WorldWideScience

Sample records for transformation fromsolid silver

  1. Shape transformation of silver nanospheres to silver nanoplates induced by redox reaction of hydrogen peroxide

    Energy Technology Data Exchange (ETDEWEB)

    Parnklang, Tewarak; Lamlua, Banjongsak; Gatemala, Harnchana; Thammacharoen, Chuchaat [Department of Chemistry, Faculty of Science, Chulalongkorn University, 254 Phyathai Road, Patumwan, Bangkok 10330 (Thailand); Kuimalee, Surasak [Industrial Chemistry and Textile Technology Programme, Faculty of Science, Maejo University, Chiang Mai 50290 (Thailand); Lohwongwatana, Boonrat [Metallurgical Engineering Department, Faculty of Engineering, Chulalongkorn University, 254 Phyathai Road, Patumwan, Bangkok 10330 (Thailand); Ekgasit, Sanong, E-mail: sanong.e@chula.ac.th [Department of Chemistry, Faculty of Science, Chulalongkorn University, 254 Phyathai Road, Patumwan, Bangkok 10330 (Thailand)

    2015-03-01

    In this paper we demonstrate a simple and rapid shape transformation of silver nanospheres (AgNSs) to silver nanoplates (AgNPls) using the oxidation and reduction capabilities of hydrogen peroxide. AgNPls having tunable surface plasmon resonance across the visible region with average size of 40–100 nm and thickness of 10–15 nm can be fabricated within 2 min simply by adding H{sub 2}O{sub 2} into a colloid of AgNSs with average particle size of 7 nm. The efficiency of H{sub 2}O{sub 2} as a shape-transforming agent depends strongly on its concentration, pH of the AgNS colloid, and the employed stabilizers. H{sub 2}O{sub 2} oxidizes AgNSs to silver ions while concertedly reduces silver ions to silver atom necessary for the growth of AgNPls. The shape transformation reaction was conducted at a relatively low concentration of H{sub 2}O{sub 2} in order to minimize the oxidative dissolution while facilitating kinetically controlled growth of AgNPls under a near neutral pH. Polyvinyl-pyrrolidone is an effective steric stabilizer preventing aggregation while assisting the growth of AgNPls. Trisodium citrate inhibits the formation of AgNPls under the H{sub 2}O{sub 2} reduction as it forms a stable complex with silver ions capable of withstanding the weakly reducing power of H{sub 2}O{sub 2}. After a complete consumption of AgNSs, large nanoplates grows with an expense of smaller nanoplates. The growth continues until H{sub 2}O{sub 2} is exhausted. A high concentration H{sub 2}O{sub 2} promotes catalytic decomposition of H{sub 2}O{sub 2} on the surface of AgNSs and oxidative dissolution of AgNSs without a formation of AgNPls. - Graphical abstract: Proposed mechanism for the shape transformation of AgNSs to AgNPls induced by the oxidation/reduction of H{sub 2}O{sub 2}. - Highlights: • Rapid shape transformation of silver nanospheres to nanoplates by H{sub 2}O{sub 2}. • Structural change completes in 2 min with a yellow-to-blue color change. • Selective fabrication of

  2. Observation of Coalescence Process of Silver Nanospheres During Shape Transformation to Nanoprisms

    Directory of Open Access Journals (Sweden)

    Yu Pyng

    2011-01-01

    Full Text Available Abstract In this report, we observed the growth mechanism and the shape transformation from spherical nanoparticles (diameter ~6 nm to triangular nanoprisms (bisector length ~100 nm. We used a simple direct chemical reduction method and provided evidences for the growth of silver nanoprisms via a coalescence process. Unlike previous reports, our method does not rely upon light, heat, or strong oxidant for the shape transformation. This transformation could be launched by fine-tuning the pH value of the silver colloidal solution. Based on our extensive examination using transmission electron microscopy, we propose a non-point initiated growth mechanism, which is a combination of coalescence and dissolution–recrystallization process during the growth of silver nanoprisms.

  3. Martensitic transformation and shape memory effect in NiTi alloy covered by chitosan/silver layer

    Directory of Open Access Journals (Sweden)

    Goryczka Tomasz

    2015-01-01

    Full Text Available The NiTi shape memory alloy was covered with chitosan/silver layer. Coatings were deposited at room temperature using combination of processing parameters such as deposition voltage and amount of silver in colloidal suspension. Structure of layers was studied by means of X-ray diffraction. Quality of the coatings was evaluated basing on observations done in scanning electron microscopy. Transformation behaviour of coated samples was studied with use of differential scanning calorimeter. The covered sample revealed presence of the reversible martensitic transformation and ability to deformation (in bending mode up to 8%. Forward martensitic transformation, in as-received NiTi alloy and in alloy after layer deposition occurred in two steps B2-R-B19’. After deformation quality of the chitosan/silver layer remained unchanged.

  4. Timescale of silver nanoparticle transformation in neural cell cultures impacts measured cell response

    International Nuclear Information System (INIS)

    Hume, Stephanie L.; Chiaramonti, Ann N.; Rice, Katherine P.; Schwindt, Rani K.; MacCuspie, Robert I.; Jeerage, Kavita M.

    2015-01-01

    Both serum protein concentration and ionic strength are important factors in nanoparticle transformation within cell culture environments. However, silver nanoparticles are not routinely tracked at their working concentration in the specific medium used for in vitro toxicology studies. Here we evaluated the transformation of electrostatically stabilized citrate nanoparticles (C-AgNPs) and sterically stabilized polyvinylpyrrolidone nanoparticles (PVP-AgNPs) in a low-serum (∼ 0.2 mg/mL bovine serum albumin) culture medium, while measuring the response of rat cortex neural progenitor cells, which differentiate in this culture environment. After 24 h, silver nanoparticles at concentrations up to 10 µg/mL did not affect adenosine triphosphate levels, whereas silver ions decreased adenosine triphosphate levels at concentrations of 1.1 µg/mL or higher. After 240 h, both silver nanoparticles, as well as silver ion, unambiguously decreased adenosine triphosphate levels at concentrations of 1 and 1.1 µg/mL, respectively, suggesting particle dissolution. Particle transformation was investigated in 1:10 diluted, 1:2 diluted, or undiluted differentiation medium, all having an identical protein concentration, to separate the effect of serum protein stabilization from ionic strength destabilization. Transmission electron microscopy images indicated that particles in 1:10 medium were not surrounded by proteins, whereas particles became clustered within a non-crystalline protein matrix after 24 h in 1:2 medium and at 0 h in undiluted medium. Despite evidence for a protein corona, particles were rapidly destabilized by high ionic strength media. Polyvinylpyrrolidone increased the stability of singly dispersed particles compared to citrate ligands; however, differences were negligible after 4 h in 1:2 medium or after 1 h in undiluted medium. Thus low-serum culture environments do not provide sufficient colloidal stability for long-term toxicology studies with citrate

  5. Timescale of silver nanoparticle transformation in neural cell cultures impacts measured cell response

    Energy Technology Data Exchange (ETDEWEB)

    Hume, Stephanie L.; Chiaramonti, Ann N.; Rice, Katherine P.; Schwindt, Rani K. [National Institute of Standards and Technology (NIST), Applied Chemicals and Materials Division (United States); MacCuspie, Robert I. [National Institute of Standards and Technology (NIST), Materials Measurement Science Division (United States); Jeerage, Kavita M., E-mail: jeerage@boulder.nist.gov [National Institute of Standards and Technology (NIST), Applied Chemicals and Materials Division (United States)

    2015-07-15

    Both serum protein concentration and ionic strength are important factors in nanoparticle transformation within cell culture environments. However, silver nanoparticles are not routinely tracked at their working concentration in the specific medium used for in vitro toxicology studies. Here we evaluated the transformation of electrostatically stabilized citrate nanoparticles (C-AgNPs) and sterically stabilized polyvinylpyrrolidone nanoparticles (PVP-AgNPs) in a low-serum (∼ 0.2 mg/mL bovine serum albumin) culture medium, while measuring the response of rat cortex neural progenitor cells, which differentiate in this culture environment. After 24 h, silver nanoparticles at concentrations up to 10 µg/mL did not affect adenosine triphosphate levels, whereas silver ions decreased adenosine triphosphate levels at concentrations of 1.1 µg/mL or higher. After 240 h, both silver nanoparticles, as well as silver ion, unambiguously decreased adenosine triphosphate levels at concentrations of 1 and 1.1 µg/mL, respectively, suggesting particle dissolution. Particle transformation was investigated in 1:10 diluted, 1:2 diluted, or undiluted differentiation medium, all having an identical protein concentration, to separate the effect of serum protein stabilization from ionic strength destabilization. Transmission electron microscopy images indicated that particles in 1:10 medium were not surrounded by proteins, whereas particles became clustered within a non-crystalline protein matrix after 24 h in 1:2 medium and at 0 h in undiluted medium. Despite evidence for a protein corona, particles were rapidly destabilized by high ionic strength media. Polyvinylpyrrolidone increased the stability of singly dispersed particles compared to citrate ligands; however, differences were negligible after 4 h in 1:2 medium or after 1 h in undiluted medium. Thus low-serum culture environments do not provide sufficient colloidal stability for long-term toxicology studies with citrate

  6. UV-induced photochemical transformations of citrate-capped silver nanoparticle suspensions

    International Nuclear Information System (INIS)

    Gorham, Justin M.; MacCuspie, Robert I.; Klein, Kate L.; Fairbrother, D. Howard; Holbrook, R. David

    2012-01-01

    Due to the increasing use of silver nanoparticles (AgNPs) in consumer products, it is essential to understand how variables, such as light exposure, may change the physical and chemical characteristics of AgNP suspensions. To this end, the effect of 300 nm ultraviolet (UV) light on (20, 40, 60 and 80) nm citrate-capped AgNP suspensions has been investigated. As a consequence of irradiation, the initial yellow hue of the AgNP suspensions is transformed towards a near colorless solution due to the loss of the surface plasmon resonance (SPR) absorbance. The decrease in SPR absorbance followed a first-order decay process for all particle sizes with a rate constant that increased linearly with the AgNP specific surface area and non-linearly with light intensity. The rate of loss of the SPR absorbance decreased with increasing citrate concentration, suggesting a surface-mediated transformation. Absorbance, atomic force microscopy, and dynamic light scattering results all indicated that AgNP photolysis was accompanied by a diameter decrease and occasional aggregation. Furthermore, in situ transmission electron microscopy imaging using a specialized liquid cell also showed a decrease in the particle size and the formation of a core–shell structure in UV-exposed AgNPs. X-ray photoelectron spectroscopy analysis suggested that this shell consisted of oxidized silver. The SPR in UV-exposed AgNP suspensions could be regenerated by addition of a strong reducing agent (NaBH 4 ), supporting the idea that oxidized silver is present after photolysis. Evidence for UV-enhanced dissolution and the production of silver ions was obtained with the Donnan membrane technique. This study reveals that the physico-chemical properties of aqueous AgNP suspensions will change significantly upon exposure to UV light, with implications for environmental health and safety risk assessments.

  7. Ion induced transformation of polymer films into diamond-like carbon incorporating silver nano particles

    International Nuclear Information System (INIS)

    Schwarz, Florian P.

    2010-01-01

    Silver containing diamond-like carbon (DLC) is an interesting material for medical engineering from several points of view. On the one hand DLC provides high mechanical robustness. It can be used as biocompatible and wear resistant coating for joint replacing implants. On the other hand silver has antimicrobial properties, which could reduce post-operative inflammations. However conventional production of Ag-DLC by co-deposition of silver and carbon in a plasma process is problematic since it does not allow for a separate control of nano particle morphology and matrix properties. In this work an alternative production method has been developed to circumvent this problem. In metall-DLC-production by ion implantation into a nano composite, silver nano particles are initially formed in solution and then incorporated within a polymer matrix. Finally the polymer is transformed into DLC by ion implantation. The aspects and single steps of this method were investigated with regard to the resulting material's properties. The goal was to design an economically relevant deposition method. Based on experimental results a model of the transformation process has been established, which has also been implemented in a computer simulation. Finally the antibacterial properties of the material have been checked in a biomedical test. Here a bacterial killing rate of 90% could be achieved. (orig.)

  8. The kinetics of formation and transformation of silver atoms on solid surfaces subjected to ionizing irradiation

    International Nuclear Information System (INIS)

    Popovich, G.M.

    1988-01-01

    The paper discusses the results obtained in ESR-assisted studies of the kinetics of formation and transformation of silver atoms generated by γ-irradiation of silver-containing carriers. Three types of dependences have been established: (1) extreme; (2) saturation curves and (3) step-like. All the kinetic curves display, after a definite period of time, stable concentrations of adsorbed silver atoms per unit of the surface at a given temperature. Depending on the temperature of the experiment, the composition and nature of the carrier, the number of adsorbed silver ions, the irradiation dose and conditions of the experiment, a stable concentration of silver atoms at a given temperature may be equal to, higher or lower than the number of silver atoms measured immediately after γ-irradiation at a temperature of liquid nitrogen. A kinetic scheme is proposed to explain the obtained curves. The model suggests that the silver atoms adsorbed on the surface, as well as those formed after γ-irradiation, are bonded to the surface by various energies, which are related to heterogeneity of the carrier surface. (author)

  9. Chloride-induced shape transformation of silver nanoparticles in a water environment

    International Nuclear Information System (INIS)

    Zhang, Lan; Li, Xin; He, Rong; Wu, Lijun; Zhang, Liyun; Zeng, Jie

    2015-01-01

    The effects of chloride on dissolution and toxicity of silver nanoparticles (AgNPs) have been well studied. However, their intermediate shapes during the transition have not been illustrated to-date. Herein, the chloride-induced shape transformation process of AgNPs under long-term, low-concentration conditions is explored. A unique triangular Ag–AgCl heterostructure is observed. The structure then evolves into a symmetric hexapod and finally into a smaller AgNP. This transformation process could be affected by other environmental conditions, such as 0.4 mg/mL humic acid, 5% surfactants and 1 mg/mL bovine serum albumin protein. Our results offer new knowledge regarding the shape transformation process of AgNPs in the presence of chloride, which can be valuable in relevant studies concerning the effect of water chemistry on the behavior of AgNPs. - Highlights: • Several significant intermediate structures have been firstly observed during AgNPs shape transformation process. • These findings of intermediate shapes offer the new knowledge on understanding the environmental fate of AgNPs. • The effects of other environmental factors on shape transformation have been well explored. - Significant intermediate structures are discovered during the AgNPs environmental process, enriching the knowledge of understanding the environmental fate of AgNPs

  10. In situ synthesis of silver benzene-dithiolate hybrid films

    Energy Technology Data Exchange (ETDEWEB)

    Brenier, Roger, E-mail: roger.brenier@univ-lyon1.fr [Institut Lumière Matière, UMR 5306, Université Lyon 1-CNRS, Université de Lyon, Domaine Scientifique de La Doua, Batiment Kastler, 10 rue Ada Byron, 69622 Villeurbanne, Cedex (France); Piednoir, Agnès, E-mail: agnes.piednoir@univ-lyon1.fr [Institut Lumière Matière, UMR 5306, Université Lyon 1-CNRS, Université de Lyon, Domaine Scientifique de La Doua, Batiment Kastler, 10 rue Ada Byron, 69622 Villeurbanne, Cedex (France); Bertorelle, Franck, E-mail: franck.bertorelle@univ-lyon1.fr [Institut Lumière Matière, UMR 5306, Université Lyon 1-CNRS, Université de Lyon, Domaine Scientifique de La Doua, Batiment Kastler, 10 rue Ada Byron, 69622 Villeurbanne, Cedex (France); Penuelas, José, E-mail: jose.penuelas@ec-lyon.fr [Université de Lyon, Institut des Nanotechnologies de Lyon, Ecole Centrale de Lyon, CNRS, UMR 5270, 36 rue Guy de Collongues, F69134 Ecully (France); Grenet, Geneviève, E-mail: genevieve.grenet@ec-lyon.fr [Université de Lyon, Institut des Nanotechnologies de Lyon, Ecole Centrale de Lyon, CNRS, UMR 5270, 36 rue Guy de Collongues, F69134 Ecully (France)

    2016-02-01

    In this article, a method for in situ synthesis of silver benzene-dithiolate hybrid films is presented. Silver nanoparticles, generated on ZrO{sub 2} films, are transformed into silver benzene 1,4-dithiolate or, partially, into silver benzene 1,2-dithiolate after sample immersion in the corresponding thiol solutions. These transformations occur at room temperature owing to the catalytic action of ZrO{sub 2}. It is also shown that TiO{sub 2} in place of ZrO{sub 2} is very efficient, both for the catalytic generation of silver nanoparticles and for their further transformation in benzene 1,4-dithiolate compound. This latter semiconductor has an optical bandgap of about 3 eV and the film is made of touching nanoparticles in an amorphous state. Our work has potential applications in the electronic and photovoltaic fields. - Highlights: • A method for in situ synthesis of silver benzene-dithiolate hybrid semiconductor films is presented. • Silver nanoparticles are, first, generated on ZrO{sub 2} or on TiO{sub 2} coated silica substrates. • The samples are immersed in benzene dithiol solution for two days at room temperature. • During the immersion, the silver nanoparticles are transformed into silver benzene dithiolate. • The silver benzene dithiolate film is made of amorphous nanoparticles with a banbgap of 3 eV.

  11. Silver niobates

    International Nuclear Information System (INIS)

    Tanirbergenov, B.; Rozhenko, S.P.

    1979-01-01

    By means of determination of residual concentrations and pH measurements investigated are the AgNO 3 -KNbO 3 -H 2 O, AgNO 3 -K 3 NbO 4 -H 2 O, AgNO 3 -K 8 Nb 16 O 19 -H 2 O systems and established is formation of meta-, ortho-and hexaniobates of silver. AgNbO 3 x H 2 O, Ag 8 Nb 6 O 19 x 6H 2 O and Ag 3 NbO 3 x 2.5H 2 O are separated from aqueous solution. Using the methods of differential-thermal, thermogravimetric and X-ray-phase analyses it is shown that silver metaniobate transforms into the crystal state at 530 deg C. Ortho- and hexaniobate of silver decompose at 500 deg C with formation of silver metaniobate and metal silver

  12. Atomic and electronic structure transformations of silver nanoparticles under rapid cooling conditions.

    Science.gov (United States)

    Lobato, I; Rojas, J; Landauro, C V; Torres, J

    2009-02-04

    The structural evolution and dynamics of silver nanodrops Ag(2869) (4.4 nm in diameter) under rapid cooling conditions have been studied by means of molecular dynamics simulations and electronic density of state calculations. The interaction of silver atoms is modelled by a tight-binding semiempirical interatomic potential proposed by Cleri and Rosato. The pair correlation functions and the pair analysis technique are used to reveal the structural transition in the process of solidification. It is shown that Ag nanoparticles evolve into different nanostructures under different cooling processes. At a cooling rate of 1.5625 × 10(13) K s(-1) the nanoparticles preserve an amorphous-like structure containing a large amount of 1551 and 1541 pairs which correspond to icosahedral symmetry. For a lower cooling rate (1.5625 × 10(12) K s(-1)), the nanoparticles transform into a crystal-like structure consisting mainly of 1421 and 1422 pairs which correspond to the face centred cubic and hexagonal close packed structures, respectively. The variations of the electronic density of states for the differently cooled nanoparticles are small, but in correspondence with the structural changes.

  13. Water chemistry controlled aggregation and photo-transformation of silver nanoparticles in environmental waters.

    Science.gov (United States)

    Yin, Yongguang; Yang, Xiaoya; Zhou, Xiaoxia; Wang, Weidong; Yu, Sujuan; Liu, Jingfu; Jiang, Guibin

    2015-08-01

    The inevitable release of engineered silver nanoparticles (AgNPs) into aquatic environments has drawn great concerns about its environmental toxicity and safety. Although aggregation and transformation play crucial roles in the transport and toxicity of AgNPs, how the water chemistry of environmental waters influences the aggregation and transformation of engineered AgNPs is still not well understood. In this study, the aggregation of polyvinylpyrrolidone (PVP) coated AgNPs was investigated in eight typical environmental water samples (with different ionic strengths, hardness, and dissolved organic matter (DOM) concentrations) by using UV-visible spectroscopy and dynamic light scattering. Raman spectroscopy was applied to probe the interaction of DOM with the surface of AgNPs. Further, the photo-transformation and morphology changes of AgNPs in environmental waters were studied by UV-visible spectroscopy, inductively coupled plasma mass spectrometry, and transmission electron microscopy. The results suggested that both electrolytes (especially Ca(2+) and Mg(2+)) and DOM in the surface waters are key parameters for AgNP aggregation, and sunlight could accelerate the morphology change, aggregation, and further sedimentation of AgNPs. This water chemistry controlled aggregation and photo-transformation should have significant environmental impacts on the transport and toxicity of AgNPs in the aquatic environments. Copyright © 2015. Published by Elsevier B.V.

  14. Thermal decomposition process of silver behenate

    International Nuclear Information System (INIS)

    Liu Xianhao; Lu Shuxia; Zhang Jingchang; Cao Weiliang

    2006-01-01

    The thermal decomposition processes of silver behenate have been studied by infrared spectroscopy (IR), X-ray diffraction (XRD), combined thermogravimetry-differential thermal analysis-mass spectrometry (TG-DTA-MS), transmission electron microscopy (TEM) and UV-vis spectroscopy. The TG-DTA and the higher temperature IR and XRD measurements indicated that complicated structural changes took place while heating silver behenate, but there were two distinct thermal transitions. During the first transition at 138 deg. C, the alkyl chains of silver behenate were transformed from an ordered into a disordered state. During the second transition at about 231 deg. C, a structural change took place for silver behenate, which was the decomposition of silver behenate. The major products of the thermal decomposition of silver behenate were metallic silver and behenic acid. Upon heating up to 500 deg. C, the final product of the thermal decomposition was metallic silver. The combined TG-MS analysis showed that the gas products of the thermal decomposition of silver behenate were carbon dioxide, water, hydrogen, acetylene and some small molecule alkenes. TEM and UV-vis spectroscopy were used to investigate the process of the formation and growth of metallic silver nanoparticles

  15. Effets of Silver Salt Concentrations on Green Synthesis of Silver Nanoparticles Using the Plant Nigella Saliva

    Directory of Open Access Journals (Sweden)

    M.R. Saeri

    2016-03-01

    Full Text Available Bio-inspired silver nanoparticles were synthesized with the aid of a novel method, using leaves of the plant Nigella sativa. After drying the leaves in air, they were first sweltered in boiling distilled water and the liquid was filtered subsequently. The result was the brothused to reduce solutions including various concentrations of silver nitrate in a proper amount of pH. The displayed UV–visible spectra identified formation of silver nanoparticles whenever the colorless initial acclimated mixture turned brown. The centrifuged powder samples were examined using X-ray diffraction (XRD, Fourier transform infrared spectroscopy (FTIR, scanning electron microscopy (FESEM and energy dispersive X-ray diffraction analysis (EDX methods. The results clearly revealed that the final particles of precipitated powder are high purity agglomerates of silver nanoparticles. Besides, the effects of various amounts of the silver salt on particle size of nano silver were studied, using a particle size analyzer. FTIR results also indicated the role of different functional groups in the synthetic process.

  16. Biosynthesis of silver nanoparticles and its antibacterial activity ...

    African Journals Online (AJOL)

    In the present research work, biosynthesis of silver nanoparticles and its activity on bacterial pathogens were investigated. Silver nanoparticles were rapidly synthesized using Urospora sp. and the formation of nanoparticles was observed within 30 min. The results recorded from UV–vis spectrum, Fourier Transform Infrared ...

  17. Transformation of Silver Nanoparticles in Sewage Sludge during Incineration.

    Science.gov (United States)

    Meier, Christoph; Voegelin, Andreas; Pradas del Real, Ana; Sarret, Geraldine; Mueller, Christoph R; Kaegi, Ralf

    2016-04-05

    Silver nanoparticles (Ag-NP) discharged into the municipal sewer system largely accumulate in the sewage sludge. Incineration and agricultural use are currently the most important strategies for sewage sludge management. Thus, the behavior of Ag-NP during sewage sludge incineration is essential for a comprehensive life cycle analysis and a more complete understanding of the fate of Ag-NP in the (urban) environment. To address the transformation of Ag-NP during sewage sludge incineration, we spiked metallic Ag(0)-NP to a pilot wastewater treatment plant and digested the sludge anaerobically. The sludge was then incinerated on a bench-scale fluidized bed reactor in a series of experiments under variable conditions. Complementary results from X-ray absorption spectroscopy (XAS) and electron microscopy-energy dispersive X-ray (EM-EDX) analysis revealed that Ag(0)-NP transformed into Ag2S-NP during the wastewater treatment, in agreement with previous studies. On the basis of a principal component analysis and subsequent target testing of the XAS spectra, Ag(0) was identified as a major Ag component in the ashes, and Ag2S was clearly absent. The reformation of Ag(0)-NP was confirmed by EM-EDX. The fraction of Ag(0) of the total Ag in the ashes was quantified by linear combination fitting (LCF) of XAS spectra, and values as high as 0.8 were found for sewage sludge incinerated at 800 °C in a synthetic flue gas atmosphere. Low LCF totals (72% to 94%) indicated that at least one relevant reference spectrum was missing in the LCF analysis. The presence of spherical Ag-NP with a diameter of incineration, as demonstrated in this study, needs to be considered in the life cycle assessment of engineered Ag-NP.

  18. Antimicrobial active silver nanoparticles and silver/polystyrene core-shell nanoparticles prepared in room-temperature ionic liquid

    International Nuclear Information System (INIS)

    An Jing; Wang Desong; Luo Qingzhi; Yuan Xiaoyan

    2009-01-01

    Uniform silver nanoparticles and silver/polystyrene core-shell nanoparticles were successfully synthesized in a room temperature ionic liquid, 1-n-butyl-3-methylimidazolium tetrafluoroborate ([BMIM].BF 4 ). [BMIM].BF 4 plays a protective role to prevent the nanoparticles from aggregation during the preparation process. Transmission electron micrographs confirm that both silver nanoparticles and core-shell nanoparticles are regular spheres with the sizes in the range of 5-15 nm and 15-25 nm, respectively. The X-ray diffraction analysis reveals the face-centered cubic geometry of silver nanoparticles. The as-prepared nanoparticles were also characterized by Fourier transform infrared spectroscopy, Raman spectroscopy, UV-vis diffuse reflectance spectroscopy and X-ray photoelectron spectroscopy. In addition, antimicrobial activities against E. coli and S. aureus were studied and the results show that both silver nanoparticles and core-shell nanoparticles possess excellent antimicrobial activities. The antimicrobial mechanism of the as-prepared nanoparticles was discussed.

  19. Ion induced transformation of polymer films into diamond-like carbon incorporating silver nano particles; Ioneninduzierte Umwandlung von Polymerschichten zu diamantaehnlichem Kohlenstoff mit darin enthaltenen Silber-Nanopartikeln

    Energy Technology Data Exchange (ETDEWEB)

    Schwarz, Florian P.

    2010-03-26

    Silver containing diamond-like carbon (DLC) is an interesting material for medical engineering from several points of view. On the one hand DLC provides high mechanical robustness. It can be used as biocompatible and wear resistant coating for joint replacing implants. On the other hand silver has antimicrobial properties, which could reduce post-operative inflammations. However conventional production of Ag-DLC by co-deposition of silver and carbon in a plasma process is problematic since it does not allow for a separate control of nano particle morphology and matrix properties. In this work an alternative production method has been developed to circumvent this problem. In metall-DLC-production by ion implantation into a nano composite, silver nano particles are initially formed in solution and then incorporated within a polymer matrix. Finally the polymer is transformed into DLC by ion implantation. The aspects and single steps of this method were investigated with regard to the resulting material's properties. The goal was to design an economically relevant deposition method. Based on experimental results a model of the transformation process has been established, which has also been implemented in a computer simulation. Finally the antibacterial properties of the material have been checked in a biomedical test. Here a bacterial killing rate of 90% could be achieved. (orig.)

  20. Photochemical transformation of silver nanoparticles by combining blue and green irradiation

    Energy Technology Data Exchange (ETDEWEB)

    Cardoso-Avila, P. E.; Pichardo-Molina, J. L., E-mail: jpichardo@cio.mx [Centro de Investigaciones en Optica A.C (Mexico); Krishna, C. Murali [Advanced Center for Treatment, Research and Education in Cancer (ACTREC), Tata Memorial Center (TMC) (India); Castro-Beltran, R. [Centro de Investigaciones en Optica A.C (Mexico)

    2015-03-15

    Spherical silver nanoparticles (diameter 3 nm) were transformed by means of photochemical synthesis using superluminescent LEDs. Flat rounded (21 nm) and decahedral nanoparticles (78 nm) were, respectively, obtained when the colloid was exposed to green and blue radiation. Furthermore, by changing from blue to green radiation at different exposure times, various morphologies and sizes were obtained. Exposure times shorter than 30 min of blue radiation followed by green radiation resulted on different morphologies such as twine rounded (42 nm), flat elongated (peanuts, 17 nm), and flat rounded nanoparticles (11 and 24 nm). Times longer than 45 min produced decahedral nanoparticles with corners ranging from rounded to sharp (size 71–78 nm). Additionally, these results showed that by controlling morphologies and sizes through the combination of blue and green light at different exposure times, it was possible to tune the plasmon band from 511 to 594 nm. Moreover, controlling the morphology of nanoparticles is of prime importance in order to exploit their properties as part of novel emerging technologies.

  1. Synthesis and characterization of silver-polypyrrole film composite

    Energy Technology Data Exchange (ETDEWEB)

    Ayad, Mohamad M., E-mail: mayad12000@yahoo.com [Department of Chemistry, Faculty of Science, University of Tanta, Tanta (Egypt); Zaki, Eman [Department of Chemistry, Faculty of Science, University of Tanta, Tanta (Egypt)

    2009-11-15

    In this work, we report the chemical polymerization of pyrrole to obtain thin film of polypyrrole (PPy) hydrochloride deposited onto the electrode of the quartz crystal microbalance (QCM). The film in the base form was exposed to a solution of AgNO{sub 3}. Electroless reduction for silver ions by the PPy film took place and silver particles were adsorbed onto the film surface. The silver particles content at the PPy films were analyzed by QCM and the results showed that the concentrations of silver uptakes increase as the original AgNO{sub 3} solution increases. The morphology of the surface of the PPy film and the silver-PPy film composite were studied by the scanning electron microscopy (SEM) coupled with energy dispersive X-ray spectrometry (EDX). They showed that the obtained silver particles have spherical, cubic and tetrahedral structures. X-ray diffraction (XRD) and Fourier transformed infra-red spectroscopy (FTIR) were used to characterize the structure of the powder composite. This work reveals the capability of PPy film coating on QCM in sensing and removing silver from several environmental samples.

  2. Synthesis and characterization of silver-polypyrrole film composite

    International Nuclear Information System (INIS)

    Ayad, Mohamad M.; Zaki, Eman

    2009-01-01

    In this work, we report the chemical polymerization of pyrrole to obtain thin film of polypyrrole (PPy) hydrochloride deposited onto the electrode of the quartz crystal microbalance (QCM). The film in the base form was exposed to a solution of AgNO 3 . Electroless reduction for silver ions by the PPy film took place and silver particles were adsorbed onto the film surface. The silver particles content at the PPy films were analyzed by QCM and the results showed that the concentrations of silver uptakes increase as the original AgNO 3 solution increases. The morphology of the surface of the PPy film and the silver-PPy film composite were studied by the scanning electron microscopy (SEM) coupled with energy dispersive X-ray spectrometry (EDX). They showed that the obtained silver particles have spherical, cubic and tetrahedral structures. X-ray diffraction (XRD) and Fourier transformed infra-red spectroscopy (FTIR) were used to characterize the structure of the powder composite. This work reveals the capability of PPy film coating on QCM in sensing and removing silver from several environmental samples.

  3. Synthesis and characterization of silver-polypyrrole film composite

    Science.gov (United States)

    Ayad, Mohamad. M.; Zaki, Eman

    2009-11-01

    In this work, we report the chemical polymerization of pyrrole to obtain thin film of polypyrrole (PPy) hydrochloride deposited onto the electrode of the quartz crystal microbalance (QCM). The film in the base form was exposed to a solution of AgNO 3. Electroless reduction for silver ions by the PPy film took place and silver particles were adsorbed onto the film surface. The silver particles content at the PPy films were analyzed by QCM and the results showed that the concentrations of silver uptakes increase as the original AgNO 3 solution increases. The morphology of the surface of the PPy film and the silver-PPy film composite were studied by the scanning electron microscopy (SEM) coupled with energy dispersive X-ray spectrometry (EDX). They showed that the obtained silver particles have spherical, cubic and tetrahedral structures. X-ray diffraction (XRD) and Fourier transformed infra-red spectroscopy (FTIR) were used to characterize the structure of the powder composite. This work reveals the capability of PPy film coating on QCM in sensing and removing silver from several environmental samples.

  4. Silver-induced reconstruction of an adeninate-based metal-organic framework for encapsulation of luminescent adenine-stabilized silver clusters.

    Science.gov (United States)

    Jonckheere, Dries; Coutino-Gonzalez, Eduardo; Baekelant, Wouter; Bueken, Bart; Reinsch, Helge; Stassen, Ivo; Fenwick, Oliver; Richard, Fanny; Samorì, Paolo; Ameloot, Rob; Hofkens, Johan; Roeffaers, Maarten B J; De Vos, Dirk E

    2016-05-21

    Bright luminescent silver-adenine species were successfully stabilized in the pores of the MOF-69A (zinc biphenyldicarboxylate) metal-organic framework, starting from the intrinsically blue luminescent bio-MOF-1 (zinc adeninate 4,4'-biphenyldicarboxylate). Bio-MOF-1 is transformed to the MOF-69A framework by selectively leaching structural adenine linkers from the original framework using silver nitrate solutions in aqueous ethanol. Simultaneously, bright blue-green luminescent silver-adenine clusters are formed inside the pores of the recrystallized MOF-69A matrix in high local concentrations. The structural transition and concurrent changes in optical properties were characterized using a range of structural, physicochemical and spectroscopic techniques (steady-state and time-resolved luminescence, quantum yield determination, fluorescence microscopy). The presented results open new avenues for exploring the use of MOFs containing luminescent silver clusters for solid-state lighting and sensor applications.

  5. Silvering of European eel (Anguilla anguilla L.): seasonal changes of morphological and metabolic parameters

    NARCIS (Netherlands)

    Ginneken, van V.; Durif, C.; Paul Balm, S.; Boot, R.; Verstegen, M.W.A.; Antonissen, E.; Thillart, van den G.

    2007-01-01

    The transformation of yellow eel into silver eel is called `silvering¿, and takes place prior to migration. We found the sedentary yellow phase in spring, the migratory silver phase in autumn, while August was a cross-over month. We used principal component analysis (PCA) to characterise the

  6. Speciation Matters: Bioavailability of Silver and Silver Sulfide Nanoparticles to Alfalfa (Medicago sativa).

    Science.gov (United States)

    Stegemeier, John P; Schwab, Fabienne; Colman, Benjamin P; Webb, Samuel M; Newville, Matthew; Lanzirotti, Antonio; Winkler, Christopher; Wiesner, Mark R; Lowry, Gregory V

    2015-07-21

    Terrestrial crops are directly exposed to silver nanoparticles (Ag-NPs) and their environmentally transformed analog silver sulfide nanoparticles (Ag2S-NPs) when wastewater treatment biosolids are applied as fertilizer to agricultural soils. This leads to a need to understand their bioavailability to plants. In the present study, the mechanisms of uptake and distribution of silver in alfalfa (Medicago sativa) were quantified and visualized upon hydroponic exposure to Ag-NPs, Ag2S-NPs, and AgNO3 at 3 mg total Ag/L. Total silver uptake was measured in dried roots and shoots, and the spatial distribution of elements was investigated using transmission electron microscopy (TEM) and synchrotron-based X-ray imaging techniques. Despite large differences in release of Ag(+) ions from the particles, Ag-NPs, Ag2S-NPs, and Ag(+) became associated with plant roots to a similar degree, and exhibited similarly limited (<1%) amounts of translocation of silver into the shoot system. X-ray fluorescence (XRF) mapping revealed differences in the distribution of Ag into roots for each treatment. Silver nanoparticles mainly accumulated in the (columella) border cells and elongation zone, whereas Ag(+) accumulated more uniformly throughout the root. In contrast, Ag2S-NPs remained largely adhered to the root exterior, and the presence of cytoplasmic nano-SixOy aggregates was observed. Exclusively in roots exposed to particulate silver, NPs smaller than the originally dosed NPs were identified by TEM in the cell walls. The apparent accumulation of Ag in the root apoplast determined by XRF, and the presence of small NPs in root cell walls suggests uptake of partially dissolved NPs and translocation along the apoplast.

  7. Methanol sensing characteristics of conducting polypyrrole-silver nanocomposites

    Science.gov (United States)

    Kabir, L.; Mandal, S. K.

    2012-05-01

    Methanol sensing characteristics of conducting polypyrrole-silver nanocomposites are reported here. The nanocomposites are synthesized by wet chemical technique with different amount of silver loadings (5-15 mol%). The sensitivity of the nanocomposites upon exposure to gas molecules is critically dependent on the silver loadings and the concentration of the exposed gas. This is possibly instigated by the modified metal-polymer interface and the polar nature of the constituent metal and the exposed gas. Interaction of the alcohol gas with the polypyrrole chains in the presence of silver effectively determines the change in resistance and hence the sensitivity of the nanocomposites upon exposure to methanol. The adsorption of methanol molecules within the nanocomposites and the subsequent chemical reactions are studied by Fourier transform infrared (FTIR) spectroscopy.

  8. Studying the morphological features of plasma treated silver and PEGylated silver nanoparticles: antibacterial activity

    Science.gov (United States)

    Waseem, M.; Awan, T.; Yasin, H. M.; Rehman, N. U.

    2018-03-01

    A strategy to treat the silver and PEGylated silver nanoparticles with plasma was being purposed. Oil in water (o/w) microemulsion method was used for the synthesis of Ag nanoparticles (AgNPs). Polyethylene glycol (PEG) having molecular weight 600 was used to coat the surface of AgNPs. Optical emission spectroscopy (OES) was used to characterize the plasma and it is noted that plasma treatment is useful to modify the structural characteristic of silver nanoparticles. The nanoparticles were treated with helium-oxygen mixture plasma, generated in plasma needle at atmospheric pressure. Both AgNPs and PEGylated AgNPs before and after plasma treatment were characterized by x-rays diffraction (XRD), scanning electron microscopy (SEM) and Fourier transform infrared (FTIR) spectroscopy. The crystallite size of silver nanoparticles after the treatment of plasma decreases from 71 nm to 27 nm. The SEM micrographs show that the size of Ag nanoparticles was nearly 118 nm whereas the thickness of the silver needle was around 135 nm. All the characteristics IR bands associated to the silver nanoparticles were detected. The FTIR spectrum also support the accumulation of OH radicals in the plasma treated samples. The samples before and after plasma treatment were screened against Gram positive (Bacillus Subtilis and Staphylococcus Aureus) and Gram negative (Escherichia Coli and Pseudomonas Aeruginosa) bacteria. The promising response was detected when plasma treated PEGylated AgNPs was tested against bacterial strains.

  9. Atomic and electronic structure transformations of silver nanoparticles under rapid cooling conditions

    OpenAIRE

    Lobato, I.; Rojas, J.; Landauro, C. V.; Torres, J.

    2008-01-01

    The structural evolution and dynamics of silver nanodrops Ag${}_{2896}$ (4.4 nm in diameter) during rapid cooling conditions has been studied by means of molecular dynamics simulations and electronic density of state calculations. The interaction of silver atoms is modeled by a tight-binding semiempirical interatomic potential proposed by Cleri and Rosato. The pair correlation functions and the pair analysis technique is applied to reveal the structural transition in the process of solidifica...

  10. Radiation Synthesis of PVA/ Chitosan Membranes Containing Silver Nanoparticles for Biomedical Applications

    International Nuclear Information System (INIS)

    Elbarbary, A.M.; El-Sawy, N.M.

    2015-01-01

    Silver Nanoparticles (AgNPs) were synthesized by γ-rays of polyvinyl alcohol/ chitosan (PVA/ CS) membranes containing silver nitrate (AgNO ) with promising antimicrobial and biomedical applications. The synthesized silver nanoparticles characterized by Ultra Violet spectroscopy (UV), Fourier transform infrared (FT-IR), X-ray diffraction (XRD), and transmission electron microscopy (TEM). UV studies showed a strong peak around λmax at 420 nm. A uniform distribution of silver nanoparticles inside PVA/ CS membranes was achieved by TEM investigation. The prepared silver nanoparticles showed good antimicrobial activity. The membranes containing AgNPs showed non-thrombogenicity effect and slightly haemolytic potential. The prepared membranes containing AgNPs had promising use in biomedical applications.

  11. Laser-fabricated castor oil-capped silver nanoparticles.

    Science.gov (United States)

    Zamiri, Reza; Zakaria, Azmi; Abbastabar, Hossein; Darroudi, Majid; Husin, Mohd Shahril; Mahdi, Mohd Adzir

    2011-01-01

    Silver nanoparticles were fabricated by ablation of a pure silver plate immersed in castor oil. A Nd:YAG-pulsed Q-switch laser with 1064-nm wavelength and 10-Hz frequency was used to ablate the plate for 10 minutes. The sample was characterized by ultraviolet-visible, atomic absorption, Fourier transform-infrared spectroscopies, and transmission electron microscopy. The results of the fabricated sample showed that the nanoparticles in castor oil were about 5-nm in diameter, well dispersed, and showed stability for a long period of time.

  12. Transformation of irregular shaped silver nanostructures into nanoparticles by under water pulsed laser melting

    Science.gov (United States)

    Yadavali, S.; Sandireddy, V. P.; Kalyanaraman, R.

    2016-05-01

    The ability to easily manufacture nanostructures with a desirable attribute, such as well-defined size and shape, especially from any given initial shapes or sizes of the material, will be helpful towards accelerating the use of nanomaterials in various applications. In this work we report the transformation of discontinuous irregular nanostructures (DIN) of silver metal by rapid heating under a bulk fluid layer. Ag films were changed into DIN by dewetting in air and subsequently heated by nanosecond laser pulses under water. Our findings show that the DIN first ripens into elongated structures and then breaks up into nanoparticles. From the dependence of this behavior on laser fluence we found that under water irradiation reduced the rate of ripening and also decreased the characteristic break-up length scale of the elongated structures. This latter result was qualitatively interpreted as arising from a Rayleigh-Plateau instability modified to yield significantly smaller length scales than the classical process due to pressure gradients arising from the rapid evaporation of water during laser melting. These results demonstrate that it is possible to fabricate a dense collection of monomodally sized Ag nanoparticles with significantly enhanced plasmonic quality starting from the irregular shaped materials. This can be beneficial towards transforming discontinuous Ag films into nanostructures with useful plasmonic properties, that are relevant for biosensing applications.

  13. Influence of surfactant on the preparation of silver nanoparticles by polyol method

    International Nuclear Information System (INIS)

    Dung Dang, Thi My; Tuyet Le, Thi Thu; Dang, Mau Chien; Fribourg-Blanc, Eric

    2012-01-01

    In this study, silver nanoparticles were synthesized from silver nitrate via a polyol method in ambient atmosphere. In our synthesis route, polyvinylpyrrolidone (PVP) is used as both size controller and capping agent, ethylene glycol acts both as solvent and reducing agent. The obtained silver nanoparticles were characterized by ultraviolet-visible spectrophotometry which indicated the formation of nanoparticles. Investigation of Fourier transform infrared spectroscopy clearly demonstrated the coordination between silver nanoparticles and PVP. Transmission electron microscopy (TEM) contributed to the particle size analysis. The surface plasmon resonance peak in absorption spectra of silver colloidal solution showed absorption from 406 to 409 nm. The average size of the resulting silver nanoparticles was below 10 nm with a dependency on the PVP concentration. (paper)

  14. Antimicrobial, Mechanical and Thermal Studies of Silver Particle-Loaded Polyurethane

    Directory of Open Access Journals (Sweden)

    Deepen Paul

    2013-12-01

    Full Text Available Silver-particle-incorporated polyurethane films were evaluated for antimicrobial activity towards two different bacteria: Escherichia coli (E. coli and Staphylococcus aureus (S. aureus. Distributed silver particles sourced from silver nitrate, silver lactate and preformed silver nanoparticles were mixed with polyurethane (PU and variously characterized by field emission scanning electron microscopy (FESEM, fourier transform infra-red (FTIR spectroscopy, X-ray diffraction (XRD and contact angle measurement. Antibacterial activity against E.coli was confirmed for films loaded with 10% (w/w AgNO3, 1% and 10% (w/w Ag lactate and preformed Ag nanoparticles. All were active against S. aureus, but Ag nanoparticles loaded with PU had a minor effect. The apparent antibacterial performance of Ag lactate-loaded PU is better than other Ag ion-loaded films, revealed from the zone of inhibition study. The better performance of silver lactate-loaded PU was the likely result of a porous PU structure. FESEM and FTIR indicated direct interaction of silver with the PU backbone, and XRD patterns confirmed that face-centred cubic-type silver, representative of Ag metal, was present. Young’s modulus, tensile strength and the hardness of silver containing PU films were not adversely affected and possibly marginally increased with silver incorporation. Dynamic mechanical analysis (DMA indicated greater thermal stability.

  15. Characterization of silver nanoparticles synthesized using an endophytic fungus, Penicillium oxalicum having potential antimicrobial activity

    Science.gov (United States)

    Bhattacharjee, Sukla; Debnath, Gopal; Das, Aparajita Roy; Krishna Saha, Ajay; Das, Panna

    2017-12-01

    The aim of the present study was to test the efficacy of the extracellular mycelium extract of Penicillium oxalicum isolated from Phlogacanthus thyrsiflorus to biosynthesize silver nanoparticles. It was characterized using ultraviolet-visible absorption spectroscopy, atomic force microscopy, transmission electron microscopy and Fourier transforms infrared spectroscopy. The silver nanoparticles were evaluated for antimicrobial activity. The characterization confirms the synthesis of silver nanoparticles. Both silver nanoparticles and combination of silver nanoparticles with streptomycin showed activity against the four bacteria. The results suggested that P. oxalicum offers eco-friendly production of silver nanoparticles and the antibacterial activity may find application in biomedicine.

  16. Sublimation-Induced Shape Evolution of Silver Cubes

    KAUST Repository

    Ding, Yong; Fan, Fengru; Tian, Zhongqun; Wang, Zhong Lin

    2009-01-01

    The heat is on: Surface sublimation and shape transformation of silver cubes, enclosed by {100} surfaces and about 100nm in size, are examined by in situ transmission electron microscopy (see picture). High-index surfaces, such as {110}, of face

  17. Green Synthesis of Silver Nanoparticles by using Eucalyptus Globulus Leaf Extract

    Science.gov (United States)

    Balamurugan, Madheswaran; Saravanan, Shanmugam

    2017-12-01

    A single step eco-friendly, energy efficient and economically scalable green method was employed to synthesize silver nanoparticles. In this work, the synthesis of silver nanoparticles using Eucalyptus globulus leaf extract as reducing and capping agent along with water as solvent at normal room temperature is described. Silver nanoparticles were prepared from aqueous silver nitrate solution by adding the leaf extract. The prepared nanoparticles were characterized by using UV-visible Spectrophotometer, X-ray diffractometer, High Resolution Transmission Electron Microscope (HR-TEM) and Fourier Transform Infrared Spectroscope (FTIS). X-ray diffraction studies brought to light the crystalline nature and the face centered cubic structure of the silver nanoparticles. Using HR-TEM. the nano sizes and morphology of the particles were studied. The mean sizes of the prepared silver nanoparticles ranged from 30 to 36 nm. The density of the particles was tuned by varying the molar ratio of silver nitrate. FTIS studies showed the functional group of organic molecules which were located on the surface of the silver nanoparticles. Originating from the leaf extracts, these organic molecules reduced and capped the particles.

  18. In situ Oxidation of Ultrathin Silver Films on Ni(111)

    International Nuclear Information System (INIS)

    Meyer, A.; Flege, I.; Senanayake, S.; Kaemena, B.; Rettew, R.; Alamgir, F.; Falta, J.

    2011-01-01

    Oxidation of silver films of one- and two-monolayer thicknesses on the Ni(111) surface was investigated by low-energy electron microscopy at temperatures of 500 and 600 K. Additionally, intensity-voltage curves were measured in situ during oxidation to reveal the local film structure on a nanometer scale. At both temperatures, we find that exposure to molecular oxygen leads to the destabilization of the Ag film with subsequent relocation of the silver atoms to small few-layer-thick silver patches and concurrent evolution of NiO(111) regions. Subsequent exposure of the oxidized surface to ethylene initiates the transformation of bilayer islands back into monolayer islands, demonstrating at least partial reversibility of the silver relocation process at 600 K.

  19. Synthesis and characterization of silver nanoparticles: effect on phytopathogen Colletotrichum gloesporioides

    Science.gov (United States)

    Aguilar-Méndez, Miguel A.; San Martín-Martínez, Eduardo; Ortega-Arroyo, Lesli; Cobián-Portillo, Georgina; Sánchez-Espíndola, Esther

    2011-06-01

    Colloidal silver nanoparticles were synthesized by reducing silver nitrate solutions with glucose, in the presence of gelatin as capping agent. The obtained nanoparticles were characterized by means of UV-Vis spectroscopy, transmission electron microscopy (TEM), and Fourier transform infrared (FTIR) spectroscopy. The response surface methodology (RSM) was also used to determine the influence of the variables on the size of the nanoparticles. The antifungal activity of the silver nanoparticles was evaluated on the phytopathogen Colletotrichum gloesporioides, which causes anthracnose in a wide range of fruits. The UV-Vis spectra indicated the formation of silver nanoparticles preferably spherical and of relatively small size (silver nanoparticles. By means of FTIR spectroscopy it was determined that gelatin, through their amide and hydroxyl groups, interacts with nanoparticles preventing their agglomeration. The growth of C. gloesporioides in the presence of silver nanoparticles was significantly delayed in a dose dependent manner.

  20. Green synthesis of silver nanoparticles and its application for mosquito control

    Directory of Open Access Journals (Sweden)

    Naba Kumar Mondal

    2014-02-01

    Full Text Available Objective: To synthesize and characterize silver nanoparticles from aqueous root extract of Parthenium hysterophorus (P. hysterophorus and also to evaluate the potentiality of synthesized silver nanoparticles as larvacidal agent against Culex quinquefasciatus (Cx. quinquefasciatus. Methods: The silver nano particles were generated using root extract of P. hysterophorus. The characterization of synthesized nanoparticles was done by visual color change, UV-Vis spectrum, scanning electron micrograph, fluorescent microscope and Fourier transform infrared spectroscopy. Results: It was found that aqueous silver ions can be reduced by aqueous root extract of P. hysterophorus to generate extremely stable silver nanoparticles in aqueous medium. Larvae were exposed to varying concentrations of plant extracts, aqueous silver nitrate solution and synthesized silver nanoparticles for 0, 24 and 48 h separately. Aqueous root extract showed moderate larvicidal effects; however, the maximum efficacy (60.18% was observed with the synthesized silver nanoparticles against the larvae of Cx. quinquefasciatus. Conclusions: These results suggest that the green synthesis of silver nanoparticles have the potential to be used as an ideal eco-friently approach for the control of the Cx. quinquefasciatus. This is the first report on the mosquito larvicidal activity of the nano particle synthesized by P. hysterophorus.

  1. Silver-Doping Effects and Photostructural Transformation in Evaporated AS2S3 Thin Films.

    Science.gov (United States)

    1982-02-16

    of evaporated silver halide films. The details of the preparation of evaporated films of silver halides are reported by Junod at. al. (41 ) The...1980). 40. M.S. Chang, N.D. Hwang, J.T. Chen, Extended Abstr. Electrochem. Soc., 80-1, 692, (1980). 41. P. Junod , N. MHediger, B. Kilchoy. R. Steiger

  2. Comparison study on biosynthesis of silver nanoparticles using fresh and hot air oven dried IMPERATA CYLINDRICA leaf

    Science.gov (United States)

    Najmi Bonnia, Noor; Fairuzi, Afiza Ahmad; Akhir, Rabiatuladawiyah Md.; Yahya, Sabrina M.; Rani, Mohd Azri Ab; Ratim, Suzana; Rahman, Norafifah A.; Akil, Hazizan Md

    2018-01-01

    The perennial rhizomatous grass; Imperata cylindrica (I. cylindrica) has been reported rich in various phytochemicals. In present study, silver nanoparticles were synthesized from aqueous leaf extract of I. cylindrica at two different leaf conditions; fresh leaves and hot-air oven dried leaves. Biosynthesized silver nanoparticles were characterized by UV-visible spectroscopy, field emission scanning electron microscopy (FESEM) and Fourier transform infrared spectroscopy (FTIR). Maximum absorption was recorded between 400 nm to 500 nm. FESEM analysis revealed that the silver nanoparticles predominantly form spherical shapes. The particles sizes were ranging from 22-37 nm. The elemental composition of the synthesized silver nanoparticles was confirmed by using energy dispersive X-ray spectroscopy (EDX) analysis. Fourier transform infrared spectroscopy (FTIR) confirmed the reducing and stabilizing actions came from biomolecules associated with I. cylindrica leaf extract. Thus in this investigation, an environmentally safe method to synthesized silver nanoparticles using local plant extract was successfully established.

  3. Polypyrrole-silver Nanocomposite: Synthesis and Characterization

    Directory of Open Access Journals (Sweden)

    D. M. Nerkar

    2016-07-01

    Full Text Available Polypyrrole-Silver (PPy-Ag nanocomposite has been successfully synthesized by the chemical oxidative polymerization of pyrrole with iron (III chloride as an oxidant, in the presence of a colloidal suspension of silver nanoparticles. Turkevich method (Citrate reduction method was used for the synthesis of silver nanoparticles (Ag NPs. The silver nanoparticles were characterized by UV-Visible spectroscopy which showed an absorption band at 423 nm confirming the formation of nanoparticles. PPy-Ag nanocomposite was characterized by Transmission Electron Microscopy (TEM, Scanning Electron Microscopy (SEM, Fourier Transform Infrared Spectroscopy (FTIR and X-ray diffraction (XRD techniques for morphological and structural confirmations. TEM and SEM images revealed that the silver nanoparticles were well dispersed in the PPy matrix. XRD pattern showed that PPy is amorphous but the presence of the peaks at 2q values of 38.24°, 44.57°, 64.51° and 78.45° corresponding to a cubic phase of silver, revealed the incorporation of silver nanoparticles in the PPy matrix. A possible formation mechanism of PPy-Ag nanocomposite was also proposed. The electrical conductivity of PPy-Ag nanocomposite was studied using two probe method. The electrical conductivity of the PPy-Ag nanocomposite prepared was found to be 4.657´10- 2 S/cm, whereas that of pure PPy was found to be 9.85´10-3 S/cm at room temperature (303 K. The value of activation energy (Ea for pure PPy was 0.045 eV while it decreased to 0.034 eV for PPy-Ag nanocomposite. The synthesized nanocomposite powder can be utilized as a potential material for fabrication of gas sensors operating at room temperature.

  4. Silver nanoparticle production by Rhizopus stolonifer and its antibacterial activity against extended spectrum β-lactamase producing (ESBL) strains of Enterobacteriaceae

    International Nuclear Information System (INIS)

    Banu, Afreen; Rathod, Vandana; Ranganath, E.

    2011-01-01

    Highlights: → Silver nanoparticle production by using Rhizopus stolonifer. → Antibacterial activity of silver nanoparticles against extended spectrum β-lactamase producing (ESBL) strains of Enterobacteriaceae. → Synergistic effect of antibiotics with silver nanoparticles towards ESBL-strains. → Characterization of silver nanoparticles made by UV-vis spectra, scanning electron microscopy (SEM), transmission electron microscopy (TEM), Fourier transformed infrared (FTIR) spectroscopy, atomic force microscopy (AFM). -- Abstract: This report focuses on the synthesis of silver nanoparticles using the fungus, Rhizopus stolonifer and its antimicrobial activity. Research in nanotechnology highlights the possibility of green chemistry pathways to produce technologically important nanomaterials. Characterization of newly synthesized silver nanoparticles was made by UV-visible absorption spectroscopy, scanning electron microscope (SEM), transmission electron microscope (TEM), Fourier transform infrared (FTIR) spectroscopy and atomic force microscope (AFM). TEM micrograph revealed the formation of spherical nanoparticles with size ranging between 3 and 20 nm. The biosynthesized silver nanoparticles (AgNPs) showed excellent antibacterial activity against ESBL-strains which includes E. coli, Proteus. sp. and Klebsiella sp.

  5. Silver nanoparticle production by Rhizopus stolonifer and its antibacterial activity against extended spectrum {beta}-lactamase producing (ESBL) strains of Enterobacteriaceae

    Energy Technology Data Exchange (ETDEWEB)

    Banu, Afreen [Department of Microbiology, Gulbarga University, Gulbarga 585106, Karnataka (India); Rathod, Vandana, E-mail: drvandanarathod@rediffmail.com [Department of Microbiology, Gulbarga University, Gulbarga 585106, Karnataka (India); Ranganath, E. [Department of Microbiology, Gulbarga University, Gulbarga 585106, Karnataka (India)

    2011-09-15

    Highlights: {yields} Silver nanoparticle production by using Rhizopus stolonifer. {yields} Antibacterial activity of silver nanoparticles against extended spectrum {beta}-lactamase producing (ESBL) strains of Enterobacteriaceae. {yields} Synergistic effect of antibiotics with silver nanoparticles towards ESBL-strains. {yields} Characterization of silver nanoparticles made by UV-vis spectra, scanning electron microscopy (SEM), transmission electron microscopy (TEM), Fourier transformed infrared (FTIR) spectroscopy, atomic force microscopy (AFM). -- Abstract: This report focuses on the synthesis of silver nanoparticles using the fungus, Rhizopus stolonifer and its antimicrobial activity. Research in nanotechnology highlights the possibility of green chemistry pathways to produce technologically important nanomaterials. Characterization of newly synthesized silver nanoparticles was made by UV-visible absorption spectroscopy, scanning electron microscope (SEM), transmission electron microscope (TEM), Fourier transform infrared (FTIR) spectroscopy and atomic force microscope (AFM). TEM micrograph revealed the formation of spherical nanoparticles with size ranging between 3 and 20 nm. The biosynthesized silver nanoparticles (AgNPs) showed excellent antibacterial activity against ESBL-strains which includes E. coli, Proteus. sp. and Klebsiella sp.

  6. Optimization of silver-dielectric-silver nanoshell for sensing applications

    International Nuclear Information System (INIS)

    Shirzaditabar, Farzad; Saliminasab, Maryam

    2013-01-01

    In this paper, resonance light scattering (RLS) properties of a silver-dielectric-silver nanoshell, based on quasi-static approach and plasmon hybridization theory, are investigated. Scattering spectrum of silver-dielectric-silver nanoshell has two intense and clearly separated RLS peaks and provides a potential for biosensing based on surface plasmon resonance and surface-enhanced Raman scattering. The two RLS peaks in silver-dielectric-silver nanoshell are optimized by tuning the geometrical dimensions. In addition, the optimal geometry is discussed to obtain the high sensitivity of silver-dielectric-silver nanoshell. As the silver core radius increases, the sensitivity of silver-dielectric-silver nanoshell decreases whereas increasing the middle dielectric thickness increases the sensitivity of silver-dielectric-silver nanoshell

  7. Ecosystem protection by effluent bioremediation: silver nanoparticles impregnation in a textile fabrics process

    International Nuclear Information System (INIS)

    Duran, Nelson; Marcato, Priscyla D.; Alves, Oswaldo L.; Silva, Joao P. S. Da; Souza, Gabriel I. H. De; Rodrigues, Flavio A.; Esposito, Elisa

    2010-01-01

    This work studied a bioremediation process of silver nanoparticles with the bacterium Chromobacterium violaceum. These nanoparticles were obtained from several washes of cotton fabrics impregnated with silver nanoparticles produced by the fungus Fusarium oxysporum. The optimized growth of C. violaceum for silver nanoparticles bioremediation was obtained. The effluents of wash process of the cotton fabric were efficiently treated with C. violaceum. This treatment was based on biosorption which was very efficient for the elimination of silver nanoparticles remaining in the wash water. The bacteria after biosorption were morphologically transformed, but the normal morphology after a new culture was completely restored. The process also allowed the recovery of silver material that was leached into the effluent for a reutilization avoiding any effect to the eco-environment.

  8. Ecosystem protection by effluent bioremediation: silver nanoparticles impregnation in a textile fabrics process

    Energy Technology Data Exchange (ETDEWEB)

    Duran, Nelson, E-mail: duran@iqm.unicamp.br; Marcato, Priscyla D. [Universidade Estadual de Campinas, Biological Chemistry Laboratory, Instituto de Quimica (Brazil); Alves, Oswaldo L. [Universidade Estadual de Campinas, Solid State Chemistry Laboratory, Instituto de Quimica (Brazil); Silva, Joao P. S. Da; Souza, Gabriel I. H. De [Universidade de Mogi das Cruzes, Biological Chemistry and Biotechnology Laboratory, Environmental Sciences Center (Brazil); Rodrigues, Flavio A. [Universidade de Mogi das Cruzes, Material Chemistry Laboratory, Biochemical Research Center (Brazil); Esposito, Elisa [Universidade de Mogi das Cruzes, Biological Chemistry and Biotechnology Laboratory, Environmental Sciences Center (Brazil)

    2010-01-15

    This work studied a bioremediation process of silver nanoparticles with the bacterium Chromobacterium violaceum. These nanoparticles were obtained from several washes of cotton fabrics impregnated with silver nanoparticles produced by the fungus Fusarium oxysporum. The optimized growth of C. violaceum for silver nanoparticles bioremediation was obtained. The effluents of wash process of the cotton fabric were efficiently treated with C. violaceum. This treatment was based on biosorption which was very efficient for the elimination of silver nanoparticles remaining in the wash water. The bacteria after biosorption were morphologically transformed, but the normal morphology after a new culture was completely restored. The process also allowed the recovery of silver material that was leached into the effluent for a reutilization avoiding any effect to the eco-environment.

  9. Antimicrobial Activities of Silver Nanoparticles Synthesized by Using Water Extract of Arnicae anthodium.

    Science.gov (United States)

    Dobrucka, Renata; Długaszewska, Jolanta

    2015-06-01

    Green synthesis of nanoparticles has gained significant importance in recent years and has become the one of the most preferred methods. Also, green synthesis of nanoparticles is valuable branch of nanotechnology. Plant extracts are eco-friendly and can be an economic option for synthesis of nanoparticles. This study presents method the synthesis of silver nanoparticles using water extract of Arnicae anthodium. Formation of silver nanoparticles was confirmed by UV-visble spectroscopy, Fourier transform infrared spectroscopy and total reflection X-ray fluorescence analysis. The morphology of the synthesized silver nanoparticles was verified by SEM-EDS. The obtained silver nanoparticles were used to study their antimicrobial activity.

  10. Synthesis, characterization and catalytic activity of silver nanoparticles using Tribulus terrestris leaf extract.

    Science.gov (United States)

    Ashokkumar, S; Ravi, S; Kathiravan, V; Velmurugan, S

    2014-01-01

    Biomediated silver nanoparticles were synthesized with the aid of an eco-friendly biomaterial, namely, aqueous Tribulus terrestris extract. Silver nanoparticles were synthesized using a rapid, single step, and completely green biosynthetic method employing aqueous T. terrestris leaf extracts as both the reducing and capping agent. Silver ions were rapidly reduced by aqueous T. terrestris leaf extracts, leading to the formation of highly crystalline silver nanoparticles. An attempt has been made and formation of the silver nanoparticles was verified by surface plasmon spectra using an UV-vis (Ultra violet), spectrophotometer. Morphology and crystalline structure of the prepared silver nanoparticles were characterized by TEM (Transmission Electron Microscope) and XRD (X-ray Diffraction), techniques, respectively. FT-IR (Fourier Transform Infrared), analysis suggests that the obtained silver nanoparticles might be stabilized through the interactions of carboxylic groups, carbonyl groups and the flavonoids present in the T. terrestris extract. Copyright © 2013 Elsevier B.V. All rights reserved.

  11. Chemo- and Enantioselective Intramolecular Silver-Catalyzed Aziridinations.

    Science.gov (United States)

    Ju, Minsoo; Weatherly, Cale D; Guzei, Ilia A; Schomaker, Jennifer M

    2017-08-07

    Asymmetric nitrene-transfer reactions are a powerful tool for the preparation of enantioenriched amine building blocks. Reported herein are chemo- and enantioselective silver-catalyzed aminations which transform di- and trisubstituted homoallylic carbamates into [4.1.0]-carbamate-tethered aziridines in good yields and with ee values of up to 92 %. The effects of the substrate, silver counteranion, ligand, solvent, and temperature on both the chemoselectivity and ee value were explored. Stereochemical models were proposed to rationalize the observed absolute stereochemistry of the aziridines, which undergo nucleophilic ring opening to yield enantioenriched amines with no erosion in stereochemical integrity. © 2017 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim.

  12. Formation of novel assembled silver nanostructures from polyglycol solution

    International Nuclear Information System (INIS)

    Zhang Jie; Liu Ke; Dai Zhihui; Feng Yuying; Bao Jianchun; Mo Xiangyin

    2006-01-01

    This paper described a simple and mild chemical reduction approach to prepare novel silver nanostructures with different morphologies. Dendritic silver nanostructure was obtained by a fast reduction reaction using hydrazine as a reducing agent in aqueous solution of polyglycol, while both the zigzag and linear Ag nanostructures were slowly assembled using polyglycol as a reducing agent. Powder X-ray diffraction (XRD), transmission electron microscopy (TEM), high-resolution TEM (HRTEM) and field emission scanning electron microscopy (FE-SEM) were used to characterize the obtained silver nanostructures. Fourier transform infrared absorption (FT-IR) spectra were recorded to show that there exists a certain coordination of the oxygen atoms in the polyglycol with Ag + ions in aqueous solution of the AgNO 3 /polyglycol. Furthermore, the examination of the morphologies of the products obtained at different stages of the reaction of Ag + ions with polyglycol revealed that such a coordination is of utmost importance for the formation of the silver nanostructures, namely polyglycol provided lots of active sites for the coordination, nucleation, growth and serves as backbones for directing the assembly of the metal particles formed. The formation mechanism of the dendritic silver nanostructure was called a coordination-reduction-nucleation-growth-fractal growth process. The strong surface plasmon absorption bands at 470 nm for the zigzag silver and at 405 nm for the dendritic silver were found

  13. The Speciation Of Silver Nanoparticles In Antimicrobial Fabric Before and After Exposure To A Hypochlorite/Detergent Solution

    Science.gov (United States)

    Because of their antibacterial properties, silver nanoparticles are often used in consumer products. To assess environmental and/or human health risks from these nanoparticles, there is a need to identify the chemical transformations that Silver nanoparticles undergo in differen...

  14. Size-dependent surface plasmon resonance in silver silica nanocomposites

    International Nuclear Information System (INIS)

    Thomas, Senoy; Nair, Saritha K; Jamal, E Muhammad Abdul; Anantharaman, M R; Al-Harthi, S H; Varma, Manoj Raama

    2008-01-01

    Silver silica nanocomposites were obtained by the sol-gel technique using tetraethyl orthosilicate (TEOS) and silver nitrate (AgNO 3 ) as precursors. The silver nitrate concentration was varied for obtaining composites with different nanoparticle sizes. The structural and microstructural properties were determined by x-ray diffractometry (XRD), Fourier transform infrared spectroscopy (FTIR) and transmission electron microscopy (TEM). X-ray photoelectron spectroscopic (XPS) studies were done for determining the chemical states of silver in the silica matrix. For the lowest AgNO 3 concentration, monodispersed and spherical Ag crystallites, with an average diameter of 5 nm, were obtained. Grain growth and an increase in size distribution was observed for higher concentrations. The occurrence of surface plasmon resonance (SPR) bands and their evolution in the size range 5-10 nm is studied. For decreasing nanoparticle size, a redshift and broadening of the plasmon-related absorption peak was observed. The observed redshift and broadening of the SPR band was explained using modified Mie scattering theory

  15. Biogenic synthesis of silver nanoparticles by leaf extract of Cassia angustifolia

    Science.gov (United States)

    Amaladhas, T. Peter; Sivagami, S.; Akkini Devi, T.; Ananthi, N.; Priya Velammal, S.

    2012-12-01

    In this study Cassia angustifolia (senna) is used for the environmentally friendly synthesis of silver nanoparticles. Stable silver nanoparticles having symmetric surface plasmon resonance (SPR) band centred at 420 nm were obtained within 10 min at room temperature by treating aqueous solutions of silver nitrate with C. angustifolia leaf extract. The water soluble components from the leaves, probably the sennosides, served as both reducing and capping agents in the synthesis of silver nanoparticles. The nanoparticles were characterized using UV-Vis, Fourier transform infrared (FTIR) spectroscopic techniques and transmission electron microscopy (TEM). The nanoparticles were poly-dispersed, spherical in shape with particle size in the range 9-31 nm, the average size was found to be 21.6 nm at pH 11. The zeta potential was -36.4 mV and the particles were stable for 6 months. The crystalline phase of the nanoparticles was confirmed from the selected area diffraction pattern (SAED). The rate of formation and size of silver nanoparticles were pH dependent. Functional groups responsible for capping of silver nanoparticles were identified from the FTIR spectrum. The synthesized silver nanoparticles exhibited good antibacterial potential against Escherichia coli and Staphylococcus aureus.

  16. Biogenic synthesis of silver nanoparticles by leaf extract of Cassia angustifolia

    International Nuclear Information System (INIS)

    Peter Amaladhas, T; Akkini Devi, T; Ananthi, N; Priya Velammal, S; Sivagami, S

    2012-01-01

    In this study Cassia angustifolia (senna) is used for the environmentally friendly synthesis of silver nanoparticles. Stable silver nanoparticles having symmetric surface plasmon resonance (SPR) band centred at 420 nm were obtained within 10 min at room temperature by treating aqueous solutions of silver nitrate with C. angustifolia leaf extract. The water soluble components from the leaves, probably the sennosides, served as both reducing and capping agents in the synthesis of silver nanoparticles. The nanoparticles were characterized using UV–Vis, Fourier transform infrared (FTIR) spectroscopic techniques and transmission electron microscopy (TEM). The nanoparticles were poly-dispersed, spherical in shape with particle size in the range 9–31 nm, the average size was found to be 21.6 nm at pH 11. The zeta potential was –36.4 mV and the particles were stable for 6 months. The crystalline phase of the nanoparticles was confirmed from the selected area diffraction pattern (SAED). The rate of formation and size of silver nanoparticles were pH dependent. Functional groups responsible for capping of silver nanoparticles were identified from the FTIR spectrum. The synthesized silver nanoparticles exhibited good antibacterial potential against Escherichia coli and Staphylococcus aureus. (paper)

  17. Non-monotonic wetting behavior of chitosan films induced by silver nanoparticles

    Energy Technology Data Exchange (ETDEWEB)

    Praxedes, A.P.P.; Webler, G.D.; Souza, S.T. [Instituto de Física, Universidade Federal de Alagoas, 57072-970 Maceió, AL (Brazil); Ribeiro, A.S. [Instituto de Química e Biotecnologia, Universidade Federal de Alagoas, 57072-970 Maceió, AL (Brazil); Fonseca, E.J.S. [Instituto de Física, Universidade Federal de Alagoas, 57072-970 Maceió, AL (Brazil); Oliveira, I.N. de, E-mail: italo@fis.ufal.br [Instituto de Física, Universidade Federal de Alagoas, 57072-970 Maceió, AL (Brazil)

    2016-05-01

    Highlights: • The addition of silver nanoparticles modifies the morphology of chitosan films. • Metallic nanoparticles can be used to control wetting properties of chitosan films. • The contact angle shows a non-monotonic dependence on the silver concentration. - Abstract: The present work is devoted to the study of structural and wetting properties of chitosan-based films containing silver nanoparticles. In particular, the effects of silver concentration on the morphology of chitosan films are characterized by different techniques, such as atomic force microscopy (AFM), X-ray diffraction (XRD) and Fourier transform infrared spectroscopy (FTIR). By means of dynamic contact angle measurements, we study the modification on surface properties of chitosan-based films due to the addition of silver nanoparticles. The results are analyzed in the light of molecular-kinetic theory which describes the wetting phenomena in terms of statistical dynamics for the displacement of liquid molecules in a solid substrate. Our results show that the wetting properties of chitosan-based films are high sensitive to the fraction of silver nanoparticles, with the equilibrium contact angle exhibiting a non-monotonic behavior.

  18. Synthesis and characterization of silver nanoparticles: effect on phytopathogen Colletotrichum gloesporioides

    Energy Technology Data Exchange (ETDEWEB)

    Aguilar-Mendez, Miguel A., E-mail: maguilarme@ipn.mx; San Martin-Martinez, Eduardo; Ortega-Arroyo, Lesli [Instituto Politecnico Nacional, Centro de Investigacion en Ciencia Aplicada y Tecnologia Avanzada (Mexico); Cobian-Portillo, Georgina [Instituto Politecnico Nacional, Centro Interdisciplinario de Investigacion para el Desarrollo Integral Regional (Mexico); Sanchez-Espindola, Esther [Instituto Politecnico Nacional, Escuela Nacional de Ciencias Biologicas, Prolongacion Manuel M. Carpio s/n, esq. Plan de Ayala (Mexico)

    2011-06-15

    Colloidal silver nanoparticles were synthesized by reducing silver nitrate solutions with glucose, in the presence of gelatin as capping agent. The obtained nanoparticles were characterized by means of UV-Vis spectroscopy, transmission electron microscopy (TEM), and Fourier transform infrared (FTIR) spectroscopy. The response surface methodology (RSM) was also used to determine the influence of the variables on the size of the nanoparticles. The antifungal activity of the silver nanoparticles was evaluated on the phytopathogen Colletotrichum gloesporioides, which causes anthracnose in a wide range of fruits. The UV-Vis spectra indicated the formation of silver nanoparticles preferably spherical and of relatively small size (<20 nm). The above-mentioned was confirmed by TEM, observing a size distribution of 5-24 nm. According to RSM the synthesis variables influenced on the size of the silver nanoparticles. By means of FTIR spectroscopy it was determined that gelatin, through their amide and hydroxyl groups, interacts with nanoparticles preventing their agglomeration. The growth of C. gloesporioides in the presence of silver nanoparticles was significantly delayed in a dose dependent manner.

  19. Synthesis and characterization of silver nanoparticles: effect on phytopathogen Colletotrichum gloesporioides

    International Nuclear Information System (INIS)

    Aguilar-Méndez, Miguel A.; San Martín-Martínez, Eduardo; Ortega-Arroyo, Lesli; Cobián-Portillo, Georgina; Sánchez-Espíndola, Esther

    2011-01-01

    Colloidal silver nanoparticles were synthesized by reducing silver nitrate solutions with glucose, in the presence of gelatin as capping agent. The obtained nanoparticles were characterized by means of UV–Vis spectroscopy, transmission electron microscopy (TEM), and Fourier transform infrared (FTIR) spectroscopy. The response surface methodology (RSM) was also used to determine the influence of the variables on the size of the nanoparticles. The antifungal activity of the silver nanoparticles was evaluated on the phytopathogen Colletotrichum gloesporioides, which causes anthracnose in a wide range of fruits. The UV–Vis spectra indicated the formation of silver nanoparticles preferably spherical and of relatively small size (<20 nm). The above-mentioned was confirmed by TEM, observing a size distribution of 5–24 nm. According to RSM the synthesis variables influenced on the size of the silver nanoparticles. By means of FTIR spectroscopy it was determined that gelatin, through their amide and hydroxyl groups, interacts with nanoparticles preventing their agglomeration. The growth of C. gloesporioides in the presence of silver nanoparticles was significantly delayed in a dose dependent manner.

  20. Colloidal silver nanoparticles/rhamnolipid (SNPRL) composite as novel chemotactic antibacterial agent.

    Science.gov (United States)

    Bharali, P; Saikia, J P; Paul, S; Konwar, B K

    2013-10-01

    The antibacterial activity of silver nanoparticles and rhamnolipid are well known individually. In the present research, antibacterial and chemotactic activity due to colloidal silver nanoparticles (SNP), rhamnolipid (RL) and silver nanoparticles/rhamnolipid composite (SNPRL) were evaluated using Staphylococcus aureus (MTCC3160), Escherichia coli (MTCC40), Pseudomonas aeruginosa (MTCC8163) and Bacillus subtilis (MTCC441) as test strains. Further, the SNPRL nanoparticles were characterized using scanning electron microscopy (SEM), transmission electron microscopy (TEM) and Fourier transform infrared spectroscopy (FTIR). The observation clearly indicates that SNPRL shows prominent antibacterial and chemotactic activity in comparison to all of its individual precursor components. Copyright © 2013 Elsevier B.V. All rights reserved.

  1. Green synthesis of monodisperse silver nanoparticles using hydroxy propyl methyl cellulose

    Energy Technology Data Exchange (ETDEWEB)

    Dong, Chunfa; Zhang, Xianglin, E-mail: hust_zxl@mail.hust.edu.cn; Cai, Hao

    2014-01-15

    Graphical abstract: -- Highlights: • Synthesis of silver nanoparticles using hydroxy propyl methyl cellulose is reported. • HPMC and glucose are used as capping agent and reducing agent respectively. • It is the first time to use HPMC for synthesis of silver nanoparticles. • The small, spherical and well-dispersed particle is observed in the range of 3–17 nm. • The green method can be extended to other noble metals. -- Abstract: A simple and environmentally friendly method for the synthesis of highly stable and small sized silver nanoparticles with narrow distribution from 3 nm to 17 nm is reported. Silver nitrate, hydroxy propyl methyl cellulose (HPMC) and glucose, were used as silver precursor, capping agents and reducing agents respectively. The formation of silver nanoparticles was observed by change of color from colorless to wine red. The silver nanoparticles were characterized by transmission electron microscopy (TEM), UV–visible spectroscopy (UV–vis), X-ray diffraction (XRD) and Fourier-transform infrared spectroscopy (FT-IR). The results demonstrated that the obtained metallic nanoparticles were single crystalline silver nanoparticles capped with HPMC. The effects of the reaction time, reaction temperature and the concentration of silver ion and reducing agents on the particle size were investigated. A possible formation mechanism was proposed. The method may be extended to other noble metal for other technological applications such as additional medicinal, industrial applications.

  2. Green synthesis of monodisperse silver nanoparticles using hydroxy propyl methyl cellulose

    International Nuclear Information System (INIS)

    Dong, Chunfa; Zhang, Xianglin; Cai, Hao

    2014-01-01

    Graphical abstract: -- Highlights: • Synthesis of silver nanoparticles using hydroxy propyl methyl cellulose is reported. • HPMC and glucose are used as capping agent and reducing agent respectively. • It is the first time to use HPMC for synthesis of silver nanoparticles. • The small, spherical and well-dispersed particle is observed in the range of 3–17 nm. • The green method can be extended to other noble metals. -- Abstract: A simple and environmentally friendly method for the synthesis of highly stable and small sized silver nanoparticles with narrow distribution from 3 nm to 17 nm is reported. Silver nitrate, hydroxy propyl methyl cellulose (HPMC) and glucose, were used as silver precursor, capping agents and reducing agents respectively. The formation of silver nanoparticles was observed by change of color from colorless to wine red. The silver nanoparticles were characterized by transmission electron microscopy (TEM), UV–visible spectroscopy (UV–vis), X-ray diffraction (XRD) and Fourier-transform infrared spectroscopy (FT-IR). The results demonstrated that the obtained metallic nanoparticles were single crystalline silver nanoparticles capped with HPMC. The effects of the reaction time, reaction temperature and the concentration of silver ion and reducing agents on the particle size were investigated. A possible formation mechanism was proposed. The method may be extended to other noble metal for other technological applications such as additional medicinal, industrial applications

  3. Efficient synthesis of silver nanoparticles from Prosopis juliflora leaf extract and its antimicrobial activity using sewage

    Science.gov (United States)

    Raja, K.; Saravanakumar, A.; Vijayakumar, R.

    2012-11-01

    In this paper, aqueous extract of fresh leaves of Prosopis juliflora was used for the synthesis of silver (Ag) nanoparticles. UV-Vis spectroscopy studies were carried out to asses silver nanoparticles formation within 5 min, scanning electron microscopic was used to characterize shape of the Ag nanoparticles, X-ray diffraction analysis confirms the nanoparticles as crystalline silver and facecentered cubic type and Fourier transform infra-red assed that shows biomolecule compounds which are responsible for reduction and capping material of silver nanoparticles. The anti microbial activity of silver nanoparticle was performed using sewage. The approach of plant-mediated synthesis appears to be cost efficient, eco-friendly and easy methods.

  4. Synthesis of water soluble glycine capped silver nanoparticles and their surface selective interaction

    International Nuclear Information System (INIS)

    Agasti, Nityananda; Singh, Vinay K.; Kaushik, N.K.

