Theories Supporting Transfer of Training.
Yamnill, Siriporn; McLean, Gary N.
2001-01-01
Reviews theories about factors affecting the transfer of training, including theories on motivation (expectancy, equity, goal setting), training transfer design (identical elements, principle, near and far), and transfer climate (organizational). (Contains 36 references.) (SK)
Mashayekhi, Mohammad Jalali; Behdinan, Kamran
2017-10-01
The increasing demand to minimize undesired vibration and noise levels in several high-tech industries has generated a renewed interest in vibration transfer path analysis. Analyzing vibration transfer paths within a system is of crucial importance in designing an effective vibration isolation strategy. Most of the existing vibration transfer path analysis techniques are empirical which are suitable for diagnosis and troubleshooting purpose. The lack of an analytical transfer path analysis to be used in the design stage is the main motivation behind this research. In this paper an analytical transfer path analysis based on the four-pole theory is proposed for multi-energy-domain systems. Bond graph modeling technique which is an effective approach to model multi-energy-domain systems is used to develop the system model. In this paper an electro-mechanical system is used as a benchmark example to elucidate the effectiveness of the proposed technique. An algorithm to obtain the equivalent four-pole representation of a dynamical systems based on the corresponding bond graph model is also presented in this paper.
González-Navarrete, Patricio; Sensato, Fabricio R; Andrés, Juan; Longo, Elson
2014-08-07
In this research, a comprehensive theoretical investigation has been conducted on oxygen atom transfer (OAT) reactions from Mimoun complexes to sulfides and sulfoxides. The joint use of the electron localization function (ELF) and Thom's catastrophe theory (CT) provides a powerful tool to analyze the evolution of chemical events along a reaction pathway. The progress of the reaction has been monitored by structural stability domains from ELF topology while the changes between them are controlled by turning points derived from CT which reveal that the reaction mechanism can be separated in several steps: first, a rupture of the peroxo O1-O2 bond, then a rearrangement of lone pairs of the sulfur atom occurs and subsequently the formation of S-O1 bond. The OAT process involving the oxidation of sulfides and sulfoxides is found to be an asynchronous process where O1-O2 bond breaking and S-O1 bond formation processes do not occur simultaneously. Nucleophilic/electrophilic characters of both dimethyl sulfide and dimethyl sulfoxide, respectively, are sufficiently described by our results, which hold the key to unprecedented insight into the mapping of electrons that compose the bonds while the bonds change.
Game Analysis on Rural Land Transfer from the Perspective of Stakeholder Theory
Directory of Open Access Journals (Sweden)
Gen Zhang
2014-04-01
Full Text Available The key—to maintaining social stability in rural areas, promoting rural economic development and building a new socialist countryside—is handling correctly the issues of rural land transfer and ironing out the conflicts resulting from the benefits imbalance. In this paper, rural land transfer is categorized into two types: land transfer caused by the collective behavior and land transfer caused by the individual behavior. In the process of land transfer caused by the collective behavior, the conflicts root in the convergence of interest among various rural social strata; while in the process of land transfer caused by the individual behavior, the game between interests and human relationship, reflects the dilemma between rationality and sensibility, which villagers are confronted with.
International Nuclear Information System (INIS)
2003-08-01
This book deals with analysis of heat transfer which includes nonlinear analysis examples, radiation heat transfer, analysis of heat transfer in ANSYS, verification of analysis result, analysis of heat transfer of transition with automatic time stepping and open control, analysis of heat transfer using arrangement of ANSYS, resistance of thermal contact, coupled field analysis such as of thermal-structural interaction, cases of coupled field analysis, and phase change.
Steponavičius, Raimundas; Thennadil, Suresh N
2013-05-01
Sample-to-sample photon path length variations that arise due to multiple scattering can be removed by decoupling absorption and scattering effects by using the radiative transfer theory, with a suitable set of measurements. For samples where particles both scatter and absorb light, the extracted bulk absorption spectrum is not completely free from nonlinear particle effects, since it is related to the absorption cross-section of particles that changes nonlinearly with particle size and shape. For the quantitative analysis of absorbing-only (i.e., nonscattering) species present in a matrix that contains a particulate species that absorbs and scatters light, a method to eliminate particle effects completely is proposed here, which utilizes the particle size information contained in the bulk scattering coefficient extracted by using the Mie theory to carry out an additional correction step to remove particle effects from bulk absorption spectra. This should result in spectra that are equivalent to spectra collected with only the liquid species in the mixture. Such an approach has the potential to significantly reduce the number of calibration samples as well as improve calibration performance. The proposed method was tested with both simulated and experimental data from a four-component model system.
Grandinetti, Lucio; Purnama, Anton
2015-01-01
Presenting the latest findings in the field of numerical analysis and optimization, this volume balances pure research with practical applications of the subject. Accompanied by detailed tables, figures, and examinations of useful software tools, this volume will equip the reader to perform detailed and layered analysis of complex datasets. Many real-world complex problems can be formulated as optimization tasks. Such problems can be characterized as large scale, unconstrained, constrained, non-convex, non-differentiable, and discontinuous, and therefore require adequate computational methods, algorithms, and software tools. These same tools are often employed by researchers working in current IT hot topics such as big data, optimization and other complex numerical algorithms on the cloud, devising special techniques for supercomputing systems. The list of topics covered include, but are not limited to: numerical analysis, numerical optimization, numerical linear algebra, numerical differential equations, opt...
Theory of Periodic Conjugate Heat Transfer
Zudin, Yuri B
2012-01-01
This book presents the theory of periodic conjugate heat transfer in a detailed way. The effects of thermophysical properties and geometry of a solid body on the commonly used and experimentally determined heat transfer coefficient are analytically presented from a general point of view. The main objective of the book is a simplified description of the interaction between a solid body and a fluid as a boundary value problem of the heat conduction equation for the solid body. At the body surface, the true heat transfer coefficient is composed of two parts: the true mean value resulting from the solution of the steady state heat transfer problem and a periodically variable part, the periodic time and length to describe the oscillatory hydrodynamic effects. The second edition is extended by (i) the analysis of stability boundaries in helium flow at supercritical conditions in a heated channel with respect to the interaction between a solid body and a fluid; (ii) a periodic model and a method of heat transfer sim...
Theory of coherent resonance energy transfer
International Nuclear Information System (INIS)
Jang, Seogjoo; Cheng, Y.-C.; Reichman, David R.; Eaves, Joel D.
2008-01-01
A theory of coherent resonance energy transfer is developed combining the polaron transformation and a time-local quantum master equation formulation, which is valid for arbitrary spectral densities including common modes. The theory contains inhomogeneous terms accounting for nonequilibrium initial preparation effects and elucidates how quantum coherence and nonequilibrium effects manifest themselves in the coherent energy transfer dynamics beyond the weak resonance coupling limit of the Foerster and Dexter (FD) theory. Numerical tests show that quantum coherence can cause significant changes in steady state donor/acceptor populations from those predicted by the FD theory and illustrate delicate cooperation of nonequilibrium and quantum coherence effects on the transient population dynamics.
Directory of Open Access Journals (Sweden)
Lee-Ing Tong
2012-02-01
Full Text Available Solar energy has become an important energy source in recent years as it generates less pollution than other energies. A photovoltaic (PV system, which typically has many components, converts solar energy into electrical energy. With the development of advanced engineering technologies, the transfer efficiency of a PV system has been increased from low to high. The combination of components in a PV system influences its transfer efficiency. Therefore, when predicting the transfer efficiency of a PV system, one must consider the relationship among system components. This work accurately predicts whether transfer efficiency of a PV system is high or low using a novel hybrid model that combines rough set theory (RST, data envelopment analysis (DEA, and genetic programming (GP. Finally, real data-set are utilized to demonstrate the accuracy of the proposed method.
Theory of periodic conjugate heat transfer
Zudin, Yuri B
2016-01-01
This book presents the theory of periodic conjugate heat transfer in detail. It offers a simplified description of the interaction between a solid body and a fluid as a boundary value problem of the heat conduction equation for the solid body.
Liang, X. S.
2016-02-01
Central at the processes of mean-eddy-turbulence interaction, e.g., mesoscale eddy shedding, relaminarization, etc., is the transfer of energy among different scales. The existing classical transfers, however, do not take into account the issue of energy conservation and, therefore, are not faithful representations of the real interaction processes, which are fundamentally a redistribution of energy among scales. Based on a new analysis machinery, namely, multiscale window transform (Liang and Anderson, 2007), we were able to obtain a formula for this important processes, with the property of energy conservation a naturally embedded property. This formula has a form reminiscent of the Poisson bracket in Hamiltonian dynamics. It has been validated with many benchmark processes, and, particularly, has been applied with success to control the eddy shedding behind a bluff body. Presented here will be an application study of the instabilities and mean-eddy interactions in the Kuroshio Extension (KE) region. Generally, it is found that the unstable KE jet fuels the mesoscale eddies, but in the offshore eddy decaying region, the cause-effect relation reverses: it is the latter that drive the former. On the whole the eddies act to decelerate the jet in the upstream, whereas accelerating it downstream.
Elementary heat transfer analysis
Whitaker, Stephen; Hartnett, James P
1976-01-01
Elementary Heat Transfer Analysis provides information pertinent to the fundamental aspects of the nature of transient heat conduction. This book presents a thorough understanding of the thermal energy equation and its application to boundary layer flows and confined and unconfined turbulent flows. Organized into nine chapters, this book begins with an overview of the use of heat transfer coefficients in formulating the flux condition at phase interface. This text then explains the specification as well as application of flux boundary conditions. Other chapters consider a derivation of the tra
International Nuclear Information System (INIS)
Bellum, J.C.; McGuire, P.
1983-01-01
We investigate forms of the molecular system Hamiltonian valid for rigorous quantum-mechanical treatments of inelastic atom--diatom collisions characterized by exchange of energy between electronic, vibrational, and rotational degrees of freedom. We analyze this Hamiltonian in terms of various choices of independent coordinates which unambiguously specify the electronic and nuclear positions in the context of space-fixed and body-fixed reference frames. In particular we derive forms of the Hamiltonian in the context of the following four sets of independent coordinates: (1) a so-called space-fixed set, in which both electronic and nuclear positions are relative to the space-fixed frame; (2) a so-called mixed set, in which nuclear positions are relative to the body-fixed frame while electronic positions are relative to the space-fixed frame; (3) a so-called body-fixed set, in which both electronic and nuclear positions are relative to the body-fixed frame; and (4) another mixed set, in which nuclear positions are relative to the space-fixed frame while electronic positions are relative to the body-fixed frame. Based on practical considerations in accounting for electronic structure and nonadiabatic coupling of electronic states of the collision complex we find the forms of the Hamiltonian in the context of coordinate sets (3) and (4) above to be most appropriate, respectively, for body-fixed and space-fixed treatments of nuclear dynamics in collisional transfer of electronic, vibrational, and rotational energies
Mojahedi, Mahdi; Shekoohinejad, Hamidreza
2018-02-01
In this paper, temperature distribution in the continuous and pulsed end-pumped Nd:YAG rod crystal is determined using nonclassical and classical heat conduction theories. In order to find the temperature distribution in crystal, heat transfer differential equations of crystal with consideration of boundary conditions are derived based on non-Fourier's model and temperature distribution of the crystal is achieved by an analytical method. Then, by transferring non-Fourier differential equations to matrix equations, using finite element method, temperature and stress of every point of crystal are calculated in the time domain. According to the results, a comparison between classical and nonclassical theories is represented to investigate rupture power values. In continuous end pumping with equal input powers, non-Fourier theory predicts greater temperature and stress compared to Fourier theory. It also shows that with an increase in relaxation time, crystal rupture power decreases. Despite of these results, in single rectangular pulsed end-pumping condition, with an equal input power, Fourier theory indicates higher temperature and stress rather than non-Fourier theory. It is also observed that, when the relaxation time increases, maximum amounts of temperature and stress decrease.
International Nuclear Information System (INIS)
Eslava, L.A.
1983-01-01
This thesis is an investigation of two topics in the area of molecular and chemical dynamics phenomena. The first topic, Sensitivity Analysis in Molecular Dynamics and Chemical Kinetics, explores the response of the numerical solutions to variation in the input information. After a brief consideration of elementary sensitivity coefficients (i.e. partial derivatives of observables with respect to model parameters), attention is focused on an entire new family of derived coefficients capable of exhibiting important aspects of the underlying dynamics. Each derived sensitivity coefficient has a unique physical interpretation in terms of an experiment or modeling calculation. Also, a fitting model for rotationally inelastic cross sections that accurately predicts cross sections away from the region of parameter space used in the fitting is presented. The global behavior of cross sections in parameter space is examined, and a nonlinear interpolation formula is suggested which utilizes sensitivity information. The second topic, A Theory of Intramolecular Energy Transfer in the Presence of Intense Radiation Fields, represents a theoretical formulation of energy redistribution based on stochastic considerations. The fundamental assumption is that a random phase approximation is valid at specific time intervals. This results in the replacement of the Schrodinger equation by a master-type equation, which is further approximated by a Fokker-Planck diffusion like equation. Energy transfer is described as a flow of probability among the quantum states, and the dissociation of dynamics are embodied in the boundary conditions. By virtue of the continuous character of the Fokker-Planck equation, the computational difficulty of its numerical solution depends only on the number of degrees of freedom and not on the number of states
Theory of light transfer in food and biological materials
In this chapter, we first define the basic radiometric quantities that are needed for describing light propagation in food and biological materials. Radiative transfer theory is then derived, according to the principle of the conservation of energy. Because the radiative transfer theory equation is ...
Directory of Open Access Journals (Sweden)
Lara Cristina d'Avila Lourenço
2005-01-01
Full Text Available This article discloses some considerations about the transference conception situated within Freud's theory. The relations between transference, Oedipus complex and castration complex are highlighted. Starting from these relations and from the allegedly in wich Freud doesn't reveal a possible ending to Oedipus complex, this current work perceives that this author does not provide a theory about the transference ending. This idea drives into Freud's impasse, as far as the analysis ending is concerned. In this issue, a short reference is produced on Lacan's castration theory and on that of the transference at end of the analysis.
Voit, Florian; Schäfer, Jan; Kienle, Alwin
2009-09-01
We present a methodology to compare results of classical radiative transfer theory against exact solutions of Maxwell theory for a high number of spheres. We calculated light propagation in a cubic scattering region (20 x 20 x 20 microm(3)) consisting of different concentrations of polystyrene spheres in water (diameter 2 microm) by an analytical solution of Maxwell theory and by a numerical solution of radiative transfer theory. The relative deviation of differential as well as total scattering cross sections obtained by both approaches was evaluated for each sphere concentration. For the considered case, we found that deviations due to radiative transfer theory remain small, even for concentrations up to ca. 20 vol. %.
Year 7 Students, Information Literacy, and Transfer: A Grounded Theory
Herring, James E.
2011-01-01
This study examined the views of year 7 students, teacher librarians, and teachers in three state secondary schools in rural New South Wales, Australia, on information literacy and transfer. The aims of the study included the development of a grounded theory in relation to information literacy and transfer in these schools. The study's perspective…
Conjugate Image Theory Applied on Capacitive Wireless Power Transfer
Ben Minnaert; Nobby Stevens
2017-01-01
Wireless power transfer using a magnetic field through inductive coupling is steadily entering the market in a broad range of applications. However, for certain applications, capacitive wireless power transfer using electric coupling might be preferable. In order to obtain a maximum power transfer efficiency, an optimal compensation network must be designed at the input and output ports of the capacitive wireless link. In this work, the conjugate image theory is applied to determine this opti...
Phonon dispersion relations in monoatomic superlattices: a transfer matrix theory
International Nuclear Information System (INIS)
Albuquerque, E.L. de; Fulco, P.
1986-01-01
We present a lattice dynamical theory for monoatomic superlattices consisting of alternating layers of two different materials. Using a transfer matrix method we obtain explicit the equation for dispersion of the phonon's bulk modes, including the well known result in the long wave-length limit which can be obtained by elasticity theory. An illustation is shown and its features discussed. (Author) [pt
DRY TRANSFER FACILITY SEISMIC ANALYSIS
International Nuclear Information System (INIS)
EARNEST, S.; KO, H.; DOCKERY, W.; PERNISI, R.
2004-01-01
The purpose of this calculation is to perform a dynamic and static analysis on the Dry Transfer Facility, and to determine the response spectra seismic forces for the design basis ground motions. The resulting seismic forces and accelerations will be used in a subsequent calculation to complete preliminary design of the concrete shear walls, diaphragms, and basemat
Theory of nuclear heavy-ion direct transfer reactions
International Nuclear Information System (INIS)
Crowley, B.J.B.
1979-01-01
We review the distorted-wave approach to direct transfer reactions and draw attention to some of the shortcomings of current theories. We show that a reformulated form of the distorted-wave Born approximation (DWBA) for transfer can lead to important simplifications of the theory, which are valid for nuclear heavy-ion induced reactions at energies > or approx. =MeV/nucleon. In particular, in the semiclassical limit, it leads to a new and simple formula for the transfer t-matrix which includes all the essential physics while offering several important advantages over standard ''full-recoil finite-range'' DWBA. One such advantage is that the new formula is more transparent in that it is amendable to interpretation and analytical manipulation. At high-energy it is shown to reduce to one earlier deduced using eikonal-DWBA. The conditions for the validity of the new theory are discussed in detail. They are shown to be generally well satisfied for small-mass transfer between heavy-ions at energies at or above those particularly favour transfer (> or approx. =10 MeV/nucleon for transfer of valence nucleons). The restriction to small mass is not due to any recoil approximation; in fact, it is only a necessary restriction at certain energies. The theory treats recoil exactly. Consideration of the optimum dynamical conditions for transfer leads to a set of matching conditions. The presence of hitherto neglected absorption, arising from dynamical effects of poor matching, it suggested and qualitatively discussed. Condition under which such absorption may be neglected are derived. Results of numerical calculations are presented showing that the theory is capable of good agreement with standard full-recoil finite-range DWBA, and that it is capable of giving at least as good an account of experimental data for nucleon-transfer between heavy-ions at energies approx.10 MeV/nucleon
Marcus wins nobel prize in chemistry for electron transfer theory
International Nuclear Information System (INIS)
Levi, B.G.
1993-01-01
This article describes the work of Rudolf Marcus of Caltech leading to his receipt of the 1992 Nobel Prize in Chemistry open-quotes for his contributions to the theory of electron transfer reactions in chemical systems.close quotes Applications of Marcus' theory include such diverse phenomena as photosynthesis, electrically conducting polymers, chemiluminescence, and corrosion. Historical aspects of his career are given. 10 refs., 1 fig
Theory and simulation of charge transfer through DNA - nanotube contacts
International Nuclear Information System (INIS)
Rink, Gunda; Kong Yong; Koslowski, Thorsten
2006-01-01
We address the problem of charge transfer between a single-stranded adenine oligomer and semiconducting boron nitride nanotubes from a theoretical and numerical perspective. The model structures have been motivated by computer simulations; sample geometries are used as the input of an electronic structure theory that is based upon an extended Su-Schrieffer-Heeger Hamiltonian. By analyzing the emerging potential energy surfaces, we obtain hole transfer rates via Marcus' theory of charge transfer. In the presence of nanotubes, these rates exceed those of isolated DNA single strands by a factor of up to 10 4 . This enhancement can be rationalized and quantified as a combination of a template effect and the participation of the tube within a superexchange mechanism
Multiple scattering theory of radiative transfer in inhomogeneous atmospheres.
Kanal, M.
1973-01-01
In this paper we treat the multiple scattering theory of radiative transfer in plane-parallel inhomogeneous atmospheres. The treatment presented here may be adopted to model atmospheres characterized by an optical depth dependent coherent scattering phase function. For the purpose of illustration we consider the semi-infinite medium in which the absorption property of the atmosphere is characterized by an exponential function. The methodology employed here is the extension of the case treated previously by the author for homogeneous atmospheres.
Electron transfer dynamics: Zusman equation versus exact theory
International Nuclear Information System (INIS)
Shi Qiang; Chen Liping; Nan Guangjun; Xu Ruixue; Yan Yijing
2009-01-01
The Zusman equation has been widely used to study the effect of solvent dynamics on electron transfer reactions. However, application of this equation is limited by the classical treatment of the nuclear degrees of freedom. In this paper, we revisit the Zusman equation in the framework of the exact hierarchical equations of motion formalism, and show that a high temperature approximation of the hierarchical theory is equivalent to the Zusman equation in describing electron transfer dynamics. Thus the exact hierarchical formalism naturally extends the Zusman equation to include quantum nuclear dynamics at low temperatures. This new finding has also inspired us to rescale the original hierarchical equations and incorporate a filtering algorithm to efficiently propagate the hierarchical equations. Numerical exact results are also presented for the electron transfer reaction dynamics and rate constant calculations.
Analytical properties of the radiance in atmospheric radiative transfer theory
International Nuclear Information System (INIS)
Otto, Sebastian
2014-01-01
It is demonstrated mathematically strictly that state density functions, as the radiance (specific intensity), exist to describe certain state properties of transported photons on microscopic and the state of the radiation field on macroscopic scale, which have independent physical meanings. Analytical properties as boundedness, continuity, differentiability and integrability of these functions to describe the photon transport are discussed. It is shown that the density functions may be derived based on the assumption of photons as real particles of non-zero and finite size, independently of usual electrodynamics, and certain historically postulated functional relationships between them were proved, that is, these functions can be derived mathematically strictly and consistently within the framework of the theory of the phenomenological radiative transfer if one takes the theory seriously by really assuming photons as particles. In this sense these functions may be treated as fundamental physical quantities within the scope of this theory, if one considers the possibility of the existence of photons. -- Highlights: • Proof of existence of the radiance within the scope of the theory of atmospheric radiative transfer. • Proof of relations between the photon number and photon energy density function and the radiance. • Strictly mathematical derivation of the analytical properties of these state density functions
Conjugate Image Theory Applied on Capacitive Wireless Power Transfer
Directory of Open Access Journals (Sweden)
Ben Minnaert
2017-01-01
Full Text Available Wireless power transfer using a magnetic field through inductive coupling is steadily entering the market in a broad range of applications. However, for certain applications, capacitive wireless power transfer using electric coupling might be preferable. In order to obtain a maximum power transfer efficiency, an optimal compensation network must be designed at the input and output ports of the capacitive wireless link. In this work, the conjugate image theory is applied to determine this optimal network as a function of the characteristics of the capacitive wireless link, as well for the series as for the parallel topology. The results are compared with the inductive power transfer system. Introduction of a new concept, the coupling function, enables the description of the compensation network of both an inductive and a capacitive system in two elegant equations, valid for the series and the parallel topology. This approach allows better understanding of the fundamentals of the wireless power transfer link, necessary for the design of an efficient system.
Waste Feed Delivery Transfer System Analysis
Energy Technology Data Exchange (ETDEWEB)
JULYK, L.J.
2000-05-05
This document provides a documented basis for the required design pressure rating and pump pressure capacity of the Hanford Site waste-transfer system in support of the waste feed delivery to the privatization contractor for vitrification. The scope of the analysis includes the 200 East Area double-shell tank waste transfer pipeline system and the associated transfer system pumps for a11 Phase 1B and Phase 2 waste transfers from AN, AP, AW, AY, and A2 Tank Farms.
Waste Feed Delivery Transfer System Analysis
International Nuclear Information System (INIS)
JULYK, L.J.
2000-01-01
This document provides a documented basis for the required design pressure rating and pump pressure capacity of the Hanford Site waste-transfer system in support of the waste feed delivery to the privatization contractor for vitrification. The scope of the analysis includes the 200 East Area double-shell tank waste transfer pipeline system and the associated transfer system pumps for a11 Phase 1B and Phase 2 waste transfers from AN, AP, AW, AY, and A2 Tank Farms
Theory of radiative transfer in a strong magnetic field
Energy Technology Data Exchange (ETDEWEB)
Kanno, S [Ibaraki Univ., Mito (Japan). Dept. of Physics
1975-07-01
A theory is presented of the radiative transfer in a magnetized plasma with the opacity determined by the Thomson scattering. The Thomson cross section in the magnetic field is highly anisotropic and polarization-dependent. In order to cope with this situation, it is found useful to deal directly with the scattering amplitude (2x2 matrix in the polarization vector space) rather than the intensity. In this way it is possible to take into account the coherent superposition of the forward multiple-scattering amplitudes as a photon propagates. The equation of transfer is established accordingly and approximate solutions are found in the limits of small and large optical thickness. The latter solution is used to find the intensity and the polarization of thermal X-rays from a magnetic dipole star. The concept of mean free path is discussed and also it is shown that the Faraday rotation naturally comes about as a result of the multiple forward scattering.
A Bayesian Theory of Sequential Causal Learning and Abstract Transfer.
Lu, Hongjing; Rojas, Randall R; Beckers, Tom; Yuille, Alan L
2016-03-01
Two key research issues in the field of causal learning are how people acquire causal knowledge when observing data that are presented sequentially, and the level of abstraction at which learning takes place. Does sequential causal learning solely involve the acquisition of specific cause-effect links, or do learners also acquire knowledge about abstract causal constraints? Recent empirical studies have revealed that experience with one set of causal cues can dramatically alter subsequent learning and performance with entirely different cues, suggesting that learning involves abstract transfer, and such transfer effects involve sequential presentation of distinct sets of causal cues. It has been demonstrated that pre-training (or even post-training) can modulate classic causal learning phenomena such as forward and backward blocking. To account for these effects, we propose a Bayesian theory of sequential causal learning. The theory assumes that humans are able to consider and use several alternative causal generative models, each instantiating a different causal integration rule. Model selection is used to decide which integration rule to use in a given learning environment in order to infer causal knowledge from sequential data. Detailed computer simulations demonstrate that humans rely on the abstract characteristics of outcome variables (e.g., binary vs. continuous) to select a causal integration rule, which in turn alters causal learning in a variety of blocking and overshadowing paradigms. When the nature of the outcome variable is ambiguous, humans select the model that yields the best fit with the recent environment, and then apply it to subsequent learning tasks. Based on sequential patterns of cue-outcome co-occurrence, the theory can account for a range of phenomena in sequential causal learning, including various blocking effects, primacy effects in some experimental conditions, and apparently abstract transfer of causal knowledge. Copyright © 2015
Functional analysis theory and applications
Edwards, RE
2011-01-01
""The book contains an enormous amount of information - mathematical, bibliographical and historical - interwoven with some outstanding heuristic discussions."" - Mathematical Reviews.In this massive graduate-level study, Emeritus Professor Edwards (Australian National University, Canberra) presents a balanced account of both the abstract theory and the applications of linear functional analysis. Written for readers with a basic knowledge of set theory, general topology, and vector spaces, the book includes an abundance of carefully chosen illustrative examples and excellent exercises at the
New theory of radiative energy transfer in free electromagnetic fields
International Nuclear Information System (INIS)
Wolf, E.
1976-01-01
A new theory of radiative energy transfer in free, statistically stationary electromagnetic fields is presented. It provides a model for energy transport that is rigorous both within the framework of the stochastic theory of the classical field as well as within the framework of the theory of the quantized field. Unlike the usual phenomenological model of radiative energy transfer that centers around a single scalar quantity (the specific intensity of radiation), our theory brings into evidence the need for characterizing the energy transport by means of two (related) quantities: a scalar and a vector that may be identified, in a well-defined sense, with ''angular components'' of the average electromagnetic energy density and of the average Poynting vector, respectively. Both of them are defined in terms of invariants of certain new electromagnetic correlation tensors. In the special case when the field is statistically homogeneous, our model reduces to the usual one and our angular component of the average electromagnetic energy density, when multiplied by the vacuum speed of light, then acquires all the properties of the specific intensity of radiation. When the field is not statistically homogeneous our model approximates to the usual phenomenological one, provided that the angular correlations between plane wave modes of the field extend over a sufficiently small solid angle of directions about the direction of propagation of each mode. It is tentatively suggested that, when suitably normalized, our angular component of the average electromagnetic energy density may be interpreted as a quasi-probability (general quantum-mechancial phase-space distribution function, such as Wigner's) for the position and the momentum of a photon
Indicators for knowledge transfer analysis
International Nuclear Information System (INIS)
Plaza, L. M.
2007-01-01
Understanding by knowledge transfer, the process by which the scientific knowledge generated by the R+Ds Spanish public system investigators is finally harnessed and officially used by the agents that make up the productive system, or by the administration; this project aims to offer a global view of the main scientific indicators by which said process can be analysed and in particular, of the way that some of these indicators allow us to evaluate this transfer in the case of the Spanish I+D system and in that concerning the Biotechnology sector. (Author) 12 refs
Multiple scattering of polarized light: comparison of Maxwell theory and radiative transfer theory.
Voit, Florian; Hohmann, Ansgar; Schäfer, Jan; Kienle, Alwin
2012-04-01
For many research areas in biomedical optics, information about scattering of polarized light in turbid media is of increasing importance. Scattering simulations within this field are mainly performed on the basis of radiative transfer theory. In this study a polarization sensitive Monte Carlo solution of radiative transfer theory is compared to exact Maxwell solutions for all elements of the scattering Müller matrix. Different scatterer volume concentrations are modeled as a multitude of monodisperse nonabsorbing spheres randomly positioned in a cubic simulation volume which is irradiated with monochromatic incident light. For all Müller matrix elements effects due to dependent scattering and multiple scattering are analysed. The results are in overall good agreement between the two methods with deviations related to dependent scattering being prominent for high volume concentrations and high scattering angles.
Dimensional analysis in field theory
International Nuclear Information System (INIS)
Stevenson, P.M.
1981-01-01
Dimensional Transmutation (the breakdown of scale invariance in field theories) is reconciled with the commonsense notions of Dimensional Analysis. This makes possible a discussion of the meaning of the Renormalisation Group equations, completely divorced from the technicalities of renormalisation. As illustrations, I describe some very farmiliar QCD results in these terms
Braak, ter C.J.F.
1988-01-01
The theory of gradient analysis is presented in this chapter, in which the heuristic techniques are integrated with regression, calibration, ordination and constrained ordination as distinct, well-defined statistical problems. The various techniques used for each type of problem are classified into
Transfer function analysis of radiographic imaging systems
International Nuclear Information System (INIS)
Metz, C.E.; Doi, K.
1979-01-01
The theoretical and experimental aspects of the techniques of transfer function analysis used in radiographic imaging systems are reviewed. The mathematical principles of transfer function analysis are developed for linear, shift-invariant imaging systems, for the relation between object and image and for the image due to a sinusoidal plane wave object. The other basic mathematical principle discussed is 'Fourier analysis' and its application to an input function. Other aspects of transfer function analysis included are alternative expressions for the 'optical transfer function' of imaging systems and expressions are derived for both serial and parallel transfer image sub-systems. The applications of transfer function analysis to radiographic imaging systems are discussed in relation to the linearisation of the radiographic imaging system, the object, the geometrical unsharpness, the screen-film system unsharpness, other unsharpness effects and finally noise analysis. It is concluded that extensive theoretical, computer simulation and experimental studies have demonstrated that the techniques of transfer function analysis provide an accurate and reliable means for predicting and understanding the effects of various radiographic imaging system components in most practical diagnostic medical imaging situations. (U.K.)
Mathematical theory of sedimentation analysis
Fujita, Hiroshi; Van Rysselberghe, P
1962-01-01
Mathematical Theory of Sedimentation Analysis presents the flow equations for the ultracentrifuge. This book is organized into two parts encompassing six chapters that evaluate the systems of reacting components, the differential equations for the ultracentrifuge, and the case of negligible diffusion. The first chapters consider the Archibald method for molecular weight determination; pressure-dependent sedimentation; expressions for the refractive index and its gradient; relation between refractive index and concentration; and the analysis of Gaussian distribution. Other chapters deal with th
Hamiltonian analysis of Plebanski theory
International Nuclear Information System (INIS)
Buffenoir, E; Henneaux, M; Noui, K; Roche, Ph
2004-01-01
We study the Hamiltonian formulation of Plebanski theory in both the Euclidean and Lorentzian cases. A careful analysis of the constraints shows that the system is non-regular, i.e., the rank of the Dirac matrix is non-constant on the non-reduced phase space. We identify the gravitational and topological sectors which are regular subspaces of the non-reduced phase space. The theory can be restricted to the regular subspace which contains the gravitational sector. We explicitly identify first- and second-class constraints in this case. We compute the determinant of the Dirac matrix and the natural measure for the path integral of the Plebanski theory (restricted to the gravitational sector). This measure is the analogue of the Leutwyler-Fradkin-Vilkovisky measure of quantum gravity
Vacuum Large Current Parallel Transfer Numerical Analysis
Directory of Open Access Journals (Sweden)
Enyuan Dong
2014-01-01
Full Text Available The stable operation and reliable breaking of large generator current are a difficult problem in power system. It can be solved successfully by the parallel interrupters and proper timing sequence with phase-control technology, in which the strategy of breaker’s control is decided by the time of both the first-opening phase and second-opening phase. The precise transfer current’s model can provide the proper timing sequence to break the generator circuit breaker. By analysis of the transfer current’s experiments and data, the real vacuum arc resistance and precise correctional model in the large transfer current’s process are obtained in this paper. The transfer time calculated by the correctional model of transfer current is very close to the actual transfer time. It can provide guidance for planning proper timing sequence and breaking the vacuum generator circuit breaker with the parallel interrupters.
Directory of Open Access Journals (Sweden)
Lara Cristina d'Avila Lourenço
2005-04-01
Full Text Available Este artigo comunica algumas considerações sobre o conceito de transferência, na teoria freudiana. Especial atenção é voltada para as relações entre transferência, complexo de Édipo e complexo de castração. Partindo dessas relações e da hipótese segundo a qual Freud não apresenta um final possível para o complexo de Édipo, o presente trabalho entende que esse autor não fornece uma teoria sobre o final da transferência. Esse pensamento evoca o impasse freudiano em relação aos términos das análises. Nesse ponto, é feita uma breve referência à teoria lacaniana sobre a castração e a transferência ao final de análise.This article discloses some considerations about the transference conception situated within Freud's theory. The relations between transference, Oedipus complex and castration complex are highlighted. Starting from these relations and from the allegedly in wich Freud doesn't reveal a possible ending to Oedipus complex, this current work perceives that this author does not provide a theory about the transference ending. This idea drives into Freud's impasse, as far as the analysis ending is concerned. In this issue, a short reference is produced on Lacan's castration theory and on that of the transference at end of the analysis.
Multidimensional Wave Field Signal Theory: Transfer Function Relationships
Directory of Open Access Journals (Sweden)
Natalie Baddour
2012-01-01
Full Text Available The transmission of information by propagating or diffusive waves is common to many fields of engineering and physics. Such physical phenomena are governed by a Helmholtz (real wavenumber or pseudo-Helmholtz (complex wavenumber equation. Since these equations are linear, it would be useful to be able to use tools from signal theory in solving related problems. The aim of this paper is to derive multidimensional input/output transfer function relationships in the spatial domain for these equations in order to permit such a signal theoretic approach to problem solving. This paper presents such transfer function relationships for the spatial (not Fourier domain within appropriate coordinate systems. It is shown that the relationships assume particularly simple and computationally useful forms once the appropriate curvilinear version of a multidimensional spatial Fourier transform is used. These results are shown for both real and complex wavenumbers. Fourier inversion of these formulas would have applications for tomographic problems in various modalities. In the case of real wavenumbers, these inversion formulas are presented in closed form, whereby an input can be calculated from a given or measured wavefield.
Gegenfurtner, Andreas
2013-01-01
This longitudinal study examined the multidimensionality of motivation to transfer training. Based on self-determination theory, expectancy theory, and the theory of planned behaviour, motivation to transfer was conceptualized in three dimensions: autonomous motivation to transfer, controlled motivation to transfer, and intention to transfer.…
Antenna theory: Analysis and design
Balanis, C. A.
The book's main objective is to introduce the fundamental principles of antenna theory and to apply them to the analysis, design, and measurements of antennas. In a description of antennas, the radiation mechanism is discussed along with the current distribution on a thin wire. Fundamental parameters of antennas are examined, taking into account the radiation pattern, radiation power density, radiation intensity, directivity, numerical techniques, gain, antenna efficiency, half-power beamwidth, beam efficiency, bandwidth, polarization, input impedance, and antenna temperature. Attention is given to radiation integrals and auxiliary potential functions, linear wire antennas, loop antennas, linear and circular arrays, self- and mutual impedances of linear elements and arrays, broadband dipoles and matching techniques, traveling wave and broadband antennas, frequency independent antennas and antenna miniaturization, the geometrical theory of diffraction, horns, reflectors and lens antennas, antenna synthesis and continuous sources, and antenna measurements.
Approximate models for broken clouds in stochastic radiative transfer theory
International Nuclear Information System (INIS)
Doicu, Adrian; Efremenko, Dmitry S.; Loyola, Diego; Trautmann, Thomas
2014-01-01
This paper presents approximate models in stochastic radiative transfer theory. The independent column approximation and its modified version with a solar source computed in a full three-dimensional atmosphere are formulated in a stochastic framework and for arbitrary cloud statistics. The nth-order stochastic models describing the independent column approximations are equivalent to the nth-order stochastic models for the original radiance fields in which the gradient vectors are neglected. Fast approximate models are further derived on the basis of zeroth-order stochastic models and the independent column approximation. The so-called “internal mixing” models assume a combination of the optical properties of the cloud and the clear sky, while the “external mixing” models assume a combination of the radiances corresponding to completely overcast and clear skies. A consistent treatment of internal and external mixing models is provided, and a new parameterization of the closure coefficient in the effective thickness approximation is given. An efficient computation of the closure coefficient for internal mixing models, using a previously derived vector stochastic model as a reference, is also presented. Equipped with appropriate look-up tables for the closure coefficient, these models can easily be integrated into operational trace gas retrieval systems that exploit absorption features in the near-IR solar spectrum. - Highlights: • Independent column approximation in a stochastic setting. • Fast internal and external mixing models for total and diffuse radiances. • Efficient optimization of internal mixing models to match reference models
MODEL OF REGIONAL KNOWLEDGE TRANSFER: MAIN ACTORS, FRAMEWORK AND THEORY.
Directory of Open Access Journals (Sweden)
Alla LEVITSKAIA
2016-02-01
Full Text Available This paper analyses potential mechanism of regional knowledge transfer in region with poorly developed innovation infrastructure (the Autonomous Territorial Unit Gagauzia, Republic of Moldova through interactions between regional major players of the Regional Innovation System - the educational and research institutions, small and medium enterprises (SMEs and local authorities. Solution of this problem can be found in modern studies of territories innovation development through the clustering processes. Through the empirical study - innovation potential analysis of local SMEs - we proposed advantage mechanism which focused on the one type of knowledge cluster – Innovation and Educational Cluster. The symbiosis of entrepreneurs, government agencies, educational institutions and business service providers with the regional core - University, allows to increasing exchange flows of innovative knowledge between all members of the cluster and distributing them to the entire region and beyond. The results and proposals of this study formed the basis of the “Program of increasing the innovation potential of Gagauz SMEs”.
Stability Analysis for Car Following Model Based on Control Theory
International Nuclear Information System (INIS)
Meng Xiang-Pei; Li Zhi-Peng; Ge Hong-Xia
2014-01-01
Stability analysis is one of the key issues in car-following theory. The stability analysis with Lyapunov function for the two velocity difference car-following model (for short, TVDM) is conducted and the control method to suppress traffic congestion is introduced. Numerical simulations are given and results are consistent with the theoretical analysis. (electromagnetism, optics, acoustics, heat transfer, classical mechanics, and fluid dynamics)
Mission analysis for cross-site transfer
International Nuclear Information System (INIS)
Riesenweber, S.D.; Fritz, R.L.; Shipley, L.E.
1995-11-01
The Mission Analysis Report describes the requirements and constraints associated with the Transfer Waste Function as necessary to support the Manage Tank Waste, Retrieve Waste, and Process Tank Waste Functions described in WHC-SD-WM-FRD-020, Tank Waste Remediation System (TWRS) Functions and Requirements Document and DOE/RL-92-60, Revision 1, TWRS Functions and Requirements Document, March 1994. It further assesses the ability of the ''initial state'' (or current cross-site transfer system) to meet the requirements and constraints
A Meta-Analysis of Institutional Theories
1989-06-01
GPOUP SUBGROUP Institutional Theory , Isomorphism, Administrative Difterpntiation, Diffusion of Change, Rational, Unit Of Analysis 19 ABSTRACT (Continue on... institutional theory may lead to better decision making and evaluation criteria on the part of managers in the non-profit sector. C. SCOPE This paper... institutional theory : I) Organizations evolving in environments with elabora- ted institutional rules create structure that conform to those rules. 2
Mathematical analysis, approximation theory and their applications
Gupta, Vijay
2016-01-01
Designed for graduate students, researchers, and engineers in mathematics, optimization, and economics, this self-contained volume presents theory, methods, and applications in mathematical analysis and approximation theory. Specific topics include: approximation of functions by linear positive operators with applications to computer aided geometric design, numerical analysis, optimization theory, and solutions of differential equations. Recent and significant developments in approximation theory, special functions and q-calculus along with their applications to mathematics, engineering, and social sciences are discussed and analyzed. Each chapter enriches the understanding of current research problems and theories in pure and applied research.
Nobel Prize 1992: Rudolph A. Marcus: theory of electron transfer reactions in chemical systems
International Nuclear Information System (INIS)
Ulate Segura, Diego Guillermo
2011-01-01
A review of the theory developed by Rudolph A. Marcus is presented, who for his rating to the theory of electron transfer in chemical systems was awarded the Nobel Prize in Chemistry in 1992. Marcus theory has constituted not only a good extension of the use of a spectroscopic principle, but also has provided an energy balance and the application of energy conservation for electron transfer reactions. A better understanding of the reaction coordinate is exposed in terms energetic and establishing the principles that govern the transfer of electrons, protons and some labile small molecular groups as studied at present. Also, the postulates and equations described have established predictive models of reaction time, very useful for industrial environments, biological, metabolic, and others that involve redox processes. Marcus theory itself has also constituted a large contribution to the theory of complex transition [es
Antenna theory analysis and design
Balanis, Constantine A
2005-01-01
The discipline of antenna theory has experienced vast technological changes. In response, Constantine Balanis has updated his classic text, Antenna Theory, offering the most recent look at all the necessary topics. New material includes smart antennas and fractal antennas, along with the latest applications in wireless communications. Multimedia material on an accompanying CD presents PowerPoint viewgraphs of lecture notes, interactive review questions, Java animations and applets, and MATLAB features. Like the previous editions, Antenna Theory, Third Edition meets the needs of e
Transference and countertransference: two concepts specific to psychoanalytic theory and practice.
Ladame, F
1999-12-01
The development of the theory of transference and countertransference from Freud to post-Freudian authors is described. It is concluded that the concepts of transference and countertransference are pertinent only within a definite psychoanalytic setting. They cannot be applied in every therapeutic situation.
Fourier analysis in combinatorial number theory
International Nuclear Information System (INIS)
Shkredov, Il'ya D
2010-01-01
In this survey applications of harmonic analysis to combinatorial number theory are considered. Discussion topics include classical problems of additive combinatorics, colouring problems, higher-order Fourier analysis, theorems about sets of large trigonometric sums, results on estimates for trigonometric sums over subgroups, and the connection between combinatorial and analytic number theory. Bibliography: 162 titles.
Fourier analysis in combinatorial number theory
Energy Technology Data Exchange (ETDEWEB)
Shkredov, Il' ya D [M. V. Lomonosov Moscow State University, Moscow (Russian Federation)
2010-09-16
In this survey applications of harmonic analysis to combinatorial number theory are considered. Discussion topics include classical problems of additive combinatorics, colouring problems, higher-order Fourier analysis, theorems about sets of large trigonometric sums, results on estimates for trigonometric sums over subgroups, and the connection between combinatorial and analytic number theory. Bibliography: 162 titles.
Morphing continuum analysis of energy transfer in compressible turbulence
Cheikh, Mohamad Ibrahim; Wonnell, Louis B.; Chen, James
2018-02-01
A shock-preserving finite volume solver with the generalized Lax-Friedrichs splitting flux for morphing continuum theory (MCT) is presented and verified. The numerical MCT solver is showcased in a supersonic turbulent flow with Mach 2.93 over an 8∘ compression ramp. The simulation results validated MCT with experiments as an alternative for modeling compressible turbulence. The required size of the smallest mesh cell for the MCT simulation is shown to be almost an order larger than that in a similar direct numerical simulation study. The comparison shows MCT is a much more computationally friendly theory than the classical Navier-Stokes equations. The dynamics of energy cascade at the length scale of individual eddies is illuminated through the subscale rotation introduced by MCT. In this regard, MCT provides a statistical averaging procedure for capturing energy transfer in compressible turbulence, not found in classical fluid theories. Analysis of the MCT results show the existence of a statistical coupling of the internal and translational kinetic energy fluctuations with the corresponding eddy rotational energy fluctuations, indicating a multiscale transfer of energy. In conclusion, MCT gives a new characterization of the energy cascade within compressible turbulence without the use of excessive computational resources.
A new approach to radiative transfer theory using Jones's vectors. I
International Nuclear Information System (INIS)
Fymat, A.L.; Vasudevan, R.
1975-01-01
Radiative transfer of partially polarized radiation in an anisotropically scattering, inhomogeneous atmosphere containing arbitrary polydispersion of particles is described using Jones's amplitude vectors and matrices. This novel approach exploits the close analogy between the quantum mechanical states of spin 1/2 systems and the polarization states of electromagnetic radiation described by Jones's vector, and draws on the methodology of such spin 1/2 systems. The complete equivalence between the transport equation for Jones's vectors and the classical radiative transfer equation for Stokes's intensity vectors is demonstrated in two independent ways after deriving the transport equations for the polarization coherency matrices and for the quaternions corresponding to the Jones's vectors. A compact operator formulation of the theory is provided, and used to derive the necessary equations for both a local and a global description of the transport of Jones's vectors. Lastly, the integro-differential equations for the amplitude reflection and transmission matrices are derived, and related to the usual corresponding equations. The present formulation is the most succinct and the most convenient one for both theoretical and experimental studies. It yields a simpler analysis than the classical formulation since it reduces by a factor of two the dimensionality of transfer problems. It preserves information on phases, and thus can be used directly across the entire electromagnetic spectrum without any further conversion into intensities. (Auth.)
Students' Misconceptions about Heat Transfer Mechanisms and Elementary Kinetic Theory
Pathare, S. R.; Pradhan, H. C.
2010-01-01
Heat and thermodynamics is a conceptually rich area of undergraduate physics. In the Indian context in particular there has been little work done in this area from the point of view of misconceptions. This prompted us to undertake a study in this area. We present a study of students' misconceptions about heat transfer mechanisms, i.e. conduction,…
Frumkin-Butler-Volmer theory and mass transfer
Soestbergen, van M.
2012-01-01
An accurate mathematical description of the charge transfer rate at electrodes due to an electro chemical reaction is an indispensable component of any electrochemical model. In the current work we use the generalized Frumkin-Butler-Volmer (gFBV) equation to describe electrochemical reactions, an
Wu, Jianlan; Silbey, Robert J; Cao, Jianshu
2013-05-17
An asymptotic scaling theory is presented using the conceptual basis of trapping-free subspace (i.e., orthogonal subspace) to establish the generic mechanism of optimal efficiency of excitation energy transfer in light-harvesting systems. A quantum state orthogonal to the trap will exhibit noise-assisted transfer, clarifying the significance of initial preparation. For such an initial state, the efficiency is enhanced in the weak damping limit (⟨t⟩ ∼ 1/Γ), and suppressed in the strong damping limit (⟨t⟩ ∼ Γ), analogous to Kramers turnover in classical rate theory. An interpolating expression ⟨t⟩ = A/Γ + B + CΓ quantitatively describes the trapping time over the entire range of the dissipation strength, and predicts the optimal efficiency at Γ(opt) ∼ J for homogenous systems. In the presence of static disorder, the scaling law of transfer time with respect to dephasing rate changes from linear to square root, suggesting a weaker dependence on the environment. The prediction of the scaling theory is verified in a symmetric dendrimer system by numerically exact quantum calculations. Though formulated in the context of excitation energy transfer, the analysis and conclusions apply in general to open quantum processes, including electron transfer, fluorescence emission, and heat conduction.
Boley, Bruno A
1997-01-01
Highly regarded text presents detailed discussion of fundamental aspects of theory, background, problems with detailed solutions. Basics of thermoelasticity, heat transfer theory, thermal stress analysis, more. 1985 edition.
Similarity Theory and Dimensionless Numbers in Heat Transfer
Marin, E.; Calderon, A.; Delgado-Vasallo, O.
2009-01-01
We present basic concepts underlying the so-called similarity theory that in our opinion should be explained in basic undergraduate general physics courses when dealing with heat transport problems, in particular with those involving natural or free convection. A simple example is described that can be useful in showing a criterion for neglecting…
Ambiguity in knowledge transfer: The role of theory-practice gap.
Cheraghi, Mohammad Ali; Salsali, Mahvash; Safari, Mahmoud
2010-01-01
In spite of much literature written about the theory-practice gap in the international nursing journals, there is evidence that indicates this subject has not been probed comprehensively since nursing education was transferred to universities in Iran. In the recent years, the public and the government have criticized Iranian nurses because of poor quality of patient care. Although this subject has been lamented by some researchers, there is no comprehensive work on how this gap resulted. In the process of a larger study on "nursing knowledge translation to practice", of one PhD thesis, this process was explored. Using grounded theory analysis, indepth interviews were undertaken with a purposive sample of 29 nurses, with different levels of experience, from the school of nursing in Tehran University of Medical Sciences in 2006 from January to August. Data were analyzed using the constant comparative method. Three main themes emerging from this study included clinical behavior structure, paradoxical knowledge and practice, and divergent nursing organization. It seems that nursing education with some praxis and paradoxes in the realm of nursing knowledge and practice, along with divergent organizational structure have decreased nurses' ability in applying their professional knowledge and skills in order to bridge the gap between theory and practice. Moreover, in spite of increased academic input into nursing education, clinical behaviors of both education and practice settings was perceived as "traditional routine-based".
Functional analysis, spectral theory, and applications
Einsiedler, Manfred
2017-01-01
This textbook provides a careful treatment of functional analysis and some of its applications in analysis, number theory, and ergodic theory. In addition to discussing core material in functional analysis, the authors cover more recent and advanced topics, including Weyl’s law for eigenfunctions of the Laplace operator, amenability and property (T), the measurable functional calculus, spectral theory for unbounded operators, and an account of Tao’s approach to the prime number theorem using Banach algebras. The book further contains numerous examples and exercises, making it suitable for both lecture courses and self-study. Functional Analysis, Spectral Theory, and Applications is aimed at postgraduate and advanced undergraduate students with some background in analysis and algebra, but will also appeal to everyone with an interest in seeing how functional analysis can be applied to other parts of mathematics.
Ghosh, Soumen; Sonnenberger, Andrew L; Hoyer, Chad E; Truhlar, Donald G; Gagliardi, Laura
2015-08-11
The correct description of charge transfer in ground and excited states is very important for molecular interactions, photochemistry, electrochemistry, and charge transport, but it is very challenging for Kohn-Sham (KS) density functional theory (DFT). KS-DFT exchange-correlation functionals without nonlocal exchange fail to describe both ground- and excited-state charge transfer properly. We have recently proposed a theory called multiconfiguration pair-density functional theory (MC-PDFT), which is based on a combination of multiconfiguration wave function theory with a new type of density functional called an on-top density functional. Here we have used MC-PDFT to study challenging ground- and excited-state charge-transfer processes by using on-top density functionals obtained by translating KS exchange-correlation functionals. For ground-state charge transfer, MC-PDFT performs better than either the PBE exchange-correlation functional or CASPT2 wave function theory. For excited-state charge transfer, MC-PDFT (unlike KS-DFT) shows qualitatively correct behavior at long-range with great improvement in predicted excitation energies.
Directory of Open Access Journals (Sweden)
Hisako Matsuo, Ph.D.
2013-07-01
Full Text Available Japanese corporations are characterized by distinctive management practices which have been nurtured in a culturally homogeneous environment. The transferability of these practices to foreign subsidiaries has been a subject of debate among management scholars. Drawing on resource dependence theory and institutionalism, this study examines the impact of homogeneity in management and parent company control on the degree of presence of Japanese human resource management (HRM in U.S. subsidiaries. The study uses Walton and Lawrence’s classification (reward, selection and promotion, employee influence mechanism, and job design to measure uniquely Japanese HRM and a sample survey of 138 U.S. subsidiaries of Japanese multinational corporations for data collection. A principal component analysis reveals that three dimensions of HRM (reward system, selection and promotion, and job design, rather than four, are salient among these establishments. An OLS regression analysis also reveals that the degree of homogeneity in management and parent company control has impact on the transfer of these dimensions of HRM. Some implications for future study are discussed.
Methods of Fourier analysis and approximation theory
Tikhonov, Sergey
2016-01-01
Different facets of interplay between harmonic analysis and approximation theory are covered in this volume. The topics included are Fourier analysis, function spaces, optimization theory, partial differential equations, and their links to modern developments in the approximation theory. The articles of this collection were originated from two events. The first event took place during the 9th ISAAC Congress in Krakow, Poland, 5th-9th August 2013, at the section “Approximation Theory and Fourier Analysis”. The second event was the conference on Fourier Analysis and Approximation Theory in the Centre de Recerca Matemàtica (CRM), Barcelona, during 4th-8th November 2013, organized by the editors of this volume. All articles selected to be part of this collection were carefully reviewed.
Formal analysis of physical theories
International Nuclear Information System (INIS)
Dalla Chiara, M.L.; Toraldo di Francia, G.
1979-01-01
The rules of inference that are made use of in formalization are considered. It is maintained that a physical law represents the universal assertion of a probability, and not the assessment of the probability of a universal assertion. The precision of the apparatus used to collect the experimental evidence is introduced as an essential part of the theoretical structure of physics. This approach allows the author to define the concept of truth in a satisfactory way, abandoning the unacceptable notion of approximate truth. It is shown that a considerable amount of light can be shed on a number of much debated problems arising in the logic of quantum mechanics. It is stressed that the deductive structure of quantum theory seems to be essentially founded on a kind of mixture of different logics. Two different concepts of truth are distinguished within quantum theory, an empirical truth and quantum-logical truth. (Auth.)
