Heat transfer fluids containing nanoparticles
Singh, Dileep; Routbort, Jules; Routbort, A.J.; Yu, Wenhua; Timofeeva, Elena; Smith, David S.; France, David M.
2016-05-17
A nanofluid of a base heat transfer fluid and a plurality of ceramic nanoparticles suspended throughout the base heat transfer fluid applicable to commercial and industrial heat transfer applications. The nanofluid is stable, non-reactive and exhibits enhanced heat transfer properties relative to the base heat transfer fluid, with only minimal increases in pumping power required relative to the base heat transfer fluid. In a particular embodiment, the plurality of ceramic nanoparticles comprise silicon carbide and the base heat transfer fluid comprises water and water and ethylene glycol mixtures.
Aerosol effects in radiation transfer
International Nuclear Information System (INIS)
Binenko, V.I.; Harshvardhan, H.
1993-01-01
The radiative properties and effects of aerosols are assessed for the following aerosol sources: relatively clean background aerosol, dust storms and dust outbreaks, anthropogenic pollution, and polluted cloud layers. Studies show it is the submicron aerosol fraction that plays a dominant radiative role in the atmosphere. The radiative effect of the aerosol depends not only on its loading but also on the underlying surface albedo and on solar zenith angle. It is only with highly reflecting surfaces such as Arctic ice that aerosols have a warming effect. Radiometric, microphysical, mineral composition, and refractive index measurements are presented for dust and in particular for the Saharan aerosol layer (SAL). Short-wave radiative heating of the atmosphere is caused by the SAL and is due mainly to absorption. However, the SAL does not contribute significantly to the long-wave thermal radiation budget. Field program studies of the radiative effects of aerosols are described. Anthropogenic aerosols deplete the incoming solar radiation. A case field study for a regional Ukrainian center is discussed. The urban aerosol causes a cooling of metropolitan centers, compared with outlying areas, during the day, which is followed by a warming trend at night. In another study, an increase in turbidity by a factor of 3 due to increased industrialization for Mexico City is noted, together with a drop in atmospheric transmission by 10% over a 50-year period. Numerous studies are cited that demonstrate that anthropogenic aerosols affect both the microphysical and radiative properties of clouds, which in turn affect regional climate. Particles acting as cloud nuclei are considered to have the greatest indirect effect on cloud absorptivity of short-wave radiation. Satellite observations show that low-level stratus clouds contaminated by ship exhaust at sea lead to an increase in cloud albedo
Heat Transfer in Complex Fluids
Energy Technology Data Exchange (ETDEWEB)
Mehrdad Massoudi
2012-01-01
fluids show Newtonian (linear) behavior for a given range of parameters or geometries; there are many empirical or semi-empirical constitutive equations suggested for these fluids. There have also been many non-linear constitutive relations which have been derived based on the techniques of continuum mechanics. The non-linearities oftentimes appear due to higher gradient terms or time derivatives. When thermal and or chemical effects are also important, the (coupled) momentum and energy equations can give rise to a variety of interesting problems, such as instability, for example the phenomenon of double-diffusive convection in a fluid layer. In Conclusion, we have studied the flow of a compressible (density gradient type) non-linear fluid down an inclined plane, subject to radiation boundary condition. The heat transfer is also considered where a source term, similar to the Arrhenius type reaction, is included. The non-dimensional forms of the equations are solved numerically and the competing effects of conduction, dissipation, heat generation and radiation are discussed. It is observed that the velocity increases rapidly in the region near the inclined surface and is slower in the region near the free surface. Since R{sub 7} is a measure of the heat generation due to chemical reaction, when the reaction is frozen (R{sub 7}=0.0) the temperature distributions would depend only on R{sub 1}, and R{sub 2}, representing the effects of the pressure force developed in the material due to the distribution, R{sub 3} and R{sub 4} viscous dissipation, R{sub 5} the normal stress coefficient, R{sub 6} the measure of the emissivity of the particles to the thermal conductivity, etc. When the flow is not frozen (RP{sub 7} > 0) the temperature inside the flow domain is much higher than those at the inclined and free surfaces. As a result, heat is transferred away from the flow toward both the inclined surface and the free surface with a rate that increases as R{sub 7} increases. For a
Orbital Express fluid transfer demonstration system
Rotenberger, Scott; SooHoo, David; Abraham, Gabriel
2008-04-01
Propellant resupply of orbiting spacecraft is no longer in the realm of high risk development. The recently concluded Orbital Express (OE) mission included a fluid transfer demonstration that operated the hardware and control logic in space, bringing the Technology Readiness Level to a solid TRL 7 (demonstration of a system prototype in an operational environment). Orbital Express (funded by the Defense Advanced Research Projects Agency, DARPA) was launched aboard an Atlas-V rocket on March 9th, 2007. The mission had the objective of demonstrating technologies needed for routine servicing of spacecraft, namely autonomous rendezvous and docking, propellant resupply, and orbital replacement unit transfer. The demonstration system used two spacecraft. A servicing vehicle (ASTRO) performed multiple dockings with the client (NextSat) spacecraft, and performed a variety of propellant transfers in addition to exchanges of a battery and computer. The fluid transfer and propulsion system onboard ASTRO, in addition to providing the six degree-of-freedom (6 DOF) thruster system for rendezvous and docking, demonstrated autonomous transfer of monopropellant hydrazine to or from the NextSat spacecraft 15 times while on orbit. The fluid transfer system aboard the NextSat vehicle was designed to simulate a variety of client systems, including both blowdown pressurization and pressure regulated propulsion systems. The fluid transfer demonstrations started with a low level of autonomy, where ground controllers were allowed to review the status of the demonstration at numerous points before authorizing the next steps to be performed. The final transfers were performed at a full autonomy level where the ground authorized the start of a transfer sequence and then monitored data as the transfer proceeded. The major steps of a fluid transfer included the following: mate of the coupling, leak check of the coupling, venting of the coupling, priming of the coupling, fluid transfer, gauging
Nanoparticle enhanced ionic liquid heat transfer fluids
Fox, Elise B.; Visser, Ann E.; Bridges, Nicholas J.; Gray, Joshua R.; Garcia-Diaz, Brenda L.
2014-08-12
A heat transfer fluid created from nanoparticles that are dispersed into an ionic liquid is provided. Small volumes of nanoparticles are created from e.g., metals or metal oxides and/or alloys of such materials are dispersed into ionic liquids to create a heat transfer fluid. The nanoparticles can be dispersed directly into the ionic liquid during nanoparticle formation or the nanoparticles can be formed and then, in a subsequent step, dispersed into the ionic liquid using e.g., agitation.
"Nanotechnology Enabled Advanced Industrial Heat Transfer Fluids"
Energy Technology Data Exchange (ETDEWEB)
Dr. Ganesh Skandan; Dr. Amit Singhal; Mr. Kenneth Eberts; Mr. Damian Sobrevilla; Prof. Jerry Shan; Stephen Tse; Toby Rossmann
2008-06-12
ABSTRACT Nanotechnology Enabled Advanced industrial Heat Transfer Fluids” Improving the efficiency of Industrial Heat Exchangers offers a great opportunity to improve overall process efficiencies in diverse industries such as pharmaceutical, materials manufacturing and food processing. The higher efficiencies can come in part from improved heat transfer during both cooling and heating of the material being processed. Additionally, there is great interest in enhancing the performance and reducing the weight of heat exchangers used in automotives in order to increase fuel efficiency. The goal of the Phase I program was to develop nanoparticle containing heat transfer fluids (e.g., antifreeze, water, silicone and hydrocarbon-based oils) that are used in transportation and in the chemical industry for heating, cooling and recovering waste heat. Much work has been done to date at investigating the potential use of nanoparticle-enhanced thermal fluids to improve heat transfer in heat exchangers. In most cases the effect in a commercial heat transfer fluid has been marginal at best. In the Phase I work, we demonstrated that the thermal conductivity, and hence heat transfer, of a fluid containing nanoparticles can be dramatically increased when subjected to an external influence. The increase in thermal conductivity was significantly larger than what is predicted by commonly used thermal models for two-phase materials. Additionally, the surface of the nanoparticles was engineered so as to have a minimal influence on the viscosity of the fluid. As a result, a nanoparticle-laden fluid was successfully developed that can lead to enhanced heat transfer in both industrial and automotive heat exchangers
The magnetic fluid for heat transfer applications
International Nuclear Information System (INIS)
Nakatsuka, K.; Jeyadevan, B.; Neveu, S.; Koganezawa, H.
2002-01-01
Real-time visual observation of boiling water-based and ionic magnetic fluids (MFs) and heat transfer characteristics in heat pipe using ionic MF stabilized by citrate ions (JC-1) as working liquid are reported. Irrespective of the presence or absence of magnetic field water-based MF degraded during boiling. However, the degradation of JC-1 was avoided by heating the fluid in magnetic field. Furthermore, the heat transfer capacity of JC-1 heat pipe under applied magnetic field was enhanced over the no field case
Heat Transfer Phenomena of Supercritical Fluids
Energy Technology Data Exchange (ETDEWEB)
Krau, Carmen Isabella; Kuhn, Dietmar; Schulenberg, Thomas [Forschungszentrum Karlsruhe, Institute for Nuclear and Energy Technologies, 76021 Karlsruhe (Germany)
2008-07-01
In concepts for supercritical water cooled reactors, the reactor core is cooled and moderated by water at supercritical pressures. The significant temperature dependence of the fluid properties of water requires an exact knowledge of the heat transfer mechanism to avoid fuel pin damages. Near the pseudo-critical point a deterioration of heat transfer might happen. Processes, that take place in this case, are not fully understood and are due to be examined systematically. In this paper a general overview on the properties of supercritical water is given, experimental observations of different authors will be reviewed in order to identify heat transfer phenomena and onset of occurrence. The conceptional design of a test rig to investigate heat transfer in the boundary layer will be discussed. Both, water and carbon dioxide, may serve as operating fluids. The loop, including instrumentation and safety devices, is shown and suitable measuring methods are described. (authors)
Williams, Monique; Villarreal, Amanda; Bozhilov, Krassimir; Lin, Sabrina; Talbot, Prue
2013-01-01
Background Electronic cigarettes (EC) deliver aerosol by heating fluid containing nicotine. Cartomizer EC combine the fluid chamber and heating element in a single unit. Because EC do not burn tobacco, they may be safer than conventional cigarettes. Their use is rapidly increasing worldwide with little prior testing of their aerosol. Objectives We tested the hypothesis that EC aerosol contains metals derived from various components in EC. Methods Cartomizer contents and aerosols were analyzed...
