Wayne, IN 46809 (United States); Ren, Y. [Advanced Photon Source, Argonne National Laboratory, 9700 S. Cass Ave., Argonne, IL 60439 (United States)

    2017-01-05

    Room temperature deformation behavior of Ti-17Nb-1Fe and Ti-17Nb-2Fe alloys was studied by synchrotron X-ray diffraction and tensile testing. It was found that, after proper heat treatment, both alloys were able to recover a deformation strain of above 3.5% due to the Stress-induced Martensite (SIM) phase transformation. Higher Fe content increased the beta phase stability and onset stress for SIM transformation. A strong {110}{sub β} texture was produced in Ti-17Nb-2Fe compared to the {210}{sub β} texture that was observed in Ti-17Nb-1Fe. Room temperature aging was observed in both alloys, where the formation of the omega phase increased the yield strength (also SIM onset stress), and decreased the ductility and strain recovery. Other metastable beta Ti alloys may show a similar aging response and this should draw the attention of materials design engineers.

  8. Modelling of liquid sodium induced crack propagation in T91 martensitic steel: Competition with ductile fracture

    Energy Technology Data Exchange (ETDEWEB)

    Hemery, Samuel [Institut PPRIME, CNRS, Université de Poitiers, ISAE ENSMA, UPR 3346, Téléport 2, 1 Avenue Clément Ader, BP 40109, 86961 Futuroscope Chasseneuil Cedex (France); Berdin, Clotilde, E-mail: clotilde.berdin@u-psud.fr [Univ Paris-Sud, SP2M-ICMMO, CNRS UMR 8182, F-91405 Orsay Cedex (France); Auger, Thierry; Bourhi, Mariem [Ecole Centrale-Supelec, MSSMat CNRS UMR 8579, F-92295 Chatenay Malabry Cedex (France)

    2016-12-01

    Liquid metal embrittlement (LME) of T91 steel is numerically modeled by the finite element method to analyse experimental results in an axisymmetric notched geometry. The behavior of the material is identified from tensile tests then a crack with a constant crack velocity is introduced using the node release technique in order to simulate the brittle crack induced by LME. A good agreement between the simulated and the experimental macroscopic behavior is found: this suggests that the assumption of a constant crack velocity is correct. Mechanical fields during the embrittlement process are then extracted from the results of the finite element model. An analysis of the crack initiation and propagation stages: the ductile fracture probably breaks off the LME induced brittle fracture. - Highlights: • T91 martensitic steel is embrittled by liquid sodium depending on the loading rate at 573 K. • The mechanical behavior is modeled by a von Mises elastic-plastic law. • The LME induced crack propagates at a constant velocity. • The mechanical state at the crack tip does not explain a brittle crack arrest. • The occurrence of the ductile fracture breaks off the brittle fracture.

  9. A new effect of retained austenite on ductility enhancement in high strength bainitic steel

    Energy Technology Data Exchange (ETDEWEB)

    Wang Ying; Zhang Ke; Guo Zhenghong; Chen Nailu [School of Materials Science and Engineering, Shanghai Jiao Tong University, Shanghai 200240 (China); Rong Yonghua, E-mail: yhrong@sjtu.edu.cn [School of Materials Science and Engineering, Shanghai Jiao Tong University, Shanghai 200240 (China)

    2012-08-30

    Highlights: Black-Right-Pointing-Pointer A new DARA effect in the bainitic steel is proposed. Black-Right-Pointing-Pointer The conditions of DARA effect are proposed. Black-Right-Pointing-Pointer The mechanism of retained austenite on ductility enhancement is clarified. - Abstract: A designed high strength bainitic steel with considerable amount of retained austenite is presented in order to study the effect of retained austenite on the ductility enhancement in bainitic steels. Transformation induced plasticity (TRIP) effect is verified by both X-ray diffraction (XRD) measurement of retained austenite fraction in various deformation stages and transmission electron microscopy observation of the deformed twin-type martensite. Results from XRD line profile analysis reveal that the average dislocation density in bainite during the deformation is lower than that before deformation, and such a phenomenon can be explained by a new effect, dislocations absorption by retained austenite (DARA) effect, based on our previous investigation of martensitic steels. DARA effect availably enhances the compatibility of deformation ability of bainite with retained austenite. In view of microstructure similarity of bainitic steels with martensitic steels, the conditions of DARA effect are proposed. The effects of retained austenite on the ductility enhancement in bainitic steels are clarified.

  10. A new insight into ductile fracture of ultrafine-grained Al-Mg alloys.

    Science.gov (United States)

    Yu, Hailiang; Tieu, A Kiet; Lu, Cheng; Liu, Xiong; Liu, Mao; Godbole, Ajit; Kong, Charlie; Qin, Qinghua

    2015-04-08

    It is well known that when coarse-grained metals undergo severe plastic deformation to be transformed into nano-grained metals, their ductility is reduced. However, there are no ductile fracture criteria developed based on grain refinement. In this paper, we propose a new relationship between ductile fracture and grain refinement during deformation, considering factors besides void nucleation and growth. Ultrafine-grained Al-Mg alloy sheets were fabricated using different rolling techniques at room and cryogenic temperatures. It is proposed for the first time that features of the microstructure near the fracture surface can be used to explain the ductile fracture post necking directly. We found that as grains are refined to a nano size which approaches the theoretical minimum achievable value, the material becomes brittle at the shear band zone. This may explain the tendency for ductile fracture in metals under plastic deformation.

  11. Irradiation effects on tensile ductility and dynamic toughness of ferritic-martensitic 7-12 Cr steels

    International Nuclear Information System (INIS)

    Preininger, D.

    2006-01-01

    The superimposed effect of irradiation-induced hardening by small defects (clusters, dislocation loops) and chromium-rich - precipitate formations on tensile ductility and Charpy-impact behaviour of various ferritic-martensitic (7-13)CrWVTa(Ti)-RAFM steels have been examined by micro-mechanical deformation and ductile/dynamic fracture models. Analytical relations have been deduced describing irradiation-induced changes of uniform ductility and fracture strain as well as ductile-to-brittle transition temperature DBTT and ductile upper shelf energy USE observed from impact tests. The models apply work-hardening with competitive action of relevant dislocation multiplication and annihilation reactions. The impact model takes into account stress intensity with local plasticity and fracture within the damage zone of main crack. Especially, the influences of radiation-induced changes in ductile and dynamic fracture stresses have been considered together with effects from strain rate sensitivity of strength, precipitate morphology as mean size dp and volume fraction fv as well as deformation temperature and strain rate. For these, particularly the correlation between tensile ductility and impact properties have been examined. Strengthening by clusters and loops generally reduces uniform ductility, and more stronger fracture strain as well as ductile upper shelf energy USE and additionally increases DBTT for constant fracture stresses. A superimposed precipitation hardening by formation of 3-6 nm, f v 6 nm, which clear above the sharable limit of coherent precipitates increases with increasing fraction fv and but strongly reduces with increasing matrix strength due to full martensitic structure, higher C, N alloying contents and pronounced hardening by irradiation-induced cluster and loop formations. A combined increase of fracture stresses due to irradiation-induced changes of the grain boundary structure diminishes the strength-induced increase in DBTT and more stronger

  12. Irradiation and inhomogeneity effects on ductility and toughness of (ODS)-7 -13Cr steels

    International Nuclear Information System (INIS)

    Preininger, D.

    2007-01-01

    Full text of publication follows: The superimposed effect of irradiation defect and structural inhomogeneity formation on tensile ductility and dynamic toughness of ferritic-martensitic 7-13CrW(Mo)VTa(Nb) and oxide dispersion-strengthened (ODS)-7-13CrWVTa(Ti)- RAFM steels has been examined by work hardening and local stress/strain-induced ductile fracture models. Structural inhomogeneities which strongly promoting plastic instability and localized flow might be formed by the applied fabrication process, high dose irradiation and additionally further during deformation by enhanced local dislocation generation around fine particles or due to slip band formation with localized heating at high impact strain rates ε'. The work hardening model takes into account superimposed dislocation multiplication from stored dislocations, dispersions and also grain boundaries as well as annihilation by cross-slip. Analytical relations have been deduced from the model describing uniform ductility and ductile upper shelf energy (USE) observed from Charpy-impact testes. Especially, the influence of different irradiation defects like atomic clusters, dislocation loops and coherent chromium-rich α'- precipitates have been considered together with effects from strain rate as well as irradiation (TI) and test temperature TT. Strengthening by clusters and more pronounced by dislocation loops formed at higher TI>250 deg. C reduces uniform ductility and also distinctly stronger dynamic toughness USE. A superimposed hardening by the α'- formation in higher Cr containing 9-13Cr steels strongly reduces toughness assisted by a combined grain-boundary embrittlement with reduction of the ductile fracture stress. But that improves work hardening and uniform ductility as observed particularly due to nano-scale Y 2 O 3 - dispersions in ODS-RAFM steels. For ODS- steels additionally the strength-induced reduction of toughness is diminished by a combined microstructural-induced increase of the ductile

  13. Microstructure Evolution and Mechanical Behavior of a Hot-Rolled High-Manganese Dual-Phase Transformation-Induced Plasticity/Twinning-Induced Plasticity Steel

    Science.gov (United States)

    Fu, Liming; Shan, Mokun; Zhang, Daoda; Wang, Huanrong; Wang, Wei; Shan, Aidang

    2017-05-01

    The microstructures and deformation behavior were studied in a high-temperature annealed high-manganese dual-phase (28 vol pct δ-ferrite and 72 vol pct γ-austenite) transformation-induced plasticity/twinning-induced plasticity (TRIP/TWIP) steel. The results showed that the steel exhibits a special Lüders-like yielding phenomenon at room temperature (RT) and 348 K (75 °C), while it shows continuous yielding at 423 K, 573 K and 673 K (150 °C, 300 °C and 400 °C) deformation. A significant TRIP effect takes place during Lüders-like deformation at RT and 348 K (75 °C) temperatures. Semiquantitative analysis of the TRIP effect on the Lüders-like yield phenomenon proves that a softening effect of the strain energy consumption of strain-induced transformation is mainly responsible for this Lüders-like phenomenon. The TWIP mechanism dominates the 423 K (150 °C) deformation process, while the dislocation glide controls the plasticity at 573 K (300 °C) deformation. The delta-ferrite, as a hard phase in annealed dual-phase steel, greatly affects the mechanical stability of austenite due to the heterogeneous strain distribution between the two phases during deformation. A delta-ferrite-aided TRIP effect, i.e., martensite transformation induced by localized strain concentration of the hard delta-ferrite, is proposed to explain this kind of Lüders-like phenomenon. Moreover, the tensile curve at RT exhibits an upward curved behavior in the middle deformation stage, which is principally attributed to the deformation twinning of austenite retained after Lüders-like deformation. The combination of the TRIP effect during Lüders-like deformation and the subsequent TWIP effect greatly enhances the ductility in this annealed high-manganese dual-phase TRIP/TWIP steel.

  14. A brittle-fracture methodology for three-dimensional visualization of ductile deformation micromechanisms

    NARCIS (Netherlands)

    Tasan, C.C.; Hoefnagels, J.P.M.; Geers, M.G.D.

    2009-01-01

    An improved experimental methodology is developed and successfully evaluated to visualize deformation-induced microevents in ductile sheet metal. This easy-to-use methodology consists in a well-controlled brittle separation of samples previously deformed in a ductile manner, whereby a

  15. From brittle to ductile: a structure dependent ductility of diamond nanothread.

    Science.gov (United States)

    Zhan, Haifei; Zhang, Gang; Tan, Vincent B C; Cheng, Yuan; Bell, John M; Zhang, Yong-Wei; Gu, Yuantong

    2016-06-07

    As a potential building block for the next generation of devices/multifunctional materials that are spreading in almost every technology sector, one-dimensional (1D) carbon nanomaterial has received intensive research interests. Recently, a new ultra-thin diamond nanothread (DNT) has joined this palette, which is a 1D structure with poly-benzene sections connected by Stone-Wales (SW) transformation defects. Using large-scale molecular dynamics simulations, we found that this sp(3) bonded DNT can transition from brittle to ductile behaviour by varying the length of the poly-benzene sections, suggesting that DNT possesses entirely different mechanical responses than other 1D carbon allotropes. Analogously, the SW defects behave like a grain boundary that interrupts the consistency of the poly-benzene sections. For a DNT with a fixed length, the yield strength fluctuates in the vicinity of a certain value and is independent of the "grain size". On the other hand, both yield strength and yield strain show a clear dependence on the total length of DNT, which is due to the fact that the failure of the DNT is dominated by the SW defects. Its highly tunable ductility together with its ultra-light density and high Young's modulus makes diamond nanothread ideal for the creation of extremely strong three-dimensional nano-architectures.

  16. Strong, Ductile, and Thermally Stable bcc-Mg Nanolaminates.

    Science.gov (United States)

    Pathak, Siddhartha; Velisavljevic, Nenad; Baldwin, J Kevin; Jain, Manish; Zheng, Shijian; Mara, Nathan A; Beyerlein, Irene J

    2017-08-15

    Magnesium has attracted attention worldwide because it is the lightest structural metal. However, a high strength-to-weight ratio remains its only attribute, since an intrinsic lack of strength, ductility and low melting temperature severely restricts practical applications of Mg. Through interface strains, the crystal structure of Mg can be transformed and stabilized from a simple hexagonal (hexagonal close packed hcp) to body center cubic (bcc) crystal structure at ambient pressures. We demonstrate that when introduced into a nanocomposite bcc Mg is far more ductile, 50% stronger, and retains its strength after extended exposure to 200 C, which is 0.5 times its homologous temperature. These findings reveal an alternative solution to obtaining lightweight metals critically needed for future energy efficiency and fuel savings.

  17. Investigation of hot ductility in Al-killed boron steels

    International Nuclear Information System (INIS)

    Chown, L.H.; Cornish, L.A.

    2008-01-01

    The influence of boron to nitrogen ratio, strain rate and cooling rate on hot ductility of aluminium-killed, low carbon, boron microalloyed steel was investigated. Hot tensile testing was performed on steel samples reheated in argon to 1300 deg. C, cooled at rates of 0.3, 1.2 and 3.0 deg. C s -1 to temperatures in the range 750-1050 deg. C, and then strained to failure at initial strain rates of 1 x 10 -4 or 1 x 10 -3 s -1 . It was found that the steel with a B:N ratio of 0.19 showed deep hot ductility troughs for all tested conditions; the steel with a B:N ratio of 0.47 showed a deep ductility trough for a high cooling rate of 3.0 deg. C s -1 and the steel with a near-stoichiometric B:N ratio of 0.75 showed no ductility troughs for the tested conditions. The ductility troughs extended from ∼900 deg. C (near the Ae 3 temperature) to ∼1000 or 1050 deg. C in the single-phase austenite region. The proposed mechanism of hot ductility improvement with increase in B:N ratio in these steels is that the B removes N from solution, thus reducing the strain-induced precipitation of AlN. Additionally, BN co-precipitates with sulphides, preventing precipitation of fine MnS, CuS and FeS, and forming large, complex precipitates that have no effect on hot ductility

  18. Anisotropic Constitutive Model of Strain-induced Phenomena in Stainless Steels at Cryogenic Temperatures

    CERN Document Server

    Garion, C

    2004-01-01

    A majority of the thin-walled components subjected to intensive plastic straining at cryogenic temperatures are made of stainless steels. The examples of such components can be found in the interconnections of particle accelerators, containing the superconducting magnets, where the thermal contraction is absorbed by thin-walled, axisymetric shells called bellows expansion joints. The stainless steels show three main phenomena induced by plastic strains at cryogenic temperatures: serrated (discontinuous) yielding, gamma->alpha' phase transformation and anisotropic ductile damage. In the present paper, a coupled constitutive model of gamma->alpha' phase transformation and orthotropic ductile damage is presented. A kinetic law of phase transformation, and a kinetic law of evolution of orthotropic damage are presented. The model is extended to anisotropic plasticity comprising a constant anisotropy (texture effect), which can be classically taken into account by the Hill yield surface, and plastic strain induced ...

  19. Thermoelastic martensite and shape memory effect in ductile Cu-Al-Mn alloys

    Science.gov (United States)

    Kainuma, R.; Takahashi, S.; Ishida, K.

    1996-08-01

    Ductile shape memory (SM) alloys of the Cu-AI-Mn system have been developed by controlling the degree of order in the β phase. Additions of Mn to the binary Cu-Al alloy stabilize the β phase and widen the single-phase region to lower temperature and lower Al contents. It is shown that Cu-Al-Mn alloys with low Al contents have either the disordered A2 structure or the ordered L21 structure with a lower degree of order and that they exhibit excellent ductility. The disordered A2 phase martensitically transforms to the disordered Al phase with a high density of twins. The martensite phase formed from the ordered L21 phase has the 18R structure. The SM effect accompanies both the A2 → Al and L21 → 18R martensitic transformations. These alloys exhibit 15 pct strain to failure, 60 to 90 pct rolling reduction without cracking, and 80 to 90 pct recovery from bend test in the martensitic condition. Experimental results on the microstructure, crystal structure, mechanical properties, and shape memory behavior in the ductile Cu-AI-Mn alloys are presented and discussed.

  20. Ductile Fracture Behaviour of Hot Isostatically Pressed Inconel 690 Superalloy

    Science.gov (United States)

    Cooper, A. J.; Brayshaw, W. J.; Sherry, A. H.

    2018-04-01

    Herein we assess the differences in Charpy impact behavior between Hot Isostatically Pressed and forged Inconel 690 alloy over the temperature range of 300 °C to - 196 °C. The impact toughness of forged 690 exhibited a relatively small temperature dependence, with a maximum difference of ca. 40 J measured between 300 °C and - 196 °C, whereas the HIP'd alloy exhibited a difference of approximately double that of the forged alloy over the same temperature range. We have conducted Charpy impact testing, tensile testing, and metallographic analyses on the as-received materials as well as fractography of the failed Charpy specimens in order to understand the mechanisms that cause the observed differences in material fracture properties. The work supports a recent series of studies which assess differences in fundamental fracture behavior between Hot Isostatically Pressed and forged austenitic stainless steel materials of equivalent grades, and the results obtained in this study are compared to those of the previous stainless steel investigations to paint a more general picture of the comparisons between HIP vs forged material fracture behavior. Inconel 690 was selected in this study since previous studies were unable to completely omit the effects of strain-induced martensitic transformation at the tip of the Chary V-notch from the fracture mechanism; Inconel 690 is unable to undergo strain-induced martensitic transformation due to the alloy's high nickel content, thereby providing a sister study with the omission of any martensitic transformation effects on ductile fracture behavior.

  1. Hot Ductility Behavior of an 8 Pct Cr Roller Steel

    Science.gov (United States)

    Wang, Zhenhua; Sun, Shuhua; Shi, Zhongping; Wang, Bo; Fu, Wantang

    2015-04-01

    The hot ductility of an 8 pct Cr roller steel was determined between 1173 K and 1473 K (900 °C and 1200 °C) at strain rates of 0.01 to 10 s-1 through tensile testing. The fracture morphology was observed using scanning electron microscopy, and the microstructure was examined through optical microscopy and transmission electron microscopy. The dependence of the hot ductility behavior on the deformation conditions, grain size, and precipitation was analyzed. The relationship between the reduction in area and the natural logarithm of the Zener-Hollomon parameter (ln Z) was found to be a second-order polynomial. When ln Z was greater than 40 s-1, the hot ductility was poor and fracture was mainly caused by incompatible deformation between the grains. When ln Z was between 32 and 40 s-1, the hot ductility was excellent and the main fracture mechanism was void linking. When ln Z was below 32 s-1, the hot ductility was poor and fracture was mainly caused by grain boundary sliding. A fine grain structure is beneficial for homogenous deformation and dynamic recrystallization, which induces better hot ductility. The effect of M7C3 carbide particles dispersed in the matrix on the hot ductility was small. The grain growth kinetics in the 8 pct Cr steel were obtained between 1373 K and 1473 K (1100 °C and 1200 °C). Finally, optimized preheating and forging procedures for 8 pct Cr steel rollers are provided.

  2. Microstructure feature of friction stir butt-welded ferritic ductile iron

    International Nuclear Information System (INIS)

    Chang, Hung-Tu; Wang, Chaur-Jeng; Cheng, Chin-Pao

    2014-01-01

    Highlights: • Defect-free ferritic ductile iron joints is fabricated by FSW. • The welding nugget is composed of graphite, martensite, and recrystallized ferrite. • The graphite displays a striped pattern in the surface and advancing side. • The ferritic matrix transforms into martensite structure during welding. • High degree of plastic deformation is found on the advancing side. - Abstract: This study conducted friction stir welding (FSW) by using the butt welding process to join ferritic ductile iron plates and investigated the variations of microsturcture in the joined region formed after welding. No defects appeared in the resulting experimental weld, which was formed using a 3-mm thick ductile iron plate and tungsten carbide alloy stir rod to conduct FSW at a rotational speed of 982 rpm and traveling speed of 72 mm/min. The welding region was composed of deformed graphite, martensite phase, and dynamically recrystallized ferrite structures. In the surface region and on the advancing side (AS), the graphite displayed a striped configuration and the ferritic matrix transformed into martensite. On the retreating side (RS), the graphite surrounded by martensite remained as individual granules and the matrix primarily comprised dynamically recrystallized ferrite. After welding, diffusion increased the carbon content of the austenite around the deformed graphite nodules, which transformed into martensite during the subsequent cooling process. A micro Vickers hardness test showed that the maximum hardness value of the martensite structures in the weld was approximately 800 HV. An analysis using an electron probe X-ray microanalyzer (EPMA) indicated that its carbon content was approximately 0.7–1.4%. The peak temperature on the RS, 8 mm from the center of the weld, measured 630 °C by the thermocouple. Overall, increased severity of plastic deformation and process temperature near the upper stir zone (SZ) resulted in distinct phase transformation

  3. Electron-irradiation-induced phase transformation in alumina

    International Nuclear Information System (INIS)

    Chen, C.L.; Arakawa, K.; Lee, J.-G.; Mori, H.

    2010-01-01

    In this study, electron-irradiation-induced phase transformations between alumina polymorphs were investigated by high-resolution transmission electron microscopy. It was found that the electron-irradiation-induced α → κ' phase transformation occurred in the alumina under 100 keV electron irradiation. It is likely that the knock-on collision between incident electrons and Al 3+ cations is responsible for the occurrence of electron-irradiation-induced phase transformation from α-alumina to κ'-alumina.

  4. Highly ductile UV-shielding polymer composites with boron nitride nanospheres as fillers.

    Science.gov (United States)

    Fu, Yuqiao; Huang, Yan; Meng, Wenjun; Wang, Zifeng; Bando, Yoshio; Golberg, Dmitri; Tang, Chengchun; Zhi, Chunyi

    2015-03-20

    Polymer composites with enhanced mechanical, thermal or optical performance usually suffer from poor ductility induced by confined mobility of polymer chains. Herein, highly ductile UV-shielding polymer composites are successfully fabricated. Boron nitride (BN) materials, with a wide band gap of around ∼6.0 eV, are used as fillers to achieve the remarkably improved UV-shielding performance of a polymer matrix. In addition, it is found that spherical morphology BN as a filler can keep the excellent ductility of the composites. For a comparison, it is demonstrated that traditional fillers, including conventional BN powders can achieve the similar UV-shielding performance but dramatically decrease the composite ductility. The mechanism behind this phenomenon is believed to be lubricant effects of BN nanospheres for sliding of polymer chains, which is in consistent with the thermal analyses. This study provides a new design to fabricate UV-shielding composite films with well-preserved ductility.

  5. Evaluation of a Ductility after High Temperature Oxidation with the Three-Point Bend Test in Zirconium Alloys

    International Nuclear Information System (INIS)

    Jung, Yang Il; Park, Sang Yoon; Park, Jeong Yong; Jeong, Yong Hwan

    2010-01-01

    In a light water reactor, the fuel cladding play an important role of preventing leakage of radioactive materials into the coolant, and thus the mechanical integrity of the cladding should be guaranteed under the conditions of normal and transient operation. In the case of a loss of coolant accident (LOCA), the cladding is subjected to a high temperature oxidation which is finally quenched because of an emergency coolant reflooding into the core. In this situation, the current LOCA criteria consist of five separate requirements: i) peak cladding temperature, ii) maximum cladding oxidation, iii) maximum hydrogen generation, iv) coolable geometry, and v) long-term cooling. The claddings lose their ductility due to the microstructural phase transformation from beta to martensite alpha-prime. and hydrogen up-take after LOCA. Since the reduction in ductility can induce embrittlement of claddings, post-quench ductility is one of the major concerns in transient operation circumstances. For the analysis, usually ring compression test are performed on ring samples cut from the tube to examine the oxidized cladding ductility. However, the test would not be applicable to the platelet samples which are general form of a specimen for developing alloys. As a high burn-up fuel cladding materials, Zircaloys are being replaced by modern zirconium alloys such as ZIRLO, and M5. Korea has also developed a new fuel cladding material HANA (high performance alloy for nuclear application) by the Korea Atomic Energy Research Institute. Because of the different composition of the newer claddings in comparison with the conventional Zircaloy-4, the high temperature oxidation behavior and the ductility after the oxidation would be different, and the properties should be evaluated how much the newer claddings were improved

  6. Room-temperature ductile inorganic semiconductor

    Science.gov (United States)

    Shi, Xun; Chen, Hongyi; Hao, Feng; Liu, Ruiheng; Wang, Tuo; Qiu, Pengfei; Burkhardt, Ulrich; Grin, Yuri; Chen, Lidong

    2018-05-01

    Ductility is common in metals and metal-based alloys, but is rarely observed in inorganic semiconductors and ceramic insulators. In particular, room-temperature ductile inorganic semiconductors were not known until now. Here, we report an inorganic α-Ag2S semiconductor that exhibits extraordinary metal-like ductility with high plastic deformation strains at room temperature. Analysis of the chemical bonding reveals systems of planes with relatively weak atomic interactions in the crystal structure. In combination with irregularly distributed silver-silver and sulfur-silver bonds due to the silver diffusion, they suppress the cleavage of the material, and thus result in unprecedented ductility. This work opens up the possibility of searching for ductile inorganic semiconductors/ceramics for flexible electronic devices.

  7. Dislocation dynamics modelling of the ductile-brittle-transition

    International Nuclear Information System (INIS)

    Hennecke, Thomas; Haehner, Peter

    2009-01-01

    Many materials like silicon, tungsten or ferritic steels show a transition between high temperature ductile fracture with stable crack grow and high deformation energy absorption and low temperature brittle fracture in an unstable and low deformation mode, the ductile-brittle-transition. Especially in steels, the temperature transition is accompanied by a strong increase of the measured fracture toughness over a certain temperature range and strong scatter in the toughness data in this transition regime. The change in fracture modes is affected by dynamic interactions between dislocations and the inhomogeneous stress fields of notches and small cracks. In the present work a dislocation dynamics model for the ductile-brittle-transition is proposed, which takes those interactions into account. The model can explain an increase with temperature of apparent toughness in the quasi-brittle regime and different levels of scatter in the different temperature regimes. Furthermore it can predict changing failure sites in materials with heterogeneous microstructure. Based on the model, the effects of crack tip blunting, stress state, external strain rate and irradiation-induced changes in the plastic flow properties can be discussed.

  8. Characterisation of Ductile Prepregs

    Science.gov (United States)

    Pinto, F.; White, A.; Meo, M.

    2013-04-01

    This study is focused on the analysis of micro-perforated prepregs created from standard, off the shelf prepregs modified by a particular laser process to enhance ductility of prepregs for better formability and drapability. Fibres are shortened through the use of laser cutting in a predetermined pattern intended to maintain alignment, and therefore mechanical properties, yet increase ductility at the working temperature. The increase in ductility allows the product to be more effectively optimised for specific forming techniques. Tensile tests were conducted on several specimens in order to understand the ductility enhancement offered by this process with different micro-perforation patterns over standard prepregs. Furthermore, the effects of forming temperature was also analysed to assess the applicability of this material to hot draping techniques and other heated processes.

  9. Influence of creep ductility on creep-fatigue behaviour of 20%Cr/25%Ni/Nb stainless steel

    International Nuclear Information System (INIS)

    Gladwin, D.; Miller, D.A.

    1985-01-01

    The influence of creep ductility on creep-fatigue endurance of 20%Cr/25%Ni/Nb stainless steel has been examined. In order to induce different creep ductilities in the 20/25/Nb stainless steel, three different thermo-mechanical routes were employed. These resulted in a range of ductilities (3-36%) being obtained at the strain rates of interest. Strain controlled slow-fast creep-fatigue cycles were used with strain rates of 10 -6 s -1 , 10 -7 s -1 in tension and 10 -3 s -1 in compression. It was found that creep ductility strongly influenced the creep-fatigue endurance of the 20/25/Nb stainless steel. When failure was creep dominated endurance was found to be directly proportional to the creep ductility. A ductility exhaustion model has been used to successfully predict creep-fatigue endurance when failure was creep dominated. (author)

  10. Ductility Enhancement of Molybdenum Phase by Nano-sizedd Oxide Dispersions

    Energy Technology Data Exchange (ETDEWEB)

    Bruce Kang

    2008-07-31

    The present research is focused on ductility enhancement of molybdenum (Mo) alloys by adding nano-sized oxide particles to the alloy system. The research approach includes: (1) determination of microscopic mechanisms responsible for the macroscopic ductility enhancement effects through atomistic modeling of the metal-ceramic interface; (2) subsequent computer simulation-aided optimization of composition and nanoparticle size of the dispersion for improved performance; (3) synthesis and characterization of nanoparticle dispersion following the guidance from atomistic computational modeling analyses (e.g., by processing a small sample of Mo alloy for evaluation); and (4) experimental testing of the mechanical properties to determine optimal ductility enhancement.Through atomistic modeling and electronic structure analysis using full-potential linearized muffin-tin orbital (FP-LMTO) techniques, research to date has been performed on a number of selected chromium (Cr) systems containing nitrogen (N) and/or magnesium oxide (MgO) impurities. The emphasis has been on determining the properties of the valence electrons and the characteristics of the chemical bonds they formed. It was found that the brittle/ductile behavior of this transitional metal system is controlled by the relative population of valence charges: bonds formed by s valence electrons yield metallic, ductile behavior, whereas bonds formed by d valence electrons lead to covalent, brittle behavior. The presence of valence bands from impurities also affects the metal bonding, thereby explaining the detrimental and beneficial effects induced by the inclusion of N impurities and MgO dispersions. These understandings are useful for optimizing ductility enhancement effects on the dispersion materials.

  11. Intrinsic ductility and environmental embrittlement of binary Ni3Al

    International Nuclear Information System (INIS)

    George, E.P.; Liu, C.T.; Pope, D.P.

    1993-01-01

    Polycrystalline, B-free Ni 3 Al (23.4 at.% Al), produced by cold working and recrystallizing a single crystal, exhibits room temperature tensile ductilities of 3-5% in air and 13-16% in oxygen. These ductilities are considerably higher than anything previously reported, and demonstrate that the 'intrinsic' ductility of Ni 3 Al is much higher than previously thought. They also show that the moisture present in ordinary ambient air can severely embrittle Ni 3 Al (ductility decreasing from a high of 16% in oxygen to a low of 3% in air). Fracture is predominantly intergranular in both air and oxygen. This indicates that, while moisture can further embrittle the GBs in Ni 3 Al, they persist as weak links even in the absence of environmental embrittlement. However, they are not 'intrinsically brittle' as once thought, since they can withstand relatively large plastic deformations prior to fracture. Because B essentially eliminates environmental embrittlement in Ni 3 Al - and environmental embrittlement is a major cause of poor ductility in B-free Ni 3 Al - it is concluded that a significant portion of the so-called B effect must be related to suppression of moisture-induced environmental embrittlement. However, since B-doped Ni 3 Al fractures transgranularly, whereas B-free Ni 3 Al fractures predominantly intergranularly, B must have the added effect that it strengthens the GBs. A comparison with the earlier work on Zr-doped Ni 3 Al shows that Zr improves the ductility of Ni 3 Al, both in air and (and even more dramatically) in oxygen. While the exact mechanism of this ductility improvement is not clear at present, Zr appears to have more of an effect on (enhancing) GB strength than on (suppressing) environmental embrittlement

  12. The true origin of ductile fracture in aluminium alloys

    OpenAIRE

    Toda, Hiroyuki; Oogo, Hideyuki; Horikawa, Keitaro; Uesugi, Kentaro; Takeuchi, Akihisa; Suzuki, Yasuo; Nakazawa, Mitsuru; Aoki, Yoshimitsu; Kobayashi, Masakazu

    2014-01-01

    It has generally been assumed that metals usually fail as a result of microvoid nucleation induced by particle fracture. Here, we concentrate on high-density micropores filled with hydrogen in aluminum, existence of which has been largely overlooked until quite recently. These micropores exhibit premature growth under external loading, thereby inducing ductile fracture, whereas the particle fracture mechanism operates only incidentally. Conclusive evidence of a micropore mechanism is provided...

  13. 49 CFR 192.277 - Ductile iron pipe.

    Science.gov (United States)

    2010-10-01

    ... 49 Transportation 3 2010-10-01 2010-10-01 false Ductile iron pipe. 192.277 Section 192.277 Transportation Other Regulations Relating to Transportation (Continued) PIPELINE AND HAZARDOUS MATERIALS SAFETY... Ductile iron pipe. (a) Ductile iron pipe may not be joined by threaded joints. (b) Ductile iron pipe may...

  14. Mechanisms of radiation-induced neoplastic cell transformation

    Energy Technology Data Exchange (ETDEWEB)

    Yang, T.C.H.; Tobias, C.A.

    1984-04-01

    Studies with cultured mammalian cells demonstrated clearly that radiation can transform cells directly and can enhance the cell transformation by oncogenic DNA viruses. In general, high-LET heavy-ion radiation can be more effective than X and gamma rays in inducing neoplastic cell transformation. Various experimental results indicate that radiation-induced DNA damage, most likely double-strand breaks, is important for both the initiation of cell transformation and for the enhancement of viral transformation. Some of the transformation and enhancement lesions can be repaired properly in the cell, and the amount of irrepairable lesions produced by a given dose depends on the quality of radiation. An inhibition of repair processes with chemical agents can increase the transformation frequency of cells exposed to radiation and/or oncogenic viruses, suggesting that repair mechanisms may play an important role in the radiation transformation. The progression of radiation-transformed cells appears to be a long and complicated process that can be modulated by some nonmutagenic chemical agents, e.g., DMSO. Normal cells can inhibit the expression of transforming properties of tumorigenic cells through an as yet unknown mechanism. The progression and expression of transformation may involve some epigenetic changes in the irradiated cells. 38 references, 15 figures, 1 table.

  15. Mechanisms of radiation-induced neoplastic cell transformation

    International Nuclear Information System (INIS)

    Yang, T.C.H.; Tobias, C.A.

    1984-04-01

    Studies with cultured mammalian cells demonstrated clearly that radiation can transform cells directly and can enhance the cell transformation by oncogenic DNA viruses. In general, high-LET heavy-ion radiation can be more effective than X and gamma rays in inducing neoplastic cell transformation. Various experimental results indicate that radiation-induced DNA damage, most likely double-strand breaks, is important for both the initiation of cell transformation and for the enhancement of viral transformation. Some of the transformation and enhancement lesions can be repaired properly in the cell, and the amount of irrepairable lesions produced by a given dose depends on the quality of radiation. An inhibition of repair processes with chemical agents can increase the transformation frequency of cells exposed to radiation and/or oncogenic viruses, suggesting that repair mechanisms may play an important role in the radiation transformation. The progression of radiation-transformed cells appears to be a long and complicated process that can be modulated by some nonmutagenic chemical agents, e.g., DMSO. Normal cells can inhibit the expression of transforming properties of tumorigenic cells through an as yet unknown mechanism. The progression and expression of transformation may involve some epigenetic changes in the irradiated cells. 38 references, 15 figures, 1 table

  16. Ductile Damage and Fatigue Behavior of Semi-Finished Tailored Blanks for Sheet-Bulk Metal Forming Processes

    Science.gov (United States)

    Besserer, Hans-Bernward; Hildenbrand, Philipp; Gerstein, Gregory; Rodman, Dmytro; Nürnberger, Florian; Merklein, Marion; Maier, Hans Jürgen

    2016-03-01

    To produce parts from sheet metal with thickened functional elements, bulk forming operations can be employed. For this new process class, the term sheet-bulk metal forming has been established recently. Since sheet-bulk metal forming processes such as orbital forming generates triaxial stress and strain states, ductile damage is induced in the form of voids in the microstructure. Typical parts will experience cyclic loads during service, and thus, the influence of ductile damage on the fatigue life of parts manufactured by orbital forming is of interest. Both the formation and growth of voids were characterized following this forming process and then compared to the as-received condition of the ferritic deep drawing steel DC04 chosen for this study. Subsequent to the forming operation, the specimens were fatigued and the evolution of ductile damage and the rearrangement of the dislocation networks occurring during cyclic loading were determined. It was shown, that despite an increased ductile damage due to the forming process, the induced strain hardening has a positive effect on the fatigue life of the material. However, by analyzing the fatigued specimens a development of the ductile damage by an increasing number of voids and a change in the void shape were detected.

  17. Ductility and microstructure of precipitation-strengthened alloys irradiated in HFIR

    International Nuclear Information System (INIS)

    Yang, W.J.S.; Hamilton, M.L.

    1983-08-01

    Six γ' and γ'/γ'' strengthened Ni-base alloys have shown near-zero ductility after irradiation at 300 to 600 0 C in HFIR to a peak exposure of 9 dpa. Microstructural examination of the irradiated specimens showed that the loss of ductility in these alloys arises from the simultaneous existence of a strong matrix and weak grain boundaries. The strong matrix is attributed to the irradiation-induced γ' and γ'/γ'' precipitates, the faulted loops and a high density of fine helium bubbles. The weak grain boundaries are attributed to the formation of an unfavorable precipitate, such as eta-plates, recrystallized grains, a thin layer of γ' and helium bubbles

  18. 46 CFR 56.60-15 - Ductile iron.

    Science.gov (United States)

    2010-10-01

    ... 46 Shipping 2 2010-10-01 2010-10-01 false Ductile iron. 56.60-15 Section 56.60-15 Shipping COAST... Materials § 56.60-15 Ductile iron. (a) Ductile cast iron components made of material conforming to ASTM A... (incorporated by reference; see 46 CFR 56.01-2). (b) Ductile iron castings conforming to ASTM A 395...

  19. Extra-electron induced covalent strengthening and generalization of intrinsic ductile-to-brittle criterion.

    Science.gov (United States)

    Niu, Haiyang; Chen, Xing-Qiu; Liu, Peitao; Xing, Weiwei; Cheng, Xiyue; Li, Dianzhong; Li, Yiyi

    2012-01-01

    Traditional strengthening ways, such as strain, precipitation, and solid-solution, come into effect by pinning the motion of dislocation. Here, through first-principles calculations we report on an extra-electron induced covalent strengthening mechanism, which alters chemical bonding upon the introduction of extra-valence electrons in the matrix of parent materials. It is responsible for the brittle and high-strength properties of Al(12)W-type compounds featured by the typical fivefold icosahedral cages, which are common for quasicrystals and bulk metallic glasses (BMGs). In combination with this mechanism, we generalize ductile-to-brittle criterion in a universal hyperbolic form by integrating the classical Pettifor's Cauchy pressure with Pugh's modulus ratio for a wide variety of materials with cubic lattices. This study provides compelling evidence to correlate Pugh's modulus ratio with hardness of materials and may have implication for understanding the intrinsic brittleness of quasicrystals and BMGs.

  20. Ductile and brittle transition behavior of titanium alloys in ultra-precision machining.

    Science.gov (United States)

    Yip, W S; To, S

    2018-03-02

    Titanium alloys are extensively applied in biomedical industries due to their excellent material properties. However, they are recognized as difficult to cut materials due to their low thermal conductivity, which induces a complexity to their deformation mechanisms and restricts precise productions. This paper presents a new observation about the removal regime of titanium alloys. The experimental results, including the chip formation, thrust force signal and surface profile, showed that there was a critical cutting distance to achieve better surface integrity of machined surface. The machined areas with better surface roughness were located before the clear transition point, defining as the ductile to brittle transition. The machined area at the brittle region displayed the fracture deformation which showed cracks on the surface edge. The relationship between depth of cut and the ductile to brittle transaction behavior of titanium alloys in ultra-precision machining(UPM) was also revealed in this study, it showed that the ductile to brittle transaction behavior of titanium alloys occurred mainly at relatively small depth of cut. The study firstly defines the ductile to brittle transition behavior of titanium alloys in UPM, contributing the information of ductile machining as an optimal machining condition for precise productions of titanium alloys.

  1. Analysis Strategy for Fracture Assessment of Defects in Ductile Materials

    Energy Technology Data Exchange (ETDEWEB)

    Dillstroem, Peter; Andersson, Magnus; Sattari-Far, Iradj; Weilin Zang (Inspecta Technology AB, Stockholm (Sweden))

    2009-06-15

    The main purpose of this work is to investigate the significance of the residual stresses for defects (cracks) in ductile materials with nuclear applications, when the applied primary (mechanical) loads are high. The treatment of weld-induced stresses as expressed in the SACC/ProSACC handbook and other fracture assessment procedures such as the ASME XI code and the R6-method is believed to be conservative for ductile materials. This is because of the general approach not to account for the improved fracture resistance caused by ductile tearing. Furthermore, there is experimental evidence that the contribution of residual stresses to fracture diminishes as the degree of yielding increases to a high level. However, neglecting weld-induced stresses in general, though, is doubtful for loads that are mostly secondary (e.g. thermal shocks) and for materials which are not ductile enough to be limit load controlled. Both thin-walled and thick-walled pipes containing surface cracks are studied here. This is done by calculating the relative contribution from the weld residual stresses to CTOD and the J-integral. Both circumferential and axial cracks are analysed. Three different crack geometries are studied here by using the finite element method (FEM). (i) 2D axisymmetric modelling of a V-joint weld in a thin-walled pipe. (ii) 2D axisymmetric modelling of a V-joint weld in a thick-walled pipe. (iii) 3D modelling of a X-joint weld in a thick-walled pipe. t. Each crack configuration is analysed for two load cases; (1) Only primary (mechanical) loading is applied to the model, (2) Both secondary stresses and primary loading are applied to the model. Also presented in this report are some published experimental investigations conducted on cracked components of ductile materials subjected to both primary and secondary stresses. Based on the outcome of this study, an analysis strategy for fracture assessment of defects in ductile materials of nuclear components is proposed. A new

  2. Analysis Strategy for Fracture Assessment of Defects in Ductile Materials

    International Nuclear Information System (INIS)

    Dillstroem, Peter; Andersson, Magnus; Sattari-Far, Iradj; Weilin Zang

    2009-06-01

    The main purpose of this work is to investigate the significance of the residual stresses for defects (cracks) in ductile materials with nuclear applications, when the applied primary (mechanical) loads are high. The treatment of weld-induced stresses as expressed in the SACC/ProSACC handbook and other fracture assessment procedures such as the ASME XI code and the R6-method is believed to be conservative for ductile materials. This is because of the general approach not to account for the improved fracture resistance caused by ductile tearing. Furthermore, there is experimental evidence that the contribution of residual stresses to fracture diminishes as the degree of yielding increases to a high level. However, neglecting weld-induced stresses in general, though, is doubtful for loads that are mostly secondary (e.g. thermal shocks) and for materials which are not ductile enough to be limit load controlled. Both thin-walled and thick-walled pipes containing surface cracks are studied here. This is done by calculating the relative contribution from the weld residual stresses to CTOD and the J-integral. Both circumferential and axial cracks are analysed. Three different crack geometries are studied here by using the finite element method (FEM). (i) 2D axisymmetric modelling of a V-joint weld in a thin-walled pipe. (ii) 2D axisymmetric modelling of a V-joint weld in a thick-walled pipe. (iii) 3D modelling of a X-joint weld in a thick-walled pipe. t. Each crack configuration is analysed for two load cases; (1) Only primary (mechanical) loading is applied to the model, (2) Both secondary stresses and primary loading are applied to the model. Also presented in this report are some published experimental investigations conducted on cracked components of ductile materials subjected to both primary and secondary stresses. Based on the outcome of this study, an analysis strategy for fracture assessment of defects in ductile materials of nuclear components is proposed. A new

  3. Why ductile fracture mechanics

    International Nuclear Information System (INIS)

    Ritchie, R.O.

    1983-01-01

    Until recently, the engineering application of fracture mechanics has been specific to a description of macroscopic fracture behavior in components and structural parts which remain nominally elastic under loading. While this approach, termed linear elastic fracture mechanics, has been found to be invaluable for the continuum analysis of crack growth in brittle and high strength materials, it is clearly inappropriate for characterizing failure in lower strength ductile alloys where extensive inelastic deformation precedes and accompanies crack initiation and subsequent propagation. Accordingly, much effort has been devoted in recent years toward the development of nonlinear or ductile fracture mechanics methodology to characterize fracture behavior under elastic/plastic conditions; an effort which has been principally motivated by problems in nuclear industry. In this paper, the concepts of ductile (elastic/plastic) fracture mechanics are introduced and applied to the problem of both stationary and nonstationary cracks. Specifically, the limitations inherent in this approach are defined, together with a description of the microstructural considerations and applications relevant to the failure of ductile materials by fracture, fatigue, and creep

  4. Mechanical properties of ground state structures in substitutional ordered alloys: High strength, high ductility and high thermal stability

    International Nuclear Information System (INIS)

    Tawancy, H.M.; Aboelfotoh, M.O.

    2014-01-01

    We have studied the effect of atom arrangements in the ground state structures of substitutional ordered alloys on their mechanical properties using nickel–molybdenum-based alloys as model systems. Three alloys with nominal compositions of Ni–19.43 at% Mo, Ni–18.53 at% Mo–15.21 at% Cr and Ni–18.72 at% Mo–6.14 at% Nb are included in the study. In agreement with theoretical predictions, the closely related Pt 2 Mo-type, DO 22 and D1 a superlattices with similar energies are identified by electron diffraction of ground state structures, which can directly be derived from the parent disordered fcc structure by minor atom rearrangements on {420} fcc planes. The three superlattices are observed to coexist during the disorder–order transformation at 700 °C with the most stable superlattice being determined by the exact chemical composition. Although most of the slip systems in the parent disordered fcc structure are suppressed, many of the twinning systems remain operative in the superlattices favoring deformation by twinning, which leads to considerable strengthening while maintaining high ductility levels. Both the Pt 2 Mo-type and DO 22 superlattices are distinguished by high strength and high ductility due to their nanoscale microstructures, which have high thermal stability. However, the D1 a superlattice is found to exhibit poor thermal stability leading to considerable loss of ductility, which has been correlated with self-induced recrystallization by migration of grain boundaries

  5. Mechanical properties of ground state structures in substitutional ordered alloys: High strength, high ductility and high thermal stability

    Energy Technology Data Exchange (ETDEWEB)

    Tawancy, H.M., E-mail: tawancy@kfupm.edu.sa [Center for Engineering Research, Research Institute, King Fahd University of Petroleum and Minerals, KFUPM Box 1639, Dhahran 31261 (Saudi Arabia); Aboelfotoh, M.O., E-mail: oaboelfotoh@gmail.com [Department of Materials Science and Engineering, North Carolina State University, Raleigh, NC 27606 (United States)

    2014-05-01

    We have studied the effect of atom arrangements in the ground state structures of substitutional ordered alloys on their mechanical properties using nickel–molybdenum-based alloys as model systems. Three alloys with nominal compositions of Ni–19.43 at% Mo, Ni–18.53 at% Mo–15.21 at% Cr and Ni–18.72 at% Mo–6.14 at% Nb are included in the study. In agreement with theoretical predictions, the closely related Pt{sub 2}Mo-type, DO{sub 22} and D1{sub a} superlattices with similar energies are identified by electron diffraction of ground state structures, which can directly be derived from the parent disordered fcc structure by minor atom rearrangements on {420}{sub fcc} planes. The three superlattices are observed to coexist during the disorder–order transformation at 700 °C with the most stable superlattice being determined by the exact chemical composition. Although most of the slip systems in the parent disordered fcc structure are suppressed, many of the twinning systems remain operative in the superlattices favoring deformation by twinning, which leads to considerable strengthening while maintaining high ductility levels. Both the Pt{sub 2}Mo-type and DO{sub 22} superlattices are distinguished by high strength and high ductility due to their nanoscale microstructures, which have high thermal stability. However, the D1{sub a} superlattice is found to exhibit poor thermal stability leading to considerable loss of ductility, which has been correlated with self-induced recrystallization by migration of grain boundaries.

  6. Effects of B2 precipitate size on transformation-induced plasticity of Cu–Zr–Al glassy alloys

    Energy Technology Data Exchange (ETDEWEB)

    Kuo, C.N. [Department of Materials and Optoelectronic Science, Center for Nanoscience and Nanotechnology, National Sun Yat-Sen University, Kaohsiung 804, Taiwan, ROC (China); Huang, J.C., E-mail: jacobc@mail.nsysu.edu.tw [Department of Materials and Optoelectronic Science, Center for Nanoscience and Nanotechnology, National Sun Yat-Sen University, Kaohsiung 804, Taiwan, ROC (China); Li, J.B.; Jang, J.S.C. [Institute of Materials Science and Engineering, Department of Mechanical Engineering, National Central University, Chung-Li, Taiwan, ROC (China); Lin, C.H. [Department of Mechanical and Electromechanical Engineering, National Sun Yat-Sen University, Kaohsiung 804, Taiwan, ROC (China); Nieh, T.G. [Department of Materials and Optoelectronic Science, Center for Nanoscience and Nanotechnology, National Sun Yat-Sen University, Kaohsiung 804, Taiwan, ROC (China); Department of Materials Science and Engineering, The University of Tennessee, Knoxville, TN 37996 (United States)

    2014-03-25

    Highlights: • This paper addresses the effects of the CuZr B2 size and distribution on plasticity. • There is a critical size to induce the martensitic/twinning transformation. • An analytic model based on melt flow dynamics is settled. -- Abstract: To demonstrate the effect of processing on the microstructure and subsequent mechanical property of bulk metallic glasses, we prepared two alloys, Cu{sub 47.5}Zr{sub 47.5}Al{sub 5} and Cu{sub 47.5}Zr{sub 48}Al{sub 4}Co{sub 0.5}, using two different designs of suction mold – one with a sharp inlet and one with a blunt inlet. The two alloys have been demonstrated previously to be ductile via phase transformation of the B2 phase and twin formation during plastic deformation. Microstructures of the as-cast as well plastically deformed samples, in particular, the size and distribution of the B2 phase, were examined using X-ray diffraction, scanning and transmission electron microscopy. Compressive tests were conducted on samples cast by different molds and their properties were found to closely correlate with the B2 morphology. Fluid dynamics during suction casting was also analyzed. Effects of Vena contracta, flow velocity, and Reynolds number were discussed and compared favorably with experimental observations.

  7. Ultrahigh Ductility, High-Carbon Martensitic Steel

    Science.gov (United States)

    Qin, Shengwei; Liu, Yu; Hao, Qingguo; Zuo, Xunwei; Rong, Yonghua; Chen, Nailu

    2016-10-01

    Based on the proposed design idea of the anti-transformation-induced plasticity effect, both the additions of the Nb element and pretreatment of the normalization process as a novel quenching-partitioning-tempering (Q-P-T) were designed for Fe-0.63C-1.52Mn-1.49Si-0.62Cr-0.036Nb hot-rolled steel. This high-carbon Q-P-T martensitic steel exhibits a tensile strength of 1890 MPa and elongation of 29 pct accompanied by the excellent product of tensile and elongation of 55 GPa pct. The origin of ultrahigh ductility for high-carbon Q-P-T martensitic steel is revealed from two aspects: one is the softening of martensitic matrix due to both the depletion of carbon in the matensitic matrix during the Q-P-T process by partitioning of carbon from supersaturated martensite to retained austenite and the reduction of the dislocation density in a martensitic matrix by dislocation absorption by retained austenite effect during deformation, which significantly enhances the deformation ability of martensitic matrix; another is the high mechanical stability of considerable carbon-enriched retained austenite, which effectively reduces the formation of brittle twin-type martensite. This work verifies the correctness of the design idea of the anti-TRIP effect and makes the third-generation advanced high-strength steels extend to the field of high-carbon steels from low- and medium-carbon steels.

  8. Hot ductility behavior of boron microalloyed steels

    International Nuclear Information System (INIS)

    Lopez-Chipres, E.; Mejia, I.; Maldonado, C.; Bedolla-Jacuinde, A.; Cabrera, J.M.

    2007-01-01

    The current study analyses the influence of boron contents (between 29 and 105 ppm) on the hot ductility of boron microalloyed steels. For this purpose, hot tensile tests were carried out at different temperatures (700, 800, 900 and 1000 deg. C) at a constant true strain rate of 0.001 s -1 . In general, results revealed an improvement of the hot ductility of steels at increasing boron content. At 700, 900 and 1000 deg. C the ductility is higher than at 800 deg. C, where boron microalloyed steels exhibit a region of ductility loss (trough region). Likewise, dynamic recrystallization only occurred at 900 and 1000 deg. C. The fracture surfaces of the tested steels at temperatures giving the high temperature ductility regime show that the fracture mode is a result of ductile failure, whereas it is ductile-brittle failure in the trough region. Results are discussed in terms of dynamic recrystallization and boron segregation towards austenite grain boundaries, which may retard the formation of pro-eutectoid ferrite and increase grain boundary cohesion

  9. Effects of retained austenite volume fraction, morphology, and carbon content on strength and ductility of nanostructured TRIP-assisted steels

    Energy Technology Data Exchange (ETDEWEB)

    Shen, Y.F., E-mail: shenyf@smm.neu.edu.cn [Key Laboratory for Anisotropy and Texture of Materials (MOE), Northeastern University, 3 Wenhua Road, Shenyang 110004 (China); Qiu, L.N. [Key Laboratory for Anisotropy and Texture of Materials (MOE), Northeastern University, 3 Wenhua Road, Shenyang 110004 (China); Sun, X. [Pacific Northwest National Laboratory, PO Box 999, Richland, WA 99352 (United States); Zuo, L. [Key Laboratory for Anisotropy and Texture of Materials (MOE), Northeastern University, 3 Wenhua Road, Shenyang 110004 (China); Liaw, P.K. [Department of Materials Science and Engineering, The University of Tennessee, Knoxville, TN 37996 (United States); Raabe, D. [Max-Planck-Institut fuer Eisenforschung, Max-Planck-Str. 1, 8, 40237 Düsseldorf (Germany)

    2015-06-11

    With a suite of multi-modal and multi-scale characterization techniques, the present study unambiguously proves that a substantially-improved combination of ultrahigh strength and good ductility can be achieved by tailoring the volume fraction, morphology, and carbon content of the retained austenite (RA) in a transformation-induced-plasticity (TRIP) steel with the nominal chemical composition of 0.19C–0.30Si–1.76Mn–1.52Al (weight percent, wt%). After intercritical annealing and bainitic holding, a combination of ultimate tensile strength (UTS) of 1100 MPa and true strain of 50% has been obtained, as a result of the ultrafine RA lamellae, which are alternately arranged in the bainitic ferrite around junction regions of ferrite grains. For reference, specimens with a blocky RA, prepared without the bainitic holding, yield a low ductility (35%) and a low UTS (800 MPa). The volume fraction, morphology, and carbon content of RA have been characterized using various techniques, including the magnetic probing, scanning electron microscopy (SEM), electron-backscatter-diffraction (EBSD), and transmission electron microscopy (TEM). Interrupted tensile tests, mapped using EBSD in conjunction with the kernel average misorientation (KAM) analysis, reveal that the lamellar RA is the governing microstructure component responsible for the higher mechanical stability, compared to the blocky one. By coupling these various techniques, we quantitatively demonstrate that in addition to the RA volume fraction, its morphology and carbon content are equally important in optimizing the strength and ductility of TRIP-assisted steels.

  10. Ductilization of Cr via oxide dispersions

    International Nuclear Information System (INIS)

    Brady, M.P.; Wright, I.G.; Anderson, I.M.; Sikka, V.K.; Ohriner, E.K.; Walls, C.; Westmoreland, G.; Weaver, M.L.

    2001-01-01

    Work by Scruggs et al. in the 1960's demonstrated that up to 20 % tensile ductility could be achieved at room-temperature in sintered and extruded powder metallurgical Cr alloyed with MgO. During sintering, much of the MgO converts to a MgCr 2 O 4 spinel, which was hypothesized to getter nitrogen from the Cr, rendering it ductile. Recent efforts at Oak Ridge National Laboratory (ORNL) have succeeded in duplicating this original effect. Preliminary results suggest that the ductilization mechanism may be more complicated than the simple nitrogen gettering mechanism proposed by Scruggs, as some ductility was observed at room-temperature in Cr-MgO alloys containing nitride precipitates. Results of microstructural characterization and room-temperature mechanical property studies are presented for Cr-6MgO-(0-2.2) Ti wt.% as a function of hot-pressing and extrusion. Possible mechanisms by which the MgO additions may improve the room-temperature ductility of Cr are discussed. (author)

  11. Mechanical model for ductility loss

    International Nuclear Information System (INIS)

    Hu, W.L.

    1980-01-01

    A mechanical model was constructed to probe into the mechanism of ductility loss. Fracture criterion based on critical localized deformation was undertaken. Two microstructure variables were considered in the model. Namely, the strength ratio of grain boundary affected area to the matrix, Ω, and the linear fraction, x, of grain boundary affected area. A parametrical study was carried out. The study shows that the ductility is very sensitive to those microstructure parameters. The functional dependence of ductility to temperature as well as strain-rate, suggested by the model, is demonstrated to be consistent with the observation

  12. A diffraction based study of the deformation mechanisms in anomalously ductile B2 intermetallics

    Science.gov (United States)

    Mulay, Rupalee Prashant

    For many decades, the brittle nature of most intermetallic compounds (e.g. NiAl) has been the limiting factor in their practical application. Many B2 (CsCl prototypical structure) intermetallics are known to exhibit slip on the {110} slip mode, which provides only 3 independent slip systems and, hence, is unable to satisfy the von Mises (a.k.a. Taylor) criterion for polycrystalline ductility. As a result, inherent polycrystalline ductility is unexpected. Recent discovery of a number of ductile B2 intermetallics has raised questions about possible violation of the von Mises criterion by these alloys. These ductile intermetallic compounds are MR (metal (M) combined with a rare earth metal or group IV refractory metal (R)) alloys and are stoichiometric, ordered compounds. Single crystal slip trace analyses have only identified the presence of {011} or {010} slip systems. More than 100 other B2 MR compounds are known to exist and many of them have already been shown to be ductile (e.g., CuY, AgY, CuDy, CoZr, CoTi, etc.). Furthermore, these alloys exhibit a large Bauschinger effect. The present work uses several diffraction based techniques including electron back scattered diffraction (EBSD), X-ray diffraction (XRD) and in-situ neutron diffraction; in conjunction with scanning electron microscopy (SEM), transmission electron microscopy (TEM), mechanical testing, and crystal plasticity modeling, to elucidate the reason for ductility in select B2 alloys, explore the spread of this ductility over the B2 family, and understand the Bauschinger effect in these alloys. Several possible explanations (e.g., slip of dislocations, strong texture, phase transformations and twinning) for the anomalous ductility were explored. An X-ray diffraction based analysis ruled out texture, phase purity and departure from order as explanations for the anomalous ductility in MR alloys. In-situ neutron diffraction and post deformation SEM, EBSD, and TEM were unable to detect any evidence for

  13. Pressure-induced structural phase transformation and superconducting properties of titanium mononitride

    Science.gov (United States)

    Li, Qian; Guo, Yanan; Zhang, Miao; Ge, Xinlei

    2018-03-01

    In this work, we have systematically performed the first-principles structure search on titanium mononitride (TiN) within Crystal Structure AnaLYsis by Particle Swarm Optimization (CALYPSO) methodology at high pressures. Here, we have confirmed a phase transition from cubic rock-salt (fcc) phase to CsCl (bcc) phase of TiN at ∼348 GPa. Further simulations reveal that the bcc phase is dynamically stable, and could be synthesized experimentally in principle. The calculated elastic anisotropy decreases with the phase transformation from fcc to bcc structure under high pressures, and the material changes from ductile to brittle simultaneously. Moreover, we found that both structures are superconductive with the superconducting critical temperature of 2-12 K.

  14. Alteration hydrothermale et deformation ductile des roches volcaniques acides associees au gisement sulfure de draa sfar (Jebilet Centrales, Maroc

    Directory of Open Access Journals (Sweden)

    Zinbi, Y.

    2005-12-01

    Full Text Available The volcanics and volcanoclastic rocks of Draa Sfar (Central Jebilet, Moroccan hercynian belt are affected by ductile stress and hydrothermal alteration accompanied by a weak degree of metamorphism (greenschist facies. Some N-S oriented shearing zones, affect locally these formations while being the site of an important hydrothermal activity. The consequences of these transformations from a non to slightly- deformed rhyodacite, show that through these ductile shearing zones: (1 the mineralogical assemblage of hydrothermal alteration is essentially formed by chlorite, sericite, quartz and magnetite; (2 the gradual increase of the alteration indexes is accompanied by the destruction of the phenocrists and the recrystallization of the matrix by phyllosilicates and quartz; (3 the progressive transfer of material is more intense in the more deformed zones where the values of Ti, Al and Zr remain constant. These shearing zones played a very important role in the circulation of fluids and the transformation of the rhyodacite of Draa Sfar.Les roches volcaniques et volcanoclastiques de Draa Sfar (Jebilet centrales, Maroc hercynien sont affectées par une déformation ductile accompagnée d’un métamorphisme de faible degré (faciès schistes verts et d’une altération hydrothermale. Des zones de cisaillement de direction N-S, ont affecté localement ces formations tout en étant vecteurs d’une importante activité hydrothermale. Le suivi de ces transformations à partir de la rhyodacite non ou peu déformée, montre qu’à travers ces zones de cisaillements ductiles : (1 l’assemblage minéralogique d’altération hydrothermale est formé essentiellement de chlorite, de séricite, de quartz et de magnétite ; (2 l’augmentation graduelle des indices d’altération s’exprime par la destruction des phénocristaux au profit d’une matrice recristallisée en phyllosilicates et quartz ; (3 le transfert progressif de la matière est plus intense

  15. Experimental and theoretical investigation of column - flat slab joint ductility

    International Nuclear Information System (INIS)

    Iskhakov, I.; Ribakov, Y.; Shah, A.

    2009-01-01

    Most modern seismic codes use ductility as one of the basic design parameters. Actually, ductility defines the ability of a structure or its elements to absorb energy by plastic deformations. Until the end of the previous century ductility was defined qualitatively. Most research works related to ductility are focused on structural elements' sections. This study was aimed at complex experimental and theoretical investigation of flat slab-column joints ductility. It is one of the first attempts to obtain quantitative values of joint's ductility for the case of high strength concrete columns and normal strength concrete slabs. It was shown that the flat slab-column joint is a three-dimension (3D) element and its ductility in horizontal and vertical directions are different. This is the main difference between ductility of elements and joint ductility. In case of flat slab-column joints, essential contribution to joint's ductility can be obtained due to the slab's confining effect. Based on experimental data, the authors demonstrate that flat slab-column joint's ductility depends on the joint's confining effect in two horizontal and vertical directions. Furthermore, the influence of slab load intensity and slab reinforcement ratio on the joint's ductility is performed in this study. It is also demonstrated that the effect of the ratio between the slab thickness and the column's section dimension on the ductility parameter is significant. Equations for obtaining a quantitative value of a flat slab-column joint's ductility parameter were developed.

  16. Stepwise transformation behavior of the strain-induced martensitic transformation in a metastable stainless steel

    International Nuclear Information System (INIS)

    Hedstroem, Peter; Lienert, Ulrich; Almer, Jon; Oden, Magnus

    2007-01-01

    In situ high-energy X-ray diffraction during tensile loading has been used to investigate the evolution of lattice strains and the accompanying strain-induced martensitic transformation in cold-rolled sheets of a metastable stainless steel. At high applied strains the transformation to α-martensite occurs in stepwise bursts. These stepwise transformation events are correlated with stepwise increased lattice strains and peak broadening in the austenite phase. The stepwise transformation arises from growth of α-martensite embryos by autocatalytic transformation

  17. Cancer Stem-Like Cells Accumulated in Nickel-Induced Malignant Transformation

    Science.gov (United States)

    Wang, Lei; Fan, Jia; Hitron, John Andrew; Son, Young-Ok; Wise, James T.F.; Roy, Ram Vinod; Kim, Donghern; Dai, Jin; Pratheeshkumar, Poyil; Zhang, Zhuo; Shi, Xianglin

    2016-01-01

    Nickel compounds are known as human carcinogens. Chronic environmental exposure to nickel is a worldwide health concern. Although the mechanisms of nickel-induced carcinogenesis are not well understood, recent studies suggest that stem cells/cancer stem cells are likely important targets. This study examines the role of cancer stem cells in nickel-induced cell transformation. The nontransformed human bronchial epithelial cell line (Beas-2B) was chronically exposed to nickel chloride for 12 months to induce cell transformation. Nickel induced Beas-2B cell transformation, and cancer stem-like cells were enriched in nickel-transformed cell (BNiT) population. The BNiT cancer stem-like cells demonstrated enhanced self-renewal and distinctive differentiation properties. In vivo tumorigenesis studies show that BNiT cancer stem-like cells possess a high tumor-initiating capability. It was also demonstrated that superoxide dismutase 1 was involved in the accumulation of cancer stem-like cells; the regulation of superoxide dismutase 1 expression was different in transformed stem-like cells and nontransformed. Overall, the accumulation of stem-like cells and their enhanced stemness functions contribute to nickel-induced tumorigenesis. Our study provides additional insight into the mechanisms by which metals or other chemicals can induce carcinogenesis. PMID:26962057

  18. Dynamic strain-induced transformation: An atomic scale investigation

    International Nuclear Information System (INIS)

    Zhang, H.; Pradeep, K.G.; Mandal, S.; Ponge, D.; Springer, H.; Raabe, D.