Mathematical models of the theory of the radiative transfer
International Nuclear Information System (INIS)
Lin, Ch.
2007-06-01
We are interested in various different models arising in radiative transfer, which describe the interactions between the medium and the photons. The radiation is described in terms of energy and energy flux in the macroscopic view, the material being described by the Euler equations (radiative hydrodynamic model). In another way, the radiation can be seen as a collection of photons, in the microscopic view point; the photons can be absorbed or emitted by the material. The absorption and the emission of photons depend on the internal excitation and ionization state of the material. We begin with the local existence (in time) of smooth solutions to a system coupling the Euler equations and the transfer equation. This system describes the exchange of energy and moment between the radiation and the material. Next, we give an asymptotic discussion for this model in the NON-LTE regime and get a simple system: coupling the Euler equations with an elliptic equation. We show the existence of (smooth) shock profiles to this system and the regularity of the shock profile as a function of the strength of the shock. Then we study the asymptotic stability of the shock profile. Finally, we study a system describing the radiation and the internal state of the material, in the microscopic view point. We prove the existence of the solution to this system and study the convergence towards the statistical equilibrium. The theoretical results are illustrated by numerical simulations. (author)
Fixed point theory, variational analysis, and optimization
Al-Mezel, Saleh Abdullah R; Ansari, Qamrul Hasan
2015-01-01
""There is a real need for this book. It is useful for people who work in areas of nonlinear analysis, optimization theory, variational inequalities, and mathematical economics.""-Nan-Jing Huang, Sichuan University, Chengdu, People's Republic of China
Resonance energy transfer: The unified theory via vector spherical harmonics
Energy Technology Data Exchange (ETDEWEB)
Grinter, Roger, E-mail: r.grinter@uea.ac.uk; Jones, Garth A., E-mail: garth.jones@uea.ac.uk [School of Chemistry, University of East Anglia, Norwich NR4 7TJ (United Kingdom)
2016-08-21
In this work, we derive the well-established expression for the quantum amplitude associated with the resonance energy transfer (RET) process between a pair of molecules that are beyond wavefunction overlap. The novelty of this work is that the field of the mediating photon is described in terms of a spherical wave rather than a plane wave. The angular components of the field are constructed in terms of vector spherical harmonics while Hankel functions are used to define the radial component. This approach alleviates the problem of having to select physically correct solution from non-physical solutions, which seems to be inherent in plane wave derivations. The spherical coordinate system allows one to easily decompose the photon’s fields into longitudinal and transverse components and offers a natural way to analyse near-, intermediate-, and far-zone RET within the context of the relative orientation of the transition dipole moments for the two molecules.
Radiative Transfer Theory Verified by Controlled Laboratory Experiments
Mishchenko, Michael I.; Goldstein, Dennis H.; Chowdhary, Jacek; Lompado, Arthur
2013-01-01
We report the results of high-accuracy controlled laboratory measurements of the Stokes reflection matrix for suspensions of submicrometer-sized latex particles in water and compare them with the results of a numerically exact computer solution of the vector radiative transfer equation (VRTE). The quantitative performance of the VRTE is monitored by increasing the volume packing density of the latex particles from 2 to 10. Our results indicate that the VRTE can be applied safely to random particulate media with packing densities up to 2. VRTE results for packing densities of the order of 5 should be taken with caution, whereas the polarized bidirectional reflectivity of suspensions with larger packing densities cannot be accurately predicted. We demonstrate that a simple modification of the phase matrix entering the VRTE based on the so-called static structure factor can be a promising remedy that deserves further examination.
Fluctuation theory for radiative transfer in random media
International Nuclear Information System (INIS)
Bal, Guillaume; Jing Wenjia
2011-01-01
We consider the effect of small scale random fluctuations of the constitutive coefficients on boundary measurements of solutions to radiative transfer equations. As the correlation length of the random oscillations tends to zero, the transport solution is well approximated by a deterministic, averaged, solution. In this paper, we analyze the random fluctuations to the averaged solution, which may be interpreted as a central limit correction to homogenization. With the inverse transport problem in mind, we characterize the random structure of the singular components of the transport measurement operator. In regimes of moderate scattering, such components provide stable reconstructions of the constitutive parameters in the transport equation. We show that the random fluctuations strongly depend on the decorrelation properties of the random medium.
Fostering transfer of web searchers' evaluation skills: A field test of two transfer theories
Walraven, Amber; Brand-Gruwel, Saskia; Boshuizen, Henny P.A.
2010-01-01
Transfer of complex cognitive skills is important when stimulating students to become life long learners. An example of a complex cognitive skill is the skill of evaluating results, information and source while solving information problems using the WWW. Especially the knowledge and use of
A formal derivation of the local energy transfer (LET) theory of homogeneous turbulence
McComb, W. D.; Yoffe, S. R.
2017-09-01
A statistical closure of the Navier-Stokes hierarchy which leads to equations for the two-point, two-time covariance of the velocity field for stationary, homogeneous isotropic turbulence is presented. It is a generalisation of the self-consistent field method due to Edwards (1964) for the stationary, single-time velocity covariance. The probability distribution functional P≤ft[\\mathbf{u},t\\right] is obtained, in the form of a series, from the Liouville equation by means of a perturbation expansion about a Gaussian distribution, which is chosen to give the exact two-point, two-time covariance. The triple moment is calculated in terms of an ensemble-averaged infinitesimal velocity-field propagator, and shown to yield the Edwards result as a special case. The use of a Gaussian zero-order distribution has been found to justify the introduction of a fluctuation-response relation, which is in accord with modern dynamical theories. In a sense this work completes the analogy drawn by Edwards between turbulence and Brownian motion. Originally Edwards had shown that the noise input was determined by the correlation of the velocity field with the externally applied stirring forces but was unable to determine the system response. Now we find that the system response is determined by the correlation of the velocity field with internal quasi-entropic forces. This analysis is valid to all orders of perturbation theory, and allows the recovery of the local energy transfer (LET) theory, which had previously been derived by more heuristical methods. The LET theory is known to be in good agreement with experimental results. It is also unique among two-point statistical closures in displaying an acceptable (i.e. non-Markovian) relationship between the transfer spectrum and the system response, in accordance with experimental results. As a result of the latter property, it is compatible with the Kolmogorov (K41) spectral phenomenology. In memory of Professor Sir Sam Edwards F
Examining depletion theories under conditions of within-task transfer.
Brewer, Gene A; Lau, Kevin K H; Wingert, Kimberly M; Ball, B Hunter; Blais, Chris
2017-07-01
In everyday life, mental fatigue can be detrimental across many domains including driving, learning, and working. Given the importance of understanding and accounting for the deleterious effects of mental fatigue on behavior, a growing body of literature has studied the role of motivational and executive control processes in mental fatigue. In typical laboratory paradigms, participants complete a task that places demand on these self-control processes and are later given a subsequent task. Generally speaking, decrements to subsequent task performance are taken as evidence that the initial task created mental fatigue through the continued engagement of motivational and executive functions. Several models have been developed to account for negative transfer resulting from this "ego depletion." In the current study, we provide a brief literature review, specify current theoretical approaches to ego-depletion, and report an empirical test of current models of depletion. Across 4 experiments we found minimal evidence for executive control depletion along with strong evidence for motivation mediated ego depletion. (PsycINFO Database Record (c) 2017 APA, all rights reserved).
High-energy, large-momentum-transfer processes: Ladder diagrams in φ3 theory. Pt. 1
International Nuclear Information System (INIS)
Osland, P.; Wu, T.T.; Harvard Univ., Cambridge, MA
1987-01-01
Relativistic quantum field theories may give us useful guidance to understanding high-energy, large-momentum-transfer processes, where the center-of-mass energy is much larger than the transverse momentum transfers, which are in turn much larger than the masses of the participating particles. With this possibility in mind, we study the ladder diagrams in φ 3 theory. In this paper, some of the necessary techniques are developed and applied to the simplest cases of the fourth- and sixth-order ladder diagrams. (orig.)
Tsang, L.; Kubacsi, M. C.; Kong, J. A.
1981-01-01
The radiative transfer theory is applied within the Rayleigh approximation to calculate the backscattering cross section of a layer of randomly positioned and oriented small ellipsoids. The orientation of the ellipsoids is characterized by a probability density function of the Eulerian angles of rotation. The radiative transfer equations are solved by an iterative approach to first order in albedo. In the half space limit the results are identical to those obtained via the approach of Foldy's and distorted Born approximation. Numerical results of the theory are illustrated using parameters encountered in active remote sensing of vegetation layers. A distinctive characteristic is the strong depolarization shown by vertically aligned leaves.
Fringe pattern analysis for optical metrology theory, algorithms, and applications
Servin, Manuel; Padilla, Moises
2014-01-01
The main objective of this book is to present the basic theoretical principles and practical applications for the classical interferometric techniques and the most advanced methods in the field of modern fringe pattern analysis applied to optical metrology. A major novelty of this work is the presentation of a unified theoretical framework based on the Fourier description of phase shifting interferometry using the Frequency Transfer Function (FTF) along with the theory of Stochastic Process for the straightforward analysis and synthesis of phase shifting algorithms with desired properties such
Infrared laser driven double proton transfer. An optimal control theory study
Abdel-Latif, Mahmoud K.; Kühn, Oliver
2010-02-01
Laser control of ultrafast double proton transfer is investigated for a two-dimensional model system describing stepwise and concerted transfer pathways. The pulse design has been done by employing optimal control theory in combination with the multiconfiguration time-dependent Hartree wave packet propagation. The obtained laser fields correspond to multiple pump-dump pulse sequences. Special emphasis is paid to the relative importance of stepwise and concerted transfer pathways for the driven wave packet and its dependence on the parameters of the model Hamiltonian as well as on the propagation time. While stepwise transfer is dominating in all cases considered, for high barrier systems concerted transfer proceeding via tunneling can make a contribution.
Theory of Prejudice and American Identity Threat Transfer for Latino and Asian Americans.
Sanchez, Diana T; Chaney, Kimberly E; Manuel, Sara K; Remedios, Jessica D
2018-03-01
Latinos and Asian Americans confront similar stereotypes as they are often presumed to be foreigners and subjected to American identity denial. Across six studies (total N = 992), we demonstrate that Latinos and Asians anticipate ingroup prejudice and specific types of subordination (e.g., American identity threat) in the face of outgroup threats that target one another (i.e., stigma transfer). The studies explore whether stigma transfer occurred primarily when shared Latino and Asian stereotype content was a salient component of the prejudice remark (e.g., foreigner stereotypes; Study 3), or when outgroup prejudice targeted a social group with shared stereotype content (Study 4), though neither appeared to substantively moderate stigma transfer. Minority group members who conceptualize prejudiced people as holding multiple biases (i.e., a monolithic prejudice theory) were more susceptible to stigma transfer suggesting that stereotype content is not necessary for stigma transfer because people assume that prejudice is not singular.
Decision analysis with cumulative prospect theory.
Bayoumi, A M; Redelmeier, D A
2000-01-01
Individuals sometimes express preferences that do not follow expected utility theory. Cumulative prospect theory adjusts for some phenomena by using decision weights rather than probabilities when analyzing a decision tree. The authors examined how probability transformations from cumulative prospect theory might alter a decision analysis of a prophylactic therapy in AIDS, eliciting utilities from patients with HIV infection (n = 75) and calculating expected outcomes using an established Markov model. They next focused on transformations of three sets of probabilities: 1) the probabilities used in calculating standard-gamble utility scores; 2) the probabilities of being in discrete Markov states; 3) the probabilities of transitioning between Markov states. The same prophylaxis strategy yielded the highest quality-adjusted survival under all transformations. For the average patient, prophylaxis appeared relatively less advantageous when standard-gamble utilities were transformed. Prophylaxis appeared relatively more advantageous when state probabilities were transformed and relatively less advantageous when transition probabilities were transformed. Transforming standard-gamble and transition probabilities simultaneously decreased the gain from prophylaxis by almost half. Sensitivity analysis indicated that even near-linear probability weighting transformations could substantially alter quality-adjusted survival estimates. The magnitude of benefit estimated in a decision-analytic model can change significantly after using cumulative prospect theory. Incorporating cumulative prospect theory into decision analysis can provide a form of sensitivity analysis and may help describe when people deviate from expected utility theory.
International Nuclear Information System (INIS)
Keski-Vakkuri, E.; Kraus, P.
1998-01-01
Polchinski and Pouliot have shown that M-momentum transfer between membranes in supergravity can be understood as a non-perturbative instanton effect in gauge theory. Here we consider a dual process: electric flux transmission between D-branes. We show that this process can be described in perturbation theory as virtual string pair creation, and is closely related to Schwinger's treatment of the pair creation of charged particles in a uniform electric field. Through the application of dualities, our perturbative calculation gives results for various non-perturbative amplitudes, including M-momentum transfer between gravitons, membranes and longitudinal fivebranes. Thus perturbation theory plus dualities are sufficient to demonstrate agreement between supergravity and gauge theory for a number of M-momentum transferring processes. A variety of other processes where branes are transmitted between branes, e.g. (p,q)-string transmission in IIB theory, can also be studied. We discuss the implications of our results for proving the eleven-dimensional Lorentz invariance of matrix theory. (orig.)
Spectral theory and nonlinear functional analysis
Lopez-Gomez, Julian
2001-01-01
This Research Note addresses several pivotal problems in spectral theory and nonlinear functional analysis in connection with the analysis of the structure of the set of zeroes of a general class of nonlinear operators. It features the construction of an optimal algebraic/analytic invariant for calculating the Leray-Schauder degree, new methods for solving nonlinear equations in Banach spaces, and general properties of components of solutions sets presented with minimal use of topological tools. The author also gives several applications of the abstract theory to reaction diffusion equations and systems.The results presented cover a thirty-year period and include recent, unpublished findings of the author and his coworkers. Appealing to a broad audience, Spectral Theory and Nonlinear Functional Analysis contains many important contributions to linear algebra, linear and nonlinear functional analysis, and topology and opens the door for further advances.
Evolutionary Game Theory Analysis of Tumor Progression
Wu, Amy; Liao, David; Sturm, James; Austin, Robert
2014-03-01
Evolutionary game theory applied to two interacting cell populations can yield quantitative prediction of the future densities of the two cell populations based on the initial interaction terms. We will discuss how in a complex ecology that evolutionary game theory successfully predicts the future densities of strains of stromal and cancer cells (multiple myeloma), and discuss the possible clinical use of such analysis for predicting cancer progression. Supported by the National Science Foundation and the National Cancer Institute.
Probabilistic Structural Analysis Theory Development
Burnside, O. H.
1985-01-01
The objective of the Probabilistic Structural Analysis Methods (PSAM) project is to develop analysis techniques and computer programs for predicting the probabilistic response of critical structural components for current and future space propulsion systems. This technology will play a central role in establishing system performance and durability. The first year's technical activity is concentrating on probabilistic finite element formulation strategy and code development. Work is also in progress to survey critical materials and space shuttle mian engine components. The probabilistic finite element computer program NESSUS (Numerical Evaluation of Stochastic Structures Under Stress) is being developed. The final probabilistic code will have, in the general case, the capability of performing nonlinear dynamic of stochastic structures. It is the goal of the approximate methods effort to increase problem solving efficiency relative to finite element methods by using energy methods to generate trial solutions which satisfy the structural boundary conditions. These approximate methods will be less computer intensive relative to the finite element approach.
Drivers for liquidation and transfer in small firms : Theory of Planned Behavior and firm conditions
H. Leory; Lex van Teeffelen
2009-01-01
Recently Leroy et al. (2008) tested if the Theory of Planned Behavior (TPB) predicts exit behavior of entrepreneurs: liquidation or transfer. He added the purchasers view to the TPB: firm viability and intangible assets. We retested Leroy et al. hypotheses on a more refined dataset of 136 firms in
Ferwerda, H.A.; Hoenders, B.J.; Slump, C.H.
The fully relativistic quantum mechanical treatment of paraxial electron-optical image formation initiated in the previous paper (this issue) is worked out and leads to a rigorous foundation of the linear transfer theory. Moreover, the status of the relativistic scaling laws for mass and wavelength,
The Model of Lake Operation in Water Transfer Projects Based on the Theory of Water- right
Bi-peng, Yan; Chao, Liu; Fang-ping, Tang
the lake operation is a very important content in Water Transfer Projects. The previous studies have not any related to water-right and water- price previous. In this paper, water right is divided into three parts, one is initialization waterright, another is by investment, and the third is government's water- right re-distribution. The water-right distribution model is also build. After analyzing the cost in water transfer project, a model and computation method for the capacity price as well as quantity price is proposed. The model of lake operation in water transfer projects base on the theory of water- right is also build. The simulation regulation for the lake was carried out by using historical data and Genetic Algorithms. Water supply and impoundment control line of the lake was proposed. The result can be used by south to north water transfer projects.
Theory and Application of DNA Histogram Analysis.
Bagwell, Charles Bruce
The underlying principles and assumptions associated with DNA histograms are discussed along with the characteristics of fluorescent probes. Information theory was described and used to calculate the information content of a DNA histogram. Two major types of DNA histogram analyses are proposed: parametric and nonparametric analysis. Three levels…
An ab-initio coupled mode theory for near field radiative thermal transfer.
Chalabi, Hamidreza; Hasman, Erez; Brongersma, Mark L
2014-12-01
We investigate the thermal transfer between finite-thickness planar slabs which support surface phonon polariton modes (SPhPs). The thickness-dependent dispersion of SPhPs in such layered materials provides a unique opportunity to manipulate and enhance the near field thermal transfer. The key accomplishment of this paper is the development of an ab-initio coupled mode theory that accurately describes all of its thermal transfer properties. We illustrate how the coupled mode parameters can be obtained in a direct fashion from the dispersion relation of the relevant modes of the system. This is illustrated for the specific case of a semi-infinite SiC substrate placed in close proximity to a thin slab of SiC. This is a system that exhibits rich physics in terms of its thermal transfer properties, despite the seemingly simple geometry. This includes a universal scaling behavior of the thermal conductance with the slab thickness and spacing. The work highlights and further increases the value of coupled mode theories in rapidly calculating and intuitively understanding near-field transfer.
Transfer of learning between 2D and 3D sources during infancy: Informing theory and practice.
Barr, Rachel
2010-06-01
The ability to transfer learning across contexts is an adaptive skill that develops rapidly during early childhood. Learning from television is a specific instance of transfer of learning between a 2-Dimensional (2D) representation and a 3-Dimensional (3D) object. Understanding the conditions under which young children might accomplish this particular kind of transfer is important because by 2 years of age 90% of US children are viewing television on a daily basis. Recent research shows that children can imitate actions presented on television using the corresponding real-world objects, but this same research also shows that children learn less from television than they do from live demonstrations until they are at least 3 years old; termed the video deficit effect. At present, there is no coherent theory to account for the video deficit effect; how learning is disrupted by this change in context is poorly understood. The aims of the present review are (1) to review the conditions under which children transfer learning between 2D images and 3D objects during early childhood, and (2) to integrate developmental theories of memory processing into the transfer of learning from media literature using Hayne's (2004) developmental representational flexibility account. The review will conclude that studies on the transfer of learning between 2D and 3D sources have important theoretical implications for general developmental theories of cognitive development, and in particular the development of a flexible representational system, as well as policy implications for early education regarding the potential use and limitations of media as effective teaching tools during early childhood.
Correspondence analysis theory, practice and new strategies
Beh, Eric J
2014-01-01
A comprehensive overview of the internationalisation of correspondence analysis Correspondence Analysis: Theory, Practice and New Strategies examines the key issues of correspondence analysis, and discusses the new advances that have been made over the last 20 years. The main focus of this book is to provide a comprehensive discussion of some of the key technical and practical aspects of correspondence analysis, and to demonstrate how they may be put to use. Particular attention is given to the history and mathematical links of the developments made. These links include not just those majo
An Introduction to Wavelet Theory and Analysis
Energy Technology Data Exchange (ETDEWEB)
Miner, N.E.
1998-10-01
This report reviews the history, theory and mathematics of wavelet analysis. Examination of the Fourier Transform and Short-time Fourier Transform methods provides tiormation about the evolution of the wavelet analysis technique. This overview is intended to provide readers with a basic understanding of wavelet analysis, define common wavelet terminology and describe wavelet amdysis algorithms. The most common algorithms for performing efficient, discrete wavelet transforms for signal analysis and inverse discrete wavelet transforms for signal reconstruction are presented. This report is intended to be approachable by non- mathematicians, although a basic understanding of engineering mathematics is necessary.
Dimensional analysis and group theory in astrophysics
Kurth, Rudolf
2013-01-01
Dimensional Analysis and Group Theory in Astrophysics describes how dimensional analysis, refined by mathematical regularity hypotheses, can be applied to purely qualitative physical assumptions. The book focuses on the continuous spectral of the stars and the mass-luminosity relationship. The text discusses the technique of dimensional analysis, covering both relativistic phenomena and the stellar systems. The book also explains the fundamental conclusion of dimensional analysis, wherein the unknown functions shall be given certain specified forms. The Wien and Stefan-Boltzmann Laws can be si
Integrated analysis of energy transfers in elastic-wave turbulence.
Yokoyama, Naoto; Takaoka, Masanori
2017-08-01
In elastic-wave turbulence, strong turbulence appears in small wave numbers while weak turbulence does in large wave numbers. Energy transfers in the coexistence of these turbulent states are numerically investigated in both the Fourier space and the real space. An analytical expression of a detailed energy balance reveals from which mode to which mode energy is transferred in the triad interaction. Stretching energy excited by external force is transferred nonlocally and intermittently to large wave numbers as the kinetic energy in the strong turbulence. In the weak turbulence, the resonant interactions according to the weak turbulence theory produce cascading net energy transfer to large wave numbers. Because the system's nonlinearity shows strong temporal intermittency, the energy transfers are investigated at active and moderate phases separately. The nonlocal interactions in the Fourier space are characterized by the intermittent bundles of fibrous structures in the real space.
Interior point algorithms theory and analysis
Ye, Yinyu
2011-01-01
The first comprehensive review of the theory and practice of one of today's most powerful optimization techniques. The explosive growth of research into and development of interior point algorithms over the past two decades has significantly improved the complexity of linear programming and yielded some of today's most sophisticated computing techniques. This book offers a comprehensive and thorough treatment of the theory, analysis, and implementation of this powerful computational tool. Interior Point Algorithms provides detailed coverage of all basic and advanced aspects of the subject.
Makari, G J
1994-01-01
Freud's 1900 theory of transference was indebted to the convergence of philosophy and physiology found in nineteenth-century theories of visual perception. The author maps out the post-Kantian philosophical and German physiological currents that gave rise to Hermann von Helmholtz's influential work on perception, and proposes that Freud's 1900 theory of transference was a creative synthesis of novel notions like unconscious wishing and psychic defense with a Helmholtzian model of visual illusion.
Noncommutative analysis, operator theory and applications
Cipriani, Fabio; Colombo, Fabrizio; Guido, Daniele; Sabadini, Irene; Sauvageot, Jean-Luc
2016-01-01
This book illustrates several aspects of the current research activity in operator theory, operator algebras and applications in various areas of mathematics and mathematical physics. It is addressed to specialists but also to graduate students in several fields including global analysis, Schur analysis, complex analysis, C*-algebras, noncommutative geometry, operator algebras, operator theory and their applications. Contributors: F. Arici, S. Bernstein, V. Bolotnikov, J. Bourgain, P. Cerejeiras, F. Cipriani, F. Colombo, F. D'Andrea, G. Dell'Antonio, M. Elin, U. Franz, D. Guido, T. Isola, A. Kula, L.E. Labuschagne, G. Landi, W.A. Majewski, I. Sabadini, J.-L. Sauvageot, D. Shoikhet, A. Skalski, H. de Snoo, D. C. Struppa, N. Vieira, D.V. Voiculescu, and H. Woracek.
TRANSFER PRICING AS A TOOLFOR FINANCIAL ANALYSIS OFENTERPRISES
Directory of Open Access Journals (Sweden)
Alexey S. Besfamilnyy
2015-01-01
Full Text Available The article outlines the basics of using transfer pricing methods applied to the financial analysis of the enterprise. It focuses on the application of transfer pricing methods not only over prices control between related organizations, but for analysis of the financial performance of companies. It proposes to use comparison of profitability of comparable companies during the reporting period. Shows an approach for the search and selection of comparable companies using information systems SPARKS or Bureau van Dijk. It analysis some examples in which the methodology is applicable transfer pricing as a tool of financial analysis.
High-energy, large-momentum-transfer processes: Ladder diagrams in var-phi 3 theory
International Nuclear Information System (INIS)
Newton, C.L.J.
1990-01-01
Relativistic quantum field theories may help one to understand high-energy, large-momentum-transfer processes, where the center-of-mass energy is much larger than the transverse momentum transfers, which are in turn much larger than the masses of the participating particles. With this possibility in mind, the author studies ladder diagrams in var-phi 3 theory. He shows that in the limit s much-gt |t| much-gt m 2 , the scattering amplitude for the N-rung ladder diagram takes the form s -1 |t| -N+1 times a homogeneous polynomial of degree 2N - 2 and ln s and ln |t|. This polynomial takes different forms depending on the relation of ln |t| to ln s. More precisely, the asymptotic formula for the N-rung ladder diagram has points of non-analytically when ln |t| = γ ln s for γ = 1/2, 1/3, hor-ellipsis, 1/N-2
Transfer of Training: Adding Insight through Social Network Analysis
Van den Bossche, Piet; Segers, Mien
2013-01-01
This article reviews studies which apply a social network perspective to examine transfer of training. The theory behind social networks focuses on the interpersonal mechanisms and social structures that exist among interacting units such as people within an organization. A premise of this perspective is that individual's behaviors and outcomes…
Transcriptomic and genetic analysis of direct interspecies electron transfer
DEFF Research Database (Denmark)
Shrestha, Pravin Malla; Rotaru, Amelia-Elena; Summers, Zarath M
2013-01-01
The possibility that metatranscriptomic analysis could distinguish between direct interspecies electron transfer (DIET) and H2 interspecies transfer (HIT) in anaerobic communities was investigated by comparing gene transcript abundance in cocultures in which Geobacter sulfurreducens....... These results demonstrate that there are unique gene expression patterns that distinguish DIET from HIT and suggest that metatranscriptomics may be a promising route to investigate interspecies electron transfer pathways in more-complex environments....
International Nuclear Information System (INIS)
Luescher, M.; Weisz, P.
1984-02-01
When operators of dimension 6 are added to the standard Wilson action in lattice gauge theories, physical positivity is lost in general. We show that a transfer matrix can nevertheless be defined. Its properties are, however, unusual: complex eigenvalues may occur (leading to damped oscillatory behaviour of correlation functions), and there are always contributions in the spectral decomposition of two-point functions that come with a negative weight. (orig.)
Rhetorical structure theory and text analysis
Mann, William C.; Matthiessen, Christian M. I. M.; Thompson, Sandra A.
1989-11-01
Recent research on text generation has shown that there is a need for stronger linguistic theories that tell in detail how texts communicate. The prevailing theories are very difficult to compare, and it is also very difficult to see how they might be combined into stronger theories. To make comparison and combination a bit more approachable, we have created a book which is designed to encourage comparison. A dozen different authors or teams, all experienced in discourse research, are given exactly the same text to analyze. The text is an appeal for money by a lobbying organization in Washington, DC. It informs, stimulates and manipulates the reader in a fascinating way. The joint analysis is far more insightful than any one team's analysis alone. This paper is our contribution to the book. Rhetorical Structure Theory (RST), the focus of this paper, is a way to account for the functional potential of text, its capacity to achieve the purposes of speakers and produce effects in hearers. It also shows a way to distinguish coherent texts from incoherent ones, and identifies consequences of text structure.
Convection Heat Transfer Modeling of Ag Nanofluid Using Different Viscosity Theories
Directory of Open Access Journals (Sweden)
Ali Bakhsh Kasaeian
2012-04-01
Full Text Available ABSTRACT: In this paper, the effects of adding nanoparticles (including Ag to a fluid media for improving free convection heat transfer were analysed. The free convective heat transfer was assumed to be in laminar flow regime, and the corresponding calculations and solutions were all done by the integral method. Water, as a Newtonian fluid, was considered as the base and all relevant thermo physical properties of the nanofluids were considered to be unvarying. The calculations performed and the graphs generated showed that, in general, the addition of nanoparticles to the fluid media resulted in an increment or improvement of its heat transfer coefficient. With increase in the concentration of the nanoparticles, the heat transfer rate of the fluid also increased. The increment in heat transfer is also dependent on the nanoparticles’ thermal conductivity and the viscosity theory which was utilized in the calculations. In this study, four different theories were used to calculate the viscosities of the nanofluids. The effects of viscosity on the nanofluids’ thermal conductivity were apparent from the calculations which were performed for nanoparticle concentrations of 4% or less. ABSTRAK: Kajian ini menganalisis kesan penambahan nanopartikel Ag ke dalam media bendalir bagi tujuan pembaikkan pemindahan haba perolakan bebas. Perolakan bebas diandaikan berada di zon aliran laminar, di mana penyelesaian dan pengiraan telah dilakukan mengunakan kaedah kamilan. Air yang merupakan cecair Newtonian, dianggap sebagai asas dan sifat terma fizikal nanocecair dianggapkan tidak berubah. Mengikut pengiraan yang dilakukan dan graf yang diplotkan, umumnya penambahan nanopartikel kepada media bendalir menyebabkan peningkatan dan pengembangan pekali pemindahan haba. Kadar pemindahan haba meningkat dengan nanopartikel. Peningkatan pemindahan haba juga bergantung kepada pengalir haba nanopartikel dan teori kelikatan yang digunakan. Di dalam kajian ini, empat
Ab Initio Analysis of Auger-Assisted Electron Transfer.
Hyeon-Deuk, Kim; Kim, Joonghan; Prezhdo, Oleg V
2015-01-15
Quantum confinement in nanoscale materials allows Auger-type electron-hole energy exchange. We show by direct time-domain atomistic simulation and analytic theory that Auger processes give rise to a new mechanism of charge transfer (CT) on the nanoscale. Auger-assisted CT eliminates the renown Marcus inverted regime, rationalizing recent experiments on CT from quantum dots to molecular adsorbates. The ab initio simulation reveals a complex interplay of the electron-hole and charge-phonon channels of energy exchange, demonstrating a variety of CT scenarios. The developed Marcus rate theory for Auger-assisted CT describes, without adjustable parameters, the experimental plateau of the CT rate in the region of large donor-acceptor energy gap. The analytic theory and atomistic insights apply broadly to charge and energy transfer in nanoscale systems.
Zatsepin, D. A.; Boukhvalov, D. W.; Zatsepin, A. F.; Kuznetsova, Yu. A.; Mashkovtsev, M. A.; Rychkov, V. N.; Shur, V. Ya.; Esin, A. A.; Kurmaev, E. Z.
2018-04-01
The cubic (c) and monoclinic (m) polymorphs of Gd2O3 were studied using the combined analysis of several materials science techniques - X-ray diffraction (XRD), scanning electron microscopy (SEM), X-ray photoelectron spectroscopy (XPS), and photoluminescence (PL) spectroscopy. Density functional theory (DFT) based calculations for the samples under study were performed as well. The cubic phase of gadolinium oxide (c-Gd2O3) synthesized using a precipitation method exhibits spheroidal-like nanoclusters with well-defined edges assembled from primary nanoparticles with an average size of 50 nm, whereas the monoclinic phase of gadolinium oxide (m-Gd2O3) deposited using explosive pyrolysis has a denser structure compared with natural gadolinia. This phase also has a structure composed of three-dimensional complex agglomerates without clear-edged boundaries that are ∼21 nm in size plus a cubic phase admixture of only 2 at.% composed of primary edge-boundary nanoparticles ∼15 nm in size. These atomic features appear in the electronic structure as different defects ([Gd…Osbnd OH] and [Gd…Osbnd O]) and have dissimilar contributions to the charge-transfer processes among the appropriate electronic states with ambiguous contributions in the Gd 5р - O 2s core-like levels in the valence band structures. The origin of [Gd…Osbnd OH] defects found by XPS was well-supported by PL analysis. The electronic and atomic structures of the synthesized gadolinias calculated using DFT were compared and discussed on the basis of the well-known joint OKT-van der Laan model, and good agreement was established.
Heat transfer and thermal stress analysis in grooved tubes
Indian Academy of Sciences (India)
Heat transfer and thermal stresses, induced by temperature differencesin the internally grooved tubes of heat transfer equipment, have been analysed numerically. The analysis has been conducted for four different kinds of internally grooved tubes and three different mean inlet water velocities. Constant temperature was ...
Theory and applications of numerical analysis
Phillips, G M
1996-01-01
This text is a self-contained Second Edition, providing an introductory account of the main topics in numerical analysis. The book emphasizes both the theorems which show the underlying rigorous mathematics andthe algorithms which define precisely how to program the numerical methods. Both theoretical and practical examples are included.* a unique blend of theory and applications* two brand new chapters on eigenvalues and splines* inclusion of formal algorithms* numerous fully worked examples* a large number of problems, many with solutions
Analysis of transference in Gestalt group psychotherapy.
Frew, J E
1990-04-01
In Gestalt therapy, transference is viewed as a contact boundary disturbance which impairs the patient's ability to accurately perceive the present therapy situation. The boundary disturbances in Gestalt therapy most closely related to the analytic notion of transference are projection, introjection, and confluence. In Gestalt group psychotherapy, group members interfere with the process of need identification and satisfaction by distorting their contact with each other through projecting, introjecting, and being confluent. The Gestalt group therapist uses interventions directed to individuals and to the group to increase participants' awareness of these boundary disturbances and of the present contact opportunities available to them when these disturbances are resolved. In formulating interventions, the leader is mindful of the function of boundary disturbances to the group-as-a-whole as well as to individuals.
Application of adult attachment theory to group member transference and the group therapy process.
Markin, Rayna D; Marmarosh, Cheri
2010-03-01
Although clinical researchers have applied attachment theory to client conceptualization and treatment in individual therapy, few researchers have applied this theory to group therapy. The purpose of this article is to begin to apply theory and research on adult dyadic and group attachment styles to our understanding of group dynamics and processes in adult therapy groups. In particular, we set forth theoretical propositions on how group members' attachment styles affect relationships within the group. Specifically, this article offers some predictions on how identifying group member dyadic and group attachment styles could help leaders predict member transference within the therapy group. Implications of group member attachment for the selection and composition of a group and the different group stages are discussed. Recommendations for group clinicians and researchers are offered. PsycINFO Database Record (c) 2010 APA, all rights reserved
Comparative analysis on flexibility requirements of typical Cryogenic Transfer lines
Jadon, Mohit; Kumar, Uday; Choukekar, Ketan; Shah, Nitin; Sarkar, Biswanath
2017-04-01
The cryogenic systems and their applications; primarily in large Fusion devices, utilize multiple cryogen transfer lines of various sizes and complexities to transfer cryogenic fluids from plant to the various user/ applications. These transfer lines are composed of various critical sections i.e. tee section, elbows, flexible components etc. The mechanical sustainability (under failure circumstances) of these transfer lines are primary requirement for safe operation of the system and applications. The transfer lines need to be designed for multiple design constraints conditions like line layout, support locations and space restrictions. The transfer lines are subjected to single load and multiple load combinations, such as operational loads, seismic loads, leak in insulation vacuum loads etc. [1]. The analytical calculations and flexibility analysis using professional software are performed for the typical transfer lines without any flexible component, the results were analysed for functional and mechanical load conditions. The failure modes were identified along the critical sections. The same transfer line was then refurbished with the flexible components and analysed for failure modes. The flexible components provide additional flexibility to the transfer line system and make it safe. The results obtained from the analytical calculations were compared with those obtained from the flexibility analysis software calculations. The optimization of the flexible component’s size and selection was performed and components were selected to meet the design requirements as per code.
Compositional Data Analysis Theory and Applications
Pawlowsky-Glahn, Vera
2011-01-01
This book presents the state-of-the-art in compositional data analysis and will feature a collection of papers covering theory, applications to various fields of science and software. Areas covered will range from geology, biology, environmental sciences, forensic sciences, medicine and hydrology. Key features:Provides the state-of-the-art text in compositional data analysisCovers a variety of subject areas, from geology to medicineWritten by leading researchers in the fieldIs supported by a website featuring R code
Directory of Open Access Journals (Sweden)
Guo-Jun Kang
2016-11-01
Full Text Available The electronic geometries and optical properties of two D-π-A type zinc porphyrin dyes (NCH3-YD2 and TPhe-YD were systematically investigated by density functional theory (DFT and time-dependent density functional theory (TD-DFT to reveal the origin of significantly altered charge transfer enhancement by changing the electron donor of the famous porphyrin-based sensitizer YD2-o-C8. The molecular geometries and photophysical properties of dyes before and after binding to the TiO2 cluster were fully investigated. From the analyses of natural bond orbital (NBO, extended charge decomposition analysis (ECDA, and electron density variations (Δρ between the excited state and ground state, it was found that the introduction of N(CH32 and 1,1,2-triphenylethene groups enhanced the intramolecular charge-transfer (ICT character compared to YD2-o-C8. The absorption wavelength and transition possess character were significantly influenced by N(CH32 and 1,1,2-triphenylethene groups. NCH3-YD2 with N(CH32 groups in the donor part is an effective way to improve the interactions between the dyes and TiO2 surface, light having efficiency (LHE, and free energy change (ΔGinject, which is expected to be an efficient dye for use in dye-sensitized solar cells (DSSCs.
Heat transfer analysis of parabolic trough solar receiver
International Nuclear Information System (INIS)
Padilla, Ricardo Vasquez; Demirkaya, Gokmen; Goswami, D. Yogi; Stefanakos, Elias; Rahman, Muhammad M.
2011-01-01
Highlights: → In this paper a detailed one dimensional numerical heat transfer analysis of a PTC is performed. → The receiver and envelope were divided into several segments and mass and energy balance were applied in each segment. → Improvements either in the heat transfer correlations or radiative heat transfer analysis are presented. → The proposed heat transfer model was validated with experimental data obtained from Sandia National Laboratory. → Our results showed a better agreement with experimental data compared to other models. -- Abstract: Solar Parabolic Trough Collectors (PTCs) are currently used for the production of electricity and applications with relatively higher temperatures. A heat transfer fluid circulates through a metal tube (receiver) with an external selective surface that absorbs solar radiation reflected from the mirror surfaces of the PTC. In order to reduce the heat losses, the receiver is covered by an envelope and the enclosure is usually kept under vacuum pressure. The heat transfer and optical analysis of the PTC is essential to optimize and understand its performance under different operating conditions. In this paper a detailed one dimensional numerical heat transfer analysis of a PTC is performed. The receiver and envelope were divided into several segments and mass and energy balance were applied in each segment. Improvements either in the heat transfer correlations or radiative heat transfer analysis are presented as well. The partial differential equations were discretized and the nonlinear algebraic equations were solved simultaneously. Finally, to validate the numerical results, the model was compared with experimental data obtained from Sandia National Laboratory (SNL) and other one dimensional heat transfer models. Our results showed a better agreement with experimental data compared to other models.
Theory of nanolaser devices: Rate equation analysis versus microscopic theory
DEFF Research Database (Denmark)
Lorke, Michael; Skovgård, Troels Suhr; Gregersen, Niels
2013-01-01
A rate equation theory for quantum-dot-based nanolaser devices is developed. We show that these rate equations are capable of reproducing results of a microscopic semiconductor theory, making them an appropriate starting point for complex device simulations of nanolasers. The input...
Astrophysical data analysis with information field theory
International Nuclear Information System (INIS)
Enßlin, Torsten
2014-01-01
Non-parametric imaging and data analysis in astrophysics and cosmology can be addressed by information field theory (IFT), a means of Bayesian, data based inference on spatially distributed signal fields. IFT is a statistical field theory, which permits the construction of optimal signal recovery algorithms. It exploits spatial correlations of the signal fields even for nonlinear and non-Gaussian signal inference problems. The alleviation of a perception threshold for recovering signals of unknown correlation structure by using IFT will be discussed in particular as well as a novel improvement on instrumental self-calibration schemes. IFT can be applied to many areas. Here, applications in in cosmology (cosmic microwave background, large-scale structure) and astrophysics (galactic magnetism, radio interferometry) are presented
Astrophysical data analysis with information field theory
Enßlin, Torsten
2014-12-01
Non-parametric imaging and data analysis in astrophysics and cosmology can be addressed by information field theory (IFT), a means of Bayesian, data based inference on spatially distributed signal fields. IFT is a statistical field theory, which permits the construction of optimal signal recovery algorithms. It exploits spatial correlations of the signal fields even for nonlinear and non-Gaussian signal inference problems. The alleviation of a perception threshold for recovering signals of unknown correlation structure by using IFT will be discussed in particular as well as a novel improvement on instrumental self-calibration schemes. IFT can be applied to many areas. Here, applications in in cosmology (cosmic microwave background, large-scale structure) and astrophysics (galactic magnetism, radio interferometry) are presented.
Astrophysical data analysis with information field theory
Energy Technology Data Exchange (ETDEWEB)
Enßlin, Torsten, E-mail: ensslin@mpa-garching.mpg.de [Max Planck Institut für Astrophysik, Karl-Schwarzschild-Straße 1, D-85748 Garching, Germany and Ludwig-Maximilians-Universität München, Geschwister-Scholl-Platz 1, D-80539 München (Germany)
2014-12-05
Non-parametric imaging and data analysis in astrophysics and cosmology can be addressed by information field theory (IFT), a means of Bayesian, data based inference on spatially distributed signal fields. IFT is a statistical field theory, which permits the construction of optimal signal recovery algorithms. It exploits spatial correlations of the signal fields even for nonlinear and non-Gaussian signal inference problems. The alleviation of a perception threshold for recovering signals of unknown correlation structure by using IFT will be discussed in particular as well as a novel improvement on instrumental self-calibration schemes. IFT can be applied to many areas. Here, applications in in cosmology (cosmic microwave background, large-scale structure) and astrophysics (galactic magnetism, radio interferometry) are presented.
Analysis of transfer reactions: determination of spectroscopic factors
Energy Technology Data Exchange (ETDEWEB)
Keeley, N. [CEA Saclay, Dept. d' Astrophysique, de Physique des Particules de Physique Nucleaire et de l' Instrumentation Associee (DSM/DAPNIA/SPhN), 91- Gif sur Yvette (France); The Andrzej So an Institute for Nuclear Studies, Dept. of Nuclear Reactions, Warsaw (Poland)
2007-07-01
An overview of the most popular models used for the analysis of direct reaction data is given, concentrating on practical aspects. The 4 following models (in order of increasing sophistication): the distorted wave born approximation (DWBA), the adiabatic model, the coupled channels born approximation, and the coupled reaction channels are briefly described. As a concrete example, the C{sup 12}(d,p)C{sup 13} reaction at an incident deuteron energy of 30 MeV is analysed with progressively more physically sophisticated models. The effect of the choice of the reaction model on the spectroscopic information extracted from the data is investigated and other sources of uncertainty in the derived spectroscopic factors are discussed. We have showed that the choice of the reaction model can significantly influence the nuclear structure information, particularly the spectroscopic factors or amplitudes but occasionally also the spin-parity, that we wish to extract from direct reaction data. We have also demonstrated that the DWBA can fail to give a satisfactory description of transfer data but when the tenets of the theory are fulfilled DWBA can work very well and will yield the same results as most sophisticated models. The use of global rather than fitted optical potentials can also lead to important differences in the extracted spectroscopic factors.
Theory of interfacial charge-transfer complex photophysics in π-conjugated polymer-fullerene blends
Aryanpour, K.; Psiachos, D.; Mazumdar, S.
2010-03-01
We present a theory of the electronic structure and photophysics of 1:1 blends of derivatives of polyparaphenylenevinylene and fullerenes [1]. Within the same Coulomb-correlated Hamiltonian applied previously to interacting chains of single-component π-conjugated polymers [2], we find an exciplex state that occurs below the polymer's optical exciton. Weak absorption from the ground state occurs to the exciplex. We explain transient photoinduced absorptions in the blend [3], observed for both above-gap and below-gap photoexcitations, within our theory. Photoinduced absorptions for above-gap photoexcitation are from the optical exciton as well as the exciplex, while for below-gap photoexcitation induced absorptions are from the exciplex alone. In neither case are free polarons generated in the time scale of the experiment. Importantly, the photophysics of films of single-component π-conjugated polymers and blends can both be understood by extending Mulliken's theory of ground state charge-transfer to the case of excited state charge-transfer. [1] K. Aryanpour, D. Psiachos, and S. Mazumdar, arXiv:0908.0366 [2] D. Psiachos and S. Mazumdar, Phys. Rev. B. 79 155106 (2009) [3] T. Drori et al., Phys. Rev. Lett. 101, 037402 (2008)
Model Theory in Algebra, Analysis and Arithmetic
Dries, Lou; Macpherson, H Dugald; Pillay, Anand; Toffalori, Carlo; Wilkie, Alex J
2014-01-01
Presenting recent developments and applications, the book focuses on four main topics in current model theory: 1) the model theory of valued fields; 2) undecidability in arithmetic; 3) NIP theories; and 4) the model theory of real and complex exponentiation. Young researchers in model theory will particularly benefit from the book, as will more senior researchers in other branches of mathematics.
Theory of Excitation Transfer between Two-Dimensional Semiconductor and Molecular Layers
Specht, Judith F.; Verdenhalven, Eike; Bieniek, Björn; Rinke, Patrick; Knorr, Andreas; Richter, Marten
2018-04-01
The geometry-dependent energy transfer rate from an electrically pumped inorganic semiconductor quantum well into an organic molecular layer is studied theoretically. We focus on Förster-type nonradiative excitation transfer between the organic and inorganic layers and include quasimomentum conservation and intermolecular coupling between the molecules in the organic film. (Transition) partial charges calculated from density-functional theory are used to calculate the coupling elements. The partial charges describe the spatial charge distribution and go beyond the common dipole-dipole interaction. We find that the transfer rates are highly sensitive to variations in the geometry of the hybrid inorganic-organic system. For instance, the transfer efficiency is improved by up to 2 orders of magnitude by tuning the spatial arrangement of the molecules on the surface: Parameters of importance are the molecular packing density along the effective molecular dipole axis and the distance between the molecules and the surface. We also observe that the device performance strongly depends on the orientation of the molecular dipole moments relative to the substrate dipole moments determined by the inorganic crystal structure. Moreover, the operating regime is identified where inscattering dominates over unwanted backscattering from the molecular layer into the substrate.
Constructivism theory analysis and application to curricula.
Brandon, Amy F; All, Anita C
2010-01-01
Today's nursing programs are struggling to accommodate the changing needs of the health care environment and need to make changes in how students are taught. Using constructivism theory, whereby learning is an active process in which learners construct new ideas or concepts based upon their current or past knowledge, leaders in nursing education can make a paradigm shift toward concept-based curricula. This article presents a summary and analysis of constructivism and an innovative application of its active-learning principles to curriculum development, specifically for the education of nursing students.
Heat transfer analysis of liquid piston compressor for hydrogen applications
DEFF Research Database (Denmark)
Kermani, Nasrin Arjomand; Rokni, Masoud
2015-01-01
A hydrogen compression technology using liquid as the compression piston is investigated from heat transfer point of view. A thermodynamic model, simulating a single compression stroke, is developed to investigate the heat transfer phenomena inside the compression chamber. The model is developed...... and through the walls, is investigated and compared with the adiabatic case. The results show that depending on heat transfer correlation, the hydrogen temperature reduces slightly between 0.2% and 0.4% compared to the adiabatic case, at 500bar, due to the large wall resistance and small contact area...... at the interface. Moreover, the results of the sensitivity analysis illustrates that increasing the total heat transfer coefficients at the interface and the wall, together with compression time, play key roles in reducing the hydrogen temperature. Increasing the total heat transfer coefficient at the interface...
Blocking layer modeling for temperature analysis of electron transfer ...
African Journals Online (AJOL)
In this article, we simulate thermal effects on the electron transfer rate from three quantum dots CdSe, CdS and CdTe to three metal oxides TiO2, SnO2 and ZnO2 in the presence of four blocking layers ZnS, ZnO, TiO2 and Al2O3, in a porous quantum dot sensitized solar cell (QDSSC) structure, using Marcus theory.
High-energy, large-momentum-transfer processes: Ladder diagrams in φ3 theory. Pt. 2
International Nuclear Information System (INIS)
Osland, P.; Wu, T.T.; Harvard Univ., Cambridge, MA
1987-01-01
The scattering amplitude for the four-rung ladder diagram in φ 3 theory is evaluated at high energies and for large momentum transfers. The result takes the form of s -1 vertical stroketvertical stroke -3 multiplied by a homogeneous sixth-order polynomial in ln s and 1nvertical stroketvertical stroke. The novel and unexpected feature is that this polynomial is different depending on whether 1n vertical stroketvertical stroke is larger or less than 1/2 1n s. Thus the asymptotic formula is not analytic at 1n vertical stroketvertical stroke=1/2 1n s, although the first five derivatives are continuous. (orig.)
On the theory of excitation transfer process in slow collisions between identical particles
International Nuclear Information System (INIS)
Chibisov, M.I.
1978-01-01
Asymptotics has been investigated at R → infinity (R is internuclear distance) of exchange interaction for the quasimolecule of two identical one-electron atoms. It is shown that the theory of exchange interaction developed previously which does not take into account the symmetry on permutations of electron is not rigid. The exchange contribution to term splitting in alkali metal atoms determines the effective cross section for transfer of excitation at 10 3 K. The Van der Waals contribution is less than the exchange one. The cross section is of the order of 10 -14 cm 2 . The cross section dependence on temperature is weak, sigma approximately ln 2 T
Directory of Open Access Journals (Sweden)
Thomas Misco
2007-01-01
Full Text Available In this paper I convey a recurring problem and possible solution that arose during my doctoral research on the topic of cross-cultural Holocaust curriculum development for Latvian schools. Specifically, as I devised the methodology for my research, I experienced a number of frustrations concerning the issue of transferability and the limitations of both reader generalizability and grounded theory. Ultimately, I found a more appropriate goal for the external applicability of this and other highly contextual research studies in the form of "grounded understandings," which are tentative apprehensions of the importance or significance of phenomena and conceptualizations that hold meaning and explanatory power, but are only embryonic in their potential to generate theory.
Nonlinear analysis approximation theory, optimization and applications
2014-01-01
Many of our daily-life problems can be written in the form of an optimization problem. Therefore, solution methods are needed to solve such problems. Due to the complexity of the problems, it is not always easy to find the exact solution. However, approximate solutions can be found. The theory of the best approximation is applicable in a variety of problems arising in nonlinear functional analysis and optimization. This book highlights interesting aspects of nonlinear analysis and optimization together with many applications in the areas of physical and social sciences including engineering. It is immensely helpful for young graduates and researchers who are pursuing research in this field, as it provides abundant research resources for researchers and post-doctoral fellows. This will be a valuable addition to the library of anyone who works in the field of applied mathematics, economics and engineering.
Perturbative analysis in higher-spin theories
Energy Technology Data Exchange (ETDEWEB)
Didenko, V.E. [I.E. Tamm Department of Theoretical Physics, Lebedev Physical Institute,Leninsky prospect 53, 119991, Moscow (Russian Federation); Misuna, N.G. [Moscow Institute of Physics and Technology,Institutsky lane 9, 141700, Dolgoprudny, Moscow region (Russian Federation); Vasiliev, M.A. [I.E. Tamm Department of Theoretical Physics, Lebedev Physical Institute,Leninsky prospect 53, 119991, Moscow (Russian Federation)
2016-07-28
A new scheme of the perturbative analysis of the nonlinear HS equations is developed giving directly the final result for the successive application of the homotopy integrations which appear in the standard approach. It drastically simplifies the analysis and results from the application of the standard spectral sequence approach to the higher-spin covariant derivatives, allowing us in particular to reduce multiple homotopy integrals resulting from the successive application of the homotopy trick to a single integral. Efficiency of the proposed method is illustrated by various examples. In particular, it is shown how the Central on-shell theorem of the free theory immediately results from the nonlinear HS field equations with no intermediate computations.
A Comparative Analysis of Three Unique Theories of Organizational Learning
Leavitt, Carol C.
2011-01-01
The purpose of this paper is to present three classical theories on organizational learning and conduct a comparative analysis that highlights their strengths, similarities, and differences. Two of the theories -- experiential learning theory and adaptive -- generative learning theory -- represent the thinking of the cognitive perspective, while…
The liquidity preference theory: a critical analysis
Giancarlo Bertocco; Andrea Kalajzic
2014-01-01
Keynes in the General Theory, explains the monetary nature of the interest rate by means of the liquidity preference theory. The objective of this paper is twofold. First, to point out the limits of the liquidity preference theory. Second, to present an explanation of the monetary nature of the interest rate based on the arguments with which Keynes responded to the criticism levelled at the liquidity preference theory by supporters of the loanable funds theory such as Ohlin and Robertson. It ...
Isegawa, Miho; Gao, Jiali; Truhlar, Donald G
2011-08-28
Molecular fragmentation algorithms provide a powerful approach to extending electronic structure methods to very large systems. Here we present a method for including charge transfer between molecular fragments in the explicit polarization (X-Pol) fragment method for calculating potential energy surfaces. In the conventional X-Pol method, the total charge of each fragment is preserved, and charge transfer between fragments is not allowed. The description of charge transfer is made possible by treating each fragment as an open system with respect to the number of electrons. To achieve this, we applied Mermin's finite temperature method to the X-Pol wave function. In the application of this method to X-Pol, the fragments are open systems that partially equilibrate their number of electrons through a quasithermodynamics electron reservoir. The number of electrons in a given fragment can take a fractional value, and the electrons of each fragment obey the Fermi-Dirac distribution. The equilibrium state for the electrons is determined by electronegativity equalization with conservation of the total number of electrons. The amount of charge transfer is controlled by re-interpreting the temperature parameter in the Fermi-Dirac distribution function as a coupling strength parameter. We determined this coupling parameter so as to reproduce the charge transfer energy obtained by block localized energy decomposition analysis. We apply the new method to ten systems, and we show that it can yield reasonable approximations to potential energy profiles, to charge transfer stabilization energies, and to the direction and amount of charge transferred. © 2011 American Institute of Physics
Nonequilibrium Energy Transfer at Nanoscale: A Unified Theory from Weak to Strong Coupling
Wang, Chen; Ren, Jie; Cao, Jianshu
2015-07-01
Unraveling the microscopic mechanism of quantum energy transfer across two-level systems provides crucial insights to the optimal design and potential applications of low-dimensional nanodevices. Here, we study the non-equilibrium spin-boson model as a minimal prototype and develop a fluctuation-decoupled quantum master equation approach that is valid ranging from the weak to the strong system-bath coupling regime. The exact expression of energy flux is analytically established, which dissects the energy transfer as multiple boson processes with even and odd parity. Our analysis provides a unified interpretation of several observations, including coherence-enhanced heat flux and negative differential thermal conductance. The results will have broad implications for the fine control of energy transfer in nano-structural devices.