    2015-01-01

    Highlights: • Synthesis of water soluble silver nanoparticles at ambient reaction conditions. • Glycine as stabilizing agent for silver nanoparticles. • Surface selective interaction of glycine with silver nanoparticles. • Glycine concentration influences crystalinity and optical property of silver nanoparticles. - Abstract: Synthesis of biocompatible metal nanoparticles has been an area of significant interest because of their wide range of applications. In the present study, we have successfully synthesized water soluble silver nanoparticles assisted by small amino acid glycine. The method is primarily based on reduction of AgNO 3 with NaBH 4 in aqueous solution under atmospheric air in the presence of glycine. UV–vis spectroscopy, transmission electron microscopy (TEM), X–ray diffraction (XRD), Fourier transform infrared (FTIR) spectroscopy, thermogravimetry (TG) and differential thermal analysis (DTA) techniques used for characterization of resulting silver nanoparticles demonstrated that, glycine is an effective capping agent to stabilize silver nanoparticles. Surface selective interaction of glycine on (1 1 1) face of silver nanoparticles has been investigated. The optical property and crystalline behavior of silver nanoparticles were found to be sensitive to concentration of glycine. X–ray diffraction studies ascertained the phase specific interaction of glycine on silver nanoparticles. Silver nanoparticles synthesized were of diameter 60 nm. We thus demonstrated an efficient synthetic method for synthesis of water soluble silver nanoparticles capped by amino acid under mild reaction conditions with excellent reproducibility

  5. Sublimation-Induced Shape Evolution of Silver Cubes

    KAUST Repository

    Ding, Yong

    2009-12-18

    The heat is on: Surface sublimation and shape transformation of silver cubes, enclosed by {100} surfaces and about 100nm in size, are examined by in situ transmission electron microscopy (see picture). High-index surfaces, such as {110}, of face-centered cubic metals are more stable when the temperature is close to the melting point.

  6. Silver nanoparticles in montmorillonite to application in polymeric materials

    International Nuclear Information System (INIS)

    Morita, R.Y.; Barbosa, R.V.; Kloss, J.R.; Schnitzler, M.; Garcia, J.

    2012-01-01

    This work presents the preparation of silver nanoparticles (AgNPs) through industrially viable methodologies and free of organic solvents, and their insertion in montmorillonite, to produce a nanomaterial with bactericidal properties. The modified montmorillonite was characterized through the techniques of Fourier transform infrared spectroscopy (FTIR), Raman spectroscopy and x-ray diffraction (XRD). The FTIR and Raman spectrum's showed specific bands of involving stretching silver. In the XRD analyses was observed the occurrence of the following crystallographic planes (111), (200) e (220) silver related. For application in low density polyethylene, the mechanical tests showed no loss in the mechanical properties, when the AgNPs is present, this fact is important and indicate that the nanomaterial can be inserted in this polymer matrix with considerable technology interest. (author)

  7. Physical transformations of iron oxide and silver nanoparticles from an intermediate scale field transport study

    Science.gov (United States)

    Emerson, Hilary P.; Hart, Ashley E.; Baldwin, Jonathon A.; Waterhouse, Tyler C.; Kitchens, Christopher L.; Mefford, O. Thompson; Powell, Brian A.

    2014-02-01

    In recent years, there has been increasing concern regarding the fate and transport of engineered nanoparticles (NPs) in environmental systems and the potential impacts on human and environmental health due to the exponential increase in commercial and industrial use worldwide. To date, there have been relatively few field-scale studies or laboratory-based studies on environmentally relevant soils examining the chemical/physical behavior of the NPs following release into natural systems. The objective of this research is to demonstrate the behavior and transformations of iron oxide and silver NPs with different capping ligands within the unsaturated zone. Here, we show that NP transport within the vadose zone is minimal primarily due to heteroaggregation with soil surface coatings with results that >99 % of the NPs remained within 5 cm of the original source after 1 year in intermediate-scale field lysimeters. These results suggest that transport may be overestimated when compared to previous laboratory-scale studies on pristine soils and pure minerals and that future work must incorporate more environmentally relevant parameters.

  8. Green synthesis of silver nanoparticles and silver colloidal solutions

    International Nuclear Information System (INIS)

    Nguyen Thi Phuong Phong; Ngo Hoang Minh; Ngo Vo Ke Thanh; Dang Mau Chien

    2009-01-01

    In this paper, silver colloidal solutions have been synthesized rapidly in green conditions by using microwave irradiation and non-toxic chemistry substances (acid oxalic, silver nitrate, polyvinyl pyrolidone (PVP; Mw = 55 000)). The particle size and morphology of these solutions can be controlled by altering several factors like the time, the power of microwave exposure, and the ratio of silver oxalate and PVP etc. The silver nanoparticles were fabricated by thermal decomposition of silver oxalate. The synthesized silver colloidal solutions and silver nanoparticles were characterized by several analytical techniques like UV- VIS, XRD, TEM, FESEM/EDS and ICP-AAS studies. Finally, we used the synthesized silver colloidal solutions for antibacterial purpose. The obtained results showed that the synthesized silver colloidal solutions, even at very low concentrations, have highly efficient anti-bacterial property.

  9. PVDF nanofibers with silver nanoparticles and silver/titanium dioxide for antimicrobial applications;Eletrofiacao de nanofibras de PVDF com nanoparticulas de prata e de prata/dioxido de titanio para aplicacoes antimicrobiais

    Energy Technology Data Exchange (ETDEWEB)

    Costa, Ligia M.M.; Olyveira, Gabriel M. de, E-mail: gmolyveira@yahoo.com.b, E-mail: ligialmmc@hotmail.co [Universidade Federal de Sao Carlos (PPGCEM/UFScar), SP (Brazil). Programa de Pos Graduacao em Ciencia e Engenharia de Materiais; Gregorio Filho, Rinaldo; Pessan, Luiz A., E-mail: pessan@ufscar.b, E-mail: gregorio@ufscar.b [Universidade Federal de Sao Carlos (UFScar), SP (Brazil)

    2009-07-01

    PVDF nanofibers with and without nanoparticles were produced by the method of electro spinning using dimethylformamide (DMF). Silver nitrate nanoparticles (0,5 and 2 wt %) and silver/titanium dioxide nanoparticles obtained by the reduction method (2 wt %) were synthesized and added to the PVDF solution to prepared nanofibers. The processes of electrospinning and film preparation using PVDF with the nanoparticles were compared. Silver/titanium dioxide nanoparticles were characterized with X-ray diffraction (XRD), Scanning electron microscopy (SEM) with EDX and x-ray photoelectron spectroscopy (XPS) to show silver/titanium dioxide nanoparticles. Nanofibers mats were characterized with SEM to study the effects of the addition of the nanoparticles on the morphology behavior and spectroscopy by Fourier transform infrared (FTIR) to analyze the crystalline phase of PVDF films. (author)

  10. Green Synthesis of Silver Nanoparticles Using Pimpinella anisum L. Seed Aqueous Extract and Its Antioxidant Activity

    Directory of Open Access Journals (Sweden)

    Hashem Akhlaghi

    2015-09-01

    Full Text Available An aqueous extract of Pimpinella anisum was used for green synthesis of silver nanoparticles by bio reduction of an aqueous solution of silver nitrate. Silver nanoparticles were characterized by UV–Vis spectrometry, Fourier transform infrared spectroscopy (FTIR, X-ray diffraction (XRD analysis, scanning electron microscopy (SEM and energy-dispersive X-ray analysis (EDAX. The increase in absorption at 420 nm was used for recording the formation of a colloidal suspension of silver nanoparticles. The binding properties of the capped Ag nanoparticles synthesized from aqueous extract of P. anisum were analyzed by FTIR. XRD studies revealed that most of the nanoparticles were cubic and face centered cubic in shape. SEM analysis showed the size and shape of silver nanoparticles and EDAX confirmed the presence of silver. The synthesized silver nanoparticles showed DPPH free radical scavenging activity.

  11. Room temperature synthesis and high temperature frictional study of silver vanadate nanorods

    Energy Technology Data Exchange (ETDEWEB)

    Singh, D P; Aouadi, S M [Department of Physics, Southern Illinois University, Carbondale-62901 (United States); Polychronopoulou, K [Department of Chemistry, University of Cyprus, Nicosia, 1678 (Cyprus); Rebholz, C, E-mail: dineshpsingh@gmail.com, E-mail: saouadi@physics.siu.edu [Department of Mechanical and Manufacturing Engineering, University of Cyprus, Nicosia, 1678 (Cyprus)

    2010-08-13

    We report the room temperature (RT) synthesis of silver vanadate nanorods (consisting of mainly {beta}-AgV O{sub 3}) by a simple wet chemical route and their frictional study at high temperatures (HT). The sudden mixing of ammonium vanadate with silver nitrate solution under constant magnetic stirring resulted in a pale yellow coloured precipitate. Structural/microstructural characterization of the precipitate through x-ray diffraction (XRD), scanning electron microscopy (SEM) and transmission electron microscopy (TEM) revealed the high yield and homogeneous formation of silver vanadate nanorods. The length of the nanorods was 20-40 {mu}m and the thickness 100-600 nm. The pH variation with respect to time was thoroughly studied to understand the formation mechanism of the silver vanadate nanorods. This synthesis process neither demands HT, surfactants nor long reaction time. The silver vanadate nanomaterial showed good lubrication behaviour at HT (700 deg. C) and the friction coefficient was between 0.2 and 0.3. HT-XRD revealed that AgV O{sub 3} completely transformed into silver vanadium oxide (Ag{sub 2}V{sub 4}O{sub 11}) and silver with an increase in temperature from RT to 700 deg. C.

  12. Room temperature synthesis and high temperature frictional study of silver vanadate nanorods.

    Science.gov (United States)

    Singh, D P; Polychronopoulou, K; Rebholz, C; Aouadi, S M

    2010-08-13

    We report the room temperature (RT) synthesis of silver vanadate nanorods (consisting of mainly beta-AgV O(3)) by a simple wet chemical route and their frictional study at high temperatures (HT). The sudden mixing of ammonium vanadate with silver nitrate solution under constant magnetic stirring resulted in a pale yellow coloured precipitate. Structural/microstructural characterization of the precipitate through x-ray diffraction (XRD), scanning electron microscopy (SEM) and transmission electron microscopy (TEM) revealed the high yield and homogeneous formation of silver vanadate nanorods. The length of the nanorods was 20-40 microm and the thickness 100-600 nm. The pH variation with respect to time was thoroughly studied to understand the formation mechanism of the silver vanadate nanorods. This synthesis process neither demands HT, surfactants nor long reaction time. The silver vanadate nanomaterial showed good lubrication behaviour at HT (700 degrees C) and the friction coefficient was between 0.2 and 0.3. HT-XRD revealed that AgV O(3) completely transformed into silver vanadium oxide (Ag(2)V(4)O(11)) and silver with an increase in temperature from RT to 700 degrees C.

  13. Efficient synthesis of silver nanoparticles from Prosopis juliflora leaf extract and its antimicrobial activity using sewage.

    Science.gov (United States)

    Raja, K; Saravanakumar, A; Vijayakumar, R

    2012-11-01

    In this paper, aqueous extract of fresh leaves of Prosopis juliflora was used for the synthesis of silver (Ag) nanoparticles. UV-Vis spectroscopy studies were carried out to asses silver nanoparticles formation within 5 min, scanning electron microscopic was used to characterize shape of the Ag nanoparticles, X-ray diffraction analysis confirms the nanoparticles as crystalline silver and facecentered cubic type and Fourier transform infra-red assed that shows biomolecule compounds which are responsible for reduction and capping material of silver nanoparticles. The anti microbial activity of silver nanoparticle was performed using sewage. The approach of plant-mediated synthesis appears to be cost efficient, eco-friendly and easy methods. Copyright © 2012 Elsevier B.V. All rights reserved.

  14. Fate of Zinc and Silver Engineered Nanoparticles in Sewerage Networks

    Science.gov (United States)

    Engineered zinc oxide (ZnO) and silver (Ag) nanoparticles (NPs) used in consumer products are largely released into the environment through the wastewater stream. Limited information is available regarding the transformations they undergo during their transit through sewerage sy...

  15. Anticancer and enhanced antimicrobial activity of biosynthesizd silver nanoparticles against clinical pathogens

    Science.gov (United States)

    Rajeshkumar, Shanmugam; Malarkodi, Chelladurai; Vanaja, Mahendran; Annadurai, Gurusamy

    2016-07-01

    The present investigation shows the biosynthesis of eco-friendly silver nanoparticles using culture supernatant of Enterococcus sp. and study the effect of enhanced antimicrobial activity, anticancer activity against pathogenic bacteria, fungi and cancer cell lines. Silver nanoparticles was synthesized by adding 1 mM silver nitrate into the 100 ml of 24 h freshly prepared culture supernatant of Enterococcus sp. and were characterized by UV-vis spectroscopy, X-ray diffraction (XRD), Transmission Electron Microscope (TEM), Selected Area Diffraction X-Ray (SAED), Energy Dispersive X Ray (EDX) and Fourier Transform Infra red Spectroscopy (FT-IR). The synthesized silver nanoparticles were impregnated with commercial antibiotics for evaluation of enhanced antimicrobial activity. Further these synthesized silver nanoparticles were assessed for its anticancer activity against cancer cell lines. In this study crystalline structured nanoparticles with spherical in the size ranges from 10 to 80 nm and it shows excellent enhanced antimicrobial activity than the commercial antibiotics. The in vitro assay of silver nanoparticles on anticancer have great potential to inhibit the cell viability. Amide linkages and carboxylate groups of proteins from Enterococcus sp. may bind with silver ions and convert into nanoparticles. The activities of commercial antibiotics were enhanced by coating silver nanoparticles shows significant improved antimicrobial activity. Silver nanoparticles have the great potential to inhibit the cell viability of liver cancer cells lines (HepG2) and lung cancer cell lines (A549).

  16. Preconcentration of silver as silver xanthate on activated carbon

    International Nuclear Information System (INIS)

    Ramadevi, P.; Naidu, U.V.; Naidu, G.R.K.

    1988-01-01

    Silver from aqueous solution was preconcentrated by adsorption on activated carbon as silver xanthate. Factors influencing the adsorption of silver were studied. Optimum conditions for the preconcentration of silver were established. (author) 9 refs.; 3 tabs

  17. Antibacterial activity and toxicity of silver - nanosilver versus ionic silver

    International Nuclear Information System (INIS)

    Kvitek, L; Panacek, A; Prucek, R; Soukupova, J; Vanickova, M; Zboril, R; Kolar, M

    2011-01-01

    The in vitro study of antibacterial activity of silver nanoparticles (NPs), prepared via modified Tollens process, revealed high antibacterial activity even at very low concentrations around several units of mg/L. These concentrations are comparable with concentrations of ionic silver revealing same antibacterial effect. However, such low concentrations of silver NPs did not show acute cytotoxicity to mammalian cells - this occurs at concentrations higher than 60 mg/L of silver, while the cytotoxic level of ionic silver is much more lower (approx. 1 mg/L). Moreover, the silver NPs exhibit lower acute ecotoxicity against the eukaryotic organisms such as Paramecium caudatum, Monoraphidium sp. and D. melanogaster. The silver NPs are toxic to these organisms at the concentrations higher than 30 mg/L of silver. On contrary, ionic silver retains its cytoxicity and ecotoxicity even at the concentration equal to 1 mg/L. The performed experiments demonstrate significantly lower toxicity of silver NPs against the eukaryotic organisms than against the prokaryotic organisms.

  18. Antibacterial activity and toxicity of silver - nanosilver versus ionic silver

    Energy Technology Data Exchange (ETDEWEB)

    Kvitek, L; Panacek, A; Prucek, R; Soukupova, J; Vanickova, M; Zboril, R [Regional Centre of Advanced Technologies and Materials, Department of Physical Chemistry, Faculty of Science, Palacky University, 17. Listopadu 12, 77146 Olomouc (Czech Republic); Kolar, M, E-mail: ales.panacek@upol.cz [Department of Microbiology, Faculty of Medicine and Dentistry, Palacky University, Hnevotinska 3, 77520 Olomouc (Czech Republic)

    2011-07-06

    The in vitro study of antibacterial activity of silver nanoparticles (NPs), prepared via modified Tollens process, revealed high antibacterial activity even at very low concentrations around several units of mg/L. These concentrations are comparable with concentrations of ionic silver revealing same antibacterial effect. However, such low concentrations of silver NPs did not show acute cytotoxicity to mammalian cells - this occurs at concentrations higher than 60 mg/L of silver, while the cytotoxic level of ionic silver is much more lower (approx. 1 mg/L). Moreover, the silver NPs exhibit lower acute ecotoxicity against the eukaryotic organisms such as Paramecium caudatum, Monoraphidium sp. and D. melanogaster. The silver NPs are toxic to these organisms at the concentrations higher than 30 mg/L of silver. On contrary, ionic silver retains its cytoxicity and ecotoxicity even at the concentration equal to 1 mg/L. The performed experiments demonstrate significantly lower toxicity of silver NPs against the eukaryotic organisms than against the prokaryotic organisms.

  19. Biosynthesis, characterization and antimicrobial action of silver nanoparticles from root bark extract of Berberislycium Royle.

    Science.gov (United States)

    Mehmood, Ansar; Murtaza, Ghulam; Bhatti, Tariq Mahmood; Kausar, Rehana; Ahmed, Muhammad Jamil

    2016-01-01

    Various biological methods are being recognized for the fabrication of silver nanoparticles, which are used in several fields. The phytosynthesis of nanoparticles came out as a cost effective and enviro-friendly approach. When root bark extract of Berberis lycium was treated with silver ions, they reduced to silver nanoparticles, which were spherical, crystalline, size ranged from 10-100nm and capped by biomolecules. Synthesized silver nanoparticles were characterized by UV-visible spectroscopy, Scanning Electron Microscopy (SEM), Energy Dispersive X-ray Spectroscopy (EDX), Transmission Electron Microscopy (TEM), X-Ray Diffraction (XRD) and Fourier Transform Infra Red Spectroscopy (FTIR). The plant mediated synthesized silver nanoparticles showed pronounced antimicrobial activities against both Gram negative bacteria (Escherichia coli, Klebseilla pneumoniae, Pseudomonas aeruginosa) and Gram positive bacteria (Staphylococcus aureus and Bacillus subtilis). The plant mediated process proved to be non-toxic and low cost contender as reducing agent for synthesizing stable silver nanoparticles.

  20. Structural distortions in 5-10 nm silver nanoparticles under high pressure

    Energy Technology Data Exchange (ETDEWEB)

    Koski, Kristie J.; Kamp, Noelle M.; Kunz, Martin; Knight, Jason K.; Alivisatos, A.P.; Smith, R.K.

    2008-10-13

    We present experimental evidence that silver nanoparticles in the size range of 5-10 nm undergo a reversible structural transformation under hydrostatic pressures up to 10 GPa. We have used x-ray diffraction with a synchrotron light source to investigate pressure-dependent and size-dependent trends in the crystal structure of silver nanoparticles in a hydrostatic medium compressed in a diamond-anvil cell. Results suggest a reversible linear pressure-dependent rhombohedral distortion which has not been previously observed in bulk silver. We propose a mechanism for this transition that considers the bond-length distribution in idealized multiply twinned icosahedral particles. To further support this hypothesis, we also show that similar measurements of single-crystal platinum nanoparticles reveal no such distortions.

  1. Photocatalytic activity of biogenic silver nanoparticles synthesized using potato (Solanum tuberosum) infusion.

    Science.gov (United States)

    Roy, Kaushik; Sarkar, C K; Ghosh, C K

    2015-07-05

    In this study, we have reported a fast and eco-benign procedure to synthesis silver nanoparticle at room temperature using potato (Solanum tuberosum) infusion along with the study of its photocatalytic activity on methyl orange dye. After addition of potato infusion to silver nitrate solution, the color of the mixture changed indicating formation of silver nanoparticles. Time dependent UV-Vis spectra were obtained to study the rate of nanoparticle formation with time. Purity and crystallinity of the biogenic silver nanoparticles were examined by X-ray diffraction (XRD). Average size and morphology of the nanoparticles were characterized by dynamic light scattering (DLS) and transmission electron microscopy (TEM). Fourier transform infra-red spectroscopy (FTIR) was employed to detect functional bio-molecules responsible that contribute to the reduction and capping of biosynthesized Ag nanoparticles. Further, these synthesized nanoparticles were used to investigate their ability to degrade methyl orange dye under sunlight irradiation and the results showed effective photocatalytic property of these biogenic silver nanoparticles. Copyright © 2015 Elsevier B.V. All rights reserved.

  2. Biosynthesis of silver nanoparticles using Ocimum sanctum (Tulsi) leaf extract and screening its antimicrobial activity

    Science.gov (United States)

    Singhal, Garima; Bhavesh, Riju; Kasariya, Kunal; Sharma, Ashish Ranjan; Singh, Rajendra Pal

    2011-07-01

    Development of green nanotechnology is generating interest of researchers toward ecofriendly biosynthesis of nanoparticles. In this study, biosynthesis of stable silver nanoparticles was done using Tulsi ( Ocimum sanctum) leaf extract. These biosynthesized nanoparticles were characterized with the help of UV-vis spectrophotometer, Atomic Absorption Spectroscopy (AAS), Dynamic light scattering (DLS), X-ray diffraction (XRD), Fourier transform infrared spectroscopy (FTIR), and Transmission electron microscopy (TEM). Stability of bioreduced silver nanoparticles was analyzed using UV-vis absorption spectra, and their antimicrobial activity was screened against both gram-negative and gram-positive microorganisms. It was observed that O. sanctum leaf extract can reduce silver ions into silver nanoparticles within 8 min of reaction time. Thus, this method can be used for rapid and ecofriendly biosynthesis of stable silver nanoparticles of size range 4-30 nm possessing antimicrobial activity suggesting their possible application in medical industry.

  3. Biosynthesis of silver nanoparticles using Ocimum sanctum (Tulsi) leaf extract and screening its antimicrobial activity

    International Nuclear Information System (INIS)

    Singhal, Garima; Bhavesh, Riju; Kasariya, Kunal; Sharma, Ashish Ranjan; Singh, Rajendra Pal

    2011-01-01

    Development of green nanotechnology is generating interest of researchers toward ecofriendly biosynthesis of nanoparticles. In this study, biosynthesis of stable silver nanoparticles was done using Tulsi (Ocimum sanctum) leaf extract. These biosynthesized nanoparticles were characterized with the help of UV–vis spectrophotometer, Atomic Absorption Spectroscopy (AAS), Dynamic light scattering (DLS), X-ray diffraction (XRD), Fourier transform infrared spectroscopy (FTIR), and Transmission electron microscopy (TEM). Stability of bioreduced silver nanoparticles was analyzed using UV–vis absorption spectra, and their antimicrobial activity was screened against both gram-negative and gram-positive microorganisms. It was observed that O. sanctum leaf extract can reduce silver ions into silver nanoparticles within 8 min of reaction time. Thus, this method can be used for rapid and ecofriendly biosynthesis of stable silver nanoparticles of size range 4–30 nm possessing antimicrobial activity suggesting their possible application in medical industry.

  4. Oral toxicity of silver ions, silver nanoparticles and colloidal silver--a review.

    Science.gov (United States)

    Hadrup, Niels; Lam, Henrik R

    2014-02-01

    Orally administered silver has been described to be absorbed in a range of 0.4-18% in mammals with a human value of 18%. Based on findings in animals, silver seems to be distributed to all of the organs investigated, with the highest levels being observed in the intestine and stomach. In the skin, silver induces a blue-grey discoloration termed argyria. Excretion occurs via the bile and urine. The following dose-dependent animal toxicity findings have been reported: death, weight loss, hypoactivity, altered neurotransmitter levels, altered liver enzymes, altered blood values, enlarged hearts and immunological effects. Substantial evidence exists suggesting that the effects induced by particulate silver are mediated via silver ions that are released from the particle surface. With the current data regarding toxicity and average human dietary exposure, a Margin of Safety calculation indicates at least a factor of five before a level of concern to the general population is reached. Copyright © 2013 Elsevier Inc. All rights reserved.

  5. Oral toxicity of silver ions, silver nanoparticles and colloidal silver – a review

    DEFF Research Database (Denmark)

    Hadrup, Niels; Lam, Henrik Rye

    2014-01-01

    Orally administered silver has been described to be absorbed in a range of 0.4-18% in mammals with a human value of 18%. Based on findings in animals, silver seems to be distributed to all of the organs investigated, with the highest levels being observed in the intestine and stomach. In the skin......, silver induces a blue-grey discoloration termed argyria. Excretion occurs via the bile and urine. The following dose-dependent animal toxicity findings have been reported: death, weight loss, hypoactivity, altered neurotransmitter levels, altered liver enzymes, altered blood values, enlarged hearts...... and immunological effects. Substantial evidence exists suggesting that the effects induced by particulate silver are mediated via silver ions that are released from the particle surface. With the current data regarding toxicity and average human dietary exposure, a Margin of Safety calculation indicates at least...

  6. Green synthesis of silver nanoparticles using Alternanthera dentata leaf extract at room temperature and their antimicrobial activity.

    Science.gov (United States)

    Kumar, Deenadayalan Ashok; Palanichamy, V; Roopan, Selvaraj Mohana

    2014-06-05

    A green rapid biogenic synthesis of silver nanoparticles AgNPs using Alternanthera dentata (A. dentata) aqueous extract was demonstrated in this present study. The formation of silver nanoparticles was confirmed by Surface Plasmon Resonance (SPR) at 430nm using UV-visible spectrophotometer. The reduction of silver ions to silver nanoparticles by A. dentata extract was completed within 10min. Synthesized nanoparticles were characterized using UV-visible spectroscopy; Fourier transformed infrared spectroscopy (FT-IR), X-ray diffraction (XRD), scanning electron microscopy and transmission electron microscopy (TEM). The extracellular silver nanoparticles synthesis by aqueous leaf extract demonstrates rapid, simple and inexpensive method comparable to chemical and microbial methods. The colloidal solution of silver nanoparticles were found to exhibit antibacterial activity against Escherichia coli, Pseudomonas aeruginosa, Klebsiella pneumonia and, Enterococcus faecalis. Copyright © 2014 Elsevier B.V. All rights reserved.

  7. Biosorption of silver cations onto Lactococcus lactis and Lactobacillus casei isolated from dairy products.

    Directory of Open Access Journals (Sweden)

    Maciej Milanowski

    Full Text Available The current work deals with the phenomenon of silver cations uptake by two kinds of bacteria isolated from dairy products. The mechanism of sorption of silver cations by Lactococcus lactis and Lactobacillus casei bacteria was investigated. Inductively coupled plasma-mass spectrometry (ICP-MS was used for determination of silver concentration sorbed by bacteria. Analysis of charge distribution was conducted by diffraction light scattering method. Changes in the ultrastructure of Lactococcus lactis and Lactobacillus casei cells after treatment with silver cations were investigated using transmission electron microscopy observation. Molecular spectroscopy methods, namely Fourier transform-infrared spectroscopy (FT-IR and matrix-assisted laser desorption/ionization mass spectrometry (MALDI MS were employed for description of the sorption mechanism. Moreover, an analysis of volatile organic compounds (VOCs extracted from bacterial cells was performed.

  8. Size-dependent structure of silver nanoparticles under high pressure

    Energy Technology Data Exchange (ETDEWEB)

    Koski, Kristie Jo [Univ. of California, Berkeley, CA (United States)

    2008-12-31

    Silver noble metal nanoparticles that are<10 nm often possess multiply twinned grains allowing them to adopt shapes and atomic structures not observed in bulk materials. The properties exhibited by particles with multiply twinned polycrystalline structures are often far different from those of single-crystalline particles and from the bulk. I will present experimental evidence that silver nanoparticles<10 nm undergo a reversible structural transformation under hydrostatic pressures up to 10 GPa. Results for nanoparticles in the intermediate size range of 5 to 10 nm suggest a reversible linear pressure-dependent rhombohedral distortion which has not been previously observed in bulk silver. I propose a mechanism for this transitiion that considers the bond-length distribution in idealized multiply twinned icosahedral particles. Results for nanoparticles of 3.9 nm suggest a reversible linear pressure-dependent orthorhombic distortion. This distortion is interpreted in the context of idealized decahedral particles. In addition, given these size-dependent measurements of silver nanoparticle compression with pressure, we have constructed a pressure calibration curve. Encapsulating these silver nanoparticles in hollow metal oxide nanospheres then allows us to measure the pressure inside a nanoshell using x-ray diffraction. We demonstrate the measurement of pressure gradients across nanoshells and show that these nanoshells have maximum resolved shear strengths on the order of 500 MPa to IGPa.

  9. Antioxidant properties of biohybrids based on liposomes and sage silver nanoparticles.

    Science.gov (United States)

    Barbinta-Patrascu, Marcela Elisabeta; Bunghez, Ioana-Raluca; Iordache, Stefan Marian; Badea, Nicoleta; Fierascu, Radu-Claudiu; Ion, Rodica Mariana

    2013-03-01

    This paper is aimed to describe a simple and rapid eco-friendly bottom-up approach for the preparation of antioxidant silver bionanostructures using a leaf extract from sage (Salvia officinalis L.). The bioreduction property of sage in the synthesis of silver nanoparticles was investigated by UV-VIS and Attenuated Total Reflectance Fourier Transform Infrared spectroscopy. During their preparation, the particle size analysis was performed by using Dynamic Light Scattering technique. Ultrasonic irradiation was used to obtain sage silver nanoparticles. The morphology (size and shape) of the herbal silver nanoparticles was evaluated by Scanning Electron Microscopy that revealed the formation of spherical phytonanoparticles with size less than 80 nm. In order to increase their stability and their biocompatibility, the sage silver nanoparticles were introduced in two types of liposomes: soybean lecithin- and Chla-DPPC-lipid vesicles which were prepared by thin film hydration method. X-Ray Fluorescence analysis confirmed the silver presence in liposomes/sage-AgNPs biohybrids. The stability of liposomes/herbal AgNPs bioconstructs was checked by zeta potential measurements. The most stable biohybrids: Chla-DPPC/sage-AgNPs with zeta potential value of -34.2 mV, were characterized by Atomic Force Microscopy revealing the spherical and quasi-spherical shaped profiles of these nanobiohybrids with size less than 96 nm. The antioxidant activity of the silver bionanostructures was evaluated using chemiluminescence assay. The developed eco-friendly silver phytonanostructures based on lipid membranes, nanosilver and sage extract, manifest strong antioxidant properties (between 86.5% and 98.6%).

  10. Synthesis of flexirubin-mediated silver nanoparticles using Chryseobacterium artocarpi CECT 8497 and investigation of its anticancer activity

    International Nuclear Information System (INIS)

    Venil, Chidambaram Kulandaisamy; Sathishkumar, Palanivel; Malathi, Mahalingam; Usha, Rajamanickam; Jayakumar, Rajarajeswaran; Yusoff, Abdull Rahim Mohd; Ahmad, Wan Azlina

    2016-01-01

    In this work, the synthesis of silver nanoparticles from a pigment produced by a recently-discovered bacterium, Chryseobacterium artocarpi CECT 8497, was achieved, followed by an investigation of its anticancer properties. The bacterial pigment was identified as flexirubin following NMR ("1H NMR and "1"3C NMR), UV–Vis, and LC–MS analysis. An aqueous silver nitrate solution was treated with isolated flexirubin to produce silver nanoparticles. The synthesised silver nanoparticles were subsequently characterised by UV–Vis spectroscopy, Scanning Electron Microscopy (SEM), Energy Dispersive X-ray Spectroscopy (EDX), X-Ray Diffraction (XRD), and Fourier Transform Infrared (FTIR) Spectroscopy methodologies. Furthermore, the anticancer effects of synthesised silver nanoparticles in a human breast cancer cell line (MCF-7) were evaluated. The tests showed significant cytotoxicity activity of the silver nanoparticles in the cultured cells, with an IC50 value of 36 μg mL"−"1. This study demonstrates that silver nanoparticles, synthesised from flexirubin from C. artocarpi CECT 8497, may have potential as a novel chemotherapeutic agent. - Highlights: • First report on flexirubin mediated silver nanoparticles • Silver nanoparticles synthesised using flexirubin • Flexirubin mediated silver nanoparticles found to possess in vitro anti-cancer activity

  11. Synthesis of flexirubin-mediated silver nanoparticles using Chryseobacterium artocarpi CECT 8497 and investigation of its anticancer activity

    Energy Technology Data Exchange (ETDEWEB)

    Venil, Chidambaram Kulandaisamy, E-mail: ckvenil@gmail.com [Department of Chemistry, Faculty of Science, Universiti Teknologi Malaysia, 81310 Skudai, Johor Bahru (Malaysia); Sathishkumar, Palanivel [Centre for Environmental Sustainability and Water Security (IPASA), Research Institute for Sustainable Environment (RISE), Universiti Teknologi Malaysia, 81310 Skudai, Johor Bahru (Malaysia); Malathi, Mahalingam [Department of Chemistry, Bannari Amman Institute of Technology, Sathyamangalam 638 401, Tamil Nadu (India); Usha, Rajamanickam [Department of Microbiology, Karpagam University, Coimbatore 641 023, Tamil Nadu (India); Jayakumar, Rajarajeswaran [Department of Molecular Medicine, Faculty of Medicine, University of Malaya, 50603 Kuala Lumpur (Malaysia); Yusoff, Abdull Rahim Mohd [Centre for Environmental Sustainability and Water Security (IPASA), Research Institute for Sustainable Environment (RISE), Universiti Teknologi Malaysia, 81310 Skudai, Johor Bahru (Malaysia); Ahmad, Wan Azlina, E-mail: azlina@kimia.fs.utm.my [Department of Chemistry, Faculty of Science, Universiti Teknologi Malaysia, 81310 Skudai, Johor Bahru (Malaysia)

    2016-02-01

    In this work, the synthesis of silver nanoparticles from a pigment produced by a recently-discovered bacterium, Chryseobacterium artocarpi CECT 8497, was achieved, followed by an investigation of its anticancer properties. The bacterial pigment was identified as flexirubin following NMR ({sup 1}H NMR and {sup 13}C NMR), UV–Vis, and LC–MS analysis. An aqueous silver nitrate solution was treated with isolated flexirubin to produce silver nanoparticles. The synthesised silver nanoparticles were subsequently characterised by UV–Vis spectroscopy, Scanning Electron Microscopy (SEM), Energy Dispersive X-ray Spectroscopy (EDX), X-Ray Diffraction (XRD), and Fourier Transform Infrared (FTIR) Spectroscopy methodologies. Furthermore, the anticancer effects of synthesised silver nanoparticles in a human breast cancer cell line (MCF-7) were evaluated. The tests showed significant cytotoxicity activity of the silver nanoparticles in the cultured cells, with an IC50 value of 36 μg mL{sup −1}. This study demonstrates that silver nanoparticles, synthesised from flexirubin from C. artocarpi CECT 8497, may have potential as a novel chemotherapeutic agent. - Highlights: • First report on flexirubin mediated silver nanoparticles • Silver nanoparticles synthesised using flexirubin • Flexirubin mediated silver nanoparticles found to possess in vitro anti-cancer activity.

  12. Green synthesis of silver nanoparticles from marigold flower and its synergistic antimicrobial potential

    Directory of Open Access Journals (Sweden)

    Hemali Padalia

    2015-09-01

    Full Text Available In the present study, silver nanoparticles were synthesized using flower broth of Tagetes erecta as reductant by a simple and eco-friendly route. The aqueous silver ions when exposed to flower broth were reduced and resulted in green synthesis of silver nanoparticles. The silver nanoparticles were characterized by UV–visible spectroscopy, zeta potential, Fourier transform infra-red spectroscopy (FTIR, X-ray diffraction, Transmission electron microscopy (TEM analysis, Energy dispersive X-ray analysis (EDX and selected area electron diffraction (SAED pattern. UV–visible spectrum of synthesized silver nanoparticles showed maximum peak at 430 nm. TEM analysis revealed that the particles were spherical, hexagonal and irregular in shape and size ranging from 10 to 90 nm and Energy dispersive X-ray (EDX spectrum confirmed the presence of silver metal. Synergistic antimicrobial potential of silver nanoparticles was evaluated with various commercial antibiotics against Gram positive (Staphylococcus aureus and Bacillus cereus, Gram negative (Escherichia coli and Pseudomonas aeruginosa bacteria and fungi (Candida glabrata, Candida albicans, Cryptococcae neoformans. The antifungal activity of AgNPs with antibiotics was better than antibiotics alone against the tested fungal strains and Gram negative bacteria, thus signification of the present study is in production of biomedical products.

  13. Preparation and characterization of silver loaded montmorillonite modified with sulfur amino acid

    Energy Technology Data Exchange (ETDEWEB)

    Li, Tian, E-mail: phdlitian@163.com; Lin, Oulian; Lu, Zhiyuan; He, Liuimei; Wang, Xiaosheng

    2014-06-01

    The Na{sup +} montmorillonite (MMT) was modified with sulfur containing amino acid (L-cystine, L-cysteine or L-methionine) and characterized by energy dispersive spectrometer (EDS), X-ray diffraction (XRD) and Fourier transform infrared spectrum (FT-IR). The results showed the modification was smooth and the surface condition of MMT was changed with sulfur containing groups. Then silver was loaded on the modified MMTs via ion-exchange reaction under microwave irradiation, the spectra of X-ray photoelectron spectroscopy (XPS), EDS and FT-IR confirmed the successful loading of massive silver and the strong interaction between sulfur and silver, the silver loaded L-cystine modified MMT (Ag@AA-MMT-3) with a silver content of 10.93 wt% was the highest of all. Further more, the Ag@AA-MMT-3 was under the irradiation of a UV lamp to turn silver ions to silver nano particles (Ag NPs). The XPS, specific surface area (SSA), transmission electron microscopy (TEM), XRD patterns and UV–vis spectra proved the existence of uniform nano scaled metallic Ag NPs. By contrast, the UV irradiated Ag@AA-MMT-3 (Ag@AA-MMT-UV) showed a much better slow release property than Ag@AA-MMT-3 or Ag@MMT. The Ag@AA-MMT-UV showing a large inhibition zone and high inhibition ratio presented very good antibacterial property.

  14. Biogenic silver nanoparticles using Rhinacanthus nasutus leaf extract: synthesis, spectral analysis, and antimicrobial studies.

    Science.gov (United States)

    Pasupuleti, Visweswara Rao; Prasad, T N V; Shiekh, Rayees Ahmad; Balam, Satheesh Krishna; Narasimhulu, Ganapathi; Reddy, Cirandur Suresh; Ab Rahman, Ismail; Gan, Siew Hua

    2013-01-01

    Nanotechnology is gaining momentum due to its ability to transform metals into nanoparticles. The synthesis, characterization, and applications of biologically synthesized nanomaterials have become an important branch of nanotechnology. Plant extracts are a cost-effective, ecologically friendly, and efficient alternative for the large-scale synthesis of nanoparticles. In this study, silver nanoparticles (AgNps) were synthesized using Rhinacanthus nasutus leaf extract. After exposing the silver ions to the leaf extract, the rapid reduction of silver ions led to the formation of AgNps in solution. The synthesis was confirmed by ultraviolet-visible spectroscopy, Fourier transform infrared spectroscopy, and transmission electron microscopy. The in vitro antimicrobial activity of the AgNps synthesized using R. nasutus leaf extract was investigated against Bacillus subtilis, Staphylococcus aureus, Pseudomonas aeruginosa, Klebsiella pneumonia, Escherichia coli, Aspergillus niger, and Aspergillus flavus using a disc diffusion method. The AgNps showed potential activity against all of the bacterial strains and fungal colonies, indicating that R. nasutus has the potential to be used in the development of value-added products in the biomedical and nanotechnology-based industries.

  15. Synthesis and evaluation of antiviral activities of novel sonochemical silver nanorods against HIV and HSV viruses

    Directory of Open Access Journals (Sweden)

    Mazyar Etemadzade

    2016-11-01

    Full Text Available Objective: To evaluate the effect of novel sonochemical silver nanorods on HIV and herpes simplex virus type 1 (HSV-1 viruses in human cervical cancer HeLa cells. Methods: The formation of silver nanorods conjugated with sodium 2-mercaptoethane sulfonate (Ag-MES was characterized by scanning electron microscopy, Fourier transform infrared spectroscopy and thermal gravimetric analysis. The antiviral activity of this Ag-MES was examined against HIV and HSV-1 virus replication. Results: The characterizations of Ag-MES and physiochemical structure were determined by scanning electron microscopy, Fourier transform infrared spectroscopy and thermal gravimetric analysis. Approximately entire viral replication was inhibited by Ag-MES at 10 µmol/mL concentration. About 90% of HSV virions failed to replicate in the present of this concentration of nanorods. However, HIV showed more sensitivity to Ag-MES than HSV-1. Conclusions: According to the obtained data, the synthesized sonochemical silver nanorod in this study is a promising candidate for further drug discovery investigation.

  16. Liquid radiation detectors based on nano-silver surface plasmon resonance phenomena

    International Nuclear Information System (INIS)

    Puiso, J.; Laurikaitiene, J.; Adliene, D.; Prosycevas, I.

    2010-01-01

    The rapid development of micro- and nano-structures containing silver nano-particles is based on their unique physical properties. Despite the new applications of silver nano-particles in nano-medicine are under heavy discussions, silver nano-particles could be used in liquid radiation detectors thanks to the irradiation-induced surface plasmon resonance (SPR) phenomena observed in the colloidal solutions. Silver nitrate (1 mM AgNO 3 ) and sodium citrate (1 wt% and 5 wt% C 6 H 5 O 7 Na 3 ) were used as precursors for the fabrication of colloidal solutions. Prepared solutions were exposed to gamma-rays from a 60 Co gamma therapy unit 'Rokus-M' to varying absorbed doses, from 2 to 250 Gy. A UV/VIS/NIR spectrometer (Avantes-2048) was used for the measurement of the optical properties (absorbance) of the silver solutions. It was found that an initial absorbed dose of 2 Gy induced the formation of spherical silver nano-particles as it was indicated in the absorbance spectrum of the solution, which had a well-pronounced absorption maximum at the wavelength of 410 nm. There is a potential to measure absorbed doses down to around 20 mGy. The SPR peaks at the wavelengths of 500-700 nm were found at the highest investigated doses > 100 Gy, indicating the presence of silver nano-rods. The colour of colloidal solutions ranged from pale yellow to green and was dependent on the absorbed dose. The investigation has shown that density, size and shape of synthesised silver nano-particles are dependent on the absorbed dose and that shape transformations of the particles due to irradiation are possible. Application of colloidal solutions containing silver nano-particles for dosimetric purposes is discussed on the basis of the obtained results. (authors)

  17. Enantioselective silver nanoclusters: Preparation, characterization and photoluminescence spectroscopy

    Energy Technology Data Exchange (ETDEWEB)

    Farrag, Mostafa, E-mail: mostafafarrag@aun.edu.eg

    2016-09-01

    Herein, we report a new wet-synthesis method to separate some water-soluble chiral silver nanoclusters with high yield. The cluster material was obtained by the reduction of silver nitrate with NaBH{sub 4} in the presence of three ligands L-penicillamine (L-pen), D-penicillamine (D-pen) and racemic mixture of penicillamine (rac-pen), functioning as capping ligand. For characterizing all silver cluster samples, the particle size was assessed by transmission electron microscopy (TEM) and powder X-ray diffraction (XRD) and their average chemical formula was determined from thermogravimetric analysis (TGA) and elemental analysis (EA). The particles sizes of all three clusters are 2.1 ± 0.2 nm. The optical properties of the samples were studied by four different methods: UV-vis spectroscopy, Fourier transform infrared spectroscopy (FTIR), photoluminescence spectroscopy (PL) and circular dichroism (CD) spectroscopy. The spectra are dominated by the typical and intense plasmon peak at 486 nm accompanied by a small shoulder at 540 nm. Infrared spectroscopy was measured for the free ligand and protected silver nanoclusters, where the disappearance of the S-H vibrational band (2535–2570 cm{sup −1}) in the silver nanoclusters confirmed anchoring of ligand to the cluster surface through the sulfur atom. PL studies yielded the fluorescent properties of the samples. The main focus of this work, however, lies in the chirality of the particles. For all silver clusters CD spectra were recorded. While for clusters capped with one of the two enantiomers (D- or L-form) typical CD spectra were observed, no significant signals were detected for a racemic ligand mixture. Furthermore, silver clusters show quite large asymmetry factors (up to 3 × 10{sup −4}) in comparison to most other ligand protected clusters. These large factors and bands in the visible range of the spectrum suggest a strong chiral induction from the ligand to the metal core. Textural features of the

  18. Alternative Plasmonic Materials: Beyond Gold and Silver

    DEFF Research Database (Denmark)

    Naik, Gururaj V.; Shalaev, Vladimir M.; Boltasseva, Alexandra

    2013-01-01

    Materials research plays a vital role in transforming breakthrough scientific ideas into next‐generation technology. Similar to the way silicon revolutionized the microelectronics industry, the proper materials can greatly impact the field of plasmonics and metamaterials. Currently, research...... such as gold and silver, that exhibit metallic properties and provide advantages in device performance, design flexibility, fabrication, integration, and tunability. This review explores different material classes for plasmonic and metamaterial applications, such as conventional semiconductors, transparent...

  19. Antimicrobial effects of silver zeolite, silver zirconium phosphate silicate and silver zirconium phosphate against oral microorganisms

    Institute of Scientific and Technical Information of China (English)

    Sirikamon Saengmee-anupharb; Toemsak Srikhirin; Boonyanit Thaweboon; Sroisiri Thaweboon; Taweechai Amornsakchai; Surachai Dechkunakorn; Theeralaksna Suddhasthira

    2013-01-01

    Objective: To evaluate the antimicrobial activities of silver inorganic materials, including silver zeolite (AgZ), silver zirconium phosphate silicate (AgZrPSi) and silver zirconium phosphate (AgZrP), against oral microorganisms. In line with this objective, the morphology and structure of each type of silver based powders were also investigated. Methods: The antimicrobial activities of AgZ, AgZrPSi and AgZrP were tested against Streptococcus mutans, Lactobacillus casei, Candidaalbicans and Staphylococcus aureus using disk diffusion assay as a screening test. The minimum inhibitory concentration (MIC) and minimum lethal concentration (MLC) were determined using the modified membrane method. Scanning electron microscope and X-ray diffraction were used to investigate the morphology and structure of these silver materials. Results: All forms of silver inorganic materials could inhibit the growth of all test microorganisms. The MIC of AgZ, AgZrPSi and AgZrP was 10.0 g/L whereas MLC ranged between 10.0-60.0 g/L. In terms of morphology and structure, AgZrPSi and AgZrP had smaller sized particles (1.5-3.0 µm) and more uniformly shaped than AgZ. Conclusions: Silver inorganic materials in the form of AgZ, AgZrPSi and AgZrP had antimicrobial effects against all test oral microorganisms and those activities may be influenced by the crystal structure of carriers. These results suggest that these silver materials may be useful metals applied to oral hygiene products to provide antimicrobial activity against oral infection.

  20. Antimicrobial effects of silver zeolite,silver zirconium phosphate silicate and silver zirconium phosphate against oral microorganisms

    Institute of Scientific and Technical Information of China (English)

    Sirikamon; Saengmee-anupharb; Toemsak; Srikhirin; Boonyanit; Thaweboon; Sroisiri; Thaweboon; Taweechai; Amornsakchai; Surachai; Dechkunakorn; Theeralaksna; Suddhasthira

    2013-01-01

    Objective:To evaluate the antimicrobial activities of silver inorganic materials,including silver zeolite(AgZ),silver zirconium phosphate silicate(AgZrPSi)and silver zirconium phosphate(AgZrp),against oral microorganisms.In line with this objective,the morphology and structure of each type of silver based powders were also investigated.Methods:The antimicrobial activities of AgZ,AgZrPSi and AgZrP were tested against Streptococcus mutans,Lactobacillus casei,Candida albicans and Staphylococcus aureus using disk diffusion assay as a screening test.The minimum inhibitory concentration(MIC)and minimum lethal concentration(MLC)were determined using the modified membrane method.Scanning electron microscope and X-ray diffraction were used to investigate the morphology and structure of these silver materials.Results:All forms of silver inorganic materials could inhibit the growth of all test microorganisms.The MIC of AgZ,AgZrPSi and AgZrP was 10.0 g/L whereas MLC ranged between 10.0-60.0 g/L.In terms of morphology and structure.AgZrPSi and AgZrP had smaller sized particles(1.5-3.0μm)and more uniformly shaped than AgZ.Conclusions:Silver inorganic materials in the form of AgZ,AgZrPSi and AgZrP had antimicrobial effects against all test oral microorganisms and those activities may be influenced by the crystal structure of carriers.These results suggest that these silver materials may be useful metals applied to oral hygiene products to provide antimicrobial activity against oral infection.

  1. Green biosynthesis of silver nanoparticles using Curcuma longa tuber powder

    Science.gov (United States)

    Shameli, Kamyar; Ahmad, Mansor Bin; Zamanian, Ali; Sangpour, Parvanh; Shabanzadeh, Parvaneh; Abdollahi, Yadollah; Zargar, Mohsen

    2012-01-01

    Green synthesis of noble metal nanoparticles is a vastly developing area of research. Metallic nanoparticles have received great attention from chemists, physicists, biologists, and engineers who wish to use them for the development of a new-generation of nanodevices. In this study, silver nanoparticles were biosynthesized from aqueous silver nitrate through a simple and eco-friendly route using Curcuma longa tuber-powder extracts, which acted as a reductant and stabilizer simultaneously. Characterizations of nanoparticles were done using different methods, which included ultraviolet-visible spectroscopy, powder X-ray diffraction, transmission electron microscopy, scanning electron microscopy, energy-dispersive X-ray fluorescence spectrometry, and Fourier-transform infrared spectroscopy. The ultraviolet-visible spectrum of the aqueous medium containing silver nanoparticles showed an absorption peak at around 415 nm. Transmission electron microscopy showed that mean diameter and standard deviation for the formation of silver nanoparticles was 6.30 ± 2.64 nm. Powder X-ray diffraction showed that the particles are crystalline in nature, with a face-centered cubic structure. The most needed outcome of this work will be the development of value-added products from C. longa for biomedical and nanotechnology-based industries. PMID:23341739

  2. Antibacterial activity of silver nanoparticles synthesized from serine

    Energy Technology Data Exchange (ETDEWEB)

    Jayaprakash, N. [Catalysis and Nanomaterials Research Laboratory, Department of Chemistry, Loyola College, Chennai 600 034 (India); SRM Valliammai Engineering College, Department of Chemistry, Chennai 603 203 (India); Judith Vijaya, J., E-mail: jjvijayaloyola@yahoo.co.in [Catalysis and Nanomaterials Research Laboratory, Department of Chemistry, Loyola College, Chennai 600 034 (India); John Kennedy, L. [Materials Division, School of Advanced Sciences, VIT University, Chennai Campus, Chennai 600 048 (India); Priadharsini, K.; Palani, P. [Department of Center for Advanced Study in Botany, University of Madras, Guindy Campus, Chennai 600 025 (India)

    2015-04-01

    Silver nanoparticles (Ag NPs) were synthesized by a simple microwave irradiation method using polyvinyl pyrrolidone (PVP) as a capping agent and serine as a reducing agent. UV–Visible spectra were used to confirm the formation of Ag NPs by observing the surface plasmon resonance (SPR) band at 443 nm. The emission spectrum of Ag NPs showed an emission band at 484 nm. In the presence of microwave radiation, serine acts as a reducing agent, which was confirmed by Fourier transformed infrared (FT-IR) spectrum. High-resolution transmission electron microscopy (HR-TEM) and high-resolution scanning electron microscopy (HR-SEM) were used to investigate the morphology of the synthesized sample. These images showed the sphere-like morphology. The elemental composition of the sample was determined by the energy dispersive X-ray analysis (EDX). Selected area electron diffraction (SAED) was used to find the crystalline nature of the Ag NPs. The electrochemical behavior of the synthesized Ag NPs was analyzed by the cyclic voltammetry (CV). Antibacterial experiments showed that the prepared Ag NPs showed relatively similar antibacterial activities, when compared with AgNO{sub 3} against Gram-positive and Gram-negative bacteria. - Highlights: • Microwave irradiation method is used to synthesize silver nanoparticles. • Highly stable silver nanoparticles are produced from serine. • A detailed study of antibacterial activities is discussed. • Formation mechanism of silver microspheres has been proposed.

  3. Investigations on the Chemical Degradation of Silver Gelatine Prints

    Directory of Open Access Journals (Sweden)

    Maha Ahmed ALI

    2012-06-01

    Full Text Available Photographs are considered composite objects with complex chemical and physical structures. Therefore they are more prone to damage as compared to other objects. Chemical degradation is by far the most common decay form found among photographic collections. This study investigates the chemical degradation of silver gelatin prints (DOP and the reaction of the image, silver, gelatin, and paper to accelerated aging, to the action of light, and oxidizing gases, in terms of their physical and chemical nature. The test materials used are properly washed and poorly washed grayscale, black-and-white processed images on photographic paper (Black & White Photographic Paper BH 0 Bromofort 6P0661 Tropical from Forte Photochemical Company Vác, Hungary. After exposure, the results were studied by means of visual inspection, amino acid analyzer, Fourier transform infrared and transmission electron microscope. The results were compared with those of the control samples. Our study revealed that the image, silver, gelatin and photographic paper are greatly affected by oxidizing agents and that the effect increased if the photographic prints were inadequately washed at the time of their processing. Furthermore, our results indicated that an increased amount of ammonia and amino acid in the silver gelatin print is a reliable indicator of the degradation of its gelatine emulsion.

  4. Bio-synthesis and antimicrobial activity of silver nanoparticles using anaerobically digested parthenium slurry.

    Science.gov (United States)

    Adur, Alaknanda J; Nandini, N; Shilpashree Mayachar, K; Ramya, R; Srinatha, N

    2018-06-01

    Silver nanoparticles were prepared through eco-friendly, cost effective, bio-mediated technique using anaerobically digested Parthenium hysterophorous digested slurry (PDS) for the first time. The synthesized nanoparticles were characterized through different techniques such as UV-Vis spectrophotometer for optical properties; X-ray diffractometer (XRD), high resolution transmission electron spectroscopy (HR-TEM) and Fourier Transform Infra Red (FTIR) Spectroscopy for structural property investigations. It was observed that the prepared silver nanoparticles were crystallized in face centered cubic crystal structure with an average particle size of 19 nm as confirmed from XRD. Also HR-TEM studies reveal the formation of nano-sized silver particles with face centered cubic nano structure. In addition, absorption spectra exhibit Surface Plasmon Resonance (SPR) which suggests the formation of silver nanoparticles. FTIR results show the presence of different characteristic functional groups and their stretching / bending vibrations in turn responsible for the bioreduction of silver ions in Parthenium digested slurry. Further investigations on antimicrobial activity were done by subjecting the synthesized silver nanoparticles on E-coli and Pseudomonas as marker organisms for the group of gram negative bacteria by well plate method on enrichment media. The result obtained shows a clear zone of inhibition confirming the antibacterial activity. Overall, the investigated results confirm the biosynthesized silver nanoparticles are potential candidates for antimicrobial activity applications. Copyright © 2018 Elsevier B.V. All rights reserved.

  5. Polyol synthesis of silver nanoplates: The crystal growth mechanism based on a rivalrous adsorption

    International Nuclear Information System (INIS)

    Luo Xiaolin; Li Zongxiao; Yuan Chunlan; Chen Yashao

    2011-01-01

    Highlights: → Silver nanoplates have been successfully synthesized by polyol reduction in the presence of poly (vinylpyrrolidone) (PVP) and HNO 3 . → Due to the discovery of CN - ions in the solution, a mechanism for the anisotropic growth of silver nanoplates is systematically discussed. → TG, FT-IR and SERS were used to provide some direct evidences of rivalrous adsorption between PVP and CN - ions on the surface of the silver crystals. - Abstract: A polyol reducing approach has been applied to synthesize silver nanoplates with an average thickness of 50 nm and edge length of 3 μm in the presence of poly (vinylpyrrolidone) (PVP) and HNO 3 . X-ray diffraction (XRD), scanning electron microscopy (SEM), transmission electron microscropy (TEM), and electron diffraction are used to characterize these silver nanoplates. Findings indicate that the nanoplates are single crystals and with their basal plane as (1 1 1) lattice plane. On the basis of the results from thermogravimetric analysis (TG), Fourier transform infrared spectroscopy (FT-IR) and Raman spectroscopy, a crystal growth mechanism based on the rivalrous adsorption between PVP and CN - ions on the surface of silver nanoplates is supposed to explain the crystal anisotropic growth.

  6. Study of mechanism of enhanced antibacterial activity by green synthesis of silver nanoparticles

    Science.gov (United States)

    Parashar, Upendra Kumar; Kumar, Vinod; Bera, Tanmay; Saxena, Preeti S.; Nath, Gopal; Srivastava, Sunil K.; Giri, Rajiv; Srivastava, Anchal

    2011-10-01

    The extensive use of silver nanoparticles needs a synthesis process that is greener without compromising their properties. The present study describes a novel green synthesis of silver nanoparticles using Guava (Psidium guajava) leaf extract. In order to compare with the conventionally synthesized ones, we also prepared Ag-NPs by chemical reduction. Their optical and morphological characteristics were thoroughly investigated and tested for their antibacterial properties on Escherichia coli. The green synthesized silver nanoparticles showed better antibacterial properties than their chemical counterparts even though there was not much difference between their morphologies. Fourier transform infrared (FTIR) spectroscopic analysis of the used extract and as-synthesized silver nanoparticles suggests the possible reduction of Ag + by the water-soluble ingredients of the guava leaf like tannins, eugenol and flavonoids. The possible reaction mechanism for the reduction of Ag + has been proposed and discussed. The time-dependent electron micrographs and the simulation studies indicated that a physical interaction between the silver nanoparticles and the bacterial cell membrane may be responsible for this effect. Based on the findings, it seems very reasonable to believe that this greener way of synthesizing silver nanoparticles is not just an environmentally viable technique but it also opens up scope to improve their antibacterial properties.

  7. Study of mechanism of enhanced antibacterial activity by green synthesis of silver nanoparticles

    Energy Technology Data Exchange (ETDEWEB)

    Parashar, Upendra Kumar; Srivastava, Sunil K; Srivastava, Anchal [Department of Physics, Banaras Hindu University, Varanasi 221005 (India); Kumar, Vinod; Saxena, Preeti S [Department of Zoology, Banaras Hindu University, Varanasi 22005 (India); Bera, Tanmay [Department of Mechanical, Materials and Aerospace Engineering, University of Central Florida, Orlando, FL 32816 (United States); Nath, Gopal [Department of Microbiology, Institute of Medical Science, Banaras Hindu University, Varanasi 22005 (India); Giri, Rajiv, E-mail: anchalbhu@gmail.com [Department of Materials Science and Engineering, Norwegian University of Science and Technology, NO-7491 Trondheim (Norway)

    2011-10-14

    The extensive use of silver nanoparticles needs a synthesis process that is greener without compromising their properties. The present study describes a novel green synthesis of silver nanoparticles using Guava (Psidium guajava) leaf extract. In order to compare with the conventionally synthesized ones, we also prepared Ag-NPs by chemical reduction. Their optical and morphological characteristics were thoroughly investigated and tested for their antibacterial properties on Escherichia coli. The green synthesized silver nanoparticles showed better antibacterial properties than their chemical counterparts even though there was not much difference between their morphologies. Fourier transform infrared (FTIR) spectroscopic analysis of the used extract and as-synthesized silver nanoparticles suggests the possible reduction of Ag{sup +} by the water-soluble ingredients of the guava leaf like tannins, eugenol and flavonoids. The possible reaction mechanism for the reduction of Ag{sup +} has been proposed and discussed. The time-dependent electron micrographs and the simulation studies indicated that a physical interaction between the silver nanoparticles and the bacterial cell membrane may be responsible for this effect. Based on the findings, it seems very reasonable to believe that this greener way of synthesizing silver nanoparticles is not just an environmentally viable technique but it also opens up scope to improve their antibacterial properties.

  8. Removal of pathogenic bacteria from wastewater using silver nanoparticles synthesized by two fungal species

    Directory of Open Access Journals (Sweden)

    Mohammed Taha Moustafa

    2017-10-01

    Full Text Available Nanotechnology are fast advancing and currently became more effective than the conventional technologies used in water treatment that offers safe opportunities for using unconventional water supply sources. Fungi are more versatile in growth and metal tolerance in contrast to bacterial population. This work aims to demonstrate the extracellular synthesis of silver nanoparticle by using two filamentous fungi Penciillium Citreonigum Dierck and Scopulaniopsos brumptii Salvanet-Duval isolated from Lake Burullus, examine the biosynthesized nano-silver particles by UV–vis spectroscopy, transmission electron microscopy (TEM. The functional group of protein molecules surrounding AgNPs was identified using Fourier transform infrared (FTIR analysis. Check the antibacterial activity of biosynthesized silver nanoparticles at two concentrations (550.7 and 676.9 mg/l and interact it with bacteria for different durations (15, 60 and 120 min. Polyurethane foam was used as silver carrier and nano-silver solution for the removal of pathogenic bacteria in polluted water. The synthesized AgNPs showed an excellent antibacterial property on gram positive and gram negative bacterial strains.

  9. Excellent electrochemical performance of graphene-silver nanoparticle hybrids prepared using a microwave spark assistance process

    International Nuclear Information System (INIS)

    Shanmugharaj, A.M.; Ryu, Sung Hun

    2012-01-01

    Highlights: ► A simple synthesis route is explored in preparing graphene-metal nanoparticle hybrids using cost effective microwave radiation process. ► Electrochemical performance of the synthesized graphene-silver nanoparticle hybrids have been compared with graphite and silver nanoparticle based anode materials. ► Graphene-silver nanoparticle hybrid exhibits stable charge/discharge characteristics of 714 mAh g −1 and it is significantly higher compared to natural graphite and silver based electrodes. - Abstract: A simple method is described for the synthesis of graphene-silver nanoparticle hybrids from graphite and silver precursors using microwave spark ignition process. Adding ecofriendly free radical initiators, in the presence of hydrogen peroxide solution leads to the expansion of graphite to graphene nanosheets. Simultaneously, silver ions intercalated between the graphene layers are reduced to silver nanocrystals leading to the development of graphene-silver nanoparticle hybrids. Transmission electron microscopic (TEM) studies reveal the successful formation of graphene-silver nanoparticle hybrids. X-ray diffraction (XRD) shows that the silver nanoparticles formed on the graphene surfaces are face centered cubic crystals. The surface composition and functional groups present on the graphene-silver nanoparticle hybrids are corroborated using X-ray photoelectron spectroscopy (XPS) and Fourier Transform Infrared Spectroscopy (FT-IR). The lithium storage capacity of the synthesized material, when used as an anode material for rechargeable lithium secondary batteries is investigated. Its first specific discharge capacity is observed to be 580 mAh g −1 and this has been increased to 827 mAh g −1 , by incorporating the silver nanoparticles between the graphene platelets. The reversible capacity of the graphene-silver nanoparticle hybrids is observed to be 714 mAh g −1 , which is significantly higher compared to that of graphene (420 mAh g −1

  10. Electrically Conductive Silver Paste Obtained by Use of Silver Neodecanoate as Precursor

    Science.gov (United States)

    Shen, Longguang; Liu, Jianguo; Zeng, Xiaoyan; Ren, Zhao

    2015-02-01

    An electrically conductive silver paste has been prepared from an organometallic compound, silver neodecanoate, as silver precursor. The precursor was highly soluble in organic solvents and decomposed into metallic silver at low sintering temperatures (writing process, enabling production of silver lines on a substrate. The electrical resistivity of the silver lines was 9 × 10-6 Ω cm after sintering at 115°C for 60 min, 5.8 × 10-6 Ω cm when sintered at 150°C for 60 min, and 3 × 10-6 Ω cm when sintered above 300°C, values which are similar to those of bulk silver. Hence, the prepared paste can be successfully used on flexible substrates such as polymers.

  11. Microbial Biosynthesis of Silver Nanoparticles in Different Culture Media.

    Science.gov (United States)

    Luo, Ke; Jung, Samuel; Park, Kyu-Hwan; Kim, Young-Rok

    2018-01-31

    Microbial biosynthesis of metal nanoparticles has been extensively studied for the applications in biomedical sciences and engineering. However, the mechanism for their synthesis through microorganism is not completely understood. In this study, several culture media were investigated for their roles in the microbial biosynthesis of silver nanoparticles (AgNPs). The size and morphology of the synthesized AgNPs were analyzed by UV-vis spectroscopy, Fourier-transform-infrared (FT-IR), transmission electron microscopy (TEM), and dynamic light scattering (DLS). The results demonstrated that nutrient broth (NB) and Mueller-Hinton broth (MHB) among tested media effectively reduced silver ions to form AgNPs with different particle size and shape. Although the involved microorganism enhanced the reduction of silver ions, the size and shape of the particles were shown to mainly depend on the culture media. Our findings suggest that the growth media of bacterial culture play an important role in the synthesis of metallic nanoparticles with regard to their size and shape. We believe our findings would provide useful information for further exploration of microbial biosynthesis of AgNPs and their biomedical applications.

  12. Leaching of Silver from Silver-Impregnated Food Storage Containers

    Science.gov (United States)

    Hauri, James F.; Niece, Brian K.

    2011-01-01

    The use of silver in commercial products has proliferated in recent years owing to its antibacterial properties. Food containers impregnated with micro-sized silver promise long food life, but there is some concern because silver can leach out of the plastic and into the stored food. This laboratory experiment gives students the opportunity to…

  13. Electrospun polyacrylonitrile nanofibers loaded with silver nanoparticles by silver mirror reaction

    International Nuclear Information System (INIS)

    Shi, Yongzheng; Li, Yajing; Zhang, Jianfeng; Yu, Zhongzhen; Yang, Dongzhi

    2015-01-01

    The silver mirror reaction (SMR) method was selected in this paper to modify electrospun polyacrylonitrile (PAN) nanofibers, and these nanofibers loaded with silver nanoparticles showed excellent antibacterial properties. PAN nanofibers were first pretreated in AgNO 3 aqueous solution before the SMR process so that the silver nanoparticles were distributed evenly on the outer surface of the nanofibers. The final PAN nanofibers were characterized by scanning electron microscopy (SEM), energy dispersive spectrometer (EDS), transmission electron microscopy (TEM), TEM-selected area electron diffraction (SAED), X-ray diffraction (XRD) and thermogravimetric analysis (TGA). SEM, TEM micrographs and SAED patterns confirmed homogeneous dispersion of the silver nanoparticles which were composed of monocrystals with diameters 20–30 nm. EDS and XRD results showed that these monocrystals tended to form face-centered cubic single silver. TGA test indicated that the nanoparticles loaded on the nanofibers reached above 50 wt.%. This material was also evaluated by the viable cell-counting method. The results indicated that PAN nanofibers loaded with silver nanoparticles exhibited excellent antimicrobial activities against gram-negative Escherichia coli (E. coli), gram-positive Staphylococcus aureus (S. aureus) and the fungus Monilia albicans. Thus, this material had many potential applications in biomedical fields. - Highlights: • Silver mirror reaction was used to prepare nanofibers loaded with silver nanoparticles. • The SAED patterns demonstrated the monocrystallinity of silver nanocrystals. • The XRD results showed nanoparticles tended to be face-centered cubic single silver. • The material showed excellent antimicrobial activities against bacteria and fungi

  14. Characterization of n-TiO2 thin films modified with silver nanoparticles

    International Nuclear Information System (INIS)

    Cueto, L.F.; Sanchez-Cervantes, E.M.

    2010-01-01

    Carbon dioxide accumulation in the atmosphere has gained much attention and has reopened many research lines that initiated two or three decades ago. Electrochemical reduction represents one of the most discussed methods, especially where semiconductor and metal-semiconductor cathodes are used to achieve CO 2 transformation into higher-energy products. In the present work, the influence of silver nanoparticles upon CO 2 reduction on n-TiO 2 cathodes in aqueous media is presented. Silver nanoparticles with an average diameter of 250nm were deposited on n-TiO 2 surfaces by the electrochemical Double-Pulse Potential method. A Grazing-Incidence X-Ray Diffraction structural analysis is presented showing the presence of metallic silver, while Atomic Force Microscopy shows surface roughness and particle size before and after surface modification. These measurements were confirmed by Scanning-Electron Microscopy acquainting for the formation of metal particles on the n-TiO 2 surface. Enhancement of CO 2 reduction by the presence of silver on cathodes is shown by cyclic voltammetry. (author)

  15. Microwave-assisted hydrothermal synthesis of biocompatible silver sulfide nanoworms

    Science.gov (United States)

    Xing, Ruimin; Liu, Shanhu; Tian, Shufang

    2011-10-01

    In this study, silver sulfide nanoworms were prepared via a rapid microwave-assisted hydrothermal method by reacting silver nitrate and thioacetamide in the aqueous solution of the Bovine Serum Albumin (BSA) protein. The morphology, composition, and crystallinity of the nanoworms were characterized by field emission scanning electron microscopy (FESEM), X-ray powder diffraction (XRD), transmission electron microscopy (TEM), selected area electron diffraction (SAED), X-ray energy dispersive spectroscopy (EDS), and Fourier transform infrared (FTIR) spectroscopy. The results show that the nanoworms were assembled by multiple adjacent Ag2S nanoparticles and stabilized by a layer of BSA attached to their surface. The nanoworms have the sizes of about 50 nm in diameter and hundreds of nanometers in length. The analyses of high-resolution TEM and their correlative Fast Fourier Transform (FFT) indicate that the adjacent Ag2S nanoparticles grow by misoriented attachment at the connective interfaces to form the nanoworm structure. In vitro assays on the human cervical cancer cell line HeLa show that the nanoworms exhibit good biocompatibility due to the presence of BSA coating. This combination of features makes the nanoworms attractive and promising building blocks for advanced materials and devices.

  16. Highly water-dispersible silver sulfadiazine decorated with polyvinyl pyrrolidone and its antibacterial activities

    Energy Technology Data Exchange (ETDEWEB)

    Li, Ping; Wu, Longlong [Key Laboratory for Special Functional Materials, Henan University, Kaifeng 475004 (China); Li, Binjie, E-mail: lbj821@163.com [Key Laboratory for Special Functional Materials, Henan University, Kaifeng 475004 (China); Medical School of Henan University, Kaifeng 475004 (China); Zhao, Yanbao [Key Laboratory for Special Functional Materials, Henan University, Kaifeng 475004 (China); Qu, Peng [Department of Chemistry, Shangqiu Normal University, Shangqiu 476000 (China)

    2016-03-01

    Highly water-dispersible silver sulfadiazine (SSD) was prepared by liquid phase method with polyvinyl pyrrolidone (PVP) as a surface modification agent. The structure and morphology of the PVP-modified silver sulfadiazine (P-SSD) were investigated by X-ray powder diffraction (XRD), transmission electron microscopy (TEM), scanning electron microscopy (SEM), thermogravimetric analysis (TGA) and Fourier-transform infrared (FT-IR) spectrometry. The produced particles are ginkgo leaf-like architecture with the sizes of micron-nanometer. Due to hydrophilic PVP decorated on the surface, the P-SSD has excellent dispersion in water over a period of 24 h, which is obviously stable by comparison to that of the commercial silver sulfadiazine (C-SSD). In addition, the P-SSD exhibits good antibacterial activities against Escherichia coli (E. coli), Pseudomonas aeruginosa (P. aeruginosa) and Staphylococcus aureus (S. aureus). - Highlights: • Polyvinyl pyrrolidone decorated silver sulfadiazine was synthesized via a one-pot protocol. • The produced particles present ginkgo leaf-like architectures with sizes of micro-nanometer. • The resulted silver sulfadiazine has highly dispersible in water over a period of 24 h. • The obtained sliver sulfadiazine exhibits excellent antibacterial activities against E. coli, P. aeruginosa and S. aureus.

  17. Biosynthesis of silver nanoparticles using aqueous leaf extract of Thevetia peruviana Juss and its antimicrobial activities

    Science.gov (United States)

    Oluwaniyi, Omolara O.; Adegoke, Haleemat I.; Adesuji, Elijah T.; Alabi, Aderemi B.; Bodede, Sunday O.; Labulo, Ayomide H.; Oseghale, Charles O.

    2016-08-01

    Biosynthesizing of silver nanoparticles using microorganisms or various plant parts have proven more environmental friendly, cost-effective, energy saving and reproducible when compared to chemical and physical methods. This investigation demonstrated the plant-mediated synthesis of silver nanoparticles using the aqueous leaf extract of Thevetia peruviana. UV-Visible spectrophotometer was used to measure the surface plasmon resonance of the nanoparticles at 460 nm. Fourier Transform Infrared showed that the glycosidic -OH and carbonyl functional group present in extract were responsible for the reduction and stabilization of the silver nanoparticles. X ray diffraction, Scanning Electron Microscopy, Transmission Electron Microscopy and Selected Area Electron Diffraction analyses were used to confirm the nature, morphology and shape of the nanoparticles. The silver nanoparticles are spherical in shape with average size of 18.1 nm. The synthesized silver nanoparticles showed activity against fungal pathogens and bacteria. The zone of inhibition observed in the antimicrobial study ranged between 10 and 20 mm.

  18. Green synthesis of silver nanoparticles for the control of mosquito vectors of malaria, filariasis, and dengue.

    Science.gov (United States)

    Arjunan, Naresh Kumar; Murugan, Kadarkarai; Rejeeth, Chandrababu; Madhiyazhagan, Pari; Barnard, Donald R

    2012-03-01

    A biological method was used to synthesize stable silver nanoparticles that were tested as mosquito larvicides against Aedes aegypti, Anopheles stephensi, and Culex quinquefasciatus. Annona squamosa leaf broth (5%) reduced aqueous 1 mM AgNO₃ to stable silver nanoparticles with an average size of 450 nm. The structure and percentage of synthesized nanoparticles was characterized by using ultraviolet spectrophotometry, X-Ray diffraction, Fourier transform infrared spectroscopy, and scanning electron microscopy methods. The median lethal concentrations (LC₅₀) of silver nanoparticles that killed fourth instars of Ae. aegypti, Cx. quinquefasciatus, and An. stephensi were 0.30, 0.41, and 2.12 ppm, respectively. Adult longevity (days) in male and female mosquitoes exposed as larvae to 0.1 ppm silver nanoparticles was reduced by ~30% (p<0.05), whereas the number of eggs laid by females exposed as larvae to 0.1 ppm silver nanoparticles decreased by 36% (p<0.05).

  19. Synthesis of monodispersed silver nanoparticles using Hibiscus cannabinus leaf extract and its antimicrobial activity

    Science.gov (United States)

    Bindhu, M. R.; Umadevi, M.

    2013-01-01

    Synthesis of silver nanoparticles using leaf extract of Hibiscus cannabinus has been investigated. The influences of different concentration of H. cannabinus leaf extract, different metal ion concentration and different reaction time on the above cases on the synthesis of nanoparticles were evaluated. The synthesized nanoparticles were characterized using UV-vis spectroscopy, Fourier transform infrared spectroscopy (FTIR), X-ray diffraction (XRD) and Transmission Electron Microscopy (TEM). The prepared silver nanoparticles were monodispersed, spherical in shape with the average particle size of 9 nm and shows surface plasmon peak at 446 nm. The study also reveals that the ascorbic acid present in H. cannabinus leaf extract has been used as reducing agent. The prepared silver nanoparticle shows good antimicrobial activity against Escherichia coli, Proteus mirabilis and Shigella flexneri.

  20. Synthesis of Silver Nanoparticles Using Buchu Plant Extracts and Their Analgesic Properties

    Directory of Open Access Journals (Sweden)

    Herbert Chiguvare

    2016-06-01

    Full Text Available We herein report for the first time the synthesis and analgesic properties of silver nanoparticles (Ag-NPs using buchu plant extract. The as-synthesised Ag-NPs at different temperatures were characterised by UV-Vis spectroscopy, Fourier transform infra-red spectroscopy (FTIR and transmission transform microscopy (TEM to confirm the formation of silver nanoparticles. Phytochemical screening of the ethanolic extract revealed the presence of glycosides, proteins, tannins, alkaloids, flavonoids and saponins. The absorption spectra showed that the synthesis is temperature and time dependent. The TEM analysis showed that the as-synthesised Ag-NPs are polydispersed and spherical in shape with average particle diameter of 19.95 ± 7.76 nm while the FTIR results confirmed the reduction and capping of the as-synthesised Ag-NPs by the phytochemicals present in the ethanolic extract. The analgesic study indicated that the combined effect of the plant extract and Ag-NPs is more effective in pain management than both the aspirin drug and the extract alone.

  1. In-situ photo-assisted deposition of silver particles on hydrogel fibers for antibacterial applications

    International Nuclear Information System (INIS)

    Raho, Riccardo; Paladini, Federica; Lombardi, Fiorella Anna; Boccarella, Sandro; Zunino, Benedetta; Pollini, Mauro

    2015-01-01

    Silver nanoparticles (AgNPs) have attracted intensive research interest and have been recently incorporated in polymers, medical devices, hydrogels and burn dressings to control the proliferation of microorganisms. In this study a novel silver antibacterial coating was deposited for the first time on hydrogel fibers through an in-situ photo-chemical reaction. Hydrogel blends obtained by mixing different percentages of silver-treated and untreated fibers were characterized by thermogravimetric analysis (TGA), Fourier transform infrared spectroscopy (FT-IR), scanning electron microscopy (SEM) and energy dispersive X-ray spectroscopy (EDX). Four different fluids, such as phosphate buffered saline (PBS), simulated body fluid (SBF), chemical simulated wound fluid (cSWF), and deionized water (DI water), were used for evaluating the swelling properties. The results obtained confirmed that the presence of silver did not affect the properties of the hydrogel. Moreover, the results obtained through inductively coupled plasma mass spectrometry (ICP-MS) demonstrated very low silver release values, thus indicating the perfect adhesion of the silver coating to the substrate. Good antibacterial capabilities were demonstrated by any hydrogel blend on Escherichia coli (E. coli) and Staphylococcus aureus (S. aureus) through agar diffusion tests and optical density readings. - Highlights: • An innovative nano-silver deposition technique was adopted on hydrogel fibers. • Antibacterial effects was verified by agar diffusion and optical density tests. • The swelling properties were investigated using 4 different fluids. • Hydrogel blends with different percentages of silver-treated fibers were compared

  2. In-situ photo-assisted deposition of silver particles on hydrogel fibers for antibacterial applications

    Energy Technology Data Exchange (ETDEWEB)

    Raho, Riccardo [Department of Engineering for Innovation, University of Salento, Via per Monteroni, 73100 Lecce (Italy); CBN, Center for Biomolecular Nanotechnologies, Fondazione Istituto Italiano di Tecnologia, Via Barsanti, 73010 Arnesano, Lecce (Italy); Paladini, Federica; Lombardi, Fiorella Anna [Department of Engineering for Innovation, University of Salento, Via per Monteroni, 73100 Lecce (Italy); Boccarella, Sandro [Megatex S.p.A., Via Cima D' Aosta, 73040 Melissano, Lecce (Italy); Zunino, Benedetta [Università Cattolica del Sacro Cuore, Largo Francesco Vito 1, 00198 Roma (Italy); Pollini, Mauro, E-mail: mauro.pollini@unisalento.it [Department of Engineering for Innovation, University of Salento, Via per Monteroni, 73100 Lecce (Italy); Silvertech Ltd., Via per Monteroni, 73100 Lecce (Italy)

    2015-10-01

    Silver nanoparticles (AgNPs) have attracted intensive research interest and have been recently incorporated in polymers, medical devices, hydrogels and burn dressings to control the proliferation of microorganisms. In this study a novel silver antibacterial coating was deposited for the first time on hydrogel fibers through an in-situ photo-chemical reaction. Hydrogel blends obtained by mixing different percentages of silver-treated and untreated fibers were characterized by thermogravimetric analysis (TGA), Fourier transform infrared spectroscopy (FT-IR), scanning electron microscopy (SEM) and energy dispersive X-ray spectroscopy (EDX). Four different fluids, such as phosphate buffered saline (PBS), simulated body fluid (SBF), chemical simulated wound fluid (cSWF), and deionized water (DI water), were used for evaluating the swelling properties. The results obtained confirmed that the presence of silver did not affect the properties of the hydrogel. Moreover, the results obtained through inductively coupled plasma mass spectrometry (ICP-MS) demonstrated very low silver release values, thus indicating the perfect adhesion of the silver coating to the substrate. Good antibacterial capabilities were demonstrated by any hydrogel blend on Escherichia coli (E. coli) and Staphylococcus aureus (S. aureus) through agar diffusion tests and optical density readings. - Highlights: • An innovative nano-silver deposition technique was adopted on hydrogel fibers. • Antibacterial effects was verified by agar diffusion and optical density tests. • The swelling properties were investigated using 4 different fluids. • Hydrogel blends with different percentages of silver-treated fibers were compared.

  3. Biosynthesis of silver nanoparticles using Moringa oleifera leaf extract and its application to optical limiting.

    Science.gov (United States)

    Sathyavathi, R; Krishna, M Bala Murali; Rao, D Narayana

    2011-03-01

    The Development of biologically inspired experimental processes for the synthesis of nanoparticles is evolving into an important branch of nanotechnology. The work presented here with the biosynthesis of silver nanoparticles using Moringa oleifera leaf extract as reducing and stabilizing agent and its application in nonlinear optics. The aqueous silver ions when exposed to Moringa oleifera leaf extract are reduced resulting in silver nanoparticles demonstrating the biosynthesis. The silver nanoparticles were characterized by UV-Visible, X-ray diffraction (XRD), Fourier transform infra-red spectroscopy (FT-IR) and transmission electron microscopy (TEM) techniques. TEM analysis shows a dispersion of the nanoparticles in a range of 5-80 nm with the average around 46 nm and are crystallized in face centred cubic symmetry. To show that these biosynthesized silver nanoparticles possess very good nonlinear properties similar to those nanoparticles synthesized by chemical route, we carried out the Z-scan studies with a 6 ns, 532 nm pulsed laser. We estimated the nonlinear absorption coefficient and compare it with the literature values of the nanoparticles synthesized through chemical route. The silver nanoparticles suspended in solution exhibited reverse saturable absorption with optical limiting threshold of 100 mJ/cm2.