    2015-01-01

    Phase transformations provide the most versatile access to the design of complex nanostructured alloys in terms of grain size, morphology, local chemical constitution etc. Here we study a special case of deformation induced phase transformation. More specifically, we investigate the atomistic mechanisms associated with dynamic strain-induced transformation (DSIT) in a dual-phased multicomponent iron-based alloy at high temperatures. DSIT phenomena and the associated secondary phase nucleation were observed at atomic scale using atom probe tomography. The obtained local chemical composition was used for simulating the nucleation process which revealed that DSIT, occurring during load exertion, proceeds by a diffusion-controlled nucleation process

  19. Synchrotron measurements of local microstructure and residual strains in ductile cast iron

    DEFF Research Database (Denmark)

    Zhang, Yubin; Andriollo, Tito; Fæster, Søren

    2017-01-01

    The local microstructure and distribution of thermally induced residual strains in ferrite matrix grains around an individual spherical graphite nodule in ductile cast iron (DCI) were measured using a synchrotron X-ray micro-diffraction technique. It is found that the matrix grains are deformed...

  20. Ductile fracture surface morphology of amorphous metallic alloys

    NARCIS (Netherlands)

    Miskuf, J; Csach, K; Ocelik, [No Value; Bengus, VZ; Tabachnikova, ED; Duhaj, P; Ocelik, Vaclav

    1999-01-01

    Fracture surfaces of ductile failure of two types bulk amorphous metallic alloys were studied using quantitative and qualitative fractographic analysis. The observed fractographic behaviour of ductile failure in comparison with the ductile failure of amorphous alloy ribbons shows signs of the same

  1. Analysis of nucleation modelling in ductile cast iron

    DEFF Research Database (Denmark)

    Moumeni, Elham; Tutum, Cem Celal; Tiedje, Niels Skat

    2012-01-01

    Heterogeneous nucleation of nodular graphite at inclusions in ductile iron during eutectic solidification has been investigated. The experimental part of this work deals with casting of ductile iron samples with two different inoculants in four different thicknesses. Chemical analysis, metallogra......Heterogeneous nucleation of nodular graphite at inclusions in ductile iron during eutectic solidification has been investigated. The experimental part of this work deals with casting of ductile iron samples with two different inoculants in four different thicknesses. Chemical analysis...

  2. Enhanced ductility of surface nano-crystallized materials by modulating grain size gradient

    International Nuclear Information System (INIS)

    Li, Jianjun; Soh, A K

    2012-01-01

    Surface nano-crystallized (SNC) materials with a graded grain size distribution on their surfaces have been attracting increasing scientific interest over the past few decades due to their good synergy of high strength and high ductility. However, to date most of the existing studies have focused on the individual contribution of three different aspects, i.e. grain size gradient (GSG), work-hardened region and surface compressive residual stresses, which were induced by surface severe plastic deformation processes, to the improved strength of SNC materials as compared with that of their coarse grained (CG) counterparts. And the ductility of these materials has hardly been studied. In this study, a combination of theoretical analysis and finite element simulations was used to investigate the role of GSG in tuning the ductility of SNC materials. It was found that the ductility of an SNC material can be comparable to that of its CG counterpart, while it simultaneously possessed a much higher strength than its CG core if the optimal GSG thickness and grain size of the topmost phase were adopted. A design map that can be used as a guideline for fabrication of SNC materials was also plotted. Our predictions were also compared with the corresponding experimental results. (paper)

  3. Numerical simulation of ductile-brittle behaviour of cracks in aluminium and bcc iron

    International Nuclear Information System (INIS)

    Zacharopoulos, Marios

    2017-01-01

    The principal aim of the present dissertation is to investigate the role of sharp cracks on the mechanical behaviour of crystals under load at the atomic scale. The question of interest is how a pure crystal, which contains a single crack in mechanical equilibrium, deforms. Two metals were considered: aluminium, ductile at any temperature below its melting point, and iron, being transformed from ductile to brittle upon decreasing temperature below T=77 K. Cohesive forces in both metals were modeled via phenomenological n-body potentials. A (010)[001] mode I nano-crack was introduced in the perfect crystalline lattice of each of the studied metals by using appropriate displacements ascribed by anisotropic elasticity. At T=0 K, equilibrium crack configurations were obtained via energy minimization with a mixed type of boundary conditions. Both models revealed that the crack configurations remained stable under a finite range of applied stresses due to the lattice trapping effect. The present thesis proposes a novel approach to interpret the intrinsic mechanical behaviour of the two metallic systems under loading. In particular, the ductile or brittle response of a crystalline system can be determined by examining whether the lattice trapping barrier of a pre-existing crack is sufficient to cause the glide of pre-existing static dislocations on the available slip systems. Simulation results along with experimental data demonstrate that, according to the model proposed, aluminium and iron are ductile and brittle at T=0 K, respectively. (author) [fr

  4. Influence of grain structure on the deformation mechanism in martensitic shear reversion-induced Fe-16Cr-10Ni model austenitic alloy with low interstitial content: Coarse-grained versus nano-grained/ultrafine-grained structure

    Energy Technology Data Exchange (ETDEWEB)

    Challa, V.S.A. [Laboratory for Excellence in Advanced Steel Research, Department of Metallurgical, Materials Engineering, and Biomedical Engineering, University of Texas at El Paso, El Paso, TX 79968 (United States); Misra, R.D.K., E-mail: dmisra2@utep.edu [Laboratory for Excellence in Advanced Steel Research, Department of Metallurgical, Materials Engineering, and Biomedical Engineering, University of Texas at El Paso, El Paso, TX 79968 (United States); Somani, M.C. [Center for Advanced Steels Research, The University of Oulu, P.O. Box 4200, 90014 Oulu (Finland); Wang, Z.D. [State Key Laboratory for Rolling and Automation, Northeastern University, 3-11 Wenhua Road, Shenyang 110819 (China)

    2016-04-20

    Nanograined/ultrafine-grained (NG/UFG) materials characterized by high strength-high ductility combination are excellent vehicles to obtain an unambiguous understanding of deformation mechanisms vis-à-vis their coarse-grained counterparts. In this context, the innovative concept of phase reversion-induced NG/UFG structure enabled achieving high strength besides comparable ductility, for instance, in metastable austenitic stainless steels. In the phase reversion process, severe deformation of austenite at room temperature (typically ~60–80%) transforms face-centered cubic austenite (γ) to body centered cubic martensite (α′). Upon annealing, martensite reverts to austenite leading to extensive grain refinement. The objective of the present study to fundamentally understand the deformation mechanisms in NG/UFG structure in relation to that of the coarse-grained (CG) structure was accomplished by combining depth-sensing nanoscale experiments on an Fe-16Cr-10Ni model austenitic alloy conducted at different strain rates, followed by the study of structural evolution in the deformed zone using transmission electron microscopy (TEM). In the high strength NG/UFG steel (YS~585 MPa), stacking faults and nanotwins contributed to the enhanced ductility (El~35%), while in the case of low strength (YS~260 MPa) coarse-grained (CG) counterpart, ductility was also high (El~40%), but chiefly due to strain-induced martensite, which points to a clear case of grain size effect (and the corresponding level of strength). The distinct change in the deformation mechanism from stacking faults and twinning-induced plasticity (TWIP) in the NG structure to transformation-induced plasticity (TRIP) in the CG structure is elucidated in terms of austenite stability-strain energy relationship. The insights on the relationship between grain structure (and strength) and deformation mechanisms are envisaged to be important in providing a new direction for the futuristic design of high strength

  5. Dilatancy induced ductile-brittle transition of shear band in metallic glasses

    Science.gov (United States)

    Zeng, F.; Jiang, M. Q.; Dai, L. H.

    2018-04-01

    Dilatancy-generated structural disordering, an inherent feature of metallic glasses (MGs), has been widely accepted as the physical mechanism for the primary origin and structural evolution of shear banding, as well as the resultant shear failure. However, it remains a great challenge to determine, to what degree of dilatation, a shear banding will evolve into a runaway shear failure. In this work, using in situ acoustic emission monitoring, we probe the dilatancy evolution at the different stages of individual shear band in MGs that underwent severely plastic deformation by the controlled cutting technology. A scaling law is revealed that the dilatancy in a shear band is linearly related to its evolution degree. A transition from ductile-to-brittle shear bands is observed, where the formers dominate stable serrated flow, and the latter lead to a runaway instability (catastrophe failure) of serrated flow. To uncover the underlying mechanics, we develop a theoretical model of shear-band evolution dynamics taking into account an atomic-scale deformation process. Our theoretical results agree with the experimental observations, and demonstrate that the atomic-scale volume expansion arises from an intrinsic shear-band evolution dynamics. Importantly, the onset of the ductile-brittle transition of shear banding is controlled by a critical dilatation.

  6. A comprehensive review of metal-induced cellular transformation studies.

    Science.gov (United States)

    Chen, Qiao Yi; Costa, Max

    2017-09-15

    In vitro transformation assays not only serve practical purposes in screening for potential carcinogenic substances in food, drug, and cosmetic industries, but more importantly, they provide a means of understanding the critical biological processes behind in vivo cancer development. In resemblance to cancer cells in vivo, successfully transformed cells display loss of contact inhibition, gain of anchorage independent growth, resistant to proper cell cycle regulation such as apoptosis, faster proliferation rate, potential for cellular invasion, and ability to form tumors in experimental animals. Cells purposely transformed using metal exposures enable researchers to examine molecular changes, dissect various stages of tumor formation, and ultimately elucidate metal induced cancer mode of action. For practical purposes, this review specifically focuses on studies incorporating As-, Cd-, Cr-, and Ni-induced cell transformation. Through investigating and comparing an extensive list of studies using various methods of metal-induced transformation, this review serves to bridge an information gap and provide a guide for avoiding procedural discrepancies as well as maximizing experimental efficiency. Copyright © 2017 Elsevier Inc. All rights reserved.

  7. Elevated temperature ductility of types 304 and 316 stainless steel

    International Nuclear Information System (INIS)

    Sikka, V.K.

    1978-01-01

    Austenitic stainless steel types 304 and 316 are known for their high ductility and toughness. However, the present study shows that certain combinations of strain rate and test temperature can result in a significant loss in elevated-temperature ductility. Such a phenomenon is referred to as ductility minimum. The strain rate, below which ductility loss is initiated, decreases with decrease in test temperature. Besides strain rate and temperature, the ductility minimum was also affected by nitrogen content and thermal aging conditions. Thermal aging at 649 0 C was observed to eliminate the ductility minimum at 649 0 C in both types 304 and 316 stainless steel. Such an aging treatment resulted in a higher ductility than the unaged value. Aging at 593 0 C still resulted in some loss in ductility. Current results suggest that ductility-minimum conditions for stainless steel should be considered in design, thermal aging data analysis, and while studying the effects of chemical composition

  8. An investigation of ductile and brittle reinforcement on the fracture behavior of molybdenum disilicide composites

    International Nuclear Information System (INIS)

    Brooks, D.; Soboyejo, W.O.

    1994-01-01

    The results of an ongoing study of the effects of ductile and brittle reinforcement on the fracture toughness of particulate reinforced molybdenum disilicide matrix composites are presented. MoSi 2 composites reinforced with ductile Nb, Mo, and W particles are compared with MoSi 2 composites reinforced with SiC, TiB 2 , and partially stabilized zirconia (PSZ) particles. The effects of different degrees of yttria stabilization on zirconia reinforced composites will also be examined, as well as the effect of solid solution alloying with WSi 2 . The effects of multiple reinforcement of MoSi 2 with 20 vol.% Nb and 20 vol.% unstabilized zirconia (TZ-0) are discussed. The toughening is rationalized using micromechanical models for crack bridging, transformation toughening, and crack deflection

  9. Thermal Stability of Austempered Ductile Iron Evaluated in a Temperature Range of 20-300K

    Directory of Open Access Journals (Sweden)

    Dawid MYSZKA

    2016-05-01

    Full Text Available The aim of this article was to determine through changes in magnetic properties the stability of the austempered ductile iron (ADI microstructure during temperature changes in a range of 20 – 300 K. The measurements were taken in a vibrating sample magnetometer (VSM using Fe27Ni2TiMoAlNb austenitic stainless steel and four types of austempered ductile iron obtained under various heat treatment conditions. The plotted curves showing changes in the magnetisation degree as a function of temperature had a number of characteristic points illustrating changes taking place in the microstructure. For each of the materials examined, the martensite start temperature Ms and the temperature range within which the martensitic transformation takes place were identified.

  10. Modulating factors in the expression of radiation-induced oncogenic transformation

    International Nuclear Information System (INIS)

    Hall, E.J.; Hei, T.K.

    1990-01-01

    Many assays for oncogenic transformation have been developed ranging from those in established rodent cell lines where morphological alteration is scored, to those in human cells growing in nude mice where tumor invasiveness is scored. In general, systems that are most quantitaive are also the least relevant in terms of human carcinogenesis and human risk estimation. The development of cell culture systems has made it possible to assess at the cellular level the oncogenic potential of a variety of chemical, physical and viral agents. Cell culture systems afford the opportunity to identify factors and conditions that may prevent or enhance cellular transformation by radiation and chemicals. Permissive and protective factors in radiation-induced transformation include thyroid hormone and the tumor promoter TPA that increase the transformation incidence for a given dose of radiation, and retinoids, selenium, vitamin E, and 5-aminobenzamide that inhibit the expression of transformation. Densely ionizing α-particles, similar to those emitted by radon daughters, are highly effective in inducing transformations and appear to interact in a supra-additive fashion with asbestos fibers. The activation of a known dominant oncogene has not yet been demonstrated in radiation-induced oncogenic transformation. The most likely mechanism for radiation activation of an oncogene would be via the production of a chromosomal translocation. Radiation also efficiently induces deletions and may thus lead to the loss of a suppressor gene

  11. Modelling the interaction between plasticity and the austenite-martensite transformation

    NARCIS (Netherlands)

    Kouznetsova, V.G.; Geers, M.G.D.

    2007-01-01

    Many advanced steels, such as high strength steels and TRIP steels, owe their excellent combination of strength and ductility to the complex microstructural behaviour involving the austenite to martensite phase transformation. In this paper a physically-based model for martensitic transformation

  12. A review on ductile mode cutting of brittle materials

    Science.gov (United States)

    Antwi, Elijah Kwabena; Liu, Kui; Wang, Hao

    2018-06-01

    Brittle materials have been widely employed for industrial applications due to their excellent mechanical, optical, physical and chemical properties. But obtaining smooth and damage-free surface on brittle materials by traditional machining methods like grinding, lapping and polishing is very costly and extremely time consuming. Ductile mode cutting is a very promising way to achieve high quality and crack-free surfaces of brittle materials. Thus the study of ductile mode cutting of brittle materials has been attracting more and more efforts. This paper provides an overview of ductile mode cutting of brittle materials including ductile nature and plasticity of brittle materials, cutting mechanism, cutting characteristics, molecular dynamic simulation, critical undeformed chip thickness, brittle-ductile transition, subsurface damage, as well as a detailed discussion of ductile mode cutting enhancement. It is believed that ductile mode cutting of brittle materials could be achieved when both crack-free and no subsurface damage are obtained simultaneously.

  13. Effect of prestrain on ductility and toughness in high strength line pipe steels

    Energy Technology Data Exchange (ETDEWEB)

    Shinohara, Y.; Besson, J. [Paristech, Evry (France). Centre des Materiaux, Mines Paris; Madi, Y. [Ecole d' Ingenieurs, Sceaux (France). Ermess EPF; Paristech, Evry (France). Centre des Materiaux, Mines Paris

    2009-07-01

    The anisotropic plasticity, ductility and toughness of an X100 steel pipeline was investigated both before and after a series of prestraining experiments. The aim of the study was to determine the effect of prestraining on ductility and toughness in high strength pipe steels. Results of the study showed that primary void growth and coalescence was dependent on initial plastic anisotropy and not dependent on tensile prestrain. Secondary void nucleation and growth was not influenced by either the initial plastic anisotropy or by prestraining. Scanning electron microscopy (SEM) studies showed that the main damage mechanism was the void growth of primary dimples. Dimples in the prestrained materials were larger than those observed in materials that had not been prestrained. However, the effect on prestrain on dimple size was limited. Results showed both plastic and rupture anisotropies. It was concluded that prestraining induces a decrease in ductility, but has a significant impact on toughness. 4 refs., 2 tabs., 12 figs.

  14. Potentially exploitable supercritical geothermal resources in the ductile crust

    Science.gov (United States)

    Watanabe, Noriaki; Numakura, Tatsuya; Sakaguchi, Kiyotoshi; Saishu, Hanae; Okamoto, Atsushi; Ingebritsen, Steven E.; Tsuchiya, Noriyoshi

    2017-01-01

    The hypothesis that the brittle–ductile transition (BDT) drastically reduces permeability implies that potentially exploitable geothermal resources (permeability >10−16 m2) consisting of supercritical water could occur only in rocks with unusually high transition temperatures such as basalt. However, tensile fracturing is possible even in ductile rocks, and some permeability–depth relations proposed for the continental crust show no drastic permeability reduction at the BDT. Here we present experimental results suggesting that the BDT is not the first-order control on rock permeability, and that potentially exploitable resources may occur in rocks with much lower BDT temperatures, such as the granitic rocks that comprise the bulk of the continental crust. We find that permeability behaviour for fractured granite samples at 350–500 °C under effective confining stress is characterized by a transition from a weakly stress-dependent and reversible behaviour to a strongly stress-dependent and irreversible behaviour at a specific, temperature-dependent effective confining stress level. This transition is induced by onset of plastic normal deformation of the fracture surface (elastic–plastic transition) and, importantly, causes no ‘jump’ in the permeability. Empirical equations for this permeability behaviour suggest that potentially exploitable resources exceeding 450 °C may form at depths of 2–6 km even in the nominally ductile crust.

  15. Protection of power transformers against geomagnetically induced currents

    Directory of Open Access Journals (Sweden)

    Gurevich Vladimir

    2011-01-01

    Full Text Available The article examines the problem of saturation and failure of power transformers under geomagnetically induced currents and currents of the E3 component of high-altitude nuclear explosions. It also describes a special protective relay reacting on DC component in the transformer neutral current.

  16. Unstable ductile fracture conditions in upper shelf region

    International Nuclear Information System (INIS)

    Nakano, Yoshifumi; Kubo, Takahiro

    1985-01-01

    The phenomenon of unstability of ductile fracture in the upper shelf region of a forged steel for nuclear reactor pressure vessels A508 Cl. 3 was studied with a large compliance apparatus, whose spring constants were 100, 170 and 230 kgf/mm, at the test temperatures of 100, 200 and 300 0 C and at the loading rates of 2, 20 and 200 mm/min in the crosshead speed. The main results obtained are as follows: (1) The fracture modes of the specimens consisted of (a) stable fracture, (b) unstable fracture which leads to a complete fracture rapidly and (c) quasiunstable fracture which does not lead to a complete fracture though a rapid extension of ductile crack takes place. (2) Side groove, high temperature or small spring constant made a ductile crack more unstable. (3) High temperature or large spring constant made the occurrence of quasiunstable fracture easier. (4) Quasiunstable ductile fracture took place before the maximum load, that is, at the J integral value of about 10 kgf/mm. The initiation of a microscopic ductile crack, therefore, seems to lead to quasiunstable fracture. (5) The concept that unstable ductile fracture takes place when Tsub(app) exceeds Tsub(mat) seems applicable only to the case in which unstable ductile fracture takes place after the maximum load has been exceeded. (author)

  17. Tungsten particle reinforced Al 5083 composite with high strength and ductility

    Energy Technology Data Exchange (ETDEWEB)

    Bauri, Ranjit, E-mail: rbauri@iitm.acin; Yadav, Devinder; Shyam Kumar, C.N.; Balaji, B.

    2015-01-03

    Tungsten particles were incorporated into an Al 5083 matrix by friction stir processing (FSP). FSP resulted in uniform dispersion of the tungsten particles with excellent interfacial bonding and more importantly without the formation of any harmful intermetallics. For the first time, the particles penetrated to a depth equal to the full pin length of the tool. A novel aspect of the 5083 Al–W composite is that it showed an improvement of more than 100 MPa in the UTS and at the same time exhibited a high ductility (30%). The ductility was also evident from the well defined dimples in the fracture surface which also revealed the superior bonding between the particles and the matrix. FSP also resulted in substantial grain refinement of the Al matrix. Electron backscatter diffraction (EBSD) and transmission electron microscopy analysis revealed that the fine grains formed by dynamic recrystallization. A gradual transformation from sub-grain to high-angle grain boundaries was observed from EBSD analysis pointing towards the occurrence of a continuous type of dynamic recrystallization process.

  18. Athermal brittle-to-ductile transition in amorphous solids.

    Science.gov (United States)

    Dauchot, Olivier; Karmakar, Smarajit; Procaccia, Itamar; Zylberg, Jacques

    2011-10-01

    Brittle materials exhibit sharp dynamical fractures when meeting Griffith's criterion, whereas ductile materials blunt a sharp crack by plastic responses. Upon continuous pulling, ductile materials exhibit a necking instability that is dominated by a plastic flow. Usually one discusses the brittle to ductile transition as a function of increasing temperature. We introduce an athermal brittle to ductile transition as a function of the cutoff length of the interparticle potential. On the basis of extensive numerical simulations of the response to pulling the material boundaries at a constant speed we offer an explanation of the onset of ductility via the increase in the density of plastic modes as a function of the potential cutoff length. Finally we can resolve an old riddle: In experiments brittle materials can be strained under grip boundary conditions and exhibit a dynamic crack when cut with a sufficiently long initial slot. Mysteriously, in molecular dynamics simulations it appeared that cracks refused to propagate dynamically under grip boundary conditions, and continuous pulling was necessary to achieve fracture. We argue that this mystery is removed when one understands the distinction between brittle and ductile athermal amorphous materials.

  19. High velocity properties of the dynamic frictional force between ductile metals

    International Nuclear Information System (INIS)

    Hammerberg, James Edward; Hollan, Brad L.; Germann, Timothy C.; Ravelo, Ramon J.

    2010-01-01

    The high velocity properties of the tangential frictional force between ductile metal interfaces seen in large-scale NonEquilibrium Molecular Dynamics (NEMD) simulations are characterized by interesting scaling behavior. In many cases a power law decrease in the frictional force with increasing velocity is observed at high velocities. We discuss the velocity dependence of the high velocity branch of the tangential force in terms of structural transformation and ultimate transition, at the highest velocities, to confined fluid behavior characterized by a critical strain rate. The particular case of an Al/Al interface is discussed.

  20. Dynamic ductile fracture of a central crack

    Science.gov (United States)

    Tsai, Y. M.

    1976-01-01

    A central crack, symmetrically growing at a constant speed in a two dimensional ductile material subject to uniform tension at infinity, is investigated using the integral transform methods. The crack is assumed to be the Dugdale crack, and the finite stress condition at the crack tip is satisfied during the propagation of the crack. Exact expressions of solution are obtained for the finite stress condition at the crack tip, the crack shape, the crack opening displacement, and the energy release rate. All those expressions are written as the product of explicit dimensional quantities and a nondimensional dynamic correction function. The expressions reduce to the associated static results when the crack speed tends to zero, and the nondimensional dynamic correction functions were calculated for various values of the parameter involved.

  1. Microstructure and wear behaviors of WC–12%Co coating deposited on ductile iron by electric contact surface strengthening

    International Nuclear Information System (INIS)

    Qi, Xiaoben; Zhu, Shigen; Ding, Hao; Zhu, Zhengkun; Han, Zhibing

    2013-01-01

    WC–12%Co powders deposited on ductile iron by electric contact strengthening were studied. This technology was based on the application of the contact resistance heating between the electrode and work piece to form a wear resistant layer on ductile iron. The microstructure, microhardness distribution, phase transformation and wear behaviors of the coating were investigated using optical microscope, scanning electron microscope, Vickers hardness (HV 0.5 ), X-ray diffraction, rolling contact wear tests. The results showed that the WC–12%Co coating by electric contact strengthening was metallurgically bonded to the ductile iron. Additionally, the effect of experimental parameters on microhardness and wear resistance of coatings were studied using orthogonal experiment. The results showed that compared with (A) electric current and (B) rotating speed, (C) contact force displays the most significant effect on microhardness and wear resistance of coatings. The coatings produced at A = 19 kA, B = 0.3 r/min and C = 700 N possessed highest microhardness of 1073 HV 0.5 and wear resistance.

  2. Ductility of Ni3Al doped with substitutional elements

    International Nuclear Information System (INIS)

    Hanada, S.; Chiba, A.; Guo, H.Z.; Watanabe, S.

    1993-01-01

    This paper reports on ductility of B-free Ni 3 Al alloys. Recrystallized Ni 3 Al binary alloys with Ni-rich compositions show appreciable ductility when an environmental effect is eliminated, while the alloys with stoichiometric and Al-rich compositions remain brittle. The ductility in the Ni-rich Ni 3 Al alloys is associated with low ordering energy. The additions of ternary elements, which are classified as γ formers, ductilize ternary Ni 3 Al alloys(Ni-23 at% Al-2 at% X, X = Pd, Pt, Cu and Co), whereas the additions of γ' formers embrittle ternary Ni 3 Al alloys(Ni-23 at% Al-2 at% X, X = Ta, Mo, Nb, Zr, Hf, V, Ti and Si). The additions of small amounts (less than 1 at%) of γ' formers such as Zr and Hf also ductilize as-cast ternary Ni 3 Al alloys. Ductility of Ni 3 Al alloys doped with substitutional elements is discussed in terms of ordering energy and microstructure

  3. Martensitic transformation induced by irradiation and deformation in stainless steels

    International Nuclear Information System (INIS)

    Maksimkin, O.P.

    1997-01-01

    In the present work the peculiarities of martensite γ → α , (γ → ε → α , ) transformation in the steels with a low stacking fault energy (12Cr18Ni10T, Cr15AG14) irradiated by neutrons, α-particles and electrons (pulse and stationary) and then deformed with the various strain rates in the temperature range - 20 - 1000 C are considered. It is established by the electron-microscope research that the phase γ → α ' transition in irradiated and deformed steels is observed on the definite stage of evolution of the dislocation structure (after the cell formation) and the martensite formation preferentially occurs on a stacking fault aggregation. The regularities of the irradiation by high energy particles effect on the formation parameters and martensite α , -phase accumulation kinetics ones and also their role in forming of the strength and ductile properties in steels are analysed. (A.A.D.)

  4. Crystallographically based model for transformation-induced plasticity in multiphase carbon steels

    NARCIS (Netherlands)

    Tjahjanto, D.D.; Turteltaub, S.; Suiker, A.S.J.

    2007-01-01

    The microstructure of multiphase steels assisted by transformation-induced plasticity consists of grains of retained austenite embedded in a ferrite-based matrix. Upon mechanical loading, retained austenite may transform into martensite, as a result of which plastic deformations are induced in the

  5. Crystallographically based model for transformation-induced plasticity in multiphase carbon steels

    NARCIS (Netherlands)

    Tjahjanto, D.D.; Turteltaub, S.R.; Suiker, A.S.J.

    2008-01-01

    The microstructure of multiphase steels assisted by transformation-induced plasticity consists of grains of retained austenite embedded in a ferrite-based matrix. Upon mechanical loading, retained austenite may transform into martensite, as a result of which plastic deformations are induced in the

  6. The nucleation of austenite in ferritic ductile cast iron

    International Nuclear Information System (INIS)

    Chou, J.M.; Hon, M.H.; Lee, J.L.

    1992-01-01

    Austempered ductile cast iron has recently been receiving increasing attention because of its excellent combination of strength and ductility. Since the austenitization process has a significant influence on the mechanical properties of austempered ductile cast iron, several investigations on the nucleation sites of austenite and diffusion paths of carbon from spheroidal graphite have been reported in ferritic ductile cast iron. However, agreement on this subject has not ben reached. The purpose of this paper is to study the preferential nucleation sites of austenite during austenitization at two austenitizing temperatures in ferritic ductile cast iron. An attempt was made to understand the reasons which give rise to preferential austenite nucleation sites. The carbon diffusion paths from spheroidal graphite were also investigated

  7. Influence of plastic strain on deformation-induced martensitic transformations

    NARCIS (Netherlands)

    Perdahcioglu, Emin Semih; Geijselaers, Hubertus J.M.; Groen, M.

    2008-01-01

    The effects of plastic strain on deformation-induced martensitic transformations have been investigated experimentally. Austenitic metastable stainless steel samples were heated to a temperature at which the transformation is suppressed and were plastically strained to different amounts. The

  8. Stress-Induced Cubic-to-Hexagonal Phase Transformation in Perovskite Nanothin Films.

    Science.gov (United States)

    Cao, Shi-Gu; Li, Yunsong; Wu, Hong-Hui; Wang, Jie; Huang, Baoling; Zhang, Tong-Yi

    2017-08-09

    The strong coupling between crystal structure and mechanical deformation can stabilize low-symmetry phases from high-symmetry phases or induce novel phase transformation in oxide thin films. Stress-induced structural phase transformation in oxide thin films has drawn more and more attention due to its significant influence on the functionalities of the materials. Here, we discovered experimentally a novel stress-induced cubic-to-hexagonal phase transformation in the perovskite nanothin films of barium titanate (BaTiO 3 ) with a special thermomechanical treatment (TMT), where BaTiO 3 nanothin films under various stresses are annealed at temperature of 575 °C. Both high-resolution transmission electron microscopy and Raman spectroscopy show a higher density of hexagonal phase in the perovskite thin film under higher tensile stress. Both X-ray photoelectron spectroscopy and electron energy loss spectroscopy does not detect any change in the valence state of Ti atoms, thereby excluding the mechanism of oxygen vacancy induced cubic-to-hexagonal (c-to-h) phase transformation. First-principles calculations show that the c-to-h phase transformation can be completed by lattice shear at elevated temperature, which is consistent with the experimental observation. The applied bending plus the residual tensile stress produces shear stress in the nanothin film. The thermal energy at the elevated temperature assists the shear stress to overcome the energy barriers during the c-to-h phase transformation. The stress-induced phase transformation in perovskite nanothin films with TMT provides materials scientists and engineers a novel approach to tailor nano/microstructures and properties of ferroelectric materials.

  9. The Rheological Evolution of Brittle-Ductile Transition Rocks During the Earthquake Cycle: Evidence for a Ductile Precursor to Pseudotachylyte in an Extensional Fault System, South Mountains, Arizona

    Science.gov (United States)

    Stewart, Craig A.; Miranda, Elena A.

    2017-12-01

    We investigate how the rheological evolution of shear zone rocks from beneath the brittle-ductile transition (BDT) is affected by coeval ductile shear and pseudotachylyte development associated with seismicity during the earthquake cycle. We focus our study on footwall rocks of the South Mountains core complex, and we use electron backscatter diffraction (EBSD) analyses to examine how strain is localized in granodiorite mylonites both prior to and during pseudotachylyte development beneath the BDT. In mylonites that are host to pseudotachylytes, deformation is partitioned into quartz, where quartz exhibits crystallographic-preferred orientation patterns and microstructures indicative of dynamic recrystallization during dislocation creep. Grain size reduction during dynamic recrystallization led to the onset of grain boundary sliding (GBS) accommodated by fluid-assisted grain size-sensitive (GSS) creep, localizing strain in quartz-rich layers prior to pseudotachylyte development. The foliation-parallel zones of GBS in the host mylonites, and the presence of GBS traits in polycrystalline quartz survivor clasts indicate that GBS zones were the ductile precursors to in situ pseudotachylyte generation. During pseudotachylyte development, strain was partitioned into the melt phase, and GSS deformation in the survivor clasts continued until crystallization of melt impeded flow, inducing pseudotachylyte development in other GBS zones. We interpret the coeval pseudotachylytes with ductile precursors as evidence of seismic events near the BDT. Grain size piezometry yields high differential stresses in both host mylonites ( 160 MPa) and pseudotachylyte survivor clasts (> 200 MPa), consistent with high stresses during interseismic and coseismic phases of the earthquake cycle, respectively.

  10. Friction welding of ductile cast iron using interlayers

    International Nuclear Information System (INIS)

    Winiczenko, Radoslaw; Kaczorowski, Mieczyslaw

    2012-01-01

    Highlights: → The results of the study of the friction welding of ductile cast iron using interlayers are presented. → The results of the analysis shows that the joint has the tensile strength compared to that of basic material. → In case of ductile cast iron, it is possible to reach the tensile strength equals even 700 MPa. → The process of friction welding was accompanied with diffusion of Cr, Ni and C atoms across the interface. -- Abstract: In this paper, ductile cast iron-austenitic stainless steel, ductile cast iron-pure Armco iron and ductile cast iron-low carbon steel interlayers were welded, using the friction welding method. The tensile strength of the joints was determined, using a conventional tensile test machine. Moreover, the hardness across the interface of materials was measured on metallographic specimens. The fracture surface and microstructure of the joints was examined using either light stereoscope microscopy as well as electron microscopy. In this case, scanning electron microscopy (SEM) and transmission electron microscopy (TEM) were applied. The results of the analysis shows that the joint has the tensile strength compared to that of basic material. In case of ductile cast iron, it is possible to reach the tensile strength equals even 700 MPa. It was concluded that the process of friction welding was accompanied with diffusion of Cr, Ni and C atoms across the ductile cast iron-stainless steel interface. This leads to increase in carbon concentration in stainless steel where chromium carbides were formed, the size and distribution of which was dependent on the distance from the interface.

  11. High-temperature ductility of electro-deposited nickel

    Science.gov (United States)

    Dini, J. W.; Johnson, H. R.

    1977-01-01

    Work done during the past several months on high temperature ductility of electrodeposited nickel is summarized. Data are presented which show that earlier measurements made at NASA-Langley erred on the low side, that strain rate has a marked influence on high temperature ductility, and that codeposition of a small amount of manganese helps to improve high temperature ductility. Influences of a number of other factors on nickel properties were also investigated. They included plating solution temperature, current density, agitation, and elimination of the wetting agent from the plating solution. Repair of a large nozzle section by nickel plating is described.

  12. Transformation-Induced Creep and Creep Recovery of Shape Memory Alloy.

    Science.gov (United States)

    Takeda, Kohei; Tobushi, Hisaaki; Pieczyska, Elzbieta A

    2012-05-22

    If the shape memory alloy is subjected to the subloop loading under the stress-controlled condition, creep and creep recovery can appear based on the martensitic transformation. In the design of shape memory alloy elements, these deformation properties are important since the deflection of shape memory alloy elements can change under constant stress. The conditions for the progress of the martensitic transformation are discussed based on the kinetics of the martensitic transformation for the shape memory alloy. During loading under constant stress rate, temperature increases due to the stress-induced martensitic transformation. If stress is held constant during the martensitic transformation stage in the loading process, temperature decreases and the condition for the progress of the martensitic transformation is satisfied, resulting in the transformation-induced creep deformation. If stress is held constant during the reverse transformation stage in the unloading process, creep recovery appears due to the reverse transformation. The details for these thermomechanical properties are investigated experimentally for TiNi shape memory alloy, which is most widely used in practical applications. The volume fraction of the martensitic phase increases in proportion to an increase in creep strain.

  13. Effect of hydrogen on the microstructure, mechanical properties and phase transformations in austenitic steels

    International Nuclear Information System (INIS)

    Li, Y.Y.; Xing, Z.S.

    1989-01-01

    Effect of high-pressure hydrogen charging on the microstructure, mechanical properties and phase transformations in austenitic steels has been investigated and discussed. The results show that the strength and impact toughness of the steels increase slightly and that the ductility decreases after hydrogen charging. The existence of δ-ferrite deteriorates the resistance to hydrogen embrittlement (HE) of the steels. The occurrence of carbide in the steel resulted from aging reduces the ductility of the steel and makes the steel sensitive to HE. The existence of sufficient hydrogen promotes the ε-martensitic transformation and suppresses the α'-martensitic transformation. The permeabilities and diffusivities of hydrogen in the steels have also been determined. (orig.)

  14. Rhenium Alloys as Ductile Substrates for Diamond Thin-Film Electrodes.

    Science.gov (United States)

    Halpern, Jeffrey M; Martin, Heidi B

    2014-02-01

    Molybdenum-rhenium (Mo/Re) and tungsten-rhenium (W/Re) alloys were investigated as substrates for thin-film, polycrystalline boron-doped diamond electrodes. Traditional, carbide-forming metal substrates adhere strongly to diamond but lose their ductility during exposure to the high-temperature (1000°C) diamond, chemical vapor deposition environment. Boron-doped semi-metallic diamond was selectively deposited for up to 20 hours on one end of Mo/Re (47.5/52.5 wt.%) and W/Re (75/25 wt.%) alloy wires. Conformal diamond films on the alloys displayed grain sizes and Raman signatures similar to films grown on tungsten; in all cases, the morphology and Raman spectra were consistent with well-faceted, microcrystalline diamond with minimal sp 2 carbon content. Cyclic voltammograms of dopamine in phosphate-buffered saline (PBS) showed the wide window and low baseline current of high-quality diamond electrodes. In addition, the films showed consistently well-defined, dopamine electrochemical redox activity. The Mo/Re substrate regions that were uncoated but still exposed to the diamond-growth environment remained substantially more flexible than tungsten in a bend-to-fracture rotation test, bending to the test maximum of 90° and not fracturing. The W/Re substrates fractured after a 27° bend, and the tungsten fractured after a 21° bend. Brittle, transgranular cleavage fracture surfaces were observed for tungsten and W/Re. A tension-induced fracture of the Mo/Re after the prior bend test showed a dimple fracture with a visible ductile core. Overall, the Mo/Re and W/Re alloys were suitable substrates for diamond growth. The Mo/Re alloy remained significantly more ductile than traditional tungsten substrates after diamond growth, and thus may be an attractive metal substrate for more ductile, thin-film diamond electrodes.

  15. Ring ductility of irradiated Inconel 706 and Nimonic PE16

    International Nuclear Information System (INIS)

    Huang, F.H.; Fish, R.L.

    1984-01-01

    The tensile ductility of fast neutron-irradiated, precipitation-hardened alloys Inconel 706 and Nimonic PE16 has been observed to be very low for certain test conditions. Explanations for the low ductility behavior have been sought by examination of broken tensile specimens with microscopy and other similar techniques. A ring compression test provides a method of evaluating the ductility of irradiated cladding specimens. Unlike the conventional uniaxial tensile testing in which the tensile specimen is deformed uniformly, the ring specimen is subjected to localized bending where the crack is initiated. The ductility can be estimated through an analysis of the bending of a ring in terms of strain hardening. Ring sections from irradiated, solution-treated Inconel 706 and Nimonic PE16 were compressed in the diametral direction to provide load-deflection records over a wide range of irradiation and test temperatures. Results showed that ductility in both alloys decreased with increasing test temperatures. The poorest ductility was exhibited at different irradiation temperatures in the two alloys - near 550 0 C for PE16 and 460 to 520 0 C for Inconel 706. The ring ductility data indicate that the grain boundary strength is a major factor in controlling the ductility of the PE16 alloy

  16. Analytical investigation of bidirectional ductile diaphragms in multi-span bridges

    Science.gov (United States)

    Wei, Xiaone; Bruneau, Michel

    2018-04-01

    In the AASHTO Guide Specifications for Seismic Bridge Design Provisions, ductile diaphragms are identified as Permissible Earthquake-Resisting Elements (EREs), designed to help resist seismic loads applied in the transverse direction of bridges. When adding longitudinal ductile diaphragms, a bidirectional ductile diaphragm system is created that can address seismic excitations acting along both the bridge's longitudinal and transverse axes. This paper investigates bidirectional ductile diaphragms with Buckling Restrained Braces (BRBs) in straight multi-span bridge with simply supported floating spans. The flexibility of the substructures in the transverse and longitudinal direction of the bridge is considered. Design procedures for the bidirectional ductile diaphragms are first proposed. An analytical model of the example bridge with bidirectional ductile diaphragms, designed based on the proposed methodology, is then built in SAP2000. Pushover and nonlinear time history analyses are performed on the bridge model, and corresponding results are presented. The effect of changing the longitudinal stiffness of the bidirectional ductile diaphragms in the end spans connecting to the abutment is also investigated, in order to better understand the impact on the bridge's dynamic performance.

  17. Hot Ductility Behavior of a Peritectic Steel during Continuous Casting

    Directory of Open Access Journals (Sweden)

    Mustafa Merih Arıkan

    2015-06-01

    Full Text Available Hot ductility properties of a peritectic steel for welded gas cylinders during continuous casting were studied by performing hot tensile tests at certain temperatures ranging from 1200 to 700 °C for some cooling rates by using Gleeble-3500 thermo-mechanical test and simulation machine in this study. The effects of cooling rate and strain rate on hot ductility were investigated and continuous casting process map (time-temperature-ductility were plotted for this material. Reduction of area (RA decreases and cracking susceptibility increases during cooling from solidification between certain temperatures depending on the cooling rate. Although the temperatures which fracture behavior change upon cooling during continuous casting may vary for different materials, it was found that the type of fracture was ductile at 1100 and 1050 °C; semi-ductile at 1000 °C, and brittle at 800 °C for the steel P245NB. There is a ductility trough between 1000 and 725 °C. The ductility trough gets slightly narrower as the cooling rate decreases.

  18. Effect of Melting Techniques on Ductile Iron castings Properties

    Directory of Open Access Journals (Sweden)

    Bockus, S.

    2006-01-01

    Full Text Available The study was designed to investigate the effects of the charge, melting conditions, nodularizing and inoculation on the ductile iron castings properties. Results showed that the temperature and holding time of the melt in an induction furnace and the intensity of spheroidizing effect on the carbon and residual magnesium contents in the ductile iron castings. The same grade of ductile iron may be obtained using different chemical compositions. The castings of ductile iron will be ferritic as-cast only when large amount of pig iron in the charge and in addition some-steps inoculating treatment are used.

  19. Estimation scheme for unstable ductile fracture of pressure vessel

    International Nuclear Information System (INIS)

    Takahashi, Jun; Okamura, Hiroyuki; Sakai, Shinsuke

    1990-01-01

    This paper presents a new scheme for the estimation of unstable ductile fracture using the J-integral. The proposed method uses a load-versus-displacement diagram which is generated using fully plastic solutions. By this method, the phenomena of the ductile fracture can be grasped visually. Thus, the parametrical survey can be executed far more easily than before. Then, using the proposed method, unstable ductile fracture is analyzed for single-edge cracked plates under both uniform tension and pure bending. In addition, several parametrical surveys are performed concerning (1) J-controlled crack growth, (2) compliance of the structure, (3) ductility of the material (i.e., J-resistance curve), and (4) scale of the structure (i.e., screening criterion). As a result, it is shown that the proposed method is especially effective for the paramtrical study of unstable ductile fracture. (author)

  20. Influence of Casting Section Thickness on Fatigue Strength of Austempered Ductile Iron

    Science.gov (United States)

    Olawale, J. O.; Ibitoye, S. A.

    2017-10-01

    The influence of casting section thickness on fatigue strength of austempered ductile iron was investigated in this study. ASTM A536 65-45-12 grade of ductile iron was produced, machined into round samples of 10, 15, 20 and 25 mm diameter, austenitized at a temperature of 820 °C, quenched into an austempering temperature (TA) of 300 and 375 °C and allowed to be isothermally transformed at these temperatures for a fixed period of 2 h. From the samples, fatigue test specimens were machined to conform to ASTM E-466. Scanning electron microscopy (SEM) and x-ray diffraction (XRD) methods were used to characterize microstructural morphology and phase distribution of heat-treated samples. The fatigue strength decreases as the section thickness increases. The SEM image and XRD patterns show a matrix of acicular ferrite and carbon-stabilized austenite with ferrite coarsening and volume fraction of austenite reducing as the section thickness increases. The study concluded that the higher the value of carbon-stabilized austenite the higher the fatigue strength while it decreases as the ausferrite structure becomes coarse.

  1. From brittle to ductile fracture in disordered materials.

    Science.gov (United States)

    Picallo, Clara B; López, Juan M; Zapperi, Stefano; Alava, Mikko J

    2010-10-08

    We introduce a lattice model able to describe damage and yielding in heterogeneous materials ranging from brittle to ductile ones. Ductile fracture surfaces, obtained when the system breaks once the strain is completely localized, are shown to correspond to minimum energy surfaces. The similarity of the resulting fracture paths to the limits of brittle fracture or minimum energy surfaces is quantified. The model exhibits a smooth transition from brittleness to ductility. The dynamics of yielding exhibits avalanches with a power-law distribution.

  2. Application of long-range ordering in the synthesis of a nanoscale Ni2 (Cr,Mo) superlattice with high strength and high ductility

    International Nuclear Information System (INIS)

    Tawancy, H.M.; Aboelfotoh, M.O.

    2009-01-01

    We demonstrate that bulk nanoscale materials with high strength and high ductility can be synthesized by using long-range ordering in certain alloy systems. In the case of a Ni-18.6 atomic % Mo-15.1 atomic % Cr, a bulk nanoscale superlattice of Ni 2 (Cr,Mo) isomorphous with Pt 2 Mo has been synthesized by thermal aging at 700 deg. C. The superlattice is shown to have high strength and high ductility as well as high thermal stability. Although the yield strength is nearly doubled in the ordered state exceeding 800 MPa, the material is found to maintain about 70% of its initial tensile ductility corresponding to 42% engineering strain. This behavior has been related to the crystallography of the ordering transformation. Although most of the slip systems of the parent face-centered cubic lattice are suppressed by ordering, most of the twinning systems remain energetically favorable. Therefore, deformation in the ordered state is found to predominantly occur by twinning rather than by slip giving rise to the observed combination of high strength and high ductility

  3. Role of thyroid in x-ray-induced oncogenic transformation in cell culture

    International Nuclear Information System (INIS)

    Borek, C.

    1982-01-01

    This paper examines the role of thyroid hormones in x-ray-induced neoplastic transformation of C3H/10 T 1/2 cells. In addition, the delineation of the time when transformation is sensitive to T3, the dependence of transformation on T3 concentration, and the involvement of protein synthesis are studied. The results indicate that thyroid hormone plays a key role in the initiation of x-ray-induced neoplastic transformation and that induction of protein synthesis may mediate this response

  4. Combining gradient structure and TRIP effect to produce austenite stainless steel with high strength and ductility

    International Nuclear Information System (INIS)

    Wu, X.L.; Yang, M.X.; Yuan, F.P.; Chen, L.; Zhu, Y.T.

    2016-01-01

    We report a design strategy to combine the benefits from both gradient structure and transformation-induced plasticity (TRIP). The resultant TRIP-gradient steel takes advantage of both mechanisms, allowing strain hardening to last to a larger plastic strain. 304 stainless steel sheets were treated by surface mechanical attrition to synthesize gradient structure with a central coarse-grained layer sandwiched between two grain-size gradient layers. The gradient layer is composed of submicron-sized parallelepiped austenite domains separated by intersecting ε-martensite plates, with increasing domain size along the depth. Significant microhardness heterogeneity exists not only macroscopically between the soft coarse-grained core and the hard gradient layers, but also microscopically between the austenite domain and ε-martensite walls. During tensile testing, the gradient structure causes strain partitioning, which evolves with applied strain, and lasts to large strains. The γ → α′ martensitic transformation is triggered successively with an increase of the applied strain and flow stress. Importantly, the gradient structure prolongs the TRIP effect to large plastic strains. As a result, the gradient structure in the 304 stainless steel provides a new route towards a good combination of high strength and ductility, via the co-operation of both the dynamic strain partitioning and TRIP effect.

  5. Influence of phosphorus on the creep ductility of copper

    International Nuclear Information System (INIS)

    Sandström, Rolf; Wu, Rui

    2013-01-01

    Around 1990 it was discovered that pure copper could have extra low creep ductility in the temperature interval 180–250 °C. The material was intended for use in canisters for nuclear waste disposal. Although extra low creep ductility was not observed much below 180 °C and the temperature in the canister will never exceed 100 °C, it was feared that the creep ductility could reach low values at lower temperatures after long term exposure. If 50 ppm phosphorus was added to the copper the low creep ductility disappeared. A creep cavitation model is presented that can quantitatively describe the cavitation behaviour in uniaxial and multiaxial creep tests as well as the observed creep ductility for copper with and without phosphorus. A so-called double ledge model has been introduced that demonstrates why the nucleation rate of creep cavities is often proportional to the creep rate. The phosphorus agglomerates at the grain boundaries and limits their local deformation and thereby reduces the formation and growth of cavities. This explains why extra low creep ductility does not occur in phosphorus alloyed copper

  6. 49 CFR 192.373 - Service lines: Cast iron and ductile iron.

    Science.gov (United States)

    2010-10-01

    ... 49 Transportation 3 2010-10-01 2010-10-01 false Service lines: Cast iron and ductile iron. 192.373... Regulators, and Service Lines § 192.373 Service lines: Cast iron and ductile iron. (a) Cast or ductile iron... cast iron pipe or ductile iron pipe is installed for use as a service line, the part of the service...

  7. Ductile mandrel and parting compound facilitate tube drawing

    Science.gov (United States)

    Burt, W. R., Jr.; Mayfield, R. M.; Polakowski, N. H.

    1966-01-01

    Refractory tubing is warm drawn over a solid ductile mandrel with a powder parting compound packed between mandrel and the tubes inner surface. This method applies also to the coextrusion of a billet and a ductile mandrel.

  8. The semi-brittle to ductile transition in peridotite on oceanic faults: mechanisms and P-T condition

    Science.gov (United States)

    Prigent, C.; Warren, J. M.; Kohli, A. H.; Teyssier, C. P.

    2017-12-01

    Experimental and geological-petrological studies suggest that the transition from brittle faulting to ductile flow of olivine, i.e. from seismic to aseismic behavior of mantle rocks (peridotites), occurs close to 600°C. However, recent seismological studies on oceanic transform faults (TFs) and ridges have documented earthquakes to temperatures (T) up to 700-800°C. In this study, we carried out a petrological, microstructural and geochemical analysis of natural samples of peridotites dredged at 3 different oceanic TFs of the Southwest Indian Ridge: Shaka, Prince Edward and Atlantis II. We selected samples displaying variable amounts of ductile deformation (from porphyroclastic tectonites to ultramylonites) prior to serpentinization in order to characterize their relatively high-T mechanical behavior. We find that the most deformed samples record cycles of ductile and brittle deformation. Peridotite ductile flow is characterized by drastic grain size reduction and the development of (ultra)mylonitic shear zones. In these zones, a switch in olivine deformation mechanism from dislocation creep to grain-size sensitive creep is associated with dissolution/precipitation processes. Brittle deformation of these samples is evidenced by the presence of (at least centimetric) transgranular and intragranular fractures that fragment coarser grained minerals. Both kinds of fractures are filled with the same phase assemblage as in the ultramylonitic bands: olivine + amphibole ± orthopyroxene ± Al-phase (plagioclase and/or spinel) ± sulfides. The presence of amphibole indicates that this semi-brittle deformation was assisted by hydrous fluids and its composition (e.g. high concentration of chlorine) suggests that the fluids have most likely a hydrothermal origin. We interpret these fractures to have formed under fluid-assisted conditions, recording paleo-seismic activity that alternated with periods of relatively slow interseismic ductile flow. The presence of Mg

  9. Evolution of dislocations and twins in a strong and ductile nanotwinned steel

    International Nuclear Information System (INIS)

    Zhou, P.; Liang, Z.Y.; Liu, R.D.; Huang, M.X.

    2016-01-01

    A twinning-induced plasticity (TWIP) steel was subjected to a simple processing route (i.e. cold rolling followed by a recovery heat treatment) suitable for large-scale industrial production, resulting in the production of a strong and ductile nanotwinned steel. This nanotwinned steel combines high yield strength (1450 MPa), high ultimate tensile strength (1600 MPa) and good ductility (25% total elongation). Detailed transmission electron microscopy observation reveals that the twin volume fraction of the nanotwinned steel remains constant during tensile deformation. This is different to the deformation behaviour of recrystallized TWIP steels whose twin volume fraction increase continuously with strain during tensile deformation. The constant twin volume fraction indicates that a maximum twin volume fraction has been reached during the cold rolling process. In contrast, the dislocation density of the nanotwinned steel increases with strain as measured by the synchrotron X-ray diffraction experiments. In other words, the plastic deformation of the nanotwinned steel is mainly accommodated by glide and multiplication of dislocations. Based on the experimental results, an analytical model was developed to capture the respective effects of dislocations and twins on the strength and ductility of the present nanotwinned steel. The modelling results indicate that the strength is contributed by both twins and dislocations while the ductility is mainly attributed to dislocation multiplication. -- Graphical abstract: (a) TEM bright field image showing intensive nanotwins in the nanotwinned steel. Selected area diffraction pattern obtained within the red circle. (b) The engineering stress–stain curve of the nanotwinned steel. Display Omitted

  10. Ductile-regime turning of germanium and silicon

    Science.gov (United States)

    Blake, Peter N.; Scattergood, Ronald O.

    1989-01-01

    Single-point diamond turning of silicon and germanium was investigated in order to clarify the role of cutting depth in coaxing a ductile chip formation in normally brittle substances. Experiments based on the rapid withdrawal of the tool from the workpiece have shown that microfracture damage is a function of the effective depth of cut (as opposed to the nominal cutting depth). In essence, damage created by the leading edge of the tool is removed several revolutions later by lower sections of the tool edge, where the effective cutting depth is less. It appears that a truly ductile cutting response can be achieved only when the effective cutting depth, or critical chip thickness, is less than about 20 nm. Factors such as tool rake angle are significant in that they will affect the actual value of the critical chip thickness for transition from brittle to ductile response. It is concluded that the critical chip thickness is an excellent parameter for measuring the effects of machining conditions on the ductility of the cut and for designing tool-workpiece geometry in both turning and grinding.

  11. Effects of chloride ions on corrosion of ductile iron and carbon steel in soil environments.

    Science.gov (United States)

    Song, Yarong; Jiang, Guangming; Chen, Ying; Zhao, Peng; Tian, Yimei

    2017-07-31

    Chloride is reported to play a significant role in corrosion reactions, products and kinetics of ferrous metals. To enhance the understanding of the effects of soil environments, especially the saline soils with high levels of chloride, on the corrosion of ductile iron and carbon steel, a 3-month corrosion test was carried out by exposing ferrous metals to soils of six chloride concentrations. The surface morphology, rust compositions and corrosion kinetics were comprehensively studied by visual observation, scanning electron microscopy (SEM), X-Ray diffraction (XRD), weight loss, pit depth measurement, linear polarization and electrochemical impedance spectroscopy (EIS) measurements. It showed that chloride ions influenced the characteristics and compositions of rust layers by diverting and participating in corrosion reactions. α-FeOOH, γ-FeOOH and iron oxides were major corrosion products, while β-Fe 8 O 8 (OH) 8 Cl 1.35 rather than β-FeOOH was formed when high chloride concentrations were provided. Chloride also suppressed the decreasing of corrosion rates, whereas increased the difficulty in the diffusion process by thickening the rust layers and transforming the rust compositions. Carbon steel is more susceptible to chloride attacks than ductile iron. The corrosion kinetics of ductile iron and carbon steel corresponded with the probabilistic and bilinear model respectively.

  12. System Reliability of Timber Structures with Ductile Behaviour

    DEFF Research Database (Denmark)

    Kirkegaard, Poul Henning; Sørensen, John Dalsgaard; Čizmar, Dean

    2011-01-01

    The present paper considers the evaluation of timber structures with the focus on robustness due to connection ductility. The robustness analysis is based on the structural reliability framework applied to a simplified mechanical system. The structural timber system is depicted as a parallel system....... An evaluation method of the ductile behaviour is introduced. For different ductile behaviours, the system reliability is estimated based on Monte Carlo simulation. A correlation between the strength of the structural elements is introduced. The results indicate that the reliability of a structural timber system...

  13. Implications of radiation-induced reductions in ductility to the design of austenitic stainless steel structures

    International Nuclear Information System (INIS)

    Lucas, G.E.; Billone, M.; Pawel, J.E.; Hamilton, M.L.

    1995-01-01

    In the dose and temperature range anticipated for ITER, austenitic stainless steels exhibit significant hardening with a concomitant loss in work hardening and uniform elongation. However, significant post-necking ductility may still be retained. When uniform elongation (e u ) is well defined in terms of a plastic instability criterion, e u is found to sustain reasonably high values out to about 7 dpa in the temperature range 250-350 C, beyond which it decreases to about 0.3% for 316LN. This loss of ductility has significant implications to fracture toughness and the onset of new failure modes associated with hear instability. However, the retention of a significant reduction in area at failure following irradiation indicates a less severe degradation of low-cycle fatigue life in agreement with a limited amount of data obtained to date. Suggestions are made for incorporating these results into design criteria and future testing programs

  14. On the notch ductility of a magnesium-rare earth alloy

    Energy Technology Data Exchange (ETDEWEB)

    Kondori, B., E-mail: bkondori.13034@tamu.edu [Department of Materials Science & Engineering, Texas A& M University, College Station, TX 77843 (United States); Benzerga, A.A. [Department of Materials Science & Engineering, Texas A& M University, College Station, TX 77843 (United States); Department of Aerospace Engineering, Texas A& M University, College Station, TX 77843 (United States)

    2015-10-28

    The room-temperature notch ductility of magnesium-rare earth alloy WE43 is investigated for two loading orientations. This material is endowed with quasi-isotropic plastic flow properties, higher strength and similar uniaxial ductility in comparison with other commercially available Mg alloys. The authors have recently shown that the notch ductility of a Mg–Al–Zn alloy is greater than its uniaxial ductility over a wide range of notch geometries. This paper investigates whether the same trends hold for WE43, discusses the orientation dependence of ductility and the propensity for intergranular fracture at high levels of hydrostatic tension. The latter mode of fracture is analyzed by means of detailed fractography in order to elucidate the role of grain-boundary particles and precipitates in the fracture process.

  15. Radiation-induced transformation in oncogene primed C3H/10T1/2 cells; a new system for analysis of multi-step transformation in vitro

    International Nuclear Information System (INIS)

    Drozdoff, V.V.

    1988-01-01

    Several established rodent cell lines, such as C3H/10T1/2 fibroblasts, have been developed to study radiation and chemically-induced malignant transformation. Most experimental evidence has supported the idea that transformation in 10T1/2 cells involved at least two steps but that the apparent frequency of transformation depends on the density of plated cells. A new approach is presented here for studying radiation-induced transformation. An oncogene primed cell system (C3H-myc) was developed by introducing a constitutively active mouse c-myc gene into 10T1/2 cells. A primary goal was to determine if the introduction of an activated oncogene could substitute for one of the required steps in radiation-induced transformation. Results are presented that show that the expression of the exogenous myc gene significantly increased the frequency of radiation-induced transformation in these cells. Subculture experiments performed to analyze the kinetics of transformation in C3H-myc cells and reconstruction experiments allowing the effects of normal cells on radiation-induced transformants to be determined indicated that transformed cells arose very shortly after irradiation. These results support the conclusion that a radiation-induced event can complement the effect of myc in C3H-myc cells and directly result in transformation. This system thus provides an opportunity to isolate early steps in radiation-induced transformation and should facilitate the identification and analysis of these events

  16. On key factors influencing ductile fractures of dual phase (DP) steels

    International Nuclear Information System (INIS)

    Sun, X.; Choi, K.S.; Soulami, A.; Liu, W.N.; Khaleel, M.A.

    2009-01-01

    In this paper, we examine the key factors influencing ductile failure of various grades of dual phase (DP) steels using the microstructure-based modeling approach. Various microstructure-based finite element models are generated based on the actual microstructures of DP steels with different martensite volume fractions. These models are, then, used to investigate the influence of ductility of the constituent ferrite phase and also the influence of voids introduced in the ferrite phase on the overall ductility of DP steels. It is found that with volume fraction of martensite in the microstructure less than 15%, the overall ductility of the DP steels strongly depends on the ductility of the ferrite matrix, hence pre-existing micro-voids in the microstructure significantly reduce the overall ductility of the steel. When the volume fraction of martensite is above 15%, the pre-existing voids in the ferrite matrix does not significantly reduce the overall ductility of the DP steels, and the overall ductility is more influenced by the mechanical property disparity between the two phases. The applicability of the phase inhomogeneity driven ductile failure of DP steels is then discussed based on the obtained computational results for various grades of DP steels, and the experimentally obtained scanning electron microscopy (SEM) pictures of the corresponding grades of DP steels near fracture surface are used as evidence for result validations.

  17. Ductile-brittle transition of thoriated chromium.

    Science.gov (United States)

    Wilcox, B. A.; Veigel, N. D.; Clauer, A. H.

    1972-01-01

    Unalloyed chromium and chromium containing approximately 3 wt % ThO2 were prepared from powder produced by a chemical vapor deposition process. When rolled to sheet and tested in tension, it was found that the thoriated material had a lower ductile-to-brittle transition temperature (DBTT) than unalloyed chromium. This ductilizing was evident both in the as-rolled condition and after the materials had been annealed for 1 hour at 1200 C. The improved ductility in thoriated chromium may be associated with several possible mechanisms: (1) particles may disperse slip, such that critical stress or strain concentrations for crack nucleation are more difficult to achieve; (2) particles may act as dislocation sources, thus providing mobile dislocations in this normally source-poor material, in a manner similar to prestraining; and (3) particles in grain boundaries may help to transmit slip across the boundaries, thus relieving stress concentrations and inhibiting crack nucleation.

  18. Alpha-particles induce preneoplastic transformation of rat tracheal epithelial cells in culture

    International Nuclear Information System (INIS)

    Thomassen, D.G.; Seiler, F.A.; Shyr, L.-J.; Griffith, W.C.

    1990-01-01

    To characterize the potential role of high-l.e.t. radiation in respiratory carcinogenesis, the cytotoxic and transforming potency of 5.5 MeV α-particles from electroplated sources of 238 Pu were determined using primary cultures of rat tracheal epithelial cells. RBE for cell killing by α-particles versus X-rays varied with dose, and ranged between 4 and 1.5 for α doses in the range 0.2-4 Gy. At equally toxic doses (relative survival 0.18-0.2), all three agents induced similar frequencies of preneoplastic transformation. For preneoplastic transformation induced by doses of α- and X-radiations giving 80 per cent toxicity, an α RBE of 2.4 was derived. The similar RBEs for cell killing and for preneoplastic transformation suggest an association between the type or degree of radiation-induced damage responsible for both cell killing and cell transformation. (author)

  19. Simulation of the ductile damage under the metal forming

    International Nuclear Information System (INIS)

    Bogatov, A. A.

    2003-01-01

    Potentiality of metal forming is limited by ductile damage. The damage degree is estimated by the scalar value ω, that is equal to 0(ω=0) before plastic strain and is equal to 1(ω=1) at the macro cracks moment. There are two criteria that describe micro damage. The value ω=ω * corresponds to the generation of micro voids that couldn't be recovered by recrystallization but do not reduce the metal strength. The value ω=ω ** corresponds to the generation of micro voids that reduce the metal strength and material long life. The models of metal damage accumulation under pure and alternate strain also the model of metal damage recovery under the recrystallization are developed. The specimen testing at high loading parameters gives the basic equations of the ductile damage mechanics. All of that gives the method to study ductile damage under the metal forming. The methodology damage nucleation and growing is shown on various examples: the void and crack development in the areas ductile damage and unlimited ductility; mathematical simulation of the metal damage under the sheet and wire drawing and others. The problems of physical simulating at the ductile damage under metal forming are shown too in this paper. The method and equipment of metal damage physical simulation are proposed. (Original)

  20. Application of long-range ordering in the synthesis of a nanoscale Ni{sub 2} (Cr,Mo) superlattice with high strength and high ductility

    Energy Technology Data Exchange (ETDEWEB)

    Tawancy, H.M. [Center for Engineering Research, Research Institute, King Fahd University of Petroleum and Minerals, P.O. Box 1639, Dhahran 31261 (Saudi Arabia)], E-mail: tawancy@kfupm.edu.sa; Aboelfotoh, M.O. [Department of Materials Science and Engineering, North Carolina State University, Raleigh, NC 27695-7909 (United States)

    2009-01-25

    We demonstrate that bulk nanoscale materials with high strength and high ductility can be synthesized by using long-range ordering in certain alloy systems. In the case of a Ni-18.6 atomic % Mo-15.1 atomic % Cr, a bulk nanoscale superlattice of Ni{sub 2}(Cr,Mo) isomorphous with Pt{sub 2}Mo has been synthesized by thermal aging at 700 deg. C. The superlattice is shown to have high strength and high ductility as well as high thermal stability. Although the yield strength is nearly doubled in the ordered state exceeding 800 MPa, the material is found to maintain about 70% of its initial tensile ductility corresponding to 42% engineering strain. This behavior has been related to the crystallography of the ordering transformation. Although most of the slip systems of the parent face-centered cubic lattice are suppressed by ordering, most of the twinning systems remain energetically favorable. Therefore, deformation in the ordered state is found to predominantly occur by twinning rather than by slip giving rise to the observed combination of high strength and high ductility.

  1. Combined Synchrotron X-ray Diffraction and Digital Image Correlation Technique for Measurement of Austenite Transformation with Strain in TRIP-assisted Steels

    Energy Technology Data Exchange (ETDEWEB)

    Poling, Whitney A.; Savic, Vesna; Hector, Louis G.; Sachdev, Anil K.; Hu, Xiaohua; Devaraj, Arun; Abu-Farha, Fadi

    2016-04-05

    The strain-induced, diffusionless shear transformation of retained austenite to martensite during straining of transformation induced plasticity (TRIP) assisted steels increases strain hardening and delays necking and fracture leading to exceptional ductility and strength, which are attractive for automotive applications. A novel technique that provides the retained austenite volume fraction variation with strain in TRIP-assisted steels with improved precision is presented. Digital images of the gauge section of tensile specimens were first recorded up to selected plastic strains with a stereo digital image correlation (DIC) system. The austenite volume fraction was measured by synchrotron X-ray diffraction from small squares cut from the gage section. Strain fields in the squares were then computed by localizing the strain measurement to the corresponding region of a given square during DIC post-processing of the images recorded during tensile testing. Results obtained for a QP980 steel are used to study the influence of initial volume fraction of austenite and the austenite transformation with strain on tensile mechanical behavior.

  2. Analyses of cavitation instabilities in ductile metals

    DEFF Research Database (Denmark)

    Tvergaard, Viggo

    2007-01-01

    Cavitation instabilities have been predicted for a single void in a ductile metal stressed under high triaxiality conditions. In experiments for a ceramic reinforced by metal particles a single dominant void has been observed on the fracture surface of some of the metal particles bridging a crack......, and also tests for a thin ductile metal layer bonding two ceramic blocks have indicated rapid void growth. Analyses for these material configurations are discussed here. When the void radius is very small, a nonlocal plasticity model is needed to account for observed size-effects, and recent analyses......, while the surrounding voids are represented by a porous ductile material model in terms of a field quantity that specifies the variation of the void volume fraction in the surrounding metal....