A coherent modified Redfield theory for excitation energy transfer in molecular aggregates
Energy Technology Data Exchange (ETDEWEB)
Hwang-Fu, Yu-Hsien; Chen, Wei; Cheng, Yuan-Chung, E-mail: yuanchung@ntu.edu.tw
2015-02-02
Highlights: • A CMRT method for coherent energy transfer in molecular aggregates was developed. • Applicability of the method was verified in two-site systems with various parameters. • CMRT accurately describes population dynamics in the FMO-complex. • The method is accurate in a large parameter space and computationally efficient. - Abstract: Excitation energy transfer (EET) is crucial in photosynthetic light harvesting, and quantum coherence has been recently proven to be a ubiquitous phenomenon in photosynthetic EET. In this work, we derive a coherent modified Redfield theory (CMRT) that generalizes the modified Redfield theory to treat coherence dynamics. We apply the CMRT method to simulate the EET in a dimer system and compare the results with those obtained from numerically exact path integral calculations. The comparison shows that CMRT provides excellent computational efficiency and accuracy within a large EET parameter space. Furthermore, we simulate the EET dynamics in the FMO complex at 77 K using CMRT. The results show pronounced non-Markovian effects and long-lasting coherences in the ultrafast EET, in excellent agreement with calculations using the hierarchy equation of motion approach. In summary, we have successfully developed a simple yet powerful framework for coherent EET dynamics in photosynthetic systems and organic materials.
Kramer, Desré M; Wells, Richard P; Carlan, Nicolette; Aversa, Theresa; Bigelow, Philip P; Dixon, Shane M; McMillan, Keith
2013-01-01
Few evaluation tools are available to assess knowledge-transfer and exchange interventions. The objective of this paper is to develop and demonstrate a theory-based knowledge-transfer and exchange method of evaluation (KEME) that synthesizes 3 theoretical frameworks: the promoting action on research implementation of health services (PARiHS) model, the transtheoretical model of change, and a model of knowledge use. It proposes a new term, keme, to mean a unit of evidence-based transferable knowledge. The usefulness of the evaluation method is demonstrated with 4 occupational health and safety knowledge transfer and exchange (KTE) implementation case studies that are based upon the analysis of over 50 pre-existing interviews. The usefulness of the evaluation model has enabled us to better understand stakeholder feedback, frame our interpretation, and perform a more comprehensive evaluation of the knowledge use outcomes of our KTE efforts.
Directory of Open Access Journals (Sweden)
Franz Breuer
2011-03-01
Full Text Available This article outlines the development of a theory of predecessor-successor transitions in social contexts using a grounded theory approach. The theory can be applied to such diverse phenomena as the transfer of family businesses to the next generation, university chair succession, the passing on of parental roles (for example in the case of adoption or remarriage, and organ transplantation. The core conceptual category that emerged was "the transfer of personal objects". This concept refers to the transfer of the power of disposal over objects that are fundamental to the identity and the identification of the owner. A number of theoretical dimensions of the category were identified. Methodologically speaking, the theory generated can be classified as a formal grounded theory. In other words, the comparison of different empirical fields and cases using hermeneutical analysis yielded a transdisciplinary social science category that can be employed to conceptualise the dynamics of the development of interpersonal, social, or institutional structures, especially with regard to the links and the interplay between material and symbolic components, between the individual and the social, and the past and the present. URN: http://nbn-resolving.de/urn:nbn:de:0114-fqs1102165
Density functional theory for the description of charge-transfer processes at TTF/TCNQ interfaces
Van Regemorter, Tanguy; Guillaume, Maxime; Sini, Gjergji; Sears, John S.; Geskin, Victor; Bré das, Jean-Luc; Beljonne, David; Cornil, Jé rô me
2012-01-01
In the field of organic electronics, a central issue is to assess how the frontier electronic levels of two adjacent organic layers align with respect to one another at the interface. This alignment can be driven by the presence of a partial charge transfer and the formation of an interface dipole; it plays a key role for instance in determining the rates of exciton dissociation or exciton formation in organic solar cells or light-emitting diodes, respectively. Reliably modeling the processes taking place at these interfaces remains a challenge for the computational chemistry community. Here, we review our recent theoretical work on the influence of the choice of density functional theory (DFT) methodology on the description of the charge-transfer character in the ground state of TTF/ TCNQ model complexes and interfaces. Starting with the electronic properties of the isolated TTF and TCNQ molecules and then considering the charge transfer and resulting interface dipole in TTF/TCNQ donor-acceptor stacks and bilayers, we examine the impact of the choice of DFT functional in describing the interfacial electronic structure. Finally, we employ computations based on periodic boundary conditions to highlight the impact of depolarization effects on the interfacial dipole moment. © Springer-Verlag 2012.
Density functional theory for the description of charge-transfer processes at TTF/TCNQ interfaces
Van Regemorter, Tanguy
2012-09-15
In the field of organic electronics, a central issue is to assess how the frontier electronic levels of two adjacent organic layers align with respect to one another at the interface. This alignment can be driven by the presence of a partial charge transfer and the formation of an interface dipole; it plays a key role for instance in determining the rates of exciton dissociation or exciton formation in organic solar cells or light-emitting diodes, respectively. Reliably modeling the processes taking place at these interfaces remains a challenge for the computational chemistry community. Here, we review our recent theoretical work on the influence of the choice of density functional theory (DFT) methodology on the description of the charge-transfer character in the ground state of TTF/ TCNQ model complexes and interfaces. Starting with the electronic properties of the isolated TTF and TCNQ molecules and then considering the charge transfer and resulting interface dipole in TTF/TCNQ donor-acceptor stacks and bilayers, we examine the impact of the choice of DFT functional in describing the interfacial electronic structure. Finally, we employ computations based on periodic boundary conditions to highlight the impact of depolarization effects on the interfacial dipole moment. © Springer-Verlag 2012.
Gelso, Charles J; Palma, Beatriz; Bhatia, Avantika
2013-11-01
Recent decades have witnessed an extraordinary amount of conceptual and empirical work on attachment theory in psychology and psychotherapy. Attachment theory is discussed in the present article as a way of understanding and fostering therapeutic work with 2 other key relationship constructs that have been theorized to be elements of all psychotherapies: client transference and the real relationship existing between the therapist and patient. Fundamental features of attachment, transference, and the real relationship are summarized. Particular emphasis is given to the role of the therapist as a secure base and a safe haven within the real relationship, and to the patient's internal working model as it relates to transference. A case of long-term psychodynamic psychotherapy conducted by the first author is presented to illuminate the 3 main constructs. The case demonstrates both the usefulness of attachment theory and the fact that any single theory cannot explain all of the complex features of a given treatment. © 2013 Wiley Periodicals, Inc.
International Nuclear Information System (INIS)
Ma, L.X.; Tan, J.Y.; Zhao, J.M.; Wang, F.Q.; Wang, C.A.
2017-01-01
The radiative transfer equation (RTE) has been widely used to deal with multiple scattering of light by sparsely and randomly distributed discrete particles. However, for densely packed particles, the RTE becomes questionable due to strong dependent scattering effects. This paper examines the accuracy of RTE by comparing with the exact electromagnetic theory. For an imaginary spherical volume filled with randomly distributed, densely packed spheres, the RTE is solved by the Monte Carlo method combined with the Percus–Yevick hard model to consider the dependent scattering effect, while the electromagnetic calculation is based on the multi-sphere superposition T-matrix method. The Mueller matrix elements of the system with different size parameters and volume fractions of spheres are obtained using both methods. The results verify that the RTE fails to deal with the systems with a high-volume fraction due to the dependent scattering effects. Apart from the effects of forward interference scattering and coherent backscattering, the Percus–Yevick hard sphere model shows good accuracy in accounting for the far-field interference effects for medium or smaller size parameters (up to 6.964 in this study). For densely packed discrete spheres with large size parameters (equals 13.928 in this study), the improvement of dependent scattering correction tends to deteriorate. The observations indicate that caution must be taken when using RTE in dealing with the radiative transfer in dense discrete random media even though the dependent scattering correction is applied. - Highlights: • The Muller matrix of randomly distributed, densely packed spheres are investigated. • The effects of multiple scattering and dependent scattering are analyzed. • The accuracy of radiative transfer theory for densely packed spheres is discussed. • Dependent scattering correction takes effect at medium size parameter or smaller. • Performance of dependent scattering correction
Fourier analysis of conductive heat transfer for glazed roofing materials
Energy Technology Data Exchange (ETDEWEB)
Roslan, Nurhana Lyana; Bahaman, Nurfaradila; Almanan, Raja Noorliyana Raja; Ismail, Razidah [Faculty of Computer and Mathematical Sciences, Universiti Teknologi MARA, 40450 Shah Alam, Selangor (Malaysia); Zakaria, Nor Zaini [Faculty of Applied Sciences, Universiti Teknologi MARA, 40450 Shah Alam, Selangor (Malaysia)
2014-07-10
For low-rise buildings, roof is the most exposed surface to solar radiation. The main mode of heat transfer from outdoor via the roof is conduction. The rate of heat transfer and the thermal impact is dependent on the thermophysical properties of roofing materials. Thus, it is important to analyze the heat distribution for the various types of roofing materials. The objectives of this paper are to obtain the Fourier series for the conductive heat transfer for two types of glazed roofing materials, namely polycarbonate and polyfilled, and also to determine the relationship between the ambient temperature and the conductive heat transfer for these materials. Ambient and surface temperature data were collected from an empirical field investigation in the campus of Universiti Teknologi MARA Shah Alam. The roofing materials were installed on free-standing structures in natural ventilation. Since the temperature data are generally periodic, Fourier series and numerical harmonic analysis are applied. Based on the 24-point harmonic analysis, the eleventh order harmonics is found to generate an adequate Fourier series expansion for both glazed roofing materials. In addition, there exists a linear relationship between the ambient temperature and the conductive heat transfer for both glazed roofing materials. Based on the gradient of the graphs, lower heat transfer is indicated through polyfilled. Thus polyfilled would have a lower thermal impact compared to polycarbonate.
Analysis of heat transfer in plain carbon steels
International Nuclear Information System (INIS)
Han, Heung Nam; Lee, Kyung Jong
1999-01-01
During cooling of steels, the heat transfer was controlled by radiation, convection, conduction and heat evolution from phase transformation. To analyze the heat transfer during cooling precisely, the material constants such as density, heat capacity and the heat evolved during transformation were obtained as functions of temperature and chemical composition for each phase observed in plain carbon steel using a thermodynamic analysis based on the sublattice model of Fe-C-Mn system. The results were applied to 0.049 wt% and 0.155 wt% carbon steels with an austenitic stainless steel as reference by developing a proper heat transfer governing equation. The equation was solved using the lumped system method. In addition, using a transformation dilatometer with adequate experimental conditions to clarify the individual heat transfer effect, the transformation heat evolved during cooling and the transformation behavior as well as the temperature change were observed. The predicted temperature profiles during cooling were well agreed with the measured ones
A theoretical analysis on vibrational-energy transfers in gases
International Nuclear Information System (INIS)
Mastrocinque, G.
1981-01-01
In order to investigate the relationships between three-dimensional and colinear molecular-collision models with particular emphasis on the role of repulsive and attractive forces in vibrational-energy transfers in gases, a theoretical analysis is developed in this paper. A few known results - mainly the Cottrell and Ream equation, the Takayanagi and the Shin expressions of the transfer probability - relevant to repulsive-force-dominated processes are obtained and/or discussed in the proposed frame. Light is also given on long-range, attractive-forces-dominated processes. The main result of this investigation is that, when a suitable hypothesis is done on the transfer probability, centrifugal effects on the intermolecular trajectories due to standard potentials are negligible in the low-temperature range. A quasi-colinear collision model, which is found to be correlated to the Cottrell and Ream expression for the transfer probability, is regained from a three-dimensional geometry in these conditions. (author)
Laplace transform analysis of a multiplicative asset transfer model
Sokolov, Andrey; Melatos, Andrew; Kieu, Tien
2010-07-01
We analyze a simple asset transfer model in which the transfer amount is a fixed fraction f of the giver’s wealth. The model is analyzed in a new way by Laplace transforming the master equation, solving it analytically and numerically for the steady-state distribution, and exploring the solutions for various values of f∈(0,1). The Laplace transform analysis is superior to agent-based simulations as it does not depend on the number of agents, enabling us to study entropy and inequality in regimes that are costly to address with simulations. We demonstrate that Boltzmann entropy is not a suitable (e.g. non-monotonic) measure of disorder in a multiplicative asset transfer system and suggest an asymmetric stochastic process that is equivalent to the asset transfer model.
A statistical theory of cell killing by radiation of varying linear energy transfer
International Nuclear Information System (INIS)
Hawkins, R.B.
1994-01-01
A theory is presented that provides an explanation for the observed features of the survival of cultured cells after exposure to densely ionizing high-linear energy transfer (LET) radiation. It starts from a phenomenological postulate based on the linear-quadratic form of cell survival observed for low-LET radiation and uses principles of statistics and fluctuation theory to demonstrate that the effect of varying LET on cell survival can be attributed to random variation of dose to small volumes contained within the nucleus. A simple relation is presented for surviving fraction of cells after exposure to radiation of varying LET that depends on the α and β parameters for the same cells in the limit of low-LET radiation. This relation implies that the value of β is independent of LET. Agreement of the theory with selected observations of cell survival from the literature is demonstrated. A relation is presented that gives relative biological effectiveness (RBE) as a function of the α and β parameters for low-LET radiation. Measurements from microdosimetry are used to estimate the size of the subnuclear volume to which the fluctuation pertains. 11 refs., 4 figs., 2 tabs
On flares, substorms and the theory of impulsive flux transfer events
International Nuclear Information System (INIS)
Bratenahl, A.; Baum, P.J.
1976-01-01
Solar flares and magnetospheric substorms are discussed in the context of a general theory of impulsive flux transfer events (IFTE). IFTE theory, derived from laboratory observations in the Double Inverse Pinch Device (DIPD), provides a quantitative extension of 'neutral sheet' theories to include nonsteady field line reconnection. Current flow along the reconnection line increases with magnetic flux storage. When flux build-up exceeds the level corresponding to a critical limit on the current, instabilities induce a sudden transition in the mode of conduction. The resulting IFTE, indifferent to the specific modes and instabilities involved, is the more energetic, the lower the initial resistivity. It is the more violent, the greater the resulting resistivity increase and the faster its growth. Violent events can develop very large voltage transients along the reconnection line. Persistent build-up promoting conditions produce relaxation oscillations in the quantity of flux and energy stored (build-up-IFTE cycles). It is difficult to avoid the conclusion: flares and substorms are examples of IFTE. (Auth.)
General theory of excitation energy transfer in donor-mediator-acceptor systems.
Kimura, Akihiro
2009-04-21
General theory of the excitation energy transfer (EET) in the case of donor-mediator-acceptor system was constructed by using generalized master equation (GME). In this theory, we consider the direct and indirect transitions in the EET consistently. Hence, our theory includes the quantum mechanical interference between the direct and indirect transitions automatically. Memory functions in the GME were expressed by the overlap integrals among the time-dependent emission spectrum of the donor, the absorption spectrum of the mediator, the time-dependent emission spectrum of the mediator, and the absorption spectrum of the acceptor. In the Markov limit of the memory functions, we obtained the rate of EET which consists of three terms due to the direct transition, the indirect transition, and the interference between them. We found that the interference works effectively in the limit of slow thermalization at the intermediate state. The formula of EET rate in this limit was expressed by the convolution of the EET interaction and optical spectra. The interference effect strongly depends on the width of the absorption spectrum of mediator molecule and the energy gap between the donor and the mediator molecules.
Theoretical and methodological analysis of personality theories of leadership
Оксана Григорівна Гуменюк
2016-01-01
The psychological analysis of personality theories of leadership, which is the basis for other conceptual approaches to understanding the nature of leadership, is conducted. Conceptual approach of leadership is analyzed taking into account the priority of personality theories, including: heroic, psychoanalytic, «trait» theory, charismatic and five-factor. It is noted that the psychological analysis of personality theories are important in understanding the nature of leadership
Tiwari, Vivek; Peters, William K.; Jonas, David M.
2017-10-01
Non-adiabatic vibrational-electronic resonance in the excited electronic states of natural photosynthetic antennas drastically alters the adiabatic framework, in which electronic energy transfer has been conventionally studied, and suggests the possibility of exploiting non-adiabatic dynamics for directed energy transfer. Here, a generalized dimer model incorporates asymmetries between pigments, coupling to the environment, and the doubly excited state relevant for nonlinear spectroscopy. For this generalized dimer model, the vibrational tuning vector that drives energy transfer is derived and connected to decoherence between singly excited states. A correlation vector is connected to decoherence between the ground state and the doubly excited state. Optical decoherence between the ground and singly excited states involves linear combinations of the correlation and tuning vectors. Excitonic coupling modifies the tuning vector. The correlation and tuning vectors are not always orthogonal, and both can be asymmetric under pigment exchange, which affects energy transfer. For equal pigment vibrational frequencies, the nonadiabatic tuning vector becomes an anti-correlated delocalized linear combination of intramolecular vibrations of the two pigments, and the nonadiabatic energy transfer dynamics become separable. With exchange symmetry, the correlation and tuning vectors become delocalized intramolecular vibrations that are symmetric and antisymmetric under pigment exchange. Diabatic criteria for vibrational-excitonic resonance demonstrate that anti-correlated vibrations increase the range and speed of vibronically resonant energy transfer (the Golden Rule rate is a factor of 2 faster). A partial trace analysis shows that vibronic decoherence for a vibrational-excitonic resonance between two excitons is slower than their purely excitonic decoherence.
Transport perturbation theory in nuclear reactor analysis
International Nuclear Information System (INIS)
Nishigori, Takeo; Takeda, Toshikazu; Selvi, S.
1985-01-01
Perturbation theory is formulated on the basis of transport theory to obtain a formula for the reactivity changes due to possible variations of cross sections. Useful applications to cell homogenization are presented for the whole core calculation in transport and in diffusion theories. (author)
Efficient Transfer Entropy Analysis of Non-Stationary Neural Time Series
Vicente, Raul; Díaz-Pernas, Francisco J.; Wibral, Michael
2014-01-01
Information theory allows us to investigate information processing in neural systems in terms of information transfer, storage and modification. Especially the measure of information transfer, transfer entropy, has seen a dramatic surge of interest in neuroscience. Estimating transfer entropy from two processes requires the observation of multiple realizations of these processes to estimate associated probability density functions. To obtain these necessary observations, available estimators typically assume stationarity of processes to allow pooling of observations over time. This assumption however, is a major obstacle to the application of these estimators in neuroscience as observed processes are often non-stationary. As a solution, Gomez-Herrero and colleagues theoretically showed that the stationarity assumption may be avoided by estimating transfer entropy from an ensemble of realizations. Such an ensemble of realizations is often readily available in neuroscience experiments in the form of experimental trials. Thus, in this work we combine the ensemble method with a recently proposed transfer entropy estimator to make transfer entropy estimation applicable to non-stationary time series. We present an efficient implementation of the approach that is suitable for the increased computational demand of the ensemble method's practical application. In particular, we use a massively parallel implementation for a graphics processing unit to handle the computationally most heavy aspects of the ensemble method for transfer entropy estimation. We test the performance and robustness of our implementation on data from numerical simulations of stochastic processes. We also demonstrate the applicability of the ensemble method to magnetoencephalographic data. While we mainly evaluate the proposed method for neuroscience data, we expect it to be applicable in a variety of fields that are concerned with the analysis of information transfer in complex biological, social, and
Applications of model theory to functional analysis
Iovino, Jose
2014-01-01
During the last two decades, methods that originated within mathematical logic have exhibited powerful applications to Banach space theory, particularly set theory and model theory. This volume constitutes the first self-contained introduction to techniques of model theory in Banach space theory. The area of research has grown rapidly since this monograph's first appearance, but much of this material is still not readily available elsewhere. For instance, this volume offers a unified presentation of Krivine's theorem and the Krivine-Maurey theorem on stable Banach spaces, with emphasis on the
Childhood obesity in transition zones: an analysis using structuration theory.
Chan, Christine; Deave, Toity; Greenhalgh, Trisha
2010-07-01
Childhood obesity is particularly prevalent in areas that have seen rapid economic growth, urbanisation, cultural transition, and commodification of food systems. Structuration theory may illuminate the interaction between population and individual-level causes of obesity. We conducted in-depth ethnographies of six overweight/obese and four non-overweight preschool children in Hong Kong, each followed for 12-18 months. Analysis was informed by Stones' strong structuration theory. Risk factors played out differently for different children as social structures were enacted at the level of family and preschool. The network of caregiving roles and relationships around the overweight/obese child was typically weak and disjointed, and the primary caregiver appeared confused by mixed messages about what is normal, expected and legitimate behaviour. In particular, external social structures created pressure to shift childcare routines from the logic of nurturing to the logic of consumption. Our findings suggest that threats to what Giddens called ontological security in the primary caregiver may underpin the poor parenting, family stress and weak mealtime routines that mediate the relationship between an obesogenic environment and the development of obesity in a particular child. This preliminary study offers a potentially transferable approach for studying emerging epidemics of diseases of modernity in transition societies.
DePalma, Michael-John; Ringer, Jeffrey M.
2011-01-01
In this paper, we argue that discussions of transfer in L2 writing and composition studies have focused primarily on the reuse of past learning and thus have not adequately accounted for the adaptation of learned writing knowledge in unfamiliar situations. In an effort to expand disciplinary discussions of transfer in L2 writing and composition…
Analysis of Multidimensional Poverty: Theory and Case Studies ...
International Development Research Centre (IDRC) Digital Library (Canada)
2009-08-18
Aug 18, 2009 ... ... of applying a factorial technique, Multiple Correspondence Analysis, to poverty analysis. ... Analysis of Multidimensional Poverty: Theory and Case Studies ... agreement to support joint research projects in December 2017.
Transference system of gaseous fluoride compounds for infrared spectrofotometric analysis
International Nuclear Information System (INIS)
Prado, L.
1988-07-01
A vacuum line design for transference of gaseous fluoride compounds involved in the uranium hexafluoride infrared analysis is presented. The text include specific comments about the characteristics of each component and about the possibilities of its acquisition in the national market. (author) [pt
Computational heat transfer analysis and combined ANN–GA ...
Indian Academy of Sciences (India)
The analysis using the numerical simulation and neural network ... Optimization is the process of finding the most plausible and desirable solution to a problem. ... increased heat transfer and compared the results of regular non-fuzzy model and fuzzy model. ..... network is designed using MATLAB Neural network toolbox.
Theoretical Study of the Charge-Transfer State Separation within Marcus Theory
DEFF Research Database (Denmark)
Volpi, Riccardo; Nassau, Racine; Nørby, Morten Steen
2016-01-01
We study, within Marcus theory, the possibility of the charge-transfer (CT) state splitting at organic interfaces and a subsequent transport of the free charge carriers to the electrodes. As a case study we analyze model anthracene-C60 interfaces. Kinetic Monte Carlo (KMC) simulations on the cold...... CT state were performed at a range of applied electric fields, and with the fields applied at a range of angles to the interface to simulate the action of the electric field in a bulk heterojunction (BHJ) interface. The results show that the inclusion of polarization in our model increases CT state...... dissociation and charge collection. The effect of the electric field on CT state splitting and free charge carrier conduction is analyzed in detail with and without polarization. Also, depending on the relative orientation of the anthracene and C60 molecules at the interface, CT state splitting shows different...
Higher order perturbation theory applied to radiative transfer in non-plane-parallel media
International Nuclear Information System (INIS)
Box, M.A.; Polonsky, I.N.; Davis, A.B.
2003-01-01
Radiative transfer in non-plane-parallel media is a very challenging problem, which is currently the subject of concerted efforts to develop computational techniques which may be used to tackle different tasks. In this paper we develop the full formalism for another technique, based on radiative perturbation theory. With this approach, one starts with a plane-parallel 'base model', for which many solution techniques exist, and treat the horizontal variability as a perturbation. We show that under the most logical assumption as to the base model, the first-order perturbation term is zero for domain-average radiation quantities, so that it is necessary to go to higher order terms. This requires the computation of the Green's function. While this task is by no means simple, once the various pieces have been assembled they may be re-used for any number of perturbations--that is, any horizontal variations
Charge transfer excitations from exact and approximate ensemble Kohn-Sham theory
Gould, Tim; Kronik, Leeor; Pittalis, Stefano
2018-05-01
By studying the lowest excitations of an exactly solvable one-dimensional soft-Coulomb molecular model, we show that components of Kohn-Sham ensembles can be used to describe charge transfer processes. Furthermore, we compute the approximate excitation energies obtained by using the exact ensemble densities in the recently formulated ensemble Hartree-exchange theory [T. Gould and S. Pittalis, Phys. Rev. Lett. 119, 243001 (2017)]. Remarkably, our results show that triplet excitations are accurately reproduced across a dissociation curve in all cases tested, even in systems where ground state energies are poor due to strong static correlations. Singlet excitations exhibit larger deviations from exact results but are still reproduced semi-quantitatively.
Information Theory Analysis of Cascading Process in a Synthetic Model of Fluid Turbulence
Directory of Open Access Journals (Sweden)
Massimo Materassi
2014-02-01
Full Text Available The use of transfer entropy has proven to be helpful in detecting which is the verse of dynamical driving in the interaction of two processes, X and Y . In this paper, we present a different normalization for the transfer entropy, which is capable of better detecting the information transfer direction. This new normalized transfer entropy is applied to the detection of the verse of energy flux transfer in a synthetic model of fluid turbulence, namely the Gledzer–Ohkitana–Yamada shell model. Indeed, this is a fully well-known model able to model the fully developed turbulence in the Fourier space, which is characterized by an energy cascade towards the small scales (large wavenumbers k, so that the application of the information-theory analysis to its outcome tests the reliability of the analysis tool rather than exploring the model physics. As a result, the presence of a direct cascade along the scales in the shell model and the locality of the interactions in the space of wavenumbers come out as expected, indicating the validity of this data analysis tool. In this context, the use of a normalized version of transfer entropy, able to account for the difference of the intrinsic randomness of the interacting processes, appears to perform better, being able to discriminate the wrong conclusions to which the “traditional” transfer entropy would drive.
Category Theory Approach to Solution Searching Based on Photoexcitation Transfer Dynamics
Directory of Open Access Journals (Sweden)
Makoto Naruse
2017-07-01
Full Text Available Solution searching that accompanies combinatorial explosion is one of the most important issues in the age of artificial intelligence. Natural intelligence, which exploits natural processes for intelligent functions, is expected to help resolve or alleviate the difficulties of conventional computing paradigms and technologies. In fact, we have shown that a single-celled organism such as an amoeba can solve constraint satisfaction problems and related optimization problems as well as demonstrate experimental systems based on non-organic systems such as optical energy transfer involving near-field interactions. However, the fundamental mechanisms and limitations behind solution searching based on natural processes have not yet been understood. Herein, we present a theoretical background of solution searching based on optical excitation transfer from a category-theoretic standpoint. One important indication inspired by the category theory is that the satisfaction of short exact sequences is critical for an adequate computational operation that determines the flow of time for the system and is termed as “short-exact-sequence-based time.” In addition, the octahedral and braid structures known in triangulated categories provide a clear understanding of the underlying mechanisms, including a quantitative indication of the difficulties of obtaining solutions based on homology dimension. This study contributes to providing a fundamental background of natural intelligence.
McDermott, K B; Roediger, H L
1996-03-01
Three experiments examined whether a conceptual implicit memory test (specifically, category instance generation) would exhibit repetition effects similar to those found in free recall. The transfer appropriate processing account of dissociations among memory tests led us to predict that the tests would show parallel effects; this prediction was based upon the theory's assumption that conceptual tests will behave similarly as a function of various independent variables. In Experiment 1, conceptual repetition (i.e., following a target word [e.g., puzzles] with an associate [e.g., jigsaw]) did not enhance priming on the instance generation test relative to the condition of simply presenting the target word once, although this manipulation did affect free recall. In Experiment 2, conceptual repetition was achieved by following a picture with its corresponding word (or vice versa). In this case, there was an effect of conceptual repetition on free recall but no reliable effect on category instance generation or category cued recall. In addition, we obtained a picture superiority effect in free recall but not in category instance generation. In the third experiment, when the same study sequence was used as in Experiment 1, but with instructions that encouraged relational processing, priming on the category instance generation task was enhanced by conceptual repetition. Results demonstrate that conceptual memory tests can be dissociated and present problems for Roediger's (1990) transfer appropriate processing account of dissociations between explicit and implicit tests.
International Nuclear Information System (INIS)
Vrhovac, S.B.; Petrovic, Z.Lj.
1995-01-01
Momentum - transfer approximation is applied to momentum and energy balance equations describing reacting particle swarms in gases in crossed electric and magnetic fields. Transport coefficients of charged particles undergoing both inelastic and reactive, non-particle-conserving collisions with a gas of neutral molecules are calculated. Momentum - transfer theory (MTT) has been developed mainly by Robson and collaborators. It has been applied to a single reactive gas and mixtures of reactive gases in electric field only. MTT has also been applied in crossed electric and magnetic fields recently and independently of our work but the reactive collisions were not considered. Consider a swarm of electrons of charge e and mass m moving with velocity rvec v through a neutral gas under the influence of an applied electric rvec E and magnetic rvec B field. The collision processes which we shall investigate are limited to elastic, inelastic and reactive collisions of electrons with gas molecules. Here we interpret reactive collisions as collisions which produce change in number of the swarm particles. Reactive collisions involve creation (ionization by electron impact) or loss (electron attachment) of swarm particles. We consider only single ionization in approximation of the mass ratio m/m 0 0 are masses of electrons and neutral particles, respectively. We assume that the stage of evolution of the swarm is the hydrodynamic limit (HDL). In HDL, the space - time dependence of all properties is carried by the number density n of swarm particles
Bondarev, Igor; Popescu, Adrian
We develop an analytical theory for the intra-intermolecular exciton intermixing in periodic 1D chains of planar organic molecules with two isolated low-lying Frenkel exciton states, typical of copper phthalocyanine (CuPc) and other transition metal phthalocyanine molecules. We formulate the Hamiltonian and use the exact Bogoliubov diagonalization procedure to derive the eigen energy spectrum for the two lowest intramolecular Frenkel excitons coupled to the intermolecular charge transfer (CT) exciton state. By comparing our theoretical spectrum with available experimental CuPc absorption data, we obtain the parameters of the Frenkel-CT exciton intermixing in CuPc thin films. The two Frenkel exciton states here are spaced apart by 0.26 eV, and the charge transfer exciton state is 50 meV above the lowest Frenkel exciton. Both Frenkel excitons are strongly mixed with the CT exciton, showing the coupling constant 0.17 eV in agreement with earlier electron transport experiments. Our results can be used for the proper interpretation of the physical properties of crystalline phthalocyanines. DOE-DE-SC0007117 (I.B.), UNC-GA ROI Grant (A.P.).
DEFF Research Database (Denmark)
Wahlgren, Bjarne; Aarkrog, Vibe
Bogen er den første samlede indføring i transfer på dansk. Transfer kan anvendes som praksis-filosofikum. Den giver en systematisk indsigt til den studerende, der spørger: Hvordan kan teoretisk viden bruges til at reflektere over handlinger i situationer, der passer til min fremtidige arbejdsplads?...
Control of pneumatic transfer system for neutron activation analysis
Energy Technology Data Exchange (ETDEWEB)
Jung, H. S.; Chung, Y. S.; Wu, J. S.; Kim, H. K.; Choi, Y. S.; Kim, S. H.; Moon, J. H.; Baek, S. Y
2000-06-01
Pneumatic transfer system(PTS) is one of the facilities to be used in irradiation of target materials for neutron activation analysis(NAA) in the research reactor. There are two systems the manual and the automatic system in PTS of HANARO research reactor. The pneumatic transfer system consists of many devices, sends and loads the capsules from NAA laboratory into three holes in the reflector tank of reactor and retrieves irradiated capsules after irradiation. This report describes the part's design, control system and the operation procedures. All the algorithm described in the text will be used for maintenance and upgrading.
Lossless droplet transfer of droplet-based microfluidic analysis
Kelly, Ryan T [West Richland, WA; Tang, Keqi [Richland, WA; Page, Jason S [Kennewick, WA; Smith, Richard D [Richland, WA
2011-11-22
A transfer structure for droplet-based microfluidic analysis is characterized by a first conduit containing a first stream having at least one immiscible droplet of aqueous material and a second conduit containing a second stream comprising an aqueous fluid. The interface between the first conduit and the second conduit can define a plurality of apertures, wherein the apertures are sized to prevent exchange of the first and second streams between conduits while allowing lossless transfer of droplets from the first conduit to the second conduit through contact between the first and second streams.
Control of pneumatic transfer system for neutron activation analysis
International Nuclear Information System (INIS)
Jung, H. S.; Chung, Y. S.; Wu, J. S.; Kim, H. K.; Choi, Y. S.; Kim, S. H.; Moon, J. H.; Baek, S. Y.
2000-06-01
Pneumatic transfer system(PTS) is one of the facilities to be used in irradiation of target materials for neutron activation analysis(NAA) in the research reactor. There are two systems the manual and the automatic system in PTS of HANARO research reactor. The pneumatic transfer system consists of many devices, sends and loads the capsules from NAA laboratory into three holes in the reflector tank of reactor and retrieves irradiated capsules after irradiation. This report describes the part's design, control system and the operation procedures. All the algorithm described in the text will be used for maintenance and upgrading
The Mayaguez Incident: An Organizational Theory Analysis
National Research Council Canada - National Science Library
Lengel, Edward J; Rambo, Charles R; Rodriguez, Shelley A; Tyynismaa, Michael D
2006-01-01
.... Henry Mintzberg's structural contingency model and Lee Bowman and Terrence Deal's frames model within organizational theory are applied to the executive-level decisions made during the operation...
Variational analysis of regular mappings theory and applications
Ioffe, Alexander D
2017-01-01
This monograph offers the first systematic account of (metric) regularity theory in variational analysis. It presents new developments alongside classical results and demonstrates the power of the theory through applications to various problems in analysis and optimization theory. The origins of metric regularity theory can be traced back to a series of fundamental ideas and results of nonlinear functional analysis and global analysis centered around problems of existence and stability of solutions of nonlinear equations. In variational analysis, regularity theory goes far beyond the classical setting and is also concerned with non-differentiable and multi-valued operators. The present volume explores all basic aspects of the theory, from the most general problems for mappings between metric spaces to those connected with fairly concrete and important classes of operators acting in Banach and finite dimensional spaces. Written by a leading expert in the field, the book covers new and powerful techniques, whic...
Organizational Theories and Analysis: A Feminist Perspective
Irefin, Peace; Ifah, S. S.; Bwala, M. H.
2012-06-01
This paper is a critique of organization theories and their failure to come to terms with the fact of the reproduction of labour power within a particular form of the division of labour. It examines feminist theory and its aims to understand the nature of inequality and focuses on gender, power relations and sexuality part of the task of feminists which organizational theories have neglected is to offer an account of how the different treatments of the sexes operate in our culture. The paper concludes that gender has been completely neglected within the organizational theory which result in a rhetorical reproduction of males as norms and women as others. It is recommended that only radical form of organization theory can account for the situation of women in organisational setting
Multi-spectrometer calibration transfer based on independent component analysis.
Liu, Yan; Xu, Hao; Xia, Zhenzhen; Gong, Zhiyong
2018-02-26
Calibration transfer is indispensable for practical applications of near infrared (NIR) spectroscopy due to the need for precise and consistent measurements across different spectrometers. In this work, a method for multi-spectrometer calibration transfer is described based on independent component analysis (ICA). A spectral matrix is first obtained by aligning the spectra measured on different spectrometers. Then, by using independent component analysis, the aligned spectral matrix is decomposed into the mixing matrix and the independent components of different spectrometers. These differing measurements between spectrometers can then be standardized by correcting the coefficients within the independent components. Two NIR datasets of corn and edible oil samples measured with three and four spectrometers, respectively, were used to test the reliability of this method. The results of both datasets reveal that spectra measurements across different spectrometers can be transferred simultaneously and that the partial least squares (PLS) models built with the measurements on one spectrometer can predict that the spectra can be transferred correctly on another.
Heat transfer and performance analysis of thermoelectric stoves
International Nuclear Information System (INIS)
Najjar, Yousef S.H.; Kseibi, Musaab M.
2016-01-01
Highlights: • Design and testing of a thermo electric stove. • Three biofuels namely: wood, peat and manure are used. • Heat transfer analysis is detailed. • Resulting thermoelectric energy for vital purposes in remote poor regions. • Evaluation of performance of the stove subcomponents. - Abstract: Access to electricity is one of the important challenges for remote poor regions of the world. Adding TEG (thermoelectric generators) to stoves can provide electricity for the basic benefits such as: operating radio, light, phones, medical instruments and other small electronic devices. Heat transfer analysis of a multi-purpose stove coupled with 12 TEG modules is presented. This analysis comprises a well aerodynamically designed combustor, finned TEG base plate, cooker and water heater beside the outer surface for space heating. Heat transfer analysis was also carried out for all the subcomponents of the stove, and performance predicted against the experimental results. It was found that the maximum power obtained is about 7.88 W using wood, manure or peat with an average overall efficiency of the stove about 60%.
An Analysis of Theories on Stock Returns
Directory of Open Access Journals (Sweden)
Ahmet Sekreter
2017-03-01
Full Text Available Objective in writing this article is to provide an overview of the theories that has been developed for stock returns which is an important area of financial markets’ researches. Since the researches in this field are very active for the past quarter, it is not possible to describe all works that has been done in this area. Most important researches will be discussed without going deeper in mathematical tools and theories.
American Society for Testing and Materials. Philadelphia
2005-01-01
1.1 This test method covers the calculation from heat transfer theory of the stagnation enthalpy from experimental measurements of the stagnation-point heat transfer and stagnation pressure. 1.2 Advantages 1.2.1 A value of stagnation enthalpy can be obtained at the location in the stream where the model is tested. This value gives a consistent set of data, along with heat transfer and stagnation pressure, for ablation computations. 1.2.2 This computation of stagnation enthalpy does not require the measurement of any arc heater parameters. 1.3 Limitations and ConsiderationsThere are many factors that may contribute to an error using this type of approach to calculate stagnation enthalpy, including: 1.3.1 TurbulenceThe turbulence generated by adding energy to the stream may cause deviation from the laminar equilibrium heat transfer theory. 1.3.2 Equilibrium, Nonequilibrium, or Frozen State of GasThe reaction rates and expansions may be such that the gas is far from thermodynamic equilibrium. 1.3.3 Noncat...
Exergy costs analysis of groundwater use and water transfers
International Nuclear Information System (INIS)
Carrasquer, Beatriz; Uche, Javier; Martínez-Gracia, Amaya
2016-01-01
Highlights: • A methodology to estimate the unit exergy cost of water supply alternatives is provided. • Two alternatives (water transfers and groundwaters) are defined. • The unit exergy costs are given as a function of design and operating parameters. • Unit exergy cost of groundwaters go from 1.01 to 2.67 and from 1 to 4.06 in water transfers. • Unit exergy costs are calculated and contrasted for the medium course of the Ebro. - Abstract: In the search for new alternatives to meet the water demands, it is interesting to analyze the cost of using alternatives different from those such as desalination and pumping. The exergy cost analysis can be a useful tool to estimate costs of those alternatives as a function of its energy efficiency and its relative abundance with respect to existing resources in their surroundings. This study proposes a methodology for assessing the costs of groundwaters and water transfers from surplus basins within the exergy perspective. An equation to assess the exergy costs of these alternatives is proposed. System boundaries are first identified to the assessment of input and output currents to the system in exergy values for the design and certain operating conditions. Next, an equation to assess water supply costs depending on design and operational parameters is proposed, from the analysis of different examples. Pumping efficiency, altitude gap and flow among other features are introduced in the calculations as those characteristics parameters. In the developed examples, unit exergy costs of groundwaters go from 1.01 to 2.67, and from 1 to 4.06 in case of water transfers. Maximum values, as expected within this perspective, are found at high pumped/transferred flows and high pumping levels and/or low pumping efficiency if pumping is required.
Goh, Jonathan Wee Pin
2009-01-01
With the global economy becoming more integrated, the issues of cross-cultural relevance and transferability of leadership theories and practices have become increasingly urgent. Drawing upon the concept of parallel leadership in schools proposed by Crowther, Kaagan, Ferguson, and Hann as an example, the purpose of this paper is to examine the…
2010-01-01
The mathematical model of heat transfer in whole-body hyperthermia, developed earlier by the author, has been refined using the mathematical apparatus of the circuit theory. The model can be used to calculate the temperature of each organ, which can increase the efficacy and safety of the immersion-convection technique of whole-body hyperthermia.
Modern Theory of Gratings Resonant Scattering: Analysis Techniques and Phenomena
Sirenko, Yuriy K
2010-01-01
Diffraction gratings are one of the most popular objects of analysis in electromagnetic theory. The requirements of applied optics and microwave engineering lead to many new problems and challenges for the theory of diffraction gratings, which force us to search for new methods and tools for their resolution. In Modern Theory of Gratings, the authors present results of the electromagnetic theory of diffraction gratings that will constitute the base of further development of this theory, which meet the challenges provided by modern requirements of fundamental and applied science. This volume covers: spectral theory of gratings (Chapter 1) giving reliable grounds for physical analysis of space-frequency and space-time transformations of the electromagnetic field in open periodic resonators and waveguides; authentic analytic regularization procedures (Chapter 2) that, in contradistinction to the traditional frequency-domain approaches, fit perfectly for the analysis of resonant wave scattering processes; paramet...
Concept analysis and the building blocks of theory: misconceptions regarding theory development.
Bergdahl, Elisabeth; Berterö, Carina M
2016-10-01
The purpose of this article is to discuss the attempts to justify concepts analysis as a way to construct theory - a notion often advocated in nursing. The notion that concepts are the building blocks or threads from which theory is constructed is often repeated. It can be found in many articles and well-known textbooks. However, this notion is seldom explained or defended. The notion of concepts as building blocks has also been questioned by several authors. However, most of these authors seem to agree to some degree that concepts are essential components from which theory is built. Discussion paper. Literature was reviewed to synthesize and debate current knowledge. Our point is that theory is not built by concepts analysis or clarification and we will show that this notion has its basis in some serious misunderstandings. We argue that concept analysis is not a part of sound scientific method and should be abandoned. The current methods of concept analysis in nursing have no foundation in philosophy of science or in language philosophy. The type of concept analysis performed in nursing is not a way to 'construct' theory. Rather, theories are formed by creative endeavour to propose a solution to a scientific and/or practical problem. The bottom line is that the current style and form of concept analysis in nursing should be abandoned in favour of methods in line with modern theory of science. © 2016 John Wiley & Sons Ltd.
International Nuclear Information System (INIS)
Lanzafame, J.M.
1993-01-01
The study of photo-induced charge transfer is an endeavor that spans the entire industrial period of man's history. Its great importance demands an ever greater understanding of its underlying principles. The work discussed here attempts to probe elementary aspects of the charge transfer process. Investigations into the theory of charge transfer reactions are made in an attempt to isolate the relevant parameters. An analytical discussion is made of a simple Golden Rule type rate equation to describe the transfer kinetics. Then a quantum simulation is carried out to follow the wavefunction propagation as a test of the applicability of the assumptions made in deriving the simpler rate equation. Investigation of charge transfer at surfaces is bet served by the application of ultrafast optical spectroscopies to probe carrier dynamics. A discussion of the properties of the short pulse laser systems employed is included along with a discussion of the different optical spectroscopies available. These tools are then brought to bear upon dye-sensitized SnS 2 , a model system for the study of charge injection processes. The unique properties of the semiconductor are discussed with respect to the charge transfer process. The unique properties of the semiconductor are discussed with respect to the charge transfer process. The optical experiments performed on the dye/SnS 2 systems elucidate the fundamental carrier dynamics and these dynamics are discussed within the theoretical framework to provide a complete picture of the charge transfer kinetics
Multi-scale symbolic transfer entropy analysis of EEG
Yao, Wenpo; Wang, Jun
2017-10-01
From both global and local perspectives, we symbolize two kinds of EEG and analyze their dynamic and asymmetrical information using multi-scale transfer entropy. Multi-scale process with scale factor from 1 to 199 and step size of 2 is applied to EEG of healthy people and epileptic patients, and then the permutation with embedding dimension of 3 and global approach are used to symbolize the sequences. The forward and reverse symbol sequences are taken as the inputs of transfer entropy. Scale factor intervals of permutation and global way are (37, 57) and (65, 85) where the two kinds of EEG have satisfied entropy distinctions. When scale factor is 67, transfer entropy of the healthy and epileptic subjects of permutation, 0.1137 and 0.1028, have biggest difference. And the corresponding values of the global symbolization is 0.0641 and 0.0601 which lies in the scale factor of 165. Research results show that permutation which takes contribution of local information has better distinction and is more effectively applied to our multi-scale transfer entropy analysis of EEG.
Modeling of high‐frequency seismic‐wave scattering and propagation using radiative transfer theory
Zeng, Yuehua
2017-01-01
This is a study of the nonisotropic scattering process based on radiative transfer theory and its application to the observation of the M 4.3 aftershock recording of the 2008 Wells earthquake sequence in Nevada. Given a wide range of recording distances from 29 to 320 km, the data provide a unique opportunity to discriminate scattering models based on their distance‐dependent behaviors. First, we develop a stable numerical procedure to simulate nonisotropic scattering waves based on the 3D nonisotropic scattering theory proposed by Sato (1995). By applying the simulation method to the inversion of M 4.3 Wells aftershock recordings, we find that a nonisotropic scattering model, dominated by forward scattering, provides the best fit to the observed high‐frequency direct S waves and S‐wave coda velocity envelopes. The scattering process is governed by a Gaussian autocorrelation function, suggesting a Gaussian random heterogeneous structure for the Nevada crust. The model successfully explains the common decay of seismic coda independent of source–station locations as a result of energy leaking from multiple strong forward scattering, instead of backscattering governed by the diffusion solution at large lapse times. The model also explains the pulse‐broadening effect in the high‐frequency direct and early arriving S waves, as other studies have found, and could be very important to applications of high‐frequency wave simulation in which scattering has a strong effect. We also find that regardless of its physical implications, the isotropic scattering model provides the same effective scattering coefficient and intrinsic attenuation estimates as the forward scattering model, suggesting that the isotropic scattering model is still a viable tool for the study of seismic scattering and intrinsic attenuation coefficients in the Earth.
Foundation heat transfer analysis for buildings with thermal piles
International Nuclear Information System (INIS)
Almanza Huerta, Luis Enrique; Krarti, Moncef
2015-01-01
Highlights: • A numerical transient thermal model for thermo-active foundations is developed. • Thermal interactions between thermal piles and building foundations are evaluated. • A simplified analysis method of thermal interactions between thermal piles and building foundations is developed. - Abstract: Thermal piles or thermo-active foundations utilize heat exchangers embedded within foundation footings to heat and/or cool buildings. In this paper, the impact of thermal piles on building foundation heat transfer is investigated. In particular, a simplified analysis method is developed to estimate the annual ground-coupled foundation heat transfer when buildings are equipped with thermal piles. First, a numerical analysis of the thermal performance of thermo-active building foundations is developed and used to assess the interactions between thermal piles and slab-on-grade building foundations. The impact of various design parameters and operating conditions is evaluated including foundation pile depth, building slab width, foundation insulation configuration, and soil thermal properties. Based on the results of a series of parametric analyses, a simplified analysis method is presented to assess the impact of the thermal piles on the annual heat fluxes toward or from the building foundations. A comparative evaluation of the predictions of the simplified analysis method and those obtained from the detailed numerical analysis indicated good agreement with prediction accuracy lower than 5%. Moreover, it is found that thermal piles can affect annual building foundation heat loss/gain by up to 30% depending on foundation size and insulation level
Concept of spatial channel theory applied to reactor shielding analysis
International Nuclear Information System (INIS)
Williams, M.L.; Engle, W.W. Jr.
1977-01-01
The concept of channel theory is used to locate spatial regions that are important in contributing to a shielding response. The method is analogous to the channel-theory method developed for ascertaining important energy channels in cross-section analysis. The mathematical basis for the theory is shown to be the generalized reciprocity relation, and sample problems are given to exhibit and verify properties predicted by the mathematical equations. A practical example is cited from the shielding analysis of the Fast Flux Test Facility performed at Oak Ridge National Laboratory, in which a perspective plot of channel-theory results was found useful in locating streaming paths around the reactor cavity shield
Spectral theory and nonlinear analysis with applications to spatial ecology
Cano-Casanova, S; Mora-Corral , C
2005-01-01
This volume details some of the latest advances in spectral theory and nonlinear analysis through various cutting-edge theories on algebraic multiplicities, global bifurcation theory, non-linear Schrödinger equations, non-linear boundary value problems, large solutions, metasolutions, dynamical systems, and applications to spatial ecology. The main scope of the book is bringing together a series of topics that have evolved separately during the last decades around the common denominator of spectral theory and nonlinear analysis - from the most abstract developments up to the most concrete applications to population dynamics and socio-biology - in an effort to fill the existing gaps between these fields.
Heat Transfer Analysis of a Diesel Engine Head
Directory of Open Access Journals (Sweden)
M. Diviš
2003-01-01
Full Text Available This paper documents the research carried out at the Josef Božek Research Center of Engine and Automotive Engineering dealing with extended numerical stress/deformation analyses of engines parts loaded by heat and mechanical forces. It contains a detailed description of a C/28 series diesel engine head FE model and a discussion of heat transfer analysis tunning and results. The head model consisting of several parts allows a description of contact interaction in both thermal and mechanical analysis.
Analyzing availability using transfer function models and cross spectral analysis
International Nuclear Information System (INIS)
Singpurwalla, N.D.
1980-01-01
The paper shows how the methods of multivariate time series analysis can be used in a novel way to investigate the interrelationships between a series of operating (running) times and a series of maintenance (down) times of a complex system. Specifically, the techniques of cross spectral analysis are used to help obtain a Box-Jenkins type transfer function model for the running times and the down times of a nuclear reactor. A knowledge of the interrelationships between the running times and the down times is useful for an evaluation of maintenance policies, for replacement policy decisions, and for evaluating the availability and the readiness of complex systems
Analysis of diagnostic calorimeter data by the transfer function technique
Energy Technology Data Exchange (ETDEWEB)
Delogu, R. S., E-mail: rita.delogu@igi.cnr.it; Pimazzoni, A.; Serianni, G. [Consorzio RFX, Corso Stati Uniti, 35127 Padova (Italy); Poggi, C.; Rossi, G. [Università degli Studi di Padova, Via 8 Febbraio 1848, 35122 Padova (Italy)
2016-02-15
This paper describes the analysis procedure applied to the thermal measurements on the rear side of a carbon fibre composite calorimeter with the purpose of reconstructing the energy flux due to an ion beam colliding on the front side. The method is based on the transfer function technique and allows a fast analysis by means of the fast Fourier transform algorithm. Its efficacy has been tested both on simulated and measured temperature profiles: in all cases, the energy flux features are well reproduced and beamlets are well resolved. Limits and restrictions of the method are also discussed, providing strategies to handle issues related to signal noise and digital processing.
Mean-deviation analysis in the theory of choice.
Grechuk, Bogdan; Molyboha, Anton; Zabarankin, Michael
2012-08-01
Mean-deviation analysis, along with the existing theories of coherent risk measures and dual utility, is examined in the context of the theory of choice under uncertainty, which studies rational preference relations for random outcomes based on different sets of axioms such as transitivity, monotonicity, continuity, etc. An axiomatic foundation of the theory of coherent risk measures is obtained as a relaxation of the axioms of the dual utility theory, and a further relaxation of the axioms are shown to lead to the mean-deviation analysis. Paradoxes arising from the sets of axioms corresponding to these theories and their possible resolutions are discussed, and application of the mean-deviation analysis to optimal risk sharing and portfolio selection in the context of rational choice is considered. © 2012 Society for Risk Analysis.
African Journals Online (AJOL)
This paper reports on further studies on long range energy transfer between curcumine as donor and another thiazine dye, thionine, which is closely related to methylene blue as energy harvester (Figure 1). Since thionine is known to have a higher quantum yield of singlet oxygen sensitization than methylene blue [8], it is ...
What kind of theory is music theory? : Epistemological exercises in music theory and analysis
2008-01-01
Music theory has long aligned itself with the sciences - particularly with physics, mathematics, and experimental psychology - seeking to cloak itself in the mantle of their epistemological legitimacy. This affinity, which was foreshadowed in music's inclusion in the medieval quadrivium alongside geometry, astronomy, and arithmetic, is evident throughout the history of music theory from the scientific revolution onward. Yet, as eager as music theorists have been to claim the epistemological p...