Modelling aerosol transfer in a ventilated room
International Nuclear Information System (INIS)
Nerisson, Ph.
2009-02-01
When particulate radioactive contamination is likely to become airborne in a ventilated room, assessment of aerosol concentration in every point of this room is important, in order to ensure protection of operators and supervision of workspaces. Thus, a model of aerosol transport and deposition has been developed as part of a project started with IRSN, EDF and IMFT. A simplified Eulerian model, called 'diffusion-inertia model' is used for particle transport. It contains a single transport equation of aerosol concentration. The specific study of deposition on walls has permitted to develop a boundary condition approach, which determines precisely the particle flux towards the wall in the boundary layer, for any deposition regime and surface orientation.The final transport and deposition models retained have been implemented in a CFD code called Code-Saturne. These models have been validated according to literature data in simple geometries and tracing experiments in ventilated rooms, which have been carried out in 30 m 3 and 1500 m 3 laboratory rooms. (author)
Computational fluid mechanics and heat transfer
Pletcher, Richard H; Anderson, Dale
2012-01-01
""I have always considered this book the best gift from one generation to the next in computational fluid dynamics. I earnestly recommend this book to graduate students and practicing engineers for the pleasure of learning and a handy reference. The description of the basic concepts and fundamentals is thorough and is crystal clear for understanding. And since 1984, two newer editions have kept abreast to the new, relevant, and fully verified advancements in CFD.""-Joseph J.S. Shang, Wright State University""Computational Fluid Mechanics and Heat Transfer is very well written to be used as a t
Low-melting point heat transfer fluid
Cordaro, Joseph Gabriel; Bradshaw, Robert W.
2010-11-09
A low-melting point, heat transfer fluid made of a mixture of five inorganic salts including about 29.1-33.5 mol % LiNO.sub.3, 0-3.9 mol % NaNO.sub.3, 2.4-8.2 mol % KNO.sub.3, 18.6-19.9 mol % NaNO.sub.2, and 40-45.6 mol % KNO.sub.2. These compositions can have liquidus temperatures below 80.degree. C. for some compositions.
Expansion of a vapor bubble and aerosols transfer
International Nuclear Information System (INIS)
Breton, J.P.; Lapicore, A.; Porrachia, A.; Natta, M.; Amblard, M.; Berthoud, G.
1979-08-01
Experimental results on the expansion and collapse of two phase vapor bubble, and on the aerosols transport outside the tank are presented. Two facilities using small source of hot water (2 cm 3 ) or bigger ones (1000 cm 3 ) were used and are described. Two models are developped to analyze the results on the bubble. They show the heat and mass transfer from the bubble to the surroundings and the following reduction in the mechanical energy delivered by the bubble, and the decrease in this reduction due to noncondensables and to scale effect. The models developed or the aerosol transfer show that most particles are likely transported from the bubble to the cover gas
Mass transfer in nano-fluids: A review
International Nuclear Information System (INIS)
Ashrafmansouri, Seyedeh-Saba; Esfahany, Mohsen Nasr
2014-01-01
Growing attention has been recently paid to nano-fluids because of their potential for augmenting transfer processes - i.e., heat and mass transfer. Conflicting results have been reported in the literature on mass transfer in nano-fluids. The aim of this paper is to summarize the literature on mass transfer in nano-fluids stating the conflicts and possible reasons. Literature on mass transfer in nano-fluids has been reviewed in two sections. The first section concentrates on surveying mass diffusivity in nano-fluids while the second section focuses on convective mass transfer in nano-fluids. In each section, published articles, type of nano-fluids used, size and concentration range of nanoparticles, measurement methods, maximum observed enhancement, and suggested mass transport mechanisms are summarized. (authors)
Fluid transfers in fractured media: scale effects
International Nuclear Information System (INIS)
Bour, Olivier
1996-01-01
As there has been a growing interest in the study of fluid circulations in fractured media for the last fifteen years, for example for projects of underground storage of different waste types, or to improve water resources, or for exploitation of underground oil products or geothermal resources, this research thesis first gives a large overview of the modelling and transport properties of fractured media. He presents the main notions related to fluid transfers in fractured media (structures of fracture networks, hydraulic properties of fractured media), and the various adopted approaches (the effective medium theory, the percolation theory, double porosity models, deterministic discrete fracture models, equivalent discontinuous model, fractal models), and outlines the originality of the approach developed in this research: scale change, conceptual hypotheses, methodology, tools). The second part addresses scale rules in fracture networks: presentation of fracture networks (mechanical aspects, statistical analysis), distribution of fracture lengths and of fracture networks, length-position relationship, modelling attempt, lessons learned and consequences in terms of hydraulic and mechanical properties, and of relationship between length distribution and fractal dimension. The third part proposes two articles published by the author and addressing the connectivity properties of fracture networks. The fifth chapter reports the application to natural media. It contains an article on the application of percolation theory to 2D natural fracture networks, and reports information collected on a site [fr
Lidar observations and transfer of stratospheric aerosol over Tomsk in summer period
Novikov, P. V.; Cheremisin, A. A.; Marichev, V. N.; Barashkov, T. O.
2015-11-01
The analysis of the stratospheric aerosol origin was carried out by the method of Lagrangian particle trajectories. Stratospheric aerosol was registered by lidar sounding of atmosphere above Tomsk in 2008-2013 in summer time. The analysis of the results had shown that the aerosol content at altitudes of 13-125 km with maximum at 16-18 km can be associated with aerosol transfer from tropical stratospheric reservoir.
Directory of Open Access Journals (Sweden)
Monique Williams
Full Text Available Electronic cigarettes (EC deliver aerosol by heating fluid containing nicotine. Cartomizer EC combine the fluid chamber and heating element in a single unit. Because EC do not burn tobacco, they may be safer than conventional cigarettes. Their use is rapidly increasing worldwide with little prior testing of their aerosol.We tested the hypothesis that EC aerosol contains metals derived from various components in EC.Cartomizer contents and aerosols were analyzed using light and electron microscopy, cytotoxicity testing, x-ray microanalysis, particle counting, and inductively coupled plasma optical emission spectrometry.The filament, a nickel-chromium wire, was coupled to a thicker copper wire coated with silver. The silver coating was sometimes missing. Four tin solder joints attached the wires to each other and coupled the copper/silver wire to the air tube and mouthpiece. All cartomizers had evidence of use before packaging (burn spots on the fibers and electrophoretic movement of fluid in the fibers. Fibers in two cartomizers had green deposits that contained copper. Centrifugation of the fibers produced large pellets containing tin. Tin particles and tin whiskers were identified in cartridge fluid and outer fibers. Cartomizer fluid with tin particles was cytotoxic in assays using human pulmonary fibroblasts. The aerosol contained particles >1 µm comprised of tin, silver, iron, nickel, aluminum, and silicate and nanoparticles (<100 nm of tin, chromium and nickel. The concentrations of nine of eleven elements in EC aerosol were higher than or equal to the corresponding concentrations in conventional cigarette smoke. Many of the elements identified in EC aerosol are known to cause respiratory distress and disease.The presence of metal and silicate particles in cartomizer aerosol demonstrates the need for improved quality control in EC design and manufacture and studies on how EC aerosol impacts the health of users and bystanders.
Williams, Monique; Villarreal, Amanda; Bozhilov, Krassimir; Lin, Sabrina; Talbot, Prue
2013-01-01
Electronic cigarettes (EC) deliver aerosol by heating fluid containing nicotine. Cartomizer EC combine the fluid chamber and heating element in a single unit. Because EC do not burn tobacco, they may be safer than conventional cigarettes. Their use is rapidly increasing worldwide with little prior testing of their aerosol. We tested the hypothesis that EC aerosol contains metals derived from various components in EC. Cartomizer contents and aerosols were analyzed using light and electron microscopy, cytotoxicity testing, x-ray microanalysis, particle counting, and inductively coupled plasma optical emission spectrometry. The filament, a nickel-chromium wire, was coupled to a thicker copper wire coated with silver. The silver coating was sometimes missing. Four tin solder joints attached the wires to each other and coupled the copper/silver wire to the air tube and mouthpiece. All cartomizers had evidence of use before packaging (burn spots on the fibers and electrophoretic movement of fluid in the fibers). Fibers in two cartomizers had green deposits that contained copper. Centrifugation of the fibers produced large pellets containing tin. Tin particles and tin whiskers were identified in cartridge fluid and outer fibers. Cartomizer fluid with tin particles was cytotoxic in assays using human pulmonary fibroblasts. The aerosol contained particles >1 µm comprised of tin, silver, iron, nickel, aluminum, and silicate and nanoparticles (<100 nm) of tin, chromium and nickel. The concentrations of nine of eleven elements in EC aerosol were higher than or equal to the corresponding concentrations in conventional cigarette smoke. Many of the elements identified in EC aerosol are known to cause respiratory distress and disease. The presence of metal and silicate particles in cartomizer aerosol demonstrates the need for improved quality control in EC design and manufacture and studies on how EC aerosol impacts the health of users and bystanders.
Directory of Open Access Journals (Sweden)
Donguk Park
2012-03-01
Full Text Available The aim of this review was to assess current knowledge related to the occupational exposure limit (OEL for fluid aerosols including either mineral or chemical oil that are generated in metalworking operations, and to discuss whether their OEL can be appropriately used to prevent several health risks that may vary among metalworking fluid (MWF types. The OEL (time-weighted average; 5 mg/m3, short-term exposure limit ; 15 mg/m3 has been applied to MWF aerosols without consideration of different fluid aerosol-size fractions. The OEL, is also based on the assumption that there are no significant differences in risk among fluid types, which may be contentious. Particularly, the health risks from exposure to water-soluble fluids may not have been sufficiently considered. Although adoption of The National Institute for Occupational Safety and Health's recommended exposure limit for MWF aerosol (0.5 mg/m3 would be an effective step towards minimizing and evaluating the upper respiratory irritation that may be caused by neat or diluted MWF, this would fail to address the hazards (e.g., asthma and hypersensitivity pneumonitis caused by microbial contaminants generated only by the use of water-soluble fluids. The absence of an OEL for the water-soluble fluids used in approximately 80-90 % of all applicants may result in limitations of the protection from health risks caused by exposure to those fluids.