  4. Synthesis, characterization and antimicrobial activity of the micro/nano structured biogenic silver doped calcium phosphate

    Science.gov (United States)

    Supraja, N.; Prasad, T. N. V. K. V.; David, Ernest

    2016-01-01

    Scale formation in PVC pipelines reduces the water flow efficiency and enhances microbial contamination. A bio-based composite material comprising of silver doped calcium phosphate (Cp-Ag) was synthesized using a simple technique (photo catalysis) and herein, we report for the first time on preparation and evaluation of the antimicrobial efficacy of silver doped calcite extracted from the scale in drinking water pipe lines. Five concentrations of silver doped calcite materials viz,5, 10, 15, 20 and 25 ppm were prepared using chemical ammonia mediated synthetic method. The material Cp-Ag was characterized by using the techniques UV-Visible spectroscopy, X-ray diffraction, Fourier transform infrared spectroscopy, Scanning electron microscopy, Raman spectroscopy, Thermo gravimetric analysis, X-ray photo electron spectroscopy (XPS), Nuclear magnetic resonance spectrometer and X-ray flouresence microscopy (XRF). Typical rhombohedral structure of the silver doped calcite was observed. XRF and XPS studies confirmed the presence of both calcium and silver in the composite material (Cp-Ag). The silver doped calcite material exhibited enhanced inhibition against Escherichia coli and staphylococcus aureus (Kirby-Bauer discs diffusion assay) which is also dependent on the concentration of the Cp-Ag material.

  5. Electrospun polyacrylonitrile nanofibers loaded with silver nanoparticles by silver mirror reaction

    Energy Technology Data Exchange (ETDEWEB)

    Shi, Yongzheng; Li, Yajing; Zhang, Jianfeng; Yu, Zhongzhen; Yang, Dongzhi, E-mail: yangdz@mail.buct.edu.cn

    2015-06-01

    The silver mirror reaction (SMR) method was selected in this paper to modify electrospun polyacrylonitrile (PAN) nanofibers, and these nanofibers loaded with silver nanoparticles showed excellent antibacterial properties. PAN nanofibers were first pretreated in AgNO{sub 3} aqueous solution before the SMR process so that the silver nanoparticles were distributed evenly on the outer surface of the nanofibers. The final PAN nanofibers were characterized by scanning electron microscopy (SEM), energy dispersive spectrometer (EDS), transmission electron microscopy (TEM), TEM-selected area electron diffraction (SAED), X-ray diffraction (XRD) and thermogravimetric analysis (TGA). SEM, TEM micrographs and SAED patterns confirmed homogeneous dispersion of the silver nanoparticles which were composed of monocrystals with diameters 20–30 nm. EDS and XRD results showed that these monocrystals tended to form face-centered cubic single silver. TGA test indicated that the nanoparticles loaded on the nanofibers reached above 50 wt.%. This material was also evaluated by the viable cell-counting method. The results indicated that PAN nanofibers loaded with silver nanoparticles exhibited excellent antimicrobial activities against gram-negative Escherichia coli (E. coli), gram-positive Staphylococcus aureus (S. aureus) and the fungus Monilia albicans. Thus, this material had many potential applications in biomedical fields. - Highlights: • Silver mirror reaction was used to prepare nanofibers loaded with silver nanoparticles. • The SAED patterns demonstrated the monocrystallinity of silver nanocrystals. • The XRD results showed nanoparticles tended to be face-centered cubic single silver. • The material showed excellent antimicrobial activities against bacteria and fungi.

  6. Development kinetics of silver clusters on silver halides

    International Nuclear Information System (INIS)

    Grzesiak, S.; Belloni, J.; Marignier, J.-L.

    2008-01-01

    Silver nuclei are produced by pulse radiolysis at the surface of AgCl nanocrystallites in the presence of an electron donor, the methyl viologen, which induces the growth of silver nuclei. The experimental results observed on the increase of the silver atom concentration and on the decay of the donor concentration during this process, which is similar to the photographic development by an electron donor, are compared with the kinetics obtained from numerical simulation. The model assumes that the formation of silver clusters with a supercritical nuclearity is required before the start of an electron transfer reaction from the two reduced forms of the donor methyl viologen to the silver clusters. The reaction is controlled by the access of the donor to the surface sites of the AgCl crystallite. The rate constant values of the successive steps of the mechanism are derived from the adjustment of calculated kinetics to experimental signals under various conditions, using a single set of parameters which are fairly suitable under all conditions studied

  7. Microwave-Assisted Synthesis of Chitosan/Polyvinyl Alcohol Silver Nanoparticles Gel for Wound Dressing Applications

    Directory of Open Access Journals (Sweden)

    Nguyen Thi Hiep

    2016-01-01

    Full Text Available The purpose of this study was to fabricate chitosan/poly(vinyl alcohol/Ag nanoparticles (CPA gels with microwave-assistance for skin applications. Microwave irradiation was employed to reduce silver ions to silver nanoparticles and to crosslink chitosan (CS with polyvinyl alcohol (PVA. The presence of silver nanoparticles in CPA gels matrix was examined using UV-Vis spectroscopy, transmission electron microscopy, and X-ray diffraction. The interaction of CS and PVA was analysed by Fourier transform infrared spectroscopy. The release of silver ions was determined by atomic absorption spectrometry. The antimicrobial properties of CPA gels against P. aeruginosa and S. aureus were investigated using agar diffusion method. Finally, the biocompatibility and wound-healing ability of the gels were studied using fibroblast cells (in vitro and mice models (in vivo. In conclusion, the results showed that CPA gels were successfully fabricated using microwave irradiation method. These gels can be applied to heal an open wound thanks to their antibacterial activity and biocompatibility.

  8. Russell-Silver syndrome

    Science.gov (United States)

    Silver-Russell syndrome; Silver syndrome; RSS; Russell-Silver syndrome ... One in 10 children with this syndrome has a problem involving chromosome 7. In other people with the syndrome, it may affect chromosome 11. Most of the time, it ...

  9. Distribution of silver in rats following 28 days of repeated oral exposure to silver nanoparticles or silver acetate

    DEFF Research Database (Denmark)

    Löschner, Katrin; Hadrup, Niels; Qvortrup, Klaus

    2011-01-01

    Background: The study investigated the distribution of silver after 28 days repeated oral administration of silver nanoparticles (AgNPs) and silver acetate (AgAc) to rats. Oral administration is a relevant route of exposure because of the use of silver nanoparticles in products related to food...... and food contact materials. Results: AgNPs were synthesized with a size distribution of 14 ± 4 nm in diameter (90% of the nanoparticle volume) and stabilized in aqueous suspension by the polymer polyvinylpyrrolidone (PVP). The AgNPs remained stable throughout the duration of the 28-day oral toxicity study...... in rats. The organ distribution pattern of silver following administration of AgNPs and AgAc was similar. However the absolute silver concentrations in tissues were lower following oral exposure to AgNPs. This was in agreement with an indication of a higher fecal excretion following administration of Ag...

  10. Silver matrix composites reinforced with galvanically silvered particles

    OpenAIRE

    J. Śleziona; J. Wieczorek,

    2007-01-01

    Purpose: The paper presents the possibility of the application of metalic layers drifted with the use of the galvanic methods on the ceramic particles surface. The application of the layers was aimed at obtaining the rewetting of the reinforcing particles with the liquid silver in the course of the producing of silver matrix composites with the use of mechanical stirring method. To enable introducing of the iron powder and glass carbon powder to liquid silver the solution of covering the powd...

  11. Photochemical Study of Silver Nanoparticles Formed from the Reduction of Silver Ions by Humic Acid

    Science.gov (United States)

    Leslie, Renee M.

    This study focuses on the ability of silver ions and humic acid to form silver nanoparticles in the presence of UV and visible light. Silver nanoparticles have a number of industrial applications due primarily to their antimicrobial properties, but these properties pose an environmental threat. Silver nanoparticles can directly disrupt sensitive ecosystems by harming bacteria. Consumption of silver nanoparticles results in silver ions and silver nanoparticles entering waterways; the presence of silver ions raises the question of whether nanoparticles can reform in environmental waters. As our data show, silver nanoparticles can form from the reduction of silver ions by humic acid after irradiation with UV and visible light. In order to better understand the mechanism of these naturally synthesized silver nanoparticles, we investigated the effects of reactant concentration, experimental conditions and presence of ions/reactive species. We monitored silver nanoparticle growth with UV-visible spectroscopy. The evolution in time of nanoparticle size was monitored by dynamic light scattering (DLS).

  12. Polyaniline/silver nanocomposites synthesized via UV-Vis-Assisted aniline polymerization with a reversed micellar microemulsion system

    NARCIS (Netherlands)

    Li, Z.; Li, Y.; Lin, W.; Zheng, F.; Laven, J.

    Polyaniline (PANI)/silver (Ag) nanocomposites were successfully synthesized within a sodium dodecyl sulfate reverse micro-emulsion system and characterized by Fourier transform infrared spectroscopy, X-ray diffraction, ultraviolet spectrometry, thermogravimetric analysis, scanning electron

  13. Mineral commodity profiles: Silver

    Science.gov (United States)

    Butterman, W.C.; Hilliard, Henry E.

    2005-01-01

    Overview -- Silver is one of the eight precious, or noble, metals; the others are gold and the six platinum-group metals (PGM). World mine production in 2001 was 18,700 metric tons (t) and came from mines in 60 countries; the 10 leading producing countries accounted for 86 percent of the total. The largest producer was Mexico, followed by Peru, Australia, and the United States. About 25 percent of the silver mined in the world in 2001 came from silver ores; 15 percent, from gold ores and the remaining 60 percent, from copper, lead, and zinc ores. In the United States, 14 percent of the silver mined in 2001 came from silver ores; 39 percent, from gold ores; 10 percent, from copper and copper-molybdenum ores; and 37 percent, from lead, zinc, and lead-zinc ores. The precious metal ores (gold and silver) came from 30 lode mines and 10 placer mines; the base-metal ores (copper, lead, molybdenum, and zinc) came from 24 lode mines. Placer mines yielded less than 1 percent of the national silver production. Silver was mined in 12 States, of which Nevada was by far the largest producer; it accounted for nearly one-third of the national total. The production of silver at domestic mines generated employment for about 1,100 mine and mill workers. The value of mined domestic silver was estimated to be $290 million. Of the nearly 27,000 t of world silver that was fabricated in 2001, about one-third went into jewelry and silverware, one-fourth into the light-sensitive compounds used in photography, and nearly all the remainder went for industrial uses, of which there were 7 substantial uses and many other small-volume uses. By comparison, 85 percent of the silver used in the United States went to photography and industrial uses, 8 percent to jewelry and silverware, and 7 percent to coins and medals. The United States was the largest consumer of silver followed by India, Japan, and Italy; the 13 largest consuming countries accounted for nearly 90 percent of the world total. In the

  14. Synthesis and Characterization of Polyethylene Glycol Mediated Silver Nanoparticles by the Green Method

    Directory of Open Access Journals (Sweden)

    Yadollah Abdollahi

    2012-05-01

    Full Text Available The roles of green chemistry in nanotechnology and nanoscience fields are very significant in the synthesis of diverse nanomaterials. Herein, we report a green chemistry method for synthesized colloidal silver nanoparticles (Ag NPs in polymeric media. The colloidal Ag NPs were synthesized in an aqueous solution using silver nitrate, polyethylene glycol (PEG, and β-d-glucose as a silver precursor, stabilizer, and reducing agent, respectively. The properties of synthesized colloidal Ag NPs were studied at different reaction times. The ultraviolet-visible spectra were in excellent agreement with the obtained nanostructure studies performed by transmission electron microscopy (TEM and their size distributions. The Ag NPs were characterized by utilizing X-ray diffraction (XRD, zeta potential measurements and Fourier transform infrared (FT-IR. The use of green chemistry reagents, such as glucose, provides green and economic features to this work.

  15. Silver Flakes and Silver Dendrites for Hybrid Electrically Conductive Adhesives with Enhanced Conductivity

    Science.gov (United States)

    Ma, Hongru; Li, Zhuo; Tian, Xun; Yan, Shaocun; Li, Zhe; Guo, Xuhong; Ma, Yanqing; Ma, Lei

    2018-03-01

    Silver dendrites were prepared by a facile replacement reaction between silver nitrate and zinc microparticles of 20 μm in size. The influence of reactant molar ratio, reaction solution volume, silver nitrate concentration, and reaction time on the morphology of dendrites was investigated systematically. It was found that uniform tree-like silver structures are synthesized under the optimal conditions. Their structure can be described as a trunk, symmetrical branches, and leaves, which length scales of 5-10, 1-2 μm, and 100-300 nm, respectively. All features were systematically characterized by scanning electron microscopy, transmission electron microscopy (TEM), high-resolution TEM, and x-ray powder diffraction. A hybrid fillers system using silver flakes and dendrites as electrically conductive adhesives (ECAs) exhibited excellent overall performance. This good conductivity can be attributed mainly to the synergy between the silver microflakes (5-20 μm sized irregular sheet structures) and dendrites, allowing more conductive pathways to be formed between the fillers. In order to further optimize the overall electrical conductivity, various mixtures of silver microflakes and silver dendrites were tested in ECAs, with results indicating that the highest conductivity was shown when the amounts of silver microflakes, silver dendrites and the polymer matrix were 69.4 wt.% (20.82 vol.%), 0.6 wt.% (0.18 vol.%), and 30.0 wt.% (79.00 vol.%), respectively. The corresponding mass ratio of silver flakes to silver dendrites was 347:3. The resistivity of ECAs reached as low as 1.7 × 10-4 Ω cm.

  16. Mangifera Indica leaf-assisted biosynthesis of well-dispersed silver nanoparticles

    Science.gov (United States)

    Philip, Daizy

    2011-01-01

    The use of various parts of plants for the synthesis of nanoparticles is considered as a green technology as it does not involve any harmful chemicals. The present study reports a facile and rapid biosynthesis of well-dispersed silver nanoparticles. The method developed is environmentally friendly and allows the reduction to be accelerated by changing the temperature and pH of the reaction mixture consisting of aqueous AgNO 3 and Mangifera Indica leaf extract. At a pH of 8, the colloid consists of well-dispersed triangular, hexagonal and nearly spherical nanoparticles having size ˜20 nm. The UV-vis spectrum of silver nanoparticles gave surface plasmon resonance (SPR) at 439 nm. The synthesized nanocrystals were characterized using transmission electron microscopy (TEM), X-ray diffraction (XRD) and Fourier transform infrared (FTIR) spectroscopy. Water soluble organics present in the leaf are responsible for the reduction of silver ions. This green method provides faster synthesis comparable to chemical methods and can be used in areas such as cosmetics, foods and medical applications.

  17. Synthesis of monodispersed silver nanoparticles using Hibiscus cannabinus leaf extract and its antimicrobial activity.

    Science.gov (United States)

    Bindhu, M R; Umadevi, M

    2013-01-15

    Synthesis of silver nanoparticles using leaf extract of Hibiscus cannabinus has been investigated. The influences of different concentration of H. cannabinus leaf extract, different metal ion concentration and different reaction time on the above cases on the synthesis of nanoparticles were evaluated. The synthesized nanoparticles were characterized using UV-vis spectroscopy, Fourier transform infrared spectroscopy (FTIR), X-ray diffraction (XRD) and Transmission Electron Microscopy (TEM). The prepared silver nanoparticles were monodispersed, spherical in shape with the average particle size of 9 nm and shows surface plasmon peak at 446 nm. The study also reveals that the ascorbic acid present in H. cannabinus leaf extract has been used as reducing agent. The prepared silver nanoparticle shows good antimicrobial activity against Escherichia coli, Proteus mirabilis and Shigella flexneri. Copyright © 2012 Elsevier B.V. All rights reserved.

  18. Synthesis of eco-friendly silver nanoparticles from Morinda tinctoria leaf extract and its larvicidal activity against Culex quinquefasciatus.

    Science.gov (United States)

    Kumar, K Ramesh; Nattuthurai, N; Gopinath, Ponraj; Mariappan, Tirupathi

    2015-02-01

    Mosquitoes are the major vector for the transmission of malaria, dengue fever, yellow fever, filariasis, chikungunya and Japanese encephalitis, and they accounted for global mortality and morbidity with increased resistance to common insecticides. The aim of this study was to investigate the larvicidal potential of the acetone leaf extracts of Morinda tinctoria and synthesized silver nanoparticles against third instar larvae of Culex quinquefasciatus Say (Diptera: Culicidae). Nanoparticles are being used in many commercial applications. It was found that aqueous silver ions can be reduced by aqueous extract of plant parts to generate extremely stable silver nanoparticles in water. Synthesized AgNPs were characterized by ultraviolet-visible (UV-vis) spectroscopy, Atomic force microscopy (AFM) and Fourier transform infrared spectroscopy (FT-IR) analysis. The synthesized silver nanoparticles have also been tested against the third instar larvae of C. quinquefasciatus. The leaf extract and the AgNPs high mortality values were 50 % lethal concentration (LC50) = 8.088 and 1.442 ppm against C. quinquefasciatus, respectively. The results recorded from ultraviolet-visible spectroscopy, atomic force microscopy and Fourier transform infrared spectroscopy support the biosynthesis and characterization of silver nanoparticles. These results suggest that the leaf extract of M. tinctoria and synthesis of AgNPs have the potential to be used as an ideal eco-friendly approach for the control of C. quinquefasciatus. By this approach, it is suggestive that this rapid synthesis of nanoparticles would be proper for developing a biological process for mosquito control.

  19. Plectranthus amboinicus-mediated silver, gold, and silver-gold nanoparticles: phyto-synthetic, catalytic, and antibacterial studies

    Science.gov (United States)

    Purusottam Reddy, B.; Mallikarjuna, K.; Narasimha, G.; Park, Si-Hyun

    2017-08-01

    Bio-based green nanotechnology aims to characterize compounds from natural sources and establish efficient routes for the preparation of nontoxic materials that have applicability in biodegradable and biocompatible devices. The present study has investigated the use of Plectranthus amboinicus leaf extracts as reducing and capping materials for the green fabrication of silver, gold, and silver-gold (Ag, Au, and Ag/Au) metal and bimetallic nanoparticles. The catalytic behavior of these phyto-inspired nanoparticles was then assessed in terms of the reduction of 4-nitrophenol. Transmission electron microscopy was used to investigate the shape, morphology, distribution, and diameter of the phytomolecules capped with Ag, Au, and Ag/Au metal nanoparticles. The nature of the crystallinity of the nanoparticles was studied by small area electron diffraction (SAED) and x-ray diffraction analysis (XRD), and Fourier transform infrared (FTIR) spectroscopy was used to study the reduction and stabilizing involvement of the phyto-organic moieties in aqueous medium. The phyto-inspired Ag and Ag/Au nanoparticles demonstrated good antibacterial properties toward Gram-negative Escherichia coli and Pseudomonas spp. and Gram-positive Bacillus spp. and Staphylococcus spp. microorganisms using the well diffusion method. Notably, the Ag nanoparticles were shown to possess effective antibacterial properties.

  20. Anglesite and silver recovery from jarosite residues through roasting and sulfidization-flotation in zinc hydrometallurgy.

    Science.gov (United States)

    Han, Haisheng; Sun, Wei; Hu, Yuehua; Jia, Baoliang; Tang, Honghu

    2014-08-15

    Hazardous jarosite residues contain abundant valuable minerals that are difficult to be recovered by traditional flotation process. This study presents a new route, roasting combined with sulfidization-flotation, for the recovery of anglesite and silver from jarosite residues of zinc hydrometallurgy. Surface appearance and elemental distribution of jarosite residues was examined by scanning electron microscopy and energy dispersive X-ray spectrometry analysis, respectively. Decomposition and transformation mechanisms of jarosite residues were illustrated by differential thermal analysis. Results showed that after roasting combined with flotation, the grade and recovery of lead were 43.89% and 66.86%, respectively, and those of silver were 1.3 kg/t and 81.60%, respectively. At 600-700 °C, jarosite was decomposed to release encapsulated valuable minerals such as anglesite (PbSO4) and silver mineral; silver jarosite decomposed into silver sulfate (Ag2SO4); and zinc ferrite (ZnO · Fe2O3) decomposed into zinc sulfate (ZnSO4) and hematite (Fe2O3). Bared anglesite and silver minerals were modified by sodium sulfide and easily collected by flotation collectors. This study demonstrates that the combination of roasting and sulfidization-flotation provides a promising process for the recovery of zinc, lead, and silver from jarosite residues of zinc hydrometallurgy. Copyright © 2014 Elsevier B.V. All rights reserved.

  1. Antimicrobial activity of thin solid films of silver doped hydroxyapatite prepared by sol-gel method.

    Science.gov (United States)

    Iconaru, Simona Liliana; Chapon, Patrick; Le Coustumer, Philippe; Predoi, Daniela

    2014-01-01

    In this work, the preparation and characterization of silver doped hydroxyapatite thin films were reported and their antimicrobial activity was characterized. Silver doped hydroxyapatite (Ag:HAp) thin films coatings substrate was prepared on commercially pure Si disks by sol-gel method. The silver doped hydroxyapatite thin films were characterized by various techniques such as Scanning electron microscopy (SEM) with energy Dispersive X-ray attachment (X-EDS), Fourier transform infrared spectroscopy (FT-IR), and glow discharge optical emission spectroscopy (GDOES). These techniques have permitted the structural and chemical characterisation of the silver doped hydroxyapatite thin films. The antimicrobial effect of the Ag:HAp thin films on Escherichia coli and Staphylococcus aureus bacteria was then investigated. This is the first study on the antimicrobial effect of Ag:HAp thin films obtained by sol-gel method. The results of this study have shown that the Ag:HAp thin films with x(Ag) = 0.5 are effective against E. coli and S. aureus after 24 h.

  2. Antimicrobial Activity of Thin Solid Films of Silver Doped Hydroxyapatite Prepared by Sol-Gel Method

    Directory of Open Access Journals (Sweden)

    Simona Liliana Iconaru

    2014-01-01

    Full Text Available In this work, the preparation and characterization of silver doped hydroxyapatite thin films were reported and their antimicrobial activity was characterized. Silver doped hydroxyapatite (Ag:HAp thin films coatings substrate was prepared on commercially pure Si disks by sol-gel method. The silver doped hydroxyapatite thin films were characterized by various techniques such as Scanning electron microscopy (SEM with energy Dispersive X-ray attachment (X-EDS, Fourier transform infrared spectroscopy (FT-IR, and glow discharge optical emission spectroscopy (GDOES. These techniques have permitted the structural and chemical characterisation of the silver doped hydroxyapatite thin films. The antimicrobial effect of the Ag:HAp thin films on Escherichia coli and Staphylococcus aureus bacteria was then investigated. This is the first study on the antimicrobial effect of Ag:HAp thin films obtained by sol-gel method. The results of this study have shown that the Ag:HAp thin films with xAg=0.5 are effective against E. coli and S. aureus after 24 h.

  3. Antimicrobial Activity of Thin Solid Films of Silver Doped Hydroxyapatite Prepared by Sol-Gel Method

    Science.gov (United States)

    Iconaru, Simona Liliana; Chapon, Patrick; Le Coustumer, Philippe; Predoi, Daniela

    2014-01-01

    In this work, the preparation and characterization of silver doped hydroxyapatite thin films were reported and their antimicrobial activity was characterized. Silver doped hydroxyapatite (Ag:HAp) thin films coatings substrate was prepared on commercially pure Si disks by sol-gel method. The silver doped hydroxyapatite thin films were characterized by various techniques such as Scanning electron microscopy (SEM) with energy Dispersive X-ray attachment (X-EDS), Fourier transform infrared spectroscopy (FT-IR), and glow discharge optical emission spectroscopy (GDOES). These techniques have permitted the structural and chemical characterisation of the silver doped hydroxyapatite thin films. The antimicrobial effect of the Ag:HAp thin films on Escherichia coli and Staphylococcus aureus bacteria was then investigated. This is the first study on the antimicrobial effect of Ag:HAp thin films obtained by sol-gel method. The results of this study have shown that the Ag:HAp thin films with x Ag = 0.5 are effective against E. coli and S. aureus after 24 h. PMID:24523630

  4. Measurement of the isotope effect of the diffusion of silver and gold in gold and of silver in silver-gold alloys

    International Nuclear Information System (INIS)

    Wolter, D.

    1974-01-01

    The silver isotopes Ag 105 and Agsup(110m) and the gold isotopes Au 195 and Au 199 were used for isotope effect measurements. The isotope effect of the gold self-diffusion was measured on four monocrystals samples at about 850 0 C, that of silver in gold monocrystals at five different temperatures between 731 0 C and 1050 0 C. Furthermore, the isotope effect for silver at 904 0 C was measured on seven silver-gold alloys of varying silver concentration. The correlation factor was determined from the measurements. (HPOE/LH) [de

  5. Manufacture and Characterization of Silver-free Braze Material

    Energy Technology Data Exchange (ETDEWEB)

    Baffie, T.; Calapez, J.; Chabrol, C. [DRT/LITEN/DTH, CEA/GRENOBLE, 17 Rue des Martyrs, 38054 Grenoble Cedex 9 (France); De Vito, E. [UTEN/DTH/LCPEM, CEA/GRENOBLE, 17 Rue des Martyrs, 38054 Grenoble (France); Portra, T. [DRT/LITEN/DTH, CEA/GRENOBLE, 17 Rue des Martyrs, 38054 Grenoble CEDEX 9 (France); Peacock, A. [EFDA-Close Support Unit, Max-Planck-Institut fuer Plasmaphysik, Boltzmannstrasse, 2, D-85748 Garching (Germany); Rigal, E. [CEA Grenoble, DRT/LITEN, F-38054 Grenoble (France)

    2007-07-01

    Full text of publication follows: Induction brazing is one of the most successful techniques for joining Beryllium (Be) armour tiles to CuCrZr heat sink material, used as High Heat Flux Components for ITER. In the early days of the development for Fusion, silver based brazes were used because of their appropriate liquidus and solidus temperatures and their wide application in different industrial fields. However, it is known that the use of silver containing brazes could have a negative impact on the vacuum systems in ITER because of the transmutation of silver into cadmium. Copper (Cu) based brazes were produced in ribbons form using melt spinning technique. Several compositions in the Cu-Sn-In-Ni-Mn system were elaborated and characterized using Scanning Electron Microscopy (SEM), X-Ray Diffraction (XRD) and Differential Scanning Calorimetry (DSC). All the ribbons obtained are micro crystallized. Foils are 8 mm wide and their thickness is between 60 and 90 {mu}m. Among the compositions studied, two were selected for Be/CuCrZr mock-ups brazing tests; their ribbons can be easily manipulated and their last transformations are close to 740 deg. C. The results of the braze trials on the mock-ups are also reported here. (authors)

  6. Antibacterial and anticancerous biocompatible silver nanoparticles synthesised from the cold-tolerant strain of Spirulina platensis

    Directory of Open Access Journals (Sweden)

    Selvaraj Karthick Raja Namasivayam

    2015-04-01

    Full Text Available Objective: To synthesize silver nanoparticles from the biomass of cold tolerant strain of Spirulina platensis and evalute the synthesized nanoparticles against antibacterial and anticancer activity. Methods: Silver nanoparticles were synthesized by the algal culture and characterized by UV-vis spectroscopy, Fourier transform infrared spectroscopy, field emission scanning electron microscopy and X ray diffraction studies. Antibacterial activity has been studied with free nanoparticles adopting agar diffusion assay, biofilm inhibition assay and nanoparticles fabricated wound dressing against representative Gram-negative organism Pseudomonas aeruginosa and Gram-positive organism Staphylococcus aureus respectively. The in vitro anticancer activity of silver nanoparticles were screened against human Hep2 cell lines by means of MTT assay. Results: Reduction of silver ions by the algal culture was observed during 72 h of incubation and the synthesized nanoparticles were further characterized. Antibacterial study reveals both the strains were susceptible to free nanoparticles and fabricated wound dressing treatment. The in vitro anticancer activity of silver nanoparticles were screened against human Hep 2 cell lines by means of MTT assay which reveals that cell viability has been reduced as dose dependent manner. Conclusions: The observed results imply that silver nanoparticles synthesized from Spirulina platensis cold tolerant strain can be used as potential antibacterial and anticancerous agent.

  7. Antibacterial and anticancerous biocompatible silver nanoparticles synthesised from the cold-tolerant strain of Spirulina platensis

    Institute of Scientific and Technical Information of China (English)

    Duraisamy Jayakumar; Ramesh Kumar; Rajan SowriArvind Bharani

    2015-01-01

    Objective: To synthesize silver nanoparticles from the biomass of cold tolerant strain of Spirulina platensis and evalute the synthesized nanoparticles against antibacterial and anticancer activity. Methods: Silver nanoparticles were synthesized by the algal culture and characterized by UV-vis spectroscopy, Fourier transform infrared spectroscopy, field emission scanning electron microscopy and X ray diffraction studies. Antibacterial activity has been studied with free nanoparticles adopting agar diffusion assay, biofilm inhibition assay and nanoparticles fabricated wound dressing against representative Gram-negative organism Pseudomonas aeruginosa and Gram-positive organism Staphylococcus aureus respectively. The in vitro anticancer activity of silver nanoparticles were screened against human Hep2 cell lines by means of MTT assay. Results: Reduction of silver ions by the algal culture was observed during 72 h of incubation and the synthesized nanoparticles were further characterized. Antibacterial study reveals both the strains were susceptible to free nanoparticles and fabricated wound dressing treatment. The in vitro anticancer activity of silver nanoparticles were screened against human Hep 2 cell lines by means of MTT assay which reveals that cell viability has been reduced as dose dependent manner. Conclusions: The observed results imply that silver nanoparticles synthesized from Spirulina platensis cold tolerant strain can be used as potential antibacterial and anticancerous agent.

  8. Highly efficient silver patterning without photo-resist using simple silver precursors

    International Nuclear Information System (INIS)

    Byun, Younghun; Hwang, Eoc-Chae; Lee, Sang-Yun; Lyu, Yi-Yeol; Yim, Jin-Heong; Kim, Jin-Young; Chang, Seok; Pu, Lyong Sun; Kim, Ji Man

    2005-01-01

    Highly efficient method for silver patterning without photo-resist was developed by using high photosensitive organo-silver precursors, which were prepared by a simple reaction of silver salts and excess of amines. The FT-IR and GC-MS spectra were recorded depending on UV exposure time, for (n-PrNH 2 )Ag(NO 3 ).0.5MeCN and (n-PrNH 2 )Ag(NO 2 ).0.5MeCN, to understand the photolysis mechanism. The results indicate not only dissociation of coordinated amine and acetonitrile, but also decomposition of corresponding anion upon UV irradiation. When a precursor thin film was exposed to broadband UV irradiation, a partially reduced and insoluble silver species were formed within several minutes. After development, the irradiated areas were treated with a reducing agent to obtain pure metallic patterns. Subsequently, annealing step was followed at 100-350 deg. C to increase the adhesion of interface and cohesion of silver particles. The line resolution of 5 μm was obtained by the present silver precursors. Film thickness was also controllable from 50 to 250 nm by repetition of the above procedure. The average electrical conductivity was in the range of 3-43 Ω cm, measured by four-point probe technique. AES depth profile of the silver pattern thus obtained showed carbon and oxygen contents are less than 1% through the whole range. Even though sulfur contaminant exists on the surface, it was believed that nearly pure silver pattern was generated

  9. One-step green synthesis and characterization of leaf extract-mediated biocompatible silver and gold nanoparticles from Memecylon umbellatum

    Science.gov (United States)

    Arunachalam, Kantha D; Annamalai, Sathesh Kumar; Hari, Shanmugasundaram

    2013-01-01

    In this experiment, green-synthesized silver and gold nanoparticles were produced rapidly by treating silver and gold ions with an extract of Memecylon umbellatum leaf. The reaction process was simple and easy to handle, and was monitored using ultraviolet-visible spectroscopy. The effect of the phytochemicals present in M. umbellatum, including saponins, phenolic compounds, phytosterols, and quinones, on formation of stable silver and gold nanoparticles was investigated by Fourier-transform infrared spectroscopy. The morphology and crystalline phase of the nanoparticles were determined by transmission electron microscopy and energy-dispersive x-ray spectroscopy. The results indicate that the saponins, phytosterols, and phenolic compounds present in the plant extract play a major role in formation of silver and gold nanoparticles in their respective ions in solution. The characteristics of the nanoparticles formed suggest application of silver and gold nanoparticles as chemical sensors in the future. Given the simple and eco-friendly approach for synthesis, these nanoparticles could easily be commercialized for large-scale production. PMID:23569372

  10. Synthesis and characterization of silver nanoparticles from (bis)alkylamine silver carboxylate precursors

    Energy Technology Data Exchange (ETDEWEB)

    Uznanski, Pawel, E-mail: puznansk@cbmm.lodz.pl; Zakrzewska, Joanna [Centre of Molecular and Macromolecular Studies, PAS (Poland); Favier, Frederic, E-mail: fredf@univ-montp2.fr [Université Montpellier II, ICGM - UMR5253- Equipe AIME (France); Kazmierski, Slawomir; Bryszewska, Ewa [Centre of Molecular and Macromolecular Studies, PAS (Poland)

    2017-03-15

    A comparative study of amine and silver carboxylate adducts [R{sub 1}COOAg-2(R{sub 2}NH{sub 2})] (R{sub 1} = 1, 7, 11; R{sub 2} = 8, 12) as a key intermediate in NPs synthesis is carried out via differential scanning calorimetry, solid-state FT-infrared spectroscopy, {sup 13}C CP MAS NMR, powder X-ray diffraction and X-ray photoelectron spectroscopy, and various solution NMR spectroscopies ({sup 1}H and {sup 13}C NMR, pulsed field gradient spin-echo NMR, and ROESY). It is proposed that carboxyl moieties in the presence of amine ligands are bound to silver ions via chelating bidentate type of coordination as opposed to bridging bidentate coordination of pure silver carboxylates resulting from the formation of dimeric units. All complexes are packed as lamellar bilayer structures. Silver carboxylate/amine complexes show one first-order melting transition. The evidence presented in this study shows that phase behavior of monovalent metal carboxylates are controlled, mainly, by head group bonding. In solution, insoluble silver salt is stabilized by amine molecules which exist in dynamic equilibrium. Using (bis)amine-silver carboxylate complex as precursor, silver nanoparticles were fabricated. During high-temperature thermolysis, the (bis)amine-carboxylate adduct decomposes to produce silver nanoparticles of small size. NPs are stabilized by strongly interacting carboxylate and trace amounts of amine derived from the silver precursor interacting with carboxylic acid. A corresponding aliphatic amide obtained from silver precursor at high-temperature reaction conditions is not taking part in the stabilization. Combining NMR techniques with FTIR, it was possible to follow an original stabilization mechanism.

  11. Investigations on silver/polyaniline electrodes for electrochemical supercapacitors.

    Science.gov (United States)

    Patil, Dipali S; Shaikh, J S; Pawar, S A; Devan, R S; Ma, Y R; Moholkar, A V; Kim, J H; Kalubarme, R S; Park, C J; Patil, P S

    2012-09-14

    Polyaniline (PANI) and silver doped polyaniline (Ag/PANI) thin films were deposited on stainless steel substrates by a dip coating technique. To study the effect of doping concentration of Ag on the specific capacitance of PANI the concentration of Ag was varied from 0.3 to 1.2 weight percent. Fourier transform-infrared and Fourier transform-Raman spectroscopy, and energy dispersion X-ray techniques were used for the phase identification and determination of the doping content in the PANI films, respectively. The surface morphology of the films was examined by Field Emission Scanning Electron Microscopy, which revealed a nanofiber like structure for PANI and nanofibers with bright spots of Ag particles for the Ag/PANI films. There was decrease in the room temperature electrical resistivity of the Ag/PANI films of the order of 10(2) with increasing Ag concentration. The supercapacitive behavior of the electrodes was tested in a three electrode system using 1.0 M H(2)SO(4) electrolyte. The specific capacitance increased from 285 F g(-1) (for PANI) to 512 F g(-1) for Ag/PANI at 0.9 weight percent doping of Ag, owing to the synergic effect of PANI and silver nanoparticles. This work demonstrates a simple strategy of improving the specific capacitance of polymer electrodes and may also be easily adopted for other dopants.

  12. Silver nanoparticles delivery system based on natural rubber latex membranes

    Energy Technology Data Exchange (ETDEWEB)

    Guidelli, Eder Jose, E-mail: ederguidelli@gmail.com [Universidade de Sao Paulo/FFCLRP-DF (Brazil); Kinoshita, Angela [Universidade do Sagrado Coracao (Brazil); Ramos, Ana Paula [Universidade de Sao Paulo/FFCLRP-DQ (Brazil); Baffa, Oswaldo [Universidade de Sao Paulo/FFCLRP-DF (Brazil)

    2013-04-15

    The search for new materials for biomedical applications is extremely important. Here, we present results on the performance of a silver nanoparticles delivery system using natural rubber latex (NRL) as the polymeric matrix. Our aim was to obtain an optimized wound dressing by combining materials with potential healing action. The synthesis of silver nanoparticles and their characterization by UV-Vis spectroscopy, transmission electron microscopy, zeta potential, dynamic light scattering, and Fourier transform infrared spectroscopy (FTIR) are depicted. The NRL membranes are good matrix for silver nanoparticles and allow for their gradual release. The release of 30 nm silver nanoparticles by the NRL membranes depends on their mass percentage in NRL membranes. The total concentration of AgNP released by the NRL membranes was calculated. The AgNP attached to the cis-isoprene molecules in the NRL matrix remain attached to the membrane ({approx}0.1 % w/w). So, only the AgNP bound to the non-rubber molecules are released. FTIR spectra suggest that non-rubber molecules, like aminoacids and proteins, associated with the serum fraction of the NRL may be attached to the surfaces of the released nanoparticles, thereby increasing the release of such molecules. The released silver nanoparticles are sterically stabilized, more stable and well dispersed. Because the serum fraction of the NRL is responsible for the angiogenic properties of the matrix, the silver nanoparticles could increment the angiogenic properties of NRL. This biomaterial has desirable properties for the fabrication of a wound dressing with potential healing action, since it combines the angiogenic and antibacterial properties of the silver nanoparticles with the increased angiogenic properties of the NRL.Graphical AbstractThe AgNP attached to the cis-isoprene molecules remain in the NRL matrix and only the AgNP bound to the non-rubber molecules (NRL serum fraction) are released. The released AgNP are

  13. Silver nanoparticles delivery system based on natural rubber latex membranes

    International Nuclear Information System (INIS)

    Guidelli, Éder José; Kinoshita, Angela; Ramos, Ana Paula; Baffa, Oswaldo

    2013-01-01

    The search for new materials for biomedical applications is extremely important. Here, we present results on the performance of a silver nanoparticles delivery system using natural rubber latex (NRL) as the polymeric matrix. Our aim was to obtain an optimized wound dressing by combining materials with potential healing action. The synthesis of silver nanoparticles and their characterization by UV–Vis spectroscopy, transmission electron microscopy, zeta potential, dynamic light scattering, and Fourier transform infrared spectroscopy (FTIR) are depicted. The NRL membranes are good matrix for silver nanoparticles and allow for their gradual release. The release of 30 nm silver nanoparticles by the NRL membranes depends on their mass percentage in NRL membranes. The total concentration of AgNP released by the NRL membranes was calculated. The AgNP attached to the cis-isoprene molecules in the NRL matrix remain attached to the membrane (∼0.1 % w/w). So, only the AgNP bound to the non-rubber molecules are released. FTIR spectra suggest that non-rubber molecules, like aminoacids and proteins, associated with the serum fraction of the NRL may be attached to the surfaces of the released nanoparticles, thereby increasing the release of such molecules. The released silver nanoparticles are sterically stabilized, more stable and well dispersed. Because the serum fraction of the NRL is responsible for the angiogenic properties of the matrix, the silver nanoparticles could increment the angiogenic properties of NRL. This biomaterial has desirable properties for the fabrication of a wound dressing with potential healing action, since it combines the angiogenic and antibacterial properties of the silver nanoparticles with the increased angiogenic properties of the NRL.Graphical AbstractThe AgNP attached to the cis-isoprene molecules remain in the NRL matrix and only the AgNP bound to the non-rubber molecules (NRL serum fraction) are released. The released AgNP are sterically

  14. Silver distribution and release from an antimicrobial denture base resin containing silver colloidal nanoparticles.

    Science.gov (United States)

    Monteiro, Douglas Roberto; Gorup, Luiz Fernando; Takamiya, Aline Satie; de Camargo, Emerson Rodrigues; Filho, Adhemar Colla Ruvolo; Barbosa, Debora Barros

    2012-01-01

    The aim of this study was to evaluate a denture base resin containing silver colloidal nanoparticles through morphological analysis to check the distribution and dispersion of these particles in the polymer and by testing the silver release in deionized water at different time periods. A Lucitone 550 denture resin was used, and silver nanoparticles were synthesized by reduction of silver nitrate with sodium citrate. The acrylic resin was prepared in accordance with the manufacturers' instructions, and silver nanoparticle suspension was added to the acrylic resin monomer in different concentrations (0.05, 0.5, and 5 vol% silver colloidal). Controls devoid of silver nanoparticles were included. The specimens were stored in deionized water at 37°C for 7, 15, 30, 60, and 120 days, and each solution was analyzed using atomic absorption spectroscopy. Silver was not detected in deionized water regardless of the silver nanoparticles added to the resin and of the storage period. Micrographs showed that with lower concentrations, the distribution of silver nanoparticles was reduced, whereas their dispersion was improved in the polymer. Moreover, after 120 days of storage, nanoparticles were mainly located on the surface of the nanocomposite specimens. Incorporation of silver nanoparticles in the acrylic resin was evidenced. Moreover, silver was not detected by the detection limit of the atomic absorption spectrophotometer used in this study, even after 120 days of storage in deionized water. Silver nanoparticles are incorporated in the PMMA denture resin to attain an effective antimicrobial material to help control common infections involving oral mucosal tissues in complete denture wearers. © 2011 by the American College of Prosthodontists.

  15. Gravimetric and volumetric determination of the purity of electrolytically refined silver and the produced silver nitrate

    Directory of Open Access Journals (Sweden)

    Ačanski Marijana M.

    2007-01-01

    Full Text Available Silver is, along with gold and the platinum-group metals, one of the so called precious metals. Because of its comparative scarcity, brilliant white color, malleability and resistance to atmospheric oxidation, silver has been used in the manufacture of coins and jewelry for a long time. Silver has the highest known electrical and thermal conductivity of all metals and is used in fabricating printed electrical circuits, and also as a coating for electronic conductors. It is also alloyed with other elements such as nickel or palladium for use in electrical contacts. The most useful silver salt is silver nitrate, a caustic chemical reagent, significant as an antiseptic and as a reagent in analytical chemistry. Pure silver nitrate is an intermediate in the industrial preparation of other silver salts, including the colloidal silver compounds used in medicine and the silver halides incorporated into photographic emulsions. Silver halides become increasingly insoluble in the series: AgCl, AgBr, AgI. All silver salts are sensitive to light and are used in photographic coatings on film and paper. The ZORKA-PHARMA company (Sabac, Serbia specializes in the production of pharmaceutical remedies and lab chemicals. One of its products is chemical silver nitrate (argentum-nitricum (l. Silver nitrate is generally produced by dissolving pure electrolytically refined silver in hot 48% nitric acid. Since the purity of silver nitrate, produced in 2002, was not in compliance with the p.a. level of purity, there was doubt that the electrolytically refined silver was pure. The aim of this research was the gravimetric and volumetric determination of the purity of electrolytically refined silver and silver nitrate, produced industrially and in a laboratory. The purity determination was carried out gravimetrically, by the sedimentation of silver(I ions in the form of insoluble silver salts: AgCl, AgBr and Agi, and volumetrically, according to Mohr and Volhardt. The

  16. Silver, gold, and alloyed silver-gold nanoparticles: characterization and comparative cell-biologic action

    Science.gov (United States)

    Mahl, Dirk; Diendorf, Jörg; Ristig, Simon; Greulich, Christina; Li, Zi-An; Farle, Michael; Köller, Manfred; Epple, Matthias

    2012-10-01

    Silver, gold, and silver-gold-alloy nanoparticles were prepared by citrate reduction modified by the addition of tannin during the synthesis, leading to a reduction in particle size by a factor of three. Nanoparticles can be prepared by this easy water-based synthesis and subsequently functionalized by the addition of either tris(3-sulfonatophenyl)phosphine or poly( N-vinylpyrrolidone). The resulting nanoparticles of silver (diameter 15-25 nm), gold (5-6 nm), and silver-gold (50:50; 10-12 nm) were easily dispersable in water and also in cell culture media (RPMI + 10 % fetal calf serum), as shown by nanoparticle tracking analysis and differential centrifugal sedimentation. High-resolution transmission electron microscopy showed a polycrystalline nature of all nanoparticles. EDX on single silver-gold nanoparticles indicated that the concentration of gold is higher inside a nanoparticle. The biologic action of the nanoparticles toward human mesenchymal stem cells (hMSC) was different: Silver nanoparticles showed a significant concentration-dependent influence on the viability of hMSC. Gold nanoparticles showed only a small effect on the viability of hMSC after 7 days. Surprisingly, silver-gold nanoparticles had no significant influence on the viability of hMSC despite the silver content. Silver nanoparticles and silver-gold nanoparticles in the concentration range of 5-20 μg mL-1 induced the activation of hMSC as indicated by the release of IL-8. In contrast, gold nanoparticles led to a reduction of the release of IL-6 and IL-8.

  17. Photochemical Synthesis of Silver Nanodecahedrons and Related Nanostructures for Plasmonic Field Enhancement Applications

    Science.gov (United States)

    Lu, Haifei

    Noble-metal nanocrystals have received considerable attention in recent years for their size and shape dependent localized surface Plasmon resonances (LSPR). Various applications based on colloidal nanoparticles, such as surface enhanced Raman scattering (SERS), surface enhanced fluorescence (SEF), plasmonic sensing, photothermal therapy etc., have been broadly explored in the field of biomedicine, because of their extremely large optical scattering and absorption cross sections, as well as giant electric field enhancement on their surface. However, despite its high chemical stability, gold exhibits quite large losses and electric field enhancement is comparatively weaker than silver. Silver nanoparticles synthesized by the traditional technique only cover an LSPR ranged from 420~500 nm. On the other hand, the range of 500~660 nm, which is covered by several easily available commercial laser lines, very limited colloidal silver nanostructures with controllable size and shape have been reported, and realization of tuning the resonance to longer wavelengths is very important for the practical applications. In this thesis, a systematic study on photochemical synthesis of silver nanodecahedrons (NDs) and related nanostructures, and their plasmonic field enhancements are presented. First, the roles of chemicals and the light source during the formation of silver nanoparticles have been studied. We have also developed a preparation route for the production size-controlled silver nanodecahedrons (LSPR range 420 ~ 660 nm) in high purity. Indeed our experiments indicate that both the chemicals and the light sources can affect the shape and purity of final products. Adjusting the molar ratio between sodium citrate and silver nitrate can help to control the crystal structure following rapid reduction from sodium borohydride. Light from a blue LED (465 nm) can efficiently transform the polyvinylpyrrolidone stabilized small silver nanoparticles into silver NDs through photo

  18. In vitro percutaneous penetration and characterization of silver from silver-containing textiles

    Directory of Open Access Journals (Sweden)

    Bianco C

    2015-03-01

    Full Text Available Carlotta Bianco,1 Sanja Kezic,2 Matteo Crosera,1 Vesna Svetličić,3 Suzana Šegota,3 Giovanni Maina,4 Canzio Romano,5 Francesca Larese,6,7 Gianpiero Adami11Department of Chemical and Pharmaceutical Sciences, University of Trieste, Trieste, Italy; 2Academic Medical Center, Coronel Institute, University of Amsterdam, Amsterdam, the Netherlands; 3Laboratory for Bioelectrochemistry and Surface Imaging, Division for Marine and Environmental Research, Ruder Boškovic Institute, Zagreb, Croatia; 4Department of Clinical and Biological Sciences, University of Turin, Turin, Italy; 5Department of Public and Pediatric Health Sciences, University of Turin, Turin, Italy; 6Unit of Occupational Medicine, University of Trieste, Trieste, Italy; 7Department of Medical Sciences, University of Trieste, Trieste, ItalyAbstract: The objective of this study was to determine the in vitro percutaneous penetration of silver and characterize the silver species released from textiles in different layers of full thickness human skin. For this purpose, two different wound dressings and a garment soaked in artificial sweat were placed in the donor compartments of Franz cells for 24 hours. The concentration of silver in the donor phase and in the skin was determined by an electrothermal atomic absorption spectrometer (ET-AAS and by inductively coupled plasma mass spectrometer (ICP-MS. The characterization of silver species in the textiles and in the skin layers was made by scanning electron microscopy with integrated energy dispersive X-ray spectroscopy (SEM-EDX. Additionally, the size distribution of silver nanoparticles in the textiles was performed by atomic force microscopy (AFM. On the surface of all investigated materials, silver nanoparticles of different size and morphology were found. Released silver concentrations in the soaking solutions (ie, exposure concentration ranged from 0.7 to 4.7 µg/mL (0.6–4.0 µg/cm2, fitting the bactericidal range. Silver and silver

  19. Preparation of Crosslinked Amphiphilic Silver Nanogel as Thin Film Corrosion Protective Layer for Steel

    Directory of Open Access Journals (Sweden)

    Ayman M. Atta

    2014-07-01

    Full Text Available Monodisperse silver nanoparticles were synthesized by a new developed method via reaction of AgNO3 and oleic acid with the addition of a trace amount of Fe3+ ions. Emulsion polymerization at room temperature was employed to prepare a core-shell silver nanoparticle with controllable particle size. N,N'-methylenebisacrylamide (MBA and potassium peroxydisulfate (KPS were used as a crosslinker, and as redox initiator system, respectively for crosslinking polymerization. The structure and morphology of the silver nanogels were characterized by Fourier transform infrared spectroscopy (FTIR, transmission and scanning electron microscopy (TEM and SEM. The effectiveness of the synthesized compounds as corrosion inhibitors for steel in 1 M HCl was investigated by various electrochemical techniques such as potentiodynamic polarization and electrochemical impedance spectroscopy (EIS. Monolayers of silver nanoparticle were self-assembled on the fresh active surface of the steel electrode and have been tested as a corrosion inhibitor for steel in 1 M HCl solution. The results of polarization measurements showed that nanogel particles act as a mixed type inhibitor.

  20. Plasmonic characterization of photo-induced silver nanoparticles extracted from silver halide based TEM film

    Energy Technology Data Exchange (ETDEWEB)

    Sudheer,, E-mail: sudheer@rrcat.gov.in; Tiwari, P.; Rai, V. N.; Srivastava, A. K. [Indus Synchrotrons Utilization Division, Raja Ramanna Centre for Advanced Technology Indore, Madhya Pradesh 452013 (India); Varshney, G. K. [Laser Bio-medical Applications & Instrumentation Division, Raja Ramanna Centre for Advanced Technology Indore, Madhya Pradesh 452013 (India)

    2016-05-23

    The plasmonic responses of silver nanoparticles extracted from silver halide based electron microscope film are investigated. Photo-reduction process is carried out to convert the silver halide grains into the metallic silver. The centrifuge technique is used for separating the silver nanoparticles from the residual solution. Morphological study performed by field emission scanning electron microscope (FESEM) shows that all the nanoparticles have an average diameter of ~120 nm with a high degree of mono dispersion in size. The localized surface plasmon resonance (LSPR) absorption peak at ~537 nm confirms the presence of large size silver nanoparticles.

  1. Plasma-assisted reduction of silver ions impregnated into a natural zeolite framework

    Science.gov (United States)

    Osonio, Airah P.; Vasquez, Magdaleno R.

    2018-02-01

    A green, dry, and energy-efficient method for the fabrication of silver-zeolite (AgZ) composite via 13.56 MHz radio-frequency plasma reduction is demonstrated. Impregnation by soaking and ion-exchange deposition were performed to load the silver ions (Ag+) into the sodium-zeolite samples. Characterization was performed by optical emission spectroscopy, Fourier transform infrared spectroscopy, X-ray diffraction, scanning electron microscopy, X-ray photoelectron spectroscopy, and Brunauer-Emmett-Teller analyses. Results indicate the successful reduction of Ag+ to its metallic state on the surface of the zeolite with a mean diameter of 165 nm. This plasma-induced reduction technique opens possibilities in several areas including catalysis, adsorption, water treatment, and medicine.

  2. Synthesis and characterization of silver nanoparticles by sol-gel route from silver nitrate

    International Nuclear Information System (INIS)

    Morales, Jorge; Moran, Jose; Quintana, Maria; Estrada, Walter

    2009-01-01

    Silver nanoparticles colloids have been synthesized by sol-gel method. This synthesis consists in silver nitrate reduction by ethylene glycol in a process called polyol. The growth of the nanoparticles have been controlled by the steric stabilization of the colloid with polyvinylpyrrolidone (PVP, M w = 40 000). The silver nanoparticle size and structure was depending on the control of parameters such as: molar concentrations ratio of silver nitrate and PVP, temperature of reaction and the reflux time. Colloids have been characterized by UV-vis spectroscopy in the range from 300 to 1000 nm. The results show that the typical peak of surface plasmon resonance is formed at 400-450 nm indicating the formation of silver nanoparticles. The presences of silver nanoparticles of spherical shape with size among 20-40 nm were observed by transmission electronic microscopy (TEM). Electron diffraction patterns confirmed that synthesized colloids contain metallic silver with a crystal structure face centered cubic FCC. (author)

  3. Use of a silver ion selective electrode to assess mechanisms responsible for biological effects of silver nanoparticles

    International Nuclear Information System (INIS)

    Koch, Marcus; Kiefer, Silke; Cavelius, Christian; Kraegeloh, Annette

    2012-01-01

    For a detailed analysis of the biological effects of silver nanoparticles, discrimination between effects related to the nano-scale size of the particles and effects of released silver ions is required. Silver ions are either present in the initial particle dispersion or released by the nanoparticles over time. The aim of this study is to monitor the free silver ion activity {Ag + } in the presence of silver nanoparticles using a silver ion selective electrode. Therefore, silver in the form of silver nanoparticles, 4.2 ± 1.4 nm and 2–30 nm in size, or silver nitrate was added to cell culture media in the absence or presence of A549 cells as a model for human type II alveolar epithelial cells. The free silver ion activity measured after the addition of silver nanoparticles was determined by the initial ionic silver content. The p {Ag + } values indicated that the cell culture media decrease the free silver ion activity due to binding of silver ions by constituents of the media. In the presence of A549 cells, the free silver ion activity was further reduced. The morphology of A549 cells, cultivated in DME medium containing 9.1% (v/v) FBS, was affected by adding AgNO 3 at concentrations of ≥30 μM after 24 h. In comparison, silver nanoparticles up to a concentration of 200 μM Ag did not affect cellular morphology. Our experiments indicate that the effect of silver nanoparticles is mainly mediated by silver ions. An effect of silver on cellular morphology was observed at p {Ag + } ≤ 9.2.

  4. Antimicrobial, Antioxidant and Cytotoxic Activity of Silver Nanoparticles Synthesized by Leaf Extract of Erythrina suberosa (Roxb.).

    Science.gov (United States)

    Mohanta, Yugal K; Panda, Sujogya K; Jayabalan, Rasu; Sharma, Nanaocha; Bastia, Akshaya K; Mohanta, Tapan K

    2017-01-01

    In this experiment, biosynthesized silver nanoparticles (AgNPs) were synthesized using aqueous leaf extract of Erythrina suberosa (Roxb.). The biosynthesis of silver nanoparticle was continuously followed by UV-vis spectrophotometric analysis. The response of the phytoconstituents resides in E. suberusa during synthesis of stable AgNPs were analyzed by ATR- fourier-transform infrared spectroscopy. Further, the size, charge, and polydispersity nature of AgNPs were studied using dynamic light scattering spectroscopy. The morphology of the nanoparticles was determined by scanning electron microscopy. Current result shows core involvement of plant extracts containing glycosides, flavonoids, and phenolic compounds played a crucial role in the biosynthesis of AgNPs. The antimicrobial activities of silver nanoparticles were evaluated against different pathogenic bacterium and fungi. The antioxidant property was studied by radical scavenging (DPPH) assay and cytotoxic activity was evaluated against A-431 osteosarcoma cell line by MTT assay. The characteristics of the synthesized silver nanoparticles suggest their application as a potential antimicrobial and anticancer agent.

  5. Silver, gold, and alloyed silver-gold nanoparticles: characterization and comparative cell-biologic action

    Energy Technology Data Exchange (ETDEWEB)

    Mahl, Dirk; Diendorf, Joerg; Ristig, Simon [University of Duisburg-Essen, Department of Inorganic Chemistry, Center for Nanointegration Duisburg-Essen (CeNIDE) (Germany); Greulich, Christina [Ruhr-University of Bochum, Bergmannsheil University Hospital/Surgical Research (Germany); Li Zian; Farle, Michael [University of Duisburg-Essen, Faculty of Physics, Center for Nanointegration Duisburg-Essen (CeNIDE) (Germany); Koeller, Manfred [Ruhr-University of Bochum, Bergmannsheil University Hospital/Surgical Research (Germany); Epple, Matthias, E-mail: matthias.epple@uni-due.de [University of Duisburg-Essen, Department of Inorganic Chemistry, Center for Nanointegration Duisburg-Essen (CeNIDE) (Germany)

    2012-10-15

    Silver, gold, and silver-gold-alloy nanoparticles were prepared by citrate reduction modified by the addition of tannin during the synthesis, leading to a reduction in particle size by a factor of three. Nanoparticles can be prepared by this easy water-based synthesis and subsequently functionalized by the addition of either tris(3-sulfonatophenyl)phosphine or poly(N-vinylpyrrolidone). The resulting nanoparticles of silver (diameter 15-25 nm), gold (5-6 nm), and silver-gold (50:50; 10-12 nm) were easily dispersable in water and also in cell culture media (RPMI + 10 % fetal calf serum), as shown by nanoparticle tracking analysis and differential centrifugal sedimentation. High-resolution transmission electron microscopy showed a polycrystalline nature of all nanoparticles. EDX on single silver-gold nanoparticles indicated that the concentration of gold is higher inside a nanoparticle. The biologic action of the nanoparticles toward human mesenchymal stem cells (hMSC) was different: Silver nanoparticles showed a significant concentration-dependent influence on the viability of hMSC. Gold nanoparticles showed only a small effect on the viability of hMSC after 7 days. Surprisingly, silver-gold nanoparticles had no significant influence on the viability of hMSC despite the silver content. Silver nanoparticles and silver-gold nanoparticles in the concentration range of 5-20 {mu}g mL{sup -1} induced the activation of hMSC as indicated by the release of IL-8. In contrast, gold nanoparticles led to a reduction of the release of IL-6 and IL-8.

  6. An in vitro antifungal efficacy of silver nanoparticles activated by diode laser to Candida albicans

    Science.gov (United States)

    Astuti, S. D.; Kharisma, D. H.; Kholimatussa'diah, S.; Zaidan, A. H.

    2017-09-01

    Microbial infectious diseases and increased resistance to antibiotics become urgent problems requiring immediate solutions. One promising alternative is the using of silver nanoparticles. The combination of the microbial inhibition characteristic of silver nanotechnology enhances the activity of antimicrobial effect. This study aims to determine effectiveness of antifungal silver nanoparticles with the activation of the diode laser on Candida albicans. The samples were culture of Candida albicans. Candida albicans cultures were incubated with silver nanoparticles (concentration 10-4 M) and treated with various exposure time of diode laser (15, 30, 45, 60, 75, 90)s. The suspension was planted on Sabouraud Dextrone Agar sterile media and incubated for 24 hours at temperature of 37oC. The number of colony-forming units per milliliter (CFU/ml) was determined after incubation. The results were log-transformed and analyzed by analysis of variance (ANOVA). In this analysis, P value ≤0.05 was considered to indicate a statistically significant difference. The result of this study showed the quantum yield of silver nanoparticles with diode laser 450 nm was 63,61%. Irradiating with diode laser 450 nm for 75 s resulted in the highest decreasing percentage of Candida albicans viability 65,03%. Irradiating with diode laser 450 nm 75 s with silver nanoparticles resulted in the higest decreasing percentage of Candida albicans viability 84,63%. Therefore, silver nanoparticles activated with diode laser irradiation of 450 nm resulted antifungal effect to Candida albicans viability.

  7. Room temperature synthesis of silver nanowires from tabular silver bromide crystals in the presence of gelatin

    Science.gov (United States)

    Liu, Suwen; Wehmschulte, Rudolf J.; Lian, Guoda; Burba, Christopher M.

    2006-03-01

    Long silver nanowires were synthesized at room temperature by a simple and fast process derived from the development of photographic films. A film consisting of an emulsion of tabular silver bromide grains in gelatin was treated with a photographic developer (4-(methylamino)phenol sulfate (metol), citric acid) in the presence of additional aqueous silver nitrate. The silver nanowires have lengths of more than 50 μm, some even more than 100 μm, and average diameters of about 80 nm. Approximately, 70% of the metallic silver formed in the reduction consists of silver nanowires. Selected area electron diffraction (SAED) results indicate that the silver nanowires grow along the [111] direction. It was found that the presence of gelatin, tabular silver bromide crystals and silver ions in solution are essential for the formation of the silver nanowires. The nanowires appear to originate from the edges of the silver bromide crystals. They were characterized by transmission electron microscopy (TEM), SAED, scanning electron microscopy (SEM), and powder X-ray diffraction (XRD).

  8. Room temperature synthesis of silver nanowires from tabular silver bromide crystals in the presence of gelatin

    International Nuclear Information System (INIS)

    Liu Suwen; Wehmschulte, Rudolf J.; Lian Guoda; Burba, Christopher M.

    2006-01-01

    Long silver nanowires were synthesized at room temperature by a simple and fast process derived from the development of photographic films. A film consisting of an emulsion of tabular silver bromide grains in gelatin was treated with a photographic developer (4-(methylamino)phenol sulfate (metol), citric acid) in the presence of additional aqueous silver nitrate. The silver nanowires have lengths of more than 50 μm, some even more than 100 μm, and average diameters of about 80 nm. Approximately, 70% of the metallic silver formed in the reduction consists of silver nanowires. Selected area electron diffraction (SAED) results indicate that the silver nanowires grow along the [111] direction. It was found that the presence of gelatin, tabular silver bromide crystals and silver ions in solution are essential for the formation of the silver nanowires. The nanowires appear to originate from the edges of the silver bromide crystals. They were characterized by transmission electron microscopy (TEM), SAED, scanning electron microscopy (SEM), and powder X-ray diffraction (XRD)

  9. Green Biosynthesis of Silver Nanoparticles Using Callicarpa maingayi Stem Bark Extraction

    Directory of Open Access Journals (Sweden)

    Mohammed Zidan

    2012-07-01

    Full Text Available Different biological methods are gaining recognition for the production of silver nanoparticles (Ag-NPs due to their multiple applications. The use of plants in the green synthesis of nanoparticles emerges as a cost effective and eco-friendly approach. In this study the green biosynthesis of silver nanoparticles using Callicarpa maingayi stem bark extract has been reported. Characterizations of nanoparticles were done using different methods, which include; ultraviolet-visible spectroscopy (UV-Vis, powder X-ray diffraction (XRD, transmission electron microscopy (TEM, scanning electron microscopy (SEM, energy dispersive X-ray fluorescence (EDXF spectrometry, zeta potential measurements and Fourier transform infrared (FT-IR spectroscopy. UV-visible spectrum of the aqueous medium containing silver nanoparticles showed absorption peak at around 456 nm. The TEM study showed that mean diameter and standard deviation for the formation of silver nanoparticles were 12.40 ± 3.27 nm. The XRD study showed that the particles are crystalline in nature, with a face centered cubic (fcc structure. The most needed outcome of this work will be the development of value added products from Callicarpa maingayi for biomedical and nanotechnology based industries.

  10. Fractionation of silver isotopes in native silver explained by redox reactions

    Science.gov (United States)

    Mathur, Ryan; Arribas, Antonio; Megaw, Peter; Wilson, Marc; Stroup, Steven; Meyer-Arrivillaga, Danilo; Arribas, Isabel

    2018-03-01

    Scant data exist on the silver isotope composition of native silver specimens because of the relative newness of the technique. This study increases the published dataset by an order of magnitude and presents 80 silver new isotope analyses from native silver originating from a diverse set of worldwide deposits (8 deposit types, 33 mining districts in five continents). The measured isotopic range (defined as δ109Ag/107Ag in per mil units compared to NIST 978 Ag isotope standard) is +2.1 to -0.86‰ (2σ errors less than 0.015); with no apparent systematic correlations to date with deposit type or even within districts. Importantly, the data centering on 0‰ all come from high temperature hypogene/primary deposits whereas flanking and overlapping data represent secondary supergene deposits. To investigate the causes for the more fractionated values, several laboratory experiments involving oxidation of silver from natural specimens of Ag-rich sulfides and precipitation and adsorption of silver onto reagent grade MnO2 and FeOOH were conducted. Simple leach experiments demonstrate little Ag isotope fractionation occurred through oxidation of Ag from native Ag (Δsolution-native109Ag = 0.12‰). In contrast, significant fractionation occurred through precipitation of native Ag onto MnO2 (up to Δsolution-MnO2109Ag = 0.68‰, or 0.3amu). Adsorption of silver onto the MnO2 and FeOOH did not produce as large fractionation as precipitation (mean value of Δsolution-MnO2109Ag = 0.10‰). The most likely cause for the isotopic variations seen relates to redox effects such as the reduction of silver from Ag (I) to Ag° that occurs during precipitation onto the mineral surface. Since many Ag deposits have halos dominated by MnO2 and FeOOH phases, potential may exist for the silver isotope composition of ores and surrounding geochemical haloes to be used to better understand ore genesis and potential exploration applications. Aside from the Mn oxides, surface fluid silver

  11. Changes in silver nanoparticles exposed to human synthetic stomach fluid: Effects of particle size and surface chemistry

    International Nuclear Information System (INIS)

    Mwilu, Samuel K.; El Badawy, Amro M.; Bradham, Karen; Nelson, Clay; Thomas, David; Scheckel, Kirk G.; Tolaymat, Thabet; Ma, Longzhou; Rogers, Kim R.

    2013-01-01

    The significant rise in consumer products and applications utilizing the antibacterial properties of silver nanoparticles (AgNPs) has increased the possibility of human exposure. The mobility and bioavailability of AgNPs through the ingestion pathway will depend, in part, on properties such as particle size and the surface chemistries that will influence their physical and chemical reactivities during transit through the gastrointestinal tract. This study investigates the interactions between synthetic stomach fluid and AgNPs of different sizes and with different capping agents. Changes in morphology, size and chemical composition were determined during a 30 min exposure to synthetic human stomach fluid (SSF) using Absorbance Spectroscopy, High Resolution Transmission Electron and Scanning Electron Microscopy (TEM/SEM), Dynamic Light Scattering (DLS), and Nanoparticle Tracking Analysis (NTA). AgNPs exposed to SSF were found to aggregate significantly and also released ionic silver which physically associated with the particle aggregates as silver chloride. Generally, the smaller sized AgNPs (< 10 nm) showed higher rates of aggregation and physical transformation than larger particles (75 nm). Polyvinylpyrrolidone (pvp)-stabilized AgNPs prepared in house behaved differently in SSF than particles obtained from a commercial source despite having similar surface coating and size distribution characteristics. - Highlights: ► Interactions between synthetic stomach fluid (SSF) and silver nanoparticles (AgNPs) are described. ► AgNPs exposed to SSF aggregate and silver chloride are associated with the particle aggregates. ► Smaller AgNPs (< 10 nm) showed higher rates of aggregation and transformation than larger particles (75 nm). ► Polyvinylpyrrolidone-stabilized AgNPs obtained from different sources aggregated at different rates when exposed to SSF

  12. Silver deposition on stainless steel container surfaces in contact with disinfectant silver aqueous solutions

    International Nuclear Information System (INIS)

    Petala, M.; Tsiridis, V.; Mintsouli, I.; Pliatsikas, N.; Spanos, Th.; Rebeyre, P.; Darakas, E.; Patsalas, P.; Vourlias, G.; Kostoglou, M.; Sotiropoulos, S.; Karapantsios, Th.

    2017-01-01

    Highlights: • Silver is one of the biocides of water consumed in the International Space Station. • Ionic silver is depleted from potable water when in contact with stainless steel (SS). • SEM and XPS analysis reveal a uniform silver deposition over the SS surface. • Silver deposits in its metallic form, in line with a galvanic deposition mechanism. • Evidence is provided that Cr and/ or Ni oxide builds-up on SS surfaces. - Abstract: Silver is the preservative used on the Russian segment of the International Space Station (ISS) to prevent microbial proliferation within potable water supplies. Yet, in the frame of the European Automated Transfer Vehicle (ATV) missions to ISS, silver depletion from water has been detected during ground transportation of this water to launch site, thereby indicating a degradation of water quality. This study investigates the silver loss from water when in contact with stainless steel surfaces. Experiments are conducted with several types of stainless steel surfaces being exposed to water containing 10 or 0.5 mg/L silver ions. Results show that silver deposits on stainless steel surfaces even when a passivation layer protects the metallic surface. The highest protection to silver deposition is offered by acid passivated and electropolished SS 316L. SEM and XPS experiments were carried out at several locations of the sample area that was in contact with the Ag solution and found similar morphological (SEM) and compositional (sputter-etch XPS) results. The results reveal that silver deposits uniformly across the wetted surface to a thickness larger than 3 nm. Moreover, evidence is provided that silver deposits in its metallic form on all stainless steel surfaces, in line with a galvanic deposition mechanism. Combination of ICP-MS and XPS results suggests a mechanism for Ag deposition/reduction with simultaneous substrate oxidation resulting in oxide growth at the exposed stainless steel surface.

  13. Silver deposition on stainless steel container surfaces in contact with disinfectant silver aqueous solutions

    Energy Technology Data Exchange (ETDEWEB)

    Petala, M., E-mail: petala@civil.auth.gr [Department of Civil Engineering, Aristotle University of Thessaloniki, Thessaloniki, 54124 (Greece); Tsiridis, V. [Department of Civil Engineering, Aristotle University of Thessaloniki, Thessaloniki, 54124 (Greece); Mintsouli, I. [Department of Chemistry, Aristotle University of Thessaloniki, Thessaloniki, 54124 (Greece); Pliatsikas, N. [Department of Physics, Aristotle University of Thessaloniki, Thessaloniki, 54124 (Greece); Spanos, Th. [Department of Petroleum and Mechanical Engineering Sciences, Eastern Macedonia and Thrace Institute of Technology, Kavala, 65404 (Greece); Rebeyre, P. [ESA/ESTEC, P.O.Box 299, 2200 AG, Noordwijk (Netherlands); Darakas, E. [Department of Civil Engineering, Aristotle University of Thessaloniki, Thessaloniki, 54124 (Greece); Patsalas, P.; Vourlias, G. [Department of Physics, Aristotle University of Thessaloniki, Thessaloniki, 54124 (Greece); Kostoglou, M.; Sotiropoulos, S.; Karapantsios, Th. [Department of Chemistry, Aristotle University of Thessaloniki, Thessaloniki, 54124 (Greece)

    2017-02-28

    Highlights: • Silver is one of the biocides of water consumed in the International Space Station. • Ionic silver is depleted from potable water when in contact with stainless steel (SS). • SEM and XPS analysis reveal a uniform silver deposition over the SS surface. • Silver deposits in its metallic form, in line with a galvanic deposition mechanism. • Evidence is provided that Cr and/ or Ni oxide builds-up on SS surfaces. - Abstract: Silver is the preservative used on the Russian segment of the International Space Station (ISS) to prevent microbial proliferation within potable water supplies. Yet, in the frame of the European Automated Transfer Vehicle (ATV) missions to ISS, silver depletion from water has been detected during ground transportation of this water to launch site, thereby indicating a degradation of water quality. This study investigates the silver loss from water when in contact with stainless steel surfaces. Experiments are conducted with several types of stainless steel surfaces being exposed to water containing 10 or 0.5 mg/L silver ions. Results show that silver deposits on stainless steel surfaces even when a passivation layer protects the metallic surface. The highest protection to silver deposition is offered by acid passivated and electropolished SS 316L. SEM and XPS experiments were carried out at several locations of the sample area that was in contact with the Ag solution and found similar morphological (SEM) and compositional (sputter-etch XPS) results. The results reveal that silver deposits uniformly across the wetted surface to a thickness larger than 3 nm. Moreover, evidence is provided that silver deposits in its metallic form on all stainless steel surfaces, in line with a galvanic deposition mechanism. Combination of ICP-MS and XPS results suggests a mechanism for Ag deposition/reduction with simultaneous substrate oxidation resulting in oxide growth at the exposed stainless steel surface.

  14. Synthesis of highly stable silver nanoparticles through a novel green method using Mirabillis jalapa for antibacterial, nonlinear optical applications

    Science.gov (United States)

    Pugazhendhi, S.; Palanisamy, P. K.; Jayavel, R.

    2018-05-01

    Green synthesis techniques are developing as more simplistic and eco-friendly approach for the synthesis of metal nanoparticles compared to chemical reduction methods. Herein we report Synthesis of highly stable silver nanoparticles using Mirabillis jalapa seed extract as a reducing and capping agent. The as-prepared silver nanoparticles were characterized by UV-vis spectroscopy (UV-vis) to confirm the formation of silver nanoparticles by its characteristic surface plasmon resonance peak observed at 420 nm. The Powder X-ray diffraction (P-XRD) revealed the structure and crystalline nature of synthesized silver nanoparticles, The Fourier transform infra-red spectroscopic (FT-IR) revealed the presence of the biomolecules in the extract that acted as reducing as well stabilizing agent. The high resolution transmission electron microscopic (HRTEM) images divulged that the synthesized silver nanoparticles were spherical in shape and poly dispersed. The energy dispersive X-ray diffraction (EDX) profile revealed the elements present in the as-synthesized colloidal silver nanoparticles and its percentages. The Zeta potential measured for silver nanoparticles evidenced that the prepared silver nanoparticles owned high stability in room temperature itself. The as-synthesized silver nanoparticles (AgNPs) in colloidal form were showed good antimicrobial effects and it's were found to exhibit third order optical nonlinearity as studied by Z-scan technique using 532 nm Nd:YAG (SHG) CW laser beam (COHERENT-Compass 215 M-50 diode pumped) output as source. The negative nonlinearity observed was well utilized for the study of optical limiting behavior of the silver nanoparticles.

  15. Carboxymethylguargum-silver nanocomposite: green synthesis, characterization and an optical sensor for ammonia detection

    International Nuclear Information System (INIS)

    Gupta, Anek Pal; Verma, Devendra Kumar

    2014-01-01

    This work describes the preparation of new carboxymethyl guar gum-silver nanocomposite (CMGG/Ag NC) by green synthesis method. For this carboxymethyl guar gum was used as a reducing agent as well as stabilizer. The silver nanoparticles obtained were characterized by field emission scanning electron microscopy (FE-SEM), transmission electron microscopy (TEM), UV–vis spectroscopy, Fourier transform infrared (FTIR) and energy dispersive x-ray analysis (EDX). The average size of the silver nanoparticles was found of ∼6 nm. Thus, the obtained CMGG/AgNPs NC was examined for optical sensing property for detection of ammonia in aqueous medium. The response time and the detection limit of ammonia in aqueous solution were detected at room temperature. It was concluded that in the future, at this room temperature optical ammonia sensor may be used for medical diagnosis and clinically for detecting low ammonia level (up to 1 ppm) in biological samples for various biomedical applications. (paper)

  16. Preparation and characterization of chitosan-silver/hydroxyapatite composite coatings onTiO{sub 2} nanotube for biomedical applications

    Energy Technology Data Exchange (ETDEWEB)

    Yan, Yajing [Institute of Life Science and Technology, University of Electronic Science and Technology of China, Chengdu 610054 (China); Zhang, Xuejiao [Medical Informatics, Hebei North University, Zhangjiakou 075000 (China); Li, Caixia [Institute of Life Science and Technology, University of Electronic Science and Technology of China, Chengdu 610054 (China); Huang, Yong [Institute of Life Science and Technology, University of Electronic Science and Technology of China, Chengdu 610054 (China); College of Lab Medicine, Hebei North University, Zhangjiakou 075000 (China); Ding, Qiongqiong [Institute of Life Science and Technology, University of Electronic Science and Technology of China, Chengdu 610054 (China); Pang, Xiaofeng, E-mail: xfpang@aliyun.com [Institute of Life Science and Technology, University of Electronic Science and Technology of China, Chengdu 610054 (China)

    2015-03-30

    Highlights: • Chitosan/silver-doped hydroxyapatite biocomposite coating was successfully deposited on anodized Ti by electrochemical deposition. • The chemical state of silver in the synthesized coatings was studied by XPS peak deconvolution. • The synthesized coatings have excellent antibacterial activity because of synergistic effect of the Ag and CS. • The CSAgHAp coatings showed good biocompatibility and no adverse effect in cell culture tests. - Abstract: A biocomposite coating containing chitosan, silver, and hydroxyapatite was developed on anodized titanium substrate by electrochemical deposition. Coatings were characterized by field-emission scanning electron microscopy, X-ray diffraction, Fourier transform infrared spectroscopy, X-ray photoelectron spectroscopy and polarisation studies. Results showed that the prepared coatings had compact and dense morphology with a thickness of 6.2 ± 0.7 μm and that silver was evenly distributed. Testing the prepared coatings with Gram-positive and Gram-negative bacterial strains exhibited antibacterial activity because of the synergistic effect of silver and chitosan. The prepared coatings were also found to be nontoxic to MC3T3-E1 cells. These results suggested that chitosan/silver-hydroxyapatite biocomposite coatings can prevent the bacterial infection of implants.

  17. Production of silver ions from colloidal silver by nanoparticle iontophoresis system.

    Science.gov (United States)

    Tseng, Kuo-Hsiung; Liao, Chih-Yu

    2011-03-01

    Metal ions, especially the silver ion, were used to treat infection before the initiation of antibiotic therapy. Unfortunately, there is a lack of research on the metallic nanoparticle suspension as a reservoir for metal ion release application. For medical purposes, conversion of colloidal silver into an ionic form is necessary, but not using silver salts (e.g., AgNO3, Ag2SO4), due to the fact that the counter-ion of silver salts may cause problems to the body as the silver ion (Ag+) is consumed. The goal of this research is to develop a silver nanoparticle iontophoresis system (NIS) which can provide a relatively safe bactericidal silver ion solution with a controllable electric field. In this study, ion-selective electrodes were used to identify and observe details of the system's activity. Both qualitative and quantitative data analyses were performed. The experimental results show that the ion releasing peak time (R(PT)) has an inversely proportional relationship with the applied current and voltage. The ion releasing maximum level (R(ML)) and dosage (R(D)) are proportional to the current density and inversely proportional to the voltage, respectively. These results reveal that the nanoparticle iontophoresis system (NIS) is an alternative method for the controlled release of a metal ion and the ion's concentration profile, by controlling the magnitude of current density (1 microA/cm2 equal to 1 ppm/hour) and applied voltage.

  18. Piper nigrum Leaf and Stem Assisted Green Synthesis of Silver Nanoparticles and Evaluation of Its Antibacterial Activity Against Agricultural Plant Pathogens

    Directory of Open Access Journals (Sweden)

    Kanniah Paulkumar

    2014-01-01

    Full Text Available Utilization of biological materials in synthesis of nanoparticles is one of the hottest topics in modern nanoscience and nanotechnology. In the present investigation, the silver nanoparticles were synthesized by using the leaf and stem extract of Piper nigrum. The synthesized nanoparticle was characterized by UV-vis spectroscopy, X-ray diffraction (XRD, scanning electron microscope (SEM, transmission electron microscope (TEM, energy dispersive X-ray analysis (EDAX, and Fourier Transform Infrared Spectroscopy (FTIR. The observation of the peak at 460 nm in the UV-vis spectra for leaf- and stem-synthesized silver nanoparticles reveals the reduction of silver metal ions into silver nanoparticles. Further, XRD analysis has been carried out to confirm the crystalline nature of the synthesized silver nanoparticles. The TEM images show that the leaf- and stem-synthesized silver nanoparticles were within the size of about 7–50 nm and 9–30 nm, respectively. The FTIR analysis was performed to identify the possible functional groups involved in the synthesis of silver nanoparticles. Further, the antibacterial activity of the green-synthesized silver nanoparticles was examined against agricultural plant pathogens. The antibacterial property of silver nanoparticles is a beneficial application in the field of agricultural nanotechnology.