Convective heat transfer analysis in aggregates rotary drum reactor
International Nuclear Information System (INIS)
Le Guen, Laurédan; Huchet, Florian; Dumoulin, Jean; Baudru, Yvan; Tamagny, Philippe
2013-01-01
Heat transport characterisation inside rotary drum dryer has a considerable importance linked to many industrial applications. The present paper deals with the heat transfer analysis from experimental apparatus installed in a large-scale rotary drum reactor applied to the asphalt materials production. The equipment including in-situ thermal probes and external visualization by mean of infrared thermography gives rise to the longitudinal evaluation of inner and external temperatures. The assessment of the heat transfer coefficients by an inverse methodology is resolved in order to accomplish a fin analysis of the convective mechanism inside baffled (or flights) rotary drum. The results are discussed and compared with major results of the literature. -- Highlights: ► A thermal and flow experimentation is performed on a large-scale rotary drum. ► Four working points is chosen in the frame of asphalt materials production. ► Evaluation of the convective transfer mechanisms is calculated by inverse method. ► The drying stage is performed in the combustion area. ► Wall/aggregates heat exchanges have a major contribution in the heating stage
An introduction to nonlinear analysis and fixed point theory
Pathak, Hemant Kumar
2018-01-01
This book systematically introduces the theory of nonlinear analysis, providing an overview of topics such as geometry of Banach spaces, differential calculus in Banach spaces, monotone operators, and fixed point theorems. It also discusses degree theory, nonlinear matrix equations, control theory, differential and integral equations, and inclusions. The book presents surjectivity theorems, variational inequalities, stochastic game theory and mathematical biology, along with a large number of applications of these theories in various other disciplines. Nonlinear analysis is characterised by its applications in numerous interdisciplinary fields, ranging from engineering to space science, hydromechanics to astrophysics, chemistry to biology, theoretical mechanics to biomechanics and economics to stochastic game theory. Organised into ten chapters, the book shows the elegance of the subject and its deep-rooted concepts and techniques, which provide the tools for developing more realistic and accurate models for ...
Comparative analysis of heat transfer correlations for forced convection boiling
International Nuclear Information System (INIS)
Guglielmini, G.; Nannei, E.; Pisoni, C.
1978-01-01
A critical survey was conducted of the most relevant correlations of boiling heat transfer in forced convection flow. Most of the investigations carried out on partial nucleate boiling and fully developed nucleate boiling have led to the formulation of correlations that are not able to cover a wide range of operating conditions, due to the empirical approach of the problem. A comparative analysis is therefore required in order to delineate the relative accuracy of the proposed correlations, on the basis of the experimental data presently available. The survey performed allows the evaluation of the accuracy of the different calculating procedure; the results obtained, moreover, indicate the most reliable heat transfer correlations for the different operating conditions investigated. This survey was developed for five pressure range (up to 180bar) and for both saturation and subcooled boiling condition
Dry Transfer Facility No.1 - Ventilation Confinement Zoning Analysis
International Nuclear Information System (INIS)
K.D. Draper
2005-01-01
The purpose of this analysis is to establish the preliminary Ventilation Confinement Zone (VCZ) for the Dry Transfer Facility (DTF). The results of this document is used to determine the air quantities for each VCZ that will eventually be reflected in the development of the Ventilation Flow Diagrams. The calculations contained in this document were developed by D and E/Mechanical-HVAC and are intended solely for the use of the D and E/Mechanical-HVAC department in its work regarding the HVAC system for the Dry Transfer Facility. Yucca Mountain Project personnel from the D and E/Mechanical-HVAC department should be consulted before use of the calculation for purposes other than those stated herein or used by individuals other than authorized personnel in D and E/Mechanical-HVAC department
Primer Vector Optimization: Survey of Theory, new Analysis and Applications
Guzman
This paper presents a preliminary study in developing a set of optimization tools for orbit rendezvous, transfer and station keeping. This work is part of a large scale effort undergoing at NASA Goddard Space Flight Center and a.i. solutions, Inc. to build generic methods, which will enable missions with tight fuel budgets. Since no single optimization technique can solve efficiently all existing problems, a library of tools where the user could pick the method most suited for the particular mission is envisioned. The first trajectory optimization technique explored is Lawden's primer vector theory [Ref. 1]. Primer vector theory can be considered as a byproduct of applying Calculus of Variations (COV) techniques to the problem of minimizing the fuel usage of impulsive trajectories. For an n-impulse trajectory, it involves the solution of n-1 two-point boundary value problems. In this paper, we look at some of the different formulations of the primer vector (dependent on the frame employed and on the force model). Also, the applicability of primer vector theory is examined in effort to understand when and why the theory can fail. Specifically, since COV is based on "small variations", singularities in the linearized (variational) equations of motion along the arcs must be taken into account. These singularities are a recurring problem in analyzes that employ "small variations" [Refs. 2, 3]. For example, singularities in the (2-body problem) variational equations along elliptic arcs occur when [Ref. 4], 1) the difference between the initial and final times is a multiple of the reference orbit period, 2) the difference between the initial and final true anomalies are given by k, for k= 0, 1, 2, 3,..., note that this cover the 3) the time of flight is a minimum for the given difference in true anomaly. For the N-body problem, the situation is more complex and is still under investigation. Several examples, such as the initialization of an orbit (ascent trajectory) and
Finite element analysis theory and application with ANSYS
Moaveni, Saeed
2015-01-01
For courses in Finite Element Analysis, offered in departments of Mechanical or Civil and Environmental Engineering. While many good textbooks cover the theory of finite element modeling, Finite Element Analysis: Theory and Application with ANSYS is the only text available that incorporates ANSYS as an integral part of its content. Moaveni presents the theory of finite element analysis, explores its application as a design/modeling tool, and explains in detail how to use ANSYS intelligently and effectively. Teaching and Learning Experience This program will provide a better teaching and learning experience-for you and your students. It will help: *Present the Theory of Finite Element Analysis: The presentation of theoretical aspects of finite element analysis is carefully designed not to overwhelm students. *Explain How to Use ANSYS Effectively: ANSYS is incorporated as an integral part of the content throughout the book. *Explore How to Use FEA as a Design/Modeling Tool: Open-ended design problems help stude...
Green, Gareth P.; Bean, John C.; Peterson, Dean J.
2013-01-01
Intermediate microeconomics is typically viewed as a theory and tools course that relies on algorithmic problems to help students learn and apply economic theory. However, the authors' assessment research suggests that algorithmic problems by themselves do not encourage students to think about where the theory comes from, why the theory is…
Symmetry analysis for anisotropic field theories
International Nuclear Information System (INIS)
Parra, Lorena; Vergara, J. David
2012-01-01
The purpose of this paper is to study with the help of Noether's theorem the symmetries of anisotropic actions for arbitrary fields which generally depend on higher order spatial derivatives, and to find the corresponding current densities and the Noether charges. We study in particular scale invariance and consider the cases of higher derivative extensions of the scalar field, electrodynamics and Chern-Simons theory.
Theory analysis of the Dental Hygiene Human Needs Conceptual Model.
MacDonald, L; Bowen, D M
2017-11-01
Theories provide a structural knowing about concept relationships, practice intricacies, and intuitions and thus shape the distinct body of the profession. Capturing ways of knowing and being is essential to any professions' practice, education and research. This process defines the phenomenon of the profession - its existence or experience. Theory evaluation is a systematic criterion-based assessment of a specific theory. This study presents a theory analysis of the Dental Hygiene Human Needs Conceptual Model (DH HNCM). Using the Walker and Avant Theory Analysis, a seven-step process, the DH HNCM, was analysed and evaluated for its meaningfulness and contribution to dental hygiene. The steps include the following: (i) investigate the origins; (ii) examine relationships of the theory's concepts; (iii) assess the logic of the theory's structure; (iv) consider the usefulness to practice; (v) judge the generalizability; (vi) evaluate the parsimony; and (vii) appraise the testability of the theory. Human needs theory in nursing and Maslow's Hierarchy of Need Theory prompted this theory's development. The DH HNCM depicts four concepts based on the paradigm concepts of the profession: client, health/oral health, environment and dental hygiene actions, and includes validated eleven human needs that evolved overtime to eight. It is logical, simplistic, allows scientific predictions and testing, and provides a unique lens for the dental hygiene practitioner. With this model, dental hygienists have entered practice, knowing they enable clients to meet their human needs. For the DH HNCM, theory analysis affirmed that the model is reasonable and insightful and adds to the dental hygiene professions' epistemology and ontology. © 2016 John Wiley & Sons A/S. Published by John Wiley & Sons Ltd.
Numerical Analysis of Heat Transfer During Quenching Process
Madireddi, Sowjanya; Krishnan, Krishnan Nambudiripad; Reddy, Ammana Satyanarayana
2018-04-01
A numerical model is developed to simulate the immersion quenching process of metals. The time of quench plays an important role if the process involves a defined step quenching schedule to obtain the desired characteristics. Lumped heat capacity analysis used for this purpose requires the value of heat transfer coefficient, whose evaluation requires large experimental data. Experimentation on a sample work piece may not represent the actual component which may vary in dimension. A Fluid-Structure interaction technique with a coupled interface between the solid (metal) and liquid (quenchant) is used for the simulations. Initial times of quenching shows boiling heat transfer phenomenon with high values of heat transfer coefficients (5000-2.5 × 105 W/m2K). Shape of the work piece with equal dimension shows less influence on the cooling rate Non-uniformity in hardness at the sharp corners can be reduced by rounding off the edges. For a square piece of 20 mm thickness, with 3 mm fillet radius, this difference is reduced by 73 %. The model can be used for any metal-quenchant combination to obtain time-temperature data without the necessity of experimentation.
Heat transfer capability analysis of heat pipe for space reactor
International Nuclear Information System (INIS)
Li Huaqi; Jiang Xinbiao; Chen Lixin; Yang Ning; Hu Pan; Ma Tengyue; Zhang Liang
2015-01-01
To insure the safety of space reactor power system with no single point failures, the reactor heat pipes must work below its heat transfer limits, thus when some pipes fail, the reactor could still be adequately cooled by neighbor heat pipes. Methods to analyze the reactor heat pipe's heat transfer limits were presented, and that for the prevailing capillary limit analysis was improved. The calculation was made on the lithium heat pipe in core of heat pipes segmented thermoelectric module converter (HP-STMC) space reactor power system (SRPS), potassium heat pipe as radiator of HP-STMC SRPS, and sodium heat pipe in core of scalable AMTEC integrated reactor space power system (SAIRS). It is shown that the prevailing capillary limits of the reactor lithium heat pipe and sodium heat pipe is 25.21 kW and 14.69 kW, providing a design margin >19.4% and >23.6%, respectively. The sonic limit of the reactor radiator potassium heat pipe is 7.88 kW, providing a design margin >43.2%. As the result of calculation, it is concluded that the main heat transfer limit of HP-STMC SRPS lithium heat pipe and SARIS sodium heat pipe is prevailing capillary limit, but the sonic limit for HP-STMC SRPS radiator potassium heat pipe. (authors)
Analysis of room transfer function and reverberant signal statistics
DEFF Research Database (Denmark)
Georganti, Eleftheria; Mourjopoulos, John; Jacobsen, Finn
2008-01-01
For some time now, statistical analysis has been a valuable tool in analyzing room transfer functions (RTFs). This work examines existing statistical time-frequency models and techniques for RTF analysis (e.g., Schroeder's stochastic model and the standard deviation over frequency bands for the RTF...... magnitude and phase). RTF fractional octave smoothing, as with 1-slash 3 octave analysis, may lead to RTF simplifications that can be useful for several audio applications, like room compensation, room modeling, auralisation purposes. The aim of this work is to identify the relationship of optimal response...... and the corresponding ratio of the direct and reverberant signal. In addition, this work examines the statistical quantities for speech and audio signals prior to their reproduction within rooms and when recorded in rooms. Histograms and other statistical distributions are used to compare RTF minima of typical...
Spectral analysis and filter theory in applied geophysics
Buttkus, Burkhard
2000-01-01
This book is intended to be an introduction to the fundamentals and methods of spectral analysis and filter theory and their appli cations in geophysics. The principles and theoretical basis of the various methods are described, their efficiency and effectiveness eval uated, and instructions provided for their practical application. Be sides the conventional methods, newer methods arediscussed, such as the spectral analysis ofrandom processes by fitting models to the ob served data, maximum-entropy spectral analysis and maximum-like lihood spectral analysis, the Wiener and Kalman filtering methods, homomorphic deconvolution, and adaptive methods for nonstation ary processes. Multidimensional spectral analysis and filtering, as well as multichannel filters, are given extensive treatment. The book provides a survey of the state-of-the-art of spectral analysis and fil ter theory. The importance and possibilities ofspectral analysis and filter theory in geophysics for data acquisition, processing an...
Analysis of transferred fragrance and its forensic implications.
Gherghel, Simona; Morgan, Ruth M; Blackman, Christopher S; Karu, Kersti; Parkin, Ivan P
2016-12-01
Perfumes are widely used by many people in developed countries, and a large number of both men and women wear perfumes on a daily basis. Analysis of perfume trace materials from clothing is not commonly employed within forensic casework, yet as a form of trace evidence it has the potential to provide valuable intelligence. In order to appreciate the value of trace evidence there is a fundamental need for an evidence base that can both offer insight into how a trace material behaves under different scenarios and activities, and from which inferences can be made. With this purpose a gas chromatography-mass spectrometry method for trace analysis of perfumes was developed. This paper presents two different series of experiments that investigate the dynamics of perfume transfer as a factor of perfume ageing time, and as a factor of perfume contact time. Empirical data showed that both perfume ageing time, and perfume contact time play a key role in the number of perfume components transferred. These studies have implication for forensic protocols, specifically for perfume trace evidence collection, analysis, interpretation, and presentation, and there is potentially great value in analysing perfumes from clothing exhibits in forensic enquiries that involve close contact between individuals, such as sexual assaults. Copyright Â© 2016 The Authors. Published by Elsevier Ireland Ltd.. All rights reserved.
Advanced Wireless Power Transfer Vehicle and Infrastructure Analysis (Presentation)
Energy Technology Data Exchange (ETDEWEB)
Gonder, J.; Brooker, A.; Burton, E.; Wang, J.; Konan, A.
2014-06-01
This presentation discusses current research at NREL on advanced wireless power transfer vehicle and infrastructure analysis. The potential benefits of E-roadway include more electrified driving miles from battery electric vehicles, plug-in hybrid electric vehicles, or even properly equipped hybrid electric vehicles (i.e., more electrified miles could be obtained from a given battery size, or electrified driving miles could be maintained while using smaller and less expensive batteries, thereby increasing cost competitiveness and potential market penetration). The system optimization aspect is key given the potential impact of this technology on the vehicles, the power grid and the road infrastructure.
An analysis of the transformational leadership theory | Moradi ...
African Journals Online (AJOL)
An analysis of the transformational leadership theory. ... at all levels of the organization also feel the need to cooperate with others to achieve the desired results. ... intellectual stimulation; inspirational motivation; personal considerations ...
On uncertainty and local sensitivity analysis for transient conjugate heat transfer problems
International Nuclear Information System (INIS)
Rauch, Christian
2012-01-01
The need for simulating real-world behavior of automobiles has led to more and more sophisticated models being added of various physical phenomena for being coupled together. This increases the number of parameters to be set and, consequently, the required knowledge of their relative importance for the solution and the theory behind them. Sensitivity and uncertainty analysis provides the knowledge of parameter importance. In this paper a thermal radiation solver is considered that performs conduction calculations and receives heat transfer coefficient and fluid temperate at a thermal node. The equations of local, discrete, and transient sensitivities for the conjugate heat transfer model solved by the finite difference method are being derived for some parameters. In the past, formulations for the finite element method have been published. This paper builds on the steady-state formulation published previously by the author. A numerical analysis on the stability of the solution matrix is being conducted. From those normalized sensitivity coefficients are calculated dimensionless uncertainty factors. On a simplified example the relative importance of the heat transfer modes at various locations is then investigated by those uncertainty factors and their changes over time
Platoon Dispersion Analysis Based on Diffusion Theory
Directory of Open Access Journals (Sweden)
Badhrudeen Mohamed
2017-01-01
Full Text Available Urbanization and gro wing demand for travel, causes the traffic system to work ineffectively in most urban areas leadin g to traffic congestion. Many approaches have been adopted to address this problem, one among them being the signal co-ordination. This can be achieved if the platoon of vehicles that gets discharged at one signal gets green at consecutive signals with minimal delay. However, platoons tend to get dispersed as they travel and this dispersion phenomenon should be taken into account for effective signal coordination. Reported studies in this area are from the homogeneous and lane disciplined traffic conditions. This paper analyse the platoon dispersion characteristics under heterogeneous and lane-less traffic conditions. Out of the various modeling techniques reported, the approach based on diffusion theory is used in this study. The diffusion theory based models so far assumed thedata to follow normal distribution. However, in the present study, the data was found to follow lognormal distribution and hence the implementation was carried out using lognormal distribution. The parameters of lognormal distribution were calibrated for the study condition. For comparison purpose, normal distribution was also calibrated and the results were evaluated. It was foun d that model with log normal distribution performed better in all cases than the o ne with normal distribution.
Heat Transfer Analysis in Wire Bundles for Aerospace Vehicles
Rickman, S. L.; Iamello, C. J.
2016-01-01
Design of wiring for aerospace vehicles relies on an understanding of "ampacity" which refers to the current carrying capacity of wires, either, individually or in wire bundles. Designers rely on standards to derate allowable current flow to prevent exceedance of wire temperature limits due to resistive heat dissipation within the wires or wire bundles. These standards often add considerable margin and are based on empirical data. Commercial providers are taking an aggressive approach to wire sizing which challenges the conventional wisdom of the established standards. Thermal modelling of wire bundles may offer significant mass reduction in a system if the technique can be generalized to produce reliable temperature predictions for arbitrary bundle configurations. Thermal analysis has been applied to the problem of wire bundles wherein any or all of the wires within the bundle may carry current. Wire bundles present analytical challenges because the heat transfer path from conductors internal to the bundle is tortuous, relying on internal radiation and thermal interface conductance to move the heat from within the bundle to the external jacket where it can be carried away by convective and radiative heat transfer. The problem is further complicated by the dependence of wire electrical resistivity on temperature. Reduced heat transfer out of the bundle leads to higher conductor temperatures and, hence, increased resistive heat dissipation. Development of a generalized wire bundle thermal model is presented and compared with test data. The steady state heat balance for a single wire is derived and extended to the bundle configuration. The generalized model includes the effects of temperature varying resistance, internal radiation and thermal interface conductance, external radiation and temperature varying convective relief from the free surface. The sensitivity of the response to uncertainties in key model parameters is explored using Monte Carlo analysis.
Surprisal analysis and probability matrices for rotational energy transfer
International Nuclear Information System (INIS)
Levine, R.D.; Bernstein, R.B.; Kahana, P.; Procaccia, I.; Upchurch, E.T.
1976-01-01
The information-theoretic approach is applied to the analysis of state-to-state rotational energy transfer cross sections. The rotational surprisal is evaluated in the usual way, in terms of the deviance of the cross sections from their reference (''prior'') values. The surprisal is found to be an essentially linear function of the energy transferred. This behavior accounts for the experimentally observed exponential gap law for the hydrogen halide systems. The data base here analyzed (taken from the literature) is largely computational in origin: quantal calculations for the hydrogenic systems H 2 +H, He, Li + ; HD+He; D 2 +H and for the N 2 +Ar system; and classical trajectory results for H 2 +Li + ; D 2 +Li + and N 2 +Ar. The surprisal analysis not only serves to compact a large body of data but also aids in the interpretation of the results. A single surprisal parameter theta/subR/ suffices to account for the (relative) magnitude of all state-to-state inelastic cross sections at a given energy
Energy Technology Data Exchange (ETDEWEB)
Wanninger, Andreas; Ceuca, Sabin Cristian; Macian-Juan, Rafael [Technische Univ. Muenchen, Garching (Germany). Dept. of Nuclear Engineering
2013-07-01
Different approaches for the calculation of Direct Contact Condensation (DCC) using Heat Transfer Coefficients (HTC) based on the Surface Renewal Theory (SRT) are tested using the CFD simulation tool ANSYS CFX. The present work constitutes a preliminary study of the flow patterns and conditions observed using different HTC models. A complex 3D flow pattern will be observed in the CFD simulations as well as a strong coupling between the condensation rate and the two-phase flow dynamics. (orig.)
The heat transfer analysis of the first stage blade
International Nuclear Information System (INIS)
Hong, Yong Ju; Choi, Bum Seog; Park, Byung Gyu; Yoon, Eui Soo
2001-01-01
To get higher efficiency of gas turbine, the designer should have more higher Turbine Inlet Temperature(TIT). Today, modern gas turbine having sophisticated cooling scheme has TIT above 1,700 .deg. C. In the Korea, many gas turbine having TIT above 1,300 .deg. C was imported and being operated, but the gas with high TIT above 1,300 .deg. C in the turbine will give damage to liner of combustor, and blade of turbine and etc. So frequently maintenance for parts enduring high temperature was performed. In this study, the heat transfer analysis of cooling air in the internal cooling channel (network analysis) and temperature analysis of the blade (Finite Element Analysis) in the first stage rotor was conducted for development of the optimal cooling passage design procedure. The results of network analysis and FEM analysis of blade show that the high temperature spot are occurred at the leading edge, trailing edge near tip, and platform. So to get more reliable performance of gas turbine, the more efficient cooling method should be applied at the leading edge and tip section and the thermal barrier coating on the blade surface has important role in cooling blade
Effective field theory analysis of Higgs naturalness
Energy Technology Data Exchange (ETDEWEB)
Bar-Shalom, Shaouly [Technion-Israel Inst. of Tech., Haifa (Israel); Soni, Amarjit [Brookhaven National Lab. (BNL), Upton, NY (United States); Wudka, Jose [Univ. of California, Riverside, CA (United States)
2015-07-20
Assuming the presence of physics beyond the Standard Model ( SM) with a characteristic scale M ~ O (10) TeV, we investigate the naturalness of the Higgs sector at scales below M using an effective field theory (EFT) approach. We obtain the leading 1 -loop EFT contributions to the Higgs mass with a Wilsonian-like hard cutoff, and determine t he constraints on the corresponding operator coefficients for these effects to alleviate the little hierarchy problem up to the scale of the effective action Λ < M , a condition we denote by “EFT-naturalness”. We also determine the types of physics that can lead to EFT-naturalness and show that these types of new physics are best probed in vector-boson and multiple-Higgs production. The current experimental constraints on these coefficients are also discussed.
Asteroid orbital error analysis: Theory and application
Muinonen, K.; Bowell, Edward
1992-01-01
We present a rigorous Bayesian theory for asteroid orbital error estimation in which the probability density of the orbital elements is derived from the noise statistics of the observations. For Gaussian noise in a linearized approximation the probability density is also Gaussian, and the errors of the orbital elements at a given epoch are fully described by the covariance matrix. The law of error propagation can then be applied to calculate past and future positional uncertainty ellipsoids (Cappellari et al. 1976, Yeomans et al. 1987, Whipple et al. 1991). To our knowledge, this is the first time a Bayesian approach has been formulated for orbital element estimation. In contrast to the classical Fisherian school of statistics, the Bayesian school allows a priori information to be formally present in the final estimation. However, Bayesian estimation does give the same results as Fisherian estimation when no priori information is assumed (Lehtinen 1988, and reference therein).
Studying Policy Transfer through the Lens of Social Network Analysis
DEFF Research Database (Denmark)
Staunæs, Dorthe; Brøgger, Katja; Steiner-Khamsi, Gita
Studying Policy Transfer through the Lens of Social Network Analysis The panelists present the findings of a joint empirical research project carried out at Aarhus University (DPU/Copenhagen) and at Teachers College, Columbia University (New York). The research project succeeded to identify...... discursive networks of political stakeholders and policy advisors that were considered key actors in the Danish school reform. The research team investigated how these networks interrelate, change over time, and represent different constituents (government, academe, business), at times contradicting...... or collaborating with each other, respectively. Against the backdrop of globalization studies in comparative education, the research project attempted to identify borrowers, translators, and brokers of educational reform drawing on a complementary set of expertise from social network analysis methodology (Oren...
Kinematic analysis of parallel manipulators by algebraic screw theory
Gallardo-Alvarado, Jaime
2016-01-01
This book reviews the fundamentals of screw theory concerned with velocity analysis of rigid-bodies, confirmed with detailed and explicit proofs. The author additionally investigates acceleration, jerk, and hyper-jerk analyses of rigid-bodies following the trend of the velocity analysis. With the material provided in this book, readers can extend the theory of screws into the kinematics of optional order of rigid-bodies. Illustrative examples and exercises to reinforce learning are provided. Of particular note, the kinematics of emblematic parallel manipulators, such as the Delta robot as well as the original Gough and Stewart platforms are revisited applying, in addition to the theory of screws, new methods devoted to simplify the corresponding forward-displacement analysis, a challenging task for most parallel manipulators. Stands as the only book devoted to the acceleration, jerk and hyper-jerk (snap) analyses of rigid-body by means of screw theory; Provides new strategies to simplify the forward kinematic...
Adapted wavelet analysis from theory to software
Wickerhauser, Mladen Victor
1994-01-01
This detail-oriented text is intended for engineers and applied mathematicians who must write computer programs to perform wavelet and related analysis on real data. It contains an overview of mathematical prerequisites and proceeds to describe hands-on programming techniques to implement special programs for signal analysis and other applications. From the table of contents: - Mathematical Preliminaries - Programming Techniques - The Discrete Fourier Transform - Local Trigonometric Transforms - Quadrature Filters - The Discrete Wavelet Transform - Wavelet Packets - The Best Basis Algorithm - Multidimensional Library Trees - Time-Frequency Analysis - Some Applications - Solutions to Some of the Exercises - List of Symbols - Quadrature Filter Coefficients
Film scoring today - Theory, practice and analysis
Flach, Paula Sophie
2012-01-01
This thesis considers film scoring by taking a closer look at the theoretical discourse throughout the last decades, examining current production practice of film music and showcasing a musical analysis of the film Inception (2010).
Theory and Practice of Financial Analysis
Jakova, Ivana
2009-01-01
Analysts, managers or other business executives and students have at their disposal wide variety analytical techniques when they want to evaluate company's financial position or when they wish to better understand the financial implication of business operational activities or investment. This thesis examines the uses of financial analysis as one of the main financial assessment techniques. After describing theoretically the main tools of financial analysis, this thesis determines the practic...
Daryabeigi, Kamran; Cunnington, George R.; Miller, Steve D.; Knutson, Jeffry R.
2010-01-01
Combined radiation and conduction heat transfer through various high-temperature, high-porosity, unbonded (loose) fibrous insulations was modeled based on first principles. The diffusion approximation was used for modeling the radiation component of heat transfer in the optically thick insulations. The relevant parameters needed for the heat transfer model were derived from experimental data. Semi-empirical formulations were used to model the solid conduction contribution of heat transfer in fibrous insulations with the relevant parameters inferred from thermal conductivity measurements at cryogenic temperatures in a vacuum. The specific extinction coefficient for radiation heat transfer was obtained from high-temperature steady-state thermal measurements with large temperature gradients maintained across the sample thickness in a vacuum. Standard gas conduction modeling was used in the heat transfer formulation. This heat transfer modeling methodology was applied to silica, two types of alumina, and a zirconia-based fibrous insulation, and to a variation of opacified fibrous insulation (OFI). OFI is a class of insulations manufactured by embedding efficient ceramic opacifiers in various unbonded fibrous insulations to significantly attenuate the radiation component of heat transfer. The heat transfer modeling methodology was validated by comparison with more rigorous analytical solutions and with standard thermal conductivity measurements. The validated heat transfer model is applicable to various densities of these high-porosity insulations as long as the fiber properties are the same (index of refraction, size distribution, orientation, and length). Furthermore, the heat transfer data for these insulations can be obtained at any static pressure in any working gas environment without the need to perform tests in various gases at various pressures.
Analysis and evaluation of the moral distress theory.
Wilson, Melissa A
2018-04-01
Moral distress is a pervasive problem in nursing resulting in a detriment to patient care, providers, and organizations. Over a decade ago, the moral distress theory (MDT) was proposed and utilized in multiple research studies. This middle range theory explains and predicts the distress that occurs in a nurse because of moral conflict. The research findings born from this theory have been substantial. Since inception of this theory, moral distress has been extensively examined which has further elaborated its understanding. This paper provides an analysis and evaluation of the MDT according to applicable guidelines. Current understanding of the phenomenon indicates that a new theory may be warranted to better predict, treat, and manage moral distress. © 2017 Wiley Periodicals, Inc.
Recurrence quantification analysis theory and best practices
Jr, Jr; Marwan, Norbert
2015-01-01
The analysis of recurrences in dynamical systems by using recurrence plots and their quantification is still an emerging field. Over the past decades recurrence plots have proven to be valuable data visualization and analysis tools in the theoretical study of complex, time-varying dynamical systems as well as in various applications in biology, neuroscience, kinesiology, psychology, physiology, engineering, physics, geosciences, linguistics, finance, economics, and other disciplines. This multi-authored book intends to comprehensively introduce and showcase recent advances as well as established best practices concerning both theoretical and practical aspects of recurrence plot based analysis. Edited and authored by leading researcher in the field, the various chapters address an interdisciplinary readership, ranging from theoretical physicists to application-oriented scientists in all data-providing disciplines.
International Nuclear Information System (INIS)
Misono, S.; Imanishi, B.
1997-02-01
We have investigated recoil effects in heavy-ion reactions for the nucleon transfers, and the validity of the spatially local approximation for the non-local transfer interaction defined by the orthogonalized coupled-reaction-channel (OCRC) theory. This approximation makes it easier to treat multi-step transfer processes with the coupled channel method and makes it possible to define the nucleon molecular orbitals with the inclusion of the recoil effects. The transfer interaction is expanded in a power series of the momentum operator, and is approximated by the first order term, i.e., the spatially local term. The numerical calculation for the core-symmetric systems 12 C+ 13 C and 16 O+ 17 O with this approximation shows that the recoil effects are well included in the results at energies lower than a few MeV/nucleon. Furthermore, the OCRC formalism allows us even to employ the complete no-recoil approximation for the calculation of cross sections, even though it is not adequate to use this approximation in the distorted wave Born approximation (DWBA) method. As to polarization, however, the no-recoil approximation is not good even in the OCRC formalism. We discuss the recoil effects on nucleon molecular-orbital states. It is shown that states of the covalent molecular orbitals of the valence (transferred) nucleon are little affected by the recoil effects, as already suggested by Korotky et al. in the full finite-range DWBA analysis of the transfer reaction, 13 C( 13 C, 12 C) 14 C. (author). 59 refs
Applying thematic analysis theory to practice: a researcher's experience.
Tuckett, Anthony G
2005-01-01
This article describes an experience of thematic analysis. In order to answer the question 'What does analysis look like in practice?' it describes in brief how the methodology of grounded theory, the epistemology of social constructionism, and the theoretical stance of symbolic interactionism inform analysis. Additionally, analysis is examined by evidencing the systematic processes--here termed organising, coding, writing, theorising, and reading--that led the researcher to develop a final thematic schema.
Heat transfer analysis of short helical borehole heat exchangers
International Nuclear Information System (INIS)
Zarrella, Angelo; De Carli, Michele
2013-01-01
Highlights: ► Vertical ground heat exchanger with a helical shaped pipe is analyzed. ► The model considers the interaction between the ground and the environment. ► The results of the model are in good agreement with the experimental values. ► The weather conditions considerably affect the fluid heat carrier temperature. ► The pitch between the turns does not affect the behaviour of the heat exchanger. -- Abstract: In this paper a numerical model to analyze the thermal behaviour of vertical ground heat exchangers with a helical shaped pipe is presented. This type of configuration can be a suitable alternative to conventional ground heat exchangers, especially when the heating and cooling loads of the building are very low. The model describes the heat transfer problem by means of a network of interconnected thermal resistances and capacitances. Moreover, as the investigated ground heat exchanger is usually installed in shallow depth, the model takes into account the interaction between the ground and the ambient environment which affects the fluid heat carrier temperature into the heat exchanger and, as a consequence, the energy efficiency of the heat pump. After a sensitivity analysis on the mesh parameters, the presented model is compared with experimental data and the simulation results show good agreement with the measurements. Finally, analyses to investigate the influence of the weather conditions, of the axial heat transfer and of the pitch between the turns of the helical pipe for two types of ground are carried out.
An immersed-boundary method for conjugate heat transfer analysis
Energy Technology Data Exchange (ETDEWEB)
Song, Jeong Chul; Lee, Joon Sik [Seoul National University, Seoul (Korea, Republic of); Ahn, Joon [Kookmin University, Seoul (Korea, Republic of)
2017-05-15
An immersed-boundary method is proposed for the analysis of conjugate problems of convective heat transfer in conducting solids. In- side the solid body, momentum forcing is applied to set the velocity to zero. A thermal conductivity ratio and a heat capacity ratio, between the solid body and the fluid, are introduced so that the energy equation is reduced to the heat diffusion equation. At the solid fluid interface, an effective conductivity is introduced to satisfy the heat flux continuity. The effective thermal conductivity is obtained by considering the heat balance at the interface or by using a harmonic mean formulation. The method is first validated against the analytic solution to the heat transfer problem in a fully developed laminar channel flow with conducting solid walls. Then it is applied to a laminar channel flow with a heated, block-shaped obstacle to show its validity for geometry with sharp edges. Finally the validation for a curvilinear solid body is accomplished with a laminar flow through arrayed cylinders.
Interaction Analysis: Theory, Research and Application.
Amidon, Edmund J., Ed.; Hough, John J., Ed.
This volume of selected readings developed for students and practitioners at various levels of sophistication is intended to be representative of work done to date on interaction analysis. The contents include journal articles, papers read at professional meetings, abstracts of doctoral dissertations, and selections from larger monographs, plus 12…
Heat Transfer Analysis for a Fixed CST Column
International Nuclear Information System (INIS)
Lee, S.Y.
2004-01-01
In support of a small column ion exchange (SCIX) process for the Savannah River Site waste processing program, a transient two-dimensional heat transfer model that includes the conduction process neglecting the convection cooling mechanism inside the crystalline silicotitanate (CST) column has been constructed and heat transfer calculations made for the present design configurations. For this situation, a no process flow condition through the column was assumed as one of the reference conditions for the simulation of a loss-of-flow accident. A series of the modeling calculations has been performed using a computational heat transfer approach. Results for the baseline model indicate that transit times to reach 130 degrees Celsius maximum temperature of the CST-salt solution column are about 96 hours when the 20-in CST column with 300 Ci/liter heat generation source and 25 degrees Celsius initial column temperature is cooled by natural convection of external air as a primary heat transfer mechanism. The modeling results for the 28-in column equipped with water jacket systems on the external wall surface of the column and water coolant pipe at the center of the CST column demonstrate that the column loaded with 300 Ci/liter heat source can be maintained non-boiling indefinitely. Sensitivity calculations for several alternate column sizes, heat loads of the packed column, engineered cooling systems, and various ambient conditions at the exterior wall of the column have been performed under the reference conditions of the CST-salt solution to assess the impact of those parameters on the peak temperatures of the packed column for a given transient time. The results indicate that a water-coolant pipe at the center of the CST column filled with salt solution is the most effective one among the potential design parameters related to the thermal energy dissipation of decay heat load. It is noted that the cooling mechanism at the wall boundary of the column has significant
HEAT TRANSFER ANALYSIS FOR FIXED CST AND RF COLUMNS
International Nuclear Information System (INIS)
Lee, S
2007-01-01
In support of a small column ion exchange (SCIX) process for the Savannah River Site waste processing program, transient and steady state two-dimensional heat transfer models have been constructed for columns loaded with cesium-saturated crystalline silicotitanate (CST) or spherical Resorcinol-Formaldehyde (RF) beads and 6 molar sodium tank waste supernate. Radiolytic decay of sorbed cesium results in heat generation within the columns. The models consider conductive heat transfer only with no convective cooling and no process flow within the columns (assumed column geometry: 27.375 in ID with a 6.625 in OD center-line cooling pipe). Heat transfer at the column walls was assumed to occur by natural convection cooling with 35 C air. A number of modeling calculations were performed using this computational heat transfer approach. Minimal additional calculations were also conducted to predict temperature increases expected for salt solution processed through columns of various heights at the slowest expected operational flow rate of 5 gpm. Results for the bounding model with no process flow and no active cooling indicate that the time required to reach the boiling point of ∼130 C for a CST-salt solution mixture containing 257 Ci/liter of Cs-137 heat source (maximum expected loading for SCIX applications) at 35 C initial temperature is about 6 days. Modeling results for a column actively cooled with external wall jackets and the internal coolant pipe (inlet coolant water temperature: 25 C) indicate that the CST column can be maintained non-boiling under these conditions indefinitely. The results also show that the maximum temperature of an RF-salt solution column containing 133 Ci/liter of Cs-137 (maximum expected loading) will never reach boiling under any conditions (maximum predicted temperature without cooling: 88 C). The results indicate that a 6-in cooling pipe at the center of the column provides the most effective cooling mechanism for reducing the maximum
Operator theory a comprehensive course in analysis, part 4
Simon, Barry
2015-01-01
A Comprehensive Course in Analysis by Poincaré Prize winner Barry Simon is a five-volume set that can serve as a graduate-level analysis textbook with a lot of additional bonus information, including hundreds of problems and numerous notes that extend the text and provide important historical background. Depth and breadth of exposition make this set a valuable reference source for almost all areas of classical analysis. Part 4 focuses on operator theory, especially on a Hilbert space. Central topics are the spectral theorem, the theory of trace class and Fredholm determinants, and the study of
Network analysis and synthesis a modern systems theory approach
Anderson, Brian D O
2006-01-01
Geared toward upper-level undergraduates and graduate students, this book offers a comprehensive look at linear network analysis and synthesis. It explores state-space synthesis as well as analysis, employing modern systems theory to unite the classical concepts of network theory. The authors stress passive networks but include material on active networks. They avoid topology in dealing with analysis problems and discuss computational techniques. The concepts of controllability, observability, and degree are emphasized in reviewing the state-variable description of linear systems. Explorations
The Constant Comparative Analysis Method Outside of Grounded Theory
Fram, Sheila M.
2013-01-01
This commentary addresses the gap in the literature regarding discussion of the legitimate use of Constant Comparative Analysis Method (CCA) outside of Grounded Theory. The purpose is to show the strength of using CCA to maintain the emic perspective and how theoretical frameworks can maintain the etic perspective throughout the analysis. My…
Analysis of graphic representations of activity theory in international journals
Directory of Open Access Journals (Sweden)
Marco André Mazzarotto
2016-05-01
Full Text Available Activity theory is a relevant framework for the Design field, and their graphic representations are cognitive artifacts that aid the understanding, use and communication of this theory. However, there is a lack of consistency around the graphics and labels used in these representations. Based on this, the aim of this study was to identify, analyze and evaluate these differences and propose a representation that aims to be more suitable for the theory. For this, uses as method a literature review based on Engeström (2001 and its three generations of visual models, combined with graphical analysis of representations collected in a hundred papers from international journals.
A network analysis of leadership theory : the infancy of integration.
Meuser, J. D.; Gardner, W. L.; Dinh, J. E.; Hu, J.; Liden, R. C.; Lord, R. G.
2016-01-01
We investigated the status of leadership theory integration by reviewing 14 years of published research (2000 through 2013) in 10 top journals (864 articles). The authors of these articles examined 49 leadership approaches/theories, and in 293 articles, 3 or more of these leadership approaches were included in their investigations. Focusing on these articles that reflected relatively extensive integration, we applied an inductive approach and used graphic network analysis as a guide for drawi...
Video Game Characters. Theory and Analysis
Felix Schröter; Jan-Noël Thon
2014-01-01
This essay develops a method for the analysis of video game characters based on a theoretical understanding of their medium-specific representation and the mental processes involved in their intersubjective construction by video game players. We propose to distinguish, first, between narration, simulation, and communication as three modes of representation particularly salient for contemporary video games and the characters they represent, second, between narrative, ludic, and social experien...
Xiao, Heng; Gou, Xiaolong; Yang, Suwen
2011-05-01
Thermoelectric (TE) power generation technology, due to its several advantages, is becoming a noteworthy research direction. Many researchers conduct their performance analysis and optimization of TE devices and related applications based on the generalized thermoelectric energy balance equations. These generalized TE equations involve the internal irreversibility of Joule heating inside the thermoelectric device and heat leakage through the thermoelectric couple leg. However, it is assumed that the thermoelectric generator (TEG) is thermally isolated from the surroundings except for the heat flows at the cold and hot junctions. Since the thermoelectric generator is a multi-element device in practice, being composed of many fundamental TE couple legs, the effect of heat transfer between the TE couple leg and the ambient environment is not negligible. In this paper, based on basic theories of thermoelectric power generation and thermal science, detailed modeling of a thermoelectric generator taking account of the phenomenon of energy loss from the TE couple leg is reported. The revised generalized thermoelectric energy balance equations considering the effect of heat transfer between the TE couple leg and the ambient environment have been derived. Furthermore, characteristics of a multi-element thermoelectric generator with irreversibility have been investigated on the basis of the new derived TE equations. In the present investigation, second-law-based thermodynamic analysis (exergy analysis) has been applied to the irreversible heat transfer process in particular. It is found that the existence of the irreversible heat convection process causes a large loss of heat exergy in the TEG system, and using thermoelectric generators for low-grade waste heat recovery has promising potential. The results of irreversibility analysis, especially irreversible effects on generator system performance, based on the system model established in detail have guiding significance for
Mass transfer in electromembrane extraction - The link between theory and experiments
DEFF Research Database (Denmark)
Huang, Chuixiu; Jensen, Henrik; Seip, Knut Fredrik
2016-01-01
typically been combined with chromatography, mass spectrometry, and electrophoresis for analyte separation and detection. At the moment, close to 125 research papers have been published with focus on electromembrane extraction. Electromembrane extraction is a hybrid technique between electrophoresis....... This review summarizes recent efforts to describe the fundamentals of mass transfer in electromembrane extraction, and aim to give an up-to-date understanding of the processes involved....... and liquid–liquid extraction, and the fundamental principles for mass transfer have only partly been investigated. Thus, although there is great interest in electromembrane extraction, the fundamental principle for mass transfer has to be described in more detail for the scientific acceptance of the concept...
International Nuclear Information System (INIS)
Zhdanovich, S.; Shapiro, E. A.; Shapiro, M.; Hepburn, J. W.; Milner, V.
2008-01-01
We propose and experimentally demonstrate the method of population transfer by piecewise adiabatic passage between two quantum states. Coherent excitation of a two-level system with a train of ultrashort laser pulses is shown to reproduce the effect of an adiabatic passage, conventionally achieved with a single frequency-chirped pulse. By properly adjusting the amplitudes and phases of the pulses in the excitation pulse train, we achieve complete and robust population transfer to the target state. The piecewise nature of the process suggests a possibility for the selective population transfer in complex quantum systems
Molecular theory of mass transfer kinetics and dynamics at gas-water interface
International Nuclear Information System (INIS)
Morita, Akihiro; Garrett, Bruce C
2008-01-01
The mass transfer mechanism across gas-water interface is studied with molecular dynamics (MD) simulation. The MD results provide a robust and qualitatively consistent picture to previous studies about microscopic aspects of mass transfer, including interface structure, free energy profiles for the uptake, scattering dynamics and energy relaxation of impinging molecules. These MD results are quantitatively compared with experimental uptake measurements, and we find that the apparent inconsistency between MD and experiment could be partly resolved by precise decomposition of the observed kinetics into elemental steps. Remaining issues and future perspectives toward constructing a comprehensive multi-scale description of interfacial mass transfer are summarized.
Quantum theory of nonadiabatic heavy-particle transfer processes in polar media
International Nuclear Information System (INIS)
Kuznetsov, A.M.
1986-01-01
For the probability of nonadiabatic transfer of heavy particles, a calculating procedure is proposed which in the case of certain processes allows the interaction between motion of the particle undergoing transfer and motion along other degrees of freedom to be exactly accounted for. In the case of symmetric systems, explicit expressions are obtained for the free energy of activation of the transition and for the tunneling factor which allow for nonadiabaticity of motion of the particle undergoing transfer, both in the region beneath the barrier and in the region that is classically accessible
Knowledge transfer in pair programming: An in-depth analysis
DEFF Research Database (Denmark)
Plonka, Laura; Sharp, Helen; van der Linden, Janet
2015-01-01
Whilst knowledge transfer is one of the most widely-claimed benefits of pair programming, little is known about how knowledge transfer is achieved in this setting. This is particularly pertinent for novice−expert constellations, but knowledge transfer takes place to some degree in all constellati...
Radar Polarimetry: Theory, Analysis, and Applications
Hubbert, John Clark
The fields of radar polarimetry and optical polarimetry are compared. The mathematics of optic polarimetry are formulated such that a local right handed coordinate system is always used to describe the polarization states. This is not done in radar polarimetry. Radar optimum polarization theory is redeveloped within the framework of optical polarimetry. The radar optimum polarizations and optic eigenvalues of common scatterers are compared. In addition a novel definition of an eigenpolarization state is given and the accompanying mathematics is developed. The polarization response calculated using optic, radar and novel definitions is presented for a variety of scatterers. Polarimetric transformation provides a means to characterize scatters in more than one polarization basis. Polarimetric transformation for an ensemble of scatters is obtained via two methods: (1) the covariance method and (2) the instantaneous scattering matrix (ISM) method. The covariance method is used to relate the mean radar parameters of a +/-45^circ linear polarization basis to those of a horizontal and vertical polarization basis. In contrast the ISM method transforms the individual time samples. Algorithms are developed for transforming the time series from fully polarimetric radars that switch between orthogonal states. The transformed time series are then used to calculate the mean radar parameters of interest. It is also shown that propagation effects do not need to be removed from the ISM's before transformation. The techniques are demonstrated using data collected by POLDIRAD, the German Aerospace Research Establishment's fully polarimetric C-band radar. The differential phase observed between two copolar states, Psi_{CO}, is composed of two phases: (1) differential propagation phase, phi_{DP}, and (2) differential backscatter phase, delta. The slope of phi_{DP } with range is an estimate of the specific differential phase, K_{DP}. The process of estimating K_{DP} is complicated when
Cross talk analysis in multicore optical fibers by supermode theory.
Szostkiewicz, Lukasz; Napierala, Marek; Ziolowicz, Anna; Pytel, Anna; Tenderenda, Tadeusz; Nasilowski, Tomasz
2016-08-15
We discuss the theoretical aspects of core-to-core power transfer in multicore fibers relying on supermode theory. Based on a dual core fiber model, we investigate the consequences of this approach, such as the influence of initial excitation conditions on cross talk. Supermode interpretation of power coupling proves to be intuitive and thus may lead to new concepts of multicore fiber-based devices. As a conclusion, we propose a definition of a uniform cross talk parameter that describes multicore fiber design.
Hwang, Sang-Yeon; Kim, Jaewook; Kim, Woo Youn
2018-04-04
In theoretical charge-transfer research, calculation of the electronic coupling element is crucial for examining the degree of the electronic donor-acceptor interaction. The tunneling current (TC), representing the magnitudes and directions of electron flow, provides a way of evaluating electronic couplings, along with the ability of visualizing how electrons flow in systems. Here, we applied the TC theory to π-conjugated organic dimer systems, in the form of our fragment-orbital tunneling current (FOTC) method, which uses the frontier molecular-orbitals of system fragments as diabatic states. For a comprehensive test of FOTC, we assessed how reasonable the computed electronic couplings and the corresponding TC densities are for the hole- and electron-transfer databases HAB11 and HAB7. FOTC gave 12.5% mean relative unsigned error with regard to the high-level ab initio reference. The shown performance is comparable with that of fragment-orbital density functional theory, which gave the same error by 20.6% or 13.9% depending on the formulation. In the test of a set of nucleobase π stacks, we showed that the original TC expression is also applicable to nondegenerate cases under the condition that the overlap between the charge distributions of diabatic states is small enough to offset the energy difference. Lastly, we carried out visual analysis on the FOTC densities of thiophene dimers with different intermolecular alignments. The result depicts an intimate topological connection between the system geometry and electron flow. Our work provides quantitative and qualitative grounds for FOTC, showing it to be a versatile tool in characterization of molecular charge-transfer systems.
Hussin, N. H.; Azizan, M. M.; Ali, A.; Albreem, M. A. M.
2017-09-01
This paper reviews the techniques used in Wireless power transfer (WPT). WPT is one of the most useful ways to transfer power. Based on power transfer distances, the WPT system can be divided into three categories, namely, near, medium, and far fields. Inductive coupling and capacitive coupling contactless techniques are used in the near-field WPT. Magnetic resonant coupling technique is used in the medium-field WPT. Electromagnetic radiation is used in the far-field WPT. In addition, energy encryption plays a major role in ensuring that power is transferred to the true receiver. Therefore, this paper reviews the energy encryption techniques in WPT system. A comparison between different technique shows that the distance, efficiency, and number of receivers are the main factors in selecting the suitable energy encryption technique.
Theory of many-body radiative heat transfer without the constraint of reciprocity
Zhu, Linxiao; Guo, Yu; Fan, Shanhui
2018-03-01
Using a self-consistent scattered field approach based on fluctuational electrodynamics, we develop compact formulas for radiative heat transfer in many-body systems without the constraint of reciprocity. The formulas allow for efficient numerical calculation for a system consisting of a large number of bodies, and are in principle exact. As a demonstration, for a nonreciprocal many-body system, we investigate persistent heat current at thermal equilibrium and directional heat transfer when the system is away from thermal equilibrium.
Energy Technology Data Exchange (ETDEWEB)
Jaehnert, Martin [MPIWG, Berlin (Germany)
2013-07-01
In 1922 Niels Bohr wrote a letter to Arnold Sommerfeld complaining that: ''[i]n the last years my attempts to develop the principles of quantum theory were met with very little understanding.'' Looking for the correspondence idea in publications, one finds that the principle was indeed hardly applied by physicists outside of Copenhagen. Only by 1922 physicists from wider research networks of quantum theory started to transfer the principle into their research fields, often far removed from its initial realm of atomic spectroscopy. How and why did physicists suddenly become interested in the idea that Bohr*s writings had been promoting since 1918? How was the correspondence principle transferred to these fields and how did its transfer affect these fields and likewise the correspondence principle itself? To discuss these questions, my talk focuses on the work of James Franck and Friedrich Hund on the Ramsauer effect in 1922 and follows the interrelation of the developing understanding of a newly found effect and the adaptation of the correspondence idea in a new conceptual and sociological context.
Video Game Characters. Theory and Analysis
Directory of Open Access Journals (Sweden)
Felix Schröter
2014-06-01
Full Text Available This essay develops a method for the analysis of video game characters based on a theoretical understanding of their medium-specific representation and the mental processes involved in their intersubjective construction by video game players. We propose to distinguish, first, between narration, simulation, and communication as three modes of representation particularly salient for contemporary video games and the characters they represent, second, between narrative, ludic, and social experience as three ways in which players perceive video game characters and their representations, and, third, between three dimensions of video game characters as ‘intersubjective constructs’, which usually are to be analyzed not only as fictional beings with certain diegetic properties but also as game pieces with certain ludic properties and, in those cases in which they function as avatars in the social space of a multiplayer game, as representations of other players. Having established these basic distinctions, we proceed to analyze their realization and interrelation by reference to the character of Martin Walker from the third-person shooter Spec Ops: The Line (Yager Development 2012, the highly customizable player-controlled characters from the role-playing game The Elder Scrolls V: Skyrim (Bethesda 2011, and the complex multidimensional characters in the massively multiplayer online role-playing game Star Wars: The Old Republic (BioWare 2011-2014.
Optimizing load transfer in multiwall nanotubes through interwall coupling: Theory and simulation
International Nuclear Information System (INIS)
Byrne, E.M.; Letertre, A.; McCarthy, M.A.; Curtin, W.A.; Xia, Z.
2010-01-01
An analytical model is developed to determine the length scales over which load is transferred from outer to inner walls of multiwall carbon nanotubes (MWCNTs) as a function of the amount of bonding between walls. The model predicts that the characteristic length for load transfer scales as l∼t√(E/μ-bar), where t is the CNT wall spacing, E is the effective wall Young's modulus, and μ-bar is the average interwall shear modulus due to interwall coupling. Molecular dynamics simulations for MWCNTs with up to six walls, and with interwall coupling achieved by interwall sp 3 bonding at various densities, provide data against which the model is tested. For interwall bonding having a uniform axial distribution, the analytic and simulation models agree well, showing that continuum mechanics concepts apply down to the atomic scale in this problem. The simulation models show, however, that load transfer is sensitive to natural statistical fluctuations in the spatial distribution of the interwall bonding between pairs of walls, and such fluctuations generally increase the net load transfer length needed to fully load an MWCNT. Optimal load transfer is achieved when bonding is uniformly distributed axially, and all interwall regions have the same shear stiffness, implying a linear decrease in the number of interwall bonds with distance from the outer wall. Optimal load transfer into an n-wall MWCNT is shown to occur over a length of ∼1.5nl. The model can be used to design MWCNTs for structural materials, and to interpret load transfer characteristics deduced from experiments on individual MWCNTs.
Complex analysis a modern first course in function theory
Muir, Jerry R
2015-01-01
A thorough introduction to the theory of complex functions emphasizing the beauty, power, and counterintuitive nature of the subject Written with a reader-friendly approach, Complex Analysis: A Modern First Course in Function Theory features a self-contained, concise development of the fundamental principles of complex analysis. After laying groundwork on complex numbers and the calculus and geometric mapping properties of functions of a complex variable, the author uses power series as a unifying theme to define and study the many rich and occasionally surprising properties of analytic fun
Analysis of Ward identities in supersymmetric Yang-Mills theory
Ali, Sajid; Bergner, Georg; Gerber, Henning; Montvay, Istvan; Münster, Gernot; Piemonte, Stefano; Scior, Philipp
2018-05-01
In numerical investigations of supersymmetric Yang-Mills theory on a lattice, the supersymmetric Ward identities are valuable for finding the critical value of the hopping parameter and for examining the size of supersymmetry breaking by the lattice discretisation. In this article we present an improved method for the numerical analysis of supersymmetric Ward identities, which takes into account the correlations between the various observables involved. We present the first complete analysis of supersymmetric Ward identities in N=1 supersymmetric Yang-Mills theory with gauge group SU(3). The results indicate that lattice artefacts scale to zero as O(a^2) towards the continuum limit in agreement with theoretical expectations.
Analysis of General Power Counting Rules in Effective Field Theory
Gavela, B M; Manohar, A V; Merlo, L
2016-01-01
We derive the general counting rules for a quantum effective field theory (EFT) in $\\mathsf{d}$ dimensions. The rules are valid for strongly and weakly coupled theories, and predict that all kinetic energy terms are canonically normalized. They determine the energy dependence of scattering cross sections in the range of validity of the EFT expansion. The size of cross sections is controlled by the $\\Lambda$ power counting of EFT, not by chiral counting, even for chiral perturbation theory ($\\chi$PT). The relation between $\\Lambda$ and $f$ is generalized to $\\mathsf{d}$ dimensions. We show that the naive dimensional analysis $4\\pi$ counting is related to $\\hbar$ counting. The EFT counting rules are applied to $\\chi$PT, to Standard Model EFT and to the non-trivial case of Higgs EFT, which combines the $\\Lambda$ and chiral counting rules within a single theory.