Park, Donguk
2012-03-01
The aim of this review was to assess current knowledge related to the occupational exposure limit (OEL) for fluid aerosols including either mineral or chemical oil that are generated in metalworking operations, and to discuss whether their OEL can be appropriately used to prevent several health risks that may vary among metalworking fluid (MWF) types. The OEL (time-weighted average; 5 mg/m(3), short-term exposure limit ; 15 mg/m(3)) has been applied to MWF aerosols without consideration of different fluid aerosol-size fractions. The OEL, is also based on the assumption that there are no significant differences in risk among fluid types, which may be contentious. Particularly, the health risks from exposure to water-soluble fluids may not have been sufficiently considered. Although adoption of The National Institute for Occupational Safety and Health's recommended exposure limit for MWF aerosol (0.5 mg/m(3)) would be an effective step towards minimizing and evaluating the upper respiratory irritation that may be caused by neat or diluted MWF, this would fail to address the hazards (e.g., asthma and hypersensitivity pneumonitis) caused by microbial contaminants generated only by the use of water-soluble fluids. The absence of an OEL for the water-soluble fluids used in approximately 80-90 % of all applicants may result in limitations of the protection from health risks caused by exposure to those fluids.
Conjugate Compressible Fluid Flow and Heat Transfer in Ducts
Cross, M. F.
2011-01-01
A computational approach to modeling transient, compressible fluid flow with heat transfer in long, narrow ducts is presented. The primary application of the model is for analyzing fluid flow and heat transfer in solid propellant rocket motor nozzle joints during motor start-up, but the approach is relevant to a wide range of analyses involving rapid pressurization and filling of ducts. Fluid flow is modeled through solution of the spatially one-dimensional, transient Euler equations. Source terms are included in the governing equations to account for the effects of wall friction and heat transfer. The equation solver is fully-implicit, thus providing greater flexibility than an explicit solver. This approach allows for resolution of pressure wave effects on the flow as well as for fast calculation of the steady-state solution when a quasi-steady approach is sufficient. Solution of the one-dimensional Euler equations with source terms significantly reduces computational run times compared to general purpose computational fluid dynamics packages solving the Navier-Stokes equations with resolved boundary layers. In addition, conjugate heat transfer is more readily implemented using the approach described in this paper than with most general purpose computational fluid dynamics packages. The compressible flow code has been integrated with a transient heat transfer solver to analyze heat transfer between the fluid and surrounding structure. Conjugate fluid flow and heat transfer solutions are presented. The author is unaware of any previous work available in the open literature which uses the same approach described in this paper.
Numerical Modeling of Conjugate Heat Transfer in Fluid Network
Majumdar, Alok
2004-01-01
Fluid network modeling with conjugate heat transfer has many applications in Aerospace engineering. In modeling unsteady flow with heat transfer, it is important to know the variation of wall temperature in time and space to calculate heat transfer between solid to fluid. Since wall temperature is a function of flow, a coupled analysis of temperature of solid and fluid is necessary. In cryogenic applications, modeling of conjugate heat transfer is of great importance to correctly predict boil-off rate in propellant tanks and chill down of transfer lines. In TFAWS 2003, the present author delivered a paper to describe a general-purpose computer program, GFSSP (Generalized Fluid System Simulation Program). GFSSP calculates flow distribution in complex flow circuit for compressible/incompressible, with or without heat transfer or phase change in all real fluids or mixtures. The flow circuit constitutes of fluid nodes and branches. The mass, energy and specie conservation equations are solved at the nodes where as momentum conservation equations are solved at the branches. The proposed paper describes the extension of GFSSP to model conjugate heat transfer. The network also includes solid nodes and conductors in addition to fluid nodes and branches. The energy conservation equations for solid nodes solves to determine the temperatures of the solid nodes simultaneously with all conservation equations governing fluid flow. The numerical scheme accounts for conduction, convection and radiation heat transfer. The paper will also describe the applications of the code to predict chill down of cryogenic transfer line and boil-off rate of cryogenic propellant storage tank.
Energy Technology Data Exchange (ETDEWEB)
Tuttle, R.F.; Loyalka, S.K.
1985-06-01
The collisional dynamics of nonspherical aerosols is modeled by the introduction of a shape factor, US . Mechanistic calculation of US requires knowledge of the flow fields around the aerosols. Since actual aerosols can be complicated in shape and since the computation of flow fields can be quite difficult, insights into the nature of US are gained by using the superposition technique and studying aerosols that have tractable flow fields. The motion of an oblate spheroid in a viscous fluid is considered. The Navier-Stokes equations and associated boundary conditions are represented in oblate spheroidal coordinates. A combination of finite differences and spline-interpolation techniques is used to transform these equations to a form suitable for numerical computations. Converged results for the flow fields are obtained for a 0 to 5 range of Reynolds numbers. In the limit of zero Reynolds number, the results are found to be in agreement with the analytical solutions of Oberbeck.
Determination of the bioaccessible fraction of metals in urban aerosol using simulated lung fluids
Czech Academy of Sciences Publication Activity Database
Coufalík, Pavel; Mikuška, Pavel; Matoušek, Tomáš; Večeřa, Zbyněk
2016-01-01
Roč. 140, SEP (2016), s. 469-475 ISSN 1352-2310 R&D Projects: GA ČR(CZ) GA14-25558S; GA ČR(CZ) GA13-01438S Institutional support: RVO:68081715 Keywords : metal * aerosol * simulated lung fluid Subject RIV: CB - Analytical Chemistry, Separation Impact factor: 3.629, year: 2016
Heat transfers and related effects in supercritical fluids
Zappoli, Bernard; Garrabos, Yves
2015-01-01
This book investigates the unique hydrodynamics and heat transfer problems that are encountered in the vicinity of the critical point of fluids. Emphasis is given on weightlessness conditions, gravity effects and thermovibrational phenomena. Near their critical point, fluids indeed obey universal behavior and become very compressible and expandable. Their comportment, when gravity effects are suppressed, becomes quite unusual. The problems that are treated in this book are of interest to students and researchers interested in the original behavior of near-critical fluids as well as to engineers that have to manage supercritical fluids. A special chapter is dedicated to the present knowledge of critical point phenomena. Specific data for many fluids are provided, ranging from cryogenics (hydrogen) to high temperature (water). Basic information in statistical mechanics, mathematics and measurement techniques is also included. The basic concepts of fluid mechanics are given for the non-specialists to be able to ...
46 CFR 153.436 - Heat transfer fluids: compatibility with cargo.
2010-10-01
... 46 Shipping 5 2010-10-01 2010-10-01 false Heat transfer fluids: compatibility with cargo. 153.436... Equipment Cargo Temperature Control Systems § 153.436 Heat transfer fluids: compatibility with cargo. A heat transfer fluid separated from the cargo by only one wall (for example, the heat transfer fluid in a coil...
International Nuclear Information System (INIS)
Reardon, F.H.; Thinh, N.D.
1987-01-01
Experimental and analytical techniques in heat transfer and fluid dynamics and state-of-the-art applications are examined in reviews and reports. Topics discussed include the recirculation characteristics of a vortex pump, simulation of radial-flow impellers using the Navier-Stokes equations, the transient effect in composite-medium conduction or diffusion, flow in a tube with a porous obstruction, the measurement of the physical heat-transfer coefficient, and a penalty FEM for combined forced and free convection in a rectangular enclosure. Consideration is given to heat transfer in the entrance region of multiply connected ducts, working-fluid selection for low-temperature Rankine cycles, a computational-experimental method for monitoring particulate flux in fluid streams, medical applications of a vortex aerosol generator, and the interaction of unlike propellant droplets in various reactive environments
Heat transfer fluids for solar DHW systems
Energy Technology Data Exchange (ETDEWEB)
Wedel, S.; Bezzel, E.
2000-07-01
The aim of this work was to investigate the sudden clogging of the pipes in collectors as a consequence of liquid deterioration after repeated boiling during stagnation. A method to perform simple screening as accelerated tests of a large number liquid of samples subjected to various chemical- and physical environments have been designed. The acceleration factor of experiments relative to real systems is quite substantial primarily due to the extensive stress cycles in tests. Possible degradation mechanisms have been investigated and generally, there are two different paths to degradation of glycol: Thermal degradation and oxidative degradation primarily yielding propylene derivatives and carboxylic acids respectively. Polymerisation is an obvious possibility in a system containing various organic compounds such as acids and alcohols. Consequently, the reaction patterns alter making room for alternative interconnected mechanisms thus generating a broad spectrum of possible degradation products. Reserve alkalinity and pH are somewhat unreliable means of solely estimating the state of a liquid in relation to degradation and precipitation, as curvature of the RA-pH relations are different from liquid to liquid. For the majority of liquids, precipitation is not correlated with pH and RA. Coloration and precipitation in the liquid phase during stagnation separated liquids in two sub-categories. Fluids with inhibitor have sparing to moderate sedimentation and are brownish-black due to deterioration. Glycols without additives were either pale or colourless and did not precipitate. During normal operation, all fluids are clear and transparent and the majority has the same initial colour. The same distinction in liquids was observed on examination on the inside surface of the tubes concerning extent and the quantity of deposit. Liquids with additives tend to have significantly more deposit covering a larger surface than liquids without. Visual evaluation has proved that
Seminar on Heat-transfer fluids for fast neutron reactors
International Nuclear Information System (INIS)
Brechet, Yves; Dautray, Robert; Friedel, Jacques; Brezin, Edouard; Martin, Georges; Pineau, Andre; Carre, Francois; Gauche, Francois; Rodriguez, Guillaume; Latge, Christian; Cabet, Celine; Garnier, Jean-Claude; Bamberger, Yves; Sauvage, Jean-Francois; Buisine, Denis; Agostini, Pietro; Ulyanov, Vladimir; Auger, Thierry; Heuer, Daniel; Ghetta, Veronique; Bubelis, Evaldas; Charlaix, Elisabeth; Barrat, Jean-Louis; Boquet, Lyderic; Glickman, Evgueny; Escaravage, Claude
2014-03-01
This book reports the content of a two-day meeting held by the Academy of Sciences on the use of heat-transfer fluids in fast neutron reactors. After a first part which proposes an overview of scientific and technical problems related to these heat-transfer fluids (heat transfer process, nuclear properties, chemistry, materials, risks), a contribution proposes a return on experience on the use of heat-transfer fluids in the different design options of reactors of fourth generation: from mercury to NaK in the first fast neutron reactor projects, specific assets and constraints of sodium used as heat-transfer fluid, concepts of fast neutron reactors cooled by something else than sodium, perspectives for projects and research in fast neutron reactors. The next contribution discusses the specifications of future fast-neutron reactors: expectations for fourth-generation reactors, expectations in terms of performance and of safety, specific challenges. The last contribution addresses actions to be undertaken in the field of research and development: actions regarding all reactor types or specific types as sodium-cooled reactors, lead cooled reactors, molten salt reactors, and gas-cooled fast reactors
Mass transfer processes in crystalline aggregates containing a fluid phase
Visser, H.J.M.