  19. Synthesis of Silver Nanoparticles in Cotton Fabric by Polyvinyl-2-pyrrolidone as a Reducing and Stabilizing Agent

    Directory of Open Access Journals (Sweden)

    Farbod Alimohammadi

    2012-12-01

    Full Text Available Silver nanoparticles have been extensively applied in various fields suchas polymers and textile fibers considering their well known antimicrobialproperties. In conventional methods nano silver is synthesized through chemical reduction however, in this paper a novel synthesis method based on aqueous solution of ammonia/silver complex with cationic stabilizer along with UV-C irradiation is introduced. On this basis, silver nitrate was oxidized with sodium hydroxide and then transformed into [Ag(NH32]+ aqueous solution with ammonia followed by adding PVP as a reducing and stabilizing agent and irradiated by UV-C. The formation of silver nanoparticles was confirmed from the appearance of surface plasmon absorption and the X-ray diffraction (XRD demonstrated that the colloidal nanoparticles were pure silver and Zeta sizer showed particle size distribution. Cotton fabric finishing was accomplished in pad process with various concentrations of nano-sized colloidal silver. Some characteristics of the fabric such as antimicrobial against different microorganisms including gram positive bacteria (Staphylococcous aureus, one gram negative bacteria (Escherichia coli, UV–vis spectrophotometry, color space a*, b* and L*, scanning electron microscopy, EDAX were investigated. Very good antibacterial efficacy against S. aureus and E. coli (higher than 97% appeared even by applying a low nanosilver content (200 ppm for twenty cycles of home laundering. Polyvinyl pyrrolidone resulted in a remarkable control in the release of silver nanoparticle from the coating and can improve the long-term microbiological activity, especially against home laundering.

  20. Investigation of thermo-optical characteristics of the interaction processes of laser radiation with silver nanoparticles

    International Nuclear Information System (INIS)

    Pustovalov, V K; Astafyeva, L G

    2013-01-01

    Metallic nanoparticles have been actively investigated in recent years by different optical and laser methods with the purpose of their applications in optoelectronics and photonics, chemistry, laser nanobiomedicine, optical diagnostics, and other fields. A major role among metallic nanoparticles is played by nanoparticles from the noble metals (silver, gold, etc). These particles have unique plasmonic properties (resonances in the range of wavelength 400–540 nm), which can be used for the absorption, scattering and transformation of laser energy. Analysis of the thermo-optical characteristics of the interaction processes of laser radiation with silver nanoparticles is carried out, taking into account absorption, scattering and extinction of laser radiation by nanoparticles, as well as the thermo-optical and other properties of nanoparticles. Estimations are made of the influence of these nanoparticle properties on the possible results of laser radiation interaction with silver nanoparticles, including heating, heat exchange, possible melting and evaporation, and processes in the ambient media. These results can be used in laser processing of silver nanoparticles and their applications in laser nanomedicine. (paper)

  1. Photobiosynthesis of stable and functional silver/silver chloride nanoparticles with hydrolytic activity using hyperthermophilic β-glucosidases with industrial potential.

    Science.gov (United States)

    Araújo, Juscemácia N; Tofanello, Aryane; da Silva, Viviam M; Sato, Juliana A P; Squina, Fabio M; Nantes, Iseli L; Garcia, Wanius

    2017-09-01

    The β-glucosidases are important enzymes employed in a large number of processes and industrial applications, including biofuel production from biomass. Therefore, in this study, we reported for the first time the photobiosynthesis of stable and functional silver/silver chloride nanoparticles (Ag/AgCl-NPs) using two hyperthermostable bacterial β-glucosidases with industrial potential. The syntheses were straightforward and rapid processes carried out by mixing β-glucosidase and silver nitrate (in buffer 10mM Tris-HCl, pH 8) under irradiation with light (over a wavelength range of 450-600nm), therefore, compatible with the green chemistry procedure. Synthesized Ag/AgCl-NPs were characterized using a series of physical techniques. Absorption spectroscopy showed a strong absorption band centered at 460nm due to surface plasmon resonance of the Ag-NPs. X-ray diffraction analysis revealed that the Ag/AgCl-NPs were purely crystalline in nature. Under electron microscopy, Ag/AgCl-NPs of variable diameter ranging from 10 to 100nm can be visualized. Furthermore, electron microscopy, zeta potential and Fourier transform infrared spectroscopy results confirmed the presence of β-glucosidases coating and stabilizing the Ag/AgCl-NPs. Finally, the results showed that the enzymatic activities were maintained in the β-glucosidases assisted Ag/AgCl-NPs. The information described here should provide a useful basis for future studies of β-glucosidases assisted Ag/AgCl-NPs, including biotechnological applications. Copyright © 2017 Elsevier B.V. All rights reserved.

  2. Mechanical, electrical, and thermal expansion properties of carbon nanotube-based silver and silver-palladium alloy composites

    Science.gov (United States)

    Pal, Hemant; Sharma, Vimal

    2014-11-01

    The mechanical, electrical, and thermal expansion properties of carbon nanotube (CNT)-based silver and silver-palladium (10:1, w/w) alloy nanocomposites are reported. To tailor the properties of silver, CNTs were incorporated into a silver matrix by a modified molecular level-mixing process. CNTs interact weakly with silver because of their non-reactive nature and lack of mutual solubility. Therefore, palladium was utilized as an alloying element to improve interfacial adhesion. Comparative microstructural characterizations and property evaluations of the nanocomposites were performed. The structural characterizations revealed that decorated type-CNTs were dispersed, embedded, and anchored into the silver matrix. The experimental results indicated that the modification of the silver and silver-palladium nanocomposite with CNT resulted in increases in the hardness and Young's modulus along with concomitant decreases in the electrical conductivity and the coefficient of thermal expansion (CTE). The hardness and Young's modulus of the nanocomposites were increased by 30%-40% whereas the CTE was decreased to 50%-60% of the CTE of silver. The significantly improved CTE and the mechanical properties of the CNT-reinforced silver and silver-palladium nanocomposites are correlated with the intriguing properties of CNTs and with good interfacial adhesion between the CNTs and silver as a result of the fabrication process and the contact action of palladium as an alloying element.

  3. Comparison studies on catalytic properties of silver nanoparticles biosynthesized via aqueous leaves extract of Hibiscus rosa sinensis and Imperata cylindrica

    Science.gov (United States)

    Fairuzi, Afiza Ahmad; Bonnia, Noor Najmi; Akhir, Rabiatuladawiyah Md.; Akil, Hazizan Md; Yahya, Sabrina M.; Rahman, Norafifah A.

    2018-05-01

    Synthesis of silver nanoparticles has been developed by using aqueous leaves extract (ALE) of Hibiscus rosa sinensis (H. rosa sinensis) and Imperata cylindrica (I. cylindrica). Both plants extract acts as reducing and capping agent. The colour change in reaction mixture (pale yellow to dark brown) was observed during the synthesis process. The formation of silver nanoparticles was confirmed by surface Plasmon Resonance (SPR) at range 300-700 nm for both leaves using UV-Vis Spectroscopy. The reduction of silver ions to silver nanoparticles was completed within 2 hour for H. rosa sinensis and 30 minutes for I. cylindrica extract. The synthesized nanoparticles were characterized using UV-Vis spectroscopy, field emission scanning electron microscope (FESEM) and Fourier transform infrared (FTIR) spectroscopy. The morphology of silver nanoparticles was found to be different when synthesized using different plant extract. In addition, this study also reported on the effect of silver nanoparticles on the degradation of organic dye by sodium borohydride (NaBH4). The silver nanoparticles synthesis by aqueous leaf extract demonstrates rapid, simple and inexpensive method compared to the conventional physical and physical methods. The efficiency of silver nanoparticles as a promising candidate for the catalysis of organic dyes by NaBH4 through the electron transfer is established in the present study.

  4. Silver Nanoparticles and Graphitic Carbon Through Thermal Decomposition of a Silver/Acetylenedicarboxylic Salt

    Directory of Open Access Journals (Sweden)

    Komninou Philomela

    2009-01-01

    Full Text Available Abstract Spherically shaped silver nanoparticles embedded in a carbon matrix were synthesized by thermal decomposition of a Ag(I/acetylenedicarboxylic acid salt. The silver nanoparticles, which are formed either by pyrolysis at 300 °C in an autoclave or thermolysis in xylene suspension at reflux temperature, are acting catalytically for the formation of graphite layers. Both reactions proceed through in situ reduction of the silver cations and polymerization of the central acetylene triple bonds and the exact temperature of the reaction can be monitored through DTA analysis. Interestingly, the thermal decomposition of this silver salt in xylene partly leads to a minor fraction of quasicrystalline silver, as established by HR-TEM analysis. The graphitic layers covering the silver nanoparticles are clearly seen in HR-TEM images and, furthermore, established by the presence of sp2carbon at the Raman spectrum of both samples.

  5. Development of nanostructured silver vanadates decorated with silver nanoparticles as a novel antibacterial agent

    Energy Technology Data Exchange (ETDEWEB)

    Holtz, R D; Souza Filho, A G; Alves, O L [Laboratorio de Quimica do Estado Solido (LQES), Instituto de Quimica, Universidade Estadual de Campinas, CP 6154, 13081-970, Campinas-SP (Brazil); Brocchi, M; Martins, D [Departamento de Genetica, Evolucao and Bioagentes, Instituto de Biologia, Universidade Estadual de Campinas, Campinas-SP (Brazil); Duran, N, E-mail: rholtz@iqm.unicamp.br, E-mail: agsf@fisica.ufc.br, E-mail: oalves@iqm.unicamp.br [Laboratorio de Quimica Biologica, Instituto de Quimica, Universidade Estadual de Campinas, Campinas-SP (Brazil)

    2010-05-07

    In this work we report the synthesis, characterization and application of silver vanadate nanowires decorated with silver nanoparticles as a novel antibacterial agent. These hybrid materials were synthesized by a precipitation reaction of ammonium vanadate and silver nitrate followed by hydrothermal treatment. The silver vanadate nanowires have lengths of the order of microns and diameters around 60 nm. The silver nanoparticles decorating the nanowires present a diameter distribution varying from 1 to 20 nm. The influence of the pH of the reaction medium on the chemical structure and morphology of silver vanadates was studied and we found that synthesis performed at pH 5.5-6.0 led to silver vanadate nanowires with a higher morphological yield. The antimicrobial activity of these materials was evaluated against three strains of Staphylococcus aureus and very promising results were found. The minimum growth inhibiting concentration value against a MRSA strain was found to be ten folds lower than for the antibiotic oxacillin.

  6. Eco-friendly synthesis of silver and gold nanoparticles with enhanced bactericidal activity and study of silver catalyzed reduction of 4-nitrophenol.

    Science.gov (United States)

    Naraginti, Saraschandra; Sivakumar, A

    2014-07-15

    The present study reports a simple and robust method for synthesis of silver and gold nanoparticles using Coleus forskohlii root extract as reducing and stabilizing agent. Stable silver nanoparticles (AgNPs) and gold nanopoarticles (AuNPs) were formed on treatment of an aqueous silver nitrate (AgNO3) and chloroauric acid (HAuCl4) solutions with the root extract. The nanoparticles obtained were characterized by UV-Visible spectroscopy, Transmission electron microscopy (TEM), X-ray diffraction (XRD) and Fourier-transform infrared spectroscopy (FT-IR). UV-Vis and TEM analysis indicate that with higher quantities of root extract, the interaction is enhanced leading to size reduction of spherical metal nanoparticles. XRD confirms face-centered cubic phase and the diffraction peaks can be attributed to (111), (200), (222) and (311) planes for these nanoparticles. These synthesized Ag and Au nanoparticles were found to exhibit excellent bactericidal activity against clinically isolated selected pathogens such as Escherichia coli (E. coli), Pseudomonas aeruginosa (P. aeruginosa) and Staphylococcus aureus (S. aureus). The synthesized AgNPs were also found to function as an efficient green catalyst in the reduction of anthropogenic pollutant 4-nitrophenol (4-NP) to 4-aminophenol (4-AP) by sodium borohydride, which was apparent from the periodical color change from bright yellow to colorless, after the addition of AgNPs. Copyright © 2014 Elsevier B.V. All rights reserved.

  7. Purification of simulated waste water using green synthesized silver nanoparticles of Piliostigma thonningii aqueous leave extract

    Science.gov (United States)

    Shittu, K. O.; Ihebunna, O.

    2017-12-01

    Synthesis of nanoparticles from various biological systems has been reported, but among all such systems, biosynthesis of nanoparticles from plants is considered the most suitable method. The use of plant material not only makes the process eco-friendly, but also the abundance makes it more economical. The aim of this study was to biologically synthesize silver nanoparticle using Piliostigma thonningii aqueous leaf extract and applied in the purification of laboratory stimulated waste with optimization using the different conditions of silver nanoparticle production such as time, temperature, pH, concentration of silver nitrate and volume of the aqueous extract. The biosynthesized silver nanoparticles were characterized by UV-visible spectrophotometry, nanosizer, energy dispersive x-ray analysis (EDX), transmission electron microscopy (TEM) and Fourier transform infrared (FTIR) spectroscopy. The time intervals for the reaction with aqueous silver nitrate solution shows an increase in the absorbance with time and became constant giving a maximum absorbance at 415 nm at 60 min of incubation. The pH of 6.5, temperature 65 °C, 1.25 mM of silver nitrate and 5 ml of plant extract was the best condition with maximum absorbance. The results from nanosizer, UV-vis and TEM suggested the biosynthesis silver nanoparticle to be spherical ranging from 50 nm to 114 nm. The EDX confirmed the elemental synthesis of silver at 2.60 keV and FTIR suggested the capping agent to be hydroxyl (OH) group with -C=C stretching vibrations. The synthesized silver nanoparticle also shows heavy metal removal activity in laboratory simulated waste water. The safety toxicity studies show no significant difference between the orally administered silver nanoparticles treated water group and control group, while the histopathological studies show well preserved hepatic architecture for the orally administered silver nanoparticle treated waste water group when compared with the control

  8. Evaluation of antimicrobial activity of silver nanoparticles synthesized from Piper betle leaves against human and plant pathogens

    Science.gov (United States)

    Jha, Babita; Rao, Mugdha; Prasad, K.; Jha, Anal K.

    2018-05-01

    The present work encompasses the fabrication of biocompatible silver nanoparticles from the leaves of the medicinal plant Piper betle using green chemistry approach. The synthesized nanoparticles were characterized by different standard techniques like: UV-visible spectroscopy, X-ray diffraction, scanning electron microscopy and Fourier transformed infrared spectroscopy. The antimicrobial efficacy of the silver nanoparticles was assessed against human and plant pathogens namely Ralstonia solanacearum, Burkholderia gladioli, Escherichia coli and Sacchromyces cerevisiae by agar well diffusion method. The obtained results clearly indicate its possible use as an alternative to antibiotics and pesticides in near future.

  9. The Synthesis of Silver Nanoparticles Produced by Chemical Reduction of Silver Salt Solution

    International Nuclear Information System (INIS)

    Sri Budi Harmani; Dewi Sondari; Agus Haryono

    2008-01-01

    Described in this research are the synthesis of silver nanoparticle produced by chemical reduction of silver salt (silver nitrate AgNO 3 ) solution. As a reducer, sodium citrate (C 6 H 5 O 7 Na 3 ) was used. Preparation of silver colloid is done by using chemical reduction method. In typical experiment 150 ml of 1.10 -3 M AgNO 3 solution was heated with temperature variation such as 90, 100, 110 degree of Celsius. To this solution 15 ml of 1 % trisodium citrate was added into solution drop by drop during heating. During the process, solution was mixed vigorously. Solution was heated until colour's change is evident (pale yellow solution is formed). Then it was removed from the heating element and stirred until cooled to room temperature. Experimental result showed that diameter of silver nanoparticles in colloid solution is about 28.3 nm (Ag colloid, 90 o C); 19.9 nm (Ag colloid, 100 o C)and 26.4 nm (Ag colloid, 110 o C). Characterization of the silver nanoparticle colloid conducted by using UV-Vis Spectroscopy, Particles Size Analyzer (PSA) and Scanning Electron Microscope (SEM) indicate the produced structures of silver nanoparticles. (author)

  10. Anglesite and silver recovery from jarosite residues through roasting and sulfidization-flotation in zinc hydrometallurgy

    International Nuclear Information System (INIS)

    Han, Haisheng; Sun, Wei; Hu, Yuehua; Jia, Baoliang; Tang, Honghu

    2014-01-01

    Highlights: • Jarosite precipitate hindered the recovery of valuable minerals. • Under 600–700 °C, jarosite decomposed and released the encapsulated valuable minerals. • The bared valuable minerals were easily collected by flotation process. • The new process was promising for dealing with jarosite residues. - Abstract: Hazardous jarosite residues contain abundant valuable minerals that are difficult to be recovered by traditional flotation process. This study presents a new route, roasting combined with sulfidization-flotation, for the recovery of anglesite and silver from jarosite residues of zinc hydrometallurgy. Surface appearance and elemental distribution of jarosite residues was examined by scanning electron microscopy and energy dispersive X-ray spectrometry analysis, respectively. Decomposition and transformation mechanisms of jarosite residues were illustrated by differential thermal analysis. Results showed that after roasting combined with flotation, the grade and recovery of lead were 43.89% and 66.86%, respectively, and those of silver were 1.3 kg/t and 81.60%, respectively. At 600–700 °C, jarosite was decomposed to release encapsulated valuable minerals such as anglesite (PbSO 4 ) and silver mineral; silver jarosite decomposed into silver sulfate (Ag 2 SO 4 ); and zinc ferrite (ZnO·Fe 2 O 3 ) decomposed into zinc sulfate (ZnSO 4 ) and hematite (Fe 2 O 3 ). Bared anglesite and silver minerals were modified by sodium sulfide and easily collected by flotation collectors. This study demonstrates that the combination of roasting and sulfidization-flotation provides a promising process for the recovery of zinc, lead, and silver from jarosite residues of zinc hydrometallurgy

  11. 21 CFR 310.548 - Drug products containing colloidal silver ingredients or silver salts offered over-the-counter...

    Science.gov (United States)

    2010-04-01

    ... 21 Food and Drugs 5 2010-04-01 2010-04-01 false Drug products containing colloidal silver... Drug products containing colloidal silver ingredients or silver salts offered over-the-counter (OTC) for the treatment and/or prevention of disease. (a) Colloidal silver ingredients and silver salts have...

  12. Characterization of Electrochemically Generated Silver

    Science.gov (United States)

    Adam, Niklas; Martinez, James; Carrier, Chris

    2014-01-01

    Silver biocide offers a potential advantage over iodine, the current state of the art in US spacecraft disinfection technology, in that silver can be safely consumed by the crew. Low concentrations of silver (Silver does not require hardware to remove it from a water system, and therefore can provide a simpler means for disinfecting water. The Russian segment of the International Space Station has utilized an electrochemically generated silver solution, which is colloidal in nature. To be able to reliably provide a silver biocide to drinking water by electrochemical means would reduce mass required for removing another biocide such as iodine from the water. This would also aid in crew time required to replace iodine removal cartridges. Future long term missions would benefit from electrochemically produced silver as the biocide could be produced on demand and requires only a small concentration to be effective. Since it can also be consumed safely, there is less mass in removal hardware and little consumables required for production. The goal of this project initially is to understand the nature of the electrochemically produced silver, the particle sizes produced by the electrochemical cell and the effect that voltage adjustment has on the particle size. In literature, it has been documented that dissolved oxygen and pH have an effect on the ionization of the electrochemical silver so those parameters would be measured and possibly adjusted to understand their effect on the silver.

  13. Silver carbonate and stability in colloidal silver: A by-product of the electric spark discharge method

    International Nuclear Information System (INIS)

    Tseng, Kuo-Hsiung; Liao, Chih-Yu; Tien, Der-Chi

    2010-01-01

    Many methods of producing colloidal silver (CS) include the introduction of surfactants to improve the suspensivity of the silver particles. The electric spark discharge method (ESDM) which involves pulses of direct current being passed through a silver electrode submerged in deionized water has been shown to successfully produce colloidal silver in a stable suspension without the use of chemical additives. A by-product of the electric spark discharge method, a silver ion compound (AgX), is shown to be the cause of the high suspensivity of the silver nanoparticles (AgNPs). The silver ion compound has been identified as Ag 2 CO 3 using X-ray diffraction, and it has been determined that the Ag 2 CO 3 is formed during the electric spark discharge process through a reaction with atmospheric CO 2 . It has been shown that an Ag 2 CO 3 concentration of 10 ppm or more is sufficient to generate a stable suspension of silver particles. Because of the occurrence of Ag 2 CO 3 , the electric spark discharge method can produce stable colloidal silver.

  14. Relaxation of the silver/silver iodide electrode in aqueous solution

    NARCIS (Netherlands)

    Peverelli, K.J.

    1979-01-01

    The aim of this study is to detect and characterize relaxation processes on silver/silver iodide electrodes in aqueous electrolyte solution. The information obtained is to be used for an estimation of the consequences of similar processes on colloidal AgI

  15. Biofabrication, characterization and antibacterial efficacy of extracellular silver nanoparticles using novel fungal strain of Penicillium atramentosum KM

    Directory of Open Access Journals (Sweden)

    Vikas Sarsar

    2015-11-01

    Full Text Available The biofabricated silver nanoparticles are extensively used in environmental, biotechnological and biomedical applications. The synthesis of SNPs has been carried out by using the filtrate extract of novel fungal strain Penicillium atramentosum KM. To undertake this study, P. atramentosum KM extract was exposed to silver nitrate and the obtained SNPs were thoroughly analyzed using physicochemical characterization tools such as UV–visible spectroscopy (UV–vis, Fourier transformation infrared (FTIR, X-ray diffraction (XRD and transmission electron microscopy (TEM. As evident from the FTIR spectra plausibly the protein components of fungal extract caused the reduction of silver nitrate. The SNPs showed a characteristic UV–visible peak at 420 nm with an average size of 5–25 nm. The XRD record exhibited the characteristic peaks of 111, 200, 220 and 311 nanoparticles signifying that these nanoparticles were crystalline in nature. Parametric optimization showed maximum absorbance of 420 nm at pH 7, 25 °C with 3 mM silver nitrate, concentration ratio of fungal extract and silver nitrate was 5:5 in 72 h. The synthesized SNPs showed antimicrobial activity against bacterial strains.

  16. Green synthesis of silver nanoparticles from Moringa oleifera leaf extracts and its antimicrobial potential

    Science.gov (United States)

    Moodley, Jerushka S.; Babu Naidu Krishna, Suresh; Pillay, Karen; Sershen; Govender, Patrick

    2018-03-01

    In this study we report on the synthesis of silver nanoparticles (AgNPs) from the leaf extracts of Moringa oleifera using sunlight irradiation as primary source of energy, and its antimicrobial potential. Silver nanoparticle formation was confirmed by surface plasmon resonance at 450 nm and 440 nm, respectively for both fresh and freeze-dried leaf samples. Crystanality of AgNPs was confirmed by transmission electron microscopy, scanning electron microscopy with energy dispersive x-ray spectroscopy and Fourier transform infrared (FTIR) spectroscopy analysis. FTIR spectroscopic analysis suggested that flavones, terpenoids and polysaccharides predominate and are primarily responsible for the reduction and subsequent capping of AgNPs. X-ray diffraction analysis also demonstrated that the size range of AgNPs from both samples exhibited average diameters of 9 and 11 nm, respectively. Silver nanoparticles showed antimicrobial activity on both bacterial and fungal strains. The biosynthesised nanoparticle preparations from M. oleifera leaf extracts exhibit potential for application as broad-spectrum antimicrobial agents.

  17. Sponge-like silver obtained by decomposition of silver nitrate hexamethylenetetramine complex

    International Nuclear Information System (INIS)

    Afanasiev, Pavel

    2016-01-01

    Silver nitrate hexamethylenetetramine [Ag(NO 3 )·N 4 (CH 2 ) 6 ] coordination compound has been prepared via aqueous route and characterized by chemical analysis, XRD and electron microscopy. Decomposition of [Ag(NO 3 )·N 4 (CH 2 ) 6 ] under hydrogen and under inert has been studied by thermal analysis and mass spectrometry. Thermal decomposition of [Ag(NO 3 )·N 4 (CH 2 ) 6 ] proceeds in the range 200–250 °C as a self-propagating rapid redox process accompanied with the release of multiple gases. The decomposition leads to formation of sponge-like silver having hierarchical open pore system with pore size spanning from 10 µm to 10 nm. The as-obtained silver sponges exhibited favorable activity toward H 2 O 2 electrochemical reduction, making them potentially interesting as non-enzyme hydrogen peroxide sensors. - Graphical abstract: Thermal decomposition of silver nitrate hexamethylenetetramine coordination compound [Ag(NO 3 )·N 4 (CH 2 ) 6 ] leads to sponge like silver that possesses open porous structure and demonstrates interesting properties as an electrochemical hydrogen peroxide sensor. Display Omitted - Highlights: • [Ag(NO 3 )·N 4 (CH 2 ) 6 ] orthorhombic phase prepared and characterized. • Decomposition of [Ag(NO 3 )·N 4 (CH 2 ) 6 ] leads to metallic silver sponge with opened porosity. • Ag sponge showed promising properties as a material for hydrogen peroxide sensors.

  18. Alternative Silver Production by Environmental Sound Processing of a Sulfo Salt Silver Mineral Found in Bolivia

    Directory of Open Access Journals (Sweden)

    Alexander Birich

    2018-02-01

    Full Text Available Very often, the production of silver causes devastating environmental issues, because of the use of toxic reagents like cyanide and mercury. Due to severe environmental damage caused by humans in the last decades, the social awareness regarding the sustainable production processes is on the rise. Terms like “sustainable” and “green” in product descriptions are becoming more and more popular and producers are forced to satisfy the rising environmental awareness of their customers. Within this work, an alternative environmental sound silver recovery process was developed for a vein type silver ore from Mina Porka, Bolivia. A foregoing characterization of the input material reveals its mineral composition. In the following mineral processing, around 92.9% silver was concentrated by separating 59.5 wt. % of non-silver minerals. Nitric acid leaching of the generated concentrate enabled a silver recovery of up to 98%. The dissolved silver was then separated via copper cementation to generate a metallic silver product of >99% purity. Summarizing all process steps, a silver yield of 87% was achieved in lab scale. A final upscaling trial was conducted to prove the process’ robustness. Within this trial, almost 4 kg of metallic silver with a purity of higher than 99.5 wt. % was produced.

  19. Franklin D. Roosevelt, Silver, and China.

    OpenAIRE

    Friedman, Milton

    1992-01-01

    The silver purchase program, initiated by Franklin Roosevelt in late 1933 in response to the economically small but politically potent silver bloc, gave a large short-run subsidy to silver producers at the cost of destroying any long-run monetary role for silver. More important, it imposed severe deflation on China, the only major country still on a silver standard, and forced it off the silver standard and on to a fiat standard, which brought forward in time and increased in severity the sub...

  20. Green synthesis and characterization of monodispersed silver nanoparticles using root bark aqueous extract of Annona muricata Linn and their antimicrobial activity

    Science.gov (United States)

    Ezealisiji, K. M.; Noundou, X. S.; Ukwueze, S. E.

    2017-11-01

    In recent time, various phytosynthetic methods have been employed for the fabrication of silver nanoparticles; these unique metal nanoparticles are used in several applications which include pharmaceuticals and material engineering. The current research reports a rapid and simple synthetic partway for silver nanoparticles (AgNPs) using root bark aqueous extract of Annona muricata and the evaluation of its antimicrobial efficacy against pathogenic microorganisms. The root bark extract was treated with aqueous silver nitrate solution. Silver ions were reduced to silver atoms which on aggregation gave Silver nanoparticles; the biosynthesized AgNPs were characteristically spherical, discreet and stabilized by phytochemical entities and were characterized using ultraviolet visible spectroscopy, transmission electron microscope (TEM) and photon correlation microscopy. The aqueous plant extract-AgNPs suspension was subjected to Fourier transform infrared spectroscopy. TEM result for the average particle size is 22 ± 2 nm. The polydispersity index and zeta-potential were found to be 0.44 ± 0.02 and - 27.90 ± 0.01 mV, respectively (Zeta-Sizer). The antimicrobial evaluation result showed that the synthesized silver nanoparticles at different concentration were very active against the Gram-positive bacteria ( B. subtilis, S. aureous) and Gram-negative bacteria ( K. Pneumonia, E. Coli and Pseudomonas aeruginosa), P. aeruginosa being most susceptible to the anti microbial effect of the silver nanoparticles. Stable silver nanoparticles with antimicrobial activity were obtained through biosynthesis.

  1. Formation process of silver-polypyrrole coaxial nanocables synthesized by redox reaction between AgNO3 and pyrrole in the presence of poly(vinylpyrrolidone).

    Science.gov (United States)

    Chen, Aihua; Kamata, Kaori; Nakagawa, Masaru; Iyoda, Tomokazu; Haiqiao Wang, Haiqiao; Li, Xiaoyu

    2005-10-06

    We have recently demonstrated a one-step process to fabricate silver-polypyrrole (PPy) coaxial nanocables (Chen, A.; Wang, H.; Li, X. Chem. Commun. 2005, 14, 1863). The formation process of silver-PPy coaxial nanocables is discussed in this article. It was found from the results of TEM and SEM images that large numbers of silver atoms were formed when AgNO3 was added to a pyrrole solution. Then silver atoms transform to silver-PPy nanosheets with regular morphology, which will connect together to be more stable. Silver-PPy nanocables will be able to grow at the expense of the silver-PPy nanosheets. Poly(vinylpyrrolidone) (PVP) plays crucial roles in this process: as a capping agent to form silver nanowires, and as a dispersant of pyrrole monomers, which can influence the site at which pyrrole monomer exists. On the basis of experimental analysis, the possible mechanism was proposed. Because of the effect of PVP, silver ions and pyrrole monomers are apt to be adsorbed at the [111] and [100] facets of silver nanosheets, respectively. Obvious polymerization will take place on the boundary of the [111] and [100] facets. The PPy layer stays stable on the [100] facets. Meanwhile, newly formed silver atoms and silver nanosheets will further ripen and grow on the [111] facets. In a word, the morphology of final products and the formation process are determined by the reaction site between AgNO3 and the pyrrole monomer, which is influenced by PVP.

  2. Effect of preconditioning on silver leaching and bromide removal properties of silver-impregnated activated carbon (SIAC).

    Science.gov (United States)

    Rajaeian, Babak; Allard, Sébastien; Joll, Cynthia; Heitz, Anna

    2018-07-01

    Silver impregnated activated carbon (SIAC) has been found to be effective in mitigating the formation of brominated-disinfection by products during drinking water treatment. However, there are still uncertainties regarding its silver leaching properties, and strategies for the prevention of silver leaching have remained elusive. This study focused on the evaluation of one type of commercially available SIAC for its ability to remove bromide while minimising silver leaching from the material. Both synthetic and real water matrices were tested. Depending on solution pH, it was found that changing the surface charge properties of SIAC, as measured by the point of zero charge pH, can result in additional bromide removal while minimising the extent of silver leaching. To better understand the mechanism of silver leaching from the SIAC, eight preconditioning environments, i.e. variable pH and ionic strength were tested for a fixed amount of SIAC and two preconditioning environments were selected for a more detailed investigation. Experiments carried out in synthetic water showed that preconditioning at pH 10.4 did not deteriorate the capacity of SIAC to remove bromide, but significantly decreased the release of silver in the form of ionic silver (Ag + ), silver bromide (AgBr) and silver chloride (AgCl) from 40% for the pristine to 3% for the treated SIAC. This was confirmed using a groundwater sample. These results suggest that preconditioned SIAC has the potential to be an effective method for bromide removal with minimised silver leaching in a long-term field application for drinking water production. Copyright © 2018 Elsevier Ltd. All rights reserved.

  3. Effect of poly-α, γ, L-glutamic acid as a capping agent on morphology and oxidative stress-dependent toxicity of silver nanoparticles

    Science.gov (United States)

    Stevanović, Magdalena; Kovačević, Branimir; Petković, Jana; Filipič, Metka; Uskoković, Dragan

    2011-01-01

    Highly stable dispersions of nanosized silver particles were synthesized using a straightforward, cost-effective, and ecofriendly method. Nontoxic glucose was utilized as a reducing agent and poly-α, γ, L-glutamic acid (PGA), a naturally occurring anionic polymer, was used as a capping agent to protect the silver nanoparticles from agglomeration and render them biocompatible. Use of ammonia during synthesis was avoided. Our study clearly demonstrates how the concentration of the capping agent plays a major role in determining the dimensions, morphology, and stability, as well as toxicity of a silver colloidal solution. Hence, proper optimization is necessary to develop silver colloids of narrow size distribution. The samples were characterized by Fourier transform infrared spectroscopy, ultraviolet-visible spectroscopy, field-emission scanning electron microscopy, transmission electron microscopy, and zeta potential measurement. MTT assay results indicated good biocompatibility of the PGA-capped silver nanoparticles. Formation of intracellular reactive oxygen species was measured spectrophotometrically using 2,7-dichlorofluorescein diacetate as a fluorescent probe, and it was shown that the PGA-capped silver nanoparticles did not induce intracellular formation of reactive oxygen species. PMID:22131829

  4. Silver against Pseudomonas aeruginosa biofilms

    DEFF Research Database (Denmark)

    Bjarnsholt, Thomas; Kirketerp-Møller, K.; Kristiansen, S.

    2007-01-01

    bacteria in both the planktonic and biofilm modes of growth. The action of silver on mature in vitro biofilms of Pseudomonas aeruginosa, a primary pathogen of chronic infected wounds, was investigated. The results show that silver is very effective against mature biofilms of P. aeruginosa......, but that the silver concentration is important. A concentration of 5-10 ig/mL silver sulfadiazine eradicated the biofilm whereas a lower concentration (1 ig/mL) had no effect. The bactericidal concentration of silver required to eradicate the bacterial biofilm was 10-100 times higher than that used to eradicate...... planktonic bacteria. These observations strongly indicate that the concentration of silver in currently available wound dressings is much too low for treatment of chronic biofilm wounds. It is suggested that clinicians and manufacturers of the said wound dressings consider whether they are treating wounds...

  5. Anglesite and silver recovery from jarosite residues through roasting and sulfidization-flotation in zinc hydrometallurgy

    Energy Technology Data Exchange (ETDEWEB)

    Han, Haisheng; Sun, Wei, E-mail: hanhaishengjingji@126.com; Hu, Yuehua; Jia, Baoliang; Tang, Honghu

    2014-08-15

    Highlights: • Jarosite precipitate hindered the recovery of valuable minerals. • Under 600–700 °C, jarosite decomposed and released the encapsulated valuable minerals. • The bared valuable minerals were easily collected by flotation process. • The new process was promising for dealing with jarosite residues. - Abstract: Hazardous jarosite residues contain abundant valuable minerals that are difficult to be recovered by traditional flotation process. This study presents a new route, roasting combined with sulfidization-flotation, for the recovery of anglesite and silver from jarosite residues of zinc hydrometallurgy. Surface appearance and elemental distribution of jarosite residues was examined by scanning electron microscopy and energy dispersive X-ray spectrometry analysis, respectively. Decomposition and transformation mechanisms of jarosite residues were illustrated by differential thermal analysis. Results showed that after roasting combined with flotation, the grade and recovery of lead were 43.89% and 66.86%, respectively, and those of silver were 1.3 kg/t and 81.60%, respectively. At 600–700 °C, jarosite was decomposed to release encapsulated valuable minerals such as anglesite (PbSO{sub 4}) and silver mineral; silver jarosite decomposed into silver sulfate (Ag{sub 2}SO{sub 4}); and zinc ferrite (ZnO·Fe{sub 2}O{sub 3}) decomposed into zinc sulfate (ZnSO{sub 4}) and hematite (Fe{sub 2}O{sub 3}). Bared anglesite and silver minerals were modified by sodium sulfide and easily collected by flotation collectors. This study demonstrates that the combination of roasting and sulfidization-flotation provides a promising process for the recovery of zinc, lead, and silver from jarosite residues of zinc hydrometallurgy.

  6. One-Pot Silver Nanoring Synthesis

    Science.gov (United States)

    Drogat, Nicolas; Granet, Robert; Sol, Vincent; Krausz, Pierre

    2010-03-01

    Silver colloidal nanorings have been synthesized by reducing silver ions with NaBH4 in trisodium citrate buffers. pH increase, by addition of NaOH, was used to speed up reduction reaction. The UV-vis absorption spectra of resulting silver nanorings showed two peaks accounting for transverse and longitudinal surface plasmon resonance, at ≈400 nm, and between 600 and 700 nm, respectively. The shapes of these silver nanoparticles (nanorings) depended on AgNO3/NaBH4 ratio, pH and reaction temperature. Particles were analysed by transmission electron microscopy, scanning electron microscopy and X-ray diffraction. A reaction pathway is proposed to explain silver nanoring formation.

  7. Antioxidant and anti-inflammatory activities of silver nanoparticles biosynthesized from aqueous leaves extracts of four Terminalia species

    Science.gov (United States)

    El-Rafie, Hanaa Mohamed; Abdel-Aziz Hamed, Manal

    2014-09-01

    The environmentally friendly synthesis of nanoparticles process is a revolutionary step in the field of nanotechnology. In recent years plant mediated biological synthesis of nanoparticles has been gaining importance due to its simplicity and eco-friendliness. In this study, a simple and an efficient eco-friendly approach for the biosynthesis of stable, monodisperse silver nanoparticles using aqueous extracts of four Terminalia species, namely, Terminalia catappa, Terminalia mellueri, Terminalia bentazoe and Terminalia bellerica were described. The silver nanoparticles were characterized in terms of synthesis, capping functionalities (polysaccharides, phenolics and flavonoidal compounds) and microscopic evaluation by UV-visible spectroscopy, Fourier transform infrared spectroscopy and transmission electron microscopy. The results showed a simple and feasible approach for obtaining stable aqueous monodispersive silver nanoparticles. Furthermore, biological activity of the biosynthesized silver nanoparticles was examined. Concerning this, dose-dependent antioxidant activity of silver nanoparticles imparted by the plant phenolic and flavonoidal components was evaluated using in vitro 2,2-diphenyl-1-picrylhydrazyl (DPPH) assay and found to be comparable to standard ascorbic acid. The same holds true for the anti-inflammatory activity where Terminalia catappa and Terminalia mellueri have a high-test inhibition percentage better than that of ascorbic acid in the carrageenan induced hind paw edema. The results also revealed that the aqueous extract of Terminallia catapa and its silver nanoparticles recorded the most potent in vivo antioxidant effect.

  8. A green approach to prepare silver nanoparticles loaded gum acacia/poly(acrylate) hydrogels.

    Science.gov (United States)

    Bajpai, S K; Kumari, Mamta

    2015-09-01

    In this work, gum acacia (GA)/poly(sodium acrylate) semi-interpenetrating polymer networks (Semi-IPN) have been fabricated via free radical initiated aqueous polymerization of monomer sodium acrylate (SA) in the presence of dissolved Gum acacia (GA), using N,N'-methylenebisacrylamide (MB) as cross-linker and potassium persulphate (KPS) as initiator. The semi-IPNs, synthesized, were characterized by various techniques such as X-ray diffraction (XRD), thermo gravimetric analysis (TGA) and Fourier transform infrared (FTIR) spectroscopy. The dynamic water uptake behavior of semi-IPNs was investigated and the data were interpreted by various kinetic models. The equilibrium swelling data were used to evaluate various network parameters. The semi-IPNs were used as template for the in situ preparation of silver nanoparticles using extract of Syzygium aromaticum (clove). The formation of silver nanoparticles was confirmed by surface plasmon resonance (SPR), XRD and transmission electron microscopy (TEM). Finally, the antibacterial activity of GA/poly(SA)/silver nanocomposites was tested against E. coli. Copyright © 2015 Elsevier B.V. All rights reserved.

  9. One-Pot Silver Nanoring Synthesis

    Directory of Open Access Journals (Sweden)

    Drogat Nicolas

    2009-01-01

    Full Text Available Abstract Silver colloidal nanorings have been synthesized by reducing silver ions with NaBH4 in trisodium citrate buffers. pH increase, by addition of NaOH, was used to speed up reduction reaction. The UV–vis absorption spectra of resulting silver nanorings showed two peaks accounting for transverse and longitudinal surface plasmon resonance, at ≈400 nm, and between 600 and 700 nm, respectively. The shapes of these silver nanoparticles (nanorings depended on AgNO3/NaBH4 ratio, pH and reaction temperature. Particles were analysed by transmission electron microscopy, scanning electron microscopy and X-ray diffraction. A reaction pathway is proposed to explain silver nanoring formation.

  10. Silver diamine fluoride: a caries "silver-fluoride bullet".

    Science.gov (United States)

    Rosenblatt, A; Stamford, T C M; Niederman, R

    2009-02-01

    The antimicrobial use of silver compounds pivots on the 100-year-old application of silver nitrate, silver foil, and silver sutures for the prevention and treatment of ocular, surgical, and dental infections. Ag(+) kills pathogenic organisms at concentrations of linings, water purification systems, hospital gowns, and caries prevention. To distill the current best evidence relative to caries, this systematic review asked: Will silver diamine fluoride (SDF) more effectively prevent caries than fluoride varnish? A five-database search, reference review, and hand search identified 99 human clinical trials in three languages published between 1966 and 2006. Dual review for controlled clinical trials with the patient as the unit of observation, and excluding cross-sectional, animal, in vitro studies, and opinions, identified 2 studies meeting the inclusion criteria. The trials indicated that SDF's lowest prevented fractions for caries arrest and caries prevention were 96.1% and 70.3%, respectively. In contrast, fluoride varnish's highest prevented fractions for caries arrest and caries prevention were 21.3% and 55.7%, respectively. Similarly, SDF's highest numbers needed to treat for caries arrest and caries prevention were 0.8 (95% CI=0.5-1.0) and 0.9 (95% CI=0.4-1.1), respectively. For fluoride varnish, the lowest numbers needed to treat for caries arrest and prevention were 3.7 (95% CI=3.4-3.9) and 1.1 (95% CI=0.7-1.4), respectively. Adverse events were monitored, with no significant differences between control and experimental groups. These promising results suggest that SDF is more effective than fluoride varnish, and may be a valuable caries-preventive intervention. As well, the availability of a safe, effective, efficient, and equitable caries-preventive agent appears to meet the criteria of both the WHO Millennium Goals and the US Institute of Medicine's criteria for 21st century medical care.

  11. The toxicity of silver to soil organisms exposed to silver nanoparticles and silver nitrate in biosolids-amended field soil.

    Science.gov (United States)

    Jesmer, Alexander H; Velicogna, Jessica R; Schwertfeger, Dina M; Scroggins, Richard P; Princz, Juliska I

    2017-10-01

    The use of engineered silver nanoparticles (AgNPs) is widespread, with expected release to the terrestrial environment through the application of biosolids onto agricultural lands. The toxicity of AgNPs and silver nitrate (AgNO 3 ; as ionic Ag + ) to plant (Elymus lanceolatus and Trifolium pratense) and soil invertebrate (Eisenia andrei and Folsomia candida) species was assessed using Ag-amended biosolids applied to a natural sandy loam soil. Bioavailable Ag + in soil samples was estimated using an ion-exchange technique applied to KNO 3 soil extracts, whereas exposure to dispersible AgNPs was verified by single-particle inductively coupled plasma-mass spectrometry and transmission electron microscopy-energy dispersive X-ray spectroscopy analysis. Greater toxicity to plant growth and earthworm reproduction was observed in AgNP exposures relative to those of AgNO 3 , whereas no difference in toxicity was observed for F. candida reproduction. Transformation products in the AgNP-biosolids exposures resulted in larger pools of extractable Ag + than those from AgNO 3 -biosolids exposures, at similar total Ag soil concentrations. The results of the present study reveal intrinsic differences in the behavior and bioavailability of the 2 different forms of Ag within the biosolids-soils pathway. The present study demonstrates how analytical methods that target biologically relevant fractions can be used to advance the understanding of AgNP behavior and toxicity in terrestrial environments. Environ Toxicol Chem 2017;36:2756-2765. © 2017 Crown in the Right of Canada. Published Wiley Periodicals Inc., on behalf of SETAC. © 2017 Crown in the Right of Canada. Published Wiley Periodicals Inc., on behalf of SETAC.

  12. Investigation of interaction between silver oxide electrode and separator hydrated cellulose film in silver-cadmium accumulators

    International Nuclear Information System (INIS)

    Molotkova, E.N.; Yarochkina, E.N.

    1975-01-01

    Oxidation-reduction interaction of the oxysilver electrode with hydrocellulose film during storing charged silver-cadmium accumulators. It was demonstrated that accumulator electric characteristics durinq storing are linearly depending on the capacity of this hydrocellulose film to interact with silver oxide: the more silver is absorbed by film the quicker is the decreasing of the electromotive force and capacity of the accumulators. Preservation of the silver electrode capacity in the silver-cadmium accumulators is determined first of all by hydrocellulose separation film properties and especially by film layer adjacent to positive electrode. The more inert film layer is, regarding to silver oxide in the electrolite, the slower is dissolution of the electrode and also decompousing speed of AgO, the longer is the accumulator preservation time

  13. Low-silver radiographic detectors

    International Nuclear Information System (INIS)

    Troitskii, V.A.; Novikov, I.A.; Nikitin, V.F.; Krasnyi-Admoni, L.V.; Valevich, M.I.; Belyi, N.G.; Grom, V.S.

    1988-01-01

    X-ray films and screens with low silver content for use in weld radiography are reviewed and tested. Properties examined include image graininess, brightness, and sensitivity to x radiation. Results are given for radiography of steel 08Kh18N10T, St20, AMG-6, copper, and titanium welds. Processing techniques for low-silver films are discussed. It is established that films and screens containing little silver can replace many x-ray films containing much more silver. Monitoring methods were developed for the new materials to cover items in classes 3-7 on GOST 23075-78 when used with equipment of RUP-150/300-10 type or classes 4-7 with pulsed x-ray equipment

  14. PVP-coated silver nanoparticles showing antifungal improved activity against dermatophytes

    Science.gov (United States)

    Silva, Edgar; Saraiva, Sofia M.; Miguel, Sónia P.; Correia, Ilídio J.

    2014-11-01

    Fungal infections affecting human beings have increased during the last years and the currently available treatments, when administered for long periods, trigger microbial resistance. Such demands the development of new viable therapeutic alternatives. Silver is known since the antiquity by its antimicrobial properties and, herein, it was used to produce two types of nanoparticles (NPs), uncoated and coated with polyvinylpyrrolidone (PVP), which were aimed to be used in fungal infection treatment. NPs properties were characterized by Transmission electron microscopy, X-ray diffraction, UV-Vis, Dynamic light scattering, Fourier transform infrared, and Energy-dispersive X-ray spectroscopy. Furthermore, in vitro studies were also performed to evaluate NPs cytotoxic profile and antifungal activity. The results obtained revealed that the produced nanoparticles are biocompatible and have a good potential for being used in the treatment of common skin infections caused by Trichophyton rubrum and Trichophyton mentagrophytes, being PVP-coated silver NPs the most suitable ones.

  15. One-pot silver nanoring synthesis.

    OpenAIRE

    Drogat , Nicolas; Granet , Robert; Sol , Vincent; Krausz , Pierre

    2009-01-01

    Abstract Silver colloidal nanorings have been synthesized by reducing silver ions with NaBH4 in trisodium citrate buffers. pH increase, by addition of NaOH, was used to speed up reduction reaction. The UV–vis absorption spectra of resulting silver nanorings showed two peaks accounting for transverse and longitudinal surface plasmon resonance, at ≈400 nm, and between 600 and 700 nm, respectively. The shapes of these silver nanoparticles (nanorings) depended on AgNO3/NaBH4 ratio, pH...

  16. Preparation of silver-chitosan nanocomposites and coating on bandage for antibacterial wound dressing application

    Energy Technology Data Exchange (ETDEWEB)

    Susilowati, Endang, E-mail: endwati@yahoo.co.id; Ashadi [Chemistry Education Department, Faculty of Teacher Training and Education, Universitas Sebelas Maret Surakarta (Indonesia); Maryani [Medical Doctor Program, Faculty of Medicine, Universitas Sebelas Maret Surakarta, Indonesia Jl. Ir Sutami 36 A Surakarta Indonesia 53126 (Indonesia)

    2016-02-08

    Bandage is a medical device that is essential for wound dressing. To improve the performance of the bandage, it has been coated by silver-chitosan nanocomposites (Ag/Chit) with pad-dry-cure method. The nanocomposites were performed by chemical reduction method at room temperature using glucose as reducing agent, sodium hydroxide (NaOH) as accelerator reagent, silver nitrate (AgNO{sub 3}) as metal precursor and chitosan as stabilizing agent. Localized surface plasmon resonance (LSPR) absorption band of silver nanoparticles was investigated using UV-Vis spectrophotometer. The bandage coated Ag/Chit nanocomposites (B-Ag/Chit) were characterized by fourier transform infrared spectroscopy (FTIR), X-ray diffraction (XRD) and scanning electron microscope (SEM). In addition, antibacterial activity of the bandage toward Gram positive (Staphylococcus aureus) and Gram negative (Escherichia coli) were also studied. The formation of silver nanoparticles was confirmed by the appearance of LSPR absorption peak at 412.2 – 423.2 nm. Coating of nanocomposite cause increasing rigidity of bandage and decreasing on crystallinity. The bandages of B-Ag/Chit demonstrated good activity against both Gram positive (S. aureus) and Gram negative (E.Coli). Thus the bandages have a potential to be used for antibacterial wound dressing application.

  17. Cellulase assisted synthesis of nano-silver and gold: Application as immobilization matrix for biocatalysis.

    Science.gov (United States)

    Mishra, Abhijeet; Sardar, Meryam

    2015-01-01

    In the present study, we report in vitro synthesis of silver and gold nanoparticles (NPs) using cellulase enzyme in a single step reaction. Synthesized nanoparticles were characterized by UV-VIS spectroscopy, Dynamic Light Spectroscopy (DLS), Transmission Electron Microscopy (TEM), Energy-dispersive X-ray Spectroscopy (EDX), X-ray Diffraction (XRD), Circular Dichroism (CD) and Fourier Transform Infrared Spectroscopy (FTIR). UV-visible studies shows absorption band at 415nm and 520nm for silver and gold NPs respectively due to surface plasmon resonance. Sizes of NPs as shown by TEM are 5-25nm for silver and 5-20nm for gold. XRD peaks confirmed about phase purity and crystallinity of silver and gold NPs. FTIR data shows presence of amide I peak on both the NPs. The cellulase assisted synthesized NPs were further exploited as immobilization matrix for cellulase enzyme. Thermal stability analysis reveals that the immobilized cellulase on synthesized NPs retained 77-80% activity as compared to free enzyme. While reusability data suggests immobilized cellulase can be efficiently used up to sixth cycles with minimum loss of enzyme activity. The secondary structural analysis of cellulase enzyme during the synthesis of NPs and also after immobilization of cellulase on these NPs was carried out by CD spectroscopy. Copyright © 2015 Elsevier B.V. All rights reserved.

  18. Experimental analysis of the strength of silver-alumina junction elaborated at solid state bonding

    International Nuclear Information System (INIS)

    Serier, B.; Bachir Bouiadjra, B.; Belhouari, M.; Treheux, D.

    2011-01-01

    Highlights: → The adhesion strength is closely related to the plastic deformation of the metal joint. → It is possible to transform a system with weak energy of adhesion into a system with strong energy. → The adhesion strength depends on Silver diffusion in the ceramic grains boundaries. -- Abstract: The mechanisms of ceramics-metal assemblies, particularly silver and alumina, can be better understood by studying the strength of their adhesion. These two materials are a priori non-reactive, their thermodynamic work of adhesion is low and the difference between their thermal coefficients of expansion in very considerable. In this study, the strength of silver-alumina junctions elaborated at solid state by thermo-compression is tested by an indirect tensile test and shearing one. The effects of several parameters such as: the pressure of bonding, the time of bonding, the temperature, and the oxygen dissolve in metal solid solution on the strength of the junction are analyzed. The obtained results show that the resistance of the junction is affected by all this parameters and it is essential to optimize these different parameters in order to increase the durability of the junction. It was also shown that the diffusion of the silver in alumina could be the cause of the damage of alumina near the interface.

  19. Butea monosperma bark extract mediated green synthesis of silver nanoparticles: Characterization and biomedical applications

    Directory of Open Access Journals (Sweden)

    Sutanuka Pattanayak

    2017-09-01

    Full Text Available The work deals with an environmentally benign process for the synthesis of silver nanoparticle using Butea monosperma bark extract which is used both as a reducing as well as capping agent at room temperature. The reaction mixture turned brownish yellow after about 24 h and an intense surface plasmon resonance (SPR band at around 424 nm clearly indicates the formation of silver nanoparticles. Fourier transform-Infrared (FT-IR spectroscopy showed that the nanoparticles were capped with compounds present in the plant extract. Formation of crystalline fcc silver nanoparticles is analysed by XRD data and the SAED pattern obtained also confirms the crystalline behaviour of the Ag nanoparticles. The size and morphology of these nanoparticles were studied using High Resolution Transmission Electron Microscopy (HRTEM which showed that the nanoparticles had an average dimension of ∼35 nm. A larger DLS data of ∼98 nm shows the presence of the stabilizer on the nanoparticles surface. The bio-synthesized silver nanoparticles revealed potent antibacterial activity against human bacteria of both Gram types. In addition these biologically synthesized nanoparticles also proved to exhibit excellent cytotoxic effect on human myeloid leukemia cell line, KG-1A with IC50 value of 11.47 μg/mL.

  20. Sponge-like silver obtained by decomposition of silver nitrate hexamethylenetetramine complex

    Energy Technology Data Exchange (ETDEWEB)

    Afanasiev, Pavel, E-mail: pavel.afanasiev@ircelyon.univ-lyon.fr

    2016-07-15

    Silver nitrate hexamethylenetetramine [Ag(NO{sub 3})·N{sub 4}(CH{sub 2}){sub 6}] coordination compound has been prepared via aqueous route and characterized by chemical analysis, XRD and electron microscopy. Decomposition of [Ag(NO{sub 3})·N{sub 4}(CH{sub 2}){sub 6}] under hydrogen and under inert has been studied by thermal analysis and mass spectrometry. Thermal decomposition of [Ag(NO{sub 3})·N{sub 4}(CH{sub 2}){sub 6}] proceeds in the range 200–250 °C as a self-propagating rapid redox process accompanied with the release of multiple gases. The decomposition leads to formation of sponge-like silver having hierarchical open pore system with pore size spanning from 10 µm to 10 nm. The as-obtained silver sponges exhibited favorable activity toward H{sub 2}O{sub 2} electrochemical reduction, making them potentially interesting as non-enzyme hydrogen peroxide sensors. - Graphical abstract: Thermal decomposition of silver nitrate hexamethylenetetramine coordination compound [Ag(NO{sub 3})·N{sub 4}(CH{sub 2}){sub 6}] leads to sponge like silver that possesses open porous structure and demonstrates interesting properties as an electrochemical hydrogen peroxide sensor. Display Omitted - Highlights: • [Ag(NO{sub 3})·N{sub 4}(CH{sub 2}){sub 6}] orthorhombic phase prepared and characterized. • Decomposition of [Ag(NO{sub 3})·N{sub 4}(CH{sub 2}){sub 6}] leads to metallic silver sponge with opened porosity. • Ag sponge showed promising properties as a material for hydrogen peroxide sensors.

  1. Fabrication of biogenic antimicrobial silver nanoparticles by Streptomyces aegyptia NEAE 102 as eco-friendly nanofactory.

    Science.gov (United States)

    El-Naggar, Noura El-Ahmady; Abdelwahed, Nayera A M; Darwesh, Osama M M

    2014-04-01

    The current research was focused on the extracellular biosynthesis of bactericidal silver nanoparticles (AgNPs) using cell-free supernatant of a local isolate previously identified as a novel Streptomyces aegyptia NEAE 102. The biosynthesis of silver nanoparticles by Streptomyces aegyptia NEAE 102 was quite fast and required far less time than previously published strains. The produced particles showed a single surface plasmon resonance peak at 400 nm by UV-Vis spectroscopy, which confirmed the presence of AgNPs. Response surface methodology was chosen to evaluate the effects of four process variables (AgNO3 concentration, incubation period, pH levels, and inoculum size) on the biosynthesis of silver nanoparticles by Streptomyces aegyptia NEAE 102. Statistical analysis of the results showed that the linear and quadratic effects of incubation period, initial pH, and inoculum size had a significant effect (p silver nanoparticles by Streptomyces aegyptia NEAE 102. The maximum silver nanoparticles biosynthesis (2.5 OD, at 400 nm ) was achieved in runs number 5 and 14 under the conditions of 1 mM AgNO3 (1-1.5% (v/v)), incubation period (72-96 h), initial pH (9-10), and inoculum size (2-4% (v/v)). An overall 4-fold increase in AgNPs biosynthesis was obtained as compared with that of unoptimized conditions. The biosynthesized silver nanoparticles were characterized using UV-VIS spectrophotometer and Fourier transform infrared spectroscopy analysis, in addition to antimicrobial properties. The biosynthesized AgNPs significantly inhibited the growth of medically important pathogenic gram-positive (Staphylococcus aureus) and gram-negative bacteria (Pseudomonas aeruginosa) and yeast (Candida albicans).

  2. Effect of content silver and heat treatment temperature on morphological, optical, and electrical properties of ITO films by sol-gel technique

    Science.gov (United States)

    Mirzaee, Majid; Dolati, Abolghasem

    2014-09-01

    Silver-doped indium tin oxide thin films were synthesized using sol-gel dip-coating technique. The influence of different silver-dopant contents and annealing temperature on the electrical, optical, structural, and morphological properties of the films were characterized by means of four-point probe, UV-Vis spectroscopy, X-ray diffraction (XRD), field emission scanning electron microscopy (FESEM), and X-ray photoelectron spectroscope (XPS). XRD analysis confirmed the formation of cubic bixbyte structure of In2O3 with silver nanoparticles annealed at 350 °C. XPS analysis showed that divalent tin transformed to tetravalent tin through oxidization, and silver nanoparticles embedded into ITO matrix covered with silver oxide shell, resulting in high quality nanocomposite thin films. The embedment of polyvinylpyrrolidone inhibited the growth of silver nanoparticles and ITO annealed at 350 °C. Delafossite structure of tin-doped AgInO2 was found at higher annealing temperatures. XRD analysis and FESEM micrographs showed that the optimum temperature to prevent the formation of AgInO2 is 350 °C. The embedment of silver particles (5-10 nm) from reduction of silver ion in ITO thin films improved the electrical conductivity and optical transmittance of ITO nanolayers. The lowest stable sheet resistance of 1,952 Ω/Sq for a 321 nm thick and an average optical transmittance of 91.8 % in the visible region with a band gap of 3.43 eV were achieved for silver-doping content of 0.04 M.

  3. Selective recovery of silver from waste low-temperature co-fired ceramic and valorization through silver nanoparticle synthesis.

    Science.gov (United States)

    Swain, Basudev; Shin, Dongyoon; Joo, So Yeong; Ahn, Nak Kyoon; Lee, Chan Gi; Yoon, Jin-Ho

    2017-11-01

    Considering the value of silver metal and silver nanoparticles, the waste generated during manufacturing of low temperature co-fired ceramic (LTCC) were recycled through the simple yet cost effective process by chemical-metallurgy. Followed by leaching optimization, silver was selectively recovered through precipitation. The precipitated silver chloride was valorized though silver nanoparticle synthesis by a simple one-pot greener synthesis route. Through leaching-precipitation optimization, quantitative selective recovery of silver chloride was achieved, followed by homogeneous pure silver nanoparticle about 100nm size were synthesized. The reported recycling process is a simple process, versatile, easy to implement, requires minimum facilities and no specialty chemicals, through which semiconductor manufacturing industry can treat the waste generated during manufacturing of LTCC and reutilize the valorized silver nanoparticles in manufacturing in a close loop process. Our reported process can address issues like; (i) waste disposal, as well as value-added silver recovery, (ii) brings back the material to production stream and address the circular economy, and (iii) can be part of lower the futuristic carbon economy and cradle-to-cradle technology management, simultaneously. Copyright © 2017 Elsevier Ltd. All rights reserved.

  4. Silver-Palladium Surfaces Inhibit Biofilm Formation

    DEFF Research Database (Denmark)

    Chiang, Wen-Chi; Schroll, Casper; Hilbert, Lisbeth Rischel

    2009-01-01

    Undesired biofilm formation is a major concern in many areas. In the present study, we investigated biofilm-inhibiting properties of a silver-palladium surface that kills bacteria by generating microelectric fields and electrochemical redox processes. For evaluation of the biofilm inhibition...... efficacy and study of the biofilm inhibition mechanism, the silver-sensitive Escherichia coli J53 and the silver-resistant E. coli J53[pMG101] strains were used as model organisms, and batch and flow chamber setups were used as model systems. In the case of the silver-sensitive strain, the silver......-palladium surfaces killed the bacteria and prevented biofilm formation under conditions of low or high bacterial load. In the case of the silver-resistant strain, the silver-palladium surfaces killed surface-associated bacteria and prevented biofilm formation under conditions of low bacterial load, whereas under...

  5. High-performance electrically conductive silver paste prepared by silver-containing precursor

    Energy Technology Data Exchange (ETDEWEB)

    Liu, Jianguo; Cao, Yu; Li, Xiangyou; Wang, Xiaoye; Zeng, Xiaoyan [Huazhong University of Science and Technology, Wuhan National Laboratory for Optoelectronics, College of Optoelectronics Science and Engineering, Wuhan (China)

    2010-09-15

    A high-performance electrically conductive silver paste with no solid particles before drying and/or sintering is developed, in which silver-containing precursor is employed as conductive functional phase. Thermogravimetry analysis, volume electrical resistivity tests and sintering experiments show that the paste with about 14 wt.% silver pristine content is able to achieve the volume electrical resistivity of (2-3) x 10{sup -5} {omega} cm after it is sintered at 220 C. A micro-pen direct-writing process indicates that it is very suitable for the fabrication of high-resolution (25 {mu}m) and high-integration devices and apparatus. (orig.)

  6. The silver lining: towards the responsible and limited usage of silver.

    Science.gov (United States)

    Naik, K; Kowshik, M

    2017-11-01

    Silver has attracted a lot of attention as a powerful, broad spectrum and natural antimicrobial agent since the ancient times because of its nontoxic nature to the human body at low concentrations. It has been used in treatment of various infections and ulcers, storage of water and prevention of bacterial growth on the surfaces and within materials. However, there are numerous medical and health benefits of colloidal or nanosilver apart from its microbicidal ability which as yet has not been fully embraced by the medical community. These include antiplatelet activity, antioxidant effect, anticancer activity, wound healing and bone regeneration, enhancement of immunity, and increase in antibiotic efficiency. Additionally silver also provides protection against alcohol toxicity, upper respiratory tract infections and stomach ailments. Although nanosilver has been proposed for various topical applications, its usage by ingestion and inhalation remains controversial due to the lack of detailed and precise toxicity information. These beneficial properties of silver can be utilized by using silver at very low concentrations which are not harmful to the human body and environment. The following review discusses the diverse medical applications of silver and further recommends human clinical studies for its in vivo usage. #x00A9; 2017 The Society for Applied Microbiology.

  7. Synthesis, Characterization, and Variable-Temperature NMR Studies of Silver(I) Complexes for Selective Nitrene Transfer.

    Science.gov (United States)

    Huang, Minxue; Corbin, Joshua R; Dolan, Nicholas S; Fry, Charles G; Vinokur, Anastasiya I; Guzei, Ilia A; Schomaker, Jennifer M

    2017-06-05

    An array of silver complexes supported by nitrogen-donor ligands catalyze the transformation of C═C and C-H bonds to valuable C-N bonds via nitrene transfer. The ability to achieve high chemoselectivity and site selectivity in an amination event requires an understanding of both the solid- and solution-state behavior of these catalysts. X-ray structural characterizations were helpful in determining ligand features that promote the formation of monomeric versus dimeric complexes. Variable-temperature 1 H and DOSY NMR experiments were especially useful for understanding how the ligand identity influences the nuclearity, coordination number, and fluxional behavior of silver(I) complexes in solution. These insights are valuable for developing improved ligand designs.

  8. Evaluation of optimal silver amount for the removal of methyl iodide on silver-impregnated adsorbents

    International Nuclear Information System (INIS)

    Park, G.I.; Cho, I.H.; Kim, J.H.; Oh, W.Z.

    2001-01-01

    The adsorption characteristics of methyl iodide generated from the simulated off-gas stream on various adsorbents such as silver-impregnated zeolite (AgX), zeocarbon and activated carbon were investigated. An extensive evaluation was made on the optimal silver impregnation amount for the removal of methyl iodide at temperatures up to 300 deg. C. The degree of adsorption efficiency of methyl iodide on silver-impregnated adsorbent is strongly dependent on impregnation amount and process temperature. A quantitative comparison of adsorption efficiencies on three adsorbents in a fixed bed was investigated. The influence of temperature, methyl iodide concentration and silver impregnation amount on the adsorption efficiency is closely related to the pore characteristics of adsorbents. It shows that the effective impregnation ratio was about 10wt%, based on the degree of silver utilization for the removal of methyl iodide. The practical applicability of silver-impregnated zeolite for the removal of radioiodine generated from the DUPIC process was consequently proposed. (author)

  9. Spectroscopic and microscopic characterization of silver nanoparticles synthesized using Justicia adhatoda flower

    Science.gov (United States)

    Singh, Tej; Shekhawat, Dharmender Singh; Jyoti, Kumari

    2018-05-01

    The synthesis of silver nanoparticles (SNPs) by chemical and physical methods produce harmful products which may cause various environmental problems, thus, there is an increasing demand to use ecofriendly methods. Therefore, biosynthesis of SNPs using Justicia adhatoda flower extract is demonstrated in the present study. The biosynthesized SNPs were characterized by UV-visible spectroscopy, Fourier transform-infrared spectroscopy (FTIR), transmission electron microscopy (TEM), selected area electron diffraction (SAED) and atomic force microscopy (AFM) analysis. The result of UV-visible spectroscopy peaked at 417 nm corresponding to the plasmon absorbance of SNPs. The TEM and SAED result reveals the crystalline nature of SNPs. FTIR spectroscopy used to identify the possible biomolecules responsible for the conversion of silver ions to SNPs. The study concluded that Justicia adhatoda flower extract act as an excellent reducing agent and the green synthesized SNPs are safer to the environment.

  10. Bulk diffusion and solubility of silver and nickel in lead, lead-silver and lead-nickel solid solutions

    International Nuclear Information System (INIS)

    Amenzou-Badrour, H.; Moya, G.; Bernardini, J.

    1988-01-01

    The results of a study of solubility and bulk diffusion of /sup 110/Ag and /sup 63/Ni in lead, lead-silver and lead-nickel solid solutions in the temperature range 220 to 88 0 C are reported. Owing to the low solubility of silver and nickel in lead, Fick's solution corresponding to the boundary condition of a constant concentration of solute at the surface has been used. Depth profile concentration analysis suggests a fundamental difference between the diffusion mechanisms of silver and nickel. Since silver penetration profiles in pure lead give diffusion coefficients independent of the penetration depth and silver concentration, it is suggested that slight decreases of silver diffusivity in lead-silver solid solutions have no significance. This implies that the interstitial silver atoms do not associate significantly with each other to form Ag-Ag dimers. In contrast, different behaviors of /sup 63/Ni depth profile concentration in pure lead and saturated PbNi solid solutions agree with a Ni-Ni interaction leading to the formation of less mobile dimers near the surface in pure lead

  11. Silver surface enrichment of silver-copper alloys: a limitation for the analysis of ancient silver coins by surface techniques

    International Nuclear Information System (INIS)

    Beck, L.; Bosonnet, S.; Reveillon, S.; Eliot, D.; Pilon, F.

    2004-01-01

    The surface enrichment of archaeological silver-copper alloys has been recognized for many years. However, the origin of this enrichment is not well defined and many hypotheses have been put forward to account for this behaviour: segregation of the components during casting, deliberate thermal and/or chemical post-treatment, abrasion or corrosion. Among the hypotheses mentioned above, we have focused our study on the first step of coin manufacturing. Replications of silver-copper standards of various compositions ranging from 30% to 80% Ag, reflecting the composition of silver blanks, have been produced. Metallographic examination, PIXE and SEM-EDS have been used for the characterization of each sample. A model of the direct enrichment has been established. This model allows us to propose a relationship between the surface composition and the silver content of the core. Comparison with data of Roman coins from the Roman site of Cha-hat teaubleau (France) and from the literature and consequences for the analyses of ancient coins by surface methods are presented

  12. Mineral resource of the month: silver

    Science.gov (United States)

    Brooks, William E.

    2007-01-01

    Silver has been used for thousands of years as ornaments and utensils, for trade and as the basis of many monetary systems. The metal has played an important part in world history. Silver from the mines at Laurion, Greece, for example, financed the Greek victory over the Persians in 480 B.C. Silver from Potosi, Bolivia, helped Spain become a world power in the 16th and 17th centuries. And silver from the gold-silver ores at the Comstock Lode in Virginia City, Nev., helped keep the Union solvent during the Civil War.

  13. Synthesis, characterization and antimicrobial activity of dextran sulphate stabilized silver nanoparticles

    Science.gov (United States)

    Cakić, Milorad; Glišić, Slobodan; Nikolić, Goran; Nikolić, Goran M.; Cakić, Katarina; Cvetinov, Miroslav

    2016-04-01

    Dextran sulphate stabilized silver nanoparticles (AgNPs - DS) were synthesized from aqueous solution of silver nitrate (AgNO3) and dextran sulphate sodium salt (DS). The characterization of AgNPs - DS was performed by ultraviolet-visible spectroscopy (UV-VIS), scanning electron microscopy (SEM), energy dispersive X-ray spectroscopy (EDX), X-ray diffraction (XRD), Fourier transform infrared spectroscopy (FTIR) and antimicrobial activity. The formation of AgNPs - DS was monitored by colour changes of the reaction mixture from yellowish to brown and by measuring the surface plasmon resonance absorption peak in UV-VIS spectra at 420 nm. The SEM analysis was used for size and shape determination of AgNPs - DS. The presence of elemental silver and its crystalline structure in AgNPs - DS were confirmed by EDX and XRD analyses. The possible functional groups of DS responsible for the reduction and stabilization of AgNPs were determinated by FTIR spectroscopy. The AgNPs - DS showed strong antibacterial activity against Staphylococcus aureus ATCC 25923, Bacillus cereus ATCC 11778, Bacillus luteus in haus strain, Bacillus subtilis ATTC 6633, Listeria monocytogenes ATCC 15313, Escherichia coli ATTC 25922, Pseudomonas aeruginosa ATTC 27853, Klebsiella pneumoniae ATTC 700603, Proteus vulgaris ATTC 8427, and antifungal activity against Candida albicans ATTC 2091.

  14. Plant-mediated synthesis of silver nanoparticles using parsley ( Petroselinum crispum) leaf extract: spectral analysis of the particles and antibacterial study

    Science.gov (United States)

    Roy, Kaushik; Sarkar, C. K.; Ghosh, C. K.

    2015-12-01

    Synthesis of nanomaterials may involve various routes including physical, chemical and biological approaches. Here, the biological green route was chosen to prepare silver nanoparticles from silver salts to avoid the requirement of costly instruments and involvement of hazardous chemicals as well. To make the process clean and green, leaf extract of parsley ( Petroselinum crispum) was used to synthesize Ag nanoparticles at room temperature. The formation of Ag-nanoparticles was monitored by UV-Vis spectroscopy. The presence of silver in the sample and its crystalline nature were verified by X-ray diffraction (XRD) analysis. The size distribution profile and particle size in the suspension were manipulated from dynamic light scattering (DLS) pattern. The shape, size and morphology of the biogenic nanoparticles were studied using high resolution transmission electron microscope (TEM). Fourier transform infra-red spectroscopy was used to detect the biomolecules responsible for reduction of silver ions. These biogenic Ag-nanoparticles showed appreciable antibacterial efficacy against three bacteria— Klebsiella pneumoniae, Escherichia coli and Staphylococcus aureus.

  15. Silver decorated titanate/titania nanostructures for efficient solar driven photocatalysis

    International Nuclear Information System (INIS)

    Gong, Dangguo; Ho, Weng Chye Jeffrey; Tang Yuxin; Tay Qiuling; Lai Yuekun; Highfield, James George; Chen Zhong

    2012-01-01

    Photocatalysis has attracted significant interest to solve both the energy crisis and effectively combat environmental contamination. However, as the most widely used photocatalyst, titania (TiO 2 ) suffers from inefficient utilization of solar energy due to its wide band gap. In the present paper, we describe a method to extend the absorption edge of photocatalyst to visible region by the surface plasmon effect of silver. Silver ions are photo-reduced onto the surface of titanate nanotubes, which are synthesized by a conventional hydrothermal method. The as-synthesized Ag/titanate composite is transformed into Ag/titania nanoparticles by annealing at different temperatures. It is found that the interaction of Ag nanoparticles with the supports (titanate/titania) plays a key role for the visible light activity. The samples annealed at low temperature (<350 °C) do not show significant activity under our conditions, while the one annealed at 450 °C shows fast-degradation of methyl orange (MO) under visible light irradiation. The detailed mechanisms are also discussed. - Graphical abstract: Silver nanoparticles decorated titanate/titania as visible light active photocatalysts: silver nanoparticles could be excited by visible light due to its surface plasmon effect and excited electrons could be transferred to the conduction band of the semiconductor, where the reduction process occurs. Highlights: ► Uniform Ag nanoparticles are photo-reduced onto titanate and titania nanostructures. ► Titania crystal is formed by annealing hydrogen titanate at different temperatures. ► Best visible-light activity is achieved by Ag-loaded titania annealed at 450 °C. ► The visible light activity is attributed to the surface plasmonic resonance effect.

  16. Green synthesis and characterization of silver nanoparticles using alcoholic flower extract of Nyctanthes arbortristis and in vitro investigation of their antibacterial and cytotoxic activities

    International Nuclear Information System (INIS)

    Gogoi, Nayanmoni; Babu, Punuri Jayasekhar; Mahanta, Chandan; Bora, Utpal

    2015-01-01

    Here we report the synthesis of silver nanoparticles using ethanolic flower extract of Nyctanthes arbortristis, UVvisible spectra and TEM indicated the successful formation of silver nanoparticles. Crystalline nature of the silver nanoparticles was confirmed by X-ray diffraction. Fourier Transform Infra-Red Spectroscopy analysis established the capping of the synthesized silver nanoparticles with phytochemicals naturally occurring in the ethanolic flower extract of N. arbortristis. The synthesized silver nanoparticles showed antibacterial activity against the pathogenic strain of Escherichia coli MTCC 443. Furthermore, cytotoxicity of the silver nanoparticles was tested on mouse fibroblastic cell line (L929) and found to be non-toxic, which thus proved their biocompatibility. Antibacterial activity and cytotoxicity assay carried out in this study open up an important perspective of the synthesized silver nanoparticles. - Highlights: • The present study depicts the green synthesis of AgNPs using Nyctanthes arbortristis. • AuNPs found to be biocompatible and can be used for biomedical applications. • The FTIR, TGA and DTA results showed that AgNPs are bounded by organic coating. • The synthesized AgNPs showed antibacterial activity on E. Coli MTCC 443. • We investigated the antioxidant activity for both EFE and AgNPs

  17. Short-term soil bioassays may not reveal the full toxicity potential for nanomaterials; bioavailability and toxicity of silver ions (AgNO3) and silver nanoparticles to earthworm Eisenia fetida in long-term aged soils

    International Nuclear Information System (INIS)

    Diez-Ortiz, Maria; Lahive, Elma; George, Suzanne; Ter Schure, Anneke; Van Gestel, Cornelis A.M.; Jurkschat, Kerstin; Svendsen, Claus; Spurgeon, David J.

    2015-01-01

    This study investigated if standard risk assessment hazard tests are long enough to adequately provide the worst case exposure for nanomaterials. This study therefore determined the comparative effects of the aging on the bioavailability and toxicity to earthworms of soils dosed with silver ions and silver nanoparticles (Ag NP) for 1, 9, 30 & 52 weeks, and related this to the total Ag in the soil, Ag in soil pore water and earthworm tissue Ag concentrations. For ionic Ag, a classical pattern of reduced bioavailability and toxicity with time aged in the soil was observed. For the Ag NP, toxicity increased with time apparently driven by Ag ion dissolution from the added Ag NPs. Internal Ag in the earthworms did not always explain toxicity and suggested the presence of an internalised, low-toxicity Ag fraction (as intact or transformed NPs) after shorter aging times. Our results indicate that short-term exposures, without long-term soil aging, are not able to properly assess the environmental risk of Ag NPs and that ultimately, with aging time, Ag ion and Ag NP effect will merge to a common value. - Highlights: • Toxicity of silver nanoparticles in soils increased with time. • Standard tests do not adequately assess toxicity of silver NPs to earthworms. • Internal Ag in earthworms did not always explain toxicity after shorter aging times. • With aging time, Ag ion and Ag NP effect in soils will merge to a common value. - Toxicity of silver nanoparticles in soils increased with time with the result that commonly applied tests of 28 days exposure with freshly spiked soils do not adequately assess the environmental hazard of silver nanoparticles

  18. In Vivo Toxicity of Silver Nanoparticles and Silver Ions in Zebrafish (Danio rerio

    Directory of Open Access Journals (Sweden)

    Katrine Bilberg

    2012-01-01

    Full Text Available The influence of water chemistry on characterised polyvinyl pyrrolidone- (PVP- coated silver nanoparticles (81 nm was investigated. NaCl solution series of 100–800 mg L−1 lead to initial and temporal increase in nanoparticles size, but agglomeration was limited. pH variation (5–8 had only minor influence on the hydrodynamic particle size. Acute toxicity of nanosivler to zebrafish (Danio rerio was investigated in a 48-hour static renewal study and compared with the toxicity of silver ions (AgNO3. The nanosilver and silver ion 48-hour median lethal concentration (LC50 values were 84 μg L−1 and 25 μg L−1, respectively. To investigate exposure-related stress, the fish behaviour was observed visually after 0, 3, 6, 12, 24, 27, 30, and 48 hours of both nanosilver and ionic silver treatments. These observations revealed increased rate of operculum movement and surface respiration after nanosilver exposure, suggesting respiratory toxicity. The present study demonstrates that silver nanoparticles are lethal to zebrafish.

  19. In situ reduction of antibacterial silver ions to metallic silver nanoparticles on bioactive glasses functionalized with polyphenols

    Energy Technology Data Exchange (ETDEWEB)

    Ferraris, S., E-mail: sara.ferraris@polito.it [Department of Applied Science and Technology, Politecnico di Torino, C.so Duca degli Abruzzi 24, 10129, Torino (Italy); Miola, M. [Department of Applied Science and Technology, Politecnico di Torino, C.so Duca degli Abruzzi 24, 10129, Torino (Italy); Department of Health Sciences, Università del Piemonte Orientale UPO, Via Solaroli 17, 28100, Novara (Italy); Cochis, A.; Azzimonti, B.; Rimondini, L. [Department of Health Sciences, Università del Piemonte Orientale UPO, Via Solaroli 17, 28100, Novara (Italy); Prenesti, E. [Department of Chemistry, Università degli Studi di Torino, Via Pietro Giuria 7, Torino, 10125 (Italy); Vernè, E. [Department of Applied Science and Technology, Politecnico di Torino, C.so Duca degli Abruzzi 24, 10129, Torino (Italy)

    2017-02-28

    Highlights: • Gallic acid and natural polyphenols were grafted onto bioactive glasses. • Grafting ability was dependent on glass reactivity. • In situ reduction of silver nanoparticles was performed onto functionalized glasses. • Bioactive glasses decorated with silver nanoparticles showed antibacterial activity. - Abstract: The realization of surfaces with antibacterial properties due to silver nanoparticles loaded through a green approach is a promising research challenge of the biomaterial field. In this research work, two bioactive glasses have been doubly surface functionalized with polyphenols (gallic acid or natural polyphenols extracted from red grape skins and green tea leaves) and silver nanoparticles deposited by in situ reduction from a silver nitrate aqueous solution. The presence of biomolecules – showing reducing ability to directly obtain in situ metallic silver – and silver nanoparticles was investigated by means of UV–vis spectroscopy, X-Ray Photoelectron Spectroscopy (XPS) and Field Emission Scanning Electron Microscopy (FESEM). The antibacterial activity of the modified surfaces was tested against a multidrug resistant Staphylococcus aureus bacterial strain.

  20. Genetics Home Reference: Russell-Silver syndrome

    Science.gov (United States)

    ... Other Names for This Condition RSS Silver-Russell dwarfism Silver-Russell syndrome SRS Related Information How are ... M, Begemann M, Elbracht M. Epigenetic and genetic diagnosis of Silver-Russell syndrome. Expert Rev Mol Diagn. ...

  1. Nucleic acid nanomaterials: Silver-wired DNA

    Science.gov (United States)

    Auffinger, Pascal; Ennifar, Eric

    2017-10-01

    DNA double helical structures are supramolecular assemblies that are typically held together by classical Watson-Crick pairing. Now, nucleotide chelation of silver ions supports an extended silver-DNA hybrid duplex featuring an uninterrupted silver array.

  2. MOD silver metallization for photovoltaics

    Science.gov (United States)

    Vest, G. M.; Vest, R. W.