Towards a Design Theory for Collaborative Qualitative Data Analysis
DEFF Research Database (Denmark)
Nielsen, Peter Axel
2016-01-01
This position paper addresses how to develop a design theory to support the collaborative practice of qualitative data analysis. Qualitative researchers face several challenges in making sense of their empirical data and IS-support for this practice can be found in software applications...... such as NVivo, Atlas.ti, and DeDoose. While these software tools have utility and are valuable, they are also limiting – and they are particularly limiting researchers in their collaborative efforts with their co-researchers. In this paper, we investigate a design theory to extend it to support collaboration....... We use this as a stepping stone to discuss how to use a design theory to problematize existing applications and how to extend a design theory by abduction....
Financial time series analysis based on effective phase transfer entropy
Yang, Pengbo; Shang, Pengjian; Lin, Aijing
2017-02-01
Transfer entropy is a powerful technique which is able to quantify the impact of one dynamic system on another system. In this paper, we propose the effective phase transfer entropy method based on the transfer entropy method. We use simulated data to test the performance of this method, and the experimental results confirm that the proposed approach is capable of detecting the information transfer between the systems. We also explore the relationship between effective phase transfer entropy and some variables, such as data size, coupling strength and noise. The effective phase transfer entropy is positively correlated with the data size and the coupling strength. Even in the presence of a large amount of noise, it can detect the information transfer between systems, and it is very robust to noise. Moreover, this measure is indeed able to accurately estimate the information flow between systems compared with phase transfer entropy. In order to reflect the application of this method in practice, we apply this method to financial time series and gain new insight into the interactions between systems. It is demonstrated that the effective phase transfer entropy can be used to detect some economic fluctuations in the financial market. To summarize, the effective phase transfer entropy method is a very efficient tool to estimate the information flow between systems.
Polyhedral meshing in numerical analysis of conjugate heat transfer
Sosnowski, Marcin; Krzywanski, Jaroslaw; Grabowska, Karolina; Gnatowska, Renata
2018-06-01
Computational methods have been widely applied in conjugate heat transfer analysis. The very first and crucial step in such research is the meshing process which consists in dividing the analysed geometry into numerous small control volumes (cells). In Computational Fluid Dynamics (CFD) applications it is desirable to use the hexahedral cells as the resulting mesh is characterized by low numerical diffusion. Unfortunately generating such mesh can be a very time-consuming task and in case of complicated geometry - it may not be possible to generate cells of good quality. Therefore tetrahedral cells have been implemented into commercial pre-processors. Their advantage is the ease of its generation even in case of very complex geometry. On the other hand tetrahedrons cannot be stretched excessively without decreasing the mesh quality factor, so significantly larger number of cells has to be used in comparison to hexahedral mesh in order to achieve a reasonable accuracy. Moreover the numerical diffusion of tetrahedral elements is significantly higher. Therefore the polyhedral cells are proposed within the paper in order to combine the advantages of hexahedrons (low numerical diffusion resulting in accurate solution) and tetrahedrons (rapid semi-automatic generation) as well as to overcome the disadvantages of both the above mentioned mesh types. The major benefit of polyhedral mesh is that each individual cell has many neighbours, so gradients can be well approximated. Polyhedrons are also less sensitive to stretching than tetrahedrons which results in better mesh quality leading to improved numerical stability of the model. In addition, numerical diffusion is reduced due to mass exchange over numerous faces. This leads to a more accurate solution achieved with a lower cell count. Therefore detailed comparison of numerical modelling results concerning conjugate heat transfer using tetrahedral and polyhedral meshes is presented in the paper.
Tsang, Leung; Chan, Chi Hou; Kong, Jin AU; Joseph, James
1992-01-01
Complete polarimetric signatures of a canopy of dielectric cylinders overlying a homogeneous half space are studied with the first and second order solutions of the vector radiative transfer theory. The vector radiative transfer equations contain a general nondiagonal extinction matrix and a phase matrix. The energy conservation issue is addressed by calculating the elements of the extinction matrix and the elements of the phase matrix in a manner that is consistent with energy conservation. Two methods are used. In the first method, the surface fields and the internal fields of the dielectric cylinder are calculated by using the fields of an infinite cylinder. The phase matrix is calculated and the extinction matrix is calculated by summing the absorption and scattering to ensure energy conservation. In the second method, the method of moments is used to calculate the elements of the extinction and phase matrices. The Mueller matrix based on the first order and second order multiple scattering solutions of the vector radiative transfer equation are calculated. Results from the two methods are compared. The vector radiative transfer equations, combined with the solution based on method of moments, obey both energy conservation and reciprocity. The polarimetric signatures, copolarized and depolarized return, degree of polarization, and phase differences are studied as a function of the orientation, sizes, and dielectric properties of the cylinders. It is shown that second order scattering is generally important for vegetation canopy at C band and can be important at L band for some cases.
One dimensional analysis model for condensation heat transfer in feed water heater
International Nuclear Information System (INIS)
Murase, Michio; Takamori, Kazuhide; Aihara, Tsuyoshi
1998-01-01
In order to simplify condensation heat transfer calculations for feed water heaters, one dimensional (1D) analyses were compared with three dimensional (3D) analyses. The results showed that average condensation heat transfer coefficients by 1D analyses with 1/2 rows of heat transfer tubes agreed with those by 3D analyses within 7%. Using the 1D analysis model, effects of the pitch of heat transfer tubes were evaluated. The results showed that the pitch did not affect much on heat transfer rates and that the size of heat transfer tube bundle could be decreased by a small pitch. (author)
Koenig, Cynthia S; Platt, Richard D; Griggs, Richard A
2007-07-01
Using the analogical transfer paradigm, the present study investigated the competing explanations of Girotto and Legrenzi (Psychological Research 51: 129-135, 1993) and Griggs, Platt, Newstead, and Jackson (Thinking and Reasoning 4: 1-14, 1998) for facilitation on the SARS version of the THOG problem, a hypothetico-deductive reasoning task. Girotto and Legrenzi argue that facilitation is based on logical analysis of the task [System 2 reasoning in Evans's (Trends in Cognitive Sciences 7: 454-459, 2003) dual-process account of reasoning] while Griggs et al. maintain that facilitation is due to an attentional heuristic produced by the wording of the problem (System 1 reasoning). If Girotto and Legrenzi are correct, then System 2 reasoning, which is volitional and responsible for deductive reasoning, should be elicited, and participants should comprehend the solution principle of the THOG task and exhibit analogical transfer. However, if Griggs et al. are correct, then System 1 reasoning, which is responsible for heuristic problem solving strategies such as an attentional heuristic, should occur, and participants should not abstract the solution principle and transfer should not occur. Significant facilitation (68 and 82% correct) was only observed for the two SARS source problems, but significant analogical transfer did not occur. This lack of transfer suggests that System 1 reasoning was responsible for the facilitation observed in the SARS problem, supporting Griggs et al.'s attentional heuristic explanation. The present results also underscore the explanatory value of using analogical transfer rather than facilitation as the criterion for problem understanding.
Second Law Analysis in Convective Heat and Mass Transfer
Directory of Open Access Journals (Sweden)
A. Ben Brahim
2006-02-01
Full Text Available This paper reports the numerical determination of the entropy generation due to heat transfer, mass transfer and fluid friction in steady state for laminar double diffusive convection, in an inclined enclosure with heat and mass diffusive walls, by solving numerically the mass, momentum, species conservation and energy balance equations, using a Control Volume Finite-Element Method. The influences of the inclination angle, the thermal Grashof number and the buoyancy ratio on total entropy generation were investigated. The irreversibilities localization due to heat transfer, mass transfer and fluid friction is discussed for three inclination angles at a fixed thermal Grashof number.
International Nuclear Information System (INIS)
Tian Yong; Zhang Longqiang; Yang Zhen; Yu Bin
2014-01-01
In order to ensure a long-term reliable operation of the DCS cabinet's 220 V AC power cable, it was needed to confirm whether the conductor temperature rise of power cable meet the requirement of the cable specification. Based on the actual data in site and the theory of numerical heat transfer, conservative model was established, and the conductor temperature was calculated. The calculation results show that the cable arrangement on the cable tray will not lead to the conductor temperature rise of power cable over than the required temperature in technical specification. (authors)
Antieigenvalue analysis for continuum mechanics, economics, and number theory
Directory of Open Access Journals (Sweden)
Gustafson Karl
2016-01-01
Full Text Available My recent book Antieigenvalue Analysis, World-Scientific, 2012, presented the theory of antieigenvalues from its inception in 1966 up to 2010, and its applications within those forty-five years to Numerical Analysis, Wavelets, Statistics, Quantum Mechanics, Finance, and Optimization. Here I am able to offer three further areas of application: Continuum Mechanics, Economics, and Number Theory. In particular, the critical angle of repose in a continuum model of granular materials is shown to be exactly my matrix maximum turning angle of the stress tensor of the material. The important Sharpe ratio of the Capital Asset Pricing Model is now seen in terms of my antieigenvalue theory. Euclid’s Formula for Pythagorean triples becomes a special case of my operator trigonometry.
Convex analysis and monotone operator theory in Hilbert spaces
Bauschke, Heinz H
2017-01-01
This reference text, now in its second edition, offers a modern unifying presentation of three basic areas of nonlinear analysis: convex analysis, monotone operator theory, and the fixed point theory of nonexpansive operators. Taking a unique comprehensive approach, the theory is developed from the ground up, with the rich connections and interactions between the areas as the central focus, and it is illustrated by a large number of examples. The Hilbert space setting of the material offers a wide range of applications while avoiding the technical difficulties of general Banach spaces. The authors have also drawn upon recent advances and modern tools to simplify the proofs of key results making the book more accessible to a broader range of scholars and users. Combining a strong emphasis on applications with exceptionally lucid writing and an abundance of exercises, this text is of great value to a large audience including pure and applied mathematicians as well as researchers in engineering, data science, ma...
Lyapunov analysis: from dynamical systems theory to applications
Cencini, Massimo; Ginelli, Francesco
2013-06-01
mathematical development and only provide access to partial pieces of information. Moreover, the scattered state of the present literature, with key contributions published in journals read by different communities (mathematicians, nonlinear and statistical physicists, fluid dynamicists and geophysicists), makes it difficult to develop a general picture. This special issue aims to offer an up-to-date view of current research on Lyapunov analysis, discussing both its mathematical theory and its applications to a number of different problems. Moreover, in order to facilitate the comparison and exchange of ideas and tools among different fields of research, contributions (either original or topical reviews) from researchers working in different disciplines have been selected for this issue. After the compact review of the basic mathematical results on Lyapunov exponents by Lai-Sang Young, the special issue is organized into nine sections broadly focused on the following topics: Large deviations and rare trajectories. Lyapunov exponents are mean quantities which characterize the sensitivity to initial conditions of typical trajectories. A large deviation theory of their finite time fluctuations, however, is relevant for the construction of a thermodynamic formalism of deterministic chaos. Moreover, the weighted sampling of extreme fluctuations allows one to access rare trajectories and phase-space topological structures. Random matrices. Lyapunov exponents are suitable quantities to statistically characterize products of random matrices, with a number of applications to transfer matrix methods and, more generally, to the statistical mechanics of disordered systems. In particular, Lyapunov exponents have long played a central role in the theory of Anderson localization. These aspects are reviewed here, together with an original application to the transfer matrix. Covariant Lyapunov vectors: theory and applications. CLVs constitute an intrinsic tangent space decomposition into
Rappleye, Jeremy
2012-01-01
As education becomes increasingly global, the processes and politics of transfer have become a central focus of research. This study provides a comprehensive analysis of contemporary theoretical and analytical work aimed at exploring international educational reform and reveals the myriad ways that globalization is now fundamentally altering our…
International Nuclear Information System (INIS)
Kota, V.K.B.
1991-01-01
In the interacting boson-fermion model of collective nuclei, in the symmetry limits of the model appropriate for vibrational, rotational and γ-unstable nuclei, for one-particle transfer, the selection rules, model predictions for the allowed strengths and comparison of theory with experiment are briefly reviewed. In the spectral-averaging theory, with the specific example of orbit occupancies, the smoothed forms (linear or better ratio of Gaussians) as determined by central limit theorems, how they provide a good criterion for selecting effective interactions and the convolution structure of occupancy densities in huge spaces are described. Complementary information provided by nuclear models and statistical laws is broughtout. (author). 63 refs., 5 figs
Variational analysis and generalized differentiation I basic theory
Mordukhovich, Boris S
2006-01-01
Contains a study of the basic concepts and principles of variational analysis and generalized differentiation in both finite-dimensional and infinite-dimensional spaces. This title presents many applications to problems in optimization, equilibria, stability and sensitivity, control theory, economics, mechanics, and more.
Acknowledging the Infrasystem: A Critical Feminist Analysis of Systems Theory.
Creedon, Pamela J.
1993-01-01
Examines the absence of a critical feminist perspective in the application of systems theory as a unifying model for public relations. Describes an unacknowledged third system, the infrasystem, that constructs both suprasystem and subsystem interactions. Concludes with a case analysis of sport as illustration. (HB)
The Use of Modelling for Theory Building in Qualitative Analysis
Briggs, Ann R. J.
2007-01-01
The purpose of this article is to exemplify and enhance the place of modelling as a qualitative process in educational research. Modelling is widely used in quantitative research as a tool for analysis, theory building and prediction. Statistical data lend themselves to graphical representation of values, interrelationships and operational…
A tutorial on incremental stability analysis using contraction theory
DEFF Research Database (Denmark)
Jouffroy, Jerome; Fossen, Thor I.
2010-01-01
This paper introduces a methodology for dierential nonlinear stability analysis using contraction theory (Lohmiller and Slotine, 1998). The methodology includes four distinct steps: the descriptions of two systems to be compared (the plant and the observer in the case of observer convergence...... on several simple examples....
Frumkin–Butler–Volmer Theory and Mass Transfer in Electrochemical Cells1
Van Soestbergen, M.
2012-01-01
An accurate mathematical description of the charge transfer rate at electrodes due to an electrochemical reaction is an indispensable component of any electrochemical model. In the current work we use the generalized Frumkin-Butler–Volmer (gFBV) equation to describe electrochemical reactions, an
International Nuclear Information System (INIS)
Hussien, Ahmed A.; Abdullah, Mohd Z.; Al-Nimr, Moh’d A.
2016-01-01
Highlights: • Review recent experimental and numerical studies on heat transfer in micro/minichannels and nanofluids. • Display the new applications of using nanofluids and micro/minichannels to enhance thermal performance. • Explain the factors affecting the thermal conductivity enhancement ratio of nanofluids. • The challenges of using the mini/microchannels and nanofluids. - Abstract: New cooling techniques are being explored for the dissipation of heat fluxes. Many recent studies on heat transfer in micro/minichannels (M/MCs) with nanofluids have focused on combining the advantages of both, for the purpose of obtaining higher single-phase enhancement of heat transfer. Developing of many applications such as cooling electronic device, solar cell, and automotive technology is highly demanded now a day to obtain high efficiency and reduce the operating cost. This review article summarizes recent studies, with a focus on two main topics: The first part contains the main concepts such as scaling effects of M/MCs, physical properties and convective heat transfer. The second part displays the main recent applications of M/MCs with nanofluids with the challenges to be widely used. The purpose of this article to provide exhaustive and comprehensive review of updated works published in this new area, with general conclusions.
Avenues to improve success in SME business transfers: reflections on theories, research and policies
Lex van Teeffelen
2012-01-01
Every year I talk to many entrepreneurs about business transfers and acquisitions. Only rarely do they tell me that it was a cinch. Buying or selling a business is complex. For a start, a business should be shipshape from an organizational and administrative perspective, while several legal
Steenhuis, H.J.; de Bruijn, E.J.
2005-01-01
International technology transfer occurs frequently in international operations, for example in cases of foreign direct investment where companies set-up existing manufacturing lines in new locations. It also occurs in situations of international outsourcing where a new supplier receives product
Analysis of adiabatic transfer in cavity quantum electrodynamics
Indian Academy of Sciences (India)
adiabatic transfer process through the 'dark state' by a slow variation of the control laser intensity. ... control field of Rabi frequency C(t) transfers one photon in the cavity mode to a long- .... It gives an approximate statistical description of the.
Analysis of heat transfer in a centrifugal film evaporator
Bruin, S.
1970-01-01
Heat transfer in a centrifugal film evaporator with a conical heating surface is analyzed. Two regions of transfer can be distinguished: an entrance region, where the temp. profile in the film develops, and an evapn. region, where \\"surface evapn.\\" takes place. Relations are derived for liq.-film
Application of depletion perturbation theory to fuel cycle burnup analysis
International Nuclear Information System (INIS)
White, J.R.
1979-01-01
Over the past several years static perturbation theory methods have been increasingly used for reactor analysis in lieu of more detailed and costly direct computations. Recently, perturbation methods incorporating time dependence have also received attention, and several authors have demonstrated their applicability to fuel burnup analysis. The objective of the work described here is to demonstrate that a time-dependent perturbation method can be easily and accurately applied to realistic depletion problems
Real analysis measure theory, integration, and Hilbert spaces
Stein, Elias M
2005-01-01
Real Analysis is the third volume in the Princeton Lectures in Analysis, a series of four textbooks that aim to present, in an integrated manner, the core areas of analysis. Here the focus is on the development of measure and integration theory, differentiation and integration, Hilbert spaces, and Hausdorff measure and fractals. This book reflects the objective of the series as a whole: to make plain the organic unity that exists between the various parts of the subject, and to illustrate the wide applicability of ideas of analysis to other fields of mathematics and science. After
Simulation analysis on miniature wireless power transfer system
Liu, Tao; Wei, Zhiqiang; Yin, Bo; Chi, Haokun; Du, Panpan
2018-03-01
In recent years, the research on implantable medical devices has become a hot scientific topic, and the power supply of these devices are especially concerned. Generally, these devices are usually powered by disposable batteries. However, for some of the long-term human implant devices, such as pacemakers, once the battery has been exhausted after several years, the patient has to replace the battery by surgery, which increases the patient’s economic burden and pain. Wireless power transfer technology, using non-contact way for power transfer, can be a good solution to this problem. In this paper, a micro induction coil was designed, and the transfer efficiency in the air and human tissue model of two-layers were simulated by Ansoft HFSS. The results showed that the system could achieve the energy transfer in both cases, meanwhile, it indicated that the transfer efficiency was lower in a relative larger permittivity of transmission medium.
Improving Power System Stability Using Transfer Function: A Comparative Analysis
Directory of Open Access Journals (Sweden)
G. Shahgholian
2017-10-01
Full Text Available In this paper, a small-signal dynamic model of a single-machine infinite-bus (SMIB power system that includes IEEE type-ST1 excitation system and PSS based on transfer fu¬n¬c¬¬tion structure is presented. The changes in the operating co¬n¬dition of a power system on dynamic performance have been exa¬m¬ined. The dynamic performance of the closed-loop system is ana¬lyzed base on its eigenvalues. The effectiveness of the par¬a¬m¬e¬t¬ers changes on dynamic stability is verified by simulation res¬u¬l¬ts. Three types of PSS have been considered for analysis: (a the derivative PSS, (b the lead-lag PSS or conventional PSS, and (c the proportional-integral-derivative PSS. The objective fu¬nc¬t¬i¬o¬n is formulated to increase the dam¬¬ping ratio of the electromechanical mode eigenvalues. Simu¬la¬tion results show that the PID-PSS performs better for less ov¬e¬r¬shoot and less settling time comp¬ared with the CPSS and DPSS un¬der different load ope¬ration and the significant system pa¬r¬am¬eter variation conditions.
Vibration analysis of pipes conveying fluid by transfer matrix method
International Nuclear Information System (INIS)
Li, Shuai-jun; Liu, Gong-min; Kong, Wei-tao
2014-01-01
Highlights: • A theoretical study on vibration analysis of pipes with FSI is presented. • Pipelines with high fluid pressure and velocity can be solved by developed method. • Several pipeline schemes are discussed to illustrate the application of the method. • The proposed method is easier to apply compared to most existing procedures. • Influence laws of structural and fluid parameters on FSI of pipe are analyzed. -- Abstract: Considering the effects of pipe wall thickness, fluid pressure and velocity, a developed 14-equation model is presented, which describes the fluid–structure interaction behavior of pipelines. The transfer matrix method has been used for numerical modeling of both hydraulic and structural equations. Based on these models and algorithms, several pipeline schemes are presented to illustrate the application of the proposed method. Furthermore, the influence laws of supports, structural properties and fluid parameters on the dynamic response and natural frequencies of pipeline are analyzed, which shows using the optimal supports and structural properties is beneficial to reduce vibration of pipelines
Analysis of heat transfer and contaminant transport in fume hoods
International Nuclear Information System (INIS)
Pathanjali, C.; Rahman, M.M.
1996-01-01
The paper presents the analysis of three-dimensional flow patterns and the associated heat and mass transfer mechanisms in a fume hood enclosure. The flow enters the hood through the front window opening (positive x-direction) and leaves the cupboard through an opening on the top of the hood (positive z-direction). The flow was assumed to be fully turbulent. The flow pattern for different sash openings were studied. The flow pattern around an object located at the bottom of the hood was studied for different locations of the object. It was found that air entering the hood proceeds directly to the back wall, impinges it and turns upward toward the top wall and exits through the outlet. The flow finds its way around any object forming a recirculating region at its training surface. With an increase in the sash opening, the velocity becomes higher and the fluid traces the path to the outlet more quickly. The volume occupied by recirculating flow decreases with increase in sash opening. Both temperature and concentration were found to be maximum near the source and gradually decreased as the heated air or gaseous contaminant entrained with incoming air. The local concentration decreased with increase in sash opening area. The results will be very useful to design experiments with optimum sash opening providing adequate disposal of contaminants with minimum use of conditioned air inside the room
Simone, Sean Anthony
2014-01-01
The federal government invests billions of dollars in grants and loans to help students access and complete postsecondary education. Federal policymakers, therefore, have had a continuing interest in understanding the ability of students to transfer credits between postsecondary institutions. In 2005, the Senate Health, Education, Labor, and…
Transfer Efficiency Analysis of Wireless Power Transfer System under Frequency Drift
DEFF Research Database (Denmark)
Huang, Shoudao; Li, Zhongqi; Lu, Kaiyuan
2015-01-01
Magnetic resonant wireless power transfer (WPT) is an emerging technology that may create new applications for wireless power charging. However, low efficiency resulting from resonant frequency drift is a main obstructing factor for promoting this technology. In this paper, the system efficiency...
B1 -sensitivity analysis of quantitative magnetization transfer imaging.
Boudreau, Mathieu; Stikov, Nikola; Pike, G Bruce
2018-01-01
To evaluate the sensitivity of quantitative magnetization transfer (qMT) fitted parameters to B 1 inaccuracies, focusing on the difference between two categories of T 1 mapping techniques: B 1 -independent and B 1 -dependent. The B 1 -sensitivity of qMT was investigated and compared using two T 1 measurement methods: inversion recovery (IR) (B 1 -independent) and variable flip angle (VFA), B 1 -dependent). The study was separated into four stages: 1) numerical simulations, 2) sensitivity analysis of the Z-spectra, 3) healthy subjects at 3T, and 4) comparison using three different B 1 imaging techniques. For typical B 1 variations in the brain at 3T (±30%), the simulations resulted in errors of the pool-size ratio (F) ranging from -3% to 7% for VFA, and -40% to > 100% for IR, agreeing with the Z-spectra sensitivity analysis. In healthy subjects, pooled whole-brain Pearson correlation coefficients for F (comparing measured double angle and nominal flip angle B 1 maps) were ρ = 0.97/0.81 for VFA/IR. This work describes the B 1 -sensitivity characteristics of qMT, demonstrating that it varies substantially on the B 1 -dependency of the T 1 mapping method. Particularly, the pool-size ratio is more robust against B 1 inaccuracies if VFA T 1 mapping is used, so much so that B 1 mapping could be omitted without substantially biasing F. Magn Reson Med 79:276-285, 2018. © 2017 International Society for Magnetic Resonance in Medicine. © 2017 International Society for Magnetic Resonance in Medicine.
Directory of Open Access Journals (Sweden)
Hilton Nyamukapa
2016-07-01
Full Text Available Cash transfer based social protection can potentially contribute positively upon targeted beneficiaries on a variety of developmental aspects. This study explored the pilot and scaled-up phases of the Harmonised Social Cash Transfer program to determine impacts towards improving under-eight children’s access to food, education, and health services. Stories of significant change were gathered in retrospect from purposively sampled caregivers and children beneficiaries. Based on thematic and guided analysis, it emerged that the programmes’ theoretical and practical approaches renders the interventions less effective as impact assessment is narrowed to the early childhood cohort. This is furthered by relatively insufficient size of grants disbursed per household and commodity supply-side challenges. Consequently, a review to theoretical and practical tenets of the cash transfer approach becomes imminent in the Zimbabwean context. Targeting criteria needs refinement and supplemented with policy and multi-faceted public investment to address underlying limitations to impact on young children.
Gavens, Lucy; Holmes, John; Buykx, Penny; de Vocht, Frank; Egan, Matt; Grace, Daniel; Lock, Karen; Mooney, John D; Brennan, Alan
2017-06-13
Recent years have seen a rise in new and innovative policies to reduce alcohol consumption and related harm in England, which can be implemented by local, as opposed to national, policy-makers. The aim of this paper is to explore the processes that underpin the adoption of these alcohol policies within local authorities. In particular, it aims to assess whether the concept of policy transfer (i.e. a process through which knowledge about policies in one place is used in the development of policies in another time or place) provides a useful model for understanding local alcohol policy-making. Qualitative data generated through in-depth interviews and focus groups from five case study sites across England were used to explore stakeholder experiences of alcohol policy transfer between local authorities. The purposive sample of policy actors included representatives from the police, trading standards, public health, licensing, and commissioning. Thematic analysis was used inductively to identify key features in the data. Themes from the policy transfer literature identified in the data were: policy copying, emulating, hybridization, and inspiration. Participants described a multitude of ways in which learning was shared between places, ranging from formal academic evaluation to opportunistic conversations in informal settings. Participants also described facilitators and constraints to policy transfer, such as the historical policy context and the local cultural, economic, and bureaucratic context, which influenced whether or not a policy that was perceived to work in one place might be transferred successfully to another context. Theories of policy transfer provide a promising framework for characterising processes of local alcohol policy-making in England, extending beyond debates regarding evidence-informed policy to account for a much wider range of considerations. Applying a policy transfer lens enables us to move beyond simple (but still important) questions of
Chen, Wei; Chen, Jie-Jie; Lu, Rui; Qian, Chen; Li, Wen-Wei; Yu, Han-Qing
2014-08-01
Riboflavin (RF), the primary redox active component of flavin, is involved in many redox processes in biogeochemical systems. Despite of its wide distribution and important roles in environmental remediation, its redox behaviors and reaction mechanisms in hydrophobic sites remain unclear yet. In this study, spectroelectrochemical analysis and density functional theory (DFT) calculation were integrated to explore the redox behaviors of RF in dimethyl sulfoxide (DMSO), which was used to create a hydrophobic environment. Specifically, cyclic voltafluorometry (CVF) and derivative cyclic voltafluorometry (DCVF) were employed to track the RF concentration changing profiles. It was found that the reduction contained a series of proton-coupled electron transfers dependent of potential driving force. In addition to the electron transfer-chemical reaction-electron transfer process, a disproportionation (DISP1) process was also identified to be involved in the reduction. The redox potential and free energy of each step obtained from the DFT calculations further confirmed the mechanisms proposed based on the experimental results. The combination of experimental and theoretical approaches yields a deep insight into the characteristics of RF in environmental remediation and better understanding about the proton-coupled electron transfer mechanisms. Copyright © 2014 Elsevier B.V. All rights reserved.
Gaps, barriers and conceptual chasms: theories of technology transfer and energy in buildings
Energy Technology Data Exchange (ETDEWEB)
Shove, E. [University of Lancaster (United Kingdom). Centre for the Study of Environmental Change
1998-12-01
Having shown how much energy might be saved through the use of economically worthwhile measures and technologies, researchers and policy makers then find themselves trying to close the gap between current practice and recognised technical potential. The ensuing process of technology transfer is often seen as a process of overcoming 'non technical barriers' which inhibit the realisation of proven technical potential. This familiar approach depends upon a strong conceptual distinction between the social, on the one hand, and the technical, on the other. But does it make sense to talk of technical potential in the abstract? Do people really have technologies 'transferred' upon them? Drawing upon ideas from the sociology of science and technology and on recent research funded by Britain's Economic and Social Research Council, this paper unpacks conventional beliefs about the diffusion of energy efficient technologies and suggests an alternative approach which acknowledges the social structuring of technical innovation. (author)
International Nuclear Information System (INIS)
Abril, J.M.
1998-01-01
Recently much experimental effort has been focused on determining those factors which affect the kinetics and the final equilibrium conditions for the uptake of radionuclides from the aqueous phase by particulate matter. At present, some of these results appear to be either surprising or contradictory and introduce some uncertainty in which parameter values are most appropriate for environmental modelling. In this paper, we study the ionic exchange between the dissolved phase and suspended particles from a microscopic viewpoint, developing a mathematical description of the kinetic transfer and the k d distribution coefficients. The most relevant contribution is the assumption that the exchange of radionuclides occurs in a specific surface layer on the particles, with a non-zero thickness. A wide range of experimental findings can be explained with this theory. (Copyright (c) 1998 Elsevier Science B.V., Amsterdam. All rights reserved.)
Frames and operator theory in analysis and signal processing
Larson, David R; Nashed, Zuhair; Nguyen, Minh Chuong; Papadakis, Manos
2008-01-01
This volume contains articles based on talks presented at the Special Session Frames and Operator Theory in Analysis and Signal Processing, held in San Antonio, Texas, in January of 2006. Recently, the field of frames has undergone tremendous advancement. Most of the work in this field is focused on the design and construction of more versatile frames and frames tailored towards specific applications, e.g., finite dimensional uniform frames for cellular communication. In addition, frames are now becoming a hot topic in mathematical research as a part of many engineering applications, e.g., matching pursuits and greedy algorithms for image and signal processing. Topics covered in this book include: Application of several branches of analysis (e.g., PDEs; Fourier, wavelet, and harmonic analysis; transform techniques; data representations) to industrial and engineering problems, specifically image and signal processing. Theoretical and applied aspects of frames and wavelets. Pure aspects of operator theory empha...
Baumeier, Björn; Andrienko, Denis; Rohlfing, Michael
2012-08-14
Excited states of donor-acceptor dimers are studied using many-body Green's functions theory within the GW approximation and the Bethe-Salpeter equation. For a series of prototypical small-molecule based pairs, this method predicts energies of local Frenkel and intermolecular charge-transfer excitations with the accuracy of tens of meV. Application to larger systems is possible and allowed us to analyze energy levels and binding energies of excitons in representative dimers of dicyanovinyl-substituted quarterthiophene and fullerene, a donor-acceptor pair used in state of the art organic solar cells. In these dimers, the transition from Frenkel to charge transfer excitons is endothermic and the binding energy of charge transfer excitons is still of the order of 1.5-2 eV. Hence, even such an accurate dimer-based description does not yield internal energetics favorable for the generation of free charges either by thermal energy or an external electric field. These results confirm that, for qualitative predictions of solar cell functionality, accounting for the explicit molecular environment is as important as the accurate knowledge of internal dimer energies.
Methods of Approximation Theory in Complex Analysis and Mathematical Physics
Saff, Edward
1993-01-01
The book incorporates research papers and surveys written by participants ofan International Scientific Programme on Approximation Theory jointly supervised by Institute for Constructive Mathematics of University of South Florida at Tampa, USA and the Euler International Mathematical Instituteat St. Petersburg, Russia. The aim of the Programme was to present new developments in Constructive Approximation Theory. The topics of the papers are: asymptotic behaviour of orthogonal polynomials, rational approximation of classical functions, quadrature formulas, theory of n-widths, nonlinear approximation in Hardy algebras,numerical results on best polynomial approximations, wavelet analysis. FROM THE CONTENTS: E.A. Rakhmanov: Strong asymptotics for orthogonal polynomials associated with exponential weights on R.- A.L. Levin, E.B. Saff: Exact Convergence Rates for Best Lp Rational Approximation to the Signum Function and for Optimal Quadrature in Hp.- H. Stahl: Uniform Rational Approximation of x .- M. Rahman, S.K. ...
Analysis of Health Behavior Theories for Clustering of Health Behaviors.
Choi, Seung Hee; Duffy, Sonia A
The objective of this article was to review the utility of established behavior theories, including the Health Belief Model, Theory of Reasoned Action, Theory of Planned Behavior, Transtheoretical Model, and Health Promotion Model, for addressing multiple health behaviors among people who smoke. It is critical to design future interventions for multiple health behavior changes tailored to individuals who currently smoke, yet it has not been addressed. Five health behavior theories/models were analyzed and critically evaluated. A review of the literature included a search of PubMed and Google Scholar from 2010 to 2016. Two hundred sixty-seven articles (252 studies from the initial search and 15 studies from the references of initially identified studies) were included in the analysis. Most of the health behavior theories/models emphasize psychological and cognitive constructs that can be applied only to one specific behavior at a time, thus making them not suitable to address multiple health behaviors. However, the Health Promotion Model incorporates "related behavior factors" that can explain multiple health behaviors among persons who smoke. Future multiple behavior interventions guided by the Health Promotion Model are necessary to show the utility and applicability of the model to address multiple health behaviors.
Shang, De-Yi
2012-01-01
This book presents recent developments in our systematic studies of hydrodynamics and heat and mass transfer in laminar free convection, accelerating film boiling and condensation of Newtonian fluids, as well as accelerating film flow of non-Newtonian power-law fluids (FFNF). These new developments provided in this book are (i) novel system of analysis models based on the developed New Similarity Analysis Method; (ii) a system of advanced methods for treatment of gas temperature- dependent physical properties, and liquid temperature- dependent physical properties; (iii) the organically combined models of the governing mathematical models with those on treatment model of variable physical properties; (iv) rigorous approach of overcoming a challenge on accurate solution of three-point boundary value problem related to two-phase film boiling and condensation; and (v) A pseudo-similarity method of dealing with thermal boundary layer of FFNF for greatly simplifies the heat-transfer analysis and numerical calculati...
Post-dryout heat transfer analysis model with droplet Lagrangian simulation
International Nuclear Information System (INIS)
Keizo Matsuura; Isao Kataoka; Kaichiro Mishima
2005-01-01
Post-dryout heat transfer analysis was carried out considering droplet behavior by using the Lagrangian simulation method. Post-dryout heat transfer is an important heat transfer mechanism in many industrial appliances. Especially in recent Japanese BWR licensing, the standard for assessing the integrity of fuel that has experienced boiling transition is being examined. Although post-dryout heat transfer analysis is important when predicting wall temperature, it is difficult to accurately predict the heat transfer coefficient in the post-dryout regime because of the many heat transfer paths and non-equilibrium status between droplet and vapor. Recently, an analysis model that deals with many heat transfer paths including droplet direct contact heat transfer was developed and its results showed good agreement with experimental results. The model also showed that heat transfer by droplet could not be neglected in the low mass flux condition. However, the model deals with droplet deposition behavior by experimental droplet deposition correlation, so it cannot estimate the effect of droplet flow on turbulent flow field and heat transfer. Therefore, in this study we deal with many droplets separately by using the Lagrangian simulation method and hence estimate the effect of droplet flow on the turbulent flow field. We analyzed post-dryout experimental results and found that they correlated well with the analysis results. (authors)
Computer aided heat transfer analysis in a laboratory scaled heat exchanger unit
International Nuclear Information System (INIS)
Gunes, M.
1998-01-01
In this study. an explanation of a laboratory scaled heat exchanger unit and a software which is developed to analyze heat transfer. especially to use it in heat transfer courses, are represented. Analyses carried out in the software through sample values measured in the heat exchanger are: (l) Determination of heat transfer rate, logarithmic mean temperature difference and overall heat transfer coefficient; (2)Determination of convection heat transfer coefficient inside and outside the tube and the effect of fluid velocity on these; (3)Investigation of the relationship between Nusselt Number. Reynolds Number and Prandtl Number by using multiple non-linear regression analysis. Results are displayed on the screen graphically
Stability analysis of jointed rock slope by the block theory
International Nuclear Information System (INIS)
Yoshinaka, Ryunoshin; Yamabe, Tadashi; Fujita, Tomoo.
1990-01-01
The block theory to analyze three dimensional stability problems of discontinuous rock masses is applied to the actual discontinuous rock slope. Taking into consideration that the geometrical information about discontinuities generally increases according to progressive steps of rock investigation in field, the method adopted for analysis is divided into following two steps; 1) the statistical/probabilitical analysis using information from the primary investigation stage which mainly consists of that of natural rock outcrops, and 2) the deterministic analysis correspond to the secondary stage using exploration adits. (author)
Directory of Open Access Journals (Sweden)
Agalar M. Agalarov
2018-01-01
Full Text Available In the article, the possibility of using a bispectrum under the investigation of regular and chaotic behaviour of one-dimensional point mappings is discussed. The effectiveness of the transfer of this concept to nonlinear dynamics was demonstrated by an example of the Feigenbaum mapping. Also in the work, the application of the Kullback-Leibler entropy in the theory of point mappings is considered. It has been shown that this information-like value is able to describe the behaviour of statistical ensembles of one-dimensional mappings. In the framework of this theory some general properties of its behaviour were found out. Constructivity of the Kullback-Leibler entropy in the theory of point mappings was shown by means of its direct calculation for the ”saw tooth” mapping with linear initial probability density. Moreover, for this mapping the denumerable set of initial probability densities hitting into its stationary probability density after a finite number of steps was pointed out.
Modulation transfer function of a fish-eye lens based on the sixth-order wave aberration theory.
Jia, Han; Lu, Lijun; Cao, Yiqing
2018-01-10
A calculation program of the modulation transfer function (MTF) of a fish-eye lens is developed with the autocorrelation method, in which the sixth-order wave aberration theory of ultra-wide-angle optical systems is used to simulate the wave aberration distribution at the exit pupil of the optical systems. The autocorrelation integral is processed with the Gauss-Legendre integral, and the magnification chromatic aberration is discussed to calculate polychromatic MTF. The MTF calculation results of a given example are then compared with those previously obtained based on the fourth-order wave aberration theory of plane-symmetrical optical systems and with those from the Zemax program. The study shows that MTF based on the sixth-order wave aberration theory has satisfactory calculation accuracy even for a fish-eye lens with a large acceptance aperture. And the impacts of different types of aberrations on the MTF of a fish-eye lens are analyzed. Finally, we apply the self-adaptive and normalized real-coded genetic algorithm and the MTF developed in the paper to optimize the Nikon F/2.8 fish-eye lens; consequently, the optimized system shows better MTF performances than those of the original design.
Some New Results in Astrophysical Problems of Nonlinear Theory of Radiative Transfer
Pikichyan, H. V.
2017-07-01
In the interpretation of the observed astrophysical spectra, a decisive role is related to nonlinear problems of radiative transfer, because the processes of multiple interactions of matter of cosmic medium with the exciting intense radiation ubiquitously occur in astrophysical objects, and in their vicinities. Whereas, the intensity of the exciting radiation changes the physical properties of the original medium, and itself was modified, simultaneously, in a self-consistent manner under its influence. In the present report, we show that the consistent application of the principle of invariance in the nonlinear problem of bilateral external illumination of a scattering/absorbing one-dimensional anisotropic medium of finite geometrical thickness allows for simplifications that were previously considered as a prerogative only of linear problems. The nonlinear problem is analyzed through the three methods of the principle of invariance: (i) an adding of layers, (ii) its limiting form, described by differential equations of invariant imbedding, and (iii) a transition to the, so-called, functional equations of the "Ambartsumyan's complete invariance". Thereby, as an alternative to the Boltzmann equation, a new type of equations, so-called "kinetic equations of equivalence", are obtained. By the introduction of new functions - the so-called "linear images" of solution of nonlinear problem of radiative transfer, the linear structure of the solution of the nonlinear problem under study is further revealed. Linear images allow to convert naturally the statistical characteristics of random walk of a "single quantum" or their "beam of unit intensity", as well as widely known "probabilistic interpretation of phenomena of transfer", to the field of nonlinear problems. The structure of the equations obtained for determination of linear images is typical of linear problems.
CFD analysis of heat transfer in a vertical annular gas gap
International Nuclear Information System (INIS)
Borgohain, A.; Maheshwari, N.K.; Vijayan, P.K.
2011-01-01
Heat transfer analysis in a vertical annulus is carried out by using a CFD code TRIO-U. The results are used to understand heat transfer in the vertical annulus. An experimental study is taken from literature for the CFD analysis. The geometry of the test section of the experiment is simulated in TRIO-U. The operating conditions of the experiment are simulated by imposing appropriate boundary conditions. Three modes of the heat transfer, conduction, radiation and convection in the gas gap are considered in the analysis. From the analysis it is found that TRIO-U can successfully handle all modes heat transfer. The theoretical results for heat transfer have been compared with experimental data. This paper deals with the detailed CFD modelling and analysis. (author)
Theory of lidar method for measurement of the modulation transfer function of water layers.
Dolin, Lev S
2013-01-10
We develop a method to evaluate the modulation transfer function (MTF) of a water layer from the characteristics of lidar signal backscattered by water volume. We propose several designs of a lidar system for remote measurement of the MTF and the procedure to determine optical properties of water using the measured MTF. We discuss a laser system for sea-bottom imaging that accounts for the influence of water slab on the image structure and allows for correction of image distortions caused by light scattering in water. © 2013 Optical Society of America
International Nuclear Information System (INIS)
Trombetti, T.
1990-01-01
The exact kernel method is presented for linear transport problems with azimuth-dependent angular fluxes. It is based on the evaluation of average scattering densities (ASD's) that fully describe the neutron (or particle) transfer between subsets of the unit sphere of directions by anisotropic scattering. Reciprocity and other ASD functional properties are proved and combined with the symmetry properties of suitable SN quadrature sets. This greatly reduces the number of independent ASD's to be computed and stored. An approach for performing ASD computations with reciprocity checks is presented. ASD expressions of the scattering source for typical 2D geometries are explicitly given. (author)
Roque, Matheus; Lattes, Karinna; Serra, Sandra; Solà, Ivan; Geber, Selmo; Carreras, Ramón; Checa, Miguel Angel
2013-01-01
To examine the available evidence to assess if cryopreservation of all embryos and subsequent frozen embryo transfer (FET) results in better outcomes compared with fresh transfer. Systematic review and meta-analysis. Centers for reproductive care. Infertility patient(s). An exhaustive electronic literature search in MEDLINE, EMBASE, and the Cochrane Library was performed through December 2011. We included randomized clinical trials comparing outcomes of IVF cycles between fresh and frozen embryo transfers. The outcomes of interest were ongoing pregnancy rate, clinical pregnancy rate, and miscarriage. We included three trials accounting for 633 cycles in women aged 27-33 years. Data analysis showed that FET resulted in significantly higher ongoing pregnancy rates and clinical pregnancy rates. Our results suggest that there is evidence that IVF outcomes may be improved by performing FET compared with fresh embryo transfer. This could be explained by a better embryo-endometrium synchrony achieved with endometrium preparation cycles. Copyright © 2013 American Society for Reproductive Medicine. Published by Elsevier Inc. All rights reserved.
Upper-limb biomechanical analysis of wheelchair transfer techniques in two toilet configurations.
Tsai, Chung-Ying; Boninger, Michael L; Bass, Sarah R; Koontz, Alicia M
2018-06-01
Using proper technique is important for minimizing upper limb kinetics during wheelchair transfers. The objective of the study was to 1) evaluate the transfer techniques used during toilet transfers and 2) determine the impact of technique on upper limb joint loading for two different toilet configurations. Twenty-six manual wheelchair users (23 men and 3 women) performed transfers in a side and front wheelchair-toilet orientation while their habitual transfer techniques were evaluated using the Transfer Assessment Instrument. A motion analysis system and force sensors were used to record biomechanical data during the transfers. More than 20% of the participants failed to complete five transfer skills in the side setup compared to three skills in the front setup. Higher quality skills overall were associated with lower peak forces and moments in both toilet configurations (-0.68 perform these skills correctly (p ≤ 0.04). In the front setup, positioning the wheelchair within three inches of the transfer target was associated with reduced peak trailing forces and moments across all three upper limb joints (p = 0.02). Transfer skills training, making toilet seats level with the wheelchair seat, positioning the wheelchair closer to the toilet and mounting grab bars in a more ideal location for persons who do sitting pivot transfers may facilitate better quality toilet transfers. Published by Elsevier Ltd.
Utilization of graph theory in security analysis of power grid
Directory of Open Access Journals (Sweden)
Dalibor Válek
2014-12-01
Full Text Available This paper describes way how to use graph theory in security analysis. As an environment is used network of power lines and devices which are included here. Power grid is considered as a system of nodes which make together graph (network. On the simple example is applied Fiedler´s theory which is able to select the most important power lines of whole network. Components related to these lines are logicly ordered and considered by author´s modified analysis. This method has been improved and optimalized for risks related with illegal acts. Each power grid component has been connected with possible kind of attack and every of this device was gradually evaluated by five coefficients which takes values from 1 to 10. On the coefficient basis was assessed the level of risk. In the last phase the most risky power grid components have been selected. On the selected devices have been proposed security measures.
An introduction to queueing theory modeling and analysis in applications
Bhat, U Narayan
2015-01-01
This introductory textbook is designed for a one-semester course on queueing theory that does not require a course on stochastic processes as a prerequisite. By integrating the necessary background on stochastic processes with the analysis of models, the work provides a sound foundational introduction to the modeling and analysis of queueing systems for a wide interdisciplinary audience of students in mathematics, statistics, and applied disciplines such as computer science, operations research, and engineering. This edition includes additional topics in methodology and applications. Key features: • An introductory chapter including a historical account of the growth of queueing theory in more than 100 years. • A modeling-based approach with emphasis on identification of models. • Rigorous treatment of the foundations of basic models commonly used in applications with appropriate references for advanced topics. • Applications in manufacturing and, computer and communication systems. • A chapter on ...
Mathematical theory of compressible viscous fluids analysis and numerics
Feireisl, Eduard; Pokorný, Milan
2016-01-01
This book offers an essential introduction to the mathematical theory of compressible viscous fluids. The main goal is to present analytical methods from the perspective of their numerical applications. Accordingly, we introduce the principal theoretical tools needed to handle well-posedness of the underlying Navier-Stokes system, study the problems of sequential stability, and, lastly, construct solutions by means of an implicit numerical scheme. Offering a unique contribution – by exploring in detail the “synergy” of analytical and numerical methods – the book offers a valuable resource for graduate students in mathematics and researchers working in mathematical fluid mechanics. Mathematical fluid mechanics concerns problems that are closely connected to real-world applications and is also an important part of the theory of partial differential equations and numerical analysis in general. This book highlights the fact that numerical and mathematical analysis are not two separate fields of mathematic...
Training older adults on Theory of Mind (ToM): transfer on metamemory.
Lecce, Serena; Bottiroli, Sara; Bianco, Federica; Rosi, Alessia; Cavallini, Elena
2015-01-01
Research on aging has shown a significant decline in ToM after 65 years of age. Despite these age-related difficulties, no study has yet investigated the possibility to improve ToM in older adults. To address this gap we tested the efficacy of a conversation-based ToM training with age-appropriate ToM tasks and its transfer effects on metamemory. We examined 72 older adults (Mage=67.61 years, SD=6.39 years) assigned to three training conditions: a ToM training, a physical-conversation training and a social-contact group. All participants took part in two 2-h testing and to two 2-h training sessions. Results showed that after the intervention, older adults in the ToM training group improved their mental states' understanding significantly more than participants in the physical-conversation training and in the social-contact groups. Crucially, the positive effect of the ToM intervention generalized to metamemory knowledge. This is the first study investigating the efficacy of a ToM training and its transfer effect on metacognition in older adults. From a theoretical point of view, it supports the relation between ToM and metamemory. Practical implications of these data are discussed. Copyright © 2014 Elsevier Ireland Ltd. All rights reserved.
Probability theory for 3-layer remote sensing radiative transfer model: univariate case.
Ben-David, Avishai; Davidson, Charles E
2012-04-23
A probability model for a 3-layer radiative transfer model (foreground layer, cloud layer, background layer, and an external source at the end of line of sight) has been developed. The 3-layer model is fundamentally important as the primary physical model in passive infrared remote sensing. The probability model is described by the Johnson family of distributions that are used as a fit for theoretically computed moments of the radiative transfer model. From the Johnson family we use the SU distribution that can address a wide range of skewness and kurtosis values (in addition to addressing the first two moments, mean and variance). In the limit, SU can also describe lognormal and normal distributions. With the probability model one can evaluate the potential for detecting a target (vapor cloud layer), the probability of observing thermal contrast, and evaluate performance (receiver operating characteristics curves) in clutter-noise limited scenarios. This is (to our knowledge) the first probability model for the 3-layer remote sensing geometry that treats all parameters as random variables and includes higher-order statistics. © 2012 Optical Society of America
Conceptual and critical analysis of the Implicit Leadership Theory
Hernández Avilés, Omar David; García Ramos, Tania
2013-01-01
The purpose of this essay is to present a conceptual and critical analysis of the Implicit Leadership Theory (ILT). The objectives are: 1) explaining the main concepts of the ILT; 2) explaining the main processes of the ILT; 3) identifying constructivist assumptions in the ILT; 4) identifying constructionist assumptions in the ILT, and 5) analyzing critically theoretical assumptions of the ILT. At analyzing constructivism and constructionism assumptions in the ILP, the constructivist leadersh...
Theory analysis and simple calculation of travelling wave burnup scheme
International Nuclear Information System (INIS)
Zhang Jian; Yu Hong; Gang Zhi
2012-01-01
Travelling wave burnup scheme is a new burnup scheme that breeds fuel locally just before it burns. Based on the preliminary theory analysis, the physical imagine was found. Through the calculation of a R-z cylinder travelling wave reactor core with ERANOS code system, the basic physical characteristics of this new burnup scheme were concluded. The results show that travelling wave reactor is feasible in physics, and there are some good features in the reactor physics. (authors)
Do pattern recognition skills transfer across sports? A preliminary analysis.
Smeeton, Nicholas J; Ward, Paul; Williams, A Mark
2004-02-01
The ability to recognize patterns of play is fundamental to performance in team sports. While typically assumed to be domain-specific, pattern recognition skills may transfer from one sport to another if similarities exist in the perceptual features and their relations and/or the strategies used to encode and retrieve relevant information. A transfer paradigm was employed to compare skilled and less skilled soccer, field hockey and volleyball players' pattern recognition skills. Participants viewed structured and unstructured action sequences from each sport, half of which were randomly represented with clips not previously seen. The task was to identify previously viewed action sequences quickly and accurately. Transfer of pattern recognition skill was dependent on the participant's skill, sport practised, nature of the task and degree of structure. The skilled soccer and hockey players were quicker than the skilled volleyball players at recognizing structured soccer and hockey action sequences. Performance differences were not observed on the structured volleyball trials between the skilled soccer, field hockey and volleyball players. The skilled field hockey and soccer players were able to transfer perceptual information or strategies between their respective sports. The less skilled participants' results were less clear. Implications for domain-specific expertise, transfer and diversity across domains are discussed.
Developing interprofessional education online: An ecological systems theory analysis.
Bluteau, Patricia; Clouder, Lynn; Cureton, Debra
2017-07-01
This article relates the findings of a discourse analysis of an online asynchronous interprofessional learning initiative involving two UK universities. The impact of the initiative is traced over three intensive periods of online interaction, each of several-weeks duration occurring over a three-year period, through an analysis of a random sample of discussion forum threads. The corpus of rich data drawn from the forums is interpreted using ecological systems theory, which highlights the complexity of interaction of individual, social and cultural elements. Ecological systems theory adopts a life course approach to understand how development occurs through processes of progressively more complex reciprocal interaction between people and their environment. This lens provides a novel approach for analysis and interpretation of findings with respect to the impact of pre-registration interprofessional education and the interaction between the individual and their social and cultural contexts as they progress through 3/4 years of their programmes. Development is mapped over time (the chronosystem) to highlight the complexity of interaction across microsystems (individual), mesosystems (curriculum and institutional/care settings), exosystems (community/wider local context), and macrosystems (national context and culture). This article illustrates the intricacies of students' interprofessional development over time and the interactive effects of social ecological components in terms of professional knowledge and understanding, wider appreciation of health and social care culture and identity work. The implications for contemporary pre-registration interprofessional education and the usefulness and applicability of ecological systems theory for future research and development are considered.
Tan, Eugene Wie Loon
1999-09-01
The present investigation was focussed on the mechanical characterization and structural analysis of resin-transfer-molded beams containing recycled fiber-reinforced polymers. The beams were structurally reinforced with continuous unidirectional glass fibers. The reinforcing filler materials consisted entirely of recycled fiber-reinforced polymer wastes (trim and overspray). The principal resin was a 100-percent dicyclo-pentadiene unsaturated polyester specially formulated with very low viscosity for resin transfer molding. Variations of the resin transfer molding technique were employed to produce specimens for material characterization. The basic materials that constituted the structural beams, continuous-glass-fiber-reinforced, recycled-trim-filled and recycled-overspray-filled unsaturated polyesters, were fully characterized in axial and transverse compression and tension, and inplane and interlaminar shear, to ascertain their strengths, ultimate strains, elastic moduli and Poisson's ratios. Experimentally determined mechanical properties of the recycled-trim-filled and recycled-overspray-filled materials from the present investigation were superior to those of unsaturated polyester polymer concretes and Portland cement concretes. Mechanical testing and finite element analyses of flexure (1 x 1 x 20 in) and beam (2 x 4 x 40 in) specimens were conducted. These structurally-reinforced specimens were tested and analyzed in four-point, third-point flexure to determine their ultimate loads, maximum fiber stresses and mid-span deflections. The experimentally determined load capacities of these specimens were compared to those of equivalent steel-reinforced Portland cement concrete beams computed using reinforced concrete theory. Mechanics of materials beam theory was utilized to predict the ultimate loads and mid-span deflections of the flexure and beam specimens. However, these predictions proved to be severely inadequate. Finite element (fracture propagation
About Navier-Stokes Equation in the Theory of Convective Heat Transfer
Davidzon, M. Y.