  3. Hot ductility behavior of near-alpha titanium alloy IMI834

    International Nuclear Information System (INIS)

    Ghavam, Mohammad Hadi; Morakabati, Maryam; Abbasi, Seyed Mahdi; Badri, Hassan

    2014-01-01

    The hot ductility of rolled IMI834 titanium alloy (Ti-5.3Al-2.9Sn-3.0Zr-0.65Nb-0.5Mo-0.2Si in wt%) has been studied by conducting tensile tests with a strain rate of 0.1 s -1 and temperature range of 750-1100 C to obtain the optimum hot working conditions. The alloy showed minimum hot ductility in the lower alpha-beta region in the temperature range 750-950 C. Further microstructural characterizations showed improvement in hot ductility by increasing temperature, which was attributed to reduction of volume fraction of high strength alpha phase. The best hot ductility was observed at 1000 C, i.e. in the upper alpha-beta region. The better hot ductility at higher temperature could be related to the increase in the volume fraction of beta phase and the occurrence of dynamic restoration phenomena. The second decline in hot ductility appeared at higher temperatures in the beta region and was attributed to the high stacking fault energy and self-diffusion of beta phase leading to limitation of dynamic recrystallization.

  4. Laser induced structural transformation in chalcogenide based superlattices

    Energy Technology Data Exchange (ETDEWEB)

    Zallo, Eugenio, E-mail: zallo@pdi-berlin.de; Wang, Ruining; Bragaglia, Valeria; Calarco, Raffaella [Paul-Drude-Institut für Festkörperelektronik, Hausvogteiplatz 5-7, 10117 Berlin (Germany)

    2016-05-30

    Superlattices made of alternating layers of nominal GeTe and Sb{sub 2}Te{sub 3} have been studied by micro-Raman spectroscopy. A structural irreversible transformation into ordered GeSbTe alloy is induced by high power laser light exposure. The intensity ratio of anti-Stokes and Stokes scattering under laser illumination gives a maximum average temperature in the sample of 177 °C. The latter is lower than the growth temperature and of 400 °C necessary by annealing to transform the structure in a GeSbTe alloy. The absence of this configuration after in situ annealing even up to 300 °C evidences an electronic excitation induced-transition which brings the system into a different and stable crystalline state.

  5. Laser induced structural transformation in chalcogenide based superlattices

    International Nuclear Information System (INIS)

    Zallo, Eugenio; Wang, Ruining; Bragaglia, Valeria; Calarco, Raffaella

    2016-01-01

    Superlattices made of alternating layers of nominal GeTe and Sb 2 Te 3 have been studied by micro-Raman spectroscopy. A structural irreversible transformation into ordered GeSbTe alloy is induced by high power laser light exposure. The intensity ratio of anti-Stokes and Stokes scattering under laser illumination gives a maximum average temperature in the sample of 177 °C. The latter is lower than the growth temperature and of 400 °C necessary by annealing to transform the structure in a GeSbTe alloy. The absence of this configuration after in situ annealing even up to 300 °C evidences an electronic excitation induced-transition which brings the system into a different and stable crystalline state.

  6. Hot ductility of a microalloyed steel in the intermediate temperature range

    International Nuclear Information System (INIS)

    Darsouni, A.; Bouzabata, B.; Montheillet, F.

    1995-01-01

    In this study hot ductility has been determined from tensile tests for two states of a microalloyed steel: after casting and after rolling processes. Hot deformations were carried out at speeds varying from 10 -4 s -1 to 10 -2 s -1 and temperatures from 750 C to 1100 C. Two heat treatments were chosen before hot deformation. A ferrite precipitation is observed at austenitic grain boundaries in the intercritical temperature range, causing intergranular embrittlement. Ductility trough is deeper in the as-cast samples due to the growth of large grain size. Also, precipitation makes the hot ductility curve wider and deeper around 900 C. The results show a decrease in hot ductility. Minimum values of hot ductility are determined for (ITC) treatment at 900 C and for (DTC) treatment at 800 C. For this second treatment another decrease in hot ductility was observed at 900 C. We can explain hot ductility losses by the presence of precipitates in the austenitic region and the presence of the two-phase structure in the intercritical region. (orig.)

  7. Ductile alloy and process for preparing composite superconducting wire

    Science.gov (United States)

    Verhoeven, J.D.; Finnemore, D.K.; Gibson, E.D.; Ostenson, J.E.

    An alloy for the commercial production of ductile superconducting wire is prepared by melting together copper and at least 15 weight percent niobium under non-oxygen-contaminating conditions, and rapidly cooling the melt to form a ductile composite consisting of discrete, randomly distributed and oriented dendritic-shaped particles of niobium in a copper matrix. As the wire is worked, the dendritic particles are realigned parallel to the longitudinal axis and when drawn form a plurality of very fine ductile superconductors in a ductile copper matrix. The drawn wire may be tin coated and wound into magnets or the like before diffusing the tin into the wire to react with the niobium. Impurities such as aluminum or gallium may be added to improve upper critical field characteristics.

  8. Simultaneously enhanced strength and ductility for 3D-printed stainless steel 316L by selective laser melting

    Science.gov (United States)

    Sun, Zhongji; Tan, Xipeng; Tor, Shu Beng; Chua, Chee Kai

    2018-04-01

    Laser-based powder-bed fusion additive manufacturing or three-dimensional printing technology has gained tremendous attention due to its controllable, digital, and automated manufacturing process, which can afford a refined microstructure and superior strength. However, it is a major challenge to additively manufacture metal parts with satisfactory ductility and toughness. Here we report a novel selective laser melting process to simultaneously enhance the strength and ductility of stainless steel 316L by in-process engineering its microstructure into a crystallographic texture. We find that the tensile strength and ductility of SLM-built stainless steel 316L samples could be enhanced by 16% and 40% respectively, with the engineered textured microstructure compared to the common textured microstructure. This is because the favorable nano-twinning mechanism was significantly more activated in the textured stainless steel 316L samples during plastic deformation. In addition, kinetic simulations were performed to unveil the relationship between the melt pool geometry and crystallographic texture. The new additive manufacturing strategy of engineering the crystallographic texture can be applied to other metals and alloys with twinning-induced plasticity. This work paves the way to additively manufacture metal parts with high strength and high ductility.

  9. Brittle-to-Ductile Transition in Metallic Glass Nanowires.

    Science.gov (United States)

    Şopu, D; Foroughi, A; Stoica, M; Eckert, J

    2016-07-13

    When reducing the size of metallic glass samples down to the nanoscale regime, experimental studies on the plasticity under uniaxial tension show a wide range of failure modes ranging from brittle to ductile ones. Simulations on the deformation behavior of nanoscaled metallic glasses report an unusual extended strain softening and are not able to reproduce the brittle-like fracture deformation as found in experiments. Using large-scale molecular dynamics simulations we provide an atomistic understanding of the deformation mechanisms of metallic glass nanowires and differentiate the extrinsic size effects and aspect ratio contribution to plasticity. A model for predicting the critical nanowire aspect ratio for the ductile-to-brittle transition is developed. Furthermore, the structure of brittle nanowires can be tuned to a softer phase characterized by a defective short-range order and an excess free volume upon systematic structural rejuvenation, leading to enhanced tensile ductility. The presented results shed light on the fundamental deformation mechanisms of nanoscaled metallic glasses and demarcate ductile and catastrophic failure.

  10. Transformation-induced plasticity in multiphase steels subjected to thermomechanical loading

    NARCIS (Netherlands)

    Tjahjanto, D.D.; Turteltaub, S.R.; Suiker, A.S.J.; Zwaag, van der S.

    2008-01-01

    The behaviour of transformation-induced plasticity steels subjected to combined thermomechanical loading is studied at the microscale by means of numerical simulations. The microstructure is composed of an austenitic phase that may deform plastically and/or transform into martensite, and a ferritic

  11. Determination of Ductile Tearing Resistance Curve in Weld Joints

    International Nuclear Information System (INIS)

    Marie, S.; Gilles, P.; Ould, P.

    2010-01-01

    Steels present in the ductile domain a tearing resistance which increase with the crack propagation up to the failure. This ductile tearing resistance is in general characterised with curves giving the variation of a global parameter (opening displacement at the crack tip delta, integral J) versus the crack extension Delta a. These global approaches depend more or less on the specimen geometry and on the type of the imposed loading. Local approaches based on the description of the ductile tearing mechanisms provide reliable solution to the transferability problem (from the lab specimen to the component) but are complex and costly to use and are not codified. These problems get worse in the case of a weld joint where no standard is available for the measurement of their ductile tearing resistance. But the welded joints are often the weak point of the structure because of greater risk of defects, the heterogeneity of the microstructure of the weld, deformation along the interface between two materials with different yield stress (mismatch).... After briefly recalling the problems of transferability of the ductile tearing resistance curves obtained on lab specimen to the case of components, this article identifies the factors complicating the determination of the toughness in the welded joints and gives recommendations for the experimental determination of ductile tearing resistance curves of welded joints

  12. Magmatism and crustal extension: Constraining activation of the ductile shearing along the Gediz detachment, Menderes Massif (western Turkey)

    Science.gov (United States)

    Rossetti, Federico; Asti, Riccardo; Faccenna, Claudio; Gerdes, Axel; Lucci, Federico; Theye, Thomas

    2017-06-01

    The Menderes Massif of western Turkey is a key area to study feedback relationships between magma generation/emplacement and activation of extensional detachment tectonics. Here, we present new textural analysis and in situ U-(Th)-Pb titanite dating from selected samples collected in the transition from the undeformed to the mylonitized zones of the Salihli granodiorite at the footwall of the Neogene, ductile-to-brittle, top-to-the-NNE Gediz-Alaşheir (GDF) detachment fault. Ductile shearing was accompanied by the fluid-mediated sub-solidus transformation of the granodiorite to orthogneiss, which occurred at shallower crustal levels and temperatures compatible with the upper greenschist-to-amphibolite facies metamorphic conditions (530-580 °C and P system ages during fluid-assisted syn-tectonic re-crystallisation in the transition from magma crystallization and emplacement (at 16-17 Ma) to the syn-tectonic, solid-state shearing (at 14-15 Ma). A minimum time lapse of ca. 1-2 Ma is then inferred between the crustal emplacement of the Salihli granodiorite and nucleation of the ductile extensional shearing along the Gediz detachment. The reconstruction of the cooling history of the Salihli granodiorite documents a punctuated evolution dominated by two episodes of rapid cooling, between 14 Ma and 12 Ma ( 100 °C/Ma) and between 3 and 2 Ma ( 105 °C/Ma). We relate the first episode to nucleation and development of post-emplacement of ductile shearing along the GDF and the second to brittle high-angle faulting, respectively. Our dataset suggests that in the Menderes Massif the activation of ductile extension was a consequence, rather than the cause, of magma emplacement in the extending crust.

  13. Ductility in hot isostatically pressed 250-grade maraging steel

    International Nuclear Information System (INIS)

    German, R.M.; Smugeresky, J.E.

    1978-01-01

    Prealloyed 250-grade maraging steel powder produced by the rotating electrode process was fully consolidated by hot isostatic pressing (HIP) at 1100 and 1200 0 C. The strength following aging (3 h at 480 0 C) equalled that of wrought material; however, ductility was negligible. This lack of ductility in the powder metallurgy product was traced to titanium segregation which occurred at the powder surface during power production. The formation of a titanium intermetallic at the prior particle boundaries during aging caused failure at low plastic strains. Altered aging treatments successfully broke up the embrittling film and resulted in a significant ductility recovery for the HIP material. Analysis of the fracture process indicates that further ductility gains are possible by reducing the titanium content, refining the particle size, and optimizing the thermal cycles

  14. Induced over voltage test on transformers using enhanced Z-source inverter based circuit

    Science.gov (United States)

    Peter, Geno; Sherine, Anli

    2017-09-01

    The normal life of a transformer is well above 25 years. The economical operation of the distribution system has its roots in the equipments being used. The economy being such, that it is financially advantageous to replace transformers with more than 15 years of service in the second perennial market. Testing of transformer is required, as its an indication of the extent to which a transformer can comply with the customers specified requirements and the respective standards (IEC 60076-3). In this paper, induced over voltage testing on transformers using enhanced Z source inverter is discussed. Power electronic circuits are now essential for a whole array of industrial electronic products. The bulky motor generator set, which is used to generate the required frequency to conduct the induced over voltage testing of transformers is nowadays replaced by static frequency converter. First conventional Z-source inverter, and second an enhanced Z source inverter is being used to generate the required voltage and frequency to test the transformer for induced over voltage test, and its characteristics is analysed.

  15. Revealing the extra-high ductility and toughness of micro+duplex medium+Mn steel in a large temperature range from 200 ℃ to -196 ℃

    DEFF Research Database (Denmark)

    Cao, Wenquan; Hu, Jun; Dong, Han

    2014-01-01

    A medium-Mn steel (0.2C5Mn) was processed by intercritical annealing at different temperature (625℃ and 650℃) after forging and hot rolling. The microstructures were characterized by transmission electron microscopy and the mechanical properties were measured by tensile tests and impact tests...... at different temperatures. It was found that an ultrafine grained micro-duplex structure existed with austenite and ferrite laths formed by means of an austenite reverse transformation during intercritical annealing (shortly called ART-annealing). Ultrahigh ductility (total elongation larger than 30%) could...... be obtained in the temperature range from 200℃ to -196℃. And significantly delayed transition from ductile to brittle and no less than 200J impact toughness at -40℃ could be obtained in the ART-annealed medium-Mn steel. Based on the analysis of microstructure and mechanical properties, the enhanced ductility...

  16. Process induced sub-surface damage in mechanically ground silicon wafers

    International Nuclear Information System (INIS)

    Yang Yu; De Munck, Koen; Teixeira, Ricardo Cotrin; Swinnen, Bart; De Wolf, Ingrid; Verlinden, Bert

    2008-01-01

    Micro-Raman spectroscopy, scanning electron microcopy, atomic force microscopy and preferential etching were used to characterize the sub-surface damage induced by the rough and fine grinding steps used to make ultra-thin silicon wafers. The roughly and ultra-finely ground silicon wafers were examined on both the machined (1 0 0) planes and the cross-sectional (1 1 0) planes. They reveal similar multi-layer damage structures, consisting of amorphous, plastically deformed and elastically stressed layers. However, the thickness of each layer in the roughly ground sample is much higher than its counterpart layers in the ultra-finely ground sample. The residual stress after rough and ultra-fine grinding is in the range of several hundreds MPa and 30 MPa, respectively. In each case, the top amorphous layer is believed to be the result of sequential phase transformations (Si-I to Si-II to amorphous Si). These phase transformations correspond to a ductile grinding mechanism, which is dominating in ultra-fine grinding. On the other hand, in rough grinding, a mixed mechanism of ductile and brittle grinding causes multi-layer damage and sub-surface cracks

  17. Hot ductility of continuously cast structural steels

    International Nuclear Information System (INIS)

    Pytel, S.M.

    1995-01-01

    The objective of this investigation was to explain the hot ductility of the structural steels characterized by different amount of carbon and morphology of sulfides. Two different rolling processes were simulated under computer controlled, high temperature deformation MTS system. Results of this study show that morphology of sulfides as well as temperature and amount of deformation are responsible for level of hot ductility of the steel tested. (author)

  18. Brittle versus ductile behaviour of nanotwinned copper: A molecular dynamics study

    International Nuclear Information System (INIS)

    Pei, Linqing; Lu, Cheng; Zhao, Xing; Zhang, Liang; Cheng, Kuiyu; Michal, Guillaume; Tieu, Kiet

    2015-01-01

    Nanotwinned copper (Cu) exhibits an unusual combination of ultra-high yield strength and high ductility. A brittle-to-ductile transition was previously experimentally observed in nanotwinned Cu despite Cu being an intrinsically ductile metal. However, the atomic mechanisms responsible for brittle fracture and ductile fracture in nanotwinned Cu are still not clear. In this study, molecular dynamics (MD) simulations at different temperatures have been performed to investigate the fracture behaviour of a nanotwinned Cu specimen with a single-edge-notched crack whose surface coincides with a twin boundary. Three temperature ranges are identified, indicative of distinct fracture regimes, under tensile straining perpendicular to the twin boundary. Below 1.1 K, the crack propagates in a brittle fashion. Between 2 K and 30 K a dynamic brittle-to-ductile transition is observed. Above 40 K the crack propagates in a ductile mode. A detailed analysis has been carried out to understand the atomic fracture mechanism in each fracture regime

  19. Gradient twinned 304 stainless steels for high strength and high ductility

    Energy Technology Data Exchange (ETDEWEB)

    Chen, Aiying [School of Materials Science and Engineering, University of Shanghai for Science and Technology, Shanghai (China); Liu, Jiabin; Wang, Hongtao [Institute of Applied Mechanics, Zhejiang University, Hangzhou (China); Lu, Jian, E-mail: jianlu@cityu.edu.hk [Department of Mechanical and Biomedical Engineering, City University of Hong Kong, Hong Kong (China); Wang, Y. Morris, E-mail: ymwang@llnl.gov [Physical and Life Sciences Directorate, Lawrence Livermore National Laboratory, Livermore, CA (United States)

    2016-06-14

    Gradient materials often have attractive mechanical properties that outperform uniform microstructure counterparts. It remains a difficult task to investigate and compare the performance of various gradient microstructures due to the difficulty of fabrication, the wide range of length scales involved, and their respective volume percentage variations. We have investigated four types of gradient microstructures in 304 stainless steels that utilize submicrotwins, nanotwins, nanocrystalline-, ultrafine- and coarse-grains as building blocks. Tensile tests reveal that the gradient microstructure consisting of submicrotwins and nanotwins has a persistent and stable work hardening rate and yields an impressive combination of high strength and high ductility, leading to a toughness that is nearly 50% higher than that of the coarse-grained counterpart. Ex- and in-situ transmission electron microscopy indicates that nanoscale and submicroscale twins help to suppress and limit martensitic phase transformation via the confinement of martensite within the twin lamellar. Twinning and detwinning remain active during tensile deformation and contribute to the work hardening behavior. We discuss the advantageous properties of using submicrotwins as the main load carrier and nanotwins as the strengthening layers over those coarse and nanocrystalline grains. Our work uncovers a new gradient design strategy to help metals and alloys achieve high strength and high ductility.

  20. Characteristics of radiation-induced neoplastic transformation in vitro

    Energy Technology Data Exchange (ETDEWEB)

    Little, J.B.

    1986-01-01

    Data are presented to support the hypothesis that the initial step in the morphologic transformation of irradiated rodent (BALB/3T3) cells is a frequent cellular event involving a large fraction of the irradiated population. This process appears to involve DNA damage, but not to represent a targeted mutation in specific structural gene(s). Morphologic transformation and immortalization appear to be distinct steps in the overall process of transformation. In contradistinction to rodent cells, immortalization is a very rare event in human diploid cells which is induced at extremely low frequencies. The hypothesis is presented that immortality develops among clones of cells bearing stable chromosomal rearrangements which emerge during the proliferation of a population of radiation damaged cells.

  1. The Investigation of Strain-Induced Martensite Reverse Transformation in AISI 304 Austenitic Stainless Steel

    Science.gov (United States)

    Cios, G.; Tokarski, T.; Żywczak, A.; Dziurka, R.; Stępień, M.; Gondek, Ł.; Marciszko, M.; Pawłowski, B.; Wieczerzak, K.; Bała, P.

    2017-10-01

    This paper presents a comprehensive study on the strain-induced martensitic transformation and reversion transformation of the strain-induced martensite in AISI 304 stainless steel using a number of complementary techniques such as dilatometry, calorimetry, magnetometry, and in-situ X-ray diffraction, coupled with high-resolution microstructural transmission Kikuchi diffraction analysis. Tensile deformation was applied at temperatures between room temperature and 213 K (-60 °C) in order to obtain a different volume fraction of strain-induced martensite (up to 70 pct). The volume fraction of the strain-induced martensite, measured by the magnetometric method, was correlated with the total elongation, hardness, and linear thermal expansion coefficient. The thermal expansion coefficient, as well as the hardness of the strain-induced martensitic phase was evaluated. The in-situ thermal treatment experiments showed unusual changes in the kinetics of the reverse transformation (α' → γ). The X-ray diffraction analysis revealed that the reverse transformation may be stress assisted—strains inherited from the martensitic transformation may increase its kinetics at the lower annealing temperature range. More importantly, the transmission Kikuchi diffraction measurements showed that the reverse transformation of the strain-induced martensite proceeds through a displacive, diffusionless mechanism, maintaining the Kurdjumov-Sachs crystallographic relationship between the martensite and the reverted austenite. This finding is in contradiction to the results reported by other researchers for a similar alloy composition.

  2. Pressure-induced transformations in computer simulations of glassy water

    Science.gov (United States)

    Chiu, Janet; Starr, Francis W.; Giovambattista, Nicolas

    2013-11-01

    Glassy water occurs in at least two broad categories: low-density amorphous (LDA) and high-density amorphous (HDA) solid water. We perform out-of-equilibrium molecular dynamics simulations to study the transformations of glassy water using the ST2 model. Specifically, we study the known (i) compression-induced LDA-to-HDA, (ii) decompression-induced HDA-to-LDA, and (iii) compression-induced hexagonal ice-to-HDA transformations. We study each transformation for a broad range of compression/decompression temperatures, enabling us to construct a "P-T phase diagram" for glassy water. The resulting phase diagram shows the same qualitative features reported from experiments. While many simulations have probed the liquid-state phase behavior, comparatively little work has examined the transitions of glassy water. We examine how the glass transformations relate to the (first-order) liquid-liquid phase transition previously reported for this model. Specifically, our results support the hypothesis that the liquid-liquid spinodal lines, between a low-density and high-density liquid, are extensions of the LDA-HDA transformation lines in the limit of slow compression. Extending decompression runs to negative pressures, we locate the sublimation lines for both LDA and hyperquenched glassy water (HGW), and find that HGW is relatively more stable to the vapor. Additionally, we observe spontaneous crystallization of HDA at high pressure to ice VII. Experiments have also seen crystallization of HDA, but to ice XII. Finally, we contrast the structure of LDA and HDA for the ST2 model with experiments. We find that while the radial distribution functions (RDFs) of LDA are similar to those observed in experiments, considerable differences exist between the HDA RDFs of ST2 water and experiment. The differences in HDA structure, as well as the formation of ice VII (a tetrahedral crystal), are a consequence of ST2 overemphasizing the tetrahedral character of water.

  3. Ductile Crack Initiation Criterion with Mismatched Weld Joints Under Dynamic Loading Conditions.

    Science.gov (United States)

    An, Gyubaek; Jeong, Se-Min; Park, Jeongung

    2018-03-01

    Brittle failure of high toughness steel structures tends to occur after ductile crack initiation/propagation. Damages to steel structures were reported in the Hanshin Great Earthquake. Several brittle failures were observed in beam-to-column connection zones with geometrical discontinuity. It is widely known that triaxial stresses accelerate the ductile fracture of steels. The study examined the effects of geometrical heterogeneity and strength mismatches (both of which elevate plastic constraints due to heterogeneous plastic straining) and loading rate on critical conditions initiating ductile fracture. This involved applying the two-parameter criterion (involving equivalent plastic strain and stress triaxiality) to estimate ductile cracking for strength mismatched specimens under static and dynamic tensile loading conditions. Ductile crack initiation testing was conducted under static and dynamic loading conditions using circumferentially notched specimens (Charpy type) with/without strength mismatches. The results indicated that the condition for ductile crack initiation using the two parameter criterion was a transferable criterion to evaluate ductile crack initiation independent of the existence of strength mismatches and loading rates.

  4. Impact of ductility on hydraulic fracturing in shales

    Science.gov (United States)

    MacMinn, Chris; Auton, Lucy

    2016-04-01

    Hydraulic fracturing is a method for extracting natural gas and oil from low-permeability rocks such as shale via the high-pressure injection of fluid into the bulk of the rock. The goal is to initiate and propagate fractures that will provide hydraulic access deeper into the reservoir, enabling gas or oil to be collected from a larger region of the rock. Fracture is the tensile failure of a brittle material upon reaching a threshold tensile stress, but some shales have a high clay content and may yield plastically before fracturing. Plastic deformation is the shear failure of a ductile material, during which stress relaxes through irreversible rearrangements of the particles of the material. Here, we investigate the impact of the ductility of shales on hydraulic fracturing. We first consider a simple, axisymmetric model for radially outward fluid injection from a wellbore into a ductile porous rock. We use this model to show that plastic deformation greatly reduces the maximum tensile stress, and that this maximum stress does not always occur at the wellbore. We then complement these results with laboratory experiments in an analogue system, and with numerical simulations based on the discrete element method (DEM), both of which suggest that ductile failure can indeed dramatically change the resulting deformation pattern. These results imply that hydraulic fracturing may fail in ductile rocks, or that the required injection rate for fracking may be much larger than the rate predicted from models that assume purely elastic mechanical behavior.

  5. Creep strength and rupture ductility of creep strength enhanced ferritic steels

    Energy Technology Data Exchange (ETDEWEB)

    Kushima, Hideaki; Sawada, Kota; Kimura, Kazuhiro [National Inst. for Materials Science, Tsukuba, Ibaraki (Japan)

    2010-07-01

    Creep strength and rupture ductility of Creep Strength Enhanced Ferritic (CSEF) steels were investigated from a viewpoint of stress dependence in comparison with conventional low alloy ferritic creep resistant steels. Inflection of stress vs. time to rupture curve was observed at 50% of 0.2% offset yield stress for both CSEF and conventional ferritic steels. Creep rupture ductility tends to decrease with increase in creep exposure time, however, those of conventional low alloy steels indicate increase in the long-term. Creep rupture ductility of the ASME Grades 92 and 122 steels indicates drastic decrease with decrease in stress at 50% of 0.2% offset yield stress. Stress dependence of creep rupture ductility of the ASME Grades 92 and 122 steels is well described by stress ratio to 0.2% offset yield stress, regardless of temperature. Drop of creep rupture ductility is caused by inhomogeneous recovery at the vicinity of prior austenite grain boundary, and remarkable drop of creep rupture ductility of CSEF steels should be derived from those stabilized microstructure. (orig.)

  6. Effects of dead load on ductility of a floor system

    International Nuclear Information System (INIS)

    Fujisaki, E.; Sarkar, B.E.; Ho, H.; Reed, J.W.

    1993-01-01

    In seismic margin or seismic fragility calculations, the ductility scale factor F μ is often used to quantify the effect of inelastic energy absorption on structural capacity. In concept, the ductility scale factor can be thought of as a response spectrum reduction factor. For a given ductile structural element and input response spectrum, the product of F μ and the factor of safety against yield (F s ) provides a measure of the total factor of safety against failure (F). Testing and analytical studies by others have shown that structures such as shear walls and building frames (mounted vertically) subjected to horizontal input motions are capable of absorbing earthquake energy through inelastic behavior. Kennedy, 1984, Riddell, 1979, and Reed, 1991 studied the ductility scale factor and developed simplified procedures through the use of nonlinear analyses. For floor systems (mounted horizontally), we are mainly interested in the response to vertical input motions. Because of the constant downward pull of gravity, the nonlinear displacement of a floor structure is biased downward. This ratcheting phenomenon reduces the ductility scale factor for a horizontal element compared to the case where the same element is mounted vertically and is subjected to horizontal input motion. Through the use of nonlinear time history analyses, we investigated the effects of dead loads on the ductility scale factor of floor systems. We also developed a simple modification to the Riddell-Newmark procedure (Riddell, 1979), which is used to calculate the ductility scale factor for vertically mounted elements, to determine F μ for horizontally mounted elements

  7. Ductile-to-brittle transition behavior of tungsten-copper composites

    International Nuclear Information System (INIS)

    Hiraoka, Y.; Inoue, T.; Akiyoshi, N.; Yoo, M.K.

    2001-01-01

    A series of W-Cu composites were fabricated alternatively by infiltration method (19-48 vol% Cu) or by pressing and sintering method (20-80 vol% Cu), and three-point bend tests were carried out at temperatures between 77 and 363 K. Ductile-to-brittle transition behavior of the composite was investigated and also effects of Cu content as well as fabrication method on the strength and ductility of the composite were discussed. Results were summarized as follows. (1) Composite containing 19-40 vol% of copper demonstrated ductile-to-brittle transition behavior. Transition temperature tended to decrease substantially with increasing Cu content, though ductility of the composite by infiltration method was much better than that by pressing and sintering method. (2) Composite containing 48-80 vol% of copper did not demonstrate transition behavior regardless of fabrication method. (3) These results were well interpreted in terms of microstructure and fractography. (author)

  8. Ductility loss of ion-irradiated zircaloy-2 in iodine

    International Nuclear Information System (INIS)

    Shimada, M.; Terasawa, M.; Yamamoto, S.; Kamei, H.; Koizumi, K.

    1981-01-01

    An ion bombardment simulation technique for neutron irradiation was applied to 'thick' materials to study the effect of radiation damage on the ductility change in Zircaloy-2 in an iodine environment. Specimens were prepared from actual cladding tubes and, prior to the irradiation, they were heat-treated in vacuo at 450, 580, and 700/degree/C for 2 h. Irradiation was performed by 52-MeV alpha particles up to the 0.32 displacements per atom (dpa) at 340/degree/C. Ductility loss begins to appear after 0.03 dpa irradiation, both in iodine and argon gas environments. The iodine presence resulted in ductility reduction, compared with the argon result in all irradiation dose ranges examined. The stress applied during irradiation caused ductility loss to commence at lower dosage than in the case of stress-free irradiation. These results are discussed in relation to the existing stress corrosion cracking models

  9. In vitro cell transformation induced by synthetic amorphous silica nanoparticles.

    Science.gov (United States)

    Fontana, Caroline; Kirsch, Anaïs; Seidel, Carole; Marpeaux, Léa; Darne, Christian; Gaté, Laurent; Remy, Aurélie; Guichard, Yves

    2017-11-01

    Synthetic amorphous silica nanoparticles (SAS) are among the most widely produced and used nanomaterials, but little is known about their carcinogenic potential. This study aims to evaluate the ability of four different SAS, two precipitated, NM-200 and NM-201, and two pyrogenic, NM-202 and NM-203, to induce the transformation process. For this, we used the recently developed in vitro Bhas 42 cell transformation assay (CTA). The genome of the transgenic Bhas 42 cells contains several copies of the v-Ha-ras gene, making them particularly sensitive to tumor-promoter agents. The Bhas 42 CTA, which includes an initiation assay and a promotion assay, was validated in our laboratory using known soluble carcinogenic substances. Its suitability for particle-type substances was verified by using quartz Min-U-Sil 5 (Min-U-Sil) and diatomaceous earth (DE) microparticles. As expected given their known transforming properties, Min-U-Sil responded positively in the Bhas 42 CTA and DE responded negatively. Transformation assays were performed with SAS at concentrations ranging from 2μg/cm 2 to 80μg/cm 2 . Results showed that all SAS have the capacity to induce transformed foci, interestingly only in the promotion assay, suggesting a mode of action similar to tumor-promoter substances. NM-203 exhibited transforming activity at a lower concentration than the other SAS. In conclusion, this study showed for the first time the transforming potential of different SAS, which act as tumor-promoter substances in the Bhas 42 model of cell transformation. Copyright © 2017 Elsevier B.V. All rights reserved.

  10. Deformation induced martensitic transformation in stainless steels

    International Nuclear Information System (INIS)

    Nagy, E.; Mertinger, V.; Tranta, F.; Solyom, J.

    2003-01-01

    Deformation induced martensitic transformation was investigated in metastable austenitic stainless steel. This steel can present a microstructure of austenite (γ), α' martensite and non magnetic ε martensite. Uni-axial tensile test was used for loading at different temperatures below room temperature (from -120 to 20 deg. C). During the deformation the transformation takes place at certain places in an anisotropic way and texture also develops. Quantitative phase analysis was done by X-ray diffraction (XRD) and magnetic methods while the texture was described by X-ray diffraction using a special inverse pole figure. The quantitative phase analysis has shown that the formation of α' and ε martensite from austenite is the function of deformation rate, and deformation temperature. The transformation of the textured austenite takes place in an anisotropic way and a well defined crystallographic relationship between the parent and α' martensite phase has been measured

  11. Ductile electroless Ni-P coating onto flexible printed circuit board

    Science.gov (United States)

    Wang, Wenchang; Zhang, Weiwei; Wang, Yurong; Mitsuzak, Naotoshi; Chen, Zhidong

    2016-03-01

    In this study, a ductile electroless Ni-P coating on the flexible printed circuit board (FPCB) was prepared in an acidic nickel plating bath. The addition of dipropylamine (DPA) in electroless plating not only improves the ductility of the Ni-P coating, but also enhances the corrosion resistance. The further analysis reveals that the ductility improvement and enhancement of corrosion resistance for the Ni-P coating may be due to the fact that the addition of DPA significantly refines the volume of columnar nodule and reduce the porosity, thus leading to the released internal stress. In addition, it was found that the nodule within the Ni-P coating grew into a columnar structure, which may be also contribute to the improvement of ductility.

  12. Uncovering the local inelastic interactions during manufacture of ductile cast iron: How the substructure of the graphite particles can induce residual stress concentrations in the matrix

    Science.gov (United States)

    Andriollo, Tito; Hellström, Kristina; Sonne, Mads Rostgaard; Thorborg, Jesper; Tiedje, Niels; Hattel, Jesper

    2018-02-01

    Recent X-ray diffraction (XRD) measurements have revealed that plastic deformation and a residual elastic strain field can be present around the graphite particles in ductile cast iron after manufacturing, probably due to some local mismatch in thermal contraction. However, as only one component of the elastic strain tensor could be obtained from the XRD data, the shape and magnitude of the associated residual stress field have remained unknown. To compensate for this and to provide theoretical insight into this unexplored topic, a combined experimental-numerical approach is presented in this paper. First, a material equivalent to the ductile cast iron matrix is manufactured and subjected to dilatometric and high-temperature tensile tests. Subsequently, a two-scale hierarchical top-down model is devised, calibrated on the basis of the collected data and used to simulate the interaction between the graphite particles and the matrix during manufacturing of the industrial part considered in the XRD study. The model indicates that, besides the viscoplastic deformation of the matrix, the effect of the inelastic deformation of the graphite has to be considered to explain the magnitude of the XRD strain. Moreover, the model shows that the large elastic strain perturbations recorded with XRD close to the graphite-matrix interface are not artifacts due to e.g. sharp gradients in chemical composition, but correspond to residual stress concentrations induced by the conical sectors forming the internal structure of the graphite particles. In contrast to common belief, these results thus suggest that ductile cast iron parts cannot be considered, in general, as stress-free at the microstructural scale.

  13. Hot Ductility Behavior of a Peritectic Steel during Continuous Casting

    OpenAIRE

    Arıkan, Mustafa

    2015-01-01

    Hot ductility properties of a peritectic steel for welded gas cylinders during continuous casting were studied by performing hot tensile tests at certain temperatures ranging from 1200 to 700 °C for some cooling rates by using Gleeble-3500 thermo-mechanical test and simulation machine in this study. The effects of cooling rate and strain rate on hot ductility were investigated and continuous casting process map (time-temperature-ductility) were plotted for this material. Reduction of area ...

  14. Effect of fully and semi austempering treatment on the fatigue properties of ductile cast iron

    International Nuclear Information System (INIS)

    Kim, Min Gun; Lim, Bok Kyu; Hwang, Jung Gak; Kim, Dong Youl

    2005-01-01

    Single phase bainite structure which is obtained by the conventional austempering treatment reduces the ductility of ductile cast iron. Because of the reduction of ductility it is possible to worsen the fatigue properties. Therefore, semi austempered ductile iron which is treated from α+γ is prepared to investigate the static strength and fatigue properties in comparison with fully austempered ductile iron (is treated from γ). In spite of semi austempered ductile iron shows the 86% increase of ductility. Also, semi austempered ductile iron shows the higher fatigue limit and lower fatigue crack growth rate as compared with fully austempered ductile iron. By the fractographical analysis, it is revealed that the ferrite obtained by semi austempering process brings about the plastic deformation (ductile striation) of crack tip and gives the prior path of crack propagation. The relatively low crack growth rate in semi austempered specimen is caused by above fractographical reasons

  15. Two-dimensional electrophoretic analysis of transformation-sensitive polypeptides during chemically, spontaneously, and oncogene-induced transformation of rat liver epithelial cells

    DEFF Research Database (Denmark)

    Wirth, P J; Luo, L D; Fujimoto, Y

    1992-01-01

    ; AFB), spontaneously, and oncogene (v-Ha-ras, v-raf, and v-myc/v-raf)-induced transformation of RLE cells. Two-dimensional mapping of [35S]methionine-labeled whole cell lysate, cell-free in vitro translation products and [32P]orthophosphate-labeled polypeptides revealed subsets of polypeptides specific...... for each transformation modality. A search of the RLE protein database indicated the specific subcellular location for the majority of these transformation-sensitive proteins. Significant alterations in the expression of the extracellular matrix protein, fibronectin, as well as tropomyosin......- and intermediate filament-related polypeptides (vimentin, beta-tubulin, the cytokeratins, and actin) were observed among the various transformant cell lines. Immunoprecipitation and Western immunoblot analysis of tropomyosin expression in four individual AFB-, as well as four spontaneously induced, and each...

  16. Ameliorated Austenite Carbon Content Control in Austempered Ductile Irons by Support Vector Regression

    Directory of Open Access Journals (Sweden)

    Chan-Yun Yang

    2013-01-01

    Full Text Available Austempered ductile iron has emerged as a notable material in several engineering fields, including marine applications. The initial austenite carbon content after austenization transform but before austempering process for generating bainite matrix proved critical in controlling the resulted microstructure and thus mechanical properties. In this paper, support vector regression is employed in order to establish a relationship between the initial carbon concentration in the austenite with austenization temperature and alloy contents, thereby exercising improved control in the mechanical properties of the austempered ductile irons. Particularly, the paper emphasizes a methodology tailored to deal with a limited amount of available data with intrinsically contracted and skewed distribution. The collected information from a variety of data sources presents another challenge of highly uncertain variance. The authors present a hybrid model consisting of a procedure of a histogram equalizer and a procedure of a support-vector-machine (SVM- based regression to gain a more robust relationship to respond to the challenges. The results show greatly improved accuracy of the proposed model in comparison to two former established methodologies. The sum squared error of the present model is less than one fifth of that of the two previous models.

  17. Numerical modeling of ductile tearing effects on cleavage fracture toughness

    International Nuclear Information System (INIS)

    Dodds, R.H. Jr.; Tang, M.; Anderson, T.L.

    1994-05-01

    Experimental studies demonstrate a significant effect of specimen size, a/W ratio and prior ductile tearing on cleavage fracture toughness values (J c ) measured in the ductile-to-brittle transition region of ferritic materials. In the lower-transition region, cleavage fracture often occurs under conditions of large-scale yielding but without prior ductile crack extension. The increased toughness develops when plastic zones formed at the crack tip interact with nearby specimen surfaces which relaxes crack-tip constraint (stress triaxiality). In the mid-to-upper transition region, small amounts of ductile crack extension (often c -values. Previous work by the authors described a micromechanics fracture model to correct measured J c -values for the mechanistic effects of large-scale yielding. This new work extends the model to also include the influence of ductile crack extension prior to cleavage. The paper explores development of the new model, provides necessary graphs and procedures for its application and demonstrates the effects of the model on fracture data sets for two pressure vessel steels (A533B and A515)

  18. Effect of Tin, Copper and Boron on the Hot Ductility of 20CrMnTi Steel between 650 °C and 1100 °C

    Science.gov (United States)

    Peng, Hong-bing; Chen, Wei-qing; Chen, Lie; Guo, Dong

    2015-02-01

    The hot ductility of 20CrMnTi steel with x% tin, y% copper and z ppm boron (x = 0, 0.02; y = 0, 0.2; z = 0, 60) was investigated. The results show that tin and copper in 20CrMnTi steel are detrimental to its hot ductility while adding boron can eliminate the adverse effect and enhance hot ductility greatly. Tin is found to segregate to the boundaries tested by EPMA in 20CrMnTi steel containing tin and copper and tin-segregation is suppressed by adding boron, moreover, copper was found not to segregate to boundaries, however, fine copper sulfide was found from carbon extraction replicas using TEM. The adverse effect of tin and copper on the hot ductility was due mainly to tin segregation and fine copper sulfide in the steel. The proeutectoid ferrite film precipitating along the austenite grain boundary causes the ductility trough of the three examined steels. Tin and copper in 20CrMnTi steel can retard the occurrence of dynamic recrystallization (DRX) while boron-addition can compensate for that change. The beneficial effect of boron on 20CrMnTi steel containing tin and copper might be ascribed to the fact that boron segregates to grain boundaries, accelerates onset of DRX, retards austenite/ferrite transformation and promotes intragranular nucleation of ferrite.

  19. Deformation Behavior of Ultra-Strong and Ductile Mg-Gd-Y-Zn-Zr Alloy with Bimodal Microstructure

    Science.gov (United States)

    Xu, C.; Fan, G. H.; Nakata, T.; Liang, X.; Chi, Y. Q.; Qiao, X. G.; Cao, G. J.; Zhang, T. T.; Huang, M.; Miao, K. S.; Zheng, M. Y.; Kamado, S.; Xie, H. L.

    2018-02-01

    An ultra-strong and ductile Mg-8.2Gd-3.8Y-1Zn-0.4Zr (wt pct) alloy was developed by using hot extrusion to modify the microstructure via forced-air cooling and an artificial aging treatment. A superior strength-ductility balance was obtained that had a tensile yield strength of 466 MPa and an elongation to failure of 14.5 pct. The local strain evolution during the in situ testing of the ultra-strong and ductile alloy was quantitatively analyzed with high-resolution electron backscattered diffraction and digital image correlation. The fracture behavior during the tensile test was characterized by synchrotron X-ray tomography along with SEM and STEM observations. The alloy showed a bimodal microstructure, consisting of dynamically recrystallized (DRXed) grains with random orientations and elongated hot-worked grains with parallel to the extrusion direction. The DRXed grains were deformed by the basal slip and the hot-worked grains were deformed by the prismatic slip dominantly. The strain evolution analysis indicated that the multilayered structure relaxed the strain localization via strain transfer from the DRXed to the hot-worked regions, which led to the high ductility of the alloy. Precipitation of the γ' on basal planes and the β' phases on the prismatic planes of the α-Mg generated closed volumes, which enhanced the strength by pinning dislocations effectively, and contributed to the high ductility by impeding the propagation of micro-cracks inside the grains. The deformation incompatibility between the hot-worked grains and the arched block-shaped long-period stacking ordered (LPSO) phases induced the crack initiation and propagation, which fractured the alloy.

  20. Observations on the ductility of zircaloy-2 under simultaneous tension and bending

    International Nuclear Information System (INIS)

    Pettersson, K.

    1975-01-01

    The ductility of Zircaloy-2 in creep-fatigue interaction tests has been found to exceed the ductility in separate tensile tests. It was shown that the increase of ductility was due to either the suppression of the localized shear band instability causing final failure in a tensile test, or because the hydrostatic tension-shear stress ratio in the creep-fatigue test is lower than in the tensile test. Possible applications of the ductility increase in forming operations are suggested. (author)

  1. Microstructure tailoring to enhance strength and ductility in Ti–13Nb–13Zr for biomedical applications

    International Nuclear Information System (INIS)

    Lee, Taekyung; Heo, Yoon-Uk; Lee, Chong Soo

    2013-01-01

    New microstructures were developed by strong grain refinement and phase control in a Ti–13Nb–13Zr alloy. Ultrafine-grained multiphase alloys were fabricated using a multipass caliber-rolling process at the (α + β) region. Transmission electron microscopy analysis revealed that different types of martensitic transformations occurred depending on the cooling rate. The developed alloys exhibited improved strength and ductility compared with a conventional material, and this enhancement of properties is discussed in terms of microstructural effects on the strain-hardening behavior

  2. Inhibition of radiation-induced transformation in vitro by bacterial endotoxins

    International Nuclear Information System (INIS)

    Carew, J.A.; Collins, M.F.; Kennedy, A.R.

    1988-01-01

    Bacterial endotoxins (lipopolysaccharides) were found to suppress X-ray-induced malignant transformation of C3H/10T1/2 cells. Endotoxins were effective if present either throughout the 6-week transformation assay period, or for the final 4-week phase, but not when present only for the initial 2-week phase. Neither growth nor survival of C3H/10T1/2 cells, or a radiation-transformed cell line derived from them, were affected by endotoxins. Also, the endotoxins did not affect the formation of foci by the radiation transformed cells when these cells were co-cultured with untransformed cells. These results suggest that endotoxins exert their effect directly upon the transformation process itself, perhaps at a 'late' step in the conversion of an untransformed to a transformed cell. (author)

  3. Inhibition of radiation-induced transformation in vitro by bacterial endotoxins

    Energy Technology Data Exchange (ETDEWEB)

    Carew, J A; Collins, M F; Kennedy, A R

    1988-05-01

    Bacterial endotoxins (lipopolysaccharides) were found to suppress X-ray-induced malignant transformation of C3H/10T1/2 cells. Endotoxins were effective if present either throughout the 6-week transformation assay period, or for the final 4-week phase, but not when present only for the initial 2-week phase. Neither growth nor survival of C3H/10T1/2 cells, or a radiation-transformed cell line derived from them, were affected by endotoxins. Also, the endotoxins did not affect the formation of foci by the radiation transformed cells when these cells were co-cultured with untransformed cells. These results suggest that endotoxins exert their effect directly upon the transformation process itself, perhaps at a 'late' step in the conversion of an untransformed to a transformed cell.

  4. Ductility and fracture behavior of polycrystalline Ni/sub 3/Al alloys

    International Nuclear Information System (INIS)

    Liu, C.T.

    1987-01-01

    This paper provides a comprehensive review of the recent work on tensile ductility and fracture behavior of Ni/sub 3/Al alloys tested at ambient and elevated temperatures. Polycrystalline Ni/sub 3/Al is intrinsically brittle along grain boundaries, and the brittleness has been attributed to the large difference in valency, electronegativity, and atom size between nickel and aluminum atoms. Alloying with B, Mn, Fe, and Be significantly increases the ductility and reduces the propensity for intergranular fracture in Ni/sub 3/Al alloys. Boron is found to be most effective in improving room-temperature ductility of Ni/sub 3/Al with <24.5 at.% Al. The tensile ductility of Ni/sub 3/Al alloys depends strongly on test environments at elevated temperatures, with much lower ductilities observed in air than in vacuum. The loss in ductility is accompanied by a change in fracture mode from transgranular to intergranular. This embrittlement is due to a dynamic effect involving simultaneously high localized stress, elevated temperature, and gaseous oxygen. The embrittlement can be alleviated by control of grain shape or alloying with chromium additions. All the results are discussed in terms of localized stress concentration and grain-boundary cohesive strength

  5. Investigation of strain-induced martensitic transformation in metastable austenite using nanoindentation

    International Nuclear Information System (INIS)

    Ahn, T.-H.; Oh, C.-S.; Kim, D.H.; Oh, K.H.; Bei, H.; George, E.P.; Han, H.N.

    2010-01-01

    Strain-induced martensitic transformation of metastable austenite was investigated by nanoindentation of individual austenite grains in multi-phase steel. A cross-section prepared through one of these indented regions using focused ion beam milling was examined by transmission electron microscopy. The presence of martensite underneath the indent indicates that the pop-ins observed on the load-displacement curve during nanoindentation correspond to the onset of strain-induced martensitic transformation. The pop-ins can be understood as resulting from the selection of a favorable martensite variant during nanoindentation.

  6. Investigation of Strain-Induced Martensitic Transformation in Metastable Austenite using Nanoindentation

    Energy Technology Data Exchange (ETDEWEB)

    Ahn, T.-H. [Seoul National University; Oh, C.-S. [Korean Institute of Materials Science; Kim, D. H. [Seoul National University; Oh, K. H. [Seoul National University; Bei, Hongbin [ORNL; George, Easo P [ORNL; Han, H. N. [Seoul National University

    2010-01-01

    Strain-induced martensitic transformation of metastable austenite was investigated by nanoindentation of individual austenite grains in multi-phase steel. A cross-section prepared through one of these indented regions using focused ion beam milling was examined by transmission electron microscopy. The presence of martensite underneath the indent indicates that the pop-ins observed on the load-displacement curve during nanoindentation correspond to the onset of strain-induced martensitic transformation. The pop-ins can be understood as resulting from the selection of a favorable martensite variant during nanoindentation.

  7. Pressure-induced ferroelectric to antiferroelectric phase transformation in porous PZT95/5 ceramics

    International Nuclear Information System (INIS)

    Zeng, T.; Dong, X.L.; Chen, X.F.; Yao, C.H.; He, H.L.

    2007-01-01

    The hydrostatic pressure-induced ferroelectric to antiferroelectric (FE-AFE) phase transformation of PZT95/5 ceramics was investigated as a function of porosity, pore shape and pore size. FE-AFE phase transformations were more diffuse and occurred at lower hydrostatic pressures with increasing porosity. The porous PZT95/5 ceramics with spherical pores exhibited higher transformation pressures than those with irregular pores. Moreover, FE-AFE phase transformations of porous PZT95/5 ceramics with polydisperse irregular pores were more diffuse than those of porous PZT95/5 ceramics with monodisperse irregular pores. The relation between pore structure and hydrostatic pressure-induced FE-AFE transformation was established according to stress concentration theory. (copyright 2007 WILEY-VCH Verlag GmbH and Co. KGaA, Weinheim) (orig.)

  8. Hot Ductility Behavior of Boron Containing Microalloyed Steels with Varying Manganese Contents

    Science.gov (United States)

    Brune, Tobias; Senk, Dieter; Walpot, Raphael; Steenken, Bernhard

    2015-02-01

    The hot ductility is measured for six different steel grades with different microalloying elements and with varying manganese contents using the hot tensile test machine with melting/solidification unit at the Department of Ferrous Metallurgy RWTH Aachen University. To identify the influence of manganese on hot ductility, tests are performed with varying the manganese content from 0.7 to 18.2 wt pct, a high manganese steel. Additionally, the effect of different cooling and strain rates is analyzed by changing the particular rate for selected samples in the minima. To investigate and detect the cause of cracking during testing, the fracture surfaces in the ductility minima are considered with scanning electron microscope-energy dispersive X-ray spectroscopy. Thermodynamic modeling is conducted on basis of the commercial software ThermoCalc©. A sharp decrease of the hot ductility is recognizable at 1398 K (1125 °C), at only 0.7 wt pct manganese because of the low manganese to sulfur ratio. The grades with a Mn content up to 1.9 wt pct show a good ductility with minimal ductility loss. In comparison, the steel grade with 18.2 wt pct has a poor hot ductility. Because of the formation of complex precipitates, where several alloying elements are involved, the influence of boron on hot ductility is not fully clarified. By increasing the cooling rate, the reduction of area values are shifted to smaller values. For high test temperatures, these measured values are decreased for lower strain rates. Thereby, an early drop of the ductility is noticeable for the high temperatures around 1373 K (1100 °C).

  9. Electron backscatter diffraction studies of focused ion beam induced phase transformation in cobalt

    Energy Technology Data Exchange (ETDEWEB)

    Jones, H.G., E-mail: helen.jones@npl.co.uk [National Physical Laboratory, Hampton Road, Teddington, Middlesex TW11 0LW (United Kingdom); Day, A.P. [Aunt Daisy Scientific Ltd, Claremont House, High St, Lydney GL15 5DX (United Kingdom); Cox, D.C. [National Physical Laboratory, Hampton Road, Teddington, Middlesex TW11 0LW (United Kingdom); Advanced Technology Institute, University of Surrey, Guildford GU2 7XH (United Kingdom)

    2016-10-15

    A focused ion beam microscope was used to induce cubic to hexagonal phase transformation in a cobalt alloy, of similar composition to that of the binder phase in a hardmetal, in a controlled manner at 0°, 45° and 80° ion incident angles. The cobalt had an average grain size of ~ 20 μm, allowing multiple orientations to be studied, exposed to a range of doses between 6 × 10{sup 7} and 2 × 10{sup 10} ions/μm{sup 2}. Electron backscatter diffraction (EBSD) was used to determine the original and induced phase orientations, and area fractions, before and after the ion beam exposure. On average, less phase transformation was observed at higher incident angles and after lower ion doses. However there was an orientation effect where grains with an orientation close to (111) planes were most susceptible to phase transformation, and (101) the least, where grains partially and fully transformed at varying ion doses. - Highlights: •Ion-induced phase change in FCC cobalt was observed at multiple incidence angles. •EBSD was used to study the relationship between grain orientation and transformation. •Custom software analysed ion dose and phase change with respect to grain orientation. •A predictive capability of ion-induced phase change in cobalt was enabled.

  10. Ductile transplutonium metal alloys

    Science.gov (United States)

    Conner, William V.

    1983-01-01

    Alloys of Ce with transplutonium metals such as Am, Cm, Bk and Cf have properties making them highly suitable as sources of the transplutonium element, e.g., for use in radiation detector technology or as radiation sources. The alloys are ductile, homogeneous, easy to prepare and have a fairly high density.

  11. Ductile electroactive biodegradable hyperbranched polylactide copolymers enhancing myoblast differentiation.

    Science.gov (United States)

    Xie, Meihua; Wang, Ling; Guo, Baolin; Wang, Zhong; Chen, Y Eugene; Ma, Peter X

    2015-12-01

    Myotube formation is crucial to restoring muscular functions, and biomaterials that enhance the myoblast differentiation into myotubes are highly desirable for muscular repair. Here, we report the synthesis of electroactive, ductile, and degradable copolymers and their application in enhancing the differentiation of myoblasts to myotubes. A hyperbranched ductile polylactide (HPLA) was synthesized and then copolymerized with aniline tetramer (AT) to produce a series of electroactive, ductile and degradable copolymers (HPLAAT). The HPLA and HPLAAT showed excellent ductility with strain to failure from 158.9% to 42.7% and modulus from 265.2 to 758.2 MPa. The high electroactivity of the HPLAAT was confirmed by UV spectrometer and cyclic voltammogram measurements. These HPLAAT polymers also showed improved thermal stability and controlled biodegradation rate compared to HPLA. Importantly, when applying these polymers for myotube formation, the HPLAAT significantly improved the proliferation of C2C12 myoblasts in vitro compared to HPLA. Furthermore, these polymers greatly promoted myogenic differentiation of C2C12 cells as measured by quantitative analysis of myotube number, length, diameter, maturation index, and gene expression of MyoD and TNNT. Together, our study shows that these electroactive, ductile and degradable HPLAAT copolymers represent significantly improved biomaterials for muscle tissue engineering compared to HPLA. Copyright © 2015 Elsevier Ltd. All rights reserved.

  12. 49 CFR 192.489 - Remedial measures: Cast iron and ductile iron pipelines.

    Science.gov (United States)

    2010-10-01

    ... 49 Transportation 3 2010-10-01 2010-10-01 false Remedial measures: Cast iron and ductile iron... for Corrosion Control § 192.489 Remedial measures: Cast iron and ductile iron pipelines. (a) General graphitization. Each segment of cast iron or ductile iron pipe on which general graphitization is found to a...

  13. Hot Ductility Characterization of Sanicro-28 Super-Austenitic Stainless Steel

    Science.gov (United States)

    Mirzaei, A.; Zarei-Hanzaki, A.; Abedi, H. R.

    2016-05-01

    The hot ductility behavior of a super-austenitic stainless steel has been studied using tensile testing method in the temperature range from 1073 K to 1373 K (800 °C to 1100 °C) under the strain rates of 0.1, 0.01, and 0.001 s-1. The hot compression tests were also performed at the same deformation condition to identify the activated restoration mechanisms. At lower temperatures [ i.e., 1073 K and 1173 K (800 °C and 900 °C)], the serration of initial grain boundaries confirms the occurrence of dynamic recovery as the predominant restoration process. However, in the course of applied deformation, the initial microstructure is recrystallized at higher temperatures [ i.e., 1273 K and 1373 K (1000 °C and 1100 °C)]. In this respect, annealing the twin boundaries could well stimulate the recrystallization kinetic through initiation new annealing twins on prior annealing twin boundaries. The hot tensile results show that there is a general trend of increasing ductility by temperature. However, two regions of ductility drop are recognized at 1273 K and 1373 K (1000°C)/0.1s-1 and (1100°C)/0.01s-1. The ductility variations at different conditions of temperature and strain rate are discussed in terms of simultaneous activation of grain boundary sliding and restoration processes. The observed ductility troughs are attributed to the occurrence of grain boundary sliding and the resulting R-type and W-type cracks. The occurrence of dynamic recrystallization is also considered as the main factor increasing the ductility at higher temperatures. The enhanced ductility is primarily originated from the post-uniform elongation behavior, which is directly associated with the strain rate sensitivity of the experimental material.

  14. Relationship between hydrogen-induced phase transformations and pitting nucleation sites in duplex stainless steel

    Energy Technology Data Exchange (ETDEWEB)

    Guo, Liqiu; Yang, Binjie; Qin, Sixiao [University of Science and Technology Beijing (China). Corrosion and Protection Center

    2016-02-15

    This paper demonstrates the hydrogen-induced phase transformation and the associated pitting nucleation sites of 2507 duplex stainless steel using scanning Kelvin probe force microscopy and magnetic force microscopy. The low potential sites in Volta potential images, which are considered as the pitting nucleation sites, are strongly dependent on the hydrogen-induced phase transformation. They firstly initiate on the magnetic martensite laths in the austenite phase or at the ferrite/austenite boundaries, and then appear near the needle-shaped microtwins in the ferrite phase, because of the difference in physicochemical properties of hydrogen-induced phase transformation microstructures.

  15. High temperature ductility of austenitic alloys exposed to thermal neutrons

    International Nuclear Information System (INIS)

    Watanabe, K.; Kondo, T.; Ogawa, Y.

    1982-01-01

    Loss of high temperature ductility due to thermal neutron irradiation was examined by slow strain rate test in vacuum up to 1000 0 C. The results on two heats of Hastelloy alloy X with different boron contents were analyzed with respect to the influence of the temperatures of irradiation and tensile tests, neutron fluence and the associated helium production due to nuclear transmutation reaction. The loss of ductility was enhanced by increasing either temperature or neutron fluence. Simple extrapolations yielded the estimated threshold fluence and the end-of-life ductility values at 900 and 1000 0 C in case where the materials were used in near-core regions of VHTR. The observed relationship between Ni content and the ductility loss has suggested a potential utilization of Fe-based alloys for seathing of the neutron absorber materials

  16. Multiscale modeling of ductile failure in metallic alloys

    Science.gov (United States)

    Pardoen, Thomas; Scheyvaerts, Florence; Simar, Aude; Tekoğlu, Cihan; Onck, Patrick R.

    2010-04-01

    Micromechanical models for ductile failure have been developed in the 1970s and 1980s essentially to address cracking in structural applications and complement the fracture mechanics approach. Later, this approach has become attractive for physical metallurgists interested by the prediction of failure during forming operations and as a guide for the design of more ductile and/or high-toughness microstructures. Nowadays, a realistic treatment of damage evolution in complex metallic microstructures is becoming feasible when sufficiently sophisticated constitutive laws are used within the context of a multilevel modelling strategy. The current understanding and the state of the art models for the nucleation, growth and coalescence of voids are reviewed with a focus on the underlying physics. Considerations are made about the introduction of the different length scales associated with the microstructure and damage process. Two applications of the methodology are then described to illustrate the potential of the current models. The first application concerns the competition between intergranular and transgranular ductile fracture in aluminum alloys involving soft precipitate free zones along the grain boundaries. The second application concerns the modeling of ductile failure in friction stir welded joints, a problem which also involves soft and hard zones, albeit at a larger scale.

  17. Micromechanics modelling of ductile fracture

    CERN Document Server

    Chen, Zengtao

    2013-01-01

    This book summarizes research advances in micromechanics modelling of ductile fractures made in the past two decades. The ultimate goal of this book is to reach manufacturing frontline designers and materials engineers by providing a user-oriented, theoretical background of micromechanics modeling. Accordingly, the book is organized in a unique way and presents a vigorous damage percolation model developed by the authors over the last ten years. This model overcomes almost all difficulties of the existing models and can be used to completely accommodate ductile damage development within a single, measured microstructure frame. Related void damage criteria including nucleation, growth and coalescence are then discussed in detail: how they are improved, when and where they are used in the model, and how the model performs in comparison with the existing models. Sample forming simulations are provided to illustrate the model’s performance.

  18. Turbulent breakage of ductile aggregates.

    Science.gov (United States)

    Marchioli, Cristian; Soldati, Alfredo

    2015-05-01

    In this paper we study breakage rate statistics of small colloidal aggregates in nonhomogeneous anisotropic turbulence. We use pseudospectral direct numerical simulation of turbulent channel flow and Lagrangian tracking to follow the motion of the aggregates, modeled as sub-Kolmogorov massless particles. We focus specifically on the effects produced by ductile rupture: This rupture is initially activated when fluctuating hydrodynamic stresses exceed a critical value, σ>σ(cr), and is brought to completion when the energy absorbed by the aggregate meets the critical breakage value. We show that ductile rupture breakage rates are significantly reduced with respect to the case of instantaneous brittle rupture (i.e., breakage occurs as soon as σ>σ(cr)). These discrepancies are due to the different energy values at play as well as to the statistical features of energy distribution in the anisotropic turbulence case examined.

  19. Ductility and fracture of single crystaliine Ni3Al with boron additions

    International Nuclear Information System (INIS)

    Heredia, F.E.; Pope, D.P.

    1989-01-01

    Low and high temperature tensile tests were performed on single crystals of pure Ni 3 Al and Ni 3 Al+B in order to determine the effect of B additions on the ductility and fracture behavior. Tests were carried out in air at a constant strain rate of 1/3 x 10 -3 s -1 . The orientation tested were [001] for whic the yield stress in tension is always greater than in compression, and those for wich the tension/compression asymmetry is zero ([T=C]) for each particular composition. At room temperature, the results show a positive effect of B additions on both the fracture stress and on the ductility. The ductility at 800K appears to decrease monotonically with B additions. The largest ductilities are found for [T=C] at room temperature where an improvement of about 26% (resolved strain) for an addition of 0.2 at % B was obtained. However, the most dramatic increase in ductility occurs for the [001] oriented samples at room temperature where a 55% improvement was measured over that of pure Ni 3 Al. Fracture surfaces show a combinaton of massive slip, some clevage, and heavily dimpled areas. These observations show that B additions not only increase the ductility of polycrystalline Ni 3 Al, as has been previously observed by many investigators, but also that the already-ductile single crystalline material, indicating that a bulk effect should be added to the grain boundary strengthening effect of B when explaining the improvement in ductility of polycrystalline Ni 3 Al due to B additions

  20. Micromechanics based simulation of ductile fracture in structural steels

    Science.gov (United States)

    Yellavajjala, Ravi Kiran

    The broader aim of this research is to develop fundamental understanding of ductile fracture process in structural steels, propose robust computational models to quantify the associated damage, and provide numerical tools to simplify the implementation of these computational models into general finite element framework. Mechanical testing on different geometries of test specimens made of ASTM A992 steels is conducted to experimentally characterize the ductile fracture at different stress states under monotonic and ultra-low cycle fatigue (ULCF) loading. Scanning electron microscopy studies of the fractured surfaces is conducted to decipher the underlying microscopic damage mechanisms that cause fracture in ASTM A992 steels. Detailed micromechanical analyses for monotonic and cyclic loading are conducted to understand the influence of stress triaxiality and Lode parameter on the void growth phase of ductile fracture. Based on monotonic analyses, an uncoupled micromechanical void growth model is proposed to predict ductile fracture. This model is then incorporated in to finite element program as a weakly coupled model to simulate the loss of load carrying capacity in the post microvoid coalescence regime for high triaxialities. Based on the cyclic analyses, an uncoupled micromechanics based cyclic void growth model is developed to predict the ULCF life of ASTM A992 steels subjected to high stress triaxialities. Furthermore, a computational fracture locus for ASTM A992 steels is developed and incorporated in to finite element program as an uncoupled ductile fracture model. This model can be used to predict the ductile fracture initiation under monotonic loading in a wide range of triaxiality and Lode parameters. Finally, a coupled microvoid elongation and dilation based continuum damage model is proposed, implemented, calibrated and validated. This model is capable of simulating the local softening caused by the various phases of ductile fracture process under

  1. First interactions between hydrogen and stress-induced reverse transformation of Ni-Ti superelastic alloy

    Science.gov (United States)

    Yokoyama, Ken'ichi; Hashimoto, Tatsuki; Sakai, Jun'ichi

    2017-11-01

    The first dynamic interactions between hydrogen and the stress-induced reverse transformation have been investigated by performing an unloading test on a Ni-Ti superelastic alloy subjected to hydrogen charging under a constant applied strain in the elastic deformation region of the martensite phase. Upon unloading the specimen, charged with a small amount of hydrogen, no change in the behaviour of the stress-induced reverse transformation is observed in the stress-strain curve, although the behaviour of the stress-induced martensite transformation changes. With increasing amount of hydrogen charging, the critical stress for the reverse transformation markedly decreases. Eventually, for a larger amount of hydrogen charging, the reverse transformation does not occur, i.e. there is no recovery of the superelastic strain. The residual martensite phase on the side surface of the unloaded specimen is confirmed by X-ray diffraction. Upon training before the unloading test, the properties of the reverse transformation slightly recover after ageing in air at room temperature. The present study indicates that to change the behaviour of the reverse transformation a larger amount of hydrogen than that for the martensite transformation is necessary. In addition, it is likely that a substantial amount of hydrogen in solid solution more strongly suppresses the reverse transformation than hydrogen trapped at defects, thereby stabilising the martensite phase.

  2. Transformation induced plasticity in maraging steel: an experimental study

    International Nuclear Information System (INIS)

    Nagayama, K.; Kitajima, Y.; Kigami, S.; Tanaka, K.

    2000-01-01

    The deformation behavior of a maraging TRIP (transformation induced plasticity) steel (MAVAL X12) is studied experimentally under a constant load. The existence of the back stress in the axial direction is directly proved by investigating the dilatation curves. Martensite-start lines are given under tensile, compressive and shear stresses. The evolution of TRIP strain and the maximum TRIP strain are determined. The alloy response during isothermal tensile test is explained in terms of influences both by the composite and transformation. (orig.)

