WorldWideScience

Sample records for transference number tion

  1. tion of tuberculous lymphadenopathy, paraspinal masses

    African Journals Online (AJOL)

    Enrique

    of tuberculous infection, and his name continues in use to describe the spondylitis associated with this infec- tion (Pott's disease). Tuberculous spondylitis is defined as an infection caused by Mycobac-. An unusual presenta- tion of tuberculous lymphadenopathy, paraspinal masses with spondylitis in a young boy.

  2. tion, violence and warfare.

    African Journals Online (AJOL)

    allow for its selection from generation to generation; (ii) that all ... fore assume thal the varill1lce in the balance between tlwse sets of .... But then, as the Introduction informs us (p.18), the important .... 11lere are some inserts referring to more recent work, such .... tion (much of it new) is presented for each order, family and.

  3. 49 CFR 1242.13 - Administration-communica- tions (account XX-19-05).

    Science.gov (United States)

    2010-10-01

    ... 49 Transportation 9 2010-10-01 2010-10-01 false Administration-communica- tions (account XX-19-05... Structures § 1242.13 Administration—communica- tions (account XX-19-05). Separate common administration... (XX-19-20) ...

  4. Need. for Sto.ndo.rdizo.tion

    African Journals Online (AJOL)

    1969-05-13

    Need. for Sto.ndo.rdizo.tion. Speech delivered at a dinner given by the Ethiopian Association of Engineers and. Architects on May 13, 1969. By Lars Wallden, UN adviser on standardization, Ministry of Commerce, Industry & Tourism and. Gebre Kiros Habtu, mechanical engineer, Ministry of Commerce, Industry & Tourism.

  5. Oxygen ion transference number of doped lanthanum gallate

    Science.gov (United States)

    Wang, Shizhong; Wu, Lingli; Gao, Jie; He, Qiong; Liu, Meilin

    The transference numbers for oxygen ion (t O) in several LaGaO 3-based materials are determined from oxygen concentration cells using the materials as the electrolyte, including La 0.8Sr 0.2Ga 0.8Mg 0.2O 3- δ (LSGM8282), La 0.8Sr 0.2Ga 0.8Mg 0.15Co 0.05O 3- δ (LSGMC5) and La 0.8Sr 0.2Ga 0.8Mg 0.115Co 0.085O 3- δ (LSGMC8.5). Analysis indicates that the accuracy in determination of oxygen ion transference number depends on the electrode polarization resistances of the concentration cell as well as the transport properties of the materials studied. For example, the ratio of open cell voltage to Nernst potential is a good approximation to the ionic transference number for LSGM8282. However, this approximation is no longer adequate for LSGMC5 and LSGMC8.5; the effect of electrode polarization resistances must be taken into consideration in estimation of the ionic transference numbers. In particular, the ionic transference number for LSGMC5 is as high as 0.99, suggesting that it is a promising electrolyte material for low-temperature solid-state electrochemical applications.

  6. w—rine ˜ound—ry l—yer simul—tion —nd verifi™—tion during ...

    Indian Academy of Sciences (India)

    omp—red with the o˜serv—tion—l. —n—lysis using ˜oth the s™hemesF „he profiles of temE per—ture —nd humidity —s o˜t—ined from ƒ—g—r u—ny—. ueywordsF w—rine ˜ound—ry l—yerY p—r—meteris—tionY fyfwiˆY nonElo™—l ™losureY ...

  7. Oxygen ion transference number of doped lanthanum gallate

    Energy Technology Data Exchange (ETDEWEB)

    Wang, Shizhong; Wu, Lingli; Gao, Jie; He, Qiong [Department of Chemistry, College of Chemistry and Chemical Engineering, Xiamen University, Xiamen, Fujian 361005 (China); Liu, Meilin [School of Materials Science and Engineering, Georgia Institute of Technology, Atlanta, GA 30332-0245 (United States)

    2008-12-01

    The transference numbers for oxygen ion (t{sub O}) in several LaGaO{sub 3}-based materials are determined from oxygen concentration cells using the materials as the electrolyte, including La{sub 0.8}Sr{sub 0.2}Ga{sub 0.8}Mg{sub 0.2}O{sub 3-{delta}} (LSGM8282), La{sub 0.8}Sr{sub 0.2}Ga{sub 0.8}Mg{sub 0.15}Co{sub 0.05}O{sub 3-{delta}} (LSGMC5) and La{sub 0.8}Sr{sub 0.2}Ga{sub 0.8}Mg{sub 0.115}Co{sub 0.085}O{sub 3-{delta}} (LSGMC8.5). Analysis indicates that the accuracy in determination of oxygen ion transference number depends on the electrode polarization resistances of the concentration cell as well as the transport properties of the materials studied. For example, the ratio of open cell voltage to Nernst potential is a good approximation to the ionic transference number for LSGM8282. However, this approximation is no longer adequate for LSGMC5 and LSGMC8.5; the effect of electrode polarization resistances must be taken into consideration in estimation of the ionic transference numbers. In particular, the ionic transference number for LSGMC5 is as high as 0.99, suggesting that it is a promising electrolyte material for low-temperature solid-state electrochemical applications. (author)

  8. The effect of the number of transferred embryos, the interval between nuclear transfer and embryo transfer, and the transfer pattern on pig cloning efficiency.

    Science.gov (United States)

    Rim, Chol Ho; Fu, Zhixin; Bao, Lei; Chen, Haide; Zhang, Dan; Luo, Qiong; Ri, Hak Chol; Huang, Hefeng; Luan, Zhidong; Zhang, Yan; Cui, Chun; Xiao, Lei; Jong, Ui Myong

    2013-12-01

    To improve the efficiency of producing cloned pigs, we investigated the influence of the number of transferred embryos, the culturing interval between nuclear transfer (NT) and embryo transfer, and the transfer pattern (single oviduct or double oviduct) on cloning efficiency. The results demonstrated that transfer of either 150-200 or more than 200NT embryos compared to transfer of 100-150 embryos resulted in a significantly higher pregnancy rate (48 ± 16, 50 ± 16 vs. 29 ± 5%, pcloning efficiency is achieved by adjusting the number and in vitro culture time of reconstructed embryos as well as the embryo transfer pattern. Copyright © 2013 Elsevier B.V. All rights reserved.

  9. Waste Transfer Stations

    DEFF Research Database (Denmark)

    Christensen, Thomas Højlund

    2011-01-01

    tion and transport is usually the most costly part of any waste management system; and when waste is transported over a considerable distance or for a long time, transferring the waste from the collection vehicles to more efficient transportation may be economically beneficial. This involves...... a transfer station where the transfer takes place. These stations may also be accessible by private people, offering flexibility to the waste system, including facilities for bulky waste, household hazardous waste and recyclables. Waste transfer may also take place on the collection route from small...... describes the main features of waste transfer stations, including some considerations about the economical aspects on when transfer is advisable....

  10. Flow boiling heat transfer at low liquid Reynolds number

    International Nuclear Information System (INIS)

    Weizhong Zhang; Takashi Hibiki; Kaichiro Mishima

    2005-01-01

    Full text of publication follows: In view of the significance of a heat transfer correlation of flow boiling at conditions of low liquid Reynolds number or liquid laminar flow, and very few existing correlations in principle suitable for such flow conditions, this study is aiming at developing a heat transfer correlation of flow boiling at low liquid Reynolds number conditions. The obtained results are as follows: 1. A new heat transfer correlation has been developed for saturated flow boiling at low liquid Reynolds number conditions based on superimposition of two boiling mechanisms, namely convective boiling and nucleate boiling. In the new correlation, two terms corresponding to the mechanisms of nucleate boiling and convective boiling are obtained from the pool boiling correlation by Forster and Zuber and the analytical annular flow model by Hewitt and Hall-Taylor, respectively. 2. An extensive database was collected for saturated flow boiling heat transfer at low liquid Reynolds number conditions, including data for different channels geometries (circular and rectangular), flow orientations (vertical and horizontal), and working fluids (water, R11, R12, R113). 3. An extensive comparison of the new correlation with the collected database shows that the new correlation works satisfactorily with the mean deviation of 16.6% for saturated flow boiling at low liquid Reynolds number conditions. 4. The detailed discussion reveals the similarity of the newly developed correlation for flow boiling at low liquid Reynolds number to the Chen correlation for flow boiling at high liquid Reynolds number. The Reynolds number factor F can be analytically deduced in this study. (authors)

  11. Direct numerical simulation of MHD heat transfer in high Reynolds number turbulent channel flows for Prandtl number of 25

    International Nuclear Information System (INIS)

    Yamamoto, Yoshinobu; Kunugi, Tomoaki

    2015-01-01

    Graphical abstract: - Highlights: • For the first time, the MHD heat transfer DNS database corresponding to the typical nondimensional parameters of the fusion blanket design using molten salt, were established. • MHD heat transfer correlation was proposed and about 20% of the heat transfer degradation was evaluated under the design conditions. • The contribution of the turbulent diffusion to heat transfer is increased drastically with increasing Hartmann number. - Abstract: The high-Prandtl number passive scalar transport of the turbulent channel flow imposed a wall-normal magnetic field is investigated through the large-scale direct numerical simulation (DNS). All essential turbulence scales of velocities and temperature are resolved by using 2048 × 870 × 1024 computational grid points in stream, vertical, and spanwise directions. The heat transfer phenomena for a Prandtl number of 25 were observed under the following flow conditions: the bulk Reynolds number of 14,000 and Hartman number of up to 28. These values were equivalent to the typical nondimensional parameters of the fusion blanket design proposed by Wong et al. As a result, a high-accuracy DNS database for the verification of magnetohydrodynamic turbulent heat transfer models was established for the first time, and it was confirmed that the heat transfer correlation for a Prandtl number of 5.25 proposed by Yamamoto and Kunugi was applicable to the Prandtl number of 25 used in this study

  12. Direct numerical simulation of MHD heat transfer in high Reynolds number turbulent channel flows for Prandtl number of 25

    Energy Technology Data Exchange (ETDEWEB)

    Yamamoto, Yoshinobu, E-mail: yamamotoy@yamanashi.ac.jp [Department of Mechanical Systems Engineering, University of Yamanashi, 4-3-11 Takeda, Kofu 400-8511 (Japan); Kunugi, Tomoaki [Department of Nuclear Engineering, Kyoto University Yoshida, Sakyo, Kyoto 606-8501 (Japan)

    2015-01-15

    Graphical abstract: - Highlights: • For the first time, the MHD heat transfer DNS database corresponding to the typical nondimensional parameters of the fusion blanket design using molten salt, were established. • MHD heat transfer correlation was proposed and about 20% of the heat transfer degradation was evaluated under the design conditions. • The contribution of the turbulent diffusion to heat transfer is increased drastically with increasing Hartmann number. - Abstract: The high-Prandtl number passive scalar transport of the turbulent channel flow imposed a wall-normal magnetic field is investigated through the large-scale direct numerical simulation (DNS). All essential turbulence scales of velocities and temperature are resolved by using 2048 × 870 × 1024 computational grid points in stream, vertical, and spanwise directions. The heat transfer phenomena for a Prandtl number of 25 were observed under the following flow conditions: the bulk Reynolds number of 14,000 and Hartman number of up to 28. These values were equivalent to the typical nondimensional parameters of the fusion blanket design proposed by Wong et al. As a result, a high-accuracy DNS database for the verification of magnetohydrodynamic turbulent heat transfer models was established for the first time, and it was confirmed that the heat transfer correlation for a Prandtl number of 5.25 proposed by Yamamoto and Kunugi was applicable to the Prandtl number of 25 used in this study.

  13. Electrica.l Insta.lla.tions in Multi-storey Buildings

    African Journals Online (AJOL)

    different diversity factors of the individual sections. However .... auxiliary drives for the heating system and ventila- tion, as well as ... For multi-storey buildings preference is generally given to ... Group p. f correction is expedient if large banks of.

  14. Desa.lina.tion - A Supply Source of Wa.ter

    African Journals Online (AJOL)

    of water you can retain is very small. We in Israel, I ..... per day at an acceptable price under oexita1in condi- tions. Another .... as to create sufficient penetration of the sun rays. This device ... customer with a steady quantity and quality of water.

  15. Mercury and Mining Produc­tion in New Spain (1810-1821

    Directory of Open Access Journals (Sweden)

    María Eugenia Romero Sotelo

    2000-01-01

    Full Text Available This work presents results of research on financing, transporta­tion and allotment of quicksilver in New Spain's mining industry during 1810-1821. The author points out that the  war of lnde­pendence was the main cause of the mining crisis, describes the effect of this conflict on production organization and distribu­tion of colonial silver industry, and claims that one of the strongest blows on mining was the Spanish government's credit with­ drawal. Furthermore, the study offers data on amounts of mercury available for mining, costs of its transportation, and details of its allotment and distribution to royal mines.

  16. Supervised Transfer Sparse Coding

    KAUST Repository

    Al-Shedivat, Maruan

    2014-07-27

    A combination of the sparse coding and transfer learn- ing techniques was shown to be accurate and robust in classification tasks where training and testing objects have a shared feature space but are sampled from differ- ent underlying distributions, i.e., belong to different do- mains. The key assumption in such case is that in spite of the domain disparity, samples from different domains share some common hidden factors. Previous methods often assumed that all the objects in the target domain are unlabeled, and thus the training set solely comprised objects from the source domain. However, in real world applications, the target domain often has some labeled objects, or one can always manually label a small num- ber of them. In this paper, we explore such possibil- ity and show how a small number of labeled data in the target domain can significantly leverage classifica- tion accuracy of the state-of-the-art transfer sparse cod- ing methods. We further propose a unified framework named supervised transfer sparse coding (STSC) which simultaneously optimizes sparse representation, domain transfer and classification. Experimental results on three applications demonstrate that a little manual labeling and then learning the model in a supervised fashion can significantly improve classification accuracy.

  17. Baryon number transfer in hadronic interactions

    International Nuclear Information System (INIS)

    Arakelyan, G.H.; Capella, A.; Kaidalov, A.B.; Shabelski, Yu.M.

    2002-01-01

    The process of baryon number transfer due to string junction propagation in rapidity space is analyzed. It has a significant effect on the net baryon production in pp collisions at mid-rapidities and an even larger effect in the forward hemisphere in the cases of πp and γp interactions. The results of numerical calculations in the framework of the quark-gluon string model are in reasonable agreement with the data. (orig.)

  18. Energy transfers in dynamos with small magnetic Prandtl numbers

    KAUST Repository

    Kumar, Rohit

    2015-06-25

    We perform numerical simulation of dynamo with magnetic Prandtl number Pm = 0.2 on 10243 grid, and compute the energy fluxes and the shell-to-shell energy transfers. These computations indicate that the magnetic energy growth takes place mainly due to the energy transfers from large-scale velocity field to large-scale magnetic field and that the magnetic energy flux is forward. The steady-state magnetic energy is much smaller than the kinetic energy, rather than equipartition; this is because the magnetic Reynolds number is near the dynamo transition regime. We also contrast our results with those for dynamo with Pm = 20 and decaying dynamo. © 2015 Taylor & Francis.

  19. A modified stanton number for heat transfer through fabric surface

    Directory of Open Access Journals (Sweden)

    Zhang Shen-Zhong

    2015-01-01

    Full Text Available The Stanton number was originally proposed for describing heat transfer through a smooth surface. A modified one is suggested in this paper to take into account non-smooth surface or fractal surface. The emphasis is put on the heat transfer through fabrics.

  20. Some inequalities for the Bell numbers

    Indian Academy of Sciences (India)

    Feng Qi

    2017-08-19

    Aug 19, 2017 ... Bell number determinant; product; inequality; generating function; derivative; absolutely monotonic function; completely monotonic func- tion; logarithmically absolutely monotonic function; logarithmically completely monotonic function; Stirling number of the second kind; induction; Faà di Bruno formula;.

  1. urf e meteorologi l instrument tion for fyfwi

    Indian Academy of Sciences (India)

    g uge on o rd the shipAF prom t les P nd Q we see th t y nd l rgeD the slow sensors sele ted for fyfwi re the s me s those used in the swi system ex ept the humidity sensorF sn the swi. systemD otroni s humidity sensor is used long with w oung r di tion shield where s in the fyfwi set upD w oung humidity sensor with w oung.

  2. Simulations of the near-wall heat transfer at medium prandtl numbers

    International Nuclear Information System (INIS)

    Bergant, R.; Tiselj, I.

    2003-01-01

    A heat transfer from a wall to a fluid at low Reynolds and Prandtl numbers can be described by means of Direct Numerical Simulation (DNS). At higher Prandtl numbers (Pr > 20) so-called under-resolved DNS can be performed to carry out turbulent heat transfer. Three different under-resolved DNSs of the fully developed turbulent flow in the channel at Reynolds number Re = 4580 and at Prandtl numbers Pr = 100, Pr = 200 and Pr 500 are presented in this paper. These simulations describe all velocity scales, but they are not capable to describe smallest temperature scales. However, very good agreement of heat transfer coefficients was achieved with the correlation of Hasegawa [1] or with the correlation of Papavassiliou [2], who performed DNS by means of Lagrangian method instead of Eulerian method, which was applied in our simulations. We estimate that under resolved DNS simulations based on Eulerian method are useful up to approximately Pr = 200, whereas at Pr = 500 instabilities appear due to the unresolved smallest thermal scales. (author)

  3. xumeri l simul tion of the m rine ound ry l yer hr teristi s over the fy of ...

    Indian Academy of Sciences (India)

    se surf e temper ture nd surf e rel tive humidity th t re olle ted on o rd y g r u ny F he tive onve tion se @from QIst y to er EE. Pnd xovem erA here fter referred s g seEI nd the suppressed onve tion se @Qrd EE Sth xovem erA referred s g seEPF por g seEID the model initi l ondiE tions re prep red using the verti l profiles ...

  4. Determination of transference numbers in ionic conductors by the EMF method with active load

    International Nuclear Information System (INIS)

    Gorelov, V.P.

    1988-01-01

    Method for determining transference numbers in ionic conductors by means of measuring EMF of concentration cell with accout of polarization resistance of electrodes is suggested. The method enables to determine easily very small transference numbers of electron component against the background of predominating ionic conductivity. To illustrate the method there were determined transference numbers for the sample of industrial solid electrolyte in the cell; O 2 Pt|0.91ZrO 2 +0.09Y 2 O 3 |Pt, air

  5. snerti lEhissip tion flux me surements over south f y of feng l during ...

    Indian Academy of Sciences (India)

    his p per des ri es me surement of irEse p r meters nd estim tion of sensi le nd l tent he t fluxes y the snerti lEhissip tion99 te hnique over south f y of feng lF he d t were olle ted on. y g r u ny during fyfwi E ilot ruise during the period PQrd y to er IWWV to IPth xovem er. IWWV over south f y of feng lF he fluxes re estim ...

  6. Energy transfers in dynamos with small magnetic Prandtl numbers

    KAUST Repository

    Kumar, Rohit; Verma, Mahendra K.; Samtaney, Ravi

    2015-01-01

    We perform numerical simulation of dynamo with magnetic Prandtl number Pm = 0.2 on 10243 grid, and compute the energy fluxes and the shell-to-shell energy transfers. These computations indicate that the magnetic energy growth takes place mainly due

  7. Live birth rate and number of blastomeres on day 2 transfer

    DEFF Research Database (Denmark)

    Azzarello, Antonino; Hoest, Thomas; Hay-Schmidt, Anders

    2016-01-01

    -lapse assessment, ACDs and/or recalculated fragmentation >25 % was recognized in 106/578 (18.3 %) of transferred embryos. None of them resulted in a live birth. After exclusion of these embryos, the number of blastomeres on the day of transfer did not have any impact on life birth rate. Conclusion Conventional...

  8. Message transfer in a communication network

    Indian Academy of Sciences (India)

    Examples of transport processes on networks include the traffic of informa- tion packets [1–4], transport processes on biological networks [5,6], and road traffic. ... for this system. In the case of single message transfer, we study the dependence of average travel times on the hub density, and find that travel times fall off as a.

  9. IMPROVEMENT METHOD OF GENE TRANSFER IN Kappaphycus alvarezii

    Directory of Open Access Journals (Sweden)

    St. Hidayah Triana

    2016-11-01

    Full Text Available Method of foreign gene transfer in red seaweed Kappaphycus alvarezii has been reported, however, li-mited number of transgenic F0 (broodstock was obtained. This study was conducted to improve the method of gene transfer mediated by Agrobacterium tumefaciens in order to obtain high percentage of K. alvarezii transgenic. Superoxide dismutase gene from Melastoma malabatrichum (MmCu/Zn-SOD was used as model towards increasing adaptability of K. alvarezii to environmental stress. The treat-ments were the culture media and recovery duration, and each treatment consisted of three replica-tions. The best method was co-cultivation using liquid media, then recovery was conducted in liquid media for 10 days. That treatment allowed higher transformation percentage (90%, regeneration effi-ciency (90%, putative bud efficiency (100%, number of buds and explants sprouted (100% and transgenic explants (100%. The transgenic explants showed an amplification PCR product of Mm-Cu/Zn-SOD gene fragment, whereas the non-transgenic explants showed no amplification product.  All results revealed that suitable method of transgenesis for K. alvarezii has been developed. Keywords:       Agrobacterium tumefaciens, culture media, Kappaphycus alvarezii, recovery duration, transformation

  10. CFD analysis on heat transfer in low Prandtl number fluid flows

    Energy Technology Data Exchange (ETDEWEB)

    Borgohain, A.; Maheshwari, N.K.; Vijayan, P.K.; Sinha, R.K., E-mail: bananta@barc.gov.in [Bhabha Atomic Research Centre, Reactor Engineering Div., Trombay, Mumbai (India)

    2011-07-01

    Use of Computational Fluid Dynamics (CFD) code is helpful for designing liquid metal cooled nuclear reactor systems. Before using any CFD code proper evaluation of the code is essential for simulation of heat transfer in liquid metal flow. In this paper, a review of the literature on the correlations for liquid metal heat transfer is carried out and a comparison with experimental results is performed. CFD analysis is carried out using PHOENICS-3.6 code on heat transfer in molten Lead Bismuth Eutectic (LBE) flowing through tube. Turbulent flow analyses are carried out for the evaluation of the CFD code. The CFD results are compared with the available correlations. Assessment of various turbulence models and correlations for turbulent Prandtl number in the tube geometry are carried out. From the analysis it is found that, the CFD prediction can be improved with modified turbulent Prandtl number in the turbulence models. (author)

  11. Mass transfer controlled reactions in packed beds at low Reynolds numbers

    Energy Technology Data Exchange (ETDEWEB)

    Fedkiw, P.S.

    1978-12-01

    The a priori prediction and correlation of mass-transfer rates in transport limited, packed-bed reactors at low Reynolds numbers is examined. The solutions to the governing equations for a flow-through porous electrode reactor indicate that these devices must operate at a low space velocity to suppress a large ohmic potential drop. Packed-bed data for the mass-transfer rate at such low Reynolds numbers were examined and found to be sparse, especially in liquid systems. Prior models to simulate the solid-void structure in a bed are reviewed. Here the bed was envisioned as an array of sinusoidal periodically constricted tubes (PCT). Use of this model has not appeared in the literature. The velocity field in such a tube should be a good approximation to the converging-diverging character of the velocity field in an actual bed. The creeping flow velocity profiles were calculated. These results were used in the convective-diffusion equation to find mass transfer rates at high Peclet number for both deep and shallow beds, for low Peclet numbers in a deep bed. All calculations assumed that the reactant concentration at the tube surface is zero. Mass-transfer data were experimentally taken in a transport controlled, flow-through porous electrode to test the theoretical calculations and to provide data resently unavailable for deeper beds. It was found that the sinusoidal PCT model could not fit the data of this work or that available in the literature. However, all data could be adequately described by a model which incorporates a channelingeffect. The bed was successfully modeled as an array of dual sized straight tubes.

  12. Patients' Preference for Number of Embryos Transferred During IVF ...

    African Journals Online (AJOL)

    Background: The Human Fertilization and Embryology Authority is considering limiting the number of embryos that can be transferred to single embryo per cycle as has been done in several European countries, with the aim of reducing the rate of multiple pregnancies and its attendant complications following in vitro ...

  13. Culture promotes transfer of thyroid epithelial cell hyperplasia and proliferation by reducing regulatory T cell numbers.

    Science.gov (United States)

    Kayes, Timothy D; Braley-Mullen, Helen

    2013-01-01

    IFN-γ(-/-) NOD.H-2h4 mice develop a spontaneous autoimmune thyroid disease, thyroid epithelial cell hyperplasia and proliferation (TEC H/P) when given NaI in their water for 7+ mo. TEC H/P can be transferred to IFN-γ(-/-) SCID mice by splenocytes from mice with severe (4-5+) disease, and transfer of TEC H/P is improved when splenocytes are cultured prior to transfer. Older (9+ mo) IFN-γ(-/-) NOD.H-2h4 mice have elevated numbers of FoxP3(+) T reg cells, up to 2-fold greater than younger (2 mo) mice. During culture, the number of T reg decreases and this allows the improved transfer of TEC H/P. Co-culture with IL-2 prior to transfer prevents the decrease of T reg and improves their in vitro suppressive ability resulting in reduced TEC H/P in recipient mice. Therefore, culturing splenocytes improves transfer of TEC H/P by reducing the number of T reg and IL-2 inhibits transfer by preserving T reg number and function. Copyright © 2013 Elsevier Inc. All rights reserved.

  14. European Scientific Notes. Volume 37, Numbers 12.

    Science.gov (United States)

    1983-12-01

    being flown on GAMMA-i, a Russian the local matter is not in the form of mission planned for 1984-85 as a French- ordinary baryonic mass (e.g., neutrons...probe the structure of the electric field in collective ion acceleration experiments. Energy-Transfer Processes in Condensed Matter ...Denmark) examined distribu- fields in straits regions. tions of suspended matter and fluore- Other areas of straits research are scence in straits

  15. Effects of Schmidt number on near-wall turbulent mass transfer in pipe flow

    Energy Technology Data Exchange (ETDEWEB)

    Kang, Chang Woo; Yang, Kyung Soo [Inha University, Incheon (Korea, Republic of)

    2014-12-15

    Large Eddy simulation (LES) of turbulent mass transfer in circular-pipe flow has been performed to investigate the characteristics of turbulent mass transfer in the near-wall region. We consider a fully-developed turbulent pipe flow with a constant wall concentration. The Reynolds number under consideration is Re{sub r} = 500 based on the friction velocity and the pipe radius, and the selected Schmidt numbers (Sc) are 0.71, 5, 10, 20 and 100. Dynamic subgrid-scale (SGS) models for the turbulent SGS stresses and turbulent mass fluxes were employed to close the governing equations. The current paper reports a comprehensive characterization of turbulent mass transfer in circular-pipe flow, focusing on its near-wall characteristics and Sc dependency. We start with mean fields by presenting mean velocity and concentration profiles, mean Sherwood numbers and mean mass transfer coefficients for the selected values of the parameters. After that, we present the characteristics of fluctuations including root-mean-square (rms) profiles of velocity, concentration, and mass transfer coefficient fluctuations. Turbulent mass fluxes and correlations between velocity and concentration fluctuations are also discussed. The near-wall behaviour of turbulent diffusivity and turbulent Schmidt number is shown, and other authors' correlations on their limiting behaviour towards the pipe wall are evaluated based on our LES results. The intermittent characteristics of turbulent mass transfer in pipe flow are depicted by probability density functions (pdf) of velocity and concentration fluctuations; joint pdfs between them are also presented. Instantaneous snapshots of velocity and concentration fluctuations are shown to supplement our discussion on the turbulence statistics. Finally, we report the results of octant analysis and budget calculation of concentration variance to clarify Sc-dependency of the correlation between near-wall turbulence structures and concentration fluctuation in

  16. Effects of Schmidt number on near-wall turbulent mass transfer in pipe flow

    International Nuclear Information System (INIS)

    Kang, Chang Woo; Yang, Kyung Soo

    2014-01-01

    Large Eddy simulation (LES) of turbulent mass transfer in circular-pipe flow has been performed to investigate the characteristics of turbulent mass transfer in the near-wall region. We consider a fully-developed turbulent pipe flow with a constant wall concentration. The Reynolds number under consideration is Re r = 500 based on the friction velocity and the pipe radius, and the selected Schmidt numbers (Sc) are 0.71, 5, 10, 20 and 100. Dynamic subgrid-scale (SGS) models for the turbulent SGS stresses and turbulent mass fluxes were employed to close the governing equations. The current paper reports a comprehensive characterization of turbulent mass transfer in circular-pipe flow, focusing on its near-wall characteristics and Sc dependency. We start with mean fields by presenting mean velocity and concentration profiles, mean Sherwood numbers and mean mass transfer coefficients for the selected values of the parameters. After that, we present the characteristics of fluctuations including root-mean-square (rms) profiles of velocity, concentration, and mass transfer coefficient fluctuations. Turbulent mass fluxes and correlations between velocity and concentration fluctuations are also discussed. The near-wall behaviour of turbulent diffusivity and turbulent Schmidt number is shown, and other authors' correlations on their limiting behaviour towards the pipe wall are evaluated based on our LES results. The intermittent characteristics of turbulent mass transfer in pipe flow are depicted by probability density functions (pdf) of velocity and concentration fluctuations; joint pdfs between them are also presented. Instantaneous snapshots of velocity and concentration fluctuations are shown to supplement our discussion on the turbulence statistics. Finally, we report the results of octant analysis and budget calculation of concentration variance to clarify Sc-dependency of the correlation between near-wall turbulence structures and concentration fluctuation in the

  17. VALsartan In Acute myocardial iNfarcTion (VALIANT) trial: baseline characteristics in context

    DEFF Research Database (Denmark)

    Velazquez, Eric J; Pfeffer, Marc A; McMurray, John V

    2003-01-01

    BACKGROUND: The VALsartan In Acute myocardial iNfarcTion (VALIANT) trial compared outcomes with: (1) angiotensin-converting enzyme inhibition (ACEI) with the reference agent captopril; (2) angiotensin-receptor blockade (ARB) with valsartan; or (3) both in patients with heart failure (HF) and...

  18. Unsteady heat transfer from a circular cylinder for Reynolds numbers from 3000 to 15,000

    International Nuclear Information System (INIS)

    Nakamura, Hajime; Igarashi, Tamotsu

    2004-01-01

    Unsteady heat transfer from a circular cylinder to the cross-flow of air was investigated experimentally for Reynolds numbers from 3000 to 15,000. Fluctuating heat transfer on the cylinder surface was measured using a heat flux sensor, and time-spatial characteristics of the heat transfer were measured using an infrared thermograph. The present measurements showed that the alternating rolling-up of the shear layers that separated from the cylinder forms an alternating reattached flow at the rear of the cylinder in the range of Re>5000-8000, due to the forward movement of the vortex formation region with increasing Reynolds number. This leads to a sharp increase in the time-averaged Nusselt number around the rear stagnation point of the cylinder. The heat transfer in the separated flow region has spanwise nonuniformity throughout the examined Reynolds number range. The wavelength of this nonuniformity corresponds to that of the streamwise vortices formed in the near-wake

  19. Load characteristics of wireless power transfer system with different resonant types and resonator numbers

    Science.gov (United States)

    Zhang, Yiming; Zhao, Zhengming; Chen, Kainan; Fan, Jun

    2017-05-01

    Wireless Power Transfer (WPT) has been the research focus and applied in many fields. Normally power is transferred wirelessly to charge the battery, which requires specific load characteristics. The load characteristics are essential for the design and operation of the WPT system. This paper investigates the load characteristics of the WPT system with different resonant types and resonator numbers. It is found that in a WPT system with series or LCL resonance under a constant voltage source, the load characteristic is determined by the number of inductors. Even number of inductors results in a constant current characteristic and odd number constant voltage characteristic. Calculations, simulations, and experiments verify the analysis.

  20. Load characteristics of wireless power transfer system with different resonant types and resonator numbers

    Directory of Open Access Journals (Sweden)

    Yiming Zhang

    2017-05-01

    Full Text Available Wireless Power Transfer (WPT has been the research focus and applied in many fields. Normally power is transferred wirelessly to charge the battery, which requires specific load characteristics. The load characteristics are essential for the design and operation of the WPT system. This paper investigates the load characteristics of the WPT system with different resonant types and resonator numbers. It is found that in a WPT system with series or LCL resonance under a constant voltage source, the load characteristic is determined by the number of inductors. Even number of inductors results in a constant current characteristic and odd number constant voltage characteristic. Calculations, simulations, and experiments verify the analysis.

  1. Study of Variable Turbulent Prandtl Number Model for Heat Transfer to Supercritical Fluids in Vertical Tubes

    Science.gov (United States)

    Tian, Ran; Dai, Xiaoye; Wang, Dabiao; Shi, Lin

    2018-06-01

    In order to improve the prediction performance of the numerical simulations for heat transfer of supercritical pressure fluids, a variable turbulent Prandtl number (Prt) model for vertical upward flow at supercritical pressures was developed in this study. The effects of Prt on the numerical simulation were analyzed, especially for the heat transfer deterioration conditions. Based on the analyses, the turbulent Prandtl number was modeled as a function of the turbulent viscosity ratio and molecular Prandtl number. The model was evaluated using experimental heat transfer data of CO2, water and Freon. The wall temperatures, including the heat transfer deterioration cases, were more accurately predicted by this model than by traditional numerical calculations with a constant Prt. By analyzing the predicted results with and without the variable Prt model, it was found that the predicted velocity distribution and turbulent mixing characteristics with the variable Prt model are quite different from that predicted by a constant Prt. When heat transfer deterioration occurs, the radial velocity profile deviates from the log-law profile and the restrained turbulent mixing then leads to the deteriorated heat transfer.

  2. Chaotic oscillation and random-number generation based on nanoscale optical-energy transfer.

    Science.gov (United States)

    Naruse, Makoto; Kim, Song-Ju; Aono, Masashi; Hori, Hirokazu; Ohtsu, Motoichi

    2014-08-12

    By using nanoscale energy-transfer dynamics and density matrix formalism, we demonstrate theoretically and numerically that chaotic oscillation and random-number generation occur in a nanoscale system. The physical system consists of a pair of quantum dots (QDs), with one QD smaller than the other, between which energy transfers via optical near-field interactions. When the system is pumped by continuous-wave radiation and incorporates a timing delay between two energy transfers within the system, it emits optical pulses. We refer to such QD pairs as nano-optical pulsers (NOPs). Irradiating an NOP with external periodic optical pulses causes the oscillating frequency of the NOP to synchronize with the external stimulus. We find that chaotic oscillation occurs in the NOP population when they are connected by an external time delay. Moreover, by evaluating the time-domain signals by statistical-test suites, we confirm that the signals are sufficiently random to qualify the system as a random-number generator (RNG). This study reveals that even relatively simple nanodevices that interact locally with each other through optical energy transfer at scales far below the wavelength of irradiating light can exhibit complex oscillatory dynamics. These findings are significant for applications such as ultrasmall RNGs.

  3. Effect of Reynolds number on flow and mass transfer characteristics of a 90 degree elbow

    Science.gov (United States)

    Fujisawa, Nobuyuki; Ikarashi, Yuya; Yamagata, Takayuki; Taguchi, Syoichi

    2016-11-01

    The flow and mass transfer characteristics of a 90 degree elbow was studied experimentally by using the mass transfer measurement by plaster dissolution method, the surface flow visualization by oil film method and stereo PIV measurement. The experiments are carried out in a water tunnel of a circular pipe of 56mm in diameter with a working fluid of water. The Reynolds number was varied from 30000 to 200000. The experimental result indicated the change of the mass transfer coefficient distribution in the elbow with increasing the Reynolds number. This phenomenon is further examined by the surface flow visualization and measurement of secondary flow pattern in the elbow, and the results showed the suggested change of the secondary flow pattern in the elbow with increasing the Reynolds numbers.

  4. Effects of donor fibroblast cell type and transferred cloned embryo number on the efficiency of pig cloning.

    Science.gov (United States)

    Li, Zicong; Shi, Junsong; Liu, Dewu; Zhou, Rong; Zeng, Haiyu; Zhou, Xiu; Mai, Ranbiao; Zeng, Shaofen; Luo, Lvhua; Yu, Wanxian; Zhang, Shouquan; Wu, Zhenfang

    2013-02-01

    Currently, cloning efficiency in pigs is very low. Donor cell type and number of cloned embryos transferred to an individual surrogate are two major factors that affect the successful rate of somatic cell nuclear transfer (SCNT) in pigs. This study aimed to compare the influence of different donor fibroblast cell types and different transferred embryo numbers on recipients' pregnancy rate and delivery rate, the average number of total clones born, clones born alive and clones born healthy per litter, and the birth rate of healthy clones (=total number of healthy cloned piglets born /total number of transferred cloned embryos). Three types of donor fibroblasts were tested in large-scale production of cloned pigs, including fetal fibroblasts (FFBs) from four genetically similar Western swine breeds of Pietrain (P), Duroc (D), Landrace (L), and Yorkshire (Y), which are referred to as P,D,LY-FFBs, adult fibroblasts (AFBs) from the same four breeds, which are designated P,D,L,Y-AFBs, and AFBs from a Chinese pig breed of Laiwu (LW), which is referred to as LW-AFBs. Within each donor fibroblast cell type group, five transferred cloned embryo number groups were tested. In each embryo number group, 150-199, 200-249, 250-299, 300-349, or 350-450 cloned embryos were transferred to each individual recipient sow. For the entire experiment, 92,005 cloned embryos were generated from nearly 115,000 matured oocytes and transferred to 328 recipients; in total, 488 cloned piglets were produced. The results showed that the mean clones born healthy per litter resulted from transfer of embryos cloned from LW-AFBs (2.53 ± 0.34) was similar with that associated with P,D,L,Y-FFBs (2.72 ± 0.29), but was significantly higher than that resulted from P,D,L,Y-AFBs (1.47 ± 0.18). Use of LW-AFBs as donor cells for SCNT resulted in a significantly higher pregnancy rate (72.00% vs. 59.30% and 48.11%) and delivery rate (60.00% vs. 45.93% and 35.85%) for cloned embryo recipients, and a

  5. MASS TRANSFER CONTROL OF A BACKWARD-FACING STEP FLOW BY LOCAL FORCING- EFFECT OF REYNOLDS NUMBER

    Directory of Open Access Journals (Sweden)

    Zouhaier MEHREZ

    2011-01-01

    Full Text Available The control of fluid mechanics and mass transfer in separated and reattaching flow over a backward-facing step by a local forcing, is studied using Large Eddy Simulation (LES.To control the flow, the local forcing is realized by a sinusoidal oscillating jet at the step edge. The Reynolds number is varied in the range 10000 ≤ Re≤ 50000 and the Schmidt number is fixed at 1.The found results show that the flow structure is modified and the local mass transfer is enhanced by the applied forcing. The observed changes depend on the Reynolds number and vary with the frequency and amplitude of the local forcing. For the all Reynolds numbers, the largest recirculation zone size reduction is obtained at the optimum forcing frequency St = 0.25. At this frequency the local mass transfer enhancement attains the maximum.

  6. Effects of Dimple Depth and Reynolds Number on the Flow and Heat Transfer in a Dimpled Channel

    International Nuclear Information System (INIS)

    Ahn, Joon; Lee, Young Ok; Lee, Joon Sik

    2007-01-01

    A Large Eddy Simulation (LES) has been conducted for the flow and heat transfer in a dimpled channel. Two dimple depths of 0.2 and 0.3 times of the dimple print diameter (= D) have been compared at the bulk Reynolds number of 20,000. Three Reynolds numbers of 5,000, 10,000 and 20,000 have been studied, while the dimple depth is kept as 0.2 D. With the deeper dimple, the flow reattachment occurs father downstream inside the dimple, so that the heat transfer is not as effectively enhanced as the case with shallow ones. At the low Reynolds number of 5,000, the Nusselt number ratio is as high as those for the higher Reynolds number, although the value of heat transfer coefficient decreases because of the weak shear layer vortices

  7. Transfer pricing rules in EU member states

    Directory of Open Access Journals (Sweden)

    Veronika Solilová

    2010-01-01

    Full Text Available One of the important area of international taxes is transfer pricing. Transfer price is a price set by a taxpayer when selling to, buying from, or sharing resources with a related (associated person. The tran­sac­tions between these persons should be assessed at their arm’s length price in according the arm’s length principle – international accepted standard – as the price which would have been agreed between unrelated parties in free market conditions. This paper is focused on the tranfer pricing rules used in particular EU Member States so as if EU Member States apply the arm’s length principle, define the related persons, apply recommendations of the OECD Guidelines, use the transfer pricing methods, require TP Documentation, exercise specific transfer pricing audit or impose specific penalties and apply APAs. Transfer pricing rules should prevent taxpayers from shifting income to related person organized in tax havens or in countries where they enjoy some special tax benefit.

  8. Numerical analysis of jet impingement heat transfer at high jet Reynolds number and large temperature difference

    DEFF Research Database (Denmark)

    Jensen, Michael Vincent; Walther, Jens Honore

    2013-01-01

    was investigated at a jet Reynolds number of 1.66 × 105 and a temperature difference between jet inlet and wall of 1600 K. The focus was on the convective heat transfer contribution as thermal radiation was not included in the investigation. A considerable influence of the turbulence intensity at the jet inlet...... to about 100% were observed. Furthermore, the variation in stagnation point heat transfer was examined for jet Reynolds numbers in the range from 1.10 × 105 to 6.64 × 105. Based on the investigations, a correlation is suggested between the stagnation point Nusselt number, the jet Reynolds number......, and the turbulence intensity at the jet inlet for impinging jet flows at high jet Reynolds numbers. Copyright © 2013 Taylor and Francis Group, LLC....

  9. Effect of Reynolds number, turbulence level and periodic wake flow on heat transfer on low pressure turbine blades.

    Science.gov (United States)

    Suslov, D; Schulz, A; Wittig, S

    2001-05-01

    The development of effective cooling methods is of major importance for the design of new gas turbines blades. The conception of optimal cooling schemes requires a detailed knowledge of the heat transfer processes on the blade's surfaces. The thermal load of turbine blades is predominantly determined by convective heat transfer which is described by the local heat transfer coefficient. Heat transfer is closely related to the boundary layer development along the blade surface and hence depends on various flow conditions and geometrical parameters. Particularly Reynolds number, pressures gradient and turbulence level have great impact on the boundary layer development and the according heat transfer. Therefore, in the present study, the influence of Reynolds number, turbulence intensity, and periodic unsteady inflow on the local heat transfer of a typical low pressure turbine airfoil is experimentally examined in a plane cascade.

  10. Jet Impingement Heat Transfer at High Reynolds Numbers and Large Density Variations

    DEFF Research Database (Denmark)

    Jensen, Michael Vincent; Walther, Jens Honore

    2010-01-01

    Jet impingement heat transfer from a round gas jet to a flat wall has been investigated numerically in a configuration with H/D=2, where H is the distance from the jet inlet to the wall and D is the jet diameter. The jet Reynolds number was 361000 and the density ratio across the wall boundary...... layer was 3.3 due to a substantial temperature difference of 1600K between jet and wall. Results are presented which indicate very high heat flux levels and it is demonstrated that the jet inlet turbulence intensity significantly influences the heat transfer results, especially in the stagnation region....... The results also show a noticeable difference in the heat transfer predictions when applying different turbulence models. Furthermore calculations were performed to study the effect of applying temperature dependent thermophysical properties versus constant properties and the effect of calculating the gas...

  11. DNS of turbulent channel flow with conjugate heat transfer at Prandtl number 0.01

    Energy Technology Data Exchange (ETDEWEB)

    Tiselj, Iztok, E-mail: iztok.tiselj@ijs.si [' Jozef Stefan' Institute, Jamova 39, SI-1000 Ljubljana (Slovenia); Cizelj, Leon, E-mail: leon.cizelj@ijs.si [' Jozef Stefan' Institute, Jamova 39, SI-1000 Ljubljana (Slovenia)

    2012-12-15

    Highlights: Black-Right-Pointing-Pointer DNS database for turbulent channel flow at Prandtl number 0.01 and various Re{sub {tau}}. Black-Right-Pointing-Pointer Two ideal boundary condition analyzed: non-fluctuating and fluctuating temperature. Black-Right-Pointing-Pointer DNS database with conjugate heat transfer for liquid sodium-steel contact. Black-Right-Pointing-Pointer Penetration of the turbulent temperature fluctuations into the solid wall analyzed. - Abstract: Direct Numerical Simulation (DNS) of the fully developed velocity and temperature fields in a turbulent channel flow coupled with the unsteady conduction in the heated walls was carried out. Simulations were performed with passive scalar approximation at Prandtl number 0.01, which roughly corresponds to the Prandtl number of liquid sodium. DNSs were performed at friction Reynolds numbers 180, 395 and 590. The obtained statistical quantities like mean temperatures, profiles of the root-mean-square (RMS) temperature fluctuations for various thermal properties of wall and fluid, and various wall thicknesses were obtained from a pseudo-spectral channel-flow code. Even for the highest implemented Reynolds number the temperature profile in the fluid does not exhibit log-law region and the near-wall RMS temperature fluctuations show Reynolds number dependence. Conjugate heat transfer simulations of liquid sodium-steel system point to a relatively intensive penetration of turbulent temperature fluctuations into the heated wall. Database containing the results is available in a digital form.

  12. DNS of turbulent channel flow with conjugate heat transfer at Prandtl number 0.01

    International Nuclear Information System (INIS)

    Tiselj, Iztok; Cizelj, Leon

    2012-01-01

    Highlights: ► DNS database for turbulent channel flow at Prandtl number 0.01 and various Re τ . ► Two ideal boundary condition analyzed: non-fluctuating and fluctuating temperature. ► DNS database with conjugate heat transfer for liquid sodium–steel contact. ► Penetration of the turbulent temperature fluctuations into the solid wall analyzed. - Abstract: Direct Numerical Simulation (DNS) of the fully developed velocity and temperature fields in a turbulent channel flow coupled with the unsteady conduction in the heated walls was carried out. Simulations were performed with passive scalar approximation at Prandtl number 0.01, which roughly corresponds to the Prandtl number of liquid sodium. DNSs were performed at friction Reynolds numbers 180, 395 and 590. The obtained statistical quantities like mean temperatures, profiles of the root-mean-square (RMS) temperature fluctuations for various thermal properties of wall and fluid, and various wall thicknesses were obtained from a pseudo-spectral channel-flow code. Even for the highest implemented Reynolds number the temperature profile in the fluid does not exhibit log-law region and the near-wall RMS temperature fluctuations show Reynolds number dependence. Conjugate heat transfer simulations of liquid sodium–steel system point to a relatively intensive penetration of turbulent temperature fluctuations into the heated wall. Database containing the results is available in a digital form.

  13. Minimum number of transfer units and reboiler duty for multicomponent distillation columns

    International Nuclear Information System (INIS)

    Pleşu, Valentin; Bonet Ruiz, Alexandra Elena; Bonet, Jordi; Llorens, Joan; Iancu, Petrica

    2013-01-01

    Some guidelines to evaluate distillation columns, considering only basic thermodynamic data and principles, are provided in this paper. The method allows a first insight to the problem by simple calculations, without requiring column variables to ensure rational use of energy and low environmental impact. The separation system is approached by two complementary ways: minimum and infinite reflux flow rate. The minimum reflux provides the minimum energy requirements, and the infinite reflux provides the feasibility conditions. The difficulty of separation can be expressed in terms of number of transfer units (NTU). The applicability of the method is not mathematically limited by the number of components in the mixture. It is also applicable to reactive distillation. Several mixtures, including reactive distillation, are rigorously simulated as illustrative examples, to verify the applicability of the approach. The separation of the mixtures, performed by distillation columns, is feasible if a minimum NTU can be calculated between the distillate and bottom products. Once verified the feasibility of the separation, the maximum thermal efficiency depends only on boiling point of bottom and distillate streams. The minimum energy requirements corresponding to the reboiler can be calculated from the maximum thermal efficiency, and the variation of entropy and enthalpy of mixing between distillate and bottom streams. -- Highlights: • Feasibility analysis complemented with difficulty of separation parameters • Minimum and infinite reflux simplified models for distillation columns • Minimum number of transfer units (NTU) for packed columns at early design stages • Calculation of minimum energy distillation requirements at early design stages • Thermodynamic cycle approach and efficiency for distillation columns

  14. Dependence of transfer number of fluorine on cation type in glasses of Ba(PO3)2-MeF2 systems (Me=Ba,Sr,Ca,Mg)

    International Nuclear Information System (INIS)

    Pronkin, A.A.

    1978-01-01

    The influence of Ba, Sr, Ca, Mg cations on transfer numbers of fluorine in glasses of Ba(PO 3 ) 2 - MeF 2 pseudobinary systems is studied. Transfer numbers are essentially different in one and the same fluorine ion concentration in glasses, containing various alkali-earth cations: increase of the cation field force brings about decrease of the transfer numbers of fluorine, and the glass-formation region in the Ba-Sr-Ca-Mg series rises. The dependence of transfer numbers of fluorine on the fluorine concentration logarithm is presented. It is established, that alkali-earth metals influence the transfer numbers of fluorine on account of selective interaction with the phosphate constituent of glass structure

  15. European Scientific Notes. Volume 37, Number 2,

    Science.gov (United States)

    1983-02-28

    potassium persulfate the initiator. ethylene. The method is to immerse the Particle nucleation, flocculation, and films in an aqueous solution of acrylic... polyacrylic acid in the aqueous solu- causing flocculation and coalescence. tion, water soluble inhibitors were The process of aggregation of ...AD-A127 548 EUROPEAN SCIENTIFIC 140TES VOLUME 37 NUMBER 2(U) OFFICE / OF NAVAL RESEARCH LONDON (ERGLAND) V TSTANNET ET AL 28 FER 83 ESN-37-2 UNCLAAS

  16. Simplified equations for transient heat transfer problems at low Fourier numbers

    DEFF Research Database (Denmark)

    Christensen, Martin Gram; Adler-Nissen, Jens

    2015-01-01

    and validated for infinite slabs, infinite cylinders and spheres and by an industrial application example, covering the center temperature and the volume average temperature. The approach takes ground in the residual difference between a 1 term series solution and a 100 term solution to the Fourier equation...... of the thermal response for solids subjected to convective heat transfer. By representing the residual thermal response as a function of the Biot number and the first eigenvalue, the new approach enables the description of the thermal response in the whole Fourier regime. The presented equation is simple...

  17. Heat or mass transfer at low Péclet number for Brinkman and Darcy flow round a sphere

    KAUST Repository

    Bell, Christopher G.

    2014-01-01

    Prior research into the effect of convection on steady-state mass transfer from a spherical particle embedded in a porous medium has used the Darcy model to describe the flow. However, a limitation of the Darcy model is that it does not account for viscous effects near boundaries. Brinkman modified the Darcy model to include these effects by introducing an extra viscous term. Here we investigate the impact of this extra viscous term on the steady-state mass transfer from a sphere at low Péclet number, Pe 1. We use singular perturbation techniques to find the approximate asymptotic solution for the concentration profile. Mass-release from the surface of the sphere is described by a Robin boundary condition, which represents a first-order chemical reaction. We find that a larger Brinkman viscous boundary layer renders mass transport by convection less effective, and reduces the asymmetry in the peri-sphere concentration profiles. We provide simple analytical expressions that can be used to calculate the concentration profiles, as well as the local and average Sherwood numbers; and comparison to numerical simulations verifies the order of magnitude of the error in the asymptotic expansions. In the appropriate limits, the asymptotic results agree with solutions previously obtained for Stokes and Darcy flow. The solution for Darcy flow with a Robin boundary condition has not been considered previously in the literature and is a new result. Whilst the article has been formulated in terms of mass transfer, the analysis is also applicable to heat transfer, with concentration replaced by temperature and the Sherwood number by the Nusselt number. © 2013 Elsevier Ltd. All rights reserved.

  18. The Baryon Production and Baryon Number Transfer in Hadron-Hadron, Hadron-Nucleus and Nucleus-Nucleus Collisions

    International Nuclear Information System (INIS)

    Szymanski, P.

    2006-09-01

    This work concerns soft hadronic interactions which in the Standard Model carry most of the observable cross-section but are not amenable to quantitative predictions due to the very nature of the QCD (Theory of Strong Interactions). In the low momentum transfer region the evolving coupling constant caused perturbation theory to break down. In this situation better experimental understanding of the physics phenomena is needed. One aspect of the soft hadronic interactions will be discussed in this work: transfer of the baryon number from the initial to the final state of the interaction. The past experimental knowledge on this process is presented, reasons for its unsatisfactory status are discussed and condition necessary for improvement are outlined: that is experimental apparatus with superior performance over the full range of available interactions: hadron-hadron collision, hadron-nucleus and nucleus-nucleus interactions. A consistent model-independent picture of the baryon number transfer process emerging from the data on the full range of interactions is shown. It offers serious challenge to theory to provide quantitative and detailed explanation of the measurements. (author)

  19. Electrokinetic demonstration at Sandia National Laboratories: Use of transference numbers for site characterization and process evaluation

    International Nuclear Information System (INIS)

    Lindgren, E.R.; Mattson, E.D.

    1997-01-01

    Electrokinetic remediation is generally an in situ method using direct current electric potentials to move ionic contaminants and/or water to collection electrodes. The method has been extensively studied for application in saturated clayey soils. Over the past few years, an electrokinetic extraction method specific for sandy, unsaturated soils has been developed and patented by Sandia National Laboratories. A RCRA RD ampersand D permitted demonstration of this technology for the in situ removal of chromate contamination from unsaturated soils in a former chromic acid disposal pit was operated during the summer and fall of 1996. This large scale field test represents the first use of electrokinetics for the removal of heavy metal contamination from unsaturated soils in the United States and is part of the US EPA Superfund Innovative Technology Evaluation (SITE) Program. Guidelines for characterizing a site for electrokinetic remediation are lacking, especially for applications in unsaturated soil. The transference number of an ion is the fraction of the current carried by that ion in an electric field and represents the best measure of contaminant removal efficiency in most electrokinetic remediation processes. In this paper we compare the transference number of chromate initially present in the contaminated unsaturated soil, with the transference number in the electrokinetic process effluent to demonstrate the utility of evaluating this parameter

  20. Increasing The Number of Embryos Transferred from Two to Three, Does not Increase Pregnancy Rates in Good Prognosis Patients

    Directory of Open Access Journals (Sweden)

    Mahnaz Ashrafi

    2015-10-01

    Full Text Available Background: To compare the pregnancy outcomes after two embryos versus three embryos transfers (ETs in women undergoing in vitro fertilization (IVF/intracytoplasmic sperm injection (ICSI cycles. Materials and Methods: This retrospective study was performed on three hundred eighty seven women with primary infertility and with at least one fresh embryo in good quality in order to transfer at each IVF/ICSI cycle, from September 2006 to June 2010. Patients were categorized into two groups according to the number of ET as follows: ET2 and ET3 groups, indicating two and three embryos were respectively transferred. Pregnancy outcomes were compared between ET2 and ET3 groups. Chi square and student t tests were used for data analysis. Results: Clinical pregnancy and live birth rates were similar between two groups. The rates of multiple pregnancies were 27 and 45.2% in ET2 and ET3 groups, respectively. The rate of multiple pregnancies in young women was significantly increased when triple instead of double embryos were transferred. Logistic regression analysis indicated two significant prognostic variables for live birth that included number and quality of transferred embryos; it means that the chance of live birth following ICSI treatment increased 3.2-fold when the embryo with top quality (grade A was transferred, but the number of ET had an inverse relationship with live birth rate; it means that probability of live birth in women with transfer of two embryos was three times greater than those who had three ET. Conclusion: Due to the difficulty of implementation of the elective single-ET technique in some infertility centers in the world, we suggest transfer of double instead of triple embryos when at least one good quality embryo is available for transfer in women aged 39 years or younger. However, to reduce the rate of multiple pregnancies, it is recommended to consider the elective single ET strategy.

  1. Heat transfer in an axisymmetric stagnation flow at high Reynolds numbers on a cylinder using perturbation techniques

    International Nuclear Information System (INIS)

    Rahimi, A. B.

    2003-01-01

    Although there are many papers on the subject of heat transfer in an axisymmetric stagnation flow on a cylinder, the available knowledge is mainly for low Reynolds numbers and not much information exists for the same problem at large Reynolds numbers. In this work, the problem of heat transfer in an axisymmetric stagnation flow on a cylinder is solved at large Reynolds numbers using perturbation techniques. Starting from Navier-Stokes equations within a boundary layer approximation and using similarity transformations, the governing equations are obtained in the form of differential equations. The inverse of the Reynolds number is introduced as the perturbation parameter. This parameter appears in front of the highest-order terms and, as it tends to zero, reduces the order of the governing equations and produces singularities. In this paper, the flow field is divided into two regions; rapid changes in the region near wall and slow changes away from the wall. Thus, the flow is found to have dual-layer characteristics. Using inner and outer expansion produces uniform values of the relevant quantities

  2. Influence of various aspects of low Reynolds number k-ε turbulence models on predicting in-tube buoyancy affected heat transfer to supercritical pressure fluids

    International Nuclear Information System (INIS)

    Zhao, Chen-Ru; Zhang, Zhen; Jiang, Pei-Xue; Bo, Han-Liang

    2017-01-01

    Highlights: • Understanding of the mechanism of buoyancy effect on supercritical heat transfer. • Turbulence related parameters in upward and downward flows were compared. • Turbulent Prandtl number affected the prediction insignificantly. • Buoyancy production was insignificant compared with shear production. • Damping function had the greatest effect and is a priority for further modification. - Abstract: Heat transfer to supercritical pressure fluids was modeled for normal and buoyancy affected conditions using several low Reynolds number k-ε models, including the Launder and Sharma, Myong and Kasagi, and Abe, Kondoh and Nagano, with the predictions compared with experimental data. All three turbulence models accurately predicted the cases without heat transfer deterioration, but failed to accurately predict the cases with heat transfer deterioration although the general trends were captured, indicating that further improvements and modifications are needed for the low Reynolds number k-ε turbulence models to better predict buoyancy deteriorated heat transfer. Further investigations studied the influence of various aspects of the low Reynolds number k-ε turbulence models, including the turbulent Prandtl number, the buoyancy production of turbulent kinetic energy, and the damping function to provide guidelines for model development to more precisely predict buoyancy affected heat transfer. The results show that the turbulent Prandtl number and the buoyancy production of turbulent kinetic energy have little influence on the predictions for cases in this study, while new damping functions with carefully selected control parameters are needed in the low Reynolds number k-ε turbulence models to correctly predict the buoyancy effect for heat transfer simulations in various applications such as supercritical pressure steam generators (SPSGs) in the high temperature gas cooled reactor (HTR) and the supercritical pressure water reactor (SCWR).

  3. Influence of various aspects of low Reynolds number k-ε turbulence models on predicting in-tube buoyancy affected heat transfer to supercritical pressure fluids

    Energy Technology Data Exchange (ETDEWEB)

    Zhao, Chen-Ru; Zhang, Zhen [Institute of Nuclear and New Energy Technology of Tsinghua University, Advanced Nuclear Energy Technology Cooperation Innovation Centre, Key Laboratory of Advanced Nuclear Engineering and Safety, Ministry of Education, Beijing 100084 (China); Jiang, Pei-Xue, E-mail: jiangpx@tsinghua.edu.cn [Beijing Key Laboratory of CO_2 Utilization and Reduction Technology/Key Laboratory for Thermal Science and Power Engineering of Ministry of Education, Department of Thermal Engineering, Tsinghua University, Beijing 100084 (China); Bo, Han-Liang [Institute of Nuclear and New Energy Technology of Tsinghua University, Advanced Nuclear Energy Technology Cooperation Innovation Centre, Key Laboratory of Advanced Nuclear Engineering and Safety, Ministry of Education, Beijing 100084 (China)

    2017-03-15

    Highlights: • Understanding of the mechanism of buoyancy effect on supercritical heat transfer. • Turbulence related parameters in upward and downward flows were compared. • Turbulent Prandtl number affected the prediction insignificantly. • Buoyancy production was insignificant compared with shear production. • Damping function had the greatest effect and is a priority for further modification. - Abstract: Heat transfer to supercritical pressure fluids was modeled for normal and buoyancy affected conditions using several low Reynolds number k-ε models, including the Launder and Sharma, Myong and Kasagi, and Abe, Kondoh and Nagano, with the predictions compared with experimental data. All three turbulence models accurately predicted the cases without heat transfer deterioration, but failed to accurately predict the cases with heat transfer deterioration although the general trends were captured, indicating that further improvements and modifications are needed for the low Reynolds number k-ε turbulence models to better predict buoyancy deteriorated heat transfer. Further investigations studied the influence of various aspects of the low Reynolds number k-ε turbulence models, including the turbulent Prandtl number, the buoyancy production of turbulent kinetic energy, and the damping function to provide guidelines for model development to more precisely predict buoyancy affected heat transfer. The results show that the turbulent Prandtl number and the buoyancy production of turbulent kinetic energy have little influence on the predictions for cases in this study, while new damping functions with carefully selected control parameters are needed in the low Reynolds number k-ε turbulence models to correctly predict the buoyancy effect for heat transfer simulations in various applications such as supercritical pressure steam generators (SPSGs) in the high temperature gas cooled reactor (HTR) and the supercritical pressure water reactor (SCWR).

  4. The effects of stroke length and Reynolds number on heat transfer to a ducted confined and semi-confined synthetic air jet

    International Nuclear Information System (INIS)

    Rylatt, D I; O'Donovan, T S

    2014-01-01

    Heat transfer to three configurations of ducted jet and un-ducted semiconfined jets is investigated experimentally. The influence of the jet operating parameters, stroke length (L 0 /D) and Reynolds (Re) number on the heat transferred to the jet is of particular interest. Heat transfer distributions to the jet are reported at H/D = 1 for a range of experimental parameters Re (1000 to 4000) and L 0 /D (5 to 20). Secondary and tertiary peaks are discernable in the heat transfer distributions across the range of parameters tested. It is shown that for a fixed Re varying the L 0 /D has little effect on the magnitude of the stagnation region heat transfer but does effect the position and magnitude of the secondary and tertiary peaks in the heat transfer distribution. It is also shown that for a fixed L 0 /D increasing the Re has a significant effect on the magnitude of the stagnation region heat transfer but has little impact on the position of the secondary and tertiary peaks in the heat transfer distributions. Ducting is added to the configuration to improve heat transfer by drawing cold air from a remote location into the jet flow. Ducting is shown to increase stagnation region and area averaged heat transfer across the range of jet parameters tested when compared with an un-ducted jets of equal confinement. Increasing the stroke length from L 0 /D = 5 to 20 for a Reynolds number of 2000 reduces the enhancement in stagnation region heat transfer provided by the ducting from 35% to 10%; the area averaged heat transfer provided by the ducting also changes from a 42% to a 21% enhancement. This is shown to be partly due to relative magnitude of the peaks in heat transfer outwith the stagnation region; at low stroke lengths, the difference in the magnitude of these peaks is large and reduces with increasing L 0 /D. It is also shown that as L 0 /D is increased the stagnation region heat transfer to the un-ducted jets increases while for the ducted jets stagnation region

  5. High Lithium Transference Number Electrolytes via Creation of 3-Dimensional, Charged, Nanoporous Networks from Dense Functionalized Nanoparticle Composites

    KAUST Repository

    Schaefer, Jennifer L.; Yanga, Dennis A.; Archer, Lynden A.