2017-10-01
A system of differential equations (Navier-Stokes, continuity, heat conductivity) is used to solve convective heat transfer problems. While solving Navier-Stokes equation, it is usually assumed that tangent stress is proportional to the velocity gradient. This assumption is valid with a small velocity gradient, for example, near an axis of the channel, but velocity gradient can be very large near the channel wall. Our paper shows that if we accept power law instead of linear law for tangential stress, then the velocity profile for creeping, laminar, and turbulent flow in the channel can be calculated without using Navier-Stokes equation. Also, in this case Navier-Stokes equation itself changes: the coefficient of dynamic viscosity changes its value from normal (in case of the creeping flow) to tending to infinity (in case of the well-developed turbulent flow).
Transfer matrix theory of monolayer graphene/bilayer graphene heterostructure superlattice
International Nuclear Information System (INIS)
Wang, Yu
2014-01-01
We have formulated a transfer matrix method to investigate electronic properties of graphene heterostructure consisting of monolayer graphene and bilayer counterpart. By evaluating transmission, conductance, and band dispersion, we show that, irrespective of the different carrier chiralities in monolayer graphene and bilayer graphene, superlattice consisting of biased bilayer graphene barrier and monolayer graphene well can mimic the electronic properties of conventional semiconductor superlattice, displaying the extended subbands in the quantum tunneling regime and producing anisotropic minigaps for the classically allowed transport. Due to the lateral confinement, the lowest mode has shifted away from the charge neutral point of monolayer graphene component, opening a sizeable gap in concerned structure. Following the gate-field and geometry modulation, all electronic states and gaps between them can be externally engineered in an electric-controllable strategy.
Symbolic transfer entropy-based premature signal analysis
International Nuclear Information System (INIS)
Wang Jun; Yu Zheng-Feng
2012-01-01
In this paper, we use symbolic transfer entropy to study the coupling strength between premature signals. Numerical experiments show that three types of signal couplings are in the same direction. Among them, normal signal coupling is the strongest, followed by that of premature ventricular contractions, and that of atrial premature beats is the weakest. The T test shows that the entropies of the three signals are distinct. Symbolic transfer entropy requires less data, can distinguish the three types of signals and has very good computational efficiency. (interdisciplinary physics and related areas of science and technology)
Pattern theory the stochastic analysis of real-world signals
Mumford, David
2010-01-01
Pattern theory is a distinctive approach to the analysis of all forms of real-world signals. At its core is the design of a large variety of probabilistic models whose samples reproduce the look and feel of the real signals, their patterns, and their variability. Bayesian statistical inference then allows you to apply these models in the analysis of new signals. This book treats the mathematical tools, the models themselves, and the computational algorithms for applying statistics to analyze six representative classes of signals of increasing complexity. The book covers patterns in text, sound
Communicating through Probabilities: Does Quantum Theory Optimize the Transfer of Information?
Directory of Open Access Journals (Sweden)
William K. Wootters
2013-08-01
Full Text Available A quantum measurement can be regarded as a communication channel, in which the parameters of the state are expressed only in the probabilities of the outcomes of the measurement. We begin this paper by considering, in a non-quantum-mechanical setting, the problem of communicating through probabilities. For example, a sender, Alice, wants to convey to a receiver, Bob, the value of a continuous variable, θ, but her only means of conveying this value is by sending Bob a coin in which the value of θ is encoded in the probability of heads. We ask what the optimal encoding is when Bob will be allowed to flip the coin only a finite number of times. As the number of tosses goes to infinity, we find that the optimal encoding is the same as what nature would do if we lived in a world governed by real-vector-space quantum theory. We then ask whether the problem might be modified, so that the optimal communication strategy would be consistent with standard, complex-vector-space quantum theory.
Mobile applications for weight management: theory-based content analysis.
Azar, Kristen M J; Lesser, Lenard I; Laing, Brian Y; Stephens, Janna; Aurora, Magi S; Burke, Lora E; Palaniappan, Latha P
2013-11-01
The use of smartphone applications (apps) to assist with weight management is increasingly prevalent, but the quality of these apps is not well characterized. The goal of the study was to evaluate diet/nutrition and anthropometric tracking apps based on incorporation of features consistent with theories of behavior change. A comparative, descriptive assessment was conducted of the top-rated free apps in the Health and Fitness category available in the iTunes App Store. Health and Fitness apps (N=200) were evaluated using predetermined inclusion/exclusion criteria and categorized based on commonality in functionality, features, and developer description. Four researchers then evaluated the two most popular apps in each category using two instruments: one based on traditional behavioral theory (score range: 0-100) and the other on the Fogg Behavioral Model (score range: 0-6). Data collection and analysis occurred in November 2012. Eligible apps (n=23) were divided into five categories: (1) diet tracking; (2) healthy cooking; (3) weight/anthropometric tracking; (4) grocery decision making; and (5) restaurant decision making. The mean behavioral theory score was 8.1 (SD=4.2); the mean persuasive technology score was 1.9 (SD=1.7). The top-rated app on both scales was Lose It! by Fitnow Inc. All apps received low overall scores for inclusion of behavioral theory-based strategies. © 2013 American Journal of Preventive Medicine.
Lafreniere, Katherine C; Deshpande, Sameer; Bjornlund, Henning; Hunter, M Gordon
2013-11-15
Many attempts to implement resource management initiatives in Canadian and international communities have been resisted by stakeholders despite inclusion of their representatives in the decision-making process. Managers' failure to understand stakeholders' perspectives when proposing initiatives is a potential cause of this resistance. Our study uses marketing thought to enhance stakeholder theory by bringing in an audience-centric perspective. We attempt to understand how stakeholders perceive their interests in an organization and consequently decide how to influence that organization. By doing so, we investigate whether a disconnect exists between the perceptions of managers and those of stakeholders. Natural resource managers can utilize this knowledge to garner stakeholder support for the organization and its activities. We support this claim with findings from a water transfer plebiscite held in the Canadian province of Alberta. Sixteen personal interviews employing narrative inquiry were conducted to document voters' (i.e., irrigators') interpretations. Copyright © 2013 Elsevier Ltd. All rights reserved.
Combining UV photodissociation with electron transfer for peptide structure analysis
Czech Academy of Sciences Publication Activity Database
Shaffer, C. J.; Marek, Aleš; Pepin, R.; Slováková, K.; Tureček, F.
2015-01-01
Roč. 50, č. 3 (2015), s. 470-475 ISSN 1076-5174 Institutional support: RVO:61388963 Keywords : electron transfer dissociation * laser photodissociation * peptide ions * cation radical * chromophores * isomer distinction Subject RIV: CE - Biochemistry Impact factor: 2.541, year: 2015
Mass transfer analysis for terephthalic acid biodegradation by ...
African Journals Online (AJOL)
Biodegradation of terephthalic acid (TA) by polyvinyl alcohol (PVA)-alginate immobilized Pseudomonas sp. was carried out in a packed-bed reactor. The effect of inlet TA concentration on biodegradation was investigated at 30°C, pH 7 and flow rate of 20 ml/min. The effects of flow rate on mass transfer and biodegradation ...
Computational heat transfer analysis and combined ANN–GA
Indian Academy of Sciences (India)
The heat transfer augmentation is studied for different parameters such as inner radius, outer radius, height of the fins and number of pin fins. The base plate is supplied with a constant heat flux in the range of 20–500W. The base plate dimensions are kept constant. The base plate temperature is predicted using Artificial ...
Analysis of slip flow heat transfer between two unsymmetrically
Indian Academy of Sciences (India)
This paper presents an analytical investigation to study the heat transfer and fluid flow characteristics in the slip flow region for hydrodynamically and thermally fully developed flow between parallel plates.Both upper and lower plates are subjected to asymmetric heat flux boundary conditions. The effect of first ordervelocity ...
Analysis of the transfer function for layered piezoelectric ultrasonic sensors
Directory of Open Access Journals (Sweden)
E. Gutiérrrez-Reyes
2017-06-01
Full Text Available We model theoretically the voltage response to an acoustic pulse of a multilayer system forming a low noise capacitive sensor including a Polyvinylidene Fluoride piezoelectric film. First we model a generic piezoelectric detector consisting of a piezoelectric film between two metallic electrodes that are the responsible to convert the acoustic signal into a voltage signal. Then we calculate the pressure-to-voltage transfer function for a N-layer piezo-electric capacitor detector, allowing to study the effects of the electrode and protective layers thickness in typical layered piezoelectric sensors. The derived transfer function, when multiplied by the Fourier transform of the incident acoustic pulse, gives the voltage electric response in the frequency domain. An important concern regarding the transfer function is that it may have zeros at specific frequencies, and thus inverting the voltage Fourier transform of the pulse to recover the pressure signal in the time domain is not always, in principle, possible. Our formulas can be used to predict the existence and locations of such zeroes. We illustrate the use of the transfer function by predicting the electric signal generated at a multilayer piezoelectric sensor to an ultrasonic pulse generated photoacoustically by a laser pulse at a three media system with impedance mismatch. This theoretical calculations are compared with our own experimental measurements.
Building Technology Transfer Capacity in Turkish Universities: A Critical Analysis
Ranga, Marina; Temel, Serdal; Ar, Ilker Murat; Yesilay, Rustem Baris; Sukan, Fazilet Vardar
2016-01-01
University technology transfer has been receiving significant government funding since 2012. Results of this major investment are now expected by the Turkish government and society, not only in terms of better teaching and research performance, but also of new jobs, new products and services, enhanced regional development and contribution to…
Development of platform to compare different wall heat transfer packages for system analysis codes
International Nuclear Information System (INIS)
Kim, Min-Gil; Lee, Won Woong; Lee, Jeong Ik; Shin, Sung Gil
2016-01-01
System thermal hydraulic (STH) analysis code is used for analyzing and evaluating the safety of a designed nuclear system. The system thermal hydraulic analysis code typically solves mass, momentum and energy conservation equations for multiple phases with sets of selected empirical constitutive equations to close the problem. Several STH codes are utilized in academia, industry and regulators, such as MARS-KS, SPACE, RELAP5, COBRA-TF, TRACE, and so on. Each system thermal hydraulic code consists of different sets of governing equations and correlations. However, the packages and sets of correlations of each code are not compared quantitatively yet. Wall heat transfer mode transition maps of SPACE and MARS-KS have a little difference for the transition from wall nucleate heat transfer mode to wall film heat transfer mode. Both codes have the same heat transfer packages and correlations in most region except for wall film heat transfer mode. Most of heat transfer coefficients calculated for the range of selected variables of SPACE are the same with those of MARS-KS. For the intervals between 500K and 540K of wall temperature, MARS-KS selects the wall film heat transfer mode and Bromley correlation but SPACE select the wall nucleate heat transfer mode and Chen correlation. This is because the transition from nucleate boiling to film boiling of MARS-KS is earlier than SPACE. More detailed analysis of the heat transfer package and flow regime package will be followed in the near future
Principle-based concept analysis: intentionality in holistic nursing theories.
Aghebati, Nahid; Mohammadi, Eesa; Ahmadi, Fazlollah; Noaparast, Khosrow Bagheri
2015-03-01
This is a report of a principle-based concept analysis of intentionality in holistic nursing theories. A principle-based concept analysis method was used to analyze seven holistic theories. The data included eight books and 31 articles (1998-2011), which were retrieved through MEDLINE and CINAHL. Erickson, Kriger, Parse, Watson, and Zahourek define intentionality as a capacity, a focused consciousness, and a pattern of human being. Rogers and Newman do not explicitly mention intentionality; however, they do explain pattern and consciousness (epistemology). Intentionality has been operationalized as a core concept of nurse-client relationships (pragmatic). The theories are consistent on intentionality as a noun and as an attribute of the person-intentionality is different from intent and intention (linguistic). There is ambiguity concerning the boundaries between intentionality and consciousness (logic). Theoretically, intentionality is an evolutionary capacity to integrate human awareness and experience. Because intentionality is an individualized concept, we introduced it as "a matrix of continuous known changes" that emerges in two forms: as a capacity of human being and as a capacity of transpersonal caring. This study has produced a theoretical definition of intentionality and provides a foundation for future research to further investigate intentionality to better delineate its boundaries. © The Author(s) 2014.
The Theory of Laser Materials Processing Heat and Mass Transfer in Modern Technology
Dowden, John
2009-01-01
The purpose of the book is to show how general principles can be used to obtain insight into laser processes. The principles used may come from fundamental physical theory or from direct observation of experimental results, but an understanding of the general characteristics of the behaviour of a process is essential for intelligent investigation and implementation, whether the approach is experimental, observational, numerical or analytical. The last two have a special value since the associated costs can be relatively low and may be used as a starting point for more expensive techniques. The construction of simple models whose underlying principles are easy to see is therefore of special value, and an understanding of their strengths and limitations is essential. The applications considered in detail are cutting, keyhole welding, drilling, arc and hybrid laser-arc welding, hardening, cladding, forming and cutting, but the general principles have a very wide application; metallurgical aspects are considered,...
Theory of charge transfer at the high-Tc superconductor/electrolyte interface
DEFF Research Database (Denmark)
Gluzman, Sasha; Kuznetsov, Alexander M.
1995-01-01
, involving a gap in the electronic spectrum. The height of the hump should be much less in the case of the unconventional d-wave pairing, while the absence of the hump is a signal about the importance of pair-breaking processes typical of the strong-coupling theories or even about bipolaron (bosonic......We discuss the kinetics of electrochemical process on the high-T-c superconducting electrodes dependent on the type of superconductivity. The existence of the hump of an appreciable height in the temperature dependence of the current clearly points towards the BCS s-type superconductivity......) mechanism. Low-temperature tails at the current/temperature curve are also informative being determined by the electronic states within the gap typical of the unconventional d-wave pairing....
The theory of laser materials processing heat and mass transfer in modern technology
Schulz, Wolfgang
2017-01-01
The revised edition of this important reference volume presents an expanded overview of the analytical and numerical approaches employed when exploring and developing modern laser materials processing techniques. The book shows how general principles can be used to obtain insight into laser processes, whether derived from fundamental physical theory or from direct observation of experimental results. The book gives readers an understanding of the strengths and limitations of simple numerical and analytical models that can then be used as the starting-point for more elaborate models of specific practical, theoretical or commercial value. Following an introduction to the mathematical formulation of some relevant classes of physical ideas, the core of the book consists of chapters addressing key applications in detail: cutting, keyhole welding, drilling, arc and hybrid laser-arc welding, hardening, cladding and forming. The second edition includes a new a chapter on glass cutting with lasers, as employed in the ...
Discrete ordinate theory of radiative transfer. 2: Scattering from maritime haze
Kattawar, G. W.; Plass, G. N.; Catchings, F. E.
1971-01-01
Discrete ordinate theory was used to calculate the reflected and transmitted radiance of photons which have interacted with plane parallel maritime haze layers. The results are presented for three solar zenith angles, three values of the surface albedo, and a range of optical thicknesses from very thin to very thick. The diffuse flux at the lower boundary and the cloud albedo were tabulated. The forward peak and other features in the single scattered phase function caused the radiance in many cases to be very different from that for Rayleigh scattering. The variation of the radiance with both the zenith or nadir angle and the azimuthal angle is more marked, and the relative limb darkening under very thick layers is greater, for haze than for Rayleigh scattering. The downward diffuse flux at the lower boundary for A = O is always greater and the cloud albedo is always less for haze than for Rayleigh layers.
Safety analysis of patient transfers and handling tasks.
Vieira, Er; Kumar, S
2009-10-01
Low-back disorders are related to biomechanical demands, and nurses are among the professionals with the highest rates. Quantification of risk factors is important for safety assessment and reduction of low-back disorders. This study aimed to quantify physical demands of frequent nursing tasks and provide evidence-based recommendations to increase low-back safety. Thirty-six volunteer female nurses participated in a cross-sectional study of nine nursing tasks. Lumbar range of motion (ROM) and motion during nursing tasks were measured. Compression and shear forces at L5/S1, ligament strain and percentage of population without sufficient torso strength to perform 14 phases of nine nursing tasks were estimated. Peak flexions during trolley-to-bed, bed-to-chair and chair-to-bed transfers reached the maximum flexion ROM of the nurses. Average lumbar flexion during trolley-to-bed transfers was >50% of flexion ROM, being higher than during all other tasks. Mean (SD) compression at L5/S1 (4754 N (437 N)) and population without sufficient torso strength (37% (9%)) were highest during the pushing phase of bed-to-trolley transfers. Shear force (487 N (40 N)) and ligament strain (14% (5%)) were highest during the pulling phase of trolley-to-bed transfers. Nursing tasks impose high biomechanical demands on the lumbar spine. Excessive lumbar flexion and forces are critical aspects of manual transfers requiring most of the nurses' capabilities. Evidence-based recommendations to improve low-back safety in common nursing tasks were provided. Fitness to work, job modifications and training programs can now be designed and assessed based on the results.
Li, Chen; Requist, Ryan; Gross, E. K. U.
2018-02-01
We perform model calculations for a stretched LiF molecule, demonstrating that nonadiabatic charge transfer effects can be accurately and seamlessly described within a density functional framework. In alkali halides like LiF, there is an abrupt change in the ground state electronic distribution due to an electron transfer at a critical bond length R = Rc, where an avoided crossing of the lowest adiabatic potential energy surfaces calls the validity of the Born-Oppenheimer approximation into doubt. Modeling the R-dependent electronic structure of LiF within a two-site Hubbard model, we find that nonadiabatic electron-nuclear coupling produces a sizable elongation of the critical Rc by 0.5 bohr. This effect is very accurately captured by a simple and rigorously derived correction, with an M-1 prefactor, to the exchange-correlation potential in density functional theory, M = reduced nuclear mass. Since this nonadiabatic term depends on gradients of the nuclear wave function and conditional electronic density, ∇Rχ(R) and ∇Rn(r, R), it couples the Kohn-Sham equations at neighboring R points. Motivated by an observed localization of nonadiabatic effects in nuclear configuration space, we propose a local conditional density approximation—an approximation that reduces the search for nonadiabatic density functionals to the search for a single function y(n).
Many-body theory of charge transfer in hyperthermal atomic scattering
International Nuclear Information System (INIS)
Marston, J.B.; Andersson, D.R.; Behringer, E.R.; Cooper, B.H.; DiRubio, C.A.; Kimmel, G.A.; Richardson, C.
1993-01-01
We use the Newns-Anderson Hamiltonian to describe many-body electronic processes that occur when hyperthermal alkali atoms scatter off metallic surfaces. Following Brako and Newns, we expand the electronic many-body wave function in the number of particle-hole pairs (we keep terms up to and including a single particle-hole pair). We extend their earlier work by including level crossings, excited neutrals, and negative ions. The full set of equations of motion is integrated numerically, without further approximations, to obtain the many-body amplitudes as a function of time. The velocity and work-function dependence of final-state quantities such as the distribution of ion charges and excited atomic occupancies are compared with experiment. In particular, experiments that scatter alkali ions off clean Cu(001) surfaces in the energy range 5--1600 eV constrain the theory quantitatively. The neutralization probability of Na + ions shows a minimum at intermediate velocity in agreement with the theory. This behavior contrasts with that of K + , which shows virtually no neutralization, and with Li + , which exhibits a monotonically increasing neutral fraction with decreasing velocity. Particle-hole excitations are left behind in the metal during a fraction of the collision events; this dissipated energy is predicted to be quite small (on the order of tenths of an electron volt). Indeed, classical trajectory simulations of the surface dynamics account well for the observed energy loss, and thus provide some justification for our truncation of the equations of motion at the single particle-hole pair level. Li + scattering experiments off low work-function surfaces provide qualitative information on the importance of many-body effects. At sufficiently low work function, the negative ions predicted to occur are in fact observed
Directory of Open Access Journals (Sweden)
Vandrangi Seshu Kumar
2017-01-01
Full Text Available A numerical analysis for the determination for turbulent characteristics of fluid flow and heat transfer have been developed by employing the eddy diffusivity equation of Van Driest. The properties of Silicon dioxide (SiO2 nanofluid with spherical particles in base liquid ethylene glycol (EG -water (W mixture of 60:40 ratio is employed for a wide range of concentrations and bulk temperature. A good agreement of the numerical results with the experimental data for properties and heat transfer is observed. A comparison of Copper oxide (CuO, Aluminum dioxide (Al2O3 and Silicon dioxide (SiO2 nanofluids revealed that SiO2 attain higher temperature gradients in comparison to CuO nanofluid at the same concentration and temperature.
Thought analysis on self-organization theories of MHD plasma
International Nuclear Information System (INIS)
Kondoh, Yoshiomi; Sato, Tetsuya.
1992-08-01
A thought analysis on the self-organization theories of dissipative MHD plasma is presented to lead to three groups of theories that lead to the same relaxed state of ∇ x B = λB, in order to find an essential physical picture embedded in the self-organization phenomena due to nonlinear and dissipative processes. The self-organized relaxed state due to the dissipation by the Ohm loss is shown to be formulated generally as the state such that yields the minimum dissipation rate of global auto-and/or cross-correlations between two quantities in j, B, and A for their own instantaneous values of the global correlations. (author)
Human factors and fuzzy set theory for safety analysis
International Nuclear Information System (INIS)
Nishiwaki, Y.
1987-01-01
Human reliability and performance is affected by many factors: medical, physiological and psychological, etc. The uncertainty involved in human factors may not necessarily be probabilistic, but fuzzy. Therefore, it is important to develop a theory by which both the non-probabilistic uncertainties, or fuzziness, of human factors and the probabilistic properties of machines can be treated consistently. In reality, randomness and fuzziness are sometimes mixed. From the mathematical point of view, probabilistic measures may be considered a special case of fuzzy measures. Therefore, fuzzy set theory seems to be an effective tool for analysing man-machine systems. The concept 'failure possibility' based on fuzzy sets is suggested as an approach to safety analysis and fault diagnosis of a large complex system. Fuzzy measures and fuzzy integrals are introduced and their possible applications are also discussed. (author)
A game theory analysis of green infrastructure stormwater management policies
William, Reshmina; Garg, Jugal; Stillwell, Ashlynn S.
2017-09-01
Green stormwater infrastructure has been demonstrated as an innovative water resources management approach that addresses multiple challenges facing urban environments. However, there is little consensus on what policy strategies can be used to best incentivize green infrastructure adoption by private landowners. Game theory, an analysis framework that has historically been under-utilized within the context of stormwater management, is uniquely suited to address this policy question. We used a cooperative game theory framework to investigate the potential impacts of different policy strategies used to incentivize green infrastructure installation. The results indicate that municipal regulation leads to the greatest reduction in pollutant loading. However, the choice of the "best" regulatory approach will depend on a variety of different factors including politics and financial considerations. Large, downstream agents have a disproportionate share of bargaining power. Results also reveal that policy impacts are highly dependent on agents' spatial position within the stormwater network, leading to important questions of social equity and environmental justice.
THE RESPONSIBILITY TO PROTECT. A JUST WAR THEORY BASED ANALYSIS
Directory of Open Access Journals (Sweden)
Andreea IANCU
2014-11-01
Full Text Available This paper analyzes the Responsibility to protect principle as the paradigm that reinforces the just war theory in the current international relations. The importance of this analysis is given by the fact that in the current change of source of international conflicts, the Responsibility to protect principle affirms the responsibility of the international community to protect all the citizens of the world. In this context we witness a translation toward a Post-Westphalian international system, which values the individual as a security referent. This article discusses the origins of the responsibility to protect principle and problematizes (discusses the legitimacy of use of violence and force in the current international system. Moreover, the paper analyzes the possible humanization of the current international relations and, simultaneously, the persistency of conflict and warfare in the international system. The conclusion of this research states that the Responsibility to protect principle revises the just war theory by centering it on the individual.
Briggs, Harold Eugene; Sharkey, Caroline; Briggs, Adam Christopher
2016-01-01
In this article the authors tie the emergence of an empirical practice research culture, which enabled the rise in evidence-based practice in social work to the introduction of applied behavior analysis and behavioral theory to social work practice and research. The authors chronicle the: (1) scientific foundations of social work, (2) influence and push by corporatized university cultures for higher scholarship productivity among faculty, (3) significance of theory in general, (4) importance of behavioral theory in particular as a major trigger of the growth in research on effective social work practice approaches, and (5) commonalities between applied behavior analysis and evidence-based practice. The authors conclude with implications for addressing the dual challenges of building an enhanced research culture in schools of social work and the scholarship of transferring practice research to adoption in real world practice settings.
Sensitivity theory for reactor burnup analysis based on depletion perturbation theory
International Nuclear Information System (INIS)
Yang, Wonsik.
1989-01-01
The large computational effort involved in the design and analysis of advanced reactor configurations motivated the development of Depletion Perturbation Theory (DPT) for general fuel cycle analysis. The work here focused on two important advances in the current methods. First, the adjoint equations were developed for using the efficient linear flux approximation to decouple the neutron/nuclide field equations. And second, DPT was extended to the constrained equilibrium cycle which is important for the consistent comparison and evaluation of alternative reactor designs. Practical strategies were formulated for solving the resulting adjoint equations and a computer code was developed for practical applications. In all cases analyzed, the sensitivity coefficients generated by DPT were in excellent agreement with the results of exact calculations. The work here indicates that for a given core response, the sensitivity coefficients to all input parameters can be computed by DPT with a computational effort similar to a single forward depletion calculation
Decision Engines for Software Analysis Using Satisfiability Modulo Theories Solvers
Bjorner, Nikolaj
2010-01-01
The area of software analysis, testing and verification is now undergoing a revolution thanks to the use of automated and scalable support for logical methods. A well-recognized premise is that at the core of software analysis engines is invariably a component using logical formulas for describing states and transformations between system states. The process of using this information for discovering and checking program properties (including such important properties as safety and security) amounts to automatic theorem proving. In particular, theorem provers that directly support common software constructs offer a compelling basis. Such provers are commonly called satisfiability modulo theories (SMT) solvers. Z3 is a state-of-the-art SMT solver. It is developed at Microsoft Research. It can be used to check the satisfiability of logical formulas over one or more theories such as arithmetic, bit-vectors, lists, records and arrays. The talk describes some of the technology behind modern SMT solvers, including the solver Z3. Z3 is currently mainly targeted at solving problems that arise in software analysis and verification. It has been applied to various contexts, such as systems for dynamic symbolic simulation (Pex, SAGE, Vigilante), for program verification and extended static checking (Spec#/Boggie, VCC, HAVOC), for software model checking (Yogi, SLAM), model-based design (FORMULA), security protocol code (F7), program run-time analysis and invariant generation (VS3). We will describe how it integrates support for a variety of theories that arise naturally in the context of the applications. There are several new promising avenues and the talk will touch on some of these and the challenges related to SMT solvers. Proceedings
Heat Transfer Analysis of Thermal Protection Structures for Hypersonic Vehicles
Zhou, Chen; Wang, Zhijin; Hou, Tianjiao
2017-11-01
This research aims to develop an analytical approach to study the heat transfer problem of thermal protection systems (TPS) for hypersonic vehicles. Laplace transform and integral method are used to describe the temperature distribution through the TPS subject to aerodynamic heating during flight. Time-dependent incident heat flux is also taken into account. Two different cases with heat flux and radiation boundary conditions are studied and discussed. The results are compared with those obtained by finite element analyses and show a good agreement. Although temperature profiles of such problems can be readily accessed via numerical simulations, analytical solutions give a greater insight into the physical essence of the heat transfer problem. Furthermore, with the analytical approach, rapid thermal analyses and even thermal optimization can be achieved during the preliminary TPS design.
Transfer pricing: a bibliometric analysis of the international literature
Directory of Open Access Journals (Sweden)
Joice Denise Schäfer
2015-12-01
Full Text Available The decentralization of decision-making to ensure faster and more efficient process control has become commonplace among companies in the current market. The performance of responsibility centers is periodically assessed and a decisive factor in this assessment is the correct definition of transfer prices for products and services. Thus, the aim of the present study is to search for and analyze studies conducted from 2000 onwards regarding transfer pricing as a tool for performance assessment using a process known as ProKnow-C (Knowledge Development Process – Constructivist, whose objective is to build knowledge from a constructivist perspective based on a researcher’s interests and limitations. The result was a bibliographic profile of 14 articles. The bibliographic profile was analyzed in order to identify the scientific recognition of the articles, authors referenced and the most prominent journals in terms of publications on the topic under study.
International Nuclear Information System (INIS)
Tamaki, Takashi; Torii, Takashi; Maeda, Kei-ichi
2003-01-01
We perform a linear perturbation analysis for black hole solutions with a 'massive' Yang-Mills field (the Proca field) in Brans-Dicke theory and find that the results are quite consistent with those via catastrophe theory where thermodynamic variables play an intrinsic role. Based on this observation, we show the general relation between these two methods in generalized theories of gravity which are conformally related to the Einstein-Hilbert action
Kathiravan, Arunkumar; Srinivasan, Venkatesan; Khamrang, Themmila; Velusamy, Marappan; Jaccob, Madhavan; Pavithra, Nagaraj; Anandan, Sambandam; Velappan, Kandavelu
2017-01-25
Pyrene derivatives show immense potential as sensitizers for dye-sensitized solar cells (DSCs). Therefore, this work focuses on the impact of π-spacers on the photophysical, electrochemical and photovoltaic properties of pyrene based D-π-A dyes, since the insertion of π-spacers is one of the doable strategies to improve the light harvesting properties of the dye. In this respect, three new pyrene based D-π-A dyes have been synthesized and characterized by 1 H, 13 C NMR, and elemental analyses and EI-MS spectrometry. The selected π-spacers are benzene, thiophene and furan. Compared with a benzene spacer, the introduction of a heterocyclic ring spacer reduces the band gap of the dye and brings about the broadening of the absorption spectra to the longer wavelength region through intramolecular charge-transfer (ICT). Combined experimental and theoretical studies were performed to investigate the ICT process involved in the pyrene derivatives. The profound solvatochromism with increased nonradiative rate constants (k nr ) has been construed in terms of ICT from the pyrene core to rhodanine-3-acetic acid via conjugated π-spacers. Electrochemical data also reveal that the HOMO and LUMO energy levels are fine-tuned by incorporating different π-spacers between pyrene and rhodanine-3-acetic acid. On the basis of the optimized DSC test conditions, the best performance was found for PBRA, in which a benzene group is the conjugated π-spacer. The divergence in the photovoltaic behaviors of these dyes was further explicated by femtosecond fluorescence and electrochemical impedance spectroscopy.
Magnetic error analysis of recycler pbar injection transfer line
Energy Technology Data Exchange (ETDEWEB)
Yang, M.J.; /Fermilab
2007-06-01
Detailed study of Fermilab Recycler Ring anti-proton injection line became feasible with its BPM system upgrade, though the beamline has been in existence and operational since year 2000. Previous attempts were not fruitful due to limitations in the BPM system. Among the objectives are the assessment of beamline optics and the presence of error fields. In particular the field region of the permanent Lambertson magnets at both ends of R22 transfer line will be scrutinized.
Heat Transfer treatment in computer codes for safety analysis
International Nuclear Information System (INIS)
Jerele, A.; Gregoric, M.
1984-01-01
Increased number of operating nuclear power plants has stressed importance of nuclear safety evaluation. For this reason, accordingly to regulatory commission request, safety analyses with computer codes are preformed. In this paper part of this thermohydraulic models dealing with wall-to-fluid heat transfer correlations in computer codes TRAC=PF1, RELAP4/MOD5, RELAP5/MOD1 and COBRA-IV is discussed. (author)
Mass transfer models analysis for the structured packings
International Nuclear Information System (INIS)
Suastegui R, A.O.
1997-01-01
The models that have been developing, to understand the mechanism of the mass transfer through the structured packings, present limitations for their application, existing then uncertainty in order to use them in the chemical industrial processes. In this study the main parameters used in the mass transfer are: the hydrodynamic of the bed of the column, the geometry of the bed, physical-chemical properties of the mixture and the flow regime of the operation between the flows liquid-gas. The sensibility of each one of these parameters generate an arduous work to develop right proposals and good interpretation of the phenomenon. With the purpose of showing the importance of these parameters mentioned in the mass transfer, this work is analyzed the process of absorption for the system water-air, using the models to the structured packings in packed columns. The models selected were developed by Bravo and collaborators in 1985 and 1992, in order to determine the parameters previous mentioned for the system water-air, using a structured packing built in the National Institute of Nuclear Research. In this work is showed the results of the models application and their discussion. (Author)
Positioning Theory and Discourse Analysis: Some Tools for Social Interaction Analysis
Directory of Open Access Journals (Sweden)
Francisco Tirado
2007-05-01
Full Text Available This article outlines positioning theory as a discursive analysis of interaction, focusing on the topic of conflict. Moreover, said theory is applied to a new work environment for the social sciences: virtual spaces. The analysis is organized in the following way. First, the major key psychosocial issues which define the topic of conflict are reviewed. Then, virtual environments are presented as a new work space for the social sciences. Thirdly, a synthesis of positioning theory and its FOUCAULTian legacy is conducted, while appreciating its particular appropriateness for analyzing conflictive interaction in virtual environments. An empiric case is then presented. This consists of an analysis of interactive sequences within a specific virtual environment: the Universitat Oberta de Catalunya (UOC Humanitats i Filologia Catalana studies forum. Through positioning theory, the production and effects that a conflictive interaction sequence has on the community in which it is produced are understood and explained. URN: urn:nbn:de:0114-fqs0702317
Stepped-frequency radar sensors theory, analysis and design
Nguyen, Cam
2016-01-01
This book presents the theory, analysis and design of microwave stepped-frequency radar sensors. Stepped-frequency radar sensors are attractive for various sensing applications that require fine resolution. The book consists of five chapters. The first chapter describes the fundamentals of radar sensors including applications followed by a review of ultra-wideband pulsed, frequency-modulated continuous-wave (FMCW), and stepped-frequency radar sensors. The second chapter discusses a general analysis of radar sensors including wave propagation in media and scattering on targets, as well as the radar equation. The third chapter addresses the analysis of stepped-frequency radar sensors including their principles and design parameters. Chapter 4 presents the development of two stepped-frequency radar sensors at microwave and millimeter-wave frequencies based on microwave integrated circuits (MICs), microwave monolithic integrated circuits (MMICs) and printed-circuit antennas, and discusses their signal processing....
Preliminary analysis of the effect of the grid spacers on the reflood heat transfer
International Nuclear Information System (INIS)
Sugimoto, Jun; Murao, Yoshio
1982-02-01
The results are described about the preliminary analysis of the effect of the grid spacers on the heat transfer during reflood phase of a PWR LOCA. Experiments at JAERI and other facilities showed substantial heat transfer enhancement near the grid spacers. The heat transfer enhancement decreases with the distance from the grid spacers in the downstream region of the grid spacers. Several mechanisms are discussed about the heat transfer enhancement near the grid spacers. A model of a coalescence of the water droplets downstream the spacers is proposed based on the review of the experimental data. The heat transfer correlation for the saturated film boiling is utilized to quantify the heat transfer augmentation by the grid spacers. (author)
Dimensional analysis, similarity, analogy, and the simulation theory
International Nuclear Information System (INIS)
Davis, A.A.
1978-01-01
Dimensional analysis, similarity, analogy, and cybernetics are shown to be four consecutive steps in application of the simulation theory. This paper introduces the classes of phenomena which follow the same formal mathematical equations as models of the natural laws and the interior sphere of restraints groups of phenomena in which one can introduce simplfied nondimensional mathematical equations. The simulation by similarity in a specific field of physics, by analogy in two or more different fields of physics, and by cybernetics in nature in two or more fields of mathematics, physics, biology, economics, politics, sociology, etc., appears as a unique theory which permits one to transport the results of experiments from the models, convenably selected to meet the conditions of researches, constructions, and measurements in the laboratories to the originals which are the primary objectives of the researches. Some interesting conclusions which cannot be avoided in the use of simplified nondimensional mathematical equations as models of natural laws are presented. Interesting limitations on the use of simulation theory based on assumed simplifications are recognized. This paper shows as necessary, in scientific research, that one write mathematical models of general laws which will be applied to nature in its entirety. The paper proposes the extent of the second law of thermodynamics as the generalized law of entropy to model life and its activities. This paper shows that the physical studies and philosophical interpretations of phenomena and natural laws cannot be separated in scientific work; they are interconnected and one cannot be put above the others
Item response theory analysis of the mechanics baseline test
Cardamone, Caroline N.; Abbott, Jonathan E.; Rayyan, Saif; Seaton, Daniel T.; Pawl, Andrew; Pritchard, David E.
2012-02-01
Item response theory is useful in both the development and evaluation of assessments and in computing standardized measures of student performance. In item response theory, individual parameters (difficulty, discrimination) for each item or question are fit by item response models. These parameters provide a means for evaluating a test and offer a better measure of student skill than a raw test score, because each skill calculation considers not only the number of questions answered correctly, but the individual properties of all questions answered. Here, we present the results from an analysis of the Mechanics Baseline Test given at MIT during 2005-2010. Using the item parameters, we identify questions on the Mechanics Baseline Test that are not effective in discriminating between MIT students of different abilities. We show that a limited subset of the highest quality questions on the Mechanics Baseline Test returns accurate measures of student skill. We compare student skills as determined by item response theory to the more traditional measurement of the raw score and show that a comparable measure of learning gain can be computed.
Analysis of interacting quantum field theory in curved spacetime
International Nuclear Information System (INIS)
Birrell, N.D.; Taylor, J.G.
1980-01-01
A detailed analysis of interacting quantized fields propagating in a curved background spacetime is given. Reduction formulas for S-matrix elements in terms of vacuum Green's functions are derived, special attention being paid to the possibility that the ''in'' and ''out'' vacuum states may not be equivalent. Green's functions equations are obtained and a diagrammatic representation for them given, allowing a formal, diagrammatic renormalization to be effected. Coordinate space techniques for showing renormalizability are developed in Minkowski space, for lambdaphi 3 /sub() 4,6/ field theories. The extension of these techniques to curved spacetimes is considered. It is shown that the possibility of field theories becoming nonrenormalizable there cannot be ruled out, although, allowing certain modifications to the theory, phi 3 /sub( 4 ) is proven renormalizable in a large class of spacetimes. Finally particle production from the vacuum by the gravitational field is discussed with particular reference to Schwarzschild spacetime. We shed some light on the nonlocalizability of the production process and on the definition of the S matrix for such processes
Statistical Analysis of Designed Experiments Theory and Applications
Tamhane, Ajit C
2012-01-01
A indispensable guide to understanding and designing modern experiments The tools and techniques of Design of Experiments (DOE) allow researchers to successfully collect, analyze, and interpret data across a wide array of disciplines. Statistical Analysis of Designed Experiments provides a modern and balanced treatment of DOE methodology with thorough coverage of the underlying theory and standard designs of experiments, guiding the reader through applications to research in various fields such as engineering, medicine, business, and the social sciences. The book supplies a foundation for the
Linearly Polarized IR Spectroscopy Theory and Applications for Structural Analysis
Kolev, Tsonko
2011-01-01
A technique that is useful in the study of pharmaceutical products and biological molecules, polarization IR spectroscopy has undergone continuous development since it first emerged almost 100 years ago. Capturing the state of the science as it exists today, "Linearly Polarized IR Spectroscopy: Theory and Applications for Structural Analysis" demonstrates how the technique can be properly utilized to obtain important information about the structure and spectral properties of oriented compounds. The book starts with the theoretical basis of linear-dichroic infrared (IR-LD) spectroscop
The Transfer of Knowledge in Intra-Organizational Networks: A Case Study Analysis
Directory of Open Access Journals (Sweden)
Sroka Włodzimierz
2014-02-01
Full Text Available `Background: In today’s business environment, a company is able to maintain its competitive position if it constantly generates knowledge and disseminates this knowledge within the organization, as well as transforms it into new competences. The ability to transfer knowledge becomes one of the key factors in the improvement of a company’s competitive position. This hypothesis is applicable particularly in the case of cooperation within networks, as they are an excellent opportunity for mutual learning between partners. Objectives: The purpose of the paper is to analyse the process of knowledge transfer in intra-organizational networks. Method: Due to the specificity of the research object, the case study method has been chosen. In order to make an in-depth analysis of the case study, we selected a group of several criteria based on the theory which we believe to be fundamental to the effectiveness of knowledge management in networks, and compared them with the situation in the ArcelorMittal Group. Results: Our research show that ArcelorMittal Group has met almost all the criteria of effective knowledge management in its intra-organizational network. Some exceptions, albeit merely to an extent, are mostly the result of historical circumstances, , i.e. the process of growth through acquisitions, and the acquisition of companies at different stages of organizational development, as well as organizational culture. Conclusion: Based on theoretical assumptions, the study analysed in details the components of knowledge management applied by the corporation in question. Therefore this study might be utilised to formulate a refutable hypothesis and verify them on a larger group of companies from different sectors of the economy. The main limitations of the paper are mostly related to the inherent approach therein
Analysis of space vehicle structures using the transfer-function concept
Heer, E.; Trubert, M. R.
1969-01-01
Analysis of large complex systems is accomplished by dividing it into suitable subsystems and determining the individual dynamical and vibrational responses. Frequency transfer functions then determine the vibrational response of the whole system.
A finite volume procedure for fluid flow, heat transfer and solid-body stress analysis
Jagad, P. I.; Puranik, B. P.; Date, A. W.
2018-01-01
A unified cell-centered unstructured mesh finite volume procedure is presented for fluid flow, heat transfer and solid-body stress analysis. An in-house procedure (A. W. Date, Solution of Transport Equations on Unstructured Meshes with Cell
Numerical analysis of fluid flow and heat transfer in a helical ...
African Journals Online (AJOL)
DR OKE
International Journal of Engineering, Science and Technology ... Numerical analysis of fluid flow and heat transfer in a helical rectangular .... by comparing the results of a conical spiral tube bundle modeled using the same software with that of.
Bifurcation analysis of magnetization dynamics driven by spin transfer
International Nuclear Information System (INIS)
Bertotti, G.; Magni, A.; Bonin, R.; Mayergoyz, I.D.; Serpico, C.
2005-01-01
Nonlinear magnetization dynamics under spin-polarized currents is discussed by the methods of the theory of nonlinear dynamical systems. The fixed points of the dynamics are calculated. It is shown that there may exist 2, 4, or 6 fixed points depending on the values of the external field and of the spin-polarized current. The stability of the fixed points is analyzed and the conditions for the occurrence of saddle-node and Hopf bifurcations are determined
Bifurcation analysis of magnetization dynamics driven by spin transfer
Energy Technology Data Exchange (ETDEWEB)
Bertotti, G. [IEN Galileo Ferraris, Strada delle Cacce 91, 10135 Turin (Italy); Magni, A. [IEN Galileo Ferraris, Strada delle Cacce 91, 10135 Turin (Italy); Bonin, R. [Dipartimento di Fisica, Politecnico di Torino, Corso degli Abbruzzi, 10129 Turin (Italy)]. E-mail: bonin@ien.it; Mayergoyz, I.D. [Department of Electrical and Computer Engineering, University of Maryland, College Park, Maryland 20742 (United States); Serpico, C. [Department of Electrical Engineering, University of Napoli Federico II, via Claudio 21, 80125 Naples (Italy)
2005-04-15
Nonlinear magnetization dynamics under spin-polarized currents is discussed by the methods of the theory of nonlinear dynamical systems. The fixed points of the dynamics are calculated. It is shown that there may exist 2, 4, or 6 fixed points depending on the values of the external field and of the spin-polarized current. The stability of the fixed points is analyzed and the conditions for the occurrence of saddle-node and Hopf bifurcations are determined.
HEMS inter-facility transfer: a case-mix analysis.
Di Rocco, Damien; Pasquier, Mathieu; Albrecht, Eric; Carron, Pierre-Nicolas; Dami, Fabrice
2018-05-16
Helicopter emergency medical services (HEMS) are popular rescue systems despite inconsistent evidence in the scientific literature to support their use for primary interventions, as well as for inter-facility transfer (IFT). There is little research about IFT by HEMS, hence questions remain about the appropriateness of this method of transport. The aim of this study was to describe a case-mix of operational and medical characteristics for IFT activity of a sole HEMS base, and identify indicators of over-triage. This is a retrospective study on HEMS IFT over 36 months, from January 1st 2013 to December 31st 2015. Medical and operational data from the database of the Emergency Department of Lausanne University Hospital, which provides the emergency physicians for this helicopter base, were reviewed. It included distance and time of flight transport, type of care during flight, and estimated distance of transport if conducted by ground. There were 2194 HEMS missions including 979 IFT (44.6%). Most transfers involved adults (> 17 years old; 799 patients, 81.6%). Forty patients (4.1%) were classified as having benefitted from resuscitation or life-saving measures performed in flight, 615 (62.8%) from emergency treatment and 324 (33.1%) from simple clinical examination. The median distance by air between hospitals was 35.4 km. The estimated median distance by road was 47.7 km. The median duration time from origin to destination by air was 12 min. This case-mix of IFTs by HEMS presents a high severity. There are many signs in favour of over-triage. We propose indicators to help choosing whether HEMS is the most appropriate mean of transport to perform the transfer regarding patient condition, geography, and medical competences available aboard ground ambulances; this may reduce over-triage.
Dimensional analysis of boiling heat transfer burnout conditions
International Nuclear Information System (INIS)
El-Mitwally, E.S.; Raafat, N.M.; Darwish, M.A.
1979-01-01
The first criteria in boiling water systems design, such as boiling water reactors, is that no burnout in the core is allowed to exist under any conditions of the reactor operation either during steady state operation or during any of the several postulated accidental transients, such as sudden interruption of coolant flow in the reactor core (due to pump failure or blockage of fuel channel). The aim of the present work is to obtain a correlation for the critical heat flux based on a theoretical study where the mechanism of burn out and the related hydrodynamic and heat transfer equations are considered. 8 refs
Anomalous heat transfer modes of nanofluids: a review based on statistical analysis
2011-01-01
This paper contains the results of a concise statistical review analysis of a large amount of publications regarding the anomalous heat transfer modes of nanofluids. The application of nanofluids as coolants is a novel practise with no established physical foundations explaining the observed anomalous heat transfer. As a consequence, traditional methods of performing a literature review may not be adequate in presenting objectively the results representing the bulk of the available literature. The current literature review analysis aims to resolve the problems faced by researchers in the past by employing an unbiased statistical analysis to present and reveal the current trends and general belief of the scientific community regarding the anomalous heat transfer modes of nanofluids. The thermal performance analysis indicated that statistically there exists a variable enhancement for conduction, convection/mixed heat transfer, pool boiling heat transfer and critical heat flux modes. The most popular proposed mechanisms in the literature to explain heat transfer in nanofluids are revealed, as well as possible trends between nanofluid properties and thermal performance. The review also suggests future experimentation to provide more conclusive answers to the control mechanisms and influential parameters of heat transfer in nanofluids. PMID:21711932
Directory of Open Access Journals (Sweden)
JUNG-SIK CHOI
2014-06-01
Full Text Available In this study, we proposed a newly designed sulfuric acid transfer system for the sulfur-iodine (SI thermochemical cycle. The proposed sulfuric acid transfer system was evaluated using a computational fluid dynamics (CFD analysis for investigating thermodynamic/hydrodynamic characteristics and material properties. This analysis was conducted to obtain reliable continuous operation parameters; in particular, a thermal analysis was performed on the bellows box and bellows at amplitudes and various frequencies (0.1, 0.5, and 1.0 Hz. However, the high temperatures and strongly corrosive operating conditions of the current sulfuric acid system present challenges with respect to the structural materials of the transfer system. To resolve this issue, we designed a novel transfer system using polytetrafluoroethylene (PTFE, Teflon® as a bellows material for the transfer of sulfuric acid. We also carried out a CFD analysis of the design. The CFD results indicated that the maximum applicable temperature of PTFE is about 533 K (260 °C, even though its melting point is around 600 K. This result implies that the PTFE is a potential material for the sulfuric acid transfer system. The CFD simulations also confirmed that the sulfuric acid transfer system was designed properly for this particular investigation.
Anomalous heat transfer modes of nanofluids: a review based on statistical analysis
Sergis, Antonis; Hardalupas, Yannis
2011-05-01
This paper contains the results of a concise statistical review analysis of a large amount of publications regarding the anomalous heat transfer modes of nanofluids. The application of nanofluids as coolants is a novel practise with no established physical foundations explaining the observed anomalous heat transfer. As a consequence, traditional methods of performing a literature review may not be adequate in presenting objectively the results representing the bulk of the available literature. The current literature review analysis aims to resolve the problems faced by researchers in the past by employing an unbiased statistical analysis to present and reveal the current trends and general belief of the scientific community regarding the anomalous heat transfer modes of nanofluids. The thermal performance analysis indicated that statistically there exists a variable enhancement for conduction, convection/mixed heat transfer, pool boiling heat transfer and critical heat flux modes. The most popular proposed mechanisms in the literature to explain heat transfer in nanofluids are revealed, as well as possible trends between nanofluid properties and thermal performance. The review also suggests future experimentation to provide more conclusive answers to the control mechanisms and influential parameters of heat transfer in nanofluids.
Anomalous heat transfer modes of nanofluids: a review based on statistical analysis
Directory of Open Access Journals (Sweden)
Sergis Antonis
2011-01-01
Full Text Available Abstract This paper contains the results of a concise statistical review analysis of a large amount of publications regarding the anomalous heat transfer modes of nanofluids. The application of nanofluids as coolants is a novel practise with no established physical foundations explaining the observed anomalous heat transfer. As a consequence, traditional methods of performing a literature review may not be adequate in presenting objectively the results representing the bulk of the available literature. The current literature review analysis aims to resolve the problems faced by researchers in the past by employing an unbiased statistical analysis to present and reveal the current trends and general belief of the scientific community regarding the anomalous heat transfer modes of nanofluids. The thermal performance analysis indicated that statistically there exists a variable enhancement for conduction, convection/mixed heat transfer, pool boiling heat transfer and critical heat flux modes. The most popular proposed mechanisms in the literature to explain heat transfer in nanofluids are revealed, as well as possible trends between nanofluid properties and thermal performance. The review also suggests future experimentation to provide more conclusive answers to the control mechanisms and influential parameters of heat transfer in nanofluids.
Three-Dimensional Heat Transfer Analysis of Metal Fasteners in Roofing Assemblies
Directory of Open Access Journals (Sweden)
Manan Singh
2016-11-01
Full Text Available Heat transfer analysis was performed on typical roofing assemblies using HEAT3, a three-dimensional heat transfer analysis software. The difference in heat transferred through the roofing assemblies considered is compared between two cases—without any steel fasteners and with steel fasteners. In the latter case, the metal roofing fasteners were arranged as per Factor Mutual Global (FMG approvals, in the field, perimeter, and corner zones of the roof. The temperature conditions used for the analysis represented summer and winter conditions for three separate Climate Zones (CZ namely Climate Zone 2 or CZ2 represented by Orlando, FL; CZ3 represented by Atlanta, GA; and CZ6 zone represented by St. Paul, MN. In all the climatic conditions, higher energy transfer was observed with increase in the number of metal fasteners attributed to high thermal conductivity of metals as compared to the insulation and other materials used in the roofing assembly. This difference in heat loss was also quantified in the form of percentage change in the overall or effective insulation of the roofing assembly for better understanding of the practical aspects. Besides, a comparison of 2D heat transfer analysis (using THERM software and 3D analysis using HEAT3 is also discussed proving the relevance of 3D over 2D heat transfer analysis.
System analysis for technology transfer readiness assessment of horticultural postharvest
Hayuningtyas, M.; Djatna, T.
2018-04-01
Availability of postharvest technology is becoming abundant, but only a few technologies are applicable and useful to a wider community purposes. Based on this problem it requires a significant readiness level of transfer technology approach. This system is reliable to access readiness a technology with level, from 1-9 and to minimize time of transfer technology in every level, time required technology from the selection process can be minimum. Problem was solved by using Relief method to determine ranking by weighting feasible criteria on postharvest technology in each level and PERT (Program Evaluation Review Technique) to schedule. The results from ranking process of post-harvest technology in the field of horticulture is able to pass level 7. That, technology can be developed to increase into pilot scale and minimize time required for technological readiness on PERT with optimistic time of 7,9 years. Readiness level 9 shows that technology has been tested on the actual conditions also tied with estimated production price compared to competitors. This system can be used to determine readiness of technology innovation that is derived from agricultural raw materials and passes certain stages.
Primary design and operation analysis of ITER air transfer system
International Nuclear Information System (INIS)
Wang Haitian; Li Ge; Qin Shijun
2010-01-01
Air transfer system (ATS) is a remote handling transfer, which can work in the nuclear radiation environment and can be driven by the electricity fully. Its motion power is provided by several servo motors. The remote control technology of ATS, which is China taking part in the plan of international Tokamak experimental reactor (ITER) and grasping this technology, is one of key technologies of ITER. The remote handling technology can lay the foundation for developing demonstration nuclear fusion power plant in China on self-reliance. Because there is gamma irradiation and hazard material in these ITER parts, all required maintenance of port plugs and inner components are been transmitted by ATS. The pick-up or drop-off these components are completed by means of a remotely controlled TCS system between the Vacuum Vessel and the Hot Cell through the bridge-gallery. Tokamak building includes three floors, including upper port, equatorial port and lower port, linked by a lift. According to each port level configuration and safety requirement, the radius of curvature with ATS trajectory is optimized, and a trajectory of each level is determined by positioned guidance beacons. At last, the results of computer aided design (CAD) show single trajectory guidance of ATS in each level is available. (authors)
Inference algorithms and learning theory for Bayesian sparse factor analysis
International Nuclear Information System (INIS)
Rattray, Magnus; Sharp, Kevin; Stegle, Oliver; Winn, John
2009-01-01
Bayesian sparse factor analysis has many applications; for example, it has been applied to the problem of inferring a sparse regulatory network from gene expression data. We describe a number of inference algorithms for Bayesian sparse factor analysis using a slab and spike mixture prior. These include well-established Markov chain Monte Carlo (MCMC) and variational Bayes (VB) algorithms as well as a novel hybrid of VB and Expectation Propagation (EP). For the case of a single latent factor we derive a theory for learning performance using the replica method. We compare the MCMC and VB/EP algorithm results with simulated data to the theoretical prediction. The results for MCMC agree closely with the theory as expected. Results for VB/EP are slightly sub-optimal but show that the new algorithm is effective for sparse inference. In large-scale problems MCMC is infeasible due to computational limitations and the VB/EP algorithm then provides a very useful computationally efficient alternative.