  3. Hot ductility behavior of a low carbon advanced high strength steel (AHSS) microalloyed with boron

    International Nuclear Information System (INIS)

    Mejia, I.; Bedolla-Jacuinde, A.; Maldonado, C.; Cabrera, J.M.

    2011-01-01

    Research highlights: → Effect of boron on the hot ductility behavior of a low carbon NiCrVCu AHSS. → Boron addition of 117 ppm improves hot ductility over 100% in terms of RA. → Hot ductility improvement is associated with segregation/precipitation of boron. → Typical hot ductility recovery at lower temperatures does not appear in this steel. → Hot ductility loss is associated with precipitates/inclusions coupled with voids. - Abstract: The current study analyses the influence of boron addition on the hot ductility of a low carbon advanced high strength NiCrVCu steel. For this purpose hot tensile tests were carried out at different temperatures (650, 750, 800, 900 and 1000 deg. C) at a constant true strain rate of 0.001 s -1 . Experimental results showed a substantial improvement in hot ductility for the low carbon advanced high strength steel when microalloyed with boron compared with that without boron addition. Nevertheless, both steels showed poor ductility when tested at the lowest temperatures (650, 750 and 800 deg. C), and such behavior is associated to the precipitation of vanadium carbides/nitrides and inclusions, particularly MnS and CuS particles. The fracture mode of the low carbon advanced high strength steel microalloyed with boron seems to be more ductile than the steel without boron addition. Furthermore, the fracture surfaces of specimens tested at temperatures showing the highest ductility (900 and 1000 deg. C) indicate that the fracture mode is a result of ductile failure, while in the region of poor ductility the fracture mode is of the ductile-brittle type failure. It was shown that precipitates and/or inclusions coupled with voids play a meaningful role on the crack nucleation mechanism which in turn causes a hot ductility loss. Likewise, dynamic recrystallization (DRX) which always results in restoration of ductility only occurs in the range from 900 to 1000 deg. C. Results are discussed in terms of boron segregation towards

  4. Hot ductility behavior of a low carbon advanced high strength steel (AHSS) microalloyed with boron

    Energy Technology Data Exchange (ETDEWEB)

    Mejia, I., E-mail: imejia@umich.mx [Instituto de Investigaciones Metalurgicas, Universidad Michoacana de San Nicolas de Hidalgo, Edificio ' U' , Ciudad Universitaria, 58066 Morelia, Michoacan (Mexico); Bedolla-Jacuinde, A.; Maldonado, C. [Instituto de Investigaciones Metalurgicas, Universidad Michoacana de San Nicolas de Hidalgo, Edificio ' U' , Ciudad Universitaria, 58066 Morelia, Michoacan (Mexico); Cabrera, J.M. [Departament de Ciencia dels Materials i Enginyeria Metal.lurgica, ETSEIB - Universitat Politecnica de Catalunya, Av. Diagonal 647, 08028 Barcelona (Spain); Fundacio CTM Centre Tecnologic, Av. de las Bases de Manresa 1, 08240 Manresa (Spain)

    2011-05-25

    Research highlights: {yields} Effect of boron on the hot ductility behavior of a low carbon NiCrVCu AHSS. {yields} Boron addition of 117 ppm improves hot ductility over 100% in terms of RA. {yields} Hot ductility improvement is associated with segregation/precipitation of boron. {yields} Typical hot ductility recovery at lower temperatures does not appear in this steel. {yields} Hot ductility loss is associated with precipitates/inclusions coupled with voids. - Abstract: The current study analyses the influence of boron addition on the hot ductility of a low carbon advanced high strength NiCrVCu steel. For this purpose hot tensile tests were carried out at different temperatures (650, 750, 800, 900 and 1000 deg. C) at a constant true strain rate of 0.001 s{sup -1}. Experimental results showed a substantial improvement in hot ductility for the low carbon advanced high strength steel when microalloyed with boron compared with that without boron addition. Nevertheless, both steels showed poor ductility when tested at the lowest temperatures (650, 750 and 800 deg. C), and such behavior is associated to the precipitation of vanadium carbides/nitrides and inclusions, particularly MnS and CuS particles. The fracture mode of the low carbon advanced high strength steel microalloyed with boron seems to be more ductile than the steel without boron addition. Furthermore, the fracture surfaces of specimens tested at temperatures showing the highest ductility (900 and 1000 deg. C) indicate that the fracture mode is a result of ductile failure, while in the region of poor ductility the fracture mode is of the ductile-brittle type failure. It was shown that precipitates and/or inclusions coupled with voids play a meaningful role on the crack nucleation mechanism which in turn causes a hot ductility loss. Likewise, dynamic recrystallization (DRX) which always results in restoration of ductility only occurs in the range from 900 to 1000 deg. C. Results are discussed in terms of

  5. Alloying effect of 3D transition elements on the ductility of chromium

    International Nuclear Information System (INIS)

    Matsumoto, Y.; Fukumori, J.; Morinaga, M.; Furui, M.; Nambu, T.; Sakaki, T.

    1996-01-01

    Chromium and its alloys have good corrosion resistance in corrosive environments and good oxidation resistance at high temperatures. In addition, they exhibit an excellent combination of low density and high creep strength. However, there is still a large barrier to the practical use because of their poor ductility at room temperature. According to recent investigations, an environmental effect was found on the ductility of high purity polycrystalline chromium. In this study, in order to find a way to improve the ductility of chromium at room temperature, the alloying effect on the ductility of chromium was investigated experimentally in several test environments

  6. Origin of the extra low creep ductility of copper without phosphorus

    Energy Technology Data Exchange (ETDEWEB)

    Sandstroem, Rolf [Corrosion and Metals Research Inst., Materials Science and Engineering, Royal Inst. of Technology, Stockholm (Sweden); Rui Wu [Corrosion and Metals Research Inst., Stockholm (Sweden)

    2007-02-15

    Around 1990 it was discovered that pure copper could have extra low creep ductility in the temperature interval 180 to 250 deg C. If 50 ppm phosphorus was added to the material the low creep ductility disappeared. A creep cavitation model is presented that can quantitatively describe the observed creep ductility for copper with and without phosphorus. A new model called the double ledge model has been introduced that explains why the nucleation rate of creep cavities is often proportional to the creep rate. The phosphorus agglomerates at the grain boundaries, locks their sliding and thereby reduces the formation and growth of cavities. This is the main reason why extra low creep ductility does not occur in phosphorus alloyed copper.

  7. Identification Damage Model for Thermomechanical Degradation of Ductile Heterogeneous Materials

    Science.gov (United States)

    Amri, A. El; Yakhloufi, M. H. El; Khamlichi, A.

    2017-05-01

    The failure of ductile materials subject to high thermal and mechanical loading rates is notably affected by material inertia. The mechanisms of fatigue-crack propagation are examined with particular emphasis on the similarities and differences between cyclic crack growth in ductile materials, such as metals, and corresponding behavior in brittle materials, such as intermetallic and ceramics. Numerical simulations of crack propagation in a cylindrical specimen demonstrate that the proposed method provides an effective means to simulate ductile fracture in large scale cylindrical structures with engineering accuracy. The influence of damage on the intensity of the destruction of materials is studied as well.

  8. Room temperature ductility of NiAl-strengthened ferritic steels: Effects of precipitate microstructure

    International Nuclear Information System (INIS)

    Teng, Z.K.; Liu, C.T.; Miller, M.K.; Ghosh, G.; Kenik, E.A.; Huang, S.; Liaw, P.K.

    2012-01-01

    Highlights: ► Effects of precipitate microstructure on the ductility were investigated. ► The NiAl precipitates can be systematically characterized by TEM, APT, and USAXS. ► Ductility is a function of the precipitate volume fraction. ► Ductility is closely related to the Al and Ni solubilities in the Fe matrix. ► Ductility is independent of precipitate size and inter-particle spacing. - Abstract: The effects of precipitate microstructure on the room temperature ductility of a series of carefully designed Fe–Al–Ni–Cr–Mo steels were investigated. Transmission electron microscopy (TEM), ultra small angle X-ray scattering (USAXS), and atom probe tomography (APT) were conducted to quantify the nano-scaled precipitates. The accuracy of the characterization results was verified by a numerical analysis. Three point bending tests results demonstrated that ductility was a function of the precipitate volume fraction and the Al and Ni concentrations in the Fe matrix, these relationships were discussed in terms of possible mechanisms. The ductility was also found to be independent of the precipitate size and inter-particle spacing in the studied range, which was validated by a theoretical model.

  9. Mechanisms and mechanics of porosity formation in ductile iron castings

    Directory of Open Access Journals (Sweden)

    M. Perzyk

    2007-12-01

    Full Text Available Shrinkage defects in ductile iron castings can be of two basic types: shrinkage cavities associated with the liquid contraction prior to the expansion period of the iron as well as the porosity, which may appear even if the liquid shrinkage is fully compensated. In the present paper two possible mechanisms of the porosity are presented and analyzed. The first one is the Karsay’s mechanism based on the secondary shrinkage concept. The second one is the mechanism acting during the expansion period of the iron, first suggested by Ohnaka and co-authors and essentially modified by the present authors. The mechanical interactions between casting and mould are determined for the both mechanisms. Their analysis leads to the conclusion, that porosity forms during expansion period of the melt. The direct cause is the negative pressure which appears in the central part of the casting due to the differences in expansion coefficients of the fast cooling surface layer and slow cooling inner region. Observations concerning feeding behavior of ductile iron castings, based on this mechanism, agree well with industrial practice. The secondary shrinkage is not only needless to induce the porosity, but the corresponding mechanism of its occurrence, proposed by Karsay, does not seem to be valid.

  10. Study of austempering reaction in austempered ductile iron

    International Nuclear Information System (INIS)

    Ja'far Farhan Al-Sharab; Sharma, D.G.R.; Samsul Bahar Sadli

    1996-01-01

    Austempered Ductile Iron (ADI) is an important engineering material which is gaining popularity. The conventional belief that austempered ductile iron, when heat treated satisfactorily, contains bainite, is now disproved by recent experiments. Our present work on the study of the reaction products of heat treated ADI by x-ray diffraction confirms the recent view. The results of x-ray diffraction studies on the structural constituents od ADI for various durations of austempering are presented and discussed

  11. Solidification, processing and properties of ductile cast iron

    DEFF Research Database (Denmark)

    Tiedje, Niels Skat

    2010-01-01

    Ductile cast iron has been an important engineering material in the past 50 years. In that time, it has evolved from a complicated material that required the foundry metallurgist's highest skill and strict process control to being a commonly used material that can easily be produced with modern...... of the latest years of research indicate that ductile cast iron in the future will become a highly engineered material in which strict control of a range of alloy elements combined with intelligent design and highly advanced processing allows us to target properties to specific applications to a much higher...... degree than we have seen previously. It is the aim of the present paper to present ductile iron as a modern engineering material and present the many different possibilities that the material hides. Focus will be on the latest research in solidification and melt treatment. But for completeness...

  12. TEM investigation of ductile iron alloyed with vanadium.

    Science.gov (United States)

    Dymek, S; Blicharski, M; Morgiel, J; Fraś, E

    2010-03-01

    This article presents results of the processing and microstructure evolution of ductile cast iron, modified by an addition of vanadium. The ductile iron was austenitized closed to the solidus (1095 degrees C) for 100 h, cooled down to 640 degrees C and held on at this temperature for 16 h. The heat treatment led to the dissolution of primary vanadium-rich carbides and their subsequent re-precipitation in a more dispersed form. The result of mechanical tests indicated that addition of vanadium and an appropriate heat treatment makes age hardening of ductile iron feasible. The precipitation processes as well as the effect of Si content on the alloy microstructure were examined by scanning and transmission electron microscopy. It was shown that adjacent to uniformly spread out vanadium-rich carbides with an average size of 50 nm, a dispersoid composed of extremely small approximately 1 nm precipitates was also revealed.

  13. Ductile fracture theories for pressurised pipes and containers

    Science.gov (United States)

    Erdogan, F.

    1976-01-01

    Two mechanisms of fracture are distinguished. Plane strain fractures occur in materials which do not undergo large-scale plastic deformations prior to and during a possible fracture deformation. Plane stress or high energy fractures are generally accompanied by large inelastic deformations. Theories for analyzing plane stress are based on the concepts of critical crack opening stretch, K(R) characterization, J-integral, and plastic instability. This last is considered in some detail. The ductile fracture process involves fracture initiation followed by a stable crack growth and the onset of unstable fracture propagation. The ductile fracture propagation process may be characterized by either a multiparameter (discrete) model, or some type of a resistance curve which may be considered as a continuous model expressed graphically. These models are studied and an alternative model is also proposed for ductile fractures which cannot be modeled as progressive crack growth phenomena.

  14. Forced tearing of ductile and brittle thin sheets.

    Science.gov (United States)

    Tallinen, T; Mahadevan, L

    2011-12-09

    Tearing a thin sheet by forcing a rigid object through it leads to complex crack morphologies; a single oscillatory crack arises when a tool is driven laterally through a brittle sheet, while two diverging cracks and a series of concertinalike folds forms when a tool is forced laterally through a ductile sheet. On the other hand, forcing an object perpendicularly through the sheet leads to radial petallike tears in both ductile and brittle materials. To understand these different regimes we use a combination of experiments, simulations, and simple theories. In particular, we describe the transition from brittle oscillatory tearing via a single crack to ductile concertina tearing with two tears by deriving laws that describe the crack paths and wavelength of the concertina folds and provide a simple phase diagram for the morphologies in terms of the material properties of the sheet and the relative size of the tool.

  15. Prediction of hot-ductility of steels during continuous casting using artificial neural networks

    International Nuclear Information System (INIS)

    Liu, W.J.; Emadi, D.; Essadiqi, E.

    2000-01-01

    During continuous casting, transversal cracks can be developed due to tensile stress in temperature regions where the steel exhibits a low ductility. The cracking tendency during continuous casting depends on the steel chemistry and the casting parameters such as lubrication, mold type, secondary cooling and bending/unbending temperatures. To prevent cracking one needs to predict the hot-ductility of a material under continuous-casting conditions. However, hot-ductility is one of the poorly understood material behaviors and cannot be readily modeled using conventional techniques. In the present study, we used an alternative method, namely Artificial Neural Networks (ANN), to model the ductility of a steel under continuous casting conditions. A hot-ductility database was established based on published literature. Several standard three-layer ANN models were then trained using data randomly selected from the database. The outputs of the ANN models were subsequently compared with the remaining data in the database. The results indicate that ANN is a suitable modelling technique for hot-ductility prediction. (author)

  16. Numerical simulation of transformation-induced microscopic residual stress in ferrite-martensite lamellar steel

    International Nuclear Information System (INIS)

    Mikami, Y; Inao, A; Mochizuki, M; Toyoda, M

    2009-01-01

    The effect of transformation-induced microscopic residual stress on fatigue crack propagation behavior of ferrite-martensite lamellar steel was discussed. Fatigue tests of prestrained and non-prestrained specimens were performed. Inflections and branches at ferrite-martensite boundaries were observed in the non-prestrained specimens. On the other hand, less inflections and branches were found in the prestrained specimens. The experimental results showed that the transformation induced microscopic residual stress has influence on the fatigue crack propagation behavior. To estimate the microscopic residual, a numerical simulation method for the calculation of microscopic residual stress stress induced by martensitic transformation was performed. The simulation showed that compressive residual stress was generated in martensite layer, and the result agree with the experimental result that inflections and branches were observed at ferrite-martensite boundaries.

  17. Strength-Ductility Property Maps of Powder Metallurgy (PM) Ti-6Al-4V Alloy: A Critical Review of Processing-Structure-Property Relationships

    Science.gov (United States)

    Kumar, P.; Chandran, K. S. Ravi

    2017-05-01

    A comprehensive assessment of tensile properties of powder metallurgical (PM) processed Ti-6Al-4V alloy, through the mapping of strength-ductility property domains, is performed in this review. Tensile property data of PM Ti-6Al-4V alloys made from blended element (BE) and pre-alloyed powders including that additive manufactured (AM) from powders, as well as that made using titanium hydride powders, have been mapped in the form of strength-ductility domains. Based on this, porosity and microstructure have been identified as the dominant variables controlling both the strength and the tensile ductility of the final consolidated materials. The major finding is that tensile ductility of the PM titanium is most sensitive to the presence of pores. The significance of extreme-sized pores or defects in inducing large variations in ductility is emphasized. The tensile strength, however, has been found to depend only weakly on the porosity. The effect of microstructure on properties is masked by the variations in porosity and to some extent by the oxygen level. It is shown that any meaningful comparison of the microstructure can only be made under a constant porosity or density level. The beneficial effect of a refined microstructure is also brought out by logically organizing the data in terms of microstructure groups. The advantages of new processes, using titanium hydride powder to produce PM titanium alloys, in simultaneously increasing strength and ductility, are also highlighted. The tensile properties of AM Ti-6Al-4V alloys are also brought to light, in comparison with the other PM and wrought alloys, through the strength-ductility maps.

  18. X-ray diffraction study of thermally and stress-induced phase transformations in single crystalline Ni-Mn-Ga alloys

    International Nuclear Information System (INIS)

    Martynov, V.V.

    1995-01-01

    Using in-situ single crystal X-ray diffraction methods, thermally- and stress-induced crystal structure evolution was investigated in two Ni-Mn-Ga Heusler-type alloys. For the 51at.%Ni-24at.%Mn-25at.%Ga alloy it was found that application of external stress in a temperature range ∼20 C above the M s at first causes intensity changes of X-ray diffuse scattering peaks in β-phase. Further stressing results in stress-induced phase transformations and under the appropriate conditions three successive martensitic transformations (one is parent-to-martensite and two are martensite-to-martensite transformations) can be stress induced. Of these only the parent-to-martensite transformation can be thermally-induced. Two successive structural transformations (thermally-induced parent-to-martensite and stress-induced martensite-to-martensite transformations) were found in 52at.%Ni-25at.%Mn-23at.%Ga alloy. Crystal structure, lattice parameters, type of modulation, and the length of modulation period for all martensites were identified. (orig.)

  19. Robustness Analysis of a Wide-Span Timber Structure with Ductile Behaviour

    DEFF Research Database (Denmark)

    Kirkegaard, Poul Henning; Sørensen, John Dalsgaard; Cizmar, D.

    2010-01-01

    This paper considers robustness evaluation of a wide span timber truss structure where the ductile behavior is taken into account. The robustness analysis is based on a structural reliability framework used on a simplified mechanical system modelling a timber truss system. A measure of ductile...... behaviour is introduced and for different values of this measure the robustness indices are estimated. The results indicate that the robustness of a timber truss system can be increased by taking the ductile behavior into....

  20. Transformation between divacancy defects induced by an energy pulse in graphene.

    Science.gov (United States)

    Xia, Jun; Liu, XiaoYi; Zhou, Wei; Wang, FengChao; Wu, HengAn

    2016-07-08

    The mutual transformations among the four typical divacancy defects induced by a high-energy pulse were studied via molecular dynamics simulation. Our study revealed all six possible mutual transformations and found that defects transformed by absorbing energy to overcome the energy barrier with bonding, debonding, and bond rotations. The reversibility of defect transformations was also investigated by potential energy analysis. The energy difference was found to greatly influence the transformation reversibility. The direct transformation path was irreversible if the energy difference was too large. We also studied the correlation between the transformation probability and the input energy. It was found that the transformation probability had a local maxima at an optimal input energy. The introduction of defects and their structural evolutions are important for tailoring the exceptional properties and thereby performances of graphene-based devices, such as nanoporous membranes for the filtration and desalination of water.

  1. Deformation-induced phase transformation in 4H–SiC nanopillars

    International Nuclear Information System (INIS)

    Chen, Bin; Wang, Jun; Zhu, Yiwei; Liao, Xiaozhou; Lu, Chunsheng; Mai, Yiu-Wing; Ringer, Simon P.; Ke, Fujiu; Shen, Yaogen

    2014-01-01

    The deformation behaviour of single-crystal SiC nanopillars was studied by a combination of in situ deformation transmission electron microscopy and molecular dynamics simulations. An unexpected deformation-induced phase transformation from the 4H hexagonal structure to the 3C face-centred cubic structure was observed in these nanopillars at room temperature. Atomistic simulations revealed that the 4H to 3C phase transformation follows a stick–slip process with initiation and end stresses of 12.1–14.0 and 7.9–9.0 GPa, respectively. The experimentally measured stress of 9–10 GPa for the phase transformation falls within the range of these theoretical upper and lower stresses. The reasons for the phase transformation are discussed. The finding sheds light on the understanding of phase transformation in polytypic materials at low temperature

  2. Pressure Induced Phase Transformations in Ceramics

    Energy Technology Data Exchange (ETDEWEB)

    Reimanis, Ivar [Colorado School of Mines, Golden, CO (United States); Cioabanu, Cristian [Colorado School of Mines, Golden, CO (United States)

    2017-10-15

    The study of materials with unusual properties offers new insight into structure-property relations as well as promise for the design of novel composites. In this spirit, the PIs seek to (1) understand fundamental mechanical phenomena in ceramics that exhibit pressure-induced phase transitions, negative coefficient of thermal expansion (CTE), and negative compressibility, and (2) explore the effect of these phenomena on the mechanical behavior of composites designed with such ceramics. The broad and long-term goal is to learn how to utilize these unusual behaviors to obtain desired mechanical responses. While the results are expected to be widely applicable to many ceramics, most of the present focus is on silicates, as they exhibit remarkable diversity in structure and properties. Eucryptite, a lithium aluminum silicate (LiAlSiO4), is specifically targeted because it exhibits a pressure-induced phase transition at a sufficiently low pressure to be accessible during conventional materials processing. Thus, composites with eucryptite may be designed to exhibit a novel type of transformation toughening. The PIs have performed a combination of activities that encompass synthesis and processing to control structures, atomistic modeling to predict and understand structures, and characterization to study mechanical behavior. Several materials behavior discoveries were made. It was discovered that small amounts of Zn (as small as 0.1 percent by mol) reverse the sign of the coefficient of thermal expansion of beta-eucryptite from negative to slightly positive. The presence of Zn also significantly mitigates microcracking that occurs during thermal cycling of eucryptite. It is hypothesized that Zn disrupts the Li ordering in beta-eucryptite, thereby altering the thermal expansion behavior. A nanoindentation technique developed to characterize incipient plasticity was applied to examine the initial stages of the pressure induced phase transformation from beta to

  3. Ductility and resistance to deformation of EhP975 alloy during hot plastic working

    International Nuclear Information System (INIS)

    Baturin, A.I.; Martynov, A.I.

    1982-01-01

    Results of investigations into ductility and resistance to deformation of the EhP975 most heat-resistant difficult-to-form alloy of commercial melting in 1000-1200 deg C temperature range and at deformation rates epsilon = 0.1 - 25 s - 1 are presented. It is shown that ductility of EhP975 alloy grows rather slowly with increase of temperature approximately up to 1075 deg C, then sharp growth of ductility up to the maximum at 1120-1125 deg C is observed; ductility decreases above this temperature zone. It was also established that ductility of EhP975 alloy grows with increase of preliminary deformation degree. It is marked that high temperature annealing increases ductility of EhP975 alloy in comparison with (cast state), especially noticeably at high deformation rates

  4. Radiation-induced rhabdomyosarcomatous transformation of a recurrent meningeal haemangiopericytoma

    International Nuclear Information System (INIS)

    Ka Kit Leung, G.; Chun Kit Lee, W.; Nicholls, J.M.

    2007-01-01

    A 53-year-old woman presented in 1979 with a posterior fossa meningeal haemangiopericytoma (HPC) for which she underwent surgical resection and post-operative radiotherapy. Repeated tumor recurrences occurred 18 years afterwards which were treated with resections and stereotactic radiotherapy. Surgery for tumor recurrence in 2005 revealed features of rhabdomyosarcomatous transformation. To our knowledge, this is the first reported case of rhabdomyosarcomatous transformation within a HPC which was likely to be radiation-induced, and was associated with relentless disease progression more than 20 years after the initial presentation. (author)

  5. Ductile shape memory alloys of the Cu-Al-Mn system

    International Nuclear Information System (INIS)

    Kainuma, R.; Takahashi, S.; Ishida, K.

    1995-01-01

    Cu-Al-Mn shape memory alloys with enhanced ductility have been developed by decreasing the degree of order in the β parent phase. Cu-Al-Mn alloys with Al contents lower than 18% exhibit good ductility with elongations of about 15% and excellent cold-workability arising from a lower degree of order in the Heusler (L21) β 1 parent phase, without any loss in their shape memory behavior. In this paper the mechanical and shape memory characteristics, such as the cold-workability, the Ms temperatures, the shape memory effect and the pseudo-elasticity of such ductile Cu-Al-Mn alloys are presented. (orig.)

  6. Brittle to ductile transition in densified silica glass.

    Science.gov (United States)

    Yuan, Fenglin; Huang, Liping

    2014-05-22

    Current understanding of the brittleness of glass is limited by our poor understanding and control over the microscopic structure. In this study, we used a pressure quenching route to tune the structure of silica glass in a controllable manner, and observed a systematic increase in ductility in samples quenched under increasingly higher pressure. The brittle to ductile transition in densified silica glass can be attributed to the critical role of 5-fold Si coordination defects (bonded to 5 O neighbors) in facilitating shear deformation and in dissipating energy by converting back to the 4-fold coordination state during deformation. As an archetypal glass former and one of the most abundant minerals in the Earth's crest, a fundamental understanding of the microscopic structure underpinning the ductility of silica glass will not only pave the way toward rational design of strong glasses, but also advance our knowledge of the geological processes in the Earth's interior.

  7. Heat treatment effect on ductility of nickel-base alloys

    International Nuclear Information System (INIS)

    Burnakov, K.K.; Khasin, G.A.; Danilov, V.F.; Oshchepkov, B.V.; Listkova, A.I.

    1979-01-01

    Causes of low ductility of the KhN75MBTYu and KhN78T alloys were studied along with the heat treatment effects. Samples were tested at 20, 900, 1100, 1200 deg C. Large amount of inclusions was found in intercrystalline fractures of the above low-ductile alloys. The inclusions of two types took place: (α-Al 2 O 3 , FeO(Cr 2 O 3 xAl 2 O 3 )) dendrite-like ones and large-size laminated SiO 2 , FeO,(CrFe) 2 O 3 inclusions situated as separate colonies. Heat treatment of the alloys does not increase high-temperature impact strength and steel ductility. The heating above 1000 deg C leads to a partial dissolution and coagulation of film inclusions which results in an impact strength increase at room temperature

  8. Value/impact of design criteria for cast ductile iron shipping casks

    International Nuclear Information System (INIS)

    1983-01-01

    The ductile failure criteria proposed in the Base report appear appropriate except that stress intensity values, S/sub m/ should be based on lower safety factors and ductility should be added as a criterion. A safety factor for stress intensity, s/sub m/ of 4 is recommended rather than 3 on minimum ultimate tensile strength, S/sub u/ in accordance with ASME code philosophy of assigning higher safety factors to cast ductile iron than to steel. This more conservative approach has no impact on costs since the selection of wall thickness is controlled by shielding rather than by stress considerations. The addition of a ductility criterion is recommended because of the problems associated with the selection of appropriate brittle failure criteria and the potential for cast ductile iron to have extremely low elongation at failure. Neither a materials nor a linear elastic fracture mechanics (LEFM) approach appear to be viable for demonstrating the prevention of brittle failure in cast ductile iron shipping casks. It is possible that the analytic methods predict brittle failure because of extremely conservative assumptions whereas real casks may not fail. Model drop tests could be used to demonstrate containment integrity. It is estimated that a risk committment of at least $1,000,000 would be required for engineering, design, model fabrication and testing. Before taking such risks, a mechanism should be found to obtain concurrence from NRC that the results of the test would be acceptable. Probabilistic approaches or model testing could be used to demonstrate the acceptability of cast ductile iron casks from a brittle failure point of view. Before probabilistic methods can be used, the NRC would have to be persuaded to accept the approach of the Competent Authority in West Germany or more formalized methods for probabilistic risk assessments

  9. Two brittle ductile transitions in subduction wedges, as revealed by topography

    Science.gov (United States)

    Thissen, C.; Brandon, M. T.

    2013-12-01

    Subduction wedges contain two brittle ductile transitions. One transition occurs within the wedge interior, and a second transition occurs along the decollement. The decollement typically has faster strain rates, which suggests that the brittle ductile transition along the decollement will be more rearward (deeper) than the transition within the interior. However, the presence of distinct rheologies or other factors such as pore fluid pressure along the decollement may reverse the order of the brittle-ductile transitions. We adopt a solution by Williams et al., (1994) to invert for these brittle ductile transitions using the wedge surface topography. At present, this model does not include an s point or sediment loading atop the wedge. The Hellenic wedge, however, as exposed in Crete presents an ideal setting to test these ideas. We find that the broad high of the Mediterranean ridge represents the coulomb frictional part of the Hellenic wedge. The rollover in topography north of the ridge results from curvature of the down going plate, creating a negative alpha depression in the vicinity of the Strabo, Pliny, and Ionian 'troughs' south of Crete. A steep topographic rise out of these troughs and subsequent flattening reflects the brittle ductile transition at depth in both the decollement and the wedge interior. Crete exposes the high-pressure viscous core of the wedge, and pressure solution textures provide additional evidence for viscous deformation in the rearward part of the wedge. The location of the decollement brittle ductile transition has been previously poorly constrained, and Crete has never experienced a subduction zone earthquake in recorded history. Williams, C. A., et al., (1994). Effect of the brittle ductile transition on the topography of compressive mountain belts on Earth and Venus. Journal of Geophysical Research Solid Earth

  10. Microstructural evolution in the HAZ of Inconel 718 and correlation with the hot ductility test

    Science.gov (United States)

    Thompson, R. G.; Genculu, S.

    1983-01-01

    The nickel-base alloy 718 was evaluated to study the role of preweld heat treatment in reducing or eliminating heat-affected zone hot cracking. Three heat treatments were studied using the Gleeble hot ductility test. A modified hot ductility test was also used to follow the evolution of microstructure during simulated welding thermal cycles. The microstructural evolution was correlated with the hot ductility data in order to evaluate the mechanism of hot cracking in alloy 718. The correlation of hot ductility with microstructure showed that recrystallization, grain growth, and dissolution of precipitates did not in themselves cause any loss of ductility during cooling. Ductility loss during cooling was not initiated until the constitutional liquation of NbC particles was observed in the microstructure. Laves-type phases were found precipitated in the solidified grain boundaries but were not found to correlate with any ductility loss parameter. Mechanisms are reviewed which help to explain how heat treatment controls the hot crack susceptibility of alloy 718 as measured in the hot ductility test.

  11. Process for improving the low temperature ductility of tungsten-base composites

    International Nuclear Information System (INIS)

    Zukas, E.G.

    1975-05-01

    At temperatures below about 100 0 C, liquid-phase-sintered tungsten-base composites fail in a brittle manner because of the formation of cleavage cracks in the tungsten spheroids. Improving the ductility, then, would require some alloying addition or treatment which would improve the ductility of these spheroids, or some method of changing the stress distribution, such as putting the surface in compression, which would reduce stress concentrations and thereby require a higher load to initiate fracture. The ductilizing process used here consists of coating the composite with a ductile metal followed by heat treating at a high enough temperature to insure sufficient diffusion so that the coat and base become integral. The ductile coat is now the 'piece' surface, and the initiation of cleavage cracks requires much greater stresses. Coats of copper, nickel, gold, and cobalt have been used successfully. A possible added advantage is that the surface properties can now be controlled if certain reflective properties or corrosion resistance are needed. Also soldering or low temperature brazing operations are feasible, allowing the construction or assembly of intricate shapes which could not be accomplished previously. (U.S.)

  12. The correlation of local deformation and stress-assisted local phase transformations in MMC foams

    Energy Technology Data Exchange (ETDEWEB)

    Berek, H., E-mail: harry.berek@ikgb.tu-freiberg.de [TU Bergakademie Freiberg, Agricolastraße 17, D-09599 Freiberg (Germany); Ballaschk, U.; Aneziris, C.G. [TU Bergakademie Freiberg, Agricolastraße 17, D-09599 Freiberg (Germany); Losch, K.; Schladitz, K. [Fraunhofer ITWM, Fraunhoferplatz 1, D-67663 Kaiserslautern (Germany)

    2015-09-15

    Cellular structures are of growing interest for industry, and are of particular importance for lightweight applications. In this paper, a special case of metal matrix composite foams (MMCs) is investigated. The investigated foams are composed of austenitic steel exhibiting transformation induced plasticity (TRIP) and magnesia partially stabilized zirconia (Mg-PSZ). Both components exhibit martensitic phase transformation during deformation, thus generating the potential for improved mechanical properties such as strength, ductility, and energy absorption capability. The aim of these investigations was to show that stress-assisted phase transformations within the ceramic reinforcement correspond to strong local deformation, and to determine whether they can trigger martensitic phase transformations in the steel matrix. To this end, in situ interrupted compression experiments were performed in an X-ray computed tomography device (XCT). By using a recently developed registration algorithm, local deformation could be calculated and regions of interest could be defined. Corresponding cross sections were prepared and used to analyze the local phase composition by electron backscatter diffraction (EBSD). The results show a strong correlation between local deformation and phase transformation. - Graphical abstract: Display Omitted - Highlights: • In situ compressive deformation on MMC foams was performed in an XCT. • Local deformation fields and their gradient amplitudes were estimated. • Cross sections were manufactured containing defined regions of interest. • Local EBSD phase analysis was performed. • Local deformation and local phase transformation are correlated.

  13. The correlation of local deformation and stress-assisted local phase transformations in MMC foams

    International Nuclear Information System (INIS)

    Berek, H.; Ballaschk, U.; Aneziris, C.G.; Losch, K.; Schladitz, K.

    2015-01-01

    Cellular structures are of growing interest for industry, and are of particular importance for lightweight applications. In this paper, a special case of metal matrix composite foams (MMCs) is investigated. The investigated foams are composed of austenitic steel exhibiting transformation induced plasticity (TRIP) and magnesia partially stabilized zirconia (Mg-PSZ). Both components exhibit martensitic phase transformation during deformation, thus generating the potential for improved mechanical properties such as strength, ductility, and energy absorption capability. The aim of these investigations was to show that stress-assisted phase transformations within the ceramic reinforcement correspond to strong local deformation, and to determine whether they can trigger martensitic phase transformations in the steel matrix. To this end, in situ interrupted compression experiments were performed in an X-ray computed tomography device (XCT). By using a recently developed registration algorithm, local deformation could be calculated and regions of interest could be defined. Corresponding cross sections were prepared and used to analyze the local phase composition by electron backscatter diffraction (EBSD). The results show a strong correlation between local deformation and phase transformation. - Graphical abstract: Display Omitted - Highlights: • In situ compressive deformation on MMC foams was performed in an XCT. • Local deformation fields and their gradient amplitudes were estimated. • Cross sections were manufactured containing defined regions of interest. • Local EBSD phase analysis was performed. • Local deformation and local phase transformation are correlated

  14. Micromechanics of transformation-induced plasticity and variant coalescence

    International Nuclear Information System (INIS)

    Marketz, F.; Fischer, F.D.; University for Mining and Metallurgy, Leoben; Tanaka, K.

    1996-01-01

    Quantitative micromechanics descriptions of both transformation-induced plasticity (TRIP) associated with the martensitic transformation in an Fe-Ni alloy and of variant coalescence in a Cu-Al-Ni shape memory alloy are presented. The macroscopic deformation behavior of a polycrystalline aggregate as a result of the rearrangements within the crystallites is modelled with the help of a finite element based periodic microfield approach. In the case of TRIP the parent→martensite transformation is described by microscale thermodynamic and kinetic equations taking into account internal stress states. The simulation of a classical experiment on TRIP allows to quantify the Magee-effect and the Greenwood-Johnson effect. Furthermore, the development of the martensitic microstructure is studied with respect to the stress-assisted transformation of preferred variants. In the case of variant coalescence the strain energy due to internal stress states has an important influence on the mechanical behavior. Formulating the reorientation process on the size scale of self-accommodating plate groups in terms of the mobility of the boundaries between martensitic variants the macroscopic behavior in uniaxial tension is predicted by an incremental modelling procedure. Furthermore, influence of energy dissipation on the overall behavior is quantified. (orig.)

  15. Neutron scattering study of the phase transformation of LaNi3 induced by hydriding

    International Nuclear Information System (INIS)

    Ruan Jinghui; Zeng Xiangxin; Niu Shiwen

    1994-01-01

    The phase transformation of LaNi 3 induced by hydriding and de-hydriding is investigated using the neutron diffraction and the neutron inelastic scattering. The results show that the hydriding sample, LaNi 3 H x , is transformed from crystalline state of the LaNi 3 into amorphous state with a microcrystalline characteristic of LaNi 5 , and the de-hydriding sample produced by LaNi 3 H x dehydrated at 600 degree C is decomposed into new crystalline states composed by LaNi 5 -and La-hydrides. The procedure of phase transformation is that the result of the transformation of LaNi 3 induced by hydriding shows the properties of LaNi 5 -H 2 system

  16. Comparative genome analysis of three eukaryotic parasites with differing abilities to transform leukocytes reveals key mediators of theileria-induced leukocyte transformation

    KAUST Repository

    Hayashida, Kyoko; Hara, Yuichiro; Abe, Takashi; Yamasaki, Chisato; Toyoda, Atsushi; Kosuge, Takehide; Suzuki, Yutaka; Sato, Yoshiharu; Kawashima, Shuichi; Katayama, Toshiaki; Wakaguri, Hiroyuki; Inoue, Noboru; Homma, Keiichi; Tada-Umezaki, Masahito; Yagi, Yukio; Fujii, Yasuyuki; Habara, Takuya; Kanehisa, Minoru; Watanabe, Hidemi; Ito, Kimihito; Gojobori, Takashi; Sugawara, Hideaki; Imanishi, Tadashi; Weir, William; Gardner, Malcolm; Pain, Arnab; Shiels, Brian; Hattori, Masahira; Nene, Vishvanath; Sugimoto, Chihiro

    2012-01-01

    . annulata. T. parva and T. annulata induce transformation of infected cells of lymphocyte or macrophage/monocyte lineages; in contrast, T. orientalis does not induce uncontrolled proliferation of infected leukocytes and multiplies predominantly within

  17. Stress-induced martensitic transformation and ferroelastic deformation adjacent microhardness indents in tetragonal zirconia single crystals

    International Nuclear Information System (INIS)

    Chien, F.R.; Ubic, F.J.; Prakash, V.; Heuer, A.H.

    1998-01-01

    The stress-induced tetragonal to monoclinic (t → m) martensitic transformation, stress-induced ferroelastic domain switching, and dislocation slip were induced by Vickers microindentation at elevated temperatures in polydomain single crystals of 3 mol%-Y 2 O 3 -stabilized tetragonal ZrO 2 single crystals (3Y-TZS). Chemical etching revealed traces along t directions adjacent to indentations, and Raman spectroscopy and TEM have shown that these traces are caused by products of the martensitic transformation, i.e. the monoclinic product phase forms primarily as thin, long plates with a habit plane approximately on (bar 301) m . This habit plane and the associated shear strain arising from the transformation, visible in TEM micrographs at the intersection of crystallographically equivalent martensite plates, were successfully predicted using the observed lattice correspondence and the phenomenological invariant plane strain theory of martensitic transformations. The extent of the martensitic transformation increased with increasing temperature from room temperature up to 300 C, but then decreased at higher temperatures. Ferroelastic deformation of tetragonal ZrO 2 has been observed at all temperatures up to 1,000 C. At the highest temperature, only ferroelastic domain switching and dislocation slip occurred during indentation-induced deformation

  18. Comparative study of TIG and SMAW root welding passes on ductile iron cast weldability

    Directory of Open Access Journals (Sweden)

    J. Cárcel-Carrasco

    2017-01-01

    Full Text Available This work compares the weldability of ductile iron when: (I a root weld is applied with a tungsten inert gas (TIG process using an Inconel 625 source rod and filler welds are subsequently applied using coated electrodes with 97,6%Ni; and (II welds on ductile iron exclusively made using the manual shielded metal arc welding technique (SMAW. Both types of welds are performed on ductile iron specimen test plates that are subjected to preheat and post-weld annealing treatments. Samples with TIG root-welding pass shown higher hardness but slightly lower ductility and strength. Both types of welding achieved better ductile and strength properties than ones found in literature.

  19. Multi-scale modeling of ductile failure in metallic alloys

    International Nuclear Information System (INIS)

    Pardoen, Th.; Scheyvaerts, F.; Simar, A.; Tekoglu, C.; Onck, P.R.

    2010-01-01

    Micro-mechanical models for ductile failure have been developed in the seventies and eighties essentially to address cracking in structural applications and complement the fracture mechanics approach. Later, this approach has become attractive for physical metallurgists interested by the prediction of failure during forming operations and as a guide for the design of more ductile and/or high-toughness microstructures. Nowadays, a realistic treatment of damage evolution in complex metallic microstructures is becoming feasible when sufficiently sophisticated constitutive laws are used within the context of a multilevel modelling strategy. The current understanding and the state of the art models for the nucleation, growth and coalescence of voids are reviewed with a focus on the underlying physics. Considerations are made about the introduction of the different length scales associated with the microstructure and damage process. Two applications of the methodology are then described to illustrate the potential of the current models. The first application concerns the competition between intergranular and transgranular ductile fracture in aluminum alloys involving soft precipitate free zones along the grain boundaries. The second application concerns the modeling of ductile failure in friction stir welded joints, a problem which also involves soft and hard zones, albeit at a larger scale. (authors)

  20. Displacement-length scaling of brittle faults in ductile shear.

    Science.gov (United States)

    Grasemann, Bernhard; Exner, Ulrike; Tschegg, Cornelius

    2011-11-01

    Within a low-grade ductile shear zone, we investigated exceptionally well exposed brittle faults, which accumulated antithetic slip and rotated into the shearing direction. The foliation planes of the mylonitic host rock intersect the faults approximately at their centre and exhibit ductile reverse drag. Three types of brittle faults can be distinguished: (i) Faults developing on pre-existing K-feldspar/mica veins that are oblique to the shear direction. These faults have triclinic flanking structures. (ii) Wing cracks opening as mode I fractures at the tips of the triclinic flanking structures, perpendicular to the shear direction. These cracks are reactivated as faults with antithetic shear, extend from the parent K-feldspar/mica veins and form a complex linked flanking structure system. (iii) Joints forming perpendicular to the shearing direction are deformed to form monoclinic flanking structures. Triclinic and monoclinic flanking structures record elliptical displacement-distance profiles with steep displacement gradients at the fault tips by ductile flow in the host rocks, resulting in reverse drag of the foliation planes. These structures record one of the greatest maximum displacement/length ratios reported from natural fault structures. These exceptionally high ratios can be explained by localized antithetic displacement along brittle slip surfaces, which did not propagate during their rotation during surrounding ductile flow.

  1. Displacement–length scaling of brittle faults in ductile shear

    Science.gov (United States)

    Grasemann, Bernhard; Exner, Ulrike; Tschegg, Cornelius

    2011-01-01

    Within a low-grade ductile shear zone, we investigated exceptionally well exposed brittle faults, which accumulated antithetic slip and rotated into the shearing direction. The foliation planes of the mylonitic host rock intersect the faults approximately at their centre and exhibit ductile reverse drag. Three types of brittle faults can be distinguished: (i) Faults developing on pre-existing K-feldspar/mica veins that are oblique to the shear direction. These faults have triclinic flanking structures. (ii) Wing cracks opening as mode I fractures at the tips of the triclinic flanking structures, perpendicular to the shear direction. These cracks are reactivated as faults with antithetic shear, extend from the parent K-feldspar/mica veins and form a complex linked flanking structure system. (iii) Joints forming perpendicular to the shearing direction are deformed to form monoclinic flanking structures. Triclinic and monoclinic flanking structures record elliptical displacement–distance profiles with steep displacement gradients at the fault tips by ductile flow in the host rocks, resulting in reverse drag of the foliation planes. These structures record one of the greatest maximum displacement/length ratios reported from natural fault structures. These exceptionally high ratios can be explained by localized antithetic displacement along brittle slip surfaces, which did not propagate during their rotation during surrounding ductile flow. PMID:26806996

  2. Microstructural effects of ductile phase toughening of Nb-Nb silicide composites

    International Nuclear Information System (INIS)

    Lewandowski, J.J.; Dimiduk, D.; Kerr, W.; Menddiratta, M.G.

    1988-01-01

    In the Nb-Si system, the terminal Nb phase and Nb 5 Si 3 phase are virtually immiscible up to approximately 2033k. This system offers the potential of producing composites consisting of a ductile refractory metal phase and a strong intermetallic phase. In-situ composites containing different volume fractions of the ductile Nb phase were produced via vacuum arc-casting. Microhardness testing as well as smooth bend bar testing was conducted at temperatures ranging from 298k to 1673k in an attempt to determine microstructural effects on the yield strength and smooth bar fracture strength. Notched bend specimens were similarly tested to determine the effects of the ductile phase (i.e. Nb) on enhancing the notched bend toughness. It is shown that Nb phase often behaves in a ductile manner during testing, thereby toughening the in-situ composite. The mechanism of toughening appears to be due to crack bridging

  3. Hot Ductility of the 17-4 PH Stainless Steels

    Science.gov (United States)

    Herrera Lara, V.; Guerra Fuentes, L.; Covarrubias Alvarado, O.; Salinas Rodriguez, A.; Garcia Sanchez, E.

    2016-03-01

    The mechanisms of loss of hot ductility and the mechanical behavior of 17-4 PH alloys were investigated using hot tensile testing at temperatures between 700 and 1100 °C and strain rates of 10-4, 10-2, and 10-1 s-1. Scanning electron microscopy was used in conjunction with the results of the tensile tests to find the temperature region of loss of ductility and correlate it with cracking observed during processing by hot upsetting prior to ring rolling. It is reported that 17-4 PH alloys lose ductility in a temperature range around 900 °C near to the duplex austenite + ferrite phase field. Furthermore, it is found that niobium carbides precipitated at austenite/ferrite interfaces and grain boundaries have a pronounced effect on the mechanical behavior of the alloy during high-temperature deformation.

  4. A natural example of fluid-mediated brittle-ductile cyclicity in quartz veins from Olkiluoto Island, SW Finland

    Science.gov (United States)

    Marchesini, Barbara; Garofalo, Paolo S.; Viola, Giulio; Mattila, Jussi; Menegon, Luca

    2017-04-01

    recognize three distinct episodes of ductile deformation alternating with at least three brittle episodes. Preliminary fluid inclusion data show that, during crystallization and brittle-viscous deformation, quartz crystals hosted homogeneous and heterogeneous (boiling) aqueous fluids with a large salinity (11.7-0 wt% NaCleq) and Thtot (410-200 °C) range. Boiling occurred at 200-260 °C. Variations of fluid temperature and density (hence, viscosity) may thus have induced localized cyclic switches between brittle and ductile deformation in quartz, with implications on the bulk regional crustal strength. Preliminary EBSD analysis also supports the hypothesis of cyclic switches between brittle and viscous deformation.

  5. 49 CFR 192.487 - Remedial measures: Distribution lines other than cast iron or ductile iron lines.

    Science.gov (United States)

    2010-10-01

    ... cast iron or ductile iron lines. 192.487 Section 192.487 Transportation Other Regulations Relating to... iron or ductile iron lines. (a) General corrosion. Except for cast iron or ductile iron pipe, each... the purpose of this paragraph. (b) Localized corrosion pitting. Except for cast iron or ductile iron...

  6. Ductile fracture evaluation of ductile cast iron and forged steel by nonlinear-fracture-mechanics. Pt. 1. Tensile test by large scaled test pieces with surface crack

    International Nuclear Information System (INIS)

    Kosaki, Akio; Ajima, Tatsuro; Inohara, Yasuto

    1999-01-01

    The ductile fracture tests of Ductile Cast Iron and Forged Steel under a tensile stress condition were conducted using large-scaled flat test specimens with a surface crack and were evaluated by the J-integral values, in order to propose an evaluation method of initiation of ductile fracture of a cask body with crack by nonlinear-fracture-mechanics. Following results were obtained. 1) 1 -strain relations of Ductile Cast Iron and Forged Steel under the tensile stress condition were obtained, which is necessary for the development of J-integral design curves for evaluating the initiation of ductile fracture of the cask body. 2) In case of Ductile Cast Iron, the experimental J-integral values obtained from strain-gauges showed a good agreement with the linear-elastic-theory by Raju and Newman at room temperature, in both elastic and plastic regions. But, at 70degC in plastic region, the experimental i-integral values showed middle values between those predicted by the linear-elastic-theory and by the non- linear-elastic- theory (based on the fully plastic solution by Yagawa et al.). 3) In case of Forged Steel at both -25degC and room temperature, the experimental i-integral values obtained from strain-gauges showed a good agreement with those predicted by the linear-elastic-theory by Raju and Newman, in the elastic region. In the plastic region, however, the experimental i-integral values fell apart from the curve predicted by the linear-elastic-theory by Raju and Newman, and also approached to those by the non-linear-elastic-theory with increasing strain.(author)

  7. A macroscopic model to simulate the mechanically induced martensitic transformation in metastable austenitic stainless steels

    NARCIS (Netherlands)

    Perdahcioglu, Emin Semih; Geijselaers, Hubertus J.M.

    2012-01-01

    Mechanically induced martensitic transformation and the associated transformation plasticity phenomena in austenitic stainless steels are studied. The mechanisms responsible for the transformation are investigated and put into perspective based on experimental evidence. The stress and strain

  8. The effect of pre-deformation on the ductility of chromium

    International Nuclear Information System (INIS)

    Wadsack, R.; Pippan, R.; Schedler, B.

    2002-01-01

    Full text: Due to their low neutron-induced radioactivity chromium based materials are considered to be candidates as structure materials in fusion technology. Drawbacks for the application of these materials in industrial design are their brittleness at room temperature and their high Ductile to Brittle Transition Temperatures (DBTT). In this paper mechanical and fractographical investigations are presented of pure chromium (DUCROPUR) with a purity of about 99.97 % and the dispersion strengthened chromium alloy Cr 5 Fe 1 Y 2 O 3 (DUCROLLOY). The investigated specimens have been produced in a powder metallurgical route. They have been tested in the as HIPped condition (recrystallized) and after different pre-deformations. DUCROPUR and DUCROLLOY with as HIPped microstructures show in bending tests and tension tests brittle behavior at RT. Plastic deformations are obtained between 200 o C and 250 o C and above 400 o C, respectively. The K Q value of DUCROPUR increases from 12 MPam 1/2 at 290 o C up to a value of 500 MPam 1/2 at 320 o C. In spite of the large fracture toughness value at 320 o C the final fracture occurs again in a cleavage mode. DUCROLLOY shows up to 740 o C only a slight increase of fracture toughness with increasing temperature. An improvement in ductility and a significant increase in fracture strength have been induced by pre-deformation in tension, in bending, by Equal Channel Angular Extrusion (ECAE) and by Cyclic Channel Die Compression (CCDC). The developed microstructures of the samples have been investigated in the Scanning Electron Microscope (SEM) by means of different techniques. In order to determine the typical microstructure sizes Back Scattered Electrons (BSE) imaging has been applied. To differ if the boundaries are large or low angle boundaries the degree of misorientation has been determined with the Electron Back Scatter Diffraction (EBSD) method. (author)

  9. Hysteresis and Power-Law Statistics during temperature induced martensitic transformation

    International Nuclear Information System (INIS)

    Paul, Arya; Sengupta, Surajit; Rao, Madan

    2011-01-01

    We study hysteresis in temperature induced martensitic transformation using a 2D model solid exhibiting a square to rhombic structural transition. We find that upon quenching, the high temperature square phase, martensites are nucleated at sites having large non-affineness and ultimately invades the whole of the high temperature square phase. On heating the martensite, the high temperature square phase is restored. The transformation proceeds through avalanches. The amplitude and the time-duration of these avalanches exhibit power-law statistics both during heating and cooling of the system. The exponents corresponding to heating and cooling are different thereby indicating that the nucleation and dissolution of the product phase follows different transformation mechanism.

  10. β-carotene and canthaxanthin inhibit chemically- and physically-induced transformation in 10T1/2 cells

    International Nuclear Information System (INIS)

    Pung, A.; Rundhaug, J.E.; Yoshizawa, C.N.; Bertram, J.S.

    1988-01-01

    We have studied the effects of β-carotene (β-C), a vitamin A precursor of plant origin, and canthaxanthin (CTX), a non-provitamin A carotenoid, on the neoplastic transformation of C3H/10T1/2 murine fibroblast cells. We show that both β-C and CTX inhibit 3-methylcholanthrene (MCA)-induced transformation. Both carotenoids failed to inhibit X-ray-induced transformation when the cells were treated prior to and during irradiation. However, when the drugs were added 1 week after X-irradiation and maintained in the medium thereafter, both carotenoids inhibited subsequent development of transformed foci in a dose-dependent manner. Again, CTX was more effective than β-C. The inhibition of MCA-induced transformation was reversible; upon removal of the drug, transformed foci developed within 2 weeks, indicating that the carotenoids were not specifically toxic to initiated cells. Although both carotenoids caused a small dose-dependent decrease in the growth rate of both parental and initiated 10T1/2 cells, they did not markedly affect colony size or number when the cells were treated as in the transformation assays, nor did they influence the expression of neoplasia of two transformed cell lines. We suggest that the carotenoids' lipid anti-oxidant properties may be responsible for their inhibitory actions on transformation. (author)

  11. 49 CFR 192.369 - Service lines: Connections to cast iron or ductile iron mains.

    Science.gov (United States)

    2010-10-01

    ... 49 Transportation 3 2010-10-01 2010-10-01 false Service lines: Connections to cast iron or ductile iron mains. 192.369 Section 192.369 Transportation Other Regulations Relating to Transportation... ductile iron mains. (a) Each service line connected to a cast iron or ductile iron main must be connected...

  12. Grain-boundary contamination and ductility loss in boron-doped Ni3Al

    International Nuclear Information System (INIS)

    Takeyama, M.; Liu, C.T.

    1989-01-01

    The effect of heat treatment on ductility loss in a boron-doped Ni 3 Al was studied by tensile tests of specimens exposed to contaminated environments. Specimens heat treated at 1323 K exhibit only 3.3 pct ductility at 1033 K, whereas a previous study reported a tensile ductility of about 24 pct for specimens heat treated in a high vacuum system. Aluminum oxide and silicon-contaminated regions were observed at and near external surfaces of annealed specimens. The reactions occurring during heat treatment are interpreted in terms of thermodynamics. An Auger electron spectroscopy study revealed oxygen penetration along grain boundaries during annealing. Although the surface oxide layer and silicon contamination both contribute to some reductions in ductility, the major cause for embrittlement comes from oxygen penetration along grain boundaries

  13. Photostress analysis of stress-induced martensite phase transformation in superelastic NiTi

    International Nuclear Information System (INIS)

    Katanchi, B.; Choupani, N.; Khalil-Allafi, J.; Baghani, M.

    2017-01-01

    Phase transformation in shape memory alloys is the most important factor in their unique behavior. In this paper, the formation of stress induced martensite phase transformation in a superelastic NiTi (50.8% Ni) shape memory alloy was investigated by using the photo-stress method. First, the material's fabrication procedure has been described and then the material was studied using the metallurgical tests such as differential scanning calorimetry and X-ray diffraction to characterize the material features and the mechanical tensile test to investigate the superelastic behavior. As a new method in observation of the phase transformation, photo-stress pictures showed the formation of stress induced martensite in a superelastic dog-bone specimen during loading and subsequently it's disappearing during unloading. Finally, finite element analysis was implemented using the constitutive equations derived based on the Boyd-Lagoudas phenomenological model.

  14. Photostress analysis of stress-induced martensite phase transformation in superelastic NiTi

    Energy Technology Data Exchange (ETDEWEB)

    Katanchi, B. [Mechanical Engineering Faculty, Sahand University of Technology, Tabriz (Iran, Islamic Republic of); Choupani, N., E-mail: choupani@sut.ac.ir [Mechanical Engineering Faculty, Sahand University of Technology, Tabriz (Iran, Islamic Republic of); Khalil-Allafi, J. [Research Center for Advance Materials, Faculty of Materials Engineering, Sahand University of Technology, Tabriz (Iran, Islamic Republic of); Baghani, M. [School of Mechanical Engineering, College of Engineering, University of Tehran (Iran, Islamic Republic of)

    2017-03-14

    Phase transformation in shape memory alloys is the most important factor in their unique behavior. In this paper, the formation of stress induced martensite phase transformation in a superelastic NiTi (50.8% Ni) shape memory alloy was investigated by using the photo-stress method. First, the material's fabrication procedure has been described and then the material was studied using the metallurgical tests such as differential scanning calorimetry and X-ray diffraction to characterize the material features and the mechanical tensile test to investigate the superelastic behavior. As a new method in observation of the phase transformation, photo-stress pictures showed the formation of stress induced martensite in a superelastic dog-bone specimen during loading and subsequently it's disappearing during unloading. Finally, finite element analysis was implemented using the constitutive equations derived based on the Boyd-Lagoudas phenomenological model.

  15. Fracture toughness of borides formed on boronized ductile iron

    International Nuclear Information System (INIS)

    Sen, Ugur; Sen, Saduman; Koksal, Sakip; Yilmaz, Fevzi

    2005-01-01

    In this study, fracture toughness properties of boronized ductile iron were investigated. Boronizing was realized in a salt bath consisting of borax, boric acid and ferro-silicon. Boronizing heat treatment was carried out between 850 and 950 deg. C under the atmospheric pressure for 2-8 h. Borides e.g. FeB, Fe 2 B formed on ductile iron was verified by X-ray diffraction (XRD) analysis, SEM and optical microscope. Experimental results revealed that longer boronizing time resulted in thicker boride layers. Optical microscope cross-sectional observation of borided layers showed dentricular morphology. Both microhardness and fracture toughness of borided surfaces were measured via Vickers indenter. The harnesses of borides formed on the ductile iron were in the range of 1160-2140 HV 0.1 and fracture toughness were in the range of 2.19-4.47 MPa m 1/2 depending on boronizing time and temperature

  16. Ductility of reinforced concrete columns confined with stapled strips

    International Nuclear Information System (INIS)

    Tahir, M.F.; Khan, Q.U.Z.; Shabbir, F.; Sharif, M.B.; Ijaz, N.

    2015-01-01

    Response of three 150x150x450mm short reinforced concrete (RC) columns confined with different types of confining steel was investigated. Standard stirrups, strips and stapled strips, each having same cross-sectional area, were employed as confining steel around four comer column bars. Experimental work was aimed at probing into the affect of stapled strip confinement on post elastic behavior and ductility level under cyclic axial load. Ductility ratios, strength enhancement factor and core concrete strengths were compared to study the affect of confinement. Results indicate that strength enhancement in RC columns due to strip and stapled strip confinement was not remarkable as compared to stirrup confined column. It was found that as compared to stirrup confined column, stapled strip confinement enhanced the ductility of RC column by 183% and observed axial capacity of stapled strip confined columns was 41 % higher than the strip confined columns. (author)

  17. Limits to ductility set by plastic flow localization

    International Nuclear Information System (INIS)

    Needleman, A.; Rice, J.R.

    1977-11-01

    The theory of strain localization is reviewed with reference both to local necking in sheet metal forming processes and to more general three dimensional shear band localizations that sometimes mark the onset of ductile rupture. Both bifurcation behavior and the growth of initial imperfections are considered. In addition to analyses based on classical Mises-like constitutive laws, approaches to localization based on constitutive models that may more accurately model processes of slip and progressive rupturing on the microscale in structural alloys are discussed. Among these non-classical constitutive features are the destabilizing roles of yield surface vertices and of non-normality effects, arising, for example, from slight pressure sensitivity of yield. Analyses based on a constitutive model of a progressively cavitating dilational plastic material which is intended to model the process of ductile void growth in metals are also discussed. A variety of numerical results are presented. In the context of the three dimensional theory of localization, it is shown that a simple vertex model predicts ratios of ductility in plane strain tension to ductility in axisymmetric tension qualitatively consistent with experiment, and the destabilizing influence of a hydrostatic stress dependent void nucleation criterion is illustrated. In the sheet necking context, and focussing on positive biaxial stretching, it is shown that forming limit curves based on a simple vertex model and those based on a simple void growth model are qualitatively in accord, although attributing instability to very different physical mechanisms. These forming limit curves are compared with those obtained from the Mises material model and employing various material and geometric imperfections

  18. Finite-strain micromechanical model of stress-induced martensitic transformations in shape memory alloys

    International Nuclear Information System (INIS)

    Stupkiewicz, S.; Petryk, H.

    2006-01-01

    A micromechanical model of stress-induced martensitic transformation in single crystals of shape memory alloys is developed. This model is a finite-strain counterpart to the approach presented recently in the small-strain setting [S. Stupkiewicz, H. Petryk, J. Mech. Phys. Solids 50 (2002) 2303-2331]. The stress-induced transformation is assumed to proceed by the formation and growth of parallel martensite plates within the austenite matrix. Propagation of phase transformation fronts is governed by a rate-independent thermodynamic criterion with a threshold value for the thermodynamic driving force, including in this way the intrinsic dissipation due to phase transition. This criterion selects the initial microstructure at the onset of transformation and governs the evolution of the laminated microstructure at the macroscopic level. A multiplicative decomposition of the deformation gradient into elastic and transformation parts is assumed, with full account for the elastic anisotropy of the phases. The pseudoelastic behavior of Cu-Zn-Al single crystal in tension and compression is studied as an application of the model

  19. Strain rate effects on fracture behavior of Austempered Ductile Irons

    Science.gov (United States)

    Ruggiero, Andrew; Bonora, Nicola; Gentile, Domenico; Iannitti, Gianluca; Testa, Gabriel; Hörnqvist Colliander, Magnus; Masaggia, Stefano; Vettore, Federico

    2017-06-01

    Austempered Ductile Irons (ADIs), combining high strength, good ductility and low density, are candidates to be a suitable alternative to high-strength steels. Nevertheless, the concern about a low ductility under dynamic loads often leads designers to exclude cast irons for structural applications. However, results from dynamic tensile tests contradict this perception showing larger failure strain with respect to quasistatic data. The fracture behaviour of ADIs depends on damage mechanisms occurring in the spheroids of graphite, in the matrix and at their interface, with the matrix (ausferrite) consisting of acicular ferrite in carbon-enriched austenite. Here, a detailed microstructural analysis was performed on the ADI 1050-6 deformed under different conditions of strain rates, temperatures, and states of stress. Beside the smooth specimens used for uniaxial tensile tests, round notched bars to evaluate the ductility reduction with increasing stress triaxiality and tophat geometries to evaluate the propensity to shear localization and the associated microstructural alterations were tested. The aim of the work is to link the mechanical and fracture behavior of ADIs to the load condition through the microstructural modifications that occur for the corresponding deformation path.

  20. Toughened microstructures for ductile phase reinforced molybdenum disilicide

    International Nuclear Information System (INIS)

    Pickard, S.M.; Ghosh, A.K.

    1995-01-01

    Various morphologies of ductile Nb refractory metal reinforcement are incorporated into a MoSi 2 matrix using powder metallurgy, including single-ply laminates, continuous metal ribbons and sections of 2-dimensional wire mesh. Hot forging techniques are used to redistribute the reinforcement and change the dimensions and the aspect ratio of the reinforcing metal ligaments. Work-of-rupture measurements are conducted on bend test specimens and precracked tensile specimens of the composite so that the toughness contribution from the various ductile metal morphologies can be assessed according to its effectiveness. Accompanying microstructural examination of crack bridging interaction with the reinforcement is conducted

  1. Progressive softening of brittle-ductile transition due to interplay between chemical and deformation processes

    Science.gov (United States)

    Jeřábek, Petr; Bukovská, Zita; Morales, Luiz F. G.

    2017-04-01

    The micro-scale shear zones (shear bands) in granitoids from the South Armorican Shear Zone reflect localization of deformation and progressive weakening in the conditions of brittle-ductile transition. We studied microstructures in the shear bands with the aim to establish their P-T conditions and to derive stress and strain rates for specific deformation mechanisms. The evolving microstructure within shear bands documents switches in deformation mechanisms related to positive feedbacks between deformation and chemical processes and imposes mechanical constraints on the evolution of the brittle-ductile transition in the continental transform fault domains. The metamorphic mineral assemblage present in the shear bands indicate their formation at 300-350 ˚ C and 100-400 MPa. Focusing on the early development of shear bands, we identified three stages of shear band evolution. The early stage I associated with initiation of shear bands occurs via formation of microcracks with possible yielding differential stress of up to 250 MPa (Diamond and Tarantola, 2015). Stage II is associated with subgrain rotation recrystallization and dislocation creep in quartz and coeval dissolution-precipitation creep of microcline. Recrystallized quartz grains in shear bands show continual increase in size, and decrease in stress and strain rates from 94 MPa to 17-26 MPa (Stipp and Tullis, 2003) and 3.8*10-12 s-1- 1.8*10-14 s-1 (Patterson and Luan, 1990) associated with deformation partitioning into weaker microcline layer and shear band widening. The quartz mechanical data allowed us to set some constrains for coeval dissolution-precipitation of microcline which at our estimated P-T conditions suggests creep at 17-26 MPa differential stress and 3.8*10-13 s-1 strain rate. Stage III is characterized by localized slip along interconnected white mica bands accommodated by dislocation creep at strain rate 3.8*10-12 s-1 and stress 9.36 MPa (Mares and Kronenberg, 1993). The studied example

  2. Chemically vapor-deposited tungsten: its high temperature strength and ductility

    International Nuclear Information System (INIS)

    Bryant, W.A.

    1977-01-01

    The high temperature tensile ductility (as measured by total elongation normal to the growth direction) of chemically vapor-deposited tungsten was found to be significantly greater than previously reported. A correlation was found between ductility and void content. However, voids were found to have essentially no effect on the high temperature strength of this material, which is considerably weaker than powder metallurgy tungsten. (Auth.)

  3. Probing the Evolution of Retained Austenite in TRIP Steel During Strain-Induced Transformation: A Multitechnique Investigation

    Science.gov (United States)

    Haidemenopoulos, G. N.; Constantinou, M.; Kamoutsi, H.; Krizan, D.; Bellas, I.; Koutsokeras, L.; Constantinides, G.