    1984-01-01

    The development of flat plate solar arrays is reported. Photovoltaic cells require back side metallization and a collector grid system on the front surface. Metallo-organic decomposition (MOD) silver films can eliminate most of the present problems with silver conductors. The objectives are to: (1) identify and characterize suitable MO compounds; (2) develop generic synthesis procedures for the MO compounds; (3) develop generic fabrication procedures to screen printable MOD silver inks; (4) optimize processing conditions to produce grid patterns and photovoltaic cells; and (5) develop a model which describes the adhesion between the fired silver film and the silicon surface.

  3. Biological synthesis of silver nanoparticles

    International Nuclear Information System (INIS)

    Maliszewska, I; Szewczyk, K; Waszak, K

    2009-01-01

    Fungus-mediated synthesis of silver nanoparticles is reported. The nanosilver was formed in contact with the cell-free filtrate of Penicillium strain studied. The nanoparticles were characterized by means of the UV-Vis spectroscopy, scanning electron microscopy (SEM) and transmission electron microscopy (TEM). The synthesized nanosilver showed a absorbed maximum at 425 nm in the visible region. The SEM characterization of the fungus cells treated with silver nitrite indicated that the protein might be responsible for the reduction of silver ions. Transmission electron microscopy (TEM) micrograph showed formation of silver nanoparticles in the range of 10-100 nm.

  4. Silver precipitation from electrolytic effluents

    International Nuclear Information System (INIS)

    Rivera, I.; Patino, F.; Cruells, M.; Roca, A.; Vinals, J.

    2004-01-01

    The recovery of silver contained in electrolytic effluents is attractive due to its high economic value. These effluents are considered toxic wastes and it is not possible to dump them directly without any detoxification process. One of the most important way for silver recovery is the precipitation with sodium ditionite, sodium borohidride or hydrazine monohidrate. In this work, the most significant aspects related to the use of these reagents is presented. Results of silver precipitation with sodium ditionite from effluents containing thiosulfate without previous elimination of other species are also presented. silver concentration in the final effluents w <1 ppm. (Author) 15 refs

  5. Optimization for extracellular biosynthesis of silver nanoparticles by Penicillium aculeatum Su1 and their antimicrobial activity and cytotoxic effect compared with silver ions.

    Science.gov (United States)

    Ma, Liang; Su, Wei; Liu, Jian-Xin; Zeng, Xiao-Xi; Huang, Zhi; Li, Wen; Liu, Zheng-Chun; Tang, Jian-Xin

    2017-08-01

    The present study addresses an eco-friendly and energy-saving method for extracellular biosynthesis of silver nanoparticles (AgNPs) using a cell free filtrate of the fungus strain Penicillium aculeatum Su1 as a reducing agent. Parametric optimization of the biosynthesis process demonstrated different effects on the size, distribution, yield, and synthesis rate of biosynthesized AgNPs. The transmission electron microscopy (TEM) measurements demonstrated that AgNPs were spherical or approximately spherical, with a size between 4 and 55nm. High-resolution transmission electron microscopy (HR-TEM) and X-ray diffraction (XRD) analyses indicated that AgNPs were nanocrystalline by nature, with the character of a face-centered cubic (fcc). Fourier transform infrared spectroscopy (FTIR) analysis confirmed the existence of protein molecules that acted as a reducing agent and a capping agent during the biosynthesis process. Furthermore, the biosynthesized AgNPs exhibited higher antimicrobial activity than silver ions against Gram negative bacteria, Gram positive bacteria and fungi. Compared with silver ions, the biosynthesized AgNPs presented higher biocompatibility toward human bronchial epithelial (HBE) cells and high cytotoxicity in a dose-dependent manner with an IC 50 of 48.73μg/mL toward A549 cells. These results demonstrate that Penicillium aculeatum Su1 is a potential bioresource that can be used to produce low-cost and eco-friendly AgNPs as efficient antimicrobial agent, drug delivery vehicle or anticancer drug for clinic treatment. Copyright © 2017 Elsevier B.V. All rights reserved.

  6. Silver doped metal layers for medical applications

    International Nuclear Information System (INIS)

    Kocourek, T; Jelínek, M; Mikšovský, J; Jurek, K; Weiserová, M

    2014-01-01

    Biological, physical and mechanical properties of silver-doped layers of titanium alloy Ti6Al4V and 316L steel prepared by pulsed laser deposition were studied. Metallic silver-doped coatings could be a new route for antibacterial protection in medicine. Thin films of silver and silver-doped materials were synthesized using KrF excimer laser deposition. The materials were ablated from two targets, which were composed either from titanium alloy with silver segments or from steel with silver segments. The concentration of silver ranged from 1.54 at% to 4.32 at% for steel and from 3.04 at% to 13.05 at% for titanium alloy. The layer properties such as silver content, structure, adhesion, surface wettability, and antibacterial efficacy (evaluated by Escherichia coli and Bacillus subtilis bacteria) were measured. Film adhesion was studied using scratch test. The antibacterial efficacy changed with silver doping up to 99.9 %. Our investigation was focused on minimum Ag concentration needed to reach high antibacterial efficiency, high film adhesion, and hardness.

  7. Silver-doped metal layers for medical applications

    International Nuclear Information System (INIS)

    Kocourek, T; Jelínek, M; Mikšovský, J; Jurek, K; Weiserová, M

    2014-01-01

    Biological, physical and mechanical properties of silver-doped layers of titanium alloy Ti6Al4V and 316 L steel prepared by pulsed laser deposition were studied. Metallic silver-doped coatings could be a new route for antibacterial protection in medicine. Thin films of silver and silver-doped materials were synthesized using KrF excimer laser deposition. The materials were ablated from two targets, which were composed either from titanium alloy with silver segments or from steel with silver segments. The concentration of silver ranged from 1.54 to 4.32 at% for steel and from 3.04 to 13.05 at% for titanium alloy. The layer properties such as silver content, structure, adhesion, surface wettability, and antibacterial efficiency (evaluated by Escherichia coli and Bacillus subtilis bacteria) were measured. Film adhesion was studied using a scratch test. The antibacterial efficiency changed with silver doping up to 99.9 %. Our investigation was focused on the minimum Ag concentration needed to reach high antibacterial efficiency, high film adhesion, and hardness. (paper)

  8. Polypyrrole-silver Nanocomposite: Synthesis and Characterization

    OpenAIRE

    D. M. Nerkar; S. V. Panse; S. P. Patil; S. E. Jaware; G. G. Padhye

    2016-01-01

    Polypyrrole-Silver (PPy-Ag) nanocomposite has been successfully synthesized by the chemical oxidative polymerization of pyrrole with iron (III) chloride as an oxidant, in the presence of a colloidal suspension of silver nanoparticles. Turkevich method (Citrate reduction method) was used for the synthesis of silver nanoparticles (Ag NPs). The silver nanoparticles were characterized by UV-Visible spectroscopy which showed an absorption band at 423 nm confirming the formation of nanoparticles. P...

  9. Impact of silver ions and silver nanoparticles on the plant growth and soil microorganisms

    Directory of Open Access Journals (Sweden)

    D. Tomacheski

    2017-12-01

    Full Text Available There is a growing consumer market for products that proclaim to decrease microorganism counts to prevent infections. Most of these products are loaded with silver in its ionic or nanoparticle form. Through use or during production, these particles can find their way into the soil and cause an impact in microbial and plant communities. This study aims to evaluate the impact of silver based particles in Avena byzantina (oat, Lactuca sativa (lettuce and Raphanus sativus (radish development and in the soil microorganism abundance. Oat, lettuce and radish plants were cultivated in soil contaminated with particles of bentonite organomodified with silver (Ag+_bentonite, silver phosphate glass (Ag+_phosphate and silver nanoparticles adsorbed on fumed silica (AgNp_silica. Plant development and microorganisms’ abundance were evaluated. To some degree, Ag+_bentonite impacted plants development and AgNp_silica causes an adverse effect on microbial abundance. The impact on plants and microorganisms was contradictory and varied according to soil and particles physicochemical characteristics.

  10. In situ green synthesis of antimicrobial carboxymethyl chitosan-nanosilver hybrids with controlled silver release.

    Science.gov (United States)

    Huang, Siqi; Yu, Zhiming; Zhang, Yang; Qi, Chusheng; Zhang, Shifeng

    2017-01-01

    In order to fabricate antimicrobial carboxymethyl chitosan-nanosilver (CMC-Ag) hybrids with controlled silver release, this study demonstrated comparable formation via three synthetic protocols: 1) carboxymethyl chitosan (CMC) and glucose (adding glucose after AgNO 3 ), 2) CMC and glucose (adding glucose before AgNO 3 ), and 3) CMC only. Under principles of green chemistry, the synthesis was conducted in an aqueous medium exposed to microwave irradiation for 10 minutes with nontoxic chemicals. The structure and formation mechanisms of the three CMC-Ag hybrids were explored using X-ray diffraction, ultraviolet-visible spectroscopy, transmission electron microscopy, and Fourier-transform infrared analyses. Additionally, antimicrobial activity and in vitro silver release of the three synthesized hybrids were investigated in detail. The results revealed that a large number of stable, uniform, and small silver nanoparticles (AgNPs) were synthesized in situ on CMC chains via protocol 1. AgNPs were well dispersed with narrow size distribution in the range of 6-20 nm, with mean diameter only 12.22±2.57 nm. The addition of glucose resulted in greater AgNP synthesis. The order of addition of glucose and AgNO 3 significantly affected particle size and size distribution of AgNPs. Compared to CMC alone and commercially available AgNPs, the antimicrobial activities of three hybrids were significantly improved. Of the three hybrids, CMC-Ag1 synthesized via protocol 1 exhibited better antimicrobial activity than CMC-Ag2 and CMC-Ag3, and showed more effective inhibition of Staphylococcus aureus than Escherichia coli . Due to strong coordination and electrostatic interactions between CMC and silver and good steric protection provided by CMC, CMC-Ag1 displayed stable and continuous silver release and better performance in retaining silver for prolonged periods than CMC-Ag2 and CMC-Ag3.

  11. In situ green synthesis of antimicrobial carboxymethyl chitosan–nanosilver hybrids with controlled silver release

    Science.gov (United States)

    Huang, Siqi; Yu, Zhiming; Zhang, Yang; Qi, Chusheng; Zhang, Shifeng

    2017-01-01

    In order to fabricate antimicrobial carboxymethyl chitosan–nanosilver (CMC-Ag) hybrids with controlled silver release, this study demonstrated comparable formation via three synthetic protocols: 1) carboxymethyl chitosan (CMC) and glucose (adding glucose after AgNO3), 2) CMC and glucose (adding glucose before AgNO3), and 3) CMC only. Under principles of green chemistry, the synthesis was conducted in an aqueous medium exposed to microwave irradiation for 10 minutes with nontoxic chemicals. The structure and formation mechanisms of the three CMC-Ag hybrids were explored using X-ray diffraction, ultraviolet-visible spectroscopy, transmission electron microscopy, and Fourier-transform infrared analyses. Additionally, antimicrobial activity and in vitro silver release of the three synthesized hybrids were investigated in detail. The results revealed that a large number of stable, uniform, and small silver nanoparticles (AgNPs) were synthesized in situ on CMC chains via protocol 1. AgNPs were well dispersed with narrow size distribution in the range of 6–20 nm, with mean diameter only 12.22±2.57 nm. The addition of glucose resulted in greater AgNP synthesis. The order of addition of glucose and AgNO3 significantly affected particle size and size distribution of AgNPs. Compared to CMC alone and commercially available AgNPs, the antimicrobial activities of three hybrids were significantly improved. Of the three hybrids, CMC-Ag1 synthesized via protocol 1 exhibited better antimicrobial activity than CMC-Ag2 and CMC-Ag3, and showed more effective inhibition of Staphylococcus aureus than Escherichia coli. Due to strong coordination and electrostatic interactions between CMC and silver and good steric protection provided by CMC, CMC-Ag1 displayed stable and continuous silver release and better performance in retaining silver for prolonged periods than CMC-Ag2 and CMC-Ag3. PMID:28458539

  12. Low-cost and eco-friendly synthesis of silver nanoparticles using coconut (Cocos nucifera) oil cake extract and its antibacterial activity.

    Science.gov (United States)

    Govarthanan, Muthusamy; Seo, Young-Seok; Lee, Kui-Jae; Jung, Ik-Boo; Ju, Ho-Jong; Kim, Jae Su; Cho, Min; Kamala-Kannan, Seralathan; Oh, Byung-Taek

    2016-12-01

    The present study reports the simple, inexpensive, eco-friendly synthesis of silver nanoparticles (AgNPs) using coconut oil cake extract. Scanning electron microscopy-energy dispersive spectroscopy peak at 3 keV confirmed the presence of silver. Transmission electron micrograph showed that nanoparticles are mostly circular with an average size of 10-70 nm. The results of the X-ray powder diffraction analysis (2θ = 46.2, 67.4 and 76.8) indicated the crystal nature of the AgNPs. Fourier transform infrared spectroscopy analysis indicates that proteins present in the oilcake extract could be responsible for the reduction of silver ions. The synthesized AgNPs (1-4 mm) reduced the growth rate of multi-antibiotic-resistant bacteria such as Aeromonas sp., Acinetobacter sp. and Citrobacter sp. isolated from livestock wastewater.

  13. Silver powder effectiveness and mechanism of silver paste on silicon solar cells

    International Nuclear Information System (INIS)

    Tsai, Jung-Ting; Lin, Shun-Tian

    2013-01-01

    Highlights: ► Optimizing the silver paste in 80–85 wt.%. ► Optimizing its particle size in 1–1.5 μm spherical powder. ► The sheet resistance is 4 mΩ/sq during the 860 °C sintering process. ► Redox reaction cause Ag crystallites to grow on the interface. ► A thin layer of silicon oxide (75–150 nm) was formed. - Abstract: Since the silver paste plays a major role in the mass production of silicon solar cells, this work has succeeded in optimizing the silver paste in 80–85 wt.% and optimizing its particle size in 1–1.5 μm spherical powder. As the firing temperature is increased, the growth trend of silver grain is improved. The result of this work has showed that the lowest sheet resistance is 4 mΩ/sq during the 860 °C sintering process. The scanning electron microscope (SEM) observation has showed that the formation of silver oxide is formed during the melting process of glass and triggered redox reaction of Ag crystallites to grow on the interface. It has proven by transmission electron microscope (TEM) that a thin layer of silicon oxide (75–150 nm) was formed, respectively.

  14. Synthesis of Hollow Silver Spheres using Spherical Vaterite-type Calcium Carbonate as Template

    Energy Technology Data Exchange (ETDEWEB)

    Park, Minyoung; Go, Hani; Kim, Jae-Hyun; Rhee, Seog Woo [Kongju National University, Kongju (Korea, Republic of)

    2016-03-15

    In this work, we describe the synthesis of hollow silver spheres using vaterite-type CaCO{sub 3} as template. The spherical vaterite-type CaCO{sub 3} was selectively precipitated d reaction of aqueous CaCl{sub 2} and Na{sub 2}CO{sub 3} in the presence of the polyelectrolyte poly(4-styrenesulfonate). Aqueous AgNO{sub 3} solution containing NH{sub 2}-functionalized CaCO{sub 3} particles was treated with reducing agents such as ascorbic acid, NaBH{sub 4}, and acetaldehyde, and the reduced silver particles were deposited on the surface of CaCO{sub 3}particles to form uniform silvershells. The CaCO{sub 3} used as template was removed from the CaCO{sub 3}/Ag composite by treatment with acid. Finally, the hollow silver sphere was obtained. The morphologies of product were investigated using electron microscopy, the chemical composition of the composite was analyzed using energy-dispersive X-ray spectroscopy, the vibration modes of the carbonate ion were investigated by Fourier transform infrared spectroscopy, the thermal mass change was measured using the thermogravimetric analysis, and the solid phases were confirmed by powder X-ray diffraction.

  15. Amine-functionalized, silver-exchanged zeolite NaY: Preparation, characterization and antibacterial activity

    Energy Technology Data Exchange (ETDEWEB)

    Hanim, Siti Aishah Mohd; Malek, Nik Ahmad Nizam Nik, E-mail: niknizam@fbb.utm.my; Ibrahim, Zaharah

    2016-01-01

    Graphical abstract: - Highlights: • Functionalization of Ag-exchanged zeolite NaY with 3-aminopropyltriethoxysilane APTES (ZSA) as antibacterial agent. • Antibacterial assay of ZSA was performed against Escherichia coli ATCC11229 and Staphylococcus aureus ATCC6538. • Functionalization of Ag-exchanged zeolite NaY with APTES significantly increased the antibacterial agent. • Different mechanisms of bacterial death were suggested for each bacteria type by the functionalized Ag-exchanged zeolite NaY. - Abstract: Amine-functionalized, silver-exchanged zeolite NaY (ZSA) were prepared with three different concentrations of 3-aminopropyltriethoxysilane (APTES) (0.01, 0.20 and 0.40 M) and four different concentrations of silver ions (25%, 50%, 100% and 200% from zeolite cation exchange capacity (CEC)). The samples were characterized by Fourier transform infrared (FTIR) spectroscopy, X-ray diffraction (XRD), field emission scanning electron microscopy (FESEM), energy-dispersive X-ray (EDX), surface area analysis, thermogravimetric analysis (TGA) and zeta potential (ZP) analysis. The FTIR results indicated that the zeolite was functionalized by APTES and that the intensity of the peaks corresponding to APTES increased as the concentration of APTES used was increased. The antibacterial activities of the silver-exchanged zeolite NaY (ZS) and ZSA were studied against Escherichia coli ATCC11229 and Staphylococcus aureus ATCC6538 using the disc diffusion technique (DDT) and minimum inhibitory concentration (MIC). The antibacterial activity of ZSA increased with the increase in APTES on ZS, and E. coli was more susceptible towards the sample compared to S. aureus. The FESEM micrographs of the bacteria after contact with the ZSA suggested different mechanisms of bacterial death for these two bacteria due to exposure to the studied sample. The functionalization of ZS with APTES improved the antibacterial activity of the silver-zeolite, depending on the concentration of silver

  16. Influence of Silver nanoparticles addition on the phase transformation, mechanical properties and corrosion behaviour of Cu–Al–Ni shape memory alloys

    Energy Technology Data Exchange (ETDEWEB)

    Saud, Safaa N.; Hamzah, E., E-mail: esah@fkm.utm.my; Abubakar, T.; Bakhsheshi-Rad, H.R.; Farahany, S.; Abdolahi, A.; Taheri, M.M.

    2014-11-05

    Highlights: • Thermal analysis showed four different phase β, α, NiAl and γ2 during solidification. • The martensite appeared in the microstructure as a plate and needle like shape. • Shape recovery ratio of 80% was obtained after Ag nanoparticles addition. • Effect of Ag nanoparticles on the corrosion behaviour of Cu–Al–Ni SMA was investigated. - Abstract: Incorporation of silver nanoparticles into Cu-based shape memory alloys is recommended to enhance their phase transformation behaviour. However, this incorporation can affect their transformation temperatures, mechanical, microstructural and corrosion characteristics. Four different phase reactions β, α, NiAl and γ{sub 2} were detected on a derivative curve during the solidification by-computer-aided cooling curve thermal analysis. The highest fraction solid (82%) was calculated for the parent phase (β) based on the Newtonian baseline method. The microstructural changes and mechanical properties were investigated using field emission scanning electron microscopy, X-ray diffraction tensile test and shape memory effect test. It was found that the addition of Ag can control the phase morphology and orientations along with the formation of the Ag-rich precipitates, and thus the tensile strength, elongation, fracture stress–strain, yield strength and shape memory effect are improved. Remarkably, the shape recovery ratio reached approximately 80% of the original shape. The corrosion behaviour of the Cu–Al–Ni shape memory alloy were investigated using electrochemical tests in NaCl solution and their results showed that the corrosion potential (E{sub corr}) of Cu–Al–Ni SMA is shifted towards the nobler direction from −307.4 to −277.1 m V{sub SCE} with the addition of 0.25 wt.% Ag.

  17. Chemical phase analysis of seed mediated synthesized anisotropic silver nanoparticles

    International Nuclear Information System (INIS)

    Bharti, Amardeep; Goyal, Navdeep; Singh, Suman; Singla, M. L.

    2015-01-01

    Noble-metal nanoparticles are of great interest because of its broad applications almost in every stream (i.e. biology, chemistry and engineering) due to their unique size/shape dependant properties. In this paper, chemical phase of seed mediated synthesized anisotropic silver nanoparticle (AgNPs) has been investigated via fourier transform infrared spectroscopy (FTIR) and thermogravimetric analysis (TGA). These nanaoparticles were synthesized by seed-growth method controlled by urea and dextrose results to highly stable 12-20 nm particle size revealed by zeta potential and transmission electron microscopy (TEM)

  18. Rapid preparation process of antiparkinsonian drug Mucuna pruriens silver nanoparticle by bioreduction and their characterization

    Science.gov (United States)

    Arulkumar, Subramanian; Sabesan, Muthukumaran

    2010-01-01

    Backgorund: Development of biologically inspired experimental processes for the synthesis of nanoparticles is evolving an important branch of nanotechnology. Methods: The bioreduction behavior of plant seed extract of Mucuna pruriens in the synthesis of silver nanoparticles was investigated employing UV/visible spectrophotometry, X-ray diffraction (XRD), and transmission electron microscopy (TEM), Fourier transform – infra red (FT- IR). Result: M. pruriens was found to exhibit strong potential for rapid reduction of silver ions. The formation of nanoparticles by this method is extremely rapid, requires no toxic chemicals, and the nanoparticles are stable for several months. Conclusion: The main conclusion is that the bioreduction method to produce nanoparticles is a good alternative to the electrochemical methods and it is expected to be biocompatible. PMID:21808573

  19. Green production of microalgae-based silver chloride nanoparticles with antimicrobial activity against pathogenic bacteria.

    Science.gov (United States)

    da Silva Ferreira, Veronica; ConzFerreira, Mateus Eugenio; Lima, Luís Maurício T R; Frasés, Susana; de Souza, Wanderley; Sant'Anna, Celso

    2017-02-01

    Silver nanoparticles are powerful antimicrobial agents. Here, the synthesis of silver chloride nanoparticles (AgCl-NPs) was consistently evidenced from a commercially valuable microalgae species, Chlorella vulgaris. Incubation of C. vulgaris conditioned medium with AgNO 3 resulted in a medium color change to yellow/brown (with UV-vis absorbance at 415nm), indicative of silver nanoparticle formation. Energy-dispersive X-ray spectroscopy (EDS) of purified nanoparticles confirmed the presence of both silver and chlorine atoms, and X-ray diffraction (XRD) showed the typical pattern of cubic crystalline AgCl-NPs. Transmission electron microscopy (TEM) showed that most particles (65%) were spherical, with average diameter of 9.8±5.7nm. Fourier transform infrared spectroscopy (FTIR) of purified nanoparticle fractions suggested that proteins are the main molecular entities involved in AgCl-NP formation and stabilization. AgCl-NPs (from 10μg/mL) decreased by 98% the growth of Gram-positive Staphylococcus aureus and Gram-negative Klebsiella pneumoniae bacterial pathogens, and had a dose-dependent effect on cell viability, which was measured by automated image-based high content screening (HCS). Ultrastructural analysis of treated bacteria by TEM revealed the abnormal arrangement of the chromosomal DNA. Our findings strongly indicated that the AgCl-NPs from C. vulgaris conditioned medium is a promising 'green' alternative for biomedical application as antimicrobials. Copyright © 2016 Elsevier Inc. All rights reserved.

  20. Synthesis and characterization of monodispersed silver nanoparticles

    Science.gov (United States)

    Jegatha Christy, A.; Umadevi, M.

    2012-09-01

    Synthesis of silver nanoparticles (NPs) has become a fascinating and important field of applied chemical research. In this paper silver NPs were prepared using silver nitrate (AgNO3), gelatin, and cetyl trimethyl ammonium bromide (CTAB). The prepared silver NPs were exposed under the laser ablation. In our photochemical procedure, gelatin acts as a biopolymer and CTAB acts as a reducing agent. The appearance of surface plasmon band around 410 nm indicates the formation of silver NPs. The nature of the prepared silver NPs in the face-centered cubic (fcc) structure are confirmed by the peaks in the x-ray diffraction (XRD) pattern corresponding to (111), (200), (220) and (311) planes. Monodispersed, stable, spherical silver NPs with diameter about 10 nm were obtained and confirmed by high-resolution transmission electron microscope (HRTEM).

  1. Synthesis and characterization of monodispersed silver nanoparticles

    International Nuclear Information System (INIS)

    Christy, A Jegatha; Umadevi, M

    2012-01-01

    Synthesis of silver nanoparticles (NPs) has become a fascinating and important field of applied chemical research. In this paper silver NPs were prepared using silver nitrate (AgNO 3 ), gelatin, and cetyl trimethyl ammonium bromide (CTAB). The prepared silver NPs were exposed under the laser ablation. In our photochemical procedure, gelatin acts as a biopolymer and CTAB acts as a reducing agent. The appearance of surface plasmon band around 410 nm indicates the formation of silver NPs. The nature of the prepared silver NPs in the face-centered cubic (fcc) structure are confirmed by the peaks in the x-ray diffraction (XRD) pattern corresponding to (111), (200), (220) and (311) planes. Monodispersed, stable, spherical silver NPs with diameter about 10 nm were obtained and confirmed by high-resolution transmission electron microscope (HRTEM). (paper)

  2. SiO2 coating of silver nanoparticles by photoinduced chemical vapor deposition

    International Nuclear Information System (INIS)

    Boies, Adam M; Girshick, Steven L; Roberts, Jeffrey T; Zhang Bin; Nakamura, Toshitaka; Mochizuki, Amane

    2009-01-01

    Gas-phase silver nanoparticles were coated with silicon dioxide (SiO 2 ) by photoinduced chemical vapor deposition (photo-CVD). Silver nanoparticles, produced by inert gas condensation, and a SiO 2 precursor, tetraethylorthosilicate (TEOS), were exposed to vacuum ultraviolet (VUV) radiation at atmospheric pressure and varying temperatures. The VUV photons dissociate the TEOS precursor, initiating a chemical reaction that forms SiO 2 coatings on the particle surfaces. Coating thicknesses were measured for a variety of operation parameters using tandem differential mobility analysis and transmission electron microscopy. The chemical composition of the particle coatings was analyzed using energy dispersive x-ray spectrometry and Fourier transform infrared spectroscopy. The highest purity films were produced at 300-400 0 C with low flow rates of additional oxygen. The photo-CVD coating technique was shown to effectively coat nanoparticles and limit core particle agglomeration at concentrations up to 10 7 particles cm -3 .

  3. Biocomposites of nanofibrillated cellulose, polypyrrole, and silver nanoparticles with electroconductive and antimicrobial properties.

    Science.gov (United States)

    Bober, Patrycja; Liu, Jun; Mikkonen, Kirsi S; Ihalainen, Petri; Pesonen, Markus; Plumed-Ferrer, Carme; von Wright, Atte; Lindfors, Tom; Xu, Chunlin; Latonen, Rose-Marie

    2014-10-13

    In this work, flexible and free-standing composite films of nanofibrillated cellulose/polypyrrole (NFC/PPy) and NFC/PPy-silver nanoparticles (NFC/PPy-Ag) have been synthesized for the first time via in situ one-step chemical polymerization and applied in potential biomedical applications. Incorporation of NFC into PPy significantly improved its film formation ability resulting in composite materials with good mechanical and electrical properties. It is shown that the NFC/PPy-Ag composite films have strong inhibition effect against the growth of Gram-positive bacteria, e.g., Staphylococcus aureus. The electrical conductivity and strong antimicrobial activity makes it possible to use the silver composites in various applications aimed at biomedical treatments and diagnostics. Additionally, we report here the structural and morphological characterization of the composite materials with Fourier-transform infrared spectroscopy, atomic force microscopy, and scanning and transmission electron microscopy techniques.

  4. Photocatalytic activity of silver oxide capped Ag nanoparticles constructed by air plasma irradiation

    Science.gov (United States)

    Fang, Yingcui; Wu, Qingmeng; Li, Huanhuan; Zhang, Bing; Yan, Rong; Chen, Junling; Sun, Mengtao

    2018-04-01

    We construct a kind of structure of silver oxide capped silver nanoparticles (AgNPs) by cost-efficient air plasma irradiation, and study its visible-light driven photocatalytic activity (PA). By controlling the oxidization time, the relationship between the intensity of the localized surface plasmon resonance (LSPR) and the PA is well established. The PA reaches the maximum when the LSPR of AgNPs is nearly completely damped (according to absorption spectra); however, under this condition, the LSPR still works, confirmed with the high efficient selective transformation of p-Aminothiophenol (PATP) to p, p'-dimercaptoazobenzene (DMAB) under visible light. The mechanism of the LSPR damping induced PA improvement is discussed. We not only provide a cost-efficient approach to construct a LSPR strong damping structure but also promote the understanding of LSPR strong damping and its relationship with photocatalysis.

  5. Influence of Thermal Treatment on the Antimicrobial Activity of Silver-Doped Biological Apatite

    Science.gov (United States)

    Popa, Cristina Liana; Ciobanu, Carmen Steluta; Voicu, Georgeta; Vasile, Eugenia; Chifiriuc, Mariana Carmen; Iconaru, Simona Liliana; Predoi, Daniela

    2015-12-01

    In this paper, we report the structural and morphological properties of silver-doped hydroxyapatite (AgHAp) with a silver concentration x Ag = 0.5 before and after being thermal treated at 600 and 1000 °C. The results obtained by X-Ray diffraction (XRD), Fourier transform infrared spectroscopy (FTIR), and Raman spectroscopy suggest that the structure of the samples changes gradually, from hydroxyapatite (AgHAp_40) to a predominant β-TCP structure (AgHAp_1000), achieved when the thermal treatment temperature is 1000 °C. In the AgHAp_600 sample, the presence of two phases, HAp and β-TCP, was highlighted. Also, scanning electron microscopy studies suggest that the shape and dimension of the nanoparticles begin to change when the temperature increases. The antimicrobial activity of the obtained compounds was evaluated against Klebsiella pneumoniae, Staphylococcus aureus, and Candida albicans strains.

  6. Improving the Vase life of Cut Carnation ‘Tempo’ (Dianthus carryophyllusL. Flower by Silver Thiosulphate and Silver Nano-Particles

    Directory of Open Access Journals (Sweden)

    D. Hashemabadi

    2014-08-01

    Full Text Available Nanometer-sized silver particle can be act as an anti-microbial compound. Thus, in this research, the efficacy of silver thiosulphate and silver nano-particles as antimicrobial agents in extending the vase-life of cut carnation flowers was evaluated. A factorial experiment carried out based on randomized completely blocks design with two factors: silver thiosulphate (0, 0.1, 0.2 and 0.3 mM and silver nano-particles (0, 5, 10 and 15 mg/L. Mean comparison of the data showed that the combined treatments of 0.3 mM silver thiosulphate + 15 mg/L silver nano-particles had the highest vase life, water uptake and super oxide dismutase enzyme. Thus, the mentioned above treatment was proposed to increase prolong vase life and improvement of water relations and control of stem end blockage. Based to results of this study, silver thiosulphate and silver nano-particles can be used for increasing postharvest longevity of cut carnation "Tempo".

  7. Fate of Zinc and Silver Engineered Nanoparticles in ...

    Science.gov (United States)

    Engineered zinc oxide (ZnO) and silver (Ag) nanoparticles (NPs) used in consumer products are largely released into the environment through the wastewater stream. Limited information is available regarding the transformations they undergo during their transit through sewerage systems before reaching wastewater treatment plants. To address this knowledge gap, laboratory-scale systems fed with raw wastewater were used to evaluate the transformation of ZnO- and Ag-NPs within sewerage transfer networks. Two experimental systems were established and spiked with either Ag- and ZnO-NPs or with their dissolved salts, and the wastewater influent and effluent samples from both systems were thoroughly characterised. X-ray absorption spectroscopy (XAS) was used to assess the extent of the chemical transformation of both forms of Zn and Ag during transport through the model systems. The results indicated that both ZnO- and Ag-NPs underwent significant transformation during their transport through the sewerage network. Reduced sulphur species represented the most important endpoint for these NPs in the sewer with slight differences in terms of speciation; ZnO converted largely to Zn sulfide, while Ag was also sorbed to cysteine and histidine. Importantly, both ionic Ag and Ag-NPs formed secondary Ag sulfide nanoparticles in the sewerage network as revealed by TEM analysis. Ag-cysteine was also shown to be a major species in biofilms. These results were verified in the

  8. Carboxylate and amino group coated silver nanoparticles as joining materials for copper-to-copper silver joints.

    Science.gov (United States)

    Oestreicher, A; Röhrich, T; Lerch, M

    2012-12-01

    Organic silver complexes are introduced where silver is linked either with a carboxyl group or with an amino group. Upon heating, nanoparticles are generated if the respective ligands are long enough to act as stabilizing agents in the nanoparticulate regime. With decomposition and volatilization of the organic material, the sintering of silver occurs. The thermal characteristics of the carboxylates silver-n-octanoate, silver-n-decanoate, and AgOOC(CH2OCH2)2CH2OCH3 are compared with silver-n-alkylamines (n = 8, 9, and 12), and their thermal behavior is discussed based on thermogravimetry (TG) measurements. The consecutive stages of a metallization process are addressed based on the properties of AgOOC(CH2OCH2)2CH2OCH3, and the usable effects of the individual phases of this metal organic compound are analyzed by cross-sectional scanning electron microscope (SEM) images of silver joints. Selection criteria are addressed based on the thermal behavior. A mechanism for the joining process is proposed, considering formation and sintering of the nanoparticles. It was found that the bulk material can be used for low-temperature joining processes. Strong adherence to copper as a basic material can be achieved.

  9. Completely green synthesis of dextrose reduced silver nanoparticles, its antimicrobial and sensing properties.

    Science.gov (United States)

    Mohan, Sneha; Oluwafemi, Oluwatobi S; George, Soney C; Jayachandran, V P; Lewu, Francis B; Songca, Sandile P; Kalarikkal, Nandakumar; Thomas, Sabu

    2014-06-15

    We herein report the green synthesis of highly monodispersed, water soluble, stable and smaller sized dextrose reduced gelatin capped-silver nanoparticles (Ag-NPs) via an eco-friendly, completely green method. The synthesis involves the use of silver nitrate, gelatin, dextrose and water as the silver precursor, stabilizing agent, reducing agent and solvent respectively. By varying the reaction time, the temporal evolution of the growth, optical, antimicrobial and sensing properties of the as-synthesised Ag-NPs were investigated. The nanoparticles were characterized using UV-vis absorption spectroscopy, Fourier transform infra-red spectroscopy (FT-IR), X-ray diffraction (XRD), transmission electron microscopy (TEM) and high resolution transmission electron microscopy (HR-TEM). The absorption maxima of the as-synthesized materials at different reaction time showed characteristic silver surface plasmon resonance (SPR) peak. The as-synthesised Ag-NPs show better antibacterial efficacy than the antibiotics; ciproflaxin and imipenem against Pseudomonas aeruginosa with minimum inhibition concentration (MIC) of 6 μg/mL, and better efficacy than imipenem against Escherichia coli with MIC of 10 μg/mL. The minimum bactericidal concentration (MBC) of the as-synthesised Ag-NPs is 12.5 μg/mL. The sensitivity of the dextrose reduced gelatin-capped Ag-NPs towards hydrogen peroxide indicated that the sensor has a very good sensitivity and a linear response over wide concentration range of 10(-1)-10(-6)M H2O2. Copyright © 2014 Elsevier Ltd. All rights reserved.

  10. Ethylene Receptor 1 (ETR1) Is Sufficient and Has the Predominant Role in Mediating Inhibition of Ethylene Responses by Silver in Arabidopsis thaliana*

    Science.gov (United States)

    McDaniel, Brittany K.; Binder, Brad M.

    2012-01-01

    Ethylene influences many processes in Arabidopsis thaliana through the action of five receptor isoforms. All five isoforms use copper as a cofactor for binding ethylene. Previous research showed that silver can substitute for copper as a cofactor for ethylene binding activity in the ETR1 ethylene receptor yet also inhibit ethylene responses in plants. End-point and rapid kinetic analyses of dark-grown seedling growth revealed that the effects of silver are mostly dependent upon ETR1, and ETR1 alone is sufficient for the effects of silver. Ethylene responses in etr1-6 etr2-3 ein4-4 triple mutants were not blocked by silver. Transformation of these triple mutants with cDNA for each receptor isoform under the promoter control of ETR1 revealed that the cETR1 transgene completely rescued responses to silver while the cETR2 transgene failed to rescue these responses. The other three isoforms partially rescued responses to silver. Ethylene binding assays on the binding domains of the five receptor isoforms expressed in yeast showed that silver supports ethylene binding to ETR1 and ERS1 but not the other isoforms. Thus, silver may have an effect on ethylene signaling outside of the ethylene binding pocket of the receptors. Ethylene binding to ETR1 with silver was ∼30% of binding with copper. However, alterations in the Kd for ethylene binding to ETR1 and the half-time of ethylene dissociation from ETR1 do not underlie this lower binding. Thus, it is likely that the lower ethylene binding activity of ETR1 with silver is due to fewer ethylene binding sites generated with silver versus copper. PMID:22692214

  11. Alkyne-Azide Cycloaddition Catalyzed by Silver Chloride and “Abnormal” Silver N-Heterocyclic Carbene Complex

    Directory of Open Access Journals (Sweden)

    Aldo I. Ortega-Arizmendi

    2013-01-01

    Full Text Available A library of 1,2,3-triazoles was synthesized from diverse alkynes and azides using catalytic amounts of silver chloride instead of copper compounds. In addition, a novel “abnormal” silver N-heterocyclic carbene complex was tested as catalyst in this process. The results suggest that the reaction requires only 0.5% of silver complex, affording 1,2,3-triazoles in good yields.

  12. Solvent-assisted in situ synthesis of cysteamine-capped silver nanoparticles

    Science.gov (United States)

    Oliva, José M.; Ríos de la Rosa, Julio M.; Sayagués, María J.; Sánchez-Alcázar, José A.; Merkling, Patrick J.; Zaderenko, Ana P.

    2018-03-01

    Silver nanoparticles offer a huge potential for biomedical applications owing to their exceptional properties and small size. Specifically, cysteamine-capped silver nanoparticles could form the basis for new anticancer therapies combining the cytotoxic effect of the silver core with the inherent antitumor activity of cysteamine, which inhibit cancer cell proliferation and suppress invasion and metastasis. In addition, the capability of the cysteamine coating monolayer to couple a variety of active principles and targeting (bio)molecules of interest proves key to the tailoring of this platform in order to exploit the pathophysiology of specific tumor types. Nevertheless, the chain length and conformational flexibility of cysteamine, together with its ability to attach to the surface of silver nanoparticles via both the thiol and the amine group, have made the in situ synthesis of these particles an especially challenging task. Herein we report a solvent-assisted in situ synthesis method that solves this problem. The obtained nanoparticles have been fully characterized by UV-visible absorption spectroscopy, Fourier transform infrared spectroscopy, transmission electron microscopy, electron diffraction measurement, high resolution transmission electron microscopy, scanning transmission electron microscopy, energy dispersive x-ray spectroscopy nanoanalysis, and dynamic light scattering measurement. Our synthesis method achieves extremely high yield and surface coating ratio, and colloidal stability over a wide range of pH values including physiological pH. Additionally, we have demonstrated that cysteamine-capped nanoparticles obtained by this method can be conjugated to an antibody for active targeting of the epidermal growth factor receptor, which plays an important role in the pathogenesis and progression of a wide variety of tumors, and induce cell death in human squamous carcinoma cells. We believe this method can be readily extended to combinations of noble

  13. Silver ion-mediated killing of a food pathogen: Melting curve analysis data of silver resistance genes and growth curve data

    Directory of Open Access Journals (Sweden)

    Kuppan Gokulan

    2017-04-01

    Full Text Available Limited antibacterial activity of silver ions leached from silver-impregnated food contact materials could be due to: 1 the presence of silver resistance genes in tested bacteria; or 2 lack of susceptibility to silver ion-mediated killing in the bacterial strain (K. Williams, L. Valencia, K. Gokulan, R. Trbojevich, S. Khare, 2016 [1]. This study contains data to address the specificity of silver resistance genes in Salmonella Typhimurium during the real time PCR using melting curve analysis and an assessment of the minimum inhibitory concentration of silver ions for Salmonella.

  14. Silver ion-mediated killing of a food pathogen: Melting curve analysis data of silver resistance genes and growth curve data.

    Science.gov (United States)

    Gokulan, Kuppan; Williams, Katherine; Khare, Sangeeta

    2017-04-01

    Limited antibacterial activity of silver ions leached from silver-impregnated food contact materials could be due to: 1) the presence of silver resistance genes in tested bacteria ; or 2) lack of susceptibility to silver ion-mediated killing in the bacterial strain (K. Williams, L. Valencia, K. Gokulan, R. Trbojevich, S. Khare, 2016 [1]). This study contains data to address the specificity of silver resistance genes in Salmonella Typhimurium during the real time PCR using melting curve analysis and an assessment of the minimum inhibitory concentration of silver ions for Salmonella .

  15. Green synthesis of chondroitin sulfate-capped silver nanoparticles: characterization and surface modification.

    Science.gov (United States)

    Cheng, Kuang-ming; Hung, Yao-wen; Chen, Cheng-cheung; Liu, Cheng-che; Young, Jenn-jong

    2014-09-22

    A one-step route for the green synthesis of highly stable and nanosized silver metal particles with narrow distribution is reported. In this environmentally friendly synthetic method, silver nitrate was used as silver precursor and biocompatible chondroitin sulfate (ChS) was used as both reducing agent and stabilizing agent. The reaction was carried out in a stirring aqueous medium at the room temperature without any assisted by microwave, autoclave, laser irradiation, γ-ray irradiation or UV irradiation. The transparent colorless solution was converted to the characteristics light red then deep red-brown color as the reaction proceeds, indicating the formation of silver nanoparticles (Ag NPs). The Ag NPs were characterized by UV-visible spectroscopy (UV-vis), photon correlation spectroscopy, laser Doppler anemometry, transmission electron microscopy (TEM), and Fourier-transform infrared spectroscopy (FT-IR). The results demonstrated that the obtained metallic nanoparticles were Ag NPs capped with ChS. In this report, dynamic light scattering (DLS) was used as a routinely analytical tool for measuring size and distribution in a liquid environment. The effects of the reaction time, reaction temperature, concentration and the weight ratio of ChS/Ag+ on the particle size and zeta potential were investigated. The TEM image clearly shows the morphology of the well-dispersed ChS-capped Ag NPs are spherical in shape, and the average size (propyl] chitosan chloride (HTCC) were prepared by an ionic gelation method and the surface charge of Ag NPs was switched from negative to positive. Copyright © 2014 Elsevier Ltd. All rights reserved.

  16. Silver as antibacterial towards Listeria monocytogenes

    Directory of Open Access Journals (Sweden)

    Simone eBelluco

    2016-03-01

    Full Text Available Listeria monocytogenes is a serious foodborne pathogen that can contaminate food during processing and can grow during food shelf-life. New types of safe and effective food contact materials embedding antimicrobial agents, like silver, can play an important role in the food industry. The present work aimed at evaluating the in vitro growth kinetics of different strains of L. monocytogenes in the presence of silver, both in its ionic and nano form. The antimicrobial effect was determined by assaying the number of culturable bacterial cells, which formed colonies after incubation in the presence of silver nanoparticles (AgNPs or silver nitrate (AgNO3. Ionic release experiments were performed in parallel. A different reduction of bacterial viability between silver ionic and nano forms was observed, with a time delayed effect exerted by AgNPs. An association between antimicrobial activity and ions concentration was shown by both silver chemical forms, suggesting the major role of ions in the antimicrobial mode of action.

  17. Synthesis and characterization of silver doped hydroxyapatite nanocomposite coatings and evaluation of their antibacterial and corrosion resistance properties in simulated body fluid

    International Nuclear Information System (INIS)

    Mirzaee, Majid; Vaezi, Mohammadreza; Palizdar, Yahya

    2016-01-01

    Silver-doped hydroxyapatite (Ca 10−x Ag x (PO 4 ) 6 (OH) 2−x ) films were synthesized and deposited on anodized titanium (Ti) using electrophoretic. The influence of different silver-dopant contents (X = 0, 0.02, 0.05, 0.08 and 0.1) on the phase formation and microstructure of the powders were characterized by means of X-ray diffraction (XRD), transmission electron microscopy (TEM), X-ray photoelectron spectroscope (XPS), and Fourier transform infrared spectrum analysis (FT-IR). XRD analysis confirmed the formation of Hexagonal structure of hydroxyapatite (HAp) annealed at 600 °C with a small shift in the major peak position toward lower angles with adding silver. FT-IR spectroscopy disclosed the presence of the different vibrational modes matching to phosphates and hydroxyl groups and the absence of any band characteristics to silver. XPS analysis showed that 75% and 23% of silver was in the chemical states of Ag 2+ and Ag + , respectively. However, only about 2% of silver was in the Ag 0 state, resulting in the high quality of nanocomposite films. The anodization treatment improves the bond strength between the Ag doped HAp deposited layers on TiO 2 . HAp and silver doped HAp (X = 0.05) are regarded to be hydrophilic due to a large number of –OH groups on the surface. The sample with content of silver (x = 0.05) also showed excellent antimicrobial efficacy (> 99% reduction in viable cells). Electrochemical reveals the passive current densities of the HAp coated anodized Ti are lower than those of silver doped HAp coated anodized Ti, leading to a slightly lower corrosion resistance. - Highlights: • Microstructure and antibacterial properties of silver doped HAp are studied. • The nanocomposite is processed by combinations of sol gel and electrophoretic. • The optimum silver content is obtained under property evaluation.

  18. Effect of silver nanoparticles on concentration of silver heavy element and growth indexes in cucumber (Cucumis sativus L. negeen)

    International Nuclear Information System (INIS)

    Shams, Gholamabbas; Ranjbar, Morteza; Amiri, Aliasghar

    2013-01-01

    The tremendous progress on nanoparticle research area has been made significant effects on the economy, society, and the environment. Silver nanoparticle is one of the most important particles in these categories. Silver nanoparticles can be converted to the heavy silver metal in water by oxidation. Moreover, in the high amounts of silver concentration, they will be accumulated in different parts of the plant. However, by changing the morphology of the plant, the production will be harmful for human consumptions. In this study, nano-powders with average 50 nm silver particles are mixed with deionized distilled water in a completely randomized design. Seven treatments with various concentrations of suspension silver nanoparticles were prepared and repeated in four different parts of the plant in a regular program of spraying. Samples were analyzed to study the growth indexes and concentration of silver in different parts of the plant. It was observed that with increasing concentration of silver nanoparticles on cucumber, the growth indexes (except pH fruit), and the concentration of silver heavy metal are increased significantly. The incremental concentration had the linear relationship with correlation coefficient 0.95 and an average of 0.617 PPM by increasing of each unit in one thousand concentration of nanosilver. Although, by increasing concentration of silver nanoparticles as spraying form, the plant morphological characteristics were improved, the concentration of silver heavy metal in various plant organs was increased. These results open a new pathway to consider the effect of nanoparticles on plant’s productions for human consumptions.

  19. Effect of silver nanoparticles on concentration of silver heavy element and growth indexes in cucumber (Cucumis sativus L. negeen)

    Energy Technology Data Exchange (ETDEWEB)

    Shams, Gholamabbas, E-mail: ghs@iaushiraz.net; Ranjbar, Morteza [Shiraz Branch, Islamic Azad University, Department of Physics (Iran, Islamic Republic of); Amiri, Aliasghar [Shiraz Branch, Islamic Azad University, Department of Chemistry (Iran, Islamic Republic of)

    2013-05-15

    The tremendous progress on nanoparticle research area has been made significant effects on the economy, society, and the environment. Silver nanoparticle is one of the most important particles in these categories. Silver nanoparticles can be converted to the heavy silver metal in water by oxidation. Moreover, in the high amounts of silver concentration, they will be accumulated in different parts of the plant. However, by changing the morphology of the plant, the production will be harmful for human consumptions. In this study, nano-powders with average 50 nm silver particles are mixed with deionized distilled water in a completely randomized design. Seven treatments with various concentrations of suspension silver nanoparticles were prepared and repeated in four different parts of the plant in a regular program of spraying. Samples were analyzed to study the growth indexes and concentration of silver in different parts of the plant. It was observed that with increasing concentration of silver nanoparticles on cucumber, the growth indexes (except pH fruit), and the concentration of silver heavy metal are increased significantly. The incremental concentration had the linear relationship with correlation coefficient 0.95 and an average of 0.617 PPM by increasing of each unit in one thousand concentration of nanosilver. Although, by increasing concentration of silver nanoparticles as spraying form, the plant morphological characteristics were improved, the concentration of silver heavy metal in various plant organs was increased. These results open a new pathway to consider the effect of nanoparticles on plant's productions for human consumptions.

  20. Novel synthesis of silver nanoparticles using Bauhinia variegata: a recent eco-friendly approach for mosquito control.

    Science.gov (United States)

    Govindarajan, Marimuthu; Rajeswary, Mohan; Veerakumar, Kaliyan; Muthukumaran, Udaiyan; Hoti, S L; Mehlhorn, Heinz; Barnard, Donald R; Benelli, Giovanni

    2016-02-01

    Mosquito vectors are responsible for transmitting diseases such as malaria, dengue, chikungunya, Japanese encephalitis, dengue, and lymphatic filariasis. The use of synthetic insecticides to control mosquito vectors has caused physiological resistance and adverse environmental effects, in addition to high operational cost. Biosynthesis of silver nanoparticles has been proposed as an alternative to traditional control tools. In the present study, green synthesis of silver nanoparticles (AgNPs) using aqueous leaf extract of Bauhinia variegata by reduction of Ag(+) ions from silver nitrate solution has been investigated. The bioreduced silver nanoparticles were characterized by UV–visible spectrophotometry, Fourier transform infrared spectroscopy (FTIR), scanning electron microscopy (SEM), transmission electron microscopy (TEM), energy-dispersive X-ray analysis (EDX), and X-ray diffraction analysis (XRD). Leaf extract and synthesized AgNPs were evaluated against the larvae of Anopheles subpictus, Aedes albopictus, and Culex tritaeniorhynchus. Compared to aqueous extract, synthesized AgNPs showed higher toxicity against An. subpictus, Ae. albopictus, and Cx. tritaeniorhynchus with LC50 and LC90 values of 41.96, 46.16, and 51.92 μg/mL and 82.93, 89.42, and 97.12 μg/mL, respectively. Overall, this study proves that B. variegata is a potential bioresource for stable, reproducible nanoparticle synthesis and may be proposed as an efficient mosquito control agent.

  1. Mechanisms of Silver Nanoparticle Release, Transformation and Toxicity: A Critical Review of Current Knowledge and Recommendations for Future Studies and Applications

    Directory of Open Access Journals (Sweden)

    Iseult Lynch

    2013-06-01

    Full Text Available Nanosilver, due to its small particle size and enormous specific surface area, facilitates more rapid dissolution of ions than the equivalent bulk material; potentially leading to increased toxicity of nanosilver. This, coupled with their capacity to adsorb biomolecules and interact with biological receptors can mean that nanoparticles can reach sub-cellular locations leading to potentially higher localized concentrations of ions once those particles start to dissolve or degrade in situ. Further complicating the story is the capacity for nanoparticles to generate reactive oxygen species, and to interact with, and potentially disturb the functioning of biomolecules such as proteins, enzymes and DNA. The fact that the nanoparticle size, shape, surface coating and a host of other factors contribute to these interactions, and that the particles themselves are evolving or ageing leads to further complications in terms of elucidating mechanisms of interaction and modes of action for silver nanoparticles, in contrast to dissolved silver species. This review aims to provide a critical assessment of the current understanding of silver nanoparticle toxicity, as well as to provide a set of pointers and guidelines for experimental design of future studies to assess the environmental and biological impacts of silver nanoparticles. In particular; in future we require a detailed description of the nanoparticles; their synthesis route and stabilisation mechanisms; their coating; and evolution and ageing under the exposure conditions of the assay. This would allow for comparison of data from different particles; different environmental or biological systems; and structure-activity or structure-property relationships to emerge as the basis for predictive toxicology. On the basis of currently available data; such comparisons or predictions are difficult; as the characterisation and time-resolved data is not available; and a full understanding of silver

  2. Phytofabrication of bioinduced silver nanoparticles for biomedical applications

    Directory of Open Access Journals (Sweden)

    Ahmad N

    2015-11-01

    Full Text Available Nabeel Ahmad,1 Sharad Bhatnagar,1 Syed Salman Ali,2 Rajiv Dutta3 1School of Biotechnology, 2School of Pharmaceutical Sciences, IFTM University, Lodhipur Rajput, Moradabad, Uttar Pradesh, India; 3Institute of Bio-Science and Technology, Shri Ramswaroop Memorial University, Barabanki, Uttar Pradesh, India Abstract: Synthesis of nanomaterials holds infinite possibilities as nanotechnology is revolutionizing the field of medicine by its myriad applications. Green synthesis of nanoparticles has become the need of the hour because of its eco-friendly, nontoxic, and economic nature. In this study, leaf extract of Rosa damascena was used as a bioreductant to reduce silver nitrate, leading to synthesis of silver nanoparticles (AgNPs in a single step, without the use of any additional reducing or capping agents. The synthesized nanoparticles were characterized by the use of UV-visible spectroscopy, fourier transform infrared spectroscopy, dynamic light scattering, transmission electron microscopy, and field emission scanning electron microscopy. Time-dependent synthesis of AgNPs was studied spectrophotometrically. Synthesized AgNPs were found to possess flower-like spherical structure where individual nanoparticles were of 16 nm in diameter, whereas the agglomerated AgNPs were in the range of 60–80 nm. These biologically synthesized AgNPs exhibited significant antibacterial activity against Gram-negative bacterial species but not against Gram-positive ones (Escherichia coli and Bacillus cereus. Anti-inflammatory and analgesic activities were studied on a Wistar rat model to gauge the impact of AgNPs for a probable role in these applications. AgNPs tested positive for both these activities, although the potency was less as compared to the standard drugs. Keywords: silver nanoparticles, green synthesis, anti-inflammatory, analgesic, animal model study, antibacterial

  3. Separation of silver ions and starch modified silver nanoparticles using high performance liquid chromatography with ultraviolet and inductively coupled mass spectrometric detection

    International Nuclear Information System (INIS)

    Hanley, Traci A.; Saadawi, Ryan; Zhang, Peng; Caruso, Joseph A.; Landero-Figueroa, Julio

    2014-01-01

    The production of commercially available products marketed to contain silver nanoparticles is rapidly increasing. Species-specific toxicity is a phenomenon associated with many elements, including silver, making it imperative to develop a method to identify and quantify the various forms of silver (namely, silver ions vs. silver nanoparticles) possibly present in these products. In this study a method was developed using high performance liquid chromatography (HPLC) with ultraviolet (UV–VIS) and inductively coupled mass spectrometric (ICP-MS) detection to separate starch stabilized silver nanoparticles (AgNPs) and silver ions (Ag + ) by cation exchange chromatography with 0.5 M nitric acid mobile phase. The silver nanoparticles and ions were baseline resolved with an ICP-MS response linear over four orders of magnitude, 0.04 mg kg −1 detection limit, and 90% chromatographic recovery for silver solutions containing ions and starch stabilized silver nanoparticles smaller than 100 nm

  4. Separation of silver ions and starch modified silver nanoparticles using high performance liquid chromatography with ultraviolet and inductively coupled mass spectrometric detection

    Energy Technology Data Exchange (ETDEWEB)

    Hanley, Traci A.; Saadawi, Ryan; Zhang, Peng; Caruso, Joseph A., E-mail: joseph.caruso@uc.edu; Landero-Figueroa, Julio

    2014-10-01

    The production of commercially available products marketed to contain silver nanoparticles is rapidly increasing. Species-specific toxicity is a phenomenon associated with many elements, including silver, making it imperative to develop a method to identify and quantify the various forms of silver (namely, silver ions vs. silver nanoparticles) possibly present in these products. In this study a method was developed using high performance liquid chromatography (HPLC) with ultraviolet (UV–VIS) and inductively coupled mass spectrometric (ICP-MS) detection to separate starch stabilized silver nanoparticles (AgNPs) and silver ions (Ag{sup +}) by cation exchange chromatography with 0.5 M nitric acid mobile phase. The silver nanoparticles and ions were baseline resolved with an ICP-MS response linear over four orders of magnitude, 0.04 mg kg{sup −1} detection limit, and 90% chromatographic recovery for silver solutions containing ions and starch stabilized silver nanoparticles smaller than 100 nm.

  5. A novel cetyltrimethyl ammonium silver bromide complex and silver bromide nanoparticles obtained by the surfactant counterion.

    Science.gov (United States)

    Liu, Xian-Hao; Luo, Xiao-Hong; Lu, Shu-Xia; Zhang, Jing-Chang; Cao, Wei-Liang

    2007-03-01

    A novel cetyltrimethyl ammonium silver bromide (CTASB) complex has been prepared simply through the reaction of silver nitrate with cetyltrimethyl ammonium bromide (CTAB) in aqueous solution at room temperature by controlling the concentration of CTAB and the molar ratio of CTAB to silver nitrate in the reaction solution, in which halogen in CTAB is used as surfactant counterion. The structure and thermal behavior of cetyltrimethyl ammonium silver bromide have been investigated by using X-ray diffraction (XRD), infrared spectroscopy (IR), X-ray photoelectron spectroscopy (XPS), UV/vis spectroscopy, thermal analysis (TG-DTA), transmission electron microscopy (TEM), and scanning electron microscopy (SEM). The results show that the complex possesses a metastable layered structure. Upon heating the CTASB aqueous dispersion to above 80 degrees C, the structure change of the complex took place and CTAB-capped nanosized silver bromide particles further formed.

  6. A high-temperature, high-pressure, silver-silver chloride reference electrode

    International Nuclear Information System (INIS)

    King, F.; Bailey, M.G.; Clarke, C.F.; Ikeda, B.M.; Litke, C.D.; Ryan, S.R.

    1989-05-01

    A high-temperature, high-pressure, silver-silver chloride reference electrode is described. This report is meant to serve as a user's guide to the experimentalist. Consequently, the design and construction of the electrode are dealt with in some detail. The problems that may be encountered, along with their possible causes and remedies, are also discussed. Conversion factors are given for both internal and external reference electrodes, so that measured potentials can be related to the standard hydrogen electrode scale

  7. Preparation of silver nanoparticles at low temperature

    Energy Technology Data Exchange (ETDEWEB)

    Mishra, Mini, E-mail: mishramini5@gmail.com [Centre of Environmental Science, Department of Botany, University of Allahabad, Allahabad, U.P. (India); Chauhan, Pratima, E-mail: mangu167@yahoo.co.in [Department of Physics, University of Allahabad, Allahabad U.P. (India)

    2016-04-13

    Silver from ancient time is used as antimicrobial agent in the bulk form but now with the advancement in nanotechnology silver in the form of nanoparticles shown potential effect against microbes which make us easy to fight with many diseases plants and animals. In this work silver nanoparticles were synthesized by chemical routes using sodium borohydride as reducing agent at low temperature. The particles were characterized through UV-Visible spectroscopy as well as X-Ray Diffraction. The UV-visible spectra of silver nanoparticles exhibited absorption at 425 cm; the crystallite size of the particles is between 19nm to 39nm. EDAX graph shows two peaks of silver and oxygen. Water absorbed by silver nanoparticles was removed by the calcinations.

  8. Preparation of silver nanoparticles at low temperature

    International Nuclear Information System (INIS)

    Mishra, Mini; Chauhan, Pratima

    2016-01-01

    Silver from ancient time is used as antimicrobial agent in the bulk form but now with the advancement in nanotechnology silver in the form of nanoparticles shown potential effect against microbes which make us easy to fight with many diseases plants and animals. In this work silver nanoparticles were synthesized by chemical routes using sodium borohydride as reducing agent at low temperature. The particles were characterized through UV-Visible spectroscopy as well as X-Ray Diffraction. The UV-visible spectra of silver nanoparticles exhibited absorption at 425 cm; the crystallite size of the particles is between 19nm to 39nm. EDAX graph shows two peaks of silver and oxygen. Water absorbed by silver nanoparticles was removed by the calcinations.

  9. Toxicological Assessment of a Lignin Core Nanoparticle Doped with Silver as an Alternative to Conventional Silver Core Nanoparticles

    Directory of Open Access Journals (Sweden)

    Cassandra E. Nix

    2018-05-01

    Full Text Available Elevated levels of silver in the environment are anticipated with an increase in silver nanoparticle (AgNP production and use in consumer products. To potentially reduce the burden of silver ion release from conventional solid core AgNPs, a lignin-core particle doped with silver ions and surface-stabilized with a polycationic electrolyte layer was engineered. Our objective was to determine whether any of the formulation components elicit toxicological responses using embryonic zebrafish. Ionic silver and free surface stabilizer were the most toxic constituents, although when associated separately or together with the lignin core particles, the toxicity of the formulations decreased significantly. The overall toxicity of lignin formulations containing silver was similar to other studies on a silver mass basis, and led to a significantly higher prevalence of uninflated swim bladder and yolk sac edema. Comparative analysis of dialyzed samples which had leached their loosely bound Ag+, showed a significant increase in mortality immediately after dialysis, in addition to eliciting significant increases in types of sublethal responses relative to the freshly prepared non-dialyzed samples. ICP-OES/MS analysis indicated that silver ion release from the particle into solution was continuous, and the rate of release differed when the surface stabilizer was not present. Overall, our study indicates that the lignin core is an effective alternative to conventional solid core AgNPs for potentially reducing the burden of silver released into the environment from a variety of consumer products.

  10. Use of bioreporters and deletion mutants reveals ionic silver and ROS to be equally important in silver nanotoxicity.

    Science.gov (United States)

    Joshi, Nimisha; Ngwenya, Bryne T; Butler, Ian B; French, Chris E

    2015-04-28

    The mechanism of antibacterial action of silver nanoparticles (AgNp) was investigated by employing a combination of microbiology and geochemical approaches to contribute to the realistic assessment of nanotoxicity. Our studies showed that suspending AgNp in media with different levels of chloride relevant to environmental conditions produced low levels of ionic silver thereby suggesting that dissolution of silver ions from nanoparticulate surface could not be the sole mechanism of toxicity. An Escherichia coli based bioreporter strain responsive to silver ions together with mutant strains of E. coli lacking specific protective systems were tested against AgNp. Deletion mutants lacking silver ion efflux systems and resistance mechanisms against oxidative stress showed an increased sensitivity to AgNp. However, the bioreporter did not respond to silver nanoparticles. Our results suggest that oxidative stress is a major toxicity mechanism and that this is at least partially associated with ionic silver, but that bulk dissolution of silver into the medium is not sufficient to account for the observed effects. Chloride ions do not appear to offer significant protection, indicating that chloride in receiving waters will not necessarily protect environmental bacteria from the toxic effects of nanoparticles in effluents. Copyright © 2015 Elsevier B.V. All rights reserved.

  11. Aligned Layers of Silver Nano-Fibers

    Directory of Open Access Journals (Sweden)

    Andrii B. Golovin

    2012-02-01

    Full Text Available We describe a new dichroic polarizers made by ordering silver nano-fibers to aligned layers. The aligned layers consist of nano-fibers and self-assembled molecular aggregates of lyotropic liquid crystals. Unidirectional alignment of the layers is achieved by means of mechanical shearing. Aligned layers of silver nano-fibers are partially transparent to a linearly polarized electromagnetic radiation. The unidirectional alignment and density of the silver nano-fibers determine degree of polarization of transmitted light. The aligned layers of silver nano-fibers might be used in optics, microwave applications, and organic electronics.

  12. Multiple surface plasmon polaritons modes on thin silver film controlled by a two-dimensional lattice of silver nanodimers

    Energy Technology Data Exchange (ETDEWEB)

    Chang, Ying; Jiang, Yongyuan, E-mail: jiangyy@hit.edu.cn [Harbin Institute of Technology, Department of Physics (China)

    2015-01-15

    We study the optical resonant spectrum of a two-dimensional periodic array of silver nanodimers on a thin silver film using multiple scattering formalism. The excited multiple plasmonic modes on two interfaces of the silver film reveal that the dispersion relationships of surface plasmon polaritons on metallic film are modified by doubly periodic lattice due to the fact that wave vectors matching conditions are satisfied. Moreover, we demonstrate that the plasmonic modes are directly controlled by the thickness of silver film, as well as the gap between nanodimer array and silver film. These effects provide novel high-efficient and steady way for excitation in future plasmonic nanodevices.

  13. Ink composition for making a conductive silver structure

    Science.gov (United States)

    Walker, Steven B.; Lewis, Jennifer A.

    2016-10-18

    An ink composition for making a conductive silver structure comprises a silver salt and a complex of (a) a complexing agent and a short chain carboxylic acid or (b) a complexing agent and a salt of a short chain carboxylic acid, according to one embodiment. A method for making a silver structure entails combining a silver salt and a complexing agent, and then adding a short chain carboxylic acid or a salt of the short chain carboxylic acid to the combined silver salt and a complexing agent to form an ink composition. A concentration of the complexing agent in the ink composition is reduced to form a concentrated formulation, and the silver salt is reduced to form a conductive silver structure, where the concentrated formulation and the conductive silver structure are formed at a temperature of about 120.degree. C. or less.

  14. Synthesis of silver nanoparticles by coastal plant Prosopis chilensis (L.) and their efficacy in controlling vibriosis in shrimp Penaeus monodon

    Science.gov (United States)

    Kandasamy, Kathiresan; Alikunhi, Nabeel M.; Manickaswami, Gayathridevi; Nabikhan, Asmathunisha; Ayyavu, Gopalakrishnan

    2013-02-01

    The present work investigated the effect of leaf extract from coastal plant Prosopis chilensis on synthesis of silver nanoparticles using AgNO3 as a substrate and to find their antibacterial potential on pathogenic Vibrio species in the shrimp, Penaeus monodon. The leaf extract could be able to produce silver nanoparticles, as evident by gradual change in colour of the reaction mixture consisted of the extract and 1 mM AgNO3 to dark brown. The silver nanoparticles exhibited 2 θ values corresponding to the presence of silver nanocrystal, as evident by X-ray diffraction spectrum. The peaks corresponding to flavanones and terpenoids were found to be stabilizing agents of the nanoparticles, as revealed by Fourier transform infrared spectroscopy. The size of silver nanoparticles ranged from 5 to 25 nm with an average of 11.3 ± 2.1 nm and was mostly of spherical in shape, as confirmed by transmission electron microscopy. The silver nanoparticles were found to inhibit Vibrio pathogens viz., Vibrio cholerae, V. harveyi, and V. parahaemolyticus and this antibacterial effect was better than that of leaf extract, as proved by disc diffusion assay. The nanoparticles were then tested in the shrimp Penaeus monodon challenged with the four species of Vibrio pathogens for 30 days. The shrimps fed with silver nanoparticles exhibited higher survival, associated with immunomodulation in terms of higher haemocyte counts, phenoloxidase and antibacterial activities of haemolymph of P. monodon which is on par with that of control. Thus, the present study proved the possibility of using silver nanoparticles produced by coastal Prosopis chilensis as antibacterial agent in controlling vibriosis.

  15. Antibacterial Activity of Polyaniline Coated Silver Nanoparticles Synthesized from Piper Betle Leaves Extract.

    Science.gov (United States)

    Mamun Or Rashida, Md; Shafiul Islam, Md; Azizul Haque, Md; Arifur Rahman, Md; Tanvir Hossain, Md; Abdul Hamid, Md

    2016-01-01

    Plants or natural resources have been found to be a good alternative method for nanoparticles synthesis. In this study, polyaniline coated silver nanoparticles (AgNPs) synthesized from Piper betle leaves extract were investigated for their antibacterial activity. Silver nanoparticles were prepared from the reduction of silver nitrate and NaBH4 was used as reducing agent. Silver nanoparticles and extracts were mixed thoroughly and then coated by polyaniline. Prepared nanoparticles were characterized by Visual inspection, Ultraviolet-visible spectroscopy (UV), Fourier transform infrared Spectroscopy (FT-IR), Transmission Electron Microscopy (TEM) techniques. Antibacterial activities of the synthesized silver nanoparticles were tested against Staphylococcus aureus ATCC 25923, Salmonella typhi ATCC 14028, Escherichia coli ATCC 25922 and Pseudomonas aeruginosa ATCC 27853. UV-Vis spectrum of reaction mixture showed strong absorption peak with centering at 400 nm. The FT-IR results imply that Ag-NPs were successfully synthesized and capped with bio-compounds present in P. betle. TEM image showed that Ag-NPs formed were well dispersed with a spherical structures and particle size ranging from 10 to 30 nm. The result revealed that Ag-Extract NPs showed 32.78±0.64 mm zone of inhibition against S. aureus, whereas norfloxacin (positive control) showed maximum 32.15±0.40 mm zone of inhibition for S. aureus. Again, maximum zone of inhibition 29.55±0.45 mm was found for S. typhi, 27.12±0.38 mm for E. coli and 21.95±0.45 mm for P. aeruginosa. The results obtained by this study can't be directly extrapolated to human; so further studies should be undertaken to established the strong antimicrobial activity of Ag-Extract NPs for drug development program.

  16. Diameter-dependent coloration of silver nanowires

    International Nuclear Information System (INIS)

    Stewart, Mindy S; Qiu Chao; Jiang Chaoyang; Kattumenu, Ramesh; Singamaneni, Srikanth

    2011-01-01

    Silver nanowires were synthesized with a green method and characterized with microscopic and diffractometric methods. The correlation between the colors of the nanowires deposited on a solid substrate and their diameters was explored. Silver nanowires that appear similar in color in the optical micrographs have very similar diameters as determined by atomic force microscopy. We have summarized the diameter-dependent coloration for these silver nanowires. An optical interference model was applied to explain such correlation. In addition, microreflectance spectra were obtained from individual nanowires and the observed spectra can be explained with the optical interference theory. This work provides a cheap, quick and simple screening method for studying the diameter distribution of silver nanowires, as well as the diameter variations of individual silver nanowires, without complicated sample preparation.

  17. Synthesis and antimicrobial effects of silver nanoparticles

    Directory of Open Access Journals (Sweden)

    S kheybari

    2010-09-01

    Full Text Available "n  "n "nBackground and the purpose of the study:The most prominent nanoparticles for medical uses are nanosilver particles which are famous for their high anti-microbial activity. Silver ion has been known as a metal ion that exhibit anti-mold, anti-microbial and anti-algal properties for a long time. In particular, it is widely used as silver nitrate aqueous solution which has disinfecting and sterilizing actions. The purpose of this study was to evaluate the antimicrobial activity as well as physical properties of the silver nanoparticles prepared by chemical reduction method. "nMethods:Silver nanoparticles (NPs were prepared by reduction of silver nitrate in the presence of a reducing agent and also poly [N-vinylpyrolidone] (PVP as a stabilizer. Two kinds of NPs were synthesized by ethylene glycol (EG and glucose as reducing agent. The nanostructure and particle size of silver NPs were confirmed by scanning electron microscopy (SEM and laser particle analyzer (LPA. The formations of the silver NPs were monitored using ultraviolet-visible spectroscopy. The anti-bacterial activity of silver NPs were assessed by determination of their minimum inhibitory concentrations (MIC against the Gram positive (Staphylococcus aureus and Staphylococcus epidermidis as well as Gram-negative (Escherichia coli and Pseudomonas aeruginosa bacteria. "nResults and Conclusion:The silver nanoparticles were spherical with particle size between 10 to 250 nm. Analysis of the theoretical (Mie light scattering theory and experimental results showed that the silver NPs in colloidal solution had a diameter of approximately 50 nm. "nBoth colloidal silver NPs showed high anti-bacterial activity against Gram positive and Gram negative bacteria. Glucose nanosilver colloids showed a shorter killing time against most of the tested bacteria which could be due to their nanostructures and uniform size distribution patterns.

  18. Silver ion-mediated killing of a food pathogen: Melting curve analysis data of silver resistance genes and growth curve data

    OpenAIRE

    Kuppan Gokulan; Katherine Williams; Sangeeta Khare

    2017-01-01

    Limited antibacterial activity of silver ions leached from silver-impregnated food contact materials could be due to: 1) the presence of silver resistance genes in tested bacteria; or 2) lack of susceptibility to silver ion-mediated killing in the bacterial strain (K. Williams, L. Valencia, K. Gokulan, R. Trbojevich, S. Khare, 2016 [1]). This study contains data to address the specificity of silver resistance genes in Salmonella Typhimurium during the real time PCR using melting curve analysi...

  19. Silver release and antimicrobial properties of PMMA films doped with silver ions, nano-particles and complexes

    Energy Technology Data Exchange (ETDEWEB)

    Lyutakov, O., E-mail: lyutakoo@vscht.cz [Department of Solid State Engineering, Institute of Chemical Technology, Prague (Czech Republic); Goncharova, I. [Department of Analytical Chemistry, Institute of Chemical Technology, Prague (Czech Republic); Rimpelova, S. [Department of Biochemistry and Microbiology, Institute of Chemical Technology, Prague (Czech Republic); Kolarova, K.; Svanda, J.; Svorcik, V. [Department of Solid State Engineering, Institute of Chemical Technology, Prague (Czech Republic)

    2015-04-01

    Materials prepared on the base of bioactive silver compounds have become more and more popular due to low microbial resistance to silver. In the present work, the efficiency of polymethylmethacrylate (PMMA) thin films doped with silver ions, nanoparticles and silver–imidazole polymer complex was studied by a combination of AAS, XPS and AFM techniques. The biological activities of the proposed materials were discussed in view of the rate of silver releasing from the polymer matrix. Concentrations of Ag active form were estimated by its ability to interact with L-cysteine using electronic circular dichroism spectroscopy. Rates of the released silver were compared with the biological activity in dependence on the form of embedded silver. Antimicrobial properties of doped polymer films were studied using two bacterial strains: Staphylococcus epidermidis and Escherichia coli. It was found that PMMA films doped with Ag{sup +} had greater activity than those doped with nanoparticles and silver–imidazole polymeric complexes. However, the antimicrobial efficiency of Ag{sup +} doped films was only short-term. Contrary, the antimicrobial activity of silver–imidazole/PMMA films increased in time of sample soaking. - Highlights: • PMMA thin films doped with silver ions, nanoparticles (AgNPs) and silver–imidazole helical complexes (AgIm) were studied. • Silver release from doped polymer films and its biological activity were estimated. • Antimicrobial properties of doped polymer films were also studied. • Ag ions doped films showed the strongest antimicrobial activity, which quickly disappeared. • AgIm and AgNPs doped films showed more stable antimicrobial properties. • AgIm complexes conserve their structure after addition into polymer and after leaching.

  20. Silver release and antimicrobial properties of PMMA films doped with silver ions, nano-particles and complexes

    International Nuclear Information System (INIS)

    Lyutakov, O.; Goncharova, I.; Rimpelova, S.; Kolarova, K.; Svanda, J.; Svorcik, V.

    2015-01-01

    Materials prepared on the base of bioactive silver compounds have become more and more popular due to low microbial resistance to silver. In the present work, the efficiency of polymethylmethacrylate (PMMA) thin films doped with silver ions, nanoparticles and silver–imidazole polymer complex was studied by a combination of AAS, XPS and AFM techniques. The biological activities of the proposed materials were discussed in view of the rate of silver releasing from the polymer matrix. Concentrations of Ag active form were estimated by its ability to interact with L-cysteine using electronic circular dichroism spectroscopy. Rates of the released silver were compared with the biological activity in dependence on the form of embedded silver. Antimicrobial properties of doped polymer films were studied using two bacterial strains: Staphylococcus epidermidis and Escherichia coli. It was found that PMMA films doped with Ag + had greater activity than those doped with nanoparticles and silver–imidazole polymeric complexes. However, the antimicrobial efficiency of Ag + doped films was only short-term. Contrary, the antimicrobial activity of silver–imidazole/PMMA films increased in time of sample soaking. - Highlights: • PMMA thin films doped with silver ions, nanoparticles (AgNPs) and silver–imidazole helical complexes (AgIm) were studied. • Silver release from doped polymer films and its biological activity were estimated. • Antimicrobial properties of doped polymer films were also studied. • Ag ions doped films showed the strongest antimicrobial activity, which quickly disappeared. • AgIm and AgNPs doped films showed more stable antimicrobial properties. • AgIm complexes conserve their structure after addition into polymer and after leaching

  1. Irradiation of silver and agar/silver nanoparticles with argon, oxygen glow discharge plasma, and mercury lamp.

    Science.gov (United States)

    Ahmad, Mahmoud M; Abdel-Wahab, Essam A; El-Maaref, A A; Rawway, Mohammed; Shaaban, Essam R

    2014-01-01

    The irradiation effect of argon, oxygen glow discharge plasma, and mercury lamp on silver and agar/silver nanoparticle samples is studied. The irradiation time dependence of the synthesized silver and agar/silver nanoparticle absorption spectra and their antibacterial effect are studied and compared. In the agar/silver nanoparticle sample, as the irradiation time of argon glow discharge plasma or mercury lamp increases, the peak intensity and the full width at half maximum, FWHM, of the surface plasmon resonance absorption band is increased, however a decrease of the peak intensity with oxygen glow plasma has been observed. In the silver nanoparticle sample, as the irradiation time of argon, oxygen glow discharge plasma or mercury lamp increases, the peak intensity of the surface plasmon resonance absorption band is increased, however, there is no significant change in the FWHM of the surface plasmon resonance absorption band. The SEM results for both samples showed nanoparticle formation with mean size about 50 nm and 40 nm respectively. Throughout the irradiation time with the argon, oxygen glow discharge plasma or mercury lamp, the antibacterial activity of several kinds of Gram-positive and Gram-negative bacteria has been examined.

  2. Testing nano-silver food packaging to evaluate silver migration and food spoilage bacteria on chicken meat.

    Science.gov (United States)

    Gallocchio, Federica; Cibin, Veronica; Biancotto, Giancarlo; Roccato, Anna; Muzzolon, Orietta; Carmen, Losasso; Simone, Belluco; Manodori, Laura; Fabrizi, Alberto; Patuzzi, Ilaria; Ricci, Antonia

    2016-06-01

    Migration of nanomaterials from food containers into food is a matter of concern because of the potential risk for exposed consumers. The aims of this study were to evaluate silver migration from a commercially available food packaging containing silver nanoparticles into a real food matrix (chicken meat) under plausible domestic storage conditions and to test the contribution of such packaging to limit food spoilage bacteria proliferation. Chemical analysis revealed the absence of silver in chicken meatballs under the experimental conditions in compliance with current European Union legislation, which establishes a maximum level of 0.010 mg kg(-1) for the migration of non-authorised substances through a functional barrier (Commission Regulation (EU) No. 10/2011). On the other hand, microbiological tests (total microbial count, Pseudomonas spp. and Enterobacteriaceae) showed no relevant difference in the tested bacteria levels between meatballs stored in silver-nanoparticle plastic bags or control bags. This study shows the importance of testing food packaging not only to verify potential silver migration as an indicator of potential nanoparticle migration, but also to evaluate the benefits in terms of food preservation so as to avoid unjustified usage of silver nanoparticles and possible negative impacts on the environment.

  3. Activity of Antimicrobial Silver Polystyrene Nanocomposites

    Directory of Open Access Journals (Sweden)

    M. Palomba

    2012-01-01

    Full Text Available A simple technique based on doping polymers with in situ generated silver nanoparticles (Ag/PS films has been developed. In particular, an antiseptic material has been prepared by dissolving silver 1,5-cyclooctadiene-hexafluoroacetylacetonate in amorphous polystyrene, and the obtained solid solution has been heated for ca. 10 s at a convenient temperature (180°C. Under such conditions the metal precursor decomposes producing silver atoms that diffuse into the polymer and clusterize. The antimicrobial characteristics of the resulting polystyrene-based material have been accurately evaluated toward Escherichia coli (E. coli comparing the cytotoxicity effect of 10 wt.% and 30 wt.% (drastic and mild annealing silver-doped polystyrene to the corresponding pure micrometric silver powder. Two different bacterial viability assays were performed in order to demonstrate the cytotoxic effect of Ag/PS films on cultured E. coli: (1 turbidimetric determination of optical density; (2 BacLight fluorescence-based test. Both methods have shown that silver-doped polystyrene (30 wt.% provides higher antibacterial activity than pure Ag powder, under similar concentration and incubation conditions.

  4. Biologically synthesised silver nanoparticles from three diverse family of plant extracts and their anticancer activity against epidermoid A431 carcinoma.

    Science.gov (United States)

    Nayak, Debasis; Pradhan, Sonali; Ashe, Sarbani; Rauta, Pradipta Ranjan; Nayak, Bismita

    2015-11-01

    Biological synthesis of silver nanoparticles is a cost effective natural process where the phytochemicals specifically phenols, flavonoids and terpenoids present in the plant extracts act as capping and reducing agent. Due to their nano size regime the silver nanoparticles may directly bind to the DNA of the pathogenic bacterial strains leading to higher antimicrobial activity. In the current study silver nanoparticles were synthesised using plant extracts from different origin Cucurbita maxima (petals), Moringa oleifera (leaves) and Acorus calamus (rhizome). The synthesised nanoparticles were characterized by UV-visible spectroscopy, dynamic light scattering (DLS), X-ray diffraction (XRD), field emission scanning electron microscopy (Fe-SEM) and Fourier transform infrared spectroscopy (FTIR). Highly crystalline, roughly spherical and cuboidal silver nanoparticles of 30-70 nm in size were synthesised. The nanoparticles provided strong antimicrobial activity against pathogenic strains. The effect of the synthesised nanoparticles against A431 skin cancer cell line was tested for their toxicity by 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide (MTT) dye. The IC50 values of 82.39±3.1, 83.57±3.9 and 78.58±2.7 μg/ml were calculated for silver nanoparticles synthesised by C. maxima, M. oleifera and A. calamus respectively. Copyright © 2015 Elsevier Inc. All rights reserved.