    2013-01-01

    High lithium transference number, tLi+, electrolytes are desired for use in both lithium-ion and lithium metal rechargeable battery technologies. Historically, low tLi+ electrolytes have hindered device performance by allowing ion concentration

  6. Cost Implications for Subsequent Perinatal Outcomes After IVF Stratified by Number of Embryos Transferred: A Five Year Analysis of Vermont Data.

    Science.gov (United States)

    Carpinello, Olivia J; Casson, Peter R; Kuo, Chia-Ling; Raj, Renju S; Sills, E Scott; Jones, Christopher A

    2016-06-01

    In states in the USA without in vitro fertilzation coverage (IVF) insurance coverage, more embryos are transferred per cycle leading to higher risks of multi-fetal pregnancies and adverse pregnancy outcomes. To determine frequency and cost of selected adverse perinatal complications based on number of embryos transferred during IVF, and calculate incremental cost per IVF live birth. Medical records of patients who conceived with IVF (n = 116) and delivered at >20 weeks gestational age between 2007 and 2011 were evaluated. Gestational age at delivery, low birth weight (LBW) term births, and delivery mode were tabulated. Healthcare costs per cohort, extrapolated costs assuming 100 patients per cohort, and incremental costs per infant delivered were calculated. The highest prematurity and cesarean section rates were recorded after double embryo transfers (DET), while the lowest rates were found in single embryo transfers (SET). Premature singleton deliveries increased directly with number of transferred embryos [6.3 % (SET), 9.1 % (DET) and 10.0 % for ≥3 embryos transferred]. This trend was also noted for rate of cesarean delivery [26.7 % (SET), 36.6 % (DET), and 47.1 % for ≥3 embryos transferred]. The proportion of LBW infants among deliveries after DET and for ≥3 embryos transferred was 3.9 and 9.1 %, respectively. Extrapolated costs per cohort were US$718,616, US$1,713,470 and US$1,227,396 for SET, DET, and ≥3 embryos transferred, respectively. Attempting to improve IVF pregnancy rates by permitting multiple embryo transfers results in sharply increased rates of multiple gestation and preterm delivery. This practice yields a greater frequency of adverse perinatal outcomes and substantially increased healthcare spending. Better efforts to encourage SET are necessary to normalize healthcare expenditures considering the frequency of very high cost sequela associated with IVF where multiple embryo transfers occur.

  7. Heat or mass transfer from a sphere in Stokes flow at low Péclet number

    KAUST Repository

    Bell, Christopher G.

    2013-04-01

    We consider the low Péclet number, Pe≪1, asymptotic solution for steady-state heat or mass transfer from a sphere immersed in Stokes flow with a Robin boundary condition on its surface, representing Newton cooling or a first-order chemical reaction. The application of Van Dyke\\'s rule up to terms of O(Pe3) shows that the O(Pe3logPe) terms in the expression for the average Nusselt/Sherwood number are twice those previously derived in the literature. Inclusion of the O(Pe3) terms is shown to increase the range of validity of the expansion. © 2012 Elsevier Ltd. All rights reserved.

  8. Optimizing the number of cleavage stage embryos to transfer on day 3 in women 38 years of age and older: a Society for Assisted Reproductive Technology database study.

    Science.gov (United States)

    Stern, Judy E; Goldman, Marlene B; Hatasaka, Harry; MacKenzie, Todd A; Surrey, Eric S; Racowsky, Catherine

    2009-03-01

    To determine the optimal number of day 3 embryos to transfer in women >or=38 years by conducting an evidence-based evaluation. Retrospective analysis of 2000-2004 national SART data. National writing group. A total of 36,103 day 3 embryo transfers in women >or=38 years undergoing their first assisted reproductive technology cycle. None. Logistic regression was used to model the probability of pregnancy, delivery, and multiple births (twin or high order) based on age- and cycle-specific parameters. Pregnancy rates, delivery rates, and multiple rates increased up to transfer of three embryos in 38-year-olds and four in 39-year-olds; beyond this number, only multiple rates increased. In women >or=40 years, delivery rates and multiple rates climbed steadily with increasing numbers transferred. Multivariate analysis confirmed the statistically significant effect of age, number of oocytes retrieved, and embryo cryopreservation on delivery and multiple rates. Maximum FSH level was not an independent predictor by multivariate analysis. Use of intracytoplasmic sperm injection was associated with lowered delivery rate. No more than three or four embryos should be transferred in 38- and 39-year-olds, respectively, whereas up to five embryos could be transferred in >or=40-year-olds. Numbers of embryos to transfer should be adjusted according to number of oocytes retrieved and availability of excess embryos for cryopreservation.

  9. Investigation of the influence of turbulence models on the prediction of heat transfer to low Prandtl number fluids

    International Nuclear Information System (INIS)

    Thiele, R.; Ma, W.; Anglart, H.

    2011-01-01

    Despite many advances in computational fluid dynamics (CFD), heat transfer modeling and validation of code for liquid metal flows needs to be improved. This contribution aims to provide validation of several turbulence models implemented in OpenFOAM. 6 different low Reynolds number and 3 high Reynolds number turbulence models have been validated against experimental data for 3 different Reynolds numbers. The results show that most models are able to predict the temperature profile tendencies and that especially the k-ω-SST by Menter has good predictive capabilities. However, all turbulence models show deteriorating capabilities with decreasing Reynolds numbers. (author)

  10. The Stokes number approach to support scale-up and technology transfer of a mixing process.

    Science.gov (United States)

    Willemsz, Tofan A; Hooijmaijers, Ricardo; Rubingh, Carina M; Frijlink, Henderik W; Vromans, Herman; van der Voort Maarschalk, Kees

    2012-09-01

    Transferring processes between different scales and types of mixers is a common operation in industry. Challenges within this operation include the existence of considerable differences in blending conditions between mixer scales and types. Obtaining the correct blending conditions is crucial for the ability to break up agglomerates in order to achieve the desired blend uniformity. Agglomerate break up is often an abrasion process. In this study, the abrasion rate potential of agglomerates is described by the Stokes abrasion (St(Abr)) number of the system. The St(Abr) number equals the ratio between the kinetic energy density of the moving powder bed and the work of fracture of the agglomerate. In this study, the St(Abr) approach demonstrates to be a useful tool to predict the abrasion of agglomerates during blending when technology is transferred between mixer scales/types. Applying the St(Abr) approach revealed a transition point between parameters that determined agglomerate abrasion. This study gave evidence that (1) below this transition point, agglomerate abrasion is determined by a combination of impeller effects and by the kinetic energy density of the powder blend, whereas (2) above this transition point, agglomerate abrasion is mainly determined by the kinetic energy density of the powder blend.

  11. Numerical simulations of turbulent heat transfer in a channel at Prandtl numbers higher than 100

    International Nuclear Information System (INIS)

    Bergant, R.; Tiselj, I.

    2005-01-01

    During the last years, many attempts have been made to extend turbulent heat transfer at low Prandtl numbers to high Prandtl numbers in the channel based on a very accurate pseudo-spectral code of direct numerical simulation (DNS). DNS describes all the length and time scales for velocity and temperature fields, which are different when Prandtl number is not equal to 1. DNS can be used at low Reynolds (Re τ =150. Very similar approach as for Pr=5.4 was done for numerical simulations at Pr=100 and Pr=200. Comparison was made with results of temperature fields performed on 9-times finer numerical grid, however without damping of the highest Fourier coefficients. The results of mean temperature profiles show no differences larger than statistical uncertainties (∼1%), while slightly larger differences are seen for temperature fluctuations. (author)

  12. Inverted bulk-heterojunction organic solar cells with the transfer-printed anodes and low-temperature-processed ultrathin buffer layers

    Science.gov (United States)

    Itoh, Eiji; Sakai, Shota; Fukuda, Katsutoshi

    2018-03-01

    We studied the effects of a hole buffer layer [molybdenum oxide (MoO3) and natural copper oxide layer] and a low-temperature-processed electron buffer layer on the performance of inverted bulk-heterojunction organic solar cells in a device consisting of indium-tin oxide (ITO)/poly(ethylene imine) (PEI)/titanium oxide nanosheet (TiO-NS)/poly(3-hexylthiopnehe) (P3HT):phenyl-C61-butyric acid methylester (PCBM)/oxide/anode (Ag or Cu). The insertion of ultrathin TiO-NS (˜1 nm) and oxide hole buffer layers improved the open circuit voltage V OC, fill factor, and rectification properties owing to the effective hole blocking and electron transport properties of ultrathin TiO-NS, and to the enhanced work function difference between TiO-NS and the oxide hole buffer layer. The insertion of the TiO-NS contributed to the reduction in the potential barrier at the ITO/PEI/TiO-NS/active layer interface for electrons, and the insertion of the oxide hole buffer layer contributed to the reduction in the potential barrier for holes. The marked increase in the capacitance under positive biasing in the capacitance-voltage characteristics revealed that the combination of TiO-NS and MoO3 buffer layers contributes to the selective transport of electrons and holes, and blocks counter carriers at the active layer/oxide interface. The natural oxide layer of the copper electrode also acts as a hole buffer layer owing to the increase in the work function of the Cu surface in the inverted cells. The performance of the cell with evaporated MoO3 and Cu layers that were transfer-printed to the active layer was almost comparable to that of the cell with MoO3 and Ag layers directly evaporated onto the active layer. We also demonstrated comparable device performance in the cell with all-printed MoO3 and low-temperature-processed silver nanoparticles as an anode.

  13. Variable Copy Number, Intra-Genomic Heterogeneities and Lateral Transfers of the 16S rRNA Gene in Pseudomonas

    Science.gov (United States)

    Bodilis, Josselin; Nsigue-Meilo, Sandrine; Besaury, Ludovic; Quillet, Laurent

    2012-01-01

    Even though the 16S rRNA gene is the most commonly used taxonomic marker in microbial ecology, its poor resolution is still not fully understood at the intra-genus level. In this work, the number of rRNA gene operons, intra-genomic heterogeneities and lateral transfers were investigated at a fine-scale resolution, throughout the Pseudomonas genus. In addition to nineteen sequenced Pseudomonas strains, we determined the 16S rRNA copy number in four other Pseudomonas strains by Southern hybridization and Pulsed-Field Gel Electrophoresis, and studied the intra-genomic heterogeneities by Denaturing Gradient Gel Electrophoresis and sequencing. Although the variable copy number (from four to seven) seems to be correlated with the evolutionary distance, some close strains in the P. fluorescens lineage showed a different number of 16S rRNA genes, whereas all the strains in the P. aeruginosa lineage displayed the same number of genes (four copies). Further study of the intra-genomic heterogeneities revealed that most of the Pseudomonas strains (15 out of 19 strains) had at least two different 16S rRNA alleles. A great difference (5 or 19 nucleotides, essentially grouped near the V1 hypervariable region) was observed only in two sequenced strains. In one of our strains studied (MFY30 strain), we found a difference of 12 nucleotides (grouped in the V3 hypervariable region) between copies of the 16S rRNA gene. Finally, occurrence of partial lateral transfers of the 16S rRNA gene was further investigated in 1803 full-length sequences of Pseudomonas available in the databases. Remarkably, we found that the two most variable regions (the V1 and V3 hypervariable regions) had probably been laterally transferred from another evolutionary distant Pseudomonas strain for at least 48.3 and 41.6% of the 16S rRNA sequences, respectively. In conclusion, we strongly recommend removing these regions of the 16S rRNA gene during the intra-genus diversity studies. PMID:22545126

  14. Direct and large eddy simulation of turbulent heat transfer at very low Prandtl number: Application to lead–bismuth flows

    International Nuclear Information System (INIS)

    Bricteux, L.; Duponcheel, M.; Winckelmans, G.; Tiselj, I.; Bartosiewicz, Y.

    2012-01-01

    Highlights: ► We perform direct and hybrid-large eddy simulations of high Reynolds and low Prandtl turbulent wall-bounded flows with heat transfer. ► We use a state-of-the-art numerical methods with low energy dissipation and low dispersion. ► We use recent multiscalesubgrid scale models. ► Important results concerning the establishment of near wall modeling strategy in RANS are provided. ► The turbulent Prandtl number that is predicted by our simulation is different than that proposed by some correlations of the literature. - Abstract: This paper deals with the issue of modeling convective turbulent heat transfer of a liquid metal with a Prandtl number down to 0.01, which is the order of magnitude of lead–bismuth eutectic in a liquid metal reactor. This work presents a DNS (direct numerical simulation) and a LES (large eddy simulation) of a channel flow at two different Reynolds numbers, and the results are analyzed in the frame of best practice guidelines for RANS (Reynolds averaged Navier–Stokes) computations used in industrial applications. They primarily show that the turbulent Prandtl number concept should be used with care and that even recent proposed correlations may not be sufficient.

  15. Quantum Statistical Testing of a Quantum Random Number Generator

    Energy Technology Data Exchange (ETDEWEB)

    Humble, Travis S [ORNL

    2014-01-01

    The unobservable elements in a quantum technology, e.g., the quantum state, complicate system verification against promised behavior. Using model-based system engineering, we present methods for verifying the opera- tion of a prototypical quantum random number generator. We begin with the algorithmic design of the QRNG followed by the synthesis of its physical design requirements. We next discuss how quantum statistical testing can be used to verify device behavior as well as detect device bias. We conclude by highlighting how system design and verification methods must influence effort to certify future quantum technologies.

  16. ‚esponse of —n o™e—n gener—l ™ir™ul—tion model to wind —nd ...

    Indian Academy of Sciences (India)

    exe™utionF ƒome of these —dv—nt—ges m—ke this. —ppro—™h prefer—˜le over other —ppro—™hesF. „he wind field used for these simul—tion experiE ments —re derived from igw‡p ews€ —r™hivesF „he experiment w—s performed ˜y spinning up the model from — st—te of rest with pres™ri˜ed thermodyn—mi™.

  17. Intergenerational transfers and European families: Does the number of siblings matter?

    Directory of Open Access Journals (Sweden)

    Thomas Emery

    2013-08-01

    Full Text Available BACKGROUND Existing research on intergenerational transfers has focused on income and wealth as the predominant determinants of the provision of financial assistance to adult children (Albertini, Kohli, and Vogel 2006; Zissimopoulos and Smith 2010; Albertini and Radl 2012. Yet previous models of intergenerational transfers underestimated the effect of family size due to the effect of birth order and inappropriate research design. OBJECTIVE This paper aims to more accurately describe the relationship between family size and intergenerational financial transfers in Europe. In developing a more appropriate theoretical and empirical understanding of intergenerational behaviour by borrowing findings from other areas of family studies, this paper explores the issues involved in the complex analysis of cross generational issues such as sampling, diverse and complex family forms, and unobserved family- and individual-level heterogeneity. METHODS Using multilevel methods to nest individual children in their extended families, this paper analyses data from the Survey for Health, Ageing and Retirement in Europe, and concludes that family size and birth order are essential for understanding intergenerational transfers. Logit and Tobit models are used to predict transfer occurrence and amount, and therefore avoid bias estimates found with OLS in existing research. RESULTS The analysis suggests that an only child is more than four times as likely to receive financial assistance as someone in a four-child family. This means that the maximum effect of family size is more than twice that of parental income. A separate and independent effect of birth order is also identified, which suggests that the oldest in a four-child family is twice as likely to receive financial assistance as their youngest sibling. CONCLUSIONS The policy implications of this finding are significant in the context of an ageing society and demographic change, suggesting a shift in focus from

  18. Growth and cations accumulation in moringa plants cultivated in saline soils Crescimento e acúmulo de cátions em plantas de moringa mantidas em solos salinos

    Directory of Open Access Journals (Sweden)

    Antonio Lucineudo Oliveira Freire

    2012-03-01

    Full Text Available

    The aim of this work was to evaluate the salinity effects on growth and dry matter and cations accumulation in moringa plants (Moringa oleifera. The experiment was conducted in completely randomized design, with four treatments, consisting of four soils (electrical conductivity (EC 0.49 (control, 4.15, 6.33, 10.45 dS m-1 with four replications. Initially the plants were grown in rigid tubes, and 30 days after emergence, were transferred to pots containing 10 kg of soil, according to the salinity treatment. The parameters evaluated were plants height and dry matter and N, K, Ca, Mg and Na accumulation in shoots and roots. The salinity is detrimental to initial plant growth and cation accumulation in shoots and roots plants. Young moringa plants were not effective in inhibiting the absorption of Na and its translocation to the shoot.

     

    doi: 10.4336/2012.pfb.32.69.45

    Com o objetivo de avaliar os efeitos da salinidade no crescimento e acúmulo de massa seca e cátions em plantas jovens de moringa (Moringa oleifera, testaram-se quatro tipos de solos, nas condutividades elétricas (C.E. 0,49 (controle, 4,15, 6,33 e 10,45 dS m-1. O experimento foi conduzido em delineamento inteiramente casualizado, com quatro repetições. As plantas cresceram inicialmente em tubetes rígidos e, aos 30 dias após a emergência, foram transferidas para vasos contendo 10 kg de solo, de acordo com o tratamento de salinidade. A salinidade prejudica o crescimento inicial das plantas e acúmulo de cátions na parte aérea e nas raízes das plantas. Na fase inicial de crescimento, as plantas de moringa não inibem a absorção de Na e sua translocação para a parte aérea.

     

    doi: 10.4336/2012.pfb.32.69.45

  19. Influence of Implant Number and Location on Strain Around an Implant Combined with Force Transferred to the Palate in Maxillary Overdentures.

    Science.gov (United States)

    Yang, Tsung-Chieh; Chen, Yi-Chen; Wang, Tong-Mei; Lin, Li-Deh

    This study evaluated the effect of implant number and location on strain around the implant and force transferred to the palate in maxillary implant overdentures (IODs), including two locators attached bilaterally in the canine region (IOD 2), four locators attached bilaterally in the canine and premolar regions (IOD 4CP), four locators attached bilaterally in the canine and molar regions (IOD 4CM), and six locators attached bilaterally in the canine, premolar, and molar regions (IOD 6). As the implant number increased, strain around the implant regions increased, whereas force transferred to the palate decreased under loading. However, the differences were small between IOD 4CM and IOD 6, suggesting identical biomechanical effectiveness.

  20. Improving Power System Stability Using Transfer Function: A Comparative Analysis

    Directory of Open Access Journals (Sweden)

    G. Shahgholian

    2017-10-01

    Full Text Available In this paper, a small-signal dynamic model of a single-machine infinite-bus (SMIB power system that includes IEEE type-ST1 excitation system and PSS based on transfer fu¬n¬c¬¬tion structure is presented. The changes in the operating co¬n¬dition of a power system on dynamic performance have been exa¬m¬ined. The dynamic performance of the closed-loop system is ana¬lyzed base on its eigenvalues. The effectiveness of the par¬a¬m¬e¬t¬ers changes on dynamic stability is verified by simulation res¬u¬l¬ts. Three types of PSS have been considered for analysis: (a the derivative PSS, (b the lead-lag PSS or conventional PSS, and (c the proportional-integral-derivative PSS. The objective fu¬nc¬t¬i¬o¬n is formulated to increase the dam¬¬ping ratio of the electromechanical mode eigenvalues. Simu¬la¬tion results show that the PID-PSS performs better for less ov¬e¬r¬shoot and less settling time comp¬ared with the CPSS and DPSS un¬der different load ope¬ration and the significant system pa¬r¬am¬eter variation conditions.

  1. Long term costs and effects of reducing the number of twin pregnancies in IVF by single embryo transfer: the TwinSing study

    NARCIS (Netherlands)

    van Heesch, M.M.J.; Bonsel, G.J.; Dumoulin, J.C.M.; Evers, J.L.H.; van der Hoeven, M.A.H.B.; Severens, J.L.; Dykgraaf, R.H.M.; van der Veen, F.; Tonch, N.; Nelen, W.L.D.M.; van Zonneveld, P.; van Goudoever, J.B.; Tamminga, P.; Steiner, K.; Koopman-Esseboom, C.; van Beijsterveldt, C.E.M.; Boomsma, D.I.; Snellen, D.; Dirksen, C.D.

    2010-01-01

    Background: Pregnancies induced by in vitro fertilisation (IVF) often result in twin gestations, which are associated with both maternal and perinatal complications. An effective way to reduce the number of IVF twin pregnancies is to decrease the number of embryos transferred from two to one. The

  2. Effect of Coriolis and centrifugal forces on flow and heat transfer at high rotation number and high density ratio in non orthogonally internal cooling channel

    Directory of Open Access Journals (Sweden)

    Brahim Berrabah

    2017-02-01

    Full Text Available Numerical predictions of three-dimensional flow and heat transfer are performed for a two-pass square channel with 45° staggered ribs in non-orthogonally mode-rotation using the second moment closure model. At Reynolds number of 25,000, the rotation numbers studied were 0, 0.24, 0.35 and 1.00. The density ratios were 0.13, 0.23 and 0.50. The results show that at high buoyancy parameter and high rotation number with a low density ratio, the flow in the first passage is governed by the secondary flow induced by the rotation whereas the secondary flow induced by the skewed ribs was almost distorted. As a result the heat transfer rate is enhanced on both co-trailing and co-leading sides compared to low and medium rotation number. In contrast, for the second passage, the rotation slightly reduces the heat transfer rate on co-leading side at high rotation number with a low density ratio and degrades it significantly on both co-trailing and co-leading sides at high buoyancy parameter compared to the stationary, low and medium rotation numbers. The numerical results are in fair agreement with available experimental data in the bend region and the second passage, while in the first passage were overestimated at low and medium rotation numbers.

  3. Newly diagnosed and previously known diabetes mellitus and 1-year outcomes of acute myocardial infarction: the VALsartan In Acute myocardial iNfarcTion (VALIANT) trial

    DEFF Research Database (Denmark)

    Aguilar, David; Solomon, Scott D; Køber, Lars

    2004-01-01

    cardiovascular events associated with previously known and newly diagnosed diabetes by studying 14,703 patients with acute MI enrolled in the VALsartan In Acute myocardial iNfarcTion (VALIANT) trial. Patients were grouped by diabetic status: previously known diabetes (insulin use or diagnosis of diabetes before...

  4. Heat-Transfer and Pressure Measurements from a Flight Test of the Third 1/18-Scale Model of the Titan Intercontinental Ballistic Missile up to a Mach Number of 3.86 and Reynolds Number per Foot of 23.5 x 10(exp 6) and a Comparison with Heat Transfer

    Science.gov (United States)

    Graham, John B., Jr.

    1958-01-01

    Heat-transfer and pressure measurements were obtained from a flight test of a 1/18-scale model of the Titan intercontinental ballistic missile up to a Mach number of 3.86 and Reynolds number per foot of 23.5 x 10(exp 6) and are compared with the data of two previously tested 1/18-scale models. Boundary-layer transition was observed on the nose of the model. Van Driest's theory predicted heat-transfer coefficients reasonably well for the fully laminar flow but predictions made by Van Driest's theory for turbulent flow were considerably higher than the measurements when the skin was being heated. Comparison with the flight test of two similar models shows fair repeatability of the measurements for fully laminar or turbulent flow.

  5. Osmotic dehydration of some agro-food tissue pre-treated by pulsed electric field: Impact of impeller’s Reynolds number on mass transfer and color

    Directory of Open Access Journals (Sweden)

    E. Amami

    2014-01-01

    Full Text Available Tissues of apple, carrot and banana were pre-treated by pulsed electric field (PEF and subsequently osmotically dehydrated in an agitated flask at ambient temperature using a 65% sucrose solution as osmotic medium. The effect of stirring intensity was investigated through water loss (WL and solid gain (SG. Changes in product color were also considered to analyze the impact of the treatment. The impeller’s Reynolds number was used to quantify the agitation. The Reynolds number remained inferior to 300 thus displaying laminar flow regime. Water loss (WL and solid gain (SG increase with the increase of Reynolds number. Mass transfer in osmotic dehydration of all three test particles has been studied on the basis of a two-exponential kinetic model. Then, mass transfer coefficients were related to the agitation intensity. This paper shows that the proposed empirical model is able to describe mass transfer phenomena in osmotic dehydration of these tissues. It is also shown that a higher agitation intensity improves both the kinetics of water loss and solid gain.

  6. Measurements of Heat Transfer and Boundary-Layer Transition on an 8-Inch-Diameter Hemisphere-Cylinder in Free Flight for a Mach Number Range of 2.00 to 3.88

    Science.gov (United States)

    Garland, Benjamine J.; Chauvin, Leo T.

    1957-01-01

    Measurements of aerodynamic heat transfer have been made along the hemisphere and cylinder of a hemisphere-cylinder rocket-propelled model in free flight up to a Mach number of 3.88. The test Reynolds number based on free-stream condition and diameter of model covered a range from 2.69 x l0(exp 6) to 11.70 x 10(exp 6). Laminar, transitional, and turbulent heat-transfer coefficients were obtained. The laminar data along the body agreed with laminar theory for blunt bodies whereas the turbulent data along the cylinder were consistently lower than that predicted by the turbulent theory for a flat plate. Measurements of heat transfer at the stagnation point were, in general, lower than the theory for stagnation-point heat transfer. When the Reynolds number to the junction of the hemisphere-cylinder was greater than 6 x l0(exp 6), the transitional Reynolds number varied from 0.8 x l0(exp 6) to 3.0 x 10(exp 6); however, than 6 x l(exp 6) when the Reynolds number to the junction was less, than the transitional Reynolds number varied from 7.0 x l0(exp 6) to 24.7 x 10(exp 6).

  7. Efficiency of ablative plasma energy transfer into a massive aluminum target using different atomic number ablators

    Czech Academy of Sciences Publication Activity Database

    Kasperczuk, A.; Pisarczyk, T.; Chodukowski, T.; Kalinowska, Z.; Stepniewski, W.; Jach, K.; Swierczynski, R.; Renner, Oldřich; Šmíd, Michal; Ullschmied, Jiří; Cikhart, J.; Klír, D.; Kubeš, P.; Řezáč, K.; Krouský, Eduard; Pfeifer, Miroslav; Skála, Jiří

    2015-01-01

    Roč. 33, č. 3 (2015), s. 379-386 ISSN 0263-0346 R&D Projects: GA MŠk ED1.1.00/02.0061; GA MŠk(CZ) LD14089 EU Projects: European Commission(XE) 284464 - LASERLAB-EUROPE Grant - others:ELI Beamlines(XE) CZ.1.05/1.1.00/02.0061; AVČR(CZ) M100101208 Institutional support: RVO:68378271 ; RVO:61389021 Keywords : ablator atomic number * crater volume * laser energy transfer * plasma ablative pressure Subject RIV: BL - Plasma and Gas Discharge Physics; BH - Optics, Masers, Lasers (UFP-V) Impact factor: 1.649, year: 2015

  8. Heat transfer for falling film evaporation of industrially relevant fluids up to very high Prandtl numbers

    Science.gov (United States)

    Gourdon, Mathias; Karlsson, Erik; Innings, Fredrik; Jongsma, Alfred; Vamling, Lennart

    2016-02-01

    In many industrial applications, falling film evaporation is an attractive technique for solvent removal due to high heat transfer and low residence times. Examples are the powder production in the dairy industry and in kraft pulp production process to remove water from so called black liquor. Common for both applications is that the fluids exhibit high viscosities in industrial practice. In this paper, results from experimental studies on both black liquor and a dairy product are reported for Prandtl numbers up to 800. The results are compared with several existing correlation in literature, and the need for a modified correlation is recognized especially to cover higher Prandtl-numbers. The following correlation for the turbulent flow region with 3 < Pr < 800 was derived from the data: {Nu}t = 0.0085 \\cdot Re^{0.2} \\cdot {Pr^{0.65}} The correlation has been compared to literature data from one additional study on two other fluids (propylene glycol and cyclohexanol) with fairly high Prandtl-numbers, from 40 to 58 and from 45 to 155 respectively and the agreement was within ±40 %.

  9. Determining the exact number of dye molecules attached to colloidal CdSe/ZnS quantum dots in Förster resonant energy transfer assemblies

    Energy Technology Data Exchange (ETDEWEB)

    Kaiser, Uwe; Jimenez de Aberasturi, Dorleta; Vázquez-González, Margarita; Carrillo-Carrion, Carolina; Niebling, Tobias; Parak, Wofgang J.; Heimbrodt, Wolfram, E-mail: Wolfram.Heimbrodt@physik.uni-marburg.de [Department of Physics and Material Sciences Center, Philipps-University Marburg, Renthof 5, D-35032 Marburg (Germany)

    2015-01-14

    Semiconductor quantum dots functionalized with organic dye molecules are important tools for biological sensor applications. Energy transfer between the quantum dot and the attached dyes can be utilized for sensing. Though important, the determination of the real number of dye molecules attached per quantum dot is rather difficult. In this work, a method will be presented to determine the number of ATTO-590 dye molecules attached to CdSe/ZnS quantum dots based on time resolved spectral analysis. The energy transfer from the excited quantum dot to the attached ATTO-590 dye leads to a reduced lifetime of the quantum dot's excitons. The higher the concentration of dye molecules, the shorter the excitonic lifetime becomes. However, the number of dye molecules attached per quantum dot will vary. Therefore, for correctly explaining the decay of the luminescence upon photoexcitation of the quantum dot, it is necessary to take into account the distribution of the number of dyes attached per quantum dot. A Poisson distribution of the ATTO-590 dye molecules not only leads to excellent agreement between experimental and theoretical decay curves but also additionally yields the average number of dye molecules attached per quantum dot. In this way, the number of dyes per quantum dot can be conveniently determined.

  10. Radiative heat transfer

    CERN Document Server

    Modest, Michael F

    2013-01-01

    The third edition of Radiative Heat Transfer describes the basic physics of radiation heat transfer. The book provides models, methodologies, and calculations essential in solving research problems in a variety of industries, including solar and nuclear energy, nanotechnology, biomedical, and environmental. Every chapter of Radiative Heat Transfer offers uncluttered nomenclature, numerous worked examples, and a large number of problems-many based on real world situations-making it ideal for classroom use as well as for self-study. The book's 24 chapters cover the four major areas in the field: surface properties; surface transport; properties of participating media; and transfer through participating media. Within each chapter, all analytical methods are developed in substantial detail, and a number of examples show how the developed relations may be applied to practical problems. It is an extensive solution manual for adopting instructors. Features: most complete text in the field of radiative heat transfer;...

  11. Experimental convective heat transfer characterization of pulsating jet in cross flow: influence of Strouhal number excitation on film cooling effectiveness

    International Nuclear Information System (INIS)

    Lalizel, Gildas; Sultan, Qaiser; Fénot, Matthieu; Dorignac, Eva

    2012-01-01

    In actual gas turbine system, unsteadiness of the mainstream flow influences heat transfer and surface pressure distribution on the blade. In order to simulate these conditions, an experimental film cooling study with externally imposed pulsation is performed with purpose of characterizing both effects of turbine unsteadiness on film cooling (with frequency ranges typical to actual turbine), and also to figure out the range of Strouhal number pulsation under various blowing conditions, which could possibly deliver a performance improvement in film cooling. Influence of injection flow pulsation on adiabatic effectiveness and convective heat transfer coefficient are determined from IR-thermography of the wall for distances to the hole exit between 0 and 30 D.

  12. Long term costs and effects of reducing the number of twin pregnancies in IVF by single embryo transfer: the TwinSing study.

    Science.gov (United States)

    van Heesch, Mirjam M J; Bonsel, Gouke J; Dumoulin, John C M; Evers, Johannes L H; van der Hoeven, Mark Ahbm; Severens, Johan L; Dykgraaf, Ramon H M; van der Veen, Fulco; Tonch, Nino; Nelen, Willianne L D M; van Zonneveld, Piet; van Goudoever, Johannes B; Tamminga, Pieter; Steiner, Katerina; Koopman-Esseboom, Corine; van Beijsterveldt, Catharina E M; Boomsma, Dorret I; Snellen, Diana; Dirksen, Carmen D

    2010-10-20

    Pregnancies induced by in vitro fertilisation (IVF) often result in twin gestations, which are associated with both maternal and perinatal complications. An effective way to reduce the number of IVF twin pregnancies is to decrease the number of embryos transferred from two to one. The interpretation of current studies is limited because they used live birth as outcome measure and because they applied limited time horizons. So far, research on long-term outcomes of IVF twins and singletons is scarce and inconclusive. The objective of this study is to investigate the short (1-year) and long-term (5 and 18-year) costs and health outcomes of IVF singleton and twin children and to consider these in estimating the cost-effectiveness of single embryo transfer compared with double embryo transfer, from a societal and a healthcare perspective. A multi-centre cohort study will be performed, in which IVF singletons and IVF twin children born between 2003 and 2005 of whom parents received IVF treatment in one of the five participating Dutch IVF centres, will be compared. Data collection will focus on children at risk of health problems and children in whom health problems actually occurred. First year of life data will be collected in approximately 1,278 children (619 singletons and 659 twin children). Data up to the fifth year of life will be collected in approximately 488 children (200 singletons and 288 twin children). Outcome measures are health status, health-related quality of life and costs. Data will be obtained from hospital information systems, a parent questionnaire and existing registries. Furthermore, a prognostic model will be developed that reflects the short and long-term costs and health outcomes of IVF singleton and twin children. This model will be linked to a Markov model of the short-term cost-effectiveness of single embryo transfer strategies versus double embryo transfer strategies to enable the calculation of the long-term cost-effectiveness. This is

  13. Long term costs and effects of reducing the number of twin pregnancies in IVF by single embryo transfer: the TwinSing study

    Directory of Open Access Journals (Sweden)

    van Goudoever Johannes B

    2010-10-01

    Full Text Available Abstract Background Pregnancies induced by in vitro fertilisation (IVF often result in twin gestations, which are associated with both maternal and perinatal complications. An effective way to reduce the number of IVF twin pregnancies is to decrease the number of embryos transferred from two to one. The interpretation of current studies is limited because they used live birth as outcome measure and because they applied limited time horizons. So far, research on long-term outcomes of IVF twins and singletons is scarce and inconclusive. The objective of this study is to investigate the short (1-year and long-term (5 and 18-year costs and health outcomes of IVF singleton and twin children and to consider these in estimating the cost-effectiveness of single embryo transfer compared with double embryo transfer, from a societal and a healthcare perspective. Methods/Design A multi-centre cohort study will be performed, in which IVF singletons and IVF twin children born between 2003 and 2005 of whom parents received IVF treatment in one of the five participating Dutch IVF centres, will be compared. Data collection will focus on children at risk of health problems and children in whom health problems actually occurred. First year of life data will be collected in approximately 1,278 children (619 singletons and 659 twin children. Data up to the fifth year of life will be collected in approximately 488 children (200 singletons and 288 twin children. Outcome measures are health status, health-related quality of life and costs. Data will be obtained from hospital information systems, a parent questionnaire and existing registries. Furthermore, a prognostic model will be developed that reflects the short and long-term costs and health outcomes of IVF singleton and twin children. This model will be linked to a Markov model of the short-term cost-effectiveness of single embryo transfer strategies versus double embryo transfer strategies to enable the

  14. Heat transfer from a tube bank with mass transfer in a duct

    International Nuclear Information System (INIS)

    Nouri, A.; Lavasani, A. M.

    2005-01-01

    An experimental investigation on heat transfer coefficient is present from three horizontal tubes in a vertical array in a duct for 500 D <6000. A mass transfer measuring technique based on psychrometry chart is used to determine heat transfer coefficient. The diameter of the tubes is 11 mm each spaced 40 mm apart and in-line pitch ratio varies in the range 0.055< D/W<0.22. The experimental results show that the Nusselt number of each tube increases by increasing D/W. Also the increase of the second the Nusselt number is more than that of the third one

  15. Symbolic Computation, Number Theory, Special Functions, Physics and Combinatorics

    CERN Document Server

    Ismail, Mourad

    2001-01-01

    These are the proceedings of the conference "Symbolic Computation, Number Theory, Special Functions, Physics and Combinatorics" held at the Department of Mathematics, University of Florida, Gainesville, from November 11 to 13, 1999. The main emphasis of the conference was Com­ puter Algebra (i. e. symbolic computation) and how it related to the fields of Number Theory, Special Functions, Physics and Combinatorics. A subject that is common to all of these fields is q-series. We brought together those who do symbolic computation with q-series and those who need q-series in­ cluding workers in Physics and Combinatorics. The goal of the conference was to inform mathematicians and physicists who use q-series of the latest developments in the field of q-series and especially how symbolic computa­ tion has aided these developments. Over 60 people were invited to participate in the conference. We ended up having 45 participants at the conference, including six one hour plenary speakers and 28 half hour speakers. T...

  16. Effect of the angle of attack of a rectangular wing on the heat transfer enhancement in channel flow at low Reynolds number

    Science.gov (United States)

    Khanjian, Assadour; Habchi, Charbel; Russeil, Serge; Bougeard, Daniel; Lemenand, Thierry

    2018-05-01

    Convective heat transfer enhancement can be achieved by generating secondary flow structures that are added to the main flow to intensify the fluid exchange between hot and cold regions. One method involves the use of vortex generators to produce streamwise and transverse vortices superimposed to the main flow. This study presents numerical computation results of laminar convection heat transfer in a rectangular channel whose bottom wall is equipped with one row of rectangular wing vortex generators. The governing equations are solved using finite volume method by considering steady state, laminar regime and incompressible flow. Three-dimensional numerical simulations are performed to study the effect of the angle of attack α of the wing on heat transfer and pressure drop. Different values are taken into consideration within the range 0° heat transfer enhancement, Nusselt number and the friction factor are studied on both local and global perspectives. Also, the location of the generated vortices within the channel is studied, as well as their effect on the heat transfer enhancement throughout the channel for all α values . Based on both local and global analysis, our results show that the angle of attack α has a direct impact on the heat transfer enhancement. By increasing its value, it leads to better enhancement until an optimal value is reached, beyond which the thermal performances decrease.

  17. Mixed convection heat transfer experiments using analogy concept

    International Nuclear Information System (INIS)

    Ko, Bong Jin; Chung, Bum Jin; Lee, Won Jea

    2009-01-01

    A Series of the turbulent mixed convective heat transfer experiments in a vertical cylinder was carried out. In order to achieve high Gr and/or Ra with small scale test rigs, the analogy concept was adopted. Using the concept, heat transfer systems were simulated by mass transfer systems, and large Grashof numbers could be achieved with reasonable facility heights. The tests were performed with buoyancy-aided flow and opposed flow for Reynolds numbers from 4,000 to 10,000 with a constant Grashof number, Gr H of 6.2 x 10 9 and Prandtl number of about 2,000. The test results reproduced the typical of the mixed convection heat transfer phenomena in a turbulent situation and agree well with the experimental study performed by Y. Palratan et al. The analogy experimental method simulated the mixed convection heat transfer phenomena successfully and seems to be a useful tool for heat transfer studies for VHTR as well as the systems with high buoyancy condition and high Prandtl number

  18. Investigating the impact of consumer values and advocacy behavior on buying decision satisfac-tion: A study through gender lens

    Directory of Open Access Journals (Sweden)

    Raja Ahmed Jamil

    2017-04-01

    Full Text Available Consumer’s values, Cultural values, Emotional Values and Word of mouth expressiveness, are good predictors for their buying decision satisfaction. In current study sample of 500 was taken to assess the consumer’s buying decision satisfaction in relation to the importance of their values associated with those decisions. This study also reveals how gender influences buying decision satisfaction. Consumer values have a positive and significant impact on buying decision satisfac-tion. While evaluation on the basis of gender and females have more emotional and word of mouth linkages than males, on the contrary to this, males are more concerned with cultural val-ues, and are less expressive and have a tendency to suppress their emotions while making buy-ing decisions.

  19. Dendritic multiporphyrin arrays as light-harvesting antennae: effects of generation number and morphology on intramolecular energy transfer.

    Science.gov (United States)

    Choi, Myung-Seok; Aida, Takuzo; Yamazaki, Tomoko; Yamazaki, Iwao

    2002-06-17

    A series of star- and cone-shaped dendritic multiporphyrin arrays, (nPZn)4PFB and (nPZn)1PFB, respectively, that contain energy-donating dendritic zinc porphyrin (PZn) wedges of different numbers (n = 1, 3, and 7) of the PZn units, attached to an energy-accepting free-base porphyrin (PFB) core, were synthesized by a convergent growth approach. For the cone-shaped series ((nPZn)1PFB), the efficiency of energy transfer (phi ENT) from the photoexcited PZn units to the focal PFB core, as evaluated from the fluorescence lifetimes of the PZn units, considerably decreased as the generation number increased: (1PZn)1PFB (86%), (3PZn)1PFB (66%), and (7PZn)1PFB (19%). In sharp contrast, the star-shaped series ((nPZn)4PFB) all showed high phi ENT values: (1PZn)4PFB (87%), (3PZn)4PFB (80%), and (7PZn)4PFB (71%). Energy transfer efficiencies of (3PZn)4-ester-PFB, (1PZn)4-ester-PFB, and (3PZn)1-ester-PFB, whose dendritic PZn wedges are connected by an ester linkage to the PFB core, were almost comparable to those of the corresponding ether-linked versions. Fluorescence depolarization (P) studies showed much lower P values for star-shaped (7PZn)4PFB and (3PZn)4PFB than cone-shaped (7PZn)1PFB and (3PZn)1PFB, respectively, indicating a highly efficient energy migration among the PZn units in the star-shaped series. Such a morphology-assisted photochemical event is probably responsible for the excellent light-harvesting activity of large (7PZn)4PFB molecules.

  20. PRACTISE – Photo Rectification And ClassificaTIon SoftwarE (V.1.0

    Directory of Open Access Journals (Sweden)

    S. Härer

    2013-06-01

    Full Text Available Terrestrial photography is a cost-effective and easy-to-use method for measuring and monitoring spatially distributed land surface variables. It can be used to continuously investigate remote and often inaccessible terrain. We focus on the observation of snow cover patterns in high mountainous areas. The high temporal and spatial resolution of the photographs have various applications, for example validating spatially distributed snow hydrological models. However, the analysis of a photograph requires a preceding georectification of the digital camera image. To accelerate and simplify the analysis, we have developed the "Photo Rectification And ClassificaTIon SoftwarE" (PRACTISE that is available as a Matlab code. The routine requires a digital camera image, the camera location and its orientation, as well as a digital elevation model (DEM as input. If the viewing orientation and position of the camera are not precisely known, an optional optimisation routine using ground control points (GCPs helps to identify the missing parameters. PRACTISE also calculates a viewshed using the DEM and the camera position. The visible DEM pixels are utilised to georeference the photograph which is subsequently classified. The resulting georeferenced and classified image can be directly compared to other georeferenced data and can be used within any geoinformation system. The Matlab routine was tested using observations of the north-eastern slope of the Schneefernerkopf, Zugspitze, Germany. The results obtained show that PRACTISE is a fast and user-friendly tool, able to derive the microscale variability of snow cover extent in high alpine terrain, but can also easily be adapted to other land surface applications.

  1. TECHNOLOGY TRANSFER FOR CUCUMBER (Cucumis sativus ...

    African Journals Online (AJOL)

    Dell

    2011-11-07

    Nov 7, 2011 ... affordable and sustainable Protected Intensive Produc- tion System (PIPS) to ... for the production and marketing of cucumber crop. MATERIALS AND ..... production, distribution, and consumption in Asia. {Mubarik A (ed.)}.

  2. Preliminary Heat Transfer Studies for the Double Shell Tanks (DST) Transfer Piping

    International Nuclear Information System (INIS)

    HECHT, S.L.

    2000-01-01

    Heat transfer studies were made to determine the thermal characteristics of double-shell tank transfer piping under both transient and steady-state conditions. A number of design and operation options were evaluated for this piping system which is in its early design phase

  3. Bulk Data Movement for Climate Dataset: Efficient Data Transfer Management with Dynamic Transfer Adjustment

    International Nuclear Information System (INIS)

    Sim, Alexander; Balman, Mehmet; Williams, Dean; Shoshani, Arie; Natarajan, Vijaya

    2010-01-01

    Many scientific applications and experiments, such as high energy and nuclear physics, astrophysics, climate observation and modeling, combustion, nano-scale material sciences, and computational biology, generate extreme volumes of data with a large number of files. These data sources are distributed among national and international data repositories, and are shared by large numbers of geographically distributed scientists. A large portion of data is frequently accessed, and a large volume of data is moved from one place to another for analysis and storage. One challenging issue in such efforts is the limited network capacity for moving large datasets to explore and manage. The Bulk Data Mover (BDM), a data transfer management tool in the Earth System Grid (ESG) community, has been managing the massive dataset transfers efficiently with the pre-configured transfer properties in the environment where the network bandwidth is limited. Dynamic transfer adjustment was studied to enhance the BDM to handle significant end-to-end performance changes in the dynamic network environment as well as to control the data transfers for the desired transfer performance. We describe the results from the BDM transfer management for the climate datasets. We also describe the transfer estimation model and results from the dynamic transfer adjustment.

  4. A Liquid Inorganic Electrolyte Showing an Unusually High Lithium Ion Transference Number: A Concentrated Solution of LiAlCl4 in Sulfur Dioxide

    Directory of Open Access Journals (Sweden)

    Martin Winter

    2013-08-01

    Full Text Available We report on studies of an inorganic electrolyte: LiAlCl4 in liquid sulfur dioxide. Concentrated solutions show a very high conductivity when compared with typical electrolytes for lithium ion batteries that are based on organic solvents. Our investigations include conductivity measurements and measurements of transference numbers via nuclear magnetic resonance (NMR and by a classical direct method, Hittorf’s method. For the use of Hittorf’s method, it is necessary to measure the concentration of the electrolyte in a selected cell compartment before and after electrochemical polarization very precisely. This task was finally performed by potentiometric titration after hydrolysis of the salt. The Haven ratio was determined to estimate the association behavior of this very concentrated electrolyte solution. The measured unusually high transference number of the lithium cation of the studied most concentrated solution, a molten solvate LiAlCl4 × 1.6SO2, makes this electrolyte a promising alternative for lithium ion cells with high power ability.

  5. Turbulent flow in spiral tubes and effect of Prandtl number on a convective heat transfer

    International Nuclear Information System (INIS)

    Shistel', R.; Goss, Zh.

    1976-01-01

    Turbulent flow is analized of the fluid in the spiral tube with a pitch which is small enough as compared to the curvature radius. The effect of the curvature and the Prandtl number on the turbulent convection is studied. A description of three-dimensional model and its application for the spiral tubes is given. The example of heat convection in curved channels reveals the opportunity for employment of three-dimensional model to calculate the recirculating flows in complex-geometry channels, description of the turbulence field, and determination of the wall friction and heat transfer. The introduction of the wall functions into the numerical method affects adversely accuracy of calculations but ensures a considerable time saving and makes it possible to study the process in the first approximation. The example illustrates possible practical application of the calculation procedure

  6. Comparative study on the influence of depth, number and arrangement of dimples on the flow and heat transfer characteristics at turbulent flow regimes

    Science.gov (United States)

    Nazari, Saeed; Zamani, Mahdi; Moshizi, Sajad A.

    2018-03-01

    The ensuing study is dedicated to a series of numerical investigations concerning the effects of various geometric parameters of dimpled plates on the flow structure and heat transfer performance in a rectangular duct compared to the smooth plate. These parameters are the arrangement, number and depth of dimples. Two widely used staggered and square patterns in addition to a triangular arrangement, and three dimple depths (Δ = δ/d = 0.25, 0.375 and 0.5) have been chosen for this particular study. All studies have been conducted at three different Reynolds numbers Re = 25,000, 50,000 and 100,000. In order to capture the flow structures in the vicinity of dimples and contributing phenomena related to the boundary layer interactions, fully structured grids with y+ < 1 have been generated for all the cases. The realizable k t -ɛ two-layer model was selected as a proper turbulent model. It can be observed from the obtained results that higher effective area for heat transfer and a myriad of turbulent vortices mixing the hot fluid near the surface with the passing cold fluid generated from the downwind rims of dimples are the causes for improved average Nusselt number in the dimpled surface in comparison to the smooth plate. However, more pressure loss due to the higher friction drag and recirculation zones inside dimples will exist as a drawback in this system. Moreover, for all arrangements increasing dimple ratio Δ has a negative impact on the heat transfer augmentation and also deteriorates the pressure loss, which leads to this fact that Δ = 0.25 serves as the best option for the dimple depth.

  7. European Science Notes. Volume 39, Number 7.

    Science.gov (United States)

    1985-07-01

    using acids and caustic sol - Several investigators in Switzer- vents, the cleaned replica is then land and in Germany are involved in placed on a...Institutes bases of drugs, prediction and observa- National institute for Astronomy and Geophysics tion of volcanic eruptions, oceano - National Institute

  8. Simulations and experiments of laminar heat transfer for Therminol heat transfer fluids in a rifled tube

    International Nuclear Information System (INIS)

    Xu, Weiguo; Ren, Depeng; Ye, Qing; Liu, Guodong; Lu, Huilin; Wang, Shuai

    2016-01-01

    Graphical abstract: Predicted laminar Nusselt number using regression correlation of Therminol-55 heat transfer fluid is in agreement with experiments in the rifled tube. - Highlights: • Heat transfer coefficient and friction factor are measured and predicted in the rifled tube. • Correlations for Nusselt number and friction factor are proposed. • The roughness height of 0.425 mm in transition SST model is suggested as an input parameter. • k–kl–ω transition and transition SST models are recommended for laminar–turbulent transition. • Thermal enhancement factor and synergy angle are predicted in the rifled tube. - Abstract: Simulations and experiments of flow and heat transfer behavior of Therminol-55 heat transfer fluid have been conducted in a horizontal rifled tube with outer diameter and inner diameter 25.0 and 20.0 mm, pitch and rib height of 12.0 and 1.0 mm, respectively. Numerical simulations of three-dimensional flow behavior of Therminol-55 heat transfer fluid are carried out using FLUENT code in the rifled tube. Experimental results show that the heat transfer and thermal performance of Therminol-55 heat transfer fluid in the rifled tube are considerably improved compared to those of the smooth tube. The Nusselt number increases with the increase of Reynolds number, and is from 3.5 to 5.1 times over the smooth tube. Also, the pressure drop results reveal that the average friction factor of the ribbed tube is in a range of 2.2 and 4.2 times over the smooth tube. Predictive Nusselt number and friction factor correlations have been presented. The numerical results show that the laminar flow model is valid only at lower Reynolds number in the developed laminar flow of rifled tube. The k–kl–ω transition model and transition SST model with roughness of 0.425 mm are recommended for the predictions of transition process from laminar to turbulent flow in the rifled tube.

  9. Transfer Innovations Fund Updating Project. BC Council on Admissions and Transfer. Tourism Management Articulation

    Science.gov (United States)

    British Columbia Council on Admissions and Transfer, 2010

    2010-01-01

    In 2008, a number of changes were identified that expanded the scope of the updating required for Block Transfer for tourism management as follows: a new core curriculum for diploma programs; the need for expanded information on diploma to diploma transfer; and, a growing need for an expanded system of transfer identified in Campus 2020…

  10. Effets du conditionnement en jours longs à la fin du cycle reproducteur sur la période d'ovulation et sur les sécrétions gonadotropes chez l'omble chevalier (Salvelinus alpinus

    Directory of Open Access Journals (Sweden)

    GILLET C.

    1998-07-01

    Full Text Available Les ombles chevaliers originaires du Léman se reproduisent à la fin de l'automne. En élevage, il est intéressant de retarder de quelques mois la période des ovulations car ce poisson a besoin d'une température inférieure à 6°C pendant l'ovulation. Il est plus facile de fournir une eau à cette température aux géniteurs retardés qui ovulent en hiver qu'à ceux qui ovulent naturellement en automne. Le conditionnement des ombles chevaliers en jours longs (17L-7N pendant l'automne permet de retarder de plusieurs mois la période des ovulations. Cette méthode a l'inconvénient de provoquer un étalement des ovulations sur plus de 3 mois. Le reconditionnement des géniteurs en jours courts en décembre supprime ce problème. L'efficacité du traitement en jours longs ne semble pas dépendre de la durée de son application pourvu que celle-ci dépasse 1,5 mois. Chez les femelles conditionnées en jours longs en automne et en hiver, les concentrations en gonadotropine plasmatique (GTH II sont très faibles. Le niveau de la GTH II plasmatique augmente trois semaines après un transfert en jours courts en janvier. Les concentrations de la GTH II plasmatique au cours de l'ovulation sont significativement plus faibles chez les femelles conditionnées en jours longs en janvier que chez les animaux reconditionnés en jours courts. A ce stade du cycle reproducteur, la GTH I plasmatique reste toujours à un niveau très faible, quel que soit le régime photopériodique. La pose d'implant de mélatonine chez les poissons ne modifie pas les sécrétions gonadotropes en jours longs comme en jours courts. La réceptivité hypophysaire des femelles à une stimulation de la sécrétion gonadotrope par une injection de GnRH n'est pas modifiée par le conditionnement des poissons en jours longs. Aucun effet du pimozide sur la sécrétion de la GTH II n'a pu être mis en évidence chez les géniteurs conditionnés en jours longs. Ces résultats permettent

  11. Heat transfer experiments and correlations for natural and forced circulations of water in rod bundles at low Reynolds numbers

    International Nuclear Information System (INIS)

    Kim, Sung-Ho; El-Genk, Mohamed S.; Rubio, Reuben A.; Bryson, James W.; Foushee, Fabian C.

    1988-01-01

    Experimental heat transfer studies were conducted for fully developed forced and natural flows of water through seven uniformly heated rod bundles, triangularly arrayed with P/D = 1.25, 1.38, and 1.5. In forced circulation experiments, Re ranged from 80 to 50,000 and Pr from 3 to 8.5, while in natural circulation, Re varied from 260 to 2,000, and Ra q from 8 x 10 8 to 2.5 x 10 8 . The forced flow data fell into the two basic flow regimes: turbulent and laminar flow. At the transition between these regimes, Re, which varied from 2,200 for P/D = 1.25 to 5,500 for P/D = 1.5, increased linearly with P/D. The heat transfer data for turbulent flow was within ±15 percent of Weisman's correlation, which was developed for fully developed turbulent flow in rod bundles at Re > 25,000. The laminar flow data showed the dependence of Nu on Re to be weaker than that for turbulent flow, but the exponent of Re increased with P/D: Nu = A Re B Pr 1/3 , where A is equal to 1.061, 0.511, and 0.346 for P/D = 1.25, 1.38 and 1.5, respectively, and B is a linear function of P/D (B = 0.797 P/D - 0.656). Natural circulation data indicated that rod spacing only slightly affected heat transfer, and Nu increased proportionally to Ra 0.25 ; Nu = 0.272 Ra q 0.25 . The application of the results to SNL's ACRR indicated that although the core is cooled by natural convection, either the natural circulation correlation or the forced turbulent flow correlation can be used to accurately predict the single phase heat transfer coefficient in the ACRR. These results were concluded because of the high Rayleigh and Reynolds numbers in the ACRR. The ACRR operates near the boundary between mixed and forced turbulent flow regimes: consequently, achieving the high heat transfer coefficient was possible with natural circulation. (author)

  12. Waste Retrieval Sluicing System Campaign Number 3 Solids Volume Transferred Calculation

    International Nuclear Information System (INIS)

    CAROTHERS, K.G.

    1999-01-01

    Waste Retrieval Sluicing System (WRSS) operations at tank 241-C-106 began on Wednesday, November 18, 1998. The purpose of this system is to retrieve and transfer the high-heat sludge from the tank for storage in double-shell tank 241-AY-102, thereby resolving the high-heat safety issue for the tank, and to demonstrate modernized past-practice retrieval technology for single-shell tank waste. Performance Agreement (PA) TWR 1.2.2, C-106 Sluicing, was established by the Department of Energy, Office of River Protection (ORP) for achieving completion of sluicing retrieval of waste from tank 241-C-106 by September 30, 1999. This level of sludge removal is defined in the PA as either removal of approximately 72 inches of sludge or removal of 172,000 gallons of sludge (approximately 62 inches) and less than 6,000 gallons (approximately 2 inches) of sludge removal per 12 hour sluice batch for three consecutive batches. Preliminary calculations of the volume of tank 241-C-106 sludge removed as of September 29, 1999 were provided to ORP documenting completion of PA TWR 1.2.2 (Allen 1999a). The purpose of this calculation is to document the final sludge volume removed from tank 241-C-106 up through September 30, 1999. Additionally, the results of an extra batch completed October 6, 1999 is included to show the total volume of sludge removed through the end of WRSS operations. The calculation of the sludge volume transferred from the tank is guided by engineering procedure HNF-SD-WM-PROC-021, Section 15.0,Rev. 3, sub-section 4.4, ''Calculation of Sludge Transferred.''

  13. Waste Retrieval Sluicing System Campaign Number 3 Solids Volume Transferred Calculation

    International Nuclear Information System (INIS)

    CAROTHERS, K.G.

    1999-01-01

    Waste Retrieval Sluicing System (WRSS) operations at tank 241-C-106 began on Wednesday, November 18,1998. The purpose of this system is to retrieve and transfer the high-heat sludge from the tank for storage in double-shell tank 241-AY-102, thereby resolving the high-heat safety issue for the tank, and to demonstrate modernized past-practice retrieval technology for single-shell tank waste. Performance Agreement (PA) TWR 1.2.2, C-106 Sluicing, was established by the Department of Energy, Office of River Protection (ORP) for achieving completion of sluicing retrieval of waste from tank 241-C-106 by September 30,1999. This level of sludge removal is defined in the PA as either removal of approximately 72 inches of sludge or removal of 172,000 gallons of sludge (approximately 62 inches) and less than 6,000 gallons (approximately 2 inches) of sludge removal per 12 hour sluice batch for three consecutive batches. Preliminary calculations of the volume of tank 241-C-106 sludge removed as of September 29, 1999 were provided to ORP documenting completion of PA TWR 1.2.2 (Allen 1999a). The purpose of this calculation is to document the final sludge volume removed from tank 241-C-106 up through September 30, 1999. Additionally, the results of an extra batch completed October 6, 1999 is included to show the total volume of sludge removed through the end of WRSS operations. The calculation of the sludge volume transferred from the tank is guided by engineering procedure HNF-SD-WM-PROC-021, Section 15.0,Rev. 3, sub-section 4.4, ''Calculation of Sludge Transferred.''

  14. High Reynolds number liquid layer flow with flexible walls

    Indian Academy of Sciences (India)

    School of Mathematics, University of Manchester, Manchester, M13 9PL, UK ... tions have potential application to aerodynamic and marine flows. .... Next, assume that the displacement of the free-surface induces a transverse pressure gradient.

  15. Heat transfer direction dependence of heat transfer coefficients in annuli

    Science.gov (United States)

    Prinsloo, Francois P. A.; Dirker, Jaco; Meyer, Josua P.

    2018-04-01

    In this experimental study the heat transfer phenomena in concentric annuli in tube-in-tube heat exchangers at different annular Reynolds numbers, annular diameter ratios, and inlet fluid temperatures using water were considered. Turbulent flow with Reynolds numbers ranging from 15,000 to 45,000, based on the average bulk fluid temperature was tested at annular diameter ratios of 0.327, 0.386, 0.409 and 0.483 with hydraulic diameters of 17.00, 22.98, 20.20 and 26.18 mm respectively. Both heated and cooled annuli were investigated by conducting tests at a range of inlet temperatures between 10 °C to 30 °C for heating cases, and 30 °C to 50 °C for cooling cases. Of special interest was the direct measurement of local wall temperatures on the heat transfer surface, which is often difficult to obtain and evasive in data-sets. Continuous verification and re-evaluation of temperatures measurements were performed via in-situ calibration. It is shown that inlet fluid temperature and the heat transfer direction play significant roles on the magnitude of the heat transfer coefficient. A new adjusted Colburn j-factor definition is presented to describe the heating and cooling cases and is used to correlate the 894 test cases considered in this study.

  16. Combined convective heat transfer of liquid sodium flowing across tube banks

    International Nuclear Information System (INIS)

    Ma, Ying; Sugiyama, Ken-ichiro; Ishiguro, Ryoji

    1989-01-01

    In order to clarify the heat transfer characteristics of combined convection of liquid sodium, a numerical analysis is performed for liquid sodium which flows through a single horizontal row of tubes in the direction of gravity. The correlation of heat transfer characteristics between liquid sodium and ordinary fluids is also discussed. The heat transfer characteristics at large Reynolds numbers are improved when the Richardson number is increased, and the improvement rate is enlarged with increase in p/d value, since convection effect is relatively large. However heat transfer coefficients do not differ from those of forced convection at small Reynolds numbers even when the Richardson number reaches a high value because of conduction effect. A good consistence of heat transfer characteristics of combined convection between liquid sodium and air is obtained at the same Peclet number and Richardson number. This means that the fundamental heat transfer characteristics of combined convection of liquid sodium can be investigated with ordinary fluids. (author)

  17. A heat transfer analysis of laminar flow over a flat plate with unheated starting region for low Prandtl number fluids

    International Nuclear Information System (INIS)

    Ahola, M.P.; Karimi, A.

    1996-01-01

    In boundary layer analyses involving heat transfer, the Prandtl number (Pr) relates the diffusion of momentum to the diffusion of heat, and can be shown to directly correlate to the ratio of the thermal boundary layer thickness to the velocity boundary layer thickness. For large Prandtl number fluids (i.e., Pr > 1) the velocity boundary layer thickness is larger than the thermal boundary layer thickness, and vice versa. In some applications in the industry heating does not occur over the entire plate, such as in the case of an unheated starting region or spot heating along a finite segment of the plate. For such applications solutions only exist for the simpler case of large Prandtl number fluids where the thermal boundary layer is assumed to be smaller than the velocity boundary layer. The analyses presented in this paper extends the solution to the unheated starting region problem for small Prandtl number fluids, where the thermal boundary layer grows larger and crosses the velocity boundary layer. The solution is based on the integral method approach assuming laminar flow, and both cases of constant wall temperature as well as constant wall heat flux are analyzed

  18. 40 CFR 152.135 - Transfer of registration.

    Science.gov (United States)

    2010-07-01

    ..., spinoff, bankruptcy transfer (no financial information need be disclosed); (7) A statement that the transferor and transferee understand that any false statement may be punishable under 18 U.S.C. 1001; and (8...) The name(s) and EPA registration number(s) of the product(s) being transferred; (4) A statement that...

  19. Integrated analysis of energy transfers in elastic-wave turbulence.

    Science.gov (United States)

    Yokoyama, Naoto; Takaoka, Masanori

    2017-08-01

    In elastic-wave turbulence, strong turbulence appears in small wave numbers while weak turbulence does in large wave numbers. Energy transfers in the coexistence of these turbulent states are numerically investigated in both the Fourier space and the real space. An analytical expression of a detailed energy balance reveals from which mode to which mode energy is transferred in the triad interaction. Stretching energy excited by external force is transferred nonlocally and intermittently to large wave numbers as the kinetic energy in the strong turbulence. In the weak turbulence, the resonant interactions according to the weak turbulence theory produce cascading net energy transfer to large wave numbers. Because the system's nonlinearity shows strong temporal intermittency, the energy transfers are investigated at active and moderate phases separately. The nonlocal interactions in the Fourier space are characterized by the intermittent bundles of fibrous structures in the real space.

  20. Wireless power transfer: control algorithm to transfer the maximum power

    OpenAIRE

    Rojas Urbano, Javier Arturo

    2016-01-01

    This job is developed as part of “Health aware enhanced range wireless power transfer systems", known as ETHER. It is a cooperation project where Universidad Politécnica de Madrid (UPM) and Universidad Politécnica de Cataluña (UPC) research groups are mainly involved. ETHER objective is to develop a wireless power transfer system for medical applications, specifically a pacemaker charger to improve patient’s lifestyle decreasing the number of required operations to replace pacemaker batter...