Inference algorithms and learning theory for Bayesian sparse factor analysis
Energy Technology Data Exchange (ETDEWEB)
Rattray, Magnus; Sharp, Kevin [School of Computer Science, University of Manchester, Manchester M13 9PL (United Kingdom); Stegle, Oliver [Max-Planck-Institute for Biological Cybernetics, Tuebingen (Germany); Winn, John, E-mail: magnus.rattray@manchester.ac.u [Microsoft Research Cambridge, Roger Needham Building, Cambridge, CB3 0FB (United Kingdom)
2009-12-01
Bayesian sparse factor analysis has many applications; for example, it has been applied to the problem of inferring a sparse regulatory network from gene expression data. We describe a number of inference algorithms for Bayesian sparse factor analysis using a slab and spike mixture prior. These include well-established Markov chain Monte Carlo (MCMC) and variational Bayes (VB) algorithms as well as a novel hybrid of VB and Expectation Propagation (EP). For the case of a single latent factor we derive a theory for learning performance using the replica method. We compare the MCMC and VB/EP algorithm results with simulated data to the theoretical prediction. The results for MCMC agree closely with the theory as expected. Results for VB/EP are slightly sub-optimal but show that the new algorithm is effective for sparse inference. In large-scale problems MCMC is infeasible due to computational limitations and the VB/EP algorithm then provides a very useful computationally efficient alternative.
Theory, analysis and design of RF interferometric sensors
Nguyen, Cam
2012-01-01
Theory, Analysis and Design of RF Interferometric Sensors presents the theory, analysis and design of RF interferometric sensors. RF interferometric sensors are attractive for various sensing applications that require every fine resolution and accuracy as well as fast speed. The book also presents two millimeter-wave interferometric sensors realized using RF integrated circuits. The developed millimeter-wave homodyne sensor shows sub-millimeter resolution in the order of 0.05 mm without correction for the non-linear phase response of the sensor's quadrature mixer. The designed millimeter-wave double-channel homodyne sensor provides a resolution of only 0.01 mm, or 1/840th of the operating wavelength, and can inherently suppress the non-linearity of the sensor's quadrature mixer. The experimental results of displacement and velocity measurement are presented as a way to demonstrate the sensing ability of the RF interferometry and to illustrate its many possible applications in sensing. The book is succinct, ye...
Applications of surface analysis and surface theory in tribology
Ferrante, John
1989-01-01
Tribology, the study of adhesion, friction and wear of materials, is a complex field which requires a knowledge of solid state physics, surface physics, chemistry, material science, and mechanical engineering. It has been dominated, however, by the more practical need to make equipment work. With the advent of surface analysis and advances in surface and solid-state theory, a new dimension has been added to the analysis of interactions at tribological interfaces. In this paper the applications of tribological studies and their limitations are presented. Examples from research at the NASA Lewis Research Center are given. Emphasis is on fundamental studies involving the effects of monolayer coverage and thick films on friction and wear. A summary of the current status of theoretical calculations of defect energetics is presented. In addition, some new theoretical techniques which enable simplified quantitative calculations of adhesion, fracture, and friction are discussed.
Probability theory versus simulation of petroleum potential in play analysis
Crovelli, R.A.
1987-01-01
An analytic probabilistic methodology for resource appraisal of undiscovered oil and gas resources in play analysis is presented. This play-analysis methodology is a geostochastic system for petroleum resource appraisal in explored as well as frontier areas. An objective was to replace an existing Monte Carlo simulation method in order to increase the efficiency of the appraisal process. Underlying the two methods is a single geologic model which considers both the uncertainty of the presence of the assessed hydrocarbon and its amount if present. The results of the model are resource estimates of crude oil, nonassociated gas, dissolved gas, and gas for a geologic play in terms of probability distributions. The analytic method is based upon conditional probability theory and a closed form solution of all means and standard deviations, along with the probabilities of occurrence. ?? 1987 J.C. Baltzer A.G., Scientific Publishing Company.
The flow analysis of supercavitating cascade by linear theory
Energy Technology Data Exchange (ETDEWEB)
Park, E.T. [Sung Kyun Kwan Univ., Seoul (Korea, Republic of); Hwang, Y. [Seoul National Univ., Seoul (Korea, Republic of)
1996-06-01
In order to reduce damages due to cavitation effects and to improve performance of fluid machinery, supercavitation around the cascade and the hydraulic characteristics of supercavitating cascade must be analyzed accurately. And the study on the effects of cavitation on fluid machinery and analysis on the performances of supercavitating hydrofoil through various elements governing flow field are critically important. In this study comparison of experiment results with the computed results of linear theory using singularity method was obtainable. Specially singularity points like sources and vortexes on hydrofoil and freestreamline were distributed to analyze two dimensional flow field of supercavitating cascade, and governing equations of flow field were derived and hydraulic characteristics of cascade were calculated by numerical analysis of the governing equations. 7 refs., 6 figs.
Wang, Lin
2013-01-01
Background: Cultural-historical activity theory is an important theory in modern psychology. In recent years, it has drawn more attention from related disciplines including information science. Argument: This paper argues that activity theory and domain analysis which uses the theory as one of its bases could bring about some important…
XPS analysis of the effect of fillers on PTFE transfer film development in sliding contacts
Blanchet, T. A.; Kennedy, F. E.; Jayne, D. T.
1993-01-01
The development of transfer films atop steel counterfaces in contact with unfilled and bronze-filled PTFE has been studied using X-ray photoelectron spectroscopy. The sliding apparatus was contained within the vacuum of the analytical system, so the effects of the native oxide, hydrocarbon, and adsorbed gaseous surface layers of the steel upon the PTFE transfer behavior could be studied in situ. For both the filled and the unfilled PTFE, cleaner surfaces promoted greater amounts of transfer. Metal fluorides, which formed at the transfer film/counterface interface, were found solely in cases where the native oxide had been removed to expose the metallic surface prior to sliding. These fluorides also were found at clean metal/PTFE interfaces formed in the absence of frictional contact. A fraction of these fluorides resulted from irradiation damage inherent in XPS analysis. PTFE transfer films were found to build up with repeated sliding passes, by a process in which strands of transfer filled in the remaining counterface area. Under these reported test conditions, the transfer process is not expected to continue atop previously deposited transfer films. The bronze-filled composite generated greater amounts of transfer than the unfilled PTFE. The results are discussed relative to the observed increase in wear resistance imparted to PTFE by a broad range of inorganic fillers.
Vent System Analysis for the Cryogenic Propellant Storage Transfer Ground Test Article
Hedayat, A
2013-01-01
To test and validate key capabilities and technologies required for future exploration elements such as large cryogenic propulsion stages and propellant depots, NASA is leading the efforts to develop and design the Cryogenic Propellant Storage and Transfer (CPST) Cryogenic Fluid Management (CFM) payload. The primary objectives of CPST payload are to demonstrate: 1) in-space storage of cryogenic propellants for long duration applications; and 2) in-space transfer of cryogenic propellants. The Ground Test Article (GTA) is a technology development version of the CPST payload. The GTA consists of flight-sized and flight-like storage and transfer tanks, liquid acquisition devices, transfer, and pressurization systems with all of the CPST functionality. The GTA is designed to perform integrated passive and active thermal storage and transfer performance testing with liquid hydrogen (LH2) in a vacuum environment. The GTA storage tank is designed to store liquid hydrogen and the transfer tank is designed to be 5% of the storage tank volume. The LH2 transfer subsystem is designed to transfer propellant from one tank to the other utilizing pressure or a pump. The LH2 vent subsystem is designed to prevent over-pressurization of the storage and transfer tanks. An in-house general-purpose computer program was utilized to model and simulate the vent subsystem operation. The modeling, analysis, and the results will be presented in the final paper.
Analysis of Charge Transfer for in Situ Li Intercalated Carbon Nanotubes
Rana, Kuldeep
2012-05-24
Vertically aligned carbon nanotube (VA-CNT) arrays have been synthesized with lithium (Li) intercalation through an alcohol-catalyzed chemical vapor deposition technique by using a Li-containing catalyst. Scanning electron microscopy images display that synthesized carbon nanotubes (CNTs) are dense and vertically aligned. The effect of the Li-containing catalyst on VA-CNTs has been studied by using Raman spectroscopy, X-ray photoelectron spectroscopy (XPS), and electron energy loss spectroscopy (EELS). XPS results show the change in binding energy of Li 1s and C 1s peaks, which indicates that Li is inserted in VA-CNTs during growth. Analysis of Raman spectra reveals that the G-band profile of CNTs synthesized with the Li-containing catalyst is shifted, suggesting an electronic interaction between Li and neighboring C atoms of the CNTs. The EELS spectra of the C K edge and Li K edge from CNTs also confirmed that Li is inserted into CNTs during synthesis. We have performed ab inito calculations based on density functional theory for a further understanding of the structural and electronic properties of Li intercalated CNTs, especially addressing the controversial charge-transfer state between Li and C. © 2012 American Chemical Society.
Analysis of Charge Transfer for in Situ Li Intercalated Carbon Nanotubes
Rana, Kuldeep; Kucukayan-Dogu, Gokce; Sen, H. Sener; Boothroyd, Chris; Gulseren, Oguz; Bengu, Erman
2012-01-01
Vertically aligned carbon nanotube (VA-CNT) arrays have been synthesized with lithium (Li) intercalation through an alcohol-catalyzed chemical vapor deposition technique by using a Li-containing catalyst. Scanning electron microscopy images display that synthesized carbon nanotubes (CNTs) are dense and vertically aligned. The effect of the Li-containing catalyst on VA-CNTs has been studied by using Raman spectroscopy, X-ray photoelectron spectroscopy (XPS), and electron energy loss spectroscopy (EELS). XPS results show the change in binding energy of Li 1s and C 1s peaks, which indicates that Li is inserted in VA-CNTs during growth. Analysis of Raman spectra reveals that the G-band profile of CNTs synthesized with the Li-containing catalyst is shifted, suggesting an electronic interaction between Li and neighboring C atoms of the CNTs. The EELS spectra of the C K edge and Li K edge from CNTs also confirmed that Li is inserted into CNTs during synthesis. We have performed ab inito calculations based on density functional theory for a further understanding of the structural and electronic properties of Li intercalated CNTs, especially addressing the controversial charge-transfer state between Li and C. © 2012 American Chemical Society.
Frank, M.J.W.; Kuipers, J.A.M.; Krishna, R.; van Swaaij, W.P.M.
1995-01-01
In Part I a general applicable model has been developed which calculates mass and heat transfer fluxes through a vapour/gas-liquid interface in case a reversible chemical reaction with associated heat effect takes place in the liquid phase. In this model the Maxwell-Stefan theory has been used to
Numerical verification of composite rods theory on multi-story buildings analysis
El-Din Mansour, Alaa; Filatov, Vladimir; Gandzhuntsev, Michael; Ryasny, Nikita
2018-03-01
In the article, a verification proposal of the composite rods theory on the structural analysis of skeletons for high-rise buildings. A testing design model been formed on which horizontal elements been represented by a multilayer cantilever beam operates on transverse bending on which slabs are connected with a moment-non-transferring connections and a multilayer columns represents the vertical elements. Those connections are sufficiently enough to form a shearing action can be approximated by a certain shear forces function, the thing which significantly reduces the overall static indeterminacy degree of the structural model. A system of differential equations describe the operation mechanism of the multilayer rods that solved using the numerical approach of successive approximations method. The proposed methodology to be used while preliminary calculations for the sake of determining the rigidity characteristics of the structure; are needed. In addition, for a qualitative assessment of the results obtained by other methods when performing calculations with the verification aims.
Vasconcelos, A.C.; Sen, B.A.; Rosa, A.; Ellis, D.
2012-01-01
This paper explores elaborations of Grounded Theory in relation to Arenas/Social Worlds Theory. The notions of arenas and social worlds were present in early applications of Grounded Theory but have not been as much used or recognised as the general Grounded Theory approach, particularly in the information studies field. The studies discussed here are therefore very unusual in information research. The empirical contexts of these studies are those of (1) the role of discourse in the organisat...
Energy Technology Data Exchange (ETDEWEB)
Yoo, Jae Hwan; Yoon, Jun Kyu [Gachon Univ., Seongnam (Korea, Republic of)
2013-04-15
In this study, the characteristics of the heat transfer coefficient and pressure drop were numerically analyzed according to the axis ratio (A R), pitch, location of vortex generator, and bump phase of the tube surface about an elliptical fin-tube heat exchanger. The boundary condition for CAD analysis was decided as a tube surface temperature of 348 K and inlet air velocity of 1.5 m/s. RCM 7th turbulent model was chosen as the numerical analysis for the sensitivity level. The analysis results indicated that the A R and transverse pitch decreased whereas the heat transfer coefficient increased. On the other hand, there was little difference in the longitudinal pitch. Furthermore, the heat transfer rate was more favorable when the vortex generator was located in front of the tube. Also, the bump phase of the tube surface indicated that the pressure drop and heat transfer were more favorable with the circle type than with the serrated type.
Analysis of radiative heat transfer in the presence of obscurations
International Nuclear Information System (INIS)
Finkelstein, L.; Weissman, Y.
1981-05-01
Numerical simulation of radiative heat transfer problems in general axisymmetric geometry in the presence of an active gas is considered. Such simulation requires subdivision of the radiating surfaces into discrete elements, which are in the present case radiating rings. While the effect of a participating medium is easily taken into account by integration along the lines of vision between the surface elements, the calculation of the different obscurations poses the main difficulty. We have written a closed expression which formulates the problem exactly, and then developed a systematic and compact computational approach to the obscuration problem in complex configurations. The present procedure is particularly suited to computer calculations associated with engineering applications in the aircraft and furnace industries. (author)
A delivery transfer function (DTF) analysis for helical tomotherapy
International Nuclear Information System (INIS)
Kissick, Michael W; Mackie, Thomas Rockwell; Jeraj, Robert
2007-01-01
The previous theoretical work of a delivery transfer function (DTF) in radiotherapy is expanded to include the unique intensity modulation method of helical tomotherapy. In addition to the collimation of each beamlet, and the Gaussian scatter convolution spreading of the dose that other radiotherapy units have, helical tomotherapy uses 51 small arcs of varying lengths to adjust the intensity. The blurring from these arcs is not taken into account during treatment planning. A theoretical DTF is constructed, and a calculation is performed which includes this unique source motion in relation to the other DTF components. Various typical delivery parameters are used to generate resolution maps for a constant intensity projection. Near the isocenter, the transverse (to a given beam direction) blurring is small but at larger radii (>6 cm), the source blurring dominates over leaf size. For most clinical situations, this inherent source motion blurring is expected to be negligible
Magnetization transfer analysis of cartilage repair tissue: a preliminary study
International Nuclear Information System (INIS)
Palmieri, F.; Keyzer, F. de; Maes, F.; Breuseghem, I. van
2006-01-01
To evaluate the magnetization transfer ratio (MTR) after two different cartilage repair procedures, and to compare these data with the MTR of normal cartilage. Twenty-seven patients with a proven cartilage defect were recruited: 13 were treated with autologous chondrocyte implantation (ACI) and 14 were treated with the microfracture technique (MFR). All patients underwent MRI examinations with MT-sequences before the surgical treatment, after 12 months (26 patients) and after 24 months (11 patients). Eleven patients received a complete follow-up study at all three time points (five of the ACI group and six of the MFR group). All images were transferred to a workstation to calculate MTR images. For every MT image set, different ROIs were delineated by two radiologists. Means were calculated per ROI type in the different time frames and in both groups of cartilage repair. The data were analyzed with unpaired t- and ANOVA tests, and by calculating Pearson's correlation coefficient. No significant differences were found in the MTR of fatty bone marrow, muscle and normal cartilage in the different time frames. There was a significant but small difference between the MTR of normal cartilage and the cartilage repair area after 12 months for both procedures. After 24 months, the MTR of ACI repaired cartilage (0.31±0.07) was not significantly different from normal cartilage MTR (0.34±0.05). The MTR of MFR repaired cartilage (0.28±0.02), still showed a significant difference from normal cartilage. The differences between damaged and repaired cartilage MTR are too small to enable MT-imaging to be a useful tool for postoperative follow-up of cartilage repair procedures. There is, however, an evolution towards normal MTR-values in the cartilage repair tissue (especially after ACI repair). (orig.)
International Nuclear Information System (INIS)
Guangming, Xiao; Yanxia, Du; Yewei, Gui; Lei, Liu; Xiaofeng, Yang; Dong, Wei
2014-01-01
The theories of heat transfer, thermodynamics and fluid dynamics are employed to develop the coupled heat transfer analytical methods for the heat-pipe-cooled thermal protection structure (HPC TPS), and a three-dimensional numerical method considering the sonic limit of heat pipe is proposed. To verify the calculation correctness, computations are carried out for a typical heat pipe and the results agree well with experimental data. Then, the heat transfer characteristics and limitations of HPC TPS are mainly studied. The studies indicate that the use of heat pipe can reduce the temperature at high heat flux region of structure efficiently. However, there is a frozen startup period before the heat pipe reaching a steady operating state, and the sonic limit will be a restriction on the heat transfer capability. Thus, the effects of frozen startup must be considered for the design of HPC TPS. The simulation model and numerical method proposed in this paper can predict the heat transfer characteristics of HPC TPS quickly and exactly, and the results will provide important references for the design or performance evaluation of HPC TPS. - Highlights: • Numerical methods for the heat-pipe-cooled thermal protection structure are studied. • Three-dimensional simulation model considering sonic limit of heat pipe is proposed. • The frozen startup process of the embedded heat pipe can be predicted exactly. • Heat transfer characteristics of TPS and limitations of heat pipe are discussed
Political Discourse Analysis Through Solving Problems of Graph Theory
Directory of Open Access Journals (Sweden)
Monica Patrut
2010-03-01
Full Text Available In this article, we show how, using graph theory, we can make a content analysis of political discourse. Assumptions of this analysis are:
- we have a corpus of speech of each party or candidate;
- we consider that speech conveys economic, political, socio-cultural values, these taking the form of words or word families;
- we consider that there are interdependences between the values of a political discourse; they are given by the co-occurrence of two values, as words in the text, within a well defined fragment, or they are determined by the internal logic of political discourse;
- established links between values in a political speech have associated positive numbers indicating the "power" of those links; these "powers" are defined according to both the number of co-occurrences of values, and the internal logic of the discourse where they occur.
In this context we intend to highlight the following:
a which is the dominant value in a political speech;
b which groups of values have ties between them and have no connection with the rest;
c which is the order in which political values should be set in order to obtain an equivalent but more synthetic speech compared to the already given one;
d which are the links between values that form the "core" political speech.
To solve these problems, we shall use the Political Analyst program. After that, we shall present the concepts necessary to the understanding of the introductory graph theory, useful in understanding the analysis of the software and then the operation of the program. This paper extends the previous paper [6].
Single phase-change analysis of two different PCMs filled in a heat transfer module
Energy Technology Data Exchange (ETDEWEB)
Lee, Dong Gyu; Kang, Chae Dong [Chonbuk National University, Jeonju (Korea, Republic of); Kim, Hyung Kuk [Hyundai Heavy Industries Co., Ulsan (Korea, Republic of)
2014-07-15
Phase change material(PCM) is tried to secondary heat source in solar heat pump system. A numerical study of the phase change dominant heat transfer is done with a heat transfer module, which consists of a water path(BRINE), heat transfer plates(HTP), and PCM layers of high-temperature one(HPCM, 78-79 .deg. C) and low-temperature one(LPCM, 28-29 .deg. C). There are five arrangements consisting of BRINE, HTP, HPCM, and LPCM layers in the heat transfer module. The time and heat transfer rate for PCM melting/solidification are compared between arrangements. And the numerical time without convection is compared to the experimental one for melting/solidification. From the numerical analysis, the time for melting/solidification is different to 10 hours, depending on the arrangement.
Decision theory, the context for risk and reliability analysis
International Nuclear Information System (INIS)
Kaplan, S.
1985-01-01
According to this model of the decision process then, the optimum decision is that option having the largest expected utility. This is the fundamental model of a decision situation. It is necessary to remark that in order for the model to represent a real-life decision situation, it must include all the options present in that situation, including, for example, the option of not deciding--which is itself a decision, although usually not the optimum one. Similarly, it should include the option of delaying the decision while the authors gather further information. Both of these options have probabilities, outcomes, impacts, and utilities like any option and should be included explicitly in the decision diagram. The reason for doing a quantitative risk or reliability analysis is always that, somewhere underlying there is a decision to be made. The decision analysis therefore always forms the context for the risk or reliability analysis, and this context shapes the form and language of that analysis. Therefore, they give in this section a brief review of the well-known decision theory diagram
DEFF Research Database (Denmark)
Hansen, Ernst; Mollerup, Jørgen
1999-01-01
The paper describes a method of simultaneous determination of the external and the solid phase mass-transfer coefficients from frontal analysis data. The protein flux to the solid particles is determined from the slope of the breakthrough curve and the mass-transfer coefficients are determined...
Volpi, Riccardo; Nassau, Racine; Nørby, Morten Steen; Linares, Mathieu
2016-09-21
We study, within Marcus theory, the possibility of the charge-transfer (CT) state splitting at organic interfaces and a subsequent transport of the free charge carriers to the electrodes. As a case study we analyze model anthracene-C60 interfaces. Kinetic Monte Carlo (KMC) simulations on the cold CT state were performed at a range of applied electric fields, and with the fields applied at a range of angles to the interface to simulate the action of the electric field in a bulk heterojunction (BHJ) interface. The results show that the inclusion of polarization in our model increases CT state dissociation and charge collection. The effect of the electric field on CT state splitting and free charge carrier conduction is analyzed in detail with and without polarization. Also, depending on the relative orientation of the anthracene and C60 molecules at the interface, CT state splitting shows different behavior with respect to both applied field strength and applied field angle. The importance of the hot CT in helping the charge carrier dissociation is also analyzed in our scheme.
Jensen, Kevin L.; Finkenstadt, Daniel; Shabaev, Andrew; Lambrakos, Samuel G.; Moody, Nathan A.; Petillo, John J.; Yamaguchi, Hisato; Liu, Fangze
2018-01-01
Recent experimental measurements of a bulk material covered with a small number of graphene layers reported by Yamaguchi et al. [NPJ 2D Mater. Appl. 1, 12 (2017)] (on bialkali) and Liu et al. [Appl. Phys. Lett. 110, 041607 (2017)] (on copper) and the needs of emission models in beam optics codes have lead to substantial changes in a Moments model of photoemission. The changes account for (i) a barrier profile and density of states factor based on density functional theory (DFT) evaluations, (ii) a Drude-Lorentz model of the optical constants and laser penetration depth, and (iii) a transmission probability evaluated by an Airy Transfer Matrix Approach. Importantly, the DFT results lead to a surface barrier profile of a shape similar to both resonant barriers and reflectionless wells: the associated quantum mechanical transmission probabilities are shown to be comparable to those recently required to enable the Moments (and Three Step) model to match experimental data but for reasons very different than the assumption by conventional wisdom that a barrier is responsible. The substantial modifications of the Moments model components, motivated by computational materials methods, are developed. The results prepare the Moments model for use in treating heterostructures and discrete energy level systems (e.g., quantum dots) proposed for decoupling the opposing metrics of performance that undermine the performance of advanced light sources like the x-ray Free Electron Laser. The consequences of the modified components on quantum yield, emittance, and emission models needed by beam optics codes are discussed.
Mahajan, Dhruv; Ramamoorthi, Ravi; Curless, Brian
2008-02-01
This paper develops a theory of frequency domain invariants in computer vision. We derive novel identities using spherical harmonics, which are the angular frequency domain analog to common spatial domain invariants such as reflectance ratios. These invariants are derived from the spherical harmonic convolution framework for reflection from a curved surface. Our identities apply in a number of canonical cases, including single and multiple images of objects under the same and different lighting conditions. One important case we consider is two different glossy objects in two different lighting environments. For this case, we derive a novel identity, independent of the specific lighting configurations or BRDFs, that allows us to directly estimate the fourth image if the other three are available. The identity can also be used as an invariant to detecttampering in the images. While this paper is primarily theoretical, it has the potential to lay the mathematical foundations for two important practical applications. First, we can develop more general algorithms for inverse rendering problems, which can directly relight and change material properties by transferring the BRDF or lighting from another object or illumination. Second, we can check the consistency of an image, to detect tampering or image splicing.
Rossi, Marco; Stockman, Gert-Jan; Rogier, Hendrik; Vande Ginste, Dries
2016-07-19
The efficiency of a wireless power transfer (WPT) system in the radiative near-field is inevitably affected by the variability in the design parameters of the deployed antennas and by uncertainties in their mutual position. Therefore, we propose a stochastic analysis that combines the generalized polynomial chaos (gPC) theory with an efficient model for the interaction between devices in the radiative near-field. This framework enables us to investigate the impact of random effects on the power transfer efficiency (PTE) of a WPT system. More specifically, the WPT system under study consists of a transmitting horn antenna and a receiving textile antenna operating in the Industrial, Scientific and Medical (ISM) band at 2.45 GHz. First, we model the impact of the textile antenna's variability on the WPT system. Next, we include the position uncertainties of the antennas in the analysis in order to quantify the overall variations in the PTE. The analysis is carried out by means of polynomial-chaos-based macromodels, whereas a Monte Carlo simulation validates the complete technique. It is shown that the proposed approach is very accurate, more flexible and more efficient than a straightforward Monte Carlo analysis, with demonstrated speedup factors up to 2500.
Directory of Open Access Journals (Sweden)
Marco Rossi
2016-07-01
Full Text Available The efficiency of a wireless power transfer (WPT system in the radiative near-field is inevitably affected by the variability in the design parameters of the deployed antennas and by uncertainties in their mutual position. Therefore, we propose a stochastic analysis that combines the generalized polynomial chaos (gPC theory with an efficient model for the interaction between devices in the radiative near-field. This framework enables us to investigate the impact of random effects on the power transfer efficiency (PTE of a WPT system. More specifically, the WPT system under study consists of a transmitting horn antenna and a receiving textile antenna operating in the Industrial, Scientific and Medical (ISM band at 2.45 GHz. First, we model the impact of the textile antenna’s variability on the WPT system. Next, we include the position uncertainties of the antennas in the analysis in order to quantify the overall variations in the PTE. The analysis is carried out by means of polynomial-chaos-based macromodels, whereas a Monte Carlo simulation validates the complete technique. It is shown that the proposed approach is very accurate, more flexible and more efficient than a straightforward Monte Carlo analysis, with demonstrated speedup factors up to 2500.
Rossi, Marco; Stockman, Gert-Jan; Rogier, Hendrik; Vande Ginste, Dries
2016-01-01
The efficiency of a wireless power transfer (WPT) system in the radiative near-field is inevitably affected by the variability in the design parameters of the deployed antennas and by uncertainties in their mutual position. Therefore, we propose a stochastic analysis that combines the generalized polynomial chaos (gPC) theory with an efficient model for the interaction between devices in the radiative near-field. This framework enables us to investigate the impact of random effects on the power transfer efficiency (PTE) of a WPT system. More specifically, the WPT system under study consists of a transmitting horn antenna and a receiving textile antenna operating in the Industrial, Scientific and Medical (ISM) band at 2.45 GHz. First, we model the impact of the textile antenna’s variability on the WPT system. Next, we include the position uncertainties of the antennas in the analysis in order to quantify the overall variations in the PTE. The analysis is carried out by means of polynomial-chaos-based macromodels, whereas a Monte Carlo simulation validates the complete technique. It is shown that the proposed approach is very accurate, more flexible and more efficient than a straightforward Monte Carlo analysis, with demonstrated speedup factors up to 2500. PMID:27447632
Strain transfer analysis of optical fiber based sensors embedded in an asphalt pavement structure
International Nuclear Information System (INIS)
Wang, Huaping; Xiang, Ping
2016-01-01
Asphalt pavement is vulnerable to random damage, such as cracking and rutting, which can be proactively identified by distributed optical fiber sensing technology. However, due to the material nature of optical fibers, a bare fiber is apt to be damaged during the construction process of pavements. Thus, a protective layer is needed for this application. Unfortunately, part of the strain of the host material is absorbed by the protective layer when transferring the strain to the sensing fiber. To account for the strain transfer error, in this paper a theoretical analysis of the strain transfer of a three-layered general model has been carried out by introducing Goodman’s hypothesis to describe the interfacial shear stress relationship. The model considers the viscoelastic behavior of the host material and protective layer. The effects of one crack in the host material and the sensing length on strain transfer relationship are been discussed. To validate the effectiveness of the strain transfer analysis, a flexible asphalt-mastic packaged distributed optical fiber sensor was designed and tested in a laboratory environment to monitor the distributed strain and appearance of cracks in an asphalt concrete beam at two different temperatures. The experimental results indicated that the developed strain transfer formula can significantly reduce the strain transfer error, and that the asphalt-mastic packaged optical fiber sensor can successfully monitor the distributed strain and identify local cracks. (paper)
Analysis of Heat Transfer in Cooling of a Hot Plate by Planar Impingement Jet
International Nuclear Information System (INIS)
Ahn, Dae Hwan; Kim, Dong Sik
2009-01-01
Water jet impingement cooling is used to remove heat from high-temperature surfaces such as hot steel plates in the steel manufacturing process (thermo-mechanical cooling process; TMCP). In those processes, uniform cooling is the most critical factor to ensure high strength steel and good quality. In this study, experiments are performed to measure the heat transfer coefficient together with the inverse heat conduction problem (IHCP) analysis for a plate cooled by planar water jet. In the inverse heat transfer analysis, spatial and temporal variations of heat transfer coefficient, with no information regarding its functional form, are determined by employing the conjugate gradient method with an adjoint problem. To estimate the two dimensional distribution of heat transfer coefficient and heat flux for planar waterjet cooling, eight thermo-couple are installed inside the plate. The results show that heat transfer coefficient is approximately uniform in the span-wise direction in the early stage of cooling. In the later stage where the forced-convection effect is important, the heat transfer coefficient becomes larger in the edge region. The surface temperature vs. heat flux characteristics are also investigated for the entire boiling regimes. In addition, the heat transfer rate for the two different plate geometries are compared at the same Reynolds number
Strain transfer analysis of optical fiber based sensors embedded in an asphalt pavement structure
Wang, Huaping; Xiang, Ping
2016-07-01
Asphalt pavement is vulnerable to random damage, such as cracking and rutting, which can be proactively identified by distributed optical fiber sensing technology. However, due to the material nature of optical fibers, a bare fiber is apt to be damaged during the construction process of pavements. Thus, a protective layer is needed for this application. Unfortunately, part of the strain of the host material is absorbed by the protective layer when transferring the strain to the sensing fiber. To account for the strain transfer error, in this paper a theoretical analysis of the strain transfer of a three-layered general model has been carried out by introducing Goodman’s hypothesis to describe the interfacial shear stress relationship. The model considers the viscoelastic behavior of the host material and protective layer. The effects of one crack in the host material and the sensing length on strain transfer relationship are been discussed. To validate the effectiveness of the strain transfer analysis, a flexible asphalt-mastic packaged distributed optical fiber sensor was designed and tested in a laboratory environment to monitor the distributed strain and appearance of cracks in an asphalt concrete beam at two different temperatures. The experimental results indicated that the developed strain transfer formula can significantly reduce the strain transfer error, and that the asphalt-mastic packaged optical fiber sensor can successfully monitor the distributed strain and identify local cracks.
Sensible Heat Transfer during Droplet Cooling: Experimental and Numerical Analysis
Directory of Open Access Journals (Sweden)
Emanuele Teodori
2017-06-01
Full Text Available This study presents the numerical reproduction of the entire surface temperature field resulting from a water droplet spreading on a heated surface, which is compared with experimental data. High-speed infrared thermography of the back side of the surface and high-speed images of the side view of the impinging droplet were used to infer on the solid surface temperature field and on droplet dynamics. Numerical reproduction of the phenomena was performed using OpenFOAM CFD toolbox. An enhanced volume of fluid (VOF model was further modified for this purpose. The proposed modifications include the coupling of temperature fields between the fluid and the solid regions, to account for transient heat conduction within the solid. The results evidence an extremely good agreement between the temporal evolution of the measured and simulated spreading factors of the considered droplet impacts. The numerical and experimental dimensionless surface temperature profiles within the solid surface and along the droplet radius, were also in good agreement. Most of the differences were within the experimental measurements uncertainty. The numerical results allowed relating the solid surface temperature profiles with the fluid flow. During spreading, liquid recirculation within the rim, leads to the appearance of different regions of heat transfer that can be correlated with the vorticity field within the droplet.
Heat transfer modelling and stability analysis of selective laser melting
International Nuclear Information System (INIS)
Gusarov, A.V.; Yadroitsev, I.; Bertrand, Ph.; Smurov, I.
2007-01-01
The process of direct manufacturing by selective laser melting basically consists of laser beam scanning over a thin powder layer deposited on a dense substrate. Complete remelting of the powder in the scanned zone and its good adhesion to the substrate ensure obtaining functional parts with improved mechanical properties. Experiments with single-line scanning indicate, that an interval of scanning velocities exists where the remelted tracks are uniform. The tracks become broken if the scanning velocity is outside this interval. This is extremely undesirable and referred to as the 'balling' effect. A numerical model of coupled radiation and heat transfer is proposed to analyse the observed instability. The 'balling' effect at high scanning velocities (above ∼20 cm/s for the present conditions) can be explained by the Plateau-Rayleigh capillary instability of the melt pool. Two factors stabilize the process with decreasing the scanning velocity: reducing the length-to-width ratio of the melt pool and increasing the width of its contact with the substrate
A non-perturbative analysis in finite volume gauge theory
International Nuclear Information System (INIS)
Koller, J.; State Univ. of New York, Stony Brook; Van Baal, P.; State Univ. of New York, Stony Brook
1988-01-01
We discuss SU(2) gauge theory on a three-torus using a finite volume expansion. Our discovery of natural coordinates allows us to obtain continuum results in a region where Monte Carlo data are also available. The obtained results agree well with the perturbative and semiclassical analysis for small volumes, and there is fair agreement with the Monte Carlo results in intermediate volumes. The simple picture which emerges for the approximate low energy dynamics is that of three interacting particles enclosed in a sphere, with zero total 'angular momentum'. The validity of an adiabatic approximation is investigated. The fundamentally new understanding gained, is that non-perturbative dynamics can be incorporated by imposing boundary conditions which arise through the nontrivial topology of configuration space. (orig.)
Empathy from the client's perspective: A grounded theory analysis.
MacFarlane, Peter; Anderson, Timothy; McClintock, Andrew S
2017-03-01
Although empathy is one of most robust predictors of client outcome, there is little consensus about how best to conceptualize this construct. The aim of the present research was to investigate clients' perceptions and in-session experiences of empathy. Semi-structured, video-assisted interpersonal process recall interviews were used to collect data from nine clients receiving individual psychotherapy at a university psychology clinic. Grounded theory analysis yielded a model consisting of three clusters: (1) relational context of empathy (i.e., personal relationship and professional relationship), (2) types of empathy (i.e., psychotherapists' cognitive empathy, psychotherapists' emotional empathy, and client attunement to psychotherapist), and (3) utility of empathy (i.e., process-related benefits and client-related benefits). These results suggest that empathy is a multi-dimensional, interactional process that affects-and is affected by-the broader relationship between client and psychotherapist.
Theory of sampling: four critical success factors before analysis.
Wagner, Claas; Esbensen, Kim H
2015-01-01
Food and feed materials characterization, risk assessment, and safety evaluations can only be ensured if QC measures are based on valid analytical data, stemming from representative samples. The Theory of Sampling (TOS) is the only comprehensive theoretical framework that fully defines all requirements to ensure sampling correctness and representativity, and to provide the guiding principles for sampling in practice. TOS also defines the concept of material heterogeneity and its impact on the sampling process, including the effects from all potential sampling errors. TOS's primary task is to eliminate bias-generating errors and to minimize sampling variability. Quantitative measures are provided to characterize material heterogeneity, on which an optimal sampling strategy should be based. Four critical success factors preceding analysis to ensure a representative sampling process are presented here.
GRAPHICAL ANALYSIS OF LAFFER'S THEORY FOR EUROPEAN UNION MEMBER STATES
Directory of Open Access Journals (Sweden)
LILIANA BUNESCU
2013-04-01
Full Text Available Most times the current situation of one or another country depends on the historical development of own tax system. A practical question of any governance is to determine the optimal taxation rate level, bringing to the state the highest tax revenues. A good place to start is with what is popularly known as the Laffer curve. This paper aims to determine in graphical terms the level where European economies ranks by using Laffer curve based on the data series provided by the European Commission and the World Bank. Graphical analysis of Laffer's theory can emphasize only the positioning on one or another side of point for maximum tax revenues, a position that can influence fiscal policy decisions. Conclusions at European Union level are simple. Value of taxation rate for fiscal optimal point varies from one Member State to another, from 48.9% in Denmark to 28% in Romania, with an average of 37.1% for the EU-27.
Analysis of radiative heat transfer impact in cross-flow tube and fin heat exchangers
Directory of Open Access Journals (Sweden)
Hanuszkiewicz-Drapała Małgorzata
2016-03-01
Full Text Available A cross-flow, tube and fin heat exchanger of the water – air type is the subject of the analysis. The analysis had experimental and computational form and was aimed for evaluation of radiative heat transfer impact on the heat exchanger performance. The main element of the test facility was an enlarged recurrent segment of the heat exchanger under consideration. The main results of measurements are heat transfer rates, as well as temperature distributions on the surface of the first fin obtained by using the infrared camera. The experimental results have been next compared to computational ones coming from a numerical model of the test station. The model has been elaborated using computational fluid dynamics software. The computations have been accomplished for two cases: without radiative heat transfer and taking this phenomenon into account. Evaluation of the radiative heat transfer impact in considered system has been done by comparing all the received results.
Development of a UF{sub 6} cylinder transient heat transfer/stress analysis model
Energy Technology Data Exchange (ETDEWEB)
Williams, W.R. [Martin Marietta Energy Systems, Inc., Oak Ridge, TN (United States)
1991-12-31
A heat transfer/stress analysis model is being developed to simulate the heating to a point of rupture of a cylinder containing UF{sub 6} when it is exposed to a fire. The assumptions underlying the heat transfer portion of the model, which has been the focus of work to date, will be discussed. A key aspect of this model is a lumped parameter approach to modeling heat transfer. Preliminary results and future efforts to develop an integrated thermal/stress model will be outlined.
Application of Extreme Value Theory to Crash Data Analysis.
Xu, Lan; Nusholtz, Guy
2017-11-01
A parametric model obtained by fitting a set of data to a function generally uses a procedure such as maximum likelihood or least squares. In general this will generate the best estimate for the distribution of the data overall but will not necessarily generate a reasonable estimation for the tail of the distribution unless the function fitted resembles the underlying distribution function. A distribution function can represent an estimate that is significantly different from the actual tail data, while the bulk of the data is reasonably represented by the central part of the fitted distribution. Extreme value theory can be used to improve the predictive capabilities of the fitted function in the tail region. In this study the peak-over-threshold approach from the extreme value theory was utilized to show that it is possible to obtain a better fit of the tail of a distribution than the procedures that use the entire distribution only. Additional constraints, on the current use of the extreme value approach with respect to the selection of the threshold (an estimate of the beginning of the tail region) that minimize the sensitivity to individual data samples associated with the tail section as well as contamination from the central distribution are used. Once the threshold is determined, the maximum likelihood method was used to fit the exceedances with the Generalized Pareto Distribution to obtain the tail distribution. The approach was then used in the analysis of airbag inflator pressure data from tank tests, crash velocity distribution and mass distribution from the field crash data (NASS). From the examples, the extreme (tail) distributions were better estimated with the Generalized Pareto Distribution, than a single overall distribution, along with the probability of the occurrence for a given extreme value, or a rare observation such as a high speed crash. It was concluded that the peak-over-threshold approach from extreme value theory can be a useful tool in
Jana, Sankar; Dalapati, Sasanka; Ghosh, Shalini; Kar, Samiran; Guchhait, Nikhil
2011-07-01
The excited state intramolecular charge transfer process in donor-chromophore-acceptor system 5-(4-dimethylamino-phenyl)-penta-2,4-dienenitrile (DMAPPDN) has been investigated by steady state absorption and emission spectroscopy in combination with Density Functional Theory (DFT) calculations. This flexible donor acceptor molecule DMAPPDN shows dual fluorescence corresponding to emission from locally excited and charge transfer state in polar solvent. Large solvatochromic emission shift, effect of variation of pH and HOMO-LUMO molecular orbital pictures support excited state intramolecular charge transfer process. The experimental findings have been correlated with the calculated structure and potential energy surfaces based on the Twisted Intramolecular Charge Transfer (TICT) model obtained at DFT level using B3LYP functional and 6-31+G( d, p) basis set. The theoretical potential energy surfaces for the excited states have been generated in vacuo and acetonitrile solvent using Time Dependent Density Functional Theory (TDDFT) and Time Dependent Density Functional Theory Polarized Continuum Model (TDDFT-PCM) method, respectively. All the theoretical results show well agreement with the experimental observations.
Information Foraging Theory: A Framework for Intelligence Analysis
2014-11-01
oceanographic information, human intelligence (HUMINT), open-source intelligence ( OSINT ), and information provided by other governmental departments [1][5...Human Intelligence IFT Information Foraging Theory LSA Latent Semantic Similarity MVT Marginal Value Theorem OFT Optimal Foraging Theory OSINT
Theory of economic cycle: analysis of аustrian school
Nesterenko, O.
2008-01-01
Essence of Austrian theory of economic cycle has been revealed. Differences of Austrian school approaches from theories of economic fluctuations in other streams of economic sciences have been analyzed
Phipps, M J S; Fox, T; Tautermann, C S; Skylaris, C-K
2017-04-11
First-principles quantum mechanical calculations with methods such as density functional theory (DFT) allow the accurate calculation of interaction energies between molecules. These interaction energies can be dissected into chemically relevant components such as electrostatics, polarization, and charge transfer using energy decomposition analysis (EDA) approaches. Typically EDA has been used to study interactions between small molecules; however, it has great potential to be applied to large biomolecular assemblies such as protein-protein and protein-ligand interactions. We present an application of EDA calculations to the study of ligands that bind to the thrombin protein, using the ONETEP program for linear-scaling DFT calculations. Our approach goes beyond simply providing the components of the interaction energy; we are also able to provide visual representations of the changes in density that happen as a result of polarization and charge transfer, thus pinpointing the functional groups between the ligand and protein that participate in each kind of interaction. We also demonstrate with this approach that we can focus on studying parts (fragments) of ligands. The method is relatively insensitive to the protocol that is used to prepare the structures, and the results obtained are therefore robust. This is an application to a real protein drug target of a whole new capability where accurate DFT calculations can produce both energetic and visual descriptors of interactions. These descriptors can be used to provide insights for tailoring interactions, as needed for example in drug design.
Kröner, C.; Altenbach, H.; Naumenko, K.
2009-05-01
The aim of this paper is to discuss the basic theories of interfaces able to transfer the results of an injection molding analyis of fiber-reinforced polymers, performed by using the commercial computer code Moldflow, to the structural analysis program ABAQUS. The elastic constants of the materials, such as Young's modulus, shear modulus, and Poisson's ratio, which depend on both the fiber content and the degree of fiber orientation, were calculated not by the usual method of "orientation averaging," but with the help of linear functions fitted to experimental data. The calculation and transfer of all needed data, such as material properties, geometry, directions of anisotropy, and so on, is performed by an interface developed. The interface is suit able for midplane elements in Moldflow. It calculates and transfers to ABAQUS all data necessary for the use of shell elements. In addition, a method is described how a nonlinear orthotropic behavior can be modeled starting from the generalized Hooke's law. It is also shown how such a model can be implemented in ABAQUS by means of a material subroutine. The results obtained according to this subroutine are compared with those based on an orthotropic, linear, elastic simulation.
Bivariate Rainfall and Runoff Analysis Using Shannon Entropy Theory
Rahimi, A.; Zhang, L.
2012-12-01
Rainfall-Runoff analysis is the key component for many hydrological and hydraulic designs in which the dependence of rainfall and runoff needs to be studied. It is known that the convenient bivariate distribution are often unable to model the rainfall-runoff variables due to that they either have constraints on the range of the dependence or fixed form for the marginal distributions. Thus, this paper presents an approach to derive the entropy-based joint rainfall-runoff distribution using Shannon entropy theory. The distribution derived can model the full range of dependence and allow different specified marginals. The modeling and estimation can be proceeded as: (i) univariate analysis of marginal distributions which includes two steps, (a) using the nonparametric statistics approach to detect modes and underlying probability density, and (b) fitting the appropriate parametric probability density functions; (ii) define the constraints based on the univariate analysis and the dependence structure; (iii) derive and validate the entropy-based joint distribution. As to validate the method, the rainfall-runoff data are collected from the small agricultural experimental watersheds located in semi-arid region near Riesel (Waco), Texas, maintained by the USDA. The results of unviariate analysis show that the rainfall variables follow the gamma distribution, whereas the runoff variables have mixed structure and follow the mixed-gamma distribution. With this information, the entropy-based joint distribution is derived using the first moments, the first moments of logarithm transformed rainfall and runoff, and the covariance between rainfall and runoff. The results of entropy-based joint distribution indicate: (1) the joint distribution derived successfully preserves the dependence between rainfall and runoff, and (2) the K-S goodness of fit statistical tests confirm the marginal distributions re-derived reveal the underlying univariate probability densities which further
PUTTING COMMUNICATION FRONT AND CENTER IN INSTITUTIONAL THEORY AND ANALYSIS
Cornelissen, J.P.; Durand, R.; Fiss, P.C.; Lammers, J.C.; Vaara, E.
2015-01-01
We conceptualize the roots of cognitive, linguistic, and communicative theories of institutions and outline the promise and potential of a stronger communication focus for institutional theory. In particular, we outline a theoretical approach that puts communication at the heart of theories of
Double seal door design and analysis for ITER transfer cask
International Nuclear Information System (INIS)
Liu, C.L.; Yao, D.M.; Cheng, T.
2007-01-01
DSD (Double seal door) design concept was introduced. 3-D model work was performed for DSD in the three typical regions, such as upper port, equatorial port, divertor port. The numerical analysis for some typical components was done based on Finite Element (FE) method by using ANSYS code, especially for the optimization activities. The rescue procedures of the DSD was discussed which could benefit a little for future engineering implementation. The design and analysis work can support and be the important reference for future procurement. (authors)
Statistical Analysis of Hypercalcaemia Data related to Transferability
DEFF Research Database (Denmark)
Frølich, Anne; Nielsen, Bo Friis
2005-01-01
In this report we describe statistical analysis related to a study of hypercalcaemia carried out in the Copenhagen area in the ten year period from 1984 to 1994. Results from the study have previously been publised in a number of papers [3, 4, 5, 6, 7, 8, 9] and in various abstracts and posters...... at conferences during the late eighties and early nineties. In this report we give a more detailed description of many of the analysis and provide some new results primarily by simultaneous studies of several databases....
Sulik-Górecka, Aleksandra
2018-06-01
Modern manufacturing entities often operate in capital groups, and their role is sometimes limited to the function of cost centers. From the legal point of view, however, they are separate entities obliged to apply transfer pricing regulations. Meeting the requirements of the arm's length principle can be very difficult at this time, given the relationships and conflicts of interest in the capital group. Complexity increases in capital groups operating in different countries, due to differences in tax regulations. The main purpose of the paper is to demonstrate that the need to valuate the sale of finished goods to a manufacturing entity, which is a subject to a different tax jurisdiction, may lead to a problem of compliance with the arm's length principle. In addition, the paper proposes a methodology for comparability analysis that may be used by manufacturing entities to defend conditions of setting transfer pricing. The paper presents the different functional profiles of manufacturing entities and points out the difficulties that they may encounter when preparing the comparability analysis. It has also been noted that there are differences in transfer pricing regulations in different countries, for example by analyzing Polish and Czech regulations. The lack of uniform benchmarking legislation can cause inconsistencies in the selection of comparable data, resulting in differences in transfer pricing. The paper uses the method of legal regulation review and analysis of results of published studies concerning the scope of transfer pricing and comparability analysis. The paper also adopts a case study analysis.
Improving Family Forest Knowledge Transfer through Social Network Analysis
Gorczyca, Erika L.; Lyons, Patrick W.; Leahy, Jessica E.; Johnson, Teresa R.; Straub, Crista L.
2012-01-01
To better engage Maine's family forest landowners our study used social network analysis: a computational social science method for identifying stakeholders, evaluating models of engagement, and targeting areas for enhanced partnerships. Interviews with researchers associated with a research center were conducted to identify how social network…
Lattice field theories: non-perturbative methods of analysis
International Nuclear Information System (INIS)
Weinstein, M.
1978-01-01
A lecture is given on the possible extraction of interesting physical information from quantum field theories by studying their semiclassical versions. From the beginning the problem of solving for the spectrum states of any given continuum quantum field theory is considered as a giant Schroedinger problem, and then some nonperturbative methods for diagonalizing the Hamiltonian of the theory are explained without recourse to semiclassical approximations. The notion of a lattice appears as an artifice to handle the problems associated with the familiar infrared and ultraviolet divergences of continuum quantum field theory and in fact for all but gauge theories. 18 references
Weng, Fuzhong
1992-01-01
A theory is developed for discretizing the vector integro-differential radiative transfer equation including both solar and thermal radiation. A complete solution and boundary equations are obtained using the discrete-ordinate method. An efficient numerical procedure is presented for calculating the phase matrix and achieving computational stability. With natural light used as a beam source, the Stokes parameters from the model proposed here are compared with the analytical solutions of Chandrasekhar (1960) for a Rayleigh scattering atmosphere. The model is then applied to microwave frequencies with a thermal source, and the brightness temperatures are compared with those from Stamnes'(1988) radiative transfer model.
Energy Technology Data Exchange (ETDEWEB)
Lara-Castells, María Pilar de, E-mail: Pilar.deLara.Castells@csic.es; Bartolomei, Massimiliano [Instituto de Física Fundamental (C.S.I.C.), Serrano 123, E-28006 Madrid (Spain); Mitrushchenkov, Alexander O. [Laboratoire Modélisation et Simulation Multi Echelle, Université Paris-Est, MSME UMR 8208 CNRS, 5 bd Descartes, 77454 Marne-la-Vallée (France); Stoll, Hermann [Institut für Theoretische Chemie, Universität Stuttgart, D-70550 Stuttgart (Germany)
2015-11-21
The accuracy and transferability of the electronic structure approach combining dispersionless density functional theory (DFT) [K. Pernal et al., Phys. Rev. Lett. 103, 263201 (2009)] with the method of increments [H. Stoll, J. Chem. Phys. 97, 8449 (1992)], are validated for the interaction between the noble-gas Ne, Ar, Kr, and Xe atoms and coronene/graphene/graphite surfaces. This approach uses the method of increments for surface cluster models to extract intermonomer dispersion-like (2- and 3-body) correlation terms at coupled cluster singles and doubles and perturbative triples level, while periodic dispersionless density functionals calculations are performed to estimate the sum of Hartree-Fock and intramonomer correlation contributions. Dispersion energy contributions are also obtained using DFT-based symmetry-adapted perturbation theory [SAPT(DFT)]. An analysis of the structure of the X/surface (X = Ne, Ar, Kr, and Xe) interaction energies shows the excellent transferability properties of the leading intermonomer correlation contributions across the sequence of noble-gas atoms, which are also discussed using the Drude oscillator model. We further compare these results with van der Waals-(vdW)-corrected DFT-based approaches. As a test of accuracy, the energies of the low-lying nuclear bound states supported by the laterally averaged X/graphite potentials (X = {sup 3}He, {sup 4}He, Ne, Ar, Kr, and Xe) are calculated and compared with the best estimations from experimental measurements and an atom-bond potential model using the ab initio-assisted fine-tuning of semiempirical parameters. The bound-state energies determined differ by less than 6–7 meV (6%) from the atom-bond potential model. The crucial importance of including incremental 3-body dispersion-type terms is clearly demonstrated, showing that the SAPT(DFT) approach effectively account for these terms. With the deviations from the best experimental-based estimations smaller than 2.3 meV (1.9%), the
Analysis of elastic scattering at low momentum transfer
International Nuclear Information System (INIS)
Pumplin, J.
1991-11-01
A method for analyzing high energy elastic scattering data is described, which improves on previous methods to extract σ tot , σ el , B, and ρ=ReM(0)/ImM(0) from experiment by properly allowing for the curvature of 1ndσ/dt with t. The method is used to make a critical analysis of data at √s=19.4, 546, and 1800 GeV. It is found that previous analyses systematically underestimate the forward slope B. The large value of ρ obtained by UA4 at √s=546 GeV is shown to be doubtful. The method described here should aid in the analysis of forthcoming data from UA4/2 and E710. (orig.)
Gambler Risk Perception: A Mental Model and Grounded Theory Analysis.
Spurrier, Michael; Blaszczynski, Alexander; Rhodes, Paul
2015-09-01
Few studies have investigated how gamblers perceive risk or the role of risk perception in disordered gambling. The purpose of the current study therefore was to obtain data on lay gamblers' beliefs on these variables and their effects on decision-making, behaviour, and disordered gambling aetiology. Fifteen regular lay gamblers (non-problem/low risk, moderate risk and problem gamblers) completed a semi-structured interview following mental models and grounded theory methodologies. Gambler interview data was compared to an expert 'map' of risk-perception, to identify comparative gaps or differences associated with harmful or safe gambling. Systematic overlapping processes of data gathering and analysis were used to iteratively extend, saturate, test for exception, and verify concepts and themes emerging from the data. The preliminary findings suggested that gambler accounts supported the presence of expert conceptual constructs, and to some degree the role of risk perception in protecting against or increasing vulnerability to harm and disordered gambling. Gambler accounts of causality, meaning, motivation, and strategy were highly idiosyncratic, and often contained content inconsistent with measures of disordered gambling. Disordered gambling appears heavily influenced by relative underestimation of risk and overvaluation of gambling, based on explicit and implicit analysis, and deliberate, innate, contextual, and learned processing evaluations and biases.