  5. Direct nucleation of silver nanoparticles on graphene sheet.

    Science.gov (United States)

    Singh, Manoj K; Titus, E; Krishna, R; Hawaldar, R R; Goncalves, G; Marques, P A A P; Gracio, J

    2012-08-01

    Silver (Ag) nanoparticles were synthesized on the surface of graphene sheet by the simultaneous reduction of Ag+ and graphene oxide (GO) in the presence of simple reducing agent, hydrazine hydrate (N2H4 x H2O). Both the Ag+ and GO were reduced and Ag+ was nucleated onto graphene. GO flakes were prepared by conventional chemical exfoliation method and in the presence of strong acidic medium of potassium chlorate. Silver nanoparticles were prepared using 0.01 M AgNO3 solution. The reduced GO sheet decorated with Ag is referred as G-Ag sample. G-Ag was characterized by FTIR (Fourier transform infrared) spectroscopy using GO as standard. An explicit alkene peak appeared around 1625 cm(-1) was observed in G-Ag sample. Besides, the characteristic carbonyl and hydroxyl peaks shows well reduction of GO. The FTIR therefore confirms the direct interaction of Ag into Graphene. SEM (scanning electron microscopy) and TEM (transmission electron microscopy) analysis were performed for morphological probing. The average size of Ag nanoparticles was confirmed by around 5-10 nm by the high-resolution TEM (HRTEM). The Ag quantum dots incorporated nanocomposite material could become prominent candidate for diverse applications including photovoltaic, catalysis, and biosensors etc.

  6. Tailoring silver nanoparticle construction using dendrimer templated silica networks

    International Nuclear Information System (INIS)

    Liu Xiaojun; Kakkar, Ashok

    2008-01-01

    We have examined the role of the internal environment of dendrimer templated silica networks in tailoring the construction of silver nanoparticle assemblies. Silica networks from which 3,5-dihydroxybenzyl alcohol based dendrimer templates have been completely removed, slowly wet with an aqueous solution of silver acetate. The latter then reacts with internal silica silanol groups, leading to chemisorption of silver ions, followed by the growth of silver oxide nanoparticles. Silica network constructed using generation 4 dendrimer contains residual dendrimer template, and mixes with aqueous silver acetate solution easily. Upon chemisorption, silver ions get photolytically reduced to silver metal under a stabilizing dendrimer environment, leading to the formation of silver metal nanoparticles

  7. DSC and Raman studies of silver borotellurite glasses

    Science.gov (United States)

    Kaur, Amandeep; Khanna, Atul; Gonzàlez, Fernando

    2016-05-01

    Silver borotellurite glasses of composition: xAg2O-yB2O3-(100-x-y)TeO2 (x=20-mol%, y = 0, 10, 20 and 30-mol%) were prepared and characterized by density, X-ray diffraction (XRD), differential scanning calorimetry, and Raman spectroscopy. XRD confirmed the amorphous structure of all samples. Density of glasses decreases while the glass transition temperature increases with increase in B2O3 content from 10 to 30-mol%. Raman study shows that coordination number of Te with oxygen decreases steadily from 3.42 to 3.18 on adding B2O3 due to the transformation of TeO4 into TeO3 units.

  8. Synthesis and characterization of silver doped hydroxyapatite nanocomposite coatings and evaluation of their antibacterial and corrosion resistance properties in simulated body fluid.

    Science.gov (United States)

    Mirzaee, Majid; Vaezi, Mohammadreza; Palizdar, Yahya

    2016-12-01

    Silver-doped hydroxyapatite (Ca10-xAgx(PO4)6(OH)2-x) films were synthesized and deposited on anodized titanium (Ti) using electrophoretic. The influence of different silver-dopant contents (X=0, 0.02, 0.05, 0.08 and 0.1) on the phase formation and microstructure of the powders were characterized by means of X-ray diffraction (XRD), transmission electron microscopy (TEM), X-ray photoelectron spectroscope (XPS), and Fourier transform infrared spectrum analysis (FT-IR). XRD analysis confirmed the formation of Hexagonal structure of hydroxyapatite (HAp) annealed at 600°C with a small shift in the major peak position toward lower angles with adding silver. FT-IR spectroscopy disclosed the presence of the different vibrational modes matching to phosphates and hydroxyl groups and the absence of any band characteristics to silver. XPS analysis showed that 75% and 23% of silver was in the chemical states of Ag(2+) and Ag(+), respectively. However, only about 2% of silver was in the Ag(0) state, resulting in the high quality of nanocomposite films. The anodization treatment improves the bond strength between the Ag doped HAp deposited layers on TiO2. HAp and silver doped HAp (X=0.05) are regarded to be hydrophilic due to a large number of -OH groups on the surface. The sample with content of silver (x=0.05) also showed excellent antimicrobial efficacy (>99% reduction in viable cells). Electrochemical reveals the passive current densities of the HAp coated anodized Ti are lower than those of silver doped HAp coated anodized Ti, leading to a slightly lower corrosion resistance. Copyright © 2016 Elsevier B.V. All rights reserved.

  9. In vitro study of the antibacterial and anticancer activities of silver nanoparticles synthesized from Penicillium brevicompactum (MTCC-1999

    Directory of Open Access Journals (Sweden)

    Shahnaz Majeed

    2016-07-01

    Full Text Available Among the most promising nanomaterials, metallic nanoparticles with antibacterial and antitumor properties are expected to open new avenues to fight and prevent various tumours and infectious diseases. The study of bactericidal nanomaterial is particularly timely considering the recent increase in new resistant strains of bacteria to the most potent antibiotics and the potential role of bactericidal nanomaterial as anticancer agents. This has promoted the research of the well-known activity of silver ions and silver-based compounds, including silver nanoparticles. The present work is the study of silver nanoparticles synthesized from Penicillium brevicompactum (MTCC-1999. The colour of the cell filtrate changes to dark brown upon addition of 1 mM AgNO3, suggesting the formation of silver nanoparticles. These silver nanoparticles (AgNPs were characterized and analyzed by UV–vis spectrophotometric analysis, which showed a peak of absorbance at 420 nm. Fourier transform infrared (FTIR analysis showed amines and amides that are responsible for the stabilization of AgNPs. To determine the particle size, atomic force microscopy (AFM analysis was used, which showed that the nanoparticles are spherical and are 30–50 nm in size. High-resolution transmission electron microscopy (HRTEM showed that AgNPs were well dispersed, spherical, and well within the range of 40–50 nm. These nanoparticles displayed good antibacterial activity and also increased the antibiotic activity of gatifloxacin, tetracycline, and vancomycin. These nanoparticles were further studied for their anticancer activity and showed high toxicity towards the MCF-7 breast cancer cell line.

  10. Effects of silver nitrate and silver nanoparticles on a planktonic community: general trends after short-term exposure.

    Directory of Open Access Journals (Sweden)

    Jens Boenigk

    Full Text Available Among metal pollutants silver ions are one of the most toxic forms, and have thus been assigned to the highest toxicity class. Its toxicity to a wide range of microorganisms combined with its low toxicity to humans lead to the development of a wealth of silver-based products in many bactericidal applications accounting to more than 1000 nano-technology-based consumer products. Accordingly, silver is a widely distributed metal in the environment originating from its different forms of application as metal, salt and nanoparticle. A realistic assessment of silver nanoparticle toxicity in natural waters is, however, problematic and needs to be linked to experimental approaches. Here we apply metatranscriptome sequencing allowing for elucidating reactions of whole communities present in a water sample to stressors. We compared the toxicity of ionic silver and ligand-free silver nanoparticles by short term exposure on a natural community of aquatic microorganisms. We analyzed the effects of the treatments on metabolic pathways and species composition on the eukaryote metatranscriptome level in order to describe immediate molecular responses of organisms using a community approach. We found significant differences between the samples treated with 5 µg/L AgNO3 compared to the controls, but no significant differences in the samples treated with AgNP compared to the control samples. Statistical analysis yielded 126 genes (KO-IDs with significant differential expression with a false discovery rate (FDR <0.05 between the control (KO and AgNO3 (NO3 groups. A KEGG pathway enrichment analysis showed significant results with a FDR below 0.05 for pathways related to photosynthesis. Our study therefore supports the view that ionic silver rather than silver nanoparticles are responsible for silver toxicity. Nevertheless, our results highlight the strength of metatranscriptome approaches for assessing metal toxicity on aquatic communities.

  11. Magneto optical properties of silver doped magnetic nanocomposite material

    Directory of Open Access Journals (Sweden)

    N. Abirami

    2017-11-01

    Full Text Available Magnetic composite materials challenge traditional materials in broad applications such as transformer, sensors and electrical motors. In this work by studying the permittivity and permeability spectra of silver doped magnetic nanocomposite system, the variation of the effective refractive index with frequency is investigated for different filling factor. It is found that the value of resonance frequency decrease with filling factor. The polariton dispersion of the system is also studied. This study of the nanocomposite system can be exploited in designing modern optical devices.PACS: 75.50-y, 71.36.+c, 78.67.Sc, 78.20.Ci. Keywords: Permittivity, Permeability, Nanocomposite system, Polariton

  12. Microalgae associated Brevundimonas sp. MSK 4 as the nano particle synthesizing unit to produce antimicrobial silver nanoparticles.

    Science.gov (United States)

    Rajamanickam, Karthic; Sudha, S S; Francis, Mebin; Sowmya, T; Rengaramanujam, J; Sivalingam, Periyasamy; Prabakar, Kandasamy

    2013-09-01

    The biosynthesis of silver nanoparticles and its antimicrobial property was studied using bacteria isolated from Spirulina products. Isolated bacteria were identified as Bacillus sp. MSK 1 (JX495945), Staphylococcus sp. MSK 2 (JX495946), Bacillus sp. MSK 3 (JX495947) and Brevundimonas sp. MSK 4 (JX495948). Silver nanoparticles (AgNPs) were synthesized using bacterial culture filtrate with AgNO3. The initial syntheses of Ag nanoparticles were characterized by UV-vis spectrophotometer (by measuring the color change to intense brown). Fourier Transform Infrared Spectroscopy (FTIR) study showed evidence that proteins are possible reducing agents and Energy-dispersive X-ray (EDX) study showing the metal silver as major signal. The structure of AgNPs was determined by Scanning electron microscopy (SEM) and X-ray diffraction (XRD). Synthesized Ag nanoparticles with an average size of 40-65 nm have antimicrobial property against human pathogens like Proteus vulgaris, Salmonella typhi, Vibrio cholera, Streptococcus sp., Bacillus subtilis, Staphylococcus aureus, and Escherichia coli. Among the isolates Brevundimonas sp. MSK 4 alone showed good activity in both synthesis of AgNPs and antimicrobial activity. This work demonstrates the possible use of biological synthesized silver nanoparticles to combat the drug resistant problem. Copyright © 2013 Elsevier B.V. All rights reserved.

  13. Expanded Analysis of Hot Isostatic Pressed Iodine-Loaded Silver-Exchanged Mordenite

    Energy Technology Data Exchange (ETDEWEB)

    Jubin, R. T. [ORNL; Bruffey, S. H. [ORNL; Patton, K. K. [ORNL

    2014-09-30

    Reduced silver-exchanged mordenite (Ag0Z) is being evaluated as a potential material to control the release of radioactive iodine that is released during the reprocessing of used nuclear fuel into the plant off-gas streams. The purpose of this study was to determine if hot pressing could directly convert this iodine loaded sorbent into a waste form suitable for long-term disposition. The minimal pretreatment required for production of pressed pellets makes hot pressing a technically and economically desirable process. Initial scoping studies utilized hot uniaxial pressing (HUPing) to prepare samples of non-iodine-loaded reduced silver exchanged mordenite (Ag0Z). The resulting samples were very fragile due to the low pressure (~ 28 MPa) used. It was recommended that hot isostatic pressing (HIPing), performed at higher temperatures and pressures, be investigated. HIPing was carried out in two phases, with a third and final phase currently underway. Phase I evaluated the effects of pressure and temperature conditions on the manufacture of a pressed sample. The base material was an engineered form of silver zeolite. Six samples of Ag0Z and two samples of I-Ag0Z were pressed. It was found that HIPing produced a pressed pellet of high density. Analysis of each pressed pellet by scanning electron microscopy-energy dispersive spectrophotometry (SEM-EDS) and X-ray diffraction (XRD) demonstrated that under the conditions used for pressing, the majority of the material transforms into an amorphous structure. The only crystalline phase observed in the pressed Ag0Z material was SiO2. For the samples loaded with iodine (I-Ag0Z) iodine was present as AgI clusters at low temperatures, and transformed into AgIO4 at high temperatures. Surface mapping and EDS demonstrate segregation between silver iodide phases and silicon dioxide phases. Based on the results of the Phase I study, an expanded test matrix was developed to examine the effects of multiple source materials, compositional

  14. Copper and silver halates

    CERN Document Server

    Woolley, EM; Salomon, M

    2013-01-01

    Copper and Silver Halates is the third in a series of four volumes on inorganic metal halates. This volume presents critical evaluations and compilations for halate solubilities of the Group II metals. The solubility data included in this volume are those for the five compounds, copper chlorate and iodate, and silver chlorate, bromate and iodate.

  15. Transformation-Dissolution Reactions Partially Explain Adverse Effects of Metallic Silver Nanoparticles to Soil Nitrification in Different Soils.

    Science.gov (United States)

    Bollyn, Jessica; Willaert, Bernd; Kerré, Bart; Moens, Claudia; Arijs, Katrien; Mertens, Jelle; Leverett, Dean; Oorts, Koen; Smolders, Erik

    2018-04-25

    Risk assessment of metallic nanoparticles (NP) is critically affected by the concern that toxicity goes beyond that of the metallic ion. This study addressed this concern for soils with silver (Ag)-NP using the Ag-sensitive nitrification assay. Three agricultural soils (A,B,C) were spiked with equivalent Ag doses of either Ag-NP (d = 13 nm) or AgNO 3 . Soil solution was isolated and monitored over 97 days with due attention to accurate Ag fractionation at low (∼10 µg L -1 ) Ag concentrations. Truly dissolved (soils decreased with reaction half-lives of 4 to 22 days depending on the soil, denoting important Ag-ageing reactions. In contrast, truly dissolved Ag in Ag-NP-amended soils first increased by dissolution and subsequently decreased by ageing; the concentration never exceeding that in the AgNO 3 -amended soils. The half-lives of Ag-NP transformation-dissolution were about 4 days (soils A&B) and 36 days (soil C). The Ag toxic thresholds (EC10, mg Ag kg -1 soil) of nitrification, either evaluated at 21 or 35 days after spiking, were similar between the two Ag forms (soils A&B) but were factors 3 to 8 lower for AgNO 3 than for Ag-NP (soil C), largely corroborating with dissolution differences. This fate and bio-assay showed that Ag-NPs are not more toxic than AgNO 3 at equivalent total soil Ag concentrations and that differences in Ag-dissolution at least partially explain toxicity differences between the forms and among soils. This article is protected by copyright. All rights reserved. This article is protected by copyright. All rights reserved.

  16. Influence of nano-fiber membranes on the silver ions released from hollow fibers containing silver particles

    Directory of Open Access Journals (Sweden)

    Li Huigai

    2016-01-01

    Full Text Available Polyether sulfone was dissolved into dimethylacetamide with the concentration of 20% to prepare a uniform solution for fabrication of nanofiber membranes by bubble electrospinning technique. Morphologies of the nanofiber film were carried out with a scanning electron microscope. The influence on the silver ions escaped from hollow fiber loaded with silver particles was exerted by using different release liquid. The water molecular clusters obtained from the nanofiber membranes filter can slow down the release of silver ions. However, the effect of slowing was weakened with the time increasing. In the end, the trend of change is gradually consistent with the trend of release of silver ions in the deionized water.

  17. Colloidal complexed silver and silver nanoparticles in extrapallial fluid of Mytilus edulis.

    Science.gov (United States)

    Zuykov, Michael; Pelletier, Emilien; Demers, Serge

    2011-02-01

    Metal transport in mollusk extrapallial fluid (EPF) that acts as a "bridge" between soft tissues and shell has surprisingly received little attention until now. Using ultrafiltration and radiotracer techniques we determined silver concentrations and speciation in the EPF of the blue mussel Mytilus edulis after short-term uptake and depuration laboratory experiments. Radiolabelled silver ((¹¹⁰m)Ag) was used in dissolved or nanoparticulate phases (AgNPs silver nanoparticles were transported to the EPF of blue mussels at a level similar to the Ag ionic form. Bulk activity of radiolabelled silver in the EPF represented only up to 7% of the bulk activity measured in the whole mussels. The EPF extracted from mussels exposed to both treatments exhibited an Ag colloidal complexed form based on EPF ultrafiltration through a 3 kDa filter. This original study brings new insights to internal circulation of nanoparticles in living organisms and contributes to the international effort in studying the potential impacts of engineered nanomaterials on marine bivalves which play an essential role in coastal ecosystems, and are important contributors to human food supply from the sea. © 2010 Elsevier Ltd. All rights reserved.

  18. Characterization and antibacterial properties of stable silver substituted hydroxyapatite nanoparticles synthesized through surfactant assisted microwave process

    Energy Technology Data Exchange (ETDEWEB)

    Iqbal, Nida [Medical Implant Technology Group (MEDITEG), Faculty of Bioscience and Medical Engineering, Universiti Teknologi Malaysia, 81310 Skudai, Johor Darul Takzim (Malaysia); Abdul Kadir, Mohammed Rafiq, E-mail: rafiq@biomedical.utm.my [Medical Implant Technology Group (MEDITEG), Faculty of Bioscience and Medical Engineering, Universiti Teknologi Malaysia, 81310 Skudai, Johor Darul Takzim (Malaysia); Nik Malek, Nik Ahmad Nazim [Faculty of Bioscience and Medical Engineering (FBME), Universiti Teknologi Malaysia, 81310 Skudai, Johor Darul Takzim (Malaysia); Mahmood, Nasrul Humaimi Bin [Medical Implant Technology Group (MEDITEG), Faculty of Bioscience and Medical Engineering, Universiti Teknologi Malaysia, 81310 Skudai, Johor Darul Takzim (Malaysia); Murali, Malliga Raman; Kamarul, T. [Tissue Engineering Group, NOCERAL, Department of Orthopaedic Surgery, Faculty of Medicine, University of Malaya, 50603 Kuala Lumpur (Malaysia)

    2013-09-01

    Highlights: • Stable nano sized silver substitute hydroxyapatite is prepared under surfactant assisted microwave process at 600 W power for 7 min. • The nanoparticles are in the size range of 58–72 nm and exert uniform elongated spheroid morphology. • Increase in silver concentration resulted in better dielectric properties. • Good antibacterial activity and silver release. - Abstract: The present study reports a relatively simple method for the synthesis of stable silver substituted hydroxyapatite nanoparticles with controlled morphology and particle size. In order to achieve this, CTAB is included as a surfactant in the microwave refluxing process (600 W for 7 min). The nanoparticles produced with different silver ion concentrations (0.05, 0.1 and 0.2 wt%) were characterized using X-ray diffraction (XRD), Fourier transform infrared (FTIR) spectroscopy, field emission scanning electron microscope (FESEM), energy dispersive X-ray (EDX) and Brunauer–Emmett–Teller (BET) analysis. XRD and FTIR analyses reveal that the Ag-HA nanoparticles were phase pure at 1000 °C. FESEM images showed that the produced nanoparticles are in the size range of 58–72 nm and exert uniform elongated spheroid morphology. The dielectric properties suggest that the increase in dielectric constant (ε′) and dissipation factor (D) values with increasing Ag concentrations. Antibacterial performance of the Ag-HA samples elucidated using disk diffusion technique (DDT) and minimum inhibitory concentration (MIC) demonstrates anti-bacterial activity against Staphylococcus aureus, Bacillus subtilis, Pseudomonas aeruginosa and Escherichia coli. This effect was dose dependent and was more pronounced against Gram-negative bacteria than Gram-positive organisms.

  19. Characterization and antibacterial properties of stable silver substituted hydroxyapatite nanoparticles synthesized through surfactant assisted microwave process

    International Nuclear Information System (INIS)

    Iqbal, Nida; Abdul Kadir, Mohammed Rafiq; Nik Malek, Nik Ahmad Nazim; Mahmood, Nasrul Humaimi Bin; Murali, Malliga Raman; Kamarul, T.

    2013-01-01

    Highlights: • Stable nano sized silver substitute hydroxyapatite is prepared under surfactant assisted microwave process at 600 W power for 7 min. • The nanoparticles are in the size range of 58–72 nm and exert uniform elongated spheroid morphology. • Increase in silver concentration resulted in better dielectric properties. • Good antibacterial activity and silver release. - Abstract: The present study reports a relatively simple method for the synthesis of stable silver substituted hydroxyapatite nanoparticles with controlled morphology and particle size. In order to achieve this, CTAB is included as a surfactant in the microwave refluxing process (600 W for 7 min). The nanoparticles produced with different silver ion concentrations (0.05, 0.1 and 0.2 wt%) were characterized using X-ray diffraction (XRD), Fourier transform infrared (FTIR) spectroscopy, field emission scanning electron microscope (FESEM), energy dispersive X-ray (EDX) and Brunauer–Emmett–Teller (BET) analysis. XRD and FTIR analyses reveal that the Ag-HA nanoparticles were phase pure at 1000 °C. FESEM images showed that the produced nanoparticles are in the size range of 58–72 nm and exert uniform elongated spheroid morphology. The dielectric properties suggest that the increase in dielectric constant (ε′) and dissipation factor (D) values with increasing Ag concentrations. Antibacterial performance of the Ag-HA samples elucidated using disk diffusion technique (DDT) and minimum inhibitory concentration (MIC) demonstrates anti-bacterial activity against Staphylococcus aureus, Bacillus subtilis, Pseudomonas aeruginosa and Escherichia coli. This effect was dose dependent and was more pronounced against Gram-negative bacteria than Gram-positive organisms

  20. Antibacterial Effect of Silver Diamine Fluoride on Cariogenic Organisms.

    Science.gov (United States)

    Lou, Yali; Darvell, Brain W; Botelho, Michael G

    2018-05-01

    To screen the possible antimicrobial activity of a range of clinically used, silver-based compounds on cariogenic organisms: silver diamine fluoride (SDF), silver fluoride, and silver nitrate. Preliminary screening disk-diffusion susceptibility tests were conducted on Mueller-Hinton agar plates inoculated with Streptococcus mutans, Lactobacillus acidophilus, and Actinomyces naeslundii, organisms known to be cariogenic. In order to identify which component of the silver compounds was responsible for any antibacterial (AB) effect, and to provide controls, the following were also investigated at high and low concentrations: sodium fluoride, ammonium fluoride, ammonium chloride, sodium fluoride, sodium chloride, and sodium nitrate, as well as deionized water as control. A volume of 10 pL of a test solution was dispensed onto a paper disk resting on the inoculated agar surface, and the plate incubated anaerobically at 37°C for 48 hours. The zones of inhibition were then measured. Silver diamine fluoride, silver fluoride, silver nitrate, and ammonium fluoride had significant AB effect (p effect at low concentration; the remaining other compounds had no effect. Silver ions appear to be the principal AB agent at both high and low concentration; fluoride ions only have an AB effect at high concentration, while ammonium, nitrate, chloride and sodium ions have none. The anticaries effect of topical silver solutions appears restricted to that of the silver ions. Silver compounds, such as SDF, silver fluoride, and silver nitrate have AB effect against cariogenic organisms and these may have clinical impact in arresting or preventing dental decay. Sodium fluoride did not have AB effect under the conditions tested.

  1. Green synthesis of silver nanoparticles using Beta vulgaris: Role of process conditions on size distribution and surface structure

    Energy Technology Data Exchange (ETDEWEB)

    Parameshwaran, R., E-mail: parameshviews@gmail.com [Department of Mechanical Engineering, Anna University, Chennai 600 025 (India); Centre for Nanoscience and Technology, Anna University, Chennai 600 025 (India); Kalaiselvam, S., E-mail: kalai@annauniv.edu [Centre for Nanoscience and Technology, Anna University, Chennai 600 025 (India); Department of Applied Science and Technology, Anna University, Chennai 600 025 (India); Jayavel, R., E-mail: rjvel@annauniv.edu [Centre for Nanoscience and Technology, Anna University, Chennai 600 025 (India)

    2013-06-15

    The present work reports the green synthesis of silver nanoparticles, using Beta vulgaris peel extract with a subsequent investigation on the size distribution and surface structure of nanoparticles formed under various process conditions. The green-chemical reduction mechanism of silver ions to nanoparticles by the active organic functional groups present in the extract was characterized, using the respective spectroscopic techniques. The effects of various process parameters, including induced intraparticle ripening, were attributed to the controlled formation of anisotropic silver nanoparticles within the supporting matrix of the extract. The plasmon absorption and resonance scattering properties were expected to be favourable for small and larger size nanoparticles (below 25 nm and above 75 nm) respectively, which was considered to be an indicative aspect for synthesizing nanoparticles of narrow size distribution. The zeta potential and dynamic light scattering (DLS) results suggest the good stability and mono-dispersed size distribution of the silver nanoparticles. The transmission electron microscope, selective area electron diffraction (SAED) and X-ray diffraction studies infer that the nanoparticles formed were spherical/quasi-spherical in shape, which primarily exhibited a face centred cubic crystal (FCC) structure. The green-chemical reduction of organic phases in the extract (especially amine (NH{sub 2}) groups) as reflected through shifts observed in the Fourier-transform infra red (FTIR) peaks, reveal the possible interaction of the organic molecules with the silver ions in the effective formation, surface modification and stabilization of the silver nanoparticles. - Highlights: • Functionally stable and crystalline silver nanoparticles were green synthesized. • Beta vulgaris peel extract was used as potential reducing and stabilizing agent. • Amine groups in extract were expected to reduce Ag{sup +} and stabilize nanoparticles. • Induced

  2. Green synthesis of silver nanoparticles using Beta vulgaris: Role of process conditions on size distribution and surface structure

    International Nuclear Information System (INIS)

    Parameshwaran, R.; Kalaiselvam, S.; Jayavel, R.

    2013-01-01

    The present work reports the green synthesis of silver nanoparticles, using Beta vulgaris peel extract with a subsequent investigation on the size distribution and surface structure of nanoparticles formed under various process conditions. The green-chemical reduction mechanism of silver ions to nanoparticles by the active organic functional groups present in the extract was characterized, using the respective spectroscopic techniques. The effects of various process parameters, including induced intraparticle ripening, were attributed to the controlled formation of anisotropic silver nanoparticles within the supporting matrix of the extract. The plasmon absorption and resonance scattering properties were expected to be favourable for small and larger size nanoparticles (below 25 nm and above 75 nm) respectively, which was considered to be an indicative aspect for synthesizing nanoparticles of narrow size distribution. The zeta potential and dynamic light scattering (DLS) results suggest the good stability and mono-dispersed size distribution of the silver nanoparticles. The transmission electron microscope, selective area electron diffraction (SAED) and X-ray diffraction studies infer that the nanoparticles formed were spherical/quasi-spherical in shape, which primarily exhibited a face centred cubic crystal (FCC) structure. The green-chemical reduction of organic phases in the extract (especially amine (NH 2 ) groups) as reflected through shifts observed in the Fourier-transform infra red (FTIR) peaks, reveal the possible interaction of the organic molecules with the silver ions in the effective formation, surface modification and stabilization of the silver nanoparticles. - Highlights: • Functionally stable and crystalline silver nanoparticles were green synthesized. • Beta vulgaris peel extract was used as potential reducing and stabilizing agent. • Amine groups in extract were expected to reduce Ag + and stabilize nanoparticles. • Induced intraparticle

  3. Silsesquioxane-based hybrid nanocomposites with methacrylate units containing titania and/or silver nanoparticles as antibacterial/antifungal coatings for monumental stones

    Energy Technology Data Exchange (ETDEWEB)

    Aflori, Magdalena [“Petru Poni” Institute of Macromolecular Chemistry, 41A Grigore Ghica Voda Alley, 700487 Iasi (Romania); Simionescu, Bogdana [“Petru Poni” Institute of Macromolecular Chemistry, 41A Grigore Ghica Voda Alley, 700487 Iasi (Romania); “Costin D. Nenitescu” Centre of Organic Chemistry, 202B Splaiul Independentei, 7114 Bucharest (Romania); Bordianu, Irina-Elena; Sacarescu, Liviu; Varganici, Cristian-Dragos; Doroftei, Florica; Nicolescu, Alina [“Petru Poni” Institute of Macromolecular Chemistry, 41A Grigore Ghica Voda Alley, 700487 Iasi (Romania); Olaru, Mihaela, E-mail: olaruma@icmpp.ro [“Petru Poni” Institute of Macromolecular Chemistry, 41A Grigore Ghica Voda Alley, 700487 Iasi (Romania)

    2013-11-20

    Highlights: • Synthesis of nanocomposites with noble metals having high antibacterial efficiency. • Silver nanoparticles antibacterial activity for monumental stone conservation. • A high antibacterial activity while assuring good stone protection. -- Abstract: The present paper reports on the evaluation of two silsesquioxane-based hybrid nanocomposites with methacrylate units containing titania and/or silver nanoparticles aimed as antibacterial coatings for monumental stones. Sol–gel reaction of titanium isopropoxide and/or 3-(trimethoxysilyl)propyl methacrylate, in the presence of silver nitrate and a primary amine surfactant, yielded new types of hybrid nanocomposites with high antibacterial/antifungal efficacy. Different polymer behaviours regarding a frequently used monumental stone originating from Romania were evidenced through Fourier-transform infrared (FTIR) spectroscopy and powder X-ray diffraction (PXRD) technique. Conclusions regarding the stones acid-resistant character and lower influence of salt weathering on its durability, as well as a better protective coating containing titania units were revealed.

  4. Silsesquioxane-based hybrid nanocomposites with methacrylate units containing titania and/or silver nanoparticles as antibacterial/antifungal coatings for monumental stones

    International Nuclear Information System (INIS)

    Aflori, Magdalena; Simionescu, Bogdana; Bordianu, Irina-Elena; Sacarescu, Liviu; Varganici, Cristian-Dragos; Doroftei, Florica; Nicolescu, Alina; Olaru, Mihaela

    2013-01-01

    Highlights: • Synthesis of nanocomposites with noble metals having high antibacterial efficiency. • Silver nanoparticles antibacterial activity for monumental stone conservation. • A high antibacterial activity while assuring good stone protection. -- Abstract: The present paper reports on the evaluation of two silsesquioxane-based hybrid nanocomposites with methacrylate units containing titania and/or silver nanoparticles aimed as antibacterial coatings for monumental stones. Sol–gel reaction of titanium isopropoxide and/or 3-(trimethoxysilyl)propyl methacrylate, in the presence of silver nitrate and a primary amine surfactant, yielded new types of hybrid nanocomposites with high antibacterial/antifungal efficacy. Different polymer behaviours regarding a frequently used monumental stone originating from Romania were evidenced through Fourier-transform infrared (FTIR) spectroscopy and powder X-ray diffraction (PXRD) technique. Conclusions regarding the stones acid-resistant character and lower influence of salt weathering on its durability, as well as a better protective coating containing titania units were revealed

  5. Ambipolar transport of silver nanoparticles decorated graphene oxide field effect transistors

    Science.gov (United States)

    Sarkar, Kalyan Jyoti; Sarkar, K.; Pal, B.; Kumar, Aparabal; Das, Anish; Banerji, P.

    2018-05-01

    In this article, we report ambipolar field effect transistor (FET) by using graphene oxide (GO) as a gate dielectric material for silver nanoparticles (AgNPs) decorated GO channel layer. GO was synthesized by Hummers' method. The AgNPs were prepared via photochemical reduction of silver nitrate solution by using monoethanolamine as a reducing agent. Morphological properties of channel layer were characterized by Field Effect Scanning Electron Microscopy (FESEM). Fourier Transform Infrared Spectroscopy (FTIR) was carried out to characterize GO thin film. For device fabrication gold (Au) was deposited as source-drain contact and aluminum (Al) was taken as bottom contact. Electrical measurements were performed by back gate configuration. Ambipolar transport behavior was explained from transfer characteristics. A maximum electron mobiliy of 6.65 cm2/Vs and a hole mobility of 2.46 cm2/Vs were extracted from the transfer characteristics. These results suggest that GO is a potential candidate as a gate dielectric material for thin film transistor applications and also provides new insights in GO based research.

  6. Microwave-assisted rapid extracellular synthesis of stable bio-functionalized silver nanoparticles from guava ( Psidium guajava) leaf extract

    Science.gov (United States)

    Raghunandan, Deshpande; Mahesh, Bedre D.; Basavaraja, S.; Balaji, S. D.; Manjunath, S. Y.; Venkataraman, A.

    2011-05-01

    Our research interest centers on microwave-assisted rapid extracellular synthesis of bio-functionalized silver nanoparticles of 26 ± 5 nm from guava ( Psidium guajava) leaf extract with control over dimension and composition. The reaction occurs very rapidly as the formation of spherical nanoparticles almost completed within 90 s. The probable pathway of the biosynthesis is suggested. Appearance, crystalline nature, size and shape of nanoparticles are understood by UV-vis (UV-vis spectroscopy), FTIR (fourier transform infrared spectroscopy), XRD (X-ray diffraction), FESEM (field emission scanning electron microscopy) and TEM (transmission electron microscopy) techniques. Microwave-assisted route is selected for the synthesis of silver nanoparticles to carry out the reaction fast, suppress the enzymatic action and to keep the process environmentally clean and green.

  7. Microwave-assisted rapid extracellular synthesis of stable bio-functionalized silver nanoparticles from guava (Psidium guajava) leaf extract

    Energy Technology Data Exchange (ETDEWEB)

    Raghunandan, Deshpande [H.K.E.S' s College of Pharmacy (India); Mahesh, Bedre D. [Gulbarga University, Materials Chemistry Laboratory, Department of Material Science (India); Basavaraja, S. [Jawaharlal Nehru Centre for Advanced Scientific Research, Veeco-India Nanotechnology Laboratory (India); Balaji, S. D. [Gulbarga University, Materials Chemistry Laboratory, Department of Material Science (India); Manjunath, S. Y. [Sri Krupa, Institute of Pharmaceutical Science (India); Venkataraman, A., E-mail: raman_chem@rediffmail.com [Gulbarga University, Materials Chemistry Laboratory, Department of Material Science (India)

    2011-05-15

    Our research interest centers on microwave-assisted rapid extracellular synthesis of bio-functionalized silver nanoparticles of 26 {+-} 5 nm from guava (Psidium guajava) leaf extract with control over dimension and composition. The reaction occurs very rapidly as the formation of spherical nanoparticles almost completed within 90 s. The probable pathway of the biosynthesis is suggested. Appearance, crystalline nature, size and shape of nanoparticles are understood by UV-vis (UV-vis spectroscopy), FTIR (fourier transform infrared spectroscopy), XRD (X-ray diffraction), FESEM (field emission scanning electron microscopy) and TEM (transmission electron microscopy) techniques. Microwave-assisted route is selected for the synthesis of silver nanoparticles to carry out the reaction fast, suppress the enzymatic action and to keep the process environmentally clean and green.

  8. Microwave-assisted rapid extracellular synthesis of stable bio-functionalized silver nanoparticles from guava (Psidium guajava) leaf extract

    International Nuclear Information System (INIS)

    Raghunandan, Deshpande; Mahesh, Bedre D.; Basavaraja, S.; Balaji, S. D.; Manjunath, S. Y.; Venkataraman, A.

    2011-01-01

    Our research interest centers on microwave-assisted rapid extracellular synthesis of bio-functionalized silver nanoparticles of 26 ± 5 nm from guava (Psidium guajava) leaf extract with control over dimension and composition. The reaction occurs very rapidly as the formation of spherical nanoparticles almost completed within 90 s. The probable pathway of the biosynthesis is suggested. Appearance, crystalline nature, size and shape of nanoparticles are understood by UV–vis (UV–vis spectroscopy), FTIR (fourier transform infrared spectroscopy), XRD (X-ray diffraction), FESEM (field emission scanning electron microscopy) and TEM (transmission electron microscopy) techniques. Microwave-assisted route is selected for the synthesis of silver nanoparticles to carry out the reaction fast, suppress the enzymatic action and to keep the process environmentally clean and green.

  9. Electrodeposited Silver Nanoparticles Patterned Hexagonally for SERS

    International Nuclear Information System (INIS)

    Gu, Geun Hoi; Lee, Sue Yeone; Suh, Jung Sang

    2010-01-01

    We have fabricated hexagonally patterned silver nanoparticles for surface-enhanced Raman scattering (SERS) by electrodepositing silver on the surface of an aluminum plate prepared by completely removing the oxide from anodic aluminum oxide (AAO) templates. Even after completely removing the oxide, well-ordered hexagonal patterns, similar to the shape of graphene, remained on the surface of the aluminum plate. The borders of the hexagonal pattern protruded up to form sorts of nano-mountains at both the sides and apexes of the hexagon, with the apexes protruding even more significantly than the sides. The aluminum plate prepared by completely removing the oxide has been used in the preparation of SERS substrates by sputter-coating of gold or silver on it. Instead of sputter-coating, here we have electro-deposited silver on the aluminum plate. When silver was electro-deposited on the plate, silver nanoparticles were made along the hexagonal margins.

  10. Silver sources of archaic Greek coinage

    International Nuclear Information System (INIS)

    Gentner, W.; Mueller, O.; Wagner, G.A.; Gale, N.H.

    1978-01-01

    The authors report on new chemical and lead isotopic results and interpretations of archaic Greek silver coins from the Asyut hoard which was buried around 475 B.C. Aeginetan coins were of central interest in this study. Possible ancient silver mines were explored in the Aegean region in the course of several geologic expeditions, and chemically and isotopically investigated. Some of the silver sources in Greece were traced by combination of the analytical methods and questions of provenance were solved. In addition, processes of silver smelting and refining were studied. Results and implications of this work are summarized in the final section on Conclusions. (orig.) [de

  11. Silver linings.

    Science.gov (United States)

    Bultas, Margaret W; Pohlman, Shawn

    2014-01-01

    The purpose of this interpretive phenomenological study was to gain a better understanding of the experiences of 11 mothers of preschool children with autism spectrum disorder (ASD). Mothers were interviewed three times over a 6 week period. Interviews were analyzed using interpretive methods. This manuscript highlights one particular theme-a positive perspective mothers described as the "silver lining." This "silver lining" represents optimism despite the adversities associated with parenting a child with ASD. A deeper understanding of this side of mothering children with ASD may help health care providers improve rapport, communication, and result in more authentic family centered care. Copyright © 2014 Elsevier Inc. All rights reserved.

  12. Large silver-cadmium technology program

    Science.gov (United States)

    Charlip, S.; Lerner, S.

    1971-01-01

    The effects of varying cell design on operation factors on the electrochemical performance of sealed, silver-cadmium cells were determined. A factorial experiment was conducted for all test cells constructed with organic separators. Three operating factors were evaluated: temperature, depth of discharge, and charge rate. The six construction factors considered were separator, absorber, electrolyte quantity, cadmium electrode type, cadmium-to-silver ratio, and auxiliary electrode. Test cells of 4 ampere-hour capacity were fabricated and cycled. The best performing cells, on a 94 minute orbit, at 40% depth of discharge, were those containing silver-treated fibrous sausage casings as the separator, and Teflon-ated, pressed cadmium electrodes. Cycling data of cells with inorganic separators (Astroset) are given. Best performance was shown by cells with nonwoven nylon absorbers. Rigid inorganic separators provided the best barrier to silver migration.

  13. Production of biodiesel from sunflower oil using highly catalytic bimetallic gold–silver core–shell nanoparticle

    International Nuclear Information System (INIS)

    Banerjee, Madhuchanda; Dey, Binita; Talukdar, Jayanta; Chandra Kalita, Mohan

    2014-01-01

    Bimetallic Gold–silver core–shell nanoparticles (Au@Ag NPs) were synthesized at room temperature, where gold nanoparticles (AuNPs) served as seeds for continuous deposition of silver atoms on its surface. The core–shell structure was examined by UV–vis spectroscopy, transmission electron microscopy (TEM) and energy dispersive X-ray (EDX) analysis. The catalytic activity of these nanoparticles toward biodiesel production from Sunflower oil through transesterification was studied. The confirmation for biofuel synthesis was performed using Fourier Transform Infra-Red (FTIR) spectroscopy. Fuel properties are determined by standard ASTM (American society for Testing and Materials) protocols. Our observations show that at certain catalyst concentration, temperature and reaction time, highest yield of biodiesel (86.9%) is attained. The fuel properties of the synthesized biofuel are at par with standard biofuel. Further, the catalyst showed sustained activity for 3 cycles of transesterification. - Highlights: • Gold–silver core–shell NPs were used for biofuel synthesis from sunflower oil. • At the optimized condition, biodiesel yield of 86.9% was achieved. • Fuel properties of the biofuel synthesized are at par with standard biofuel. • The catalyst showed sustained activity for 3 cycles of transesterification

  14. Plasmon enhanced silver quantum cluster fluorescence for biochemical applications

    DEFF Research Database (Denmark)

    Bernard, S.; Kutter, J.P.; Mogensen, Klaus Bo

    2014-01-01

    Fluorescence microscopy of individual silver quantum clusters on the surface of silver nanoparticles reveals strong photoactivated emission under blue light excitation [1-4]. In this work, silver nanoparticles are produced by annealing silver thin films deposited on a glass substrate and silver q...... purposes. It was found, that in presence of a strong nucleophile (such as CN-), silver quantum clusters are dissolved into non-fluorescing AgCN complexes, resulting in a fast and observable decrease of the fluorescent signal....

  15. Evaluation of dose dependent antimicrobial activity of self-assembled chitosan, nano silver and chitosan-nano silver composite against several pathogens.

    Science.gov (United States)

    Tareq, Foysal Kabir; Fayzunnesa, Mst; Kabir, Md Shahariar; Nuzat, Musrat

    2018-01-01

    The aim of this investigation to preparation of silver nanoparticles organized chitosan nano polymer, which effective against microbial and pathogens, when apply to liquid medium and edible food products surface, will rescue the growth of microbes. Self-assembly approach used to synthesis of silver nanoparticles and silver nanoparticles organized chitosan nano polymer. Silver nanoparticles and silver nanoparticles organized chitosan nano polymer and film characterized using Ultra-violate visible spectrometer (UV-vis), X-ray diffraction (X-ray), and Scanning electronic microscope (SEM). The crystalline structured protein capped nano silver successfully synthesized at range of 12 nm-29 nm and organized into chitosan nano polymer. Antimicrobial ingredient in liquid medium and food product surface provide to rescue oxidative change and growth of microorganism to provide higher safety. The silver nanoparticles organized chitosan nano polymer caused the death of microorganism. The materials in nano scale synthesized successfully using self-assembly method, which showed good antimicrobial properties. Copyright © 2017 Elsevier Ltd. All rights reserved.

  16. “Synthesis, characterization and studies on antioxidant activity of silver nanoparticles using Elephantopus scaber leaf extract”

    Energy Technology Data Exchange (ETDEWEB)

    Kharat, Sopan N., E-mail: sopankharat@gmail.com; Mendhulkar, Vijay D., E-mail: drmendhulkar@gmail.com

    2016-05-01

    The simple, eco-friendly and cost effective method of green synthesis of silver nanoparticle in the leaf extract of medicinal plant Elephantopus scaber L. is illustrated in the present work. The synthesized silver nanoparticles (AgNPs) were characterized with UV–Vis-spectroscopy, nanoparticle tracking analysis (NTA), transmission electron microscopy (TEM), X-ray diffraction (XRD) and Fourier transform infrared (FTIR) analysis. The UV-spectra show maximum absorbance at 435 nm, NTA analysis shows 78 nm average sizes of nanoparticles, TEM analysis indicates spherical shape of the nanoparticles with the average diameter of 50 nm. The XRD peaks at 2θ range of 30–80° correspond to (111), (200), (220), (311) reflection planes that indicate the structure of metallic silver. FTIR analysis reveals surface capping of phenolic groups. Existence of peaks in the range of 1611 to 1400 cm{sup −1} indicates the presence of aromatic rings in the leaf extract. The peak at 1109 cm{sup −1} is due to the presence of OH groups. The antioxidant activity of synthesized nanoparticles was evaluated performing DPPH assay and it is observed that the photosynthesized nanoparticle also possesses antioxidant potentials. Thus, it can be used as potential free radical scavenger. Silver particles have tremendous applications in the field of diagnostics and therapeutics. To this context, the surface coating of plant metabolite constituents has great potentials. Therefore, the present work has been undertaken to synthesize the AgNPs using leaf extract of medicinal plant, E. scaber, to characterize and access their antioxidant properties. - Highlights: • Green synthesis of silver nanoparticle using leaf extract of medicinal plant Elephantopus scaber L. • Synthesized nanoparticles (SNP's) were characterized by UV-Spectroscopy, NTA, TEM, XRD and FTIR analysis. • Silver nanoparticles (AgNPs) showed average size of 78 nm in NTA analysis and spherical shape in TEM analysis.

  17. A facile biomimetic preparation of highly stabilized silver nanoparticles derived from seed extract of Vigna radiata and evaluation of their antibacterial activity

    Science.gov (United States)

    Choudhary, Manoj Kumar; Kataria, Jyoti; Cameotra, Swaranjit Singh; Singh, Jagdish

    2016-01-01

    The significant antibacterial activity of silver nanoparticles draws the major attention toward the present nanobiotechnology. Also, the use of plant material for the synthesis of metal nanoparticles is considered as a green technology. In this context, a non-toxic, eco-friendly, and cost-effective method has been developed for the synthesis of silver nanoparticles using seed extract of mung beans ( Vigna radiata). The synthesized nanoparticles have been characterized by UV-visible spectroscopy (UV-Vis), Fourier transform infrared spectroscopy (FT-IR), transmission electron microscopy (TEM), atomic absorption spectroscopy (AAS), and X-ray diffraction (XRD). The UV-visible spectrum showed an absorption peak at around 440 nm. The different types of phytochemicals present in the seed extract synergistically reduce the Ag metal ions, as each phytochemical is unique in terms of its structure and antioxidant function. The colloidal silver nanoparticles were observed to be highly stable, even after 5 months. XRD analysis showed that the silver nanoparticles are crystalline in nature with face-centered cubic geometry and the TEM micrographs showed spherical particles with an average size of 18 nm. Further, the antibacterial activity of silver nanoparticles was evaluated by well-diffusion method and it was observed that the biogenic silver nanoparticles have an effective antibacterial activity against Escherichia coli and Staphylococcus aureus. The outcome of this study could be useful for nanotechnology-based biomedical applications.

  18. A comparative study on larvicidal potential of selected medicinal plants over green synthesized silver nano particles

    Directory of Open Access Journals (Sweden)

    Syed Zameer Ahmed Khader

    2018-03-01

    Full Text Available Larvicidal activity was assessed for alcoholic extracts of Phyllanthus amarus, Annona squamosa, Coccinia grandis and Eclipta prostrata extracted using solvents of various polarity. Third instar stage larvae of Dengue-vector, Aedes aegypti and Japanese encephalitis (JE causing mosquito Culex tritaeniorhynchus were subjected to larvicidal bioassay at various concentrations (1000, 500, 250 ppm. The results explored that the phytoconstituents and secondary metabolites present in all the plants elucidated potent larvicidal activity. Among the tested extract ethyl acetate, petroleum ether and hexane extract expressed significant larvicidal activity. Similarly, these plants were subjected to green synthesis of silver nanoparticles, characterized and subjected for its larvicidal activity against Anopheles stephensi causing malaria. The synthesized silver nanoparticles were characterized by UV–VIS spectroscopy, Fourier Transform Infra-Red spectroscopy, Scanning Electron Microscopy respectively. The FTIR analysis strongly supported the capping behaviour of bio-reduced synthesized silver nanoparticles which in turn imparted the high stability of the synthesized silver nanoparticles. The average size of synthesized nanoparticles was less than 1 µm, most spherical in shape with SEM analysis. The findings revealed that Eclipta prostrata and Annona squamosa has effective larvicidal activity, whereas all the synthesised nanoparticles demonstrated dose dependent activity even at very low concentration and the findings reveals that these extracts and nanoparticles can be a better remedy against these mosquitoes.

  19. Toxicogenomic responses of nanotoxicity in Daphnia magna exposed to silver nitrate and coated silver nanoparticles

    Science.gov (United States)

    Applications for silver nanomaterials in consumer products are rapidly expanding, creating an urgent need for toxicological examination of the exposure potential and ecological effects of silver nanoparticles (AgNPs). The integration of genomic techniques into environmental toxic...

  20. Intravenous Exposure of Pregnant Mice to Silver Nanoparticles: Silver Tissue Distribution and Effects in Maternal and Extra-Embryonic Tissues and Embryos

    Science.gov (United States)

    Austin, Carlye Anne

    This research explores the tissue distribution of silver, as well as adverse effects in pregnant mice and embryos, following prenatal silver nanoparticle (AgNP) exposure. Chapter one of this dissertation is a survey of the published literature on the reproductive and/or developmental toxicity of AgNPs. The available data indicate that AgNPs adversely affect sperm count, viability, and/or motility both in vivo and in vitro, and cause apoptosis and necrosis in spermatogonial stem cells and testicular cells. Additionally, AgNP exposure results in mortality and morphological deformities in fish embryos, but produces no adverse effects in chicken embryos. The current published research on in vivo AgNP exposure to mammals during gestation consists of only three studies, one of which is described in chapter two of this dissertation. These studies report results that may suggest a potential for adverse effects on fetal development (e.g. , decreased viability and fetal and placental weights, increased incidence of developmentally young embryos), but additional research is needed. Chapter two of this dissertation investigates the distribution of silver in tissues of pregnant mice and gestation day (GD) 10 embryos following intravenous maternal exposure to 50 nm AgNPs during early organogenesis (GDs 7-9). Examinations of embryo morphology and histology were also performed. Results demonstrated the presence of silver in all organs and tissues examined. Silver concentrations were highest in liver, spleen, and visceral yolk sac, and lowest in embryos. Groups of mice were also treated with soluble silver nitrate, and the pattern of silver tissue distribution following silver nitrate exposure was similar to that which followed AgNP treatment. Transmission electron microscopy-energy dispersive x-ray spectroscopy (TEM-EDS) confirmed the presence of vesicle-bound nanoparticulate silver in visceral yolk sac endoderm, but not mesoderm. This finding, along with the high silver

  1. 3D Printed Composites for Topology Transforming Multifunctional Devices

    Science.gov (United States)

    2017-01-26

    panels connected by hinges, which occupy infinitesimal space but control the angles between two panels. Figure 2.2.1-3 shows panels are connected by...observations that higher curing temperature yields to more compacted and better connected silver NPs. The Young’s moduli, however, are lower than that of...AFRL-AFOSR-VA-TR-2017-0021 3D Printed Composites for Topology -Transforming Multifunctional Devices Kurt Maute REGENTS OF THE UNIVERSITY OF COLORADO

  2. Hydrothermal-induced assembly of colloidal silver spheres into various nanoparticles on the basis of HTAB-modified silver mirror reaction.

    Science.gov (United States)

    Yu, Dabin; Yam, Vivian Wing-Wah

    2005-03-31

    Small colloidal silver spheres (diameter synthesis process. Adjustment of the synthesis parameters, in particular the concentrations of HTAB and [Ag(NH3)2]+, led to an obvious shape evolution of silver nanoparticles, thus resulting in the shape-selective formation of the silver nanoparticles. The monodisperse nanocubes with a well-defined crystallographical structure (a single crystal bounded by six {200} facets) have a strong tendency to assemble into two-dimensional arrays on substrates. The nanowires with uniform diameter usually existed in the form of two-dimensional alignments. The findings suggested that hydrothermal-induced assembly of small silver colloidal particles should be a convenient and effective approach to the preparation of various silver nanoparticles.

  3. Facile one-pot synthesis of gold and silver nanocatalysts using edible coconut oil

    Science.gov (United States)

    Meena Kumari, M.; Philip, Daizy

    2013-07-01

    The use of edible oil for the synthesis of metal nanoparticles by wet chemical method is reported for the first time. The paper presents an environmentally benign bottom up approach for the synthesis of gold and silver nanoparticles using edible coconut oil at 373 K. The formation of silver nanoparticles is signaled by the brownish yellow color and that of gold nanoparticles by the purple color. Fine control over the nanoparticle size and shape from triangular to nearly spherical is achieved by varying the quantity of coconut oil. The nanoparticles have been characterized by UV-Visible, Transmission Electron Microscopy and X-ray Diffraction. The chemical interaction of capping agents with metal nanoparticles is manifested using Fourier Transform Infrared Spectroscopy. The stable and crystalline nanoparticles obtained using this simple method show remarkable size-dependent catalytic activity in the reduction of the cationic dye methylene blue (MB) to leuco methylene blue (LMB). The first order rate constants calculated uphold the size dependent catalytic activity of the synthesized nanoparticles.

  4. SiO{sub 2} coating of silver nanoparticles by photoinduced chemical vapor deposition

    Energy Technology Data Exchange (ETDEWEB)

    Boies, Adam M; Girshick, Steven L [Department of Mechanical Engineering, University of Minnesota, 111 Church Street SE, Minneapolis, MN 55455 (United States); Roberts, Jeffrey T [Department of Chemistry, University of Minnesota, 207 Pleasant Street SE, Minneapolis, MN 55455 (United States); Zhang Bin; Nakamura, Toshitaka; Mochizuki, Amane, E-mail: jtrob@umn.ed, E-mail: slg@umn.ed [Nitto Denko Technical Corporation, 501 Via Del Monte, Oceanside, CA 92058 (United States)

    2009-07-22

    Gas-phase silver nanoparticles were coated with silicon dioxide (SiO{sub 2}) by photoinduced chemical vapor deposition (photo-CVD). Silver nanoparticles, produced by inert gas condensation, and a SiO{sub 2} precursor, tetraethylorthosilicate (TEOS), were exposed to vacuum ultraviolet (VUV) radiation at atmospheric pressure and varying temperatures. The VUV photons dissociate the TEOS precursor, initiating a chemical reaction that forms SiO{sub 2} coatings on the particle surfaces. Coating thicknesses were measured for a variety of operation parameters using tandem differential mobility analysis and transmission electron microscopy. The chemical composition of the particle coatings was analyzed using energy dispersive x-ray spectrometry and Fourier transform infrared spectroscopy. The highest purity films were produced at 300-400 {sup 0}C with low flow rates of additional oxygen. The photo-CVD coating technique was shown to effectively coat nanoparticles and limit core particle agglomeration at concentrations up to 10{sup 7} particles cm{sup -3}.

  5. Glass frits coated with silver nanoparticles for silicon solar cells

    International Nuclear Information System (INIS)

    Li, Yingfen; Gan, Weiping; Zhou, Jian; Li, Biyuan

    2015-01-01

    Graphical abstract: - Highlights: • Silver-coated glass frits for solar cells were prepared by electroless plating. • Gum Arabic was used as the activating agent of glass frits. • Silver-coated glass frits can improve the photovoltaic performances of solar cells. - Abstract: Glass frits coated with silver nanoparticles were prepared by electroless plating. Gum Arabic (GA) was used as the activating agent of glass frits without the assistance of stannous chloride or palladium chloride. The silver-coated glass frits prepared with different GA dosages were characterized by X-ray diffraction (XRD), field emission scanning electron microscopy (FESEM), and thermogravimetric analysis (TGA). The characterization results indicated that silver-coated glass frits had the structures of both glass and silver. Spherical silver nanoparticles were distributed on the glass frits evenly. The density and particle size of silver nanoparticles on the glass frits can be controlled by adjusting the GA dosage. The silver-coated glass frits were applied to silver pastes to act as both the densification promoter and silver crystallite formation aid in the silver electrodes. The prepared silver-coated glass frits can improve the photovoltaic performances of solar cells

  6. Glass frits coated with silver nanoparticles for silicon solar cells

    Energy Technology Data Exchange (ETDEWEB)

    Li, Yingfen, E-mail: lyf350857423@163.com; Gan, Weiping; Zhou, Jian; Li, Biyuan

    2015-06-30

    Graphical abstract: - Highlights: • Silver-coated glass frits for solar cells were prepared by electroless plating. • Gum Arabic was used as the activating agent of glass frits. • Silver-coated glass frits can improve the photovoltaic performances of solar cells. - Abstract: Glass frits coated with silver nanoparticles were prepared by electroless plating. Gum Arabic (GA) was used as the activating agent of glass frits without the assistance of stannous chloride or palladium chloride. The silver-coated glass frits prepared with different GA dosages were characterized by X-ray diffraction (XRD), field emission scanning electron microscopy (FESEM), and thermogravimetric analysis (TGA). The characterization results indicated that silver-coated glass frits had the structures of both glass and silver. Spherical silver nanoparticles were distributed on the glass frits evenly. The density and particle size of silver nanoparticles on the glass frits can be controlled by adjusting the GA dosage. The silver-coated glass frits were applied to silver pastes to act as both the densification promoter and silver crystallite formation aid in the silver electrodes. The prepared silver-coated glass frits can improve the photovoltaic performances of solar cells.

  7. Silica artificial opal incorporated with silver nanoparticles

    Energy Technology Data Exchange (ETDEWEB)

    Li Wenjiang, E-mail: wjli@zju.edu.cn [Center for Optical and Electromagnetic Research, State Key Laboratory for Modern Optical Instrumentation, Zhejiang University, Joint Research Center of Photonics of the Royal Institute of Technology and Zhejiang University, Zijingang Campus, Room 210, East Building 5, Hangzhou 310058 (China); Sun Tan [Center for Optical and Electromagnetic Research, State Key Laboratory for Modern Optical Instrumentation, Zhejiang University, Joint Research Center of Photonics of the Royal Institute of Technology and Zhejiang University, Zijingang Campus, Room 210, East Building 5, Hangzhou 310058 (China)

    2009-07-15

    The silica artificial opal with a three-dimensional (3D) periodic structure was prepared using highly monodispersed silica microspheres by a force packing method in ITO glass cell. The silica artificial opal incorporated with silver nanoparticles was fabricated by the electroplating technique. The optical microscope images of the synthetic sample and the corresponding optical properties were measured after each treatment of electroplating-washing-drying circle. The transmission and reflection spectra presented a red shift, showing that the effective refractive index of the complex silver/silica opal increased after each electroplating. Combining the SEM images, it was seen that the silver nanoparticles could be directly deposited on the surface of silica spheres in the opaline structure. The silver/silica complex opal film could provide a simple way to tune the opal properties by controlling silver nanoparticles in the silica opal. The silver/silica opal crystal structures could be used for nano-photonic circuits, white-light LEDs or as photocatalysts.

  8. Silica artificial opal incorporated with silver nanoparticles

    International Nuclear Information System (INIS)

    Li Wenjiang; Sun Tan

    2009-01-01

    The silica artificial opal with a three-dimensional (3D) periodic structure was prepared using highly monodispersed silica microspheres by a force packing method in ITO glass cell. The silica artificial opal incorporated with silver nanoparticles was fabricated by the electroplating technique. The optical microscope images of the synthetic sample and the corresponding optical properties were measured after each treatment of electroplating-washing-drying circle. The transmission and reflection spectra presented a red shift, showing that the effective refractive index of the complex silver/silica opal increased after each electroplating. Combining the SEM images, it was seen that the silver nanoparticles could be directly deposited on the surface of silica spheres in the opaline structure. The silver/silica complex opal film could provide a simple way to tune the opal properties by controlling silver nanoparticles in the silica opal. The silver/silica opal crystal structures could be used for nano-photonic circuits, white-light LEDs or as photocatalysts.

  9. Synthesis and characterization of silver doped hydroxyapatite nanocomposite coatings and evaluation of their antibacterial and corrosion resistance properties in simulated body fluid

    Energy Technology Data Exchange (ETDEWEB)

    Mirzaee, Majid, E-mail: majidmirzaee7@gmail.com [School of Metallurgy and Materials Engineering, College of Engineering, University of Tehran, P.O. Box 11155-4563, Tehran (Iran, Islamic Republic of); Vaezi, Mohammadreza; Palizdar, Yahya [Research Department of Nano-Technology and Advanced Materials, Materials & Energy Research Center (Iran, Islamic Republic of)

    2016-12-01

    Silver-doped hydroxyapatite (Ca{sub 10−x}Ag{sub x}(PO{sub 4}){sub 6}(OH){sub 2−x}) films were synthesized and deposited on anodized titanium (Ti) using electrophoretic. The influence of different silver-dopant contents (X = 0, 0.02, 0.05, 0.08 and 0.1) on the phase formation and microstructure of the powders were characterized by means of X-ray diffraction (XRD), transmission electron microscopy (TEM), X-ray photoelectron spectroscope (XPS), and Fourier transform infrared spectrum analysis (FT-IR). XRD analysis confirmed the formation of Hexagonal structure of hydroxyapatite (HAp) annealed at 600 °C with a small shift in the major peak position toward lower angles with adding silver. FT-IR spectroscopy disclosed the presence of the different vibrational modes matching to phosphates and hydroxyl groups and the absence of any band characteristics to silver. XPS analysis showed that 75% and 23% of silver was in the chemical states of Ag{sup 2+} and Ag{sup +}, respectively. However, only about 2% of silver was in the Ag{sup 0} state, resulting in the high quality of nanocomposite films. The anodization treatment improves the bond strength between the Ag doped HAp deposited layers on TiO{sub 2}. HAp and silver doped HAp (X = 0.05) are regarded to be hydrophilic due to a large number of –OH groups on the surface. The sample with content of silver (x = 0.05) also showed excellent antimicrobial efficacy (> 99% reduction in viable cells). Electrochemical reveals the passive current densities of the HAp coated anodized Ti are lower than those of silver doped HAp coated anodized Ti, leading to a slightly lower corrosion resistance. - Highlights: • Microstructure and antibacterial properties of silver doped HAp are studied. • The nanocomposite is processed by combinations of sol gel and electrophoretic. • The optimum silver content is obtained under property evaluation.

  10. Biosynthesis, characterisation and antimicrobial activity of silver nanoparticles using Hibiscus rosa-sinensis petals extracts.

    Science.gov (United States)

    Nayak, Debasis; Ashe, Sarbani; Rauta, Pradipta Ranjan; Nayak, Bismita

    2015-10-01

    Green synthesis of metallic nanoparticles has lured the world from the chemical and physical approaches owing to its rapid, non-hazardous and economic aspect of production mechanism. In this study, silver nanoparticles (AgNPs) were synthesised using petal extracts of Hibiscus rosa-sinensis. The AgNPs displayed characteristic surface plasmon resonance peak at around 421 nm having a mean particle size of 76.25±0.17 nm and carried a charge of -41±0.2 mV. The X-ray diffraction patterns displayed typical peaks of face centred cubic crystalline silver. The surface morphology was characterised by scanning electron microscopy and atomic force microscopy. Fourier transform infrared spectroscopy studies confirmed the surface modifications of the functional groups for the synthesis of AgNPs. Furthermore, the synthesised AgNPs displayed proficient antimicrobial activity against pathogenic strains of Vibrio cholerae, Escherichia coli, Klebsiella pneumoniae and Staphylococcus aureus.

  11. Micellized sequestered silver atoms and small silver clusters

    International Nuclear Information System (INIS)

    Borgarello, E.; Lawless, D.; Serpone, N.; Pelizzetti, E.; Meisel, D.

    1990-01-01

    Pulse radiolysis was used to examine the nature of the silver species obtained when an aqueous solution containing sequestered Ag + ions was reduced by hydrated electrons in the presence of a surfactant macrocyclic crown ether, labeled L, and/or a maltoside surfactant. The initially formed product is the Ag 0 (L) species which rapidly loses its ligand (half-life ≤5 μs) and reacts with another Ag + (L) ion to form Ag 2 + (L). The latter species decays by a bimolecular process to form the Ag 4 2+ (L) n species at a faster rate than its ligand free analogue. Ultimately, colloidal metallic silver, (Ag) n , forms which is stabilized by the surfactant moieties. No long-term stability to the reduced monomolecular species could be obtained

  12. Silver manganese oxide electrodes for lithium batteries

    Science.gov (United States)

    Thackeray, Michael M.; Vaughey, John T.; Dees, Dennis W.

    2006-05-09

    This invention relates to electrodes for non-aqueous lithium cells and batteries with silver manganese oxide positive electrodes, denoted AgxMnOy, in which x and y are such that the manganese ions in the charged or partially charged electrodes cells have an average oxidation state greater than 3.5. The silver manganese oxide electrodes optionally contain silver powder and/or silver foil to assist in current collection at the electrodes and to improve the power capability of the cells or batteries. The invention relates also to a method for preparing AgxMnOy electrodes by decomposition of a permanganate salt, such as AgMnO4, or by the decomposition of KMnO4 or LiMnO4 in the presence of a silver salt.

  13. Rapid Fabrication of Silver Nanowires through Photoreduction of Silver Nitrate from an Anodic-Aluminum-Oxide Template

    Science.gov (United States)

    Lin, Yu-Hsuan; Chen, Kun-Tso; Ho, Jeng-Rong

    2011-06-01

    A method for rapidly fabricating dense and high-aspect-ratio silver nanowires, with wire diameter of 200 nm and wire length more than 30 µm, is reported. The fabrication process simply involves filling the silver nitrate solution into the pores of an anodic-aluminum-oxide (AAO) membrane through capillary attraction and irradiating the dried template AAO membrane using a pulsed ArF excimer laser. Through varying the thickness and pore diameter of the employed AAO membrane, the primary dimensions of the targeted silver nanowires can be plainly specified; and, by amending the initial concentration of the silver nitrate solution and adjusting the laser operation parameters, laser fluence and number of laser pulses, the surface morphology and size of the resulting nanowires can be finely regulated. The wire formation mechanism is considered through two stages: the period of precipitation of silver particles from the dried silver nitrate film through the laser-induced photoreduction; and, the phase of clustering, merging and fusing of the reduced particles to form nanowires in the template pores by the thermal energy owing to photothermal effect. This approach is straightforward and takes the advantage that all the fabrication processes can be executed in an ambient environment and at room temperature. In addition, by the excellence in local processing that the laser possesses, this method is suitable for precisely growing nanowires.

  14. Ammonia sensing properties of silver nanocomposite with polypyrrole

    Science.gov (United States)

    Karmakar, N. S.; Kothari, D. C.; Bhat, N. V.

    2013-02-01

    Silver-polypyrrole nanocomposite thin film was prepared by a novel method. UV-Vis spectroscopic studies confirmed the presence of silver nanoparticles and also polymerization of pyrrole surrounding the silver nanoparticles. All the important X-ray diffraction peaks corresponding to silver were present in the composites. The silver nanoparticles and its composites with polypyrrole were observed by SEM and TEM. Electrical conductivity measurements were carried out using two probe method and it was found that the conductivity of nanocomposites is 10-5 S/cm. It was found that functionalized silver nanoparticles can act as efficient gas sensor for ammonia. The present result of the increase in conductivity with ammonia exposure is in contrast with the previously reported results of the decrease in conductivity.

  15. Silver-Russell syndrome

    Directory of Open Access Journals (Sweden)

    Shohela Akhter

    2016-08-01

    Full Text Available Silver-Russell syndrome is clinically and genetically a heterogeneous disorder. In most of the cases, etiology is unknown, only in 10% cases defect in chromosome 7 is identified. It bas distinctive facial features and asymmetric limbs. Most predominant symptom is growth failure. A case of Silver-Russell syndrome reported here who presented with growth failure, hemihypertrophy ofleft side oftbe body, dysmorphic facial profile and difficulty in speech. Counseling was done with the parents regarding the etiology, progression and outcome of the disease.

  16. Nanosecond (ns) laser transfer of silver nanoparticles from silver-exchanged soda-lime glass to transparent soda-lime glass and shock waves formation

    International Nuclear Information System (INIS)

    Sow, Mohamed Chérif; Blondeau, Jean-Philippe; Sagot, Nadine; Ollier, Nadège; Tite, Teddy

    2015-01-01

    Highlights: • Silver nanoparticles growth by nanosecond laser irradiation of silver exchanged soda-lime glasses. • Silver nanoparticles transfer. • Nanosecond laser induced shock waves formation on glass. - Abstract: In this contribution, we showed for the first time in our knowledge a single-step process for silver clusters and nanoparticles growth and transfer from silver-exchanged soda-lime glass to un-exchanged soda-lime glass (transparent glass in visible and NIR domain) by nanosecond (ns) laser irradiation. The transferred silver nanoparticles in transparent glass are strongly linked to the glass surface. In addition, we point out the formation of shock waves, with selective silver clustering on the top wave. This technique provides an alternative and simple way to obtain metallic nanoparticles in different media which can be traversed by laser wavelength used. Moreover, this experiment is made at room temperature and air environment. It is worth noting that our technique requires a glass previously doped with the corresponding silver ions

  17. Pulsed EPR for studying silver clusters

    International Nuclear Information System (INIS)

    Michalik, J.; Wasowicz, T.; Sadlo, J.; Reijerse, E.J.; Kevan, L.

    1996-01-01

    The cationic silver clusters of different nuclearity have been produced by radiolysis of zeolite A and SAPO molecular sieves containing Ag + as exchangeable cations. The pulsed EPR spectroscopy has been applied for studying the local environment of silver cluster in order to understand the mechanism of cluster formation and stabilization. the electron spin echo modulation (ESEM) results on Ag 6 n+ cluster in dehydration zeolite A indicate that the hexameric silver is stabilized only in sodalite cages which are surrounded by α-cages containing no water molecules. Trimeric silver clusters formed in hydrated A zeolites strongly interact with water, thus the paramagnetic center can be considered as a cluster-water adduct. In SAPO-molecular sieves, silver clusters are formed only in the presence of adsorbed alcohol molecules. From ESEM it is determined that Ag 4 n+ in SAPO-42 is stabilized in α cages, where it is directly coordinated by two methanol molecules. Dimeric silver, Ag 2 + in SAPO-5 and SAPO-11 is located in 6-ring channels and interacts with three CH 3 OH molecules, each in different 10 ring or 12 ring channels. The differences of Ag 2 + stability in SAPO-5 and SAPO-11 are also discussed. (Author)

  18. Ab initio study of the structural, magnetic, and electronic properties of copper and silver clusters and their alloys with one palladium atom

    Directory of Open Access Journals (Sweden)

    S. J Hashemifar

    2015-01-01

    Full Text Available In this paper, the structural, magnetic, and electronic properties of two- to nine-atom copper and silver clusters and their alloys with one palladium atom are investigated by using full-potential all-electron density functional computations. After calculating minimized energy of several structural isomers of every nanocluster, it is argued that the small size nanoclusters (up to size of 6, ‎ prefer planar structures, while by increasing size a 2D-3D structural transformation is observed. The structural transformation of pure and copper-palladium clusters occurs in the size of seven and that of silver-palladium cluster in happens at the size of six. The calculated second difference and dissociation energies confirm that the two- and eight- atom pure clusters and three- and seven- atom alloyed clusters are magic clusters. The electronic and magnetic properties of stable isomers are calculated and considered after applying many body based GW correction.

  19. Electroless silver coating of rod-like glass particles.

    Science.gov (United States)

    Moon, Jee Hyun; Kim, Kyung Hwan; Choi, Hyung Wook; Lee, Sang Wha; Park, Sang Joon

    2008-09-01

    An electroless silver coating of rod-like glass particles was performed and silver glass composite powders were prepared to impart electrical conductivity to these non-conducting glass particles. The low density Ag-coated glass particles may be utilized for manufacturing conducting inorganic materials for electromagnetic interference (EMI) shielding applications and the techniques for controlling the uniform thickness of silver coating can be employed in preparation of biosensor materials. For the surface pretreatment, Sn sensitization was performed and the coating powders were characterized by scanning electron microscopy (SEM), focused ion beam microscopy (FIB), and atomic force microscopy (AFM) along with the surface resistant measurements. In particular, the use of FIB technique for determining directly the Ag-coating thickness was very effective on obtaining the optimum conditions for coating. The surface sensitization and initial silver loading for electroless silver coating could be found and the uniform and smooth silver-coated layer with thickness of 46 nm was prepared at 2 mol/l of Sn and 20% silver loading.

  20. Effect of poly-α, γ, L-glutamic acid as a capping agent on morphology and oxidative stress-dependent toxicity of silver nanoparticles

    Directory of Open Access Journals (Sweden)

    Stevanović M

    2011-11-01

    Full Text Available Magdalena Stevanović1, Branimir Kovačević2, Jana Petković3, Metka Filipič3, Dragan Uskoković11Institute of Technical Sciences of Serbian Academy of Sciences and Arts, 2Institute of General and Physical Chemistry, Belgrade, Serbia; 3Department of Genetic Toxicology and Cancer Biology, National Institute of Biology, Ljubljana, SloveniaAbstract: Highly stable dispersions of nanosized silver particles were synthesized using a straightforward, cost-effective, and ecofriendly method. Nontoxic glucose was utilized as a reducing agent and poly- α, γ, L-glutamic acid (PGA, a naturally occurring anionic polymer, was used as a capping agent to protect the silver nanoparticles from agglomeration and render them biocompatible. Use of ammonia during synthesis was avoided. Our study clearly demonstrates how the concentration of the capping agent plays a major role in determining the dimensions, morphology, and stability, as well as toxicity of a silver colloidal solution. Hence, proper optimization is necessary to develop silver colloids of narrow size distribution. The samples were characterized by Fourier transform infrared spectroscopy, ultraviolet-visible spectroscopy, field-emission scanning electron microscopy, transmission electron microscopy, and zeta potential measurement. MTT assay results indicated good biocompatibility of the PGA-capped silver nanoparticles. Formation of intracellular reactive oxygen species was measured spectrophotometrically using 2,7-dichlorofluorescein diacetate as a fluorescent probe, and it was shown that the PGA-capped silver nanoparticles did not induce intracellular formation of reactive oxygen species.Keywords: silver nanoparticles, poly-α, γ, L-glutamic, green synthesis, morphology, cytotoxicity

  1. Preparation of silver nano-particles immobilized onto chitin nano-crystals and their application to cellulose paper for imparting antimicrobial activity.

    Science.gov (United States)

    Li, Zhihan; Zhang, Ming; Cheng, Dong; Yang, Rendang

    2016-10-20

    Immobilized silver nano-particles (Ag NPs) possess excellent antimicrobial properties due to their unique surface characteristics. In this paper, immobilized silver nano-particles were synthesized in the presence of chitin nano-crystals (CNC) based on the Tollens mechanism (reduction of silver ion by aldehydes in the chitosan oligosaccharides (COS)) under microwave-assisted conditions. The prepared Ag NPs-loaded CNC nano-composites were then applied onto the paper surface via coating for the preparation of antibacterial paper. Fourier transform infrared (FT-IR) and X-ray diffraction (XRD) results confirmed that the Ag NPs were immobilized onto the CNC. The transmission electron microscope (TEM) and scanning electron microscopy (SEM) results further revealed that the spherical Ag NPs (5-12nm) were well dispersed on the surface of CNC. The coated paper made from the Ag NPs-loaded CNC nano-composites exhibited a high effectiveness of the antibacterial activity against E. coli or S. aureus. Copyright © 2016 Elsevier Ltd. All rights reserved.

  2. Radiolytic reduction reaction of colloidal silver bromide solution

    International Nuclear Information System (INIS)

    Oya, Yasuhisa; Zushi, Takehiro; Hasegawa, Kunihiko; Matsuura, Tatsuo.

    1995-01-01

    The reduction reaction of colloidal silver bromide (AgBr 3 ) 2- in nitrous oxide gas saturated solution of some alcohols: methanol, ethanol, 2-propanol and 2-methyl-2-propanol by γ-irradiation was studied spectrophotometrically in order to elucidate the mechanism of the formation of colloidal silver bromide (AgBr 3 ) 3- at ambient temperature. The amount of colloidal silver bromide formed increases in the order: i-PrOH, EtOH, MeOH. In t-BuOH, colloidal silver bromide did not form. The relative reactivities of alcohols for colloidal silver bromide was also studied kinetically. (author)

  3. Silver-containing mesoporous bioactive glass with improved antibacterial properties.

    Science.gov (United States)

    Gargiulo, Nicola; Cusano, Angela Maria; Causa, Filippo; Caputo, Domenico; Netti, Paolo Antonio

    2013-09-01

    The aim of the present work is the study of the bacteriostatic/bactericidal effect of a silver-containing mesoporous bioactive glass obtained by evaporation-induced self-assembly and successive thermal stabilization. Samples of the manufactured mesophase were characterized by means of transmission electron microscopy and N₂ adsorption/desorption at 77 K, revealing structural and textural properties similar to SBA-15 mesoporous silica. Glass samples used for bioactivity experiments were put in contact with a standardized, commercially available cell culture medium instead of lab-produced simulated body fluid, and were then characterized by means of X-ray diffraction, field emission scanning electron microscopy and Fourier transform infrared spectroscopy. All these analyses confirmed the development of a hydroxyl carbonate apatite layer on glass particles. Moreover, the investigated mesostructure showed a very good antibacterial effect against S. aureus strain, with a strong evidence of bactericidal activity already registered at 0.5 mg/mL of glass concentration. A hypothesis about the mechanism by which Ag affects the bacterial viability, based on the intermediate formation of crystalline AgCl, was also taken into account. With respect to what already reported in the literature, these findings claim a deeper insight into the possible use of silver-containing bioactive glasses as multifunctional ceramic coatings for orthopedic devices.

  4. Antimicrobial Bacterial Cellulose-Silver Nanoparticles Composite Membranes

    Directory of Open Access Journals (Sweden)

    Hernane S. Barud

    2011-01-01

    Full Text Available Antimicrobial bacterial cellulose-silver nanoparticles composite membranes have been obtained by “in situ” preparation of Ag nanoparticles from hydrolytic decomposition of silver nitrate solution using triethanolamine as reducing and complexing agent. The formation of silver nanoparticles was evidenced by the X-ray diffraction, scanning electron microscopy (SEM, transmission electron microscopy (TEM, and absorption in the UV-Visible (350 nm to 600 nm. Thermal and mechanical properties together with swelling behavior for water were considered. TEA concentration was observed to be important in order to obtain only Ag particles and not a mixture of silver oxides. It was also observed to control particle size and amount of silver contents in bacterial cellulose. The composite membranes exhibited strong antimicrobial activity against Gram-negative and Gram-positive bacteria.

  5. Silver Nanoparticles-graphene Oxide Nanocomposite for Antibacterial Purpose

    International Nuclear Information System (INIS)

    Chook, S.W.; Chia, C.H.; Sarani Zakaria; Mohd Khan Ayob; Chee, K.L.; Neoh, H.M.; Huang, N.M.

    2011-01-01

    Graphene oxide (GO) sheets, a single layer of carbon atoms which can be served as substrates for fabricating metallic nanoparticles-GO nano composites, have been used in this study The nanocomposite of silver nanoparticles and graphene oxide were produced via in-situ synthesis and with the aid of chitosan to investigate the formation of silver nanoparticles on the graphene oxide sheets. XRD and UV-Vis studies confirmed the formation of silver nanoparticles on GO sheets, while TEM and FESEM images presented the loading of silver nanoparticles on the GO sheets. The degree of loading and distribution of the silver nanoparticles on the graphene oxide were depended on the procedure during the formation of silver nanoparticles. The nano composites can be potentially used in food packaging and biomedical applications. (author)

  6. Fluorescent silver nanoparticles via exploding wire technique

    Indian Academy of Sciences (India)

    Pure silver nanoparticles in double distilled water were generated via simple physical method using pure (99.9%) silver wires with 0.2 mm diameter. These wires have been exploded in water by bringing them into sudden contact with pure (99.9%) silver plate when subjected to a potential difference of 36 V DC. High current.

  7. Transmission electron microscopy for elucidating the impact of silver-based treatments (ionic silver versus nanosilver-containing coating) on the model yeast Saccharomyces cerevisiae

    Energy Technology Data Exchange (ETDEWEB)

    Despax, B; Saulou, C; Raynaud, P [Universite de Toulouse, UPS, INPT, LAPLACE, 118 route de Narbonne, F-31062 Toulouse cedex 9 (France); Datas, L [Universite de Toulouse, UPS, INPT, CIRIMAT, 118 route de Narbonne, F-31062 Toulouse cedex 9 (France); Mercier-Bonin, M [Universite de Toulouse, INSA, UPS, INP, LISBP, 135 Avenue de Rangueil, F-31077 Toulouse (France)

    2011-04-29

    After exposure to ionic silver or nanosilver-containing plasma coating, the same visual aspect of scanning transmission electron microscopy (STEM) images was observed for the model yeast Saccharomyces cerevisiae. The main common feature was the presence of electron-dense nodules all over the cell. However, high resolution TEM (HRTEM), STEM, energy dispersive x-ray microanalysis spectroscopy (EDS) and electron microdiffraction revealed some striking differences. Regarding ionic silver exposure, the formation of electron-dense nodules was related to the Ag{sup +} reactivity towards sulfur-containing compounds to form clusters with Ag{sub 2}S-like structures, together with the production of a few silver nanocrystals, mainly at the cell wall periphery. For nanosilver-based treatment, some sulfur-containing silver clusters preferentially located at the cell wall periphery were detected, together with nodules composed of silver, sulfur and phosphorus all over the cell. In both silver-based treatments, nitrogen and silver signals overlapped, confirming the affinity of silver entities for proteinaceous compounds. Moreover, in the case of nanosilver, interactions of silver with phosphorus-containing subcellular structures were indicated.