  1. Medical Surveillance Monthly Report, Volume 20, Number 8

    Science.gov (United States)

    2013-08-01

    primary diagnostic position, 99 (55.6%) had secondary diagnoses indica- tive of infections (e.g., streptococcus infec- tion, cellulitis , UTI) (data not...respiratory infections (e.g., pneumonia), and skin infections (e.g., cellulitis ), all of which are risk factors for septicemia.7,12,13 It is not clear why

  2. Joint Force Quarterly. Number 18, Spring 1998

    Science.gov (United States)

    1998-06-01

    our arms.” JFQ ■ O F F T H E S H E L F 142 JFQ / Spring 1998 Colonel Harry G. Summers, Jr., USA (Ret.), is a syndicated columnist and noted lecturer...a syndicate leader at a German staff college is considered a high-prestige post that usually presages promo- tion to flag rank. Two other foreign

  3. A new definition of Bejan number

    Directory of Open Access Journals (Sweden)

    Awad Mohamed M.

    2012-01-01

    Full Text Available A new definition of Bejan number will be generated by replacing the thermal diffusivity with the mass diffusivity. For example, the Schmidt number is the mass transfer analog of the Prandtl number. For the case of Reynolds analogy (Sc = Pr = = 1, both current and new definitions of Bejan number are the same. This new definition is useful and needed for diffusion of mass (mass diffusion.

  4. ONRASIA Scientific Information Bulletin. Volume 16, Number 2

    Science.gov (United States)

    1991-06-01

    participation of elderly in society. tions for a rule and the distribution of to be overcome: (Japan expects a 50% increase in the functions along the abscissa...assistants for bedridden and Any way you slice it, R&D investment handicapped 3. Intelligent manufacturing systems in Japan is large, estimated about

  5. Translations on Latin America, Number 1568.

    Science.gov (United States)

    1976-11-10

    the states and municipalities , [passage indistinct] The balance of payments will have a deficit this year of 44 billion cruzeiros, 17 percent more...to see the regime experiment with the first municipal elec- tions with universal suffrage in one province, Matanzas Province. It is true that the...the House of Chile, signed by Hugo Vigorena, from Angelica Arenal de Siquieros, from the dissident group of the PPS, Alejandro Gascon Mercado , Manuel

  6. Credit risk transfer

    OpenAIRE

    Bank for International Settlements

    2003-01-01

    Executive summary Techniques for transferring credit risk, such as financial guarantees and credit insurance, have been a long-standing feature of financial markets. In the past few years, however, the range of credit risk transfer (CRT) instruments and the circumstances in which they are used have widened considerably. A number of factors have contributed to this growth, including: greater focus by banks and other financial institutions on risk management; a more rigorous approach to risk/re...

  7. Endwall convective heat transfer for bluff bodies

    DEFF Research Database (Denmark)

    Wang, Lei; Salewski, Mirko; Sundén, Bengt

    2012-01-01

    The endwall heat transfer characteristics of forced flow past bluff bodies have been investigated using liquid crystal thermography (LCT). The bluff body is placed in a rectangular channel with both its ends attached to the endwalls. The Reynolds number varies from 50,000 to 100,000. In this study......, a single bluff body and two bluff bodies arranged in tandem are considered. Due to the formation of horseshoe vortices, the heat transfer is enhanced appreciably for both cases. However, for the case of two bluff bodies in tandem, it is found that the presence of the second bluff body decreases the heat...... transfer as compared to the case of a single bluff body. In addition, the results show that the heat transfer exhibits Reynolds number similarity. For a single bluff body, the Nusselt number profiles collapse well when the data are scaled by Re0.55; for two bluff bodies arranged in tandem, the heat...

  8. Rayleigh-Benard Natural Convection Cell Formation and Nusselt number

    International Nuclear Information System (INIS)

    Moon, Je Young; Chung, Bum Jin

    2013-01-01

    The experimental results lie within the predictions of the existing heat transfer correlations for the Rayleigh-Benard natural convections even though the material properties were different. For shorter separation distances, the heat transfers enhance due to the active interaction between heated and cooled plumes. For a step temperature difference, the time dependent Nusselt number variations were investigated. Both experimental and numerical results showed that with time the Nusselt number decreases monotonically to a minimum point presenting the onset of convection. As the hot and cold plumes increase and convey the heat to the other plates, the Nusselt number increases to the local maximum point, presenting the vertical movements of the plumes. Then, the Nusselt number fluctuates with the formation of square cells and larger vortices. This also predicted by the mass transfer experiment. The experiments and calculations show similar trend but the timings were different. These discrepancies are caused by the disturbances inherent in both systems. The molten pool is formed in a hypothetical severe accident condition at the lower head of reactor vessel and is stratified into two layers by the density difference: an upper metallic layer and a lower oxide pool. Rayleigh-Benard natural convection occurs in the metallic layer of relocated molten pool. This study aimed at the investigation of the time-dependent cell formation and Nusselt number variation in Rayleigh-Benard natural convection. Time dependent variation of Nusselt number was also measured experimentally and analyzed numerically to investigate the relationship between the cell formation and Nusselt number. Based on the analogy, heat transfer experiments were replaced by mass transfer experiments using a sulfuric acid-copper sulfate (H 2 SO 4 -CuSO 4 ) electroplating system. Numerical analysis using the commercial CFD program FLUENT 6.3 were carried out with the same material properties and heating conditions

  9. Convective heat transfer around vertical jet fires: An experimental study

    Energy Technology Data Exchange (ETDEWEB)

    Kozanoglu, Bulent, E-mail: bulentu.kozanoglu@udlap.mx [Universidad de las Americas, Puebla (Mexico); Zarate, Luis [Universidad Popular Autonoma del Estado de Puebla (Mexico); Gomez-Mares, Mercedes [Universita di Bologna (Italy); Casal, Joaquim [Universitat Politecnica de Catalunya (Spain)

    2011-12-15

    Highlights: Black-Right-Pointing-Pointer Experiments were carried out to analyze convection around a vertical jet fire. Black-Right-Pointing-Pointer Convection heat transfer is enhanced increasing the flame length. Black-Right-Pointing-Pointer Nusselt number grows with higher values of Rayleigh and Reynolds numbers. Black-Right-Pointing-Pointer In subsonic flames, Nusselt number increases with Froude number. Black-Right-Pointing-Pointer Convection and radiation are equally important in causing a domino effect. - Abstract: The convection heat transfer phenomenon in vertical jet fires was experimentally analyzed. In these experiments, turbulent propane flames were generated in subsonic as well as sonic regimes. The experimental data demonstrated that the rate of convection heat transfer increases by increasing the length of the flame. Assuming the solid flame model, the convection heat transfer coefficient was calculated. Two equations in terms of adimensional numbers were developed. It was found out that the Nusselt number attains greater values for higher values of the Rayleigh and Reynolds numbers. On the other hand, the Froude number was analyzed only for the subsonic flames where the Nusselt number grows by this number and the diameter of the orifice.

  10. Prognostic implications of left ventricular mass and geometry following myocardial infarction: the VALIANT (VALsartan In Acute myocardial iNfarcTion) Echocardiographic Study

    DEFF Research Database (Denmark)

    Verma, Anil; Meris, Alessandra; Skali, Hicham

    2008-01-01

    associated with RWT was independent of LVMi. CONCLUSIONS: Increased baseline LV mass and abnormal LV geometry portend an increased risk for morbidity and mortality following high-risk myocardial infarction. Concentric LV hypertrophy carries the greatest risk of adverse cardiovascular events including death...... cardiovascular events. METHODS: Quantitative echocardiographic analyses were performed at baseline in 603 patients from the VALIANT (VALsartan In Acute myocardial iNfarcTion) echocardiographic study. The left ventricular mass index (LVMi) and relative wall thickness (RWT) were calculated. Patients were...... classified into 4 mutually exclusive groups based on RWT and LVMi as follows: normal geometry (normal LVMi and normal RWT), concentric remodeling (normal LVMi and increased RWT), eccentric hypertrophy (increased LVMi and normal RWT), and concentric hypertrophy (increased LVMi and increased RWT). Cox...

  11. Absorção de cátions e ânions pelo capim-coastcross adubado com uréia e nitrato de amônio Cations and anions uptake by coastcross grass fertilized with urea and ammonium nitrate

    Directory of Open Access Journals (Sweden)

    Ana Cândida Primavesi

    2005-03-01

    Full Text Available Os processos fisiológicos das plantas são afetados pelo balanço de cátions e ânions absorvidos. O objetivo deste trabalho foi determinar a absorção de cátions e ânions quando plantas de capim-coastcross receberam doses elevadas de nitrogênio. O delineamento experimental foi o de blocos casualizados com quatro repetições, num esquema fatorial 2x5 - duas fontes de N: uréia e nitrato de amônio, e cinco doses de N: 0, 25, 50, 100, 200 kg ha-1 corte-1 . As doses de N foram aplicadas após cada corte num total de cinco cortes, durante a época das chuvas. A absorção de cátions e de ânions pelo capim-coastcross aumentou com o acréscimo das doses de N dos dois fertilizantes, sendo maior com o nitrato de amônio. Com doses crescentes de N, verificou-se entre os cátions maior absorção do K+, e do Cl- entre os ânions. Com exceção do N, a absorção do K+ foi superior à dos demais nutrientes, com redução no teor relativo de cálcio. Doses altas de N aplicadas em capim-coastcross, na forma de uréia ou de nitrato de amônio, favorecem a absorção de cátions e de ânions.Physiologic processes of plants are affected by uptake of cations and anions. The aim of this work was to determine the uptake of cations and anions when plants of coastcross grass received high doses of nitrogen. The experimental design was a randomized block, in a 2x5 factorial arrangement - two N sources: urea and ammonium nitrate and five N rates: 0, 25, 50, 100, and 200 kg ha-1 cutting-1 - with four replications. Treatments were applied after each of five consecutive cutting in the rainy season. Uptake of cations and anions by coastcross grass increased with increasing of N rates with both fertilizers, but was higher with ammonium nitrate. Increasing rates of N caused higher K+ uptake in relation to other cations, and in Cl- among the anions. Except for N, K+ uptake was greater than that of other nutrients, with a reduction on the relative content of Ca2

  12. Economic optimization of the number of recipients in bovine embryo transfer programs Otimização econômica do número de receptoras em programas de transferência de embriões em bovinos

    Directory of Open Access Journals (Sweden)

    Renato Travassos Beltrame

    2007-06-01

    Full Text Available Purchase and maintenance of recipient females account for a large proportion of the costs and determine the number of calves that can be produced in an embryo transfer program. However, the large variability of embryo production by the donors and the need to purchase and synchronize the recipients before knowing the number of embryos collected make it difficult for the decision maker to identify the ideal number of recipient females to allocate. An ex-ante evaluation to determine the optimal number of recipient females was carried out through a sensitivity analysis for the ratio between the number of recipients and donors in a simulation model. The variability for the number of embryos collected was accounted for by applying the Monte Carlo simulation technique, assuming normal distribution and known values for mean and variance. The simulation considered monthly intervals between collections, during a 24 months program. The effect of embryo freezing on the number of pregnancies was considered by introducing a stock of frozen embryos into the mathematical model. Optimal recipient/donor ratio and the cost per pregnancy were compared for three recipient synchronization protocols (prostaglandin, progesterone - P4 and Ovsynch, based on the expected performance for synchronization, conception and transfer/treated rates for each protocol. Stochastic simulation associated with sensitivity analysis was effective in identifying the optimal donor to recipient ratio. Freezing embryos is effective to reduce the operational costs per pregnancy. The estimated optimal recipient/donor ratio was 20 for prostaglandin and 16.7 for the other protocols. The P4 protocol, although the most expensive, resulted in the lowest pregnancy cost estimation followed by prostaglandin and Ovsynch.A aquisição e manutenção de receptoras representam grande proporção dos custos e determinam o número de produtos gerados em um programa de transferência de embriões. Entretanto

  13. Quadrupolar transfer pathways

    Science.gov (United States)

    Antonijevic, Sasa; Bodenhausen, Geoffrey

    2006-06-01

    A set of graphical conventions called quadrupolar transfer pathways is proposed to describe a wide range of experiments designed for the study of quadrupolar nuclei with spin quantum numbers I = 1, 3/2, 2, 5/2, etc. These pathways, which inter alea allow one to appreciate the distinction between quadrupolar and Zeeman echoes, represent a generalization of the well-known coherence transfer pathways. Quadrupolar transfer pathways not merely distinguish coherences with different orders -2 I ⩽ p ⩽ +2 I, but allow one to follow the fate of coherences associated with single transitions that have the same coherence orderp=mIr-mIs but can be distinguished by a satellite orderq=(mIr)2-(mIs)2.

  14. A CLOSED-FORM SOLUTION PROCEDURE TO THE VIBRA TION ...

    African Journals Online (AJOL)

    into a set of linear algebraic equations that can be solved easily. The number of equations in the latter is double the number of modes used for the coordinate transformation. The modal coordinates cu:ethen easily determined making use of simple matrix algebra'. The technique presented is illustrated by imexample ...

  15. Translations on USSR Resources, Number 820

    Science.gov (United States)

    1978-08-02

    enterprises utilizing their own building organization, the census taker shall enter "In construction on a sawmill," "In repairs on a confectionery ...Jlrifonov;. they dealt with current problems of activating the party’s influence oh the work of production and supply- marketing organiza- tions. They...etc. The demand for lumber also is great on the world market . How- ever, its value will increase still more in the future. Therefore the

  16. Heat or mass transfer from an open cavity

    NARCIS (Netherlands)

    Kuiken, H.K.

    1978-01-01

    This paper presents a mathematical model for heat or mass transfer from an open cavity. It is assumed that the Péclet number, based on conditions at the cavity, and the Prandtl number are both large. The model assumes heat- or mass-transfer boundary layers at the rim of the cavity vortex flow. Heat

  17. On the extraction of ion association data and transference numbers from ionic diffusivity and conductivity data in polymer electrolytes

    International Nuclear Information System (INIS)

    Stolwijk, Nicolaas A.; Kösters, Johannes; Wiencierz, Manfred; Schönhoff, Monika

    2013-01-01

    The degree of ion association in polymer electrolytes is often characterized by the Nernst–Einstein deviation parameter Δ, which quantifies the relative difference between the true ionic conductivity directly measured by electrical methods and the hypothetical maximum conductivity calculated from the individual ionic self-diffusion coefficients. Despite its unambiguous definition, the parameter Δ is a global quantity with limited explanatory power. Similar is true for the cation transport number t cat * , which relies on the same ionic diffusion coefficients usually measured by nuclear magnetic resonance or radiotracer methods. Particularly in cases when neutral ion pairs dominate over higher-order aggregates, more specific information can be extracted from the same body of experimental data that is used for the calculation of Δ and t cat * . This information concerns the pair contributions to the diffusion coefficient of cations and anions. Also the true cation transference number based on charged species only can be deduced. We present the basic theoretical framework and some pertinent examples dealing with ion pairing in polymer electrolytes

  18. Transfer of Training: A Reorganized Review on Work Environment and Motivation to Transfer

    Directory of Open Access Journals (Sweden)

    Imran Khan

    2015-11-01

    Full Text Available Effective application of skills & knowledge gained from a training program to a job situation, i.e. transfer of training, has become a great concern in training issues. Transfer of learned skills at the actual workplace is subject to a number of factors, with work environment being one of those factors. Research has shown a relatively profound role of the work environment in delineating the construct of transfer. However, some of the most important characteristics of the work environment have arguably remained under-researched and are still going empirical testing. So, in earnest, this paper is an attempt to make a holistic review of the literature and methodology by going through summative, formative and meta studies published from 1988–2014 on transfer. This paper proposes a conceptual framework by recognizing the influential role of two forms of work environments (i.e., support and climate on transfer of training, taking into account the mediating role played by transfer motivation with recommended methodological standards.

  19. Strategic Studies Quarterly. Volume 4, Number 2, Summer 2010

    Science.gov (United States)

    2010-01-01

    TA will be considerable. We cannot af­ ford to forget how we accepted automobile seat belts, poultry inspectors, and financial disclosure statements...of opera­ tion, and a civilian dress code was established as well. Broadcasts on the US Armed Forces Radio and Television Service (AFRTS) were

  20. Heat transfer enhancement using 2MHz ultrasound.

    Science.gov (United States)

    Bulliard-Sauret, Odin; Ferrouillat, Sebastien; Vignal, Laure; Memponteil, Alain; Gondrexon, Nicolas

    2017-11-01

    The present work focuses on possible heat transfer enhancement from a heating plate towards tap water in forced convection by means of 2MHz ultrasound. The thermal approach allows to observe the increase of local convective heat transfer coefficients in the presence of ultrasound and to deduce a correlation between ultrasound power and Nusselt number. Heat transfer coefficient under ultrasound remains constant while heat transfer coefficient under silent conditions increases with Reynolds number from 900 up to 5000. Therefore, heat transfer enhancement factor ranges from 25% up to 90% for the same energy conditions (supplied ultrasonic power=110W and supplied thermal power=450W). In the same time cavitational activity due to 2MHz ultrasound emission was characterized from mechanical and chemical viewpoints without significant results. At least, Particle Image Velocimetry (PIV) measurements have been performed in order to investigate hydrodynamic modifications due to the presence of 2MHz ultrasound. It was therefore possible to propose a better understanding of heat transfer enhancement mechanism with high frequency ultrasound. Copyright © 2017 Elsevier B.V. All rights reserved.

  1. Second Law Analysis in Convective Heat and Mass Transfer

    Directory of Open Access Journals (Sweden)

    A. Ben Brahim

    2006-02-01

    Full Text Available This paper reports the numerical determination of the entropy generation due to heat transfer, mass transfer and fluid friction in steady state for laminar double diffusive convection, in an inclined enclosure with heat and mass diffusive walls, by solving numerically the mass, momentum, species conservation and energy balance equations, using a Control Volume Finite-Element Method. The influences of the inclination angle, the thermal Grashof number and the buoyancy ratio on total entropy generation were investigated. The irreversibilities localization due to heat transfer, mass transfer and fluid friction is discussed for three inclination angles at a fixed thermal Grashof number.

  2. Energy transfer in turbulence under rotation

    Science.gov (United States)

    Buzzicotti, Michele; Aluie, Hussein; Biferale, Luca; Linkmann, Moritz

    2018-03-01

    It is known that rapidly rotating turbulent flows are characterized by the emergence of simultaneous upscale and downscale energy transfer. Indeed, both numerics and experiments show the formation of large-scale anisotropic vortices together with the development of small-scale dissipative structures. However the organization of interactions leading to this complex dynamics remains unclear. Two different mechanisms are known to be able to transfer energy upscale in a turbulent flow. The first is characterized by two-dimensional interactions among triads lying on the two-dimensional, three-component (2D3C)/slow manifold, namely on the Fourier plane perpendicular to the rotation axis. The second mechanism is three-dimensional and consists of interactions between triads with the same sign of helicity (homochiral). Here, we present a detailed numerical study of rotating flows using a suite of high-Reynolds-number direct numerical simulations (DNS) within different parameter regimes to analyze both upscale and downscale cascade ranges. We find that the upscale cascade at wave numbers close to the forcing scale is generated by increasingly dominant homochiral interactions which couple the three-dimensional bulk and the 2D3C plane. This coupling produces an accumulation of energy in the 2D3C plane, which then transfers energy to smaller wave numbers thanks to the two-dimensional mechanism. In the forward cascade range, we find that the energy transfer is dominated by heterochiral triads and is dominated primarily by interaction within the fast manifold where kz≠0 . We further analyze the energy transfer in different regions in the real-space domain. In particular, we distinguish high-strain from high-vorticity regions and we uncover that while the mean transfer is produced inside regions of strain, the rare but extreme events of energy transfer occur primarily inside the large-scale column vortices.

  3. Efficiency of porcine somatic cell nuclear transfer – a retrospective study of factors related to embryo recipient and embryos transferred

    Directory of Open Access Journals (Sweden)

    Yongye Huang

    2013-10-01

    The successful generation of pigs via somatic cell nuclear transfer depends on reducing risk factors in several aspects. To provide an overview of some influencing factors related to embryo transfer, the follow-up data related to cloned pig production collected in our laboratory was examined. (i Spring showed a higher full-term pregnancy rate compared with winter (33.6% vs 18.6%, P = 0.006. Furthermore, a regression equation can be drawn between full-term pregnancy numbers and pregnancy numbers in different months (y = 0.692x−3.326. (ii There were no significant differences detected in the number of transferred embryos between surrogate sows exhibiting full-term development compared to those that did not. (iii Non-ovulating surrogate sows presented a higher percentage of full-term pregnancies compared with ovulating sows (32.0% vs 17.5%, P = 0.004; respectively. (iv Abortion was most likely to take place between Day 27 to Day 34. (v Based on Life Table Survival Analysis, delivery in normally fertilized and surrogate sows is expected to be completed before Day 117 or Day 125, respectively. Additionally, the length of pregnancy in surrogate sows was negatively correlated with the average litter size, which was not found for normally fertilized sows. In conclusion, performing embryo transfer in appropriate seasons, improving the quality of embryos transferred, optimizing the timing of embryo transfer, limiting the occurrence of abortion, combined with ameliorating the management of delivery, is expected to result in the harvest of a great number of surviving cloned piglets.

  4. Air-water transfer of hydrogen sulfide

    DEFF Research Database (Denmark)

    Yongsiri, C.; Vollertsen, J.; Rasmussen, M. R.

    2004-01-01

    The emissions process of hydrogen sulfide was studied to quantify air–water transfer of hydrogen sulfide in sewer networks. Hydrogen sulfide transfer across the air–water interface was investigated at different turbulence levels (expressed in terms of the Froude number) and pH using batch...... experiments. By means of the overall mass–transfer coefficient (KLa), the transfer coefficient of hydrogen sulfide (KLaH2S), referring to total sulfide, was correlated to that of oxygen (KLaO2) (i.e., the reaeration coefficient). Results demonstrate that both turbulence and pH in the water phase play...... a significant role for KLaH2S. An exponential expression is a suitable representation for the relationship between KLaH2S and the Froude number at all pH values studied (4.5 to 8.0). Because of the dissociation of hydrogen sulfide, KLaH2S increased with decreasing pH at a constant turbulence level. Relative...

  5. Fault detection using parameter transfer functions

    Energy Technology Data Exchange (ETDEWEB)

    Salamun, I; Mavko, B; Stritar, A [University of Ljubljana, Josef Stefan Inst., Ljubljana (Slovenia). Reactor Engineering Div.

    1997-12-31

    To reduce the number of alarms in NPP many techniques have been proposed for process monitoring and diagnosis. The object of our investigation is a dynamic process with digital signals. The general parametric model defines the transfer function form and it covers all dynamics characteristics between two monitoring parameters. To determine the proper model coefficients we are using recoursing least square methods. The transfer function coefficients define the correlation between two variables in desired time period. During process monitoring just the relation is observed because the number of coefficients and the structure is predefined with transfer function form. During plant operation the transfer functions for important parameters must be calculated and estimated. The estimated values are input parameters for an analytical algorithm. It determines which part of system causes the transient and recognizes it. The proposed methodology allows a computer to monitor the system behaviour and to find out the most probable cause for abnormal condition. (author). 3 refs, 5 figs, 2 tabs.

  6. Fault detection using parameter transfer functions

    International Nuclear Information System (INIS)

    Salamun, I.; Mavko, B.; Stritar, A.

    1996-01-01

    To reduce the number of alarms in NPP many techniques have been proposed for process monitoring and diagnosis. The object of our investigation is a dynamic process with digital signals. The general parametric model defines the transfer function form and it covers all dynamics characteristics between two monitoring parameters. To determine the proper model coefficients we are using recoursing least square methods. The transfer function coefficients define the correlation between two variables in desired time period. During process monitoring just the relation is observed because the number of coefficients and the structure is predefined with transfer function form. During plant operation the transfer functions for important parameters must be calculated and estimated. The estimated values are input parameters for an analytical algorithm. It determines which part of system causes the transient and recognizes it. The proposed methodology allows a computer to monitor the system behaviour and to find out the most probable cause for abnormal condition. (author). 3 refs, 5 figs, 2 tabs

  7. Computer aided heat transfer analysis in a laboratory scaled heat exchanger unit

    International Nuclear Information System (INIS)

    Gunes, M.

    1998-01-01

    In this study. an explanation of a laboratory scaled heat exchanger unit and a software which is developed to analyze heat transfer. especially to use it in heat transfer courses, are represented. Analyses carried out in the software through sample values measured in the heat exchanger are: (l) Determination of heat transfer rate, logarithmic mean temperature difference and overall heat transfer coefficient; (2)Determination of convection heat transfer coefficient inside and outside the tube and the effect of fluid velocity on these; (3)Investigation of the relationship between Nusselt Number. Reynolds Number and Prandtl Number by using multiple non-linear regression analysis. Results are displayed on the screen graphically

  8. Effect of the environment on horizontal gene transfer between bacteria and archaea.

    Science.gov (United States)

    Fuchsman, Clara A; Collins, Roy Eric; Rocap, Gabrielle; Brazelton, William J

    2017-01-01

    Horizontal gene transfer, the transfer and incorporation of genetic material between different species of organisms, has an important but poorly quantified role in the adaptation of microbes to their environment. Previous work has shown that genome size and the number of horizontally transferred genes are strongly correlated. Here we consider how genome size confuses the quantification of horizontal gene transfer because the number of genes an organism accumulates over time depends on its evolutionary history and ecological context (e.g., the nutrient regime for which it is adapted). We investigated horizontal gene transfer between archaea and bacteria by first counting reciprocal BLAST hits among 448 bacterial and 57 archaeal genomes to find shared genes. Then we used the DarkHorse algorithm, a probability-based, lineage-weighted method (Podell & Gaasterland, 2007), to identify potential horizontally transferred genes among these shared genes. By removing the effect of genome size in the bacteria, we have identified bacteria with unusually large numbers of shared genes with archaea for their genome size. Interestingly, archaea and bacteria that live in anaerobic and/or high temperature conditions are more likely to share unusually large numbers of genes. However, high salt was not found to significantly affect the numbers of shared genes. Numbers of shared (genome size-corrected, reciprocal BLAST hits) and transferred genes (identified by DarkHorse) were strongly correlated. Thus archaea and bacteria that live in anaerobic and/or high temperature conditions are more likely to share horizontally transferred genes. These horizontally transferred genes are over-represented by genes involved in energy conversion as well as the transport and metabolism of inorganic ions and amino acids. Anaerobic and thermophilic bacteria share unusually large numbers of genes with archaea. This is mainly due to horizontal gene transfer of genes from the archaea to the bacteria. In

  9. Effect of the environment on horizontal gene transfer between bacteria and archaea

    Directory of Open Access Journals (Sweden)

    Clara A. Fuchsman

    2017-09-01

    Full Text Available Background Horizontal gene transfer, the transfer and incorporation of genetic material between different species of organisms, has an important but poorly quantified role in the adaptation of microbes to their environment. Previous work has shown that genome size and the number of horizontally transferred genes are strongly correlated. Here we consider how genome size confuses the quantification of horizontal gene transfer because the number of genes an organism accumulates over time depends on its evolutionary history and ecological context (e.g., the nutrient regime for which it is adapted. Results We investigated horizontal gene transfer between archaea and bacteria by first counting reciprocal BLAST hits among 448 bacterial and 57 archaeal genomes to find shared genes. Then we used the DarkHorse algorithm, a probability-based, lineage-weighted method (Podell & Gaasterland, 2007, to identify potential horizontally transferred genes among these shared genes. By removing the effect of genome size in the bacteria, we have identified bacteria with unusually large numbers of shared genes with archaea for their genome size. Interestingly, archaea and bacteria that live in anaerobic and/or high temperature conditions are more likely to share unusually large numbers of genes. However, high salt was not found to significantly affect the numbers of shared genes. Numbers of shared (genome size-corrected, reciprocal BLAST hits and transferred genes (identified by DarkHorse were strongly correlated. Thus archaea and bacteria that live in anaerobic and/or high temperature conditions are more likely to share horizontally transferred genes. These horizontally transferred genes are over-represented by genes involved in energy conversion as well as the transport and metabolism of inorganic ions and amino acids. Conclusions Anaerobic and thermophilic bacteria share unusually large numbers of genes with archaea. This is mainly due to horizontal gene transfer of

  10. On the development of a grid-enhanced single-phase convective heat transfer correlation

    International Nuclear Information System (INIS)

    Miller, D.J.; Cheung, F.B.; Bajorek, S.M.

    2011-01-01

    A new single-phase convective heat transfer augmentation correlation has been developed using single phase steam cooling experimental data obtained from the Penn State/NRC Rod Bundle Heat Transfer (RBHT) facility. Experimental data obtained from the RBHT single phase steam cooling tests have been evaluated and new findings identified. Previous rod bundle tests showed the importance of spacer grid on the local heat transfer, and that the augmentation in heat transfer downstream of a grid decays exponentially. The RBHT data also shows that the Reynolds number affects the rate at which this augmentation decays. The new correlation includes the strong dependence of heat transfer on both the Reynolds number and the grid blockage ratio. While the effects of both parameters were clearly evident in the RBHT experimental data, existing correlations do not account for the Reynolds number effect. The developed correlation incorporates Reynolds number in the decay curve of heat transfer. The newly developed correlation adequately accounts for the dependence of the heat transfer augmentation decay rate on the local flow Reynolds number. (author)

  11. The charge transfer structure and effective energy transfer in multiplayer assembly film

    International Nuclear Information System (INIS)

    Li Mingqiang; Jian Xigao

    2005-01-01

    Charge transfer multiplayer films have been prepared by layer-by-layer self-assembly technique. The films incorporate the rare-earth-containing polyoxometalate K 11 [Eu{PW 11 O 39 } 2 ].nH 2 O and the rich electron polyelectrolyte poly(3-viny-1-methyl-pyridine) quaternary ammonium and display a linear increase in the absorption and film thickness with the number of deposition cycles. Ultraviolet and visible absorption spectra, atomic force micrographs, small-angle X-ray reflectivity measurements, and photoluminescence spectra were used to determine the structure of films. Linear and regular multilayer growth was observed. We can observe the formation of charge transfer complex compound in multiplayer by layer-by-layer assembly method. Most importantly, the luminescence spectra show the charge transfer band in assembly films, which suggest that energy could be effectively transferred to rare earth ions in assembly multiplayer films

  12. Solar sail time-optimal interplanetary transfer trajectory design

    International Nuclear Information System (INIS)

    Gong Shengpin; Gao Yunfeng; Li Junfeng

    2011-01-01

    The fuel consumption associated with some interplanetary transfer trajectories using chemical propulsion is not affordable. A solar sail is a method of propulsion that does not consume fuel. Transfer time is one of the most pressing problems of solar sail transfer trajectory design. This paper investigates the time-optimal interplanetary transfer trajectories to a circular orbit of given inclination and radius. The optimal control law is derived from the principle of maximization. An indirect method is used to solve the optimal control problem by selecting values for the initial adjoint variables, which are normalized within a unit sphere. The conditions for the existence of the time-optimal transfer are dependent on the lightness number of the sail and the inclination and radius of the target orbit. A numerical method is used to obtain the boundary values for the time-optimal transfer trajectories. For the cases where no time-optimal transfer trajectories exist, first-order necessary conditions of the optimal control are proposed to obtain feasible solutions. The results show that the transfer time decreases as the minimum distance from the Sun decreases during the transfer duration. For a solar sail with a small lightness number, the transfer time may be evaluated analytically for a three-phase transfer trajectory. The analytical results are compared with previous results and the associated numerical results. The transfer time of the numerical result here is smaller than the transfer time from previous results and is larger than the analytical result.

  13. Penning transfer in argon-based gas mixtures

    CERN Document Server

    Sahin, O; Tapan, I; Ozmutlu, E N

    2010-01-01

    Penning transfers, a group of processes by which excitation energy is used to ionise the gas, increase the gas gain in some detectors. Both the probability that such transfers occur and the mechanism by which the transfer takes place, vary with the gas composition and pressure. With a view to developing a microscopic electron transport model that takes Penning transfers into account, we use this dependence to identify the transfer mechanisms at play. We do this for a number of argon-based gas mixtures, using gain curves from the literature.

  14. Forced convection heat transfer correlation for finned plates in a duct

    International Nuclear Information System (INIS)

    Chae, Myeong-Seon; Moon, Je-Young; Chung, Bum-Jin

    2014-01-01

    Forced convection heat transfer experiments were conducted for plate-fin in a duct using various fin spacing, fin height, duct width, Reynolds number for Prandtl numbers 2,014. Based upon analogy concept, mass transfer rate were measured instead of heat transfer rates. The heat transfer rates were enhanced with the increase of fin height and decrease of fin spacing as they increase the heat transfer area. Meanwhile, heat transfer rates were impaired with the increase of the duct width as the bypass flows increased to tip clearance region. Forced convection heat transfer correlations were developed for laminar and turbulent flow conditions and for narrow and wide ducts. The work draws attention to the tip clearance on the heat transfer of the finned plate in a duct. (author)

  15. Nucleon transfer reactions with radioactive beams

    Science.gov (United States)

    Wimmer, K.

    2018-03-01

    Transfer reactions are a valuable tool to study the single-particle structure of nuclei. At radioactive beam facilities transfer reactions have to be performed in inverse kinematics. This creates a number of experimental challenges, but it also has some advantages over normal kinematics measurements. An overview of the experimental and theoretical methods for transfer reactions, especially with radioactive beams, is presented. Recent experimental results and highlights on shell evolution in exotic nuclei are discussed.

  16. In vitro investigation of heat transfer phenomenon in human immature teeth.

    Science.gov (United States)

    Talebi, Maryam; Moghimi, Sahar; Shafagh, Mina; Kalani, Hadi; Mazhari, Fatemeh

    2014-01-01

    Background and aims. Heat generated within tooth during clinical dentistry can cause thermally induced damage to hard and soft components of the tooth (enamel, dentin and pulp). Geometrical characteristics of immature teeth are different from those of mature teeth. The purpose of this experimental and theoretical study was to investigate thermal changes in immature permanent teeth during the use of LED light-curing units (LCU). Materials and methods. This study was performed on the second mandibular premolars. This experimental investiga-tion was carried out for recording temperature variations of different sites of tooth and two dimensional finite element models were used for heat transfer phenomenon in immature teeth. Sensitivity analysis and local tests were included in the model validation phase. Results. Overall, thermal stimulation for 30 seconds with a low-intensity LED LCU increased the temperature from 28°C to 38°C in IIT (intact immature tooth) and PIT (cavity-prepared immature tooth). When a high-intensity LED LCU was used, tooth temperature increased from 28°C to 48°C. The results of the experimental tests and mathematical modeling illustrated that using LED LCU on immature teeth did not have any detrimental effect on the pulp temperature. Conclusion. Using LED LCU in immature teeth had no effect on pulp temperature in this study. Sensitivity analysis showed that variations of heat conductivity might affect heat transfer in immature teeth; therefore, further studies are required to determine thermal conductivity of immature teeth.

  17. Medical Surveillance Monthly Report. Volume 19, Number 7

    Science.gov (United States)

    2012-07-01

    Iron deficiency anemia , active component, U.S. Armed Forces, 2002-2011 PA G E 2 Health of... Iron Deficiency Anemia , Active Component, U.S. Armed Forces, 2002-2011 Iron deficiency anemia (IDA) is the most common cause of anemia in the...deple- tion of the body’s iron stores to a substan- tial iron deficit resulting in iron deficiency anemia

  18. Technology transfer from nuclear research

    International Nuclear Information System (INIS)

    1989-01-01

    A number of processes, components and instruments developed at the Bhabha Atomic Research Centre, (BARC), Bombay, find application in industry and are available for transfer to private or public sector undertakings for commercial exploitation. The Technology Transfer Group (TTG) constituted in January 1980 identifies such processes and prototypes which can be made available for transfer. This catalogue contains brief descriptions of such technologies and they are arranged under three groups, namely, Group A containing descriptions of technologies already transferred, Group B containing descriptions of technologies ready for transfer and Group C containing descriptions of technology transfer proposals being processed. The position in the above-mentioned groups is as on 1 March 1989. The BARC has also set up a Technology Corner where laboratory models and prototypes of instruments, equipment and components are displayed. These are described in the second part of the catalogue. (M.G.B.)

  19. Naval War College Review. Volume 63, Number 2, Spring 2010

    Science.gov (United States)

    2010-01-01

    presenta- tions on Midway as to what Fuchida’s likely motivations were for his actions. This has led to considerable ruminating , and not a little...in- formation while dismissing data from other credible sources? The authors contend that his misjudgment resulted from two cognitive errors: he

  20. Biological Effects of Nonionizing Electromagnetic Radiation. Volume IV. Number 4.

    Science.gov (United States)

    1980-06-01

    absorbed power levels. The effect of EMR on CCAs will be evaluated using the following parameters: beat rate, maximum diastolic potential, action 0591...cerebral forma- superior olive were similar to those evoked by tions examined. The swelling of the cytoplasm was acoustic pulses presented binaurally at a

  1. Heat transfer with geometric shape of micro-fin tubes (I) - Condensing heat transfer

    Energy Technology Data Exchange (ETDEWEB)

    Kwak, K M; Chang, J S; Bai, C H; Chung, M [Yeungnam University, Kyungsan (Korea)

    1999-11-01

    To examine the enhancement mechanism of condensing heat transfer through microfin tube, the condensation experiments with refrigerant HCFC 22 are performed using 4 and 6 kinds of microfin tubes with outer diameter of 9.52 mm and 7.0 mm, respectively. Used microfin tubes have different shape and number of fins with each other. The main heat transfer enhancement mechanism is known to be the enlargement of heat transfer area and turbulence promotion. Together with these main factors, we can find other enhancement factors by the experimental data, which are the overflow of the refrigerant over the microfin and microfin arrangement. The overflow of the refrigerant over the microfin can be analyzed by the geometric shape of the microfin. microfin tubes having a shape which can give much overflow over the microfin show large condensing heat transfer coefficients. The effect of microfin arrangement is related to the heat transfer resistance of liquid film of refrigerant. The condensing heat transfer coefficients are high for the microfin tube with even distribution of liquid film. 17 refs., 14 figs., 3 tabs.

  2. Experimental study of supercritical water flow and heat transfer in vertical tube

    International Nuclear Information System (INIS)

    Li Hongbo; Yang Jue; Lu Donghua; Gu Hanyang; Zhao Meng

    2012-01-01

    The experiment of flow and heat transfer of supercritical water has been performed on the supercritical water multipurpose test loop co-constructed by China Guangdong Nuclear Power Group and Shanghai Jiao Tong University with a 7.6 mm vertical tube. Heat transfer experimental data is obtained. The results of experimental research of thermal-hydraulic parameters on flow and heat transfer of supercritical water show that: (1) Heat transfer enhancement occurs when the bulk temperature reaches pseudo-critical point with low mass flow velocity; (2) The heat transfer co- efficient and Nusselt number are decreased with the increasing of heat flux; (3) The wall temperature is decreased, but the heat transfer coefficient and Nusselt number are increased with the increasing of mass flow velocity; (4) The wall temperature is increased, but the heat transfer coefficient and Nusselt number are decreased with the increasing of sys- tem pressure. (authors)

  3. The Grover energy transfer algorithm for relativistic speeds

    International Nuclear Information System (INIS)

    Garcia-Escartin, Juan Carlos; Chamorro-Posada, Pedro

    2010-01-01

    Grover's algorithm for quantum search can also be applied to classical energy transfer. The procedure takes a system in which the total energy is equally distributed among N subsystems and transfers most of it to one marked subsystem. We show that in a relativistic setting the efficiency of this procedure can be improved. We will consider the transfer of relativistic kinetic energy in a series of elastic collisions. In this case, the number of steps of the energy transfer procedure approaches 1 as the initial velocities of the objects become closer to the speed of light. This is a consequence of introducing nonlinearities in the procedure. However, the maximum attainable transfer will depend on the particular combination of speed and number of objects. In the procedure, we will use N elements, as in the classical non-relativistic case, instead of the log 2 (N) states of the quantum algorithm.

  4. Simultaneous heat and mass transfer on oscillatory free convection boundary layer flow

    International Nuclear Information System (INIS)

    Hossain, M.A.

    1985-11-01

    The problem of simultaneous heat and mass transfer in two-dimensional free convection from a semi-infinite vertical flat plate is investigated. An integral method is used to find a solution for zero wall velocity and for a mass transfer velocity at the wall with small-amplitude oscillatory wall temperature. Low and high-frequency solutions are developed separately and are discussed graphically with the effects of the parameters Gr (the Grashof number for heat transfer), Gc (the Grashof number for mass transfer) and Sc (the Schmidt number) for Pr=0.71 representing aid at 20 deg. C. (author)

  5. Natural convection heat transfer from a horizontal cylinder in liquid sodium. Pt. 2. Generalized correlation for laminar natural convection heat transfer

    International Nuclear Information System (INIS)

    Hata, K.; Takeuchi, Y.

    1999-01-01

    For pt.I see ibid., vol.193, p.105-18, 1999. Rigorous numerical solution of natural convection heat transfer, from a horizontal cylinder with uniform surface heat flux or with uniform surface temperature, to liquid sodium was derived by solving the fundamental equations for laminar natural convection heat transfer without the boundary layer approximation. It was made clear that the local and average Nusselt numbers experimentally obtained and reported in part 1 of this paper were described well by the numerical solutions for uniform surface heat fluxes, but that those for uniform surface temperatures could not describe the angular distribution of the local Nusselt numbers and about 10% underpredicted the average Nusselt numbers. Generalized correlation for natural convection heat transfer from a horizontal cylinder with a uniform surface heat flux in liquid metals was presented based on the rigorous theoretical values for a wide range of Rayleigh numbers. It was confirmed that the correlation can describe the authors' and other workers' experimental data on horizontal cylinders in various kinds of liquid metals for a wide range of Rayleigh numbers. Another correlation for a horizontal cylinder with a uniform surface temperature in liquid metals, which may be applicable for special cases such as natural convection heat transfer in a sodium-to-sodium heat exchanger etc. was also presented based on the rigorous theoretical values for a wide range of Rayleigh numbers. These correlations can also describe the rigorous numerical solutions for non-metallic liquids and gases for the Prandtl numbers up to 10. (orig.)

  6. Translations on USSR Military Affairs, Number 1291

    Science.gov (United States)

    1977-08-10

    gymnastics and other tournaments be organized. But for some reason the Komsomol activists did not heed these suggestions. More- over, some of them... artistic literature. Most political workers read and think about what they have read. But there are still those who have not acquired a taste for...tions of political and artistic literature come up they do not always remember the book and when they read it. Some go no further than ad

  7. Two-dimensional numerical modeling and solution of convection heat transfer in turbulent He II

    Science.gov (United States)

    Zhang, Burt X.; Karr, Gerald R.

    1991-01-01

    Numerical schemes are employed to investigate heat transfer in the turbulent flow of He II. FEM is used to solve a set of equations governing the heat transfer and hydrodynamics of He II in the turbulent regime. Numerical results are compared with available experimental data and interpreted in terms of conventional heat transfer parameters such as the Prandtl number, the Peclet number, and the Nusselt number. Within the prescribed Reynolds number domain, the Gorter-Mellink thermal counterflow mechanism becomes less significant, and He II acts like an ordinary fluid. The convection heat transfer characteristics of He II in the highly turbulent regime can be successfully described by using the conventional turbulence and heat transfer theories.

  8. Control of Chain Walking by Weak Neighbouring Group Interac-tions in Unsymmetric Catalysts

    KAUST Repository

    Falivene, Laura; Wiedemann, Thomas; Gö ttker-Schnetmann, Inigo; Caporaso, Lucia; Cavallo, Luigi; Mecking, Stefan

    2017-01-01

    A combined theoretical and experimental study shows how weak attractive interactions of a neighbouring group can strongly promote chain walking and chain transfer. This accounts for the previously observed very different micro-structures obtained

  9. The Grover energy transfer algorithm for relativistic speeds

    Energy Technology Data Exchange (ETDEWEB)

    Garcia-Escartin, Juan Carlos; Chamorro-Posada, Pedro, E-mail: juagar@yllera.tel.uva.e [Dpto. de TeorIa de la Senal y Comunicaciones e Ingenieria Telematica, Universidad de Valladolid, ETSI de Telecomunicacion, Campus Miguel Delibes, Paseo Belen 15, 47011 Valladolid (Spain)

    2010-11-12

    Grover's algorithm for quantum search can also be applied to classical energy transfer. The procedure takes a system in which the total energy is equally distributed among N subsystems and transfers most of it to one marked subsystem. We show that in a relativistic setting the efficiency of this procedure can be improved. We will consider the transfer of relativistic kinetic energy in a series of elastic collisions. In this case, the number of steps of the energy transfer procedure approaches 1 as the initial velocities of the objects become closer to the speed of light. This is a consequence of introducing nonlinearities in the procedure. However, the maximum attainable transfer will depend on the particular combination of speed and number of objects. In the procedure, we will use N elements, as in the classical non-relativistic case, instead of the log{sub 2}(N) states of the quantum algorithm.

  10. Quantification of the effect of CO transfer on titrimetric techniques ...

    African Journals Online (AJOL)

    2007-01-01

    Jan 1, 2007 ... those processes that have negligible influence on the dissolved inorganic carbon ... Model simulation was used to quantify the impact for a wide range of operating .... tion model was implemented using MATLAB/SIMULINK.

  11. The Eckert number phenomenon - experimental investigations of heat transfer on moving walls, e.g. rotating cylinders; Das Eckert-Zahl-Phaenomen - Experimentelle Untersuchungen zum Waermeuebergang an einer bewegten Wand am Modellfall eines rotierenden Zylinders

    Energy Technology Data Exchange (ETDEWEB)

    Gschwendtner, M.

    2000-07-01

    The Eckert number phenomenon - theoretically investigated by Geropp in 1969 - describes a turnover in heat transfer at a moving wall at an Eckert number EC=1. This report is the first to confirm the Eckert number phenomenon experimentally. Heat transfer on a heated, vertically rotating cylinder in a crossflow was investigated at extreme rotational speeds, i.e. in the range where the predicted phenomenon will occur. A heating concept had to be developed which allowed an input of heating power independent of rotational speed and which therefore had to be contact-free. The complex thermofluiddynamic processes in the boundary layer around the rotating cylinder were investigated and measured using predominantly optical measuring techniques. The results show that the temperature difference between the wall and the surrounding fluid had a significant effect on the predicted turnover of heat transfer at the wall. Moreover, maximum heat transfer occurs at an Eckert number Ec=0.3, which is of great importance for the cooling of hot surfaces in an airstream. [German] Das Eckert-Zahl-Phaenomen - von Geropp 1969 theoretisch untersucht - beschreibt den Umschlag des Waermeueberganges an einer bewegten Wand bei einer Eckert-ZahlEc{approx}1. In der vorliegenden Arbeit wird das Eckert-Zahl-Phaenomen zum ersten Mal experimentell bestaetigt. Dazu wurde der Waermeuebergang am Modellfall eines queransgestroemten, beheizten, vertikalrotierenden Zylinders untersucht. Aufgrund der fuer die Experimente notwendigen extremen Drehzahlen musste fuer die Zylinderheizung ein Konzept entwickelt werden, das eine beruehrungsfreie und damit drehzahlunabhaengige Leistungseinspeisung erlaubte. Mit vorwiegend optischen Messmethoden wurden die komplexen thermofluiddynamischen Vorgaenge in der Grenzschicht um den rotierenden Zylinder untersucht und vermessen. Die Ergebnisse zeigen u.a., dass die Temperaturdifferenz zwischen Wand und Umgebung von entscheidender Bedeutung fuer die Richtungsumkehr des

  12. Waste retrieval sluicing system campaign number 1 solids volume transferred calculation

    International Nuclear Information System (INIS)

    BAILEY, J.W.

    1999-01-01

    This calculation has been prepared to document the volume of sludge removed from tank 241-C-106 during Waste Retrieval Sluicing System (WRSS) Sluicing Campaign No.1. This calculation will be updated, if necessary, to incorporate new data. This calculation supports the declaration of completion of WRSS Campaign No.1 and, as such, is also the documentation for completion of Performance Agreement TWR 1.2.1 , C-106 Sluicing Performance Expectations. It documents the performance of all the appropriate tank 241-C-106 mass transfer verifications, evaluations, and appropriate adjustments discussed in HNF-SD-WM-PROC-021, Chapter 23, ''Process Engineering Calculations for Tank 241-C-106 Sluicing and Retrieval''

  13. Waste retrieval sluicing system campaign number 1 solids volume transferred calculation

    International Nuclear Information System (INIS)

    BAILEY, J.W.

    1999-01-01

    This calculation has been prepared to document the volume of sludge removed from tank 241-C-106 during Waste Retrieval Sluicing System (WRSS) Sluicing Campaign No.1. This calculation will be updated, if necessary, to incorporate new data. This calculation supports the declaration of completion of WRSS Campaign No.1 and, as such, is also the documentation for completion of Performance Agreement TWR 1.2.1 C-106 Sluicing Performance Expectations. It documents the performance of all the appropriate tank 241-C-106 mass transfer verifications, evaluations, and appropriate adjustments discussed in HNF-SD-WM-PROC-021, Chapter 23, ''Process Engineering Calculations for Tank 241-C-106 Sluicing and Retrieval''

  14. A Modified Entropy Generation Number for Heat Exchangers

    Institute of Scientific and Technical Information of China (English)

    1996-01-01

    This paper demonstrates the difference between the entropy generation number method proposed by Bejian and the method of entropy generation per unit amount of heat transferred in analyzing the ther-modynamic performance of heat exchangers,points out the reason for leading to the above difference.A modified entropy generation number for evaluating the irreversibility of heat exchangers is proposed which is in consistent with the entropy generation per unit amount of heat transferred in entropy generation analysis.The entropy generated by friction is also investigated.Results show that when the entropy generated by friction in heat exchangers in taken into account,there is a minimum total entropy generation number while the NTU and the ratio of heat capacity rates vary.The existence of this minimum is the prerequisite of heat exchanger optimization.

  15. Accelerating Multiagent Reinforcement Learning by Equilibrium Transfer.

    Science.gov (United States)

    Hu, Yujing; Gao, Yang; An, Bo

    2015-07-01

    An important approach in multiagent reinforcement learning (MARL) is equilibrium-based MARL, which adopts equilibrium solution concepts in game theory and requires agents to play equilibrium strategies at each state. However, most existing equilibrium-based MARL algorithms cannot scale due to a large number of computationally expensive equilibrium computations (e.g., computing Nash equilibria is PPAD-hard) during learning. For the first time, this paper finds that during the learning process of equilibrium-based MARL, the one-shot games corresponding to each state's successive visits often have the same or similar equilibria (for some states more than 90% of games corresponding to successive visits have similar equilibria). Inspired by this observation, this paper proposes to use equilibrium transfer to accelerate equilibrium-based MARL. The key idea of equilibrium transfer is to reuse previously computed equilibria when each agent has a small incentive to deviate. By introducing transfer loss and transfer condition, a novel framework called equilibrium transfer-based MARL is proposed. We prove that although equilibrium transfer brings transfer loss, equilibrium-based MARL algorithms can still converge to an equilibrium policy under certain assumptions. Experimental results in widely used benchmarks (e.g., grid world game, soccer game, and wall game) show that the proposed framework: 1) not only significantly accelerates equilibrium-based MARL (up to 96.7% reduction in learning time), but also achieves higher average rewards than algorithms without equilibrium transfer and 2) scales significantly better than algorithms without equilibrium transfer when the state/action space grows and the number of agents increases.

  16. Energy transfers and magnetic energy growth in small-scale dynamo

    KAUST Repository

    Kumar, Rohit Raj

    2013-12-01

    In this letter we investigate the dynamics of magnetic energy growth in small-scale dynamo by studying energy transfers, mainly energy fluxes and shell-to-shell energy transfers. We perform dynamo simulations for the magnetic Prandtl number Pm = 20 on 10243 grid using the pseudospectral method. We demonstrate that the magnetic energy growth is caused by nonlocal energy transfers from the large-scale or forcing-scale velocity field to small-scale magnetic field. The peak of these energy transfers moves towards lower wave numbers as dynamo evolves, which is the reason why the integral scale of the magnetic field increases with time. The energy transfers U2U (velocity to velocity) and B2B (magnetic to magnetic) are forward and local. Copyright © EPLA, 2013.

  17. Numerical simulation of forced convection over a periodic series of rectangular cavities at low Prandtl number

    International Nuclear Information System (INIS)

    Stalio, E.; Angeli, D.; Barozzi, G.S.

    2011-01-01

    Highlights: → We investigate laminar convective heat transfer in channels with periodic cavities. → Heat transfer rates are lower than for the flat channel. → This is ascribed to the steady circulating motion within the cavities. → Diffusion in a low Prandtl number fluid can locally overcome the heat transfer decrease due to advection only for isothermal boundary conditions. - Abstract: Convective heat transfer in laminar conditions is studied numerically for a Prandtl number Pr = 0.025, representative of liquid lead-bismuth eutectic (LBE). The geometry investigated is a channel with a periodic series of shallow cavities. Finite-volume simulations are carried out on structured orthogonal curvilinear grids, for ten values of the Reynolds number based on the hydraulic diameter between Re m = 24.9 and Re m = 2260. Flow separation and reattachment are observed also at very low Reynolds numbers and wall friction is found to be remarkably unequal at the two walls. In almost all cases investigated, heat transfer rates are smaller than the corresponding flat channel values. Low-Prandtl number heat transfer rates, investigated by comparison with Pr = 0.71 results, are large only for uniform wall temperature and very low Re. Influence of flow separation on local heat transfer rates is discussed, together with the effect of different thermal boundary conditions. Dependency of heat transfer performance on the cavity geometry is also considered.

  18. Soret and Dufour effects on convective heat and mass transfer in stagnation-point flow towards a shrinking surface

    International Nuclear Information System (INIS)

    Bhattacharyya, Krishnendu; Layek, G C; Seth, G S

    2014-01-01

    A mathematical model is presented to study the Soret and Dufour effects on the convective heat and mass transfer in stagnation-point flow of viscous incompressible fluid towards a shrinking surface. Suitable similarity transformations are used to convert the governing partial differential equations into self-similarity ordinary differential equations that are then numerically solved by shooting method. Dual solutions for temperature and concentration are obtained in the presence of Soret and Dufour effects. Graphical representations of the heat and mass transfer coefficients, the dimensionless thermal and solute profiles for various values of Prandtl number, Lewis number, Soret number and Dufour number are demonstrated. With Soret number the mass transfer coefficient which is related to mass transfer rate increases for both solutions and the heat transfer coefficient (related to heat transfer rate) for both solutions becomes larger with Dufour number. The Prandtl number causes reduction in heat and the mass transfer coefficients and similarly with the Lewis number mass transfer coefficient decreases. Also, double crossing over is found in dual dimensionless temperature profiles for increasing Soret number and in dual dimensionless concentration profiles for the increase in Dufour number. Due to the larger values of Dufour number the thermal boundary layer increases and for Prandtl number increment it decreases; whereas, the solute boundary layer thickness reduces with increasing values of Prandtl number and Lewis number. (paper)

  19. USSR and Eastern Europe Scientific Abstracts, Biomedical and Behavioral Sciences, Number 59

    Science.gov (United States)

    1976-12-14

    VESTNIK SEL•SKOKHOZYAYSTVENNOY NAUKI in Russian No 8, Aug 76 pp 17-26 [Abstract] Despite wide use of mineral fertilizers, herbicides, fungicides and...muta- tions of Trichoderma lignorum fungus 91 R. SH. LATFULLINA. Selection of active yeast races for breadbaking

  20. European Science Notes. Volume 39, Number 3.

    Science.gov (United States)

    1985-03-01

    Hettema, to fulfill a control function are pre- Vingerhoets, and Van Der Molen , no sumed to be coupled with specific situa- date). Al] will be available in...Learning Reconceptualization of Per- Hettema, P.J., A.J.J.M. Vigerhoets, and sonality," Psychological Review, 80 * G.M. Van Der Molen , "Construct Vali...applica- the areas covered by the congress. For tion. Pulse lengths are typically 10 ns. information on obtaining the proceed- W. Van der Linden

  1. Heat transfer from rotating finned heat exchangers with different orientation angles

    Energy Technology Data Exchange (ETDEWEB)

    Tawfik, Adel Abdalla [Suez Canal University, Marine Engineering and Naval Architecture Department, Faculty of Engineering, Port Said (Egypt)

    2010-03-15

    The local and average heat transfer characteristics of spoke like fins that extend outward from a rotating shaft have been determined experimentally. The experiments encompassed a number of geometrical parameters, including the length and chord of the fins, the number of fins deployed around the circumference of the shaft and the orientation angles of the fin. The experiments cover a wider range of rotational speeds, which varies from 25 up to 2,000 rpm. Three wire heat flux sensors have been used in conjunction with a slip ring apparatus to evaluate the local and average heat transfer coefficients. The output results indicated that, the heat transfer transition on rotating fins occurs at Reynolds number lower than encountered on the stationary rectangular fins in crossflow. In general, with non zero incidence angle, the rotating system acts as a fan and creates axial air motion, which enhance the heat transfer rate. However, the effect of orientation angle reduces with increasing the rotational speed. The Nusselt number data are independent of the number of fins in the circumferential array at high rotational speed and are weakly dependent at low Reynolds numbers. To facilitate the use of the results for design, correlations were developed which represent the fin heat transfer coefficient as a continuous function of the investigated independent parameters. (orig.)

  2. Measurement of lithium ion transference numbers of electrolytes for lithium-ion batteries. A comparative study with five various methods.; Messung von Lithium-Ionen Ueberfuehrungszahlen an Elektrolyten fuer Lithium-Ionen Batterien. Eine vergleichende Studie mit fuenf verschiedenen Methoden

    Energy Technology Data Exchange (ETDEWEB)

    Zugmann, Sandra

    2011-03-30

    Transference numbers are decisive transport properties to characterize electrolytes. They state the fraction of a certain species at charge transport and are defined by the ratio of current Ii that is transported by the ionic species i to the total current I. They are very important for lithium-ion batteries, because they give information about the real lithium transport and the efficiency of the battery. If the transference number has a too small value, for example, the lithium cannot be ''delivered'' fast enough in the discharge process. This can lead to precipitation of the salt at the anode and to depletion of the electrolyte at the cathode. Currently only a few adequate measurement methods for non-aqueous lithium electrolytes exist. The aim of this work was the installation of measurement devices and the comparison of different methods of transference numbers for electrolytes in lithium-ion batteries. The advantages and disadvantages for every method should be analyzed and transference numbers of new electrolyte be measured. In this work a detailed comparison of different methods with electrochemical and spectroscopic factors was presented for the first time. The galvanostatic polarization, the potentiostatic polarization, the emf method, the determination by NMR and the determination by conductivity measurements were tested for their practical application and used for different lithium salts in several solvents. The results show clearly that the assumptions made for every method affect the measured transference number a lot. They can have different values depending on the used method and the concentration dependence can even have contrary tendencies for methods with electrochemical or spectroscopic aspects. The influence of ion pairs is the determining factor at the measurements. For a full characterization of electrolytes a complete set of transport parameters is necessary, including diffusion coefficients, conductivity, transference number and ideally

  3. Measurement of lithium ion transference numbers of electrolytes for lithium-ion batteries. A comparative study with five various methods.; Messung von Lithium-Ionen Ueberfuehrungszahlen an Elektrolyten fuer Lithium-Ionen Batterien. Eine vergleichende Studie mit fuenf verschiedenen Methoden

    Energy Technology Data Exchange (ETDEWEB)

    Zugmann, Sandra

    2011-03-30

    Transference numbers are decisive transport properties to characterize electrolytes. They state the fraction of a certain species at charge transport and are defined by the ratio of current Ii that is transported by the ionic species i to the total current I. They are very important for lithium-ion batteries, because they give information about the real lithium transport and the efficiency of the battery. If the transference number has a too small value, for example, the lithium cannot be ''delivered'' fast enough in the discharge process. This can lead to precipitation of the salt at the anode and to depletion of the electrolyte at the cathode. Currently only a few adequate measurement methods for non-aqueous lithium electrolytes exist. The aim of this work was the installation of measurement devices and the comparison of different methods of transference numbers for electrolytes in lithium-ion batteries. The advantages and disadvantages for every method should be analyzed and transference numbers of new electrolyte be measured. In this work a detailed comparison of different methods with electrochemical and spectroscopic factors was presented for the first time. The galvanostatic polarization, the potentiostatic polarization, the emf method, the determination by NMR and the determination by conductivity measurements were tested for their practical application and used for different lithium salts in several solvents. The results show clearly that the assumptions made for every method affect the measured transference number a lot. They can have different values depending on the used method and the concentration dependence can even have contrary tendencies for methods with electrochemical or spectroscopic aspects. The influence of ion pairs is the determining factor at the measurements. For a full characterization of electrolytes a complete set of transport parameters is necessary, including diffusion coefficients, conductivity, transference

  4. Heat Transfer and Entropy Generation Analysis of an Intermediate Heat Exchanger in ADS

    Science.gov (United States)

    Wang, Yongwei; Huai, Xiulan

    2018-04-01

    The intermediate heat exchanger for enhancement heat transfer is the important equipment in the usage of nuclear energy. In the present work, heat transfer and entropy generation of an intermediate heat exchanger (IHX) in the accelerator driven subcritical system (ADS) are investigated experimentally. The variation of entropy generation number with performance parameters of the IHX is analyzed, and effects of inlet conditions of the IHX on entropy generation number and heat transfer are discussed. Compared with the results at two working conditions of the constant mass flow rates of liquid lead-bismuth eutectic (LBE) and helium gas, the total pumping power all tends to reduce with the decreasing entropy generation number, but the variations of the effectiveness, number of transfer units and thermal capacity rate ratio are inconsistent, and need to analyze respectively. With the increasing inlet mass flow rate or LBE inlet temperature, the entropy generation number increases and the heat transfer is enhanced, while the opposite trend occurs with the increasing helium gas inlet temperature. The further study is necessary for obtaining the optimized operation parameters of the IHX to minimize entropy generation and enhance heat transfer.

  5. Leading Edge. Volume 7, Issue Number 4, 2012

    Science.gov (United States)

    2012-01-01

    Trek popular- ized the notion of using DE for weapons in years past, today— through persistent DEW RDT&E— Navy leadership is realizing the great...supporting platforms. The Pictured here is the National Aeronautics and Space Administra- tion / National Oceanic and Atmospheric Administration ( NASA ...procured by Boeing Launch Services on 4 March 2010. Built by Boeing Space and Intelli- gence Systems, GOES-P will provide NOAA and NASA scien- tists

  6. Convection heat transfer in the double pass solar collector with porous media

    International Nuclear Information System (INIS)

    Md Yusof Theeran; Mohd Yusof Othman; Baharuddin Yatim; Kamaruzzaman Sopian; Mohd Hafidz Roslan

    2006-01-01

    This paper describes about heat transfer characteristics in the double pass solar heater with porous media. Nusselt and Stanton number had been used to shown the heat transfer. Nusselt number had been measured and compared with several theories. Stanton number in the double pass solar heater with porous media and without porous media had been compared. Predicted value of Stanton number will be shown in this paper

  7. A comparison of pulsed and continuous atom transfer between two magneto-optical traps

    International Nuclear Information System (INIS)

    Ram, S. P.; Tiwari, S. K.; Mishra, S. R.