    2018-06-01

    X-ray diffraction analysis, magnetic force microscopy, and the saturation magnetization method have been employed to study the evolution of the percentage and size of retained austenite (RA) particles during strain-induced transformation in a transformation-induced plasticity (TRIP) steel. A low-alloy TRIP-700 steel with nominal composition Fe-0.2C-0.34Si-1.99Mn-1Al (mass%) was subjected to interrupted tensile testing at strain levels of 0-22% and the microstructure subsequently studied. The results of the three experimental techniques were in very good agreement regarding the estimated austenite volume fraction and its evolution with strain. Furthermore, this multitechnique approach revealed that the average particle size of RA reduced as the applied strain was increased, suggesting that larger particles are less stable and more susceptible to strain-induced phase transformation. Such experimentally determined evolution of the austenite size with strain could serve as an input to kinetic models that aim to predict the strain-induced transformation in low-alloy TRIP steels.

  4. Effect of plastic strain on elastic-plastic fracture toughness of SM490 carbon steel. Assessment by stress-based criterion for ductile crack initiation

    International Nuclear Information System (INIS)

    Kamaya, Masayuki

    2012-01-01

    Although the plastic strain induced in materials increases the mechanical strength, it may reduce the fracture toughness. In this study, the change in fracture toughness of SM490 carbon steel due to pre-straining was investigated using a stress-based criterion for ductile crack initiation. The specimens with blunt notch of various radiuses were used in addition to those with conventional fatigue pre-cracking. The degree of applied plastic strain was 5%, 10% or 20%. The fracture toughness was largest when the induced plastic strain was 5%, although it decreased for the plastic strains of 10% and 20%. The stress and strain distributions near the crack tip of fracture toughness test specimens was investigated by elastic-plastic finite element analyses using a well-correlated stress-strain curve for large strain. It was shown that the critical condition at the onset of the ductile crack was better correlated with the equivalent stress than the plastic strain at the crack tip. By using the stress-based criterion, which was represented by the equivalent stress and stress triaxiality, the change in the fracture toughness due to pre-straining could be reasonably explained. Based on these results, it was concluded that the stress-based criterion should be used for predicting the ductile crack initiation. (author)

  5. Ductility Enhancement of Molybdenum Phase by Nano-sized Oxide Dispersions

    Energy Technology Data Exchange (ETDEWEB)

    Kang, Bruce

    2008-07-18

    The objective of this research is to understand and to remedy the impurity effects for room-temperature ductility enhancement of molybdenum (Mo) based alloys by the inclusion of nano-sized metal oxide dispersions. This research combines theoretical, computational, and experimental efforts. The results will help to formulate systematic strategies in searching for better composed Mo-based alloys with optimal mechanical properties. For this project, majority of the research effort was directed to atomistic modeling to identify the mechanisms responsible for the oxygen embrittling and ductility enhancement based on fundamental electronic structure analysis. Through first principles molecular dynamics simulations, it was found that the embrittling impurity species were attracted to the metal oxide interface, consistent with previous experiments. Further investigation on the electronic structures reveals that the presence of embrittling species degrades the quality of the metallic chemical bonds in the hosting matrix in a number of ways, the latter providing the source of ductility. For example, the spatial flexibility of the bonds is reduced, and localization of the impurity states occurs to pin the dislocation flow. Rice’s criterion has been invoked to explain the connections of electronic structure and mechanical properties. It was also found that when impurity species become attracted to the metal oxide interface, some of the detrimental effects are alleviated, thus explaining the observed ductility enhancement effects. These understandings help to develop predictive capabilities to facilitate the design and optimization of Mo and other high temperature alloys (e.g. ODS alloys) for fossil energy materials applications. Based on the theoretical and computational studies, the experimental work includes the preparation of Mo powders mixed with candidate nano-sized metal oxides, which were then vacuum hot-pressed to make the Mo alloys. Several powder mixing methods

  6. Heterogeneous multi-layered IF steel with simultaneous high strength and good ductility

    Science.gov (United States)

    Zhang, Ling; Jiang, Xiaojuan; Wang, Yuhui; Chen, Qiang; Chen, Zhen; Zhang, Yonghong; Huang, Tianlin; Wu, Guilin

    2017-07-01

    Multi-layered IF steel samples were designed and fabricated by hot compression followed by cold forging of an alternating stack of cold-rolled and annealed IF steel sheets, with an aim to improve the strength of the material without losing much ductility. A very good combination of strength and ductility was achieved by proper annealing after deformation. Microstructural analysis by electron back-scatter diffraction revealed that the good combination of strength and ductility is related to a characteristic hierarchical structure that is characterized by layered and lamella structures with different length scales.

  7. Origin of Shear Stability and Compressive Ductility Enhancement of Metallic Glasses by Metal Coating

    Science.gov (United States)

    Sun, B. A.; Chen, S. H.; Lu, Y. M.; Zhu, Z. G.; Zhao, Y. L.; Yang, Y.; Chan, K. C.; Liu, C. T.

    2016-01-01

    Metallic glasses (MGs) are notorious for the poor macroscopic ductility and to overcome the weakness various intrinsic and extrinsic strategies have been proposed in past decades. Among them, the metal coating is regarded as a flexible and facile approach, yet the physical origin is poorly understood due to the complex nature of shear banding process. Here, we studied the origin of ductile enhancement in the Cu-coating both experimentally and theoretically. By examining serrated shear events and their stability of MGs, we revealed that the thin coating layer plays a key role in stopping the final catastrophic failure of MGs by slowing down shear band dynamics and thus retarding its attainment to a critical instable state. The mechanical analysis on interplay between the coating layer and shear banding process showed the enhanced shear stability mainly comes from the lateral tension of coating layer induced by the surface shear step and the bonding between the coating layer and MGs rather than the layer thickness is found to play a key role in contributing to the shear stability. PMID:27271435

  8. Size-Dependent Brittle-to-Ductile Transition in Silica Glass Nanofibers.

    Science.gov (United States)

    Luo, Junhang; Wang, Jiangwei; Bitzek, Erik; Huang, Jian Yu; Zheng, He; Tong, Limin; Yang, Qing; Li, Ju; Mao, Scott X

    2016-01-13

    Silica (SiO2) glass, an essential material in human civilization, possesses excellent formability near its glass-transition temperature (Tg > 1100 °C). However, bulk SiO2 glass is very brittle at room temperature. Here we show a surprising brittle-to-ductile transition of SiO2 glass nanofibers at room temperature as its diameter reduces below 18 nm, accompanied by ultrahigh fracture strength. Large tensile plastic elongation up to 18% can be achieved at low strain rate. The unexpected ductility is due to a free surface affected zone in the nanofibers, with enhanced ionic mobility compared to the bulk that improves ductility by producing more bond-switching events per irreversible bond loss under tensile stress. Our discovery is fundamentally important for understanding the damage tolerance of small-scale amorphous structures.

  9. Effect of boron on the hot ductility of 2.25Cr1Mo steel

    International Nuclear Information System (INIS)

    Song, S.-H.; Guo, A.-M.; Shen, D.-D.; Yuan, Z.-X.; Liu, J.; Xu, T.-D.

    2003-01-01

    The effect of boron on the hot ductility of 2.25Cr1Mo steel is investigated by means of a Gleeble 2000 thermomechanical simulator. There is a trough in the hot ductility-temperature curve, which is located between 1000 and 700 deg. C. The ductility trough shifts to lower temperatures with increasing boron content and the hot brittle range becomes shallow and narrow. In general, boron may improve the steel hot ductility in that it may retard the formation of pro-eutectoid ferrite and increase grain boundary cohesion. These effects may be related to the segregation of boron to austenite grain boundaries

  10. A ductile fracture analysis using a local damage model

    Energy Technology Data Exchange (ETDEWEB)

    Benseddiq, N. [Laboratoire de Mecanique et de Rheologie de Tours, Ecole Nationale d' Ingenieurs du Val de Loire (ENIVL), Rue de la Chocolaterie, 41000 Blois Cedex (France)], E-mail: nbensedd@polytech-lille.fr; Imad, A. [Laboratoire de Mecanique de Lille (UMR CNRS 8107), USTL, Ecole Polytechnique Universitaire de Lille Cite Scientifique, Avenue P. Langevin, 59655 Villeneuve d' Ascq Cedex (France)

    2008-04-15

    In this study, the Gurson-Tvergaard-Needleman (GTN) model is used to investigate ductile tearing. The sensitivity of the model parameters has been examined from literature data. Three types of parameters have been reported: the 'constitutive parameters'q{sub 1}, q{sub 2} and q{sub 3}, the 'initial material and nucleation parameters' and the 'critical and final failure parameters'. Each parameter in this model has been analysed in terms of various results in the literature. Both experimental and numerical results have been obtained for notched round and CT specimens to characterize ductile failure in a NiCr steel (12NC6) with a small initial void volume fraction f{sub 0} (f{sub 0}=0.001%). Ductile crack growth, defined by the J-{delta}a curve, has been correctly simulated using the numerical calculations by adjusting the different parameters of the GTN model in the calibration procedure.

  11. Nano-modification to improve the ductility of cementitious composites

    International Nuclear Information System (INIS)

    Yeşilmen, Seda; Al-Najjar, Yazin; Balav, Mohammad Hatam; Şahmaran, Mustafa; Yıldırım, Gürkan; Lachemi, Mohamed

    2015-01-01

    Effect of nano-sized mineral additions on ductility of engineered cementitious composites (ECC) containing high volumes of fly ash was investigated at different hydration degrees. Various properties of ECC mixtures with different mineral additions were compared in terms of microstructural properties of matrix, fiber-matrix interface, and fiber surface to assess improvements in ductility. Microstructural characterization was made by measuring pore size distributions through mercury intrusion porosimetry (MIP). Hydration characteristics were assessed using thermogravimetric analysis/differential thermal analysis (TGA/DTA), and fiber-matrix interface and fiber surface characteristics were assessed using scanning electron microscopy (SEM) through a period of 90 days. Moreover, compressive and flexural strength developments were monitored for the same period. Test results confirmed that mineral additions could significantly improve both flexural strength and ductility of ECC, especially at early ages. Cheaper Nano-CaCO 3 was more effective compared to nano-silica. However, the crystal structure of CaCO 3 played a very important role in the range of expected improvements

  12. Experimental study of stress-induced localized transformation plastic zones in tetragonal zirconia polycrystalline ceramics

    International Nuclear Information System (INIS)

    Sun, Q.; Zhao, Z.; Chen, W.; Qing, X.; Xu, X.; Dai, F.

    1994-01-01

    Stress-induced martensitic transformation plastic zones in ceria-stabilized tetragonal zirconia polycrystalline ceramics (Ce-TZP), under loading conditions of uniaxial tension, compression, and three-point bending, are studied by experiments. The transformed monoclinic phase volume fraction distribution and the corresponding plastic strain distribution and the surface morphology (surface uplift) are measured by means of moire interferometry, Raman microprobe spectroscopy, and the surface measurement system. The experimental results from the above three kinds of specimens and methods consistently show that the stress-induced transformation at room temperature of the above specimen is not uniform within the transformation zone and that the plastic deformation is concentrated in some narrow band; i.e., macroscopic plastic flow localization proceeds during the initial stage of plastic deformation. Flow localization phenomena are all observed in uniaxial tension, compression, and three-point bending specimens. Some implications of the flow localization to the constitutive modeling and toughening of transforming thermoelastic polycrystalline ceramics are explored

  13. The color-flavor transformation of induced QCD

    CERN Document Server

    Shnir, Ya M

    2002-01-01

    The color-flavor transformation is applied to the $U(N_c)$ lattice model, in which the gauge theory is induced by the chiral scalar field associated with an elementary plaquette. The flavor degrees of freedom are related with the number of generations of the auxiliary field, and flavor components of each generation are associated with all the plaquettes having a lattice site in common. The property of the dual color-flavor transformed theory, which is expressed in terms of the gauge singlets, are analyzed in $d=2$ and $d=3$ dimensions. The saddle point solution of the model in the large-$N_c$ limit is discussed. The correlations between the plaquettes, which are described by the dual theory, allows to define the dual lattice. In $d=3$ dimensions it is made of tetradecahedra which correspond to the cubes of the original lattice. The continuum limit of $d=2$ effective theory is discussed.

  14. The color-flavor transformation of induced QCD

    International Nuclear Information System (INIS)

    Shnir, Ya.

    2002-09-01

    The color-flavor transformation is applied to the U(N c ) lattice model, in which the gauge theory is induced by the chiral scalar field associated with an elementary plaquette. The flavor degrees of freedom are related with the number of generations of the auxiliary field, and flavor components of each generation are associated with all the plaquettes having a lattice site in common. The property of the dual color-flavor transformed theory, which is expressed in terms of the gauge singlets, are analyzed in d=2 and d=3 dimensions. The saddle point solution of the model in the large-N c limit is discussed. The correlations between the plaquettes, which are described by the dual theory, allows to define the dual lattice. In d=3 dimensions it is made of tetradecahedra which correspond to the cubes of the original lattice. The continuum limit of d=2 effective theory is discussed. (author)

  15. Effect of long-term thermal exposure on the hot ductility behavior of GH3535 alloy

    International Nuclear Information System (INIS)

    Han, F.F.; Zhou, B.M.; Huang, H.F.; Leng, B.; Lu, Y.L.; Li, Z.J.; Zhou, X.T.

    2016-01-01

    The hot ductility behavior of Ni–16Mo–7Cr alloys (named GH3535) exposed at 700 °C for different durations has been investigated by means of tensile test. It was found that the alloy exhibited a constant low ductility within the first 10 h exposure, and then showed an increasing ductility with the exposure time until 1000 h. After that, the ductility of the alloy decreased gradually with the increasing exposure time up to 10000 h. Detailed microstructural investigations using scanning electron microscopy (SEM), energy dispersive spectroscopy (EDS), electron backscatter diffraction (EBSD), and transmission electron microscopy (TEM) have shown that the change in the ductility of the alloy with the exposure time could be attributed to the precipitation of M 12 C carbide at the grain boundary. Such precipitates with size of 200 nm, which are formed during the thermal exposure within 1000 h, can significantly restrain the grain boundary sliding and crack initiation, resulting in the high ductility of the alloy. Further exposure will cause the coarsening of the carbides, making them as the source of grain boundary cracks, hence decreases the ductility of the alloy.

  16. Characterization of Austempered Ferritic Ductile Iron

    Science.gov (United States)

    Dakre, Vinayak S.; Peshwe, D. R.; Pathak, S. U.; Likhite, A. A.

    2018-04-01

    The ductile iron (DI) has graphite nodules enclose in ferrite envelop in pearlitic matrix. The pearlitic matrix in DI was converted to ferritic matrix through heat treatment. This heat treatment includes austenitization of DI at 900°C for 1h, followed by furnace cooling to 750°C & hold for 1h, then again furnace cooling to 690°C hold for 2h, then samples were allowed to cool in furnace. The new heat treated DI has graphite nodules in ferritic matrix and called as ferritic ductile iron (FDI). Both DIs were austenitized at 900°C for 1h and then quenched into salt bath at 325°C. The samples were soaked in salt bath for 60, 120, 180, 240 and 300 min followed by air cooling. The austempered samples were characterized with help of optical microscopy, SEM and X-ray diffraction analysis. Austempering of ferritic ductile iron resulted in finer ausferrite matrix as compared to ADI. Area fraction of graphite, ferrite and austenite were determining using AXIOVISION-SE64 software. Area fraction of graphite was more in FDI than that of as cast DI. The area fraction of graphite remains unaffected due to austempering heat treatment. Ausferritic matrix coarsened (feathered) with increasing in austempering time for both DI and FDI. Bulk hardness test was carried on Rockwell Hardness Tester with load of 150 kgf and diamond indenter. Hardness obtained in as cast DI is 28 HRC which decreased to 6 HRC in FDI due conversion of pearlitic matrix to ferritic matrix. Hardness is improved by austempering process.

  17. Electric-field-induced paraelectric to ferroelectric phase transformation in prototypical polycrystalline BaTiO3

    International Nuclear Information System (INIS)

    Wang, Zhiyang; Hinterstein, Manuel; Daniels, John E.; Webber, Kyle G.; Hudspeth, Jessica M.

    2014-01-01

    An electric-field-induced paraelectric cubic to ferroelectric tetragonal phase transformation has been directly observed in prototypical polycrystalline BaTiO 3 at temperatures above the Curie point (T C ) using in situ high-energy synchrotron X-ray diffraction. The transformation persisted to a maximum temperature of 4 °C above T C . The nature of the observed field-induced transformation and the resulting development of domain texture within the induced phase were dependent on the proximity to the transition temperature, corresponding well to previous macroscopic measurements. The transition electric field increased with increasing temperature above T C , while the magnitude of the resultant tetragonal domain texture at the maximum electric field (4 kV mm −1 ) decreased at higher temperatures. These results provide insights into the phase transformation behavior of a prototypical ferroelectric and have important implications for the development of future large-strain phase-change actuator materials.

  18. Role of reactive oxygen species in arsenic-induced transformation of human lung bronchial epithelial (BEAS-2B) cells

    Energy Technology Data Exchange (ETDEWEB)

    Zhang, Zhuo, E-mail: zhuo.zhang@uky.edu [Graduate Center for Toxicology, University of Kentucky, Lexington, KY 40536 (United States); Pratheeshkumar, Poyil; Budhraja, Amit; Son, Young-Ok [Center for Research on Environmental Diseases, University of Kentucky, Lexington, KY 40536 (United States); Kim, Donghern [Graduate Center for Toxicology, University of Kentucky, Lexington, KY 40536 (United States); Shi, Xianglin [Center for Research on Environmental Diseases, University of Kentucky, Lexington, KY 40536 (United States)

    2015-01-09

    Highlights: • Short term exposure of cells to arsenic causes ROS generation. • Chronical exposure of cells to arsenic causes malignant cell transformation. • Inhibition of ROS generation reduces cell transformation by arsenic. • Arsenic-transformed cells exhibit reduced capacity of generating ROS. • Arsenic-transformed cells exhibit increased levels of antioxidants. - Abstract: Arsenic is an environmental carcinogen, its mechanisms of carcinogenesis remain to be investigated. Reactive oxygen species (ROS) are considered to be important. A previous study (Carpenter et al., 2011) has measured ROS level in human lung bronchial epithelial (BEAS-2B) cells and arsenic-transformed BEAS-2B cells and found that ROS levels were higher in transformed cells than that in parent normal cells. Based on these observations, the authors concluded that cell transformation induced by arsenic is mediated by increased cellular levels of ROS. This conclusion is problematic because this study only measured the basal ROS levels in transformed and parent cells and did not investigate the role of ROS in the process of arsenic-induced cell transformation. The levels of ROS in arsenic-transformed cells represent the result and not the cause of cell transformation. Thus question concerning whether ROS are important in arsenic-induced cell transformation remains to be answered. In the present study, we used expressions of catalase (antioxidant against H{sub 2}O{sub 2}) and superoxide dismutase 2 (SOD2, antioxidant against O{sub 2}{sup ·−}) to decrease ROS level and investigated their role in the process of arsenic-induced cell transformation. Our results show that inhibition of ROS by antioxidant enzymes decreased arsenic-induced cell transformation, demonstrating that ROS are important in this process. We have also shown that in arsenic-transformed cells, ROS generation was lower and levels of antioxidants are higher than those in parent cells, in a disagreement with the previous

  19. Role of reactive oxygen species in arsenic-induced transformation of human lung bronchial epithelial (BEAS-2B) cells

    International Nuclear Information System (INIS)

    Zhang, Zhuo; Pratheeshkumar, Poyil; Budhraja, Amit; Son, Young-Ok; Kim, Donghern; Shi, Xianglin

    2015-01-01

    Highlights: • Short term exposure of cells to arsenic causes ROS generation. • Chronical exposure of cells to arsenic causes malignant cell transformation. • Inhibition of ROS generation reduces cell transformation by arsenic. • Arsenic-transformed cells exhibit reduced capacity of generating ROS. • Arsenic-transformed cells exhibit increased levels of antioxidants. - Abstract: Arsenic is an environmental carcinogen, its mechanisms of carcinogenesis remain to be investigated. Reactive oxygen species (ROS) are considered to be important. A previous study (Carpenter et al., 2011) has measured ROS level in human lung bronchial epithelial (BEAS-2B) cells and arsenic-transformed BEAS-2B cells and found that ROS levels were higher in transformed cells than that in parent normal cells. Based on these observations, the authors concluded that cell transformation induced by arsenic is mediated by increased cellular levels of ROS. This conclusion is problematic because this study only measured the basal ROS levels in transformed and parent cells and did not investigate the role of ROS in the process of arsenic-induced cell transformation. The levels of ROS in arsenic-transformed cells represent the result and not the cause of cell transformation. Thus question concerning whether ROS are important in arsenic-induced cell transformation remains to be answered. In the present study, we used expressions of catalase (antioxidant against H 2 O 2 ) and superoxide dismutase 2 (SOD2, antioxidant against O 2 ·− ) to decrease ROS level and investigated their role in the process of arsenic-induced cell transformation. Our results show that inhibition of ROS by antioxidant enzymes decreased arsenic-induced cell transformation, demonstrating that ROS are important in this process. We have also shown that in arsenic-transformed cells, ROS generation was lower and levels of antioxidants are higher than those in parent cells, in a disagreement with the previous report. The

  20. Investigation of protection problems due to geomagnetically induced currents (solar magnetic disturbances, transformers)

    International Nuclear Information System (INIS)

    1997-01-01

    The problems with geomagnetically induced currents (GIC) flowing in power systems during solar magnetic disturbances were studied. Transformers can overheat as a result of GIC because they can cause offset saturation of power system transformers. Harmonic currents can also be introduced into the system which then affect the relay and protection systems. Several studies have been conducted using simplified transformer core models to predict the transformer response to DC excitation. In this study, an accurate transformer core model was developed and validated by comparing the recorded waveforms during GIC events with simulated waveforms using the model. The new transformer core model was used to evaluate the performance of different protection schemes under GIC

  1. Mechanistic origin and prediction of enhanced ductility in magnesium alloys

    Science.gov (United States)

    Wu, Zhaoxuan; Ahmad, Rasool; Yin, Binglun; Sandlöbes, Stefanie; Curtin, W. A.

    2018-01-01

    Development of ductile magnesium alloys is key to their use in reducing the weight of vehicles and other applications. Wu et al. tackle this issue by determining the underlying mechanisms in unprocessed magnesium alloys. Dilute amounts of solutes enhanced certain ductility-improving mechanisms over ones that cause brittle fracture. From this, the authors developed a theory that may be helpful for screening the large number of potential magnesium alloy compositions.

  2. Modeling combined tension-shear failure of ductile materials

    International Nuclear Information System (INIS)

    Partom, Y

    2014-01-01

    Failure of ductile materials is usually expressed in terms of effective plastic strain. Ductile materials can fail by two different failure modes, shear failure and tensile failure. Under dynamic loading shear failure has to do with shear localization and formation of adiabatic shear bands. In these bands plastic strain rate is very high, dissipative heating is extensive, and shear strength is lost. Shear localization starts at a certain value of effective plastic strain, when thermal softening overcomes strain hardening. Shear failure is therefore represented in terms of effective plastic strain. On the other hand, tensile failure comes about by void growth under tension. For voids in a tension field there is a threshold state of the remote field for which voids grow spontaneously (cavitation), and the material there fails. Cavitation depends on the remote field stress components and on the flow stress. In this way failure in tension is related to shear strength and to failure in shear. Here we first evaluate the cavitation threshold for different remote field situations, using 2D numerical simulations with a hydro code. We then use the results to compute examples of rate dependent tension-shear failure of a ductile material.

  3. Effect of low fatigue on the ductile-brittle transition of molybdenum

    International Nuclear Information System (INIS)

    Furuya, K.; Nagata, N.; Watanabe, R.; Yoshida, H.

    1982-01-01

    An explicit ductile-brittle transition of molybdenum occurring in both tensile and low cycle fatigue tests was investigated. Tests were performed on several sorts of molybdenum and its alloy TZM, and effects of heat treatment, fabrication method and alloying on the transition behavior and fracture mode are described in detail. All the materials exhibited a brittle failure with degraded fatigue behavior at room temperature, while they became ductile as temperature increased up to 573 K. The tendency of fatigue results was qualitatively in accordance with that of reduction of area in tensile tests. Differences among the materials were minor on the ductile-brittle transition temperature (DBTT), but major on the fatigue life for the embrittled materials. (orig.)

  4. Modelling the tearing crack growth in a ductile ferritic steel using X-FEM elements

    International Nuclear Information System (INIS)

    Simatos, A.; Prabel, B.; Marie, S.; Nedelec, M.; Combescure, A.

    2012-01-01

    Extended Finite Element Method (X-FEM) is used to model a cracked structure without meshing explicitly the crack. Indeed, the crack is represented by a discontinuity of the displacement field through additional degrees of freedom using Heaviside type function or derived from the Irwin's singular fields. Initially, the stress integration in the XFEM framework supposed to divide the cut elements into sub-triangles that are conform to the crack. This was motivated in order to integrate the behaviour accurately on both sides of the crack in particular at proximity of the crack tip where singular enrichments are present. This strategy induces field projections from the usual Gauss point configuration to a variable new one that depends on the crack position in the element. For ductile fracture modelization, this approach is not applicable, because in presence of large scale yield, the projection of internal variable fields is not conservative, in particular at proximity of the crack tip. In order to circumvent this problem, a new integration strategy was proposed by B. Prabel. It consists in using 64 Gauss points that are placed without regards to the crack position. This simple integration scheme permits to take implicitly into account the crack position and the fields in the element in an accurate and consistent way. This strategy was used in problem calculation for which the plastic radius remained small. It allowed introducing the over integrated elements in the probable propagation zone, just before plastification. In the case of ductile tearing, the plasticity is not confined near the crack tip and an improvement of the proposed strategy is made. This is then used to model large ductile crack growth in a ductile ferritic steel. To validate the predictions, the modelization is compared to a second F.E. calculation using the node release technique for the crack propagation. It is then shown that the two predictions are strictly equivalents. (authors)

  5. Influence of temperature and grain size on the tensile ductility of AISI 316 stainless steel

    International Nuclear Information System (INIS)

    Mannan, S.L.; Samuel, K.G.; Rodriguez, P.

    1985-01-01

    The influence of tmeperature and grain size on the tensile ductility of AISI 316 stainless steel has been examined in the temperature range 300-1223 K for specimens with grain sizes varying from 0.025 to 0.650 mm at a nominal strain rate of 3 X 10 -4 s -1 . The percentage total elongation and reduction in area at fracture show minimum ductility at an intermediate temperature, and the temperature corresponding to this ductility minimum has been found to increase with increase in grain size. The total elongation is found to decrease with increase in grain size at high temperatures where failures are essentially intergranular in nature. At 300 K, both uniform and total elongation increase with increase in grain size and then show a small decrease for a very coarse grain size. The high ductility observed at low temperatures (300 K) is consistent with the observation of characteristic dimples associated with transgranular ductile fracture. The ductility minimum with respect to temperature is associated with the occurrence of intergranular fracture, as evidenced by optical and scanning electron microscopy. The present results support the suggestion that the ductility minimum coincides with the maximum amount of grain boundary sliding; at temperatures beyond the ductility minimum, grain boundary separation by cavitation is retarded by the occurrence of grain boundary migration, as evidenced by the grain boundary cusps. In tests conducted at various strain rates in the range 10 -3 -10 -6 s -1 at 873 K the ductility was found to decrease with decreasing strain rate, emphasizing the increased importance of grain boundary sliding at lower strain rates. (Auth.)

  6. Ductile mode grinding of reaction-bonded silicon carbide mirrors.

    Science.gov (United States)

    Dong, Zhichao; Cheng, Haobo

    2017-09-10

    The demand for reaction-bonded silicon carbide (RB-SiC) mirrors has escalated recently with the rapid development of space optical remote sensors used in astronomy or Earth observation. However, RB-SiC is difficult to machine due to its high hardness. This study intends to perform ductile mode grinding to RB-SiC, which produces superior surface integrity and fewer subsurface damages, thus minimizing the workload of subsequent lapping and polishing. For this purpose, a modified theoretical model for grain depth of cut of grinding wheels is presented, which correlates various processing parameters and the material characteristics (i.e., elastic module) of a wheel's bonding matrix and workpiece. Ductile mode grinding can be achieved as the grain depth of cut of wheels decreases to be less than the critical cut depth of workpieces. The theoretical model gives a roadmap to optimize the grinding parameters for ductile mode grinding of RB-SiC and other ultra-hard brittle materials. Its feasibility was validated by experiments. With the optimized grinding parameters for RB-SiC, the ductile mode grinding produced highly specular surfaces (with roughness of ∼2.2-2.8  nm Ra), which means the material removal mechanism of RB-SiC is dominated by plastic deformation rather than brittle fracture. Contrast experiments were also conducted on fused silica, using the same grinding parameters; this produced only very rough surfaces, which further validated the feasibility of the proposed model.

  7. Elimination of the induced current error in magnetometers using superconducting flux transformers

    International Nuclear Information System (INIS)

    Dummer, D.; Weyhmann, W.

    1987-01-01

    The changing magnetization of a sample in a superconducting flux transformer coupled magnetometer induces a current in the transformer which in turn changes the field at the sample. This ''image'' field and the error caused by it can be eliminated by sensing the current in the loop and nulling it by feedback through a mutual inductance. We have tested the technique on the superconducting transition of indium in an applied magnetic field and shown that the observed width of the transition is greatly reduced by maintaining zero current in the flux transformer

  8. Adaptive self-assembly and induced-fit transformations of anion-binding metal-organic macrocycles

    Science.gov (United States)

    Zhang, Ting; Zhou, Li-Peng; Guo, Xiao-Qing; Cai, Li-Xuan; Sun, Qing-Fu

    2017-06-01

    Container-molecules are attractive to chemists due to their unique structural characteristics comparable to enzymes and receptors in nature. We report here a family of artificial self-assembled macrocyclic containers that feature induced-fit transformations in response to different anionic guests. Five metal-organic macrocycles with empirical formula of MnL2n (M=Metal L=Ligand n=3, 4, 5, 6, 7) are selectively obtained starting from one simple benzimidazole-based ligand and square-planar palladium(II) ions, either by direct anion-adaptive self-assembly or induced-fit transformations. Hydrogen-bonding interactions between the inner surface of the macrocycles and the anionic guests dictate the shape and size of the product. A comprehensive induced-fit transformation map across all the MnL2n species is drawn, with a representative reconstitution process from Pd7L14 to Pd3L6 traced in detail, revealing a gradual ring-shrinking mechanism. We envisage that these macrocyclic molecules with adjustable well-defined hydrogen-bonding pockets will find wide applications in molecular sensing or catalysis.

  9. Characterizing the influence of matrix ductility on damage phenomenology in continuous fiber-reinforced thermoplastic laminates undergoing quasi-static indentation

    KAUST Repository

    Yudhanto, Arief

    2017-12-12

    The use of thermoplastic matrix was known to improve the impact properties of laminated composites. However, different ductility levels can exist in a single family of thermoplastic matrix, and this may consequently modify the damage phenomenology of thermoplastic composites. This paper focuses on the effect of matrix ductility on the out-of-plane properties of thermoplastic composites, which was studied through quasi-static indentation (QSI) test that may represent impact problem albeit the speed difference. We evaluated continuous glass-fiber reinforced polypropylene thermoplastic composites (GFPP), and selected homopolymer PP and copolymer PP that represent ductile and less ductile matrices, respectively. Several cross-ply laminates were selected to study the influence of ply thicknesses and relative orientation of interfaces on QSI properties of GFPP. It is expected that GFPP with ductile matrix improves energy absorption of GFPP. However, the damage mechanism is completely different between GFPP with ductile and GFPP with less ductile matrices. GFPP with ductile matrix exhibits smaller damage zone in comparison to the one with less ductile matrix. Higher matrix ductility inhibits the growth of ply cracking along the fiber, and this causes the limited size of delamination. The stacking sequence poses more influence on less ductile composites rather than the ductile one.

  10. Combined effects of radiation damage and hydrides on the ductility of Zircaloy-2

    International Nuclear Information System (INIS)

    Wisner, S.B.; Adamson, R.B.

    1998-01-01

    Interest remains high regarding the effects of zirconium hydride precipitates on the ductility of reactor Zircaloy components, particularly in irradiated material. Previous studies have reported that ductility reductions are much greater at room temperature compared to reactor component temperatures. It is often concluded that the effects of irradiation dominate the ductility reduction observed in test specimens, although there is no consensus as to whether hydriding effects are additive. Many of the tests reported in the literature are difficult to interpret due to variations in test specimen geometry and material history. In this paper, we present the results of an experimental program aimed at clearly describing the combined effects of irradiation and hydriding on ductility parameters under conditions of a realistic test specimen design and well characterized hydride content, distribution and orientation. Experiments were conducted at 295 and 605 K, respectively on Zircaloy-2 tubing segments containing 10-800 ppm hydrogen and neutron fluences between 0.9 x 10 25 nm -2 (E>1 MeV). Tests utilized the well proven localized ductility specimen which applies plane strain tension in the hoop direction of the tubing segment. In all cases, hydrides were also oriented in the hoop or circumferential direction and were uniformly distributed across the tubing wall. Results indicate that at 605 K, the ductility of irradiated material was almost independent of hydride content, retaining above 4% uniform elongation and 25% reduction in an area for the highest fluences and hydrogen contents. Even at 295 K, measurable ductility was retained for irradiated material with up to 600 ppm hydrogen. In the paper, results of fractographic analyses and strain rate are also discussed

  11. Constitutive modeling of metastable austenitic stainless steel (CD-rom)

    NARCIS (Netherlands)

    Perdahcioglu, Emin Semih; Geijselaers, Hubertus J.M.; Huetink, Han; Boisse, P.

    2008-01-01

    A stress-update algorithm is developed for austenitic metastable steels which undergo phase evolution during deformation. The material initially comprises only the soft and ductile austenite phase which due to the phenomenon of mechanically induced martensitic transformation, transforms completely

  12. Hot working effect on austenite transformations in structural steel in continuous cooling

    International Nuclear Information System (INIS)

    Zajmovskij, V.A.; Kisteh, N.V.; Samedov, O.V.

    1979-01-01

    Austenite transformations in 40, 40Kh, 40KhN and 40KhNMA steels under hot working at 900 deg C with 20% reduction degree and continuous cooling with 1,7-16 0 /s are investigated. Changing of cooling rate in various ways affects the temperature range of austenite transformation in pearlite and bainite regions. Regulating the cooling rate after hot working one can essentially change the impact strength and steel ductility as a result of high temperature thermomechanical treatment effect

  13. Effect of niobium and titanium addition on the hot ductility of boron containing steel

    International Nuclear Information System (INIS)

    Cho, Kyung Chul; Mun, Dong Jun; Koo, Yang Mo; Lee, Jae Sang

    2011-01-01

    Research highlights: → Addition of only Nb without Ti has little influence in the hot ductility of B steel. → Hot ductility loss of B-Nb steel is due to grain boundary precipitation of BN. → Adding a small amount of Ti improve the hot ductility of B-Nb steel. → In B-Nb-Ti steel, hot ductility improvement is related to presence of TiN particle. → Presence of TiN particles makes the BN precipitates' distribution more homogeneous. - Abstract: Hot ductility of boron containing steel (B steel) with adding Nb (0.03 wt.%) (B-Nb steel) and B-Nb steel with adding Ti (0.0079 wt.%) (B-Nb-Ti steel) was quantified using hot tensile tests. The specimens were solution-treated at 1350 deg. C and cooled at 20 deg. C s -1 to tensile test temperature (T) in the range of 750 ≤ T ≤ 1050 deg. C. After that, they were strained to failure at a strain rate of 2.5 x 10 -3 s -1 . For the B-Nb steel, severe hot ductility loss was observed at 850 ≤ T ≤ 950 deg. C, which covered the low temperature in which austenite (γ) single-phase exists, and the high temperature at which γ and ferrite (α) coexist. Ductility loss in the B-Nb steel was caused by the presence of a network of BN precipitates, rather than by Nb(C, N) precipitates at the γ grain boundaries. In contrast, hot ductility of the B-Nb-Ti steel was remarkably improved at 850 ≤ T ≤ 950 deg. C. In the B-Nb-Ti steel, BN precipitates preferentially on TiN particles, resulting in increased BN precipitation in the γ grain interior and a decrease in the network of BN precipitates at the γ grain boundaries. These changes reduce strain localization at the γ grain boundaries and therefore increase the hot ductility of the steel.

  14. Adaptive Response Against Spontaneous Neoplastic Transformation In Vitro Induced by Ionizing Radiation

    International Nuclear Information System (INIS)

    Redpath, J. Leslie

    2003-01-01

    The goal of this project was to establish a dose response curve for radiation-induced neoplastic transformation of HeLa x skin fibroblast human hybrid cells in vitro under experimental conditions were an adaptive response, if it were induced, would have an opportunity to be expressed. During the first two years of the grant an exhaustive series of experiments were performed and the resulting data were reported at the 2000 Annual Meeting of the Radiation Research Society and then Subsequently published. The data showed that an adaptive response against spontaneous neoplastic transformation was seen up to doses of 10cGy of Cs-137 gamma rays. At dose of 30, 50 and 100 cGy the transformation frequencies were above background. This indicated that for this system, under the specific experimental conditions used, there was a threshold of somewhere between 10 and 30 cGy. The results also indicated some unexpected, though very interesting, correlations with relative risk estimates made from human epidemiologic studies

  15. Prediction of Ductile Fracture Surface Roughness Scaling

    DEFF Research Database (Denmark)

    Needleman, Alan; Tvergaard, Viggo; Bouchaud, Elisabeth

    2012-01-01

    . Ductile crack growth in a thin strip under mode I, overall plane strain, small scale yielding conditions is analyzed. Although overall plane strain loading conditions are prescribed, full 3D analyses are carried out to permit modeling of the three dimensional material microstructure and of the resulting......Experimental observations have shown that the roughness of fracture surfaces exhibit certain characteristic scaling properties. Here, calculations are carried out to explore the extent to which a ductile damage/fracture constitutive relation can be used to model fracture surface roughness scaling...... three dimensional stress and deformation states that develop in the fracture process region. An elastic-viscoplastic constitutive relation for a progressively cavitating plastic solid is used to model the material. Two populations of second phase particles are represented: large inclusions with low...

  16. Stress- and Magnetic Field-Induced Martensitic Transformation at Cryogenic Temperatures in Fe-Mn-Al-Ni Shape Memory Alloys

    Science.gov (United States)

    Xia, Ji; Xu, Xiao; Miyake, Atsushi; Kimura, Yuta; Omori, Toshihiro; Tokunaga, Masashi; Kainuma, Ryosuke

    2017-12-01

    Stress-induced and magnetic-field-induced martensitic transformation behaviors at low temperatures were investigated for Fe-Mn-Al-Ni alloys. The magnetic-field-induced reverse martensitic transformation was directly observed by in situ optical microscopy. Magnetization measurements under pulsed magnetic fields up to 50 T were carried out at temperatures between 4.2 and 125 K on a single-crystal sample; full magnetic-field-induced reverse martensitic transformation was confirmed at all tested temperatures. Compression tests from 10 to 100 K were conducted on a single-crystal sample; full shape recovery was obtained at all tested temperatures. It was found that the temperature dependence of both the critical stress and critical magnetic field is small and that the transformation hysteresis is less sensitive to temperature even at cryogenic temperatures. The temperature dependence of entropy change during martensitic transformation up to 100 K was then derived using the Clausius-Clapeyron relation with critical stresses and magnetic fields.

  17. Simultaneous enhancement of strength and ductility in cryogenically treated AISI D2 tool steel

    Energy Technology Data Exchange (ETDEWEB)

    Ghasemi-Nanesa, Hadi; Jahazi, Mohammad, E-mail: mohammad.jahazi@etsmtl.ca

    2014-03-01

    In this research, the effect of cryogenic treatment on microstructural evolution and mechanical properties enhancement of AISI D2 tool steel was investigated. Cryogenic treatment down to liquid nitrogen temperature (77 K) was added to the conventional heat treatment between hardening and tempering steps. Electron microscopy investigation showed higher volume fraction of fine carbides with average diameter below 1 μm indicating effective retardation in carbide coarsening process as a results of cryogenic treatment. A modification in types of carbides was also observed after cryogenic treatment. X-ray diffraction diagrams revealed transformation of retained austenite to martensite at cryogenic temperature. Weakening or removal of carbides peak in the X-ray diagram was considered as evidence of carbides different behavior at cryogenic temperature. Mechanical testing results indicated higher ultimate tensile strength, better ductility, and higher elastic modulus after cryogenic treatment. Analysis of stress–strain diagrams revealed different strain hardening behavior for cryogenically treated alloy when compared to the conventionally heat treated one. Fractography results confirmed strain hardening behavior and showed cleavage fracture for conventionally treated alloy but mixed cleavage–ductile fracture mode for cryogenically treated alloy. The improved mechanical properties after cryogenic treatment are interpreted in terms of the influence of higher volume fraction and uniform distribution of fine carbides in reducing the average active dislocations length and enhancement of the flow stress at any given plastic strain.

  18. Simultaneous enhancement of strength and ductility in cryogenically treated AISI D2 tool steel

    International Nuclear Information System (INIS)

    Ghasemi-Nanesa, Hadi; Jahazi, Mohammad

    2014-01-01

    In this research, the effect of cryogenic treatment on microstructural evolution and mechanical properties enhancement of AISI D2 tool steel was investigated. Cryogenic treatment down to liquid nitrogen temperature (77 K) was added to the conventional heat treatment between hardening and tempering steps. Electron microscopy investigation showed higher volume fraction of fine carbides with average diameter below 1 μm indicating effective retardation in carbide coarsening process as a results of cryogenic treatment. A modification in types of carbides was also observed after cryogenic treatment. X-ray diffraction diagrams revealed transformation of retained austenite to martensite at cryogenic temperature. Weakening or removal of carbides peak in the X-ray diagram was considered as evidence of carbides different behavior at cryogenic temperature. Mechanical testing results indicated higher ultimate tensile strength, better ductility, and higher elastic modulus after cryogenic treatment. Analysis of stress–strain diagrams revealed different strain hardening behavior for cryogenically treated alloy when compared to the conventionally heat treated one. Fractography results confirmed strain hardening behavior and showed cleavage fracture for conventionally treated alloy but mixed cleavage–ductile fracture mode for cryogenically treated alloy. The improved mechanical properties after cryogenic treatment are interpreted in terms of the influence of higher volume fraction and uniform distribution of fine carbides in reducing the average active dislocations length and enhancement of the flow stress at any given plastic strain

  19. Behaviour of porous ductile solids at low stress triaxiality in different modes of deformation

    DEFF Research Database (Denmark)

    Tvergaard, Viggo

    2015-01-01

    The effect of low stress triaxiality on ductile failure is investigated for a material subject to pure shear or to stress states in the vicinity of pure shear. Many recent studies of ductile failure under low hydrostatic tension have focused on shear with superposed tension, which can result...... that the behaviour of a porous ductile material at low stress triaxiality depends a great deal on the mode of deformation....

  20. Investigation of the hot ductility of a high-strength boron steel

    International Nuclear Information System (INIS)

    Güler, Hande; Ertan, Rukiye; Özcan, Reşat

    2014-01-01

    In this study, the high-temperature ductility behaviour of an Al–Si-coated 22MnB5 sheet was investigated. The mechanical properties of Al–Si-coated 22MnB5 boron steel were examined via hot tensile tests performed at temperatures ranging from 400 to 900 °C at a strain rate of 0.083 s −1 . The deformation and fracture mechanisms under hot tensile testing were considered in relation to the testing data and to the fracture-surface observations performed via SEM. The hot ductility of the tested boron steel was observed as a function of increasing temperature and the Al–Si-coated 22MnB5 boron steel exhibited a ductility loss at 700 °C

  1. Hot ductility and fracture mechanisms of a structural steel

    International Nuclear Information System (INIS)

    Calvo, J.; Cabrera, J. M.; Prado, J. M.

    2006-01-01

    The hot ductility of a structural steel produced from scrap recycling has been studied to determine the origin of the transverse cracks in the corners that appeared in some billets. Samples extracted both from a billet with transverse cracks and from a billet with no external damage were tested. To evaluate the influence of residual elements and inclusions, the steel was compared to another one impurity free. Reduction in area of the samples tensile tested to the fracture was taken as a measure of the hot ductility. The tests were carried out at temperatures ranging from 1000 degree centigree to 650 degree centigree and at a strain rate of 1.10-3 s-1. The fracture surfaces of the tested samples were observed by scanning electron microscopy in order to determine the embrittling mechanisms that could be acting. The steel with residuals and impurities exhibited lower ductility values for a wider temperature range than the clean steel. The embrittling mechanisms also changed as compared to the impurity free steel. (Author)

  2. Brittle and ductile friction and the physics of tectonic tremor

    Science.gov (United States)

    Daub, Eric G.; Shelly, David R.; Guyer, Robert A.; Johnson, P.A.

    2011-01-01

    Observations of nonvolcanic tremor provide a unique window into the mechanisms of deformation and failure in the lower crust. At increasing depths, rock deformation gradually transitions from brittle, where earthquakes occur, to ductile, with tremor occurring in the transitional region. The physics of deformation in the transition region remain poorly constrained, limiting our basic understanding of tremor and its relation to earthquakes. We combine field and laboratory observations with a physical friction model comprised of brittle and ductile components, and use the model to provide constraints on the friction and stress state in the lower crust. A phase diagram is constructed that characterizes under what conditions all faulting behaviors occur, including earthquakes, tremor, silent transient slip, and steady sliding. Our results show that tremor occurs over a range of ductile and brittle frictional strengths, and advances our understanding of the physical conditions at which tremor and earthquakes take place.

  3. Friction weld ductility and toughness as influenced by inclusion morphology

    International Nuclear Information System (INIS)

    Eberhard, B.J.; Schaaf, B.W. Jr.; Wilson, A.D.

    1983-01-01

    Friction welding consistently provides high strength, freedom from fusion defects, and high productivity. However, friction welds in carbon steel exhibit impact toughness and bend ductility that are significantly lower than that of the base metal. The inclusion content and morphology were suspected to be major contributors to the reduction in weld ductility. For this reason, four electric furnace steels - three types of ASTM A516 Grade 70, and an ASTM A737 Grade B steel - were investigated. Friction welds were made by both the inertia and direct drive process variations and the welds evaluated. It was shown that friction welds of inclusion-controlled steels exhibited much improved toughness and bend ductility were demonstrated. Upper shelf impact energy was equivalent to or greater than that of the base metal in the short transverse direction. The transition temperature range for all four materials was shifted to higher temperatures for both types of friction welds. Under the conditions of this test, the direct drive friction welds showed a greater shift than the inertia friction welds. The ductility and toughness of welds in A737 Grade B steel were superior to welds in A516 Grade 70 steels, reflecting the superior properties of the base metal. Welds of the A737 material had usable Charpy V-notch impact toughness of 20 to 30 ft-lb (27 to 41 J) at temperatures as low as -40 0 F (-40 0 C). All the welds had an acicular structure. The differences in properties between the inertia and direct drive friction welds appear associated with microstructural variations. These variations resulted from the different heat inputs and cooling rates of the two process variations were demonstrated. The beneficial effects of inclusion control on toughness and ductility. In addition, it also indicates that additional improvements may be attainable through control of the as-welded microstructure by process manipulation

  4. Ductility improvement by twinning and twin–slip interaction in a Mg-Y alloy

    International Nuclear Information System (INIS)

    Zhou, Na; Zhang, Zhenyan; Jin, Li; Dong, Jie; Chen, Bin; Ding, Wenjiang

    2014-01-01

    Highlights: • A high elongation of ∼33% was achieved for magnesium alloy through common extrusion. • Basal slip and extension twinning are the dominant deformation modes for the high ductility. • Non-basal slip, contraction twinning and twin-slip interaction also contribute to the ductility. - Abstract: An extruded Mg-3.0Y alloy with non-basal texture of 〈42 ¯ 2 ¯ 3〉 component was fabricated by common extrusion and exhibited a high elongation of ∼33%. The deformation modes and microstructure evolution of the extruded Mg-3.0Y alloy during the tensile test at room temperature were investigated to explore the reasons for the high ductility by transmission electron microscopy (TEM) and electron backscattered diffraction (EBSD). The results suggested that texture changed from 〈42 ¯ 2 ¯ 3〉 to 〈101 ¯ 0〉 component during the tensile deformation, which is attributed the slip and twinning activity. Basal slip and extension twinning are the dominant deformation modes for the high ductility. Meanwhile, the activation of non-basal slip, contraction twinning and twin–slip interaction also contributes to the good ductility of Mg-3.0Y alloy

  5. Influence of processing-induced phase transformations on the dissolution of theophylline tablets

    OpenAIRE

    Debnath, Smita; Suryanarayanan, Raj

    2004-01-01

    The object of this investigation was to evaluate the influence of (1) processing-induced decrease in drug crystallinity and (2) phase transformations during dissolution, on the per-formance of theophylline tablet formulations. Anhydrous theophylline underwent multiple transformations (anhydrate »hydrate»anhydrate) during processing. Although the crystallinity of the anhydrate obtained finally was lower than that of the unprocessed drug, it dissolved at a slower rate. This decrease in dissolut...

  6. The effects of composition and thermal path on hot ductility of forging steels

    Science.gov (United States)

    Connolly, Brendan M.

    This work examines the effects of composition and thermal path on the hot ductility of several forging steels with varied aluminum and nitrogen content. The primary mechanisms and controlling factors related to hot ductility are identified with a focus on the role of precipitates and segregation. The unique thermal paths and solidification structures of large cross-section forging ingots are discussed. Hot ductility testing is performed in a manner that approximates industrial conditions experienced by large cross-section forging ingots. A computer model for precipitation of aluminum nitride and vanadium nitride in austenite is presented. Industrial material is examined for comparison to experimental findings. It is found that increased aluminum and nitrogen content coarsens the as-solidified structure. The combined effects of microsegregation and uphill diffusion during deformation allow for carbide precipitation at prior austenite grain boundaries which reduces the hot ductility.

  7. Adhesion and wear properties of boro-tempered ductile iron

    International Nuclear Information System (INIS)

    Kayali, Yusuf; Yalcin, Yilmaz; Taktak, Suekrue

    2011-01-01

    Highlights: → In this study, the wear and adhesion properties of BDI were investigated. → Boro-tempering process under several heat treatment conditions was examined. → Optical microscope, SEM and XRD analysis were carried out to investigate the microstructure. → It was observed that boro-tempering process improves micro-hardness and wear properties of ductile irons. -- Abstract: In this study, adhesion and wear properties of boro-tempered ductile iron (BDI) were investigated. Boro-tempering was carried out on two stage processes i.e. boronizing and tempering. At the first stage, ductile iron samples were boronized by using pack process at 900 o C for 1, 3, and 5 h and then, secondly tempered at 250, 300, 350, and 400 o C for 1 h. X-ray diffraction (XRD) analysis of boro-tempered samples showed that FeB and Fe 2 B phases were found on the surface of the samples. The Daimler-Benz Rockwell-C adhesion test was used to assess the adhesion of boride layer. Test result showed that adhesion decreased with increasing boriding time and increased with increasing tempering temperature. Dry sliding wear tests of these samples were performed against Al 2 O 3 ball at a constant sliding speed and loads of 5 and 10 N. Wear tests indicated that boro-tempering heat treatment increased wear resistance of ductile iron. In addition, it was found that while wear rate of boro-tempered samples decreased with increasing boriding time, there is no significant affect of tempering temperature on wear rate.

  8. Mechanically induced atomic disorder and phase transformations. Doctoral thesis

    Energy Technology Data Exchange (ETDEWEB)

    Limei, D

    1992-11-30

    The study shows the possibilities of preparing alloys in various metastable configurations by the simple technique of ball milling. Firstly, chapter 2 gives the description of experimental techniques. In chapter 3, evidence of atomic anti-site disordering in A15-structure superconducting compounds Nb3Sn and Nb3Au during an early stage of milling is demonstrated. Chapter 4 represents the experimental results on the B2-structure magnetic compounds CoGa and CoAl upon mechanical impact. These compounds are well known for their particular type of atomic disorder, namely triple-defect disorder. Various examples of experimental evidence of phase transformations induced by mechanical grinding are presented in chapter 5. Section 5.2 gives an example of amorphization induced by mechanical attrition in the intermetallic compound Ni3Sn. Section 5.3 shows the milling experiment of the intermetallic compound V3 Ga. In section 5.4, for the first time, the observation of a phase transformation to a high-temperature phase with a complex structure will be demonstrated for the intermetallic compound Co3Sn2. In the last chapter, detailed studies on the intermetallic Nb-Au binary compounds for a variety of compositions are presented.

  9. Evaluation of static and dynamic fracture toughness in ductile cast iron

    International Nuclear Information System (INIS)

    Kobayashi, Toshiro; Yamada, Shinya

    1994-01-01

    Ductile cast irons have been explored as a cask (container for spent nuclear fuel) material because of their low cost and good formability. The cask, which is a huge casting with 400-mm thickness and 100-Mg weight, envelops the nuclear material. Therefore, the fracture toughness of cask must be evaluated not only under the static loading condition but also under the dynamic loading condition to ensure its safety against an accident during the transport. In this article, crack extension behavior and fracture toughness of ductile cast iron were examined by three-point bend tests, where various detection methods of crack initiation under static and dynamic loading conditions were adopted. Loading on the specimens was interrupted at various displacement points, and the final fracture surfaces of the specimen were observed via scanning electron microscopy (SEM). Crack-tip opening displacement (CTOD) obtained under the dynamic loading conditions was smaller than that under the static loading condition in ferritic ductile cast iron, and CTOD additionally decreased with increasing pearlite content in the matrix. The relationship between J(ΔC) obtained by the compliance changing rate method and J(R) established by the intersection of the crack extension resistance curve and the theoretical blunting line varied with pearlite content. The average value of J(ΔC) and J(R), that is J(mid), was proposed to define the fracture toughness of ductile cast iron; J(mid) was considered to be a reasonable measure for the fracture toughness of ductile cast iron, irrespective of loading condition and the pearlite content in the matrix

  10. Effects of cooling rate on particle rearrangement statistics: Rapidly cooled glasses are more ductile and less reversible.

    Science.gov (United States)

    Fan, Meng; Wang, Minglei; Zhang, Kai; Liu, Yanhui; Schroers, Jan; Shattuck, Mark D; O'Hern, Corey S

    2017-02-01

    Amorphous solids, such as metallic, polymeric, and colloidal glasses, display complex spatiotemporal response to applied deformations. In contrast to crystalline solids, during loading, amorphous solids exhibit a smooth crossover from elastic response to plastic flow. In this study, we investigate the mechanical response of binary Lennard-Jones glasses to athermal, quasistatic pure shear as a function of the cooling rate used to prepare them. We find several key results concerning the connection between strain-induced particle rearrangements and mechanical response. We show that the energy loss per strain dU_{loss}/dγ caused by particle rearrangements for more rapidly cooled glasses is larger than that for slowly cooled glasses. We also find that the cumulative energy loss U_{loss} can be used to predict the ductility of glasses even in the putative linear regime of stress versus strain. U_{loss} increases (and the ratio of shear to bulk moduli decreases) with increasing cooling rate, indicating enhanced ductility. In addition, we characterized the degree of reversibility of particle motion during a single shear cycle. We find that irreversible particle motion occurs even in the linear regime of stress versus strain. However, slowly cooled glasses, which undergo smaller rearrangements, are more reversible during a single shear cycle than rapidly cooled glasses. Thus, we show that more ductile glasses are also less reversible.

  11. Epithelial–mesenchymal transition during oncogenic transformation induced by hexavalent chromium involves reactive oxygen species-dependent mechanism in lung epithelial cells

    Energy Technology Data Exchange (ETDEWEB)

    Ding, Song-Ze, E-mail: dingsongze@hotmail.com [Department of Internal Medicine, Henan Provincial People’s Hospital, Zhengzhou University, Wei-Wu Road, Zhengzhou, Henan 450000 (China); Graduate Center for Toxicology, College of Medicine, University of Kentucky, Lexington, KY 40536 (United States); Yang, Yu-Xiu; Li, Xiu-Ling [Department of Internal Medicine, Henan Provincial People’s Hospital, Zhengzhou University, Wei-Wu Road, Zhengzhou, Henan 450000 (China); Michelli-Rivera, Audrey [Graduate Center for Toxicology, College of Medicine, University of Kentucky, Lexington, KY 40536 (United States); Han, Shuang-Yin [Department of Internal Medicine, Henan Provincial People’s Hospital, Zhengzhou University, Wei-Wu Road, Zhengzhou, Henan 450000 (China); Wang, Lei; Pratheeshkumar, Poyil; Wang, Xin; Lu, Jian; Yin, Yuan-Qin; Budhraja, Amit; Hitron, Andrew J. [Graduate Center for Toxicology, College of Medicine, University of Kentucky, Lexington, KY 40536 (United States)

    2013-05-15

    Hexavalent chromium [Cr(VI)] is an important human carcinogen associated with pulmonary diseases and lung cancer. Exposure to Cr(VI) induces DNA damage, cell morphological change and malignant transformation in human lung epithelial cells. Despite extensive studies, the molecular mechanisms remain elusive, it is also not known if Cr(VI)-induced transformation might accompany with invasive properties to facilitate metastasis. We aimed to study Cr(VI)-induced epithelial–mesenchymal transition (EMT) and invasion during oncogenic transformation in lung epithelial cells. The results showed that Cr(VI) at low doses represses E-cadherin mRNA and protein expression, enhances mesenchymal marker vimentin expression and transforms the epithelial cell into fibroblastoid morphology. Cr(VI) also increases cell invasion and promotes colony formation. Further studies indicated that Cr(VI) uses multiple mechanisms to repress E-cadherin expression, including activation of E-cadherin repressors such as Slug, ZEB1, KLF8 and enhancement the binding of HDAC1 in E-cadherin gene promoter, but DNA methylation is not responsible for the loss of E-cadherin. Catalase reduces Cr(VI)-induced E-cadherin and vimentin protein expression, attenuates cell invasion in matrigel and colony formation on soft agar. These results demonstrate that exposure to a common human carcinogen, Cr(VI), induces EMT and invasion during oncogenic transformation in lung epithelial cells and implicate in cancer metastasis and prevention. - Graphical abstract: Epithelial–mesenchymal transition during oncogenic transformation induced by hexavalent chromium involves reactive oxygen species-dependent mechanisms in lung epithelial cells. - Highlights: • We study if Cr(VI) might induce EMT and invasion in epithelial cells. • Cr(VI) induces EMT by altering E-cadherin and vimentin expression. • It also increases cell invasion and promotes oncogenic transformation. • Catalase reduces Cr(VI)-induced EMT, invasion and

  12. A Study On Critical Thinning In Thin-walled Tube Bending Of Al-Alloy 5052O Via Coupled Ductile Fracture Criteria

    International Nuclear Information System (INIS)

    Li Heng; Yang He; Zhan Mei

    2010-01-01

    Thin-walled tube bending(TWTB) method of Al-alloy tube has attracted wide applications in aerospace, aviation and automobile,etc. While, under in-plane double tensile stress states at the extrados of bending tube, the over-thinning induced ductile fracture is one dominant defect in Al-alloy tube bending. The main objective of this study is to predict the critical wall-thinning of Al-alloy tube bending by coupling two ductile fracture criteria(DFCs) into FE simulation. The DFCs include Continuum Damage Mechanics(CDM)-based model and GTN porous model. Through the uniaxial tensile test of the curved specimen, the basic material properties of the Al-alloy 5052O tube is obtained; via the inverse problem solution, the damage parameters of both the two fracture criteria are interatively determined. Thus the application study of the above DFCs in the TWTB is performed, and the more reasonable one is selected to obtain the critical thinning of Al-alloy tube in bending. The virtual damage initiation and evolution (when and where the ductile fracture occurs) in TWTB are investigated, and the fracture mechanisms of the voided Al-alloy tube in tube bending are consequently discussed.

  13. A review of macroscopic ductile failure criteria.

    Energy Technology Data Exchange (ETDEWEB)

    Corona, Edmundo; Reedlunn, Benjamin

    2013-09-01

    The objective of this work was to describe several of the ductile failure criteria com- monly used to solve practical problems. The following failure models were considered: equivalent plastic strain, equivalent plastic strain in tension, maximum shear, Mohr- Coulomb, Wellman's tearing parameter, Johnson-Cook and BCJ MEM. The document presents the main characteristics of each failure model as well as sample failure predic- tions for simple proportional loading stress histories in three dimensions and in plane stress. Plasticity calculations prior to failure were conducted with a simple, linear hardening, J2 plasticity model. The resulting failure envelopes were plotted in prin- cipal stress space and plastic strain space, where the dependence on stress triaxiality and Lode angle are clearly visible. This information may help analysts select a ductile fracture model for a practical problem and help interpret analysis results.

  14. Vacancy-induced brittle to ductile transition of W-M co-doped Al3Ti (M=Si, Ge, Sn and Pb).

    Science.gov (United States)

    Zhu, Mingke; Wu, Ping; Li, Qiulin; Xu, Ben

    2017-10-25

    We investigated the effect of vacancy formation on brittle (D0 22 ) to ductile (L1 2 -like) transition in Al 3 Ti using DFT calculations. The well-known pseudogap on the density of states of Al 3 Ti migrates towards its Fermi level from far above, via a W - M co-doping strategy, where M is Si, Ge, Sn or Pb respectively. In particular, by a W - M co-doping the underline electronic structure of the pseudogap approaches an octahedral (L1 2 : t 2g , e g ) from the tetragonal (D0 22 : e g , b 2g , a 1g , b 1g ) crystal field. Our calculations demonstrated that (1) a W-doping is responsible for the close up of the energy gap between a 1g and b 1g so that they tend to merge into an e g symmetry, and (2) all M-doping lead to a narrower gap between e g and b 2g (moving towards a t 2g symmetry). Thus, a brittle to ductile transition in Al 3 Ti is possible by adopting this W - M co-doping strategy. We further recommend the use of W-Pb co-doped Al 3 Ti to replace the less anodic Al electrode in Al-battery, due to its improved ductility and high Al diffusivity. Finally this study opens a new field in physics to tailor mechanical properties by manipulating electron energy level(s) towards higher symmetry via vacancy optimization.

  15. Ductility behavior of irradiated path B alloys

    International Nuclear Information System (INIS)

    Yang, W.J.S.; Hamilton, M.L.

    1983-01-01

    The objective of this study was to assess the practicality of using five Path B alloys in their current form as structural materials in the Fusion First-Wall/Blanket by evaluating both their postirradiation ductility and the corresponding microstructures

  16. Ductile thermoset polymers via controlling network flexibility.

    Science.gov (United States)

    Hameed, N; Salim, N V; Walsh, T R; Wiggins, J S; Ajayan, P M; Fox, B L

    2015-06-18

    We report the design and synthesis of a polymer structure from a cross-linkable epoxy-ionic liquid system which behaves like a hard and brittle epoxy thermoset, perfectly ductile thermoplastic and an elastomer, all depending on controllable network compositions.

  17. Depleted uranium induces neoplastic transformation in human lung epithelial cells.

    Science.gov (United States)

    Xie, Hong; LaCerte, Carolyne; Thompson, W Douglas; Wise, John Pierce

    2010-02-15

    Depleted uranium (DU) is commonly used in military armor and munitions, and thus, exposure of soldiers and noncombatants is frequent and widespread. Previous studies have shown that DU has both chemical and radiological toxicity and that the primary route of exposure of DU to humans is through inhalation and ingestion. However, there is limited research information on the potential carcinogenicity of DU in human bronchial cells. Accordingly, we determined the neoplastic transforming ability of particulate DU to human bronchial epithelial cells (BEP2D). We observed the loss of contact inhibition and anchorage independent growth in cells exposed to DU after 24 h. We also characterized these DU-induced transformed cell lines and found that 40% of the cell lines exhibit alterations in plating efficiency and no significant changes in the cytotoxic response to DU. Cytogenetic analyses showed that 53% of the DU-transformed cell lines possess a hypodiploid phenotype. These data indicate that human bronchial cells are transformed by DU and exhibit significant chromosome instability consistent with a neoplastic phenotype.

  18. Characterizing Ductile Damage and Failure: Application of the Direct Current Potential Drop Method to Uncracked Tensile Specimens

    OpenAIRE

    Brinnel, V.; Döbereiner, B.; Münstermann, Sebastian

    2014-01-01

    Modern high-strength steels exhibit excellent ductility properties but their application is hindered by traditional design rules. A characterization of necessary safety margins for the ductile failure of these steels is therefore required. Direct observation of ductile damage within tests is currently not possible, only limited measurements can be made with synchrotron or X-ray radiation facilities. The direct current potential drop (DCPD) method can determine ductile crack propagation with l...

  19. Stress induced martensitic transformation from bcc to fcc in Ag-Zn

    International Nuclear Information System (INIS)

    Takezawa, K.; Akamatsu, R.; Marukawa, K.

    1995-01-01

    The martensitic transformation in Ag-Zn alloys of low-Zn content has been studied by optical and electron microscopic observations and by tensile tests. The β 1 phase of B2 structure transforms to the thermo-elastic martensite having 9R structure similar to Cu-based alloys upon cooling to temperature below Ms. When the β 1 phase is stretched at room temperature, the slip deformation occurs at first and then the stress-induced martensite(SIM) of wedge-like morphology forms. The SIM has the ordered fcc structure containing micro-twins. This direct transformation from bcc to fcc is a unique feature in Ag-Zn alloys. In Cu alloys, martensites of fcc structure appear only after the second transformation from the first transformation product of 9R structure. The critical stress for the martensitic transformation and a degree of order of SIM decrease as the deformation temperature rises. In Ag-Zn alloys, the martensite of disordered fcc is thermally produced also by up-quenching to a higher temperature. In the present study, the relation between martensites of ordered and disordered fcc is discussed through thermodynamical calculations. The condition for the direct transformation from bcc to fcc is also examined. (orig.)

  20. General notes on ductility in timber structures

    NARCIS (Netherlands)

    Jorissen, A.J.M.; Fragiacomo, M.