  8. Cadmium removal from aqueous solution by green synthesis zero valent silver nanoparticles with Benjamina leaves extract

    Directory of Open Access Journals (Sweden)

    Khairia M. Al-Qahtani

    2017-12-01

    Full Text Available Cadmium (II is an important element used in various industries, however, it is a poisonous element that affects the health of plants, animals and humans alike. It’s very important to remove this element from contaminated waters. This study aims at synthesizing zero valent silver nanoparticles by environmentally ecofriendly method without using hazardous compounds (via green approach. In this work, silver nanoparticles were prepared using hot water for the Ficus tree (Ficus Benjamina leaf extract (FBLE. The size of crystalline for AgNPs was measured by UV–vis spectroscopy and flourier transform infrared (FTIR. The properties of nano-silver particles (AgNPs have been studied using scanning electron microscope (SEM. The capability of nanoparticles to remove Cd2+ from contaminated solution was then studied. Parameter like adsorbent dose, heavy metal concentration, pH, agitation speed and contact time were studied. Cadmium removal increased when the dosage of biosorbent increases, pH increased from 1 to 6, contact time from 5 to 40 and initial concentration of Cd decrease. Isotherm adsorption was also described by the Freundleich model with a constant correlation (R2 higher than 0.973.

  9. Oxygen isotope exchange with quartz during pyrolysis of silver sulfate and silver nitrate.

    Science.gov (United States)

    Schauer, Andrew J; Kunasek, Shelley A; Sofen, Eric D; Erbland, Joseph; Savarino, Joel; Johnson, Ben W; Amos, Helen M; Shaheen, Robina; Abaunza, Mariana; Jackson, Terri L; Thiemens, Mark H; Alexander, Becky

    2012-09-30

    Triple oxygen isotopes of sulfate and nitrate are useful metrics for the chemistry of their formation. Existing measurement methods, however, do not account for oxygen atom exchange with quartz during the thermal decomposition of sulfate. We present evidence for oxygen atom exchange, a simple modification to prevent exchange, and a correction for previous measurements. Silver sulfates and silver nitrates with excess (17)O were thermally decomposed in quartz and gold (for sulfate) and quartz and silver (for nitrate) sample containers to O(2) and byproducts in a modified Temperature Conversion/Elemental Analyzer (TC/EA). Helium carries O(2) through purification for isotope-ratio analysis of the three isotopes of oxygen in a Finnigan MAT253 isotope ratio mass spectrometer. The Δ(17)O results show clear oxygen atom exchange from non-zero (17)O-excess reference materials to zero (17)O-excess quartz cup sample containers. Quartz sample containers lower the Δ(17)O values of designer sulfate reference materials and USGS35 nitrate by 15% relative to gold or silver sample containers for quantities of 2-10 µmol O(2). Previous Δ(17)O measurements of sulfate that rely on pyrolysis in a quartz cup have been affected by oxygen exchange. These previous results can be corrected using a simple linear equation (Δ(17)O(gold) = Δ(17)O(quartz) * 1.14 + 0.06). Future pyrolysis of silver sulfate should be conducted in gold capsules or corrected to data obtained from gold capsules to avoid obtaining oxygen isotope exchange-affected data. Copyright © 2012 John Wiley & Sons, Ltd.

  10. [Design and application of silver needle-knife].

    Science.gov (United States)

    Sun, Guodong; Shi, Bin; Zhang, Benwu; Xu, Haidong

    2015-04-01

    A silver needle-knife which has the dual function of silver needle and needle-knife is designed. The main components of this silver needle-knife are approximately 50% silver and approximately 50% nichrome. The silver needle-knife is composed of five parts, including needle-knife tail, spiral handle; steering handle, needle-knife body and needle-knife edge. It converges the advantages of needle-knife and silver needle, which can cut loose of diseased tissue and peel adhesion of lesions, but also be heated with moxa cone and thermal therapeutic instrument, and connect with electroacupuncture apparatus. It has the function of warming channel and removing coldness, dispelling wind and eliminating dampness, resolving spasm and relieving pain, dredging the channel and so on. Due to the spiral handle and the steering handle, the operation is easier, which reduces the blindness of cutting and increase the safety. It is mainly used for soft tissue injury, rheumatism and rheumatoid arthritis, as well as degenerative diseases of spine and joint, and it has obvious efficacy on some internal medical diseases.

  11. Phytofabrication of bioinduced silver nanoparticles for biomedical applications

    Science.gov (United States)

    Ahmad, Nabeel; Bhatnagar, Sharad; Ali, Syed Salman; Dutta, Rajiv

    2015-01-01

    Synthesis of nanomaterials holds infinite possibilities as nanotechnology is revolutionizing the field of medicine by its myriad applications. Green synthesis of nanoparticles has become the need of the hour because of its eco-friendly, nontoxic, and economic nature. In this study, leaf extract of Rosa damascena was used as a bioreductant to reduce silver nitrate, leading to synthesis of silver nanoparticles (AgNPs) in a single step, without the use of any additional reducing or capping agents. The synthesized nanoparticles were characterized by the use of UV-visible spectroscopy, fourier transform infrared spectroscopy, dynamic light scattering, transmission electron microscopy, and field emission scanning electron microscopy. Time-dependent synthesis of AgNPs was studied spectrophotometrically. Synthesized AgNPs were found to possess flower-like spherical structure where individual nanoparticles were of 16 nm in diameter, whereas the agglomerated AgNPs were in the range of 60–80 nm. These biologically synthesized AgNPs exhibited significant antibacterial activity against Gram-negative bacterial species but not against Gram-positive ones (Escherichia coli and Bacillus cereus). Anti-inflammatory and analgesic activities were studied on a Wistar rat model to gauge the impact of AgNPs for a probable role in these applications. AgNPs tested positive for both these activities, although the potency was less as compared to the standard drugs. PMID:26648715

  12. Effects of silver adsorbed on fumed silica, silver phosphate glass, bentonite organomodified with silver and titanium dioxide in aquatic indicator organisms.

    Science.gov (United States)

    Tomacheski, Daiane; Pittol, Michele; Simões, Douglas Naue; Ribeiro, Vanda Ferreira; Santana, Ruth Marlene Campomanes

    2017-06-01

    In order to reduce the level of transmission of diseases caused by bacteria and fungi, the development of antimicrobial additives for use in personal care, hygiene products, clothing and others has increased. Many of these additives are based on metals such as silver and titanium. The disposal of these products in the environment has raised concerns pertaining to their potential harmfulness for beneficial organisms. The objective of this study was to evaluate the influence of the shape, surface chemistry, size and carrier of three additives containing silver and one with titanium dioxide (TiO 2 ) on microcrustacean survival. Daphnia magna was used as a bioindicator for acute exposure test in suspensions from 0.0001 to 10,000ppm. Ceriodaphnia dubia was used for chronic test in TiO 2 suspensions from 0.001 to 100ppm. D. magna populations presented high susceptibility to all silver based additives, with 100% mortality after 24hr of exposure. A different result was found in the acute experiments containing TiO 2 suspensions, with mortality rates only after 48hr of incubation. Even on acute and chronic tests, TiO 2 did not reach a linear concentration-response versus mortality, with 1ppm being more toxic than 10,000ppm on acute test and 0.001 more toxic than 0.01ppm on chronic assay. Silver based material toxicity was attributed to silver itself, and had no relation to either form (nano or ion) or carrier (silica, phosphate glass or bentonite). TiO 2 demonstrated to have a low acute toxicity against D. magna. Copyright © 2016. Published by Elsevier B.V.

  13. Suitsetamisega võitlemisel ei aita inimeste kiusamine / Silver Meikar

    Index Scriptorium Estoniae

    Meikar, Silver, 1978-

    2004-01-01

    Suitsetamise vastu võitlemisel ei tohiks kasutada rangelt seadusi vaid võimaldada soodsalt osta suitsetamisvastaseid vahendeid, leiab autor. Vt. ka: Silver Meikar: Olen valmis hoidma Eesti edu; Silver Meikar saatis lugejakirja Saksamaa päevalehtedele; Arvamusi Silver Meikarist; Silver Meikar loobus paberkandjale trükitud seaduseelnõudest

  14. Synthesis and characterization of colloidal fluorescent silver nanoclusters.

    Science.gov (United States)

    Huang, Sherry; Pfeiffer, Christian; Hollmann, Jana; Friede, Sebastian; Chen, Justin Jin-Ching; Beyer, Andreas; Haas, Benedikt; Volz, Kerstin; Heimbrodt, Wolfram; Montenegro Martos, Jose Maria; Chang, Walter; Parak, Wolfgang J

    2012-06-19

    Ultrasmall water-soluble silver nanoclusters are synthesized, and their properties are investigated. The silver nanoclusters have high colloidal stability and show fluorescence in the red. This demonstrates that like gold nanoclusters also silver nanoclusters can be fluorescent.

  15. Modelling the effect of temperature and free acid, silver, copper and lead concentrations on silver electrorefining electrolyte conductivity

    OpenAIRE

    Aji, Arif T.; Kalliomäki, Taina; Wilson, Benjamin P.; Aromaa, Jari; Lundström, Mari

    2016-01-01

    Conductivity is one of the key physico-chemical properties of electrolyte in silver electrorefining since it affects the energy consumption of the process. As electrorefining process development trends towards high current density operation, having electrolytes with high conductivities will greatly reduce the energy consumption of the process. This study outlines investigations into silver electrorefining electrolyte conductivity as a function of silver, free acid, copper and lead concentrati...

  16. Towards conducting inks: Polypyrrole–silver colloids

    International Nuclear Information System (INIS)

    Omastová, Mária; Bober, Patrycja; Morávková, Zuzana; Peřinka, Nikola; Kaplanová, Marie; Syrový, Tomáš; Hromádková, Jiřina; Trchová, Miroslava; Stejskal, Jaroslav

    2014-01-01

    Graphical abstract: - Highlights: • Composite colloidal particles combining conducting polymer and metal have been prepared. • Conducting colloids are suitable for printing applications. • Polypyrrole/silver colloids are prepared in a single reaction step. • The conductivity control is discussed and still needs improvement. - Abstract: The oxidation of pyrrole with silver nitrate in the presence of suitable water-soluble polymers yields composite polypyrrole–silver colloids. The polypyrrole–silver nanoparticles stabilized with poly(N-vinylpyrrolidone) have a typical size around 350 nm and polydispersity index 0.20, i.e. a moderate polydispersity in size. Similar results have been obtained with poly(vinyl alcohol) as stabilizer. The effect of stabilizer concentration on the particle size is marginal. In the present study, several types of stabilizers have been tested in addition to currently used poly(N-vinylpyrrolidone). Transmission electron microscopy and optical microscopy revealed the gemini morphology of polypyrrole and silver colloidal nanoparticles and confirmed their size and size-distribution determined by dynamic light scattering. The use of colloidal dispersions provides an efficient tool for the UV–vis and FT Raman spectroscopic characterization of polypyrrole, including the transition between polypyrrole salt and corresponding polypyrrole base. The dispersions were used for the preparation of coatings on polyethylene terephthalate foils, and the properties for polypyrrole–silver composites have been compared with those produced from polypyrrole colloids alone

  17. Evaluation of the Antimicrobial Activity of Different Antibiotics Enhanced with Silver-Doped Hydroxyapatite Thin Films

    Directory of Open Access Journals (Sweden)

    Daniela Predoi

    2016-09-01

    Full Text Available The inhibitory and antimicrobial effects of silver particles have been known since ancient times. In the last few years, a major health problem has arisen due to pathogenic bacteria resistance to antimicrobial agents. The antibacterial activities of new materials including hydroxyapatite (HAp, silver-doped hydroxyapatite (Ag:HAp and various types of antibiotics such as tetracycline (T-HAp and T-Ag:HAp or ciprofloxacin (C-HAp and C-Ag:HAp have not been studied so far. In this study we reported, for the first time, the preparation and characterization of various thin films based on hydroxyapatite and silver-doped hydroxyapatite combined with tetracycline or ciprofloxacin. The structural and chemical characterization of hydroxyapatite and silver-doped hydroxyapatite thin films has been evaluated by X-ray diffraction (XRD and Fourier transform infrared spectroscopy (FTIR. The morphological studies of the HAp, Ag:HAp, T-HAp, T-Ag:HAp, C-HAp and C-Ag:HAp thin solid films were performed using scanning electron microscopy (SEM. In order to study the chemical composition of the coatings, energy dispersive X-ray analysis (EDX and glow discharge optical emission spectroscopy (GDOES measurements have been used, obtaining information on the distribution of the elements throughout the film. These studies have confirmed the purity of the prepared hydroxyapatite and silver-doped hydroxyapatite thin films obtained from composite targets containing Ca10−xAgx(PO46(OH2 with xAg = 0 (HAp and xAg = 0.2 (Ag:HAp. On the other hand, the major aim of this study was the evaluation of the antibacterial activities of ciprofloxacin and tetracycline in the presence of HAp and Ag:HAp thin layers against Staphylococcus aureus and Escherichia coli strains. The antibacterial activities of ciprofloxacin and tetracycline against Staphylococcus aureus and Escherichia coli test strains increased in the presence of HAp and Ag:HAp thin layers.

  18. A simple method of growing silver chloride nanocubes on silver nanowires

    Science.gov (United States)

    Hosseinzadeh Khaligh, Hadi; Goldthorpe, Irene A.

    2015-09-01

    The growth of AgCl nanocubes directly on the sidewalls of Ag nanowires is demonstrated. The nanocubes can be simply obtained through extended low temperature annealing of polyol-synthesized silver nanowires in a vacuum. The length of time and temperature of the anneal and the diameter of the nanowire affect the size and density of the nanocubes obtained. It is hypothesized that the AgCl material is supplied from reactants leftover from the silver nanowire synthesis. This novel hybrid nanostructure may have applications in areas such as photovoltaics, surface enhanced Raman spectroscopy, and photocatalysis.

  19. Toxicity of silver nanoparticles in monocytes and keratinocytes

    DEFF Research Database (Denmark)

    Orłowski, Piotr; Krzyzowska, Malgorzata; Winnicka, Anna

    2012-01-01

    Silver nanoparticles are of interest to be used as antimicrobial agents in wound dressings and coatings in medical devices, but potential adverse effects have been reported in the literature. The possible local inflammatory response to silver nanoparticles and the role of cell death in determining...... these effects are largely unknown. Effects of the mixture of silver nanoparticles of different sizes were compared in in vitro assays for cytotoxicity, caspase-1 and caspase-9 activity and bax expression. In all tested concentrations, silver nanoparticles were more toxic for RAW 264.7 monocytes than for 291.03C...... keratinocytes and induced significant caspase-1 activity and necrotic cell death. In keratinocytes, more significantly than in macrophages, silver nanoparticles led to increase of caspase-9 activity and apoptosis. These results indicate that effects of silver nanoparticles depend on the type of exposed cells...

  20. Synthesis of battery grade reduced silver powder

    International Nuclear Information System (INIS)

    Qadeer, R.; Hameed, M.; Ikram, S.; Munir, A.

    2002-01-01

    Process for production of battery grade reduced silver powder, an active positive material for zinc-silver oxide batteries, having specific characteristics has been optimized and the synthesized reduced silver powder was characterized. Results reveal that the values of bulk density (1.25 0.1 g/cm3) and activity (73.27 %) of synthesized reduced silver powder lies within the recommended range for use as battery material. It has purity ≥ 98% and contains Fe and Cu as traces in the concentration range of 30 5 ppm and 15 7 ppm respectively. Others determined values of surface and pores parameters are: surface area 2.6 .4 m2/g: pore volume 3.10 cm3/g: pore diameter 0.043 mu m and porosity 20%. XRD studies reveal that reduced silver powder has a cubic structure. (author)

  1. Silver-Loaded Cellulose Acetate-g-Poly(ε-caprolactone) Composites

    Science.gov (United States)

    Tuburan, CR; Dela Rosa, LE; Reyes, LQ

    2017-06-01

    Cellulose acetate (CA) was grafted with poly(ε-caprolactone) PCL oligomers via the ring-opening of ε-caprolactone (ε-CL) monomer initiated by the hydroxyl functionality of CA. The incorporation of short PCL oligomers in CA’s structure caused the transformation of it crystalline domains into amorphous phases (internal plasticization) as observed by differential scanning calorimetry (DSC). Another evidence of plasticization induced by grafting was the significant reduction of the degradation temperature and stiffness of the copolymers. Proton Nuclear Magnetic Resonance (1H-NMR), Fourier-Transform Infrared (FTIR) Spectroscopies and Gel Permeation Chromatography (GPC) verified success the grafting as suggested by the attachment of PCL on the glucose ring and increase in polymer molecular weights after the reaction. Due to the good films forming ability of the synthesized CA grafted with PCL (CA-g-PCL) material, it was loaded with silver nitrate (AgNO3) and the composite was observed to be have bactericidal against a gram negative bacteria, Escherichia coli, and a gram positive bacteria, Bacillus subtilis.

  2. Synthesis and characterization of novel silver nanoparticles using Chamaemelum nobile extract for antibacterial application

    Science.gov (United States)

    Erjaee, Hoda; Rajaian, Hamid; Nazifi, Saeed

    2017-06-01

    The present study reports green synthesis of silver nanoparticles (AgNPs) at room temperature using aqueous Chamaemelum nobile extract for the first time. The effect of silver nitrate concentration, quantity of the plant extract and the reaction time on particle size was optimized and studied by UV-Vis spectroscopy and dynamic light scattering. The appearance of brownish color with λ max of 422 nm confirmed the formation of AgNPs. Synthesized nanoparticles were further characterized by Fourier transform infrared spectroscopy, x-ray diffraction and transmission electron microscopy. In addition, antimicrobial activity of the AgNPs against Escherichia coli, Salmonella typhimurium, Staphylococcus aureus and Bacillus subtilis was evaluated based on the inhibition zone using the disc-diffusion assay and measurement of minimal inhibition concentration and minimal bactericidal concentration by standard microdilution method. In conclusion, synthesis of nanoparticle with aqueous Chamaemelum nobile extract is simple, rapid, environmentally benign and inexpensive. Moreover, these synthesized nanoparticles exhibit significant antibacterial activity.

  3. Characterization of Silver Nanoparticle In Situ Synthesis on Porous Sericin Gel for Antibacterial Application

    Directory of Open Access Journals (Sweden)

    Gang Tao

    2016-01-01

    Full Text Available Sericin from Bombyx mori cocoon has good hydrophilicity, reaction activity, biocompatibility, and biodegradability, which has shown great potentials for biomedical materials. Here, an ultraviolet light-assisted in situ synthesis approach is developed to immobilize silver nanoparticles on the surface of sericin gel. The amount of silver nanoparticles immobilized on the surface of sericin gel could be regulated by the irradiation time. The porous structure and property of sericin gel were not affected by the modification of AgNPs, as evidenced by the observation of scanning electron microscopy, X-ray diffractometry, and Fourier transform infrared spectroscopy. Differential scanning calorimetry analysis showed that the modification of AgNPs increased the thermal stability of sericin gel. The growth curve of bacteria and inhibition zone assays suggested that the sericin gel modified with AgNPs had good antimicrobial activities against both Gram-negative and Gram-positive bacteria. This novel sericin has shown a great potential for biomedical purpose.

  4. Clinical spectrum of silver - Russell syndrome

    Directory of Open Access Journals (Sweden)

    Sapna N.K. Varma

    2013-01-01

    Full Text Available Silver - Russell syndrome is a clinically and genetically heterogenous condition characterized by severe intrauterine and postnatal growth retardation, craniofacial disproportion and normal intelligence downward curvature of the corner of the mouth, syndactyly and webbed fingers. Diagnosis of Silver - Russell syndrome remains clinical; no definite etiology or specific tests have been established. In the recent years, it has been shown that more than 38% of patients have hypomethylation in the imprinting control region 1 of 11p15 and one-tenth of patients carry a maternal uniparental disomy of chromosome seven. The pathophysiological mechanisms resulting in the Silver - Russell phenotype remain unknown despite the recent progress in deciphering the molecular defects associated with this condition. This case report describes the clinical features of Silver - Russell syndrome in a father and daughter.

  5. Autometallography: tissue metals demonstrated by a silver enhancement kit

    DEFF Research Database (Denmark)

    Danscher, G; Nørgaard, J O; Baatrup, E

    1987-01-01

    , primarily intended for the amplification of colloidal gold particles, has been used to demonstrate these catalytic tissue metals. Sections from animals exposed intravitally to aurothiomalatate, silver lactate, mercury chloride, sodium selenite or perfused with sodium sulphide were subjected to a commercial......In biological tissue, minute accumulations of gold, silver, mercury and zinc can be visualized by a technique whereby metallic silver is precipitated on tiny accumulations of the two noble metals, or on selenites or sulphides of all four metals. In the present study a silver enhancement kit...... silver enhancement kit (IntenSE, Janssen Pharmaceutica). It was found that the kit performs adequately to the silver lactate gum arabic developer and to the photographic emulsion technique. The kit can be used as a silver enhancement medium for the demonstration of zinc by the Neo-Timm and selenium...

  6. Efficacy of some colloidal silver preparations and silver salts against Proteus bacteria, one possible cause of rheumatoid arthritis.

    Science.gov (United States)

    Disaanayake, D M B T; Faoagali, Joan; Laroo, Hans; Hancock, Gerald; Whitehouse, Michael

    2014-04-01

    There has been increased interest in the role of anti-Proteus antibodies in the aetiology of rheumatoid arthritis (RA) and whether chemotherapeutic agents active against Proteus species might reduce the risk and/or exacerbations of RA. We examined the in vitro antibacterial effects of ten different silver preparations which were either ionic silver [Ag(I)] solutions or nanoparticulate silver (NPS) (Ag(0)) suspensions against ATCC and two wild (clinical) strains of Proteus. The data establish the low minimum inhibitory concentration and minimum bactericidal concentration of all the silver formulations tested against these four Proteus strains. In a pilot study, a potent NPS preparation ex vivo showed long-lasting anti-Proteus activity in a normal human volunteer.

  7. A novel non-enzymatic H2O2 sensor based on polypyrrole nanofibers-silver nanoparticles decorated reduced graphene oxide nano composites

    Science.gov (United States)

    Moozarm Nia, Pooria; Lorestani, Farnaz; Meng, Woi Pei; Alias, Y.

    2015-03-01

    Graphene oxide (GO) decorated with silver nanoparticles (AgNPs), was electrochemically reduced on glassy carbon electrode (GCE) by an amperometry method (AMP-AgNPs-rGO/GCE). Then, Pyrrole was electropolymerized on the surface of the modified electrode through amperometry process in order to obtain nanofibers of polypyrrole (AMP-PpyNFs-AgNPs-rGO). Fourier-transform infrared transmission spectroscopy and X-ray diffraction approved that during the amperometry process, the GO and Ppy nanofibers were reduced and polymerized respectively and the silver nanoparticles were formed. Field emission scanning electron microscope images indicated that the silver nanoparticles were homogeneously distributed on the rGO surface with a narrow nano size distribution and polypyrrole synthesized in the form of nanofibers with diameter around 100 nm. The first linear section was in the range of 0.1-5 mM with a limit of detection of 1.099 and the second linear section raised to 90 mM with a correlation factor of 0.085 (S/N of 3)

  8. Analyzing silver concentration in soil using laser-induced breakdown spectroscopy

    Science.gov (United States)

    Prasetyo, S.; Isnaeni; Zaitun; Mitchell, K.; Suliyanti, M. M.; Herbani, Y.

    2018-03-01

    Determination of concentration of heavy metal ions in soil, such as silver, is very important to study soil pollution levels. Several techniques have been developed to determine silver ion concentration in soil. In this paper, we utilized laser-induced breakdown spectroscopy (LIBS) to study silver concentration in soil. We used four different data analysis methods to calculate silver concentration. In this case, we prepared soil samples with different silver ion concentrations from 400 ppm to 1000 ppm. Our analysis was focused on the 843.15 nm silver atomic absorption line. We found that plasma intensity increased as silver concentration increased. Our findings were based on our analysis using four different analysis methods. We believe that these analysis methods are able to calculate silver concentration in soil using LIBS.

  9. Highly Stable Monocrystalline Silver Clusters for Plasmonic Applications

    DEFF Research Database (Denmark)

    Novikov, Sergey M.; Popok, Vladimir N.; Evlyukhin, Andrey B.

    2017-01-01

    Plasmonic sensor configurations utilizing localized plasmon resonances in silver nanostructures typically suffer from the rapid degradation of silver under ambient atmospheric conditions. In this work, we report on the fabrication and detailed characterization of ensembles of monocrystalline silver......-beam technique and characterized by linear spectroscopy, two-photon-excited photoluminescence, surface-enhanced Raman scattering microscopy, and transmission electron, helium ion, and atomic force microscopies. It is found that the fabricated ensembles of monocrystalline silver NPs preserve their plasmonic...... properties (monitored with optical spectroscopy) and strong field enhancements (revealed by surface-enhanced Raman spectroscopy) at least 5 times longer as compared to chemically synthesized silver NPs with similar sizes. The obtained results are of high practical relevance for the further development...

  10. Rapid and Efficient Synthesis of Silver Nanofluid Using Electrical Discharge Machining

    Directory of Open Access Journals (Sweden)

    Kuo-Hsiung Tseng

    2013-01-01

    Full Text Available The electrical discharge machining (EDM system has been proven feasible as a rapid and efficient method for silver nanofluid preparation. This study prepared the silver nano-fluid via EDM and investigated the relationship between its process parameters and product characteristics. The prior study had found that the silver nano-fluid prepared by EDM contained both silver nanoparticles and silver ions. Silver ions had revealed the cause of the high suspension of the silver nanoparticles. To examine the relationship between the stability of silver nanofluid and the process parameters, this study quantified the relationship of process parameters to the material removal rate (MRR of silver electrode and silver ion output rate (IOR in the fluid, in order to achieve the most effective process parameter condition. Furthermore, the stability of silver nano-fluid was analyzed by various devices, including UV-Vis spectroscopy, size-distribution, and Zeta-potential analyzer. The effects of MRR, IOR, particle size, Zeta-potential, and optical properties of silver nanofluid under different process parameters are also discussed.

  11. Preparation of counterion stabilized concentrated silver sols.

    Science.gov (United States)

    LaPlante, Sylas; Halaciuga, Ionel; Goia, Dan V

    2011-07-01

    A strategy for obtaining stable concentrated silver dispersions without dedicated stabilizing agents is presented. This approach consists of rapidly mixing aqueous solutions of silver salicylate and ascorbic acid. By using salicylate as Ag(+) counterion, it is possible to prepare stable sols with metal concentrations up to two orders of magnitude higher than with silver nitrate. The stabilizing effect of the counterion is the result of a decreased ionic strength due to salicylate protonation and its adsorption on the surface of silver. Both effects increase the range of the electrostatic repulsive forces by expanding the electrical double layer. Copyright © 2011 Elsevier Inc. All rights reserved.

  12. Silver Uptake and Reuse of Biomass by Saccharomyces cerevisiae ...

    African Journals Online (AJOL)

    Studies were carried out on the recovery of bound silver and reuse of Chlorella emersonii and Saccharomyces cerevisiae biomass for further silver uptake after they were placed in contact with 20mg/l silver for 30 minutes to allow for maximum binding. It was found that 0.16M nitric acid gave the best recovery rates of silver.

  13. Understanding the Synthesis and Properties of Molecular Silver Nanoparticles

    Science.gov (United States)

    Ashenfelter, Brian A.

    . Time-resolved spectroscopic measurements show that Ag32(SG)19 and Ag15(SG)11 have a common emissive state, with the same emission wavelength and dynamic, which can be assigned to the metal-ligand state. As hybrid materials whose properties meet at the confluence of hard and soft matter, the structures of molecular silver nanoparticles also have interesting mechanical properties. High-pressure powder x-ray diffraction has been used to investigate the mechanical response to compression by a superlattice of Na4Ag44(p-MBA)30 molecular nanoparticles. Two unique pressure-induced phase transformations have been identified. The bulk modulus and axial compressibility of the material has also been determined. These measurements were also compared to a quantum mechanical simulation of the material under compression.

  14. Antibacterial properties and mechanisms of gold-silver nanocages

    Science.gov (United States)

    Wang, Yulan; Wan, Jiangshan; Miron, Richard J.; Zhao, Yanbin; Zhang, Yufeng

    2016-05-01

    Despite the number of antibiotics used in routine clinical practice, bacterial infections continue to be one of the most important challenges faced in humans. The main concerns arise from the continuing emergence of antibiotic-resistant bacteria and the difficulties faced with the pharmaceutical development of new antibiotics. Thus, advancements in the avenue of novel antibacterial agents are essential. In this study, gold (Au) was combined with silver (Ag), a well-known antibacterial material, to form silver nanoparticles producing a gold-silver alloy structure with hollow interiors and porous walls (gold-silver nanocage). This novel material was promising in antibacterial applications due to its better biocompatibility than Ag nanoparticles, potential in photothermal effects and drug delivery ability. The gold-silver nanocage was then tested for its antibacterial properties and the mechanism involved leading to its antibacterial properties. This study confirms that this novel gold-silver nanocage has broad-spectrum antibacterial properties exerting its effects through the destruction of the cell membrane, production of reactive oxygen species (ROS) and induction of cell apoptosis. Therefore, we introduce a novel gold-silver nanocage that serves as a potential nanocarrier for the future delivery of antibiotics.

  15. In situ SU-8 silver nanocomposites

    Directory of Open Access Journals (Sweden)

    Søren V. Fischer

    2015-07-01

    Full Text Available Nanocomposite materials containing metal nanoparticles are of considerable interest in photonics and optoelectronics applications. However, device fabrication of such materials always encounters the challenge of incorporation of preformed nanoparticles into photoresist materials. As a solution to this problem, an easy new method of fabricating silver nanocomposites by an in situ reduction of precursors within the epoxy-based photoresist SU-8 has been developed. AgNO3 dissolved in acetonitrile and mixed with the epoxy-based photoresist SU-8 forms silver nanoparticles primarily during the pre- and post-exposure soft bake steps at 95 °C. A further high-temperature treatment at 300 °C resulted in the formation of densely homogeneously distributed silver nanoparticles in the photoresist matrix. No particle growth or agglomeration of nanoparticles is observed at this point. The reported new in situ silver nanocomposite materials can be spin coated as homogeneous thin films and structured by using UV lithography. A resolution of 5 µm is achieved in the lithographic process. The UV exposure time is found to be independent of the nanoparticle concentration. The fabricated silver nanocomposites exhibit high plasmonic responses suitable for the development of new optoelectronic and optical sensing devices.

  16. Biosynthesis and structural characterization of silver nanoparticles from bacterial isolates

    International Nuclear Information System (INIS)

    Zaki, Sahar; El Kady, M.F.; Abd-El-Haleem, Desouky

    2011-01-01

    Graphical abstract: In this study five bacterial isolates belong to different genera were found to be able to biosynthesize silver nanoparticles. Biosynthesis and spectral characterization are reported here. Highlights: → About 300 bacterial isolates were screened for their ability to produce nanosilvers → Five of them were potential candidates for synthesis of silver nanoparticles → Production of silver nanoparticles was examined using UV-Vis, XRD, SEM and EDS. → The presence of nanoparticles with all five bacterial isolates was confirmed. -- Abstract: This study aimed to develop a green process for biosynthesis of silver nanomaterials by some Egyptian bacterial isolates. This target was achieved by screening an in-house culture collection consists of 300 bacterial isolates for silver nanoparticle formation. Through screening process, it was observed that strains belonging to Escherichia coli (S30, S78), Bacillus megaterium (S52), Acinetobacter sp. (S7) and Stenotrophomonas maltophilia (S54) were potential candidates for synthesis of silver nanoparticles. The extracellular production of silver nanoparticles by positive isolates was investigated by UV-Vis spectroscopy, X-ray diffraction (XRD), transmission electron microscope (TEM), scanning electron microscopy (SEM) and energy dispersive X-ray spectroscopy (EDS). The results demonstrated that UV-visible spectrum of the aqueous medium containing silver ion showed a peak at 420 nm corresponding to the plasmon absorbance of silver nanoparticles. Scanning electron microscopy micrograph showed formation of silver nanoparticles in the range of 15-50 nm. XRD-spectrum of the silver nanoparticles exhibited 2θ values corresponding to the silver nanocrystal that produce in hexagonal and cubic crystal configurations with different plane of orientation. In addition, the signals of the silver atoms were observed by EDS-spectrum analysis that confirms the presence of silver nanoparticles (AgNPs) in all positive

  17. Fabrication of silver nanowires via a β-cyclodextrin-derived soft template

    Directory of Open Access Journals (Sweden)

    C. Y. Liu

    2018-07-01

    Full Text Available Supramolecular β-cyclodextrin (β-CD was used as a soft template for the fabrication of long silver nanowires. A novel design using self-assembled β-CD for the reduction of silver ions was studied. The concentrations of iron chloride, silver nitrate, and the template were controlling factors for the growth of the silver nanowires. Iron chloride was used to accelerate and facilitate the formation of the silver nanowires and inhibit oxidative etching. However, an excessive concentration of Fe+3 resulted in etching of the silver nanostructures. Furthermore, the silver concentration was another controlling factor. The length of the silver nanowires increased as the concentration of silver cations increased. Nevertheless, an excess concentration of silver cations formed various silver crystalline structures. In this study, the optimal ratio between iron chloride and silver nitrate was determined to be 1:13.3. A maximum length of 20 µm was achieved using a concentration of 0.23 M for the soft template. Moreover, the junction of two growing silver nanowires was observed, forming a long fused nanowire, and some significant boundaries were observed. The observed results were further confirmed using scanning electron microscopy (SEM and transmission electron microscopy (TEM analyses. X-ray diffraction (XRD and energy dispersive spectrometer (EDS analyses were used to indicate the presence of silver and the formation of crystalline materials.

  18. Escherichia coli under Ionic Silver Stress: An Integrative Approach to Explore Transcriptional, Physiological and Biochemical Responses.

    Directory of Open Access Journals (Sweden)

    Claire Saulou-Bérion

    Full Text Available For a better understanding of the systemic effect of sub-lethal micromolar concentrations of ionic silver on Escherichia coli, we performed a multi-level characterization of cells under Ag+-mediated stress using an integrative biology approach combining physiological, biochemical and transcriptomic data. Physiological parameters, namely bacterial growth and survival after Ag+ exposure, were first quantified and related to the accumulation of intracellular silver, probed for the first time by nano secondary ion mass spectroscopy at sub-micrometer lateral resolution. Modifications in E. coli biochemical composition were evaluated under Ag+-mediated stress by in situ synchrotron Fourier-transform infrared microspectroscopy and a comprehensive transcriptome response was also determined. Using multivariate statistics, correlations between the physiological parameters, the extracellular concentration of AgNO3 and the intracellular silver content, gene expression profiles and micro-spectroscopic data were investigated. We identified Ag+-dependent regulation of gene expression required for growth (e.g. transporter genes, transcriptional regulators, ribosomal proteins, for ionic silver transport and detoxification (e.g. copA, cueO, mgtA, nhaR and for coping with various types of stress (dnaK, pspA, metA,R, oxidoreductase genes. The silver-induced shortening of the acyl chain of fatty acids, mostly encountered in cell membrane, was highlighted by microspectroscopy and correlated with the down-regulated expression of genes involved in fatty acid transport (fadL and synthesis/modification of lipid A (lpxA and arnA. The increase in the disordered secondary structure of proteins in the presence of Ag+ was assessed through the conformational shift shown for amides I and II, and further correlated with the up-regulated expression of peptidase (hfq and chaperone (dnaJ, and regulation of transpeptidase expression (ycfS and ycbB. Interestingly, as these

  19. A simple method of growing silver chloride nanocubes on silver nanowires

    International Nuclear Information System (INIS)

    Khaligh, Hadi Hosseinzadeh; Goldthorpe, Irene A

    2015-01-01

    The growth of AgCl nanocubes directly on the sidewalls of Ag nanowires is demonstrated. The nanocubes can be simply obtained through extended low temperature annealing of polyol-synthesized silver nanowires in a vacuum. The length of time and temperature of the anneal and the diameter of the nanowire affect the size and density of the nanocubes obtained. It is hypothesized that the AgCl material is supplied from reactants leftover from the silver nanowire synthesis. This novel hybrid nanostructure may have applications in areas such as photovoltaics, surface enhanced Raman spectroscopy, and photocatalysis. (fast track communication)

  20. Synthesis of New Polyether Ether Ketone Derivatives with Silver Binding Site and Coordination Compounds of Their Monomers with Different Silver Salts

    Directory of Open Access Journals (Sweden)

    Jérôme Girard

    2016-05-01

    Full Text Available Polyether ether ketone (PEEK is a well-known polymer used for implants and devices, especially spinal ones. To overcome the biomaterial related infection risks, 4-4′-difluorobenzophenone, the famous PEEK monomer, was modified in order to introduce binding sites for silver ions, which are well known for their antimicrobial activity. The complexation of these new monomers with different silver salts was studied. Crystal structures of different intermediates were obtained with a linear coordination between two pyridine groups and the silver ions in all cases. The mechanical and thermal properties of different new polymers were characterized. The synthesized PEEKN5 polymers showed similar properties than the PEEK ones whereas the PEEKN7 polymers showed similar thermal properties but the mechanical properties are not as good as the ones of PEEK. To improve these properties, these polymers were complexed with silver nitrate in order to “cross-link” with silver ions. The presence of ionic silver in the polymer was then confirmed by thermogravimetric analysis (TGA and X-ray powder diffraction (XRPD. Finally, a silver-based antimicrobial compound was successfully coated on the surface of PEEKN5.

  1. A colorimetric method for highly sensitive and accurate detection of iodide by finding the critical color in a color change process using silver triangular nanoplates

    Energy Technology Data Exchange (ETDEWEB)

    Yang, Xiu-Hua; Ling, Jian, E-mail: lingjian@ynu.edu.cn; Peng, Jun; Cao, Qiu-E., E-mail: qecao@ynu.edu.cn; Ding, Zhong-Tao; Bian, Long-Chun

    2013-10-10

    Graphical abstract: -- Highlights: •Demonstrated a new colorimetric strategy for iodide detection by silver nanoplates. •The colorimetric strategy is to find the critical color in a color change process. •The colorimetric strategy is more accurate and sensitive than common colorimetry. •Discovered a new morphological transformation phenomenon of silver nanoplates. -- Abstract: In this contribution, we demonstrated a novel colorimetric method for highly sensitive and accurate detection of iodide using citrate-stabilized silver triangular nanoplates (silver TNPs). Very lower concentration of iodide can induce an appreciable color change of silver TNPs solution from blue to yellow by fusing of silver TNPs to nanoparticles, as confirmed by UV–vis absorption spectroscopy and transmission electron microscopy (TEM). The principle of this colorimetric assay is not an ordinary colorimetry, but a new colorimetric strategy by finding the critical color in a color change process. With this strategy, 0.1 μM of iodide can be recognized within 30 min by naked-eyes observation, and lower concentration of iodide down to 8.8 nM can be detected using a spectrophotometer. Furthermore, this high sensitive colorimetric assay has good accuracy, stability and reproducibility comparing with other ordinary colorimetry. We believe this new colorimetric method will open up a fresh insight of simple, rapid and reliable detection of iodide and can find its future application in the biochemical analysis or clinical diagnosis.

  2. A colorimetric method for highly sensitive and accurate detection of iodide by finding the critical color in a color change process using silver triangular nanoplates

    International Nuclear Information System (INIS)

    Yang, Xiu-Hua; Ling, Jian; Peng, Jun; Cao, Qiu-E.; Ding, Zhong-Tao; Bian, Long-Chun

    2013-01-01

    Graphical abstract: -- Highlights: •Demonstrated a new colorimetric strategy for iodide detection by silver nanoplates. •The colorimetric strategy is to find the critical color in a color change process. •The colorimetric strategy is more accurate and sensitive than common colorimetry. •Discovered a new morphological transformation phenomenon of silver nanoplates. -- Abstract: In this contribution, we demonstrated a novel colorimetric method for highly sensitive and accurate detection of iodide using citrate-stabilized silver triangular nanoplates (silver TNPs). Very lower concentration of iodide can induce an appreciable color change of silver TNPs solution from blue to yellow by fusing of silver TNPs to nanoparticles, as confirmed by UV–vis absorption spectroscopy and transmission electron microscopy (TEM). The principle of this colorimetric assay is not an ordinary colorimetry, but a new colorimetric strategy by finding the critical color in a color change process. With this strategy, 0.1 μM of iodide can be recognized within 30 min by naked-eyes observation, and lower concentration of iodide down to 8.8 nM can be detected using a spectrophotometer. Furthermore, this high sensitive colorimetric assay has good accuracy, stability and reproducibility comparing with other ordinary colorimetry. We believe this new colorimetric method will open up a fresh insight of simple, rapid and reliable detection of iodide and can find its future application in the biochemical analysis or clinical diagnosis

  3. 21 CFR 524.802 - Enrofloxacin, silver sulfadiazine emulsion.

    Science.gov (United States)

    2010-04-01

    ... 21 Food and Drugs 6 2010-04-01 2010-04-01 false Enrofloxacin, silver sulfadiazine emulsion. 524... ANIMAL DRUGS § 524.802 Enrofloxacin, silver sulfadiazine emulsion. (a) Specifications. Each milliliter contains 5 milligrams (mg) enrofloxacin and 10 mg silver sulfadiazine. (b) Sponsor. See No. 000859 in § 510...

  4. A Case of Argyria Following Colloidal Silver Ingestion

    OpenAIRE

    Kwon, Hyok Bu; Lee, Joon Ho; Lee, Seung Ho; Lee, Ai Young; Choi, Jong Sun; Ahn, Yeon Soon

    2009-01-01

    Argyria is a rare cutaneous discoloration caused by the intake of silver or various compounds containing silver. We report a case of argyria in a 73-year-old male following ingestion of colloidal silver as an alternative medicine over 5 years. He had a diffuse, slate gray discoloration of his face and hands. A biopsy specimen from the face revealed brown-black extracellular granules in the upper dermis and between collagen bundles. We also found silver particles in the mucous of the colon. Th...

  5. Biosynthesis of Silver Nanoparticles and Its Applications

    International Nuclear Information System (INIS)

    Firdhouse, M. J.; Lalitha, P.

    2015-01-01

    Silver nanoparticles possess unique properties which find myriad applications such as antimicrobial, anticancer, larvicidal, catalytic, and wound healing activities. Biogenic syntheses of silver nanoparticles using plants and their pharmacological and other potential applications are gaining momentum owing to its assured rewards. This critical review is aimed at providing an insight into the phyto mediated synthesis of silver nanoparticles, its significant applications in various fields, and characterization techniques involved.

  6. Precise micropatterning of silver nanoparticles on plastic substrates

    International Nuclear Information System (INIS)

    Ammosova, Lena; Jiang, Yu; Suvanto, Mika; Pakkanen, Tapani A.

    2017-01-01

    Highlights: • Silver ink has been deposited on plastic substrate and silver nanoparticles have been produced. • 3D control allows both ink superimposing and deposition on complicated surfaces. • Polyol method ensures the formation of metallic mircopatterns with high uniformity. • Substrate wettability, ink volume, and sintering temperature influences deposited patterns. - Abstract: Conventional fabrication methods to obtain metal patterns on polymer substrates are restricted by high operating temperature and complex preparation steps. The present study demonstrates a simple yet versatile method for preparation of silver nanoparticle micropatterns on polymer substrates with various surface geometry. With the microworking robot technique, we were able not only to directly structure the surface, but also precisely deposit silver nanoparticle ink on the desired surface location with the minimum usage of ink material. The prepared silver nanoparticle ink, containing silver cations and polyethylene glycol (PEG) as a reducing agent, yields silver nanoparticle micropatterns on plastic substrates at low sintering temperature without any contamination. The influence of the ink behaviour was studied, such as substrate wettability, ink volume, and sintering temperature. The ultraviolet visible (UV–vis), scanning electron microscopy (SEM), and energy dispersive spectroscopy (EDS) measurements revealed the formation of micropatterns with uniformly distributed silver nanoparticles. The prepared patterns are expected to have a broad range of applications in optics, medicine, and sensor devices owing to the unique properties of silver. Furthermore, the deposition of a chemical compound, which is different from the substrate material, not only adds a fourth dimension to the prestructured three-dimensional (3D) surfaces, but also opens new application areas to the conventional surface structures.

  7. Precise micropatterning of silver nanoparticles on plastic substrates

    Energy Technology Data Exchange (ETDEWEB)

    Ammosova, Lena; Jiang, Yu; Suvanto, Mika; Pakkanen, Tapani A., E-mail: tapani.pakkanen@uef.fi

    2017-04-15

    Highlights: • Silver ink has been deposited on plastic substrate and silver nanoparticles have been produced. • 3D control allows both ink superimposing and deposition on complicated surfaces. • Polyol method ensures the formation of metallic mircopatterns with high uniformity. • Substrate wettability, ink volume, and sintering temperature influences deposited patterns. - Abstract: Conventional fabrication methods to obtain metal patterns on polymer substrates are restricted by high operating temperature and complex preparation steps. The present study demonstrates a simple yet versatile method for preparation of silver nanoparticle micropatterns on polymer substrates with various surface geometry. With the microworking robot technique, we were able not only to directly structure the surface, but also precisely deposit silver nanoparticle ink on the desired surface location with the minimum usage of ink material. The prepared silver nanoparticle ink, containing silver cations and polyethylene glycol (PEG) as a reducing agent, yields silver nanoparticle micropatterns on plastic substrates at low sintering temperature without any contamination. The influence of the ink behaviour was studied, such as substrate wettability, ink volume, and sintering temperature. The ultraviolet visible (UV–vis), scanning electron microscopy (SEM), and energy dispersive spectroscopy (EDS) measurements revealed the formation of micropatterns with uniformly distributed silver nanoparticles. The prepared patterns are expected to have a broad range of applications in optics, medicine, and sensor devices owing to the unique properties of silver. Furthermore, the deposition of a chemical compound, which is different from the substrate material, not only adds a fourth dimension to the prestructured three-dimensional (3D) surfaces, but also opens new application areas to the conventional surface structures.

  8. Spatially controlled synthesis of silver nanoparticles and nanowires by photosensitized reduction

    Energy Technology Data Exchange (ETDEWEB)

    Jradi, S; Zeng, X H; Plain, J; Royer, P; Bachelot, R; Akil, S [Laboratoire de Nanotechnologie et d' Instrumentation Optique, ICD CNRS FRE 2848, Universite de Technologie de Troyes, 12 rue Marie Curie, BP 2060, 10010 Troyes (France); Balan, L; Lougnot, D J; Soppera, O; Vidal, L, E-mail: lavinia.balan@uha.fr [Institut de Science des Materiaux de Mulhouse CNRS LRC 7228, 15 rue Jean Starcky, 68057 Mulhouse (France)

    2010-03-05

    The present paper reports on the spatially controlled synthesis of silver nanoparticles (NPs) and silver nanowires by photosensitized reduction. In a first approach, direct photogeneration of silver NPs at the end of an optical fiber was carried out. Control of both size and density of silver NPs was possible by changing the photonic conditions. In a further development, a photochemically assisted procedure allowing silver to be deposited at the surface of a polymer microtip was implemented. Finally, polymer tips terminated by silver nanowires were fabricated by simultaneous photopolymerization and silver photoreduction. The silver NPs were characterized by UV-visible spectroscopy and scanning electron microscopy.

  9. Synthesis and characterization of silver nanoparticles in AOT microemulsion system

    International Nuclear Information System (INIS)

    Zhang Wanzhong; Qiao Xueliang; Chen Jianguo

    2006-01-01

    Colloidal silver nanoparticles have been synthesized in water-in-oil microemulsion using silver nitrate solubilized in the water core of one microemulsion as source of silver ions, hydrazine hydrate solubilized in the water core of another microemulsion as reducing agent, dodecane as the oil phase, sodium bis(2-ethylhexyl) sulfosuccinate (AOT) as the surfactant. The UV-vis absorption spectra and transmission electron microscopy (TEM) have been used to trace the growth process and elucidate the structure of the silver nanoparticles. UV-vis spectra show that the Ag 4 + intermediates formed at early stages of the reaction and then the clusters grow or aggregate to larger nanoparticles. TEM micrographs confirm that the silver nanoparticles are all spherical. The resulting particles have a very narrow size distribution. Meanwhile, the diameter size of the particles is so small that the smallest mean diameter is only 1.6nm. IR results show that the surfactant molecules are strongly adsorbed on the surface of silver particles through a coordination bond between the silver atom and the sulfonic group of AOT molecules, which endows the particles with a good stability in oil solvents. As dodecane is used as oil solvent to prepare silver nanoparticles, the formed nano-silver sol is almost nontoxic. As a result, the silver nanoparticles need not be separated from the reaction solution and the silver sol may be directly used in antibacterial fields

  10. Controlled silver delivery by silver-cellulose nanocomposites prepared by a one-pot green synthesis assisted by microwaves

    Energy Technology Data Exchange (ETDEWEB)

    Silva, Ana Rosa; Unali, Gianfranco, E-mail: ana.rosa.silva@ua.pt [Structured Materials Expertise Group, Unilever Discover Port Sunlight, Quarry Road East, Bebington CH63 3JW (United Kingdom)

    2011-08-05

    Controlled silver release from cellulosic nanocomposites was achieved by synthesizing silver nanoparticles, under microwave heating for 1-15 min, in a one-pot, versatile and sustainable process in which microcrystalline cellulose simultaneously functions as reducing, stabilizing and supporting agent in water; chitin, starch and other cellulose derivatives could also be used as reducing, stabilizing and supporting agents for silver nanoparticles and the method was also found to be extensible to the preparation of noble metal (Au, Pt) and metal oxide nanoparticle (ZnO, Cu, CuO and Cu{sub 2}O) nanocomposites.

  11. Controlled silver delivery by silver-cellulose nanocomposites prepared by a one-pot green synthesis assisted by microwaves

    International Nuclear Information System (INIS)

    Silva, Ana Rosa; Unali, Gianfranco

    2011-01-01

    Controlled silver release from cellulosic nanocomposites was achieved by synthesizing silver nanoparticles, under microwave heating for 1-15 min, in a one-pot, versatile and sustainable process in which microcrystalline cellulose simultaneously functions as reducing, stabilizing and supporting agent in water; chitin, starch and other cellulose derivatives could also be used as reducing, stabilizing and supporting agents for silver nanoparticles and the method was also found to be extensible to the preparation of noble metal (Au, Pt) and metal oxide nanoparticle (ZnO, Cu, CuO and Cu 2 O) nanocomposites.

  12. Dermal exposure potential from textiles that contain silver nanoparticles.

    Science.gov (United States)

    Stefaniak, Aleksandr B; Duling, Mathew G; Lawrence, Robert B; Thomas, Treye A; LeBouf, Ryan F; Wade, Eleanor E; Virji, M Abbas

    2014-01-01

    Factors that influence exposure to silver particles from the use of textiles are not well understood. The aim of this study was to evaluate the influence of product treatment and physiological factors on silver release from two textiles. Atomic and absorbance spectroscopy, electron microscopy, and dynamic light scattering (DLS) were applied to characterize the chemical and physical properties of the textiles and evaluate silver release in artificial sweat and saliva under varying physiological conditions. One textile had silver incorporated into fiber threads (masterbatch process) and the other had silver nanoparticles coated on fiber surfaces (finishing process). Several complementary and confirmatory analytical techniques (spectroscopy, microscopy, etc.) were required to properly assess silver release. Silver released into artificial sweat or saliva was primarily in ionic form. In a simulated "use" and laundering experiment, the total cumulative amount of silver ion released was greater for the finishing process textile (0·51±0·04%) than the masterbatch process textile (0·21±0·01%); Pmasterbatch vs finishing) used to treat textile fibers was a more influential exposure factor than physiological properties of artificial sweat or saliva.

  13. Influence of silver and copper doping on luminescent properties of zinc-phosphate glasses after x-ray irradiation

    Science.gov (United States)

    Murashov, Alexander A.; Sidorov, Alexander I.; Shakhverdov, Teimur A.; Stolyarchuk, Maxim V.

    2017-11-01

    It is shown, experimentally, that in silver- and copper-containing zinc-phosphate glasses, metal molecular clusters are formed during the glass synthesis. X-ray irradiation of these glasses led to the considerable increase of its luminescence in visible spectral range. This effect is caused by the transformation of the charged metal molecular clusters into the neutral state. Luminescence and excitation spectra of the glass, doped with silver and copper simultaneously, change significantly in comparison with the spectra of glasses doped with one metal. The reason for this can be the formation of hybrid AgnCum molecular clusters. The computer simulation of the structure and optical properties of such clusters by the time-dependent density functional theory method is presented. It is shown that the optimal luminescent material for photonics application, in comparison with other studied materials, is glass, containing hybrid molecular clusters.

  14. Green synthesis of silver nanoparticles using tannins

    Science.gov (United States)

    Raja, Pandian Bothi; Rahim, Afidah Abdul; Qureshi, Ahmad Kaleem; Awang, Khalijah

    2014-09-01

    Colloidal silver nanoparticles were prepared by rapid green synthesis using different tannin sources as reducing agent viz. chestnut (CN), mangrove (MG) and quebracho (QB). The aqueous silver ions when exposed to CN, MG and QB tannins were reduced which resulted in formation of silver nanoparticles. The resultant silver nanoparticles were characterized using UV-Visible, X-ray diffraction (XRD), scanning electron microscopy (SEM/EDX), and transmission electron microscopy (TEM) techniques. Furthermore, the possible mechanism of nanoparticles synthesis was also derived using FT-IR analysis. Spectroscopy analysis revealed that the synthesized nanoparticles were within 30 to 75 nm in size, while XRD results showed that nanoparticles formed were crystalline with face centered cubic geometry.

  15. Sunlight based irradiation strategy for rapid green synthesis of highly stable silver nanoparticles using aqueous garlic (Allium sativum) extract and their antibacterial potential

    International Nuclear Information System (INIS)

    Rastogi, Lori; Arunachalam, J.

    2011-01-01

    Highlights: → We report green synthetic route for the production crystalline silver nanoparticles using garlic as both reducing and stabilizing agent. → Synthesis has been achieved by exposing the solution mixture of [Ag(NH 3 ) 2 ] + and aqueous garlic extract under sunlight. → Role of light in the synthesis process has been investigated and is discussed in detail. → The antibacterial effect of the synthesized silver nanoparticles has been assessed against both Gram classes of bacteria. → Synthesized silver colloidal solutions were found to be stable for a very long period and retained their bactericidal potential. - Abstract: A green synthetic route for the production of highly stable silver nanoparticles using aqueous garlic extract is being reported for the first time. The silver nanoparticles were synthesized by exposing a mixture of 0.1 M [Ag(NH 3 ) 2 ] + and diluted aqueous garlic extract under bright sunlight for 15 min. The garlic extract components served as both reducing and capping agents in the synthesis of silver nanoparticles while the sunlight acted as catalyst in the synthesis process. The synthesized nanoparticles were characterized using UV-visible (UV-vis) spectrophotometer; transmission electron microscopy (TEM), glancing angle X-ray diffraction (GA-XRD) and Fourier transform infra red (FTIR) spectrometry. The nanoparticles were found to be poly-dispersed in nature, spherical in shape and of 7.3 ± 4.4 nm in size. The FTIR analysis was suggestive of proteins as capping agents around the nanoparticles. The yield of synthesized nanoparticles was calculated to be approximately 80% by dry weight and 85% ICP-AES method. The synthesized silver nanoparticles exhibited good antibacterial potential against both Gram positive and Gram negative bacterial strains, as measured using well diffusion assay. Most importantly, the silver colloidal solutions thus synthesized were found to be stable for a very long period (more than a year) and retained

  16. Radiation synthesis of silver nanostructures in cotton matrix

    International Nuclear Information System (INIS)

    Chmielewska, Dagmara; Sartowska, Bożena

    2012-01-01

    Cotton is one of the most popular natural fibres, composed mainly of cellulose, which finds a wide range of applications in paper, textile and health care products industry. Researchers have focused their interest on the synthesis of cotton nanocomposites, which enhances its mechanical, thermal and antimicrobial properties by the incorporation of various nanoparticles into the cotton matrix. Silver is one of the most popular antimicrobial agents with a wide spectrum of antibacterial and antifungal activity that results from a complex mechanism of its interactions with the cells of harmful microorganism. In this work, electron beam radiation was applied to synthesise silver nanostructures in cotton fibres. Investigations of the influence of the initial silver salt concentration on the size and distribution of the obtained silver nanostructures were carried out. A detailed characterisation of these nanocomposites with SEM-BSE and EDS methods was performed. TGA and DSC analyses were performed to assess the influence of different size silver nanoparticles and the effect of electron beam irradiation on the thermal properties of cotton fibres. A microbiological investigation to determine the antibacterial activity of Ag-cotton nanocomposites was carried out. - Highlights: ► Ag NPs embedded in cotton matrix were synthesised by electron beam irradiation. ► Concentration of silver salt solution influences on size of silver nanoparticles. ► Silver content as well as irradiation affect thermal properties of cotton fabrics. ► Ag-cotton nanocomposites exhibit antibacterial activity against bacteria and fungi.

  17. Topical silver for preventing wound infection

    NARCIS (Netherlands)

    Storm-Versloot, Marja N.; Vos, Cornelis G.; Ubbink, Dirk T.; Vermeulen, Hester

    2010-01-01

    BACKGROUND: Silver-containing treatments are popular and used in wound treatments to combat a broad spectrum of pathogens, but evidence of their effectiveness in preventing wound infection or promoting healing is lacking. OBJECTIVES: To establish the effects of silver-containing wound dressings and

  18. Properties of silver chloride track detectors

    International Nuclear Information System (INIS)

    Dmitriev, V.D.; Kocherov, N.P.; Novikova, N.R.; Perfilov, N.A.

    1976-01-01

    The experiments on preparation of silver chloride track detectors and their properties are described. The results of X-ray structural analysis and data on sensitivity to charged particles and actinic light of silver chloride crystals, doped with several elements, are presented. (orig.) [de

  19. Surface-enhanced Raman scattering from silver electrodes

    International Nuclear Information System (INIS)

    Trott, G.R.

    1982-01-01

    The chemical and physical origins of the anomalously large enhancement of the Raman scattering cross section for molecules adsorbed on silver electrodes in an electrochemical cell were investigated. The effect of the chemical reactions which occur during the anodization/activation procedure were studied using the Ag-CN system. It was shown that the function of the anodization process is to roughen the electrode surface and create an activated site for bonding to the cyanide. A new nonelectrochemical technique for activating the silver surface, along with a study of the enhanced cyanide Raman scattering in different background electrolytes, showed that the Raman active entity on the surface must be a silver-cyanide complex. In order to study the physical mechanism of the enhancement, the angular dependence of the scattered radiation was measured from pyridine adsorbed on an evaporated silver electrode. Both polycrystalline and single crystalline silver films were used. The angular dependence of the scattered radiation from these films showed that the metal surface was controlling the directional properties of the scattered radiation, and not the polarizability tensor of the adsorbate. Based on these experimental results, it was concluded that for weakly roughened silver electrodes the source of the anomalous enhancement is due to a resonant Raman scattering process

  20. Silver nanoparticles in X-ray biomedical applications

    International Nuclear Information System (INIS)

    Mattea, Facundo; Vedelago, José; Malano, Francisco; Gomez, Cesar; Strumia, Miriam C.

    2017-01-01

    The fluorescence of silver nanoparticles or ions can be used for detection and dose enhancement purposes in X-ray irradiation applications. This study is focused on the full integration of the chemical synthesis of silver nanoparticles suitable for dosimetric and radiological purposes with characteristics that can be exploited in radiotherapy and radiodiagnostic. A narrow size distribution and a compatible stabilizing agent is often desired in order to obtain homogeneous behaviors in nanoparticle suspension. With the method proposed in this study, nanoparticles ranging from 5 to 20 nm were obtained. The fluorescence of aqueous suspensions of silver nanoparticles has been measured experimentally and simulated with the Monte Carlo PENELOPE code for different silver concentrations and geometrical configurations. Finally, the feasibility of using these nanoparticles for the elaboration of Fricke gel dosimeters has been tested obtaining a dose enhancement when compared with the same material irradiated below the silver K-edge. - Highlights: • A method to compare NP's fluorescence in simulations and experiments was developed. • Silver nanoparticles suitable for typical dosimetry systems were synthesized. • Concentration and depth of a Ag doped volume was measured with X-ray fluorescence. • A feasibility test of Ag NPs in Fricke gel dosimetry was performed. • Good agreement between Monte Carlo simulations and experiments was obtained.

  1. Characterization and Antibiofouling Performance Investigation of Hydrophobic Silver Nanocomposite Membranes: A Comparative Study.

    Science.gov (United States)

    Amouamouha, Maryam; Badalians Gholikandi, Gagik

    2017-11-12

    Biofouling is one of the drawbacks restricting the industrial applications of membranes. In this study, different thicknesses of silver nanoparticles with proper adhesion were deposited on poly(vinylidenefluoride) (PVDF) and polyethersulfone (PES) surfaces by physical vapor deposition (PVD). The crystalline and structural properties of modified and pure membranes were investigated by carrying out X-ray diffraction (XRD) and attenuated total reflectance Fourier transform infrared spectroscopy (ATR-FTIR). Scanning electron microscope (SEM) and atomic force microscopy (AFM) analyses were employed to examine the surface morphology and the bacteria anti-adhesion property of the membranes. The morphology measurements confirmed that even though after silver grafting the surface became more hydrophobic, the homogeneity increased and the flux reduction decreased after coating. Moreover a comparison between PVDF and PES revealed that CFU (colony forming units) reduced 64.5% on PVDF surface and 31.1% on PES surface after modification. In conclusion, PVD improved the performance of the membrane antibiofouling, and it is more promising to be used for PVDF rather than PES.

  2. Characterization and Antibiofouling Performance Investigation of Hydrophobic Silver Nanocomposite Membranes: A Comparative Study

    Directory of Open Access Journals (Sweden)

    Maryam Amouamouha

    2017-11-01

    Full Text Available Biofouling is one of the drawbacks restricting the industrial applications of membranes. In this study, different thicknesses of silver nanoparticles with proper adhesion were deposited on poly(vinylidenefluoride (PVDF and polyethersulfone (PES surfaces by physical vapor deposition (PVD. The crystalline and structural properties of modified and pure membranes were investigated by carrying out X-ray diffraction (XRD and attenuated total reflectance Fourier transform infrared spectroscopy (ATR-FTIR. Scanning electron microscope (SEM and atomic force microscopy (AFM analyses were employed to examine the surface morphology and the bacteria anti-adhesion property of the membranes. The morphology measurements confirmed that even though after silver grafting the surface became more hydrophobic, the homogeneity increased and the flux reduction decreased after coating. Moreover a comparison between PVDF and PES revealed that CFU (colony forming units reduced 64.5% on PVDF surface and 31.1% on PES surface after modification. In conclusion, PVD improved the performance of the membrane antibiofouling, and it is more promising to be used for PVDF rather than PES.

  3. Electron paramagnetic resonance studies on silver atoms and clusters in regularly interstratified clay minerals

    International Nuclear Information System (INIS)

    Yamada, H.; Tamura, K.; Shimomura, S.; Sadlo, J.; Turek, J.; Michalik, J.

    2004-01-01

    The formation and stabilization of reduced silver species in the regularly interstratified clay minerals, trioctahedral smectite/chlorite (tri-Sm/Ch) and dioctahedral smectite/mica (di-Sm/M), have been studied by electron paramagnetic resonance (EPR) spectroscopy. Both minerals loaded with Ag + cations after degassing and dehydration were γ-irradiated at 77 K and monitored by EPR as the temperature increased. Some samples were exposed to water or methanol vapor after dehydration. In both hydrated and dehydrated samples only the doublets to Ag 0 atoms were observed with no evidence of the formation of Ag clusters. However, the EPR parameter of silver atoms in both matrices are different. In tri-Sm/Ch the narrow anisotropic EPR lines overlap with the broader isotropic lines, whereas in di-Sm/M only broad lines are recorded. The hyperfine splitting - A iso (Ag 0 ) is larger in tri-Sm/Ch than in di-Sm/M. Also the stability of Ag 0 in both clay minerals is distinctly different. Ag 0 doublet in di-Sm/M disappears completely above 230 K, Whereas in tri-Sm/Ch it is still recorded at 310 K. It is proposed, basing on the EPR results that Ag 0 atoms appear at different sites in both matrices: - in tri-Sm/Ch in the middle of smectite interlayer and in hexagonal cavities in the silicate sheets of tetrahedron layer and in di-Sm.M in hexagonal cavities only. When samples had been exposed to methanol before irradiation, the silver clusters become stabilized in the interlayer sites. In tri-Sm/M matrix the silver dimer Ag 2 + formed by gamma-irradiation at 77 K is transformed to tetrameric cluster, Ag 4 + at 150 K. In di-Sm/M the radiation-induced silver agglomeration proceeds in a similar way, but with a slower rate and Ag tetramer is formed only above 190 K. In both clay minerals, Ag 4 + clusters decay above 250 K. (author)

  4. Crystal structure and optical properties of silver nanorings

    Science.gov (United States)

    Zhou, Li; Fu, Xiao-Feng; Yu, Liao; Zhang, Xian; Yu, Xue-Feng; Hao, Zhong-Hua

    2009-04-01

    We report the polyol synthesis and crystal structure characterization of silver nanorings, which have perfect circular shape, smooth surface, and elliptical wire cross-section. The characterization results show that the silver nanorings have well-defined crystal of singly twinned along the whole ring. The spatial distribution of the scattering of a silver nanoring with slanted incidence reveals the unique focus effect of the nanoring, and the focus scattering varies with the incident wavelength. The silver nanorings with perfect geometry and well-defined crystal have potential applications in nanoscaled photonics, plasmonic devices, and optical manipulation.

  5. New Strategies in the Development of Antimicrobial Coatings: The Example of Increasing Usage of Silver and Silver Nanoparticles

    Directory of Open Access Journals (Sweden)

    Leo H. Koole

    2011-01-01

    Full Text Available Bacterial infection from medical devices is a major problem and accounts for an increasing number of deaths as well as high medical costs. Many different strategies have been developed to decrease the incidence of medical device related infection. One way to prevent infection is by modifying the surface of the devices in such a way that no bacterial adhesion can occur. This requires modification of the complete surface with, mostly, hydrophilic polymeric surface coatings. These materials are designed to be non-fouling, meaning that protein adsorption and subsequent microbial adhesion are minimized. Incorporation of antimicrobial agents in the bulk material or as a surface coating has been considered a viable alternative for systemic application of antibiotics. However, the manifestation of more and more multi-drug resistant bacterial strains restrains the use of antibiotics in a preventive strategy. The application of silver nanoparticles on the surface of medical devices has been used to prevent bacterial adhesion and subsequent biofilm formation. The nanoparticles are either deposited directly on the device surface, or applied in a polymeric surface coating. The silver is slowly released from the surface, thereby killing the bacteria present near the surface. In the last decade there has been a surplus of studies applying the concept of silver nanoparticles as an antimicrobial agent on a range of different medical devices. The main problem however is that the exact antimicrobial mechanism of silver remains unclear. Additionally, the antimicrobial efficacy of silver on medical devices varies to a great extent. Here we will review existing antimicrobial coating strategies and discuss the use of silver or silver nanoparticles on surfaces that are designed to prevent medical device related infections.

  6. Synthesis and optical properties of silver nanoparticles

    Science.gov (United States)

    Singh, Jaiveer; Kaurav, Netram; Choudhary, K. K.; Okram, Gunadhor S.

    2015-07-01

    The preparation of stable, uniform silver nanoparticles by reduction of silver acetate by ethylene glycol (EG) is reported in the present paper. It is a simple process of recent interest for obtaining silver nanoparticles. The samples were characterized by X-Ray diffraction (XRD), which reveals an average particle size (D) of 38 nm. The UV/Vis spectra show that an absorption peak, occurring due to surface plasmon resonance (SPR), exists at 319 nm.

  7. Eco-friendly biosynthesis and characterization of silver nanoparticles using Tinospora cordifolia (Thunb. Miers and evaluate its antibacterial, antioxidant potential

    Directory of Open Access Journals (Sweden)

    Kandasamy Selvam

    2017-01-01

    Full Text Available The present study reports an eco-friendly, rapid and easy method for synthesis of silver nanoparticles (AgNPs using Tinospora cordifolia as a reducing and capping agent. The different factor such as silver nitrate (AgNO3 concentration, fresh weight of T. cordifolia leaf, incubation time, and pH affecting silver reduction was investigated using Response surface methodology based Box–Behnken design (BBD. The optimum conditions were AgNO3 (1.25 mM, incubation time (15 h, Temperature (45 °C and pH (4.5. T. cordifolia leaf extract can reduces silver ions into AgNPs within 30 min after heating the reaction mixture (60 °C as indicated by the developed reddish brown color. The UV-Vis spectrum of AgNPs revealed a characteristic surface plasmon resonance (SPR peak at 430 nm. AgNPs were characterized X-ray diffraction (XRD revealed their crystalline nature and their average size of nanoparticles was 30 nm as determined by using Scherrer's equation. Fourier transform infrared (FTIR spectroscopy affirmed the role of T. cordifolia leaf extract as a reducing and capping agent of silver ions. Scanning electron microscope-energy dispersive X-ray spectroscopy (SEM-EDS showed spherical shaped and confirming presence of elemental silver. The synthesized AgNPs was found higher antioxidant activity than plant extract by dot plot assay. In addition, antibacterial activity against Staphylococcus sp. (NCBI-Accession: KC688883.1 and Klebsiella sp. (NCBI-Accession: KF649832.1, showed maximum zone of inhibition of 13 mm and 12.3 mm, respectively, at 10 μg/mL of AgNPs. From the results it is suggested that the synthesized AgNPs showed higher antioxidant and antibacterial activity than the plant extract, thus signification of the present study is the production of biomedical products.

  8. Factors influencing the preparation of silver-coated glass frit with polyvinyl-pyrrolidone

    Science.gov (United States)

    Xiang, Feng; Gan, Weiping

    2018-01-01

    In this work, a new electroless silver plating method for the synthesis of silver-coated glass frit composite powders with good morphology has been proposed and the polyvinyl-pyrrolidone (PVP) was used the activating agent. It was found that the weight ratio of PVP to glass frit affected the distribution and number of silver nanoparticles. Moreover, the loading capacity of the glass frit, the pH value and reaction temperature could influence the size of the silver nanoparticles and morphology of silver on the surface of glass frit. The as-prepared silver-coated glass frit was used to prepare a silver paste using an optimized process to form silver nanoparticles with uniform size and high density. The silver paste with silver-coated glass frit increased the photovoltaic conversion efficiency of silicon solar cells by 0.271% compared with the silver paste prepared with pure glass frit. The silver nanoparticles can promoted the precipitation of Ag crystallites on the silicon wafer. Therefore, the silver-coated glass frit can further optimize and enhance the electrical performance of solar cells.

  9. Biological application of green silver nanoparticle synthesized from leaf extract of Rauvolfi serpentina Benth

    Directory of Open Access Journals (Sweden)

    Sudipta Panja

    2016-07-01

    Full Text Available Objective: To synthesize silver nanoparticles (AgNPs from the leaf extract of Rauvolfia serpentina Benth and examination of their various biological activities. Methods: An ecofriendly, easy, one step, non-toxic and inexpensive approach is used, where aqueous plant extract acts as a reducing as well as stabilizing agent of AgNPs. The nanoparticles were characterized by UV-vis spectroscopy, Fourier transform infrared spectroscopy, transmission electron microscopy, X-ray diffraction, and energy-dispersive X-ray spectroscopy analysis. Results: Surface plasmon resonance of the nanoparticles was observed at 427 nm in UV-vis spectroscopy. Fourier transform infrared spectroscopy result confirms that the plant extract acts as the reducing as well as the capping agent of the AgNPs. Transmission electron microscopy indicated that the synthesized nanoparticles are spherical in shape and approximately 7–10 nm in size, whereas the crystalline nature with face-centered cubic structure of the AgNPs was detected by X-ray diffraction analysis. Presence of silver in the AgNPs is 31.43% by weight, as confirmed by energy-dispersive X-ray spectroscopy. The synthesized AgNPs have antimicrobial activities against human pathogenic microorganisms. It also shows larvicidal activity and cytotoxicity against HeLa, MCF-7 cell lines. Conclusions: Synthesized spherical shaped AgNPs from the leaf extract of Rauvolfia serpentina Benth have antimicrobial and larvicidal activities as well as cytotoxicity against HeLa and MCF-7 cell lines.

  10. Green synthesis of silver nanoparticles using cranberry powder aqueous extract: characterization and antimicrobial properties.

    Science.gov (United States)

    Ashour, Asmaa A; Raafat, Dina; El-Gowelli, Hanan M; El-Kamel, Amal H

    2015-01-01

    The growing threat of microbial resistance against traditional antibiotics has prompted the development of several antimicrobial nanoparticles (NPs), including silver NPs (AgNPs). In this article, a simple and eco-friendly method for the synthesis of AgNPs using the cranberry powder aqueous extract is reported. Cranberry powder aqueous extracts (0.2%, 0.5%, and 0.8% w/v) were allowed to interact for 24 hours with a silver nitrate solution (10 mM) at 30°C at a ratio of 1:10. The formation of AgNPs was confirmed by ultraviolet-visible spectroscopy and their concentrations were determined using atomic absorption spectroscopy. The prepared NPs were evaluated by transmission electron microscopy, measurement of ζ-potential, and Fourier-transform infrared spectroscopy. The in vitro antimicrobial properties of AgNPs were then investigated against several microbial strains. Finally, in vivo appraisal of both wound-healing and antimicrobial properties of either plain AgNPs (prepared using 0.2% extract) or AgNP-Pluronic F-127 gel was conducted in a rat model after induction of a Staphylococcus aureus ATCC 6538P wound infection. The formation of AgNPs was confirmed by ultraviolet-visible spectroscopy, where a surface-plasmon resonance absorption peak was observed between 432 and 438 nm. Both size and concentration of the formed AgNPs increased with increasing concentration of the extracts. The developed NPs were stable, almost spherical, and polydisperse, with a size range of 1.4-8.6 nm. The negative ζ-potential values, as well as Fourier-transform infrared spectroscopy analysis, indicated the presence of a capping agent adsorbed onto the surface of the particles. In vitro antimicrobial evaluation revealed a size-dependent activity of the AgNPs against the tested organisms. Finally, AgNPs prepared using 0.2% extract exhibited a substantial in vivo healing potential for full-thickness excision wounds in rats. AgNPs were successfully synthesized from a silver nitrate solution

  11. Bactericidal properties of silver films on intramedullary implants

    Science.gov (United States)

    Gallagher, C.; Walker, C.; Cortes, E.; Hettinger, Jeffrey; Krchnavek, R.; Caputo, G. A.; Ostrum, R.

    2011-03-01

    We report on investigations of silver films on titanium and stainless steel substrates as anti-bacterial coatings for intramedullary nails used in orthopedic trauma. Silver films are deposited using a magnetron sputtering technique from a single elemental target. The deposition parameter (energy, pressure, and temperature) dependence of the silver film microstructure and adhesion will be presented. Preliminary measurements of the effectiveness of the silver films as a bactericide on S. aureus bacteria demonstrate that the films are effective destroying the bacteria. The process of this investigation will be presented. Preliminary transmission electron microscopy measurements will also presented which image healthy and damaged bacteria helping to identify the fundamental mechanism leading to the effectiveness of silver as an anti-bacterial coating. We acknowledge the support of Rowan University, College of Liberal Arts and Sciences.

  12. Subchronic oral toxicity of silver nanoparticles

    Directory of Open Access Journals (Sweden)

    Kim Yong

    2010-08-01

    Full Text Available Abstract Background The antibacterial effect of silver nanoparticles has resulted in their extensive application in health, electronic, consumer, medicinal, pesticide, and home products; however, silver nanoparticles remain a controversial area of research with respect to their toxicity in biological and ecological systems. Results This study tested the oral toxicity of silver nanoparticles (56 nm over a period of 13 weeks (90 days in F344 rats following Organization for Economic Cooperation and Development (OECD test guideline 408 and Good Laboratory Practices (GLP. Five-week-old rats, weighing about 99 g for the males and 92 g for the females, were divided into four 4 groups (10 rats in each group: vehicle control, low-dose (30 mg/kg, middle-dose (125 mg/kg, and high-dose (500 mg/kg. After 90 days of exposure, clinical chemistry, hematology, histopathology, and silver distribution were studied. There was a significant decrease (P Conclusions The target organ for the silver nanoparticles was found to be the liver in both the male and female rats. A NOAEL (no observable adverse effect level of 30 mg/kg and LOAEL (lowest observable adverse effect level of 125 mg/kg are suggested from the present study.

  13. High temperature creep of single crystals of gold, silver and solid solution gold silver 50-50

    International Nuclear Information System (INIS)

    Dorizzi, Paul

    1973-01-01

    We have studied in compression creep along a direction, single crystals of gold, silver and a 50-50 gold-silver solid solution. The experiments were made at temperatures above 0.7 Tf. We have shown that under these conditions and for these three metals a new slip system is operating: the deformation is due to the slip of dislocations having a 1/2 burgers vector on the {110} planes. For gold the activation energy for creep is equal to the self-diffusion energy. We found the same result for silver when the contribution of divacancies to the self-diffusion energy is taken into account. For the alloy the activation energy for creep is very close to the self-diffusion energy of gold in a 50-50 gold-silver alloy, gold being the slower diffusing species in the alloy. The curves giving the creep rate versus the stress can be fitted with the following laws: ε 0 = σ 5 for gold; ε 0 = σ 2,2 for silver and ε 0 = σ 2,5 for the alloy. The dislocation substructure was studied using the crystalline contrast given by the electron microprobe. This new method gives images which are very sensitive to the sub-grains misorientation. The substructure is made of parallelepipedic cells divided by tilt boundaries that are perpendicular to the {110} slip planes. (author) [fr

  14. Silver percutaneous absorption after exposure to silver nanoparticles: a comparison study of three human skin graft samples used for clinical applications.

    Science.gov (United States)

    Bianco, C; Adami, G; Crosera, M; Larese, F; Casarin, S; Castagnoli, C; Stella, M; Maina, G

    2014-11-01

    Silver nanoparticles (AgNPs) are increasingly applied to a wide range of materials for biomedical use. These enable a close contact with human skin, thanks to the large release of silver ions that is responsible for a broad spectrum of antimicrobial activity. Silver can permeate the skin; however, there are no data available on silver permeation through skin grafts commonly used in burns recovery. The aim of our study was to evaluate silver penetration using fresh, cryopreserved, and glycerolized human skin grafts after exposure to a suspension of AgNPs in synthetic sweat using a Franz diffusion cell apparatus for 24 h. Silver permeation profiles revealed a significantly higher permeation through glycerolized skin compared with both fresh and cryopreserved skin: 24-h silver flux penetration was 0.2 ng cm(-2) h(-1) (lag time: 8.2 h) for fresh skin, 0.3 ng cm(-2) h(-1) (lag time: 10.9 h) for cryopreserved skin, and 3.8 ng cm(-2) h(-1) (lag time: 6.3 h) for glycerolized skin. Permeation through glycerolized skin is significantly higher compared to both fresh and cryopreserved skin. This result can generate relevant clinical implications for burns treatment with products containing AgNPs. Copyright © 2014 Elsevier Ltd and ISBI. All rights reserved.

  15. Colloidal silver: a novel treatment for Staphylococcus aureus biofilms?

    Science.gov (United States)

    Goggin, Rachel; Jardeleza, Camille; Wormald, Peter-John; Vreugde, Sarah

    2014-03-01

    Colloidal silver is an alternative medicine consisting of silver particles suspended in water. After using this solution as a nasal spray, the symptoms of a previously recalcitrant Staphylococcus aureus (S. aureus)-infected chronic rhinosinusitis patient were observed to have improved markedly. The aim of this study was to determine whether colloidal silver has any direct bactericidal effects on these biofilms in vitro. S. aureus biofilms were grown from the ATCC 25923 reference strain on Minimum Biofilm Eradication Concentration (MBEC) device pegs, and treated with colloidal silver. Concentrations tested ranged from 10 to 150 μL colloidal silver diluted to 200 μL with sterile water in 50 μL cerebrospinal fluid (CSF) broth. Control pegs were exposed to equivalent volumes of CSF broth and sterile water. The sample size was 4 biomass values per treatment or control group. Confocal scanning laser microscopy and COMSTAT software were used to quantify biofilms 24 hours after treatment. Significant differences from control were found for all concentrations tested bar the lowest of 10 μL colloidal silver in 200 μL. At 20 μL colloidal silver, the reduction in biomass was 98.9% (mean difference between control and treatment = -4.0317 μm(3) /μm(2) , p colloidal silver (mean differences = -4.0681 and -4.0675μm(3) /μm(2) , respectively, p Colloidal silver directly attenuates in vitro S. aureus biofilms. © 2014 ARS-AAOA, LLC.