    2010-01-01

    We present the experimental results for a comparison between pulsed and continuous transfer of cold 87 Rb atoms between a vapor chamber magneto-optical trap (VC-MOT) and an ultra-high vacuum magneto-optical trap (UHV-MOT) when using a resonant push beam. We find that employing repetitive cycles of a pulsed and unfocused push beam on an unsaturated VC-MOT cloud results in a significantly higher number of atoms transferred to the UHV-MOT than the number obtained with a continuous push beam focused on a continuous VC-MOT. In pulsed transfer, we find that both the VC-MOT loading duration and the push beam duration play important roles in the transfer process and govern the number of atoms transferred to the UHV-MOT. The parameters and processes affecting the transfer have been investigated and are discussed.

  8. In Vitro Investigation of Heat Transfer Phenomenon in Human Immature Teeth

    Directory of Open Access Journals (Sweden)

    Maryam Talebi

    2014-12-01

    Full Text Available Background and aims. Heat generated within tooth during clinical dentistry can cause thermally induced damage to hard and soft components of the tooth (enamel, dentin and pulp. Geometrical characteristics of immature teeth are different from those of mature teeth. The purpose of this experimental and theoretical study was to investigate thermal changes in immature permanent teeth during the use of LED light-curing units (LCU. Materials and methods. This study was performed on the second mandibular premolars. This experimental investiga-tion was carried out for recording temperature variations of different sites of tooth and two dimensional finite element mod-els were used for heat transfer phenomenon in immature teeth. Sensitivity analysis and local tests were included in the mod-el validation phase. Results. Overall, thermal stimulation for 30 seconds with a low-intensity LED LCU increased the temperature from 28°C to 38°C in IIT (intact immature tooth and PIT (cavity-prepared immature tooth. When a high-intensity LED LCU was used, tooth temperature increased from 28°C to 48°C. The results of the experimental tests and mathematical modeling il-lustrated that using LED LCU on immature teeth did not have any detrimental effect on the pulp temperature. Conclusion. Using LED LCU in immature teeth had no effect on pulp temperature in this study. Sensitivity analysis showed that variations of heat conductivity might affect heat transfer in immature teeth; therefore, further studies are re-quired to determine thermal conductivity of immature teeth.

  9. Adiabatic partition effect on natural convection heat transfer inside a square cavity

    DEFF Research Database (Denmark)

    Mahmoudi Nezhad, Sajjad; Rezaniakolaei, Alireza; yousefi, Tooraj

    2018-01-01

    A steady state and two-dimensional laminar free convection heat transfer in a partitioned cavity with horizontal adiabatic and isothermal side walls is investigated using both experimental and numerical approaches. The experiments and numerical simulations are carried out using a Mach......-Zehnder interferometer and a finite volume code, respectively. A horizontal and adiabatic partition, with angle of θ is adjusted such that it separates the cavity into two identical parts. Effects of this angel as well as Rayleigh number on the heat transfer from the side-heated walls are investigated in this study...... partition angle, the results show that the average Nusselt number and consequently the heat transfer enhance as the Rayleigh number increases. However, for a given Rayleigh number the maximum and the minimum heat transfer occurs at θ = 45°and θ = 90°, respectively. Two responsible mechanisms...

  10. Heat Transfer between an Individual Carbon Nanotube and Gas Environment in a Wide Knudsen Number Regime

    Directory of Open Access Journals (Sweden)

    Hai-Dong Wang

    2013-01-01

    Full Text Available Applications of carbon nanotube (CNT and graphene in thermal management have recently attracted significant attention. However, the lack of efficient prediction formula for heat transfer coefficient between nanomaterials and gas environment limits the further development of this technique. In this work, a kinetic model has been established to predict the heat transfer coefficient of an individual CNT in gas environment. The heat dissipation around the CNT is governed by molecular collisions, and outside the collision layer, the heat conduction is dominant. At nanoscales, the natural convection can be neglected. In order to describe the intermolecular collisions around the CNT quantitatively, a correction factor 1/24 is introduced and agrees well with the experimental observation. The prediction of the present model is in good agreement with our experimental results in free molecular regime. Further, a maximum heat transfer coefficient occurs at a critical diameter of several nanometers, providing guidelines on the practical design of CNT-based heat spreaders.

  11. Evaluating the Quality of Transfer versus Nontransfer Accounting Principles Grades.

    Science.gov (United States)

    Colley, J. R.; And Others

    1996-01-01

    Using 1989-92 student records from three colleges accepting large numbers of transfers from junior schools into accounting, regression analyses compared grades of transfer and nontransfer students. Quality of accounting principle grades of transfer students was not equivalent to that of nontransfer students. (SK)

  12. Mass transfer in wetted-wall columns: correlations at high Reynolds numbers

    DEFF Research Database (Denmark)

    Nielsen, Christian H.E.; Kiil, Søren; Thomsen, Henrik W.

    1998-01-01

    (G)) were determined. In dimensionless form, the correlations are given by Sh(L) = 0.01613 Re-G(0.664) Re-L(0.426) Sc-L(0.5) Sh(G) = 0.00031 Re-G(1.05) Re-L(0.207) Sc-G(0.5) and are valid at gas-phase Reynolds numbers from 7500 to 18,300 and liquid-phase Reynolds numbers from 4000 to 12,000, conditions...... of industrial relevance. To our knowledge, no correlations for Sh(G) have been reported in the literature which are valid at such high Reynolds numbers. The wetted-wall column was equipped with six intermediate measuring positions for gas and two for liquid samples, giving rise to a high accuracy...... of the obtained correlations. Our data showed that Sh(L) and Sh(G) both depend on Re-G and Re-L due to changes in the interfacial area at the high Reynolds numbers employed. The presence of inert particles in the liquid-phase may influence the rate of mass transport, and experimental work was initiated to study...

  13. Joint Force Quarterly. Number 19, Summer 1998

    Science.gov (United States)

    1998-08-01

    with original pagina - tion and issue markings at the bottom corner of each folio. However, a ring folios8 has been added at the bottom center which...Defense University World Wide Web (http://www.ndu.edu/inss/books/books.html). 0719 Owens Pgs 11/17/98 6:16 PM Page 27 72 JFQ / Summer 1993 28 roles...World Wide Web . However, contentious issues remain in certain areas which must be resolved at service chief or CINC level. Moreover, the best hope for

  14. Heat-transfer in a partially-blocked sodium-cooled rod bundle

    International Nuclear Information System (INIS)

    Han, J.T.

    1979-01-01

    Heat transfer coefficients were experimentally determined for 31-rod sodium-cooled bundle with a 6-subchannel central blockage. The Nusselt number is presented as a function of the Peclet number for both the free flow region undisturbed by the blockage and the wake region immediately downstream of the blockage. Results are compared with the existing correlations for liquid metals. The heat transfer coefficient was generally higher in the unblocked free flow region than in the wake region. A leak at the blockage improved the heat transfer coefficient in the wake region

  15. Role of Turbulent Prandtl Number on Heat Flux at Hypersonic Mach Numbers

    Science.gov (United States)

    Xiao, X.; Edwards, J. R.; Hassan, H. A.; Gaffney, R. L., Jr.

    2007-01-01

    A new turbulence model suited for calculating the turbulent Prandtl number as part of the solution is presented. The model is based on a set of two equations: one governing the variance of the enthalpy and the other governing its dissipation rate. These equations were derived from the exact energy equation and thus take into consideration compressibility and dissipation terms. The model is used to study two cases involving shock wave/boundary layer interaction at Mach 9.22 and Mach 5.0. In general, heat transfer prediction showed great improvement over traditional turbulence models where the turbulent Prandtl number is assumed constant. It is concluded that using a model that calculates the turbulent Prandtl number as part of the solution is the key to bridging the gap between theory and experiment for flows dominated by shock wave/boundary layer interactions.

  16. Role of Turbulent Prandtl Number on Heat Flux at Hypersonic Mach Number

    Science.gov (United States)

    Xiao, X.; Edwards, J. R.; Hassan, H. A.

    2004-01-01

    Present simulation of turbulent flows involving shock wave/boundary layer interaction invariably overestimates heat flux by almost a factor of two. One possible reason for such a performance is a result of the fact that the turbulence models employed make use of Morkovin's hypothesis. This hypothesis is valid for non-hypersonic Mach numbers and moderate rates of heat transfer. At hypersonic Mach numbers, high rates of heat transfer exist in regions where shock wave/boundary layer interactions are important. As a result, one should not expect traditional turbulence models to yield accurate results. The goal of this investigation is to explore the role of a variable Prandtl number formulation in predicting heat flux in flows dominated by strong shock wave/boundary layer interactions. The intended applications involve external flows in the absence of combustion such as those encountered in supersonic inlets. This can be achieved by adding equations for the temperature variance and its dissipation rate. Such equations can be derived from the exact Navier-Stokes equations. Traditionally, modeled equations are based on the low speed energy equation where the pressure gradient term and the term responsible for energy dissipation are ignored. It is clear that such assumptions are not valid for hypersonic flows. The approach used here is based on the procedure used in deriving the k-zeta model, in which the exact equations that governed k, the variance of velocity, and zeta, the variance of vorticity, were derived and modeled. For the variable turbulent Prandtl number, the exact equations that govern the temperature variance and its dissipation rate are derived and modeled term by term. The resulting set of equations are free of damping and wall functions and are coordinate-system independent. Moreover, modeled correlations are tensorially consistent and invariant under Galilean transformation. The final set of equations will be given in the paper.

  17. Defense AT&L Magazine (Volume 39, Number 5, September-October 2010)

    Science.gov (United States)

    2010-10-01

    grass-roots evolution and CBR+’s impact on naval avia- tion readiness, it’s hard to argue with these points. The authors welcome comments and questions...Record] • Lady wants ride to South Western Pennsylvania. Will more than share expenses. [Advertisement in Cocoa Today] • Like the family barn

  18. Army Communicator. Volume 34, Number 1, Winter 2009

    Science.gov (United States)

    2009-01-01

    First, I will double- tap Yingling’s asser- tion that during the 1990s the United States repeatedly failed to estimate the likelihood of success in...country terrain, WIN-T Increment Two and Three lead test engineer Kenneth Hutchin- son has said. The 30 node EFT held at Fort Huachuca, Ariz...Transmission Systems DoD – Department of Defense EFT – Engineering Field Tests ESB – Expeditionary Signal Battalion FEMA – Federal Emergency Management

  19. Transfer coefficients in elliptical tubes and plate fin heat exchangers

    International Nuclear Information System (INIS)

    Saboya, S.M.

    1979-09-01

    Mean transfer coefficients in elliptical tubes and plate fin heat exchangers were determined by application of heat and mass transfer analogy in conjunction with the naphthalene sublimation technique. The transfer coefficients are presented in a dimensionless form as functions of the Reynolds number. By using the least squares method analytical expressions for the transfer coefficients were determined with low scattering. (E.G.) [pt

  20. Flow and heat transfer behaviour of nanofluids in microchannels

    Directory of Open Access Journals (Sweden)

    James Bowers

    2018-04-01

    Full Text Available Flow and heat transfer of aqueous based silica and alumina nanofluids in microchannels were experimentally investigated. The measured friction factors were higher than conventional model predictions at low Reynolds numbers particularly with high nanoparticle concentrations. A decrease in the friction factor was observed with increasing Reynolds number, possibly due to the augmentation of nanoparticle aggregate shape arising from fluid shear and alteration of local nanoparticle concentration and nanofluid viscosity. Augmentation of the silica nanoparticle morphology by fluid shear may also have affected the friction factor due to possible formation of a core/shell structure of the particles. Measured thermal conductivities of the silica nanofluids were in approximate agreement with the Maxwell-Crosser model, whereas the alumina nanofluids only showed slight enhancements. Enhanced convective heat transfer was observed for both nanofluids, relative to their base fluids (water, at low particle concentrations. Heat transfer enhancement increased with increasing Reynolds number and microchannel hydraulic diameter. However, the majority of experiments showed a larger increase in pumping power requirements relative to heat transfer enhancements, which may hinder the industrial uptake of the nanofluids, particularly in confined environments, such as Micro Electro-Mechanical Systems (MEMS. Keywords: Nanofluid, Microchannel, Heat transfer, Pressure drop, Friction factor, Thermal conductivity, Viscosity

  1. Dependency of neutron power function S0 from mass number in the area of 100 < A < 140

    Directory of Open Access Journals (Sweden)

    M. M. Pravdivy

    2014-09-01

    Full Text Available Resume of some previous investigations concerning definition of full sets of average resonances parameters S0, S1, , , S1,1/2, S1,3/2 for nuclei 47,9Ti, 55,8Fe, 58,7Ni, 65,4Zn, 72,6Ge, 79Se, 91,2Zr, 95,9Mo, 101,1Ru, 106,4Pd, 106Cd, 108Cd, 110Cd, 112Cd, 116Cd, 116Sn, 118Sn, 120Sn, 122Sn, 124Sn, 127,6Te, 144,2Nd has been presented and the place of these sets in the existing system of recommended parameters has been shown. The explored dependency power func-tion S0 from mass number in the area of 100 < A < 140 was studied.

  2. High copy number of highly similar mariner-like transposons in planarian (Platyhelminthe): evidence for a trans-phyla horizontal transfer.

    Science.gov (United States)

    Garcia-Fernàndez, J; Bayascas-Ramírez, J R; Marfany, G; Muñoz-Mármol, A M; Casali, A; Baguñà, J; Saló, E

    1995-05-01

    Several DNA sequences similar to the mariner element were isolated and characterized in the platyhelminthe Dugesia (Girardia) tigrina. They were 1,288 bp long, flanked by two 32 bp-inverted repeats, and contained a single 339 amino acid open-reading frame (ORF) encoding the transposase. The number of copies of this element is approximately 8,000 per haploid genome, constituting a member of the middle-repetitive DNA of Dugesia tigrina. Sequence analysis of several elements showed a high percentage of conservation between the different copies. Most of them presented an intact ORF and the standard signals of actively expressed genes, which suggests that some of them are or have recently been functional transposons. The high degree of similarity shared with other mariner elements from some arthropods, together with the fact that this element is undetectable in other planarian species, strongly suggests a case of horizontal transfer between these two distant phyla.

  3. Air and Space Power Journal. Volume 24, Number 4, Winter 2010

    Science.gov (United States)

    2010-01-01

    ww2 /uboats/uboatspg5.htm. 4. Lt Gen David A. Deptula, “Airpower in an In- formation Age” (briefing to the Air Force Associa- tion, Arlington, VA...their debut, both in radar-guided and infrared heat-seeking versions, and the Air Force fielded some fighters without any gun armament at all.26

  4. WLCG transfers dashboard: a unified monitoring tool for heterogeneous data transfers

    International Nuclear Information System (INIS)

    Andreeva, J; Beche, A; Saiz, P; Tuckett, D; Belov, S; Kadochnikov, I

    2014-01-01

    The Worldwide LHC Computing Grid provides resources for the four main virtual organizations. Along with data processing, data distribution is the key computing activity on the WLCG infrastructure. The scale of this activity is very large, the ATLAS virtual organization (VO) alone generates and distributes more than 40 PB of data in 100 million files per year. Another challenge is the heterogeneity of data transfer technologies. Currently there are two main alternatives for data transfers on the WLCG: File Transfer Service and XRootD protocol. Each LHC VO has its own monitoring system which is limited to the scope of that particular VO. There is a need for a global system which would provide a complete cross-VO and cross-technology picture of all WLCG data transfers. We present a unified monitoring tool – WLCG Transfers Dashboard – where all the VOs and technologies coexist and are monitored together. The scale of the activity and the heterogeneity of the system raise a number of technical challenges. Each technology comes with its own monitoring specificities and some of the VOs use several of these technologies. This paper describes the implementation of the system with particular focus on the design principles applied to ensure the necessary scalability and performance, and to easily integrate any new technology providing additional functionality which might be specific to that technology.

  5. WLCG Transfers Dashboard: a Unified Monitoring Tool for Heterogeneous Data Transfers

    Science.gov (United States)

    Andreeva, J.; Beche, A.; Belov, S.; Kadochnikov, I.; Saiz, P.; Tuckett, D.

    2014-06-01

    The Worldwide LHC Computing Grid provides resources for the four main virtual organizations. Along with data processing, data distribution is the key computing activity on the WLCG infrastructure. The scale of this activity is very large, the ATLAS virtual organization (VO) alone generates and distributes more than 40 PB of data in 100 million files per year. Another challenge is the heterogeneity of data transfer technologies. Currently there are two main alternatives for data transfers on the WLCG: File Transfer Service and XRootD protocol. Each LHC VO has its own monitoring system which is limited to the scope of that particular VO. There is a need for a global system which would provide a complete cross-VO and cross-technology picture of all WLCG data transfers. We present a unified monitoring tool - WLCG Transfers Dashboard - where all the VOs and technologies coexist and are monitored together. The scale of the activity and the heterogeneity of the system raise a number of technical challenges. Each technology comes with its own monitoring specificities and some of the VOs use several of these technologies. This paper describes the implementation of the system with particular focus on the design principles applied to ensure the necessary scalability and performance, and to easily integrate any new technology providing additional functionality which might be specific to that technology.

  6. Schuldoverneming : een vergelijking van de schuldoverneming met de passieve schuldvernieuwing

    NARCIS (Netherlands)

    Verhoeven, Jacobus Jan

    2002-01-01

    There has existed since ancient times the need, particularly in the area of commercial traffic, to be able to transfer a commitment to pay a debt to a third party. A singular succession of a debt, whilst maintaining the obliga-tion, whereby the liability is transferred to a succeeding debtor, was

  7. NAMRU-3 Reprint Accession List 1982. Number 12.

    Science.gov (United States)

    1983-01-01

    1316 * VETERINARY MEDICINE Canine parvovirus infection 1288 Congenital osteopetrosis in o/op mouse 1317 History of rabies vaccination 1278 Liver biopsy...Entomol., 19(2):209- 210, 1982. _ 1288 8UCCIO T.J., BOTROS, B.A.-M. and EL tiOLLA, M.: Canine Parvovirus Infe~tion: A Brief Review and Report of First...1278 BOTROS, B.A.M.: History of Rabies Vaccination . Review and Comments. J. Egypt. Public Health Assoc., 55(566):309-318, 1980. 1279 KLOOS, H

  8. Studies in Intelligence. Volume 51, Number 4, 2007

    Science.gov (United States)

    2007-12-01

    observing that as autonomy spreads in East- ern Europe, the range of contingencies in which the USSR can rely on effective military support from the...narrow definition of such infor- mation—a cursory glance at the Pumpkin Papers, copies of State Department documents that Hiss passed to Chambers...used him as a source for military informa- tion. As noted above, a check of the Pumpkin Papers is enough to show that Hiss was an excel- lent

  9. The effect of buoyancy on flow and heat transfer in curved pipes

    OpenAIRE

    Mochizuki, Munekazu; Ishigaki, Hiroshi; 望月 宗和; 石垣 博

    1994-01-01

    Fully developed laminar flow in a heated horizontal curved pipe is studied numerically. The thermal boundary conditions at the wall are uniform wall heat flux axially and uniform wall temperature peripherally. Flow and heat transfer are governed by Dean number, Prandtl number and buoyancy number. Detailed prediction of the friction factor, average heat transfer rate, velocity profile, temperature profile and secondary-flow streamlines are given.

  10. Studies in Intelligence. Volume 53, Number 3, September 2009

    Science.gov (United States)

    2009-09-01

    Genius for Deception 1914-1945, Nicholas Rankin Hunting Eichmann : How a Band of Survivors and a Young Spy Agency Chased Down the World’s Most...provides a conditionally useful introduc- tion to a subject not previously treated in this format. Historical Neal Bascomb, Hunting Eichmann : How a...bibliography, photos, index. During WW II, Nazi SS officer Adolf Eichmann arranged for the collection and shipment of thousands of Jews to

  11. The Coast Artillery Journal. Volume 85, Number 6, November-December 1942

    Science.gov (United States)

    1942-12-01

    1.00 War and Peace. By Leon Tolstoy , .. , 3.00 Flamingo Road. By Robert lr’ilder . , 2.50 The Sun Is My Undoing. By Marguerite Steen , 3.00 Botany...car, mainte- nance and lubrication. The epidemic of inhuman warfare from which the world is now suffering is destined to be of long dura - tion

  12. Recreational Boat Harbor, Cedar River, Michigan. Revisions to General Design Memorandum Number 1 and Environmental Impact Statement. Supplement Number 1.

    Science.gov (United States)

    1980-08-01

    26, Tuesday, February 6, 1979. 16. Personal communication with Jim Harter, J.W. Wells State Park Director. 17. Fassett, N.C.; A Manual of Acuatic ...Harbor, Cedar River, Michigan. Pgs. G-37 - q-54. i~ A- A measure of a .h- calact’ a tion to neutrajz hrc-ge, .ons navinc a p. of more than 7. Acuatic ...and ship navigation. Navi- gation aids are often placed on the outermost end of Corps breakwaters and piers. Nekton - Swimming aquatic insects and fish

  13. Radiative transfer in molecular lines

    Science.gov (United States)

    Asensio Ramos, A.; Trujillo Bueno, J.; Cernicharo, J.

    2001-07-01

    The highly convergent iterative methods developed by Trujillo Bueno and Fabiani Bendicho (1995) for radiative transfer (RT) applications are generalized to spherical symmetry with velocity fields. These RT methods are based on Jacobi, Gauss-Seidel (GS), and SOR iteration and they form the basis of a new NLTE multilevel transfer code for atomic and molecular lines. The benchmark tests carried out so far are presented and discussed. The main aim is to develop a number of powerful RT tools for the theoretical interpretation of molecular spectra.

  14. Convection heat transfer of closely-spaced spheres with surface blowing

    Energy Technology Data Exchange (ETDEWEB)

    Kleinstreuer, C. (North Carolina State Univ., Raleigh, NC (United States). Dept. of Mechanical and Aerospace Engineering); Chiang, H. (Thermofluid Technology Div., Industrial Technology Research Inst., Chutung (Taiwan, Province of China))

    1993-05-01

    A validated computer simulation model has been developed for the analysis of colinear spheres in a heated gas stream. Using the Galerkin finite element method, the steady-state Navier-Stokes and heat transfer equations have been solved describing laminar axisymmetric thermal flow past closely-spaced monodisperse spheres with fluid injection. Of interest are the coupled nonlinear interaction effects on the temperature fields and ultimately on the Nusselt number of each sphere for different free stream Reynolds numbers (20 [<=] Re [<=] 200) and intersphere distances (1.5 [<=] d[sub ij] [<=] 6.0) in the presence of surface blowing (0 [<=] v[sub b] [<=] 0.1). Fluid injection (i.e. blowing) and associated wake effects generate lower average heat transfer coefficients for each interacting sphere when the Reynolds number increases (Re > 100). Heat transfer is also reduced at small spacings especially for the second and third sphere. A Nusselt number correlation for each interacting (porous) sphere has been developed based on computer experiments. (orig.)

  15. On the Transfer of a Number of Concepts of Statistical Radiophysics to the Theory of One-dimensional Point Mappings

    Directory of Open Access Journals (Sweden)

    Agalar M. Agalarov

    2018-01-01

    Full Text Available In the article, the possibility of using a bispectrum under the investigation of regular and chaotic behaviour of one-dimensional point mappings is discussed. The effectiveness of the transfer of this concept to nonlinear dynamics was demonstrated by an example of the Feigenbaum mapping. Also in the work, the application of the Kullback-Leibler entropy in the theory of point mappings is considered. It has been shown that this information-like value is able to describe the behaviour of statistical ensembles of one-dimensional mappings. In the framework of this theory some general properties of its behaviour were found out. Constructivity of the Kullback-Leibler entropy in the theory of point mappings was shown by means of its direct calculation for the ”saw tooth” mapping with linear initial probability density. Moreover, for this mapping the denumerable set of initial probability densities hitting into its stationary probability density after a finite number of steps was pointed out. 

  16. Resonant Inductive Power Transfer for Noncontact Launcher-Missile Interface

    Science.gov (United States)

    2016-08-01

    implementation of a wireless power transfer system based on the concept of non-radiating inductive coupling. 14. SUBJECT TERMS Resonant Inductive Coupling... Wireless Power Transfer 15. NUMBER OF PAGES 18 16. PRICE CODE 17. SECURITY CLASSIFICATION OF REPORT UNCLASSIFIED 18. SECURITY...2 In contrast to the ideal transformer, wireless inductive power transfer assumes that the coils are no longer physically connected by an iron core

  17. Investigation of thermo-fluid behavior of mixed convection heat transfer of different dimples-protrusions wall patterns to heat transfer enhancement

    Science.gov (United States)

    Sobhani, M.; Behzadmehr, A.

    2018-05-01

    This study is a numerical investigation of the effect of improving heat transfer namely, modified rough (dimples and protrusions) surfaces on the mixed convective heat transfer of a turbulent flow in a horizontal tube. The effects of different dimples-protrusions arrangements on the improving the thermal performance of a rough tube are investigated at various Richardson numbers. Three dimensional governing equations are discretized by the finite-volume technique. Based on the obtained results the dimples-protrusions arrangements are modified to find a suitable configuration for which heat transfer coefficient and pressure drop to be balanced. Modified dimples-protrusions arrangements that shows higher performance is presented. Its average thermal performance 18% and 11% is higher than the other arrangements. In addition, the results show that roughening a smooth tube is more effective at the higher Richardson number.

  18. Air & Space Power Journal. Volume 29, Number 2, March-April 2015

    Science.gov (United States)

    2015-04-01

    combine authority and responsibility with accountability for performance at every level . Merrill A. McPeak, Selected Works, 1990– 1994 (Maxwell AFB...In this regard, I believe that Harrison succeeds. He begins by delivering an excellent historical account of the defini- tions of strategy...Reviewer: Capt Ian S. Bertram, USAF Rudder: From Leader to Legend . . . . . . . . . . . . . . . . . . . . . . . . . . 172

  19. Turbulent Heat Transfer in Curved Pipe Flow

    Science.gov (United States)

    Kang, Changwoo; Yang, Kyung-Soo

    2013-11-01

    In the present investigation, turbulent heat transfer in fully-developed curved pipe flow with axially uniform wall heat flux has been numerically studied. The Reynolds numbers under consideration are Reτ = 210 (DNS) and 1,000 (LES) based on the mean friction velocity and the pipe radius, and the Prandtl number (Pr) is 0.71. For Reτ = 210 , the pipe curvature (κ) was fixed as 1/18.2, whereas three cases of κ (0.01, 0.05, 0.1) were computed in the case of Reτ = 1,000. The mean velocity, turbulent intensities and heat transfer rates obtained from the present calculations are in good agreement with the previous numerical and experimental results. To elucidate the secondary flow structures due to the pipe curvature, the mean quantities and rms fluctuations of the flow and temperature fields are presented on the pipe cross-sections, and compared with those of the straight pipe flow. To study turbulence structures and their influence on turbulent heat transfer, turbulence statistics including but not limited to skewness and flatness of velocity fluctuations, cross-correlation coefficients, an Octant analysis, and turbulence budgets are presented and discussed. Based on our results, we attempt to clarify the effects of Reynolds number and the pipe curvature on turbulent heat transfer. This research was supported by Basic Science Research Program through the National Research Foundation of Korea (NRF) funded by the Ministry of Education, Science and Technology (2010-0008457).

  20. Heat transfer to accelerating gas flows

    International Nuclear Information System (INIS)

    Kennedy, T.D.A.

    1978-01-01

    The development of fuels for gas-cooled reactors has resulted in a number of 'gas loop' experiments in materials-testing research reactors. In these experiments, efforts are made to reproduce the conditions expected in gas-cooled power reactors. Constant surface temperatures are sought over a short (300 mm) fuelled length, and because of entrance effects, an accelerating flow is required to increase the heat transfer down-stream from the entrance. Strong acceleration of a gas stream will laminarise the flow even at Reynolds Numbers up to 50000, far above values normally associated with laminar flow. A method of predicting heat transfer in this situation is presented here. An integral method is used to find the velocity profile; this profile is then used in an explicit finite-difference solution of the energy equation to give a temperature profile and resultant heat-transfer coefficient values. The Kline criterion, which compares viscous and disruptive forces, is used to predict whether the flow will be laminar. Experimental results are compared with predictions, and good agreement is found to exist. (author)

  1. Heat transfer of pulsating laminar flow in pipes with wall thermal inertia

    International Nuclear Information System (INIS)

    Yuan, Hongsheng; Tan, Sichao; Wen, Jing; Zhuang, Nailiang

    2016-01-01

    The effects of wall thermal inertia on heat transfer of pulsating laminar flow with constant power density within the pipe wall are investigated theoretically. The energy equation of the fully developed flow and heat transfer is solved by separation of variables and Green's function. The effects of the pulsation amplitude and frequency, the Prandtl number and the wall heat capacity on heat transfer features characterized by temperature, heat flux and Nusselt number are analyzed. The results show that the oscillation of wall heat flux increases along with the wall thermal inertia, while the oscillation of temperature and Nusselt number is suppressed by the wall thermal inertia. The influence of pulsation on the average Nusselt number is also obtained. The pulsating laminar flow can reduce the average Nusselt number. The Nusselt number reduction of pipe flow are a little more remarkable than that of flow between parallel plates, which is mainly caused by differences in hydraulic and thermal performances of the channels. (authors)

  2. Rod Bundle Heat Transfer: Steady-State Steam Cooling Experiments

    International Nuclear Information System (INIS)

    Spring, J.P.; McLaughlin, D.M.

    2006-01-01

    Through the joint efforts of the Pennsylvania State University and the United States Nuclear Regulatory Commission, an experimental rod bundle heat transfer (RBHT) facility was designed and built. The rod bundle consists of a 7 x 7 square pitch array with spacer grids and geometry similar to that found in a modern pressurized water reactor. From this facility, a series of steady-state steam cooling experiments were performed. The bundle inlet Reynolds number was varied from 1 400 to 30 000 over a pressure range from 1.36 to 4 bars (20 to 60 psia). The bundle inlet steam temperature was controlled to be at saturation for the specified pressure and the fluid exit temperature exceeded 550 deg. C in the highest power tests. One important quantity of interest is the local convective heat transfer coefficient defined in terms of the local bulk mean temperature of the flow, local wall temperature, and heat flux. Steam temperatures were measured at the center of selected subchannels along the length of the bundle by traversing miniaturized thermocouples. Using an analogy between momentum and energy transport, a method was developed for relating the local subchannel centerline temperature measurement to the local bulk mean temperature. Wall temperatures were measured using internal thermocouples strategically placed along the length of each rod and the local wall heat flux was obtained from an inverse conduction program. The local heat transfer coefficient was calculated from the data at each rod thermocouple location. The local heat transfer coefficients calculated for locations where the flow was fully developed were compared against several published correlations. The Weisman and El-Genk correlations were found to agree best with the RBHT steam cooling data, especially over the range of turbulent Reynolds numbers. The effect of spacer grids on the heat transfer enhancement was also determined from instrumentation placed downstream of the spacer grid locations. The local

  3. Pollinators, geitonogamy and a model of pollen transfer

    International Nuclear Information System (INIS)

    Di Pasquale, C.

    1995-12-01

    A model of pollination that considers the amount of geitonogamous pollen transfer in different flowers and plants is presented. We assumed in this work self-incompatible plant species and we studied how pollination is affected by different round trips described by pollinator from its nest, taking into account the fraction geitonogamy and the fraction pollen export. A deterministic model and a stochastic model of pollen transfer were developed from which we found that when pollinators describe a uniform sequence (visit the same number of flowers in each plant), individuals receive the maximum outcross pollen or minimum self pollen. That is, from the point of view of fertilization, the optimal number of flowers visited in each plant depends on the number of flowers of the plant, the length of the visit and the number of individuals. (author). 18 refs, 1 fig

  4. Translations on Narcotics and Dangerous Drugs, Number 284.

    Science.gov (United States)

    1977-02-10

    they also cultivate the land, so as to find in nature, through work therapy , the release and sublima- tion they sought in drugs. "These 6 months of...The sierra of Sinaloa pro- duces, nevertheless, an amount of money three times greater than the fertile valley of Culiacan, where horticulture has... children of 10 in much the same way as among adults. He said, "Drug addiction in Morelos is under attack by the Secretariats of Public Education /SEP7

  5. The stokes number approach to support scale-up and technology transfer of a mixing process

    NARCIS (Netherlands)

    Willemsz, T.A.; Hooijmaijers, R.; Rubingh, C.M.; Frijlink, H.W.; Vromans, H.; Voort Maarschalk, K. van der

    2012-01-01

    Transferring processes between different scales and types of mixers is a common operation in industry. Challenges within this operation include the existence of considerable differences in blending conditions between mixer scales and types. Obtaining the correct blending conditions is crucial for

  6. The Stokes number approach to support scale-up and technology transfer of a mixing process

    NARCIS (Netherlands)

    Willemsz, Tofan A; Hooijmaijers, Ricardo; Rubingh, Carina M; Frijlink, Henderik W; Vromans, Herman; van der Voort Maarschalk, Kees

    Transferring processes between different scales and types of mixers is a common operation in industry. Challenges within this operation include the existence of considerable differences in blending conditions between mixer scales and types. Obtaining the correct blending conditions is crucial for

  7. TRANSFERENCE BEFORE TRANSFERENCE.

    Science.gov (United States)

    Bonaminio, Vincenzo

    2017-10-01

    This paper is predominantly a clinical presentation that describes the transmigration of one patient's transference to another, with the analyst functioning as a sort of transponder. It involves an apparently accidental episode in which there was an unconscious intersection between two patients. The author's aim is to show how transference from one case may affect transference in another, a phenomenon the author calls transference before transference. The author believes that this idea may serve as a tool for understanding the unconscious work that takes place in the clinical situation. In a clinical example, the analyst finds himself caught up in an enactment involving two patients in which he becomes the medium of what happens in session. © 2017 The Psychoanalytic Quarterly, Inc.

  8. Turbulent convection experiment at high Rayleigh number to support CAP1400 IVR strategy

    Energy Technology Data Exchange (ETDEWEB)

    Ma, Li, E-mail: mali@snptrd.com [State Nuclear Hua Qing(Beijing) Nuclear Power Technology R& D Centre Co., Ltd, Building A, State Nuclear Power Research Institute, Future Science & Technology Park, Changping Dist., Beijing 102209 (China); Li, Jing, E-mail: lijing@snptrd.com [State Nuclear Hua Qing(Beijing) Nuclear Power Technology R& D Centre Co., Ltd, Building A, State Nuclear Power Research Institute, Future Science & Technology Park, Changping Dist., Beijing 102209 (China); Ji, Shui, E-mail: jishui@snptrd.com [State Nuclear Hua Qing(Beijing) Nuclear Power Technology R& D Centre Co., Ltd, Building A, State Nuclear Power Research Institute, Future Science & Technology Park, Changping Dist., Beijing 102209 (China); Chang, Huajian, E-mail: changhuajian@snptrd.com [State Nuclear Hua Qing(Beijing) Nuclear Power Technology R& D Centre Co., Ltd, Building A, State Nuclear Power Research Institute, Future Science & Technology Park, Changping Dist., Beijing 102209 (China); Institute of Nuclear and New Energy Technology, Tsinghua University, Beijing 100084 (China)

    2015-10-15

    Highlights: • The facility reached high Ra number at 10{sup 12} of CAP1400 working condition. • The fitting formula Nu = 0.085 × Ra{sup 0.315} was established to calculate the heat flux in the metal layer at high Ra for the CAP1400. • The coupling method can accurately and safely predict the heat flow distribution of metal layer in high Ra number conditions. • The experiment results will predict the relationship between axial and radial heat transfer well. - Abstract: The characteristics of the heat transfer and the calculation of heat flux in metal layer are both the critical problems for in-vessel retention (IVR) strategy. Turbulent convection occurs in the metal layer when the Rayleigh number (Ra) becomes sufficient high. The Globe–Dropkin (G–D) correlation (Globe and Dropkin, 1959) and Chu–Churchill (C–C) correlation (Churchill and Chu, 1975) have been widely used to calculate the heat flux in the metal layer, where the valid range of the Ra is from 1.5 × 10{sup 5} to 6.8 × 10{sup 8} in G–D correlation and less than 10{sup 12} in C–C correlation. However, with the increase of reactor power, both the Rayleigh number and the rate of heat transfer below the bottom of metal layer of the molten pool will increase, and in this case the Rayleigh number even can reach 10{sup 11} for the China Advanced Passive Plant CAP1400. Accordingly, the G–D correlation is not suitable for the CAP1400. Therefore, our experiment purposes are to establish the appropriate correlation at high Ra for the CAP1400 and predict the axial and radial distribution of the heat transfer in the metal layer with the heat transfer behavior of metal layer experiment (HELM) facility. The experiments are divided into two parts. Each part concerns 39 runs and 47 experimental conditions. Its corresponding results are obtained at middle Prandtl number (Pr = 7 for water) and the Nusselt number is found to be proportional to Ra{sup 0.315} in the range 3.93 × 10{sup 8} < Ra < 3.57

  9. Turbulent convection experiment at high Rayleigh number to support CAP1400 IVR strategy

    International Nuclear Information System (INIS)

    Ma, Li; Li, Jing; Ji, Shui; Chang, Huajian

    2015-01-01

    Highlights: • The facility reached high Ra number at 10 12 of CAP1400 working condition. • The fitting formula Nu = 0.085 × Ra 0.315 was established to calculate the heat flux in the metal layer at high Ra for the CAP1400. • The coupling method can accurately and safely predict the heat flow distribution of metal layer in high Ra number conditions. • The experiment results will predict the relationship between axial and radial heat transfer well. - Abstract: The characteristics of the heat transfer and the calculation of heat flux in metal layer are both the critical problems for in-vessel retention (IVR) strategy. Turbulent convection occurs in the metal layer when the Rayleigh number (Ra) becomes sufficient high. The Globe–Dropkin (G–D) correlation (Globe and Dropkin, 1959) and Chu–Churchill (C–C) correlation (Churchill and Chu, 1975) have been widely used to calculate the heat flux in the metal layer, where the valid range of the Ra is from 1.5 × 10 5 to 6.8 × 10 8 in G–D correlation and less than 10 12 in C–C correlation. However, with the increase of reactor power, both the Rayleigh number and the rate of heat transfer below the bottom of metal layer of the molten pool will increase, and in this case the Rayleigh number even can reach 10 11 for the China Advanced Passive Plant CAP1400. Accordingly, the G–D correlation is not suitable for the CAP1400. Therefore, our experiment purposes are to establish the appropriate correlation at high Ra for the CAP1400 and predict the axial and radial distribution of the heat transfer in the metal layer with the heat transfer behavior of metal layer experiment (HELM) facility. The experiments are divided into two parts. Each part concerns 39 runs and 47 experimental conditions. Its corresponding results are obtained at middle Prandtl number (Pr = 7 for water) and the Nusselt number is found to be proportional to Ra 0.315 in the range 3.93 × 10 8 < Ra < 3.57 × 10 12 . Furthermore, the experiment

  10. Flow and heat transfer in laminar–turbulent transitional flow regime under rolling motion

    International Nuclear Information System (INIS)

    Yuan, Hongsheng; Tan, Sichao; Zhuang, Nailiang; Lan, Shu

    2016-01-01

    Highlights: • Flow and heat transfer experiment in transitional flow regime under rolling motion. • Increases of average friction factor and Nu were found. • Periodic breakdown of laminar flow contributes to the increase. • Nonlinear variation of pressure drop or Nu with Re also contributes to the increase. • Effect of critical Reynolds number shift was discussed. - Abstract: Flow and heat transfer characteristics under rolling motion are extremely important to thermohydraulic analysis of offshore nuclear reactors. An experimental study was conducted in a heated rectangular channel to investigate flow and heat transfer in laminar–turbulent transitional flow regime under rolling motion. The results showed that the average friction factor and Nusselt number are higher than that of the corresponding steady flow as the flow rate fluctuates in transitional flow regime. Larger relative flow rate fluctuation was observed under larger rolling amplitude or higher rolling frequency. In the same manner, larger increases of average friction factor and Nusselt number were achieved under larger rolling amplitude or higher rolling frequency. The increases were mainly caused by the flow rate fluctuation through periodic breakdown of laminar flow and development of turbulence in laminar–turbulent transitional flow regime. First, turbulence, which enhances the rate of momentum and energy exchange, occurs near the crest of flow rate wave even the flow is still in laminar flow regime according to the average Reynolds number. Second, as a result of rapid increases of the friction and heat transfer with Reynolds number in transitional flow regime, the increases of the friction and the heat transfer near the crest of flow rate wave are larger than the decreases of them near the trough of flow rate wave, which also contributes to increases of average friction and heat transfer. Additionally, the effect of critical Reynolds number shift under unsteady flow and heating

  11. Heat transfer prediction in a square porous medium using artificial neural network

    Science.gov (United States)

    Ahamad, N. Ameer; Athani, Abdulgaphur; Badruddin, Irfan Anjum

    2018-05-01

    Heat transfer in porous media has been investigated extensively because of its applications in various important fields. Neural network approach is applied to analyze steady two dimensional free convection flows through a porous medium fixed in a square cavity. The backpropagation neural network is trained and used to predict the heat transfer. The results are compared with available information in the literature. It is found that the heat transfer increases with increase in Rayleigh number. It is further found that the local Nusselt number decreases along the height of cavity. The neural network is found to predict the heat transfer behavior accurately for given parameters.

  12. Strategic Studies Quarterly. Volume 9, Number 3. Fall 2015

    Science.gov (United States)

    2015-01-01

    analysis raises the im- portant question, but does not yet answer it to my satisfaction : how exacting must the "smell test" be to protect the military... satisfaction or dissatisfaction.20 Additionally, a 2012 survey by the Center for Strategic and Budgetary Assessments (CSBA) in coopera- tion with TrueChoice...9. Lindsay P. Cohn, "Who Will Serve? Labour Markets and Military Personnel Policy," Res Militaris 3, no. 2 (Winter-Spring 2013): http

  13. Studies in Intelligence. Volume 54, Number 2, June 2010

    Science.gov (United States)

    2010-06-01

    432 pp., bibliography, no index. The murky chronicle of Alexander Litvinenko’s poisoning with the highly toxic polonium - 210 in a posh London hotel bar...nearly everything, too: naviga- tion, parachute jumping, how to kill wild animals and use them as food , lock picking, hiding microscopic sized...dispatched into desolate areas with only a minimum of food , forced to live on fish they could catch or game they could shoot. Subsequently they were

  14. Natural convection heat transfer of water in a horizontal circular gap

    Institute of Scientific and Technical Information of China (English)

    SU Guanghui; Kenichiro Sugiyama; WU Yingwei

    2007-01-01

    An experimental study on the natural convection heat transfer on a horizontal downward facing heated surface in a water gap was carried out under atmospheric pressure conditions. A total of 700 experimental data points were correlated using Rayleigh versus Nusselt number in various forms, based on different independent variables. The effects of different characteristic lengths and film temperatures were discussed. The results show that the buoyancy force acts as a resistance force for natural convecti on beat transfer ona downward facing horizontal heated surface in a confined space. For the estimation of the natural convection heat transfer under the present conditions, empirical correlations in which Nusselt number is expressed as a function of the Rayleigh number, or both Rayleigh and Prandtl numbers, may be used. When it is accurately predicted, the Nusselt number is expressed as a function of the Rayleigh and Prandtl numbers, as well as the gap width-to-heated surface diameter ratio; and uses the temperature difference between the heated surface and the ambient fluid in the definition of Rayleigh number. The characteristic length is the gap size and the film temperature is the average fluid temperature.

  15. Heat Transfer and Pressure Drop Characteristics in Straight Microchannel of Printed Circuit Heat Exchangers

    Directory of Open Access Journals (Sweden)

    Jang-Won Seo

    2015-05-01

    Full Text Available Performance tests were carried out for a microchannel printed circuit heat exchanger (PCHE, which was fabricated with micro photo-etching and diffusion bonding technologies. The microchannel PCHE was tested for Reynolds numbers in the range of 100‒850 varying the hot-side inlet temperature between 40 °C–50 °C while keeping the cold-side temperature fixed at 20 °C. It was found that the average heat transfer rate and heat transfer performance of the countercurrrent configuration were 6.8% and 10%‒15% higher, respectively, than those of the parallel flow. The average heat transfer rate, heat transfer performance and pressure drop increased with increasing Reynolds number in all experiments. Increasing inlet temperature did not affect the heat transfer performance while it slightly decreased the pressure drop in the experimental range considered. Empirical correlations have been developed for the heat transfer coefficient and pressure drop factor as functions of the Reynolds number.

  16. Promoting learning transfer in preceptor preparation.

    Science.gov (United States)

    Finn, Frances L; Chesser-Smyth, Patricia

    2013-01-01

    An understanding of learning transfer principles is essential for professional development educators and managers to ensure that new skills and knowledge learned are applied to practice. This article presents a collaborative project involving the planning, design, and implementation of a preceptor training program for registered nurses. The theories and principles discussed in this article could be applied to a number of different settings and contexts in health care to promote learning transfer in professional development activities.

  17. Heat transfer characteristics of a helical heat exchanger

    International Nuclear Information System (INIS)

    San, Jung-Yang; Hsu, Chih-Hsiang; Chen, Shih-Hao

    2012-01-01

    Heat transfer performance of a helical heat exchanger was investigated. The heat exchanger is composed of a helical tube with rectangular cross section and two cover plates. The ε–Ntu relation of the heat exchanger was obtained using a numerical method. In the analysis, the flow in the tube (helical flow) was considered to be mixed and the flow outside the tube (radial flow) was unmixed. In the experiment, the Darcy friction factor (f) and convective heat transfer coefficient (h) of the radial flow were measured. The radial flow was air and the helical flow was water. Four different channel spacing (0.5, 0.8, 1.2 and 1.6 mm) were individually considered. The Reynolds numbers were in the range 307–2547. Two correlations, one for the Darcy friction factor and the other for the Nusselt number, were proposed. - Highlights: ► We analyze the heat transfer characteristics of a helical heat exchanger and examine the effectiveness–Ntu relation. ► Increasing number of turns of the heat exchanger would slightly increase the effectiveness. ► There is an optimum Ntu value corresponding to a maximum effectiveness. ► We measure the Darcy friction factor and Nusselt number of the radial flow and examine the correlations.

  18. Energy transfer dynamics in Light-Harvesting Dendrimers

    Science.gov (United States)

    Melinger, Joseph S.; McMorrow, Dale; Kleiman, Valeria D.

    2002-03-01

    We explore energy transfer dynamics in light-harvesting phenylacetylene symmetric and asymmetric dendrimers. Femtosecond pump-probe spectroscopy is used to probe the ultrafast dynamics of electronic excitations in these dendrimers. The backbone of the macromolecule consists of branches of increasing conjugation length, creating an energy gradient, which funnels energy to an accepting perylene trap. In the case of the symmetric dendrimer (nanostar), the energy transfer efficiency is known to approach nearly unity, although the nature and timescale of the energy transfer process is still unknown. For the asymmetric dendrimers, energy transfer efficiencies are very high, with the possibility of more complex transfer processes. We experimentally monitor the transport of excitons through the light-harvesting dendrimer. The transients show a number of components, with timescales ranging from <300fs to several tens of picoseconds, revealing the complex photophysics taking place in these macromolecules. We interpret our results in terms of the Förster mechanism in which energy transfer occurs through dipole-dipole interactions.

  19. Pair transfer processes probed at deep sub barrier energies

    International Nuclear Information System (INIS)

    Corradi, L.; Mason, P.; Fioretto, E.; Michelagnoli, C.; Stefanini, A.M.; Valiente-Dobon, J.J.; Szinler, S.; Jelavic-Malenica, D.; Soic, N.; Pollarolo, G.; Farnea, E.; Montagnoli, G.; Montanari, D.; Scarlassara, F.; Ur, C.A.; Gadea, A.; Haas, F.; Marginean, N.

    2011-01-01

    Multinucleon transfer cross sections in the system 40 Ca+ 96 Zr have been measured at bombarding energies ranging from the Coulomb barrier to ∼ 25% below. Target-like (lighter) recoils in inverse kinematics have been completely identified in A,Z and Q-value with the large solid angle magnetic spectrometer PRISMA. The experimental slopes of the neutron transfer probabilities at large internuclear separation are consistent with the values derived from the binding energies. A phenomenological interpretation of the transfer probabilities indicates the presence of enhanced values for the even number of neutron transfers. (authors)

  20. Heat transfer augmentation of magnetohydrodynamics natural convection in L-shaped cavities utilizing nanofluids

    Directory of Open Access Journals (Sweden)

    Sourtiji Ehsan

    2012-01-01

    Full Text Available A numerical study of natural convection heat transfer through an alumina-water nanofluid inside L-shaped cavities in the presence of an external magnetic field is performed. The study has been carried out for a wide range of important parame­ters such as Rayleigh number, Hartmann number, aspect ratio of the cavity and solid volume fraction of the nanofluid. The influence of the nanoparticle, buoyancy force and the magnetic field on the flow and temperature fields have been plotted and discussed. The results show that after a critical Rayleigh number depending on the aspect ratio, the heat transfer in the cavity rises abruptly due to some significant changes in flow field. It is also found that the heat transfer enhances in the presence of the nanoparticles and increases with solid volume fraction of the nanofluid. In addition, the performance of the nanofluid utilization is more effective at high Ray­leigh numbers. The influence of the magnetic field has been also studied and de­duced that it has a remarkable effect on the heat transfer and flow field in the cavity that as the Hartmann number increases the overall Nusselt number is significantly decreased specially at high Rayleigh numbers.

  1. Influence of isovector pairing and particle-number projection effects on spectroscopic factors for one-pair like-particle transfer reactions in proton-rich even-even nuclei

    Science.gov (United States)

    Benbouzid, Y.; Allal, N. H.; Fellah, M.; Oudih, M. R.

    2018-04-01

    Isovector neutron-proton (np) pairing and particle-number fluctuation effects on the spectroscopic factors (SF) corresponding to one-pair like-particle transfer reactions in proton-rich even-even nuclei are studied. With this aim, expressions of the SF corresponding to two-neutron stripping and two-proton pick-up reactions, which take into account the isovector np pairing effect, are established within the generalized BCS approach, using a schematic definition proposed by Chasman. Expressions of the same SF which strictly conserve the particle number are also established within the Sharp-BCS (SBCS) discrete projection method. In both cases, it is shown that these expressions generalize those obtained when only the pairing between like particles is considered. First, the formalism is tested within the Richardson schematic model. Second, it is applied to study even-even proton-rich nuclei using the single-particle energies of a Woods-Saxon mean-field. In both cases, it is shown that the np pairing effect and the particle-number projection effect on the SF values are important, particularly in N = Z nuclei, and must then be taken into account.

  2. Evolution of PHWR fuel transfer system based on operating experience

    International Nuclear Information System (INIS)

    Parvatikar, R.S.; Singh, Jaipal; Chaturvedi, P.C.; Bhambra, H.S.

    2006-01-01

    Fuel Transfer System facilitates loading of new fuel into Fuelling Machine, receipt of spent fuel from Fuelling Machine and its further transportation to Storage Bay. To overcome the limitations of transferring a pair of bundles in the single tube Airlock and Transfer Arm in RAPS-1 and 2/MAPS, a new concept of six tube Transfer Magazine was introduced in NAPS. This resulted in simultaneous loading of new fuel from Transfer Magazine into the Fuelling Machine and unloading of spent fuel from the Fuelling Machine through the exchange mode. It further facilitated the parallel/simultaneous operation of refuelling by Fuelling Machines on the reactor and transferring of spent fuel bundles from the Transfer Magazine to the bay. This new design of Fuel Transfer System was adopted for all standardised 220 MWe PHWRs. Based on the experience gained in 220 MWe PHWRs in the area of operation and maintenance, a number of improvements have been carried out over the years. These aspects have been further strengthened and refined in the Fuel Transfer System of 540 MWe units. The operating experience of the system indicates that the presence of heavy water in the Transfer Magazine poses limitations in its maintenance in the Fuel Transfer room. Further, Surveillance and maintenance of large number of under water equipment and associated valves, rams and underwater sensors is putting extra burden on the O and M efforts. A new concept of mobile light water filled Transfer Machine has been evolved for proposed 700 MWe PHWR units to simplify Fuel Transfer System. This has been made possible by adopting snout level control in the Fuelling Machine, elimination of Shuttle Transport System and locating the Storage Bay adjacent to the Reactor Building. This paper describes the evolution of Fuel Transfer System concepts and various improvements based on the experience gained in the operation and maintenance of the system. (author)

  3. Energy transfers and magnetic energy growth in small-scale dynamo

    KAUST Repository

    Kumar, Rohit Raj; Verma, Mahendra K.; Samtaney, Ravi

    2013-01-01

    In this letter we investigate the dynamics of magnetic energy growth in small-scale dynamo by studying energy transfers, mainly energy fluxes and shell-to-shell energy transfers. We perform dynamo simulations for the magnetic Prandtl number Pm = 20

  4. External stimuli response on a novel chitosan hydrogel crosslinked ...

    Indian Academy of Sciences (India)

    Unknown

    ceutics, tissue engineering, chromatography, metal chela- tion etc. This has prompted ... lower limit) up to thousands of time of water or biological fluid than their dry ... 2000), and other industrial as well as biomedical applica- tions. A number of ...

  5. Necklaces: Generalizations

    Indian Academy of Sciences (India)

    IAS Admin

    . A q-ary necklace of length n is an equivalence class of q-coloured strings of length n under rota- tion. In this article, we study various generaliza- tions and derive analytical expressions to count the number of these generalized necklaces.

  6. Lunar ash flow with heat transfer.

    Science.gov (United States)

    Pai, S. I.; Hsieh, T.; O'Keefe, J. A.

    1972-01-01

    The most important heat-transfer process in the ash flow under consideration is heat convection. Besides the four important nondimensional parameters of isothermal ash flow (Pai et al., 1972), we have three additional important nondimensional parameters: the ratio of the specific heat of the gas, the ratio of the specific heat of the solid particles to that of gas, and the Prandtl number. We reexamine the one dimensional steady ash flow discussed by Pai et al. (1972) by including the effects of heat transfer. Numerical results for the pressure, temperature, density of the gas, velocities of gas and solid particles, and volume fraction of solid particles as function of altitude for various values of the Jeffreys number, initial velocity ratio, and two different gas species (steam and hydrogen) are presented.

  7. Experimental determination of heat transfer in a Poiseuille-Rayleigh-Bénard flow

    Science.gov (United States)

    Taher, R.; Abid, C.

    2018-05-01

    This paper deals with an experimental study of heat transfer in a Poiseuille-Rayleigh-Bénard flow. This situation corresponds to a mixed convection phenomenon in a horizontal rectangular channel uniformly heated from below. Flow visualisation and temperature measurements were achieved in order to describe the flow regimes and heat transfer behaviour. The classical measurement techniques such employing thermocouples give local measurement on one hand and on other hand they often disturb the flow. As the flow is three-dimensional, these techniques are not efficient. In order to not disturb the flow, a non-intrusive method is used for thermal measurement. The Planar laser Induced Fluorescence (PLIF) was implemented to determine thermal fields in the fluid. Experiments conducted for various Reynolds and Rayleigh numbers allow to determine the heat transfer and thus to propose correlation for Nusselt number for a mixed convection flow in Poiseuille-Rayleigh-Bénard configuration. First a description of the use of this technique in water flow is presented and then the obtained results for various Reynolds and Rayleigh numbers allow to propose a correlation for the Nusselt number for such configuration of mixed convection. The comparison between the obtained heat transfer and the pure forced convection one confirms the well-known result that the convective heat transfer is greatly enhanced in mixed convection. Indeed, secondary flow induced by buoyant forces contributes to the refreshment of thermal boundary layers and so acts like mixers, which significantly enhances heat transfer.

  8. Neutron transfer reactions in the fp-shell region

    International Nuclear Information System (INIS)

    Mahgoub, Mahmoud

    2008-01-01

    Neutron transfer reactions were used to study the stability of the magic number N=28 near 56 Ni. On one hand the one-neutron pickup (d,p) reaction was used for precision spectroscopy of single-particle levels in 55 Fe. On the other hand we investigated the two-neutron transfer mechanism into 56 Ni using the pickup reaction 58 Ni(vectorp,t) 56 Ni. In addition the reliability of inverse kinematics reactions at low energy to study exotic nuclei was tested by the neutron transfer reactions t( 40 Ar,p) 42 Ar and d( 54 Fe,p) 55 Fe using tritium and deuterium targets, respectively, and by comparing the results with those of the normal kinematics reactions. The experimental data, differential cross-section and analyzing powers, are compared to DWBA and coupled channel calculations utilizing the code CHUCK3. By performing the single-neutron stripping reaction (vectord,p) on 54 Fe the 1f 7/2 shell in the ground state configuration was found to be partly broken. The instability of the 1f 7/2 shell and the magic number N=28 was confirmed once by observing a number of levels with J π = 7/2 - at low excitation energies, which should not be populated if 54 Fe has a closed 1f 7/2 shell, and also by comparing our high precision experimental data with a large scale shell model calculation using the ANTOINE code [5]. Calculations including a partly broken 1f 7/2 shell show better agreement with the experiment. The instability of the 1f 7/2 shell was confirmed also by performing the two-neutron pick-up reaction (vectorp,t) on 58 Ni to study 56 Ni, where a considerable improvement in the DWBA calculation was observed after considering 1f 7/2 as a broken shell. To prove the reliability of inverse kinematics transfer reactions at low energies (∝ 2 AMeV), the aforementioned single-neutron transfer reaction (d,p) was repeated using a beam of 54 Fe ions and a deuteron target. From this inverse kinematics experiment we were able to reproduce the absolute cross-section and angular

  9. Breakeven costs for embryo transfer in a commercial dairy herd.

    Science.gov (United States)

    Ferris, T A; Troyer, B W

    1987-11-01

    Differences in Estimated Breeding Values expressed in dollars were compared by simulation of two, 100-cow, closed herds. One herd practiced normal intensity of female selection. The other herd generated various herd replacements by embryo transfer by varying 1) selection rate of embryo transfer dams and 2) numbers of daughters per dam from which embryos were transferred, while varying the merit of mates of embryo transfer dams. Estimated Breeding Value dollars were compounded each generation and regressed to remove age adjustments and added feed and health costs. Beginning values in both herds included a standard deviation of 55 Cow Index dollars, herd average of -23 Cow Index dollars, and a 120 Predicted Difference dollars for mates of dams not embryo transferred. Average merit of all sires used increased $12 per year. Herd calving rate (.70), proportion females (.5), calf loss (.15), and heifer survival rate (.83) were used. Breakeven cost per embryo transfer cow entering the milking herd was computed by Net Present Value analysis using a 10% discount rate over 10 and 20 yr. Breakeven cost or the maximum expense that would allow a 10% return on the expenditure ranged from $135 to $510 per surviving cow, $24 to $125 per transfer, $47 to $178 per pregnancy, and $81 to $357 per female calf born. As the number of replacements resulting from embryo transfer increased, breakeven cost per embryo transfer cow decreased due to diminishing return.

  10. Heat and mass transfer

    CERN Document Server

    Karwa, Rajendra

    2017-01-01

    This textbook presents the classical treatment of the problems of heat transfer in an exhaustive manner with due emphasis on understanding of the physics of the problems. This emphasis is especially visible in the chapters on convective heat transfer. Emphasis is laid on the solution of steady and unsteady two-dimensional heat conduction problems. Another special feature of the book is a chapter on introduction to design of heat exchangers and their illustrative design problems. A simple and understandable treatment of gaseous radiation has been presented. A special chapter on flat plate solar air heater has been incorporated that covers thermo-hydraulic modeling and simulation. The chapter on mass transfer has been written looking specifically at the needs of the students of mechanical engineering. The book includes a large number and variety of solved problems with supporting line diagrams. The author has avoided duplicating similar problems, while incorporating more application-based examples. All the end-...

  11. Strategic Studies Quarterly. Volume 6, Number 4, Winter 2012

    Science.gov (United States)

    2012-01-01

    34turning point.൤ The Pentagon took remedial action, launching Opera- tion Buckshot Yankee that led to banning the use of thumb drives29 and...Roundtable, Kuala Lampur, Malaysia , May 2011. For a more lengthy treatment of the naval arms race in Southeast Asia, see Charles A. Meconis and Michael D...and the ROK, as these would impose serious costs. The costs could be enhanced by training along the ROK coasts for humanitarian aid delivery, filming

  12. Bumpless Transfer between Observer-based Gain Scheduled Controllers

    DEFF Research Database (Denmark)

    Bendtsen, Jan Dimon; Stoustrup, Jakob; Trangbæk, Klaus

    2005-01-01

    This paper deals with bumpless transfer between a number of observer-based controllers in a gain scheduling architecture. Linear observer-based controllers are designed for a number of linear approximations of a nonlinear system in a set of operating points, and gain scheduling control can...

  13. Control of Chain Walking by Weak Neighbouring Group Interac-tions in Unsymmetric Catalysts

    KAUST Repository

    Falivene, Laura

    2017-12-20

    A combined theoretical and experimental study shows how weak attractive interactions of a neighbouring group can strongly promote chain walking and chain transfer. This accounts for the previously observed very different micro-structures obtained in ethylene polymerization by [κ2-N,O-{(2,6-(3\\',5\\'-R2C6H3)2C6H3-N=C(H)-(3,5-X,Y2-2-O-C6H2)}]NiCH3(pyridine)], namely hyperbranched oligomers for remote substituents R = CH3 versus. high molecular weight polyethylene for R = CF3. From a full mechanistic consideration the alkyl olefin complex with the growing chain cis to the salicylaldiminato oxygen donor is identified as the key species. Alternative to ethylene chain growth by insertion in this species, decoordination of the monomer to form a cis ß-agostic complex provides an entry into branching and chain transfer pathways. This release of monomer is promoted and made competitive by a weak η2-coordination of the distal aryl rings to the metal center, operative only for the case of sufficiently electron rich aryls. This concept for controlling chain walking is underlined by catalysts with other weakly coordinating furane and thio-phene motifs, which afford highly branched oligomers with > 120 branches per 1000 carbon atoms.

  14. Metro passengers’ route choice model and its application considering perceived transfer threshold

    Science.gov (United States)

    Jin, Fanglei; Zhang, Yongsheng; Liu, Shasha

    2017-01-01

    With the rapid development of the Metro network in China, the greatly increased route alternatives make passengers’ route choice behavior and passenger flow assignment more complicated, which presents challenges to the operation management. In this paper, a path sized logit model is adopted to analyze passengers’ route choice preferences considering such parameters as in-vehicle time, number of transfers, and transfer time. Moreover, the “perceived transfer threshold” is defined and included in the utility function to reflect the penalty difference caused by transfer time on passengers’ perceived utility under various numbers of transfers. Next, based on the revealed preference data collected in the Guangzhou Metro, the proposed model is calibrated. The appropriate perceived transfer threshold value and the route choice preferences are analyzed. Finally, the model is applied to a personalized route planning case to demonstrate the engineering practicability of route choice behavior analysis. The results show that the introduction of the perceived transfer threshold is helpful to improve the model’s explanatory abilities. In addition, personalized route planning based on route choice preferences can meet passengers’ diversified travel demands. PMID:28957376

  15. Experimental heat transfer in tube bundle

    International Nuclear Information System (INIS)

    Khattab, M.; Mariy, A.; Habib, M.