    2011-01-01

    The paper discusses the implications of ductility in design of timber structures under static and dynamic loading including earthquakes. Timber is a material inherently brittle in bending and in tension, unless reinforced adequately. However connections between timber members can exhibit significant

  1. Additively manufactured hierarchical stainless steels with high strength and ductility

    Science.gov (United States)

    Wang, Y. Morris; Voisin, Thomas; McKeown, Joseph T.; Ye, Jianchao; Calta, Nicholas P.; Li, Zan; Zeng, Zhi; Zhang, Yin; Chen, Wen; Roehling, Tien Tran; Ott, Ryan T.; Santala, Melissa K.; Depond, Philip J.; Matthews, Manyalibo J.; Hamza, Alex V.; Zhu, Ting

    2018-01-01

    Many traditional approaches for strengthening steels typically come at the expense of useful ductility, a dilemma known as strength-ductility trade-off. New metallurgical processing might offer the possibility of overcoming this. Here we report that austenitic 316L stainless steels additively manufactured via a laser powder-bed-fusion technique exhibit a combination of yield strength and tensile ductility that surpasses that of conventional 316L steels. High strength is attributed to solidification-enabled cellular structures, low-angle grain boundaries, and dislocations formed during manufacturing, while high uniform elongation correlates to a steady and progressive work-hardening mechanism regulated by a hierarchically heterogeneous microstructure, with length scales spanning nearly six orders of magnitude. In addition, solute segregation along cellular walls and low-angle grain boundaries can enhance dislocation pinning and promote twinning. This work demonstrates the potential of additive manufacturing to create alloys with unique microstructures and high performance for structural applications.

  2. Preliminary microstructural examination of high and low ductility type 316 creep rupture specimens

    International Nuclear Information System (INIS)

    Bolton, C.J.; Cordwell, J.E.; Hooper, A.J.; Marshall, P.; Steeds, J.; Wickens, A.

    1977-09-01

    A preliminary report is presented dealing with the examination of creep specimens from five casts of AISI Type 316 stainless steel which ruptured with variable ductility. Specimen microstructures and attempts to identify factors responsible for high or low creep ductility are discussed. (author)

  3. Atomistic aspects of ductile responses of cubic silicon carbide during nanometric cutting.

    Science.gov (United States)

    Goel, Saurav; Luo, Xichun; Reuben, Robert L; Rashid, Waleed Bin

    2011-11-11

    Cubic silicon carbide (SiC) is an extremely hard and brittle material having unique blend of material properties which makes it suitable candidate for microelectromechanical systems and nanoelectromechanical systems applications. Although, SiC can be machined in ductile regime at nanoscale through single-point diamond turning process, the root cause of the ductile response of SiC has not been understood yet which impedes significant exploitation of this ceramic material. In this paper, molecular dynamics simulation has been carried out to investigate the atomistic aspects of ductile response of SiC during nanometric cutting process. Simulation results show that cubic SiC undergoes sp3-sp2 order-disorder transition resulting in the formation of SiC-graphene-like substance with a growth rate dependent on the cutting conditions. The disorder transition of SiC causes the ductile response during its nanometric cutting operations. It was further found out that the continuous abrasive action between the diamond tool and SiC causes simultaneous sp3-sp2 order-disorder transition of diamond tool which results in graphitization of diamond and consequent tool wear.

  4. The ultimate fate of a synmagmatic shear zone. Interplay between rupturing and ductile flow in a cooling granite pluton

    Science.gov (United States)

    Zibra, I.; White, J. C.; Menegon, L.; Dering, G.; Gessner, K.

    2018-05-01

    The Neoarchean Cundimurra Pluton (Yilgarn Craton, Western Australia) was emplaced incrementally along the transpressional Cundimurra Shear Zone. During syndeformational cooling, discrete networks of cataclasites and ultramylonites developed in the narrowest segment of the shear zone, showing the same kinematics as the earlier synmagmatic structures. Lithological boundaries between aplite/pegmatite veins and host granitic gneiss show more intense pre-cataclasite fabrics than homogeneous material, and these boundaries later became the preferred sites of shear rupture and cataclasite nucleation. Transient ductile instabilities established along lithological boundaries culminated in shear rupture at relatively high temperature (∼500-600 °C). Here, tensile fractures at high angles from the fault plane formed asymmetrically on one side of the fault, indicating development during seismic rupture, establishing the oldest documented earthquake on Earth. Tourmaline veins were emplaced during brittle shearing, but fluid pressure probably played a minor role in brittle failure, as cataclasites are in places tourmaline-free. Subsequent ductile deformation localized in the rheologically weak tourmaline-rich aggregates, forming ultramylonites that deformed by grain-size sensitive creep. The shape and width of the pluton/shear zone and the regime of strain partitioning, induced by melt-present deformation and established during pluton emplacement, played a key role in controlling the local distribution of brittle and then ductile subsolidus structures.

  5. Causal Correlation Functions and Fourier Transforms: Application in Calculating Pressure Induced Shifts

    Science.gov (United States)

    Ma, Q.; Tipping, R. H.; Lavrentieva, N. N.

    2012-01-01

    By adopting a concept from signal processing, instead of starting from the correlation functions which are even, one considers the causal correlation functions whose Fourier transforms become complex. Their real and imaginary parts multiplied by 2 are the Fourier transforms of the original correlations and the subsequent Hilbert transforms, respectively. Thus, by taking this step one can complete the two previously needed transforms. However, to obviate performing the Cauchy principal integrations required in the Hilbert transforms is the greatest advantage. Meanwhile, because the causal correlations are well-bounded within the time domain and band limited in the frequency domain, one can replace their Fourier transforms by the discrete Fourier transforms and the latter can be carried out with the FFT algorithm. This replacement is justified by sampling theory because the Fourier transforms can be derived from the discrete Fourier transforms with the Nyquis rate without any distortions. We apply this method in calculating pressure induced shifts of H2O lines and obtain more reliable values. By comparing the calculated shifts with those in HITRAN 2008 and by screening both of them with the pair identity and the smooth variation rules, one can conclude many of shift values in HITRAN are not correct.

  6. Stress-induced martensitic transformations in NiTi and NiTi-TiC composites investigated by neutron diffraction

    International Nuclear Information System (INIS)

    Vaidyanathan, R.; Dunand, D.C.

    1999-01-01

    Superelastic NiTi (51.0 at.% Ni) specimens reinforced with 0, 10 and 20 vol.% TiC particles were deformed under uniaxial compression while neutron diffraction spectra were collected. The experiments yielded in-situ measurements of the thermoelastic stress-induced transformation. The evolution of austenite/martensite phase fractions and of elastic strains in the reinforcing TiC particles and the austenite matrix were obtained by Rietveld refinement during the loading cycle as the austenite transforms to martensite (and its subsequent back transformation during unloading). Phase fractions and strains are discussed in terms of load transfer in composites where the matrix undergoes a stress-induced phase transformation. (orig.)

  7. Nanowire failure: long = brittle and short = ductile.

    Science.gov (United States)

    Wu, Zhaoxuan; Zhang, Yong-Wei; Jhon, Mark H; Gao, Huajian; Srolovitz, David J

    2012-02-08

    Experimental studies of the tensile behavior of metallic nanowires show a wide range of failure modes, ranging from ductile necking to brittle/localized shear failure-often in the same diameter wires. We performed large-scale molecular dynamics simulations of copper nanowires with a range of nanowire lengths and provide unequivocal evidence for a transition in nanowire failure mode with change in nanowire length. Short nanowires fail via a ductile mode with serrated stress-strain curves, while long wires exhibit extreme shear localization and abrupt failure. We developed a simple model for predicting the critical nanowire length for this failure mode transition and showed that it is in excellent agreement with both the simulation results and the extant experimental data. The present results provide a new paradigm for the design of nanoscale mechanical systems that demarcates graceful and catastrophic failure. © 2012 American Chemical Society

  8. Toughening MoSi2 with Niobium metal -- Effects of size and orientation of ductile laminae

    International Nuclear Information System (INIS)

    Shaw, L.; Abbaschian, R.

    1994-01-01

    Effects of size and orientation of ductile laminae on the toughness of brittle matrix composites have been evaluated using MoSi 2 composites reinforced with Nb laminae. Nb laminae with thicknesses ranging from 0.127 to 1.0 mm were hot pressed with MoSi 2 powder to prepare the composites. Toughness of the composites was measured using four-point bend test on chevron-notched specimens. It was found that the toughness of the composites increased with increasing size of the niobium laminae. Furthermore, toughening was observed at crack propagation directions perpendicular to the laminae plane, indicating that ductile laminae offer two dimensional toughening. A model based on the bridging contribution of the ductile phase has been proposed to analyze the chevron-notched specimens of the ductile-phase-reinforced brittle matrix composites. The analysis showed that the dependence of the toughness of the composites on the size and orientation of the ductile laminae could be interpreted in terms of their bridging capability and bending contributions

  9. Physical factors controlling the ductility of bulk metallic glasses

    Energy Technology Data Exchange (ETDEWEB)

    Liu, Y. [Central South University, China; Liu, Chain T [ORNL; Zhang, Z. [University of Tennessee, Knoxville (UTK); Keppens, V. [University of Tennessee, Knoxville (UTK)

    2008-01-01

    In order to identify key physical factor controlling the deformation and fracture behavior of bulk metallic glasses (BMGs), we compiled and analyzed the elastic moduli and compressive ductility for BMGs. In addition, new modulus data were generated in the critical ranges in order to facilitate the analysis. We have found that the intrinsic ductility of BMGs can be correlated with the bulk-to-shear modulus ratio B/G according to Pugh's [Philos. Mag. 45, 823 (1954) ] rule. In some individual BMG systems, for example, Fe based, the relationship seems to be very clear. The physical meaning of this correlation is discussed in terms of atomic bonding and connectivity.

  10. Effect of Structure Factor on High-Temperature Ductility of Pipe Steels

    Science.gov (United States)

    Kolbasnikov, N. G.; Matveev, M. A.; Mishnev, P. A.

    2016-05-01

    Effects of various factors such as the grain size, the morphology of nonmetallic inclusions, and joint microalloying with boron and titanium on the high-temperature ductility of pipe steels are studied. Physical modeling of the conditions of cooling of the skin of a continuous-cast preform in the zone of secondary cooling in a Gleeble facility is performed. Technical recommendations are given for raising the hot ductility of steels under industrial conditions.

  11. Effect of Continuous Galvanizing Heat Treatments on the Microstructure and Mechanical Properties of High Al-Low Si Transformation Induced Plasticity Steels

    Science.gov (United States)

    Bellhouse, E. M.; McDermid, J. R.

    2010-02-01

    Heat treatments were performed using an isothermal bainitic transformation (IBT) temperature compatible with continuous hot-dip galvanizing on two high Al-low Si transformation induced plasticity (TRIP)-assisted steels. Both steels had 0.2 wt pct C and 1.5 wt pct Mn; one had 1.5 wt pct Al and the other had 1 wt pct Al and 0.5 wt pct Si. Two different intercritical annealing (IA) temperatures were used, resulting in intercritical microstructures of 50 pct ferrite (α)-50 pct austenite (γ) and 65 pct α-35 pct γ. Using the IBT temperature of 465 °C, five IBT times were tested: 4, 30, 60, 90, and 120 seconds. Increasing the IBT time resulted in a decrease in the ultimate tensile strength (UTS) and an increase in the uniform elongation, yield strength, and yield point elongation. The uniform elongation was higher when using the 50 pct α-50 pct γ IA temperature when compared to the 65 pct α-35 pct γ IA temperature. The best combinations of strength and ductility and their corresponding heat treatments were as follows: a tensile strength of 895 MPa and uniform elongation of 0.26 for the 1.5 pct Al TRIP steel at the 50 pct γ IA temperature and 90-second IBT time; a tensile strength of 880 MPa and uniform elongation of 0.27 for the 1.5 pct Al TRIP steel at the 50 pct γ IA temperature and 120-second IBT time; and a tensile strength of 1009 MPa and uniform elongation of 0.22 for the 1 pct Al-0.5 pct Si TRIP steel at the 50 pct γ IA temperature and 120-second IBT time.

  12. Energetic approach for ductile tearing; Approche energetique de la dechirure ductile

    Energy Technology Data Exchange (ETDEWEB)

    Marie, St

    1999-07-01

    This study focuses on ductile crack initiation and propagation. It aims to propose an approach for the engineer allowing the prediction of the evolution of cracks in large scale components, from parameters determined on laboratory specimens. A crack initiation criterion, defining a J{sub i} tenacity related to crack tip blunting proposed in the literature is validated in the study. This criterion is shown to be transferable from laboratory specimens to structures. The literature review shows that an approach based on the dissipated energy in the fracture process during propagation offers an economical and simple solution to simulate large crack growth. A numerical method is proposed to estimate this fracture energy. The existence of an energy parameter G{sub fr} is shown, by simulating the propagation by the simultaneous release of several elements and by the use of the Rice integral with an original integration path. This parameter represents the needed energy for a unit crack extension and appears to be intrinsic to the material. A global energy statement allows to relate this parameter to a variation of the plastic part of J integral. It offers a second numerical method to simulate the propagation just from stationary numerical calculations, as well as the elaboration of a simplified method. This approach, using two parameters J{sub i} and G{sub fr}, intrinsic to the material and experimentally measurable on specimens, is validated on many tests such as crack pipes subjected to four points bending and cracked rings in compression. For example, this approach allows to model up to 90 mm ductile tearing in a pipe with a circumferential through-wall crack in ferritic steel, or to anticipate the evolution of a semi-elliptical crack in an aged austenitic ferritic steel plate subjected to bending. (author)

  13. Development of stiffer and ductile glulam portal frame

    Science.gov (United States)

    Komatsu, Kohei

    2017-11-01

    Portal frame structures, which are constituted of straight glulam beams and columns connected semi-rigidly by steel insert gusset plate with a lot of drift pins, were the first successful glulam structures widely used in Japan. In addition to this connection system, the author invented also a new type of jointing devise for glulam structures named as "Lagscrewbolt" which had a full threaded portion at inner part to grip wooden member as well as another thread part at the end of shank to connect with other member. The initial type of "Lagscrewbolt" was successfully applied to a various types of glulam buildings which could be rapidly built-up on construction site. Its strength performance, however, was rather brittle therefore the improvement of the ductility was a crucial research subject. In order to give a sufficient ductility on the "Lagscrewbolted joint system", so-called "Slotted Bolted Connection" concept was adopted for making use of large energy dissipation characteristics due to high-tension bolted steel connection with slotted bolt holes. Static & dynamic performance of glulam portal frame specimens was evaluated by static cyclic loading test as well as shaking table test. Current latest form of the jointing system can show very high ductility as well as stable hysteretic cyclic loops by inserting brass-shim between steel-to-steel friction interfaces

  14. New measurement technique of ductility curve for ductility-dip cracking susceptibility in Alloy 690 welds

    Energy Technology Data Exchange (ETDEWEB)

    Kadoi, Kota, E-mail: kadoi@hiroshima-u.ac.jp [Graduate School of Engineering, Hiroshima University, 1-4-1 Kagamiyama, Higashi-Hiroshima, Hiroshima 739-8527 (Japan); Uegaki, Takanori; Shinozaki, Kenji; Yamamoto, Motomichi [Graduate School of Engineering, Hiroshima University, 1-4-1 Kagamiyama, Higashi-Hiroshima, Hiroshima 739-8527 (Japan)

    2016-08-30

    The coupling of a hot tensile test with a novel in situ observation technique using a high-speed camera was investigated as a high-accuracy quantitative evaluation method for ductility-dip cracking (DDC) susceptibility. Several types of Alloy 690 filler wire were tested in this study owing to its susceptibility to DDC. The developed test method was used to directly measure the critical strain for DDC and high temperature ductility curves with a gauge length of 0.5 mm. Minimum critical strains of 1.3%, 4.0%, and 3.9% were obtained for ERNiCrFe-7, ERNiCrFe-13, and ERNiCrFe-15, respectively. The DDC susceptibilities of ERNiCrFe-13 and ERNiCrFe-15 were nearly the same and quite low compared with that of ERNiCrFe-7. This was likely caused by the tortuosity of the grain boundaries arising from the niobium content of around 2.5% in the former samples. Besides, ERNiCrFe-13 and ERNiCrFe-15 indicated higher minimum critical strains even though these specimens include higher content of sulfur and phosphorus than ERNiCrFe-7. Thus, containing niobium must be more effective to improve the susceptibility compared to sulfur and phosphorous in the alloy system.

  15. New measurement technique of ductility curve for ductility-dip cracking susceptibility in Alloy 690 welds

    International Nuclear Information System (INIS)

    Kadoi, Kota; Uegaki, Takanori; Shinozaki, Kenji; Yamamoto, Motomichi

    2016-01-01

    The coupling of a hot tensile test with a novel in situ observation technique using a high-speed camera was investigated as a high-accuracy quantitative evaluation method for ductility-dip cracking (DDC) susceptibility. Several types of Alloy 690 filler wire were tested in this study owing to its susceptibility to DDC. The developed test method was used to directly measure the critical strain for DDC and high temperature ductility curves with a gauge length of 0.5 mm. Minimum critical strains of 1.3%, 4.0%, and 3.9% were obtained for ERNiCrFe-7, ERNiCrFe-13, and ERNiCrFe-15, respectively. The DDC susceptibilities of ERNiCrFe-13 and ERNiCrFe-15 were nearly the same and quite low compared with that of ERNiCrFe-7. This was likely caused by the tortuosity of the grain boundaries arising from the niobium content of around 2.5% in the former samples. Besides, ERNiCrFe-13 and ERNiCrFe-15 indicated higher minimum critical strains even though these specimens include higher content of sulfur and phosphorus than ERNiCrFe-7. Thus, containing niobium must be more effective to improve the susceptibility compared to sulfur and phosphorous in the alloy system.

  16. Plasticity of ductile metallic glasses: a self-organized critical state.

    Science.gov (United States)

    Sun, B A; Yu, H B; Jiao, W; Bai, H Y; Zhao, D Q; Wang, W H

    2010-07-16

    We report a close correlation between the dynamic behavior of serrated flow and the plasticity in metallic glasses (MGs) and show that the plastic deformation of ductile MGs can evolve into a self-organized critical state characterized by the power-law distribution of shear avalanches. A stick-slip model considering the interaction of multiple shear bands is presented to reveal complex scale-free intermittent shear-band motions in ductile MGs and quantitatively reproduce the experimental observations. Our studies have implications for understanding the precise plastic deformation mechanism of MGs.

  17. Effects of ductile matrix failure in three dimensional analysis of metal matrix composites

    DEFF Research Database (Denmark)

    Tvergaard, Viggo

    1998-01-01

    Full three dimensional numerical cell model analyses are carried out for a metal reinforced by short fibers, to study the development of ductile matrix failure. A porous ductile material model is used to describe the effect of the nucleation and growth of voids to coalescence. In each case studied...

  18. Alloy-dependent deformation behavior of highly ductile nanocrystalline AuCu thin films

    International Nuclear Information System (INIS)

    Lohmiller, Jochen; Spolenak, Ralph; Gruber, Patric A.

    2014-01-01

    Nanocrystalline thin films on compliant substrates become increasingly important for the development of flexible electronic devices. In this study, nanocrystalline AuCu thin films on polyimide substrate were tested in tension while using a synchrotron-based in situ testing technique. Analysis of X-ray diffraction profiles allowed identifying the underlying deformation mechanisms. Initially, elastic and microplastic deformation is observed, followed by dislocation-mediated shear band formation, and eventually macroscopic crack formation. Particularly the influence of alloy composition, heat-treatment, and test temperature were investigated. Generally, a highly ductile behavior is observed. However, high Cu concentrations, annealing, and/or large plastic strains lead to localized deformation and hence reduced ductility. On the other hand, enhanced test temperature allows for a delocalized deformation and extended ductility

  19. Alloy-dependent deformation behavior of highly ductile nanocrystalline AuCu thin films

    Energy Technology Data Exchange (ETDEWEB)

    Lohmiller, Jochen [Karlsruhe Institute of Technology, Institute for Applied Materials, P.O. Box 3640, 76021 Karlsruhe (Germany); Laboratory for Nanometallurgy, Department of Materials, ETH Zurich, Wolfgang-Pauli-Str. 10, 8093 Zurich (Switzerland); Spolenak, Ralph [Laboratory for Nanometallurgy, Department of Materials, ETH Zurich, Wolfgang-Pauli-Str. 10, 8093 Zurich (Switzerland); Gruber, Patric A., E-mail: patric.gruber@kit.edu [Karlsruhe Institute of Technology, Institute for Applied Materials, P.O. Box 3640, 76021 Karlsruhe (Germany)

    2014-02-10

    Nanocrystalline thin films on compliant substrates become increasingly important for the development of flexible electronic devices. In this study, nanocrystalline AuCu thin films on polyimide substrate were tested in tension while using a synchrotron-based in situ testing technique. Analysis of X-ray diffraction profiles allowed identifying the underlying deformation mechanisms. Initially, elastic and microplastic deformation is observed, followed by dislocation-mediated shear band formation, and eventually macroscopic crack formation. Particularly the influence of alloy composition, heat-treatment, and test temperature were investigated. Generally, a highly ductile behavior is observed. However, high Cu concentrations, annealing, and/or large plastic strains lead to localized deformation and hence reduced ductility. On the other hand, enhanced test temperature allows for a delocalized deformation and extended ductility.

  20. A multi-scale correlative investigation of ductile fracture

    International Nuclear Information System (INIS)

    Daly, M.; Burnett, T.L.; Pickering, E.J.; Tuck, O.C.G.; Léonard, F.; Kelley, R.; Withers, P.J.; Sherry, A.H.

    2017-01-01

    The use of novel multi-scale correlative methods, which involve the coordinated characterisation of matter across a range of length scales, are becoming of increasing value to materials scientists. Here, we describe for the first time how a multi-scale correlative approach can be used to investigate the nature of ductile fracture in metals. Specimens of a nuclear pressure vessel steel, SA508 Grade 3, are examined following ductile fracture using medium and high-resolution 3D X-ray computed tomography (CT) analyses, and a site-specific analysis using a dual beam plasma focused ion beam scanning electron microscope (PFIB-SEM). The methods are employed sequentially to characterise damage by void nucleation and growth in one volume of interest, allowing for the imaging of voids that ranged in size from less than 100 nm to over 100 μm. This enables the examination of voids initiated at carbide particles to be detected, as well as the large voids initiated at inclusions. We demonstrate that this multi-scale correlative approach is a powerful tool, which not only enhances our understanding of ductile failure through detailed characterisation of microstructure, but also provides quantitative information about the size, volume fractions and spatial distributions of voids that can be used to inform models of failure. It is found that the vast majority of large voids nucleated at MnS inclusions, and that the volume of a void varied according to the volume of its initiating inclusion raised to the power 3/2. The most severe voiding was concentrated within 500 μm of the fracture surface, but measurable damage was found to extend to a depth of at least 3 mm. Microvoids associated with carbides (carbide-initiated voids) were found to be concentrated around larger inclusion-initiated voids at depths of at least 400 μm. Methods for quantifying X-ray CT void data are discussed, and a procedure for using this data to calibrate parameters in the Gurson-Tvergaard Needleman (GTN

  1. Chronic Exposure to Particulate Nickel Induces Neoplastic Transformation in Human Lung Epithelial Cells

    Directory of Open Access Journals (Sweden)

    Amie L. Holmes

    2013-11-01

    Full Text Available Nickel is a well-known human lung carcinogen with the particulate form being the most potent; however, the carcinogenic mechanism remains largely unknown. Few studies have investigated the genotoxicity and carcinogenicity of nickel in its target cell, human bronchial epithelial cells. Thus, the goal of this study was to investigate the effects of particulate nickel in human lung epithelial cells. We found that nickel subsulfide induced concentration- and time-dependent increases in both cytotoxicity and genotoxicity in human lung epithelial cells (BEP2D. Chronic exposure to nickel subsulfide readily induced cellular transformation, inducing 2.55, 2.9 and 2.35 foci per dish after exposure to 1, 2.5 and 5 μg/cm2 nickel subsulfide, respectively. Sixty-one, 100 and 70 percent of the foci isolated from 1, 2.5, and 5 μg/cm2 nickel subsulfide treatments formed colonies in soft agar and the degree of soft agar colony growth increased in a concentration-dependent manner. Thus, chronic exposure to particulate nickel induces genotoxicity and cellular transformation in human lung epithelial cells.

  2. Hot ductility of structural steels melted with the use of direct reduction charge

    International Nuclear Information System (INIS)

    Marchenko, V.N.; Bulat, S.I.; Litvinenko, D.A.

    1982-01-01

    A possibility of the use of direct reduction charge during the open arc melting of the 40Kh2N2MA steel with the subsequent electroslag remelting was investigated. It is shown that the use of such charge free from non-ferrous metal admixtures permits to increase an alloy hot ductility in the hot-brittleness range from 900 up to 1500 deg C. An increase of the deformation rate from 0.1 up to 1 s - 1 increases 1.5-3 times a level of minimum ductility within this temperature range. It is established that antimony and bismuth impurities considerably decrease hot ductility

  3. Influence of austempering heat treatment on mechanical and corrosion properties of ductile iron samples

    Directory of Open Access Journals (Sweden)

    M. Janjić

    2016-07-01

    Full Text Available Mechanical properties and corrosion resistance of metals are closely related to the microstructure characteristics of the material. The paper compares the results of these two sets of properties after investigating samples of base ductile iron and heat-treated samples of the base austempered ductile iron (ADI. The basic material is perlite ferritic iron alloyed with copper and nickel. To test the corrosion rate of the base material (ductile iron and the heattreated samples (ADI, electrochemical techniques of potentiostatic polarization were used (the technique of Tafel curves extrapolation and the potentiodynamic polarization technique.

  4. A variational void coalescence model for ductile metals

    KAUST Repository

    Siddiq, Amir

    2011-08-17

    We present a variational void coalescence model that includes all the essential ingredients of failure in ductile porous metals. The model is an extension of the variational void growth model by Weinberg et al. (Comput Mech 37:142-152, 2006). The extended model contains all the deformation phases in ductile porous materials, i.e. elastic deformation, plastic deformation including deviatoric and volumetric (void growth) plasticity followed by damage initiation and evolution due to void coalescence. Parametric studies have been performed to assess the model\\'s dependence on the different input parameters. The model is then validated against uniaxial loading experiments for different materials. We finally show the model\\'s ability to predict the damage mechanisms and fracture surface profile of a notched round bar under tension as observed in experiments. © Springer-Verlag 2011.

  5. Ductile damage evolution and strain path dependency

    NARCIS (Netherlands)

    Tasan, C.C.; Hoefnagels, J.P.M.; Peerlings, R.H.J.; Geers, M.G.D.; Horn, ten C.H.L.J.; Vegter, H.; Cueto, E.; Chinesta, F.

    2007-01-01

    Forming limit diagrams are commonly used in sheet metal industry to define the safe forming regions. These diagrams are built to define the necking strains of sheet metals. However, with the rise in the popularity of advance high strength steels, ductile fracture through damage evolution has also

  6. Rb-Sr dating of strain-induced mineral growth in two ductile shear zones in the western gneiss region of Nord-Troendelag, Central Norway

    International Nuclear Information System (INIS)

    Piasecki, M.A.; Cliff, R.A.

    1988-01-01

    In the Bjugn district of the northern part of the Western Gneiss Region, Nord-Troendelag, a basement gneiss-cover nappe boundary is marked by a thick zone of ductile shearing. In this zone a layer-parallel mylonitic fabric with related new mineral growth overprints and retrogresses a previous fabric associated with a granulite facies mineral assemblage. Related minor shear belts contain abundant new minerals and vein systems, including pegmatites, believed to represent strain-induced products formed at the time of the shearing movements. Central parts of two large muscovite books from such a pegmatite yielded Rb-Sr, Early to Middle Devonian ages of 389±6 Ma and 386±6 Ma, interpreted as indicating the approximate time of pegmatite formation and of the shearing. Small, matrix-size muscovite and biotite grains from the host mylonite gave ages of 378±6 Ma and 365±5 Ma, respectively, supposed to relate to post-shearing uplift and cooling

  7. Transition temperature and fracture mode of as-castand austempered ductile iron.

    Science.gov (United States)

    Rajnovic, D; Eric, O; Sidjanin, L

    2008-12-01

    The ductile to brittle transition temperature is a very important criterion that is used for selection of materials in some applications, especially in low-temperature conditions. For that reason, in this paper transition temperature of as-cast and austempered copper and copper-nickel alloyed ductile iron (DI) in the temperature interval from -196 to +150 degrees C have been investigated. The microstructures of DIs and ADIs were examined by light microscope, whereas the fractured surfaces were observed by scanning electron microscope. The ADI materials have higher impact energies compared with DIs in an as-cast condition. In addition, the transition curves for ADIs are shifted towards lower temperatures. The fracture mode of Dls is influenced by a dominantly pearlitic matrix, exhibiting mostly brittle fracture through all temperatures of testing. By contrast, with decrease of temperature, the fracture mode for ADI materials changes gradually from fully ductile to fully brittle.

  8. Fracture dynamics of a propagating crack in a pressurized ductile cylinder

    International Nuclear Information System (INIS)

    Emery, A.F.; Love, W.J.; Kobayashi, A.S.

    1977-01-01

    A suddenly-introduced axial through-crack in the wall of a pipe pressurized by hot water is allowed to propagate according to Weiss' notch-strength theory of ductile static fracture. The dynamic-fracture criterion used enabled the authors to obtain a unique comparison of the results of ductile-fracture with those of brittle-fracture in a fracturing A533B steel pipe. Since the pipe cross-sectional area is likely to increase with large flap motions under ductile tearing, a large deformation shell-finite-difference-dynamic-code which includes rotary inertia was used in this analysis. The uniaxial-stress-strain curve of A533B steel was approximated by a bilinear-stress-strain where Von-Mises yield criterion and associated flow rule were used in the elastic-plastic analysis. The fluid pressure was assumed constant and thus pipe flaps are only lightly loaded by pressure in this analysis. (Auth.)

  9. Fracture dynamics of a propagating crack in a pressurized ductile cylinder

    International Nuclear Information System (INIS)

    Emery, A.F.; Love, W.J.; Kobayashi, A.S.

    1977-01-01

    A suddenly-introduced axial through-crack in the wall of a pipe pressurized by hot water is allowed to propagate according to Weiss' notch-strength theory of ductile static fracture. For this somewhat ductile material of A533B steel, Weiss' criterion was extended of dynamic fracture without modification. This dynamic-fracture criterion enabled a unique comparison to be obtained for the results of ductile-fracture with those of brittle-fracture in a fracturing A533B steel pipe. Since the pipe cross-sectional area is likely to increase with large flap motions under ductile tearing, a large deformation-shell-finite-difference-dynamic-code which includes rotary inertia was used in this analysis. The uniaxial-stress-strain curve of A533B steel was approximated by a bilinear stress-strain where Von-Misses yield criterion and associated flow rule were used in the elastic-plastic analysis. The fluid pressure was assumed constant and thus pipe flaps are only lightly loaded by pressure in this analysis. In previous publications, the authors have compared their preliminary results for the shell motion obtained through their model for a fracturing pipe with those of Kanninen, et al., and Freund, et al., to evaluate the effects of pressure loading on the crack flaps and the differences between small and large deflection results. In this paper, the differences in crack-propagation behavior of a fracturing pipe composed of the same A533B but subjected to a brittle or a ductile-fracture criterion are discussed. An important conclusion in fracture dynamics derived from analyses is that a smoothly-varying crack velocity will require a non-unique crack-velocity-versus-dynamic-fracture-parameter-relation while a unique and smoothly-varying crack-velocity-versus-dynamic-fracture-parameter-relation will demand an intermittently-propagating crack

  10. Constitutive modelling of stainless steels for cryogenic applications. Strain induced martensitic transformation

    CERN Document Server

    Garion, C

    2001-01-01

    The 300-series stainless steels are metastable austenitic alloys: martensitic transformation occurs at low temperatures and/or when plastic strain fields develop in the structures. The transformation influences the mechanical properties of the material. The present note aims at proposing a set of constitutive equations describing the plastic strain induced martensitic transformation in the stainless steels at cryogenic temperatures. The constitutive modelling shall create a bridge between the material sciences and the structural analysis. For the structures developing and accumulating plastic deformations at sub-zero temperatures, it is of primary importance to be able to predict the intensity of martensitic transformation and its effect on the material properties. In particular, the constitutive model has been applied to predict the behaviour of the components of the LHC interconnections, the so-called bellows expansion joints (the LHC mechanical compensation system).

  11. Comparative genome analysis of three eukaryotic parasites with differing abilities to transform leukocytes reveals key mediators of theileria-induced leukocyte transformation

    KAUST Repository

    Hayashida, Kyoko

    2012-09-04

    We sequenced the genome of Theileria orientalis, a tick-borne apicomplexan protozoan parasite of cattle. The focus of this study was a comparative genome analysis of T. orientalis relative to other highly pathogenic Theileria species, T. parva and T. annulata. T. parva and T. annulata induce transformation of infected cells of lymphocyte or macrophage/monocyte lineages; in contrast, T. orientalis does not induce uncontrolled proliferation of infected leukocytes and multiplies predominantly within infected erythrocytes. While synteny across homologous chromosomes of the three Theileria species was found to be well conserved overall, subtelomeric structures were found to differ substantially, as T. orientalis lacks the large tandemly arrayed subtelomere-encoded variable secreted protein-encoding gene family. Moreover, expansion of particular gene families by gene duplication was found in the genomes of the two transforming Theileria species, most notably, the TashAT/TpHN and Tar/Tpr gene families. Gene families that are present only in T. parva and T. annulata and not in T. orientalis, Babesia bovis, or Plasmo-dium were also identified. Identification of differences between the genome sequences of Theileria species with different abilities to transform and immortalize bovine leukocytes will provide insight into proteins and mechanisms that have evolved to induce and regulate this process. The T. orientalis genome database is available at http://totdb.czc.hokudai.ac.jp/. 2012 Hayashida et al. T.

  12. Effect of yield stress matching on ductile fracture behavior of girth welds for X line pipe

    Energy Technology Data Exchange (ETDEWEB)

    Motohashi, Hiroyuki; Hagiwara, Naoto [Tokyo Gas Co., Ltd. (Japan)

    2005-07-01

    This paper describes the effects of yield stress matching on the ductile fracture behavior of girth welded joints for X linepipes. Three welded joints were made on an X line pipe using several consumables to obtain about a 20% overmatched, even matched and about a 20% under matched weld metal. For these three welded joints, curved wide plate tensile tests were then conducted with a surface notch in the weld metal. To determine the ductile crack initiation from the surface notch, these tests employed a direct-current electric potential (d-c E P) method. Crack opening displacement, gauge length strain and local strain adjacent to the surface notch were also measured. The ductile crack initiation was successfully detected using the d-c E P method. The yield stress matching significantly affected the ductile crack initiation and fracture behavior, that is, the overmatched welded joint had a higher resistance to ductile fracture than that of the under matched welded joint. The allowable strength matching level was determined from the relationship between the strength matching and the gauge length strain at the ductile crack initiation detected using the d-c E P method. (author)

  13. Complexity estimates based on integral transforms induced by computational units

    Czech Academy of Sciences Publication Activity Database

    Kůrková, Věra

    2012-01-01

    Roč. 33, September (2012), s. 160-167 ISSN 0893-6080 R&D Projects: GA ČR GAP202/11/1368 Institutional research plan: CEZ:AV0Z10300504 Institutional support: RVO:67985807 Keywords : neural networks * estimates of model complexity * approximation from a dictionary * integral transforms * norms induced by computational units Subject RIV: IN - Informatics, Computer Science Impact factor: 1.927, year: 2012

  14. Ductile shear failure or plug failure of spot welds modelled by modified Gurson model

    DEFF Research Database (Denmark)

    Nielsen, Kim Lau; Tvergaard, Viggo

    2010-01-01

    For resistance spot welded shear-lab specimens, interfacial failure under ductile shearing or ductile plug failure are analyzed numerically, using a shear modified Gurson model. The interfacial shear failure occurs under very low stress triaxiality, where the original Gurson model would predict...

  15. Fracturing and Transformation Into Veins Beneath the Crustal Scale Brittle Ductile Transition - a Record of Co-seismic Loading and Post-seismic Relaxation

    Science.gov (United States)

    Nüchter, J. A.; Stöckhert, B.

    2005-12-01

    Metamorphic rocks approaching the crustal scale brittle-ductile transition (BDT) during exhumation are expected to become increasingly affected by short term stress fluctuations related to seismic activity in the overlying seismogenic layer (schizosphere), while still residing in a long-term viscous environment (plastosphere). The structural and microstructural record of quartz veins in low grade - high pressure metamorphic rocks from southern Evia, Greece, yields insight into the processes and conditions just beneath the long-term BDT at temperatures of about 300 to 350°C, which switches between brittle failure and viscous flow as a function of imposed stress or strain rate. The following features are characteristic: (1) The veins have formed from tensile fractures, with a typical length on the order of 10-1 to 101 m; (2) The veins are discordant with respect to foliation and all pre-existing structures, with a uniform orientation over more than 500 km2; (3) The veins show a low aspect ratio of about 10 to 100 and an irregular or characteristic flame shape, which requires distributed ductile deformation of the host rock; (4) Fabrics of the sealing vein quartz indicate that - at a time - the veins were wide open cavities; (5) The sealing quartz crystals reveal a broad spectrum of microstructural features indicative of crystal plastic deformation at high stress and temperatures of about 300 to 350°C. These features indicate that opening and sealing of the fractures commenced immediately after brittle failure, controlled by ductile deformation of the host rock. Vein-parallel shortening was generally less than about 2%. Crystals formed early during sealing were plastically deformed upon progressive deformation and opening of the vein. The structural and microstructural record is interpreted as follows: Brittle failure is proposed to be a consequence of short term co-seismic loading. Subsequent opening of the fracture and sealing to become a vein is interpreted to

  16. Parametric study of irradiation effects on the ductile damage and flow stress behavior in ferritic-martensitic steels

    International Nuclear Information System (INIS)

    Chakraborty, Pritam; Biner, S.Bulent

    2015-01-01

    Ferritic-martensitic steels are currently being considered as structural materials in fusion and Gen-IV nuclear reactors. These materials are expected to experience high dose radiation, which can increase their ductile to brittle transition temperature and susceptibility to failure during operation. Hence, to estimate the safe operational life of the reactors, precise evaluation of the ductile to brittle transition temperatures of ferritic-martensitic steels is necessary. Owing to the scarcity of irradiated samples, particularly at high dose levels, micro-mechanistic models are being employed to predict the shifts in the ductile to brittle transition temperatures. These models consider the ductile damage evolution, in the form of nucleation, growth and coalescence of voids; and the brittle fracture, in the form of probabilistic cleavage initiation, to estimate the influence of irradiation on the ductile to brittle transition temperature. However, the assessment of irradiation dependent material parameters is challenging and influences the accuracy of these models. In the present study, the effects of irradiation on the overall flow stress and ductile damage behavior of two ferritic-martensitic steels is parametrically investigated. The results indicate that the ductile damage model parameters are mostly insensitive to irradiation levels at higher dose levels though the resulting flow stress behavior varies significantly.

  17. 'Water Structure' versus 'Radical Scavenger' theories as explanations for the suppressive effects of DMSO and related compounds on radiation-induced transformation in vitro

    International Nuclear Information System (INIS)

    Kennedy, A.R.; Symons, M.C.R.

    1987-01-01

    We report here that dimethylsulfoxide (DMSO): (i) suppresses radiation-induced transformation in vitro, even when DMSO treatments begin as late as 10 days post-irradiation; (ii) inhibits the 12-O-tetradecanoylphorbol-13-acetate (TPA) enhancement of radiation-induced transformation in vitro; (iii) does not affect the expression of transformed cells as foci (when surrounded by non-transformed cells); and (iv) may be affecting radiation-induced transformation through its solvent properties (i.e. the 'Water Structure' theory), while its effects on the TPA enhancement of radiation transformation may be mediated by its free radical scavenging abilities. DMSO, dimethylformamide (DMF) and dimethylacetamide (DMA) are similar solvents which are all very effective in their ability to suppress radiation-induced transformation in vitro. As DMSO is known to be an extremely effective OH free-radical scavenging agent, while DMF and DMA are not as efficient at scavenging free radicals, our results suggest that properties other than free-radical scavenging ability may be important in the suppressive effects of these compounds on radiation-induced transformation in vitro. (author)

  18. Ductile Binder Phase For Use With Almgb14 And Other Hard Ceramic Materials

    Science.gov (United States)

    Cook, Bruce A.; Russell, Alan; Harringa, Joel

    2005-07-26

    This invention relates to a ductile binder phase for use with AlMgB14 and other hard materials. The ductile binder phase, a cobalt-manganese alloy, is used in appropriate quantities to tailor good hardness and reasonable fracture toughness for hard materials so they can be used suitably in industrial machining and grinding applications.

  19. Prediction of Ductile Fracture Behaviors for 42CrMo Steel at Elevated Temperatures

    Science.gov (United States)

    Lin, Y. C.; Liu, Yan-Xing; Liu, Ge; Chen, Ming-Song; Huang, Yuan-Chun

    2015-01-01

    The ductile fracture behaviors of 42CrMo steel are studied by hot tensile tests with the deformation temperature range of 1123-1373 K and strain rate range of 0.0001-0.1 s-1. Effects of deformation temperature and strain rate on the flow stress and fracture strain of the studied steel are discussed in detail. Based on the experimental results, a ductile damage model is established to describe the combined effects of deformation temperature and strain rate on the ductile fracture behaviors of 42CrMo steel. It is found that the flow stress first increases to a peak value and then decreases, showing an obvious dynamic softening. This is mainly attributed to the dynamic recrystallization and material intrinsic damage during the hot tensile deformation. The established damage model is verified by hot forging experiments and finite element simulations. Comparisons between the predicted and experimental results indicate that the established ductile damage model is capable of predicting the fracture behaviors of 42CrMo steel during hot forging.

  20. Effect of Ti and B microadditions on the hot ductility behavior of a High-Mn austenitic Fe–23Mn–1.5Al–1.3Si–0.5C TWIP steel

    Energy Technology Data Exchange (ETDEWEB)

    Mejía, I., E-mail: imejia@umich.mx [Instituto de Investigaciones Metalúrgicas, Universidad Michoacana de San Nicolás de Hidalgo, Edificio “U-5”, Ciudad Universitaria, 58066 Morelia, Michoacán, México (Mexico); Salas-Reyes, A.E. [Instituto de Investigaciones Metalúrgicas, Universidad Michoacana de San Nicolás de Hidalgo, Edificio “U-5”, Ciudad Universitaria, 58066 Morelia, Michoacán, México (Mexico); Calvo, J.; Cabrera, J.M. [Departament de Ciència dels Materials i Enginyeria Metallurgica, ETSEIB, Universitat Politècnica de Catalunya, Av. Diagonal 647, 08028 Barcelona (Spain); Fundació CTM Centre Tecnològic, Plaça de la Ciència, 2-08243 Manresa (Spain)

    2015-11-11

    This research work studies the effect of combined Ti and B microadditions and the solidification route on the hot ductility behavior of a high-Mn austenitic Twinning Induced Plasticity (TWIP) steel. For this purpose, uniaxial hot tensile tests were carried out at different temperatures between 700 and 1100 °C under a constant strain rate of 10{sup −3} s{sup −1}. The hot ductility was determined by measuring the reduction of transverse area (%RA) after specimen rupture. Characterization was performed by SEM-EBSD and TEM techniques in order to identify the relationship between microstructural features and cracking phenomena. Results indicate that the early occurrence of dynamic recrystallization (DRX) at the intermediate temperature range (800–900 °C) is the favorable mechanism that enhances the ductility, achieving RA values up to 82%. These high RA values are discussed in terms of the boron effect on the improvement of the grain-boundaries cohesion through non-equilibrium segregation, and Ti(C,N) precipitation, which reduces the formation of harmful precipitates such as BN and AlN. Additionally, the Fe{sub 23}(B,C){sub 6} and B{sub 4}C compounds were identified, which are less detrimental to hot ductility than boron-nitride compounds. Finally, the fracture surfaces of the present TWIP steels in the temperature range of the highest ductility indicate that the failure mode is of the ductile type as evidenced by the presence of many dimples.

  1. Effect of Ti and B microadditions on the hot ductility behavior of a High-Mn austenitic Fe–23Mn–1.5Al–1.3Si–0.5C TWIP steel

    International Nuclear Information System (INIS)

    Mejía, I.; Salas-Reyes, A.E.; Calvo, J.; Cabrera, J.M.

    2015-01-01

    This research work studies the effect of combined Ti and B microadditions and the solidification route on the hot ductility behavior of a high-Mn austenitic Twinning Induced Plasticity (TWIP) steel. For this purpose, uniaxial hot tensile tests were carried out at different temperatures between 700 and 1100 °C under a constant strain rate of 10"−"3 s"−"1. The hot ductility was determined by measuring the reduction of transverse area (%RA) after specimen rupture. Characterization was performed by SEM-EBSD and TEM techniques in order to identify the relationship between microstructural features and cracking phenomena. Results indicate that the early occurrence of dynamic recrystallization (DRX) at the intermediate temperature range (800–900 °C) is the favorable mechanism that enhances the ductility, achieving RA values up to 82%. These high RA values are discussed in terms of the boron effect on the improvement of the grain-boundaries cohesion through non-equilibrium segregation, and Ti(C,N) precipitation, which reduces the formation of harmful precipitates such as BN and AlN. Additionally, the Fe_2_3(B,C)_6 and B_4C compounds were identified, which are less detrimental to hot ductility than boron-nitride compounds. Finally, the fracture surfaces of the present TWIP steels in the temperature range of the highest ductility indicate that the failure mode is of the ductile type as evidenced by the presence of many dimples.

  2. Microstructural basis and crack growth theories for post-irradiation ductility loss in Nimonic PE16

    International Nuclear Information System (INIS)

    Chang, A.L.

    1982-01-01

    A study has been carried out to investigate the degradation of postirradiation ductility at reactor temperatures in Nimonic PE16, a Fe-Cr-Ni-based precipitation-hardened superalloy. Fractographic and microstructural investigations show that the grain matrix is capable of deformation and does not limit the postirradiation tensile ductility. Grain-boundary helium bubbles formed during neutron irradiation seem to be crack nucleation sites under stress. Growth and coalescence of these microcracks under stress lead to intergranular fracture. A rigid-grain fracture model is shown to be able to correlate the observed microstructures with most features of the mechanical properties, except the strain rate dependence of the ductility. By incorporating the interactions between diffusion and plastic deformation, a plastic-grain fracture model has been developed which can explain all postirradiation tensile ductility data quantitatively. 13 references

  3. Simulations of ductile flow in brittle material processing

    Energy Technology Data Exchange (ETDEWEB)

    Luh, M.H.; Strenkowski, J.S.

    1988-12-01

    Research is continuing on the effects of thermal properties of the cutting tool and workpiece on the overall temperature distribution. Using an Eulerian finite element model, diamond and steel tools cutting aluminum have been simulated at various, speeds, and depths of cut. The relative magnitude of the thermal conductivity of the tool and the workpiece is believed to be a primary factor in the resulting temperature distribution in the workpiece. This effect is demonstrated in the change of maximum surface temperatures for diamond on aluminum vs. steel on aluminum. As a preliminary step toward the study of ductile flow in brittle materials, the relative thermal conductivities of diamond on polycarbonate is simulated. In this case, the maximum temperature shifts from the rake face of the tool to the surface of the machined workpiece, thus promoting ductile flow in the workpiece surface.

  4. Kinetic of martensitic transformations induced by hydrogen in the austenite

    International Nuclear Information System (INIS)

    Oliveira, Sergio P. de; Saavedra, A.; Miranda, P.E.V. de

    1986-01-01

    The X-ray diffractometry technique was used, with an automatic data acquisition system to determine the kinetics of hydrogen induced martensitic phase transformations in an AISI 304 austenitic stainless steel type, used in nuclear power plants. Hydrogenation was performed cathodically in a 1N sulfuric acid solution, containing 100 mg/l of arsenic trioxide, at 50 0 C, during 2 hours and with a current density of 200 A/m 2 . It was found that the microstructure of the steel plays a role on the generation of hydrogen induced martensitic phases and surface micro cracks. Both kinetics were slower on a pre-cold rolled steel. (Author) [pt

  5. Position-dependent shear-induced austenite– martensite transformation in double-notched TRIP and dual-phase steel samples

    NARCIS (Netherlands)

    Blondé, R.J.P.; Jimenez-Melero, E.; Anusuya Ponnusami, S.; Zhao, L.; Schell, N.; Brück, E.H.; Van der Zwaag, S.; Van Dijk, N.H.

    2014-01-01

    While earlier studies on transformation-induced-plasticity (TRIP) steels focused on the determination of the austenite-to-martensite decomposition in uniform deformation or thermal fields, the current research focuses on the determination of the local retained austenite-to-martensite transformation

  6. Towards long lasting zirconia-based composites for dental implants: Transformation induced plasticity and its consequence on ceramic reliability.

    Science.gov (United States)

    Reveron, Helen; Fornabaio, Marta; Palmero, Paola; Fürderer, Tobias; Adolfsson, Erik; Lughi, Vanni; Bonifacio, Alois; Sergo, Valter; Montanaro, Laura; Chevalier, Jérôme

    2017-01-15

    Zirconia-based composites were developed through an innovative processing route able to tune compositional and microstructural features very precisely. Fully-dense ceria-stabilized zirconia ceramics (84vol% Ce-TZP) containing equiaxed alumina (8vol%Al 2 O 3 ) and elongated strontium hexa-aluminate (8vol% SrAl 12 O 19 ) second phases were obtained by conventional sintering. This work deals with the effect of the zirconia stabilization degree (CeO 2 in the range 10.0-11.5mol%) on the transformability and mechanical properties of Ce-TZP-Al 2 O 3 -SrAl 12 O 19 materials. Vickers hardness, biaxial flexural strength and Single-edge V-notched beam tests revealed a strong influence of ceria content on the mechanical properties. Composites with 11.0mol% CeO 2 or above exhibited the classical behaviour of brittle ceramics, with no apparent plasticity and very low strain to failure. On the contrary, composites with 10.5mol% CeO 2 or less showed large transformation-induced plasticity and almost no dispersion in strength data. Materials with 10.5mol% of ceria showed the highest values in terms of biaxial bending strength (up to 1.1GPa) and fracture toughness (>10MPa√m). In these ceramics, as zirconia transformation precedes failure, the Weibull modulus was exceptionally high and reached a value of 60, which is in the range typically reported for metals. The results achieved demonstrate the high potential of using these new strong, tough and stable zirconia-based composites in structural biomedical applications. Yttria-stabilized (Y-TZP) zirconia ceramics are increasingly used for developing metal-free restorations and dental implants. Despite their success related to their excellent mechanical resistance, Y-TZP can undergo Low Temperature Degradation which could be responsible for restoration damage or even worst the failure of the implant. Current research is focusing on strategies to improve the LTD resistance of Y-TZP or to develop alternative composites with better

  7. Characterization of molybdenum particles reinforced Al6082 aluminum matrix composites with improved ductility produced using friction stir processing

    Energy Technology Data Exchange (ETDEWEB)

    Selvakumar, S., E-mail: lathaselvam1963@gmail.com [Department of Mechanical Engineering, Nehru Institute of Technology, Coimbatore 641105, Tamil Nadu (India); Department of Mechanical Engineering, Anna University, Chennai 600025, Tamil Nadu (India); Dinaharan, I., E-mail: dinaweld2009@gmail.com [Department of Mechanical Engineering Science, University of Johannesburg, Auckland Park Kingsway Campus, Johannesburg 2006 (South Africa); Palanivel, R., E-mail: rpalanivelme@gmail.com [Department of Mechanical Engineering Science, University of Johannesburg, Auckland Park Kingsway Campus, Johannesburg 2006 (South Africa); Ganesh Babu, B., E-mail: profbgb@gmail.com [Department of Mechanical Engineering, Roever College of Engineering and Technology, Perambalur 621212, Tamil Nadu (India)

    2017-03-15

    Aluminum matrix composites (AMCs) reinforced with various ceramic particles suffer a loss in ductility. Hard metallic particles can be used as reinforcement to improve ductility. The present investigation focuses on using molybdenum (Mo) as potential reinforcement for Mo(0,6,12 and 18 vol.%)/6082Al AMCs produced using friction stir processing (FSP). Mo particles were successfully retained in the aluminum matrix in its elemental form without any interfacial reaction. A homogenous distribution of Mo particles in the composite was achieved. The distribution was independent upon the region within the stir zone. The grains in the composites were refined considerably due to dynamic recrystallization and pinning effect. The tensile test results showed that Mo particles improved the strength of the composite without compromising on ductility. The fracture surfaces of the composites were characterized with deeply developed dimples confirming appreciable ductility. - Highlights: •Molybdenum particles used as reinforcement for aluminum composites to improve ductility. •Molybdenum particles were retained in elemental form without interfacial reaction. •Homogeneous dispersion of molybdenum particles were observed in the composite. •Molybdenum particles improved tensile strength without major loss in ductility. •Deeply developed dimples on the fracture surfaces confirmed improved ductility.

  8. Characterization of molybdenum particles reinforced Al6082 aluminum matrix composites with improved ductility produced using friction stir processing

    International Nuclear Information System (INIS)

    Selvakumar, S.; Dinaharan, I.; Palanivel, R.; Ganesh Babu, B.

    2017-01-01

    Aluminum matrix composites (AMCs) reinforced with various ceramic particles suffer a loss in ductility. Hard metallic particles can be used as reinforcement to improve ductility. The present investigation focuses on using molybdenum (Mo) as potential reinforcement for Mo(0,6,12 and 18 vol.%)/6082Al AMCs produced using friction stir processing (FSP). Mo particles were successfully retained in the aluminum matrix in its elemental form without any interfacial reaction. A homogenous distribution of Mo particles in the composite was achieved. The distribution was independent upon the region within the stir zone. The grains in the composites were refined considerably due to dynamic recrystallization and pinning effect. The tensile test results showed that Mo particles improved the strength of the composite without compromising on ductility. The fracture surfaces of the composites were characterized with deeply developed dimples confirming appreciable ductility. - Highlights: •Molybdenum particles used as reinforcement for aluminum composites to improve ductility. •Molybdenum particles were retained in elemental form without interfacial reaction. •Homogeneous dispersion of molybdenum particles were observed in the composite. •Molybdenum particles improved tensile strength without major loss in ductility. •Deeply developed dimples on the fracture surfaces confirmed improved ductility.

  9. Improved ductility of Ni3Si by microalloying with boron or carbon

    International Nuclear Information System (INIS)

    Taub, A.I.; Briant, C.L.

    1989-01-01

    The effects of boron and carbon additions on the tendency for intergranular fracture in trinickel silicide intermetallics are reported. Melt spinning of Ni 77 Si 23 alloyed with 0.1 at. pct boron results in full bend ductility and complete transgranular fracture compared with brittle intergranular fracture for the unmodified compound. Alloying with 0.1 at. pct carbon also produced full bend ductility but a mixed mode failure (30 pct transgranular). For both carbon and boron additions, reducing the Ni concentration of the base compound results in a greater percentage of intergranular fracture. For Ni 77 Si 23 , the solubility limit is between 0.1 and 0.2 t. pct boron. For compounds with silicon concentrations of 23.5 and 24.0 at. pct, the solubility limit is less than 0.1 at. pct boron. Boron additions above the solubility limit result in Ni 3 B precipitates which degrade the bend ductility and increase the percentage of intergranular fracture. Alloying with carbon above the solubility limit ( 77 Si 23 , increasing the carbon concentration from 0.1 to 1.0 at. pct resulted in no change in the ductility. Auger examination of the grain boundary composition showed strong segregation of both boron and carbon. Enrichment in silicon concentration was also observed

  10. A variational void coalescence model for ductile metals

    KAUST Repository

    Siddiq, Amir; Arciniega, Roman; El Sayed, Tamer

    2011-01-01

    We present a variational void coalescence model that includes all the essential ingredients of failure in ductile porous metals. The model is an extension of the variational void growth model by Weinberg et al. (Comput Mech 37:142-152, 2006

  11. Neutron irradiation effects on the ductile-brittle transition of ferritic/martensitic steels

    Energy Technology Data Exchange (ETDEWEB)

    Klueh, R.L.; Alexander, D.J. [Oak Ridge National Lab., TN (United States)

    1997-08-01

    Ferritic/martensitic steels such as the conventional 9Cr-1MoVNb (Fe-9Cr-1Mo-0.25V-0.06Nb-0.1C) and 12Cr-1MoVW (Fe-12Cr-1Mo-0.25V-0.5W-0.5Ni-0.2C) steels have been considered potential structural materials for future fusion power plants. The major obstacle to their use is embrittlement caused by neutron irradiation. Observations on this irradiation embrittlement is reviewed. Below 425-450{degrees}C, neutron irradiation hardens the steels. Hardening reduces ductility, but the major effect is an increase in the ductile-brittle transition temperature (DBTT) and a decrease in the upper-shelf energy, as measured by a Charpy impact test. After irradiation, DBTT values can increase to well above room temperature, thus increasing the chances of brittle rather than ductile fracture.

  12. Arsenite induces cell transformation by reactive oxygen species, AKT, ERK1/2, and p70S6K1

    International Nuclear Information System (INIS)

    Carpenter, Richard L.; Jiang, Yue; Jing, Yi; He, Jun; Rojanasakul, Yon; Liu, Ling-Zhi; Jiang, Bing-Hua

    2011-01-01

    Highlights: ► Chronic exposure to arsenite induces cell proliferation and transformation. ► Arsenite-induced transformation increases ROS production and downstream signalings. ► Inhibition of ROS levels via catalase reduces arsenite-induced cell transformation. ► Interruption of AKT, ERK, or p70S6K1 inhibits arsenite-induced cell transformation. -- Abstract: Arsenic is naturally occurring element that exists in both organic and inorganic formulations. The inorganic form arsenite has a positive association with development of multiple cancer types. There are significant populations throughout the world with high exposure to arsenite via drinking water. Thus, human exposure to arsenic has become a significant public health problem. Recent evidence suggests that reactive oxygen species (ROS) mediate multiple changes to cell behavior after acute arsenic exposure, including activation of proliferative signaling and angiogenesis. However, the role of ROS in mediating cell transformation by chronic arsenic exposure is unknown. We found that cells chronically exposed to sodium arsenite increased proliferation and gained anchorage-independent growth. This cell transformation phenotype required constitutive activation of AKT, ERK1/2, mTOR, and p70S6K1. We also observed these cells constitutively produce ROS, which was required for the constitutive activation of AKT, ERK1/2, mTOR, and p70S6K1. Suppression of ROS levels by forced expression of catalase also reduced cell proliferation and anchorage-independent growth. These results indicate cell transformation induced by chronic arsenic exposure is mediated by increased cellular levels of ROS, which mediates activation of AKT, ERK1/2, and p70S6K1.

  13. Geological ductile deformation mapping at the Olkiluoto site, Eurajoki, Finland

    Energy Technology Data Exchange (ETDEWEB)

    Engstroem, J. [Geological Survey of Finland, Espoo (Finland)

    2013-12-15

    During 2010-2012 eight larger excavated and cleaned outcrops were investigated to study the polyphase nature of the ductile deformation within the Olkiluoto Island. A detailed structural geological mapping together with a thin section study was performed to get a broader and better understanding of the nature and occurrence of these different ductile deformation phases. These outcrops were selected to represent all different ductile deformation phases recognized earlier during the site investigations. The relicts of primary sedimentary structures and products of the earliest deformations (D{sub 0}-D{sub 1}) are mostly obscured by later deformation events. The D{sub 2}-D{sub 4} is the most significant ductile deformation phases occurring on the Olkiluoto Island and almost all structural features can be labeled within these three phases. The outcrops for this investigation were selected mostly from the eastern part of the Olkiluoto Island because that part of the Island has been less investigated previously. As a reference, one outcrop was selected in the western part of the Island where it was previously known that this location had especially well preserved structures of the second deformation phase (D{sub 2}). The S{sub 2} foliation is E-W orientated with moderate dip towards south. A few folds can be associated with this deformational event, mostly having a tight to isoclinal character. During D{sub 3} the migmatites were re-deformed and migrated leucosomes, were intruded mainly parallel to S{sub 3} axial surfaces having a NE-SW orientation. Generally the dip of the S{sub 3} axial surfaces is slightly more steeper (55- 65 deg C) than that of the S{sub 2} axial surfaces, which shows a more moderate dip (40-65 deg C). F{sub 3} fold structures are quite common in the eastern part of Island showing asymmetrical, overturned, shear folds usually with a dextral sense of shear. Large scale D{sub 3} shear structures contain blastomylonites as characteristic fault rocks

  14. Chloride-induced shape transformation of silver nanoparticles in a water environment

    International Nuclear Information System (INIS)

    Zhang, Lan; Li, Xin; He, Rong; Wu, Lijun; Zhang, Liyun; Zeng, Jie

    2015-01-01

    The effects of chloride on dissolution and toxicity of silver nanoparticles (AgNPs) have been well studied. However, their intermediate shapes during the transition have not been illustrated to-date. Herein, the chloride-induced shape transformation process of AgNPs under long-term, low-concentration conditions is explored. A unique triangular Ag–AgCl heterostructure is observed. The structure then evolves into a symmetric hexapod and finally into a smaller AgNP. This transformation process could be affected by other environmental conditions, such as 0.4 mg/mL humic acid, 5% surfactants and 1 mg/mL bovine serum albumin protein. Our results offer new knowledge regarding the shape transformation process of AgNPs in the presence of chloride, which can be valuable in relevant studies concerning the effect of water chemistry on the behavior of AgNPs. - Highlights: • Several significant intermediate structures have been firstly observed during AgNPs shape transformation process. • These findings of intermediate shapes offer the new knowledge on understanding the environmental fate of AgNPs. • The effects of other environmental factors on shape transformation have been well explored. - Significant intermediate structures are discovered during the AgNPs environmental process, enriching the knowledge of understanding the environmental fate of AgNPs

  15. Improved ductility and oxidation resistance of cast Ti–6Al–4V alloys by microalloying

    International Nuclear Information System (INIS)

    Luan, J.H.; Jiao, Z.B.; Chen, G.; Liu, C.T.

    2014-01-01

    Highlights: • Modified Ti64 alloys with improved ductility and oxidation resistance are developed. • B improves the ductility by refining grain size and enhancing boundary cohesion. • Y enhances the oxidation resistance by possibly slowing down the oxidation kinetics. - Abstract: The effects of B and Y on the mechanical properties and oxidation behavior of cast Ti–6Al–4V alloys were systematically investigated, and the new alloys with improved ductility and oxidation resistance are developed by the microalloying approach. The results indicate that boron is beneficial for improving the ductility by not only grain-size refinement but also grain-boundary enhancement, while yttrium is effective in increasing the oxidation resistance through possibly slowing down the oxidation kinetics. The improved properties, together with their high strength, make the microalloyed cast Ti–6Al–4V alloys competitive for practical engineering applications

  16. NMR signature of evolution of ductile-to-brittle transition in bulk metallic glasses.

    Science.gov (United States)

    Yuan, C C; Xiang, J F; Xi, X K; Wang, W H

    2011-12-02

    The mechanical properties of monolithic metallic glasses depend on the structures at atomic or subnanometer scales, while a clear correlation between mechanical behavior and structures has not been well established in such amorphous materials. In this work, we find a clear correlation of (27)Al NMR isotropic shifts with a microalloying induced ductile-to-brittle transition at ambient temperature in bulk metallic glasses, which indicates that the (27)Al NMR isotropic shift can be regarded as a structural signature to characterize plasticity for this metallic glass system. The study provides a compelling approach for investigating and understanding the mechanical properties of metallic glasses from the point of view of electronic structure. © 2011 American Physical Society

  17. Casting Ductile Iron in Layer Moulds Made from Ecological Sands

    Directory of Open Access Journals (Sweden)

    M. Rączka

    2012-09-01

    Full Text Available The article contains the results of tests performed under the target project in Hardtop Foundry Charsznica.The objective of the tests and studies was to develop a technology of making high-quality ductile iron castings, combined witheffective means of environmental protection. The studies presented in this article related to castings weighing from 1 to 300 kg made from ductile iron of grades 400-15 and 500-7, using two-layer moulds, where the facing and core sand was the sand with an alkaline organic binder, while backing sand was the sand with an inorganic geopolymer binder.A simplified method of sand reclamation was applied with possible reuse of the reclaim as an addition to the backing sand. The castiron spheroidising treatment and inoculation were selected taking into account the specific conditions of Hardtop Foundry. A pilot batch of castings was made, testing the gating and feeding systems and using exothermic sleeves on risers. The study confirmed the validity of the adopted concept of making ductile iron castings in layer moulds, while maintaining the content of sand with an organic binder at a level of maximum 15%.

  18. A new approach to ductile tearing assessment of pipelines under large-scale yielding

    Energy Technology Data Exchange (ETDEWEB)

    Ostby, Erling [SINTEF Materials and Chemistry, N-7465, Trondheim (Norway)]. E-mail: Erling.Obstby@sintef.no; Thaulow, Christian [Norwegian University of Science and Technology, N-7491, Trondheim (Norway); Nyhus, Bard [SINTEF Materials and Chemistry, N-7465, Trondheim (Norway)

    2007-06-15

    In this paper we focus on the issue of ductile tearing assessment for cases with global plasticity, relevant for example to strain-based design of pipelines. A proposal for a set of simplified strain-based driving force equations is used as a basis for calculation of ductile tearing. We compare the traditional approach using the tangency criterion to predict unstable tearing, with a new alternative approach for ductile tearing calculations. A criterion to determine the CTOD at maximum load carrying capacity in the crack ligament is proposed, and used as the failure criterion in the new approach. Compared to numerical reference simulations, the tangency criterion predicts conservative results with regard to the strain capacity. The new approach yields results in better agreement with the reference numerical simulations.