International Migration, Income Taxes and Transfers: A Welfare Analysis
Michael S. Michael
2002-01-01
An important issue in public policy debates is the effect of international migration on welfare in source and host countries. We address this issue by constructing a general equilibrium model of a two-class source or host country. Each country produces many traded and non-traded goods, uses income taxes and distributes the tax receipts equally to all individuals. The analysis examines the effects of permanent migration on class, and national welfare. We show, among other things, that marginal...
Nuclear analysis software. Pt. 1: Spectrum transfer and reformatting (SPEDAC)
International Nuclear Information System (INIS)
1991-01-01
GANAAS (Gamma, Activity, and Neutron Activation Analysis System) is one in the family of software packages developed under the auspices of the International Atomic Energy Agency. Primarily, the package was intended to support the IAEA Technical Assistance and Cooperation projects in developing countries. However, it is open domain software that can be copied and used by anybody, except for commercial purposes. All the nuclear analysis software provided by the IAEA has the same design philosophy and similar structure. The intention was to provide the user with maximum flexibility, at the same time with a simple and logical organization that requires minimum digging through the manuals. GANAAS is a modular system. It consists of several programmes that can be installed on the hard disk as the are needed. Obviously, some parts of they system are required in all cases. Those are installed at the beginning, without consulting the operator. GANAAS offers the opportunity to expand and improve the system. The gamma spectrum evaluation programmes using different fitting algorithms can be added to GANAAS, under the condition that the format of their input and output files corresponds to the rules of GANAAS. The same applies to the quantitative analysis parts of the programme
Theoretical analysis and experimental study of oxygen transfer under regular and non-breaking waves
Institute of Scientific and Technical Information of China (English)
尹则高; 梁丙臣; 王乐
2013-01-01
The dissolved oxygen concentration is an important index of water quality, and the atmosphere is one of the important sources of the dissolved oxygen. In this paper, the mass conservation law and the dimensional analysis method are employed to study the oxygen transfer under regular and non-breaking waves, and a unified oxygen transfer coefficient equation is obtained with consi-deration of the effect of kinetic energy and wave period. An oxygen transfer experiment for the intermediate depth water wave is per-formed to measure the wave parameters and the dissolved oxygen concentration. The experimental data and the least squares method are used to determine the constant in the oxygen transfer coefficient equation. The experimental data and the previous reported data are also used to further validate the oxygen transfer coefficient, and the agreement is satisfactory. The unified equation shows that the oxygen transfer coefficient increases with the increase of a parameter coupled with the wave height and the wave length, but it de-creases with the increase of the wave period, which has a much greater influence on the oxygen transfer coefficient than the coupled parameter.
Heat transfer and thermal stress analysis in fluid-structure coupled field
International Nuclear Information System (INIS)
Li, Ming-Jian; Pan, Jun-Hua; Ni, Ming-Jiu; Zhang, Nian-Mei
2015-01-01
In this work, three-dimensional simulation on conjugate heat transfer in a fluid-structure coupled field was carried out. The structure considered is from the dual-coolant lithium-lead (DCLL) blanket, which is the key technology of International Thermo-nuclear Experimental Reactor (ITER). The model was developed based on finite element-finite volume method and was employed to investigate mechanical behaviours of Flow Channel Insert (FCI) and heat transfer in the blanket under nuclear reaction. Temperature distribution, thermal deformation and thermal stresses were calculated in this work, and the effects of thermal conductivity, convection heat transfer coefficient and flow velocity were analyzed. Results show that temperature gradients and thermal stresses of FCI decrease when FCI has better heat conductivity. Higher convection heat transfer coefficient will result in lower temperature, thermal deformations and stresses in FCI. Analysis in this work could be a theoretical basis of blanket optimization. - Highlights: • We use FVM and FEM to investigate FCI structural safety considering heat transfer and FSI effects. • Higher convective heat transfer coefficient is beneficial for the FCI structural safety without much affect to bulk flow temperature. • Smaller FCI thermal conductivity can better prevent heat leakage into helium, yet will increase FCI temperature gradient and thermal stress. • Three-dimensional simulation on conjugate heat transfer in a fluid-structure coupled field was carried out
Energy Technology Data Exchange (ETDEWEB)
Rak, Zs.; Rost, C. M.; Lim, M.; Maria, J.-P.; Brenner, D. W. [Department of Materials Science and Engineering, North Carolina State University, Raleigh, North Carolina 27695-7907 (United States); Sarker, P.; Toher, C.; Curtarolo, S. [Department of Mechanical Engineering and Materials Science and Center for Materials Genomics, Duke University, Durham, North Carolina 27708 (United States)
2016-09-07
Density functional theory calculations were carried out for three entropic rocksalt oxides, (Mg{sub 0.1}Co{sub 0.1}Ni{sub 0.1}Cu{sub 0.1}Zn{sub 0.1})O{sub 0.5}, termed J14, and J14 + Li and J14 + Sc, to understand the role of charge neutrality and electronic states on their properties, and to probe whether simple expressions may exist that predict stability. The calculations predict that the average lattice constants of the ternary structures provide good approximations to that of the random structures. For J14, Bader charges are transferable between the binary, ternary, and random structures. For J14 + Sc and J14 + Li, average Bader charges in the entropic structures can be estimated from the ternary compositions. Addition of Sc to J14 reduces the majority of Cu, which show large displacements from ideal lattice sites, along with reduction of a few Co and Ni cations. Addition of Li to J14 reduces the lattice constant, consistent with experiment, and oxidizes some of Co as well as some of Ni and Cu. The Bader charges and spin-resolved density of states (DOS) for Co{sup +3} in J14 + Li are very different from Co{sup +2}, while for Cu and Ni the Bader charges form continuous distributions and the two DOS are similar for the two oxidation states. Experimental detection of different oxidation states may therefore be challenging for Cu and Ni compared to Co. Based on these results, empirical stability parameters for these entropic oxides may be more complicated than those for non-oxide entropic solids.
Who uses nursing theory? A univariate descriptive analysis of five years' research articles.
Bond, A Elaine; Eshah, Nidal Farid; Bani-Khaled, Mohammed; Hamad, Atef Omar; Habashneh, Samira; Kataua', Hussein; al-Jarrah, Imad; Abu Kamal, Andaleeb; Hamdan, Falastine Rafic; Maabreh, Roqia
2011-06-01
Since the early 1950s, nursing leaders have worked diligently to build the Scientific Discipline of Nursing, integrating Theory, Research and Practice. Recently, the role of theory has again come into question, with some scientists claiming nurses are not using theory to guide their research, with which to improve practice. The purposes of this descriptive study were to determine: (i) Were nursing scientists' research articles in leading nursing journals based on theory? (ii) If so, were the theories nursing theories or borrowed theories? (iii) Were the theories integrated into the studies, or were they used as organizing frameworks? Research articles from seven top ISI journals were analysed, excluding regularly featured columns, meta-analyses, secondary analysis, case studies and literature reviews. The authors used King's dynamic Interacting system and Goal Attainment Theory as an organizing framework. They developed consensus on how to identify the integration of theory, searching the Title, Abstract, Aims, Methods, Discussion and Conclusion sections of each research article, whether quantitative or qualitative. Of 2857 articles published in the seven journals from 2002 to, and including, 2006, 2184 (76%) were research articles. Of the 837 (38%) authors who used theories, 460 (55%) used nursing theories, 377 (45%) used other theories: 776 (93%) of those who used theory integrated it into their studies, including qualitative studies, while 51 (7%) reported they used theory as an organizing framework for their studies. Closer analysis revealed theory principles were implicitly implied, even in research reports that did not explicitly report theory usage. Increasing numbers of nursing research articles (though not percentagewise) continue to be guided by theory, and not always by nursing theory. Newer nursing research methods may not explicitly state the use of nursing theory, though it is implicitly implied. © 2010 The Authors. Scandinavian Journal of Caring
Directory of Open Access Journals (Sweden)
Nguyen Van Han
2014-08-01
Full Text Available Discourse analysis, as Murcia and Olshtain (2000 assume, is a vast study of language in use that extends beyond sentence level, and it involves a more cognitive and social perspective on language use and communication exchanges. Holding a wide range of phenomena about language with society, culture and thought, discourse analysis contains various approaches: speech act, pragmatics, conversation analysis, variation analysis, and critical discourse analysis. Each approach works in its different domain to discourse. For one dimension, it shares the same assumptions or general problems in discourse analysis with the other approaches: for instance, the explanation on how we organize language into units beyond sentence boundaries, or how language is used to convey information about the world, ourselves and human relationships (Schiffrin 1994: viii. For other dimensions, each approach holds its distinctive characteristics contributing to the vastness of discourse analysis. This paper will mainly discuss two approaches to discourse analysis- conversation analysis and speech act theory- and will attempt to point out some similarities as well as contrasting features between the two approaches, followed by a short reflection on their strengths and weaknesses in the essence of each approach. The organizational and discourse features in the exchanges among three teachers at the College of Finance and Customs in Vietnam will be analysed in terms of conversation analysis and speech act theory.
Seismic analysis with FEM for fuel transfer system of PWR nuclear power plant
International Nuclear Information System (INIS)
Jia Xiaofeng; Liu Pengliang; Bi Xiangjun; Ji Shunying
2012-01-01
In the PWR nuclear power plant, the function of the fuel transfer system (FTS) is to transfer the fuel assembly between the reactor building and the fuel building. The seismic analysis of the transfer system structure should be carried out to ensure the safety under OBE and SSE. Therefore, the ANASYS 12.0 software is adopted to construct the finite element analysis model for the fuel transfer system in a million kilowatt nuclear power plant. For the various configurations of FTS in the operating process, the stresses of the main structures, such as the transfer tube, fuel assembly container, fuel conveyor car, lifting frame in the reactor building, lifting frame in the fuel building, support and guide structure of conveyor car and the lifting frame in both buildings, are computed. The stresses are combined with the method of square root of square sum (SRSS) and assessed under various seismic conditions based on RCCM code, the results of the assessment satisfy the code. The results show that the stresses of the fuel transfer system structure meet the strength requirement, meanwhile, it can withstand the earthquake well. (authors)
Transferring the Incremental Capacity Analysis to Lithium-Sulfur Batteries
DEFF Research Database (Denmark)
Knap, Vaclav; Kalogiannis, Theodoros; Purkayastha, Rajlakshmi
2017-01-01
In order to investigate the battery degradation and to estimate their health, various techniques can be applied. One of them, which is widely used for Lithium-ion batteries, is the incremental capacity analysis (ICA). In this work, we apply the ICA to Lithium-Sulfur batteries, which differ in many...... aspects from Lithium-ion batteries and possess unique behavior. One of the challenges of applying the ICA to Lithium-Sulfur batteries is the representation of the IC curves, as their voltage profiles are often non-monotonic, resulting in more complex IC curves. The ICA is at first applied to charge...
Directory of Open Access Journals (Sweden)
Peng Hu
2017-02-01
Full Text Available Electrothermal energy storage (ETES provides bulk electricity storage based on heat pump and heat engine technologies. A subcritical ETES is described in this paper. Based on the extremum principle of entransy dissipation, a geometry model is developed for heat transfer optimization for subcritical ETES. The exergy during the heat transfer process is deduced in terms of entropy production. The geometry model is validated by the extremum principle of entropy production. The theoretical analysis results show that the extremum principle of entransy dissipation is an effective criterion for the optimization, and the optimum heat transfer for different cases with the same mass flux or pressure has been discussed. The optimum heat transfer can be achieved by adjusting the mass flux and pressure of the working fluid. It also reveals that with the increase of mass flux, there is a minimum exergy in the range under consideration, and the exergy decreases with the increase of the pressure.
Multicell slug flow heat transfer analysis of finite LMFBR bundles
International Nuclear Information System (INIS)
Yeung, M.K.; Wolf, L.
1978-12-01
An analytical two-dimensional, multi-region, multi-cell technique has been developed for the thermal analysis of LMFBR rod bundles. Local temperature fields of various unit cells were obtained for 7, 19, and 37-rod bundles of different geometries and power distributions. The validity of the technique has been verified by its excellent agreement with the THTB calculational result. By comparing the calculated fully-developed circumferential clad temperature distribution with those of the experimental measurements, an axial correction factor has been derived to account for the entrance effect for practical considerations. Moreover, the knowledge of the local temperature field of the rod bundle leads to the determination of the effective mixing lengths L/sub ij/ for adjacent subchannels of various geometries. It was shown that the implementation of the accurately determined L/sub ij/ into COBRA-IIIC calculations has fairly significant effects on intersubchannel mixing. In addition, a scheme has been proposed to couple the 2-D distributed and lumped parameter calculation by COBRA-IIIC such that the entrance effect can be implanted into the distributed parameter analysis. The technique has demonstrated its applicability for a 7-rod bundle and the results of calculation were compared to those of three-dimensional analyses and experimental measurements
IMMAN: free software for information theory-based chemometric analysis.
Urias, Ricardo W Pino; Barigye, Stephen J; Marrero-Ponce, Yovani; García-Jacas, César R; Valdes-Martiní, José R; Perez-Gimenez, Facundo
2015-05-01
The features and theoretical background of a new and free computational program for chemometric analysis denominated IMMAN (acronym for Information theory-based CheMoMetrics ANalysis) are presented. This is multi-platform software developed in the Java programming language, designed with a remarkably user-friendly graphical interface for the computation of a collection of information-theoretic functions adapted for rank-based unsupervised and supervised feature selection tasks. A total of 20 feature selection parameters are presented, with the unsupervised and supervised frameworks represented by 10 approaches in each case. Several information-theoretic parameters traditionally used as molecular descriptors (MDs) are adapted for use as unsupervised rank-based feature selection methods. On the other hand, a generalization scheme for the previously defined differential Shannon's entropy is discussed, as well as the introduction of Jeffreys information measure for supervised feature selection. Moreover, well-known information-theoretic feature selection parameters, such as information gain, gain ratio, and symmetrical uncertainty are incorporated to the IMMAN software ( http://mobiosd-hub.com/imman-soft/ ), following an equal-interval discretization approach. IMMAN offers data pre-processing functionalities, such as missing values processing, dataset partitioning, and browsing. Moreover, single parameter or ensemble (multi-criteria) ranking options are provided. Consequently, this software is suitable for tasks like dimensionality reduction, feature ranking, as well as comparative diversity analysis of data matrices. Simple examples of applications performed with this program are presented. A comparative study between IMMAN and WEKA feature selection tools using the Arcene dataset was performed, demonstrating similar behavior. In addition, it is revealed that the use of IMMAN unsupervised feature selection methods improves the performance of both IMMAN and WEKA
Quantifying information transfer by protein domains: Analysis of the Fyn SH2 domain structure
Directory of Open Access Journals (Sweden)
Serrano Luis
2008-10-01
Full Text Available Abstract Background Efficient communication between distant sites within a protein is essential for cooperative biological response. Although often associated with large allosteric movements, more subtle changes in protein dynamics can also induce long-range correlations. However, an appropriate formalism that directly relates protein structural dynamics to information exchange between functional sites is still lacking. Results Here we introduce a method to analyze protein dynamics within the framework of information theory and show that signal transduction within proteins can be considered as a particular instance of communication over a noisy channel. In particular, we analyze the conformational correlations between protein residues and apply the concept of mutual information to quantify information exchange. Mapping out changes of mutual information on the protein structure then allows visualizing how distal communication is achieved. We illustrate the approach by analyzing information transfer by the SH2 domain of Fyn tyrosine kinase, obtained from Monte Carlo dynamics simulations. Our analysis reveals that the Fyn SH2 domain forms a noisy communication channel that couples residues located in the phosphopeptide and specificity binding sites and a number of residues at the other side of the domain near the linkers that connect the SH2 domain to the SH3 and kinase domains. We find that for this particular domain, communication is affected by a series of contiguous residues that connect distal sites by crossing the core of the SH2 domain. Conclusion As a result, our method provides a means to directly map the exchange of biological information on the structure of protein domains, making it clear how binding triggers conformational changes in the protein structure. As such it provides a structural road, next to the existing attempts at sequence level, to predict long-range interactions within protein structures.
An Inverse Kinematic Approach Using Groebner Basis Theory Applied to Gait Cycle Analysis
2013-03-01
AN INVERSE KINEMATIC APPROACH USING GROEBNER BASIS THEORY APPLIED TO GAIT CYCLE ANALYSIS THESIS Anum Barki AFIT-ENP-13-M-02 DEPARTMENT OF THE AIR...copyright protection in the United States. AFIT-ENP-13-M-02 AN INVERSE KINEMATIC APPROACH USING GROEBNER BASIS THEORY APPLIED TO GAIT CYCLE ANALYSIS THESIS...APPROACH USING GROEBNER BASIS THEORY APPLIED TO GAIT CYCLE ANALYSIS Anum Barki, BS Approved: Dr. Ronald F. Tuttle (Chairman) Date Dr. Kimberly Kendricks
Analysis of trace gases at ppb levels by proton transfer reaction mass spectrometry (PTR-MS)
International Nuclear Information System (INIS)
Lindinger, W.; Hansel, A.
1996-01-01
A proton transfer reaction mass spectrometry (PTR-MS) system has been developed which allows for on-line measurements of trace gas components with concentrations as low as 1 ppb. The method is based on reactions of H 3 O + ions, which perform non-dissociative proton transfer to most of the common organic trace constituents but do not react with any of the components present in clean air. Examples of medical information obtained by means of breath analysis, of environmental trace analysis, and examples in the field of food chemistry demonstrate the wide applicability of the method. (Authors)
San Liang, X.; Robinson, Allan R.
2007-12-01
A novel localized finite-amplitude hydrodynamic stability analysis is established in a unified treatment for the study of real oceanic and atmospheric processes, which are in general highly nonlinear, and intermittent in space and time. We first re-state the classical definition using the multi-scale energy and vorticity analysis (MS-EVA) developed in Liang and Robinson [Liang, X.S., Robinson, A.R., 2005. Localized multiscale energy and vorticity analysis. I. Fundamentals. Dyn. Atmos. Oceans 38, 195-230], and then manipulate certain global operators to achieve the temporal and spatial localization. The key of the spatial localization is transfer-transport separation, which is made precise with the concept of perfect transfer, while relaxation of marginalization leads to the localization of time. In doing so the information of transfer lost in the averages is retrieved and an easy-to-use instability metric is obtained. The resulting metric is field-like (Eulerian), conceptually generalizing the classical formalism, a bulk notion over the whole system. In this framework, an instability has a structure, which is of particular use for open flow processes. We check the structure of baroclinic instability with the benchmark Eady model solution, and the Iceland-Faeroe Frontal (IFF) intrusion, a highly localized and nonlinear process occurring frequently in the region between Iceland and Faeroe Islands. A clear isolated baroclinic instability is identified around the intrusion, which is further found to be characterized by the transition from a spatially growing mode to a temporally growing mode. We also check the consistency of the MS-EVA dynamics with the barotropic Kuo model. An observation is that a local perturbation burst does not necessarily imply an instability: the perturbation energy could be transported from other processes occurring elsewhere. We find that our analysis yields a Kuo theorem-consistent mean-eddy interaction, which is not seen in a conventional
Arul Dhas, D.; Hubert Joe, I.; Roy, S. D. D.; Balachandran, S.
2015-01-01
A widespread exploration on the intra-molecular charge transfer interaction through an efficient π-conjugated path from a strong electron-donor group (amino) to a strong electron-acceptor group (nitro) has been carried out using FTIR, FT-Raman, UV-Vis, fluorescence and NMR spectra on insecticide compound 4-benzyloxy-2-nitroaniline. Density functional theory method is used to determine optimized molecular geometry, harmonic vibrational wavenumbers and intensities using 6-311G(d,p) basis set by means of Gaussian 09W program suit. A comprehensive investigation on the sp2 to sp3 hybridization and non-planarity property has been performed. Natural bond orbital analysis is used to study the existence of C-H⋯O, N-H⋯O and C-H⋯π proper and improper hydrogen bonds. The HOMO and LUMO analysis reveals the possibility of charge transfer within the molecule. A complete assignment of the experimental absorption peaks in the ultraviolet region has also been performed. Isotropic chemical shifts of 13C, 1H, 15N and 18O NMR and nuclear spin-spin coupling constants have been computed using the gauge-invariant atomic orbital method. The biological activity of substituent amino and nitro groups are evident from the hydrogen bonds through which the target amino acids are linked to the drug as evidenced from molecular docking.
Kumar, Anil; Sevilla, Michael D.
2009-01-01
On one-electron oxidation all molecules including DNA bases become more acidic in nature. For the GC base pair experiments suggest that a facile proton transfer takes place in the G•+-C base pair from N1 of G•+ to N3 of cytosine. This intra-base pair proton transfer reaction has been extensively considered using theoretical methods for the gas phase and it is predicted that the proton transfer is slightly unfavorable in disagreement with experiment. In the present study, we consider the effect of the first hydration layer on the proton transfer reaction in G•+-C by the use of density functional theory (DFT), B3LYP/6-31+G** calculations of the G•+-C base pair in the presence of 6 and 11 water molecules. Under the influence of hydration of 11 waters, a facile proton transfer from N1 of G•+ to N3 of C is predicted. The zero point energy (ZPE) corrected forward and backward energy barriers, for the proton transfer from N1 of G•+ to N3 of C, was found to be 1.4 and 2.6 kcal/mol, respectively. The proton transferred G•-(H+)C + 11H2O was found to be 1.2 kcal/mol more stable than G•+-C + 11H2O in agreement with experiment. The present calculation demonstrates that the inclusion of the first hydration shell around G•+-C base pair has an important effect on the internal proton transfer energetics. PMID:19485319
Thermal radiation heat transfer
Howell, John R; Mengüç, M Pinar
2011-01-01
Providing a comprehensive overview of the radiative behavior and properties of materials, the fifth edition of this classic textbook describes the physics of radiative heat transfer, development of relevant analysis methods, and associated mathematical and numerical techniques. Retaining the salient features and fundamental coverage that have made it popular, Thermal Radiation Heat Transfer, Fifth Edition has been carefully streamlined to omit superfluous material, yet enhanced to update information with extensive references. Includes four new chapters on Inverse Methods, Electromagnetic Theory, Scattering and Absorption by Particles, and Near-Field Radiative Transfer Keeping pace with significant developments, this book begins by addressing the radiative properties of blackbody and opaque materials, and how they are predicted using electromagnetic theory and obtained through measurements. It discusses radiative exchange in enclosures without any radiating medium between the surfaces-and where heat conduction...
Layers of protection analysis in the framework of possibility theory.
Ouazraoui, N; Nait-Said, R; Bourareche, M; Sellami, I
2013-11-15
An important issue faced by risk analysts is how to deal with uncertainties associated with accident scenarios. In industry, one often uses single values derived from historical data or literature to estimate events probability or their frequency. However, both dynamic environments of systems and the need to consider rare component failures may make unrealistic this kind of data. In this paper, uncertainty encountered in Layers Of Protection Analysis (LOPA) is considered in the framework of possibility theory. Data provided by reliability databases and/or experts judgments are represented by fuzzy quantities (possibilities). The fuzzy outcome frequency is calculated by extended multiplication using α-cuts method. The fuzzy outcome is compared to a scenario risk tolerance criteria and the required reduction is obtained by resolving a possibilistic decision-making problem under necessity constraint. In order to validate the proposed model, a case study concerning the protection layers of an operational heater is carried out. Copyright © 2013 Elsevier B.V. All rights reserved.
International Nuclear Information System (INIS)
Densmore, Jeffery D.; Larsen, Edward W.
2004-01-01
The equations of nonlinear, time-dependent radiative transfer are known to yield the equilibrium diffusion equation as the leading-order solution of an asymptotic analysis when the mean-free path and mean-free time of a photon become small. We apply this same analysis to the Fleck-Cummings, Carter-Forest, and N'kaoua Monte Carlo approximations for grey (frequency-independent) radiative transfer. Although Monte Carlo simulation usually does not require the discretizations found in deterministic transport techniques, Monte Carlo methods for radiative transfer require a time discretization due to the nonlinearities of the problem. If an asymptotic analysis of the equations used by a particular Monte Carlo method yields an accurate time-discretized version of the equilibrium diffusion equation, the method should generate accurate solutions if a time discretization is chosen that resolves temperature changes, even if the time steps are much larger than the mean-free time of a photon. This analysis is of interest because in many radiative transfer problems, it is a practical necessity to use time steps that are large compared to a mean-free time. Our asymptotic analysis shows that: (i) the N'kaoua method has the equilibrium diffusion limit, (ii) the Carter-Forest method has the equilibrium diffusion limit if the material temperature change during a time step is small, and (iii) the Fleck-Cummings method does not have the equilibrium diffusion limit. We include numerical results that verify our theoretical predictions
application of the reissners plate theory in the delamination analysis ...
African Journals Online (AJOL)
Dr Obe
layer to another [4, 5]. However, this ... displacement transfers from one place to another and that elementary constituents is necessary in the vicinity of .... Where K stands for the search operator between ... P. A New Large Time Algorithm for.
Heat and Mass Transfer of Vacuum Cooling for Porous Foods-Parameter Sensitivity Analysis
Directory of Open Access Journals (Sweden)
Zhijun Zhang
2014-01-01
Full Text Available Based on the theory of heat and mass transfer, a coupled model for the porous food vacuum cooling process is constructed. Sensitivity analyses of the process to food density, thermal conductivity, specific heat, latent heat of evaporation, diameter of pores, mass transfer coefficient, viscosity of gas, and porosity were examined. The simulation results show that the food density would affect the vacuum cooling process but not the vacuum cooling end temperature. The surface temperature of food was slightly affected and the core temperature is not affected by the changed thermal conductivity. The core temperature and surface temperature are affected by the changed specific heat. The core temperature and surface temperature are affected by the changed latent heat of evaporation. The core temperature is affected by the diameter of pores. But the surface temperature is not affected obviously. The core temperature and surface temperature are not affected by the changed gas viscosity. The parameter sensitivity of mass transfer coefficient is obvious. The core temperature and surface temperature are affected by the changed mass transfer coefficient. In all the simulations, the end temperature of core and surface is not affected. The vacuum cooling process of porous medium is a process controlled by outside process.
Factors Analysis of Spontaneous Abortion after Thawed-vitrified Blastocysts Transfer
Institute of Scientific and Technical Information of China (English)
Dong YANG; Zheng-yi SUN; Cheng-yan DENG; Qi YU; Fang-fang HE
2008-01-01
Objective To investigate the factors resulting in spontaneous abortion after transferring frozen-thawing blastocysts. Methods A total of 108 cases transferring vitrified blastocysts were divided into two groups: abortion group (n =20) and ongoing group (n=88). Cytogenetic analysis of apoblemas was performed in 12 cases of the abortion.Results The overall spontaneous abortion rate was 18.50%(20/108) and the early spontaneous rate was 16.67%(18/108). ,4 significant difference in maternal age was observed (abortion group: 33.3±4.0 years, ongoing group: 31.0±3.6 years, P=0.02). No difference in other parameters was found. Cytogenetic analysis of apoblemas was obtained for 12 cases, and 2 specimens were contaminated. Seven of ten patients had abnormal karyotypes. Conclusion The underlying cause of spontaneous abortion after transferring frozen thawing blastocysts appears to be abnormal karyotypes.Advancing maternal age seems to increase the risk of spontaneous abortion.
CFD analysis on heat transfer in low Prandtl number fluid flows
Energy Technology Data Exchange (ETDEWEB)
Borgohain, A.; Maheshwari, N.K.; Vijayan, P.K.; Sinha, R.K., E-mail: bananta@barc.gov.in [Bhabha Atomic Research Centre, Reactor Engineering Div., Trombay, Mumbai (India)
2011-07-01
Use of Computational Fluid Dynamics (CFD) code is helpful for designing liquid metal cooled nuclear reactor systems. Before using any CFD code proper evaluation of the code is essential for simulation of heat transfer in liquid metal flow. In this paper, a review of the literature on the correlations for liquid metal heat transfer is carried out and a comparison with experimental results is performed. CFD analysis is carried out using PHOENICS-3.6 code on heat transfer in molten Lead Bismuth Eutectic (LBE) flowing through tube. Turbulent flow analyses are carried out for the evaluation of the CFD code. The CFD results are compared with the available correlations. Assessment of various turbulence models and correlations for turbulent Prandtl number in the tube geometry are carried out. From the analysis it is found that, the CFD prediction can be improved with modified turbulent Prandtl number in the turbulence models. (author)
An analysis of the concept of equilibrium in organization theory
Gazendam, H.W.M.; Simons, John L.
1998-01-01
This article analyzes how the equilibrium concept is used in four organization theories: the theories of Fayol, Mintzberg, Morgan, and Volberda. Equilibrium can be defined as balance, fit or requisite variety. Equilibrium is related to observables dependent on the definition of organization as work
An Analysis of Stochastic Game Theory for Multiagent Reinforcement Learning
National Research Council Canada - National Science Library
Bowling, Michael
2000-01-01
.... In this paper we contribute a comprehensive presentation of the relevant techniques for solving stochastic games from both the game theory community and reinforcement learning communities. We examine the assumptions and limitations of these algorithms, and identify similarities between these algorithms, single agent reinforcement learners, and basic game theory techniques.
Theories of conduct disorder: a causal modelling analysis
Krol, N.P.C.M.; Morton, J.; Bruyn, E.E.J. De
2004-01-01
Background: If a clinician has to make decisions on diagnosis and treatment, he or she is confronted with a variety of causal theories. In order to compare these theories a neutral terminology and notational system is needed. The Causal Modelling framework involving three levels of description –
Principals' Leadership and Teachers' Motivation: Self-Determination Theory Analysis
Eyal, Ori; Roth, Guy
2011-01-01
Purpose: The purpose of this paper is to investigate the relationship between educational leadership and teacher's motivation. The research described here was anchored in the convergence of two fundamental theories of leadership and motivation: the full range model of leadership and self-determination theory. The central hypotheses were that…
MEANING TRANSFER ANALYSIS OF BALINESE ARTS TERMS INTO ENGLISH AND FRENCH: A COMPARATIVE STUDY
Directory of Open Access Journals (Sweden)
Putu Weddha Savitri
2015-11-01
Full Text Available In order to show and promote Balinese culture to the incoming tourists, many specific terms, especially in arts terms, must be well translated. This paper aims at analyzing the meaning transfer of Balinese Arts Terms into English and French found in Tourism Promotion Book published by Bali Government Tourism Department in two languages versions. The analysis focused on the techniques or procedures applied in transferring Balinese art terms into English (TL1 and French (TL2. Besides, it is also to figure out the most common technique used by the translator in transferring the meanings. The findings showed that there are three techniques used to transfer the meaning of the SL into the TL 1, those are descriptive, transcription, and functional equivalence, meanwhile, there are three translation techniques: transcription, functional equivalence, and formal equivalence and one translation procedure: cultural equivalence used in transferring the SL meaning to TL 2. Transcription technique, usually called borrowing was mostly used by the translator in the meaning transfer from the SL to both the target languages in order to retain the SL meaning in the TL.
DEFF Research Database (Denmark)
Min, Hao
This report discusses the relationship between the Chinese intellectual property systems which counter with the climate change and the transfer of clean technology, and states how to encourage the developed countries transfer the clean technology to the developing countries according to the relat...... property countering the climate changes; the analysis of current technology transfer modes relating to the climate; the difficulties of Chinese countering climate changes technology transfer and strategic thinking....
National Research Council Canada - National Science Library
2007-01-01
.... A meta-analysis was performed with training transfer as a dependent variable and post-training independent variables of supervisor support, subordinate support, peer support, workplace support...
DEFF Research Database (Denmark)
Zawadzki, Pawel; Rossmeisl, Jan; Jacobsen, Karsten Wedel
2011-01-01
We analyze the deformation of the potential energy surface (PES) due to the incorrect description of fractional electron systems (the nonlinearity of the energy with electron number) within a (semi) local density functional theory (DFT). Particularly sensitive to this failure are polaronic systems...
Faes, L; Porta, A; Cucino, R; Cerutti, S; Antolini, R; Nollo, G
2004-06-01
Although the concept of transfer function is intrinsically related to an input-output relationship, the traditional and widely used estimation method merges both feedback and feedforward interactions between the two analyzed signals. This limitation may endanger the reliability of transfer function analysis in biological systems characterized by closed loop interactions. In this study, a method for estimating the transfer function between closed loop interacting signals was proposed and validated in the field of cardiovascular and cardiorespiratory variability. The two analyzed signals x and y were described by a bivariate autoregressive model, and the causal transfer function from x to y was estimated after imposing causality by setting to zero the model coefficients representative of the reverse effects from y to x. The method was tested in simulations reproducing linear open and closed loop interactions, showing a better adherence of the causal transfer function to the theoretical curves with respect to the traditional approach in presence of non-negligible reverse effects. It was then applied in ten healthy young subjects to characterize the transfer functions from respiration to heart period (RR interval) and to systolic arterial pressure (SAP), and from SAP to RR interval. In the first two cases, the causal and non-causal transfer function estimates were comparable, indicating that respiration, acting as exogenous signal, sets an open loop relationship upon SAP and RR interval. On the contrary, causal and traditional transfer functions from SAP to RR were significantly different, suggesting the presence of a considerable influence on the opposite causal direction. Thus, the proposed causal approach seems to be appropriate for the estimation of parameters, like the gain and the phase lag from SAP to RR interval, which have a large clinical and physiological relevance.
Analysis of the heat transfer in double and triple concentric tube heat exchangers
Rădulescu, S.; Negoiţă, L. I.; Onuţu, I.
2016-08-01
The tubular heat exchangers (shell and tube heat exchangers and concentric tube heat exchangers) represent an important category of equipment in the petroleum refineries and are used for heating, pre-heating, cooling, condensation and evaporation purposes. The paper presents results of analysis of the heat transfer to cool a petroleum product in two types of concentric tube heat exchangers: double and triple concentric tube heat exchangers. The cooling agent is water. The triple concentric tube heat exchanger is a modified constructive version of double concentric tube heat exchanger by adding an intermediate tube. This intermediate tube improves the heat transfer by increasing the heat area per unit length. The analysis of the heat transfer is made using experimental data obtained during the tests in a double and triple concentric tube heat exchanger. The flow rates of fluids, inlet and outlet temperatures of water and petroleum product are used in determining the performance of both heat exchangers. Principally, for both apparatus are calculated the overall heat transfer coefficients and the heat exchange surfaces. The presented results shows that triple concentric tube heat exchangers provide better heat transfer efficiencies compared to the double concentric tube heat exchangers.
Inter-subchannel heat transfer modeling for a subchannel analysis of liquid metal-cooled reactors
International Nuclear Information System (INIS)
Hae-Yong, Jeong; Kwi-Seok, Ha; Young-Min, Kwon; Yong-Bum, Lee; Dohee, Hahn
2007-01-01
In a subchannel approach, the temperature, pressure and velocity in a subchannel are averaged, and one representative thermal-hydraulic condition specifies the state of a subchannel. To enhance the predictability of a subchannel analysis code, it is required to model the inter-subchannel heat transfer between the adjacent subchannels as accurately as possible. One of the critical parameters which determine the thermal-hydraulic behavior of the coolant in subchannels is the heat conduction between two neighboring sub-channels. This portion of a heat transfer becomes more important in the design of an LMR (Liquid Metal-cooled Reactor) because of the high heat capacity of the liquid metal coolant. The other important part of heat transfer is the mixing of flow as a form of cross flow. Especially, the turbulent mixing caused by the eddy motion of fluid across the gap between the subchannels enhances the exchange of the momentum and the energy through the gap with no net transport of the mass. Major results of recent efforts on these modeling have been implemented in a subchannel analysis code MATRA-LMR-FB. The analysis shows that the accuracy of a subchannel analysis code is improved by enhancing the models describing the conduction heat transfer and the cross-flow mixing, especially at low flow rate. (authors)
Noise and ac impedance analysis of ion transfer kinetics at the micro liquid/liquid interface
Czech Academy of Sciences Publication Activity Database
Josypčuk, Oksana; Holub, Karel; Mareček, Vladimír
2015-01-01
Roč. 56, JUL 2015 (2015), s. 43-45 ISSN 1388-2481 R&D Projects: GA ČR GA13-04630S Institutional support: RVO:61388955 Keywords : noise analysis * liquid/liquid interface * ion transfer kinetics Subject RIV: CG - Electrochemistry Impact factor: 4.569, year: 2015
Analysis of observables in Chern-Simons perturbation theory
International Nuclear Information System (INIS)
Alvarez, M.; Labastida, J.M.F.
1993-01-01
Chern-Simons theory with gauge group SU(N) is analyzed from a perturbation theory point of view. Computations up to order g 6 of the vacuum expectation value of the unknot are carried out and it is shown that agreement with the exact result by Witten implies no quantum correction at two loops for the two-point function. In addition, it is shown from a perturbation theory point of view that the framing dependence of the vacuum expectation value of an arbitrary knot factorizes in the form predicted by Witten. (orig.)
International Nuclear Information System (INIS)
Esaka, Fumitaka; Esaka, Konomi T.; Magara, Masaaki; Sakurai, Satoshi; Usuda, Shigekazu; Watanabe, Kazuo
2006-01-01
The technique of single particle transfer was applied to quantitative analysis with total-reflection X-ray fluorescence (TXRF) spectrometry. The technique was evaluated by performing quantitative analysis of individual Cu particles with diameters between 3.9 and 13.2 μm. The direct quantitative analysis of the Cu particle transferred onto a Si carrier gave a discrepancy between measured and calculated Cu amounts due to the absorption effects of incident and fluorescent X-rays within the particle. By the correction for the absorption effects, the Cu amounts in individual particles could be determined with the deviation within 10.5%. When the Cu particles were dissolved with HNO 3 solution prior to the TXRF analysis, the deviation was improved to be within 3.8%. In this case, no correction for the absorption effects was needed for quantification
Longworth, John W.; Menz, Kenneth M.
1980-01-01
This paper is addressed to the traditional problem of demonstrating the relevance of production theory to management-oriented people. Activity analysis, it is argued, is the most appropriate pedagogic framework within which to commence either a production economics or a farm management course. Production economics theory has not been widely accepted as a useful method for the analysis of practical management problems. The theory has been traditionally presented in terms of continuous function...
Verification of radiation heat transfer analysis in KSTAR PFC and vacuum vessel during baking
Energy Technology Data Exchange (ETDEWEB)
Yoo, S.Y. [Chungnam National University, 79 Daehak-ro, Yuseong-gu, Daejeon 34167 (Korea, Republic of); Kim, Y.J., E-mail: k43689@nfri.re.kr [National Fusion Research Institute, 169-148 Gwahang-ro, Yuseong-gu, Daejeon 34133 (Korea, Republic of); Kim, S.T.; Jung, N.Y.; Im, D.S.; Gong, J.D.; Lee, J.M.; Park, K.R.; Oh, Y.K. [National Fusion Research Institute, 169-148 Gwahang-ro, Yuseong-gu, Daejeon 34133 (Korea, Republic of)
2016-11-01
Highlights: • Thermal network is used to analyze heat transfer from PFC to VV. • Three heat transfer rate equations are derived based on the thermal network. • The equations is verified using Experimental data and design documents. • Most of the heat lost in tokamak is transferred to experimental room air. • The heat loss to the air is 101 kW of the total heat loss of 154 kW in tokamak. - Abstract: KSTAR PFC (Plasma Facing Component) and VV (Vacuum Vessel) were not arrived at the target temperatures in bake-out phase, which are 300 °C and 110 °C, respectively. The purpose of this study is to find out the reason why they have not been reached the target temperature. A thermal network analysis is used to investigate the radiation heat transfer from PFC to VV, and the thermal network is drawn up based on the actual KSTAR tokamak. The analysis model consists of three equations, and is solved using the EES (Engineering Equation Solver). The heat transfer rates obtained with the analysis model is verified using the experimental data at the KSTAR bake-out phase. The analyzed radiation heat transfer rates from PFC to VV agree quite well with those of experiment throughout the bake-out phase. Heat loss from PFC to experimental room air via flange of VV is also calculated and compared, which is found be the main reason of temperature gap between the target temperature and actually attained temperature of KSTAR PFC.
Verification of radiation heat transfer analysis in KSTAR PFC and vacuum vessel during baking
International Nuclear Information System (INIS)
Yoo, S.Y.; Kim, Y.J.; Kim, S.T.; Jung, N.Y.; Im, D.S.; Gong, J.D.; Lee, J.M.; Park, K.R.; Oh, Y.K.
2016-01-01
Highlights: • Thermal network is used to analyze heat transfer from PFC to VV. • Three heat transfer rate equations are derived based on the thermal network. • The equations is verified using Experimental data and design documents. • Most of the heat lost in tokamak is transferred to experimental room air. • The heat loss to the air is 101 kW of the total heat loss of 154 kW in tokamak. - Abstract: KSTAR PFC (Plasma Facing Component) and VV (Vacuum Vessel) were not arrived at the target temperatures in bake-out phase, which are 300 °C and 110 °C, respectively. The purpose of this study is to find out the reason why they have not been reached the target temperature. A thermal network analysis is used to investigate the radiation heat transfer from PFC to VV, and the thermal network is drawn up based on the actual KSTAR tokamak. The analysis model consists of three equations, and is solved using the EES (Engineering Equation Solver). The heat transfer rates obtained with the analysis model is verified using the experimental data at the KSTAR bake-out phase. The analyzed radiation heat transfer rates from PFC to VV agree quite well with those of experiment throughout the bake-out phase. Heat loss from PFC to experimental room air via flange of VV is also calculated and compared, which is found be the main reason of temperature gap between the target temperature and actually attained temperature of KSTAR PFC.
Theoretical Analysis of Proton Relays in Electrochemical Proton-Coupled Electron Transfer
International Nuclear Information System (INIS)
Auer, Benjamin; Fernandez, Laura; Hammes-Schiffer, Sharon
2011-01-01
The coupling of long-range electron transfer to proton transport over multiple sites plays a vital role in many biological and chemical processes. Recently a molecule with a hydrogen-bond relay inserted between the proton donor and acceptor sites in a proton-coupled electron transfer (PCET) system was studied electrochemically. The standard rate constants and kinetic isotope effects (KIEs) were measured experimentally for this system and a related single proton transfer system. In the present paper, these systems are studied theoretically using vibronically nonadiabatic rate constant expressions for electrochemical PCET. Application of this approach to proton relays requires the calculation of multidimensional proton vibrational wavefunctions and incorporation of multiple proton donor-acceptor motions. The calculated KIEs and relative standard rate constants for the single and double proton transfer systems are in agreement with the experimental data. The calculations indicate that the standard rate constant is lower for the double proton transfer system because of the smaller overlap integral between the ground state reduced and oxidized proton vibrational wavefunctions for this system, resulting in greater contributions from excited electron-proton vibronic states with higher free energy barriers. The decrease in proton donor-acceptor distances due to thermal fluctuations and the contributions from excited electron-proton vibronic states play important roles in proton relay systems. The theory suggests that the PCET rate constant may be increased by decreasing the equilibrium proton donor-acceptor distances or modifying the thermal motions of the molecule to facilitate the concurrent decrease of these distances. The submission of this journal article in ERIA is a requirement of the EFRC subcontract with Pennsylvania State University collaborators to get publications to OSTI.
Fire hazards analysis for the replacement cross-site transfer system, project W-058
International Nuclear Information System (INIS)
Sepahpur, J.B.
1996-01-01
The fire hazards analysis assess the risk from fire and determines compliance with the applicable criteria of DOE 5480.7A, DOE 6430.1A, and RLID 5480.7. (Project W-058 will provide encased pipelines to connect the SY Tank Farms in 200 West Area with the tank farms in 200 East Area via an interface with the 244-A lift station. Function of the cross-site transfer system will be to transfer radioactive waste from the SY Tank Farm to treatment, storage, and disposal facilities in 200 East Area.)
New Analysis and Theory of Deployable Folded Structures, Phase I
National Aeronautics and Space Administration — A recently developed mathematical theory has great value for deployable space structures and in situ manufacture of large beams, panels, cylinders and other...
New Analysis and Theory of Deployable Folded Structures, Phase II
National Aeronautics and Space Administration — A recently developed mathematical folding theory has great value for deployable space structures and in situ manufacture of large beams, panels and cylinders. The...
grounded theory approach in sermon analysis of sermons
African Journals Online (AJOL)
The grounded theory approach is implemented in analysing sermons on poverty and directed at ... poverty situation in South Africa, especially in the black community (Pieterse ..... The activity of open coding discovers gaps or holes of needed.
Wang, Lihua
2012-01-01
A new method is introduced for teaching group theory analysis of the infrared spectra of organometallic compounds using molecular modeling. The main focus of this method is to enhance student understanding of the symmetry properties of vibrational modes and of the group theory analysis of infrared (IR) spectra by using visual aids provided by…
Mokken scale analysis : Between the Guttman scale and parametric item response theory
van Schuur, Wijbrandt H.
2003-01-01
This article introduces a model of ordinal unidimensional measurement known as Mokken scale analysis. Mokken scaling is based on principles of Item Response Theory (IRT) that originated in the Guttman scale. I compare the Mokken model with both Classical Test Theory (reliability or factor analysis)
Chiral symmetry breaking in gauge theories from Reggeon diagram analysis
International Nuclear Information System (INIS)
White, A.R.
1991-01-01
It is argued that reggeon diagrams can be used to study dynamical properties of gauge theories containing a large number of massless fermions. SU(2) gauge theory is studied in detail and it is argued that there is a high energy solution which is analogous to the solution of the massless Schwinger model. A generalized winding-number condensate produces the massless pseudoscalar spectrum associated with chiral symmetry breaking and a ''trivial'' S-Matrix
The filmic emotion. A comparative analysis of film theories
Directory of Open Access Journals (Sweden)
Imanol Zumalde-Arregi, Ph.D.
2011-01-01
Full Text Available This article tries to explain the origins of the filmic emotion. Due to the lack of a widely agreed idea about the way film texts play with the emotional world of the empirical spectator, this work outlines the diverse arguments and approaches through which film theory has tried to explain the catalogue of emotions that a film can provoke in the spectator. This review reveals a conflict between the theories oriented to the spectator and context, and the theories focused on the text. There are, in fact, two approaches to evaluate the emotional effects provoked by films: the cultural studies approach, which is based on pragmatics and gender oriented theories, and focuses on the social and subjective conditions through which cinema is experienced, and the approach of structural semiotics and cognitive theory, which focuses on the way a film text tries to direct the spectator’s emotional experience. In the middle of these two approaches, the psychoanalytical theory conceives the filmic experience as a simulation of daily life.
Borah, Mukunda Madhab; Devi, Th. Gomti
2018-06-01
The vibrational spectral analysis of Serotonin and its dimer were carried out using the Fourier Transform Infrared (FTIR) and Raman techniques. The equilibrium geometrical parameters, harmonic vibrational wavenumbers, Frontier orbitals, Mulliken atomic charges, Natural Bond orbitals, first order hyperpolarizability and some optimized energy parameters were computed by density functional theory with 6-31G(d,p) basis set. The detailed analysis of the vibrational spectra have been carried out by computing Potential Energy Distribution (PED, %) with the help of Vibrational Energy Distribution Analysis (VEDA) program. The second order delocalization energies E(2) confirms the occurrence of intramolecular Charge Transfer (ICT) within the molecule. The computed wavenumbers of Serotonin monomer and dimer were found in good agreement with the experimental Raman and IR values.
The Distribution of Income and Taxes/Transfers In Canada: A Cohort Analysis
Directory of Open Access Journals (Sweden)
Daria Crisan
2015-02-01
Full Text Available Who pays and how much? These are crucial questions for any tax system and, given the complexity of the economy, they are also among the most difficult to answer. This paper undertakes an analysis of the distribution of taxes and transfers in Canada using a static approach based on annual income combined with the novel approach of breaking down taxpayers by age cohort. The paper examines how tax rates net of transfers differ by age and income group, and how those rates change over taxpayers’ lifetimes. It clearly reveals the progressive nature of Canada’s tax system. In our base case scenario, when all age cohorts are considered together and transfers are treated as negative taxes, the first two quintiles of the income distribution are net recipients of government transfers with negative net tax rates equal to about -48 percent for the first quintile and -33 percent for the second quintile. For middle to high-income individuals net tax rates are positive and increase with income, from 10 percent for the median group, to 24 percent for the fourth quintile and 34 percent for the fifth quintile. Looking at net tax rates by age cohort, we find that overall the bottom 20 percent of the income distribution is a net recipient of fiscal transfers at all ages. However, on average for individuals 65 and over all but the top 20 percent of the income distribution are net recipients of fiscal transfers, with negative net tax rates. The age related redistributive nature of Canada’s tax system is further emphasized by an examination of the Gini coefficients for each age cohort, calculated here for the first time. Starting at age 30, before taxes and transfers income inequality is found to rise monotonically with age, leveling off at 65. Taxes and transfers reduce the degree of income inequality significantly for all ages, but substantially more so for the elderly due to age related features of the tax and transfer system. If redistribution can be thought
Directory of Open Access Journals (Sweden)
Yi Wang
2017-12-01
Full Text Available In this study, in order to determine the reasonable accuracy of the compensation capacitances satisfying the requirements on the output characteristics for a wireless power transfer (WPT system, taking the series-series (SS compensation structure as an example, the calculation formulas of the output characteristics, such as the power factor, output power, coil transfer efficiency, and capacitors’ voltage stress, are given under the condition of incomplete compensation according to circuit theory. The influence of compensation capacitance errors on the output characteristics of the system is then analyzed. The Taylor expansions of the theoretical formulas are carried out to simplify the formulas. The influence degrees of compensation capacitance errors on the output characteristics are calculated according to the simplified formulas. The reasonable error ranges of the compensation capacitances are then determined according to the requirements of the output characteristics of the system in the system design. Finally, the validity of the theoretical analysis and the simplified processing is verified through experiments. The proposed method has a certain guiding role for practical engineering design, especially in mass production.
Cost-effectiveness analysis of different embryo transfer strategies in England.
Dixon, S; Faghih Nasiri, F; Ledger, W L; Lenton, E A; Duenas, A; Sutcliffe, P; Chilcott, J B
2008-05-01
The objective of this study was to assess the cost-effectiveness of different embryo transfer strategies for a single cycle when two embryos are available, and taking the NHS cost perspective. Cost-effectiveness model. Five in vitro fertilisation (IVF) centres in England between 2003/04 and 2004/05. Women with two embryos available for transfer in three age groups (Costs and adverse outcomes are estimated up to 5 years after the birth. Incremental cost per live birth was calculated for different embryo transfer strategies and for three separate age groups: less than 30, 30-35 and 36-39 years. Premature birth, neonatal intensive care unit admissions and days, cerebral palsy and incremental cost-effectiveness ratios. Single fresh embryo transfer (SET) plus frozen single embryo transfer (fzSET) is the more costly in terms of IVF costs, but the lower rates of multiple births mean that in terms of total costs, it is less costly than double embryo transfer (DET). Adverse events increase when moving from SET to SET+fzSET to DET. The probability of SET+fzSET being cost-effective decreases with age. When SET is included in the analysis, SET+fzSET no longer becomes a cost-effective option at any threshold value for all age groups studied. The analyses show that the choice of embryo transfer strategy is a function of four factors: the age of the mother, the relevance of the SET option, the value placed on a live birth and the relative importance placed on adverse outcomes. For each patient group, the choice of strategy is a trade-off between the value placed on a live birth and cost.
Korkiakangas, Terhi; Weldon, Sharon-Marie; Bezemer, Jeff; Kneebone, Roger
2014-09-01
One of the most central collaborative tasks during surgical operations is the passing of objects, including instruments. Little is known about how nurses and surgeons achieve this. The aim of the present study was to explore what factors affect this routine-like task, resulting in fast or slow transfer of objects. A qualitative video study, informed by an observational ethnographic approach, was conducted in a major teaching hospital in the UK. A total of 20 general surgical operations were observed. In total, approximately 68 h of video data have been reviewed. A subsample of 225 min has been analysed in detail using interactional video-analysis developed within the social sciences. Two factors affecting object transfer were observed: (1) relative instrument trolley position and (2) alignment. The scrub nurse's instrument trolley position (close to vs. further back from the surgeon) and alignment (gaze direction) impacts on the communication with the surgeon, and consequently, on the speed of object transfer. When the scrub nurse was standing close to the surgeon, and "converged" to follow the surgeon's movements, the transfer occurred more seamlessly and faster (1.0 s). The smoothness of object transfer can be improved by adjusting the scrub nurse's instrument trolley position, enabling a better monitoring of surgeon's bodily conduct and affording early orientation (awareness) to an upcoming request (changing situation). Object transfer is facilitated by the surgeon's embodied practices, which can elicit the nurse's attention to the request and, as a response, maximise a faster object transfer. A simple intervention to highlight the significance of these factors could improve communication in the operating theatre. Copyright © 2014 Elsevier Ltd. All rights reserved.
Risk Contagion in Chinese Banking Industry: A Transfer Entropy-Based Analysis
Directory of Open Access Journals (Sweden)
Jianping Li
2013-12-01
Full Text Available What is the impact of a bank failure on the whole banking industry? To resolve this issue, the paper develops a transfer entropy-based method to determine the interbank exposure matrix between banks. This method constructs the interbank market structure by calculating the transfer entropy matrix using bank stock price sequences. This paper also evaluates the stability of Chinese banking system by simulating the risk contagion process. This paper contributes to the literature on interbank contagion mainly in two ways: it establishes a convincing connection between interbank market and transfer entropy, and exploits the market information (stock price rather than presumptions to determine the interbank exposure matrix. Second, the empirical analysis provides an in depth understanding of the stability of the current Chinese banking system.
Analysis of prompt supercritical process with heat transfer and temperature feedback
Institute of Scientific and Technical Information of China (English)
ZHU BO; ZHU Qian; CHEN Zhiyun
2009-01-01
The prompt supercritical process of a nuclear reactor with temperature feedback and initial power as well as heat transfer with a big step reactivity (ρ0>β) is analyzed in this paper.Considering the effect of heat transfer on temperature of the reactor,a new model is set up.For any initial power,the variations of output power and reactivity with time are obtained by numerical method.The effects of the big inserted step reactivity and initial power on the prompt supercritical process are analyzed and discussed.It was found that the effect of heat transfer on the output power and reactivity can be neglected under any initial power,and the output power obtained by the adiabatic model is basically in accordance with that by the model of this paper,and the analytical solution can be adopted.The results provide a theoretical base for safety analysis and operation management of a power reactor.