1999-01-01
Understanding mass transfer processes in porous crystalline aggregates containing a fluid phase is of major importance for modelling partially molten regions of the Earth's mantle, such as those under mid-ocean spreading ridges. Despite the fact that mid-ocean ridges can be considered the
Mass transfer processes in crystalline aggregates containing a fluid phase
Visser, H.J.M.
1999-01-01
Understanding mass transfer processes in porous crystalline aggregates containing a fluid phase is of major importance for modelling partially molten regions of the Earth's mantle, such as those under mid-ocean spreading ridges. Despite the fact that mid-ocean ridges can be considered the simplest
Fluid dynamics and mass transfer in a gas centrifuge
International Nuclear Information System (INIS)
Conlisk, A.T.; Foster, M.R.; Walker, J.D.A.
1982-01-01
The fluid motion, temperature distribution and the mass-transfer problem of a binary gas mixture in a rapidly rotating centrifuge are investigated. Solutions for the velocity, temperature and mass-fraction fields within the centrifuge are obtained for mechanically or thermally driven centrifuges. For the mass-transfer problem, a detailed analysis of the fluid-mechanical boundary layers is required, and, in particular, mass fluxes within the boundary layers are obtained for a wide range of source-sink geometries. Solutions to the mass-transfer problem are obtained for moderately and strongly forced flows in the container; the dependence of the separation (or enrichment) factor on centrifuge configuration, rotational speed and fraction of the volumetric flow rate extracted at the product port (the cut) are predicted. (author)
Fluid flow and heat transfer in rotating porous media
Vadasz, Peter
2016-01-01
This Book concentrates the available knowledge on rotating fluid flow and heat transfer in porous media in one single reference. Dr. Vadasz develops the fundamental theory of rotating flow and heat transfer in porous media and introduces systematic classification and identification of the relevant problems. An initial distinction between rotating flows in isothermal heterogeneous porous systems and natural convection in homogeneous non-‐isothermal porous systems provides the two major classes of problems to be considered. A few examples of solutions to selected problems are presented, highlighting the significant impact of rotation on the flow in porous media.
Fluid mechanics and heat transfer advances in nonlinear dynamics modeling
Asli, Kaveh Hariri
2015-01-01
This valuable new book focuses on new methods and techniques in fluid mechanics and heat transfer in mechanical engineering. The book includes the research of the authors on the development of optimal mathematical models and also uses modern computer technology and mathematical methods for the analysis of nonlinear dynamic processes. It covers technologies applicable to both fluid mechanics and heat transfer problems, which include a combination of physical, mechanical, and thermal techniques. The authors develop a new method for the calculation of mathematical models by computer technology, using parametric modeling techniques and multiple analyses for mechanical system. The information in this book is intended to help reduce the risk of system damage or failure. Included are sidebar discussions, which contain information and facts about each subject area that help to emphasize important points to remember.
Base fluid in improving heat transfer for EV car battery
Bin-Abdun, Nazih A.; Razlan, Zuradzman M.; Shahriman, A. B.; Wan, Khairunizam; Hazry, D.; Ahmed, S. Faiz; Adnan, Nazrul H.; Heng, R.; Kamarudin, H.; Zunaidi, I.
2015-05-01
This study examined the effects of base fluid (as coolants) channeling inside the heat exchanger in the process of the increase in thermal conductivity between EV car battery and the heat exchanger. The analysis showed that secondary cooling system by means of water has advantages in improving the heat transfer process and reducing the electric power loss on the form of thermal energy from batteries. This leads to the increase in the efficiency of the EV car battery, hence also positively reflecting the performance of the EV car. The present work, analysis is performed to assess the design and use of heat exchanger in increasing the performance efficiency of the EV car battery. This provides a preface to the use this design for nano-fluids which increase and improve from heat transfer.
Experimental observation for the heat transfer in fluids
International Nuclear Information System (INIS)
Salinas R, G.A.
1996-01-01
The heat transfer that occurs into a cavity with a relation 2/1 with constant heat supply in a vertical wall and on the opposed wall at constant temperature is studied. The energy transfer process causes the heat convection that occurs mainly due to energy transport that is present by means of the motion of the fluid itself. Also the heat conduction process by molecular exchange is obtained. During the fluid particle displacements, the high energy regions take contact with the low energy regions resulting by this way the free convection by density differences. The flow can be followed by means of tracers and the changes of density can be registered by optical techniques like interferometry. (Author)
Fymat, A. L.
1976-01-01
The paper studies the inversion of the radiative transfer equation describing the interaction of electromagnetic radiation with atmospheric aerosols. The interaction can be considered as the propagation in the aerosol medium of two light beams: the direct beam in the line-of-sight attenuated by absorption and scattering, and the diffuse beam arising from scattering into the viewing direction, which propagates more or less in random fashion. The latter beam has single scattering and multiple scattering contributions. In the former case and for single scattering, the problem is reducible to first-kind Fredholm equations, while for multiple scattering it is necessary to invert partial integrodifferential equations. A nonlinear minimization search method, applicable to the solution of both types of problems has been developed, and is applied here to the problem of monitoring aerosol pollution, namely the complex refractive index and size distribution of aerosol particles.
Dust as a Working Fluid for Heat Transfer Project
Mantovani, James G.
2015-01-01
The project known as "Dust as a Working Fluid" demonstrates the feasibility of a dust-based system for transferring heat radiatively into space for those space applications requiring higher efficiency, lower mass, and the need to operate in extreme vacuum and thermal environments - including operating in low or zero gravity conditions in which the dust can be conveyed much more easily than on Earth.
Modelling of heat transfer to fluids at a supercritical pressure
International Nuclear Information System (INIS)
Shuisheng, He
2014-01-01
A key feature of Supercritical Water-cooled Reactor (SCWR) is that, by raising the pressure of the reactor coolant fluid above the critical value, a phase change crisis is avoided. However, the changes in water density as it flows through the core of an SCWR are actually much higher than in the current water-cooled reactors. In a typical design, the ratio of the density of water at the core inlet to that at exit is as high as 7:1. Other fluid properties also vary significantly, especially around the pseudo-critical temperature (at which the specific heat capacity peaks). As a result, turbulent flow and heat transfer behaviour in the core is extremely complex and under certain conditions, significant heat transfer deterioration can potentially occur. Consequently, understanding and being able to predict flow and heat transfer phenomena under normal steady operation conditions and in start-up and hypothetical fault conditions are fundamental to the design of SCWR. There have been intensive studies on flow and heat transfer to fluids at supercritical pressure recently and several excellent review papers have been published. In the talk, we will focus on some turbulence modelling issues encountered in CFD simulations. The talk will first discuss some flow and heat transfer issues related to fluids at supercritical pressures and their potential implications in SCWR, and some recent developments in the understanding and modelling techniques of such problems, which will be followed by an outlook for some future developments.Factors which have a major influence on the flow and will be discussed are buoyancy and flow acceleration due to thermal expansion (both are due to density variations but involve different mechanisms) and the nonuniformity of other fluid properties. In addition, laminar-turbulent flow transition coupled with buoyancy and flow acceleration plays an important role in heat transfer effectiveness and wall temperature in the entrance region but such
Fluid mechanics and heat transfer spirally fluted tubing
Larue, J. C.; Libby, P. A.; Yampolsky, J. S.
1981-08-01
The objective of this program is to develop both a qualitative and a quantitative understanding of the fluid mechanics and heat transfer mechanisms that underlie the measured performance of the spirally fluted tubes under development at General Atomic. The reason for the interest in the spirally fluted tubes is that results to date have indicated three advantages to this tubing concept: The fabrication technique of rolling flutes on strip and subsequently spiralling and simultaneously welding the strip to form tubing results in low fabrication costs, approximately equal to those of commercially welded tubing. The heat transfer coefficient is increased without a concomitant increase of the friction coefficient on the inside of the tube. In single-phase axial flow of water, the helical flutes continuously induce rotation of the flow both within and without the tube as a result of the effect of curvature. An increase in condensation heat transfer on the outside of the tube is achieved. In a vertical orientation with fluid condensing on the outside of the helically fluted tube, the flutes provide a channel for draining the condensed fluid.
Dissolved organic matter in sea spray: a transfer study from marine surface water to aerosols
Schmitt-Kopplin, P.; Liger-Belair, G.; Koch, B. P.; Flerus, R.; Kattner, G.; Harir, M.; Kanawati, B.; Lucio, M.; Tziotis, D.; Hertkorn, N.; Gebefügi, I.