  19. Bainite transformation and TRIP effect in 20Mn2SiVB steel

    International Nuclear Information System (INIS)

    Huo Yanqiu; Long Xiuhui; Zhou Zhenhua; Li Jianguo

    2006-01-01

    Transformation-induced plasticity (TRIP) steel is a relatively new type of automotive steel known for its combination of high-strength and high ductility which was developed in the 1990s. 20Mn2SiVB steel is a kind of TRIP steel with low-carbon and low-alloying contents and high-strength. Specimens of a tested 20Mn2SiVB steel austenitized at 920 deg. C and austempered at 420 deg. C in a salt bath at different time are investigated. The microstructure obtained is studied by means of optical microscopy, scanning electron microscopy and X-ray diffraction. The results show that bainitic ferrite precipitates at the boundary of the austenite first, and with the prolongation of the isothermal time, the amount of bainitic ferrite increase. Then the ferrite decollates the austenite grain and lath-shaped bainitic ferrite with little island-shaped austenite forms during the holding time. The microstructure contains carbide-free bainite, granular bainite, retained austenite and martensite in the process of bainite transformation. Tensile test of the different treated specimens indicates that a better comprehensive property can be gained after austenized at 920 deg. C following austempered at 420 deg. C for 5 min, a certain TRIP effect can be also obtained under this condition

  20. A study on the ductile fracture of a surface crack, 1

    International Nuclear Information System (INIS)

    Kikuchi, Masanori; Nishio, Tamaki; Yano, Kazunori; Machida, Kenji; Miyamoto, Hiroshi

    1988-01-01

    Ductile fracture of surface crack is studied experimentally and numerically. At first, fatigue pre-crack is introduced, and the aspect ratios of the growing fatigue crack are measured. Then the ductile fracture test is carried out and the distributions of SZW and Δa are measured. It is noted that Δa is largest where φ, the angle from surface, is nearly 30deg. J integral distribution is evaluated by the finite element method, and it is shown that the J value is also the largest where φ is nearly 30deg. (author)

  1. Numerical modelling of solidification of thin walled hypereutectic ductile cast iron

    DEFF Research Database (Denmark)

    Pedersen, Karl Martin; Hattel, Jesper; Tiedje, Niels

    2006-01-01

    Numerical simulation of solidification of ductile cast iron is normally based on a model where graphite nodules are surrounded by an austenite shell. The two phases are then growing as two concentric spheres governed by diffusion of carbon through the austenite shell. Experiments have however shown...... simulation of thin-walled ductile iron castings. Simulations have been performed with a 1-D numerical solidi¬fication model that includes the precipitation of non-eutectic austenite during the eutectic stage. Results from the simulations have been compared with experimental castings with wall thick...

  2. Draft ASME code case on ductile cast iron for transport packaging

    International Nuclear Information System (INIS)

    Saegusa, T.; Arai, T.; Hirose, M.; Kobayashi, T.; Tezuka, Y.; Urabe, N.; Hueggenberg, R.

    2004-01-01

    The current Rules for Construction of ''Containment Systems for Storage and Transport Packagings of Spent Nuclear Fuel and High Level Radioactive Material and Waste'' of Division 3 in Section III of ASME Code (2001 Edition) does not include ductile cast iron in its list of materials permitted for use. The Rules specify required fracture toughness values of ferritic steel material for nominal wall thickness 5/8 to 12 inches (16 to 305 mm). New rule for ductile cast iron for transport packaging of which wall thickness is greater than 12 inches (305mm) is required

  3. A macroscopic model to simulate the mechanically induced martensitic transformation in metastable austenitic stainless steels

    International Nuclear Information System (INIS)

    Perdahcıoğlu, E.S.; Geijselaers, H.J.M.

    2012-01-01

    Mechanically induced martensitic transformation and the associated transformation plasticity phenomena in austenitic stainless steels are studied. The mechanisms responsible for the transformation are investigated and put into perspective based on experimental evidence. The stress and strain partitioning into the austenite and martensite phases are formulated using a mean-field homogenization approach. At this intermediate length-scale the average stress in the austenite phase is computed and utilized to compute the mechanical driving force resolved in the material. The amount of transformation and the transformation plasticity is derived as a function of the driving force. The mechanical response of the material is obtained by combining the homogenization and the transformation models. The model is verified by mechanical tests under biaxial loading conditions during which different transformation rates are observed. As a final verification of the model, a bending test is used which manifests the stress-state dependency of the transformation.

  4. X-ray diffraction study of the phase purity, order and texture of ductile B2 intermetallics

    Energy Technology Data Exchange (ETDEWEB)

    Mulay, R.P.; Wollmershauser, J.A.; Heisel, M.A. [Materials Science and Engineering, University of Virginia, Charlottesville, VA 22904-4745 (United States); Bei, H. [Oak Ridge National Laboratory, Material Science and Technology Division, Oak Ridge, TN 37831 (United States); Russell, A.M. [Iowa State University, Department of Materials Science and Engineering, Ames, IA 50011 (United States); Agnew, S.R., E-mail: sra4p@virginia.edu [Materials Science and Engineering, University of Virginia, Charlottesville, VA 22904-4745 (United States)

    2010-04-15

    Representatives (AgY, CuY, AgEr, CuDy, MgY and MgCe) of the newly discovered family of ductile stoichiometric B2 intermetallic (metal-rare-earth element, MR) compounds were characterized by X-ray diffraction, to determine if their anomalous ductility is related to an exceptional level of phase purity, lack of chemical ordering or a strong crystallographic texture. Brittle NiAl served as an anti-type in this study. We found that all of the rare-earth compounds, except MgY, have a significant volume fraction ({approx}5-20 vol.%) of second phases (M{sub 2}R intermetallics and R{sub 2}O{sub 3} oxides), which has not been reported in previous studies of these materials. The most ductile of observed MR compounds, AgY, is highly ordered. A moderate texture was observed in AgY, which may explain its higher ductility (using polycrystal modeling) as compared to other MR compounds. However, the intrinsic polycrystalline ductility of these compounds in the randomly textured state (like that observed in CuY) still has no specific, definitive explanation.

  5. X-ray diffraction study of the phase purity, order and texture of ductile B2 intermetallics

    International Nuclear Information System (INIS)

    Mulay, R.P.; Wollmershauser, J.A.; Heisel, M.A.; Bei, H.; Russell, A.M.; Agnew, S.R.

    2010-01-01

    Representatives (AgY, CuY, AgEr, CuDy, MgY and MgCe) of the newly discovered family of ductile stoichiometric B2 intermetallic (metal-rare-earth element, MR) compounds were characterized by X-ray diffraction, to determine if their anomalous ductility is related to an exceptional level of phase purity, lack of chemical ordering or a strong crystallographic texture. Brittle NiAl served as an anti-type in this study. We found that all of the rare-earth compounds, except MgY, have a significant volume fraction (∼5-20 vol.%) of second phases (M 2 R intermetallics and R 2 O 3 oxides), which has not been reported in previous studies of these materials. The most ductile of observed MR compounds, AgY, is highly ordered. A moderate texture was observed in AgY, which may explain its higher ductility (using polycrystal modeling) as compared to other MR compounds. However, the intrinsic polycrystalline ductility of these compounds in the randomly textured state (like that observed in CuY) still has no specific, definitive explanation.

  6. Laser beam welding of new ultra-high strength and supra-ductile steels

    OpenAIRE

    Dahmen, M.

    2015-01-01

    Ultra-high strength and supra-ductile are entering fields of new applications. Those materials are excellent candidates for modern light-weight construction and functional integration. As ultra-high strength steels the stainless martensitic grade 1.4034 and the bainitic steel UNS 53835 are investigated. For the supra-ductile steels stand two high austenitic steels with 18 and 28 % manganese. As there are no processing windows an approach from the metallurgical base on is required. Adjusting t...

  7. Thermal distortion of disc-shaped ductile iron castings in vertically parted moulds

    DEFF Research Database (Denmark)

    Vedel-Smith, Nikolaj Kjelgaard; Rasmussen, Jakob; Tiedje, Niels Skat

    2015-01-01

    A disc-shaped casting with an inner boss and an outer rim, separated by a thin walled section, was examined. This measurable deformation varied with the feeding modulus. The influence of alloy composition, particularly Si content, was examined with a pearlitic ductile iron (EN-GJS-500-7) and a fu......A disc-shaped casting with an inner boss and an outer rim, separated by a thin walled section, was examined. This measurable deformation varied with the feeding modulus. The influence of alloy composition, particularly Si content, was examined with a pearlitic ductile iron (EN-GJS-500......-7) and a fully ferritic ductile iron (EN-GJS-450-10). The experiment showed that both the alloy composition and choice of feeder influenced the degreeof deformation measured in the finished casting. It was found that the deformation of the pearlitic alloy was influenced controllably by changing the feeder...

  8. Laser beam welding of new ultra-high strength and supra-ductile steels

    Science.gov (United States)

    Dahmen, Martin

    2015-03-01

    Ultra-high strength and supra-ductile are entering fields of new applications. Those materials are excellent candidates for modern light-weight construction and functional integration. As ultra-high strength steels the stainless martensitic grade 1.4034 and the bainitic steel UNS 53835 are investigated. For the supra-ductile steels stand two high austenitic steels with 18 and 28 % manganese. As there are no processing windows an approach from the metallurgical base on is required. Adjusting the weld microstructure the Q+P and the QT steels require weld heat treatment. The HSD steel is weldable without. Due to their applications the ultra-high strength steels are welded in as-rolled and strengthened condition. Also the reaction of the weld on hot stamping is reflected for the martensitic grades. The supra-ductile steels are welded as solution annealed and work hardened by 50%. The results show the general suitability for laser beam welding.

  9. Occurrence and properties of antibodies against virus-associated transformation proteins in radiation-induced osteosarcomas in mice

    International Nuclear Information System (INIS)

    Hofherr, J.

    1983-01-01

    In this thesis it was looked if there is an immunresponse against such viral oncogene products in mice with radiation-induced osteosarcomas. Sera from mice with transplantable radiation-induced osteosacomas showed strong cytotoxicity against cells from a Moloney sarcoma virus-induced tumor and to a smaller extent also against FBJ osteosarcoma virus-transformed nonproducer cells. The cytotoxic activity was bound to the IgM fraction of the sera. Immunprecipitation of 35 S-methionine labelled virus- or radiation-transformed cells with cytotoxic sera showed on PAGE two proteins of molecular weights (m.w.) of about 50-55 kD. A protein of about 38 kD was expressed only in transformed cells whereas another protein of about 43 kD was seen in all cells except in uninfected muscle cells of adult mice. In order to further characterize the nature of these antigens immunprecipitates with unlabelled cells were tested in a protein kinase assay with gamma 32 P ATP and analysed on PAGE. Phosphorylation of proteins occured predominantly of more than 70 kD m.w., of about 68 kD, 50-55 kD and to a lesser extent also of about 32, 34 and 39 kD. The phosphorylation site of the proteins was at serine and threonine residues. These results indicate that mice with radiation-induced osteosarkomas develop antibodies against 'in vivo' and 'in vitro'-sarcoma virus transformed cells. (orig./MG) [de

  10. Arsenic transformation predisposes human skin keratinocytes to UV-induced DNA damage yet enhances their survival apparently by diminishing oxidant response

    International Nuclear Information System (INIS)

    Sun Yang; Kojima, Chikara; Chignell, Colin; Mason, Ronald; Waalkes, Michael P.

    2011-01-01

    Inorganic arsenic and UV, both human skin carcinogens, may act together as skin co-carcinogens. We find human skin keratinocytes (HaCaT cells) are malignantly transformed by low-level arsenite (100 nM, 30 weeks; termed As-TM cells) and with transformation concurrently undergo full adaptation to arsenic toxicity involving reduced apoptosis and oxidative stress response to high arsenite concentrations. Oxidative DNA damage (ODD) is a possible mechanism in arsenic carcinogenesis and a hallmark of UV-induced skin cancer. In the current work, inorganic arsenite exposure (100 nM) did not induce ODD during the 30 weeks required for malignant transformation. Although acute UV-treatment (UVA, 25 J/cm 2 ) increased ODD in passage-matched control cells, once transformed by arsenic to As-TM cells, acute UV actually further increased ODD (> 50%). Despite enhanced ODD, As-TM cells were resistant to UV-induced apoptosis. The response of apoptotic factors and oxidative stress genes was strongly mitigated in As-TM cells after UV exposure including increased Bcl2/Bax ratio and reduced Caspase-3, Nrf2, and Keap1 expression. Several Nrf2-related genes (HO-1, GCLs, SOD) showed diminished responses in As-TM cells after UV exposure consistent with reduced oxidant stress response. UV-exposed As-TM cells showed increased expression of cyclin D1 (proliferation gene) and decreased p16 (tumor suppressor). UV exposure enhanced the malignant phenotype of As-TM cells. Thus, the co-carcinogenicity between UV and arsenic in skin cancer might involve adaptation to chronic arsenic exposure generally mitigating the oxidative stress response, allowing apoptotic by-pass after UV and enhanced cell survival even in the face of increased UV-induced oxidative stress and increased ODD. - Highlights: → Arsenic transformation adapted to UV-induced apoptosis. → Arsenic transformation diminished oxidant response. → Arsenic transformation enhanced UV-induced DNA damage.

  11. Constitutive Model Of Graded Micro-Structure Obtained Via Strain Induced Phase Transformation

    CERN Document Server

    Ortwein, Rafał

    The literature review has been divided into three main sub-chapters. The first one is concentrated on the general information about stainless steels and their applications. It is important to perform a general overview and get an idea where the results of the present thesis could be applied. Description of all the brands of stainless steels, their microstructures and properties are important, as similar characteristics can be found in the newly created functionally graded structures. The second sub-chapter is an overview of the most important constitutive models and the experimental results for materials that undergo plastic strain induced phase transformation. Finally, the last one is devoted to functionally graded microstructures obtained via strain induced martensitic transformation – the subject of particular importance for the present thesis. As a general note, the literature review is organized mainly in a chronological order. In some cases similar publications or publications of the same Authors were...

  12. Ductility improvement due to martensite α' decomposition in porous Ti-6Al-4V parts produced by selective laser melting for orthopedic implants.

    Science.gov (United States)

    Sallica-Leva, E; Caram, R; Jardini, A L; Fogagnolo, J B

    2016-02-01

    Ti-6Al-4V parts obtained by selective laser melting typically have an acicular α' martensitic microstructure whose ductility is low. Thus, post-heat treatments are useful for increasing ductility. In this work, the effects of sub-β-transus heat treatments on the mechanical properties of Ti-6Al-4V parts with porous structures are correlated with martensite α' phase decomposition. The precipitation of β phase and the gradual transformation of α' into α phase by the diffusion of excess vanadium from α' to β phase are proposed to be the main events of martensite α' phase decomposition in parts fabricated by selective laser melting. The heat treatment performed at 650°C for 1h produced no microstructural changes, but the samples treated for at the same temperature 2h showed a fine precipitation of β phase along the α' needle boundaries. The heat treatment performed at 800°C for 1 or 2h produced a fine α+β microstructure, in which β phase are present as particles fewer in number and larger in size, when compared with the ones present in the sample heat-treated at 650°C for 2h. Heat-treatment of the parts at 800°C for 2h proved to be the best condition, which improved the ductility of the samples while only slightly reducing their strength. Copyright © 2015 Elsevier Ltd. All rights reserved.

  13. An analytical model for the ductile failure of biaxially loaded type 316 stainless steel subjected to thermal transients

    International Nuclear Information System (INIS)

    Dimelfi, R.J.

    1987-01-01

    Failure properties are calculated for the case of biaxially loaded type 316 stainless steel tubes that are heated from 300 K to near melting at various constant rates. The procedure involves combining a steady state plastic-deformation rate law with a strain hardening equation. Integrating under the condition of plastic instability gives the time and plastic strain at which ductile failure occurs for a given load. The result is presented as an analytical expression for equivalent plastic strain as a function of equivalent stress, temperature, heating rate and material constants. At large initial load, ductile fracture is calculated to occur early, at low temperatures, after very little deformation. At very small loads deformation continues for a long time to high temperatures where creep rupture mechanisms limit ductility. In the case of intermediate loads, the plastic strain accumulated before the occurrence of unstable ductile fracture is calculated. Comparison of calculated results is made with existing experimental data from pressurized tubes heated at 5.6 K/s and 111 K/s. When the effect of grain growth on creep ductility is taken into account from recrystallization data, agreement between measured and calculated uniform ductility is excellent. The general reduction in ductility and failure time that is observed at higher heating rate is explained via the model. The model provides an analytical expression for the ductility and failure time during transients for biaxially loaded type 316 stainless steel as a function of the initial temperature and load, as well as the material creep and strain hardening parameters. (orig.)

  14. Microstructure vs. Near-threshold Fatigue Crack Growth Behavior of an Heat-treated Ductile Iron

    Directory of Open Access Journals (Sweden)

    Radomila KONEČNÁ

    2012-03-01

    Full Text Available Perferritic isothermal ductile iron (IDI® is an intermediate grade between the low-strength grades of austempered ductile iron (ADI and pearlitic ductile iron (DI recently developed by Zanardi Fonderie Italy. IDI is produced by heat-treating an unalloyed nodular cast iron. The specific matrix microstructure is called “Perferritic” and consists predominantly of ferrite and pearlite. Compared to the pearlitic grades of nodular ductile iron, IDI combines similar strength with higher toughness as a result of the isothermal heat treatment. In this contribution the fatigue crack growth resistance and Kath of IDI are investigated and correlated to mechanical properties and microstructural features. The threshold Ka was determined using the load shedding technique as per ASTM Standard E-647 using CT specimens extracted from a cast block. Tensile specimens were extracted from the broken CT halves and used to determine the static mechanical properties. A metallographic investigation was carried out to correlate structural features and mechanical properties.DOI: http://dx.doi.org/10.5755/j01.ms.18.1.1336

  15. Enhanced hot ductility of a Cr–Mo low alloy steel by rare earth cerium

    International Nuclear Information System (INIS)

    Jiang, X.; Song, S.-H.

    2014-01-01

    The hot ductility of a 1Cr–0.5Mo low alloy steel is investigated over a temperature range of 700–1050 °C using a Gleeble thermomechanical simulator in conjunction with various characterization techniques. The steel samples undoped and doped with cerium are heated at 1300 °C for 3 min and then cooled with a rate of 5 K s −1 down to different test temperatures, followed by tensile deformation until fracture. The results show that the hot ductility of the steel, evaluated by the reduction in area, can be substantially enhanced by a minor addition of cerium, especially in the range 800–1000 °C. In the austenite–ferrite dual-phase region, cerium may delay the formation of proeutectoid ferrite layers along austenite grain boundaries, thereby increasing the hot ductility of the steel. In the single austenite region, grain boundary segregation of cerium may increase the grain boundary cohesion, toughening the steel and thus raising the resistance to grain boundary sliding as well as promoting dynamic recrystallization. Consequently, the hot ductility of the steel is enhanced

  16. Suppression of alkylating agent induced cell transformation and gastric ulceration by low-dose alkylating agent pretreatment

    International Nuclear Information System (INIS)

    Onodera, Akira; Kawai, Yuichi; Kashimura, Asako; Ogita, Fumiya; Tsutsumi, Yasuo; Itoh, Norio

    2013-01-01

    Highlights: •Low-dose MNNG pretreatment suppresses high-dose MNNG induced in vitro transformation. •Gastric ulcers induced by high-dose MNNG decreased after low-dose MNNG pretreatment. •Efficacy of low-dose MNNG related to resistance of mutation and oxidative stress. -- Abstract: Exposure to mild stress by chemicals and radiation causes DNA damage and leads to acquired stress resistance. Although the linear no-threshold (LNT) model of safety assessment assumes risk from any dose, evidence from radiological research demonstrates a conflicting hormetic phenomenon known as the hormesis effect. However, the mechanisms underlying radiation hormesis have not yet been clarified, and little is known about the effects of low doses of chemical carcinogens. We analyzed the efficacy of pretreatment with low doses of the alkylating agent N-methyl-N′-nitro-N-nitrosoguanidine (MNNG) on the subsequent induction of cell transformation and gastric ulceration by high-dose MNNG. We used an in vitro Balb/3T3 A31-1-1 cell transformation test and monitored the formation of gastric ulcers in 5-week-old male ICR mice that were administered MNNG in drinking water. The treatment concentrations of MNNG were determined by the cell survival rate and past reports. For low-dose in vitro and in vivo experiments, MNNG was used at 0.028 μM, and 2.8 μg/mL, respectively. The frequency of cell transformation induced by 10 μm MNNG was decreased by low-dose MNNG pretreatment to levels similar to that of spontaneous transformation. In addition, reactive oxygen species (ROS) and mutation frequencies induced by 10 μm MNNG were decreased by low-dose MNNG pretreatment. Importantly, low-dose MNNG pretreatment had no effect on cell proliferation. In vivo studies showed that the number of gastric ulcers induced by 1 mg/mL MNNG decreased after low-dose MNNG pretreatment. These data indicate that low-dose pretreatment with carcinogens may play a beneficial role in the prevention of chemical toxicity

  17. Suppression of alkylating agent induced cell transformation and gastric ulceration by low-dose alkylating agent pretreatment

    Energy Technology Data Exchange (ETDEWEB)

    Onodera, Akira, E-mail: onodera@pharm.kobegakuin.ac.jp [Department of Toxicology, Graduate School of Pharmaceutical Sciences, Osaka University, 1-6 Yamada-oka, Suita, Osaka 565-0871 (Japan); Department of Pharmaceutical Sciences, Kobegakuin University, 1-1-3 Minatojima, Chuo-ku, Kobe 650-8586 (Japan); Kawai, Yuichi [Department of Pharmaceutical Sciences, Kobegakuin University, 1-1-3 Minatojima, Chuo-ku, Kobe 650-8586 (Japan); Kashimura, Asako; Ogita, Fumiya; Tsutsumi, Yasuo; Itoh, Norio [Department of Toxicology, Graduate School of Pharmaceutical Sciences, Osaka University, 1-6 Yamada-oka, Suita, Osaka 565-0871 (Japan)

    2013-06-14

    Highlights: •Low-dose MNNG pretreatment suppresses high-dose MNNG induced in vitro transformation. •Gastric ulcers induced by high-dose MNNG decreased after low-dose MNNG pretreatment. •Efficacy of low-dose MNNG related to resistance of mutation and oxidative stress. -- Abstract: Exposure to mild stress by chemicals and radiation causes DNA damage and leads to acquired stress resistance. Although the linear no-threshold (LNT) model of safety assessment assumes risk from any dose, evidence from radiological research demonstrates a conflicting hormetic phenomenon known as the hormesis effect. However, the mechanisms underlying radiation hormesis have not yet been clarified, and little is known about the effects of low doses of chemical carcinogens. We analyzed the efficacy of pretreatment with low doses of the alkylating agent N-methyl-N′-nitro-N-nitrosoguanidine (MNNG) on the subsequent induction of cell transformation and gastric ulceration by high-dose MNNG. We used an in vitro Balb/3T3 A31-1-1 cell transformation test and monitored the formation of gastric ulcers in 5-week-old male ICR mice that were administered MNNG in drinking water. The treatment concentrations of MNNG were determined by the cell survival rate and past reports. For low-dose in vitro and in vivo experiments, MNNG was used at 0.028 μM, and 2.8 μg/mL, respectively. The frequency of cell transformation induced by 10 μm MNNG was decreased by low-dose MNNG pretreatment to levels similar to that of spontaneous transformation. In addition, reactive oxygen species (ROS) and mutation frequencies induced by 10 μm MNNG were decreased by low-dose MNNG pretreatment. Importantly, low-dose MNNG pretreatment had no effect on cell proliferation. In vivo studies showed that the number of gastric ulcers induced by 1 mg/mL MNNG decreased after low-dose MNNG pretreatment. These data indicate that low-dose pretreatment with carcinogens may play a beneficial role in the prevention of chemical toxicity

  18. Strong, Ductile Rotor For Cryogenic Flowmeters

    Science.gov (United States)

    Royals, W. T.

    1993-01-01

    Improved magnetic flowmeter rotor resists cracking at cryogenic temperatures, yet provides adequate signal to magnetic pickup outside flowmeter housing. Consists mostly of stainless-steel alloy 347, which is ductile and strong at low temperatures. Small bead of stainless-steel alloy 410 welded in groove around circumference of round bar of stainless-steel alloy 347; then rotor machined from bar. Tips of rotor blades contain small amounts of magnetic alloy, and passage of tips detected.

  19. Transformation-Induced Relaxation and Stress Recovery of TiNi Shape Memory Alloy

    Directory of Open Access Journals (Sweden)

    Kohei Takeda

    2014-03-01

    Full Text Available The transformation-induced stress relaxation and stress recovery of TiNi shape memory alloy (SMA in stress-controlled subloop loading were investigated based on the local variation in temperature and transformation band on the surface of the tape in the tension test. The results obtained are summarized as follows. (1 In the loading process, temperature increases due to the exothermic martensitic transformation (MT until the holding strain and thereafter temperature decreases while holding the strain constant, resulting in stress relaxation due to the MT; (2 In the unloading process, temperature decreases due to the endothermic reverse transformation until the holding strain and thereafter temperature increases while holding the strain constant, resulting in stress recovery due to the reverse transformation; (3 Stress varies markedly in the initial stage followed by gradual change while holding the strain constant; (4 If the stress rate is high until the holding strain in the loading and unloading processes, both stress relaxation and stress recovery are large; (5 It is important to take into account this behavior in the design of SMA elements, since the force of SMA elements varies even if the atmospheric temperature is kept constant.

  20. A note on the applied tearing modulus (Tsub(J)sup(app)) in ductile instability testing and analysis

    International Nuclear Information System (INIS)

    Saka, Masumi; Takahashi, Hideaki; Abe, Hiroyuki; Ando, Kotoji.

    1984-01-01

    In the evaluation of the soundness of the structures made of high toughness materials, it is a very important problem to clarify by what dynamic condition the transition from the stable propagation of ductile cracks to ductile unstable breaking is controlled. As a criterion for ductile unstable breaking, Paris et al. proposed that an applied tearing modulus is not smaller than a material tearing modulus, based on J-integral. In order to make highly reliable forecast on the starting point of ductile unstable breaking, it is necessary to sufficiently examine the features of an applied tearing modulus. In this study, referring to the test results of the ductile unstable breaking of ITCT test pieces of A508 steel for reactor pressure vessels, the features of the changing tendency of an applied tearing modulus accompanying crack development and the cause of these features were examined in detail. Moreover, the errors in the theoretical forecast of J-integral and the amount of crack development at the start of ductile unstable breaking in relation to the above features were examined. The test pieces and the experimental method, the method of analysis, the experimental results, the features of an applied tearing modulus and the accuracy of forecast are reported. (Kako, I.)

  1. Radiation-induced irreparable heritable changes in cells promoting their tumoral transformation

    International Nuclear Information System (INIS)

    Kuzin, A.M.; Vagabova, M.Eh.; Yurov, S.S.

    1988-01-01

    In experiments with model plant tumors (Kalanchoe-ti plasmid Agrobat. tumefaciens C-58D) it was shown that exposure of the recepient plant to low-level γ-radiation of Gy induced changes in cells that were not repaired over two months promoting tumoral transformations in them. Those changes were shown to persist in the offspring of the exposed somatic cells

  2. On the influence of microscale inertia on dynamic ductile crack extension

    Science.gov (United States)

    Jacques, N.; Mercier, S.; Molinari, A.

    2012-08-01

    The present paper is devoted to the modelling of damage by micro-voiding in ductile solids under dynamic loading conditions. Using a dynamic homogenization procedure, a constitutive damage model accounting for inertial effects due to void growth (microscale inertia or micro-inertia) has been developed. The role played by microscale inertia in dynamic ductile crack growth is investigated with the use of the proposed micromechanical modelling. It is found that micro-inertia has a significant influence on the fracture behaviour. Micro-inertia limits the velocity at which cracks propagate. It also contributes to increase the apparent dynamic toughness of the material.

  3. Studies of void growth in a thin ductile layer between ceramics

    DEFF Research Database (Denmark)

    Tvergaard, Viggo

    1997-01-01

    The growth of voids in a thin ductile layer between ceramics is analysed numerically, using an axisymmetric cell model to represent an array of uniformly distributed spherical voids at the central plane of the layer. The purpose is to determine the full traction-separation law relevant to crack...... growth by a ductile mechanism along the thin layer. Plastic flow in the layer is highly constrained by the ceramics, so that a high. level of triaxial tension develops, leading in some cases to cavitation instabilities. The computations are continued to a state near the occurrence of void coalescence....

  4. Ductility of a 60-Story Shearwall Frame-Belt Truss (Virtual Outrigger Building

    Directory of Open Access Journals (Sweden)

    Pudjisuryadi P.

    2012-01-01

    Full Text Available Researches have been conducted to study Shearwall-frame combined with belt truss as structural system (SFBT, in which the post-elastic behavior and ductility of this structural system are explored. A 60-story SFBT building, with a ductility set equal to 3.75 (value for fully ductile cantilever wall is considered. The Elastic Response Spectrum used for design is taken from Zone 2 of Indonesian Seismic Map. Capacity design method according to Indonesian Concrete Code is employed. The seismic performance is analyzed using static non-linear push-over analysis and dynamic non-linear time-history analysis. Spectrum consistent ground motions of the May 18, 1940 El-Centro earthquake N-S components scaled to maximum accelerations of various return periods (50, 200, and 500 years are used for analysis. The results of this study show that plastic hinges mainly developed in beams above the truss, columns below the truss, and bottom levels of the wall. The building shows no indication of structural instability.

  5. Prediction of microstructure and ductile damage of a high-speed railway axle steel during cross wedge rolling

    OpenAIRE

    Huo, Y; Lin, J; Bai, Q; Wang, B; Tang, X; Ji, H

    2016-01-01

    Microstructure and ductile damage have a significant influence on the deformation behavior of high-speed railway axles during hot cross wedge rolling (CWR) and its final performance. In this study, based on the continuum damage mechanics, a multiaxial constitutive model coupling microstructure and ductile damage was established to predict the evolution of microstructure and ductile damage of 25CrMo4 during hot CWR processes. Material constants within the multiaxial constitutive model were det...

  6. Dislocation Strengthening without Ductility Trade-off in Metastable Austenitic Steels

    Science.gov (United States)

    Liu, Jiabin; Jin, Yongbin; Fang, Xiaoyang; Chen, Chenxu; Feng, Qiong; Liu, Xiaowei; Chen, Yuzeng; Suo, Tao; Zhao, Feng; Huang, Tianlin; Wang, Hongtao; Wang, Xi; Fang, Youtong; Wei, Yujie; Meng, Liang; Lu, Jian; Yang, Wei

    2016-10-01

    Strength and ductility are mutually exclusive if they are manifested as consequence of the coupling between strengthening and toughening mechanisms. One notable example is dislocation strengthening in metals, which invariably leads to reduced ductility. However, this trend is averted in metastable austenitic steels. A one-step thermal mechanical treatment (TMT), i.e. hot rolling, can effectively enhance the yielding strength of the metastable austenitic steel from 322 ± 18 MPa to 675 ± 15 MPa, while retaining both the formability and hardenability. It is noted that no boundaries are introduced in the optimized TMT process and all strengthening effect originates from dislocations with inherited thermal stability. The success of this method relies on the decoupled strengthening and toughening mechanisms in metastable austenitic steels, in which yield strength is controlled by initial dislocation density while ductility is retained by the capability to nucleate new dislocations to carry plastic deformation. Especially, the simplicity in processing enables scaling and industrial applications to meet the challenging requirements of emissions reduction. On the other hand, the complexity in the underlying mechanism of dislocation strengthening in this case may shed light on a different route of material strengthening by stimulating dislocation activities, rather than impeding motion of dislocations.

  7. A linear model of ductile plastic damage

    International Nuclear Information System (INIS)

    Lemaitre, J.

    1983-01-01

    A three-dimensional model of isotropic ductile plastic damage based on a continuum damage variable on the effective stress concept and on thermodynamics is derived. As shown by experiments on several metals and alloys, the model, integrated in the case of proportional loading, is linear with respect to the accumulated plastic strain and shows a large influence of stress triaxiality [fr

  8. Effect of void cluster on ductile failure evolution

    DEFF Research Database (Denmark)

    Tvergaard, Viggo

    2016-01-01

    The behavior of a non-uniform void distribution in a ductile material is investigated by using a cell model analysis to study a material with a periodic pattern of void clusters. The special clusters considered consist of a number of uniformly spaced voids located along a plane perpendicular...

  9. High strength and utilizable ductility of bulk ultrafine-grained Cu-Al alloys

    Science.gov (United States)

    An, X. H.; Han, W. Z.; Huang, C. X.; Zhang, P.; Yang, G.; Wu, S. D.; Zhang, Z. F.

    2008-05-01

    Lack of plasticity is the main drawback for nearly all ultrafine-grained (UFG) materials, which restricts their practical applications. Bulk UFG Cu-Al alloys have been fabricated by using equal channel angular pressing technique. Its ductility was improved to exceed the criteria for structural utility while maintaining a high strength by designing the microstructure via alloying. Factors resulting in the simultaneously enhanced strength and ductility of UFG Cu-Al alloys are the formation of deformation twins and their extensive intersections facilitating accumulation of dislocations.

  10. Effects of structure and defect on fatigue limit in high strength ductile irons

    International Nuclear Information System (INIS)

    Kim, Jin Hak; Kim, Min Gun

    2000-01-01

    In this paper, the influence of several factors such as hardness, internal defect and non-propagating crack on fatigue limits was investigated with three kinds of ductile iron specimens. From the experimental results the fatigue limits were examined in relation with hardness and tensile strength in case of high strength specimens under austempering treatment; in consequence the marked improvement of fatigue limits were not showed. The maximum defect size was an important factor to predict and to evaluate the fatigue limits of ductile irons. And, the quantitative relationship between the fatigue limits(σ ω ) and the maximum defect size(√area max ) was expressed as σ ω n · √area max =C 2 . Also, it was possible to explain the difference for the fatigue limits in three ductile irons by introduction of the non-propagating crack rates

  11. Effects of grain size and test temperature on ductility and fracture behavior of a b-doped Ni/sub 3/Al alloy

    International Nuclear Information System (INIS)

    Takeyama, M.; Liu, C.T.

    1988-01-01

    Effect of grain size on ductility and fracture behavior of boron-doped Ni/sub 3/Al(Ni-23Al-0.5Hf, at.%) was studied by tensile tests using a strain rate of 3.3 x 10/sup -3/s/sup -1/ at temperatures to 1000 0 C under a high vacuum of 0 C, the alloy showed essentially ductile transgranular fracture with more than 30% elongation whereas it exhibited ductile grain-boundary fracture in the temperature range from 700 to 800 0 C. In both cases, the ductility was insensitive to grain size. On the other hand, at room temperatures above 800 0 C, the ductility decreased from about 17 to 0% with increasing grain size. The corresponding fracture mode changed from grain-boundary fracture with dynamic recrystallization to brittle grain-boundary fracture. The ductile transgranular fracture at lower temperatures is explained by stress concentration at the intersection of slip bands. The grain-size dependence of ductility is interpreted in terms of stress concentration at the grain boundaries. Finally, it is suggested that the temperature dependence of ductility in this alloy might be related to the thermal behavior of boron segregated to the grain boundaries

  12. Brittle and Ductile Behavior in Deep-Seated Landslides: Learning from the Vajont Experience

    Science.gov (United States)

    Paronuzzi, Paolo; Bolla, Alberto; Rigo, Elia

    2016-06-01

    This paper analyzes the mechanical behavior of the unstable Mt. Toc slope before the 1963 catastrophic collapse, considering both the measured data (surface displacements and microseismicity) and the updated geological model of the prehistoric rockslide. From February 1960 up to 9 October 1963, the unstable mass behaved as a brittle-ductile `mechanical system,' characterized by remarkable microseismicity as well as by considerable surface displacements (up to 4-5 m). Recorded microshocks were the result of progressive rock fracturing of distinct resisting stiff parts made up of intact rock (indentations, undulations, and rock bridges). The main resisting stiff part was a large rock indentation located at the NE extremity of the unstable mass that acted as a mechanical constraint during the whole 1960-1963 period, inducing a progressive rototranslation toward the NE. This large constraint failed in autumn 1960, when an overall slope failure took place, as emphasized by the occurrence of the large perimetrical crack in the upper slope. In this circumstance, the collapse was inhibited by a reblocking phenomenon of the unstable mass that had been previously destabilized by the first reservoir filling. Progressive failure of localized intact rock parts progressively propagated westwards as a consequence of the two further filling-drawdown cycles of the reservoir (1962 and 1963). The characteristic brittle-ductile behavior of the Vajont landslide was made possible by the presence of a very thick (40-50 m) and highly deformable shear zone underlying the upper rigid rock mass (100-120 m thick).

  13. Water accelerated transformation of d-limonene induced by ultraviolet irradiation and air exposure.

    Science.gov (United States)

    Li, Li Jun; Hong, Peng; Jiang, Ze Dong; Yang, Yuan Fan; Du, Xi Ping; Sun, Hao; Wu, Li Ming; Ni, Hui; Chen, Feng

    2018-01-15

    d-Limonene is a fragrant chemical that widely exists in aromatic products. Isotopic labelling of water molecules plus GC-MS and GC-PCI-Q-TOF analyses were used to investigate the influence of water molecules on chemical transformation of d-limonene induced by UV irradiation and air exposure. The results showed that the synergistic effect of UV irradiation, air exposure and water presence could facilitate d-limonene transformation into the limonene oxides: p-mentha-2,8-dienols, hydroperoxides, carveols, l-carvone and carvone oxide. UV irradiation, air exposure, or water alone, however, caused negligible d-limonene transformation. With the aid of isotopic labelling of water and oxygen molecules, it was found that water molecules were split into hydrogen radicals and hydroxyl radicals, and the hydrogen radicals, in particular, promoted the transformation reactions. This study has elucidated the mechanism and factors that influence the transformation of d-limonene, which will benefit industries involved in production and storage of d-limonene-containing products. Copyright © 2017 Elsevier Ltd. All rights reserved.

  14. Effect of hydriding temperature and strain rate on the ductile-brittle transition in β treated Zircaloy-4

    International Nuclear Information System (INIS)

    Bai, J.B.

    1996-01-01

    In this paper, the effect of hydriding temperature and strain rate on the ductile-brittle transition in β treated Zircaloy-4 has been investigated. The hydriding temperature used is 700degC, strain rates being 4x10 -4 s -1 and 4x10 -3 s -1 . The results show that at same conditions the ductility of hydrides decreases as the hydriding temperature decreases. There exists a critical temperature (transition temperature) of 250degC for hydriding at 700degC, below which the hydrided specimens (and so for the hydrides) are brittle, while above it they are ductile. This transition temperature is lower than the one mentioned by various authors obtained for hydriding at 400degC. For the same hydriding temperature of 700degC, the specimens tested at 4x10 -3 s -1 are less ductile than those tested at 4x10 -4 s -1 . Furthermore, unlike at a strain rate of 4x10 -4 s -1 , there is no more a clear ductile-brittle transition behaviour. (author)

  15. High Strength and Ductility of Additively Manufactured 316L Stainless Steel Explained

    Science.gov (United States)

    Shamsujjoha, Md.; Agnew, Sean R.; Fitz-Gerald, James M.; Moore, William R.; Newman, Tabitha A.

    2018-04-01

    Structure-property relationships of an additively manufactured 316L stainless steel were explored. A scanning electron microscope and electron backscattered diffraction (EBSD) analysis revealed a fine cellular-dendritic (0.5 to 2 μm) substructure inside large irregularly shaped grains ( 100 μm). The cellular structure grows along the crystallographic directions. However, texture analysis revealed that the main texture component is inclined by 15 deg from the building direction. X-ray diffraction line profile analysis indicated a high dislocation density of 1 × 1015 m-2 in the as-built material, which correlates well with the observed EBSD microstructure and high-yield strength, via the traditional Taylor hardening equation. Significant variations in strain hardening behavior and ductility were observed for the horizontal (HB) and vertical (VB) built samples. Ductility of HB and VB samples measured 49 and 77 pct, respectively. The initial growth texture and subsequent texture evolution during tensile deformation are held responsible for the observed anisotropy. Notably, EBSD analysis of deformed samples showed deformation twins, which predominately form in the grains with aligned parallel to the loading direction. The VB samples showed higher twinning activity, higher strain hardening rates at high strain, and therefore, higher ductility. Analysis of annealed samples revealed that the observed microstructures and properties are thermally stable, with only a moderate decrease in strength and very similar levels of ductility and anisotropy, compared with the as-built condition.

  16. Influence of cooling rate and antimony addition content on graphite morphology and mechanical properties of a ductile iron

    Directory of Open Access Journals (Sweden)

    Liu Zhe

    2012-05-01

    Full Text Available Cooling rate and inoculation practice can greatly affect the graphite morphology of ductile irons. In the present research, the effects of the cooling rate and antimony addition on the graphite morphology and mechanical properties of ductile irons have been studied. Three ductile iron castings were prepared through solidification under cooling conditions S (slow, M (medium and F (fast. The cooling rates around the equilibrium eutectic temperature (1,150 ℃ for these cooling conditions (S, M and F were set at 0.21 ℃·min-1, 0.32 ℃·min-1 and 0.37 ℃·min-1, respectively. In addition, four ductile iron castings were prepared by adding 0.01%, 0.02%, 0.03% and 0.04% (by weight antimony, respectively under the slow cooling condition. The results show that the nodularity index, tensile strength and hardness of the ductile iron castings without antimony addition are all improved with the increase of cooling rate, while the ductile iron casting solidified under the medium cooling rate possesses the largest number of graphite nodules. Furthermore, for the four antimony containing castings, the graphite morphology and tensile strength are also improved by the antimony additions, and the effect of antimony addition is intensified when the addition increases from 0.01% to 0.03%. Moreover, the rare earth elements (REE/antimony ratio of 2 appears to be the most effective for fine nodular graphite formation in ductile iron.

  17. Porosity evolution at the brittle-ductile transition in the continental crust: Implications for deep hydro-geothermal circulation.

    Science.gov (United States)

    Violay, M; Heap, M J; Acosta, M; Madonna, C

    2017-08-09

    Recently, projects have been proposed to engineer deep geothermal reservoirs in the ductile crust. To examine their feasibility, we performed high-temperature (up to 1000 °C), high-pressure (130 MPa) triaxial experiments on granite (initially-intact and shock-cooled samples) in which we measured the evolution of porosity during deformation. Mechanical data and post-mortem microstuctural characterisation (X-ray computed tomography and scanning electron microscopy) indicate that (1) the failure mode was brittle up to 900 °C (shear fracture formation) but ductile at 1000 °C (no strain localisation); (2) only deformation up to 800 °C was dilatant; (3) deformation at 900 °C was brittle but associated with net compaction due to an increase in the efficiency of crystal plastic processes; (4) ductile deformation at 1000 °C was compactant; (5) thermally-shocking the granite did not influence strength or failure mode. Our data show that, while brittle behaviour increases porosity, porosity loss is associated with both ductile behaviour and transitional behaviour as the failure mode evolves from brittle to ductile. Extrapolating our data to geological strain rates suggests that the brittle-ductile transition occurs at a temperature of 400 ± 100 °C, and is associated with the limit of fluid circulation in the deep continental crust.

  18. Ductile failure modeling

    DEFF Research Database (Denmark)

    Benzerga, Ahmed Amine; Leblond, Jean Baptiste; Needleman, Alan

    2016-01-01

    Ductile fracture of structural metals occurs mainly by the nucleation, growth and coalescence of voids. Here an overview of continuum models for this type of failure is given. The most widely used current framework is described and its limitations discussed. Much work has focused on extending void...... growth models to account for non-spherical initial void shapes and for shape changes during growth. This includes cases of very low stress triaxiality, where the voids can close up to micro-cracks during the failure process. The void growth models have also been extended to consider the effect of plastic...... anisotropy, or the influence of nonlocal effects that bring a material size scale into the models. Often the voids are not present in the material from the beginning, and realistic nucleation models are important. The final failure process by coalescence of neighboring voids is an issue that has been given...

  19. Permeability and seismic velocity anisotropy across a ductile-brittle fault zone in crystalline rock

    Science.gov (United States)

    Wenning, Quinn C.; Madonna, Claudio; de Haller, Antoine; Burg, Jean-Pierre

    2018-05-01

    This study characterizes the elastic and fluid flow properties systematically across a ductile-brittle fault zone in crystalline rock at the Grimsel Test Site underground research laboratory. Anisotropic seismic velocities and permeability measured every 0.1 m in the 0.7 m across the transition zone from the host Grimsel granodiorite to the mylonitic core show that foliation-parallel P- and S-wave velocities systematically increase from the host rock towards the mylonitic core, while permeability is reduced nearest to the mylonitic core. The results suggest that although brittle deformation has persisted in the recent evolution, antecedent ductile fabric continues to control the matrix elastic and fluid flow properties outside the mylonitic core. The juxtaposition of the ductile strain zone next to the brittle zone, which is bounded inside the two mylonitic cores, causes a significant elastic, mechanical, and fluid flow heterogeneity, which has important implications for crustal deformation and fluid flow and for the exploitation and use of geothermal energy and geologic waste storage. The results illustrate how physical characteristics of faults in crystalline rocks change in fault zones during the ductile to brittle transitions.

  20. Numerical simulations of material mismatch and ductile crack growth

    Energy Technology Data Exchange (ETDEWEB)

    Oestby, Erling

    2002-07-01

    Both the global geometry and inhomogeneities in material properties will influence the fracture behaviour of structures in presence of cracks. In this thesis numerical simulations have been used to investigate how some aspects of both these issues affect the conditions at the crack-tip. The thesis is organised in an introduction chapter, summarising the major findings and conclusions, a review chapter, presenting the main aspects of the developments in the field of fracture mechanics, and three research papers. Paper I considers the effect of mismatch in hardening exponent on the local near-tip stress field for stationary interface cracks in bi-materials under small scale yielding conditions. It is demonstrated that the stress level in the weaker material increases compared to what is found in the homogeneous material for the same globally applied load level, with the effect being of increasing importance as the crack-tip is approached. Although a coupling between the radial and angular dependence of the stress fields exists, the evolving stress field can still be normalised with the applied J. The effect on the increase in stress level can closely be characterised by the difference in hardening exponent, {delta}n, termed the hardening mismatch, and is more or less independent of the absolute level of hardening in the two materials. Paper II and Ill deal with the effects of geometry, specimen size, hardening level and yield stress mismatch in relation to ductile crack growth. The ductile crack growth is simulated through use of the Gurson model. In Paper H the effect of specimen size on the crack growth resistance is investigated for deep cracked bend and shallow cracked tensile specimens. At small amounts of crack growth the effect of specimen size on the crack growth resistance is small, but a more significant effect is found for larger amounts of crack growth. The crack growth resistance decreases in smaller specimens loaded in tension, whereas the opposite is

  1. Effect of mechanical properties on erosion resistance of ductile materials

    Science.gov (United States)

    Levin, Boris Feliksovih

    Solid particle erosion (SPE) resistance of ductile Fe, Ni, and Co-based alloys as well as commercially pure Ni and Cu was studied. A model for SPE behavior of ductile materials is presented. The model incorporates the mechanical properties of the materials at the deformation conditions associated with SPE process, as well as the evolution of these properties during the erosion induced deformation. An erosion parameter was formulated based on consideration of the energy loss during erosion, and incorporates the material's hardness and toughness at high strain rates. The erosion model predicts that materials combining high hardness and toughness can exhibit good erosion resistance. To measure mechanical properties of materials, high strain rate compression tests using Hopkinson bar technique were conducted at strain rates similar to those during erosion. From these tests, failure strength and strain during erosion were estimated and used to calculate toughness of the materials. The proposed erosion parameter shows good correlation with experimentally measured erosion rates for all tested materials. To analyze subsurface deformation during erosion, microhardness and nanoindentation tests were performed on the cross-sections of the eroded materials and the size of the plastically deformed zone and the increase in materials hardness due to erosion were determined. A nanoindentation method was developed to estimate the restitution coefficient within plastically deformed regions of the eroded samples which provides a measure of the rebounding ability of a material during particle impact. An increase in hardness near the eroded surface led to an increase in restitution coefficient. Also, the stress rates imposed below the eroded surface were comparable to those measured during high strain-rate compression tests (10sp3-10sp4 ssp{-1}). A new parameter, "area under the microhardness curve" was developed that represents the ability of a material to absorb impact energy. By

  2. X-radiation-induced transformation in a C3H mouse embryo-derived cell line

    International Nuclear Information System (INIS)

    Terzaghi, M.; Little, J.B.

    1976-01-01

    Reproducible x-ray-induced oncogenic transformation has been demonstrated in an established cell line of mouse embryo fibroblasts. Cells derived from transformed foci formed malignant tumors when injected into syngeneic hosts. An exponential increase in the number of transformants per viable cell occurred with doses of up to 400 rads of x-radiation. The transformation frequency in exponentially growing cultures remained constant at 2.3 x 10 -3 following doses of 400 to 1500 rads. There was little change in survival following x-ray doses up to 300 rads. Doses greater than 300 rads were associated with an exponential decline in survival; the D 0 for the survival curve was 175 rads. Transformation frequency varied with changes in the number of viable cells seeded per dish. There was about a 10-fold decline in the transformation frequency when the number of cells was increased from 400 to 1000 viable cells/100-mm Petri dish. Below this density range there was little change in transformation frequency. The presence of lethally preirradiated cells was not associated with an enhancement of transformation in irradiated cells or with the induction of transformation in unirradiated cell cultures. Amphotericin B (Fungizone) inhibited the appearance of transformants when added to the culture medium within 2 to 3 weeks after initiation of the experiment

  3. A new in situ technique for studying deformation and fracture in thin film ductile/brittle laminates

    International Nuclear Information System (INIS)

    Hackney, S.A.; Milligan, W.W.

    1991-01-01

    A new technique for studying deformation and fracture of thin film ductile/brittle laminates is described. The laminates are prepared by sputtering a brittle coating on top of an electropolished TEM thin foil. The composites are then strained in situ in the TEM. In this preliminary investigation, the composites consisted of a ductile aluminum substrate and a brittle silicon coating. Cracks in the brittle film grew discontinuously in bursts several micrometers in length. The crack opening displacement initiated plastic deformation in the ductile film, thus dissipating energy and allowing crack arrest. The interface was well bonded, and delamination was not observed. Due to the good interfacial bond and the crack opening behind the crack tip, it was possible to study very large plastic deformations and ductile fracture in the aluminum in situ, without buckling of the foil. The possibility of micromechanical modeling of the fracture behavior is briefly discussed. (orig.)

  4. Impurities block the alpha to omega martensitic transformation in titanium.

    Science.gov (United States)

    Hennig, Richard G; Trinkle, Dallas R; Bouchet, Johann; Srinivasan, Srivilliputhur G; Albers, Robert C; Wilkins, John W

    2005-02-01

    Impurities control phase stability and phase transformations in natural and man-made materials, from shape-memory alloys to steel to planetary cores. Experiments and empirical databases are still central to tuning the impurity effects. What is missing is a broad theoretical underpinning. Consider, for example, the titanium martensitic transformations: diffusionless structural transformations proceeding near the speed of sound. Pure titanium transforms from ductile alpha to brittle omega at 9 GPa, creating serious technological problems for beta-stabilized titanium alloys. Impurities in the titanium alloys A-70 and Ti-6Al-4V (wt%) suppress the transformation up to at least 35 GPa, increasing their technological utility as lightweight materials in aerospace applications. These and other empirical discoveries in technological materials call for broad theoretical understanding. Impurities pose two theoretical challenges: the effect on the relative phase stability, and the energy barrier of the transformation. Ab initio methods calculate both changes due to impurities. We show that interstitial oxygen, nitrogen and carbon retard the transformation whereas substitutional aluminium and vanadium influence the transformation by changing the d-electron concentration. The resulting microscopic picture explains the suppression of the transformation in commercial A-70 and Ti-6Al-4V alloys. In general, the effect of impurities on relative energies and energy barriers is central to understanding structural phase transformations.

  5. Unraveling the nature of electric field- and stress- induced structural transformations in soft PZT by a new powder poling technique.

    Science.gov (United States)

    Kalyani, Ajay Kumar; V, Lalitha K; James, Ajit R; Fitch, Andy; Ranjan, Rajeev

    2015-02-25

    A 'powder-poling' technique was developed to study electric field induced structural transformations in ferroelectrics exhibiting a morphotropic phase boundary (MPB). The technique was employed on soft PZT exhibiting a large longitudinal piezoelectric response (d(33) ∼ 650 pC N(-1)). It was found that electric poling brings about a considerable degree of irreversible tetragonal to monoclinic transformation. The same transformation was achieved after subjecting the specimen to mechanical stress, which suggests an equivalence of stress and electric field with regard to the structural mechanism in MPB compositions. The electric field induced structural transformation was also found to be accompanied by a decrease in the spatial coherence of polarization.

  6. Hot ductility and flow stress of AISI 4130 and 52100-type steels

    Energy Technology Data Exchange (ETDEWEB)

    Barbier, Damien [Vallourec Research Center France, F-59620 Aulnoye-Aymeries (France); Guérin, Jean-Dominique, E-mail: jean-dominique.guerin@univ-valenciennes.fr [UVHC, LAMIH UMR CNRS 8201, F-59313 Valenciennes (France); Univ Lille Nord de France, F-59000 Lille (France); Dubar, Mirentxu [UVHC, LAMIH UMR CNRS 8201, F-59313 Valenciennes (France); Univ Lille Nord de France, F-59000 Lille (France); Bénard, Thierry; Bonneau, Sébastien [Vallourec Research Center France, F-59620 Aulnoye-Aymeries (France); Cabrera, Eli Saùl Puchi [School of Metallurgical Engineering and Materials Science, Universidad Central de Venezuela (Venezuela, Bolivarian Republic of)

    2017-04-06

    The present communication reports the main findings of an investigation that has been conducted in order to examine the ductility of both the AISI 4130 and 52100 steel grades, in a wide range of temperatures, spanning from room temperature up to 1250 °C, deformed in tension at strain rates of approximately 0.005 s{sup −1}. The ductility of the investigated alloys has been determined employing two different methodologies. The first one is based on the classical definition of this property, as determined from the reduction in the cross sectional area of the tensile specimen after fracture. The second method, which is proposed in this work, is based on the measurement of the energy under the engineering stress-strain curve and the decomposition of the total deformation energy into the uniform plastic and non-uniform or fracture energy components. Complementary axisymmetric compression tests have also been carried out in the temperature range of 600 °Cto 900 °C, in order to determine the strain related to the onset of dynamic recrystallization (DRX) at temperatures above 800 °C, as well as the strain corresponding to the occurrence of necking at these temperatures. The ductility values determined from both methods are observed to increase from approximately 10–80% when the testing temperature increases from room temperature to 1200 °C. Both measurements are also observed to agree up to temperatures of about 600 °C. Also, it has been determined that above this temperature, the ductility values derived from the energy criterion are somewhat higher than those computed from the reduction in the cross section area of the specimens. It has been shown that the onset of DRX gives rise to an improvement in the ductility of both steels, which is also related to a significant increase in the strain for the beginning of necking. The advantage of the energy criterion, in comparison with that based on the area reduction after fracture, is discussed.

  7. Experimental analysis of flow of ductile cast iron in stream lined gating systems

    DEFF Research Database (Denmark)

    Skov-Hansen, Søren Peter; Tiedje, Niels Skat

    2008-01-01

    Streamlined gating systems have been developed for production of high integrity ductile cast iron parts. Flow of ductile cast iron in streamlined gating systems was studied in glass fronted sand moulds where flow in the gating system and casting was recorded by a digital video camera. These results...... show how the quality of pouring, design of ingates, design of bends and flow over cores influence melt flow and act to determine the quality of the castings....

  8. Possible involvement of MSX-2 homeoprotein in v-ras-induced transformation.

    Science.gov (United States)

    Takahashi, C; Akiyama, N; Kitayama, H; Takai, S; Noda, M

    1997-04-01

    A truncated MSX-2 homeoprotein was found to induce flat reversion when expressed in v-Ki-ras-transformed NIH3T3 cells. Although the expression of endogenous MSX-2 gene is low in most of the normal adult tissues examined, it is frequently activated in carcinoma-derived cell lines. Likewise, the gene is inactive in untransformed cells but is transcriptionally activated after transformation by v-Ki-ras oncogene, suggesting that the intact MSX-2 may play a positive, rather than suppressive, role in cell transformation. To test this possibility, we isolated a full-length human MSX-2 cDNA and tested its activities in two cell systems: fibroblast and myoblast. In NIH3T3 fibroblasts, although the gene by itself failed to confer a transformed phenotype, antisense MSX-2 cDNA as well as truncated MSX-2 cDNA interfered with the transforming activities of both v-Ki-ras and v-raf oncogene. In C2C12 myoblasts, MSX-2 was found to suppress MyoD gene expression, as do activated ras oncogenes, under certain culture conditions, and truncated MSX-2 cDNA was found to inhibit the activities of both MSX-2 and ras in this system as well. Our findings not only suggest that the truncated version MSX-2 may act as a dominant suppressor of intact MSX-2 but also raise the possibility that MSX-2 gene may be an important downstream target for the Ras signaling pathways.

  9. Canine tracheal epithelial cells are more sensitive than rat tracheal epithelial cells to transforming growth factor beta induced growth inhibition

    International Nuclear Information System (INIS)

    Hubbs, A.F.; Hahn, F.F.; Kelly, G.; Thomassen, D.G.

    1988-01-01

    Transforming growth factor beta (TGFβ) markedly inhibited growth of canine tracheal epithelial (CTE) cells. Reduced responsiveness to TGFβ-induced growth inhibition accompanied neoplastic progression of these cells from primary to transformed to neoplastic. This was similar to the relationship between neoplastic progression and increased resistance to TGFβ-induced growth inhibition seen for rat tracheal epithelial (RTE) cells. The canine cells were more sensitive than rat cells to TGFβ-induced growth inhibition at all stages in the neoplastic process. (author)

  10. Effect of grain boundaries on shock-induced phase transformation in iron bicrystals

    Science.gov (United States)

    Zhang, Xueyang; Wang, Kun; Zhu, Wenjun; Chen, Jun; Cai, Mengqiu; Xiao, Shifang; Deng, Huiqiu; Hu, Wangyu

    2018-01-01

    Non-equilibrium molecular-dynamic simulations with a modified analytic embedded-atom model potential have been performed to investigate the effect of three kinds of grain boundaries (GBs) on the martensitic transformation in iron bicrystals with three different GBs under shock loadings. Our results show that the phase transition was influenced by the GBs. All three GBs provide a nucleation site for the α → ɛ transformation in samples shock-loaded with up = 0.5 km/s, and in particular, the elastic wave can induce the phase transformation at Σ3 ⟨110⟩ twist GB, which indicates that the phase transformation can occur at Σ3 ⟨110⟩ twist GB with a much lower pressure. The effect of GBs on the stress assisted transformation (SAT) mechanisms is discussed. All variants nucleating at the vicinity of these GBs meet the maximum strain work (MSW) criterion. Moreover, all of the variants with the MSW nucleate at Σ5 ⟨001⟩ twist GB and Σ3 ⟨110⟩ tilt GB, but only part of them nucleate at Σ3 ⟨110⟩ twist GB. This is because the coincident planes between both sides of the GB would affect the slip process, which is the second stage of the martensitic transformation and influences the selection of variant. We also find that the martensitic transformation at the front end of the bicrystals would give rise to stress attenuation in samples shock-loaded with up = 0.6 km/s, which makes the GBs seem to be unfavorable to the martensitic transformation. Our findings have the potential to affect the interface engineering and material design under high pressure conditions.

  11. Tensile properties and bend ductility of (Fe,Ni)3V long-range-ordered alloys after irradiation in HFIR

    International Nuclear Information System (INIS)

    Braski, D.N.

    1984-01-01

    The objective of this work was to determine the effect of neutron irradiation on the tensile properties and bend ductility of (Fe,Ni) 3 V long-range-ordered (LRO) alloys. Several (Fe,Ni) 3 V LRO alloys were irradiated in HFIR-CTR-42 and -43 at 400 to 600 0 C, to approximately 10 dpa and approximately 1000 at. ppm He. Additions of cerium or carbon and the use of cold-worked microstructures did not improve the embrittlement resistance of the LRO alloys. The LRO-37-5RS alloy, with a microstructure produced by rapid solidification, exhibited the highest ductilities, and further study of the RS microstructure is warranted. The correlation between bend ductility and tensile ductility was poor

  12. Impaired CK1 delta activity attenuates SV40-induced cellular transformation in vitro and mouse mammary carcinogenesis in vivo.

    Directory of Open Access Journals (Sweden)

    Heidrun Hirner

    Full Text Available Simian virus 40 (SV40 is a powerful tool to study cellular transformation in vitro, as well as tumor development and progression in vivo. Various cellular kinases, among them members of the CK1 family, play an important role in modulating the transforming activity of SV40, including the transforming activity of T-Ag, the major transforming protein of SV40, itself. Here we characterized the effects of mutant CK1δ variants with impaired kinase activity on SV40-induced cell transformation in vitro, and on SV40-induced mammary carcinogenesis in vivo in a transgenic/bi-transgenic mouse model. CK1δ mutants exhibited a reduced kinase activity compared to wtCK1δ in in vitro kinase assays. Molecular modeling studies suggested that mutation N172D, located within the substrate binding region, is mainly responsible for impaired mutCK1δ activity. When stably over-expressed in maximal transformed SV-52 cells, CK1δ mutants induced reversion to a minimal transformed phenotype by dominant-negative interference with endogenous wtCK1δ. To characterize the effects of CK1δ on SV40-induced mammary carcinogenesis, we generated transgenic mice expressing mutant CK1δ under the control of the whey acidic protein (WAP gene promoter, and crossed them with SV40 transgenic WAP-T-antigen (WAP-T mice. Both WAP-T mice as well as WAP-mutCK1δ/WAP-T bi-transgenic mice developed breast cancer. However, tumor incidence was lower and life span was significantly longer in WAP-mutCK1δ/WAP-T bi-transgenic animals. The reduced CK1δ activity did not affect early lesion formation during tumorigenesis, suggesting that impaired CK1δ activity reduces the probability for outgrowth of in situ carcinomas to invasive carcinomas. The different tumorigenic potential of SV40 in WAP-T and WAP-mutCK1δ/WAP-T tumors was also reflected by a significantly different expression of various genes known to be involved in tumor progression, specifically of those involved in wnt-signaling and DNA

  13. Austempered ductile iron (ADI) for railroad wheels : final report.

    Science.gov (United States)

    2017-01-31

    The purpose of this project is to investigate the potential for austempered ductile iron (ADI) to be used as an alternative material for the production of rail wheels, which are currently cast or forged steel which is commonly heat treated. ADI has s...

  14. Effect of Strain Rate on Hot Ductility Behavior of a High Nitrogen Cr-Mn Austenitic Steel

    Science.gov (United States)

    Wang, Zhenhua; Meng, Qing; Qu, Minggui; Zhou, Zean; Wang, Bo; Fu, Wantang

    2016-03-01

    18Mn18Cr0.6N steel specimens were tensile tested between 1173 K and 1473 K (900 °C and 1200 °C) at 9 strain rates ranging from 0.001 to 10 s-1. The tensile strained microstructures were analyzed through electron backscatter diffraction analysis. The strain rate was found to affect hot ductility by influencing the strain distribution, the extent of dynamic recrystallization and the resulting grain size, and dynamic recovery. The crack nucleation sites were primarily located at grain boundaries and were not influenced by the strain rate. At 1473 K (1200 °C), a higher strain rate was beneficial for grain refinement and preventing hot cracking; however, dynamic recovery appreciably occurred at 0.001 s-1 and induced transgranular crack propagation. At 1373 K (1100 °C), a high extent of dynamic recrystallization and fine new grains at medium strain rates led to good hot ductility. The strain gradient from the interior of the grain to the grain boundary increased with decreasing strain rate at 1173 K and 1273 K (900 °C and 1000 °C), which promoted hot cracking. Grain boundary sliding accompanied grain rotation and did not contribute to hot cracking.

  15. Stress induced transformation to bainite in Fe-Cr-Mo-C pressure vessel steel

    International Nuclear Information System (INIS)

    Bhadeshia, H.K.D.H.; David, S.A.; Vitek, J.M.; Reed, R.W.

    1991-01-01

    The kinetics of the bainitic transformation in a polycrystalline Fe-Cr-Mo-C alloy designed for applications in energy generation systems has been studied, with particular attention to the influence of mild tensile stresses on transformation behaviour. The steel was found to exhibit the incomplete reaction phenomenon, in which transformation to bainite stops well before the residual austenite acquires its paraequilibrium carbon concentration. It was found that even in the absence of an applied stress, the growth of bainitic ferrite caused anisotropic changes in specimen dimensions, consistent with the existence of crystallographic texture in its austenitic condition and, significantly, with the nature of the invariant-plane strain shape change that accompanies the growth of bainitic ferrite. Thus, transformation induced plasticity could be detected in fine grained polycrystalline samples, even in the absence of applied stress. The application of an external stress was found to alter radically the transformation behaviour, with clear evidence that the stress tends to favour the development of certain crystallographic variants of bainite, even though the stress may be well below the single phase yield strength. It is concluded that the transformation is influenced significantly by stresses as low as 45 MN m -2 , even though the effect may not be obvious in metallographic studies. The results are analysed and discussed in terms of the mechanism of the bainite transformation. (author)

  16. Mitochondrial clearance by the STK38 kinase supports oncogenic Ras-induced cell transformation

    Science.gov (United States)

    Bettoun, Audrey; Surdez, Didier; Vallerand, David; Gundogdu, Ramazan; Sharif, Ahmad A.D.; Gomez, Marta; Cascone, Ilaria; Meunier, Brigitte; White, Michael A.; Codogno, Patrice; Parrini, Maria Carla; Camonis, Jacques H.; Hergovich, Alexander

    2016-01-01

    Oncogenic Ras signalling occurs frequently in many human cancers. However, no effective targeted therapies are currently available to treat patients suffering from Ras-driven tumours. Therefore, it is imperative to identify downstream effectors of Ras signalling that potentially represent promising new therapeutic options. Particularly, considering that autophagy inhibition can impair the survival of Ras-transformed cells in tissue culture and mouse models, an understanding of factors regulating the balance between autophagy and apoptosis in Ras-transformed human cells is needed. Here, we report critical roles of the STK38 protein kinase in oncogenic Ras transformation. STK38 knockdown impaired anoikis resistance, anchorage-independent soft agar growth, and in vivo xenograft growth of Ras-transformed human cells. Mechanistically, STK38 supports Ras-driven transformation through promoting detachment-induced autophagy. Even more importantly, upon cell detachment STK38 is required to sustain the removal of damaged mitochondria by mitophagy, a selective autophagic process, to prevent excessive mitochondrial reactive oxygen species production that can negatively affect cancer cell survival. Significantly, knockdown of PINK1 or Parkin, two positive regulators of mitophagy, also impaired anoikis resistance and anchorage-independent growth of Ras-transformed human cells, while knockdown of USP30, a negative regulator of PINK1/Parkin-mediated mitophagy, restored anchorage-independent growth of STK38-depleted Ras-transformed human cells. Therefore, our findings collectively reveal novel molecular players that determine whether Ras-transformed human cells die or survive upon cell detachment, which potentially could be exploited for the development of novel strategies to target Ras-transformed cells. PMID:27283898

  17. A systematic concept of assuring structural integrity of components and parts for applying to highly ductile materials through brittle material

    International Nuclear Information System (INIS)

    Suzuki, Kazuhiko

    2007-09-01

    Concepts of assuring structural integrity of plant components have been developed under limited conditions of either highly ductile or brittle materials. There are some cases where operation in more and more severe conditions causes a significant reduction in ductility for materials with a high ductility before service. Use of high strength steels with relatively reduced ductility is increasing as industry applications. Current concepts of structural integrity assurance under the limited conditions of material properties or on the requirement of no significant changes in material properties even after long service will fail to incorporate expected technological innovations. A systematic concept of assuring the structural integrity should be developed for applying to highly ductile materials through brittle materials. Objectives of the on-going research are to propose a detail of the systematic concept by considering how we can develop the concept without restricting materials and for systematic considerations on a broad range of material properties from highly ductile materials through brittle materials. First, background of concepts of existing structural codes for components of highly ductile materials or for structural parts of brittle materials are discussed. Next, issues of existing code for parts of brittle materials are identified, and then resolutions to the issues are proposed. Based on the above-mentioned discussions and proposals, a systematic concept is proposed for application to components with reduced ductility materials and for applying to components of materials with significantly changing material properties due to long service. (author)

  18. Conformational transformations induced by the charge-curvature interaction: Mean-field approach

    DEFF Research Database (Denmark)

    Gaididei, Yu B.; Christiansen, Peter Leth; Zakrzewski, W.J.