    1983-01-01

    Previous work has looked for the problem of heat transfer with flow parallel to rod bundle either by treating each rod individually as a separate channel or by treating the bundle as one unit. The present work will consider the existence of both the central and corner rods simultaneously inside the cluster itself under the same working conditions. The test section is geometrically similar to the fuel assembly of the Egyptian Research Reactor-1. The hydro-thermal performance of bundle having 16 - stainless steel tubes arranged in square array of 1.5 pitch to diameter ratio is investigated. Surface temperature and pressure distributions are determined. Average heat transfer coefficient for both central and corner tubes are correlated. Also, pressure drop and friction factor correlations are predicted. The maximum experimental range of the measured parameters are determined in the nonboiling region at 1400 Reynolds number and 3.64 W/cm 2 . It is found that the average heat transfer coefficient of the central tube is higher than that of the corner tube by 27%. Comparison with the previous work shows satisfactory agreement particularly with the circular tubes correlation - Dittus et al. - at 104 Reynolds number

  16. The effect of a magnetic field on heat transfer in a slotted channel

    International Nuclear Information System (INIS)

    Evtushenko, I.A.; Hua, T.Q.; Kirillov, I.R.; Reed, Claude B.; Sidorenkov, S.S.

    1995-01-01

    The results of numerical and experimental studies of liquid metal heat transfer in slotted channels in a transverse magnetic field are presented. Test results showed an improvement in heat transfer in a straight channel at low and moderate interaction parameter N. The Nusselt number at small N (around 120) was up to twofold higher than in turbulent flow without a magnetic field, the Peclet number being equal. This effect of heat transfer enhancement is caused by the generation and development of large-scale velocity fluctuations close to the heated wall area. Qualitative and quantitative correlations between heat transfer and velocity fluctuation characteristics are presented. (orig.)

  17. Semantically optiMize the dAta seRvice operaTion (SMART) system for better data discovery and access

    Science.gov (United States)

    Yang, C.; Huang, T.; Armstrong, E. M.; Moroni, D. F.; Liu, K.; Gui, Z.

    2013-12-01

    Abstract: We present a Semantically optiMize the dAta seRvice operaTion (SMART) system for better data discovery and access across the NASA data systems, Global Earth Observation System of Systems (GEOSS) Clearinghouse and Data.gov to facilitate scientists to select Earth observation data that fit better their needs in four aspects: 1. Integrating and interfacing the SMART system to include the functionality of a) semantic reasoning based on Jena, an open source semantic reasoning engine, b) semantic similarity calculation, c) recommendation based on spatiotemporal, semantic, and user workflow patterns, and d) ranking results based on similarity between search terms and data ontology. 2. Collaborating with data user communities to a) capture science data ontology and record relevant ontology triple stores, b) analyze and mine user search and download patterns, c) integrate SMART into metadata-centric discovery system for community-wide usage and feedback, and d) customizing data discovery, search and access user interface to include the ranked results, recommendation components, and semantic based navigations. 3. Laying the groundwork to interface the SMART system with other data search and discovery systems as an open source data search and discovery solution. The SMART systems leverages NASA, GEO, FGDC data discovery, search and access for the Earth science community by enabling scientists to readily discover and access data appropriate to their endeavors, increasing the efficiency of data exploration and decreasing the time that scientists must spend on searching, downloading, and processing the datasets most applicable to their research. By incorporating the SMART system, it is a likely aim that the time being devoted to discovering the most applicable dataset will be substantially reduced, thereby reducing the number of user inquiries and likewise reducing the time and resources expended by a data center in addressing user inquiries. Keywords: EarthCube; ECHO

  18. Simple heat transfer correlations for turbulent tube flow

    Directory of Open Access Journals (Sweden)

    Taler Dawid

    2017-01-01

    Full Text Available The paper presents three power-type correlations of a simple form, which are valid for Reynolds numbers range from 3·103 ≤ Re ≤ 106, and for three different ranges of Prandtl number: 0.1 ≤ Pr ≤ 1.0, 1.0 < Pr ≤ 3.0, and 3.0 < Pr ≤ 103. Heat transfer correlations developed in the paper were compared with experimental results available in the literature. The comparisons performed in the paper confirm the good accuracy of the proposed correlations. They are also much simpler compared with the relationship of Gnielinski, which is also widely used in the heat transfer calculations.

  19. Medical Surveillance Monthly Report (MSMR). Volume 21, Number 01, January 2014

    Science.gov (United States)

    2014-01-01

    use of preventive medi- cine measures (PMM), use of chloroquine chemoprophylaxis, and mosquito control when warranted.41-43 Although insecticide... chloroquine resistance Due to the widespread use of hydroxy- chloroquine among the ROK military, it has been suggested that chloroquine resistance...of the military were part of the solu- tion. Th e use of supplemental technol- ogy platforms, such as polymerase chain reaction (PCR), to complement

  20. Heat transfer behaviors in round tube with conical ring inserts

    International Nuclear Information System (INIS)

    Promvonge, P.

    2008-01-01

    To increase convection heat transfer in a uniform heat flux tube by a passive method, several conical rings used as turbulators are mounted over the test tube. The effects of the conical ring turbulator inserts on the heat transfer rate and friction factor are experimentally investigated in the present work. Conical rings with three different diameter ratios of the ring to tube diameter (d/D = 0.5, 0.6, 0.7) are introduced in the tests, and for each ratio, the rings are placed with three different arrangements (converging conical ring, referred to as CR array, diverging conical ring, DR array and converging-diverging conical ring, CDR array). In the experiment, cold air at ambient condition for Reynolds numbers in a range of 6000-26,000 is passed through the uniform heat flux circular tube. It is found that the ring to tube diameter ratio and the ring arrays provide a significant effect on the thermal performance of the test tube. The experimental results demonstrate that the use of conical ring inserts leads to a higher heat transfer rate than that of the plain surface tube, and the DR array yields a better heat transfer than the others. The results are also correlated in the form of Nusselt number as a function of Reynolds number, Prandtl number and diameter ratio. An augmentation of up to 197%, 333%, and 237% in Nusselt number is obtained in the turbulent flow for the CR, DR and CDR arrays, respectively, although the effect of using the conical ring causes a substantial increase in friction factor

  1. Heat transfer enhancement of free surface MHD-flow by a protrusion wall

    International Nuclear Information System (INIS)

    Hulin Huang; Bo Li

    2010-01-01

    Due to the magnetohydrodynamic (MHD) effect on the flow, which degrades heat transfer coefficients by pulsation suppression of external magnetic field on the flow, a hemispherical protrusion wall is applied to free surface MHD-flow system as a heat transfer enhancement, because the hemispherical protrusion wall has some excellent characteristics including high heat transfer coefficients, low friction factors and high overall thermal performances. So, the characteristics of the fluid flow and heat transfer of the free surface MHD-flow with hemispherical protrusion wall are simulated numerically and the influence of some parameters, such as protrusion height δ/D, and Hartmann number, are also discussed in this paper. It is found that, in the range of Hartmann number 30 ≤ Ha ≤ 70, the protrusion wall assemblies can achieve heat transfer enhancements (Nu/Nu 0 ) of about 1.3-2.3 relative to the smooth channel, while the friction loss (f/f 0 ) increases by about 1.34-1.45. Thus, the high Nusselt number can be obtained when the protrusion wall with a radically lower friction loss increase, which may help get much higher overall thermal performances.

  2. Numbers game : using aluminum helps Global Heat Transfer develop new frac radiators

    Energy Technology Data Exchange (ETDEWEB)

    Marsters, S.

    2009-11-15

    Aluminum is thought to be a beneficial new option for the construction of frac radiators. This article discussed how aluminum has been used to help Global Heat Transfer Ltd. (GHT) develop new frac radiators. The company developed the Jumbotron, an all-aluminum frac radiator that achieved 3,000 horsepower, but with less weight than a typical 2,250 horsepower package. The article provided information on Jumbotron, including how it was conceptualized, its features, applications, and other details. Background information on GHT was also presented. GHT focuses on the oil and gas and mining sectors and has over 500 employees worldwide in 15 locations. The aluminum parts for the Jumbotron frac radiator are produced at one of GHT's China facilities and brought to Canada for final assembly. 1 fig.

  3. Mixed convection heat transfer from confined tandem square cylinders in a horizontal channel

    KAUST Repository

    Huang, Zhu

    2013-11-01

    This paper presents a numerical study on the two-dimensional laminar mixed convective flow and heat transfer around two identical isothermal square cylinders arranged in tandem and confined in a channel. The spacing between the cylinders is fixed with four widths of the cylinder and the blockage ratio and the Prandtl number are fixed at 0.1 and 0.7 respectively. The mixed convective flow and heat transfer is simulated by high accuracy multidomain pseudospectral method. The Reynolds number (Re) is studied in the range 80 ≤ Re ≤ 150, the Richardson number (Ri) demonstrating the influence of thermal buoyancy ranges from 0 to 1. Numerical results reveal that, with the thermal buoyancy effect, the mixed convective flow sheds vortex behind the cylinders and keeps periodic oscillating. The variations of characteristic quantities related to flow and heat transfer processes, such as the overall drag and lift coefficients and the Nusselt numbers, are presented and discussed. Furthermore, the influence of thermal buoyancy on the fluid flow and heat transfer are discussed and analysed. © 2013 Elsevier Ltd. All rights reserved.

  4. Heat transfer and pressure drop of a reactor fuel element model with polyzonal spiral finning

    Energy Technology Data Exchange (ETDEWEB)

    Oka, S; Becirspahic, S [Institute of Nuclear Sciences Boris Kidric, Heat Transfer Department, Vinca, Beograd (Serbia and Montenegro)

    1964-10-15

    Heat transfer and pressure drop of a reactor fuel element model with polyzonal spiral finning have been investigated. The St-number distribution over length and perimeter of he finning are given. The mean and minimum St{sub k}-number are plotted against the Re-number. The influence of the gap between two fuel elements upon heat transfer and pressure drop, in dependence on the Re-number, and the influence of the length of the fuel element on pressure drop across the gap are shown. The influence of the relative position of the splitters of two neighboring fuel elements on pressure drop and heat transfer is shown. The investigations were performed in the Re-number range 15,000 to 100,000 (author)

  5. Enhancement of heat transfer by nanofluids and orientations of the equilateral triangular obstacle

    International Nuclear Information System (INIS)

    Bovand, M.; Rashidi, S.; Esfahani, J.A.

    2015-01-01

    Highlights: • The heat transfer is improved by nanofluids and orientations of the obstacle. • The role of solid volume fraction on the fluid flow and heat transfer is studied. • There is an upward drift in the vortices for the diagonal facing flow. • The maximum value of the average Nusselt number is for the vertex facing flow. - Abstract: This paper simulates the forced convective heat transfer of Al 2 O 3 –water nanofluid over an equilateral triangular obstacle. Computations are performed for different orientations of the triangular obstacle (side, vertex and diagonal facing flows). The ranges of Reynolds number (Re) and solid volume fractions of nanoparticles (φ) are 1 ⩽ Re ⩽ 200 and 0 ⩽ φ ⩽ 0.05, respectively. Two-dimensional unsteady conservation laws of mass, momentum, and energy equations have been solved using finite volume method. The effects of Reynolds number, solid volume fractions of nanoparticles and different orientations of the triangular obstacle on the flow and heat transfer characteristics are investigated in detail. Detailed results are presented for wake length, streamline, vorticity, temperature contours and time averaged Nusselt number. Finally, the value of time averaged Nusselt number has been investigated in three equations using least square method which the effects of solid volume fraction of nanoparticles and Reynolds numbers are taken into account. The calculated results revealed that the maximum effect of nanoparticles on heat transfer rate augmentation is for the side facing flow and the minimum is related to the vertex facing flow. Also, the required Reynolds numbers for wake formation decrease with increase in solid volume fraction

  6. Addic tion treatment

    African Journals Online (AJOL)

    2009-01-29

    Jan 29, 2009 ... it does leave the profitability and viability of the more orthodox treatment centres at risk, and they now often seek improved income streams by sourcing patients from abroad. This effectively subsidises local patients whose treatment intervention is remunerated by discounted medical aid rates. South Africa is ...

  7. tions and enlarged

    African Journals Online (AJOL)

    Iymphadenopathy were noted. The right-sided pleural effusion with relaxation atelectasis was also con- firmed (Fig. 4). The diagnosis of pos- sible amoebic liver abscess complicat- ed by rupture to the gallbladder was made at that stage. Ultrasound-guided abscess drainage was done and approximately 300 ml of pus was.

  8. Addic tion treatment

    African Journals Online (AJOL)

    2009-01-29

    Jan 29, 2009 ... to make any inroads in addressing this important public health problem: • Why does ... health insurance industry is delighted, as competition between various facilities .... the selection of a treatment programme for a particular ...

  9. Medical Surveillance Monthly Report. Volume 24, Number 1, January 2017

    Science.gov (United States)

    2017-01-31

    approxi- mately 1,135 service members have received incident clinical diagnoses of DM. Using National Health and Nutrition Examina- tion Survey data for...tary medical retention standards require that service members diagnosed with DM while in service and who cannot maintain a hemoglobin A1c (HbA1c...Hispanic (62%), single (64%), and with a high school or less education (78%). Service members aged 20–24 years constituted the single largest age

  10. ONR Far East Scientific Information Bulletin. Volume 15 Number 1.

    Science.gov (United States)

    1990-03-01

    applied to signature detec- tant areas of interest are the mapping of tion, classification, and enhancement for "lineaments"-faults or fractures in the...Basic Medical Science ment of prosthetic limbs driven by myogenic Research signals. The Biology Department is only 4 years old but is flourishing with...neering Laboratory is a strong force in devel- This hospital is the second oldest in China opment of biological heart valves made from and resides in

  11. Teores de cátions dos vinhos da Serra Gaúcha Cation content of wines from the Serra Gaúcha region

    Directory of Open Access Journals (Sweden)

    Luiz Antenor Rizzon

    2008-09-01

    Full Text Available Os cátions representam uma parte das cinzas e podem contribuir para caracterizar os vinhos de diferentes regiões vitícolas. O objetivo do presente trabalho foi determinar a concentração dos principais cátions de vinhos da Serra Gaúcha, RS, visando a sua caracterização. Foram analisados 600 vinhos de mesa e 380 vinhos finos, ambos distribuídos nas categorias tinto, rosado e branco. As análises de K+, Na+, Li+ e Rb+ foram feitas por emissão de chama, enquanto que as de Ca++, Mg++, Mn++, Fe++, Cu++ e Zn++ por absorção atômica. Os dados foram submetidos à análise de variância, ao teste de Tukey e à Análise de Componentes Principais (ACP. A análise de variância não mostrou diferenças significativas nas concentrações de Na+, Cu++ e Zn++ nos diferentes tipos de vinhos da Serra Gaúcha; os vinhos de mesa apresentaram maior concentração de Mn++ em relação aos finos; os de mesa e os rosados finos apresentaram concentração mais elevada de Fe++; enquanto que os tintos finos apresentaram concentrações mais elevadas de K+ e Rb+. A ACP permitiu diferenciar os vinhos em relação à cor - tinto, rosado e branco - e ao tipo - fino e de mesa.Cations represent an important part of the ash content and they can contribute to characterize wines from different viticultural regions. The purpose of this work was to determine the concentration of the main cations in the wines of the Serra Gaúcha region in Brazil. Six hundred table wines, primarily from American/hybrid varieties, and 380 wines elaborated with Vitis vinifera varieties, both including red, rosé and white wines, were analyzed. The analyses of K+, Na+, Li+ and Rb+ were performed by flame emission, while Ca++, Mg++, Mn++, Fe++, Cu++ and Zn++ analyses were performed by atomic absorption. Data were submitted to analysis of variance and the Tukey test and to Principal Component Analysis (PCA. Results showed that there was no significant difference in the concentration of Na

  12. A numerical study of vorticity-enhanced heat transfer

    Science.gov (United States)

    Wang, Xiaolin; Alben, Silas

    2012-11-01

    The Glezer lab at Georgia Tech has found that vorticity produced by vibrated reeds can improve heat transfer in electronic hardware. Vortices enhance forced convection by boundary layer separation and thermal mixing in the bulk flow. In this work, we simulate the heat transfer process in a 3-dimensional plate-fin heat sink. We propose a simplified model by considering flow and temperature in a 2-D channel, and extend the model to the third dimension using a 1-D heat fin model. We simulate periodically steady-state solutions. We determine how the global Nusselt number is increased, depending on the vortices' strengths and spacings, in the parameter space of Reynolds and Peclet numbers. We find a surprising spatial oscillation of the local Nusselt number due to the vortices. Support from NSF-DMS grant 1022619 is acknowledged.

  13. MONEY TRANSFERS VIA ONLINE PLATFORMS - LOGISTICS FOR BUSINESS DEVELOPMENT

    Directory of Open Access Journals (Sweden)

    CLAUDIA ISAC

    2016-10-01

    Full Text Available In this paper I have presented 3 of the money transfer platforms which operate via the Internet. The development of the Internet, electronic commerce and money transfers due to international migration and movement of people directly determines the improvement of money transfer processes, so as to find the best tools for money transfers at minimum costs and high transfer speeds, implying secure trading and personal data privacy. In this context I have compared the three most frequently used trading platforms PayPall, transferGo, TransferWise, also including a presentation of each of them. I have also done a more detailed analysis of the evolution of PayPall in Romania and on the international market due to the high amounts of money and the number of transactions. I have completed the work with a brief presentation of the financial trends and especially of trading via the Internet.

  14. A metabolic derivation of tritium transfer factors in animal products

    International Nuclear Information System (INIS)

    Galeriu, D.; Melintescu, A.; Crout, N. M. J.; Bersford, N. A.; Peterson, S. R.; Hess, M. van

    2001-01-01

    Tritium is a potentially important environmental contaminant arising from the nuclear industry. Because tritium is an isotope of hydrogen, its behaviour in the environment is controlled by the behaviour of hydrogen. Chronic releases of tritium to the atmosphere, in particular, will result in tritium-to-hydrogen (T/H) ratios in plants and animals that are more or less in equilibrium with T/H ratios in the air moisture. Tritium is thus a potentially important contaminant of plant and animal food products. The transfer of tritium from air moisture to plants is quite well understood. In contrast, although a number of regulatory agencies have published transfer coefficient values for diet tritium transfer for a limited number of animal products, a fresh evaluation of these transfers needs to be made In this paper we present an approach for the derivation of tritium transfer coefficients which is based on the metabolism of hydrogen in animals in conjunction with experimental data on tritium transfer. The derived transfer coefficients separately account for transfer to and from free (i.e. water) and organically bound tritium. The predicted transfer coefficients are compared to available data independent of model development. Agreement is good, with the exception of the transfer coefficient for transfer from tritiated water to organically bound tritium in ruminants, which may be attributable to the particular characteristics of ruminant digestion. We show that transfer coefficients will vary in response to the metabolic status of an animal (e.g. stage of lactation, digestibility of diet, etc.) and that the use of a single transfer coefficient from diet to animal product is not appropriate for tritium. It is possible to derive concentration ratio values which relate the concentration of tritiated water and organically bound tritium in an animal product to the corresponding concentrations in the animals diet. These concentration ratios are shown to be less subject to

  15. Numerical simulation of heat transfer in metal foams

    Science.gov (United States)

    Gangapatnam, Priyatham; Kurian, Renju; Venkateshan, S. P.

    2018-02-01

    This paper reports a numerical study of forced convection heat transfer in high porosity aluminum foams. Numerical modeling is done considering both local thermal equilibrium and non local thermal equilibrium conditions in ANSYS-Fluent. The results of the numerical model were validated with experimental results, where air was forced through aluminum foams in a vertical duct at different heat fluxes and velocities. It is observed that while the LTE model highly under predicts the heat transfer in these foams, LTNE model predicts the Nusselt number accurately. The novelty of this study is that once hydrodynamic experiments are conducted the permeability and porosity values obtained experimentally can be used to numerically simulate heat transfer in metal foams. The simulation of heat transfer in foams is further extended to find the effect of foam thickness on heat transfer in metal foams. The numerical results indicate that though larger foam thicknesses resulted in higher heat transfer coefficient, this effect weakens with thickness and is negligible in thick foams.

  16. CrossTalk: The Journal of Defense Software Engineering. Volume 21, Number 3

    Science.gov (United States)

    2008-03-01

    describes essentials for requirements development and management. In addi- tion to providing training, eLearning and consulting services, she speaks at and...information, support sense- making, enable collaborative decision making, and effect changes in the physical environment. For example, the Global ...across layers, which enables effective use of resources and helps enforce security and confiden- tiality policies. Global Data Space DDS provides a

  17. Neutron transfer reactions in the fp-shell region

    Energy Technology Data Exchange (ETDEWEB)

    Mahgoub, Mahmoud

    2008-06-26

    Neutron transfer reactions were used to study the stability of the magic number N=28 near {sup 56}Ni. On one hand the one-neutron pickup (d,p) reaction was used for precision spectroscopy of single-particle levels in {sup 55}Fe. On the other hand we investigated the two-neutron transfer mechanism into {sup 56}Ni using the pickup reaction {sup 58}Ni((vector)p,t){sup 56}Ni. In addition the reliability of inverse kinematics reactions at low energy to study exotic nuclei was tested by the neutron transfer reactions t({sup 40}Ar,p){sup 42}Ar and d({sup 54}Fe,p){sup 55}Fe using tritium and deuterium targets, respectively, and by comparing the results with those of the normal kinematics reactions. The experimental data, differential cross-section and analyzing powers, are compared to DWBA and coupled channel calculations utilizing the code CHUCK3. By performing the single-neutron stripping reaction ((vector)d,p) on {sup 54}Fe the 1f{sub 7/2} shell in the ground state configuration was found to be partly broken. The instability of the 1f{sub 7/2} shell and the magic number N=28 was confirmed once by observing a number of levels with J{sup {pi}} = 7/2{sup -} at low excitation energies, which should not be populated if {sup 54}Fe has a closed 1f{sub 7/2} shell, and also by comparing our high precision experimental data with a large scale shell model calculation using the ANTOINE code [5]. Calculations including a partly broken 1f{sub 7/2} shell show better agreement with the experiment. The instability of the 1f{sub 7/2} shell was confirmed also by performing the two-neutron pick-up reaction ((vector)p,t) on {sup 58}Ni to study {sup 56}Ni, where a considerable improvement in the DWBA calculation was observed after considering 1f{sub 7/2} as a broken shell. To prove the reliability of inverse kinematics transfer reactions at low energies ({proportional_to} 2 AMeV), the aforementioned single-neutron transfer reaction (d,p) was repeated using a beam of {sup 54}Fe ions and a

  18. Natural convection heat transfer in the molten metal pool

    International Nuclear Information System (INIS)

    Park, R.J.; Kim, S.B.; Kim, H.D.; Choi, S.M.

    1997-01-01

    Analytical studies using the FLOW-3D computer program have been performed on natural convection heat transfer of a high density molten metal pool, in order to evaluate the coolability of the corium pool. The FLOW-3D results on the temperature distribution and the heat transfer rate in the molten metal pool region have been compared and evaluated with the experimental data. The FLOW-3D results have shown that the developed natural convection flow contributes to the solidified crust formation of the high density molten metal pool. The present FLOW-3D results, on the relationship between the Nusselt number and the Rayleigh number in the molten metal pool region, are more similar to the calculated results of Globe and Dropkin's correlation than any others. The natural convection heat transfer in the low aspect ratio case is more substantial than that in the high aspect ratio case. The FLOW-3D results, on the temperature profile and on the heat transfer rate in the molten metal pool region, are very similar to the experimental data. The heat transfer rate of the internal heat generation case is higher than that of the bottom heating case at the same heat supply condition. (author)

  19. Effect of an alternating nonuniform magnetic field on ferrofluid flow and heat transfer in a channel

    International Nuclear Information System (INIS)

    Goharkhah, Mohammad; Ashjaee, Mehdi

    2014-01-01

    Forced convective heat transfer of water based Fe 3 O 4 nanofluid (ferrofluid) in the presence of an alternating non-uniform magnetic field is investigated numerically. The geometry is a two-dimensional channel which is subjected to a uniform heat flux at the top and bottom surfaces. Nonuniform magnetic field produced by eight line source dipoles is imposed on several parts of the channel. Also, a rectangular wave function is applied to the dipoles in order to turn them on and off alternatingly. The effects of the alternating magnetic field strength and frequency on the convective heat transfer are investigated for four different Reynolds numbers (Re=100, 600, 1200 and 2000) in the laminar flow regime. Comparing the results with zero magnetic field case, show that the heat transfer enhancement increases with the Reynolds number and reaches a maximum of 13.9% at Re=2000 and f=20 Hz. Moreover, at a constant Reynolds number, it increases with the magnetic field intensity while an optimum value exists for the frequency. Also, the optimum frequency increases with the Reynolds number. On the other hand, the heat transfer enhancement due to the magnetic field is always accompanied by a pressure drop penalty. A maximum pressure drop increase of 6% is observed at Re=2000 and f=5 Hz which shows that the pressure drop increase is not as significant as the heat transfer enhancement. - Highlights: • An alternating magnetic field is imposed on ferrofluid flow in a heated channel. • Heat transfer is enhanced noticeably compared to the case with no magnetic field. • Heat transfer depends on Reynolds number, magnetic field intensity and frequency. • Optimum frequency is independent of intensity but increases with Reynolds number. • Pressure drop increase is not as significant as the heat transfer enhancement

  20. Radiation transfer and stellar atmospheres

    Science.gov (United States)

    Swihart, T. L.

    This is a revised and expanded version of the author's Basic Physics of Stellar Atmospheres, published in 1971. The equation of transfer is considered, taking into account the intensity and derived quantities, the absorption coefficient, the emission coefficient, the source function, and special integrals for plane media. The gray atmosphere is discussed along with the nongray atmosphere, and aspects of line formation. Topics related to polarization are explored, giving attention to pure polarized radiation, general polarized radiation, transfer in a magnetic plasma, and Rayleigh scattering and the sunlit sky. Physical and astronomical constants, and a number of problems related to the subjects of the book are presented in an appendix.

  1. Nuclear structure effects in multi-nucleon transfer and sequential fission reactions

    International Nuclear Information System (INIS)

    Biswas, D.C.

    2001-01-01

    The role of the nuclear structure in multi-nucleon transfer and sequential fission reactions has been discussed. The recent results on multi-nucleon transfer and transfer induced fission reaction, have brought out many interesting features in understanding the reaction mechanism and collective dynamics of heavy ion reactions. The structure of the projectile nucleus has strong influence on the transfer of multi-nucleons and/or clusters from the projectile to the target. The mechanism of multi-nucleon transfer between two heavy nuclei is a complex process which has a strong dependence on the ground state Q-value of the reaction as well as on the number of transferred nucleons

  2. Heat transfer in a two-pass internally ribbed turbine blade coolant channel with cylindrical vortex generators

    Energy Technology Data Exchange (ETDEWEB)

    Hibbs, R.; Chen, Y.; Nikitopoulos, D. [Louisiana State Univ., Baton Rouge, LA (United States)] [and others

    1995-10-01

    The effect of vortex generators on the mass (heat) transfer from the ribbed passage of a two pass turbine blade coolant channel is investigated with the intent of optimizing the vortex generator geometry so that significant enhancements in mass/heat transfer can be achieved. In the experimental configuration considered, ribs are mounted on two opposite walls; all four walls along each pass are active and have mass transfer from their surfaces but the ribs are non-participating. Mass transfer measurements, in the form of Sherwood number ratios, are made along the centerline and in selected inter-rib modules. Results are presented for Reynolds number in the range of 5,000 to 40,000, pitch to rib height ratios of 10.5 and 21, and vortex generator-rib spacing to rib height ratios of 0.55, and 1.5. Centerline and spanwise averaged Sherwood number ratios are presented along with contours of the Sherwood number ratios. Results indicate that the vortex generators induce substantial increases in the local mass transfer rates, particularly along the side walls, and modest increases in the average mass transfer rates. The vortex generators have the effect of making the inter-rib profiles along the ribbed walls more uniform. Along the side walls, horse-shoe vortices that characterize the vortex generator wake are associated with significant mass transfer enhancements. The wake effects and the levels of enhancement decrease somewhat with increasing Reynolds number and decreasing pitch.

  3. Near-field heat transfer between graphene/hBN multilayers

    Science.gov (United States)

    Zhao, Bo; Guizal, Brahim; Zhang, Zhuomin M.; Fan, Shanhui; Antezza, Mauro

    2017-06-01

    We study the radiative heat transfer between multilayer structures made by a periodic repetition of a graphene sheet and a hexagonal boron nitride (hBN) slab. Surface plasmons in a monolayer graphene can couple with hyperbolic phonon polaritons in a single hBN film to form hybrid polaritons that can assist photon tunneling. For periodic multilayer graphene/hBN structures, the stacked metallic/dielectric array can give rise to a further effective hyperbolic behavior, in addition to the intrinsic natural hyperbolic behavior of hBN. The effective hyperbolicity can enable more hyperbolic polaritons that enhance the photon tunneling and hence the near-field heat transfer. However, the hybrid polaritons on the surface, i.e., surface plasmon-phonon polaritons, dominate the near-field heat transfer between multilayer structures when the topmost layer is graphene. The effective hyperbolic regions can be well predicted by the effective medium theory (EMT), thought EMT fails to capture the hybrid surface polaritons and results in a heat transfer rate much lower compared to the exact calculation. The chemical potential of the graphene sheets can be tuned through electrical gating and results in an additional modulation of the heat transfer. We found that the near-field heat transfer between multilayer structures does not increase monotonously with the number of layers in the stack, which provides a way to control the heat transfer rate by the number of graphene layers in the multilayer structure. The results may benefit the applications of near-field energy harvesting and radiative cooling based on hybrid polaritons in two-dimensional materials.

  4. The Value of Negotiating Cost-Based Transfer Prices

    Directory of Open Access Journals (Sweden)

    Anne Chwolka

    2010-10-01

    Full Text Available This paper analyzes the potential of one-step transfer prices based on either variable or full costs for coordinating decentralized production and quality-improving investment decisions. Transfer prices based on variable costs fail to induce investments on the upstream stage. In contrast, transfer prices based on full costs provide strong investment incentives for the upstream divisions. However, they fail to coordinate the investment decisions. We show that negotiations prevent such coordination failure. In particular, we find that the firm benefits from a higher degree of decentralization so that total profit increases in the number of parameters being subject to negotiations.

  5. Chronic kidney disease in HIV infec tion: early detec tion and ...

    African Journals Online (AJOL)

    2007-08-16

    Aug 16, 2007 ... Side-effects related to treatment of HIV, including those due to: • antiretroviral therapy .... angiotensin-converting enzyme inhibitors. (ACE-I), dyslipidaemias (if .... 1996; 28: 202-208. 16. Burns GC, Subir PK, Toth IR, Sivak SL.

  6. Japan-USSR Trade, Technology Transfer, Implications for U.S.

    Science.gov (United States)

    1988-06-01

    legal system, the media, and internal oppcz’tion forces) and functional notions149 (including political socialization , political recruitmem, and...relations, the most important is certainly the USSR’s efforts toward direct political socialization within its own system. In the West, political ... socialization may be an indirect process. The system evolves in accordance with enlightenment or shifting focus of public opinion. In the USSR, continuation

  7. Innate or Acquired? – Disentangling Number Sense and Early Number Competencies

    Directory of Open Access Journals (Sweden)

    Julia Siemann

    2018-04-01

    Full Text Available The clinical profile termed developmental dyscalculia (DD is a fundamental disability affecting children already prior to arithmetic schooling, but the formal diagnosis is often only made during school years. The manifold associated deficits depend on age, education, developmental stage, and task requirements. Despite a large body of studies, the underlying mechanisms remain dubious. Conflicting findings have stimulated opposing theories, each presenting enough empirical support to remain a possible alternative. A so far unresolved question concerns the debate whether a putative innate number sense is required for successful arithmetic achievement as opposed to a pure reliance on domain-general cognitive factors. Here, we outline that the controversy arises due to ambiguous conceptualizations of the number sense. It is common practice to use early number competence as a proxy for innate magnitude processing, even though it requires knowledge of the number system. Therefore, such findings reflect the degree to which quantity is successfully transferred into symbols rather than informing about quantity representation per se. To solve this issue, we propose a three-factor account and incorporate it into the partly overlapping suggestions in the literature regarding the etiology of different DD profiles. The proposed view on DD is especially beneficial because it is applicable to more complex theories identifying a conglomerate of deficits as underlying cause of DD.

  8. Innate or Acquired? – Disentangling Number Sense and Early Number Competencies

    Science.gov (United States)

    Siemann, Julia; Petermann, Franz

    2018-01-01

    The clinical profile termed developmental dyscalculia (DD) is a fundamental disability affecting children already prior to arithmetic schooling, but the formal diagnosis is often only made during school years. The manifold associated deficits depend on age, education, developmental stage, and task requirements. Despite a large body of studies, the underlying mechanisms remain dubious. Conflicting findings have stimulated opposing theories, each presenting enough empirical support to remain a possible alternative. A so far unresolved question concerns the debate whether a putative innate number sense is required for successful arithmetic achievement as opposed to a pure reliance on domain-general cognitive factors. Here, we outline that the controversy arises due to ambiguous conceptualizations of the number sense. It is common practice to use early number competence as a proxy for innate magnitude processing, even though it requires knowledge of the number system. Therefore, such findings reflect the degree to which quantity is successfully transferred into symbols rather than informing about quantity representation per se. To solve this issue, we propose a three-factor account and incorporate it into the partly overlapping suggestions in the literature regarding the etiology of different DD profiles. The proposed view on DD is especially beneficial because it is applicable to more complex theories identifying a conglomerate of deficits as underlying cause of DD. PMID:29725316

  9. Conjugated heat transfer in laminar flow between parallel-plates channel

    International Nuclear Information System (INIS)

    Guedes, R.O.C.; Cotta, R.M.; Brum, N.C.L.

    1989-01-01

    An analysis is made of conjugated convective-conductive heat transfer in laminar flow of a newtonian fluid between parallel-plates channel, taking into account the longitudinal conduction along the duct walls only, by neglecting the transversal temperature gradients in the solid. This extended Graetz-type problem is then analytically handled through the generalized integral transform technique, providing accurate numerical results for quantities of practical interest sucyh as bulk and wall temperatures, and Nusselt numbers. The effects of a conjugation parameter and Biot number on heat transfer behavior are then investigated. (author)

  10. A stydy on the heat transfer characteristics in the composite heat pipe as modeling turbine rotor

    International Nuclear Information System (INIS)

    Kwon, Sun Sok; Jang, Yeong Suc; Yoo, Byung Wook

    1993-01-01

    The purpose of this research is to study the characteristics of heat transfer in composite rotary heat pipe as modeled turbine rotating by a finite element analysis and experiment. Nu number, Re number, Pr number and dimensionless condensate layer thickness by thermal input and revolutions per minute were given as analysis factors. The comparison between calculated and experimental data showed similar tendency. Therefore the analysis method may be useful to predict the performance of composite heat pipe. The resistance on heat pipe showed the best effect of heat transfer by film condensation, by decreasing film condensation, the heat transfer rate from condenser was increased rapidly. The dimensionless condensate layer thickness according to Re number at given Pr number showed constant values, the dimensionless condensate layer thickness is proportionate to the square root of inverse of revolution number per minute. In this study Nu = A(δ(ω/ν) -1/2 Re B ) is used to the convection heat transfer coefficient and A = 0.963, B = 0.5025 were obtained as analysis predicts. (Author)

  11. Falkner-Skan Flow of a Maxwell Fluid with Heat Transfer and Magnetic Field

    Directory of Open Access Journals (Sweden)

    M. Qasim

    2013-01-01

    Full Text Available This investigation deals with the Falkner-Skan flow of a Maxwell fluid in the presence of nonuniform applied magnetic fi…eld with heat transfer. Governing problems of flow and heat transfer are solved analytically by employing the homotopy analysis method (HAM. Effects of the involved parameters, namely, the Deborah number, Hartman number, and the Prandtl number, are examined carefully. A comparative study is made with the known numerical solution in a limiting sense and an excellent agreement is noted.

  12. The effect of magnetic field on instabilities of heat transfer from an obstacle in a channel

    International Nuclear Information System (INIS)

    Rashidi, S.; Esfahani, J.A.

    2015-01-01

    This paper presents forced convective heat transfer in a channel with a built-in square obstacle. The governing equations with the boundary conditions are solved using a finite volume method. The computations were done for a fixed blockage ratio (S=1/8) at Pr=0.71, and Reynolds (Re) and Stuart (N) numbers ranging from 1 to 250 and 0 to 10, respectively. The results are presented to show the effect of the channel walls and streamwise magnetic field at different Reynolds numbers on forced convection heat transfer from a square cylinder. A correlation is obtained for Nusselt number, in which the effect of a magnetic field is taken into account. The obtained results revealed that the existence of channel walls decreases the effects of magnetic field on Nusselt number. It also showed that by increasing Stuart number the thickness of thermal boundary layer increases and the convective heat transfer decreases. - Highlights: • The magnetic field is used to control the instabilities of heat transfer. • The thickness of thermal boundary layer increases by increasing Stuart number. • Unsteadiness in temperature field increases with increase in Reynolds number. • Time-averaged Nusselt number decreases with increase in Stuart number. • The Lorentz forces are much denser near the surface of the obstacle

  13. Air & Space Journal. Volume 28, Number 4. July-August 2014

    Science.gov (United States)

    2014-08-01

    College, Washington DC. He served as an air battle manager for Opera- tions Desert Fox , Enduring Freedom, Iraqi Freedom, and New Dawn. After completing US...platform during a rigorous three-day hunt . The E-8C arrived on orbit shortly after dark to stalk July–August 2014 Air & Space Power Journal | 98 Dalman...carried out 75 percent of strike sorties and 100 percent of sea-based enforce- ment of the arms embargo.11 France and Britain successfully ran the

  14. High Frontier: The Journal for Space and Missile Professionals. Volume 7, Number 3, May 2011

    Science.gov (United States)

    2011-05-01

    actions before time necessitates the activity. This is especially true in cyber defense. If the warning can go out fast enough, it might be possible...flood of biblical propor- tions, which threatens to inundate even the most skillful cyber-sav- vy readers. Anyone attempting to become intimately

  15. Transfer of patients--from the spoke to the hub.

    LENUS (Irish Health Repository)

    Deasy, C

    2012-02-03

    We describe the nature, frequency, and characteristics of transfers to a regional centre. This was a three month prospective descriptive study of all transfers into the hospital through the ED and a further sample survey of 100 patients received into the resuscitation room over a 2 year period. 105 patient transfers were surveyed over the three month period. A significant number (43 patients) arrived at the ED without prior notification being received by ED staff, a proportion (7 patients) warranting resuscitation room assessment. The rate of Doctor Transfer was 22%. Of the 23 patients that warranted assessment in the resuscitation room 10 were unaccompanied by a Doctor and 5 were unaccompanied by either a Doctor or a Nurse. 11% of transfers had no transfer letter or radiographs. Only 51% of transferred patients had an IV line in situ. 4 out of the 8 transfers into the resuscitation room performed by interns were associated with adverse events. There continues to be problems with the quality of care that these patients receive. Clinicians must be actively involved in the development of regional transfer protocols and interfacility agreements to ensure the safe transfer of patients to definitive care.

  16. Statistical identification of the confidence limits of open loop transfer functions obtained by MAR analysis

    International Nuclear Information System (INIS)

    Antonopoulos-Domis, M.; Mourtzanos, K.

    1996-01-01

    Estimators of the confidence limits of open loop transfer functions via Multivariate Auto-Regressive (MAR) modelling are not available in the literature. The statistics of open loop transfer functions obtained by MAR modelling are investigated via numerical experiments. A system of known open loop transfer functions is simulated digitally and excited by random number series. The digital signals of the simulated system are then MAR modelled and the open loop transfer functions are estimated. Performing a large number of realizations, mean values and variances of the open loop transfer functions are estimated. It is found that if the record length N of each realization is long enough then the estimates of open loop transfer functions follow normal distribution. The variance of the open loop transfer functions is proportional to 1/N. For MAR processes the asymptotic covariance matrix of the estimate of open loop transfer functions was found in agreement with theoretical prediction. (author)

  17. Building technology transfer within research universities an entrepreneurial approach

    CERN Document Server

    O'Shea, Rory P

    2014-01-01

    For the past number of years, academic entrepreneurship has become one of the most widely studied topics in the entrepreneurship literature. Yet, despite all the research that has been conducted to date, there has not been a systematic attempt to analyze critically the factors which lie behind successful business spin-offs from university research. In this book, a group of academic thought-leaders in the field of technology transfer examine a number of areas critical to the promotion of start-ups on campus. Through a series of case studies, they examine current policies, structures, program initiatives and practices of fourteen international universities to develop a theory of successful academic entrepreneurship, with the aim of helping other universities to enhance the quality of their university transfer programs. This book is a valuable resource for researchers and graduate students working on innovation, entrepreneurship and technology transfer, as well as senior managers and policymakers.

  18. Liquid metal heat transfer in heat exchangers under low flow rate conditions

    International Nuclear Information System (INIS)

    Mochizuki, Hiroyasu

    2015-01-01

    The present paper describes the liquid metal heat transfer in heat exchangers under low flow rate conditions. Measured data from some experiments indicate that heat transfer coefficients of liquid metals at very low Péclet number are much lower than what are predicted by the well-known empirical relations. The cause of this phenomenon was not fully understood for many years. In the present study, one countercurrent-type heat exchanger is analyzed using three, separated countercurrent heat exchanger models: one is a heat exchanger model in the tube bank region, while the upper and lower plena are modeled as two heat exchangers with a single heat transfer tube. In all three heat exchangers, the same empirical correlation is used in the heat transfer calculation on the tube and the shell sides. The Nusselt number, as a function of the Péclet number, calculated from measured temperature and flow rate data in a 50 MW experimental facility was correctly reproduced by the calculation result, when the calculated result is processed in the same way as the experiment. Finally, it is clarified that the deviation is a superficial phenomenon which is caused by the heat transfer in the plena of the heat exchanger. (author)

  19. Cross-domain transfer of quantitative discriminations: is it all a matter of proportion?

    Science.gov (United States)

    Balci, Fuat; Gallistel, Charles R

    2006-08-01

    Meck and Church (1983) estimated a 5:1 scale factor relating the mental magnitudes representing number to the mental magnitudes representing duration. We repeated their experiment with human subjects. We obtained transfer regardless of the objective scaling between the ranges; a 5:1 scaling for number versus duration (measured in seconds) was not necessary. We obtained transfer even when the proportions between the endpoints of the number range were different. We conclude that, at least in human subjects, transfer from a discrimination based on continuous quantity (duration) to a discrimination based on discrete quantity (number) is mediated by the cross-domain comparability of within-domain proportions. The results of our second and third experiments also suggest that the subjects compare a probe with a criterion determined by the range of stimuli tested rather than by trial-specific referents, in accordance with the pseudologistic model of Killeen, Fetterman, and Bizo (1997).

  20. Charge-transfer spectra of tetravalent lanthanide ions in oxides

    NARCIS (Netherlands)

    Hoefdraad, H.E.

    The charge-transfer spectra of Ce4+, Pr4+ and Tb4+ in a number of oxides are reported. It is noted that the position of the first charge-transfer band is fixed for the metal ion in an oxygen coordination of VI, but varies in VIII coordination as a function of the host lattice. It is argued that this

  1. Baryon asymmetry, dark matter and local baryon number

    International Nuclear Information System (INIS)

    Fileviez Pérez, Pavel; Patel, Hiren H.

    2014-01-01

    We propose a new mechanism to understand the relation between baryon and dark matter asymmetries in the universe in theories where the baryon number is a local symmetry. In these scenarios the B−L asymmetry generated through a mechanism such as leptogenesis is transferred to the dark matter and baryonic sectors through sphalerons processes which conserve total baryon number. We show that it is possible to have a consistent relation between the dark matter relic density and the baryon asymmetry in the universe even if the baryon number is broken at the low scale through the Higgs mechanism. We also discuss the case where one uses the Stueckelberg mechanism to understand the conservation of baryon number in nature.

  2. Voltammetry for the charge transfer at two immiscible electrolyte solutions interface

    International Nuclear Information System (INIS)

    Kihara, S.; Suzuki, M.; Maeda, K.; Ogura, K.; Matsui, M.; Yoshida, Z.

    1989-01-01

    The voltammetry for the charge transfer (VCT) at the interface of immicible solutions is a very powerful method for understanding the dynamic features of the charge transfer because of its unmatched advantage that the transfer energy and the number of charges transferred can be measured simultaneously and in situ. In the present paper, several novel systems for electron transfer are outlined, and the following topics are discussed based on results obtained by the current scan polarography at the solution dropping electrode developed as a technique for VCT: the relation between the half-wave potential in VCT for ion transfer and the characteristics of the ion transferred; the relation between the half-wave potential in VCT for electron transfer and the electrochemical nature of a redox couple added in water and that added in organic solution; and the ion transfer through a liquid membrane promoted by electron transfer. Observations are presented and discussion is made on the characteristics of ion transfer polarograms, those of electron transfer polarograms, and ion transfer promoted by electron transfer at a liquid/membrane interface. (N.K.)

  3. Dimensionless numbers in additive manufacturing

    Science.gov (United States)

    Mukherjee, T.; Manvatkar, V.; De, A.; DebRoy, T.

    2017-02-01

    The effects of many process variables and alloy properties on the structure and properties of additively manufactured parts are examined using four dimensionless numbers. The structure and properties of components made from 316 Stainless steel, Ti-6Al-4V, and Inconel 718 powders for various dimensionless heat inputs, Peclet numbers, Marangoni numbers, and Fourier numbers are studied. Temperature fields, cooling rates, solidification parameters, lack of fusion defects, and thermal strains are examined using a well-tested three-dimensional transient heat transfer and fluid flow model. The results show that lack of fusion defects in the fabricated parts can be minimized by strengthening interlayer bonding using high values of dimensionless heat input. The formation of harmful intermetallics such as laves phases in Inconel 718 can be suppressed using low heat input that results in a small molten pool, a steep temperature gradient, and a fast cooling rate. Improved interlayer bonding can be achieved at high Marangoni numbers, which results in vigorous circulation of liquid metal, larger pool dimensions, and greater depth of penetration. A high Fourier number ensures rapid cooling, low thermal distortion, and a high ratio of temperature gradient to the solidification growth rate with a greater tendency of plane front solidification.

  4. Gas mass transfer for stratified flows

    International Nuclear Information System (INIS)

    Duffey, R.B.; Hughes, E.D.

    1995-01-01

    We analyzed gas absorption and release in water bodies using existing surface renewal theory. We show a new relation between turbulent momentum and mass transfer from gas to water, including the effects of waves and wave roughness, by evaluating the equilibrium integral turbulent dissipation due to energy transfer to the water from the wind. Using Kolmogoroff turbulence arguments the gas transfer velocity, or mass transfer coefficient, is then naturally and straightforwardly obtained as a non-linear function of the wind speed drag coefficient and the square root of the molecular diffusion coefficient. In dimensionless form, the theory predicts the turbulent Sherwood number to be Sh t = (2/√π)Sc 1/2 , where Sh t is based on an integral dissipation length scale in the air. The theory confirms the observed nonlinear variation of the mass transfer coefficient as a function of the wind speed; gives the correct transition with turbulence-centered models for smooth surfaces at low speeds; and predicts experimental data from both laboratory and environmental measurements within the data scatter. The differences between the available laboratory and field data measurements are due to the large differences in the drag coefficient between wind tunnels and oceans. The results also imply that the effect of direct aeration due to bubble entrainment at wave breaking is no more than a 20% increase in the mass transfer for the highest speeds. The theory has importance to mass transfer in both the geo-physical and chemical engineering literature

  5. Hydrophobic nano-carrier for lysozyme adsorption

    Indian Academy of Sciences (India)

    1 polymer in pH 7.0 phosphate buffer at ... lysozyme concentration, temperature and ionic strength are varied and .... tions at initial and final adsorption medium were measured ... ties such as very high specific surface area, low mass transfer.

  6. Defense Acquisition Research Journal. Volume 24, Number 1, Issue 80, January 2017

    Science.gov (United States)

    2017-01-01

    different nations and the policy impacts on acquisi- tion outcomes. • Compare the cost and contract performance of highly regulated public utilities... impact of small businesses. Retrieved from http:// www.businessnewsdaily.com/2527-big- impact -small-businesses.html Mills, S. (2010, March–April). “We...National FieldCurrentMetrics Current Metrics Current Metrics Current Metrics Deliver Sched Deliver Sched Deliver Sched Delinquent Contracts Current

  7. Essentials of radiation heat transfer

    CERN Document Server

    Balaji

    2014-01-01

    Essentials of Radiation Heat Transfer is a textbook presenting the essential, fundamental information required to gain an understanding of radiation heat transfer and equips the reader with enough knowledge to be able to tackle more challenging problems. All concepts are reinforced by carefully chosen and fully worked examples, and exercise problems are provided at the end of every chapter. In a significant departure from other books on this subject, this book completely dispenses with the network method to solve problems of radiation heat transfer in surfaces. It instead presents the powerful radiosity-irradiation method and shows how this technique can be used to solve problems of radiation in enclosures made of one to any number of surfaces. The network method is not easily scalable. Secondly, the book introduces atmospheric radiation, which is now being considered as a potentially important area, in which engineers can contribute to the technology of remote sensing and atmospheric sciences in general, b...

  8. Axial slit wall effect on the flow instability and heat transfer in rotating concentric cylinders

    Energy Technology Data Exchange (ETDEWEB)

    Liu, Dong; Chao, Chang Qing; Wang, Ying Ze; Zhu, Fang Neng [School of Energy and Power Engineering, Jiangsu University, Zhenjiang (China); Kim, Hyoung Bum [School of Mechanical and Aerospace Engineering, Gyeongsang National University, Jinju (Korea, Republic of)

    2016-12-15

    The slit wall effect on the flow instability and heat transfer characteristics in Taylor-Couette flow was numerically studied by changing the rotating Reynolds number and applying the negative temperature gradient. The concentric cylinders with slit wall are seen in many rotating machineries. Six different models with the slit number 0, 6, 9, 12, 15 and 18 were investigated in this study. The results show the axial slit wall enhances the Taylor vortex flow and suppresses the azimuthal variation of wavy Taylor vortex flow. When negative temperature gradient exists, the results show that the heat transfer augmentation appears from laminar Taylor vortex to turbulent Taylor flow regime. The heat transfer enhancement become stronger as increasing the Reynolds number and slit number. The larger slit number model also accelerates the flow transition regardless of the negative temperature gradient or isothermal condition.

  9. Axial slit wall effect on the flow instability and heat transfer in rotating concentric cylinders

    International Nuclear Information System (INIS)

    Liu, Dong; Chao, Chang Qing; Wang, Ying Ze; Zhu, Fang Neng; Kim, Hyoung Bum

    2016-01-01

    The slit wall effect on the flow instability and heat transfer characteristics in Taylor-Couette flow was numerically studied by changing the rotating Reynolds number and applying the negative temperature gradient. The concentric cylinders with slit wall are seen in many rotating machineries. Six different models with the slit number 0, 6, 9, 12, 15 and 18 were investigated in this study. The results show the axial slit wall enhances the Taylor vortex flow and suppresses the azimuthal variation of wavy Taylor vortex flow. When negative temperature gradient exists, the results show that the heat transfer augmentation appears from laminar Taylor vortex to turbulent Taylor flow regime. The heat transfer enhancement become stronger as increasing the Reynolds number and slit number. The larger slit number model also accelerates the flow transition regardless of the negative temperature gradient or isothermal condition

  10. Review of some experimental studies of turbulent mixed convection covering a wide range Prandtl number

    International Nuclear Information System (INIS)

    Jackson, J.D.

    2011-01-01

    The early experimental studies of buoyancy-influenced turbulent convective heat transfer to fluids flowing upwards and downwards in long uniformly heated vertical tubes were mainly performed using water at atmospheric pressure as the working fluid. In addition, some experiments using air were reported and even some using mercury. At that time there was also quite a lot of interest in heat transfer to water at supercritical pressure and also carbon dioxide. More recently, experimental results have been obtained using liquid sodium. The Prandtl numbers in the studies referred to above cover a wide range of values, being well in excess of unity under some conditions in the case of the supercritical pressure fluids and atmospheric pressure water, just under unity in the case of air, much less than unity in the case of mercury and even lower in the case of liquid sodium. Over the years a good general understanding has gradually been achieved of the complex manner in which buoyancy affects heat transfer in conventional fluids such as water and air. Up to a point, the behaviour in the case of a liquid metal such as mercury can be reconciled with such arguments. However, this is certainly not so in the case of liquid sodium. In the present paper results from a number of experimental studies of buoyancy-influenced heat transfer in vertical tubes are reviewed. This is done with the aim of providing a picture of observed behaviour consistent with our understanding of the basic mechanisms of convective heat transfer, taking account of the complicated manner in which the mean motion, turbulence and the heat transfer are affected by buoyancy. The starting point is to view convective heat transfer in wall shear flows in terms of the local balance between diffusion of heat (turbulent and molecular) and advection of heat by the flowing fluid. Prandtl number affects the radial temperature profile and therefore the variation of density across the shear flow and, in turn, the extent

  11. Convective heat transfer characteristics in the turbulent region of molten salt in concentric tube

    International Nuclear Information System (INIS)

    Chen, Y.S.; Wang, Y.; Zhang, J.H.; Yuan, X.F.; Tian, J.; Tang, Z.F.; Zhu, H.H.; Fu, Y.; Wang, N.X.

    2016-01-01

    In order to better understand the heat transfer behavior and characteristics of molten salt in heat exchanger, the convective heat transfer characteristics of molten salt in salt-to-oil concentric tube are studied. Overall heat transfer coefficients of the heat exchanger are calculated using Wilson plots. Heat transfer coefficients of tube side molten salt with the range of Reynolds number from 10,000 to 50,000 and the Prandtl number from 11 to 27 are evaluated invoking the calculated overall heat transfer coefficients. The effects of velocity and temperature on the convective heat transfer in the turbulent region of molten salt are studied by comparing with the traditional correlations. The results show that the heat transfer characteristics of molten salt are in line with the empirical heat transfer correlation; however, Dittus–Boelter, Gnielinski, Sieder–Tate and Hausen correlations all give a larger deviation for the experimental data. Finally, based on the experimental data and Sieder–Tate correlation, a modified heat transfer correlation is proposed and good agreement is observed between the experimental data and the modified correlation. The results will also provide an important reference for the design of the heat exchangers in the Thorium-based Molten Salt Reactor.

  12. Soil - plant experimental radionuclide transfer factors

    International Nuclear Information System (INIS)

    Dobrin, R.I.; Dulama, C.N.; Toma, Al.

    2006-01-01

    Some experimental research was performed in our institute to assess site specific soil-plant transfer factors. A full characterization of an experimental site was done both from pedo-chemical and radiological point of view. Afterwards, a certain number of culture plants were grown on this site and the evolution of their radionuclide burden was then recorded. Using some soil amendments one performed a parallel experiment and the radionuclide root uptake was evaluated and recorded. Hence, transfer parameters were calculated and some conclusions were drawn concerning the influence of site specific conditions on the root uptake of radionuclides. (authors)

  13. Evaluation of the effectiveness of training in the Spanish Public Administration: transfer to the job

    Directory of Open Access Journals (Sweden)

    Miguel Aurelio Alonso García

    2017-05-01

    Full Text Available This paper shows the results of the evaluation of training transfer in the Spanish Public Administration with the aim of identifying the factors that influence it.We analyzed 1475 answers and 69 courses organized by the Spanish Public Administration during the first semester of 2016. Direct transfer was evaluated through the Deferred Transfer Scale (CdE; Pineda, Quesada y Ciraso, 2011 while indirect transfer was evaluated through the Training Transfer Factors Scale (FET; Pineda, Quesada y Ciraso, 2013.The results show that trainee factors, organization factors, the orientation towards job requirements and the creation of a professional community all have a positive correlation with training transfer. However the duration of the training, the number of trainees and the number of instructors do not have a correlation with transfer.The time that laps until the trainees finally apply what they learnt in the training has an inverse correlation to transfer.The most important factor when it comes to predicting training transfer is the orientation towards job requirements.

  14. Improvement Method of Gene Transfer in Kappaphycus Alvarezii

    OpenAIRE

    Triana, St. Hidayah; Alimuddin,; Widyastuti, Utut; Suharsono,; Suryati, Emma; Parenrengi, Andi

    2016-01-01

    Method of foreign gene transfer in red seaweed Kappaphycus alvarezii has been reported, however, li-mited number of transgenic F0 (broodstock) was obtained. This study was conducted to improve the method of gene transfer mediated by Agrobacterium tumefaciens in order to obtain high percentage of K. alvarezii transgenic. Superoxide dismutase gene from Melastoma malabatrichum (MmCu/Zn-SOD) was used as model towards increasing adaptability of K. alvarezii to environmental stress. The treat-ment...

  15. Bibliography on augmentation of convective heat and mass transfer

    International Nuclear Information System (INIS)

    Bergles, A.E.; Webb, R.L.; Junkhan, G.H.; Jensen, M.K.

    1979-05-01

    Heat transfer augmentation has developed into a major specialty area in heat transfer research and development. A bibliography of world literature on augmentation is presented. The literature is classified into passive augmentation techniques, which require no external power, and active techniques, which do require external power. The fourteen techniques are grouped in terms of their application to the various modes of heat transfer. Mass transfer is included for completeness. Key words are included with each citation for technique/mode identification. The total number of publications cited is 1,967, including 75 surveys of various techniques and 42 papers on performance evaluation of passive techniques. Patents are not included as they will be the subject of a future topical report

  16. Mass transfer in horizontal flow channels with thermal gradients

    International Nuclear Information System (INIS)

    Bendrich, G.; Shemilt, L.W.

    1997-01-01

    Mass transfer to a wall of a horizontal rectangular channel reactor was investigated by the limiting current technique for Reynolds numbers ranging from 200 to 32000. Overall mass transfer coefficients at various mass transfer surface angles were obtained while the reactor was operated under isothermal and non-isothermal conditions. Dimensionless correlations were developed for isothermal flows from 25 to 55 o C and for non-isothermal flows with applied temperature differences up to 30 o C. In the laminar flow range natural convection dominated, but under turbulent conditions combined natural and forced convection prevailed. Mass transfer was approximately doubled under optimum selection of channel surface rotation, temperature gradient and flow rate. (author)

  17. 3-D numerical study of the effect of Reynolds number and baffle angle on heat transfer and pressure drop of turbulent flow of air through rectangular duct of very small height

    Directory of Open Access Journals (Sweden)

    Abhijit Paul

    2016-09-01

    Full Text Available Present article illustrates a computational study of three-dimensional steady state heat transfer and high turbulent flow characteristics through a rectangular duct with constant heat fluxed upper wall and single rectangular cross-sectioned baffle insertion at different angles. RNG k–ɛ model along with standard wall function based computations has been accomplished applying the finite volume method, and SIMPLE algorithm has been executed for solving the governing equations. For a Reynolds number, Re of 10,000 to 50,000, Prandtl Number, Pr of 0.707 and baffle angle, α of 30°, 60°, 90°, 120°, 150°, computational studies are executed, centred onto the hydraulic diameter, Dh, test section and hydrodynamic entry length of the duct. Flow field has been solved using Ansys Fluent 14.0 software. Study exposes that baffled rectangular duct has a higher average Nusselt number, Nu and Darcy friction factor, f compared to a smooth rectangular duct. Nu as well as f are found to be maximum at 90° baffle angle. Results illustrate that both α and Re play a significant role in heat transfer as well as flow characteristics and also effects TEF. The correctness of the results attained in this study is corroborated by comparing the results with those existing in the literature for smooth rectangular duct within a precision of ±2% for f and ±4% for Nu.

  18. Mass-transfer characterization in a parallel-plate electrochemical reactor with convergent flow

    International Nuclear Information System (INIS)

    Colli, A.N.; Bisang, J.M.

    2013-01-01

    Highlights: • A convergent laminar flow enhances and becomes more uniform the mass-transfer rate. • The mass-transfer rate is increased under convergent turbulent flow conditions. • The mass-transfer rate under convergent laminar flow can be theoretically predicted. • A convergent duct improves the reactor behaviour and the concept is easily applicable. -- Abstract: A continuous reduction in the cross-section area is analysed as a means of improving mass-transfer in a parallel-plate electrochemical reactor. Experimental local mass-transfer coefficients along the electrode length are reported for different values of the convergent ratio and Reynolds numbers, using the reduction of ferricyanide as a test reaction. The Reynolds numbers evaluated at the reactor inlet range from 85 to 4600 with interelectrode gaps of 2 and 4 mm. The convergent flow improves the mean mass-transfer coefficient by 10–60% and mass-transfer distribution under laminar flow conditions becomes more uniform. The experimental data under laminar flow conditions are compared with theoretical calculations obtained by a computational fluid dynamics software and also with an analytical simplified model. A suitable agreement is observed between both theoretical treatments and with the experimental results. The pressure drop across the reactor is reported and compared with theoretical predictions

  19. Heat-transfer correlations for natural convection boiling

    International Nuclear Information System (INIS)

    Stephan, K.; Abdelsalam, M.