2012-04-01
Atmospheric aerosols impose direct and indirect effects on the climate system, for example, by absorption of radiation in relation to cloud droplets size, on chemical and organic composition and cloud dynamics. The first step in the formation of Organic primary aerosols, i.e. the transfer of dissolved organic matter from the marine surface into the atmosphere, was studied. We present a molecular level description of this phenomenon using the high resolution analytical tools of Fourier transform ion cyclotron resonance mass spectrometry (FT-ICR MS) and nuclear magnetic resonance spectroscopy (NMR). Our experiments confirm the chemoselective transfer of natural organic molecules, especially of aliphatic compounds from the surface water into the atmosphere via bubble bursting processes. Transfer from marine surface water to the atmosphere involves a chemical gradient governed by the physicochemical properties of the involved molecules when comparing elemental compositions and differentiating CHO, CHNO, CHOS and CHNOS bearing compounds. Typical chemical fingerprints of compounds enriched in the aerosol phase were CHO and CHOS molecular series, smaller molecules of higher aliphaticity and lower oxygen content, and typical surfactants. A non-targeted metabolomics analysis demonstrated that many of these molecules corresponded to homologous series of oxo-, hydroxy-, methoxy-, branched fatty acids and mono-, di- and tricarboxylic acids as well as monoterpenes and sugars. These surface active biomolecules were preferentially transferred from surface water into the atmosphere via bubble bursting processes to form a significant fraction of primary organic aerosols. This way of sea spray production leaves a selective biological signature of the surface water in the corresponding aerosol that may be transported into higher altitudes up to the lower atmosphere, thus contributing to the formation of secondary organic aerosol on a global scale or transported laterally with
International Nuclear Information System (INIS)
Xu, Weiguo; Ren, Depeng; Ye, Qing; Liu, Guodong; Lu, Huilin; Wang, Shuai
2016-01-01
Graphical abstract: Predicted laminar Nusselt number using regression correlation of Therminol-55 heat transfer fluid is in agreement with experiments in the rifled tube. - Highlights: • Heat transfer coefficient and friction factor are measured and predicted in the rifled tube. • Correlations for Nusselt number and friction factor are proposed. • The roughness height of 0.425 mm in transition SST model is suggested as an input parameter. • k–kl–ω transition and transition SST models are recommended for laminar–turbulent transition. • Thermal enhancement factor and synergy angle are predicted in the rifled tube. - Abstract: Simulations and experiments of flow and heat transfer behavior of Therminol-55 heat transfer fluid have been conducted in a horizontal rifled tube with outer diameter and inner diameter 25.0 and 20.0 mm, pitch and rib height of 12.0 and 1.0 mm, respectively. Numerical simulations of three-dimensional flow behavior of Therminol-55 heat transfer fluid are carried out using FLUENT code in the rifled tube. Experimental results show that the heat transfer and thermal performance of Therminol-55 heat transfer fluid in the rifled tube are considerably improved compared to those of the smooth tube. The Nusselt number increases with the increase of Reynolds number, and is from 3.5 to 5.1 times over the smooth tube. Also, the pressure drop results reveal that the average friction factor of the ribbed tube is in a range of 2.2 and 4.2 times over the smooth tube. Predictive Nusselt number and friction factor correlations have been presented. The numerical results show that the laminar flow model is valid only at lower Reynolds number in the developed laminar flow of rifled tube. The k–kl–ω transition model and transition SST model with roughness of 0.425 mm are recommended for the predictions of transition process from laminar to turbulent flow in the rifled tube.
Aerosol formation from heat and mass transfer in vapour-gas mixtures
International Nuclear Information System (INIS)
Clement, C.F.
1985-01-01
Heat and mass transfer equations and their coupling to the equation for the aerosol size distribution are examined for mixtures in which pressure changes are slow. Specific results in terms of Cn (the condensation number) and Le (the Lewis number - the ratio of the relative rates of evaporation and condensation) are obtained for the proportion of vapour condensing as a aerosol during the cooling and heating of a mixture in a well-mixed cavity. The assumption of allowing no supersaturations, the validity of which is examined, is shown to lead to maximum aerosol formation. For water vapour-air mixtures predictions are made as to temperature regions in which aerosols will evaporate or not form in cooling processes. The results are also qualitatively applied to some atmospheric effects as well as to water aerosols formed in the containment of a pressurized water reactor following a possible accident. In this context, the present conclusion that the whereabouts of vapour condensation is controlled by heat and mass transfer, contrasts with previous assumptions that the controlling factor is relative surface areas. (U.K.)
Vibration analysis of pipes conveying fluid by transfer matrix method
International Nuclear Information System (INIS)
Li, Shuai-jun; Liu, Gong-min; Kong, Wei-tao
2014-01-01
Highlights: • A theoretical study on vibration analysis of pipes with FSI is presented. • Pipelines with high fluid pressure and velocity can be solved by developed method. • Several pipeline schemes are discussed to illustrate the application of the method. • The proposed method is easier to apply compared to most existing procedures. • Influence laws of structural and fluid parameters on FSI of pipe are analyzed. -- Abstract: Considering the effects of pipe wall thickness, fluid pressure and velocity, a developed 14-equation model is presented, which describes the fluid–structure interaction behavior of pipelines. The transfer matrix method has been used for numerical modeling of both hydraulic and structural equations. Based on these models and algorithms, several pipeline schemes are presented to illustrate the application of the proposed method. Furthermore, the influence laws of supports, structural properties and fluid parameters on the dynamic response and natural frequencies of pipeline are analyzed, which shows using the optimal supports and structural properties is beneficial to reduce vibration of pipelines
Fluid dynamics and heat transfer methods for the TRAC code
International Nuclear Information System (INIS)
Reed, W.H.; Kirchner, W.L.
1977-01-01
A computer code called TRAC is being developed for analysis of loss-of-coolant accidents and other transients in light water reactors. This code involves a detailed, multidimensional description of two-phase flow coupled implicitly through appropriate heat transfer coefficients with a simulation of the temperature field in fuel and structural material. Because TRAC utilizes about 1000 fluid mesh cells to describe an LWR system, whereas existing lumped parameter codes typically involve fewer than 100 fluid cells, we have developed new highly implicit difference techniques that yield acceptable computing times on modern computers. Several test problems for which experimental data are available, including blowdown of single pipe and loop configurations with and without heated walls, have been computed with TRAC. Excellent agreement with experimental results has been obtained. (author)
Fluid dynamics and heat transfer methods for the TRAC code
International Nuclear Information System (INIS)
Reed, W.H.; Kirchner, W.L.
1977-01-01
A computer code called TRAC is being developed for analysis of loss-of-coolant accidents and other transients in light water reactors. This code involves a detailed, multidimensional description of two-phase flow coupled implicitly through appropriate heat transfer coefficients with a simulation of the temperature field in fuel and structural material. Because TRAC utilizes about 1000 fluid mesh cells to describe an LWR system, whereas existing lumped parameter codes typically involve fewer than 100 fluid cells, new highly implicit difference techniques are developed that yield acceptable computing times on modern computers. Several test problems for which experimental data are available, including blowdown of single pipe and loop configurations with and without heated walls, have been computed with TRAC. Excellent agreement with experimental results has been obtained
Low-melting point inorganic nitrate salt heat transfer fluid
Bradshaw, Robert W [Livermore, CA; Brosseau, Douglas A [Albuquerque, NM
2009-09-15
A low-melting point, heat transfer fluid made of a mixture of four inorganic nitrate salts: 9-18 wt % NaNO.sub.3, 40-52 wt % KNO.sub.3, 13-21 wt % LiNO.sub.3, and 20-27 wt % Ca(NO.sub.3).sub.2. These compositions can have liquidus temperatures less than 100 C; thermal stability limits greater than 500 C; and viscosity in the range of 5-6 cP at 300 C; and 2-3 cP at 400 C.
Heat transfer and fluid flow in nuclear systems
Fenech, Henri
1982-01-01
Heat Transfer and Fluid in Flow Nuclear Systems discusses topics that bridge the gap between the fundamental principles and the designed practices. The book is comprised of six chapters that cover analysis of the predicting thermal-hydraulics performance of large nuclear reactors and associated heat-exchangers or steam generators of various nuclear systems. Chapter 1 tackles the general considerations on thermal design and performance requirements of nuclear reactor cores. The second chapter deals with pressurized subcooled light water systems, and the third chapter covers boiling water reacto
Heat transfer and fluid flow in minichannels and microchannels
Kandlikar, Satish; Li, Dongqing; Colin, Stephane; King, Michael R
2014-01-01
Heat exchangers with minichannel and microchannel flow passages are becoming increasingly popular due to their ability to remove large heat fluxes under single-phase and two-phase applications. Heat Transfer and Fluid Flow in Minichannels and Microchannels methodically covers gas, liquid, and electrokinetic flows, as well as flow boiling and condensation, in minichannel and microchannel applications. Examining biomedical applications as well, the book is an ideal reference for anyone involved in the design processes of microchannel flow passages in a heat exchanger. Each chapter is accompan
Fluid-transfer properties of recombinant battery separator media
Energy Technology Data Exchange (ETDEWEB)
Zguris, G.C. [Hollingsworth and Vose, Groton, MA (United States)
2000-05-01
The fluid-transfer properties of the separator play a critical role in both acid- and alkaline-based batteries. These properties are of particular importance in a lead-acid battery since the sulfuric acid is an active component of the battery reaction; the acid is depleted as the battery discharges. In a flooded lead-acid, the function of the separator to deliver acid is less significant than in a valve-regulated design. This paper discusses some issues with regards to this important interaction. (orig.)
Fluid flow and heat transfer modeling for castings
International Nuclear Information System (INIS)
Domanus, H.M.; Liu, Y.Y.; Sha, W.T.
1986-01-01
Casting is fundamental to manufacturing of many types of equipment and products. Although casting is a very old technology that has been in existence for hundreds of years, it remains a highly empirical technology, and production of new castings requires an expensive and time-consuming trial-and-error approach. In recent years, mathematical modeling of casting has received increasing attention; however, a majority of the modeling work has been in the area of heat transfer and solidification. Very little work has been done in modeling fluid flow of the liquid melt. This paper presents a model of fluid flow coupled with heat transfer of a liquid melt for casting processes. The model to be described in this paper is an extension of the COMMIX code and is capable of handling castings with any shape, size, and material. A feature of this model is the ability to track the liquid/gas interface and liquid/solid interface. The flow of liquid melt through the sprue and runners and into the mold cavity is calculated as well as three-dimensional temperature and velocity distributions of the liquid melt throughout the casting process. 14 refs., 13 figs
Fluid Dynamics And Mass Transfer In Two-Fluid Taylor-Couette Flow
International Nuclear Information System (INIS)
Baier, G.; Graham, M.D.