    2006-01-01

    A simple phenomenological model for describing the conformational dynamics of biological macromolecules via the nonlinearity-induced instabilities is proposed. It is shown that the interaction between charges and bending degrees of freedom of closed molecular aggregates may act as drivers giving ...... impetus to conformational dynamics of biopolymers. It is demonstrated that initially circular aggregates may undergo transformation to polygonal shapes and possible application to aggregates of bacteriochlorophyl a molecules is considered....

  19. Metallographic study of ferrite → sigma transformation using ferromagnetic colloid, microprobe analysis, and color etching

    International Nuclear Information System (INIS)

    Gray, R.J.; Crouse, R.S.; Sikka, V.K.; King, R.T.

    1976-01-01

    The mechanical properties of ferrite-containing austenitic stainless steel base metal and weldments are usually adversely affected by prolonged exposure to temperatures in the 482-900 0 C (900-1652 0 F) range. One cause of the property alteration is related to the transformation of relatively ductile delta-ferrite to less ductile sigma-phase. Attempts to identify sigma and delta ferrite phases by color staining techniques alone are well documented; however, the results are often questionable due to the difficulty in maintaining consistent color identifications. This investigation is concerned with the microstructural responses of the ferromagnetic delta-ferrite phase and the paramagnetic sigma-phase to a ferromagnetic iron colloid in a magnetic field. Such positive or negative responses of the two phases to the colloid offer a more definitive identification. With this technique, the identification of small amounts of these phases in the microstructure is limited only by the highest magnification and resolution of the optical microscope. The procedure is substantiated in this metallographic study with microprobe analysis and color metallography. Several examples of the correlative use of these three techniques in identifying varying amounts of delta-ferrite yields sigma transformation are presented

  20. Prediction of forming limit in hydro-mechanical deep drawing of steel sheets using ductile fracture criterion

    Science.gov (United States)

    Oh, S.-T.; Chang, H.-J.; Oh, K. H.; Han, H. N.

    2006-04-01

    It has been observed that the forming limit curve at fracture (FLCF) of steel sheets, with a relatively higher ductility limit have linear shapes, similar to those of a bulk forming process. In contrast, the FLCF of sheets with a relatively lower ductility limit have rather complex shapes approaching the forming limit curve at neck (FLCN) towards the equi-biaxial strain paths. In this study, the FLCFs of steel sheets were measured and compared with the fracture strains predicted from specific ductile fracture criteria, including a criterion suggested by the authors, which can accurately describe FLCFs with both linear and complex shapes. To predict the forming limit for hydro-mechanical deep drawing of steel sheets, the ductile fracture criteria were integrated into a finite element simulation. The simulation, results based on the criterion suggested by authors accurately predicted the experimetal, fracture limits of steel sheets for the hydro-mechanical deep drawing process.

  1. Development of acceptance criteria and damage tolerance analyzes of the ductile iron insert

    International Nuclear Information System (INIS)

    Dillstroem, Peter; Alverlind, Lars; Andersson, Magnus

    2010-01-01

    SKB intends to qualify a test system for detection and sizing of defects deemed to be relevant to the ductile iron insert. In support of this qualification, a damage tolerance analysis indicating the current qualification targets, given assumed damage and failure modes. This report describes the damage tolerance analyzes of different types of defects that are considered relevant of the ductile iron insert. The results are reported separately for each test area (zone) and type of insert (BWRs and PWRs)

  2. Ductile cast iron obtaining by Inmold method with use of LOST FOAM process

    Directory of Open Access Journals (Sweden)

    T. Pacyniak

    2010-01-01

    Full Text Available The possibility of manufacturing of ductile cast iron castings by Inmold method with use of LOST FOAM process was presented in this work. The spheroidization was carried out by magnesium master alloy in amounts of 1% casting mass. Nodulizer was located in the reactive chamber in the gating system made of foamed polystyrene. Pretests showed, that there are technical possibilities of manufacturing of casts from ductile cast iron in the LOST FOAM process with use of spheroidization in mould.

  3. Ductile crack initiation and propagation assessed via in situ synchrotron radiation-computed laminography

    International Nuclear Information System (INIS)

    Morgeneyer, T.F.; Helfen, L.; Sinclair, I.; Proudhon, H.; Xu, F.; Baumbach, T.

    2011-01-01

    Ductile crack initiation and propagation within a naturally aged aluminium alloy sheet has been observed in situ via synchrotron radiation-computed laminography, a technique specifically adapted to three-dimensional imaging of thin objects that are laterally extended. Voids and intermetallic particles, and their subsequent evolution during ductile crack extension at different associated levels of stress triaxiality, were clearly observed within fracture coupons of a reasonable engineering length-scale, overcoming the conventional sample size limitation of computed tomography at high resolutions.

  4. Advances in improvement of stress tolerance by induced mutation and genetic transformation in alfalfa

    International Nuclear Information System (INIS)

    Huang Xin; Ye Hongxia; Shu Xiaoli; Wu Dianxing

    2008-01-01

    In order to provide references for stress-tolerant breeding of alfalfa, genetic basis of stress-tolerant traits was briefly introduced and advanced in improvement of stress-tolerance by induced mutation and genetic transformation in alfalfa were reviewed. (authors)

  5. Development of small punch tests for ductile-brittle transition temperature measurement of temper embrittled Ni-Cr steels

    International Nuclear Information System (INIS)

    Baik, J.M.; Kameda, J.; Buck, O.

    1983-01-01

    Small punch tests were developed to determine the ductile-brittle transition temperature of nickel-chromium (Ni-Cr) steels having various degrees of temper embrittlement and various microstructures. It was found that the small punch test clearly shows the ductile-brittle transition behavior of the temper-embrittled steels. The measured values were compared with those obtained from Charpy impact and uniaxial tensile tests. The effects of punch tip shape, a notch, and the strain rate on the ductile-brittle transition behavior were examined. It was found that the combined use of a notch, high strain rates, and a small punch tip strongly affects the ductile-brittle transition behavior. Considerable variations in the data were observed when the small punch tests were performed on coarse-grained steels. Several factors controlling embrittlement measurements of steels are discussed in terms of brittle fracture mechanisms

  6. Observations on Mode I ductile tearing in sheet metals

    DEFF Research Database (Denmark)

    El-Naaman, Salim Abdallah; Nielsen, Kim Lau

    2013-01-01

    Cracked ductile sheet metals, subject to Mode I tearing, have been observed to display a variety of fracture surface morphologies depending on the material properties, and a range of studies on the fracture surface appearance have been published in the literature. Whereas classical fractures...

  7. Influence of Copper on the Hot Ductility of 20CrMnTi Steel

    Science.gov (United States)

    Peng, Hong-bing; Chen, Wei-qing; Chen, Lie; Guo, Dong

    2015-02-01

    The hot ductility of 20CrMnTi steel with x% copper (x = 0, 0.34) was investigated. Results show that copper can reduce its hot ductility, but there is no significant copper-segregation at the boundary tested by EPMA. The average copper content at grain boundaries and substrate is 0.352% and 0.318% respectively in steel containing 0.34% copper tensile-tested at 950 °C. The fracture morphology was examined with SEM and many small and shallow dimples were found on the fracture of steel with copper, and fine copper sulfide was found from carbon extraction replicas using TEM. Additionally, adding 0.34% copper caused an increase in the dynamic recrystallization temperature from 950 °C to 1000 °C, which indicates that copper can retard the dynamic recrystallization (DRX) of austenite. The detrimental influence of copper on hot ductility of 20CrMnTi steel is due mainly to the fine copper sulfide in the steel and its retarding the DRX.

  8. TPA-inducible proteins may account for sensitivity to promotion of transformation

    International Nuclear Information System (INIS)

    Hirano, K.; Smith, B.; Colburn, N.H.

    1986-01-01

    The preneoplastic JB6 mouse epidermal cell system includes cell lines sensitive (P + ) or resistant (P - ) to tumor promoter induced neoplastic transformation. The authors investigated whether a difference in TPA-inducible proteins may explain this differential sensitivity. The synthesis of a 39 Kd cytoplasmic protein (Major Excreted Protein) was TPA-inducible, but to a similar extent in both P + and P - cells. TPA stimulated phosphorylation but not synthesis of the previously described stress protein pp80 in both P + and P - cells from 1 to 5 hr after treatment. Pulse labelling of P + and P - cells with 35 S-methionine revealed a TPA dependent P + specific transient increase in the synthesis of 58Kd protein. Induction was observed at 1 hr, and returned to basal levels by 4 hr and 20 hr, in nuclear and cytoplasmic fractions, respectively. This protein is not phosphorylated in response to TPA treatment. P + cells differ from P - cells in one or more genes that specify sensitivity to promotion of transformation, designated pro genes. Antibodies to three peptides representing the pro-1 open reading frame were used in immunoprecipitation and Western blotting to isolate the pro-1 gene product. A 43 Kd protein was immunologically responsive to the pro-1 peptide antibodies, and showed an increased signal 40 min after TPA treatment. Since the predicted molecular weight of a pro-1 gene product is only 7 Kd, the possibility of a modification of the protein by poly(ADP-ribosylation) or glycosylation is being investigated

  9. High-pressure structural stability of the ductile intermetallic ...

    Indian Academy of Sciences (India)

    Administrator

    Murnaghan equation of state fit to the pressure, volume data yielded a bulk modulus of 67∙6 GPa with the pressure derivative of bulk modulus fixed at 4. Keywords. Intermetallics; X-ray ... ners of the unit cell cube occupied by the 'M' element and cube centre occupied by the 'R' element. Although some ductility has been ...

  10. Water structure versus radical scavenger theories as explanations for the suppressive effects of DMSO and related compounds on radiation-induced transformation in vitro

    Energy Technology Data Exchange (ETDEWEB)

    Kennedy, A.R.; Symons, M.C.

    1987-05-01

    We report here that dimethylsulfoxide (DMSO): suppresses radiation-induced transformation in vitro, even when DMSO treatments begin as late as 10 days post-irradiation (when cells are in the confluent, stationary phase of growth); inhibits the 12-O-tetradecanoylphorbol-13-acetate (TPA) enhancement of radiation-induced transformation in vitro; does not affect the expression of transformed cells as foci (when surrounded by non-transformed cells); and may be affecting radiation-induced transformation through its solvent properties (i.e. the Water Structure theory), while its effects on the TPA enhancement of radiation transformation may be mediated by its free radical scavenging abilities. DMSO, dimethylformamide (DMF) and dimethylacetamide (DMA) are similar solvents which are all very effective in their ability to suppress radiation-induced transformation in vitro (at concentrations in the cellular media down to 0.01%). As DMSO is known to be an extremely effective OH. free-radical scavenging agent, while DMF and DMA are not as efficient at scavenging free radicals, our results suggest that properties other than free-radical scavenging ability may be important in the suppressive effects of these compounds on radiation-induced transformation in vitro. It is known that low concentrations of such basic aprotic solvents modify water structure so as to suppress the protic (H-bond donor) reactivity of water and enhance its basic (H-bond receptor) reactivity. These reactivity changes may well be responsible for the effects noted above. DMSO, DMF and DMA are also capable of suppressing the TPA enhancement of radiation transformation (at concentrations of the compounds of 0.1% or higher). For this effect, the ability of these compounds to scavenge OH. shows a general correlation with their ability to suppress the TPA enhancement of transformation, suggesting that the Radical Scavenger theory may explain the ability of DMSO to suppress promotion in vitro.

  11. Effect of initial void shape on ductile failure in a shear field

    DEFF Research Database (Denmark)

    Tvergaard, Viggo

    2015-01-01

    For voids in a shear field unit cell model analyses have been used to show that ductile failure is predicted even though the stress triaxiality is low or perhaps negative, so that the void volume fraction does not grow during deformation. Here, the effect of the void shape is studied by analyzing...... with circular cross-section, i.e. the voids in shear flatten out to micro-cracks, which rotate and elongate until interaction with neighboring micro-cracks gives coalescence. Even though the mechanism of ductile failure is the same, the load carrying capacity predicted, for the same initial void volume fraction...

  12. Computer model for ductile fracture

    International Nuclear Information System (INIS)

    Moran, B.; Reaugh, J. E.

    1979-01-01

    A computer model is described for predicting ductile fracture initiation and propagation. The computer fracture model is calibrated by simple and notched round-bar tension tests and a precracked compact tension test. The model is used to predict fracture initiation and propagation in a Charpy specimen and compare the results with experiments. The calibrated model provides a correlation between Charpy V-notch (CVN) fracture energy and any measure of fracture toughness, such as J/sub Ic/. A second simpler empirical correlation was obtained using the energy to initiate fracture in the Charpy specimen rather than total energy CVN, and compared the results with the empirical correlation of Rolfe and Novak

  13. Texture developed during deformation of Transformation Induced Plasticity (TRIP) steels

    International Nuclear Information System (INIS)

    Bhargava, M; Asim, T; Sushil, M; Shanta, C

    2015-01-01

    Automotive industry is currently focusing on using advanced high strength steels (AHSS) due to its high strength and formability for closure applications. Transformation Induced Plasticity (TRIP) steel is promising material for this application among other AHSS. The present work is focused on the microstructure development during deformation of TRIP steel sheets. To mimic complex strain path condition during forming of automotive body, Limit Dome Height (LDH) tests were conducted and samples were deformed in servo hydraulic press to find the different strain path. FEM Simulations were done to predict different strain path diagrams and compared with experimental results. There is a significant difference between experimental and simulation results as the existing material models are not applicable for TRIP steels. Micro texture studies were performed on the samples using EBSD and X-RD techniques. It was observed that austenite is transformed to martensite and texture developed during deformation had strong impact on limit strain and strain path. (paper)

  14. Texture developed during deformation of Transformation Induced Plasticity (TRIP) steels

    Science.gov (United States)

    Bhargava, M.; Shanta, C.; Asim, T.; Sushil, M.

    2015-04-01

    Automotive industry is currently focusing on using advanced high strength steels (AHSS) due to its high strength and formability for closure applications. Transformation Induced Plasticity (TRIP) steel is promising material for this application among other AHSS. The present work is focused on the microstructure development during deformation of TRIP steel sheets. To mimic complex strain path condition during forming of automotive body, Limit Dome Height (LDH) tests were conducted and samples were deformed in servo hydraulic press to find the different strain path. FEM Simulations were done to predict different strain path diagrams and compared with experimental results. There is a significant difference between experimental and simulation results as the existing material models are not applicable for TRIP steels. Micro texture studies were performed on the samples using EBSD and X-RD techniques. It was observed that austenite is transformed to martensite and texture developed during deformation had strong impact on limit strain and strain path.

  15. Fracture and fatigue considerations in the development of ductile-phase reinforced intermetallic-matrix composites

    International Nuclear Information System (INIS)

    Venkateswara Rao, K.T.; Ritchie, R.O.

    1994-01-01

    The salient microstructural factors influencing fracture and fatigue-crack growth resistance of ductile-particle reinforced intermetallic-matrix composites at ambient temperature are reviewed through examples from the Nb/MoSi 2 , TiNb/TiAl, Nb/TiAl and Nb/Nb 3 Al systems; specific emphasis is placed on properties and morphology of the reinforcement and its interfacial properties with the matrix. It is shown that composites must be fabricated with a high aspect ratio ductile-reinforcement morphology in order to promote crack-particle interception and resultant crack bridging for improved fracture and fatigue properties. Concurrently, however, the ductile phases have contrasting effects on crack growth under monotonic vs. cyclic loading suggesting that composite microstructures tailored for optimal toughness may not necessarily yield optimal fatigue resistance. Perspectives for the future development of damage-tolerant intermetallic-composite microstructures are discussed

  16. Involvement of p53 Mutation and Mismatch Repair Proteins Dysregulation in NNK-Induced Malignant Transformation of Human Bronchial Epithelial Cells

    Directory of Open Access Journals (Sweden)

    Ying Shen

    2014-01-01

    Full Text Available Genome integrity is essential for normal cellular functions and cell survival. Its instability can cause genetic aberrations and is considered as a hallmark of most cancers. To investigate the carcinogenesis process induced by tobacco-specific carcinogen NNK, we studied the dynamic changes of two important protectors of genome integrity, p53 and MMR system, in malignant transformation of human bronchial epithelial cells after NNK exposure. Our results showed that the expression of MLH1, one of the important MMR proteins, was decreased early and maintained the downregulation during the transformation in a histone modification involved and DNA methylation-independent manner. Another MMR protein PMS2 also displayed a declined expression while being in a later stage of transformation. Moreover, we conducted p53 mutation analysis and revealed a mutation at codon 273 which led to the replacement of arginine by histidine. With the mutation, DNA damage-induced activation of p53 was significantly impaired. We further reintroduced the wild-type p53 into the transformed cells, and the malignant proliferation can be abrogated by inducing cell cycle arrest and apoptosis. These findings indicate that p53 and MMR system play an important role in the initiation and progression of NNK-induced transformation, and p53 could be a potential therapeutic target for tobacco-related cancers.

  17. Examination and Elimination of Defects in Cone Casting Made of Ductile Cast Iron

    Directory of Open Access Journals (Sweden)

    Guzik E.

    2013-12-01

    Full Text Available In the scope of existing cooperation with the Foundry of Cast Iron ZM “WSK Rzeszów” Ltd. there was carried out research work of microstructure and mechanical properties in the walls of a cone casting made of ductile cast iron. The particular attention was being put to the search of the potential brittle phases which have deleterious effect on ductility and dynamic properties of highly strained use of the casting prone to the potential risk of cracks during the highly strained use.

  18. Rolling Contact Fatigue Failure Mechanisms of Plasma-Nitrided Ductile Cast Iron

    Science.gov (United States)

    Wollmann, D.; Soares, G. P. P. P.; Grabarski, M. I.; Weigert, N. B.; Escobar, J. A.; Pintaude, G.; Neves, J. C. K.

    2017-05-01

    Rolling contact fatigue (RCF) of a nitrided ductile cast iron was investigated. Flat washers machined from a pearlitic ductile cast iron bar were quenched and tempered to maximum hardness, ground, polished and divided into four groups: (1) specimens tested as quenched and tempered; (2) specimens plasma-nitrided for 8 h at 400 °C; (3) specimens plasma-nitrided and submitted to a diffusion process for 16 h at 400 °C; and (4) specimens submitted to a second tempering for 24 h at 400 °C. Hardness profiles, phase analyses and residual stress measurements by x-ray diffraction, surface roughness and scanning electron microscopy were applied to characterize the surfaces at each step of this work. Ball-on-flat washer tests were conducted with a maximum contact pressure of 3.6 GPa, under flood lubrication with a SAE 90 API GL-5 oil at 50 °C. Test ending criterion was the occurrence of a spalling. Weibull analysis was used to characterize RCF's lifetime data. Plasma-nitrided specimens exhibited a shorter RCF lifetime than those just quenched and tempered. The effects of nitriding on the mechanical properties and microstructure of the ductile cast iron are discussed in order to explain the shorter endurance of nitrided samples.

  19. Hot drawn Fe–6.5 wt.%Si wires with good ductility

    International Nuclear Information System (INIS)

    Yang, W.; Li, H.; Yang, K.; Liang, Y.F.; Yang, J.; Ye, F.

    2014-01-01

    Highlights: • Fe–6.5wt%Si steel wire with diameter of 1.6 mm can be successfully obtained by hot drawing process. • The ductility of Fe–6.5wt%Si alloy can be improved significantly when it is fabricated in the form of wire. • The Dc magnetic property of Fe–6.5wt%Si steel wire 1.6 mm in diameter is excellent, which is close to that of 0.3 mm thick cold-rolling sheet. - Abstract: Fe–6.5 wt.%Si high silicon steel wires with a diameter of 1.6 mm are fabricated successfully by hot drawing. The high silicon steel wires show much better ductility than sheets. The tensile strength and elongation of the wires at the room temperature can reach 1.31 GPa and 1.4%, respectively. The tensile strength and elongation of the rolling sheet at the room temperature are 0.8 GPa and 0, respectively. The microstructure analyses show that the elongated grains after drawing and reduced ordering phases by deformation in the wires might contribute to its good ductility. Bs value of 1.437 T and Hc value of 16.96 A/m are obtained for the wire after proper heat treatment for the wires

  20. Brittle and ductile friction modeling of triggered tremor in Guerrero, Mexico

    Science.gov (United States)

    Zhang, Y.; Daub, E. G.; Wu, C.

    2017-12-01

    Low frequency earthquakes (LFEs), which make up the highest amplitude portions of non-volcanic tremor, are mostly found along subduction zones at a depth of 30-40km which is typically within the brittle-ductile transition zone. Previous studies in Guerrero, Mexico demonstrated a relationship between the bursts of LFEs and the contact states of fault interfaces, and LFEs that triggered by different mechanisms were observed along different parts of the subduction zone. To better understand the physics of fault interfaces at depth, especially the influence of contact states of these asperities, we use a brittle-ductile friction model to simulate the occurrence of LFE families from a model of frictional failure and slip. This model takes the stress state, slip rate, perturbation force, fault area, and brittle-ductile frictional contact characteristics and simulates the times and amplitudes of LFE occurrence for a single family. We examine both spontaneous and triggered tremor occurrence by including stresses due to external seismic waves, such as the 2010 Maule Earthquake, which triggered tremor and slow slip on the Guerrero section of the subduction zone. By comparing our model output with detailed observations of LFE occurrence, we can determine valuable constraints on the frictional properties of subduction zones at depth.

  1. Influence of ageing, inclusions and voids on ductile fracture ...

    Indian Academy of Sciences (India)

    Unknown

    The strain hardening capacity has a marked effect on void size, and is an indicator of fracture .... a model of ductile failure based on the concept that the critical step in the .... Ashby M F, Gandhi C and Taplin D M R 1979 Acta Metal. 27. 699.

  2. Effect of Boron on the Hot Ductility of Resulfurized Low-Carbon Free-Cutting Steel

    Science.gov (United States)

    Liu, Hai-tao; Chen, Wei-qing

    2015-09-01

    The hot ductility of resulfurized low-carbon free-cutting steel with boron additives is studied in the temperature range 850 - 1200°C with the help of a Gleeble-1500 thermomechanical simulator. The introduction of boron increases hot ductility, especially at 900 - 1050°C. In the single-phase austenitic region, this effect is caused by segregation of boron over grain boundaries, acceleration of dynamic recrystallization, and solid-solution softening of deformed austenite.

  3. Effects of Non-metallic Inclusions on Hot Ductility of High Manganese TWIP Steels Containing Different Aluminum Contents

    Science.gov (United States)

    Wang, Yu-Nan; Yang, Jian; Wang, Rui-Zhi; Xin, Xiu-Ling; Xu, Long-Yun

    2016-06-01

    The characteristics of inclusions in Fe-16Mn- xAl-0.6C ( x = 0.002, 0.033, 0.54, 2.10 mass pct) steels have been investigated and their effects on hot ductility of the high manganese TWIP steels have been discussed. Ductility is very poor in the steel containing 0.54 mass pct aluminum, which is lower than 20 pct in the temperature range of 873 K to 1473 K (600 °C to 1200 °C). For the steels containing 0.002 and 2.10 mass pct aluminum, ductility is higher than 40 pct in the same temperature range. The hot ductility of steel containing 0.033 mass pct aluminum is higher than 30 pct throughout the temperature range under examination. With increasing aluminum content, the main inclusions in the steels change along the route of MnO/(MnO + MnS) → MnS/(Al2O3 + MnS) → AlN/(Al2O3 + MnS)/(MgAl2O4 + MnS) → AlN. The thermodynamic results of inclusion types calculated with FactSage software are in agreement with the experimental observation results. The inclusions in the steels containing 0.002 mass pct aluminum do not deteriorate the hot ductility. MnS inclusions whose average size, number density, and volume ratio are 1.12 μm, 15.62 mm-2, and 2.51 × 10-6 in the steel containing 0.033 mass pct aluminum reduce the ductility. In the steel containing 0.54 mass pct aluminum, AlN inclusions whose average size, number density, and volume ratio are 0.878 μm, 16.28 mm-2 and 2.82 × 10-6 can precipitate at the austenite grain boundaries, prevent dynamic recrystallization and deteriorate the hot ductility. On the contrary, in the steel containing 2.10 mass pct aluminum, the average size, number density and volume ratio of AlN inclusions change to 2.418 μm, 35.95 mm-2, and 2.55 × 10-5. They precipitate in the matrix, which do not inhibit dynamic recrystallization and thereby do not lead to poor hot ductility.

  4. The elasto plastic fracture mechanics in ductile metal sheets

    International Nuclear Information System (INIS)

    Khan, M.A.; Malik, M.N.; Naeem, A.; Haq, A.U.; Atkins, A.G.

    1999-01-01

    The crack initiation of propagation in ductile metal sheets are caused by various micro and macro changes taking place due to material properties, applied loads, shape of the indenter (tool geometry) and the environmental conditions. These microstructural failures are directly related to the atomic bonding, crystal lattices, grain boundary status, material flaws in matrix, inhomogeneities and anisotropy in the metal sheets. The Elasto-Plastic related energy based equations are applied to these Rigid Plastic materials to determine the onset of fracture in metal forming. The combined stress and strain criterion of a critical plastic work per unit volume is no more considered as a universal ductile fracture criterion, rather a critical plastic work per unit volume dependence on all sort of stresses (hydrostatic) are the required features for the sheet metal failure (fracture). In this present study, crack initiation and propagation are related empirically with fracture toughness and the application of the theory in industry to save energy. (author)

  5. Inhibition and reversal of nickel-induced transformation by the histone deacetylase inhibitor trichostatin A

    International Nuclear Information System (INIS)

    Zhang Qunwei; Salnikow, Konstantin; Kluz, Thomas; Chen, L.C.; Su, W.C.; Costa, Max

    2003-01-01

    The carcinogenic process initiated by nongenotoxic carcinogens involves modulation of gene expression. Nickel compounds have low mutagenic activity, but are highly carcinogenic. In vitro both mouse and human cells can be efficiently transformed by soluble and insoluble nickel compounds to anchorage-independent growth. Because previous studies have shown that carcinogenic nickel compounds silence genes by inhibiting histone acetylation and enhancing DNA methylation, we investigated the effect of enhancing histone acetylation on cell transformation. The exposure of nickel-transformed cells to the histone deacetylase inhibitor trichostatin A (TSA) resulted in the appearance of significant number of revertants measured by their inability to grow in soft agar. Using the Affymetrix GeneChip we found that the level of expression of a significant number of genes was changed (suppressed or upregulated) in nickel-transformed clones but returned to a normal level in revertants obtained following TSA treatment. Moreover, we found that treatment of cells with TSA inhibited the ability of nickel to transform mouse PW cells to anchorage-independent growth. Treatment with TSA also inhibited the ability of nickel to transform human HOS cells, although to a lesser extent. In contrast, treatment with TSA was not able to revert established cancer cell lines as readily as the nickel-transformed cells. These data indicated that modulation of gene expression is important for nickel-induced transformation

  6. Intra-hydrogel culture prevents transformation of mesenchymal stem cells induced by monolayer expansion.

    Science.gov (United States)

    Jiang, Tongmeng; Liu, Junting; Ouyang, Yiqiang; Wu, Huayu; Zheng, Li; Zhao, Jinmin; Zhang, Xingdong

    2018-05-01

    In this study, we report that the intra-hydrogel culture system mitigates the transformation of mesenchymal stem cells (MSCs) induced by two-dimensional (2D) expansion. MSCs expanded in monolayer culture prior to encapsulation in collagen hydrogels (group eMSCs-CH) featured impaired stemness in chondrogenesis, comparing with the freshly isolated bone marrow mononuclear cells seeded directly in collagen hydrogels (group fMSCs-CH). The molecular mechanism of the in vitro expansion-triggered damage to MSCs was detected through genome-wide microarray analysis. Results indicated that pathways such as proteoglycans in cancer and pathways in cancer expansion were highly enriched in eMSCs-CH. And multiple up-regulated oncoma-associated genes were verified in eMSCs-CH compared with fMSCs-CH, indicating that expansion in vitro triggered cellular transformation was associated with signaling pathways related to tumorigenicity. Besides, focal adhesion (FA) and mitogen-activated protein kinase (MAPK) signaling pathways were also involved in in vitro expansion, indicating restructuring of the cell architecture. Thus, monolayer expansion in vitro may contribute to vulnerability of MSCs through the regulation of FA and MAPK. This study indicates that intra-hydrogel culture can mitigate the monolayer expansion induced transformation of MSCs and maintain the uniformity of the stem cells, which is a viable in vitro culture system for stem cell therapy.

  7. ASME codification of ductile cast iron cask for transport and storage of spent nuclear fuel

    International Nuclear Information System (INIS)

    Saegusa, Toshiari; Arai, Taku

    2012-01-01

    The CRIEPI has been executing research and development on ductile cast iron cask for transport and storage of spent nuclear fuel in order to diversify options of the casks. Based on the research results, the CRIEPI proposed materials standards (Section II) and structural design standards (Section III) for the ductile cast iron cask to the authoritative and international ASME (American Society of Mechanical Engineers) Codes. For the Section II, the CRIEPI proposed the JIS G 5504 material with additional requirement prohibiting repair of cast body by welding, etc. as well as the ASTM A874 material to the Part A. In addition, the CRIEPI proposed design stress allowables, physical properties (thermal conductivity, modulus of elasticity, etc.), and external pressure chart to the Part D. For the Section III, the CRIEPI proposed a fracture toughness requirement of the ductile cast iron cask at -40degC to WB and WC of Division 3. Additionally, the CRIEPI proposed a design fatigue curve of the ductile cast iron cask to Appendix of Division 1. This report describes the outline of the proposed standards, their bases, and the deliberation process in order to promote proper usage of the code, future improvement, etc. (author)

  8. [Malignant transformation of human fibroblasts by neutrons and by gamma radiation: Relationship to mutations induced

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1993-12-31

    A brief overview if provided of selected reports presented at the International Symposium on Molecular Mechanisms of Radiation- and Chemical Carcinogen-Induced Cell Transformation held at Mackinac Island, Michigan on September 19-23, 1993.

  9. Ductile transition in nylon-rubber blends: influence of water

    NARCIS (Netherlands)

    Gaymans, R.J.; Borggreve, R.J.M.; Spoelstra, A.B.

    1989-01-01

    On nylon 6 and nylon 6/EPDM blends the influence of water on the glass transition temperature, mechanical properties, and the ductile transition temperature was studied. Blends of 10% and 20% were prepared with a particle size of 0.3 µm and the tensile properties, flexural moduli, torsion moduli,

  10. Effect of chemical ordering annealing on martensitic transformation and superelasticity in polycrystalline Ni–Mn–Ga microwires

    Energy Technology Data Exchange (ETDEWEB)

    Qian, M.F. [School of Materials Science and Engineering, Harbin Institute of Technology, Harbin 150001 (China); Advanced Composites Centre for Innovation and Science (ACCIS), University of Bristol, Queen’s Building, University Walk, Bristol BS8 1TR (United Kingdom); Zhang, X.X., E-mail: xxzhang@hit.edu.cn [School of Materials Science and Engineering, Harbin Institute of Technology, Harbin 150001 (China); Wei, L.S.; Geng, L. [School of Materials Science and Engineering, Harbin Institute of Technology, Harbin 150001 (China); Peng, H.X., E-mail: hxpengwork@zju.edu.cn [Institute for Composites Science Innovation (InCSI), School of Materials Science and Engineering, Zhejiang University, Hangzhou 310027 (China)

    2015-10-05

    Highlights: • Chemical ordering annealing on Ni–Mn–Ga microwires was found to reduce the defect density and internal stress. • Chemical ordering annealing on Ni–Mn–Ga microwires was found to increase the MT temperatures, Curie point and saturation magnetization. • Chemical ordering annealing on Ni–Mn–Ga microwires was found to decrease the SIM stress and improve the superelastic reversibility. • Chemical ordering annealing on Ni–Mn–Ga microwires was found to weaken the temperature dependences of the superelastic stresses. - Abstract: Polycrystalline Ni–Mn–Ga microwires of diameter 30–80 μm were prepared by melt-extraction technique on a large scale. The rapidly solidified microwires exhibit a fairly high ductility and excellent shape memory property. Here, with the aim to reduce the defect density, internal stress and compositional inhomogeneity in the as-extracted microwires, a stepwise chemical ordering annealing heat treatment was carried out and the effect of annealing on martensitic transformation, magnetic properties and superelastic behavior were investigated. The results indicate that annealing increase the transformation temperature and decrease the transformation hysteresis. These are related to composition homogenization, increase of atomic ordering and decrease in internal stress and defects. During mechanical tests, the stress-induced martensite (SIM) formation took place at a much lower stress after annealing treatment. The annealed microwires also demonstrate a lower superelastic hysteresis and a higher recovery rate compared to the as-extracted microwires. The temperature dependence of SIM stress is weaker after annealing, which is related to the enthalpy change (ΔH) and phase transformation temperature change according to the Clausius–Clapeyron relation.

  11. Numerical ductile tearing simulation of circumferential cracked pipe tests under dynamic loading conditions

    Energy Technology Data Exchange (ETDEWEB)

    Nam, Hyun Suk; Kim, Ji Soo; Ryu, Ho Wan; Kim, Yun Jae [Dept. of Mechanical Engineering, Korea University, Seoul (Korea, Republic of); Kim, Jin Weon [Dept. of Nuclear Engineering, Chosun University, Gwangju (Korea, Republic of)

    2016-10-15

    This paper presents a numerical method to simulate ductile tearing in cracked components under high strain rates using finite element damage analysis. The strain rate dependence on tensile properties and multiaxial fracture strain is characterized by the model developed by Johnson and Cook. The damage model is then defined based on the ductility exhaustion concept using the strain rate dependent multiaxial fracture strain concept. The proposed model is applied to simulate previously published three cracked pipe bending test results under two different test speed conditions. Simulated results show overall good agreement with experimental results.

  12. Sliding wear and corrosion behaviour of alloyed austempered ductile iron subjected to novel two step austempering treatment

    Science.gov (United States)

    Sethuram, D.; Srisailam, Shravani; Rao Ponangi, Babu

    2018-04-01

    Austempered Ductile Iron(ADI) is an exciting alloy of iron which offers the design engineers the best combination high strength-to-weight ratio, low cost design flexibility, good toughness, wear resistance along with fatigue strength. The two step austempering procedure helps in simultaneously improving the tensile strength as-well as the ductility to more than that of the conventional austempering process. Extensive literature survey reveals that it’s mechanical and wear behaviour are dependent on heat treatment and alloy additions. Current work focuses on characterizing the two-step ADI samples (TSADI) developed by novel heat treatment process for resistance to corrosion and wear. The samples of Ductile Iron were austempered by the two-Step Austempering process at temperatures 300°C to 450°C in the steps of 50°C.Temperaturesare gradually increased at the rate of 14°C/Hour. In acidic medium (H2SO4), the austempered samples showed better corrosive resistance compared to conventional ductile iron. It has been observed from the wear studies that TSADI sample at 350°C is showing better wear resistance compared to ductile iron. The results are discussed in terms of fractographs, process variables and microstructural features of TSADI samples.

  13. High Ductility and Toughness of a Micro-duplex Medium-Mn Steel in a Large Temperature Range from -196 °C to 200 °C

    DEFF Research Database (Denmark)

    Chen, Si-lian; Hu, Jun; Zhang, Xiaodan

    2015-01-01

    A medium-Mn steel (0.2C5Mn) was processed by intercritical annealing at different temperatures (625 degrees C and 650 degrees C). An ultrafine-grained micro-duplex structure consisting of alternating austenite and ferrite laths was developed by austenite reverse transformation (ART) during...... intercritical annealing after forging and hot rolling. Ultrahigh ductility with a total elongation higher than 30% was achieved in the temperature range from - 196 degrees C to 200 degrees C and high impact toughness no less than 200 J at - 40 degrees C was obtained. Based on the analysis of microstructure...

  14. Evaluation of Varying Ductile Fracture Criteria for 42CrMo Steel by Compressions at Different Temperatures and Strain Rates

    OpenAIRE

    Quan, Guo-zheng; Luo, Gui-chang; Mao, An; Liang, Jian-ting; Wu, Dong-sen

    2014-01-01

    Fracturing by ductile damage occurs quite naturally in metal forming processes, and ductile fracture of strain-softening alloy, here 42CrMo steel, cannot be evaluated through simple procedures such as tension testing. Under these circumstances, it is very significant and economical to find a way to evaluate the ductile fracture criteria (DFC) and identify the relationships between damage evolution and deformation conditions. Under the guidance of the Cockcroft-Latham fracture criteria, an inn...

  15. Influence of strain-rate on the flow stress and ductility of copper and tantalum

    International Nuclear Information System (INIS)

    Regazzoni, G.; Montheillet, F.; Dormeval, R.; Stelly, M.

    1981-09-01

    Tensile experiments were carried out at strain-rates in a range from epsilon = 6.10 -5 to 3.10 3 s -1 at 293 K and 673 K or 773 K. Two types of copper (FCC) and pure tantalum (BCC) were tested. The variations of ductility have been investigated in relation with the σ - epsilon equations of the materials and the examinations of fracture surfaces. They can be explained in terms of stability and intrinsic ductility

  16. A kinematic measurement for ductile and brittle failure of materials using digital image correlation

    Directory of Open Access Journals (Sweden)

    M.M. Reza Mousavi

    2016-12-01

    Full Text Available This paper addresses some material level test which is done on quasi-brittle and ductile materials in the laboratory. The displacement control experimental program is composed of mortar cylinders under uniaxial compression shows quasi-brittle behavior and seemingly round-section aluminum specimens under uniaxial tension represents ductile behavior. Digital Image Correlation gives full field measurement of deformation in both aluminum and mortar specimens. Likewise, calculating the relative displacement of two points located on top and bottom of virtual LVDT, which is virtually placed on the surface of the specimen, gives us the classical measure of strain. However, the deformation distribution is not uniform all over the domain of specimens mainly due to imperfect nature of experiments and measurement devices. Displacement jumps in the fracture zone of mortar specimens and strain localization in the necking area for the aluminum specimen, which are reflecting different deformation values and deformation gradients, is compared to the other regions. Since the results are inherently scattered, it is usually non-trivial to smear out the stress of material as a function of a single strain value. To overcome this uncertainty, statistical analysis could bring a meaningful way to closely look at scattered results. A large number of virtual LVDTs are placed on the surface of specimens in order to collect statistical parameters of deformation and strain. Values of mean strain, standard deviation and coeffcient of variations for each material are calculated and correlated with the failure type of the corresponding material (either brittle or ductile. The main limiters for standard deviation and coeffcient of variations for brittle and ductile failure, in pre-peak and post-peak behavior are established and presented in this paper. These limiters help us determine whether failure is brittle or ductile without determining of stress level in the material.

  17. DUCTILE URANIUM FUEL FOR NUCLEAR REACTORS AND METHOD OF MAKING

    Science.gov (United States)

    Zegler, S.T.

    1963-11-01

    The fabrication process for a ductile nuclear fuel alloy consisting of uranium, fissium, and from 0.25 to 1.0 wt% of silicon or aluminum or from 0.25 to 2 wt% of titanium or yttrium is presented. (AEC)

  18. Effect of the hydrogen concentration on the ductility of Zry-4

    International Nuclear Information System (INIS)

    Domizzi, G.; Ovejero Garcia, J.

    1996-01-01

    After many years in service, zirconium alloys employed in nuclear reactors may reach high contents of hydride particles, exceeding the hydrogen solid solubility at the service temperature. The brittle character of zirconium hydride promotes the alloy embrittlement. In order to predict the critical hydrogen concentration which causes a ductile-brittle transition in a Zry-4 foil, 0.02mm thick, tensile test specimens were hydride by gaseous charging. To obtain uniform hydride distribution the specimens were electroplated with a film of copper prior to gaseous charge. In absence of oxide film, the foils retained its ductility up to high hydrogen concentration (950 Og/g). The critical hydrogen concentration was attained at 2900-3100 Og/g. (author). 4 refs., 2 figs., 1 tab

  19. Characterization of Transformation-Induced Defects in Nickel Titanium Shape Memory Alloys

    Science.gov (United States)

    Bowers, Matthew L.

    Shape memory alloys have remarkable strain recovery properties that make them ideal candidates for many applications that include devices in the automotive, aerospace, medical, and MEMS industries. Although these materials are widely used today, their performance is hindered by poor dimensional stability resulting from cyclic degradation of the martensitic transformation behavior. This functional fatigue results in decreased work output and cyclic accumulation of permanent strain. To date, few studies have taken a fundamental approach to investigating the interaction between plasticity and martensite growth and propagation, which is vitally important to mitigating functional fatigue in future alloy development. The current work focuses on understanding the interplay of these deformation mechanisms in NiTi-based shape memory alloys under a variety of different thermomechanical test conditions. Micron-scale compression testing of NiTi shape memory alloy single crystals is undertaken in an effort to probe the mechanism of austenite dislocation generation. Mechanical testing is paired with post mortem defect analysis via diffraction contrast scanning transmission electron microscopy (STEM). Accompanied by micromechanics-based modeling of local stresses surrounding a martensite plate, these results demonstrate that the previously existing martensite and resulting austenite dislocation substructure are intimately related. A mechanism of transformation-induced dislocation generation is described in detail. A study of pure and load-biased thermal cycling of bulk polycrystalline NiTi is done for comparison of the transformation behavior and resultant defects to the stress-induced case. Post mortem and in situ STEM characterization demonstrate unique defect configurations in this test mode and STEM-based orientation mapping reveals local crystal rotation with increasing thermal cycles. Changes in both martensite and austenite microstructures are explored. The results for

  20. Energetic approach for ductile tearing

    International Nuclear Information System (INIS)

    Marie, St.

    1999-01-01

    This study focuses on ductile crack initiation and propagation. It aims to propose an approach for the engineer allowing the prediction of the evolution of cracks in large scale components, from parameters determined on laboratory specimens. A crack initiation criterion, defining a J i tenacity related to crack tip blunting proposed in the literature is validated in the study. This criterion is shown to be transferable from laboratory specimens to structures. The literature review shows that an approach based on the dissipated energy in the fracture process during propagation offers an economical and simple solution to simulate large crack growth. A numerical method is proposed to estimate this fracture energy. The existence of an energy parameter G fr is shown, by simulating the propagation by the simultaneous release of several elements and by the use of the Rice integral with an original integration path. This parameter represents the needed energy for a unit crack extension and appears to be intrinsic to the material. A global energy statement allows to relate this parameter to a variation of the plastic part of J integral. It offers a second numerical method to simulate the propagation just from stationary numerical calculations, as well as the elaboration of a simplified method. This approach, using two parameters J i and G fr , intrinsic to the material and experimentally measurable on specimens, is validated on many tests such as crack pipes subjected to four points bending and cracked rings in compression. For example, this approach allows to model up to 90 mm ductile tearing in a pipe with a circumferential through-wall crack in ferritic steel, or to anticipate the evolution of a semi-elliptical crack in an aged austenitic ferritic steel plate subjected to bending. (author)

  1. Shear-induced structural transformation and plasticity in ultraincompressible ReB2 limit its hardness

    Czech Academy of Sciences Publication Activity Database

    Zhang, R. F.; Legut, Dominik; Niewa, R.; Argon, A. S.; Veprek, S.

    2010-01-01

    Roč. 82, č. 10 (2010), 104104/1-104104/7 ISSN 1098-0121 Institutional research plan: CEZ:AV0Z20410507 Keywords : ReB2 * ab initio * ultrahard * shear-induced transformation Subject RIV: BM - Solid Matter Physics ; Magnetism Impact factor: 3.772, year: 2010

  2. Prediction of lung cells oncogenic transformation for induced radon progeny alpha particles using sugarscape cellular automata.

    Science.gov (United States)

    Baradaran, Samaneh; Maleknasr, Niaz; Setayeshi, Saeed; Akbari, Mohammad Esmaeil

    2014-01-01

    Alpha particle irradiation from radon progeny is one of the major natural sources of effective dose in the public population. Oncogenic transformation is a biological effectiveness of radon progeny alpha particle hits. The biological effects which has caused by exposure to radon, were the main result of a complex series of physical, chemical, biological and physiological interactions. The cellular and molecular mechanisms for radon-induced carcinogenesis have not been clear yet. Various biological models, including cultured cells and animals, have been found useful for studying the carcinogenesis effects of radon progeny alpha particles. In this paper, sugars cape cellular automata have been presented for computational study of complex biological effect of radon progeny alpha particles in lung bronchial airways. The model has included mechanism of DNA damage, which has been induced alpha particles hits, and then formation of transformation in the lung cells. Biomarkers were an objective measure or evaluation of normal or abnormal biological processes. In the model, the metabolism rate of infected cell has been induced alpha particles traversals, as a biomarker, has been followed to reach oncogenic transformation. The model results have successfully validated in comparison with "in vitro oncogenic transformation data" for C3H 10T1/2 cells. This model has provided an opportunity to study the cellular and molecular changes, at the various stages in radiation carcinogenesis, involving human cells. It has become well known that simulation could be used to investigate complex biomedical systems, in situations where traditional methodologies were difficult or too costly to employ.

  3. Ductile fracture behavior of cast structure containing voids

    Energy Technology Data Exchange (ETDEWEB)

    Gilles, Ph.; Migne, C. [FRAMATOME ANP, 92 - Paris-La-Defence (France); Chapuliot, S. [CEA Saclay, 91 - Gif-sur-Yvette (France). Dept. de Mecanique et de Technologie

    2001-07-01

    In pressurized water reactors, the primary loop contains cast-piping components made of duplex stainless steel. Due to the presence of ferrite, such steels are susceptible to thermal aging embrittlement, which decrease their fracture resistance. The cast process induces shrinkage cavities, therefore all these components are submitted to liquid penetrant examination and all surface defects are repaired. EDF, CEA and Framatome have conducted experimental and analytical analysis of fatigue and fracture behavior of aged cast stainless steel structures containing shrinkage cavities. The present study considers only ductile tearing and is based on specimen test results and a fracture mechanics model of the interaction between shrinkage cavities. The experimental results presented here show that large groups of shrinkage cavities have almost no influence on the global behavior of the structure. Only for the specimen with the largest reduction of area, a significant reduction of strength has been registered. Using elementary fracture mechanics models, it has been evidenced that failure mechanism of structures containing shrinkage cavities consists in 3 phases: local initiation, macro-crack formation by coalescence and failure by crack instability or collapse depending if J resistance is low or not. No significant changes in global behavior appear in the first phase. (A.C.)

  4. Ductile fracture behavior of cast structure containing voids

    International Nuclear Information System (INIS)

    Gilles, Ph.; Migne, C.; Chapuliot, S.

    2001-01-01

    In pressurized water reactors, the primary loop contains cast-piping components made of duplex stainless steel. Due to the presence of ferrite, such steels are susceptible to thermal aging embrittlement, which decrease their fracture resistance. The cast process induces shrinkage cavities, therefore all these components are submitted to liquid penetrant examination and all surface defects are repaired. EDF, CEA and Framatome have conducted experimental and analytical analysis of fatigue and fracture behavior of aged cast stainless steel structures containing shrinkage cavities. The present study considers only ductile tearing and is based on specimen test results and a fracture mechanics model of the interaction between shrinkage cavities. The experimental results presented here show that large groups of shrinkage cavities have almost no influence on the global behavior of the structure. Only for the specimen with the largest reduction of area, a significant reduction of strength has been registered. Using elementary fracture mechanics models, it has been evidenced that failure mechanism of structures containing shrinkage cavities consists in 3 phases: local initiation, macro-crack formation by coalescence and failure by crack instability or collapse depending if J resistance is low or not. No significant changes in global behavior appear in the first phase. (A.C.)

  5. Neoplastic transformation induced by carbon ions.

    Science.gov (United States)

    Bettega, Daniela; Calzolari, Paola; Hessel, Petra; Stucchi, Claudio G; Weyrather, Wilma K

    2009-03-01

    The objective of this experiment was to compare the oncogenic potential of carbon ion beams and conventional photon beams for use in radiotherapy. The HeLa X human skin fibroblast cell line CGL1 was irradiated with carbon ions of three different energies (270, 100, and 11.4 MeV/u). Inactivation and transformation data were compared with those for 15 MeV photons. Inactivation and transformation frequencies for the 270 MeV/u carbon ions were similar to those for 15-MeV photons. The maximal relative biologic effectiveness (RBE(alpha)) values for 100MeV/u and 11.4 MeV/u carbon ions, respectively, were as follows: inactivation, 1.6 +/- 0.2 and 6.7 +/- 0.7; and transformation per surviving cell, 2.5 +/- 0.6 and 12 +/- 3. The curve for dose-transformation per cell at risk exhibited a maximum that was shifted toward lower doses at lower energies. Transformation induction per cell at risk for carbon ions in the entrance channel was comparable to that for photons, whereas for the lower energies, 100 MeV/u and 11 MeV/u, which are representative of the energies delivered to the tumor margins and volume, respectively, the probability of transformation in a single cell was greater than it was for photons. In addition, at isoeffective doses with respect to cell killing, the 11.4-MeV/u beam was more oncogenic than were photons.

  6. Numerical modelling of thin-walled hypereutectic ductile cast iron parts

    DEFF Research Database (Denmark)

    Pedersen, Karl Martin; Hattel, Jesper Henri; Tiedje, Niels Skat

    2006-01-01

    Solidification of hypereutectic thin-walled ductile cast iron has been modelled in one dimension taking into account the precipitation of off-eutectic austenite dendrites during solidification. The simulations have been compared with casting experiments on plate geometries with plate thicknesses...

  7. Experiment and numerical simulation of welding induced damage: stainless steel 15-5PH

    International Nuclear Information System (INIS)

    Wu, T.

    2007-11-01

    The objective of this study is the prediction of damage and residual stresses induced by hot processing which leads to phase transformation in martensitic stainless steel. This study firstly concerns the modelling of the damage of material induced by a complex history of thermo-elastoplastic multiphase in heat-affected-zone (HAZ) of welding. In this work, a two-scale mode of elastoplastic damage multiphase was developed in the framework of thermodynamics of irreversible process. The constitutive equations are coupling with ductile damage, elasto-plasticity, phase transformation, and transformation plasticity. Besides, a damage equation was proposed based on the Lemaitre's damage model in the framework of continuum damage mechanics. The experiments of 15-5PH were implemented for the identification of phase transformation, transformation plasticity and damage models. Tensile tests of round specimens were used to identify the parameters of damage model as well as mechanical behaviours at various temperatures. Tests of flat notched specimen were designed to provide the validation of damage model and strain localization using three dimensional image correlation technologies. In addition, microscopic analysis was performed to provide microstructure characterization of 15-5PH and to discover the damage mechanism. Finally the numerical simulation was performed in the code CAST3M of CEA. On the one hand, numerical verification of the flat notched plates was implemented and compared with experimental results. On the other hand, we used the two-scale model including phase transformation, transformation plasticity and damage to simulate the level of residual stresses of a disk made of 15-5PH metal heated by laser. The internal variables, such as strain, stress, damage, were successfully traced in the simulation of two-scale model. The simulation results showed the transformation plasticity changes the level of residual stresses and should not be negligible; damage decreases

  8. Analysis of copper contamination in transformer insulating material with nanosecond- and femtosecond-laser-induced breakdown spectroscopy

    Science.gov (United States)

    Aparna, N.; Vasa, N. J.; Sarathi, R.

    2018-06-01

    This work examines the oil-impregnated pressboard insulation of high-voltage power transformers, for the determination of copper contamination. Nanosecond- and femtosecond-laser-induced breakdown spectroscopy revealed atomic copper lines and molecular copper monoxide bands due to copper sulphide diffusion. X-ray diffraction studies also indicated the presence of CuO emission. Elemental and molecular mapping compared transformer insulating material ageing in different media—air, N2, He and vacuum.

  9. Fuel powder production from ductile uranium alloys

    International Nuclear Information System (INIS)

    Clark, C.R.; Meyer, M.K.

    1998-01-01

    Metallic uranium alloys are candidate materials for use as the fuel phase in very-high-density LEU dispersion fuels. These ductile alloys cannot be converted to powder form by the processes routinely used for oxides or intermetallics. Three methods of powder production from uranium alloys have been investigated within the US-RERTR program. These processes are grinding, cryogenic milling, and hydride-dehydride. In addition, a gas atomization process was investigated using gold as a surrogate for uranium. (author)

  10. Ion irradiation-induced diffusion in bixbyite-fluorite related oxides: Dislocations and phase transformation

    Energy Technology Data Exchange (ETDEWEB)

    Rolly, Gaboriaud, E-mail: Rolly.gaboriaud@univ-poitiers.fr [Institut Pprime, CNRS-University of Poitiers, SP2MI-BP 30179, 86962 Chasseneuil-Futuroscope (France); Fabien, Paumier [Institut Pprime, CNRS-University of Poitiers, SP2MI-BP 30179, 86962 Chasseneuil-Futuroscope (France); Bertrand, Lacroix [CSIC – University of Sevilla, Avenida Américo Vespucio, 49, 41092 Sevilla (Spain)

    2014-05-01

    Ion-irradiation induced diffusion and the phase transformation of a bixbyite-fluorite related rare earth oxide thin films are studied. This work is focused on yttrium sesquioxide, Y{sub 2}O{sub 3}, thin films deposited on Si (1 0 0) substrates using the ion beam sputtering technique (IBS). As-deposited samples were annealed ant then irradiated at cryogenic temperature (80 K) with 260 keV Xe{sup 2+} at different fluences. The irradiated thin oxide films are characterized by X-ray diffraction. A cubic to monoclinic phase transformation was observed. Analysis of this phenomenon is done in terms of residual stresses. Stress measurements as a function of irradiation fluences were realised using the XRD-sin{sup 2}ψ method. Stress evolution and kinetic of the phase transformation are compared and leads to the role-played by the nucleation of point and extended defects.

  11. Deformation Induced Martensitic Transformation and Its Initial Microstructure Dependence in a High Alloyed Duplex Stainless Steel

    DEFF Research Database (Denmark)

    Xie, Lin; Huang, Tian Lin; Wang, Yu Hui

    2017-01-01

    Deformation induced martensitic transformation (DIMT) usually occurs in metastable austenitic stainless steels. Recent studies have shown that DIMT may occur in the austenite phase of low alloyed duplex stainless steels. The present study demonstrates that DIMT can also take place in a high alloyed...... Fe–23Cr–8.5Ni duplex stainless steel, which exhibits an unexpectedly rapid transformation from γ-austenite into α′-martensite. However, an inhibited martensitic transformation has been observed by varying the initial microstructure from a coarse alternating austenite and ferrite band structure...

  12. Computer simulation of ductile fracture

    International Nuclear Information System (INIS)

    Wilkins, M.L.; Streit, R.D.

    1979-01-01

    Finite difference computer simulation programs are capable of very accurate solutions to problems in plasticity with large deformations and rotation. This opens the possibility of developing models of ductile fracture by correlating experiments with equivalent computer simulations. Selected experiments were done to emphasize different aspects of the model. A difficult problem is the establishment of a fracture-size effect. This paper is a study of the strain field around notched tensile specimens of aluminum 6061-T651. A series of geometrically scaled specimens are tested to fracture. The scaled experiments are conducted for different notch radius-to-diameter ratios. The strains at fracture are determined from computer simulations. An estimate is made of the fracture-size effect

  13. Martensitic transformation in zirconia

    International Nuclear Information System (INIS)

    Deville, Sylvain; Guenin, Gerard; Chevalier, Jerome

    2004-01-01

    We investigate by atomic force microscopy (AFM) the surface relief resulting from martensitic tetragonal to monoclinic phase transformation induced by low temperature autoclave aging in ceria-stabilized zirconia. AFM appears as a very powerful tool to investigate martensite relief quantitatively and with a great precision. The crystallographic phenomenological theory is used to predict the expected relief induced by the transformation, for the particular case of lattice correspondence ABC1, where tetragonal c axis becomes the monoclinic c axis. A model for variants spatial arrangement for this lattice correspondence is proposed and validated by the experimental observations. An excellent agreement is found between the quantitative calculations outputs and the experimental measurements at nanometer scale yielded by AFM. All the observed features are explained fully quantitatively by the calculations, with discrepancies between calculations and quantitative experimental measurements within the measurements and calculations precision range. In particular, the crystallographic orientation of the transformed grains is determined from the local characteristics of transformation induced relief. It is finally demonstrated that the strain energy is the controlling factor of the surface transformation induced by low temperature autoclave treatments in this material

  14. Influence of mean stress on fatigue strength of ferritic-pearlite ductile cast iron with small defects

    Science.gov (United States)

    Deguchi, T.; Kim, H. J.; Ikeda, T.; Yanase, K.

    2017-05-01

    Because of their excellent mechanical properties, low cost and good workability, the application of ductile cast iron has been increased in various industries such as the automotive, construction and rail industries. For safety designing of the ductile cast iron component, it is necessary to understand the effect of stress ratio, R, on fatigue limit of ductile cast iron in the presence of small defects. Correspondingly in this study, rotating bending fatigue tests at R = -1 and tension-compression fatigue tests at R = -1 and 0.1 were performed by using a ferritic-pearlitic ductile cast iron. To study the effects of small defects, we introduced a small drilled hole at surface of a specimen. The diameter and depth of a drilled hole were 50, 200 and 500 μm, respectively. The non-propagating cracks emanating from graphite particles and holes edge were observed at fatigue limit, irrespective of the value of stress ratio. From the microscopic observation of crack propagation behavior, it can be concluded that the fatigue limit is determined by the threshold condition for propagation of a small crack. It was found that the effect of stress ratio on the fatigue limit of ductile cast iron with small defects can be successfully predicted based on \\sqrt {area} parameter model. Furthermore, a use of the tensile strength, σ B, instead of the Vickers hardness, HV, is effective for fatigue limit prediction.

  15. In-situ ductile metal/bulk metallic glass matrix composites formed by chemical partitioning

    Science.gov (United States)

    Kim, Choong Paul; Hays, Charles C.; Johnson, William L.

    2004-03-23

    A composite metal object comprises ductile crystalline metal particles in an amorphous metal matrix. An alloy is heated above its liquidus temperature. Upon cooling from the high temperature melt, the alloy chemically partitions, forming dendrites in the melt. Upon cooling the remaining liquid below the glass transition temperature it freezes to the amorphous state, producing a two-phase microstructure containing crystalline particles in an amorphous metal matrix. The ductile metal particles have a size in the range of from 0.1 to 15 micrometers and spacing in the range of from 0.1 to 20 micrometers. Preferably, the particle size is in the range of from 0.5 to 8 micrometers and spacing is in the range of from 1 to 10 micrometers. The volume proportion of particles is in the range of from 5 to 50% and preferably 15 to 35%. Differential cooling can produce oriented dendrites of ductile metal phase in an amorphous matrix. Examples are given in the Zr--Ti--Cu--Ni--Be alloy bulk glass forming system with added niobium.

  16. Application of micromechanical models of ductile fracture initiation to reactor pressure vessel materials

    International Nuclear Information System (INIS)

    Chaouadi, R.; Walle, E. van; Fabry, A.; Velde, J. van de; Meester, P. de

    1996-01-01

    The aim of the current study is the application of local micromechanical models to predict crack initiation in ductile materials. Two reactor pressure vessel materials have been selected for this study: JRQ IAEA monitor base metal (A533B Cl.1) and Doel-IV weld material. Charpy impact tests have been performed in both un-irradiated and irradiated conditions. In addition to standard tensile tests, notched tensile specimens have been tested. The upper shelf energy of the weld material remains almost un-affected by irradiation, whereas a decrease of 20% is detected for the base metal. Accordingly, the tensile properties of the weld material do not reveal a clear irradiation effect on the yield and ultimate stresses, this in contrast to the base material flow properties. The tensile tests have been analyzed in terms of micromechanical models. A good correlation is found between the standard tests and the micromechanical models, that are able to predict the ductile damage evolution in these materials. Additional information on the ductility behavior of these materials is revealed by this micromechanical analysis

  17. SiCO-doped carbon fibers with unique dual superhydrophilicity/superoleophilicity and ductile and capacitance properties.

    Science.gov (United States)

    Lu, Ping; Huang, Qing; Mukherjee, Amiya; Hsieh, You-Lo

    2010-12-01

    Silicon oxycarbide (SiCO) glass-doped carbon fibers with an average diameter of 163 nm were successfully synthesized by electrospinning polymer mixtures of preceramic precursor polyureasilazane (PUS) and carbon precursor polyacrylonitrile (PAN) into fibers then converting to ceramic/carbon hybrid via cross-linking, stabilization, and pyrolysis at temperatures up to 1000 °C. The transformation of PUS/PAN polymer precursors to SiCO/carbon structures was confirmed by EDS and FTIR. Both carbon and SiCO/carbon fibers were amorphous and slightly oxidized. Doping with SiCO enhanced the thermal stability of carbon fibers and acquired new ductile behavior in the SiCO/carbon fibers with significantly improved flexibility and breaking elongation. Furthermore, the SiCO/carbon fibers exhibited dual superhydrophilicity and superoleophilicity with water and decane absorbing capacities of 873 and 608%, respectively. The cyclic voltammetry also showed that SiCO/carbon composite fibers possess better capacitor properties than carbon fibers.

  18. EVALUATION OF MACHINABILITY OF DUCTILE IRONS ALLOYED WITH Ni AND Cu IN TERMS OF CUTTING FORCES AND SURFACE QUALITY

    Directory of Open Access Journals (Sweden)

    Yücel AŞKUN

    2003-02-01

    Full Text Available Due to the enhanced strength, ductility and thoughness of Ductile Iron (DI when compared to the other types cast iron, its machinability is relatively poor. When a steel part is replaced with ductile iron, however, better machinability is considered to be the most important gain. This study presents the results of machining tests of ductile irons alloyed with Ni and Cu at various contents to determine the effect of their microstructure and mechanical properties on cutting forces and surface roughness. Six different specimen groups of ductile iron alloyed with various amounts of nickel and copper were subjected to machining tests and their machinabilities were investigated based on cutting forces and surface roughness criteria. The results were evaluated according to microstructure and mechanical properties of specimens determined before. In terms of both criterion, the best result obtained was specimen added 0.7 % Ni and 0.7 % Cu. When the specimens were evaluated according to their mechanical properties, the specimens alloyed 1 % Ni and 0.65 % Cu seemed promising.

  19. Novel alpha-zirconium phosphonates for the reinforcement of ductile thermoplastics

    Science.gov (United States)

    Furman, Benjamin R.

    2007-12-01

    Ductile thermoplastics are useful additives for providing fracture toughness to brittle thermosetting polymers; however, this toughening is usually accompanied by a significant decrease in elastic modulus. Therefore, alpha-zirconium phosphonates (ZrP) were developed and investigated as reinforcing nano-scale fillers that increase the yield strength and elastic modulus of a polyester thermoplastic without causing a reduction in its ductility. ZrP materials are synthetic layered compounds that are imbued with targeted organic surface functionalities and whose structural development can be carefully controlled in the laboratory. Ether-terminal alkyl ZrP materials were designed and synthesized, using a conventional ZrF62--mediated preparation, with the intent of developing strong dipole-dipole interactions between the layer surfaces and polyester macromolecules. Additionally, a general method for using lamellar lyotropic liquid crystals (LLC's) as supramolecular templates for alkyl ZrP was evaluated, whose products showed promising similarity to the conventionally prepared materials. The LLC-forming characteristics of several organophosphonate preparations were determined, showing improved mesophase stability with mixed amphiphiles and preparation with R4N + counterions. A mixed-surface octyl/methoxyundecyl ZrP was produced and combined with polycaprolactone (PCL) and polymethylmethacrylate (PMMA) in concentrations up to 50% (w/w). The mechanical properties of the ZrP/PCL nanocomposite were evaluated by tensile, flexural, and dynamic mechanical testing methods. Nanocomposites containing 5% (w/w) ZrP showed significant increases in tensile yield stress and elastic modulus without suffering any loss of ductility versus the unfilled polymer. Layer delamination from the ZrP tactoids was minimal and did not occur through an intercalative mechanism. Higher ZrP loadings resulted in the agglomeration of tactoids, leading to defect structures and loss of strength and ductility

  20. CF3DODA-Me induces apoptosis, degrades Sp1, and blocks the transformation phase of the blebbishield emergency program.

    Science.gov (United States)

    Taoka, Rikiya; Jinesh, Goodwin G; Xue, Wenrui; Safe, Stephen; Kamat, Ashish M

    2017-05-01

    Cancer stem cells are capable of undergoing cellular transformation after commencement of apoptosis through the blebbishield emergency program in a VEGF-VEGFR2-dependent manner. Development of therapeutics targeting the blebbishield emergency program would thus be important in cancer therapy. Specificity protein 1 (Sp1) orchestrates the transcription of both VEGF and VEGFR2; hence, Sp1 could act as a therapeutic target. Here, we demonstrate that CF 3 DODA-Me induced apoptosis, degraded Sp1, inhibited the expression of multiple drivers of the blebbishield emergency program such as VEGFR2, p70S6K, and N-Myc through activation of caspase-3, inhibited reactive oxygen species; and inhibited K-Ras activation to abolish transformation from blebbishields as well as transformation in soft agar. These findings confirm CF 3 DODA-Me as a potential therapeutic candidate that can induce apoptosis and block transformation from blebbishields.