  16. The sorption of silver by poorly crystallized manganese oxides

    Science.gov (United States)

    Anderson, B.J.; Jenne, E.A.; Chao, T.T.

    1973-01-01

    The sorption of silver by poorly crystallized manganese oxides was studied using synthesized samples of three members of the manganous manganite (birnessite) group, of different chemical composition and crystallinity, and a poorly organized ??-MnO2. All four oxides sorbed significant quantities of silver. The manganous manganites showed the greatest sorption (up to 0.5 moles silver/mole MnOx at pH 7) while the ??-MnO2 showed the least (0.3 moles silver/ mole MnOx at pH 7). Sorption of silver was adequately described by the Langmuir equation over a considerable concentration range. The relationship failed at low pH values and high equilibrium silver concentrations. The sorption capacity showed a direct relationship with pH. However, the rate of increase of sorption capacity decreased at the higher pH values. Silver sorption maxima. were not directly related to surface area but appeared to vary with the amount of occluded sodium and potassium present in the manganese oxide. The important processes involved in the uptake of silver by the four poorly crystallized manganese oxides ara considered to be surface exchange for manganese, potassium and sodium as well as exchange for structural manganese, potassium and sodium. ?? 1973.

  17. Ground configurations of highly ionized silver

    International Nuclear Information System (INIS)

    Denne, B.; Hinnov, E.; Cohen, S.; Timberlake, J.

    1985-01-01

    A number of lines mostly corresponding to magnetic-dipole transitions in the n = 3 and n = 4 shells of silver have been identified. The lines were observed in the Princeton Large Torus tokamak discharges, into which silver was injected by means of the laser-ablation method

  18. Analysis of impurities in silver matrix by atomic absorption spectrophotometry

    International Nuclear Information System (INIS)

    Hussain, R.; Ishaque, M.; Mohammad, D.

    1999-01-01

    A procedure for the analysis of aluminium, chromium, copper, lead, mercury, nickel and zinc mainly using flame lens atomic absorption spectrophotometry has been described. The results depict that the presence of silver does not introduce any significant interference, when standards are prepared in matching silver matrix solutions. The calibration curves obey the straight-line equations passing through the origin. Thus the separation of silver matrix from the analyte solutions is not necessary. The method has successfully been applied for the analysis of silver foils, wires, battery grade silver oxides and silver nitrate samples containing analyte elements in the concentration range 2 to 40 ppm. (author)

  19. Chromaticity and Glossiness of Gold, Silver, and Bronze Colors

    Directory of Open Access Journals (Sweden)

    Tomohisa Matsumoto

    2011-05-01

    Full Text Available Appearance of metallic colors, such as gold, silver and bronze, depends on chromaticity and glossiness of a surface. We aim to obtain the chromaticity region of gold, silver, and bronze by using CG simulated surfaces with various glossiness. The physical glossiness was defined by the intensity ratio of specular reflectance of the surface stimulus. The observer estimated degree of perceived glossiness, and also degree of gold, silver, or bronze appearance of the stimulus with a physical glossiness and a chromaticity. The results showed that the stimulus began to appear gold, silver or bronze at a certain chromaticity point only when the stimulus had glossiness. The chromaticity range, where gold, silver and bronze colors were observed, expanded as the degree of glossiness increased. Furthermore the ratio of the degree of gold, silver or bronze colors to that of glossiness of the stimulus was found to be different among the chromaticity points of the stimulus. This ratio was highest with highly saturated stimuli for gold and bronze colors, and with achromatic stimuli for silver color.

  20. Recovery of Silver and Gold from Copper Anode Slimes

    Science.gov (United States)

    Chen, Ailiang; Peng, Zhiwei; Hwang, Jiann-Yang; Ma, Yutian; Liu, Xuheng; Chen, Xingyu

    2015-02-01

    Copper anode slimes, produced from copper electrolytic refining, are important industrial by-products containing several valuable metals, particularly silver and gold. This article provides a comprehensive overview of the development of the extraction processes for recovering silver and gold from conventional copper anode slimes. Existing processes, namely pyrometallurgical processes, hydrometallurgical processes, and hybrid processes involving the combination of pyrometallurgical and hydrometallurgical technologies, are discussed based in part on a review of the form and characteristics of silver and gold in copper anode slimes. The recovery of silver and gold in pyrometallurgical processes is influenced in part by the slag and matte/metal chemistry and related characteristics, whereas the extraction of these metals in hydrometallurgical processes depends on the leaching reagents used to break the structure of the silver- and gold-bearing phases, such as selenides. By taking advantage of both pyrometallurgical and hydrometallurgical techniques, high extraction yields of silver and gold can be obtained using such combined approaches that appear promising for efficient extraction of silver and gold from copper anode slimes.

  1. Silver Nanoparticles and Studies on Using in Poultry Nutrition

    Directory of Open Access Journals (Sweden)

    Mehmet Akif Özcan

    2015-02-01

    Full Text Available The use of colloidal silver as an antibiotic was becoming widespread until the 1940s. However, with the discovery of antibiotics, usage of colloidal silver had been reduced because of being expensive. The fact that bacteria develop resistance to antibiotics lead to prohibiton the usage of antibiotics in poultry diets as growth promoters. Based on these developments reuse of colloidal silver has been raised as an alternative to antibiotics. Without prejudice to the beneficial enzymes, colloidal silver disables certain enzymes needed by bacteria, viruses, yeasts, and fungus resulting in the destruction of these enzymes. It is reported that increase in surface area of nano-particles of silver increase antibacterial activity. The most important limitation on the widespread use of silver nanoparticles as feed additives is uncertainty about the possible toxic effects. In this review, studies for the use of colloidal silver particles in poultry feed were evaluated and tried to seek answer the question “may be a new resource that can be used as an alternative to antibiotics?

  2. The oxidative dehydrogenation of methanol to formaldehyde over silver catalysts in relation to the oxygen-silver interaction

    NARCIS (Netherlands)

    Lefferts, Leonardus; van Ommen, J.G.; Ross, J.R.H.

    1986-01-01

    The properties of silver in the oxidative dehydrogenation of methanol were studied in a flow reactor under near industrial conditions. The influences of temperature, concentration of both reactants, gas velocity, space velocity, the form of the silver catalyst and surface composition of the catalyst

  3. Hydroxyapatite-silver nanoparticles coatings on porous polyurethane scaffold

    International Nuclear Information System (INIS)

    Ciobanu, Gabriela; Ilisei, Simona; Luca, Constantin

    2014-01-01

    The present paper is focused on a study regarding the possibility of obtaining hydroxyapatite-silver nanoparticle coatings on porous polyurethane scaffold. The method applied is based on a combined strategy involving hydroxyapatite biomimetic deposition on polyurethane surface using a Supersaturated Calcification Solution (SCS), combined with silver ions reduction and in-situ crystallization processes on hydroxyapatite-polyurethane surface by sample immersing in AgNO 3 solution. The morphology, composition and phase structure of the prepared samples were characterized by scanning electron microscopy coupled with energy dispersive X-ray spectroscopy (SEM-EDX), X-ray diffraction (XRD), UV-Vis spectroscopy and X-ray photoelectron spectroscopy (XPS) measurements. The data obtained show that a layer of hydroxyapatite was deposited on porous polyurethane support and the silver nanoparticles (average size 34.71 nm) were dispersed among and even on the hydroxyapatite crystals. Hydroxyapatite/polyurethane surface acts as a reducer and a stabilizing agent for silver ions. The surface plasmon resonance peak in UV-Vis absorption spectra showed an absorption maximum at 415 nm, indicating formation of silver nanoparticles. The hydroxyapatite-silver polyurethane scaffolds were tested against Staphylococcus aureus and Escherichia coli and the obtained data were indicative of good antibacterial properties of the materials. - Highlights: • The hydroxyapatite and silver nanoparticles were grown on the polyurethane scaffold • The hydroxyapatite/polyurethane acts as reducing agent, stabilizer and matrix for Ag • The samples were well characterized by SEM-EDX, XRD, XPS, UV-visible spectroscopy • The hydroxyapatite/silver polyurethane scaffold shows antibacterial property

  4. Biosynthesis of silver nanoparticles | Silambarasan | African Journal ...

    African Journals Online (AJOL)

    friendly and exciting approach. Several microorganisms have been known to produce silver nanoparticles (Ag NPs), when silver molecules are exposed either intracellularly or extracellularly. Intracellular synthesis may accomplish a better ...

  5. Silver nasal sprays: misleading Internet marketing.

    Science.gov (United States)

    Gaslin, Michael T; Rubin, Cory; Pribitkin, Edmund A

    2008-04-01

    Long-term use of silver-containing products is associated with a permanent bluish-gray discoloration of the skin known as argyria, but they remain widely available despite several measures by the FDA to regulate them. Several recent case reports have described the occurrence of argyria as a result of using these "natural" products. We used the five most common Internet search engines to find Web sites providing information on silver-containing nasal sprays. Of 49 Web sites analyzed, only 2 (4%) mentioned argyria as a possible complication, although 30 (61%) did caution against long-term use. Eight sites (16%) made specific claims about the health benefits of the product. All 49 sites (100%) provided direct or indirect links to buy silver-containing nasal sprays. We conclude that information about silver-containing nasal sprays on the Internet is misleading and inaccurate. Therefore, otolaryngologists should be aware of the misinformation their patients may be receiving about these products.

  6. Formation of silver microbelt structures by laser irradiation of silver nanoparticles in ethanol

    Directory of Open Access Journals (Sweden)

    Zamiri R

    2011-10-01

    Full Text Available Reza Zamiri1, Azmi Zakaria1,2, Mohd Shahril Husin1, Zaidan Abd Wahab1, Forough Kalaei Nazarpour3 1Department of Physics, Faculty of Science, 2Advanced Materials and Nanotechnology Laboratory, Institute of Advanced Technology, 3Institute of Bioscience, Universiti Putra Malaysia, Serdang, Selangor, Malaysia Abstract: In the present work, we prepared silver nanoparticles by laser ablation of pure silver plate in ethanol and then irradiated the silver nanoparticles using a 532 nm Q-switched Nd:YAG pulsed laser. Transmission electron microscopic images of the sample after irradiation clearly showed formation of big structures, such as microrods and microbelts in ethanol. The obtained microbelts had a width of about 0.166 µm and a length of 1.472 µm. The reason for the formation of such a big structure is the tendency of the nanoparticles to aggregate in ethanol before irradiation, which causes fusion of the nanoparticles. Keywords: nanomaterial, laser ablation, nanoparticles

  7. Facile preparation of water dispersible polypyrrole nanotube-supported silver nanoparticles for hydrogen peroxide reduction and surface-enhanced Raman scattering

    International Nuclear Information System (INIS)

    Peng Yingjing; Qiu Lihua; Pan Congtao; Wang Cancan; Shang Songmin; Yan Feng

    2012-01-01

    Water dispersible polypyrrole nanotube/silver nanoparticle hybrids (PPyNT-COOAgNP) were synthesized via a cation-exchange method. The approach involves the surface functionalization of PPyNTs with carboxylic acid groups (-COOH), and cation-exchange with silver ions (Ag + ) and followed by the reduction of metal ions. The morphology and optical properties of the produced PPyNT-COOAgNP nanohybrids were characterized by transmission electron microscopy (TEM), Fourier transform infrared (FT-IR) spectrometer, and UV–vis spectroscopy. The as-prepared PPyNT-COOAgNP nanohybrids exhibited well-defined response to the reduction of hydrogen peroxide, and as extremely suitable substrates for surface-enhanced Raman spectroscopy (SERS) with a high enhancement factor of 6.0 × 10 7 , and enabling the detection of 10 −12 M Rhodamine 6G solution.

  8. Biosynthesis of Silver and Gold Crystals Using Grapefruit Extract

    OpenAIRE

    Chen Long; Wang Jianli; Wang Hongfeng; Qi Zhaopeng; Zheng Yuchuan; Wang Junbo; Pan Le; Chang Guanru; Yang Yongmei

    2016-01-01

    In this paper, biological synthesis of silver and gold crystals using grapefruit extract is reported. On treatment of aqueous solutions of silver nitrate and chloroauric acid with grapefruit extract, the formation of stable silver and gold particles at high concentrations is observed to occur. The silver particles formed are quasi-spherical or irregular with sizes ranging from several hundred nanometers to several microns. The gold quasi-spheres with holes on surfaces and with diameters rangi...

  9. Silver nanoparticles: Synthesis methods, bio-applications and properties.

    Science.gov (United States)

    Abbasi, Elham; Milani, Morteza; Fekri Aval, Sedigheh; Kouhi, Mohammad; Akbarzadeh, Abolfazl; Tayefi Nasrabadi, Hamid; Nikasa, Parisa; Joo, San Woo; Hanifehpour, Younes; Nejati-Koshki, Kazem; Samiei, Mohammad

    2016-01-01

    Silver nanoparticles size makes wide range of new applications in various fields of industry. Synthesis of noble metal nanoparticles for applications such as catalysis, electronics, optics, environmental and biotechnology is an area of constant interest. Two main methods for Silver nanoparticles are the physical and chemical methods. The problem with these methods is absorption of toxic substances onto them. Green synthesis approaches overcome this limitation. Silver nanoparticles size makes wide range of new applications in various fields of industry. This article summarizes exclusively scalable techniques and focuses on strengths, respectively, limitations with respect to the biomedical applicability and regulatory requirements concerning silver nanoparticles.

  10. Antibacterial Potential of Jatropha curcas Synthesized Silver Nanoparticles against Food Borne Pathogens

    Science.gov (United States)

    Chauhan, Nitin; Tyagi, Amit K.; Kumar, Pushpendar; Malik, Anushree

    2016-01-01

    The aqueous leaf extract of Jatropha curcas was used for the synthesis of silver nanoparticles (Jc-AgNps) which were further evaluated for its antibacterial potential against food borne pathogens. J. curcas leaf extract could synthesize stable silver nanoparticles (Zeta potential: -23.4 mV) with absorption band at 430 nm. Fourier transform infrared spectroscopy indicated various biological compounds responsible for capping and stabilizing Jc-AgNps in suspension, while the presence of silver was authenticated by scanning electron microscopy (SEM) equipped with energy-dispersive X-ray. Jc-AgNps were confirmed to be uniform in shape, size and behavior through dynamic light scattering, transmission electron microscopy (TEM), X-ray diffraction, SEM, and atomic force microscopy (AFM) analysis. To investigate the antibacterial activity, disk diffusion and microplate dilution assays were performed and zone of inhibition (ZOI) as well as minimum inhibitory/bactericidal concentrations (MIC/MBCs) were evaluated against selected bacterial strains. Overall results showed that Escherichia coli (ZOI: 23 mm, MBC: 0.010 mg/ml) was the most sensitive organism, whereas Staphylococcus aureus (ZOI: 14.66 mm, MBC: 0.041 mg/ml) and Salmonella enterica (ZOI: 16.66 mm, MBC: 0.041 mg/ml) were the least sensitive against Jc-AgNps. The detailed microscopic investigations using SEM, TEM, and AFM were performed to understand the antibacterial impacts of Jc-AgNps against Listeria monocytogenes. SEM and TEM analysis showed the clear deformation and disintegration of treated L. monocytogenes cells, whereas AFM established a decrease in the height and cell surface roughness (root mean square value) in the treated L. monocytogenes. PMID:27877160

  11. In vitro cytotoxity of silver: implication for clinical wound care.

    Science.gov (United States)

    Poon, Vincent K M; Burd, Andrew

    2004-03-01

    In this study, we look at the cytotoxic effects of silver on keratinocytes and fibroblasts. We have assessed the viability of monolayer cultures using the MTT and BrdU assays. The composition of the culture medium and also the culture technique were modified to assess the effects of culture 'environment' on the susceptibility of the cells to the toxic action of silver. Further in vitro, experiments were performed using tissue culture models to allow cellular behavior in three dimensional planes which more closely simulated in vivo behavior. The silver source was both silver released from silver nitrate solution but also nanocrystalline silver released from a commercially available dressing. The results show that silver is highly toxic to both keratinocytes and fibroblasts in monolayer culture. When using optimized and individualized culture the fibroblasts appear to be more sensitive to silver than keratinocytes. However, when both cell types were grown in the same medium their viability was the same. Using tissue culture models again indicated an 'environmental effect' with decreased sensitivity of the cells to the cytotoxic effects of the silver. Nevertheless in these studies the toxic dose of skin cells ranging from 7 x 10(-4) to 55 x 10(-4)% was similar to that of bacteria. These results suggest that consideration of the cytotoxic effects of silver and silver-based products should be taken when deciding on dressings for specific wound care strategies. This is important when using keratinocyte culture, in situ, which is playing an increasing role in contemporary wound and burn care.

  12. Growth and galvanic replacement of silver nanocubes in organic media

    Science.gov (United States)

    Polavarapu, Lakshminarayana; Liz-Marzán, Luis M.

    2013-05-01

    Although metal nanoparticles with various shapes can be prepared in polar organic solvents, little has been advanced toward the shape-controlled synthesis in non-polar solvents. We report a simple method for the synthesis of nearly monodisperse single crystalline silver nanocubes in a non-polar solvent (1,2-dichlorobenzene) by using oleylamine as both a reducing and capping agent. Mechanistic studies based on the time evolution of Ag nanoparticles revealed that multiply twinned nanocrystals form at the beginning of the reaction, which are gradually transformed into single crystalline Ag nanocubes by oxidative etching. Control experiments showed that the solvent plays an important role in the formation of such single crystalline Ag nanocubes. The effects of reaction temperature, oleylamine concentration, solvent, and the nature of the silver ion precursor on the morphology and monodispersity of the nanoparticles were systematically investigated. Additionally, the galvanic replacement reaction with HAuCl4 in an organic medium was implemented to prepare hydrophobic hollow Au-Ag nanocages with tunable localized surface plasmon resonances.Although metal nanoparticles with various shapes can be prepared in polar organic solvents, little has been advanced toward the shape-controlled synthesis in non-polar solvents. We report a simple method for the synthesis of nearly monodisperse single crystalline silver nanocubes in a non-polar solvent (1,2-dichlorobenzene) by using oleylamine as both a reducing and capping agent. Mechanistic studies based on the time evolution of Ag nanoparticles revealed that multiply twinned nanocrystals form at the beginning of the reaction, which are gradually transformed into single crystalline Ag nanocubes by oxidative etching. Control experiments showed that the solvent plays an important role in the formation of such single crystalline Ag nanocubes. The effects of reaction temperature, oleylamine concentration, solvent, and the nature of the

  13. Carbon paste electrode modified with silver thimerosal for the potentiometric flow injection analysis of silver(I)

    Energy Technology Data Exchange (ETDEWEB)

    Ibrahim, Hosny [Chemistry Department, Faculty of Science, Cairo University, Cairo (Egypt)]. E-mail: dr_hosny@yahoo.com

    2005-07-27

    The utility of carbon paste electrode modified with silver ethylmercurythiosalicylate (silver thimerosal) in both static mode and flow injection analysis (FIA) is demonstrated. The electrode was fully characterized in terms of composition, response time, thermal stability, usable pH and ionic strength ranges. It has been shown that diisononyl phthalate (DINP) acts as more suitable solvent mediator for preparation of the electrode, which exhibits linear response range to Ag(I) extending from 5.0 x 10{sup -7} to 1.0 x 10{sup -3} M with detection limit of 2.5 x 10{sup -7} M and Nernstian slope of 59.3 {+-} 1.0 mV/decade. The proposed chemically modified carbon paste electrode shows a very good selectivity for Ag(I) over a wide variety of metal ions and successfully used for the determination of the silver content of silver sulphadiazine (burning cream) and developed radiological films. The electrode was also used as an indicator electrode in the potentiometric titration of thiopental and thimerosal with AgNO{sub 3}.

  14. Biosynthesis, characterization, and antimicrobial applications of silver nanoparticles.

    Science.gov (United States)

    Singh, Priyanka; Kim, Yeon Ju; Singh, Hina; Wang, Chao; Hwang, Kyu Hyon; Farh, Mohamed El-Agamy; Yang, Deok Chun

    2015-01-01

    In the present study, the strain Brevibacterium frigoritolerans DC2 was explored for the efficient and extracellular synthesis of silver nanoparticles. These biosynthesized silver nanoparticles were characterized by ultraviolet-visible spectrophotometry, which detected the formation of silver nanoparticles in the reaction mixture and showed a maximum absorbance at 420 nm. In addition, field emission transmission electron microscopy revealed the spherical shape of the nanoparticles. The dynamic light scattering results indicated the average particle size of the product was 97 nm with a 0.191 polydispersity index. Furthermore, the product was analyzed by energy dispersive X-ray spectroscopy, X-ray diffraction, and elemental mapping, which displayed the presence of elemental silver in the product. Moreover, on a medical platform, the product was checked against pathogenic microorganisms including Vibrio parahaemolyticus, Salmonella enterica, Bacillus anthracis, Bacillus cereus, Escherichia coli, and Candida albicans. The nanoparticles demonstrated antimicrobial activity against all of these pathogenic microorganisms. Additionally, the silver nanoparticles were evaluated for their combined effects with the commercial antibiotics lincomycin, oleandomycin, vancomycin, novobiocin, penicillin G, and rifampicin against these pathogenic microorganisms. These results indicated that the combination of antibiotics with biosynthesized silver nanoparticles enhanced the antimicrobial effects of antibiotics. Therefore, the current study is a demonstration of an efficient biological synthesis of silver nanoparticles by B. frigoritolerans DC2 and its effect on the enhancement of the antimicrobial efficacy of well-known commercial antibiotics.

  15. Preparation, characterization, and antibacterial activity of silver nanoparticle-decorated graphene oxide nanocomposite.

    Science.gov (United States)

    Shao, Wei; Liu, Xiufeng; Min, Huihua; Dong, Guanghui; Feng, Qingyuan; Zuo, Songlin

    2015-04-01

    In this work, we report a facile and green approach to prepare a uniform silver nanoparticles (AgNPs) decorated graphene oxide (GO) nanocomposite (GO-Ag). The nanocomposite was fully characterized by transmission electron microscopy (TEM), Fourier transform infrared (FTIR) spectra, ultraviolet-visible (UV-vis) absorption spectra, and X-ray photoelectron spectroscopy (XPS), which demonstrated that AgNPs with a diameter of approximately 22 nm were uniformly and compactly deposited on GO. To investigate the silver ion release behaviors, HEPES buffers with different pH (5.5, 7, and 8.5) were selected and the mechanism of release actions was discussed in detail. The cytotoxicity of GO-Ag nanocomposite was also studied using HEK 293 cells. GO-Ag nanocomposite displayed good cytocompatibility. Furthermore, the antibacterial properties of GO-Ag nanocomposite were studied using Gram-negative E. coli ATCC 25922 and Gram-positive S. aureus ATCC 6538 by both the plate count method and disk diffusion method. The nanocomposite showed excellent antibacterial activity. These results demonstrated that GO-Ag nanocomposite, as a kind of antibacterial material, had a great promise for application in a wide range of biomedical applications.

  16. In-situ reduced silver nanoparticles on populus fiber and the catalytic application

    Energy Technology Data Exchange (ETDEWEB)

    Li, Miaomiao; Gong, Yumei, E-mail: ymgong@dlpu.edu.cn; Wang, Wenheng; Xu, Guangpeng; Liu, Yuanfa; Guo, Jing, E-mail: guojing8161@163.com

    2017-02-01

    Highlights: • A composite involved in in-situ chelating AgNPs on natural cellulose was prepared. • Polyamidoxime grafted from the cellulose adsorbed Ag+ which was reduced to AgNPs. • The composite exhibits excellent catalytic activity in reducing 4-nitrophenol. - Abstract: One kind of composites involved in silver nanoparticles (AgNPs) loading in-situ on natural populus fiber (PF) matrix was prepared by polyamidoxime (PAO) functionalized the cellulose fiber. In which PAO worked as trapping and stabilizing agents chelating silver ions and made it reduced in-situ to obtain AgNPs by borohydride at room temperature. The synthesized composites were characterized by X-ray diffraction (XRD), Fourier transform infrared spectroscopy (FT-IR), thermogravimetric analysis (TGA) and scanning electron microscopy (SEM). Moreover, the composites showed significant catalytic activity 1.87 s{sup −1} g{sup −1} and repeated usability more than 7 cycles in reducing 4-nitrophenol (4-NP) into 4-aminophenol (4-AP) detected by UV–vis spectrophotometer in aqueous solution due to the surface-enhanced immobility and large amount of AgNPs. The natural cellulose fiber provides a green platform to react and support other noble metals for wide catalytic reactions.

  17. Silver recovery aqueous techniques from diverse sources: Hydrometallurgy in recycling.

    Science.gov (United States)

    Syed, S

    2016-04-01

    The demand of silver is ever increasing with the advance of the industrialized world, whereas worldwide reserves of high grade silver ores are retreating. However, there exist large stashes of low and lean grade silver ores that are yet to be exploited. The main impression of this work was to draw attention to the most advance technologies in silver recovery and recycling from various sources. The state of the art in recovery of silver from different sources by hydrometallurgical and bio-metallurgical processing and varieties of leaching, cementing, reducing agents, peeling, electro-coagulants, adsorbents, electro-dialysis, solvent extraction, ion exchange resins and bio sorbents are highlighted in this article. It is shown that the major economic driver for recycling of depleted sources is for the recovery of silver. In order to develop an nature-friendly technique for the recovery of silver from diverse sources, a critical comparison of existing technologies is analyzed for both economic viability and environmental impact was made in this amendment and silver ion toxicity is highlighted. Copyright © 2016 Elsevier Ltd. All rights reserved.

  18. A New Silver Complex with Ofloxacin – Preliminary Study

    Directory of Open Access Journals (Sweden)

    Rusu Aura

    2016-06-01

    Full Text Available Objective: Silver complexes of antibacterial quinolones have the potential advantage of combining the antibacterial activity of silver and fluoroquinolones. The objective of our study was the preparation and the preliminary physico-chemical characterization of a silver complex with ofloxacin.

  19. Spectrum of antimicrobial activity associated with ionic colloidal silver.

    Science.gov (United States)

    Morrill, Kira; May, Kathleen; Leek, Daniel; Langland, Nicole; Jeane, La Deana; Ventura, Jose; Skubisz, Corey; Scherer, Sean; Lopez, Eric; Crocker, Ephraim; Peters, Rachel; Oertle, John; Nguyen, Krystine; Just, Scott; Orian, Michael; Humphrey, Meaghan; Payne, David; Jacobs, Bertram; Waters, Robert; Langland, Jeffrey

    2013-03-01

    Silver has historically and extensively been used as a broad-spectrum antimicrobial agent. However, the Food and Drug Administration currently does not recognize colloidal silver as a safe and effective antimicrobial agent. The goal of this study was to further evaluate the antimicrobial efficacy of colloidal silver. Several strains of bacteria, fungi, and viruses were grown under multicycle growth conditions in the presence or absence of ionic colloidal silver in order to assess the antimicrobial activity. For bacteria grown under aerobic or anaerobic conditions, significant growth inhibition was observed, although multiple treatments were typically required. For fungal cultures, the effects of ionic colloidal silver varied significantly between different genera. No viral growth inhibition was observed with any strains tested. The study data support ionic colloidal silver as a broad-spectrum antimicrobial agent against aerobic and anaerobic bacteria, while having a more limited and specific spectrum of activity against fungi.

  20. Characterization and antibacterial activity of silver exchanged regenerated NaY zeolite from surfactant-modified NaY zeolite

    Energy Technology Data Exchange (ETDEWEB)

    Salim, Mashitah Mad; Malek, Nik Ahmad Nizam Nik, E-mail: niknizam@fbb.utm.my

    2016-02-01

    The antibacterial activity of regenerated NaY zeolite (thermal treatment from cetyltrimethyl ammonium bromide (CTAB)-modified NaY zeolite and pretreatment with Na ions) loaded with silver ions were examined using the broth dilution minimum inhibitory concentration (MIC) method against Escherichia coli (E. coli ATCC 11229) and Staphylococcus aureus (S. aureus ATCC 6538). X-ray diffraction (XRD), attenuated total reflectance–Fourier transform infrared (ATR–FTIR) spectroscopy, field emission scanning electron microscopy (FESEM), energy dispersive X-ray (EDX) and chemical elemental analyses were used to characterize the regenerated NaY and AgY zeolites. The XRD patterns indicated that the calcination and addition of silver ions on regenerated NaY zeolite did not affect the structure of the regenerated NaY zeolite as the characteristic peaks of the NaY zeolite were retained, and no new peaks were observed. The regenerated AgY zeolite showed good antibacterial activity against both bacteria strains in distilled water, and the antibacterial activity of the samples increased with increasing Ag loaded on the regenerated AgY zeolite; the regenerated AgY zeolite was more effective against E. coli than S. aureus. However, the antibacterial activity of the regenerated AgY was not effective in saline solution for both bacteria. The study showed that CTAB-modified NaY zeolite materials could be regenerated to NaY zeolite using thermal treatment (550 °C, 5 h) and this material has excellent performance as an antibacterial agent after silver ions loading. - Highlights: • Thermal treatment was used to regenerate surfactant modified zeolite. • The regenerated NaY zeolite formed was added with different silver loadings. • Regenerated AgY zeolite was tested for antibacterial activity on E. coli and S. aureus. • The antibacterial activity increased with increased of the amount of silver loadings. • The zeolite structure did not change with thermal and modification

  1. Characterization and antibacterial activity of silver exchanged regenerated NaY zeolite from surfactant-modified NaY zeolite

    International Nuclear Information System (INIS)

    Salim, Mashitah Mad; Malek, Nik Ahmad Nizam Nik

    2016-01-01

    The antibacterial activity of regenerated NaY zeolite (thermal treatment from cetyltrimethyl ammonium bromide (CTAB)-modified NaY zeolite and pretreatment with Na ions) loaded with silver ions were examined using the broth dilution minimum inhibitory concentration (MIC) method against Escherichia coli (E. coli ATCC 11229) and Staphylococcus aureus (S. aureus ATCC 6538). X-ray diffraction (XRD), attenuated total reflectance–Fourier transform infrared (ATR–FTIR) spectroscopy, field emission scanning electron microscopy (FESEM), energy dispersive X-ray (EDX) and chemical elemental analyses were used to characterize the regenerated NaY and AgY zeolites. The XRD patterns indicated that the calcination and addition of silver ions on regenerated NaY zeolite did not affect the structure of the regenerated NaY zeolite as the characteristic peaks of the NaY zeolite were retained, and no new peaks were observed. The regenerated AgY zeolite showed good antibacterial activity against both bacteria strains in distilled water, and the antibacterial activity of the samples increased with increasing Ag loaded on the regenerated AgY zeolite; the regenerated AgY zeolite was more effective against E. coli than S. aureus. However, the antibacterial activity of the regenerated AgY was not effective in saline solution for both bacteria. The study showed that CTAB-modified NaY zeolite materials could be regenerated to NaY zeolite using thermal treatment (550 °C, 5 h) and this material has excellent performance as an antibacterial agent after silver ions loading. - Highlights: • Thermal treatment was used to regenerate surfactant modified zeolite. • The regenerated NaY zeolite formed was added with different silver loadings. • Regenerated AgY zeolite was tested for antibacterial activity on E. coli and S. aureus. • The antibacterial activity increased with increased of the amount of silver loadings. • The zeolite structure did not change with thermal and modification

  2. Green synthesis of silver nanoparticles and their characterization by XRD

    Science.gov (United States)

    Mehta, B. K.; Chhajlani, Meenal; Shrivastava, B. D.

    2017-05-01

    A cost effective and environment friendly technique for green synthesis of silver nanoparticles has been reported. Silver nanoparticles have been synthesized using ethanol extract of fruits of Santalum album (Family Santalaceae), commonly known as East Indian sandalwood. Fruits of S.album were collected and crushed. Ethanol was added to the crushed fruits and mixture was exposed to microwave for few minutes. Extract was concentrated by Buchi rotavaporator. To this extract, 1mM aqueous solution of silver nitrate (AgNO3) was added. After about 24 hr incubation Ag+ ions in AgNO3 solution were reduced to Ag atoms by the extract. Silver nanoparticles were obtained in powder form. X-ray diffraction (XRD) pattern of the prepared sample of silver nanoparticles was recorded The diffractogram has been compared with the standard powder diffraction card of JCPDS silver file. Four peaks have been identified corresponding to (hkl) values of silver. The XRD study confirms that the resultant particles are silver nanoparticles having FCC structure. The average crystalline size D, the value of the interplanar spacing between the atoms, d, lattice constant and cell volume have been estimated. Thus, silver nanoparticles with well-defined dimensions could be synthesized by reduction of metal ions due to fruit extract of S.album.

  3. Antimicrobial effects of zinc oxide nanoparticles modified with silver

    International Nuclear Information System (INIS)

    Lopes, Rayssa Souza; Arantes, Tatiane Moraes

    2016-01-01

    Full text: With the emergence of resistant microbial organisms to multiple antibiotics, different shapes of silver nanoparticles are among the most promising antimicrobial agents that have been developed from nanotechnology. Besides the silver nanoparticles oxide nanoparticles such as zinc oxide (ZnO) is gaining prominence due to its bactericidal properties. [1-3]. Thus, this study aims to develop biomaterials from zinc oxide nanoparticles modified with silver with antimicrobial properties. The ZnO nanoparticles were synthesized by hydrothermal processing by alkaline hydrolysis zinc acetate. Colloidal dispersions of silver nanoparticles were synthesized by the Turkevich method using sodium citrate to reduce silver nitrate at high pH and at 90 °C in the presence of zinc oxide nanoparticles. Both nanoparticles were characterized by X-ray diffraction (XRD), FTIR and Raman spectroscopy and scanning electron microscopy (SEM). The XRD and Raman spectra showed crystalline ZnO colloidal nanoparticles were obtained in the hexagonal phase. XRD measure showed cubic silver diffraction peaks cubic phase confirmed the presence of the silver nanoparticles decorated zinc oxide nanoparticles. SEM images showed ZnO nanoparticles presented a nanorod shapes with length around 80 nm decorated with spherical silver nanoparticles about 20 nm in diameter The results showed that crystalline zinc oxide colloidal nanoparticles with rod-like morphology and uniform decorated with silver spherical nanoparticles size were obtained by hydrothermal synthesis. Results of antibacterial tests indicate that the ZnO/Ag nanoparticles have antibacterial properties against both Staphylococcus aureus and Escherichia coli. The results demonstrated that the ZnO/Ag nanoparticles have potential use as biomaterials in medical/odontological applications. (author)

  4. Antimicrobial effects of zinc oxide nanoparticles modified with silver

    Energy Technology Data Exchange (ETDEWEB)

    Lopes, Rayssa Souza; Arantes, Tatiane Moraes, E-mail: rayssasouza.net@gmail.com [Universidade Federal de Goias (UFG), Goiania (Brazil)

    2016-07-01

    Full text: With the emergence of resistant microbial organisms to multiple antibiotics, different shapes of silver nanoparticles are among the most promising antimicrobial agents that have been developed from nanotechnology. Besides the silver nanoparticles oxide nanoparticles such as zinc oxide (ZnO) is gaining prominence due to its bactericidal properties. [1-3]. Thus, this study aims to develop biomaterials from zinc oxide nanoparticles modified with silver with antimicrobial properties. The ZnO nanoparticles were synthesized by hydrothermal processing by alkaline hydrolysis zinc acetate. Colloidal dispersions of silver nanoparticles were synthesized by the Turkevich method using sodium citrate to reduce silver nitrate at high pH and at 90 °C in the presence of zinc oxide nanoparticles. Both nanoparticles were characterized by X-ray diffraction (XRD), FTIR and Raman spectroscopy and scanning electron microscopy (SEM). The XRD and Raman spectra showed crystalline ZnO colloidal nanoparticles were obtained in the hexagonal phase. XRD measure showed cubic silver diffraction peaks cubic phase confirmed the presence of the silver nanoparticles decorated zinc oxide nanoparticles. SEM images showed ZnO nanoparticles presented a nanorod shapes with length around 80 nm decorated with spherical silver nanoparticles about 20 nm in diameter The results showed that crystalline zinc oxide colloidal nanoparticles with rod-like morphology and uniform decorated with silver spherical nanoparticles size were obtained by hydrothermal synthesis. Results of antibacterial tests indicate that the ZnO/Ag nanoparticles have antibacterial properties against both Staphylococcus aureus and Escherichia coli. The results demonstrated that the ZnO/Ag nanoparticles have potential use as biomaterials in medical/odontological applications. (author)

  5. Iodine, krypton and xenon retention efficiencies of silver impregnated silica gel media with different silver loadings and under different test conditions

    International Nuclear Information System (INIS)

    Motes, B.G.; Fernandez, S.J.; Tkachyk, J.W.

    1983-02-01

    The purpose of an independent study conducted by Exxon Nuclear Idaho, Co. (ENICO) was to evaluate a silver impregnated silica gel adsorption medium associated with a radioiodine air sampler developed at Brookhaven National Laboratory (BNL). Specifically, ENICO's responsibility was to evaluate the iodine and noble gas retention efficiencies of the adsorption medium. The evaluation was comprised of a four-phase program: 1) test assemblies capable of challenging the silver silica gel filled adsorber canister with radioiodine species or noble gases at flow rates up to 10 scfm and relative humidities up to 83% were constructed; 2) more than 45 kgs of the 4 and 8% silver impregnated silica gel were prepared and characterized for particle size distribution, bulk silver content, bulk density, and silver content by particle size; 3) iodine species retention efficiencies of the silver silica gel were determined; and 4 krypton and xenon retention efficiencies were measured. The iodine species retention efficiencies were greater than 90% under most conditions. A combination of flow rates >5 scfm and 4% silver loaded silica gel reduced the methyl iodide retention efficiency to less than 90%. The retention efficiencies for both krypton and xenon were on the order of 8 x 10 -2 % and were not affected greatly by any test variable except test duration. A reduced retention efficiency with increased test durations indicates adsorption equilibrium may be established within five minutes. (author)

  6. ELLIPSOMETRIC STUDY OF SEMITRANSPARENT SILVER LAYERS DEPOSITED ON GLASS

    Directory of Open Access Journals (Sweden)

    Víctor Toranzos

    2014-12-01

    Full Text Available Using ellipsometry, the film structure is characterized by optical indices n, k (visible region, 450 nm <  < 580 nm and the thickness (15 < d < 35 nm. The optical indices change with the quantity of silver deposited, obtaining effective indices of 1.0 < n < 1.8 and 1.6 < k < 2.6 to the smaller deposits that belong to a volumetric fraction between 0.35 and 0.5 of silver in the air. An effective optical thickness film decrease is observed when the silver volumetric fraction increases, and a thickness increase with close indices to solid silver when the deposited silver increases. Optical and effective medium theory indices are compared.

  7. Cytotoxicity and antimicrobial activities of green synthesized silver nanoparticles.

    Science.gov (United States)

    Lokina, S; Stephen, A; Kaviyarasan, V; Arulvasu, C; Narayanan, V

    2014-04-09

    Bio-inspired silver nanoparticles are synthesized using Malus domestica (apple) extract. Polyphenols present in the apple extract act as a reducing and capping agent to produce the silver nanoparticles. UV-Visible analysis shows the surface plasmon resonance (SPR) absorption at 420 nm. The FTIR analysis was used to identify the functional groups responsible for the bio-reduction of silver ion. The XRD and HRTEM images confirm the formation of silver nanoparticles. The minimal inhibitory concentration (MIC) of silver nanoparticles was recorded against most of the bacteria and fungus. Further, MCF-7 human breast adenocarcinoma cancer cell line was employed to observe the efficacy of cancer cell killing. Copyright © 2014 Elsevier Masson SAS. All rights reserved.

  8. Monodisperse Silver Nanoparticles Synthesized by a Microwave-Assisted Method

    International Nuclear Information System (INIS)

    Shao-Peng, Zhu; Shao-Chun, Tang; Xiang-Kang, Meng

    2009-01-01

    Silver nanoparticles with an average size of about 20 nm are synthesized in a colloidal solution with the aid of microwave irradiation. Neither additional reductant nor stabilizer is required in this microwave-assisted method. The color of the colloidal solution is found to be dark green, different from the characteristic yellow of silver colloidal solutions. The silver nanoparticles in the colloidal solution have a narrow size distribution and large yield quantity. UV-visible absorption spectroscopy analysis reveals that the as-synthesized monodisperse silver nanoparticles have exceptional optical properties. Raman spectroscopy measurements demonstrate that these silver nanoparticles exhibit a notable surface-enhanced Raman scattering ability. (cross-disciplinary physics and related areas of science and technology)

  9. Antibacterial potency of V.A.C. GranuFoam Silver(®) Dressing.

    Science.gov (United States)

    Sachsenmaier, Saskia; Peschel, Andreas; Ipach, Ingmar; Kluba, Torsten

    2013-10-01

    V.A.C.(®) GranuFoam™ therapy is regularly used in the surgical therapy of infected wounds and soft tissue injuries. Silver nanoparticles can destroy bacterial cell walls and inhibit enzymes for cell replication. Silver dressings are therefore successfully used for many indications in wound therapy. In this study, we investigated the antimicrobial potency of ionic silver released from the silver-coated V.A.C.(®) GranuFoam™ during vacuum therapy. Silver dressing was exposed to agar plates populated with bacteria to measure silver release. A total of 15 agar plates colonised with either Staphylococcus aureus populations or with Staphylococcus epidermidis, were loaded with V.A.C. GranuFoam Silver(®) Dressing polyurethane foam (KCI, San Antonio, Texas). Each of 13 pieces of silver-coated foam was applied to an agar plate. Two plates were loaded with conventional black foam without any coating. After connecting to a vacuum pump, the vacuum therapy of the 15 plates lasted 5 days. The zone of inhibition of bacterial growth around the foam was measured daily. Silver release was also determined as a function of time. At each time point, there was evidence of silver in the agar independent of bacterial colonisation. The S. aureus agar showed a consecutive increase in silver concentration from baseline upon 48 h after exposure to the negative pressure of V.A.C. therapy. An increasing mean silver level after 48, 72 and 96 h was measured under V.A.C. therapy with a peak value after 120 h. In contrast, the results from the S. epidermidis plates did not follow a linear pattern. At the beginning of vacuum therapy, we documented a rise in silver concentration. After 48-96h, the silver levels fluctuated. A maximum zone of inhibition in both bacterial colonised plates (S. aureus and S. epidermidis) was found 39 h after the start of the V.A.C. GranuFoam Silver(®) therapy. From our results, we confirmed the antimicrobial effect of the silver ions against S. aureus and S

  10. Breakthrough analysis for water disinfection using silver nanoparticles coated resin beads in fixed-bed column

    International Nuclear Information System (INIS)

    Mthombeni, Nomcebo H.; Mpenyana-Monyatsi, Lizzy; Onyango, Maurice S.; Momba, Maggie N.B.

    2012-01-01

    Highlights: ► Performance of silver nanoparticles coated resin in water disinfection is presented. ► Sigmoidal models are used to describe breakthrough curves. ► The performance of the media in water disinfection is affected by process variables. ► Test with environmental water shows the media is effective in water disinfection. - Abstract: This study demonstrates the use of silver nanoparticles coated resin beads in deactivating microbes in drinking water in a column filtration system. The coated resin beads are characterized using X-ray diffraction (XRD), Fourier transform infra-red (FT-IR), scanning electron microscope (SEM), transmission electron microscope (TEM) and energy dispersive spectroscopy (EDS) to confirm the functional groups, morphology and the presence of silver nanoparticles on the surface of the resin. The performance of the coated resin is evaluated as a function of bed mass, initial bacterial concentration and flow rate using Escherichia coli as model microbial contaminant in water. The survival curves of E. coli are expressed as breakthrough curves (BTCs), which are modeled using sigmoidal regression equations to obtain relevant rate parameters. The number of bed volumes processed at breakthrough point and capacity of the bed are used as performance indicators. Results show that performance increases with a decrease in initial bacterial concentration, an increase in flow rate and an increase in bed mass.

  11. Green Synthesis and Antimicrobial Activities of Silver Nanoparticles using Cell Free-Extracts of Enterococcus species

    Directory of Open Access Journals (Sweden)

    Iyabo C. OLADIPO

    2017-06-01

    Full Text Available Cell-free extracts of six strains of Enterococcus species obtained from fermented foods were used for the green synthesis of silver nanoparticles (AgNPs, which was characterized by UV-Vis spectroscopy, Fourier-transform infrared spectroscopy (FTIR and transmission electron microscopy (TEM. The biosynthesized AgNPs were dark brown in colour having surface plasmon resonance in the range of 420-442 nm. The spherical shaped AgNPs had sizes of 4-55 nm, whose formations were facilitated by proteins as indicated by the presence of peaks 1,635-1,637 and 3,275-3,313 cm-1 in the FTIR spectra. The energy dispersive x-ray (EDX showed prominent presence of silver in the AgNPs colloidal solution, while the selected area electron diffraction was typified by the face-centred crystalline nature of silver. The particles inhibited the growth of multi-drug resistant clinical isolates of Escherichia coli, Klebsiella pneumoniae and Proteus vulgaris, and also potentiated the activities of ampicillin, ciprofloxacin and cefuroxime in the AgNPs-antibiotic synergy studies. In addition, the prospective relevance of the particles as nanopreservative in paints was demonstrated with the inhibition of growth of Staphylococcus aureus, Pseudomonas aeruginosa, Aspergillus niger and A. flavus in AgNPs-paint admixture. This report further demonstrates the green synthesis of AgNPs by strains of Enterococcus species.

  12. Silver-functionalized carbon nanofiber composite electrodes for ibuprofen detection

    NARCIS (Netherlands)

    Manea, F.; Motoc, S.; Pop, A.; Remes, A.; Schoonman, J.

    2012-01-01

    The aim of this study is to prepare and characterize two types of silver-functionalized carbon nanofiber (CNF) composite electrodes, i.e., silver-decorated CNF-epoxy and silver-modified natural zeolite-CNF-epoxy composite electrodes suitable for ibuprofen detection in aqueous solution. Ag carbon

  13. Inkjet printing of silver citrate conductive ink on PET substrate

    International Nuclear Information System (INIS)

    Nie Xiaolei; Wang Hong; Zou Jing

    2012-01-01

    Highlights: ► A direct synthesis method of silver conductive film on PET substrate was presented. ► A stable particle-free conductive ink was prepared. ► Formation of silver-amine complex reduced the thermal decomposition temperature. ► Conductive patterns for flexible electronics were fabricated by inkjet printing. ► Silver film on PET substrate possessed highest adhesion rating even without polymer. - Abstract: Direct synthesis of silver conductive film on PET substrate by inkjet printing silver citrate conductive ink was presented in this paper. This kind of conductive ink contained silver citrate as silver precursor, 1,2-diaminopropane as complex agent dissolving the silver salt and methanol and isopropanol as a media adjusting the viscosity and surface tension. The formation of silver-amine complex reduced the decomposition temperature from 180 °C to 135 °C, thus the ink could be cured at relatively low temperature. The film reached the lowest resistivity of 17 μΩ cm after cured at 150 °C for 50 min, 3.1 μΩ cm at 230 °C and possessed high reflection and excellent adhesive property. Electrical conductivity, surface morphology and composition were investigated by four-point probe method, scanning electron microscope (SEM) and energy dispersive X-ray spectroscopy (EDS). It is demonstrated how the cured condition affects the silver film. Moreover, radio-frequency identification (RFID) antenna was fabricated by inkjet printing, which opens up routes for the flexible electronics fabrication.

  14. Detection of colloidal silver chloride near solubility limit

    Science.gov (United States)

    Putri, K. Y.; Adawiah, R.

    2018-03-01

    Detection of nanoparticles in solution has been made possible by several means; one of them is laser-induced breakdown detection (LIBD). LIBD is able to distinguish colloids of various sizes and concentrations. This technique has been used in several solubility studies. In this study, the formation of colloids in a mixed system of silver nitrate and sodium chloride was observed by acoustic LIBD. Silver chloride has low solubility limit, therefore LIBD measurement is appropriate. Silver and chloride solutions with equal concentrations, set at below and above the solubility of silver chloride as the expected solid product, were mixed and the resulting colloids were observed. The result of LIBD measurement showed that larger particles were present as more silver and chloride introduced. However, once the concentrations exceeded the solubility limit of silver chloride, the detected particle size seemed to be decreasing, hence suggested the occurrence of coprecipitation process. This phenomenon indicated that the ability of LIBD to detect even small changes in colloid amounts might be a useful tool in study on formation and stability of colloids, i.e. to confirm whether nanoparticles synthesis has been successfully performed and whether the system is stable or not.

  15. Microstructural and Z-scan measurement of silver nanoparticles

    International Nuclear Information System (INIS)

    Sivakami, R.; Dhanuskodi, S.

    2015-01-01

    Graphical abstract: - Highlights: • Novel Ag nanoparticles were prepared by hydrothermal method. • The modified forms of W-H analysis of Ag nanoparticles are reported first time. • Nonlinear optical (NLO) properties of Ag nanoflowers are reported and high nonlinearity was obtained. - Abstract: Silver nanoflowers were synthesized by the hydrothermal route. Formation of Ag nanoparticles is confirmed from the UV–vis spectrum where the surface plasmon absorption maxima are observed at 415–454 nm. FE-SEM and TEM images revealed the formation of silver nanoflowers and the flower-like silver nanostructures are estimated using transmission electron microscopy. XRD confirms that the synthesized silver is highly crystalline with face centered cubic structure. The X-ray line broadening is studied by the modified forms of Williamson–Hall analysis. The Z-scan results reveal that the flower-like silver nanostructures exhibit the nonlinear susceptilibility as 1.14 × 10 −5 esu

  16. Electrochemical supercapacitor electrode material based on polyacrylic acid/polypyrrole/silver composite

    International Nuclear Information System (INIS)

    Patil, Dipali S.; Pawar, Sachin A.; Devan, Rupesh S.; Gang, Myeng Gil; Ma, Yuon-Ron; Kim, Jin Hyeok; Patil, Pramod S.

    2013-01-01

    Highlights: • Polyacrylic acid/polypyrrole/silver composite prepared by chemical polymerization method. • The presence of Ag nanoparticles on PPY spherical granules provides the least resistance path to electron. • The specific capacitance about 145 F g −1 and 226 F g −1 observed for PPY/PAA and PPY/PAA/Ag samples, respectively. • The higher specific energy 7.18 Wh kg −1 and 17.45 Wh kg −1 observed for PPY/PAA and PPY/PAA/Ag respectively at current density of 0.5 mA cm −2 . -- Abstract: In the present work, we have synthesized polypyrrole (PPY)/polyacrylic acid (PAA)/silver (Ag) composite electrodes by chemical polymerization via a simple and cost effective dip coating technique for supercapacitor application. Fourier transform-infrared, Fourier transform-Raman, X-ray photoelectron and energy dispersive X-ray spectroscopy techniques are used for the phase identification. Surface morphology of the films is examined by field emission scanning electron microscopy, which revealed granular structure for PPY, spherical interlaced granules for PPY/PAA and granules with bright spots of Ag nanoparticles for the PPY/PAA/Ag composites. The supercapacitive behavior of the electrodes is tested in three electrode system with 0.1 M H 2 SO 4 electrolyte by using cyclic voltammetery and charge discharge test. The highest specific capacitance 226 F g −1 at 10 mV s −1 and energy density of 17.45 Wh kg −1 at 0.5 mA cm −2 is obtained for the PPY/PAA/Ag composite electrodes. Present work demonstrates an easy way of improving specific capacitance of the polymer electrodes. Thus the work will open a new avenue for designing low cost high performance devices for better supercapacitors

  17. [Silver-Russell syndrome with panhypopituitarism (author's transl)].

    Science.gov (United States)

    Stögmann, W; Borkenstein, M; Grubbauer, H M

    1978-11-01

    This is a report on a 14 years old boy suffering from the unusual combination of Silver-Russell syndrome with panhypopituitarism. The Silver-Russell syndrome is a special form of primordial dwarfism characterised by congenital asymmetry, craniofacial dysmorphy and other anomalies. Its cause is unknown, intrauterine noxes and genetical factors are discussed. In the most cases results of hormone determinations are normal, but also cases with elevated or very low hormone levels were published. This is the first report about a Silver-Russell syndrome combined with panhypopituitarism.

  18. Facile fabrication of novel silver-polypyrrole-multiwall carbon nanotubes nanocomposite for replacement of platinum in dye-sensitized solar cell

    OpenAIRE

    Shaista Rafique; Rehana Sharif; Imran Rashid; Sheeba Ghani

    2016-01-01

    This paper demonstrates the facile synthesis of high performance silver-polypyrrole-multiwall carbon nanotubes (Ag-PPy-FMWCNTS) nanocomposites via electrodeposition method on stainless steel substrate and its application as a low cost counter electrode (CE) for the precious platinum (Pt) free DSSC. The nanocomposites were characterized by variety of techniques such as Fourier transforms infrared (FTIR), X-ray diffraction, Scanning electron microscope (SEM), cyclic voltammetry (CV) and Four pr...

  19. New complexes of silver (I) with N-hydroxy-succinimide

    Science.gov (United States)

    Sibiescu, Doina; Mîţǎ, Carmen; Vizitiu, Mihaela; Crudu, Andra Manuela

    2016-12-01

    Over the last period of time silver was considerably studied due to its lower resistivity. In the field of materials science, silver was used in applications such as: microelectronics components of high - temperature superconductiviting materials, bactericidal coatings and others domains. This study presents the process of obtaining and characterization the new complexes of silver (I) with Nhydroxy- succinimide. In the process of obtaining the new complex compounds in aqous solution, first we have to look at conductometry and UV-Vis absorbtion spectroscopy in order to determine the molar ratio silver : N-hydroxysuccinimide and the stability constants. The obtained solid coordination compounds were characterized by elemental analysis, IR spectroscopy and also was investigated of their thermostability. The X-ray powder diffraction reflects that the complexes compounds of silver (I) with N-hydroxysuccinimide are amorphous. In our further studies we want to determine if the new synthetized compounds will present the same or improuved properties as in the above mentioned silver characteristics.

  20. Antibacterial nanocarriers of resveratrol with gold and silver nanoparticles

    Energy Technology Data Exchange (ETDEWEB)

    Park, Sohyun [College of Pharmacy, Inje University, 197 Inje-ro Gimhae, Gyeongnam 621-749 (Korea, Republic of); Cha, Song-Hyun [National Creative Research Initiatives (NCRI) Center for Isogeometric Optimal Design, Seoul National University, 1 Gwanak-ro, Gwanak-gu, Seoul 151-744 (Korea, Republic of); Cho, Inyoung [School of Civil, Environmental and Architecture Engineering, Korea University, 145 Anam-ro, Seongbuk-gu, Seoul 136-701 (Korea, Republic of); Park, Soomin [National Creative Research Initiatives (NCRI) Center for Isogeometric Optimal Design, Seoul National University, 1 Gwanak-ro, Gwanak-gu, Seoul 151-744 (Korea, Republic of); Park, Yohan [College of Pharmacy, Inje University, 197 Inje-ro Gimhae, Gyeongnam 621-749 (Korea, Republic of); Cho, Seonho [National Creative Research Initiatives (NCRI) Center for Isogeometric Optimal Design, Seoul National University, 1 Gwanak-ro, Gwanak-gu, Seoul 151-744 (Korea, Republic of); Park, Youmie, E-mail: youmiep@inje.ac.kr [College of Pharmacy, Inje University, 197 Inje-ro Gimhae, Gyeongnam 621-749 (Korea, Republic of); National Creative Research Initiatives (NCRI) Center for Isogeometric Optimal Design, Seoul National University, 1 Gwanak-ro, Gwanak-gu, Seoul 151-744 (Korea, Republic of)

    2016-01-01

    This study focused on the preparation of resveratrol nanocarrier systems and the evaluation of their in vitro antibacterial activities. Gold nanoparticles (AuNPs) and silver nanoparticles (AgNPs) for resveratrol nanocarrier systems were synthesized using green synthetic routes. During the synthesis steps, resveratrol was utilized as a reducing agent to chemically reduce gold and silver ions to AuNPs and AgNPs. This system provides green and eco-friendly synthesis routes that do not involve additional chemical reducing agents. Resveratrol nanocarriers with AuNPs (Res-AuNPs) and AgNPs (Res-AgNPs) were observed to be spherical and to exhibit characteristic surface plasmon resonance at 547 nm and at 412–417 nm, respectively. The mean size of the nanoparticles ranged from 8.32 to 21.84 nm, as determined by high-resolution transmission electron microscopy. The face-centered cubic structure of the Res-AuNPs was confirmed by high-resolution X-ray diffraction. Fourier-transform infrared spectra indicated that the hydroxyl groups and C=C in the aromatic ring of resveratrol were involved in the reduction reaction. Res-AuNPs retained excellent colloidal stability during ultracentrifugation and re-dispersion, suggesting that resveratrol also played a role as a capping agent. Zeta potentials of Res-AuNPs and Res-AgNPs were in the range of − 20.58 to − 48.54 mV. Generally, against Gram-positive and Gram-negative bacteria, the Res-AuNPs and Res-AgNPs exhibited greater antibacterial activity compared to that of resveratrol alone. Among the tested strains, the highest antibacterial activity of the Res-AuNPs was observed against Streptococcus pneumoniae. The addition of sodium dodecyl sulfate during the synthesis of Res-AgNPs slightly increased their antibacterial activity. These results suggest that the newly developed resveratrol nanocarrier systems with metallic nanoparticles show potential for application as nano-antibacterial agents with enhanced activities. - Highlights

  1. Silver enhances antibiotic activity against gram-negative bacteria.

    Science.gov (United States)

    Morones-Ramirez, J Ruben; Winkler, Jonathan A; Spina, Catherine S; Collins, James J

    2013-06-19

    A declining pipeline of clinically useful antibiotics has made it imperative to develop more effective antimicrobial therapies, particularly against difficult-to-treat Gram-negative pathogens. Silver has been used as an antimicrobial since antiquity, yet its mechanism of action remains unclear. We show that silver disrupts multiple bacterial cellular processes, including disulfide bond formation, metabolism, and iron homeostasis. These changes lead to increased production of reactive oxygen species and increased membrane permeability of Gram-negative bacteria that can potentiate the activity of a broad range of antibiotics against Gram-negative bacteria in different metabolic states, as well as restore antibiotic susceptibility to a resistant bacterial strain. We show both in vitro and in a mouse model of urinary tract infection that the ability of silver to induce oxidative stress can be harnessed to potentiate antibiotic activity. Additionally, we demonstrate in vitro and in two different mouse models of peritonitis that silver sensitizes Gram-negative bacteria to the Gram-positive-specific antibiotic vancomycin, thereby expanding the antibacterial spectrum of this drug. Finally, we used silver and antibiotic combinations in vitro to eradicate bacterial persister cells, and show both in vitro and in a mouse biofilm infection model that silver can enhance antibacterial action against bacteria that produce biofilms. This work shows that silver can be used to enhance the action of existing antibiotics against Gram-negative bacteria, thus strengthening the antibiotic arsenal for fighting bacterial infections.

  2. Benzoate-Induced High-Nuclearity Silver Thiolate Clusters.

    Science.gov (United States)

    Su, Yan-Min; Liu, Wei; Wang, Zhi; Wang, Shu-Ao; Li, Yan-An; Yu, Fei; Zhao, Quan-Qin; Wang, Xing-Po; Tung, Chen-Ho; Sun, Di

    2018-04-03

    Compared with the well-known anion-templated effects in shaping silver thiolate clusters, the influence from the organic ligands in the outer shell is still poorly understood. Herein, three new benzoate-functionalized high-nuclearity silver(I) thiolate clusters are isolated and characterized for the first time in the presence of diverse anion templates such as S 2- , α-[Mo 5 O 18 ] 6- , and MoO 4 2- . Single-crystal X-ray analysis reveals that the nuclearities of the three silver clusters (SD/Ag28, SD/Ag29, SD/Ag30) vary from 32 to 38 to 78 with co-capped tBuS - and benzoate ligands on the surface. SD/Ag28 is a turtle-like cluster comprising a Ag 29 shell caging a Ag 3 S 3 trigon in the center, whereas SD/Ag29 is a prolate Ag 38 sphere templated by the α-[Mo 5 O 18 ] 6- anion. Upon changing from benzoate to methoxyl-substituted benzoate, SD/Ag30 is isolated as a very complicated core-shell spherical cluster composed of a Ag 57 shell and a vase-like Ag 21 S 13 core. Four MoO 4 2- anions are arranged in a supertetrahedron and located in the interstice between the core and shell. Introduction of the bulky benzoate changes elaborately the nuclearity and arrangements of silver polygons on the shell of silver clusters, which is exemplified by comparing SD/Ag28 and a known similar silver thiolate cluster. The three new clusters emit luminescence in the near-infrared (NIR) region and show different thermochromic luminescence properties. This work presents a flexible approach to synthetic studies of high-nuclearity silver clusters decorated by different benzoates, and structural modulations are also achieved. © 2018 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim.

  3. Color and dichroism of silver-stained glasses

    International Nuclear Information System (INIS)

    Molina, Gloria; Murcia, Sonia; Molera, Judit; Roldan, Clodoaldo; Crespo, Daniel; Pradell, Trinitat

    2013-01-01

    Yellow decorations in glasses have been produced since the beginning of the fourteenth century by incorporating metallic silver nanoparticles into the glass (from a few to some tens of nanometers). The optical response of the glass-particles composite is determined by the surface plasmon resonance absorption and scattering of the nanometric metallic particles. Generally, the same color is perceived in reflection and in transmission although dichroic effects are occasionally observed. As silver-stained glasses were designed to be observed in transmission, tuning the transmission color from yellow to red was of technological interest. The relationship between the color observed both in transmission and reflection and the composition and nanostructure of regular (yellow) and dichroic (yellow and red) silver stains from the Renaissance (late fifteenth and sixteenth century, respectively) is related to the presence of a layer (of about 10–20 μm thick) of metallic silver nanoparticles (from few to 100 nm in size). The correlation between the colors observed and the silver stain nanostructure is studied with particular emphasis on the origin of the dichroic behavior. The optical response is computed and compared to the experimental data. Differences in the synthesis parameters responsible for the colors and for the dichroic behavior of the silver stain glasses are proposed. This is essential for the replication of the glass pieces which are required as replacements in the restoration/conservation of the windows but is also of broader interest

  4. Color and dichroism of silver-stained glasses

    Energy Technology Data Exchange (ETDEWEB)

    Molina, Gloria [Universitat Politecnica de Catalunya, Center for Research in NanoEngineering (Spain); Murcia, Sonia [Universidad de Valencia, Instituto de Ciencia de los Materiales (Spain); Molera, Judit [Universitat de Vic, GRTD, Escola Politecnica Superior (Spain); Roldan, Clodoaldo [Universidad de Valencia, Instituto de Ciencia de los Materiales (Spain); Crespo, Daniel; Pradell, Trinitat, E-mail: Trinitat.Pradell@upc.edu [Universitat Politecnica de Catalunya, Center for Research in NanoEngineering (Spain)

    2013-09-15

    Yellow decorations in glasses have been produced since the beginning of the fourteenth century by incorporating metallic silver nanoparticles into the glass (from a few to some tens of nanometers). The optical response of the glass-particles composite is determined by the surface plasmon resonance absorption and scattering of the nanometric metallic particles. Generally, the same color is perceived in reflection and in transmission although dichroic effects are occasionally observed. As silver-stained glasses were designed to be observed in transmission, tuning the transmission color from yellow to red was of technological interest. The relationship between the color observed both in transmission and reflection and the composition and nanostructure of regular (yellow) and dichroic (yellow and red) silver stains from the Renaissance (late fifteenth and sixteenth century, respectively) is related to the presence of a layer (of about 10-20 {mu}m thick) of metallic silver nanoparticles (from few to 100 nm in size). The correlation between the colors observed and the silver stain nanostructure is studied with particular emphasis on the origin of the dichroic behavior. The optical response is computed and compared to the experimental data. Differences in the synthesis parameters responsible for the colors and for the dichroic behavior of the silver stain glasses are proposed. This is essential for the replication of the glass pieces which are required as replacements in the restoration/conservation of the windows but is also of broader interest.

  5. Silver-polypyrrole-silver structure fabrication and characterization over wide temperature

    Science.gov (United States)

    Taunk, Manish; Chand, Subhash

    2012-10-01

    Semiconducting polymers have applications in many electronic devices such as organic light emitting diodes, organic solar cells, field effect transistors, memory devices, and many flexible electronic devices. In the organic electronic devices, metal-organic semiconductor interface plays a major role in determining the electrical transport. Earlier most of the studies were performed on electrochemically polymerized polypyrrole. In this study polypyrrole-poly(vinylidene) fluoride composite films synthesized by chemical oxidation method were used for contact fabrication in sandwiched geometry. Electrical transport measurements have been carried out in silver-polypyrrole-silver sandwich structure to understand conduction mechanism in the temperature range of 10-300K. It has been observed that Ag forms Ohmic contact with PPy and bulk controlled space charge limited conduction was the dominant current transport process in these sandwiched structures.

  6. Solid-state superionic stamping with silver iodide-silver metaphosphate glass

    International Nuclear Information System (INIS)

    Jacobs, K E; Hsu, K H; Han, X; Azeredo, B P; Ferreira, P M; Kumar, A; Fang, N X

    2011-01-01

    This paper demonstrates and analyzes the new use of the glassy solid electrolyte AgI-AgPO 3 for direct nanopatterning of thin silver films with feature resolutions of 30 nm. AgI-AgPO 3 has a high room temperature ionic conductivity with Ag + as the mobile ion, leading to silver etch/patterning rates of up to 20 nm s -1 at an applied bias of 300 mV. The glass can be melt-processed at temperatures below 200 deg. C, providing a facile and economical pathway for creating large area stamps, including the 25 mm 2 stamps shown in this study. Further, the glass is sufficiently transparent to permit integration with existing tools such as aligners and imprint tools, enabling high overlay registration accuracy and facilitating insertion into multi-step fabrication recipes.

  7. Synthesis of nanosized silver colloids by microwave dielectric heating

    Indian Academy of Sciences (India)

    Silver nanosized crystallites have been synthesized in aqueous and polyols viz., ethylene glycol and glycerol, using a microwave technique. Dispersions of colloidal silver have been prepared by the reduction of silver nitrate both in the presence and absence of stabilizer poly(vinylpyrolidone) (PVP). It was observed that ...

  8. Propagation of plasmons in designed single crystalline silver nanostructures

    DEFF Research Database (Denmark)

    Kumar, Shailesh; Lu, Ying-Wei; Huck, Alexander

    2012-01-01

    We demonstrate propagation of plasmons in single crystalline silver nanostructures fabricated using a combination of a bottom-up and a top-down approach. Silver nanoplates of thickness around 65 nm and a surface area of about 100 μm2 are made using a wet chemical method. Silver nanotips...

  9. Green chemistry for the preparation of L-cysteine functionalized silver nanoflowers

    Science.gov (United States)

    Ma, Xinfu; Guo, Qingquan; Xie, Yu; Ma, Haixiang

    2016-05-01

    The preparation of size- and shape-controlled metallic nanostructures in an eco-friendly manner has been regarded as one of the key issues in nanoscience research today. In this paper, biosynthesis of silver nanoflowers (AgNFs) using L-cysteine as reducing and capping agent in alkaline solution via 70 °C water bath for 4 h has been demonstrated. The formation of L-cys-AgNPs was observed visually by color change of the samples. The prepared samples were characterized by UV-vis spectroscopy, Transmission electron microscopy (TEM) spectroscopy, X-ray diffraction (XRD) and Fourier transform infrared spectroscopy (FTIR). These results indicate that single-crystalline of AgNFs have been successfully synthesized.

  10. Silver electrocrystallization at polyaniline-coated electrodes

    International Nuclear Information System (INIS)

    Ivanov, S.; Tsakova, V.

    2004-01-01

    The initial stage of silver electrocrystallization is studied at polyaniline (PANI)-coated platinum electrodes by means of potentiostatic current transients and electron microscopic observations. Data for the nucleation frequency and the number of active sites for nucleation are obtained by interpreting of current transients according to the theory for nucleation and 3D growth under diffusion limitations. It is found that depending on the PANI layers thickness, d, two different regimes for silver nucleation and growth exist. For thin PANI coatings (d 0.3 μm), silver nucleation occurs with a two orders of magnitude lower nucleation frequency at active sites located most probably at the polymer surface, their number remaining constant for thicknesses up to 1.4 μm. It is established that reduction of the PANI layer occurring in parallel with the silver electrodeposition does not influence the number of active sites for nucleation. The results obtained by interpretation of current transients are in good agreement with results for the number of crystals obtained by microscopic observation

  11. Reinforcement of Conducting Silver-based Materials

    Directory of Open Access Journals (Sweden)

    Heike JUNG

    2014-09-01

    Full Text Available Silver is a well-known material in the field of contact materials because of its high electrical and thermal conductivity. However, due to its bad mechanical and switching properties, silver alloys or reinforcements of the ductile silver matrix are required. Different reinforcements, e. g. tungsten, tungsten carbide, nickel, cadmium oxide or tin oxide, are used in different sectors of switches. To reach an optimal distribution of these reinforcements, various manufacturing techniques (e. g. powder blending, preform infiltration, wet-chemical methods, internal oxidation are being used for the production of these contact materials. Each of these manufacturing routes offers different advantages and disadvantages. The mechanical alloying process displays a successful and efficient method to produce particle-reinforced metal-matrix composite powders. This contribution presents the obtained fine disperse microstructure of tungsten-particle-reinforced silver composite powders produced by the mechanical alloying process and displays this technique as possible route to provide feedstock powders for subsequent consolidation processes. DOI: http://dx.doi.org/10.5755/j01.ms.20.3.4889

  12. The lifecycle of silver in the United States in 2009

    Science.gov (United States)

    Goonan, Thomas G.

    2014-01-01

    Because silver is highly sought after for its properties, which make it eminently suitable for new technology applications, a clear understanding of the flow of materials in the economy, the historical context, and trends for the future can help project the future of silver in the economy of the United States. Silver has many properties that are desired in today’s economy. It has superior electrical and heat conductivity, chemical stability, high-temperature strength, malleability, and other characteristics that make it important in high-tech electronic and other industrial applications. Because it is relatively scarce as a natural resource and is easily coined, silver historically has been an important monetary metal. As knowledge of silver chemistry has increased, many industrial end uses have been developed. This study reviews the flows of silver into various end uses and examines the nature of the end use with respect to the silver properties desired and the ability of the end use to produce recyclable end-of-life materials. For the most part, silver can be profitably recycled, but the recycling activity is helped by tipping fees (fees imposed on scrap generators by scrap collectors for taking the material) for materials that might otherwise be regulated as hazardous wastes. New high-technology applications use silver in nanolevel amounts, leading to a potential for dissipative loss and reduced recycling capability.

  13. Synthesis of silver nanoparticles using medicinal Zizyphus xylopyrus bark extract

    Science.gov (United States)

    Sumi Maria, Babu; Devadiga, Aishwarya; Shetty Kodialbail, Vidya; Saidutta, M. B.

    2015-08-01

    In the present paper, biosynthesis of silver nanoparticles using Zizyphus xylopyrus bark extract is reported. Z. xylopyrus bark extract is efficiently used for the biosynthesis of silver nanoparticles. UV-Visible spectroscopy showed surface plasmon resonance peaks in the range 413-420 nm confirming the formation of silver nanoparticles. Different factors affecting the synthesis of silver nanoparticles like methodology for the preparation of extract, concentration of silver nitrate solution used for biosynthesis and initial pH of the reaction mixture were studied. The extract prepared with 10 mM AgNO3 solution by reflux extraction method at optimum initial pH of 11, resulted in higher conversion of silver ions to silver nanoparticles as compared with those prepared by open heating or ultrasonication. SEM analysis showed that the biosynthesized nanoparticles are spherical in nature and ranged from 60 to 70 nm in size. EDX suggested that the silver nanoparticles must be capped by the organic components present in the plant extract. This simple process for the biosynthesis of silver nanoparticles using aqueous extract of Z. xylopyrus is a green technology without the usage of hazardous and toxic solvents and chemicals and hence is environment friendly. The process has several advantages with reference to cost, compatibility for its application in medical and drug delivery, as well as for large-scale commercial production.

  14. Inkjet printing of silver citrate conductive ink on PET substrate

    Energy Technology Data Exchange (ETDEWEB)

    Nie Xiaolei [Key Laboratory for Green Chemical Technology of Ministry of Education, School of Chemical Engineering and Technology, Tianjin University, Tianjin 300072 (China); Wang Hong, E-mail: hongwang@tju.edu.cn [Key Laboratory for Green Chemical Technology of Ministry of Education, School of Chemical Engineering and Technology, Tianjin University, Tianjin 300072 (China); Zou Jing [Key Laboratory for Green Chemical Technology of Ministry of Education, School of Chemical Engineering and Technology, Tianjin University, Tianjin 300072 (China)

    2012-11-15

    Highlights: Black-Right-Pointing-Pointer A direct synthesis method of silver conductive film on PET substrate was presented. Black-Right-Pointing-Pointer A stable particle-free conductive ink was prepared. Black-Right-Pointing-Pointer Formation of silver-amine complex reduced the thermal decomposition temperature. Black-Right-Pointing-Pointer Conductive patterns for flexible electronics were fabricated by inkjet printing. Black-Right-Pointing-Pointer Silver film on PET substrate possessed highest adhesion rating even without polymer. - Abstract: Direct synthesis of silver conductive film on PET substrate by inkjet printing silver citrate conductive ink was presented in this paper. This kind of conductive ink contained silver citrate as silver precursor, 1,2-diaminopropane as complex agent dissolving the silver salt and methanol and isopropanol as a media adjusting the viscosity and surface tension. The formation of silver-amine complex reduced the decomposition temperature from 180 Degree-Sign C to 135 Degree-Sign C, thus the ink could be cured at relatively low temperature. The film reached the lowest resistivity of 17 {mu}{Omega} cm after cured at 150 Degree-Sign C for 50 min, 3.1 {mu}{Omega} cm at 230 Degree-Sign C and possessed high reflection and excellent adhesive property. Electrical conductivity, surface morphology and composition were investigated by four-point probe method, scanning electron microscope (SEM) and energy dispersive X-ray spectroscopy (EDS). It is demonstrated how the cured condition affects the silver film. Moreover, radio-frequency identification (RFID) antenna was fabricated by inkjet printing, which opens up routes for the flexible electronics fabrication.

  15. Silver removal process development for the MEO cleanout

    International Nuclear Information System (INIS)

    Hsu, P.C.; Chiba, Z.; Schumacher, B.J.; Murguia, L.C.; Adamson, M.G.

    1996-02-01

    The Mediated Electrochemical Oxidation (MEO) system is an aqueous process which treats low-level mixed wastes by oxidizing the organic components of he waste into carbon dioxide and water. As MEO system continues to run, dissolved ash and radionuclides slowly accumulate in the anolyte and must be removed to maintain process efficiency. At such time, all of the anolyte is pumped into a still feed tank, and the silver ions need to be removed before sending the solution to a thin-film evaporator for further concentration. The efficiency of removing silver ions in the solution needs to be high enough such that the residual silver sent to Final Forms would be less than 1% wt. The purpose of this work is to develop an efficient process to remove silver ions during the MEO cleanout and to demonstrate the capability of centrifugation for separating small silver chloride particles from the solution. This development work includes lab scale experiments and bench scale tests. This report summarizes the results

  16. Simple and environmentally friendly preparation and size control of silver nanoparticles using an inhomogeneous system with silver-containing glass powder

    International Nuclear Information System (INIS)

    Mori, Yasutaka; Tagawa, Toshio; Fujita, Masanori; Kuno, Toyohiko; Suzuki, Satoshi; Matsui, Takemi; Ishihara, Masayuki

    2011-01-01

    A simple, environmentally friendly method for preparing highly size-controlled spherical silver nanoparticles was developed that involved heating a mixture of silver-containing glass powder and an aqueous solution of glucose. The stabilizing agent for silver nanoparticles was found to be caramel, which was generated from glucose when preparing the nanoparticles. The particle size was independent of the reaction time, but it increased proportionally with the square root of the glucose concentration in the range 0.25–8.0 wt% (corresponding to particle sizes of 3.48 ± 1.83 to 20.0 ± 2.76 nm). Difference of the generation mechanism of silver nanoparticles between this inhomogeneous system and a system in which Ag + was homogeneously dispersed was discussed.

  17. Iodine, krypton and xenon retention efficiencies of silver impregnated silica gel media with different silver loadings and under different test conditions

    Energy Technology Data Exchange (ETDEWEB)

    Motes, B G; Fernandez, S J; Tkachyk, J W

    1983-02-01

    The purpose of an independent study conducted by Exxon Nuclear Idaho, Co. (ENICO) was to evaluate a silver impregnated silica gel adsorption medium associated with a radioiodine air sampler developed at Brookhaven National Laboratory (BNL). Specifically, ENICO's responsibility was to evaluate the iodine and noble gas retention efficiencies of the adsorption medium. The evaluation was comprised of a four-phase program: 1) test assemblies capable of challenging the silver silica gel filled adsorber canister with radioiodine species or noble gases at flow rates up to 10 scfm and relative humidities up to 83% were constructed; 2) more than 45 kgs of the 4 and 8% silver impregnated silica gel were prepared and characterized for particle size distribution, bulk silver content, bulk density, and silver content by particle size; 3) iodine species retention efficiencies of the silver silica gel were determined; and 4 krypton and xenon retention efficiencies were measured. The iodine species retention efficiencies were greater than 90% under most conditions. A combination of flow rates >5 scfm and 4% silver loaded silica gel reduced the methyl iodide retention efficiency to less than 90%. The retention efficiencies for both krypton and xenon were on the order of 8 x 10{sup -2}% and were not affected greatly by any test variable except test duration. A reduced retention efficiency with increased test durations indicates adsorption equilibrium may be established within five minutes. (author)

  18. Facile synthesis of silver/silver thiocyanate (Ag@AgSCN plasmonic nanostructures with enhanced photocatalytic performance

    Directory of Open Access Journals (Sweden)

    Xinfu Zhao

    2017-12-01

    Full Text Available A nanostructured plasmonic photocatalyst, silver/silver thiocyanate (Ag@AgSCN, has been prepared by a simple precipitation method followed by UV-light-induced reduction. The ratio of Ag to silver thiocyanate (AgSCN can be controlled by simply adjusting the photo-induced reduction time. The formation mechanism of the product was investigated based on the time-dependent experiments. Further experiments indicated that the prepared Ag@AgSCN nanostructures with an atomic ratio of Ag/AgSCN = 0.0463 exhibited high photocatalytic activity and long-term stability for the degradation of oxytetracycline (84% under visible-light irradiation. In addition to the microstructure and high specific surface area, the enhanced photocatalytic activity was mainly caused by the surface plasmon resonance of Ag nanoparticles, and the high stability of AgSCN resulted in the long-term stability of the photocatalyst product.

  19. Green biosynthesis of silver nanoparticles using pomegranate peel and inhibitory effects of the nanoparticles on aflatoxin production

    International Nuclear Information System (INIS)

    Monira, A.O.; Mohammad, M.A.; Ashraf, H.A.

    2017-01-01

    In this work, pomegranate peel has been used as a natural and safe method for biosynthesis of silver nanoparticles. The synthesis of silver nanoparticles was confirmed using UV spectroscopy, which showed a peak around a wavelength of 437 nm. The morphology showed spherical and monodispersed nanoparticles with a size range between 5-50 nm. Using scanning electron microscopy (SEM) and transmission electron microscopy (TEM), X-ray diffraction (XRD) experiments revealed their crystalline nature. Active functional groups in the synthesized silver nanoparticles were determined using Fourier transform infrared (FTIR) spectrometers contained four bands at 3281.21 cm/sup -1/, possibly indicating the participationof O-H functional group. The peak take place at 1,636.22 cm/sup -1/ may be pointed to C = N bending in the amide group or C = O stretching in carboxyl. Transfer in this peak (from 1,641 to 1,643 cm/sup -1/) shown the possible role of amino groups or carboxyl in nanoparticle synthesis. The peaks at 431.95 and 421.28 cm/sup -1/ be related to AgNPs bonding with oxygen from hydroxyl groups which confirm the role of pomegranate peel as a reducing agent. Furthermore, we investigated effects of these nanoparticles on aflatoxin B1 production by the fungus Aspergillus flavus, isolated from hazelnut. The results found that aflatoxin production in all A. flavus isolates decreased with an increase in the concentration of silver nanoparticles. Maximum suppression of aflatoxin production was recorded at a nanoparticle concentration of 150 ppm. (author)

  20. Silver Nanoparticles (AgNP impregnated filters in drinking water disinfection

    Directory of Open Access Journals (Sweden)

    Rus Alexandru

    2017-01-01

    Full Text Available This paper describes how simple portable devices could eliminate water pathogens by using Silver Nanoparticles, based on their antimicrobial properties. Recent studies indicated that silver nanoparticles can achieve up to 100% antibacterial activity removal. Results are showing that Silver Nanoparticles retention in the filter structure, E. coli bacteria removal, water quality and water flow rate must be evaluated as main efficiency indicators of the designed filters, in order to obtain the optimal filter. To apply the antimicrobial property of Silver in drinking-water treatment, a filter is produced using Additive Manufacturing techniques and coated with different concentrations of silver solutions.