    1980-01-01

    To-date there exists no comprehensive theory allowing the prediction of heat-transfer coefficients in natural convection boiling, in spite of the many efforts made in this field. In order to establish correlations with wide application, the methods of regression analysis were applied to the nearly 500 existing experimental data points for natural convection boiling heat transfer. As demonstrated by the analysis, these data can best be represented by subdividing the substances into four groups (water, hydrocarbons, cryogenic fluids and refrigerants) and employing a different set of dimensionless numbers for each group of substances, because certain dimensionless numbers important for one group of substances are unimportant to another. One equation valid for all substances could be built up, but its accuracy would be less than that obtained for the individual correlations without adding undesirable complexity. (author)

  20. Experimental study of interfacial shear stress for an analogy model of evaporative heat transfer

    International Nuclear Information System (INIS)

    Kwon, Hyuk; Park, GoonCherl; Min, ByungJoo

    2008-01-01

    In this study, we conducted measurements of an evaporative interfacial shear stress in a passive containment cooling system (PCCS). An interfacial shear stress for a counter-current flow was measured from a momentum balance equation and the interfacial friction factor for evaporation was evaluated by using experimental data. A model for the evaporative heat transfer coefficient of a vertical evaporative flat surface was developed based on an analogy between heat and momentum transfer. It was found that the interfacial shear stress increases with the Jacob number, which incorporates the evaporation rate, and the air and water Reynolds numbers. The relationship between the evaporative heat transfer and the interfacial shear stress was evaluated by using the experimental results. This relationship was used to develop a model for an evaporative heat transfer coefficient by using an analogy between heat and mass transfer. The prediction of this model were found to be in good agreement with the experimental data obtained for evaporative heat transfer by Kang and Park. (author)

  1. Heat transfer in Rockwool modelling and method of measurement. Modelling radiative heat transfer in fibrous materials

    Energy Technology Data Exchange (ETDEWEB)

    Dyrboel, Susanne

    1998-05-01

    Fibrous materials are some of the most widely used materials for thermal insulation. In this project the focus of interest has been on fibrous materials for building application. Interest in improving the thermal properties of insulation materials is increasing as legislation is being tightened to reduce the overall energy consumption. A knowledge of the individual heat transfer mechanisms - whereby heat is transferred within a particular material is an essential tool to improve continuously the thermal properties of the material. Heat is transferred in fibrous materials by four different transfer mechanisms: conduction through air, conduction through fibres, thermal radiation and convection. In a particular temperature range the conduction through air can be regarded as a constant, and conduction through fibres is an insignificant part of the total heat transfer. Radiation, however, constitutes 25-40% of the total heat transfer in light fibrous materials. In Denmark and a number of other countries convection in fibrous materials is considered as non-existent when calculating heat transmission as well as when designing building structures. Two heat transfer mechanisms have been the focus of the current project: radiation heat transfer and convection. The radiation analysis serves to develop a model that can be used in further work to gain a wider knowledge of the way in which the morphology of the fibrous material, i.e. fibre diameter distribution, fibre orientation distribution etc., influences the radiation heat transfer under different conditions. The convection investigation serves to examine whether considering convection as non-existent is a fair assumption to use in present and future building structures. The assumption applied in practically is that convection makes a notable difference only in very thick insulation, at external temperatures below -20 deg. C, and at very low densities. For lager thickness dimensions the resulting heat transfer through the

  2. Turbulent mixed buoyancy driven flow and heat transfer in lid driven enclosure

    International Nuclear Information System (INIS)

    Mishra, Ajay Kumar; Sharma, Anil Kumar

    2015-01-01

    Turbulent mixed buoyancy driven flow and heat transfer of air in lid driven rectangular enclosure has been investigated for Grashof number in the range of 10 8 to 10 11 and for Richardson number 0.1, 1 and 10. Steady two dimensional Reynolds-Averaged-Navier-Stokes equations and conservation equations of mass and energy, coupled with the Boussinesq approximation, are solved. The spatial derivatives in the equations are discretized using the finite-element method. The SIMPLE algorithm is used to resolve pressure-velocity coupling. Turbulence is modeled with the k-ω closure model with physical boundary conditions along with the Boussinesq approximation, for the flow and heat transfer. The predicted results are validated against benchmark solutions reported in literature. The results include stream lines and temperature fields are presented to understand flow and heat transfer characteristics. There is a marked reduction in mean Nusselt number (about 58%) as the Richardson number increases from 0.1 to 10 for the case of Ra=10 10 signifying the effect of reduction of top lid velocity resulting in reduction of turbulent mixing. (author)

  3. Numerical investigation of laminar forced convection heat transfer in rectangular channels with different block geometries using nano-fluids

    Directory of Open Access Journals (Sweden)

    Foroutani Saeed

    2017-01-01

    Full Text Available This research investigates the laminar steady-forced convection heat transfer of a Cu-water nanofluid in a 2-D horizontal channel with different block geometries attached to the bottom wall. The block geometries assumed in this research are triangular and curve blocks. The governing equations associated with the required boundary conditions are solved using finite volume method based on the SIMPLE technique and the effects of Reynolds number, nanofluid volume fraction, block geometry, and the numbers of blocks on the local and average Nusselt numbers are explored. The obtained results show that nanoparticles can effectively enhance the heat transfer in a channel. Furthermore, the local and average Nusselt number distribution is strongly dependent on the block geometry. As observed, the heat transfer augments with the increase in the Reynolds number and nanofluid volume fraction for both block geometries. It is also concluded that the average Nusselt number of the curve block is higher than that of the triangular block for different Reynolds numbers which declares the importance of the block geometry in the heat transfer enhancement.

  4. Interfacial condensation heat transfer for countercurrent steam-water wavy flow in a horizontal circular pipe

    Energy Technology Data Exchange (ETDEWEB)

    Lee, Kyung Won; Chun, Moon Hyun [Korea Advanced Institute of Science and Technolgy, Taejon (Korea, Republic of); Chu, In Cheol [KAERI, Taejon (Korea, Republic of)

    2000-10-01

    An experimental study of interfacial condensation heat transfer has been performed for countercurrent steam-water wavy flow in a horizontal circular pipe. A total of 105 local interfacial condensation heat transfer coefficients have been obtained for various combinations of test parameters. Two empirical Nusselt number correlations were developed and parametric effects of steam and water flow rates and the degree of water subcooling on the condensation heat transfer were examined. For the wavy interface condition, the local Nusselt number is more strongly sensitive to the steam Reynolds number than water Reynolds number as opposed to the case of smooth interface condition. Comparisons of the present circular pipe data with existing correlations showed that existing correlations developed for rectangular channels are not directly applicable to a horizontal circular pipe flow.

  5. Patterns of prokaryotic lateral gene transfers affecting parasitic microbial eukaryotes

    DEFF Research Database (Denmark)

    Alsmark, Cecilia; Foster, Peter G; Sicheritz-Pontén, Thomas

    2013-01-01

    BACKGROUND: The influence of lateral gene transfer on gene origins and biology in eukaryotes is poorly understood compared with those of prokaryotes. A number of independent investigations focusing on specific genes, individual genomes, or specific functional categories from various eukaryotes have...... approach to systematically investigate lateral gene transfer affecting the proteomes of thirteen, mainly parasitic, microbial eukaryotes, representing four of the six eukaryotic super-groups. All of the genomes investigated have been significantly affected by prokaryote-to-eukaryote lateral gene transfers...... indicated that lateral gene transfer does indeed affect eukaryotic genomes. However, the lack of common methodology and criteria in these studies makes it difficult to assess the general importance and influence of lateral gene transfer on eukaryotic genome evolution. RESULTS: We used a phylogenomic...

  6. Transfer of radionuclides to animal products following ingestion or inhalation

    International Nuclear Information System (INIS)

    Coughtrey, P.J.

    1996-01-01

    Contamination of animal products forms an important pathway in the transfer of radionuclides from source to man. Simulation of radionuclide transfer via animal products requires an understanding of the processes and mechanisms involved in absorption, distribution, turnover and excretion of radionuclides and related elements in animals as well as knowledge of animal grazing habits and husbandry. This paper provides a summary of the metabolism of important radionuclides in typical domestic animals and of the mathematical approaches that have been used to simulate transfer from diet to animal product. The equilibrium transfer factor approach has been used widely but suffers a number of disadvantages when releases or intakes are variable with time or when intakes are short relative to the lifetime of the animal of interest. Dynamic models, especially those of the compartmental type, have been developed and used widely. Both approaches have benefited from experiences obtained after the Chernobyl accident but a number of uncertainties still exist. Whereas there is now extensive knowledge on the behaviour of radiocaesium in both domestic and wild animals, knowledge of the behaviour of other potentially important radionuclides remains limited. Further experimental and metabolic studies will be required to reduce uncertainties associated with the transfer of radionuclides other than radiocaesium and thereby produce a sound basis for radiological assessments. (author)

  7. Investigation on the applicability of turbulent-Prandtl-number models for liquid lead-bismuth eutectic

    Energy Technology Data Exchange (ETDEWEB)

    Chen, Fei, E-mail: chenfei@iet.cn [Institute of Engineering Thermophysics, Chinese Academy of Sciences, Beijing 100190 (China); North China University of Water Resources and Electric Power, Zhengzhou, Henan 450011 (China); Huai, Xiulan, E-mail: hxl@iet.cn [Institute of Engineering Thermophysics, Chinese Academy of Sciences, Beijing 100190 (China); Cai, Jun, E-mail: caijun@iet.cn [Institute of Engineering Thermophysics, Chinese Academy of Sciences, Beijing 100190 (China); Li, Xunfeng, E-mail: lixunfeng@iet.cn [Institute of Engineering Thermophysics, Chinese Academy of Sciences, Beijing 100190 (China); Meng, Ruixue, E-mail: mengruixue@iet.cn [Institute of Engineering Thermophysics, Chinese Academy of Sciences, Beijing 100190 (China)

    2013-04-15

    Highlights: ► We examine the applicability of various Pr{sub t} models into the simulation of LBE flow. ► Reynolds analogy suitable for conventional fluids cannot accurately simulate the heat transfer characteristics of LBE flow. ► The different Pr{sub t} model should be selected for the different thermal boundary condition of LBE flow. -- Abstract: With the proposal of Accelerator Driven Sub-critical System (ADS) together with liquid lead-bismuth eutectic (LBE) as coolant for both reactor and spallation target, the use of accurate heat transfer correlation and reliable turbulent-Prandtl-number model of LBE in turbulent flows is essential when designing ADS components of primary loop and heat exchanger of secondary loop. Unlike conventional fluids, there is not an acknowledged turbulent-Prandtl-number model for LBE flows. This paper reviews and assesses the existing turbulent-Pandtl-number models and various heat transfer correlations in circular tubes. Computational fluid dynamics (CFD) analysis is employed to evaluate the applicability of various turbulent-Prandtl-number models for LBE in the circular tube under boundary conditions of constant heat flux and constant wall temperature. Based on the assessment of turbulent-Prandtl-number models, the reliable turbulent-Prandtl-number models are recommended for CFD applications to LBE flows under boundary conditions of constant heat flux and constant wall temperature. The present study indicates that turbulent Prandtl number has a significant difference in turbulent LBE flow between constant-heat-flux and constant-wall-temperature boundary conditions.

  8. Enhancing heat transfer in microchannel heat sinks using converging flow passages

    International Nuclear Information System (INIS)

    Dehghan, Maziar; Daneshipour, Mahdi; Valipour, Mohammad Sadegh; Rafee, Roohollah; Saedodin, Seyfolah

    2015-01-01

    Highlights: • The fluid flow and conjugate heat transfer in microchannel heat sinks are studied. • The Poiseuille and Nusselt numbers are presented for width-tapered MCHS. • Converging walls are found to enhance the thermal performance of MCHS. • The optimum performance of MCHS for fixed inlet and outlet pressures is discussed. • For the optimum configuration, the pumping power is reduced up to 75%. - Abstract: Constrained fluid flow and conjugate heat transfer in microchannel heat sinks (MCHS) with converging channels are investigated using the finite volume method (FVM) in the laminar regime. The maximum pressure of the MCHS loop is assumed to be limited due to constructional or operational conditions. Results show that the Poiseuille number increases with increased tapering, while the required pumping power decreases. Meanwhile, the Nusselt number increases with tapering as well as the convection heat transfer coefficient. The MCHS having the optimum heat transfer performance is found to have a width-tapered ratio equal to 0.5. For this tapering configuration and at the maximum pressure constraint of 3000 Pa, the pumping power reduces by a factor of 4 while the overall heat removal rate is kept fixed in comparison with a straight channel

  9. Program Manager: Journal of the Defense Systems Management College, Volume 22, Number 5, September-October 1993

    Science.gov (United States)

    1993-10-01

    Edwards Deming, Joseph M. Juran, Process Kaoru Ishikawa and Philip B. Crosby Activities stress the importance of work-force employee involvement to...contracts. The Ishikawa - An atmosphere of mutual work-force employee involvement ac- DOD executives have lectured at con- trust and respect is neces- tions

  10. Reynolds number and friction coefficient for axial-parallel flow through complex cross-sections

    International Nuclear Information System (INIS)

    Markfort, D.

    1975-01-01

    Thermal and hydraulic lay-out of reactor fuel elements and other heat transfer equipment makes use of established functional relationship between dimensionless characters, the former being transferred from circular tube to more complex geometries. The stringent requirement (from theory) for 'geometrical similarity' is bypassed by defining 'equivalent diameters'. But dimensionless numbers may be derived from 'flow-integral-conditions' while the geometrical components contained therein reduce if not completely abolish the requirement for geometrical similarity. The derivation is demonstrated by using the Reynolds number. A friction coefficient valid for any kind of flow regime can be defined using integral-conditions. Correlations of friction coefficient and Reynolds number using universal-velocity profiles confirm the analysis when compared to well known experimental data. (orig.) [de

  11. What happens to patients on antiretroviral therapy who transfer out to another facility?

    Directory of Open Access Journals (Sweden)

    Joseph Kwong-Leung Yu

    Full Text Available BACKGROUND: Long term retention of patients on antiretroviral therapy (ART in Africa's rapidly expanding programmes is said to be 60% at 2 years. Many reports from African ART programmes make little mention of patients who are transferred out to another facility, yet Malawi's national figures show a transfer out of 9%. There is no published information about what happens to patients who transfer-out, but this is important because if they transfer-in and stay alive in these other facilities then national retention figures will be better than previously reported. METHODOLOGY/PRINCIPAL FINDINGS: Of all patients started on ART over a three year period in Mzuzu Central Hospital, North Region, Malawi, those who transferred out were identified from the ART register and master cards. Clinic staff attempted to trace these patients to determine whether they had transferred in to a new ART facility and their outcome status. There were 805 patients (19% of the total cohort who transferred out, of whom 737 (92% were traced as having transferred in to a new ART facility, with a median time of 1.3 months between transferring-out and transferring-in. Survival probability was superior and deaths were lower in the transfer-out patients compared with those who did not transfer. CONCLUSION/SIGNIFICANCE: In Mzuzu Central Hospital, patients who transfer-out constitute a large proportion of patients not retained on ART at their original clinic of registration. Good documentation of transfer-outs and transfer-ins are needed to keep track of national outcomes. Furthermore, the current practice of regarding transfer-outs as being double counted in national cohorts and subtracting this number from the total national registrations to get the number of new patients started on ART is correct.

  12. Heat transfer phenomena revelant to severe accidents

    International Nuclear Information System (INIS)

    Dallman, R.J.; Duffey, R.B.

    1990-01-01

    A number of aspects of severe accidents have been reviewed, particularly in relation to the heat transfer characteristics and the important phenomena. It is shown that natural circulation, forced convection, and entrainment phenomena are important for both the reactor system and ex-vessel events. It is also shown that the phenomena related to two component enhanced heat transfer is important in the pool of molten core debris, in relation to the potential for attack of the liner structure and the concrete. These mechanisms are discussed within the general context of severe accident progression

  13. Heat transfer phenomena relevant to severe accidents

    International Nuclear Information System (INIS)

    Dallman, R.J.; Duffey, R.B.

    1990-01-01

    A number of aspects of severe accidents have been reviewed, particularly in relation to the heat transfer characteristics and the important phenomena. It is shown that natural circulation, forced convection, and entrainment phenomena are important for both the reactor system and ex-vessel events. It is also shown that the phenomena related to two component enhanced heat transfer is important in the pool of molten core debris, in relation to the potential for attack of the liner structure and the concrete. These mechanisms are discussed within the general context of severe accident progression. 26 refs

  14. Gas transfer in a bubbly wake flow

    Science.gov (United States)

    Karn, A.; Gulliver, J. S.; Monson, G. M.; Ellis, C.; Arndt, R. E. A.; Hong, J.

    2016-05-01

    The present work reports simultaneous bubble size and gas transfer measurements in a bubbly wake flow of a hydrofoil, designed to be similar to a hydroturbine blade. Bubble size was measured by a shadow imaging technique and found to have a Sauter mean diameter of 0.9 mm for a reference case. A lower gas flow rate, greater liquid velocities, and a larger angle of attack all resulted in an increased number of small size bubbles and a reduced weighted mean bubble size. Bubble-water gas transfer is measured by the disturbed equilibrium technique. The gas transfer model of Azbel (1981) is utilized to characterize the liquid film coefficient for gas transfer, with one scaling coefficient to reflect the fact that characteristic turbulent velocity is replaced by cross-sectional mean velocity. The coefficient was found to stay constant at a particular hydrofoil configuration while it varied within a narrow range of 0.52-0.60 for different gas/water flow conditions.

  15. Journal of Rehabilitation Research and Development. Volume 27 Number 3, Summer 1990

    Science.gov (United States)

    1990-01-01

    spatial neglect. and use of micro - and concludes with Solution Implementation and Verifica- computers in therapy. The inevitable unevenness in qual- tion...Neurophysiol 30(1):41-45. 1990. 24. Voluntary Control of Submaximal Grip Strength. Contact: Martin J. Segura. MD. Servicio de Neurologia. Niebuhr BR. Marion R...September 10-L, 1990 Trieste. Italy MICRO SYSTEMS 1990, Berlin, Germany Contact: ICTP, Conference on Application of Physics in Contact: MESAGO. Messe

  16. USSR and Eastern Europe Scientific Abstracts, Biomedical and Behavioral Sciences, Number 92

    Science.gov (United States)

    1978-07-26

    radiation sources Sr90-Y90 (E = 0.55 Meq) and Pml47 (E = 0.06 Meq). Experimental objects were chlorella (C. vulgaris Beijer, strain LARG-1), beans...Vicia faba L., Russian Black sort), wheat (Triticum aestivum, Scala sort) and developing roe (Misquarnus fossilus L.). Synchronized chlorella cells...and meioses were recorded. The yield of point muta- tions in chlorella and of chromosomal aberrations in beans and wheat is ex- perimentally

  17. ONR Far East Scientific Bulletin. Volume 13, Number 2, April - June 1988

    Science.gov (United States)

    1988-06-01

    National Cancer Institute in Bethesda, MD. tions, and in 1985 he wac appointed scien- From 1965-68 he was a clinical associate in tific advisor to...o! 16 !rAd :i* OTOi ion Robo tics Research F~io*,(Cl!Ioloyx’, a ’urn- U t1 l;o! * Joulrnal of iliU l* : a %c I B iochtil utstv T IT,! 1 0i 1 1- 11 of

  18. Numerical study of the conjugate heat transfer in a horizontal pipe heated by Joulean effect

    Directory of Open Access Journals (Sweden)

    Touahri Sofiane

    2012-01-01

    Full Text Available The three dimensional mixed convection heat transfer in a electrically heated horizontal pipe conjugated to a thermal conduction through the entire solid thickness is investigated by taking into account the thermal dependence of the physical properties of the fluid and the outer heat losses. The model equations of continuity, momentum and energy are numerically solved by the finite volume method. The pipe thickness, the Prandtl and the Reynolds numbers are fixed while the Grashof number is varied from 104to107. The results obtained show that the dynamic and thermal fields for mixed convection are qualitatively and quantitatively different from those of forced convection, and the local Nusselt number at the interface solid-fluid is not uniform: it has considerable axial and azimuthally variations. The effect of physical variables of the fluid depending on temperature is significant, which justifies its inclusion. The heat transfer is quantified by the local and average Nusselt numbers. We found that the average Nusselt number of solid-fluid interface of the duct increases with the increase of Grashof number. We have equally found out that the heat transfer is improved thanks to the consideration of the thermo dependence of the physical properties. We have tried modelling the average Nusselt number as a function of Richardson number. With the parameters used, the heat transfer is quantified by the correlation: NuA=12.0753 Ri0.156

  19. Lattice Boltzmann simulation of the convective heat transfer from a stream-wise oscillating circular cylinder

    International Nuclear Information System (INIS)

    Bao Sheng; Chen Sheng; Liu Zhaohui; Zheng Chuguang

    2012-01-01

    Highlights: ► Heat transfer is enhanced by small and slow stream-wise oscillation. ► The average Nu decreases with increasing oscillation frequency. ► The RMS Nu increases with increasing frequency. ► The mean and RMS Nu reach a local maximum value in locked regime. ► Similar frequency effect is found for different Reynolds numbers. - Abstract: In this paper, we studied the convective heat transfer from a stream-wise oscillating circular cylinder. Two dimensional numerical simulations are conducted at Re = 100–200, A = 0.1–0.4 and F = f o /f s = 0.2–3.0 with the aid of the lattice Boltzmann method. In particular, detailed attentions are paid on the extensive numerical results elucidating the influence of oscillation frequency, oscillation amplitude and Reynolds number on the time-average and RMS value of the Nusselt number. Over the ranges of conditions considered herein, the heat transfer characteristics are observed to be influenced in an intricate manner by the value of the oscillation frequency (F), oscillation amplitude (A) and Reynolds number (Re). Firstly, the heat transfer is enhanced when the cylinder oscillates stream-wise with small amplitude and low frequency, while it will be reduced by large amplitude and high frequency. Secondly, the average Nusselt number (Nu (ave)) decreases against the increasing value of oscillation frequency, while the RMS value of the Nusselt number, Nu (RMS), displays an opposite trend. Third, we obtained a similar frequency effect on the heat transfer over the range of Reynolds numbers investigated in this paper. In addition, detailed analyses on phase portraits, energy spectrum are also made.

  20. Numerical study of the heat transfer in wound woven wire matrix of a Stirling regenerator

    International Nuclear Information System (INIS)

    Costa, S.C.; Barrutia, Harritz; Esnaola, Jon Ander; Tutar, Mustafa

    2014-01-01

    Highlights: • A correlation equation to characterize regenerator heat transfer is proposed. • Proposed correlation can be used as a effective tool to optimize the heat transfer. • Thermal efficiency can be maximized by optimizing Stirling regenerator heat transfer. • The wound woven wire matrix provides lower Nusselt numbers compared to stacked. • The developed correlation can be used for Reynolds number range from 4 to 400. - Abstract: Nusselt number correlation equations are numerically derived by characterizing the heat transfer phenomena through porous medium of both stacked and wound woven wire matrices of a Stirling engine regenerator over a specified range of Reynolds number, diameter and porosity. A finite volume method (FVM) based numerical approach is proposed and validated against well known experimentally obtained empirical correlations for a random stacking woven wire matrix, the most widely used due to fabrication issues, for Reynolds number up to 400. The results show that the numerically derived correlation equation corresponds well with the experimentally obtained correlations with less than 6% deviation with the exception of low Reynolds numbers. Once the numerical approach is validated, the study is further extended to characterize the heat transfer in a wound woven wire matrix model for a diameter range from 0.08 to 0.11 mm and a porosity range from 0.60 to 0.68 within the same Reynolds number range. Thus, the new correlation equations are numerically derived for different flow configurations of the Stirling engine regenerator. It is believed that the developed correlations can be applied with confidence as a cost effective solution to characterize and hence to optimize stacked and wound woven wire Stirling regenerator in the above specified ranges

  1. Experimental study of natural convection heat transfer from an isothermal combined geometry (downward cone- cylinder)

    Energy Technology Data Exchange (ETDEWEB)

    Mokhtari, A. [Yazd Univ., Yazd (Iran, Islamic Republic of). Dept. of Mechanical Engineering; Goharkhah, M.; Ashjaee, M. [Tehran Univ., Tehran (Iran, Islamic Republic of). Dept. of Mechanical Engineering

    2009-07-01

    Laminar free convection heat transfer from an isothermal combined geometry which consists of a downward cone attached to a vertical cylinder was studied. In particular, a Mach-Zehnder interferometer was used to determine the change in local and average heat transfer coefficients on the surface of an isothermal combined geometry for different vertex angles. The effect of the vertex angle on heat transfer was also investigated by keeping the height of the cylinder and slant length of the cone constant for all objects. The experimental data showed that the local heat transfer coefficient on the conical part increased in the vicinity of the cylinder and cone intersection. The distance between the point of minimum heat transfer coefficient on the cone and vertex of the cone decreased as the vertex angle increased. The maximum average Nusselt number for a constant Rayleigh number was obtained for the geometry with the smallest vertex angle. For all objects, the average Nusselt number increased with an increase in the Rayleigh number. An experiment was carried out on a vertical isothermal cylinder of circular cross section in order to validate the experimental approach. An analytical solution was found to be in good agreement with experimental results. 31 refs., 9 figs.

  2. Brookhaven National Laboratory technology transfer report, fiscal year 1986

    International Nuclear Information System (INIS)

    1986-01-01

    An increase in the activities of the Office of Research and Technology Applications (ORTA) is reported. Most of the additional effort has been directed to the regional electric utility initiative, but intensive efforts have been applied to the commercialization of a compact synchrotron storage ring for x-ray lithography applications. At least six laboratory technologies are reported as having been transferred or being in the process of transfer. Laboratory accelerator technology is being applied to study radiation effects, and reactor technology is being applied for designing space reactors. Technologies being transferred and emerging technologies are described. The role of the ORTA and the technology transfer process are briefly described, and application assessment records are given for a number of technologies. A mini-incubator facility is also described

  3. The Air Land Sea Bulletin. Issue Number 2007-2, May 2007

    Science.gov (United States)

    2007-05-01

    the SCAR role the GR4 can be equipped with unguided 1,000 lb high/low drag weap- ons, GPS/laser-guided bombs, Brimstone anti- armour weapons, and a...Reconnaissance ( SCAR ) and the revision of our core publica- tion, Joint Application of Firepower (JFIRE). Both projects should be in print and in...sance or SCAR as it is known has been a core capability of the Royal Air Force (RAF) ground attack aircraft for many years but recent conflicts

  4. 1984 CRC (Coordinating Research Council, Inc.) Octane Number Requirement Rating Workshop.

    Science.gov (United States)

    1985-06-01

    Richard J . Tither Mobil Oil Corporation Sam D. Vallas Amoco Oil Company Douglas A. Voss Chevron Research Company Andy Vukovic Shell Canada Dave G...Instrumentation, * Preparation a Test Fuels: Procurement of Fuels and Cans, and Coordina- tion of On-Site Handling e Data Handling and Analysis j 2 nI |S 0- B-2 V...Doug McCorkell Union Oil Company of California James D. Merritt Amoco Oil Company Michael J . Mlotkowski Mobil Oil Corporation John Pandosh Sun Tech

  5. Simulation study of transfer characteristics for spacer-filled membrane distillation desalination modules

    International Nuclear Information System (INIS)

    Chang, Hsuan; Hsu, Jian-An; Chang, Cheng-Liang; Ho, Chii-Dong; Cheng, Tung-Wen

    2017-01-01

    Highlights: • A 3D CFD model takes in transmembrane heat and mass transfer developed. • DCMD modules using spacer-filled and empty channels for desalination simulated. • Fluid flow, heat transfer and mass transfer profiles revealed. • Correlations of friction factor and Nusselt number developed. - Abstract: Membrane distillation (MD) is an emerging and promising membrane separation process, which can directly utilize renewable thermal energy or low-grade waste heat, for applications in water or wastewater treatment and food industry. However, a major drawback of MD process is its low energy efficiency. Spacer is the most suggested and studied eddy promoter to enhance the heat and mass transfer, which further improves both the separation and the energy utilization performance, of MD processes. This paper presents the results of a 3D computational fluid dynamics (CFD) simulation of DCMD (direct contact membrane distillation) modules using channels with and without spacers for desalination application. The model employs permeable wall boundary condition to take into account the transmembrane heat and mass transfer and simulates the entire module length. The simulation reveals similar fluctuating distributions of temperature polarization coefficient, transmembrane heat and mass fluxes as well as the shear stress on the membrane surface along the entire module length. Correlations have been developed for friction factor and average Nusselt number. These correlations are useful for the analysis and design of DCMD modules. The extent of heat transfer enhancement by spacers depends on the geometry of spacers and the Reynolds number of fluid.

  6. Shift in detrital sedimentation in the eastern Bay of Bengal during the ...

    Indian Academy of Sciences (India)

    Down-core variations of granulometric, geochemical and mineral magnetism of a 70-cm long sedi- ment core retrieved .... nism for vertical transfer of nutrients and enhanced productivity ..... tion in the sea water is relatively high (1.8–2.3 ppb; ...

  7. Comparative Study of Convective Heat Transfer Performance of Steam and Air Flow in Rib Roughened Channels

    Science.gov (United States)

    Ma, Chao; Ji, Yongbin; Ge, Bing; Zang, Shusheng; Chen, Hua

    2018-04-01

    A comparative experimental study of heat transfer characteristics of steam and air flow in rectangular channels roughened with parallel ribs was conducted by using an infrared camera. Effects of Reynolds numbers and rib angles on the steam and air convective heat transfer have been obtained and compared with each other for the Reynolds number from about 4,000 to 15,000. For all the ribbed channels the rib pitch to height ratio (p/e) is 10, and the rib height to the channel hydraulic diameter ratio is 0.078, while the rib angles are varied from 90° to 45°. Based on experimental results, it can be found that, even though the heat transfer distributions of steam and air flow in the ribbed channels are similar to each other, the steam flow can obtain higher convective heat transfer enhancement capability, and the heat transfer enhancement of both the steam and air becomes greater with the rib angle deceasing from 90° to 45°. At Reynolds number of about 12,000, the area-averaged Nusselt numbers of the steam flow is about 13.9%, 14.2%, 19.9% and 23.9% higher than those of the air flow for the rib angles of 90°, 75°, 60° and 45° respectively. With the experimental results the correlations for Nusselt number in terms of Reynolds number and rib angle for the steam and air flow in the ribbed channels were developed respectively.

  8. Analysis of a self-propelling sheet with heat transfer through non-isothermal fluid in an inclined human cervical canal.

    Science.gov (United States)

    Walait, Ahsan; Siddiqui, A M; Rana, M A

    2018-02-13

    The present theoretical analysis deals with biomechanics of the self-propulsion of a swimming sheet with heat transfer through non-isothermal fluid filling an inclined human cervical canal. Partial differential equations arising from the mathematical modeling of the proposed model are solved analytically. Flow variables like pressure gradient, propulsive velocity, fluid velocity, time mean flow rate, fluid temperature, and heat-transfer coefficients are analyzed for the pertinent parameters. Striking features of the pumping characteristics are explored. Propulsive velocity of the swimming sheet becomes faster for lower Froude number, higher Reynolds number, and for a vertical channel. Temperature and peak value of the heat-transfer coefficients below the swimming sheet showed an increase by the increment of Brinkmann number, inclination, pressure difference over wavelength, and Reynolds number whereas these quantities decrease with increasing Froude number. Aforesaid parameters have shown opposite effects on the peak value of the heat-transfer coefficients below and above the swimming sheet. Relevance of the current results to the spermatozoa transport with heat transfer through non-isothermal cervical mucus filling an inclined human cervical canal is also explored.

  9. Heat transfer in porous medium embedded with vertical plate: Non-equilibrium approach - Part B

    Energy Technology Data Exchange (ETDEWEB)

    Quadir, G. A., E-mail: Irfan-magami@Rediffmail.com, E-mail: gaquadir@gmail.com [School of Mechatronic Engineering, University Malaysia Perlis, Pauh Putra, 02600 Arau, Perlis (Malaysia); Badruddin, Irfan Anjum [Dept. of Mechanical Engineering, University of Malaya, Kuala Lumpur, 50603 (Malaysia)

    2016-06-08

    This work is continuation of the paper Part A. Due to large number of results, the paper is divided into two section with section-A (Part A) discussing the effect of various parameters such as heat transfer coefficient parameter, thermal conductivity ratio etc. on streamlines and isothermal lines. Section-B highlights the heat transfer characteristics in terms of Nusselt number The Darcy model is employed to simulate the flow inside the medium. It is assumed that the heat transfer takes place by convection and radiation. The governing partial differential equations are converted into non-dimensional form and solved numerically using finite element method.

  10. A comprehensive study on decreasing the kilovoltage cone-beam CT dose by reducing the projection number.

    Science.gov (United States)

    Lu, Bo; Lu, Haibin; Palta, Jatinder

    2010-05-12

    The objective of this study was to evaluate the effect of kilovoltage cone-beam computed tomography (CBCT) on registration accuracy and image qualities with a reduced number of planar projections used in volumetric imaging reconstruction. The ultimate goal is to evaluate the possibility of reducing the patient dose while maintaining registration accuracy under different projection-number schemes for various clinical sites. An Elekta Synergy Linear accelerator with an onboard CBCT system was used in this study. The quality of the Elekta XVI cone-beam three-dimensional volumetric images reconstructed with a decreasing number of projections was quantitatively evaluated by a Catphan phantom. Subsequently, we tested the registration accuracy of imaging data sets on three rigid anthropomorphic phantoms and three real patient sites under the reduced projection-number (as low as 1/6th) reconstruction of CBCT data with different rectilinear shifts and rota-tions. CBCT scan results of the Catphan phantom indicated the CBCT images got noisier when the number of projections was reduced, but their spatial resolution and uniformity were hardly affected. The maximum registration errors under the small amount transformation of the reference CT images were found to be within 0.7 mm translation and 0.3 masculine rotation. However, when the projection number was lower than one-fourth of the full set with a large amount of transformation of reference CT images, the registration could easily be trapped into local minima solutions for a nonrigid anatomy. We concluded, by using projection-number reduction strategy under conscientious care, imaging-guided localization procedure could achieve a lower patient dose without losing the registration accuracy for various clinical sites and situations. A faster scanning time is the main advantage compared to the mA decrease-based, dose-reduction method.

  11. 75 FR 26268 - Agency Information Collection Activities: Permit To Transfer Containers to a Container Station

    Science.gov (United States)

    2010-05-11

    ... Activities: Permit To Transfer Containers to a Container Station AGENCY: U.S. Customs and Border Protection... information collection requirement concerning the: Permit to Transfer Containers to a Container Station. This... information collection: Title: Permit to Transfer Containers to a Container Station. OMB Number: 1651-0049...

  12. PARAMETERS, U.S. Army War College Quarterly. Volume 23, Number 1, Spring 1993

    Science.gov (United States)

    1993-01-01

    stitutionally Orotected classification-isautomatically-term-ed- "honloplobia." This is a-favorite media shibboleth, -though etymologically - inaccurate. A... chemistry -(synthetics,-petrochemnicals, aluminum), communica- -tions (telegraph, radio, TV), and- our way of -life (l ighting; elevators a-ld-high... chemistry of the-personalities at the-top is best described as a unique gift from God: In an interview at the Army War College, General Donn A. Starry

  13. USSR and Eastern Europe Scientific Abstracts, Cybernetics, Computers and Automation Technology, Number 31

    Science.gov (United States)

    1978-02-09

    incorporation of subsystems and tasks into systems are specified by state and industrial- sector standards. However, such rigid requirements interfere...construction of the step-down substation, without which the new sector is inoperable. The question of who will build the substation is still unresolved... economico -mathematical evaluation). Among such applications, program decks completed by the "Soyuzsistemprom" are those for data integra- tion and

  14. Poverty and Social Transfers in Croatia

    Directory of Open Access Journals (Sweden)

    Zoran Šuæur

    2005-03-01

    Full Text Available Various aspects of poverty in Croatia are still insufficiently well researched. Not only is there no knowledge about how long Croatian citizens remain poor, but there are also some disagreements about the actual number of the poor and the choice of the national poverty line. Nor has there been any precise evaluation of the effects of the individual anti-poverty policy measures. The objective of this paper was to analyse the basic indicators of the scope and distribution of poverty, the risk groups and the structure of the population of the poor and to investigate the role of social transfers in the reduction of poverty. The paper consists of four parts and an introduction. In Part 1 there is an analysis of the trends in the numbers of the poor in Croatia at the beginning of the millennium and the profile of poverty. The second part deals with the policy for the reduction or elimination of poverty, while in Part 3 the author deals with the problem of selecting the official poverty line and the role of the minimum income in Croatia. Part 4 contains the conclusions. Using the official EU poverty line, a comparative analysis shows that the rates of relative poverty in Croatia do not deviate greatly from the EU mean, although Croatia does have a somewhat higher rate of poverty than most of the countries in the Union. Most at risk of falling below the poverty line are the elderly, the retired and the unemployed, single-person households, single-parent families and families with three or more children. The total system of social transfers is not less effective than the transfer systems of most of the countries of the EU. If we exclude old age and survivor pensions from the social transfers, in fact, Croatia has the most effective social transfers of any of the countries observed. However, on the other hand, the poverty rate reduction due to old age and survivor pensions is one of the lowest in the countriescompared.

  15. A novel investigation of heat transfer characteristics in rifled tubes

    Science.gov (United States)

    Jegan, C. Dhayananth; Azhagesan, N.

    2018-05-01

    The experimental investigation of heat transfer of water flowing in a rifled tube was explored at different pressures and at various operating conditions in a rifled tube heat exchanger. The specifications for the inner and outer diameters of the inner tube are 25.8 and 50.6 mm, respectively. The working fluids used in shell side and tube side are cold and hot water. The rifled tube was made of the stainless steel with 4 ribs, 50.6 mm outer diameter, 0.775 mm rib height, 58o helix angle and the length 1500 mm. The effect of pressure, wall heat flux and friction factor were discussed. The results confirm that even at low pressures the rifled tubes has an obvious enhancement in heat transfer compared with smooth tube. Results depicts that the Nusselt number increases with Reynolds number and the friction factor decreases with increase in Reynolds number and the heat transfer rate is higher for the rifled tube when compared to smooth tube, because of strong swirl flow due to centrifugal action. It also confirms that, the friction factor obtained from the rifled tube is significantly higher than that of smooth tube.

  16. Nuclear technology transfer adapted to the needs of developing countries

    International Nuclear Information System (INIS)

    Martin, A.; Nentwich, D.

    1983-01-01

    The paper explains the build-up of nuclear know-how in the Federal Republic of Germany after 1955, when activities in the nuclear field became permitted. Furthermore, it shows the development of nuclear technology transfer via the increasing number of nuclear power plants exported. The inevitable interrelationship between the efficient transfer of know-how and long-term nuclear co-operation is demonstrated. Emphasis is put on the adaptation of nuclear technology transfer to the needs of the recipient countries. Guidelines to achieve the desired goal are given. (author)

  17. Numerical investigation of heat transfer in annulus laminar flow of multi tubes-in-tube helical coil

    Science.gov (United States)

    Nada, S. A.; Elattar, H. F.; Fouda, A.; Refaey, H. A.

    2018-03-01

    In the present study, a CFD analysis using ANSYS-FLUENT 14.5 CFD package is used to investigate the characteristics of heat transfer of laminar flow in annulus formed by multi tubes in tube helically coiled heat exchanger. The numerical results are validated by comparison with previous experimental data and fair agreements were existed. The influences of the design and operation parameters such as heat flux, Reynolds numbers and annulus geometry on the heat transfer characteristics are investigated. Different annulus of different numbers of inner tubes, specifically 1, 2, 3, 4 and 5 tubes, are tested. The Results showed that for all the studied annulus, the heat flux has no effect on the Nusselt number and compactness parameter. The annulus formed by using five inner tubes showed the best heat transfer performance and compactness parameter. Correlation of predicting Nusselt number in terms of Reynolds number and number of inner tubes are presented.

  18. Internal (Annular) and Compressible External (Flat Plate) Turbulent Flow Heat Transfer Correlations.

    Energy Technology Data Exchange (ETDEWEB)

    Dechant, Lawrence [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States); Smith, Justin [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States)

    2016-01-01

    Here we provide a discussion regarding the applicability of a family of traditional heat transfer correlation based models for several (unit level) heat transfer problems associated with flight heat transfer estimates and internal flow heat transfer associated with an experimental simulation design (Dobranich 2014). Variability between semi-empirical free-flight models suggests relative differences for heat transfer coefficients on the order of 10%, while the internal annular flow behavior is larger with differences on the order of 20%. We emphasize that these expressions are strictly valid only for the geometries they have been derived for e.g. the fully developed annular flow or simple external flow problems. Though, the application of flat plate skin friction estimate to cylindrical bodies is a traditional procedure to estimate skin friction and heat transfer, an over-prediction bias is often observed using these approximations for missile type bodies. As a correction for this over-estimate trend, we discuss a simple scaling reduction factor for flat plate turbulent skin friction and heat transfer solutions (correlations) applied to blunt bodies of revolution at zero angle of attack. The method estimates the ratio between axisymmetric and 2-d stagnation point heat transfer skin friction and Stanton number solution expressions for sub-turbulent Reynolds numbers %3C1x10 4 . This factor is assumed to also directly influence the flat plate results applied to the cylindrical portion of the flow and the flat plate correlations are modified by

  19. Effect of Buoyancy on Forced Convection Heat Transfer in Vertical Channels - a Literature Survey

    Energy Technology Data Exchange (ETDEWEB)

    Bhattacharyya, A

    1965-03-15

    This report contains a short resume of the available information from various sources on the effect of free convection flow on forced convection heat transfer in vertical channels. Both theoretical and experimental investigations are included. Nearly all of the theoretical investigations are concerned with laminar flow with or without internal heat generation. More consistent data are available for upward flow than for downward flow. Curves are presented to determine whether free convection or forced convection mode of heat transfer is predominant for a particular Reynolds number and Rayleigh number. At Re{sub b} > 10{sup 5} free convection effects are negligible. Downward flow through a heated channel at low Reynolds number is unstable. Under similar conditions the overall heat transfer coefficient for downward flow tends to be higher than that for upward flow.

  20. Impact of kinetic mass transfer on free convection in a porous medium

    Science.gov (United States)

    Lu, Chunhui; Shi, Liangsheng; Chen, Yiming; Xie, Yueqing; Simmons, Craig T.

    2016-05-01

    We investigate kinetic mass transfer effects on unstable density-driven flow and transport processes by numerical simulations of a modified Elder problem. The first-order dual-domain mass transfer model coupled with a variable-density-flow model is employed to describe transport behavior in porous media. Results show that in comparison to the no-mass-transfer case, a higher degree of instability and more unstable system is developed in the mass transfer case due to the reduced effective porosity and correspondingly a larger Rayleigh number (assuming permeability is independent on the mobile porosity). Given a constant total porosity, the magnitude of capacity ratio (i.e., immobile porosity/mobile porosity) controls the macroscopic plume profile in the mobile domain, while the magnitude of mass transfer timescale (i.e., the reciprocal of the mass transfer rate coefficient) dominates its evolution rate. The magnitude of capacity ratio plays an important role on the mechanism driving the mass flux into the aquifer system. Specifically, for a small capacity ratio, solute loading is dominated by the density-driven transport, while with increasing capacity ratio local mass transfer dominated solute loading may occur at later times. At significantly large times, however, both mechanisms contribute comparably to solute loading. Sherwood Number could be a nonmonotonic function of mass transfer timescale due to complicated interactions of solute between source zone, mobile zone and immobile zone in the top boundary layer, resulting in accordingly a similar behavior of the total mass. The initial assessment provides important insights into unstable density-driven flow and transport in the presence of kinetic mass transfer.

  1. Knowledge transfer in Swedish Nuclear Power Plants in connection with retirements

    International Nuclear Information System (INIS)

    Larsson, Annika; Ohlsson, Kjell; Roos, Anna

    2007-01-01

    This report displays how the Swedish nuclear power plants Forsmark, Oskarshamn and Ringhals work with knowledge management. The report also consists of a literature review of appropriate ways to extract tacit knowledge as well as methods to transfer competence. The report is made up of a smaller number of interviews at the nuclear power plants in combination with a questionnaire distributed to a larger number of people at the plants. The results of the interview study is that only one of the Swedish nuclear power plants have a programme to transfer knowledge from older staff to newer. This is, however, not a programme for everyone. Another plant has a programme for knowledge building, but only for their specialists. At both plants, which lack a programme, the interviewees request more structure in knowledge transfer; even though they feel the current way of transferring knowledge with mentors works well. Besides more structure, interviewees present a wish to have more time for knowledge transfer as well as the opportunity to recruit more than needed. Recruiting more than needed is however not very simple due to multiple causes such as nominal sizing departments and a difficulty of recruiting people to work far from larger cities. The way things are now, many feel too under-staffed and under a lot of time pressure daily to also have time for knowledge transfer besides their normal work

  2. Heat or mass transfer at low Péclet number for Brinkman and Darcy flow round a sphere

    KAUST Repository

    Bell, Christopher G.; Byrne, H.M.; Whiteley, J.P.; Waters, S.L.

    2014-01-01

    Prior research into the effect of convection on steady-state mass transfer from a spherical particle embedded in a porous medium has used the Darcy model to describe the flow. However, a limitation of the Darcy model is that it does not account

  3. Analysis of surface roughness effects on heat transfer in micro-conduits

    Energy Technology Data Exchange (ETDEWEB)

    Koo, J.; Kleinstreuer, C. [North Carolina State University, Raleigh, NC (United States). Dept. of Mechanical and Aerospace Engineering

    2005-06-01

    Modern heat rejection systems, such as micro-heat sinks, are attractive because of their potential for high performance at small size and low weight. However, the impact of microscale effects on heat transfer have to be considered and quantitatively analyzed in order to gain physical insight and accurate Nusselt number data. The relative surface roughness (SR) was selected as a key microscale parameter, represented by a porous medium layer (PML) model. Assuming steady laminar fully developed liquid flow in microchannels and microtubes, the SR effects in terms of PML thermal conductivity ratio and Darcy number on the dimensionless temperature profile and Nusselt number were analyzed. In summary, the PML characteristics, especially the SR-number and conductivity ratio k{sub m}/k{sub f}, greatly affect the heat transfer performance where the Nusselt number can be either higher or lower than the conventional value. The PML influence is less pronounced in microtubes than in parallel-plate microchannels. (author)

  4. Simulation of MHD CuO–water nanofluid flow and convective heat transfer considering Lorentz forces

    Energy Technology Data Exchange (ETDEWEB)

    Sheikholeslami, Mohsen; Bandpy, Mofid Gorji [Department of Mechanical Engineering, Babol University of Technology, Babol (Iran, Islamic Republic of); Ellahi, R., E-mail: rellahi@engr.ucr.edu [Department of Mechanical Engineering, University of California Riverside (United States); Department of Mathematics and Statistics, FBAS, IIUI, H-10 Sector, Islamabad (Pakistan); Zeeshan, A. [Department of Mathematics and Statistics, FBAS, IIUI, H-10 Sector, Islamabad (Pakistan)

    2014-11-15

    Magnetic field effect on CuO–water nanofluid flow and heat transfer in an enclosure which is heated from below is investigated. Lattice Boltzmann method is applied to solve the governing equations. The effective thermal conductivity and viscosity of nanofluid are calculated by KKL (Koo–Kleinstreuer–Li) correlation. In this model effect of Brownian motion on the effective thermal conductivity is considered. Effect of active parameter such as: Hartmann number, heat source length, nanoparticle volume fraction and Rayleigh numbers on the flow and heat transfer characteristics have been examined. The results reveal that the enhancement in heat transfer increases as Hartmann number and heat source length increase but it decreases with increase of Rayleigh number. Also it can be found that effect of Hartmann number and heat source length is more pronounced at high Rayleigh number. - Highlights: • This paper analyses the magnetic effect on CuO–water nanofluid. • Koo–Kleinstreuer–Li correlation and Lattice Boltzmann method are used. • Effects of pertinent parameters are presented through tables and graphs.

  5. Recoverable Random Numbers in an Internet of Things Operating System

    Directory of Open Access Journals (Sweden)

    Taeill Yoo

    2017-03-01

    Full Text Available Over the past decade, several security issues with Linux Random Number Generator (LRNG on PCs and Androids have emerged. The main problem involves the process of entropy harvesting, particularly at boot time. An entropy source in the input pool of LRNG is not transferred into the non-blocking output pool if the entropy counter of the input pool is less than 192 bits out of 4098 bits. Because the entropy estimation of LRNG is highly conservative, the process may require more than one minute for starting the transfer. Furthermore, the design principle of the estimation algorithm is not only heuristic but also unclear. Recently, Google released an Internet of Things (IoT operating system called Brillo based on the Linux kernel. We analyze the behavior of the random number generator in Brillo, which inherits that of LRNG. In the results, we identify two features that enable recovery of random numbers. With these features, we demonstrate that random numbers of 700 bytes at boot time can be recovered with the success probability of 90% by using time complexity for 5.20 × 2 40 trials. Therefore, the entropy of random numbers of 700 bytes is merely about 43 bits. Since the initial random numbers are supposed to be used for sensitive security parameters, such as stack canary and key derivation, our observation can be applied to practical attacks against cryptosystem.

  6. Bibliography on augmentation of convective heat and mass transfer-II

    Energy Technology Data Exchange (ETDEWEB)

    Bergles, A.E.; Nirmalan, V.; Junkhan, G.H.; Webb, R.L.

    1983-12-01

    Heat transfer augmentation has developed into a major specialty area in heat transfer research and development. This report presents and updated bibliography of world literature on augmentation. The literature is classified into passive augmentation techniques, which require no external power, and active techniques, which do require external power. The fifteen techniques are grouped in terms of their applications to the various modes of heat transfer. Mass transfer is included for completeness. Key words are included with each citation for technique/mode identification. The total number of publications cited is 3045, including 135 surveys of various techniques and 86 papers on performance evaluation of passive techniques. Patents are not included, as they are the subject of a separate bibliographic report.

  7. Current transfer in dc non-transferred arc plasma torches

    International Nuclear Information System (INIS)

    Ghorui, S; Sahasrabudhe, S N; Das, A K

    2010-01-01

    Fundamentals of current transfer to the anodes in dc non-transferred arc plasma torches are investigated. Specially designed anodes made of three mutually isolated sections and external dc axial magnetic fields of various strengths are utilized to explore the conditions for different diffused and constricted attachments of the arc with the anode. A number of new facts are revealed in the exercise. Under constricted attachment, formation of arc root takes place. Spontaneous and magnetically induced movements of the arc root, their dependence on the arc current and the strength of the external magnetic field, most probable arc root velocity, variation of the root velocity with strength of the applied magnetic field, the effect of swirl on the rotational speed of the arc root are some of the important features investigated. Two new techniques are introduced: one for measurement of the arc root diameter and the other for determination of the negative electric field in the boundary layer over the anode. While the first one exploits the rigid column behaviour of the arcs, the second one utilizes the shooting back of the residual electrons over an arc spot. Sample calculations are provided.

  8. Heat transfer correlation models for electrospray evaporative cooling chambers of different geometry types

    International Nuclear Information System (INIS)

    Wang, Hsiu-Che; Mamishev, Alexander V.

    2012-01-01

    Development of future electronics for high speed computing requires a silent thermal management method capable of dissipating a broad range of heat generated from application-specific integrated circuits, while keeping the skin temperature below 45 °C. Electrospray evaporative cooling (ESEC) chambers show promise because of their ability to dissipate a broad range of heat within a relatively small size. However, the development and the optimization of ESEC chambers are currently restricted, in part due to the lack of sufficient empirical heat transfer correlations. This paper investigates empirical heat transfer correlations for ESEC chambers with three different geometry types. Since the unstable multi-jet behavior of an ESEC chamber is similar to that of a free-surface traditional impinging liquid jet, these correlations are based on the traditional impinging liquid jet’s empirical correlations, yet are modified to factor in the electric field effect. The results show that the heat transfer enhancement ratio correlations and the Nusselt number correlations for different ESEC chambers cover more than 83% of the experimental data, within ±10% deviation. The sensitivity analysis results and experimental data prove that the variation in the enhancement ratio is sensitive to that of the potential and the flow rate. It is not sensitive to the geometric factor of the same ESEC type. This paper presents a natural convection correlation for chip-scale, heated, flat surfaces when the Rayleigh number is below 3000. Further investigation is necessary to extend these heat transfer correlations to cover additional parameters for different thermal management applications. - Highlights: ► We develop empirical heat transfer correlations for electrospray evaporative cooling chambers. ► The developed heat transfer enhancement correlations fit more than 83% experimental data. ► The developed Nusselt number correlations fit more than 89% experimental data. ► We present a

  9. USSR and Eastern Europe Scientific Abstracts, Electronics and Electrical Engineering, Number 33.

    Science.gov (United States)

    1977-09-27

    transliterated are enclosed in parentheses. Words or names preceded by a ques - tion mark and enclosed in parentheses were not clear in the original but have...ADAPTIVE SYSTEM Budapest MERES ES AUTOMATIKA in Hungarian No 3, 1977 pp 109-1H PHAM THUONG CAT, Research Institute for Computing Sciences of the...profiles have been identified by successfully approximating them with a parabola above a cer- tain depth and an exponential below it. A close

  10. Heat transfer in the thermal entrance region of a circular tube with axial heat conduction

    International Nuclear Information System (INIS)

    Zhang Changquan.

    1985-01-01

    This paper recounts the effects of axial heat conduction and convective boundary conditions on the heat transfer in the thermal entrance region of a circular tube under uniform flow, and the corresponding calculation is made. It will be profitable for the heat transfer studies on the pipe entrance region of low Prandtl number (liquid metal), or flow of low Peclet number. (author)

  11. Incorporation of charge transfer into the explicit polarization fragment method by grand canonical density functional theory.

    Science.gov (United States)

    Isegawa, Miho; Gao, Jiali; Truhlar, Donald G

    2011-08-28

    Molecular fragmentation algorithms provide a powerful approach to extending electronic structure methods to very large systems. Here we present a method for including charge transfer between molecular fragments in the explicit polarization (X-Pol) fragment method for calculating potential energy surfaces. In the conventional X-Pol method, the total charge of each fragment is preserved, and charge transfer between fragments is not allowed. The description of charge transfer is made possible by treating each fragment as an open system with respect to the number of electrons. To achieve this, we applied Mermin's finite temperature method to the X-Pol wave function. In the application of this method to X-Pol, the fragments are open systems that partially equilibrate their number of electrons through a quasithermodynamics electron reservoir. The number of electrons in a given fragment can take a fractional value, and the electrons of each fragment obey the Fermi-Dirac distribution. The equilibrium state for the electrons is determined by electronegativity equalization with conservation of the total number of electrons. The amount of charge transfer is controlled by re-interpreting the temperature parameter in the Fermi-Dirac distribution function as a coupling strength parameter. We determined this coupling parameter so as to reproduce the charge transfer energy obtained by block localized energy decomposition analysis. We apply the new method to ten systems, and we show that it can yield reasonable approximations to potential energy profiles, to charge transfer stabilization energies, and to the direction and amount of charge transferred. © 2011 American Institute of Physics

  12. Simulating non-isothermal water vapour transfer : an experimental validation on multi-layered building components

    NARCIS (Netherlands)

    Roels, S.; Depraetere, W.; Carmeliet, J.; Hens, H.

    1999-01-01

    The aim of this study is to validate different analytical relations used in hygrothermal simulations for the material properties. Therefore, a valida tion experiment on four types of flat roofs has been set up at the laboratory. All rele vant material properties of the individual material layers

  13. Probing cluster structures through sub-barrier transfer reactions

    Directory of Open Access Journals (Sweden)

    Rafferty D. C.

    2016-01-01

    Full Text Available Multinucleon transfer probabilities and excitation energy distributions have been measured in 16,18O, 19F + 208Pb at energies between 90% - 100% of the Coulomb barrier. A strong 2p2n enhancement is observed for all reactions, though most spectacularly in the 18O induced reaction. Results are interpreted in terms of the Semiclassical model, which seems to suggest α-cluster transfer in all studied systems. The relation to cluster-states in the projectile is discussed, with the experimental results consistent with previous structure studies. Dissipation of energy in the collisions of 18O is compared between different reaction modes, with cluster transfer associated with dissipation over a large number of internal states. Cluster transfer is shown to be a long range dissipation mechanism, which will inform the development of future models to treat these dynamic processes in reactions.

  14. Brookhaven National Laboratory technology transfer report, fiscal year 1986

    Energy Technology Data Exchange (ETDEWEB)

    1986-01-01

    An increase in the activities of the Office of Research and Technology Applications (ORTA) is reported. Most of the additional effort has been directed to the regional electric utility initiative, but intensive efforts have been applied to the commercialization of a compact synchrotron storage ring for x-ray lithography applications. At least six laboratory technologies are reported as having been transferred or being in the process of transfer. Laboratory accelerator technology is being applied to study radiation effects, and reactor technology is being applied for designing space reactors. Technologies being transferred and emerging technologies are described. The role of the ORTA and the technology transfer process are briefly described, and application assessment records are given for a number of technologies. A mini-incubator facility is also described. (LEW)

  15. Laplace transform analysis of a multiplicative asset transfer model

    Science.gov (United States)

    Sokolov, Andrey; Melatos, Andrew; Kieu, Tien

    2010-07-01

    We analyze a simple asset transfer model in which the transfer amount is a fixed fraction f of the giver’s wealth. The model is analyzed in a new way by Laplace transforming the master equation, solving it analytically and numerically for the steady-state distribution, and exploring the solutions for various values of f∈(0,1). The Laplace transform analysis is superior to agent-based simulations as it does not depend on the number of agents, enabling us to study entropy and inequality in regimes that are costly to address with simulations. We demonstrate that Boltzmann entropy is not a suitable (e.g. non-monotonic) measure of disorder in a multiplicative asset transfer system and suggest an asymmetric stochastic process that is equivalent to the asset transfer model.

  16. Measurement of subcooled boiling pressure drop and local heat transfer coefficient in horizontal tube under LPLF conditions

    International Nuclear Information System (INIS)

    Baburajan, P.K.; Bisht, G.S.; Gupta, S.K.; Prabhu, S.V.

    2013-01-01

    Highlights: ► Measured subcooled boiling pressure drop and local heat transfer coefficient in horizontal tubes. ► Infra-red thermal imaging is used for wall temperature measurement. ► Developed correlations for pressure drop and local heat transfer coefficient. -- Abstract: Horizontal flow is commonly encountered in boiler tubes, refrigerating equipments and nuclear reactor fuel channels of pressurized heavy water reactors (PHWR). Study of horizontal flow under low pressure and low flow (LPLF) conditions is important in understanding the nuclear core behavior during situations like LOCA (loss of coolant accidents). In the present work, local heat transfer coefficient and pressure drop are measured in a horizontal tube under LPLF conditions of subcooled boiling. Geometrical parameters covered in this study are diameter (5.5 mm, 7.5 mm and 9.5 mm) and length (550 mm, 750 mm and 1000 mm). The operating parameters varied are mass flux (450–935 kg/m 2 s) and inlet subcooling (29 °C, 50 °C and 70 °C). Infra-red thermography is used for the measurement of local wall temperature to estimate the heat transfer coefficient in single phase and two phase flows with water as the working medium at atmospheric pressure. Correlation for single phase diabatic pressure drop ratio (diabatic to adiabatic) as a function of viscosity ratio (wall temperature to fluid temperature) is presented. Correlation for pressure drop under subcooled boiling conditions as a function of Boiling number (Bo) and Jakob number (Ja) is obtained. Correlation for single phase heat transfer coefficient in the thermal developing region is presented as a function of Reynolds number (Re), Prandtl number (Pr) and z/d (ratio of axial length of the test section to diameter). Correlation for two phase heat transfer coefficient under subcooled boiling condition is developed as a function of boiling number (Bo), Jakob number (Ja) and Prandtl number (Pr)

  17. Study on oxygen transfer by solid jet aerator with multiple openings

    Directory of Open Access Journals (Sweden)

    B.K. Shukla

    2018-04-01

    Full Text Available In the current study, two different sets of solid jet aerators having area of openings equal to 594.96 mm2 and 246.30 mm2 with rectangular nozzles having rounded ends were studied. Each set consisted of aerators having one, two, four and eight openings. The oxygenation performance of every model was studied for five different discharges of 1.11 l/s, 2.10 l/s, 2.96 l/s, 3.83 l/s and 4.69 l/s were studied. At low discharges, the aerator having lesser number of openings demonstrated more oxygen-transfer efficiency whereas at higher discharges, the aerator having more number of openings yielded more oxygenation-efficiency. Maximum value of oxygen-transfer efficiency of 21.53 kg-O2/kW-hr was obtained for the discharge of 1.11 l/s for single nozzle aerator; however the maximum oxygen-transfer factor of 2.0 × 10−2 s−1 was obtained at discharge of 4.69 l/s for aerator having eight numbers of openings having area of 594.96 mm2. On the other hand, maximum oxygen transfer efficiency of 10.93 kg-O2/kW-hr was demonstrated by aerator with single opening at a discharge of 1.11 l/s and maximum oxygen transfer factor of 7.83 × 10−3 s−1 was obtained from aerator with eight openings at a discharge of 4.69 l/s corresponding to set of aerators with area of openings equal to 246.30 mm2. Multiple non-linear regression modelling was applied to predict oxygen transfer of the aerators for different combinations of input parameters. At the end, the models were compared with conventional methods of aeration and were found to be competitive with traditional devices. Keywords: Plunging jet, Jet aerator, Oxygen transfer, Aeration, Dissolved oxygen

  18. Electron transfer number control of the oxygen reduction reaction on nitrogen-doped reduced graphene oxides for the air electrodes of zinc-air batteries and organic degradation

    International Nuclear Information System (INIS)

    Wu, Sheng-Hui; Li, Po-Chieh; Hu, Chi-Chang

    2016-01-01

    The mean electron transfer number (n) of the oxygen reduction reaction (ORR) on reduced graphene oxide (rGO) is controlled by nitrogen doping for the air electrodes of Zn-air batteries and electrochemical organic degradation. Melamine and pyrrole are employed as the nitrogen sources for fabricating N-doped rGO (N-rGO) by microwave-assisted hydrothermal synthesis (MAHS). The n value of the ORR is determined by the rotating ring-disk electrode (RRDE) voltammetry and is successfully controlled from 2.34 to 3.93 by preparation variables. The N-doped structures are examined by the x-ray photoelectron spectroscopic (XPS) analysis. The morphology and the defect degree of N-rGOs are characterized by high resolution transmission electron microscopy (HR-TEM) and Raman spectroscopy. N-rGOs with high and low n values are employed as the air electrode catalysts of zinc-air batteries and in-situ hydrogen peroxide (H_2O_2) generation, respectively. The highest discharge cell voltage of 1.235 V for a Zn-air battery is obtained at 2 mA cm"−"2 meanwhile the current efficiency of H_2O_2 generation in 1-h electrolysis at 0 V (vs. RHE) reaches 43%. The electrocatalytic degradation of orange G (OG), analyzed by UV-VIS absorption spectra, reveals a high decoloration degree from the relative absorbance of 0.38 for the azo π-conjugation structure of OG. - Highlights: • The mean electron transfer number (n) is controlled by nitrogen doping. • Melamine and pyrrole are used as the nitrogen sources for fabricating N-rGO. • The n value is successfully controlled from 2.34 to 3.93 by preparation variables. • The highest discharge cell voltage of 1.235 V for a Zn-air battery. • The current efficiency of H_2O_2 generation 1-h electrolysis reaches 43%.

  19. Mass transfer parameters of celeriac during vacuum drying

    Science.gov (United States)

    Beigi, Mohsen

    2017-04-01

    An accurate prediction of moisture transfer parameters is very important for efficient mass transfer analysis, accurate modelling of drying process, and better designing of new dryers and optimization of existing drying process. The present study aimed to investigate the influence of temperature (e.g., 55, 65 and 75 °C) and chamber pressure (e.g., 0.1, 3, 7, 10, 13 and 17 kPa) on effective diffusivity and convective mass transfer coefficient of celeriac slices during vacuum drying. The obtained Biot number indicated that the moisture transfer in the celeriac slices was controlled by both internal and external resistance. The effective diffusivity obtained to be in the ranges of 7.5231 × 10-10-3.8015 × 10-9 m2 s-1. The results showed that the diffusivity increased with increasing temperature and decreasing pressure. The mass transfer coefficient values varied from 4.6789 × 10-7 to 1.0059 × 10-6 m s-1, and any increment in drying temperature and pressure caused an increment in the coefficient.

  20. Working memory training and transfer in older adults.

    Science.gov (United States)

    Richmond, Lauren L; Morrison, Alexandra B; Chein, Jason M; Olson, Ingrid R

    2011-12-01

    There has been a great deal of interest, both privately and commercially, in using working memory training exercises to improve general cognitive function. However, many of the laboratory findings for older adults, a group in which this training is of utmost interest, are discouraging due to the lack of transfer to other tasks and skills. Importantly, improvements in everyday functioning remain largely unexamined in relation to WM training. We trained working memory in older adults using a task that encourages transfer in young adults (Chein & Morrison, 2010). We tested transfer to measures of working memory (e.g., Reading Span), everyday cognitive functioning [the Test of Everyday Attention (TEA) and the California Verbal Learning Test (CVLT)], and other tasks of interest. Relative to controls, trained participants showed transfer improvements in Reading Span and the number of repetitions on the CVLT. Training group participants were also significantly more likely to self-report improvements in everyday attention. Our findings support the use of ecological tasks as a measure of transfer in an older adult population.