1998-01-01
The Taylor-Couette instability of a single liquid phase can be used to enhance mass transfer processes such as filtration and membrane separations. We consider here the possibility of using this instability to enhance interphase transport in a two-fluid systems, with a view toward improved liquid-liquid extractions for biotechnology applications. We investigate the centrifugal instability of a pair of radially stratified immiscible liquids in the annular gap between concentric, corotating cylinders: two-fluid Taylor-Couette flow. Experiments show that a two-layer flow with a well-defined interface and Taylor vortices in each phase can be obtained. The experimental results are in good agreement with predictions of inviscid arguments based on a two-phase extension of Rayleigh's criterion, as well as with detailed linear stability calculations. For a given geometry, the most stable configuration occurs for fluids of roughly (exactly in the inviscid limit) equal dynamic viscosities. A number of preliminary mass transfer experiments have also been performed, in the presence of axial counterflow. The onset of Taylor vortices coincides with a clear decrease in the extent of axial dispersion and an increase in the rate of interphase transport, thus suggesting that this flow geometry may provide an effective means for countercurrent chromatographic separations
Thermochemistry of ionic liquid heat-transfer fluids
International Nuclear Information System (INIS)
Van Valkenburg, Michael E.; Vaughn, Robert L.; Williams, Margaret; Wilkes, John S.
2005-01-01
Large-scale solar energy collectors intended for electric power generation require a heat-transfer fluid with a set of properties not fully met by currently available commercial materials. Ionic liquids have thermophysical and chemical properties that may be suitable for heat transfer and short heat term storage in power plants using parabolic trough solar collectors. Ionic liquids are salts that are liquid at or near room temperature. Thermal properties important for heat transfer applications are melting point, boiling point, liquidus range, heat capacity, heat of fusion, vapor pressure, and thermal conductivity. Other properties needed to evaluate the usefulness of ionic liquids are density, viscosity and chemical compatibility with certain metals. Three ionic liquids were chosen for study based on their range of solvent properties. The solvent properties correlate with solubility of water in the ionic liquids. The thermal and chemical properties listed above were measured or compiled from the literature. Contamination of the ionic liquids by impurities such as water, halides, and metal ions often affect physical properties. The ionic liquids were analyzed for those impurities, and the impact of the contamination was evaluated by standard addition. The conclusion is that the ionic liquids have some very favorable thermal properties compared to targets established by the Department of Energy for solar collector applications
Mass transfer effects in hygroscopic measurements of aerosol particles
Directory of Open Access Journals (Sweden)
M. N. Chan
2005-01-01
Full Text Available The tandem differential mobility analyzer (TDMA has been widely utilized to measure the hygroscopicity of laboratory-generated and atmospheric submicrometer particles. An important concern in investigating the hygroscopicity of the particles is if the particles have attained equilibrium state in the measurements. We present a literature survey to investigate the mass transfer effects in hygroscopicity measurements. In most TDMA studies, a residence time in the order of seconds is used for humidification (or dehumidification. NaCl and (NH42SO4 particles are usually used to verify the equilibrium measurements during this residence time, which is presumed to be sufficient for other particles. There have been observations that not all types of submicrometer particles, including atmospheric particles, attain their equilibrium sizes within this time scale. We recommend that experimentation with different residence times be conducted and that the residence time should be explicitly stated in future TDMA measurements. Mass transfer effects may also exist in the measurements of other properties related to the water uptake of atmospheric particles such as relative humidity dependent light scattering coefficients and cloud condensation nuclei activity.
Devices with extended area structures for mass transfer processing of fluids
TeGrotenhuis, Ward E.; Wegeng, Robert S.; Whyatt, Greg A.; King, David L.; Brooks, Kriston P.; Stenkamp, Victoria S.
2009-04-21
A microchannel device includes several mass transfer microchannels to receive a fluid media for processing at least one heat transfer microchannel in fluid communication with a heat transfer fluid defined by a thermally conductive wall, and at several thermally conductive fins each connected to the wall and extending therefrom to separate the mass transfer microchannels from one another. In one form, the device may optionally include another heat transfer microchannel and corresponding wall that is positioned opposite the first wall and has the fins and the mass transfer microchannels extending therebetween.
Heat transfer to MHD oscillatory dusty fluid flow in a channel filled ...
Indian Academy of Sciences (India)
The flow of fluids through porous media has become ... convection-radiation interaction with heat transfer in boundary layer flow over a flat plate sub- ... Unsteady MHD free convection flow of a compressible fluid past a moving vertical plate in.
Heat Transfer and Fluid Flow in Naturally Ventilated Greenhouses
Directory of Open Access Journals (Sweden)
M. Elashmawy
2017-08-01
Full Text Available In this paper, heat transfer and fluid flow in naturally ventilated greenhouses are studied numerically for tow configuration according to the number and positions of the opening. The equations governing the phenomenon are developed using the stream function-vorticity formalism and solved using the finite volume method. The aim of the study is to investigate how buoyancy forces inﬂuence airﬂow and temperature patterns inside the greenhouse. Rayleigh number is the main parameter which changes from 103 to 106 and Prandtl number is ﬁxed at Pr=0.71. Results are reported in terms of stream function, isotherms and average Nusselt number. It is found that the flow structure is sensitive to the value of Rayleigh number and the number of openings. Also, that using asymmetric opening positions improve the natural ventilation and facilitate the occurrence of buoyancy induced upward cross-airflow inside the greenhouse.
Analytical methods for heat transfer and fluid flow problems
Weigand, Bernhard
2015-01-01
This book describes useful analytical methods by applying them to real-world problems rather than solving the usual over-simplified classroom problems. The book demonstrates the applicability of analytical methods even for complex problems and guides the reader to a more intuitive understanding of approaches and solutions. Although the solution of Partial Differential Equations by numerical methods is the standard practice in industries, analytical methods are still important for the critical assessment of results derived from advanced computer simulations and the improvement of the underlying numerical techniques. Literature devoted to analytical methods, however, often focuses on theoretical and mathematical aspects and is therefore useless to most engineers. Analytical Methods for Heat Transfer and Fluid Flow Problems addresses engineers and engineering students. The second edition has been updated, the chapters on non-linear problems and on axial heat conduction problems were extended. And worked out exam...
Numerical fluid flow and heat transfer calculations on multiprocessor systems
Energy Technology Data Exchange (ETDEWEB)
Oehman, G.A.; Malen, T.E.; Kuusela, P.
1989-01-01
The first part of the report presents the basic principles of parallel processing, and factors influencing tbe efficiency of practical applications are discussed. In a multiprocessor computer, different parts of the program code are executed in parallel, i.e. simultaneous with respect to time, on different processors, and thus it becomes possible to decrease the overall computation time by a factor, which in the ideal case is equal to the number of processors. The application study starts from the numerical solution of the twodimesional Laplace equation, which describes the steady heat conduction in a solid plate and advances through the solution of the three dimensional Laplace equation to the case of study laminar fluid flow in a twodimensional box at Reynolds numbers up to 20. Hereby the stream function-vorticity method is first applied and the SIMPLER method. The conventional (sequential) numerical algoritms for these fluid flow and heat transfer problems are found not to be ideally suited for conversion to parallel computation, but sped-up ratios considerably above 50 % of the theoretical maximum are regularly achieved in the runs. The numerical procedures we coded in the OCCAM-2 language and the test runs were performed at who Akademi on the imperimental HATHI-computers containing 16 T4l4 and 100 INMOS T800 transputers respectively.
Numerical fluid flow and heat transfer calculations on multiprocessor systems
Energy Technology Data Exchange (ETDEWEB)
Oehman, G.A.; Malen, T.E.; Kuusela, P.
1989-12-31
The first part of the report presents the basic principles of parallel processing, and factors influencing tbe efficiency of practical applications are discussed. In a multiprocessor computer, different parts of the program code are executed in parallel, i.e. simultaneous with respect to time, on different processors, and thus it becomes possible to decrease the overall computation time by a factor, which in the ideal case is equal to the number of processors. The application study starts from the numerical solution of the twodimesional Laplace equation, which describes the steady heat conduction in a solid plate and advances through the solution of the three dimensional Laplace equation to the case of study laminar fluid flow in a twodimensional box at Reynolds numbers up to 20. Hereby the stream function-vorticity method is first applied and the SIMPLER method. The conventional (sequential) numerical algoritms for these fluid flow and heat transfer problems are found not to be ideally suited for conversion to parallel computation, but sped-up ratios considerably above 50 % of the theoretical maximum are regularly achieved in the runs. The numerical procedures we coded in the OCCAM-2 language and the test runs were performed at who Akademi on the imperimental HATHI-computers containing 16 T4l4 and 100 INMOS T800 transputers respectively.
Cryogenic Fluid Transfer Components Using Single Crystal Piezoelectric Actuators, Phase II
National Aeronautics and Space Administration — Cryogenic fluid transfer components using single crystal piezoelectric actuators are proposed to enable low thermal mass, minimal heat leak, low power consumption...
Cryogenic Fluid Transfer Components Using Single Crystal Piezoelectric Actuators, Phase I
National Aeronautics and Space Administration — Cryogenic fluid transfer components using single crystal piezoelectric actuators are proposed to enable low thermal mass, minimal heat leak, low power consumption...
Energy Technology Data Exchange (ETDEWEB)
Shimmo, Masahiko; Jaentti, Jaana; Hartonen, Kari; Hyoetylaeinen, Tuulia; Riekkola, Marja-Liisa [Laboratory of Analytical Chemistry, Department of Chemistry, University of Helsinki, P.O. Box 55, 00014, Helsinki (Finland); Aalto, Pasi; Kulmala, Markku [Division of Atmospheric Sciences, Department of Physical Sciences, University of Helsinki, P.O. Box 64, 00014, Helsinki (Finland)
2004-04-01
During the European Union project Quantification of Aerosol Nucleation in the European Boundary Layer (QUEST), which began in spring 2003, atmospheric aerosol particles were collected in a Finnish Scots pine forest using a high-volume sampler. The organic compounds in the filter samples were then analysed by on-line coupled supercritical fluid extraction-liquid chromatography-gas chromatography-mass spectrometry (SFE-LC-GC-MS). The sample was first extracted by SFE. During LC the extracts were fractionated into three fractions according to polarity. The final separation was carried out by GC-MS. A fraction volume as high as 840 {mu}L was transferred to the GC, using the partial concurrent eluent evaporation technique. The same instrumentation, with an in-situ SFE derivatisation method, was used to analyse organic acids. Major compounds such as n-alkanes and PAH were analysed quantitatively. Their concentrations were lower than those usually observed in urban areas or in other forest areas in Europe. The wind direction was one of the most important factors affecting changes in the daily concentrations of these compounds. Scots pine needles were analysed with the same system to obtain reference data for identification of biogenic compounds in aerosol particles. Other organic compounds found in this study included hopanes, steranes, n-alkanals, n-alkan-2-ones, oxy-PAH, and alkyl-PAH; some biogenic products, including oxidation products of monoterpenes, were also identified. (orig.)