  1. The intermittency of vector fields and random-number generators

    Science.gov (United States)

    Kalinin, A. O.; Sokoloff, D. D.; Tutubalin, V. N.

    2017-09-01

    We examine how well natural random-number generators can reproduce the intermittency phenomena that arise in the transfer of vector fields in random media. A generator based on the analysis of financial indices is suggested as the most promising random-number generator. Is it shown that even this generator, however, fails to reproduce the phenomenon long enough to confidently detect intermittency, while the C++ generator successfully solves this problem. We discuss the prospects of using shell models of turbulence as the desired generator.

  2. Translations on Eastern Europe, Political, Sociological and Military Affairs, Number 1579

    Science.gov (United States)

    1978-08-23

    front of the bridge abutments . The weight-volume ratio was so selected that the rail girders and the road- way or track plates would float in the...respect to the required posi- tion. 2-3 Abutment with Highway Connection ThP abutment , in its silkiest form, consists of a railroad tie stack; but...it c£ Sso be built up of massive prefabricated parts or locally prepared concrete. A portion of the start-up approach/ and braking forces is di

  3. Schottky Noise and Beam Transfer Functions

    Energy Technology Data Exchange (ETDEWEB)

    Blaskiewicz M.; Blaskiewicz M.

    2016-12-01

    Beam transfer functions (BTF)s encapsulate the stability properties of charged particle beams. In general one excites the beam with a sinusoidal signal and measures the amplitude and phase of the beam response. Most systems are very nearly linear and one can use various Fourier techniques to reduce the number of measurements and/or simulations needed to fully characterize the response. Schottky noise is associated with the finite number of particles in the beam. This signal is always present. Since the Schottky current drives wakefields, the measured Schottky signal is influenced by parasitic impedances.

  4. Augmented of turbulent heat transfer in an annular pipe with abrupt expansion

    Directory of Open Access Journals (Sweden)

    Togun Hussein

    2016-01-01

    Full Text Available This paper presents a study of heat transfer to turbulent air flow in the abrupt axisymmetric expansion of an annular pipe. The experimental investigations were performed in the Reynolds number range from 5000 to 30000, the heat flux varied from 1000 to 4000 W/m2, and the expansion ratio was maintained at D/d=1, 1.25, 1.67 and 2. The sudden expansion was created by changing the inner diameter of the entrance pipe to an annular passage. The outer diameter of the inner pipe and the inner diameter of the outer pipe are 2.5 and 10 cm, respectively, where both of the pipes are subjected to uniform heat flux. The distribution of the surface temperature of the test pipe and the local Nusselt number are presented in this investigation. Due to sudden expansion in the cross section of the annular pipe, a separation flow was created, which enhanced the heat transfer. The reduction of the surface temperature on the outer and inner pipes increased with the increase of the expansion ratio and the Reynolds number, and increased with the decrease of the heat flux to the annular pipe. The peak of the local Nusselt number was between 1.64 and 1.7 of the outer and inner pipes for Reynolds numbers varied from 5000 to 30000, and the increase of the local Nusselt number represented the augmentation of the heat transfer rate in the sudden expansion of the annular pipe. This research also showed a maximum heat transfer enhancement of 63-78% for the outer and inner pipes at an expansion ratio of D/d=2 at a Re=30000 and a heat flux of 4000W/m2.

  5. On the correlation of heat transfer in turbulent boundary layers subjected to free-stream turbulence

    Energy Technology Data Exchange (ETDEWEB)

    Barrett, M.J.; Hollingsworth, D.K.

    1999-07-01

    The turbulent flow of a fluid bounded by a heated surface is a wonderfully complex yet derisively mundane phenomenon. Despite its commonness in natural and man-made environments, the authors struggle to accurately predict its behavior in many simple situations. A complexity encountered in a number of flows is the presence of free-stream turbulence. A turbulent free-stream typically yields increased surface friction and heat transfer. Turbulent boundary layers with turbulent free-streams are encountered in gas-turbine engines, rocket nozzles, electronic-cooling passages, geophysical flows, and numerous other dynamic systems. Here, turbulent boundary layers were subjected to grid-generated free-stream turbulence to study the effects of length scale and intensity on heat transfer. The research focused on correlating heat transfer without the use of conventional boundary-layer Reynolds numbers. The boundary-layers studied ranged from 400 to 2,700 in momentum-thickness Reynolds number and from 450 to 1,900 in enthalpy-thickness Reynolds number. Free-stream turbulence intensities varied from 0.1 to 8.0%. The turbulent-to-viscous length-scale ratios presented are the smallest found in the heat-transfer literature; the ratios spanned from 100 to 1000. The turbulent-to-thermal ratios (using enthalpy thickness as the thermal scale) are also the smallest reported; the ratios ranged from 3.2 to 12.3. A length-scale dependence was identified in a Stanton number based on a near-wall streamwise velocity fluctuation. A new near-wall Stanton number was introduced; this parameter was regarded as a constant in a two-region boundary-layer model. The new model correlated heat-transfer to within 7%.

  6. The density matrix - The story of a failed transfer

    Energy Technology Data Exchange (ETDEWEB)

    Blum, Alexander [MPI fuer Wissenschaftsgeschichte, Berlin (Germany)

    2013-07-01

    With the discovery of the positron in 1933, Paul Dirac (along with most other physicists) was forced to really take seriously his earlier suggestion that in the world as we know it all negative energy states are occupied and we are thus surrounded by an infinite sea of electrons. What was needed was a way to treat this large number of electrons in a manageable fashion. Dirac resorted to the use of the density matrix, a technique he had earlier used to describe the large number of electrons in complex atoms. Initially, this transfer from atomic physics to what we would nowadays call particle physics was quite successful, and for a few years the density matrix was the state of the art in describing the Dirac electron sea, but then rapidly fell out of favor. I investigate the causes of this ultimately failed transfer and how it relates to changes in the physical notion of the vacuum, changes which eventually eliminated the analogy on which the transfer had been based in the first place.

  7. An evaluation of gas transfer velocity parameterizations during natural convection using DNS

    Science.gov (United States)

    Fredriksson, Sam T.; Arneborg, Lars; Nilsson, Hâkan; Zhang, Qi; Handler, Robert A.

    2016-02-01

    Direct numerical simulations (DNS) of free surface flows driven by natural convection are used to evaluate different methods of estimating air-water gas exchange at no-wind conditions. These methods estimate the transfer velocity as a function of either the horizontal flow divergence at the surface, the turbulent kinetic energy dissipation beneath the surface, the heat flux through the surface, or the wind speed above the surface. The gas transfer is modeled via a passive scalar. The Schmidt number dependence is studied for Schmidt numbers of 7, 150 and 600. The methods using divergence, dissipation and heat flux estimate the transfer velocity well for a range of varying surface heat flux values, and domain depths. The two evaluated empirical methods using wind (in the limit of no wind) give reasonable estimates of the transfer velocity, depending however on the surface heat flux and surfactant saturation. The transfer velocity is shown to be well represented by the expression, ks=A |Bν|1/4 Sc-n, where A is a constant, B is the buoyancy flux, ν is the kinematic viscosity, Sc is the Schmidt number, and the exponent n depends on the water surface characteristics. The results suggest that A=0.39 and n≈1/2 and n≈2/3 for slip and no-slip boundary conditions at the surface, respectively. It is further shown that slip and no-slip boundary conditions predict the heat transfer velocity corresponding to the limits of clean and highly surfactant contaminated surfaces, respectively. This article was corrected on 22 MAR 2016. See the end of the full text for details.

  8. Pregnancy and Multiple Births rate after Transferring 2 or 3 Embryos

    Directory of Open Access Journals (Sweden)

    F Mostajeran

    2006-05-01

    Full Text Available Background: In vitro fertilization (IVF is a progressing common reproduction method and if the number of transferred embryo increases, the pregnancy rate and multiple pregnancies will increase which may lead to higher medical costs and human suffering. We compared pregnancy and multiple pregnancies rate after two or three transferred embryo via IVF. Methods: From April 2003 to June 2004, 301 referred infertile women to Isfahan infertility center underwent IVF with transferring two or three good quality embryos. Results: From 298 patients, 2 and 3 embryos were transferred in 155 patients and in 143 patients, respectively. Pregnancy rate was 19.4% versus 24.5% in 2 and 3 embryos transferred patients, respectively. Twin gestations were found in 5(3.2% of 2 embryos transferred patients and in 11(7.7% of 3 embryos transferred patients. Discussion: Transferring two or three embryos with good quality increase the rate of twin gestations in young women, without significant improve in the chance of singleton conception. Key words: In Vitro Fertilization, Multiple gestations, Embryo transfer

  9. Mathematics for electric engineers. Complex numbers; Mathematiques pour l`electricien. Nombres complexes

    Energy Technology Data Exchange (ETDEWEB)

    Rouxel, C. [Conservatoire National des Arts et Metiers (CNAM), 75 - Paris (France)

    1999-05-01

    Complex numbers are widely used in electrical engineering. This article is divided into 5 parts dealing successively with: the cartesian form of complex numbers (definition, conjugated complex numbers, graphical representation); the trigonometrical form of complex numbers (module and argument, trigonometrical form, exponential notation, multiplication and division of two complex numbers); Moivre and Euler formulae; applications (square root and second degree equation, n. roots, plan rotation and similarity); cissoidal transformation (definition, properties, applications to electricity: complex impedance in permanent sinusoidal regime, transfer function of a linear system in permanent regime, study of an example). (J.S.)

  10. Evaluation of Interfacial Heat Transfer Models for Flashing Flow with Two-Fluid CFD

    Directory of Open Access Journals (Sweden)

    Yixiang Liao

    2018-06-01

    Full Text Available The complexity of flashing flows is increased vastly by the interphase heat transfer as well as its coupling with mass and momentum transfers. A reliable heat transfer coefficient is the key in the modelling of such kinds of flows with the two-fluid model. An extensive literature survey on computational modelling of flashing flows has been given in previous work. The present work is aimed at giving a brief review on available theories and correlations for the estimation of interphase heat transfer coefficient, and evaluating them quantitatively based on computational fluid dynamics simulations of bubble growth in superheated liquid. The comparison of predictions for bubble growth rate obtained by using different correlations with the experimental as well as direct numerical simulation data reveals that the performance of the correlations is dependent on the Jakob number and Reynolds number. No generally applicable correlations are available. Both conduction and convection are important in cases of bubble rising and translating in stagnant liquid at high Jakob numbers. The correlations combining the analytical solution for heat diffusion and the theoretical relation for potential flow give the best agreement.

  11. Flow Structure and Heat Transfer of Jet Impingement on a Rib-Roughened Flat Plate

    Directory of Open Access Journals (Sweden)

    Abdulrahman H. Alenezi

    2018-06-01

    Full Text Available The jet impingement technique is an effective method to achieve a high heat transfer rate and is widely used in industry. Enhancing the heat transfer rate even minimally will improve the performance of many engineering systems and applications. In this numerical study, the convective heat transfer process between orthogonal air jet impingement on a smooth, horizontal surface and a roughened uniformly heated flat plate is studied. The roughness element takes the form of a circular rib of square cross-section positioned at different radii around the stagnation point. At each location, the effect of the roughness element on heat transfer rate was simulated for six different heights and the optimum rib location and rib dimension determined. The average Nusselt number has been evaluated within and beyond the stagnation region to better quantify the heat transfer advantages of ribbed surfaces over smooth surfaces. The results showed both flow and heat transfer features vary significantly with rib dimension and location on the heated surface. This variation in the streamwise direction included both augmentation and decrease in heat transfer rate when compared to the baseline no-rib case. The enhancement in normalized averaged Nusselt number obtained by placing the rib at the most optimum radial location R/D = 2 was 15.6% compared to the baseline case. It was also found that the maximum average Nusselt number for each location was achieved when the rib height was close to the corresponding boundary layer thickness of the smooth surface at the same rib position.

  12. Free radical transfer in polymers

    International Nuclear Information System (INIS)

    Sonntag, C. von; Bothe, E.; Ulanski, P.

    1998-01-01

    For the present study of free-radical transfer in polymers pulse radiolysis and product studies have been carried out in aqueous solutions using thus far only the water-soluble polymers polyacrylic acid, polymethacrylic acid and polyvinyl alcohol. When OH radicals, generated in the radiolysis of N 2 O-saturated aqueous solutions, react with polymers the lifetime of the polymer radical thus created very much depends on the number of radicals per polymer chain. When there are a large number of radicals per chain their bimolecular decay may be faster than the corresponding (diffusion controlled) decay of monomeric radicals, but when the macromolecule contains only few or even just one radical their lifetime is considerably prolonged. Highly charged polymers such as polyacrylic acid at high pH attain a rod-like conformation which again favors a long lifetime of the radicals. Under such conditions, radical transfer reactions can occur. For example, in polyacrylic acid OH radicals generate two kinds of radicals side by side. The radical in β-position to the carboxylate group converts into the thermodynamically more stable α-radicals by an H-transfer reaction as can be followed by spectrophotometry. Besides radical transfer reactions β-fragmentation reactions occur causing chain scission. Such reactions can be followed in a pulse radiolysis experiment by conductometry, because counter ions are released upon chain scission. Such a process is especially effective in the case of polymethacrylic acid, where it results in a chain depolymerization. An intramolecular H-abstraction is also observed in the γ-radiolysis of polyacrylic acid with the corresponding peroxyl radicals. This causes a chain reaction to occur. The resulting hydroperoxides are unstable and decarboxylate given rise to acetylacetone-like products. In polyvinyl alcohol the peroxyl radicals in α-position to the alcohol function undergo HO 2 -elimination. This prevents a scission of the polymer chain in the

  13. Proton Transfer Time-of-Flight Mass Spectrometer

    Energy Technology Data Exchange (ETDEWEB)

    Watson, Thomas B. [Brookhaven National Lab. (BNL), Upton, NY (United States)

    2016-03-01

    The Proton Transfer Reaction Mass Spectrometer (PTRMS) measures gas-phase compounds in ambient air and headspace samples before using chemical ionization to produce positively charged molecules, which are detected with a time-of-flight (TOF) mass spectrometer. This ionization method uses a gentle proton transfer reaction method between the molecule of interest and protonated water, or hydronium ion (H3O+), to produce limited fragmentation of the parent molecule. The ions produced are primarily positively charged with the mass of the parent ion, plus an additional proton. Ion concentration is determined by adding the number of ions counted at the molecular ion’s mass-to-charge ratio to the number of air molecules in the reaction chamber, which can be identified according to the pressure levels in the reaction chamber. The PTRMS allows many volatile organic compounds in ambient air to be detected at levels from 10–100 parts per trillion by volume (pptv). The response time is 1 to 10 seconds.

  14. Sublimation-assisted graphene transfer technique based on small polyaromatic hydrocarbons

    Science.gov (United States)

    Chen, Mingguang; Stekovic, Dejan; Li, Wangxiang; Arkook, Bassim; Haddon, Robert C.; Bekyarova, Elena

    2017-06-01

    Advances in the chemical vapor deposition (CVD) growth of graphene have made this material a very attractive candidate for a number of applications including transparent conductors, electronics, optoeletronics, biomedical devices and energy storage. The CVD method requires transfer of graphene on a desired substrate and this is most commonly accomplished with polymers. The removal of polymer carriers is achieved with organic solvents or thermal treatment which makes this approach inappropriate for application to plastic thin films such as polyethylene terephthalate substrates. An ultraclean graphene transfer method under mild conditions is highly desired. In this article, we report a naphthalene-assisted graphene transfer technique which provides a reliable route to residue-free transfer of graphene to both hard and flexible substrates. The quality of the transferred graphene was characterized with atomic force microscopy, scanning electron microscopy, and Raman spectroscopy. Field effect transistors, based on the naphthalene-transfered graphene, were fabricated and characterized. This work has the potential to broaden the applications of CVD graphene in fields where ultraclean graphene and mild graphene transfer conditions are required.

  15. Analysis of the convective heat transfer of a fluid flow over an ...

    African Journals Online (AJOL)

    Convective heat transfer in a homogeneous fluid flow Reynolds number of order less than 2000 over an immersed axi-symmetrical body with curved surfaces has been investigated. The fluid flow in consideration was unsteady and of constant density .This study analysed the extent to which convective heat transfer has on ...

  16. Heat transfer augmentation of a car radiator using nanofluids

    Science.gov (United States)

    Hussein, Adnan M.; Bakar, R. A.; Kadirgama, K.; Sharma, K. V.

    2014-05-01

    The car radiator heat transfer enhancement by using TiO2 and SiO2 nanoparticles dispersed in water as a base fluid was studied experimentally. The test rig is setup as a car radiator with tubes and container. The range of Reynolds number and volume fraction are (250-1,750) and (1.0-2.5 %) respectively. Results showed that the heat transfer increases with increasing of nanofluid volume fraction. The experimental data is agreed with other investigator.

  17. Analytical analysis of heat transfer and pumping power of laminar nanofluid developing flow in microchannels

    International Nuclear Information System (INIS)

    Mital, Manu

    2013-01-01

    Thermal management issues are limiting barriers to high density electronics packaging and miniaturization. Liquid cooling using micro and mini channels is an attractive alternative to large and bulky aluminum or copper heat sinks. These channels can be integrated directly into a chip or a heat spreader, and cooling can be further enhanced using nanofluids (liquid solutions with dispersed nanometer-sized particles) due to their enhanced heat transfer effects reported in literature. The goals of this study are to evaluate heat transfer improvement of a nanofluid heat sink with developing laminar flow forced convection, taking into account the pumping power penalty. The phrase heat transfer enhancement ratio (HTR) is used to denote the ratio of average heat transfer coefficient of nanofluid to water at the same pumping power. The proposed model uses semi-empirical correlations to calculate nanofluid thermophysical properties. The predictions of the model are found to be in good agreement with experimental studies. The validated model is used to identify important design variables (Reynolds number, volume fraction and particle size) related to thermal and flow characteristics of the microchannel heat sink with nanofluids. Statistical analysis of the model showed that the volume fraction is the most significant factor impacting the HTR, followed by the particle diameter. The impact of the Reynolds number and other interaction terms is relatively weak. The HTR is maximized at smallest possible particle diameter (since smaller particles improve heat transfer but do not impact pumping power). Then, for a given Reynolds number, an optimal value of volume fraction can be obtained to maximize HTR. The overall aim is to present results that would be useful for understanding and optimal design of microchannel heat sinks with nanofluid flow. - Highlights: ► Validated model is used to investigate heat transfer and pumping power in nanofluids. ► Particles improve heat transfer

  18. Convective heat transfer behavior of the product slurry of the nitrate to ammonia and ceramic (NAC) process

    International Nuclear Information System (INIS)

    Muguercia, I.; Yang, G.; Ebadian, M.A.

    1995-01-01

    The Nitrate to Ammonia and Ceramic (NAC) process is an innovative technology for immobilizing liquid form low level radioactive waste (LLW). An experimental study has been conducted to measure the heat transfer properties of the NAC product slurry. The results indicate that the heat transfer coefficient for both concentration slurries is much higher than that of pure water, which may be due to the higher conductivity of the gibbsite powder. For the 20% concentration slurry, the heat transfer coefficient increased as the generalized Reynolds number and slurry temperature increased. The heat transfer coefficient of 40% is a function of the Reynolds number only. The test results also indicate that the thermal entrance region can be observed only when the generalized Reynolds number is smaller than 1,000. The correlation equation is also developed based on the experimental data in this paper

  19. Energetics and dynamics of droplet evaporation in high temperature intermediate Reynolds number flows

    Science.gov (United States)

    Renksizbulut, M.

    Nusselt Numbers and drag coefficients of single-component liquid droplets and solid spheres in high temperature, intermediate Reynolds Number flows were investigated. The evaporation of suspended water, Methanol and n-Heptane droplets were followed in laminar air streams up to 1059 K in temperature using a steady-state measurement technique. It is found that the dynamic blowing effect of evaporation causes large reductions in heat transfer rates, and that the film conditions constitute an appropriate reference state for the evaluation of thermophysical properties. The numerical results indicate that the blowing effect of evaporation on momentum transfer is to reduce friction drag very significantly but at the same time increase pressure drag by almost an equal amount; the net effect on the total drag force being only a marginal reduction. In all cases, it is found that thermophysical property variations play a very dominant role in reducing the drag forces acting on cold particles. Results are analysed and a correlation for stagnation-point heat transfer is also presented.

  20. Interfacility transfers for US ischemic stroke and TIA, 2006-2014.

    Science.gov (United States)

    George, Benjamin P; Doyle, Sara J; Albert, George P; Busza, Ania; Holloway, Robert G; Sheth, Kevin N; Kelly, Adam G

    2018-05-01

    To investigate changes in emergency department (ED) transfers for ischemic stroke (IS) and TIA. We performed a retrospective observational study using the US Nationwide Emergency Department Sample to identify changes in interfacility ED transfers for IS and TIA from the perspective of the transferring ED (2006-2014). We calculated nationwide transfer rates and individual ED transfer rates for IS/TIA by diagnosis and hospital characteristics. Hospital-level fractional logistic regression examined changes in transfer rates over time. The population-estimated number of transfers for IS/TIA increased from 22,576 patient visits in 2006 to 54,485 patient visits in 2014 ( p trend TIA transfer increased from 3.4 (95% confidence interval [CI] 3.0-3.8) in 2006 to 7.6 (95% CI 7.2-7.9) in 2014 per 100 ED visits. Among individual EDs, mean transfer rates for IS/TIA increased from 8.2 per 100 ED visits (median 2.0, interquartile range [IQR] 0-10.2) to 19.4 per 100 ED visits (median 8.1, IQR 1.1-33.3) (2006-2014) ( p trend TIA increased threefold (2006-2014). Interfacility ED transfers for IS/TIA more than doubled from 2006 to 2014. Further work should determine the necessity of IS/TIA transfers and seek to optimize the US stroke care system. © 2018 American Academy of Neurology.

  1. Heat transfer entropy resistance for the analyses of two-stream heat exchangers and two-stream heat exchanger networks

    International Nuclear Information System (INIS)

    Cheng, XueTao; Liang, XinGang

    2013-01-01

    The entropy generation minimization method is often used to analyze heat transfer processes from the thermodynamic viewpoint. In this paper, we analyze common heat transfer processes with the concept of entropy generation, and propose the concept of heat transfer entropy resistance. It is found that smaller heat transfer entropy resistance leads to smaller equivalent thermodynamic force difference with prescribed heat transfer rate and larger heat transfer rate with prescribed equivalent thermodynamic force difference. With the concept of heat transfer entropy resistance, the performance of two-stream heat exchangers (THEs) and two-stream heat exchanger networks (THENs) is analyzed. For the cases discussed in this paper, it is found that smaller heat transfer entropy resistance always leads to better heat transfer performance for THEs and THENs, while smaller values of the entropy generation, entropy generation numbers and revised entropy generation number do not always. -- Highlights: • The concept of entropy resistance is defined. • The minimum entropy resistance principle is developed. • Smaller entropy resistance leads to better heat transfer

  2. Heat transfer in rotating serpentine passages with trips normal to the flow

    Science.gov (United States)

    Wagner, J. H.; Johnson, B. V.; Graziani, R. A.; Yeh, F. C.

    1991-01-01

    Experiments were conducted to determine the effects of buoyancy and Coriolis forces on heat transfer in turbine blade internal coolant passages. The experiments were conducted with a large scale, multipass, heat transfer model with both radially inward and outward flow. Trip strips on the leading and trailing surfaces of the radial coolant passages were used to produce the rough walls. An analysis of the governing flow equations showed that four parameters influence the heat transfer in rotating passages: coolant-to-wall temperature ratio, Rossby number, Reynolds number, and radius-to-passage hydraulic diameter ratio. The first three of these four parameters were varied over ranges which are typical of advanced gas turbine engine operating conditions. Results were correlated and compared to previous results from stationary and rotating similar models with trip strips. The heat transfer coefficients on surfaces, where the heat increased with rotation and buoyancy, varied by as much as a factor of four. Maximum values of the heat transfer coefficients with high rotation were only slightly above the highest levels obtained with the smooth wall model. The heat transfer coefficients on surfaces, where the heat transfer decreased with rotation, varied by as much as a factor of three due to rotation and buoyancy. It was concluded that both Coriolis and buoyancy effects must be considered in turbine blade cooling designs with trip strips and that the effects of rotation were markedly different depending upon the flow direction.

  3. The investigation of groove geometry effect on heat transfer for internally grooved tubes

    International Nuclear Information System (INIS)

    Bilen, Kadir; Cetin, Murat; Gul, Hasan; Balta, Tuba

    2009-01-01

    An experimental study of surface heat transfer and friction characteristics of a fully developed turbulent air flow in different grooved tubes is reported. Tests were performed for Reynolds number range 10,000-38,000 and for different geometric groove shapes (circular, trapezoidal and rectangular). The ratio of tube length-to-diameter is 33. Among the grooved tubes, heat transfer enhancement is obtained up to 63% for circular groove, 58% for trapezoidal groove and 47% for rectangular groove, in comparison with the smooth tube at the highest Reynolds number (Re = 38,000). Correlations of heat transfer and friction coefficient were obtained for different grooved tubes. In evaluation of thermal performance, it is seen that the grooved tubes are thermodynamically advantageous (Ns, a < 1) up to Re = 30,000 for circular and trapezoidal grooves and up to Re = 28,000 for rectangular grooves. It is observed that there is an optimum value of the entropy generation number at about Re = 17,000 for all investigated grooves

  4. Heat transfer characteristics in a channel fitted with zigzag-cut baffles

    Energy Technology Data Exchange (ETDEWEB)

    Nuntadusit, Chayut; Waehayee, Makatar [Prince of Songkla University, Hat Yai (Thailand); Piya, Ibroheng [Princess of Naradhiwas University, Naradhiwas (Thailand); Eiamsa-ard, Smith [Mahanakorn University of Technology, Bangkok (Thailand)

    2015-06-15

    The heat transfer characteristics were experimentally investigated in a wind channel with different types of cut baffles for heat transfer augmentation. The aim of using zigzag-cut baffles is to create 3D flow structure behind the baffles instead of transverse vortex flow leading to enhance heat transfer. In this study, 4 types of baffles were examined; conventional baffle (Rectangular cross section with no cut), baffle with rectangular zigzag-cut, baffle with triangle zigzag-cut at 45 degree and at 90 degree. All of the baffles have the same height at H = 15 mm and flow blocking area. In the experiment, the row of seven baffles was attached on the inner surface of wind channel. The effects of pitch spacing length were also investigated at baffle pitch distance P/H = 4, 6 and 8 (H: Height of baffle). The experiments were performed at constant Reynolds number (Re) of 20000. The heat transfer patterns via Thermochromic liquid crystal sheet were visualized and recorded with a digital camera. The recorded images were then analyzed with image processing technique to obtain the distribution of Nusselt number. The flow characteristics pass through the baffles were also numerically studied with CFD simulation for understanding the heat transfer characteristics. The friction losses were measured to evaluate the thermal performance for each baffle. It was found that the baffle with rectangular zigzag-cut gives the best thermal performance due to heat transfer augmentation in upstream and downstream side of baffle.

  5. Heat transfer from the roughened surface of gas cooled fast breeder reactor fuel element

    International Nuclear Information System (INIS)

    Tang, I.M.

    1979-01-01

    The temperature distributions and the augmentation of heat transfer performance by artificial roughening of a gas cooled fast breeder reactor (GCFR) fuel rod cladding are studied. Numerical solutions are based on the axisymmetric assumption for a two-dimensional model for one rib pitch of axial distance. The local and axial clad temperature distributions are obtained for both the rectangular and ramp rib roughened surface geometries. The transformation of experimentally measured convective heat transfer coefficients, in terms of Stanton number, into GCFR values is studied. In addition, the heat transfer performance of a GCFR fuel rod cladding roughened surface design is evaluated. Approximate analytical solution for correlating an average Stanton number is also obtained and satisfactorily compared with the corresponding numerical result for a GCFR design. The analytical correlation is useful in assessing roughened surface heat transfer performance in scoping studies and conceptual design

  6. Effect of process parameters on coating composition of cathodic ...

    Indian Academy of Sciences (India)

    1Department of Mining and Metallurgical Engineering, Amirkabir University of Technology, ... The effect of some process parameters such as electrical conductivity, volume and temperature of ... the subject of numerous studies and found industrial applica- .... tion of positive ions and transfer of their kinetic energy to the.

  7. Ruthenium complexes of chelating amido-functionalized N ...

    Indian Academy of Sciences (India)

    tric transfer hydrogenation reactions,5 metathesis,6 olefin epoxidation reactions,7 hydroformylation reac- tions,8 electrooxidation reactions,9 facial cycloaddition of azides with terminal alkynes regioselectively10 etc. to name a few. The phenomenal success of the N-heterocyclic car- benes in homogeneous catalysis, has ...

  8. Comparisons of power transfer functions and flow transfer functions

    International Nuclear Information System (INIS)

    Grimm, K.N.; Meneghetti, D.

    1987-01-01

    Transfer functions may be used to calculate component feedbacks or temperature increments by convolution of the transfer function with the appropriate fractional change in system-quantity. Power-change transfer functions have been reported. The corresponding flow transfer functions for this case, and comparison with the power transfer functions, are reported here. Results of feedback simulation of ramped flow transients using flow transfer functions are also described

  9. Medical Surveillance Monthly Report (MSMR). Volume 18, Number 08, August 2011

    Science.gov (United States)

    2011-08-01

    continue, and STI preven- tion eff orts should be reinforced. R E F E R E N C E S 1. Kuper H, Ye W, Broome U, et al. The risk of liver and bile duct ...hepatitis A virus (HAV) causes infl ammatory liver disease (hepatitis) in aff ected individu- als. Th e virus is spread through fecal-oral...ammatory liver disease (hepatitis B) in aff ected individ- uals. Th e virus is spread by percutaneous or mucous membrane exposure to infected blood or

  10. Pool-Boiling Heat-Transfer Enhancement on Cylindrical Surfaces with Hybrid Wettable Patterns.

    Science.gov (United States)

    Kumar C S, Sujith; Chang, Yao Wen; Chen, Ping-Hei

    2017-04-10

    In this study, pool-boiling heat-transfer experiments were performed to investigate the effect of the number of interlines and the orientation of the hybrid wettable pattern. Hybrid wettable patterns were produced by coating superhydrophilic SiO2 on a masked, hydrophobic, cylindrical copper surface. Using de-ionized (DI) water as the working fluid, pool-boiling heat-transfer studies were conducted on the different surface-treated copper cylinders of a 25-mm diameter and a 40-mm length. The experimental results showed that the number of interlines and the orientation of the hybrid wettable pattern influenced the wall superheat and the HTC. By increasing the number of interlines, the HTC was enhanced when compared to the plain surface. Images obtained from the charge-coupled device (CCD) camera indicated that more bubbles formed on the interlines as compared to other parts. The hybrid wettable pattern with the lowermost section being hydrophobic gave the best heat-transfer coefficient (HTC). The experimental results indicated that the bubble dynamics of the surface is an important factor that determines the nucleate boiling.

  11. Enhance heat transfer in the channel with V-shaped wavy lower plate using liquid nanofluids

    Directory of Open Access Journals (Sweden)

    Azher M. Abed

    2015-03-01

    Full Text Available The heat transfer and flow characteristics in corrugated with V-shape lower plate using nanofluids are numerically studied. The computations are performed on uniform heat flux over a range of Reynolds number (Re 8000–20,000. The governing equations are numerically solved in the domain by a finite volume method (FVM using the k–ε standard turbulent model. Studies are carried out for different types of nanoparticles Al2O3,CuO, SiO2 and ZnO with different volume fractions in the range of 0–4%. Three different types of base fluid (water, glycerin, ethylene glycol are also examined. Results indicated that the average Nusselt number for nanofluids is greater than that of the base liquid. The SiO2 nanofluid yields the best heat transfer enhancement among all other type of nanofluids. Heat transfer enhancement increase with increases the volumetric concentration, but it is accompanied by increasing pressure drop values. Moreover, the average Nusselt number increases with an increase in Reynolds number and volume concentration. The SiO2–glycerin nanofluid has the highest Nusselt number compared with other base fluids. The present study shows that these V-shaped wavy channels have advantages by using nanofluids and thus serve as promising candidates for incorporation into efficient heat transfer devices.

  12. Forced convection heat transfer of steam in a square ribbed channel

    Energy Technology Data Exchange (ETDEWEB)

    Liu, Jiazeng; Gao, Jianmin; Gao, Tieyu [Xi' an Jiaotong University, Shaanxi (China)

    2012-04-15

    An experimental study of heat transfer characteristics of steam in a square channel (simulating a gas turbine blade cooling passage) with two opposite surfaces roughened by 60 deg parallel ribs was performed. The ranges of key governing parameters were: Reynolds numbers (Re) based on the channel hydraulic diameter (30000-140000), entry gauge pressure (0.2Mpa-0.5Mpa), heat flux of heat transfer surface area (5kWm{sup -2}-20kWm{sup -2}), and steam superheat (13 .deg. C-51 .deg. C). The test channel length was 1000mm, while the rib spacing (p/e) was 10, and the ratio of rib height (e) to hydraulic diameter (D) was 0.048. The test channel was heated by passing current through stainless steel walls instrumented with thermocouples. The local heat transfer coefficients on the ribbed wall from the channel entrance to the fully developed regions were measured. The semi-empirical correlation was fitted out by using the average Nusselt numbers in the fully developed region to cover the range of Reynolds number. The correlation can be used in the design of new generation of gas turbine blade cooled by steam.

  13. Technology Transfer Issues and a New Technology Transfer Model

    Science.gov (United States)

    Choi, Hee Jun

    2009-01-01

    The following are major issues that should be considered for efficient and effective technology transfer: conceptions of technology, technological activity and transfer, communication channels, factors affecting transfer, and models of transfer. In particular, a well-developed model of technology transfer could be used as a framework for…

  14. BTP: a Block Transfer Protocol for Delay Tolerant Wireless Sensor Networks

    DEFF Research Database (Denmark)

    Hansen, Morten Tranberg; Biagioni, Edoardo S.

    2010-01-01

    Wireless sensor networks that are energy-constrained must transmit and receive data as efficiently as possible.  If the transmission is delay tolerant, transferring blocks of accumulated data can be more efficient than transferring each sensed measurement as soon as it is available.  This paper...... proposes a Block Transfer Protocol (BTP) designed for efficient and reliable transmission in wireless sensor networks.  BTP reduces the time it takes to reliably transfer a block of packets compared to conventional link layer protocols, by piggybacking in data packets information about the transfer......, minimizing the number of acknowledgements needed for reliable transmission, and reducing the need for timeouts, which can substantially slow down communication when transmission is unreliable.  In addition, BTP improves reliability by handling false positive acknowledgements and by letting the receivers...

  15. Couette flow regimes with heat transfer in rarefied gas

    Energy Technology Data Exchange (ETDEWEB)

    Abramov, A. A., E-mail: alabr54@mail.ru; Butkovskii, A. V., E-mail: albutkov@mail.ru [Zhukovski Central Aerohydrodynamics Institute (Russian Federation)

    2013-06-15

    Based on numerical solution of the Boltzmann equation by direct statistic simulation, the Couette flow with heat transfer is studied in a broad range of ratios of plate temperatures and Mach numbers of a moving plate. Flow regime classification by the form of the dependences of the energy flux and friction stress on the Knudsen number Kn is proposed. These dependences can be simultaneously monotonic and nonmonotonic and have maxima. Situations are possible in which the dependence of the energy flux transferred to a plate on Kn has a minimum, while the dependence of the friction stress is monotonic or even has a maximum. Also, regimes exist in which the dependence of the energy flux on Kn has a maximum, while the dependence of the friction stress is monotonic, and vice versa.

  16. Heat transfer and flow analysis of nanofluid flow between parallel plates in presence of variable magnetic field using HPM

    Energy Technology Data Exchange (ETDEWEB)

    Hatami, M., E-mail: m.hatami@tue.nl [Esfarayen University of Technology, Mechanical Engineering Department, Esfarayen, North Khorasan (Iran, Islamic Republic of); Jing, Dengwei; Song, Dongxing [International Research Center for Renewable Energy, State Key Laboratory of Multiphase Flow in Power Engineering, Xi’an Jiaotong University, Xi' an 710049 (China); Sheikholeslami, M.; Ganji, D.D. [Department of Mechanical Engineering, Babol University of Technology, Babol (Iran, Islamic Republic of)

    2015-12-15

    In this study, effect of variable magnetic field on nanofluid flow and heat transfer analysis between two parallel disks is investigated. By using the appropriate transformation for the velocity, temperature and concentration, the basic equations governing the flow, heat and mass transfer were reduced to a set of ordinary differential equations. These equations subjected to the associated boundary conditions were solved analytically using Homotopy perturbation method. The analytical investigation is carried out for different governing parameters namely: squeeze number, suction parameter, Hartmann number, Brownian motion parameter, thermophrotic parameter and Lewis number. Results show that Nusselt number has direct relationship with Brownian motion parameter and thermophrotic parameter but it is a decreasing function of squeeze number, suction parameter, Hartmann number and Lewis number. - Highlights: • Heat and mass transfer of nanofluids between parallel plates investigated. • A variable magnetic field is applied on the plates. • Governing equations are solved analytically. • Effects of physical parameters are discussed on the Nusselt number.

  17. Heat transfer and flow analysis of nanofluid flow between parallel plates in presence of variable magnetic field using HPM

    International Nuclear Information System (INIS)

    Hatami, M.; Jing, Dengwei; Song, Dongxing; Sheikholeslami, M.; Ganji, D.D.

    2015-01-01

    In this study, effect of variable magnetic field on nanofluid flow and heat transfer analysis between two parallel disks is investigated. By using the appropriate transformation for the velocity, temperature and concentration, the basic equations governing the flow, heat and mass transfer were reduced to a set of ordinary differential equations. These equations subjected to the associated boundary conditions were solved analytically using Homotopy perturbation method. The analytical investigation is carried out for different governing parameters namely: squeeze number, suction parameter, Hartmann number, Brownian motion parameter, thermophrotic parameter and Lewis number. Results show that Nusselt number has direct relationship with Brownian motion parameter and thermophrotic parameter but it is a decreasing function of squeeze number, suction parameter, Hartmann number and Lewis number. - Highlights: • Heat and mass transfer of nanofluids between parallel plates investigated. • A variable magnetic field is applied on the plates. • Governing equations are solved analytically. • Effects of physical parameters are discussed on the Nusselt number

  18. Impinging jets - a short review on strategies for heat transfer enhancement

    Science.gov (United States)

    Nastase, Ilinca; Bode, Florin

    2018-02-01

    In industrial applications, heat and mass transfer can be considerably increased using impinging jets. A large number of flow phenomena will be generated by the impinging flow, such as: large scale structures, large curvature involving strong shear and normal stresses, stagnation in the wall boundary layers, heat transfer with the impinged wall, small scale turbulent mixing. All these phenomena are highly unsteady and even if nowadays a substantial number of studies in the literature are dedicated, the impinging jets are still not fully understood due to the highly unsteady nature and more over due to great difficulty of performing detailed numerical and experimental investigations.

  19. Turbulent boundary layer heat transfer experiments: Convex curvature effects including introduction and recovery

    Science.gov (United States)

    Simon, T. W.; Moffat, R. J.; Johnston, J. P.; Kays, W. M.

    1982-01-01

    Measurements were made of the heat transfer rate through turbulent and transitional boundary layers on an isothermal, convexly curved wall and downstream flat plate. The effect of convex curvature on the fully turbulent boundary layer was a reduction of the local Stanton numbers 20% to 50% below those predicted for a flat wall under the same circumstances. The recovery of the heat transfer rates on the downstream flat wall was extremely slow. After 60 cm of recovery length, the Stanton number was still typically 15% to 20% below the flat wall predicted value. Various effects important in the modeling of curved flows were studied separately. These are: the effect of initial boundary layer thickness, the effect of freestream velocity, the effect of freestream acceleration, the effect of unheated starting length, and the effect of the maturity of the boundary layer. An existing curvature prediction model was tested against this broad heat transfer data base to determine where it could appropriately be used for heat transfer predictions.

  20. Local heat transfer coefficient for turbulent flow in rod bundles

    International Nuclear Information System (INIS)

    Fernandez y Fernandez, E.; Carajilescov, P.

    1983-03-01

    The correlation of the local heat transfer coefficients in heated triangular array of rod bundles, in terms of the flow hydrodynamic parameters is presented. The analysis is made first for fluid with Prandtl numbers varying from moderated to high (Pr>0.2), and then extended to fluids with low Prandtl numbers (0.004 [pt

  1. The momentum transfer dependence of double excitations of helium

    International Nuclear Information System (INIS)

    Zhu Lin-Fan; Liu Xiao-Jing; Yuan Zhen-Sheng; Xu Ke-Zun

    2005-01-01

    The momentum transfer dependence of fundamental double excitation processes of helium is studied with high resolution and fast electron impact. It elucidates the dynamical correlations, in terms of internal correlation quantum numbers, K, T and A. The Fano profile parameters q, f a , ρ 2 , f and S of doubly excited states 2 (1,0) 2 +1se , 2 (0,1) 2 +1p0 and 2 (1,0) 2 +1De are determined as functions of momentum transfer K 2 . (author)

  2. Recovery Temperature, Transition, and Heat Transfer Measurements at Mach 5

    Science.gov (United States)

    Brinich, Paul F.

    1961-01-01

    Schlieren, recovery temperature, and heat-transfer measurements were made on a hollow cylinder and a cone with axes alined parallel to the stream. Both the cone and cylinder were equipped with various bluntnesses, and the tests covered a Reynolds number range up to 20 x 10(exp 6) at a free-stream Mach number of 4.95 and wall to free-stream temperature ratios from 1.8 to 5.2 (adiabatic). A substantial transition delay due to bluntness was found for both the cylinder and the cone. For the present tests (Mach 4.95), transition was delayed by a factor of 3 on the cylinder and about 2 on the cone, these delays being somewhat larger than those observed in earlier tests at Mach 3.1. Heat-transfer tests on the cylinder showed only slight effects of wall temperature level on transition location; this is to be contrasted to the large transition delays observed on conical-type bodies at low surface temperatures at Mach 3.1. The schlieren and the peak-recovery-temperature methods of detecting transition were compared with the heat-transfer results. The comparison showed that the first two methods identified a transition point which occurred just beyond the end of the laminar run as seen in the heat-transfer data.

  3. Two-Dimensional Variable Property Conjugate Heat Transfer Simulation of Nanofluids in Microchannels

    International Nuclear Information System (INIS)

    Ramiar, A.; Ranjbar, A.A.

    2013-01-01

    Laminar two-dimensional forced convective heat transfer of CuO-water and Al 2 O 3 -water nanofluids in a horizontal microchannel has been studied numerically, considering axial conduction effects in both solid and liquid regions and variable thermal conductivity and dynamic viscosity. The results show that using nanoparticles with higher thermal conductivities will intensify enhancement of heat transfer characteristics and slightly increases shear stress on the wall. The obtained results show more steep changes in Nusselt number for lower diameters and also higher values of Nusselt number by decreasing the diameter of nanoparticles. Also, by utilizing conduction number as the criterion, it was concluded from the results that adding nanoparticles will intensify the axial conduction effect in the geometry considered.

  4. Mass and Heat Transfer in Ion-Exchange Membranes Applicable to Solid Polymer Fuel Cells

    Energy Technology Data Exchange (ETDEWEB)

    Otteroey, M

    1996-04-01

    In this doctoral thesis, an improved emf method for determination of transference numbers of two counter ions in ion-exchange membranes is presented. Transference numbers were obtained as a continuous function of the composition. The method avoids problems with diffusion by using a stack of membranes. Water transference coefficients in ion-exchange membranes is discussed and reversible and irreversible water transfer is studied by emf methods. Efforts were made to get data relevant to the solid polymer fuel cell. The results support the findings of other researchers that the reversible water transfer is lower than earlier predicted. A chapter on the conductivity of ion-exchange membranes establishes a method to separate the very thin liquid layers surrounding the membranes in a stack. Using the method it was found that the conductivity is obtained with high accuracy and that the liquid layer in a membrane stack can contribute significantly to the total measured resistance. A four point impedance method was tested to measure the conductivity of membranes under fuel cell conditions. Finally, there is a discussion of reversible heat effects and heat transfer in ion-exchange membranes. 155 refs., 45 figs., 13 tabs.

  5. State transfer in highly connected networks and a quantum Babinet principle

    Science.gov (United States)

    Tsomokos, D. I.; Plenio, M. B.; de Vega, I.; Huelga, S. F.

    2008-12-01

    The transfer of a quantum state between distant nodes in two-dimensional networks is considered. The fidelity of state transfer is calculated as a function of the number of interactions in networks that are described by regular graphs. It is shown that perfect state transfer is achieved in a network of size N , whose structure is that of an (N/2) -cross polytope graph, if N is a multiple of 4 . The result is reminiscent of the Babinet principle of classical optics. A quantum Babinet principle is derived, which allows for the identification of complementary graphs leading to the same fidelity of state transfer, in analogy with complementary screens providing identical diffraction patterns.

  6. Superconducting bearings for a LHe transfer pump

    Science.gov (United States)

    Kloeppel, S.; Muehsig, C.; Funke, T.; Haberstroh, C.; Hesse, U.; Lindackers, D.; Zielke, S.; Sass, P.; Schoendube, R.

    2017-12-01

    Superconducting bearings are used in a number of applications for high speed, low loss suspension. Most of these applications suspend a warm shaft and thus require continuous cooling, which leads to additional power consumption. Therefore, it seems advantageous to use these bearings in systems that are inherently cold. One respective application is a submerged pump for the transfer of liquid helium into mobile dewars. Centrifugal pumps require tight sealing clearances, especially for low viscosity fluids and small sizes. This paper covers the design and qualification of superconducting YBCO bearings for a laboratory sized liquid helium transfer pump. Emphasis is given to the axial positioning, which strongly influences the achievable volumetric efficiency.

  7. Multistate cohort models with proportional transfer rates

    DEFF Research Database (Denmark)

    Schoen, Robert; Canudas-Romo, Vladimir

    2006-01-01

    of transfer rates. The two living state case and hierarchical multistate models with any number of living states are analyzed in detail. Applying our approach to 1997 U.S. fertility data, we find that observed rates of parity progression are roughly proportional over age. Our proportional transfer rate...... approach provides trajectories by parity state and facilitates analyses of the implications of changes in parity rate levels and patterns. More women complete childbearing at parity 2 than at any other parity, and parity 2 would be the modal parity in models with total fertility rates (TFRs) of 1.40 to 2......We present a new, broadly applicable approach to summarizing the behavior of a cohort as it moves through a variety of statuses (or states). The approach is based on the assumption that all rates of transfer maintain a constant ratio to one another over age. We present closed-form expressions...

  8. Efeito da adição de diferentes fontes de cálcio no movimento de cátions em colunas de solo Effect of several calcium sources on cation leaching using soil columns

    Directory of Open Access Journals (Sweden)

    I.C. de Maria

    1993-05-01

    Full Text Available No estudo realizado em colunas de solo montadas em laboratório, procurou-se avaliar o movimento do cálcio, e de outros cátions, após aplicação de calcário agrícola, gesso, calcário calcinado e uma mistura de calcário agrícola e gesso, comparados com um tratamento testemunha, em dois latossolos vermelho escuros de texturas diferentes: média e argilosa. Utilizaram-se colunas de PVC, com 5cm de diâmetro e 45cm de altura, e aplicaram-se em cada coluna 1,8 litros de água, parcelados em quatro vezes. Determinaram-se os cátions trocáveis presentes na água percolada e, no final do experimento, em cinco profundidades de cada solo. Os resultados mostraram que nos tratamentos gesso e calcário mais gesso as quantidades de Ca2+, Mg2+, K+ e Al3+ na solução percolada foram maiores, enquanto que os tratamentos calcário agrícola e calcário calcinado não promoveram perdas significativas de cátions. As maiores perdas ocorreram na primeira percolação no solo de textura média e na segunda no solo de textura argilosa. O gesso não modificou o pH dos solos, mas reduziu teores de bases no solo argiloso, enquanto que os calcários corrigiram o solo apenas próximo à camada de incorporação.Soil columns under controlled conditions were used to determine the movement of calcium and other cations after the application of lime, calcium oxide, gypsum and a mixture of Ume and gypsum, compared with a control treatment. Two Oxisols with different textures were used: clayey and silty. Rigid polyvinyl chloride (PVC columns (length, 45cm; diam, 5cm were used, applying 1.8 1 of water to each divided into four applications. Exchangeable cations were determined in the drainage water in 4 periods and in 5 dephts of the soil columns at the end of the experiment. The results showed that losses of Ca2+, Mg2+, K+ and A1(3+, were higher in the treatments with gypsum and lime plus gypsum. Amendments h'ke lime and calcium oxide did not promote significant losses

  9. Polymeric film application for phase change heat transfer

    Science.gov (United States)

    Bart, Hans-Jörg; Dreiser, Christian

    2018-06-01

    The paper gives a concise review on polymer film heat exchangers (PFHX) with a focus on polyether ether ketone (PEEK) foil as heat transfer element, mechanically supported by a grid structure. In order to promote PFHX applications, heat transfer performance and wetting behavior are studied in detail. Surface modifications to improve wetting are discussed and correlations are presented for critical Reynolds numbers to sustain a stable liquid film. Scaling phenomena related to surface properties and easily adaptable cleaning-in-place (CIP) procedures are further content. The contribution of the foil thickness and material selection on thermal performance is quantified and a correlation for enhanced aqueous film heat transfer for the grid supported PFHX is given. The basic research results and the design criteria enable early stage material selection and conceptual apparatus design.

  10. Polymeric film application for phase change heat transfer

    Science.gov (United States)

    Bart, Hans-Jörg; Dreiser, Christian

    2018-01-01

    The paper gives a concise review on polymer film heat exchangers (PFHX) with a focus on polyether ether ketone (PEEK) foil as heat transfer element, mechanically supported by a grid structure. In order to promote PFHX applications, heat transfer performance and wetting behavior are studied in detail. Surface modifications to improve wetting are discussed and correlations are presented for critical Reynolds numbers to sustain a stable liquid film. Scaling phenomena related to surface properties and easily adaptable cleaning-in-place (CIP) procedures are further content. The contribution of the foil thickness and material selection on thermal performance is quantified and a correlation for enhanced aqueous film heat transfer for the grid supported PFHX is given. The basic research results and the design criteria enable early stage material selection and conceptual apparatus design.

  11. Numerical Investigation of the Fully-Developed Periodic Flow Field for Optimal Heat Transfer in Spirally Corrugated Tubes

    DEFF Research Database (Denmark)

    Hærvig, Jakob; Condra, Thomas Joseph; Sørensen, Kim

    Even though the corrugated tube is a widely used technique to enhance transfer heat, the exact heat transfer enhancing mechanism remains relatively un-documented. Most studies attribute the favourable heat transfer characteristics to a swirling flow being present at higher corrugation....... In this study, a systematic approach relying on Computational Fluid Dynamics (CFD) is used to study and compare the heat transfer characteristics with the detailed flow field in the spirally corrugated tubes. By comparing the flow in 12 different spirally corrugated tubes at a fixed Reynolds number of 5000......, this study compares the flow field with the surface averaged Nusselt number to gain valuable insight into which flow phenomena causes favourable heat transfer characteristics. While the flow at low corrugations approximates the non-corrugated tube, higher corrugations of h/D creates a significant tangential...

  12. MHD mixed convection flow and heat transfer in an open C-shaped enclosure using water-copper oxide nanofluid

    Science.gov (United States)

    Armaghani, T.; Esmaeili, H.; Mohammadpoor, Y. A.; Pop, I.

    2018-01-01

    In this paper, the steady mixed convection flow and heat transfer of water-copper oxide nanofluid in an open C-shaped enclosure is investigated numerically. The enclosure is under constant magnetic field. Effects of Richardson number, magnetic and nanofluid volume fraction parameters are studied and discussed. The nanofluid with a cold temperature of T C and a velocity of u c enters the enclosure from the top right corner and exits from the bottom right corner. The vertical wall of the left side is subjected to a hot and constant temperature T h . Also, other walls are insulated. It is found that the heat transfer is increased via increasing the Hartmann and Reynolds numbers. For low Reynolds numbers, the enhances of the Hartman number leads to a slightly increases of the average Nusselt number, but for high Reynolds numbers, the average Nusselt number gets an ascending trend and the increase in the Hartmann number shows its effect more pronounced. Also, with increase in Ri, the effect of nanofluid on the heat transfer increases. Due to practical impotence, the study of mixed convection heat transfer in enclosures and various shaped of cavities has attracted remarkable attentions in the past few decades. Significant applications of the mixed convection flow can be found in atmospheric flows, solar energy storage, heat exchangers, lubrication technology, drying technologies, cooling of the electronic devices, etc. The present results are original and new for the problem of MHD mixed convection flow and heat transfer in an open C-shaped enclosure using water-copper oxide nanofluid. Comparison of the obtained results with those from the open literature (Mahmoodi et al. [24]) is acceptable.

  13. The influence of the Reynolds number on the passive scalar field in a turbulent channel flow

    International Nuclear Information System (INIS)

    Bergant, R.; Tiselj, I.

    2006-01-01

    Many different turbulent heat transfer calculations based on a very accurate pseudo-spectral code have been performed in the last 5 years. The main effort was to investigate temperature fields at different Prandtl numbers, ranging from Pr=0.7 to Pr=200. For the treatment of the turbulent heat transfer at low Reynolds and high Prandtl numbers, a Direct Numerical Simulation (DNS) was used for structures of the turbulent motions. DNS describes all the length and time scales for velocity and temperature fields. When Prandtl number is higher than 1, the smallest temperature scales are approximately inversely proportional to the square root of Prandtl number. For the smallest temperature scales, not resolved in the high Prandtl number simulation, a spectral turbulent diffusivity model was used in the pseudo-spectral computer code for DNS. A comparison of our temperature profiles obtained at friction Reynolds number Reτ=150 and Pr=100 and Pr=200 to the mean profiles of Calmet and Magnaudet, Wang and Lu and Kader's correlation that was built as a best fit of various experimental data at higher Reynolds numbers, revealed the discrepancies up to 10%. The most important reason for the differences was in different Reynolds numbers, which were much lower in our simulations than in the above mentioned LES simulations and experiments. The similar phenomenon as in our case can be found when DNS of Kawamura and Kader's results at Reτ=180 and Pr=0.71 were compared. On the other hand, the comparisons to the Kader's correlation at higher Reynolds numbers (i.e. DNS of Kawamura at Reτ=640 and DNS of Tiselj at Reτ=424) show that the differences are within statistical uncertainties. It follows that the heat transfer depends much more on Reynolds number in the range of low Reynolds numbers than in the range of high Reynolds numbers. (author)

  14. Effect of longitudinal pitch on the convection heat transfer from the tube banks in crossflow

    International Nuclear Information System (INIS)

    Kim, Tae-Wan; Hwang, Dae-Hyun; Lee, Chung-Chan; Kim, Keung-Ku

    2006-01-01

    When the tube banks in the heat exchanger are compactly designed, it is known that the average heat transfer coefficient is reduced compared with that of widely-designed tube banks. Thus, the heat transfer rate calculated by the usual heat transfer correlation will be over-estimated more than the actual one and the heat exchanger with such a design will have insufficient heat transfer capacity. Therefore, it is necessary to evaluate the effect of longitudinal and transverse pitches on the heat transfer, quantitatively. Zukauskas correlated various experimental data for aligned and staggered arrangements of tube banks as a function of Reynolds number and Prandtl number. In addition, Grimison suggested the heat transfer correlation for tube banks whose coefficients are determined by geometrical characteristics. However, Zukauskas correlation does not consider the effect of longitudinal and transverse pitches in the case of the aligned arrangement and Grimison correlation can only be used for specific geometrical arrangement such as 1.25X1.25, 1.50X1.50, and so on. Therefore, additional correlation for a heat transfer coefficient which covers a wide range of a pitch is required to predict the heat transfer rate appropriately. In this study, as a first step, the effect of a longitudinal pitch on the heat transfer is investigated for aligned tube banks by using CFD (Computational Fluid Dynamics) code

  15. Heat transfer education : Keeping it relevant and vibrant.

    Energy Technology Data Exchange (ETDEWEB)

    Khounsary, A. M.

    1998-08-14

    The motivation for a fresh look at heat transfer education, both in content and in methodology, is generated by a number of trends in engineering practice. These include the increasing demand for engineers with interdisciplinary skills, rapid integration of technology, emergence of computerized and interactive problem-solving tools, shortening time of concept-to-market, availability of new technologies, and an increasing number of new or redesigned products and processes in which heat transfer plays a part. Examination of heat transfer education in this context can be aided by considering the changes, both qualitatively and quantitatively, in the student, educator, and researcher populations, employment opportunities, in the needs of corporations, government, industry, and universities, and in the relevant technical problems and issues of the day. Such an overview provides the necessary background for charting a response to the difficult question of how to maintain excellence and continuity in heat transfer education in the face of rapid, widespread, and complex changes. The present paper addresses how to make heat transfer education more relevant and stimulating. This paper represents a written summary of a 1996 panel discussion at the 1996 International Mechanical Engineering Conference and Exhibition (IMECE) of the American Society of Mechanical Engineers (ASME) in Atlanta, Georgia, on ''Heat Transfer Education: Keeping it Relevant and Vibrant,'' with significant expansion and amplification by the authors and the panelists in the 1997-98 period. The consensus of the participants is that the steps necessary to ensure the desired outcome in heat transfer education should include: (1) a better understanding of the interaction between the student, course content, and market needs; (2) an appreciation of the need in multidisciplinary industrial environments for engineers trained with a broad background: (3) a revision of the introductory heat

  16. Experimental study of curvature effects on jet impingement heat transfer on concave surfaces

    Directory of Open Access Journals (Sweden)

    Ying Zhou

    2017-04-01

    Full Text Available Experimental study of the local and average heat transfer characteristics of a single round jet impinging on the concave surfaces was conducted in this work to gain in-depth knowledge of the curvature effects. The experiments were conducted by employing a piccolo tube with one single jet hole over a wide range of parameters: jet Reynolds number from 27000 to 130000, relative nozzle to surface distance from 3.3 to 30, and relative surface curvature from 0.005 to 0.030. Experimental results indicate that the surface curvature has opposite effects on heat transfer characteristics. On one hand, an increase of relative nozzle to surface distance (increasing jet diameter in fact enhances the average heat transfer around the surface for the same curved surface. On the other hand, the average Nusselt number decreases as relative nozzle to surface distance increases for a fixed jet diameter. Finally, experimental data-based correlations of the average Nusselt number over the curved surface were obtained with consideration of surface curvature effect. This work contributes to a better understanding of the curvature effects on heat transfer of a round jet impingement on concave surfaces, which is of high importance to the design of the aircraft anti-icing system.

  17. Heat transfer measurements on an incidence-tolerant low pressure turbine blade in a high speed linear cascade at low to moderate Reynolds numbers

    Science.gov (United States)

    Moualeu, Leolein Patrick Gouemeni

    heat transfer approach is the method used to obtain knowledge of the state of the boundary layer on the surface of the blade. Pressure and temperature distributions are acquired for Reynolds numbers of 50,000, 66,000, 228,000, and 568,000 at an exit Mach number of 0.72, and Reynolds numbers of 228,000, and 568,000 at an exit Mach number of 0.35. These experimental flow conditions are conducted at different flow inlet angles of 40°, 34.2°, 28°, 18°, 8°, -2.6°, -12°, and -17°, and at two free-stream turbulence levels. Results of the analyses performed show that as the incidence angle decreases, a region of laminar separation bubble forms on the pressure surface and grows toward the trailing-edge. It is also noted that the position of the leading-edge moves as the incidence angle varies. A transitional flow is observed on both the pressure and suction surfaces, mainly at the two highest incidence angles, for the high turbulence case. This investigation also reveals that the Stanton number increases as the mainstream turbulence increases, and that the Stanton number at the leading-edge increases as the Reynolds number decreases, as it is documented in the literature.

  18. Single-phase convection heat transfer characteristics of pebble-bed channels with internal heat generation

    International Nuclear Information System (INIS)

    Meng Xianke; Sun Zhongning; Xu Guangzhan

    2012-01-01

    Graphical abstract: The core of the water-cooled pebble bed reactor is the porous channels which stacked with spherical fuel elements. The gaps between the adjacent fuel elements are complex because they are stochastic and often shift. We adopt electromagnetic induction heating method to overall heat the pebble bed. By comparing and analyzing the experimental data, we get the rule of power distribution and the rule of heat transfer coefficient with particle diameter, heat flux density, inlet temperature and working fluid's Re number. Highlights: ► We adopt electromagnetic induction heating method to overall heat the pebble bed to be the internal heat source. ► The ball diameter is smaller, the effect of the heat transfer is better. ► With Re number increasing, heat transfer coefficient is also increasing and eventually tends to stabilize. ► The changing of heat power makes little effect on the heat transfer coefficient of pebble bed channels. - Abstract: The reactor core of a water-cooled pebble bed reactor includes porous channels that are formed by spherical fuel elements. This structure has notably improved heat transfer. Due to the variability and randomness of the interstices in pebble bed channels, heat transfer is complex, and there are few studies regarding this topic. To study the heat transfer characters of pebble bed channels with internal heat sources, oxidized stainless steel spheres with diameters of 3 and 8 mm and carbon steel spheres with 8 mm diameters are used in a stacked pebble bed. Distilled water is used as a refrigerant for the experiments, and the electromagnetic induction heating method is used to heat the pebble bed. By comparing and analyzing the experimental results, we obtain the governing rules for the power distribution and the heat transfer coefficient with respect to particle diameter, heat flux density, inlet temperature and working fluid Re number. From fitting of the experimental data, we obtain the dimensionless average

  19. Investigation of wall mass transfer characteristics downstream of an orifice

    International Nuclear Information System (INIS)

    El-Gammal, M.; Ahmed, W.H.; Ching, C.Y.

    2012-01-01

    Highlights: ► Numerical simulations were performed for the mass transfer downstream of an orifice. ► The Low Reynolds Number K-ε turbulence model was used. ► The numerical results were in good agreement with existing experimental results. ► The maximum Sherwood number downstream of the orifice was significantly affected by the Reynolds number. ► The Sherwood number profile was well correlated with the turbulence kinetic energy profile close to the wall. - Abstract: Numerical simulations were performed to determine the effect of Reynolds number and orifice to pipe diameter ratio (d o /d) on the wall mass transfer rate downstream of an orifice. The simulations were performed for d o /d of 0.475 for Reynolds number up to 70,000. The effect of d o /d was determined by performing simulations at a Reynolds number of 70,000 for d o /d of 0.375, 0.475 and 0.575. The momentum and mass transport equations were solved using the Low Reynolds Number (LRN) K-ε turbulence model. The Sherwood number (Sh) profile downstream of the orifice was in relatively good agreement with existing experimental results. The Sh increases sharply downstream of the orifice, reaching a maximum within 1–2 diameters downstream of the orifice, before relaxing back to the fully developed pipe flow value. The Sh number well downstream of the orifice was in good agreement with results for fully developed pipe flow estimated from the correlation of . The peak Sh numbers from the simulations were higher than that predicted from and .