Analysis of the convective heat transfer of a fluid flow over an ...
African Journals Online (AJOL)
Convective heat transfer in a homogeneous fluid flow Reynolds number of order less than 2000 over an immersed axi-symmetrical body with curved surfaces has been investigated. The fluid flow in consideration was unsteady and of constant density .This study analysed the extent to which convective heat transfer has on ...
DOE Fundamentals Handbook: Thermodynamics, Heat Transfer, and Fluid Flow, Volume 1
International Nuclear Information System (INIS)
1992-06-01
The Thermodynamics, Heat Transfer, and Fluid Flow Fundamentals Handbook was developed to assist nuclear facility operating contractors provide operators, maintenance personnel, and the technical staff with the necessary fundamentals training to ensure a basic understanding of the thermal sciences. The handbook includes information on thermodynamics and the properties of fluids; the three modes of heat transfer -- conduction, convection, and radiation; and fluid flow, and the energy relationships in fluid systems. This information will provide personnel with a foundation for understanding the basic operation of various types of DOE nuclear facility fluid systems
DOE Fundamentals Handbook: Thermodynamics, Heat Transfer, and Fluid Flow, Volume 3
International Nuclear Information System (INIS)
1992-06-01
The Thermodynamics, Heat Transfer, and Fluid Flow Fundamentals Handbook was developed to assist nuclear facility operating contractors provide operators, maintenance personnel, and the technical staff with the necessary fundamentals training to ensure a basic understanding of the thermal sciences. The handbook includes information on thermodynamics and the properties of fluids; the three modes of heat transfer -- conduction, convection, and radiation; and fluid flow, and the energy relationships in fluid systems. This information will provide personnel with a foundation for understanding the basic operation of various types of DOE nuclear facility fluid systems
DOE Fundamentals Handbook: Thermodynamics, Heat Transfer, and Fluid Flow, Volume 2
International Nuclear Information System (INIS)
1992-06-01
The Thermodynamics, Heat Transfer, and Fluid Flow Fundamentals Handbook was developed to assist nuclear facility operating contractors provide operators, maintenance personnel, and the technical staff with the necessary fundamentals training to ensure a basic understanding of the thermal sciences. The handbook includes information on thermodynamics and the properties of fluids; the three modes of heat transfer -- conduction, convection, and radiation; and fluid flow, and the energy relationships in fluid systems. This information will provide personnel with a foundation for understanding the basic operation of various types of DOE nuclear facility fluid systems
Heat transfer and fluid flow in biological processes advances and applications
Becker, Sid
2015-01-01
Heat Transfer and Fluid Flow in Biological Processes covers emerging areas in fluid flow and heat transfer relevant to biosystems and medical technology. This book uses an interdisciplinary approach to provide a comprehensive prospective on biofluid mechanics and heat transfer advances and includes reviews of the most recent methods in modeling of flows in biological media, such as CFD. Written by internationally recognized researchers in the field, each chapter provides a strong introductory section that is useful to both readers currently in the field and readers interested in learning more about these areas. Heat Transfer and Fluid Flow in Biological Processes is an indispensable reference for professors, graduate students, professionals, and clinical researchers in the fields of biology, biomedical engineering, chemistry and medicine working on applications of fluid flow, heat transfer, and transport phenomena in biomedical technology. Provides a wide range of biological and clinical applications of fluid...
Heat transfer and fluid flow in nuclear systems
International Nuclear Information System (INIS)
Fenech, H.
1981-01-01
The present publication is an attempt to provide a bridge between fundamental principles and current design practice. It is intended to serve the need of: engineers, scientists and graduate students active in thermal and hydraulics problems and to those interested to keep abreast of the field. The text is addressed to readers with previous knowledge in heat transfer and fluid flow equvalent to a one year university graduate course in that field. Because of the high degree of specialization covered in the six chapters of the book, individual authors of international reputation and active in their respective area of specialization were selected to contribute their knowledge. Each of the six chapters or sub-chapters are self-contained. They are followed by problem sets to enable the reader to check his level of comprehension of the material presented. The nuclear systems covered in separate chapters include: the pressurized and boiling water reactors (PWR, BWR), the helium cooled high temperature reactors (HTGR and HTR), the breeders helium cooled (GCFR) and sodium cooled (LMFBR). In addition the heat-exchangers and steam generators commonly associated with the above systems are covered in Chapter 6
Landazuri, Andrea C.
This dissertation focuses on aerosol transport modeling in occupational environments and mining sites in Arizona using computational fluid dynamics (CFD). The impacts of human exposure in both environments are explored with the emphasis on turbulence, wind speed, wind direction and particle sizes. Final emissions simulations involved the digitalization process of available elevation contour plots of one of the mining sites to account for realistic topographical features. The digital elevation map (DEM) of one of the sites was imported to COMSOL MULTIPHYSICSRTM for subsequent turbulence and particle simulations. Simulation results that include realistic topography show considerable deviations of wind direction. Inter-element correlation results using metal and metalloid size resolved concentration data using a Micro-Orifice Uniform Deposit Impactor (MOUDI) under given wind speeds and directions provided guidance on groups of metals that coexist throughout mining activities. Groups between Fe-Mg, Cr-Fe, Al-Sc, Sc-Fe, and Mg-Al are strongly correlated for unrestricted wind directions and speeds, suggesting that the source may be of soil origin (e.g. ore and tailings); also, groups of elements where Cu is present, in the coarse fraction range, may come from mechanical action mining activities and saltation phenomenon. Besides, MOUDI data under low wind speeds (Computational Fluid Dynamics can be used as a source apportionment tool to identify areas that have an effect over specific sampling points and susceptible regions under certain meteorological conditions, and these conclusions can be supported with inter-element correlation matrices and lead isotope analysis, especially since there is limited access to the mining sites. Additional results concluded that grid adaption is a powerful tool that allows to refine specific regions that require lots of detail and therefore better resolve flow detail, provides higher number of locations with monotonic convergence than the
Robins, T; Seixas, N; Franzblau, A; Abrams, L; Minick, S; Burge, H; Schork, M A
1997-05-01
Exposure to metalworking fluids has been linked to modest cross-shift reductions in FEV1 and occupational asthma. To identify responsible agents, we measured personal exposures to thoracic particulate (TP), viable plus nonviable thoracic bacteria (BAC), and vapor phase nicotine (VPN) (as a surrogate for tobacco particulate) among 83 machinists exposed to soluble oils and 46 dry assemblers working in an automotive transmission machining plant using biocides infrequently. The participants completed interviews and performed pre- and postshift spirometry on Monday and Thursday of the same week in each of three rounds of data collection (June 1992, January 1993, June 1993). Generalized estimating equations were used to combine information across rounds in multiple regression models of cross-shift and cross-week changes in forced expiratory volume, I second (FEV1) and forced vital capacity (FVC). Mean seniority was 19 years among machinists. Mean personal TP levels were 0.41 mg/m3 in machinists and 0.13 mg/m3 in assemblers. Six of the 83 machinists and none of the 46 assemblers experienced a greater than 19% cross-shift decrement in FEV1 or FVC at least once (p = .07). In regression models using either TP or BAC, among subjects with lower baseline (Monday preshift) FEV1/FVC ratios, increasing exposure was significantly associated with increasing cross-shift decrements in FEV1 and FVC in linear models, and with increased likelihood of a 10% or greater cross-shift decrement in FEV1 or FVC in logistic models. Adjustment of TP for VPN did not affect models significantly. We conclude that clinically important cross-shift decrements in pulmonary function are associated with exposure to metalworking fluid aerosols within a high-seniority population.
NACOWA experiments on LMFBR cover gas aerosols, heat transfer, and fission product enrichment
International Nuclear Information System (INIS)
Minges, J.; Schuetz, W.
1993-12-01
Fifteen different NACOWA test series were carried out. The following items were investigated: sodium mass concentration in the cover gas, sodium aerosol particle size, radiative heat transfer across the cover gas, total heat transfer across the cover gas, sodium deposition on the cover plate, temperature profiles across the cover gas, phenomena if the argon cover gas is replaced by helium, enrichment of cesium, iodine, and zinc in the aerosol and in the deposits. The conditions were mainly related to the design parameters of the EFR. According to the first consistent design, a pool temperature of 545 C and a roof temperature of only 120 C were foreseen at a cover gas height of 85 cm. The experiments were carried out in a stainless steel test vessel of 0.6 m diameter and 1.14 m height. Pool temperature (up to 545 C), cover gas height (12.5 cm, 33 cm, and others), and roof temperature (from 110 C to 450 C) were the main parameters. (orig./HP) [de
Thermophysical Properties of Nanoparticle-Enhanced Ionic Liquids (NEILs) Heat-Transfer Fluids
Energy Technology Data Exchange (ETDEWEB)
Fox, Elise B.; Visser, Ann E.; Bridges, Nicholas J.; Amoroso, Jake W.
2013-06-20
An experimental investigation was completed on nanoparticle enhanced ionic liquid heat transfer fluids as an alternative to conventional organic based heat transfer fluids (HTFs). These nanoparticle-based HTFs have the potential to deliver higher thermal conductivity than the base fluid without a significant increase in viscosity at elevated temperatures. The effect of nanoparticle morphology and chemistry on thermophysical properties was examined. Whisker shaped nanomaterials were found to have the largest thermal conductivity temperature dependence and were also less likely to agglomerate in the base fluid than spherical shaped nanomaterials.
International Nuclear Information System (INIS)
Chernikova, E A; Glukhov, L M; Krasovskiy, V G; Kustov, L M; Vorobyeva, M G; Koroteev, A A
2015-01-01
The practical aspects and prospects of application of ionic liquids as heat transfer fluids are discussed. The physicochemical properties of ionic liquids (heat capacity, thermal conductivity, thermal and radiation stability, viscosity, density, saturated vapour pressure and corrosion activity) are compared with the properties of some commercial heat transfer fluids. The issues of toxicity of ionic liquids are considered. Much attention is paid to known organosilicon heat transfer fluids, which are considered to have much in common with ionic liquids in the set of properties and are used in the review as reference materials. The bibliography includes 132 references
International Nuclear Information System (INIS)
Chamberlain, A.C.