  20. Electron transfer and decay processes of highly charged iodine ions

    International Nuclear Information System (INIS)

    Sakaue, Hiroyuki A.; Danjo, Atsunori; Hosaka, Kazumoto

    2005-01-01

    In the present experimental work we have investigated multi-electron transfer processes in I q+ (q=10, 15, 20 and 25) + Ne, Ar, Kr and Xe collisions at 1.5q keV energy. The branching ratios between Auger and radiative decay channels have been measured in decay processes of multiply excited states formed by multi-electron transfer collisions. It has been shown that, in all the multi-electron transfer processes investigated, the Auger decays are far dominant over the radiative decay processes and the branching ratios are clearly characterized by the average principal quantum number of the initial excited states of projectile ions. We could express the branching ratios in high Rydberg states formed in multi-electron transfer processes by using the decay probability of one Auger electron emission. (author)

  1. Diverse Gram-positive bacteria identified from raw and pasteurized ...

    African Journals Online (AJOL)

    tion practices associated with milking and storage equipment. ... materials, various ingredients added to dairy products and dairy farm work- ers. ... 7°E, respectively and 2200 meter above sea level, respectively. The an- ... storage facilities, and shelf life of the pasteurized milk. ... transferred into a sterile screw capped bottle.

  2. 'Best buys' for surgery in South Africa

    African Journals Online (AJOL)

    [1] A discipline faced with multi ple challenges in the universal health coverage environment is discovering how ... globally and the consequence of failure to address the unmet surgical ... tions to facilitate the skills transfer of appropriate competencies, and .... system – by showing how to deploy scarce resources effectively to.

  3. Trophic level transfer of microplastic: Mytilus edulis (L.) to Carcinus maenas (L.)

    International Nuclear Information System (INIS)

    Farrell, Paul; Nelson, Kathryn

    2013-01-01

    This study investigated the trophic transfer of microplastic from mussels to crabs. Mussels (Mytilus edulis) were exposed to 0.5 μm fluorescent polystyrene microspheres, then fed to crabs (Carcinus maenas). Tissue samples were then taken at intervals up to 21 days. The number of microspheres in the haemolymph of the crabs was highest at 24 h (15 033 ml −1 ± SE 3146), and was almost gone after 21 days (267 ml −1 ± SE 120). The maximum amount of microspheres in the haemolymph was 0.04% of the amount to which the mussels were exposed. Microspheres were also found in the stomach, hepatopancreas, ovary and gills of the crabs, in decreasing numbers over the trial period. This study is the first to show ‘natural’ trophic transfer of microplastic, and its translocation to haemolymph and tissues of a crab. This has implications for the health of marine organisms, the wider food web and humans. -- Highlights: ► Microplastic transferred in marine food chain. ► Microplastic transferred to haemolymph when ingested in food. ► Microplastic remains in organism for at least 21 days. -- This communication demonstrates trophic level transfer of microplastic particles from Mytilus edulis to Carcinus maenas

  4. Expert Performance Transfer: Making Knowledge Transfer Count

    International Nuclear Information System (INIS)

    Turner, C.L.; Braudt, T.E.

    2011-01-01

    'Knowledge Transfer' is a high-priority imperative as the nuclear industry faces the combined effects of an aging workforce and economic pressures to do more with less. Knowledge Transfer is only a part of the solution to these challenges, however. The more compelling and immediate need faced by industry is Accomplishment Transfer, or the transference of the applied knowledge necessary to assure optimal performance transfer from experienced, high-performing staff to inexperienced staff. A great deal of industry knowledge and required performance information has been documented in the form of procedures. Often under-appreciated either as knowledge stores or as drivers of human performance, procedures, coupled with tightly-focused and effective training, are arguably the most effective influences on human and plant performance. (author)

  5. High Frontier: The Journal for Space & Missile Professionals. Volume 1, Number 3, Winter 2005

    Science.gov (United States)

    2005-01-01

    i. 16 Ibid., i. 17 Dana Johnson and Ariel E. Levite , Toward Fusion of Air and Space: Surveying Developments and Assessing Choices for Small and...another quantum jump in American exploitation of space-based communications, naviga- tion, and ISR (intelligence, surveillance, and reconnaissance) in...defense has been defined as requiring the quantum of re- sponding force to be “limited in intensity and magnitude to what is reasonably necessary

  6. Horizontal Gene Transfers in Mycoplasmas (Mollicutes).

    Science.gov (United States)

    Citti, C; Dordet-Frisoni, E; Nouvel, L X; Kuo, C H; Baranowski, E

    2018-04-12

    The class Mollicutes (trivial name "mycoplasma") is composed of wall-less bacteria with reduced genomes whose evolution was long thought to be only driven by gene losses. Recent evidences of massive horizontal gene transfer (HGT) within and across species provided a new frame to understand the successful adaptation of these minimal bacteria to a broad range of hosts. Mobile genetic elements are being identified in a growing number of mycoplasma species, but integrative and conjugative elements (ICEs) are emerging as pivotal in HGT. While sharing common traits with other bacterial ICEs, such as their chromosomal integration and the use of a type IV secretion system to mediate horizontal dissemination, mycoplasma ICEs (MICEs) revealed unique features: their chromosomal integration is totally random and driven by a DDE recombinase related to the Mutator-like superfamily. Mycoplasma conjugation is not restricted to ICE transmission, but also involves the transfer of large chromosomal fragments that generates progenies with mosaic genomes, nearly every position of chromosome being mobile. Mycoplasmas have thus developed efficient ways to gain access to a considerable reservoir of genetic resources distributed among a vast number of species expanding the concept of minimal cell to the broader context of flowing information.

  7. Experimental determination of the local heat transfer coefficient in a closely packed pin arrangement

    International Nuclear Information System (INIS)

    Moeller, S.V.

    1982-09-01

    The determination of the heat transfer coefficient of the pins of the Spallation Neutron Source is a very important problem for the development of this facility, as data for thermal and structural studies. For this purpose, a test apparatus was built, in scale 1:1, for the simulation of the thermal and hydraulical conditions of the Neutron Source. This apparatus is a pin bank, with one of the pins electrically heated. Performance of measurements gave the values for the heat transfer coefficient, here presented in the Nusselt Number form, and its local distribution. Results show the linear dependence of Nusselt Number on Reynolds Number, for a constant heat production. (orig.) [de

  8. Natural convection heat transfer from a vertical circular tube sheet

    International Nuclear Information System (INIS)

    Dharne, S.P.; Gaitonde, U.N.

    1996-01-01

    Experiments were conducted to determine natural convection heat transfer coefficients (a) on a plain vertical circular plate, and (b) on a similar plate with a square array of non-conducting tubes fixed in it. The experiments were carried out using air as the heat transfer medium. The diameter of the brass plates used was 350 mm. The diameter of the bakelite tubes used was 19.2 mm. The range of Rayleigh numbers was from 1.06x10 8 to 1.66x10 8 . The results show that the heat transfer coefficients in case (a) are very close to those obtained using standard correlations for vertical flat plates, whereas for case (b) the heat transfer coefficients are at least 50 percent higher than those predicted by the Churchill-Chu correlation. It is hence concluded that the disturbance to boundary layer caused by the presence of tubes enhances the heat transfer coefficient significantly. (author). 4 refs., 3 figs

  9. Three-dimensional numerical study of flow and heat transfer from a cube placed in a uniform flow

    International Nuclear Information System (INIS)

    Saha, A.K.

    2006-01-01

    The fluid flow and heat transfer from a stationary cube placed in a uniform flow is studied numerically. The three-dimensional unsteady Navier Stokes and energy equations are solved using higher order temporal and spatial discretizations. Computations are carried out for a Reynolds number range of 50-400. At Re = 218, the symmetry seen at Re = 216 breaks down in one of the orthogonal planes while remains symmetric on the other thus showing a planar symmetry. The flow experiences a Hopf bifurcation at a Reynolds number between 265 and 270 and becomes unsteady. The thermal field also shows all the transitions same as those of flow transitions. The drag coefficient decreases while the heat transfer shows an increasing trend with Reynolds number. The transition from a steady to an unsteady flow does not show any significant increase in the heat transfer. Both the flow and thermal fields show multiple frequencies at high Reynolds number and the number of frequencies increases with the increase in Reynolds number. The instantaneous flow and temperature field are seen to deviate from planar symmetry at Re = 400

  10. Adiabatic partition effect on natural convection heat transfer inside a square cavity: experimental and numerical studies

    Science.gov (United States)

    Mahmoudinezhad, S.; Rezania, A.; Yousefi, T.; Shadloo, M. S.; Rosendahl, L. A.

    2018-02-01

    A steady state and two-dimensional laminar free convection heat transfer in a partitioned cavity with horizontal adiabatic and isothermal side walls is investigated using both experimental and numerical approaches. The experiments and numerical simulations are carried out using a Mach-Zehnder interferometer and a finite volume code, respectively. A horizontal and adiabatic partition, with angle of θ is adjusted such that it separates the cavity into two identical parts. Effects of this angel as well as Rayleigh number on the heat transfer from the side-heated walls are investigated in this study. The results are performed for the various Rayleigh numbers over the cavity side length, and partition angles ranging from 1.5 × 105 to 4.5 × 105, and 0° to 90°, respectively. The experimental verification of natural convective flow physics has been done by using FLUENT software. For a given adiabatic partition angle, the results show that the average Nusselt number and consequently the heat transfer enhance as the Rayleigh number increases. However, for a given Rayleigh number the maximum and the minimum heat transfer occurs at θ = 45°and θ = 90°, respectively. Two responsible mechanisms for this behavior, namely blockage ratio and partition orientation, are identified. These effects are explained by numerical velocity vectors and experimental temperatures contours. Based on the experimental data, a new correlation that fairly represents the average Nusselt number of the heated walls as functions of Rayleigh number and the angel of θ for the aforementioned ranges of data is proposed.

  11. Variations on standard broiler processing in an effort to reduce Campylobacter numbers on postpick carcasses

    Science.gov (United States)

    Campylobacter numbers increase on broiler carcasses during defeathering due to leakage of gut contents through the vent. We tested several processing modifications designed to interfere with the transfer of Campylobacter from gut contents to carcass surface. Numbers of Campylobacter detected on br...

  12. Exchange of core chromosomes and horizontal transfer of lineage-specific chromosomes in Fusarium oxysporum

    NARCIS (Netherlands)

    Vlaardingerbroek, I.; Beerens, B.; Rose, L.; Fokkens, L.; Cornelissen, B.J.C.; Rep, M.

    2016-01-01

    Horizontal transfer of supernumerary or lineage-specific (LS) chromosomes has been described in a number of plant pathogenic filamentous fungi. So far it was not known whether transfer is restricted to chromosomes of certain size or properties, or whether 'core' chromosomes can also undergo

  13. A note on the heat transfer in convective fins

    International Nuclear Information System (INIS)

    Razelos, P.

    1979-01-01

    In this paper a generalized approach to the problem of heat transfer through convective fins is given. The proper dimensionless variables, which specify the general problem are identified, and upper bounds of the values of the dimensionless number Nsub(r) defined as 'the ratio of the heat transferred by the fin to that of the corresponding bare surface' are derived. It was shown that these limiting values of the Nsub(r) are 1/√B 1 and √2/B 1 for longitudinal fins and spines respectively, where B 1 is the Biot number hb/k, while for annular fins of constant thickness and hyperbolic profile, Nsub(r) 1 , where K(β) is a number determined by the profile of the fin and the ratio β = x 2 /x 1 of the outside to the inside radii. It was also shown that for longitudinal fins and spinces the possible adverse insulating effect by the use of the fin is avoided, if one selects the value of √hA/kC [de

  14. Heat transfer

    International Nuclear Information System (INIS)

    Saad, M.A.

    1985-01-01

    Heat transfer takes place between material systems as a result of a temperature difference. The transmission process involves energy conversions governed by the first and second laws of thermodynamics. The heat transfer proceeds from a high-temperature region to a low-temperature region, and because of the finite thermal potential, there is an increase in entropy. Thermodynamics, however, is concerned with equilibrium states, which includes thermal equilibrium, irrespective of the time necessary to attain these equilibrium states. But heat transfer is a result of thermal nonequilibrium conditions, therefore, the laws of thermodynamics alone cannot describe completely the heat transfer process. In practice, most engineering problems are concerned with the rate of heat transfer rather than the quantity of heat being transferred. Resort then is directed to the particular laws governing the transfer of heat. There are three distinct modes of heat transfer: conduction, convection, and radiation. Although these modes are discussed separately, all three types may occur simultaneously

  15. Forced convection and subcooled flow boiling heat transfer in asymmetrically heated ducts of T-section

    International Nuclear Information System (INIS)

    Abou-Ziyan, Hosny Z.

    2004-01-01

    This paper presents the results of an experimental investigation of heat transfer from the heated bottom side of tee cross-section ducts to an internally flowing fluid. The idea of this work is derived from the cooling of critical areas in the cylinder heads of internal combustion engines. Fully developed single phase forced convection and subcooled flow boiling heat transfer data are reported. Six T-ducts of different width and height aspect ratios are tested with distilled water at velocities of 1, 2 and 3 m/s for bulk temperatures of 60 and 80 deg. C, while the heat flux was varied from about 80 to 700 kW/m 2 . The achieved data cover Reynolds numbers in the range of 5.22 x 10 4 to 2.36 x 10 5 , Prandtl numbers in the range from 2.2 to 3.0, duct width aspect ratio between 2.19 and 3.13 and duct height aspect ratio from 0.69 to 2.0. The results revealed that the increase in either the width or height aspect ratio of the T-ducts enhances the convection heat transfer coefficients and the boiling heat fluxes considerably. The following comparisons are provided for coolant velocity of 2 m/s, bulk temperature of 60 deg. C, wall superheat of 20 K and wall to bulk temperature difference of 20 K. As the width aspect ratio increases by 43%, the convection heat transfer coefficient and the boiling heat flux increase by 27% and 39%, respectively. An increase in the height aspect ratio by 290% enhances the convection heat transfer coefficient and the boiling heat fluxes by 82% and 103%, respectively. When the coolant velocity changes from 1 to 2 m/s, the heat transfer coefficient increases by 60% and the boiling heat flux rises by 62-98% for the various tested ducts. The convection heat transfer coefficient increases by 12% and the boiling heat flux decreases by 31% as the bulk fluid temperature rises from 60 to 80 deg. C. A correlation was developed for Nusselt number as a function of Reynolds number, Prandtl number, viscosity ratio and some aspect ratios of the T-duct

  16. Molten pool-lower head integrity. Heat transfer models including advanced numerical simulations (DNS)

    Energy Technology Data Exchange (ETDEWEB)

    Seiler, J.M.; Bonnet, J.M.; Bernaz, L. [CEA Grenoble (France)

    2001-07-01

    Extensive studies have been performed to investigate the heat transfer within a molten corium pool (homogeneous, stratified and with miscibility gap): Synthesis of heat transfer correlations in molten pool (homogeneous and stratified), Focusing effect in stratified metal layer, DNS analysis of Rayleigh Benard instabilities at the top boundary; interpretation of the different convection regimes and exponents affecting the Rayleigh number in the heat transfer correlations, Molten pool model for corium presenting a miscibility gap. Condition for de-stratification. (authors)

  17. Molten pool-lower head integrity. Heat transfer models including advanced numerical simulations (DNS)

    International Nuclear Information System (INIS)

    Seiler, J.M.; Bonnet, J.M.; Bernaz, L.

    2001-01-01

    Extensive studies have been performed to investigate the heat transfer within a molten corium pool (homogeneous, stratified and with miscibility gap): Synthesis of heat transfer correlations in molten pool (homogeneous and stratified), Focusing effect in stratified metal layer, DNS analysis of Rayleigh Benard instabilities at the top boundary; interpretation of the different convection regimes and exponents affecting the Rayleigh number in the heat transfer correlations, Molten pool model for corium presenting a miscibility gap. Condition for de-stratification. (authors)

  18. High Lithium Transference Number Electrolytes via Creation of 3-Dimensional, Charged, Nanoporous Networks from Dense Functionalized Nanoparticle Composites

    KAUST Repository

    Schaefer, Jennifer L.

    2013-03-26

    High lithium transference number, tLi+, electrolytes are desired for use in both lithium-ion and lithium metal rechargeable battery technologies. Historically, low tLi+ electrolytes have hindered device performance by allowing ion concentration gradients within the cell, leading to high internal resistances that ultimately limit cell lifetime, charging rates, and energy density. Herein, we report on the synthesis and electrochemical features of electrolytes based on nanoparticle salts designed to provide high tLi+. The salts are created by cofunctionalization of metal oxide nanoparticles with neutral organic ligands and tethered lithium salts. When dispersed in a conducting fluid such as tetraglyme, they spontaneously form a charged, nanoporous network of particles at moderate nanoparticle loadings. Modification of the tethered anion chemistry from -SO3 - to -SO3BF3 - is shown to enhance ionic conductivity of the electrolytes by facilitating ion pair dissociation. At a particle volume fraction of 0.15, the electrolyte exists as a self-supported, nanoporous gel with an optimum ionic conductivity of 10 -4 S/cm at room temperature. Galvanostatic polarization measurements on symmetric lithium metal cells containing the electrolyte show that the cell short circuit time, tSC, is inversely proportional to the square of the applied current density tSC ∼ J-2, consistent with previously predicted results for traditional polymer-in-salt electrolytes with low tLi+. Our findings suggest that electrolytes with tLi+ ≈ 1 and good ion-pair dissociation delay lithium dendrite nucleation and may lead to improved lithium plating in rechargeable batteries with metallic lithium anodes. © 2013 American Chemical Society.

  19. Energy transfer in diatom/diatom molecular collisions

    International Nuclear Information System (INIS)

    Sohlberg, K.W.

    1992-01-01

    In a collision of two molecules, the translational energy of the collision may be redistributed into internal energy of rotation, vibration, or electron motion, in one or both of the colliding partners. In addition, internal energy in one or more of these modes may be open-quotes quenchedclose quotes into translation, leading to a superelastic collision. Such energy transfer may take place by a number of mechanisms. This energy transfer is of fundamental importance in understanding chemical reaction dynamics. Nearly all chemical reactions take place through a bimolecular collision process (or multiple bimolecular collisions) and the quantum state specificity of the reaction can have a major role in determining the kinetics of the reaction, In particular, the author has investigated vibrational energy transfer in collisions between two diatomic molecules. In addition to serving as models for all molecular collision process, gas phase collisions of these species are ubiquitous in atmospheric phenomena which are of critical importance in answering the current questions about the human induced degradation of the earth's atmospheric. Classical trajectory methods have been used to explore the excitation of vibrations in gas-phase collisions of the nitrogen molecular ion with its parent molecule. The near symmetry of the reactants is shown to result in a high probability that the two molecules are excited by an equal amount of energy. This provides a possible explanation of the molecular beam measurements which show that the total number of vibrational energy quanta excited in the collision is, with a high probability that the two molecules are excited by an equal amount of energy. This provides a possible explanation of the molecular beam measurements which show that the total number of vibrational energy quanta excited in the collision is, with a high probability, even

  20. Quantum dot-dye hybrid systems for energy transfer applications

    International Nuclear Information System (INIS)

    Ren, Ting

    2010-01-01

    In this thesis, we focus on the preparation of energy transfer-based quantum dot (QD)-dye hybrid systems. Two kinds of QD-dye hybrid systems have been successfully synthesized: QD-silica-dye and QD-dye hybrid systems. In the QD-silica-dye hybrid system, multishell CdSe/CdS/ZnS QDs were adsorbed onto monodisperse Stoeber silica particles with an outer silica shell of thickness 2-24 nm containing organic dye molecules (Texas Red). The thickness of this dye layer has a strong effect on the total sensitized acceptor emission, which is explained by the increase in the number of dye molecules homogeneously distributed within the silica shell, in combination with an enhanced surface adsorption of QDs with increasing dye amount. Our conclusions were underlined by comparison of the experimental results with Monte-Carlo simulations, and by control experiments confirming attractive interactions between QDs and Texas Red freely dissolved in solution. New QD-dye hybrid system consisting of multishell QDs and organic perylene dyes have been synthesized. We developed a versatile approach to assemble extraordinarily stable QD-dye hybrids, which uses dicarboxylate anchors to bind rylene dyes to QD. This system yields a good basis to study the energy transfer between QD and dye because of its simple and compact design: there is no third kind of molecule linking QD and dye; no spacer; and the affinity of the functional group to the QD surface is strong. The FRET signal was measured for these complexes as a function of both dye to QD ratio and center-to-center distance between QD and dye by controlling number of covered ZnS layers. Data showed that fluorescence resonance energy transfer (FRET) was the dominant mechanism of the energy transfer in our QD-dye hybrid system. FRET efficiency can be controlled by not only adjusting the number of dyes on the QD surface or the QD to dye distance, but also properly choosing different dye and QD components. Due to the strong stability, our QD

  1. Quantum dot-dye hybrid systems for energy transfer applications

    Energy Technology Data Exchange (ETDEWEB)

    Ren, Ting

    2010-07-01

    In this thesis, we focus on the preparation of energy transfer-based quantum dot (QD)-dye hybrid systems. Two kinds of QD-dye hybrid systems have been successfully synthesized: QD-silica-dye and QD-dye hybrid systems. In the QD-silica-dye hybrid system, multishell CdSe/CdS/ZnS QDs were adsorbed onto monodisperse Stoeber silica particles with an outer silica shell of thickness 2-24 nm containing organic dye molecules (Texas Red). The thickness of this dye layer has a strong effect on the total sensitized acceptor emission, which is explained by the increase in the number of dye molecules homogeneously distributed within the silica shell, in combination with an enhanced surface adsorption of QDs with increasing dye amount. Our conclusions were underlined by comparison of the experimental results with Monte-Carlo simulations, and by control experiments confirming attractive interactions between QDs and Texas Red freely dissolved in solution. New QD-dye hybrid system consisting of multishell QDs and organic perylene dyes have been synthesized. We developed a versatile approach to assemble extraordinarily stable QD-dye hybrids, which uses dicarboxylate anchors to bind rylene dyes to QD. This system yields a good basis to study the energy transfer between QD and dye because of its simple and compact design: there is no third kind of molecule linking QD and dye; no spacer; and the affinity of the functional group to the QD surface is strong. The FRET signal was measured for these complexes as a function of both dye to QD ratio and center-to-center distance between QD and dye by controlling number of covered ZnS layers. Data showed that fluorescence resonance energy transfer (FRET) was the dominant mechanism of the energy transfer in our QD-dye hybrid system. FRET efficiency can be controlled by not only adjusting the number of dyes on the QD surface or the QD to dye distance, but also properly choosing different dye and QD components. Due to the strong stability, our QD

  2. The transfer of rare earth elements through liquid extraction membranes

    International Nuclear Information System (INIS)

    Kapranchik, V.P.; Proyaev, V.V.; Kopyrin, A.A.

    1988-01-01

    The transfer of rare earth elements through liquid extraction membranes, presenting Dacron nuclear filters, impregnated by extractants of different types (tributylphosphine oxide; di-2-ethylhexylphosphoric acid, HDEHP; trioctylamine, TOA) is investigated. It is ascertained that in systems with extractant-carriers TOA and HDEHP inversion of dependences of flow values and distribution coefficients on the element atomic number is observed. Mathematical model of transfer, permitting to establish relation between extractional and transport characteristics of the membrane, is suggested

  3. Helping transfer technology to developing countries

    International Nuclear Information System (INIS)

    Masters, R.

    1978-01-01

    Manpower planning and training are an increasingly important part of the activities of the IAEA which organises a number of courses for engineers and administrators from developing countries. The Agency supports the view of these countries that there should be a real transfer of nuclear technology and not just the import of equipment and services. A Construction and Operation Management course held at Karlsruhe, is reviewed. (author)

  4. Faithful state transfer between two-level systems via an actively cooled finite-temperature cavity

    Science.gov (United States)

    Sárkány, Lőrinc; Fortágh, József; Petrosyan, David

    2018-03-01

    We consider state transfer between two qubits—effective two-level systems represented by Rydberg atoms—via a common mode of a microwave cavity at finite temperature. We find that when both qubits have the same coupling strength to the cavity field, at large enough detuning from the cavity mode frequency, quantum interference between the transition paths makes the swap of the excitation between the qubits largely insensitive to the number of thermal photons in the cavity. When, however, the coupling strengths are different, the photon-number-dependent differential Stark shift of the transition frequencies precludes efficient transfer. Nevertheless, using an auxiliary cooling system to continuously extract the cavity photons, we can still achieve a high-fidelity state transfer between the qubits.

  5. A proactive transfer policy for critical patient flow management.

    Science.gov (United States)

    González, Jaime; Ferrer, Juan-Carlos; Cataldo, Alejandro; Rojas, Luis

    2018-02-17

    Hospital emergency departments are often overcrowded, resulting in long wait times and a public perception of poor attention. Delays in transferring patients needing further treatment increases emergency department congestion, has negative impacts on their health and may increase their mortality rates. A model built around a Markov decision process is proposed to improve the efficiency of patient flows between the emergency department and other hospital units. With each day divided into time periods, the formulation estimates bed demand for the next period as the basis for determining a proactive rather than reactive transfer decision policy. Due to the high dimensionality of the optimization problem involved, an approximate dynamic programming approach is used to derive an approximation of the optimal decision policy, which indicates that a certain number of beds should be kept free in the different units as a function of the next period demand estimate. Testing the model on two instances of different sizes demonstrates that the optimal number of patient transfers between units changes when the emergency patient arrival rate for transfer to other units changes at a single unit, but remains stable if the change is proportionally the same for all units. In a simulation using real data for a hospital in Chile, significant improvements are achieved by the model in key emergency department performance indicators such as patient wait times (reduction higher than 50%), patient capacity (21% increase) and queue abandonment (from 7% down to less than 1%).

  6. Adaptation of the delta-m and δ-fit truncation methods to vector radiative transfer: Effect of truncation on radiative transfer accuracy

    International Nuclear Information System (INIS)

    Sanghavi, Suniti; Stephens, Graeme

    2015-01-01

    In the presence of aerosol and/or clouds, the use of appropriate truncation methods becomes indispensable for accurate but cost-efficient radiative transfer computations. Truncation methods allow the reduction of the large number (usually several hundreds) of Fourier components associated with particulate scattering functions to a more manageable number, thereby making it possible to carry out radiative transfer computations with a modest number of streams. While several truncation methods have been discussed for scalar radiative transfer, few rigorous studies have been made of truncation methods for the vector case. Here, we formally derive the vector form of Wiscombe's delta-m truncation method. Two main sources of error associated with delta-m truncation are identified as the delta-separation error (DSE) and the phase-truncation error (PTE). The view angles most affected by truncation error occur in the vicinity of the direction of exact backscatter. This view geometry occurs commonly in satellite based remote sensing applications, and is hence of considerable importance. In order to deal with these errors, we adapt the δ-fit approach of Hu et al. (2000) [17] to vector radiative transfer. The resulting δBGE-fit is compared with the vectorized delta-m method. For truncation at l=25 of an original phase matrix consisting of over 300 Fourier components, the use of the δBGE-fit minimizes the error due to truncation at these view angles, while practically eliminating error at other angles. We also show how truncation errors have a distorting effect on hyperspectral absorption line shapes. The choice of the δBGE-fit method over delta-m truncation minimizes errors in absorption line depths, thus affording greater accuracy for sensitive retrievals such as those of XCO 2 from OCO-2 or GOSAT measurements. - Highlights: • Derives vector form for delta-m truncation method. • Adapts δ-fit truncation approach to vector RTE as δBGE-fit. • Compares truncation

  7. Study of turbulent natural-circulation flow and low-Prandtl-number forced-convection flow

    International Nuclear Information System (INIS)

    Chung, K.S.; Thompson, D.H.

    1980-01-01

    Calculational methods and results are discussed for the coupled energy and momentum equations of turbulent natural circulation flow and low Prandtl number forced convection flow. The objective of this paper is to develop a calculational method for the study of the thermal-hydraulic behavior of coolant flowing in a liquid metal fast breeder reactor channel under natural circulation conditions. The two-equation turbulence model is used to evaluate the turbulent momentum transport property. Because the analogy between momentum transfer and heat transfer does not generally hold for low Prandtl number fluid and natural circulation flow conditions, the turbulent thermal conductivity is calculated independently using equations similar to the two-equation turbulence model. The numerical technique used in the calculation is the finite element method

  8. Department of the Air Force Justification of Estimates for Fiscal Year 1983 Submitted to Congress February 1982. Aircraft Procurement, Missile Procurement, Other Procurement

    Science.gov (United States)

    1982-02-01

    improvements to assure a standard -- ’nfiguration with the produccion line aircraft. A/T-37-(FY-83- $7;8 million;-FY 84-$4.6million). The FT 1983 program...1415. A reduction of $3.34 is a partial offset for Congressional general reduc- tions for FDT, Army Guard and Reserve Equipment Transfer and Audiovisual ...offset for Congressional general reductions in F!)?, Army Guard and Reserve Equipment Transfer and Audiovisual Equipment. $140.14M is requ;ested in the FY

  9. The Infrared Handbook

    Science.gov (United States)

    1978-01-01

    1.0 5.0 Wavelength dim) 10.0 15.0 (b) Orange tank lining no. SCI 1720, standard varnish works; and enamel, white ex- terior, no. 175, Walter Boysen...Oraevsky, "Spectra of Stimulated Emission in the Hydrogen Fluorine Reaction Process and Energy Transfer from DF to CO2," Applied Optics, Optical...Oraevsky, "Spectra of Stimulated Emission in the Hydrogen- Fluorine Reac- tion Process and Energy Transfer from DF to CO2," Applied Optics, Optical

  10. Heat transfer characteristics in a sudden expansion pipe equipped with swirl generators

    International Nuclear Information System (INIS)

    Zohir, A.E.; Abdel Aziz, A.A.; Habib, M.A.

    2011-01-01

    This investigation is aimed at studying the heat transfer characteristics and pressure drop for turbulent airflow in a sudden expansion pipe equipped with propeller type swirl generator or spiral spring with several pitch ratios. The investigation is performed for the Reynolds number ranging from 7500 to 18,500 under a uniform heat flux condition. The experiments are also undertaken for three locations for the propeller fan (N = 15 blades and blade angle of 65 o ) and three pitch ratios for the spiral spring (P/D = 10, 15 and 20). The influences of using the propeller rotating freely and inserted spiral spring on heat transfer enhancement and pressure drop are reported. In the experiments, the swirl generator and spiral spring are used to create a swirl in the tube flow. Mean and relative mean Nusselt numbers are determined and compared with those obtained from other similar cases. The experimental results indicate that the tube with the propeller inserts provides considerable improvement of the heat transfer rate over the plain tube around 1.69 times for X/H = 5. While for the tube with the spiral spring inserts, an improvement of the heat transfer rate over the plain tube around 1.37 times for P/d = 20. Thus, because of strong swirl or rotating flow, the propeller location and the spiral spring pitch become influential on the heat transfer enhancement. The increase in pressure drop using the propeller is found to be three times and for spiral spring 1.5 times over the plain tube. Correlations for mean Nusselt number, fan location and spiral spring pitch are provided.

  11. Numerical investigation of Al2O3/water nanofluid laminar convective heat transfer through triangular ducts

    Directory of Open Access Journals (Sweden)

    Zeinali Heris Saeed

    2011-01-01

    Full Text Available Abstract In this article, laminar flow-forced convective heat transfer of Al2O3/water nanofluid in a triangular duct under constant wall temperature condition is investigated numerically. In this investigation, the effects of parameters, such as nanoparticles diameter, concentration, and Reynolds number on the enhancement of nanofluids heat transfer is studied. Besides, the comparison between nanofluid and pure fluid heat transfer is achieved in this article. Sometimes, because of pressure drop limitations, the need for non-circular ducts arises in many heat transfer applications. The low heat transfer rate of non-circular ducts is one the limitations of these systems, and utilization of nanofluid instead of pure fluid because of its potential to increase heat transfer of system can compensate this problem. In this article, for considering the presence of nanoparticl: es, the dispersion model is used. Numerical results represent an enhancement of heat transfer of fluid associated with changing to the suspension of nanometer-sized particles in the triangular duct. The results of the present model indicate that the nanofluid Nusselt number increases with increasing concentration of nanoparticles and decreasing diameter. Also, the enhancement of the fluid heat transfer becomes better at high Re in laminar flow with the addition of nanoparticles.

  12. roles of counsellors in promoting n tion l integr tion s viewed by ...

    African Journals Online (AJOL)

    USER

    2016-03-01

    Mar 1, 2016 ... In Nigeria, there are issues of insecurity, disintegration, lawlessness and heightened corruption among ... Key Words: Counsellors, National Integration, Stability, Advocacy ... tolerance not only in economic, social and political ...

  13. Pressure drop and heat transfer of lithium single-phase flow under transverse magnetic field

    International Nuclear Information System (INIS)

    Takahashi, Minoru; Aritomi, Masanori; Inoue, Akira; Matsuzaki, Mitsuo

    1996-01-01

    Pressure drop and heat transfer characteristics of a lithium single-phase flow in a rectangular channel was investigated experimentally in the presence of a magnetic field. Friction loss coefficient under non-magnetic field and skin friction coefficient under magnetic field agreed well with the Blasius formula and a simple analytical expression, respectively. Nusselt number under non-magnetic field was slightly lower than the correlation by Hartnett and Irvine. Heat transfer was enhanced by increasing magnetic field above the Hartmann number of about 200. (author)

  14. What is the optimal means of preparing the endometrium in frozenthawed embryo transfer cycles? A systematic review and meta-analysis

    NARCIS (Netherlands)

    Groenewoud, Eva R.; Cantineau, Astrid E. P.; Kollen, Boudewijn J.; Macklon, Nick S.; Cohlen, Ben J.

    2013-01-01

    Frozenthawed embryo transfer (FET) enables surplus embryos derived from IVF or IVF-ICSI treatment to be stored and transferred at a later date. In recent years the number of FET cycles performed has increased due to transferring fewer embryos per transfer and improved laboratory techniques.

  15. An analogy for evaporative heat transfer with wavy/stratified air-water flow in vertical counter-current flow conditions

    International Nuclear Information System (INIS)

    Kweon, H.; Park, K. C.

    2001-01-01

    An analogy for evaporative heat transfer with mass transfer was derived. From von-Karman analogy which has been applied between heat and momentum transfer in single phase turbulent flow, a modified Karman analogy was suggested at present paper. Nusselt number from this analogy showed good agreement with experimental results. Such a result shows that the analogy for a complex heat transfer mode between heat transfer and momentum transfer accompanying evaporation or condensation on the interface can be established

  16. Electron transfer number control of the oxygen reduction reaction on nitrogen-doped reduced graphene oxides for the air electrodes of zinc-air batteries and organic degradation

    Energy Technology Data Exchange (ETDEWEB)

    Wu, Sheng-Hui; Li, Po-Chieh; Hu, Chi-Chang, E-mail: cchu@che.nthu.edu.tw

    2016-11-01

    The mean electron transfer number (n) of the oxygen reduction reaction (ORR) on reduced graphene oxide (rGO) is controlled by nitrogen doping for the air electrodes of Zn-air batteries and electrochemical organic degradation. Melamine and pyrrole are employed as the nitrogen sources for fabricating N-doped rGO (N-rGO) by microwave-assisted hydrothermal synthesis (MAHS). The n value of the ORR is determined by the rotating ring-disk electrode (RRDE) voltammetry and is successfully controlled from 2.34 to 3.93 by preparation variables. The N-doped structures are examined by the x-ray photoelectron spectroscopic (XPS) analysis. The morphology and the defect degree of N-rGOs are characterized by high resolution transmission electron microscopy (HR-TEM) and Raman spectroscopy. N-rGOs with high and low n values are employed as the air electrode catalysts of zinc-air batteries and in-situ hydrogen peroxide (H{sub 2}O{sub 2}) generation, respectively. The highest discharge cell voltage of 1.235 V for a Zn-air battery is obtained at 2 mA cm{sup −2} meanwhile the current efficiency of H{sub 2}O{sub 2} generation in 1-h electrolysis at 0 V (vs. RHE) reaches 43%. The electrocatalytic degradation of orange G (OG), analyzed by UV-VIS absorption spectra, reveals a high decoloration degree from the relative absorbance of 0.38 for the azo π-conjugation structure of OG. - Highlights: • The mean electron transfer number (n) is controlled by nitrogen doping. • Melamine and pyrrole are used as the nitrogen sources for fabricating N-rGO. • The n value is successfully controlled from 2.34 to 3.93 by preparation variables. • The highest discharge cell voltage of 1.235 V for a Zn-air battery. • The current efficiency of H{sub 2}O{sub 2} generation 1-h electrolysis reaches 43%.

  17. Coolant material effect on the heat transfer rates of the molten metal pool with solidification

    International Nuclear Information System (INIS)

    Cho, Jae Seon; Suh, Kune Y.; Chung, Chang Hyun; Park, Rae Joon; Kim, Sang Baik

    1998-01-01

    Experimental studies on heat transfer and solidification of the molten metal pool with overlying coolant with boiling were performed. The simulant molten pool material is tin (Sn) with the melting temperature of 232 degree C. Demineralized water and R113 are used as the working coolant. This work examines the crust formation and the heat transfer characteristics of the molten metal pool immersed in the boiling coolant. The Nusselt number and the Rayleigh number in the molten metal pool region of this study are compared between the water coolant case and the R113 coolant case. The experimental results for the water coolant are higher than those for R113. Also, the empirical relationship of the Nusselt number and the Rayleigh number is compared with the literature correlations measured from mercury. The present experimental results are higher than the literature correlations. It is believed that this discrepancy is caused by the effect of the heat loss to the environment on the natural convection heat transfer in the molten pool

  18. Analysis of heat transfer regulation and modification employing intermittently emplaced porous cavities

    International Nuclear Information System (INIS)

    Vafai, K.; Huang, P.C.

    1994-01-01

    The present work forms a fundamental investigation on the effects of using intermittently porous cavities for regulating and modifying the flow and temperature fields and therefore changing the skin friction and heat transfer characteristics of an external surface. A general flow model that accounts for the effects of the impermeable boundary and inertial effects is used to describe the flow inside the porous region. Solutions of the problem have been carried out using a finite-difference method through the use of a stream function-vorticity transformation. Various interesting characteristics of the flow and temperature fields in the composite layer are analyzed and discussed in detail. The effects of various governing dimensionless parameters, such as the Darcy number, Reynolds number, Prandtl number, the inertia parameter as well as the effects of pertinent geometric parameters are thoroughly explored. Furthermore, the interactive effects of the embedded porous substrates on skin friction and heat transfer characteristics of an external surface are analyzed. The configuration analyzed in this work provides an innovative approach in altering the frictional and heat transfer characteristics of an external surface. 27 refs., 12 figs., 1 tab

  19. Motives for intergenerational transfers: evidence from Malaysia.

    Science.gov (United States)

    Lillard, L A; Willis, R J

    1997-02-01

    In this paper we discuss a number of hypotheses about motives for intergenerational transfers within the family. We use data on time and money transfers between generations in Malaysia, where there is neither Social Security nor Medicare, to explore these hypotheses empirically. We find evidence supporting the hypotheses that children are an important source of old age security and that old age security is, in part, children's repayment for parental investments in their education. This repayment is partly a function of the children's income and, in the case of females, a function of their spouse's income. We also find evidence supporting the hypotheses that parents and children engage in the exchange of time help for money.

  20. Flow and heat transfer in parallel channel attached with equally-spaced ribs, 2

    International Nuclear Information System (INIS)

    Kunugi, Tomoaki; Takizuka, Takakazu

    1980-09-01

    Using a computer code for the analysis of the flow and heat transfer in a parallel channel attached with equally-spaced ribs, calculations are performed when a pitch to rib-width ratio is 7 : 1, a rib-width to rib-height ratio is 2 : 1 and a channel-height to rib-height is 3 : 1. Assuming that the fluid properties and the heat-flux at the wall of this channel are constant, characteristics of the flow and heat transfer are analyzed in the range of Reynolds number from 10 to 250. The following results are obtained: (1) The separation region behind a rib grows downstream with the increase of Reynolds number. (2) The pressure drop of ribbed channel is greater than that of the smooth channel, and increases as Reynolds number increases. (3) The mean Nusselt number of ribbed channel is about 10 - 11 at the upper wall and about 7.5 at the lower wall in the range of Reynolds number from 10 to 250. (author)

  1. Effect of TiO2 on conjugative transfer of RP4 plasmid

    International Nuclear Information System (INIS)

    Qian Di; Zhang Buchang; Yang Dong; Chen Zhaoli; Jin Min; Qiu Zhigang; Li Junwen

    2013-01-01

    Objective: To explore the effect and law of nano-titanium dioxide on the conjugative transfer of RP4 plasmid. Methods: Mating was conducted between Escherichia coli HB101 (RP4) and E. coli K12Rif in saline without stirring under certain conditions and the donor per recipient ratio was 1:1 constantly. The selective LB agar medium plates containing appropriate antibiotics were used to count the number of transconjugants and the conjugative transfer frequency. Results: Nano-titanium dioxide could promote the conjugative transfer of RP4. The nano-titanium dioxide concentration, bacterial concentration, mating temperature and mating time could affect the conjugative transfer of RP4. Conclusion: Nano-titanium dioxide can promote plasmid conjugal transfer in the liquid phase under certain conditions, which may pose a potential hazard to environmental and human health. (authors)

  2. Toward equality of biodiversity knowledge through technology transfer.

    Science.gov (United States)

    Böhm, Monika; Collen, Ben

    2015-10-01

    To help stem the continuing decline of biodiversity, effective transfer of technology from resource-rich to biodiversity-rich countries is required. Biodiversity technology as defined by the Convention on Biological Diversity (CBD) is a complex term, encompassing a wide variety of activities and interest groups. As yet, there is no robust framework by which to monitor the extent to which technology transfer might benefit biodiversity. We devised a definition of biodiversity technology and a framework for the monitoring of technology transfer between CBD signatories. Biodiversity technology within the scope of the CBD encompasses hard and soft technologies that are relevant to the conservation and sustainable use of biodiversity, or make use of genetic resources, and that relate to all aspects of the CBD, with a particular focus on technology transfer from resource-rich to biodiversity-rich countries. Our proposed framework introduces technology transfer as a response indicator: technology transfer is increased to stem pressures on biodiversity. We suggest an initial approach of tracking technology flow between countries; charting this flow is likely to be a one-to-many relationship (i.e., the flow of a specific technology from one country to multiple countries). Future developments should then focus on integrating biodiversity technology transfer into the current pressure-state-response indicator framework favored by the CBD (i.e., measuring the influence of technology transfer on changes in state and pressure variables). Structured national reporting is important to obtaining metrics relevant to technology and knowledge transfer. Interim measures, that can be used to assess biodiversity technology or knowledge status while more in-depth indicators are being developed, include the number of species inventories, threatened species lists, or national red lists; databases on publications and project funding may provide measures of international cooperation. Such a

  3. [Intrapartum obstetrical transfers: sociodemographic, clinical and prognosistic aspects in Conakry, Guinea].

    Science.gov (United States)

    Baldé, I S; Diallo, F B; Diallo, Y; Diallo, A; Diallo, M H; Camara, M K; Sy, T; Diallo, M S

    2011-12-01

    The objectives of this descriptive prospective study were to determine the frequency of intrapartum obstetrical transfers, assess the sociodemographic profile of parturients requiring transfer, describe transfer modalities, and assess maternal and newborn outcomes. Study included all patients requiring intrepartum obstetrical transfer to the Ignace Deen University Hospital Gynecology Obstetrics Clinic in Conakry, Guinea from August 1st, 2009 to July 31st, 2010. Out of 3122 deliveries during the study period, intrapartum transfer was required in 220 cases, i.e. 7.05%. Mean patient age was 23.2 years (range, 14 to 44). The risk for intrapartum transfer was higher among multiparous or nulliparous women (incidence, 8.79%) and adolescents (incidence, 10%). Patients requiring transfer were mainly housewives (60%) and uneducated women (57.27%). Most had had an insufficient number (<4) of antenatal examinations (76.36%) and had been examined at peripheral maternity units (62.73%). In 175 cases (79.54%), patients were transferred by taxi. In 191 patients, treatment required surgery including 130 caesarian sections. There were 12 maternal deaths (5.45%) and 45 neonatal deaths out of 242 newborns including 22 twin deliveries (18.59%). Further work is necessary to improve referral and transfer at all levels of the health pyramid.

  4. Fiduciary transfer of property rights

    Directory of Open Access Journals (Sweden)

    Đurđić Tamara

    2011-01-01

    Full Text Available Fiduciary transfer of property rights for the purpose of loan security represents the non-possessory form of collateral, which experiences renaissance in the comparative law. It is a complex legal institute, which is subject to numerous concerns and can be viewed from different perspectives, due to the large number of its specific features - non typical for the Continental European legal systems. The paper discusses disputed issues related to defining the causa, as well as the legal grounds, for fiduciary transfer of property rights, its legal nature and the justification thereof. Aiming at more adequate understanding of this complex Property Law institute and finding satisfactory answers to some of the disputed issues the legal theory has opened, the author analyses provisions of current legislation in Montenegro, which was the first country in the Region to regulate this non-possessory form of collateral.

  5. Discrete diffusion Lyman α radiative transfer

    Science.gov (United States)

    Smith, Aaron; Tsang, Benny T.-H.; Bromm, Volker; Milosavljević, Miloš

    2018-06-01

    Due to its accuracy and generality, Monte Carlo radiative transfer (MCRT) has emerged as the prevalent method for Lyα radiative transfer in arbitrary geometries. The standard MCRT encounters a significant efficiency barrier in the high optical depth, diffusion regime. Multiple acceleration schemes have been developed to improve the efficiency of MCRT but the noise from photon packet discretization remains a challenge. The discrete diffusion Monte Carlo (DDMC) scheme has been successfully applied in state-of-the-art radiation hydrodynamics (RHD) simulations. Still, the established framework is not optimal for resonant line transfer. Inspired by the DDMC paradigm, we present a novel extension to resonant DDMC (rDDMC) in which diffusion in space and frequency are treated on equal footing. We explore the robustness of our new method and demonstrate a level of performance that justifies incorporating the method into existing Lyα codes. We present computational speedups of ˜102-106 relative to contemporary MCRT implementations with schemes that skip scattering in the core of the line profile. This is because the rDDMC runtime scales with the spatial and frequency resolution rather than the number of scatterings—the latter is typically ∝τ0 for static media, or ∝(aτ0)2/3 with core-skipping. We anticipate new frontiers in which on-the-fly Lyα radiative transfer calculations are feasible in 3D RHD. More generally, rDDMC is transferable to any computationally demanding problem amenable to a Fokker-Planck approximation of frequency redistribution.

  6. Heat transfer in Rockwool modelling and method of measurement. The effect of natural convection on heat transfer in fibrous materials

    Energy Technology Data Exchange (ETDEWEB)

    Dyrboel, Susanne

    1998-05-01

    Fibrous materials are some of the most widely used materials for thermal insulation. In this project the focus of interest has been on fibrous materials for building application. Interest in improving the thermal properties of insulation materials is increasing as legislation is being tightened to reduce the overall energy consumption. A knowledge of the individual heat transfer mechanisms - whereby heat is transferred within a particular material is an essential tool to improve continuously the thermal properties of the material. Heat is transferred in fibrous materials by four different transfer mechanisms: conduction through air, conduction through fibres, thermal radiation and convection. In a particular temperature range the conduction through air can be regarded as a constant, and conduction through fibres is an insignificant part of the total heat transfer. Radiation, however, constitutes 25-40% of the total heat transfer in light fibrous materials. In Denmark and a number of other countries convection in fibrous materials is considered as non-existent when calculating heat transmission as well as when designing building structures. Two heat transfer mechanisms have been the focus of the current project: radiation heat transfer and convection. The radiation analysis serves to develop a model that can be used in further work to gain a wider knowledge of the way in which the morphology of the fibrous material, i.e. fibre diameter distribution, fibre orientation distribution etc., influences the radiation heat transfer under different conditions. The convection investigation serves to examine whether considering convection as non-existent is a fair assumption to use in present and future building structures. The assumption applied in practically is that convection makes a notable difference only in very thick insulation, at external temperatures below -20 deg. C, and at very low densities. For large thickness dimensions the resulting heat transfer through the

  7. "Transfer Shock" or "Transfer Ecstasy?"

    Science.gov (United States)

    Nickens, John M.

    The alleged characteristic drop in grade point average (GPA) of transfer students and the subsequent rise in GPA was investigated in this study. No statistically significant difference was found in first term junior year GPA between junior college transfers and native Florida State University students after the variance accounted for by the…

  8. Heat transfer enhancement by additive in vertical falling film absorption of H2O/LiBr

    International Nuclear Information System (INIS)

    Cheng Wenlong; Houda, Kouichi; Chen Zeshao; Akisawa, Atsushi; Hu Peng; Kashiwagi, Takao

    2004-01-01

    The enhancement effects of additive on vertical falling film of water into aqueous lithium bromide (LiBr) were studied by an experimental method. Based on the Navier-Stokes equations of falling film absorption, a new dimensionless parameter, surface renewal number Rn, was introduced, and a semi-empirical equation of enhancement factor of additive was obtained. It was shown that the absorption Marangoni number Ma, the surface Marangoni number M aA , and the surface renewal number Rn enhance the heat transfer of absorption, however the adsorption number Π and the Reynolds number Re weaken the heat transfer of absorption. It was proved that the semi-empirical equation agreed well with the experimental results by introduction of the parameters related to surface tension characters presented by the authors into the equation

  9. RELAP5 analysis of reflux condensation behavior in heat transfer tube bundle of a steam generator

    International Nuclear Information System (INIS)

    Minami, Noritoshi; Chikusa, Toshiaki; Nagae, Takashi; Murase, Michio

    2007-01-01

    In case of loss of the residual heat removal system and other alternative cooling methods under mid-loop operation during shutdown of the pressurized water reactor plant, reflux condensation in the steam generator (SG) may be an effective heat removal mechanism. In reflux condensation experiments 7.2c with injection of nitrogen gas using the BETHSY facility in France, which is a scale model of a pressurized water reactor plant, 34 heat transfer tubes were divided into two kinds of flow patterns, which were steam forward flow and nitrogen reverse flow. In this study, we simulated the BETHSY experiments using the transient analysis code RELAP5. Modifying calculation equations for interfacial friction force and wall friction force between the inlet plenum and heat transfer tubes, nitrogen reverse flow was successfully simulated. In calculations with alteration of the flow area ratio to two flow channels for the heat transfer tube bundle, the number of active tubes with the maximum nitrogen recirculation flow rate agreed rather well with the observed number of active tubes. In calculations with three flow channels for the heat transfer tube bundle, the average number of active tubes in several calculations with different flow area ratios of the three flow channels predicted the number of active tubes well. (author)

  10. ASM News Volume 71 Number 9, 2005

    Energy Technology Data Exchange (ETDEWEB)

    Tamar Barkay and Barth F. Smets

    2005-01-01

    Genetic exchanges among prokaryotes, formerly considered only a marginal phenomenon, increasingly are being viewed as profoundly affecting evolution. Indeed, some researchers argue for utterly revamping our concept of microbial speciation and phylogeny by replacing the traditional ''tree'' with a newer ''net'' to account for these horizontal transfers of genes. This conceptual ferment is occurring while molecular biologists reveal how horizontal gene transfers occur even as microbes protect the integrity of their genomes. Other studies reveal the number and diversity and abundance of genetic elements that mediate horizontal gene transfers (HGTs) or facilitate genome rearrangements, deletions, and insertions. Taken together, this information suggests that microbial communities collectively possess a dynamic gene pool, where novel genetic combinations act as a driving force in genomic innovation, compensating individual microbial species for their inability to reproduce sexually. These microbial genomic dynamics can present both environmental threats and promise to humans. One major threat, for example, comes from the spread of antibiotic resistance and virulence genes among pathogenic microbes. Another less-documented issue involves transgenic plants and animals, whose uses are being restricted because of concerns that genes may be transferred to untargeted organisms where they might cause harm. A possible benefit from HGT comes from its potential to enhance the functional diversity of microbial communities and to improve their performance in changing or extreme environments. Such changes might be exploited, for example, as part of efforts to manage environmental pollution and might be achieved by spreading genes into resident microbes to confer specific biochemical activities.

  11. Fuel conditioning facility zone-to-zone transfer administrative controls

    International Nuclear Information System (INIS)

    Pope, C. L.

    2000-01-01

    The administrative controls associated with transferring containers from one criticality hazard control zone to another in the Argonne National Laboratory (ANL) Fuel Conditioning Facility (FCF) are described. FCF, located at the ANL-West site near Idaho Falls, Idaho, is used to remotely process spent sodium bonded metallic fuel for disposition. The process involves nearly forty widely varying material forms and types, over fifty specific use container types, and over thirty distinct zones where work activities occur. During 1999, over five thousand transfers from one zone to another were conducted. Limits are placed on mass, material form and type, and container types for each zone. Ml material and containers are tracked using the Mass Tracking System (MTG). The MTG uses an Oracle database and numerous applications to manage the database. The database stores information specific to the process, including material composition and mass, container identification number and mass, transfer history, and the operators involved in each transfer. The process is controlled using written procedures which specify the zone, containers, and material involved in a task. Transferring a container from one zone to another is called a zone-to-zone transfer (ZZT). ZZTs consist of four distinct phases, select, request, identify, and completion

  12. Transfer Hydrogenation in Open-Shell Nucleotides — A Theoretical Survey

    Directory of Open Access Journals (Sweden)

    Florian Achrainer

    2014-12-01

    Full Text Available The potential of a larger number of sugar models to act as dihydrogen donors in transfer hydrogenation reactions has been quantified through the calculation of hydrogenation energies of the respective oxidized products. Comparison of the calculated energies to hydrogenation energies of nucleobases shows that many sugar fragment radicals can reduce pyrimidine bases such as uracil in a strongly exothermic fashion. The most potent reducing agent is the C3' ribosyl radical. The energetics of intramolecular transfer hydrogenation processes has also been calculated for a number of uridinyl radicals. The largest driving force for such a process is found for the uridin-C3'-yl radical, whose rearrangement to the C2'-oxidized derivative carrying a dihydrouracil is predicted to be exothermic by 61.1 kJ/mol in the gas phase.

  13. The transfer of technologies for biomass energy utilization

    International Nuclear Information System (INIS)

    Schneiders, H.H.

    1995-01-01

    The first part of the paper presents the common perception of technology transfer as a trade relationship rather than a systematic approach to establish a complex technological capacity in a given field. It aims to correct this misperception by introducing some other ideas: (a) the need to support the people, adjust the relevant organizations and establish the capacities to provide the products and services; (b) the typical life cycles of technologies from the initial concept to the final stages of transfer and sustainable dissemination; (c) the needs and expectations of the groups targeted by the technologies for biomass energy utilization. The second part of the paper discusses one example of successful technology transfer: the use of large biomass-burning stoves for food preparation in public institutions and private restaurants in East Africa. The third part of the paper highlights two non-technological barriers to the transfer of biomass energy technologies: (a) weak market forces and business interests and a large number of State activities and projects and (b) conflicting interests of end-users, craftsmen, private and public project partners, which can threaten the success of the attempted technology transfer, even after local adaptation. Finally, suggestions are made for overcoming some of these problems. (author)

  14. The transfer of technologies for biomass energy utilization

    Energy Technology Data Exchange (ETDEWEB)

    Schneiders, H H [German Agency for Technical Cooperation (GTZ), Eschborn (Germany)

    1995-12-01

    The first part of the paper presents the common perception of technology transfer as a trade relationship rather than a systematic approach to establish a complex technological capacity in a given field. It aims to correct this misperception by introducing some other ideas: (a) the need to support the people, adjust the relevant organizations and establish the capacities to provide the products and services; (b) the typical life cycles of technologies from the initial concept to the final stages of transfer and sustainable dissemination; (c) the needs and expectations of the groups targeted by the technologies for biomass energy utilization. The second part of the paper discusses one example of successful technology transfer: the use of large biomass-burning stoves for food preparation in public institutions and private restaurants in East Africa. The third part of the paper highlights two non-technological barriers to the transfer of biomass energy technologies: (a) weak market forces and business interests and a large number of State activities and projects and (b) conflicting interests of end-users, craftsmen, private and public project partners, which can threaten the success of the attempted technology transfer, even after local adaptation. Finally, suggestions are made for overcoming some of these problems. (author)

  15. The burden and outcome of in utero transfers.

    Science.gov (United States)

    Musson, Rebecca E; Harrison, Catherine M

    2016-05-01

    To quantify the number of intrauterine transfers (IUTs) arranged by Embrace Yorkshire and Humber Infant and Children's Transport Service and, to determine the outcome of when women delivered their babies, or when they were discharged following transfer. Identification of all IUTs Embrace arranged between January 1, 2011 and February 29, 2012 with data collection to determine delivery time or date of discharge. There were 623 IUT referrals with a mean time taken to arrange a transfer of 109 minutes. The mean distance of IUT was 42.5 miles, and the main reason for IUT request was capacity of referring unit. 247 (52%) women delivered during the same admission and 156 delivered within 48 hours of transfer. Of those undelivered, 111 (48.7%) were discharged within 48 hours. Fibronectin test was used in 51 patients. The IUT service provided by Embrace is busy, with significant demands on administrative staff time. Neonatal cot capacity and gestation are the main reasons for transfer. There is potentially a cohort of women who may not have benefitted from IUT. We suggest the use of obstetric expertise will enhance the service, while ongoing work looking at neonatal unit cot capacity problems continues. ©2015 Foundation Acta Paediatrica. Published by John Wiley & Sons Ltd.

  16. Thermodynamic optimization for cryogenic systems with a finite number of heat intercepts

    International Nuclear Information System (INIS)

    Bisio, G.

    1989-01-01

    It has been already shown that in cryogenic plants it is very useful to apply thermodynamic optimization, either with a continuous variation of the heat transfer rate through the insulation or with the spatial positioning of discrete heat exchangers in the same insulation. The aim of this paper is to study the thermodynamic optimization by the variation of the heat transfer rate in a finite number of points through insulation for one-dimensional materials in series, whose equivalent conductivity is a function of temperature. For this purpose the results of some researches by the author, in the field of generalized thermodynamics, for the properties of some functions and in particular of the rate of entropy production, regarding one-dimensional heat transfer, are utilized

  17. An analytical solution to the heat transfer problem in thick-walled hunt flow

    International Nuclear Information System (INIS)

    Bluck, Michael J; Wolfendale, Michael J

    2017-01-01

    Highlights: • Convective heat transfer in Hunt type flow of a liquid metal in a rectangular duct. • Analytical solution to the H1 constant peripheral temperature in a rectangular duct. • New H1 result demonstrating the enhancement of heat transfer due to flow distortion by the applied magnetic field. • Analytical solution to the H2 constant peripheral heat flux in a rectangular duct. • New H2 result demonstrating the reduction of heat transfer due to flow distortion by the applied magnetic field. • Results are important for validation of CFD in magnetohydrodynamics and for implementation of systems code approaches. - Abstract: The flow of a liquid metal in a rectangular duct, subject to a strong transverse magnetic field is of interest in a number of applications. An important application of such flows is in the context of coolants in fusion reactors, where heat is transferred to a lead-lithium eutectic. It is vital, therefore, that the heat transfer mechanisms are understood. Forced convection heat transfer is strongly dependent on the flow profile. In the hydrodynamic case, Nusselt numbers and the like, have long been well characterised in duct geometries. In the case of liquid metals in strong magnetic fields (magnetohydrodynamics), the flow profiles are very different and one can expect a concomitant effect on convective heat transfer. For fully developed laminar flows, the magnetohydrodynamic problem can be characterised in terms of two coupled partial differential equations. The problem of heat transfer for perfectly electrically insulating boundaries (Shercliff case) has been studied previously (Bluck et al., 2015). In this paper, we demonstrate corresponding analytical solutions for the case of conducting hartmann walls of arbitrary thickness. The flow is very different from the Shercliff case, exhibiting jets near the side walls and core flow suppression which have profound effects on heat transfer.

  18. Influência dos cátions lítio (Li + , sódio (Na + e potássio (K + na reologia de bentonitas brasileiras para uso em fluidos de perfuração base aquosa

    Directory of Open Access Journals (Sweden)

    I. A. da Silva

    Full Text Available Resumo Os cátions lítio (Li+, sódio (Na+ e potássio (K+ encontram-se em primeiro lugar no plano de seletividade para a obtenção de bentonitas monocatiônicas a partir das policatiônicas, influenciando de forma específica o comportamento reológico dos fluidos de perfuração base água. O objetivo deste trabalho foi estudar a influência do Li+, Na+ e K+ na reologia de bentonitas do estado da Paraíba, Brasil, para uso em fluidos de perfuração à base de água. Os novos depósitos de bentonitas brasileiras foram comparados com base nas suas características químicas, físicas, mineralógicas, propriedades reológicas e de filtração. As amostras de bentonitas foram caracterizadas por meio da composição química através do método clássico, capacidade de troca de cátions, análise granulométrica por difração a laser, difração de raios X e análises térmicas. A reologia das dispersões foi estudada e determinadas as viscosidades aparente, viscosidade plástica e limite de escoamento com base nas normas da API e Petrobras, além dos estudos de inchamento em água e filtrado. Os resultados mostraram uma melhora significativa nas propriedades reológicas e de filtração das dispersões após a aditivação com os carbonatos de lítio e de sódio, nessa ordem, havendo presença de tixotropia nas curvas de fluxo das dispersões de argilas estudadas.

  19. Heat and mass transfer during baking: product quality aspects

    NARCIS (Netherlands)

    Asselman, A.; Straten, van G.; Hadiyanto, H.; Boom, R.M.; Esveld, D.C.; Boxtel, van A.J.B.

    2005-01-01

    Abstract Most food product qualities are developed during heating processes. Therefore the internal heating and mass transfer of water are important aspects in food processing. Heating of food products is mostly induced by convection heating. However, the number applications of convective heating in

  20. Conjugate Heat Transfer of Mixed Convection for Viscoelastic Fluid Past a Stretching Sheet

    Directory of Open Access Journals (Sweden)

    Kai-Long Hsiao

    2007-01-01

    Full Text Available A conjugate heat transfer problem of a second-grade viscoelastic fluid past a stretching sheet has been studied. Governing equations include heat conduction equation of a stretching sheet, continuity equation, momentum equation, and energy equation of a second-grade fluid, analyzed by a combination of a series expansion method, the similarity transformation, and a second-order accurate finite-difference method. These solutions are used to iterate with the heat conduction equation of the stretching sheet to obtain distributions of the local convective heat transfer coefficient and the stretching sheet temperature. Ranges of dimensionless parameters, the Prandtl number Pr, the elastic number E and the conduction-convection coefficient Ncc are from 0.001 to 10, 0.0001 to 0.01, and 0.5 to 2.0, respectively. A parameter G, which is used to represent the dominance of the buoyant effect, is present in governing equations. Results indicated that elastic effect in the flow could increase the local heat transfer coefficient and enhance the heat transfer of a stretching sheet. In addition, same as the results from Newtonian fluid flow and conduction analysis of a stretching sheet, a better heat transfer is obtained with a larger Ncc, G, and E.