1991-01-01
Radon. Fission product aerosols. Radioiodine. Tritium. Plutonium. Mass transfer of radioactive vapours and aerosols. Studies with radioactive particles and human subjects. Index. This paper explores the environmental and health aspects of radioactive aerosols. Covers radioactive nuclides of potential concern to public health and applications to the study of boundary layer transport. Contains bibliographic references. Suitable for environmental chemistry collections in academic and research libraries
The Pi-Theorem Applications to Fluid Mechanics and Heat and Mass Transfer
Yarin, L P
2012-01-01
This volume presents applications of the Pi-Theorem to fluid mechanics and heat and mass transfer. The Pi-theorem yields a physical motivation behind many flow processes and therefore it constitutes a valuable tool for the intelligent planning of experiments in fluids. After a short introduction to the underlying differential equations and their treatments, the author presents many novel approaches how to use the Pi-theorem to understand fluid mechanical issues. The book is a great value to the fluid mechanics community, as it cuts across many subdisciplines of experimental fluid mechanics.
Mass transfer in supercritical fluids instancing selected fluids in supercritical carbon dioxide
Hu, Miao; Benning, Rainer; Delgado, Antonio; Ertunc, Oezguer
The research interests lie in a deeper understanding of the mechanisms of diffusion and nucle-ation of organic solutes in near-and supercritical state of a solvent, which count as important means of mass transfer in the process engineering industry. The use of supercritical fluids in industrial processes, such as extraction and particle handling, has become a more and more popular method. Take a closer look at the two processes one would find that there are obviously two sub-processes involved in each of the process, namely the diffusion/nucleation as well as a phase transition procedure. Because of the operational limitations in the practice, this phase transition can-not be neglected. So it is also included in the theoretical approach. Classically to deduce conclusions from experiment results, mathematical/physical models outlining property changes and summarizing characteristics of the two processes are expected. In order to become an insight of these phenomena from the origin, and also to serve as a fundamental attribute for the numerical simulation later, the theories of statistical thermodynamics are adopted here as a proper means to describe the behaviors of the two processes. As the diffusion coefficients of the samples in our case are only of an order of approx. 10-8m2s-1, it can be assumed that the processes are in equilibrium (local changes are neglectably small), a model can be built on a general macroscopic approach for equilibrium systems, namely the Boltzmann-Gibbs distri-bution. And some rather general methods e.g. linear response theory can be applied. But as the transfer phenomena are genuinely not equilibrium systems, from this aspect a model can also be built based on the microscopic description -the kinetic theory of the behaviors of the particles of this non-equilibrium system. The characteristics under compensated gravity are also to be considered in the models. The differences and constraints between the models are to be compared and
Analysis and hazard evaluation of heat-transfer fluids for the direct contact cooling system
International Nuclear Information System (INIS)
Hong, Joo Hi; Lee, Yeon Hee; Shin, You Hwan; Karng, Sarng Woo; Kim, Seo Young; Kim, Young Gil
2006-01-01
This paper discusses several low-temperature heat-transfer fluids, including water-based inorganic salt, organic salt, alcohol/glycol mixtures, silicones, and halogenated hydrocarbons in order to choose the best heat-transfer fluid for the newly designed direct contact refrigeration system. So, it contains a survey on commercial products such as propylene glycol and potassium formate as newly used in super market and food processing refrigeration. The stability of commercial fluids at the working temperature of -20 .deg. C was monitored as a function of time up to two months. And organic and inorganic compositions of candidate fluids were obtained by analytical instruments such as ES, XRF, AAS, ICP-AES, GC, and GC-MS. Analysis results indicate that commercial propylene glycol is very efficient and safe heat transfer fluids for the direct cooling system with liquid phase
A finite volume procedure for fluid flow, heat transfer and solid-body stress analysis
Jagad, P. I.; Puranik, B. P.; Date, A. W.
2018-01-01
A unified cell-centered unstructured mesh finite volume procedure is presented for fluid flow, heat transfer and solid-body stress analysis. An in-house procedure (A. W. Date, Solution of Transport Equations on Unstructured Meshes with Cell
Numerical analysis of fluid flow and heat transfer in a helical ...
African Journals Online (AJOL)
DR OKE
International Journal of Engineering, Science and Technology ... Numerical analysis of fluid flow and heat transfer in a helical rectangular .... by comparing the results of a conical spiral tube bundle modeled using the same software with that of.
Stagnation point flow and heat transfer for a viscoelastic fluid ...
Indian Academy of Sciences (India)
M REZA
2017-11-09
Nov 9, 2017 ... MS received 15 August 2016; revised 26 February 2017; accepted 15 March 2017; published online 9 ... surface has several engineering applications within, for ... viscoelastic fluids in several industrial manufacturing pro-.
Cabaleiro Alvarez, David
2016-01-01
This PhD Thesis aims to characterize different conventional thermal fluids and propose new nanofluids based on their thermophysical, rheological, (solid-liquid) phase equilibria and their capability to heat transfer or heat storage. The selected conventional fluids are commonly used in the majority of heat transfer systems such as ethylene glycol (EG), propylene glycol (PG), a (ethylene glycol + water) mixture at 50 vol.% (EG+W), or the (diphenyl ether + biphenyl) mixtures. The nanofluids wer...
International Nuclear Information System (INIS)
Maro, Denis
2011-01-01
In situations of chronic or accidental releases, the atmosphere is the main pathway of radioactive releases from nuclear facilities to the environment and, consequently, to humans. It is therefore necessary to have sufficient information on this pathway to accurately assess the radiological impact on man and his environment. Institute for Radioprotection and Nuclear Safety develops its own tools of dispersion and atmospheric transfer for its expertise, under normal operation conditions of a facility, but especially in crisis or post-accident. These tools must have a national and international recognition in particular through scientific validation against benchmark experiments performed internationally, nationally or within the IRSN. The Radioecology Laboratory of Cherbourg-Octeville provides, and will increasingly make, a significant contribution to the scientific influence of the Institute in this field. The work presented in this report has contributed to the development or improvement of experimental techniques in the fields of atmospheric dispersion of radionuclides and transfer at interfaces, in complex environments (complex topography, urban area). These experimental techniques, applied during field campaigns, have allowed to acquire new data in order to get a better understanding of radionuclide transfers in the form of gases and aerosols. (author)
Experiments on nucleate boiling heat transfer with a highly-wetting dielectric fluid
International Nuclear Information System (INIS)
You, S.M.; Simon, T.W.; Bar-Cohen, A.
1990-01-01
This paper reports on experiments on pool boiling heat transfer in an electronic cooling fluid (Fluorinert, FC-72) that were conducted using a 0.51 mm diameter cylindrical heater. The effects of pressure, subcooling and dissolved gas content on nucleate boiling heat transfer are investigated. When boiling with dissolved gas in the bulk fluid, the fluid in the vicinity of the heating element appears to be liberated of dissolved gas by boiling. Thus, boiling under these conditions appears to be similar to subcooled boiling without dissolved gas. Nucleate boiling hysteresis is observed for subcooled and gassy-subcooled situations
Fahlgren, Camilla; Gómez-Consarnau, Laura; Zábori, Julia; Lindh, Markus V; Krejci, Radovan; Mårtensson, E Monica; Nilsson, Douglas; Pinhassi, Jarone
2015-06-01
Biogenic aerosols critically control atmospheric processes. However, although bacteria constitute major portions of living matter in seawater, bacterial aerosolization from oceanic surface layers remains poorly understood. We analysed bacterial diversity in seawater and experimentally generated aerosols from three Kongsfjorden sites, Svalbard. Construction of 16S rRNA gene clone libraries from paired seawater and aerosol samples resulted in 1294 sequences clustering into 149 bacterial and 34 phytoplankton operational taxonomic units (OTUs). Bacterial communities in aerosols differed greatly from corresponding seawater communities in three out of four experiments. Dominant populations of both seawater and aerosols were Flavobacteriia, Alphaproteobacteria and Gammaproteobacteria. Across the entire dataset, most OTUs from seawater could also be found in aerosols; in each experiment, however, several OTUs were either selectively enriched in aerosols or little aerosolized. Notably, a SAR11 clade OTU was consistently abundant in the seawater, but was recorded in significantly lower proportions in aerosols. A strikingly high proportion of colony-forming bacteria were pigmented in aerosols compared with seawater, suggesting that selection during aerosolization contributes to explaining elevated proportions of pigmented bacteria frequently observed in atmospheric samples. Our findings imply that atmospheric processes could be considerably influenced by spatiotemporal variations in the aerosolization efficiency of different marine bacteria. © 2015 Society for Applied Microbiology and John Wiley & Sons Ltd.
Heat transfer with thermal radiation on MHD particle–fluid ...
Indian Academy of Sciences (India)
M M BHATTI
2017-09-12
Sep 12, 2017 ... ous effects of slip and endoscopy on blood flow of particle–fluid suspension induced by a peristaltic wave. Akbar and Khan [21] ..... effect on pressure rise and decreases in retrograde pump- ing region. It can be seen from ...
Annual review of numerical fluid mechanics and heat transfer. Volume 1
International Nuclear Information System (INIS)
Chawla, T.C.
1987-01-01
Numerical techniqes for the analysis of problems in fluid mechanics and heat transfer are discussed, reviewing the results of recent investigations. Topics addressed include thermal radiation in particulate media with dependent and independent scattering, pressure-velocity coupling in incompressiblefluid flow, new explicit methods for diffusion problems, and one-dimensional reaction-diffusion equations in combustion theory. Consideration is given to buckling flows, multidimensional radiative-transfer analysis in participating media, freezing and melting problems, and complex heat-transfer processes in heat-generating horizontal fluid layers
International Nuclear Information System (INIS)
Rauret, G.; Real, J.
1995-01-01
The behaviour of 134 Cs, 110m Ag and 85 Sr was studied in different soil-plant systems, using two types of Mediterranean soil with contrasting properties (sandy and sandy-loam soils). The plant species used was lettuce (Lactuca sativa). Contamination was induced at different stages of plant growth, using a synthetic aerosol which simulated a distant contamination source. Characterisation of aerosol and soils, interception factors in the various growth stages, foliar and root uptake, leaching from leaves by irrigation and distribution and migration of radionuclides of soils were studied, in an attempt to understand the key factors involving radionuclide soil-to-plant transferance. (author)
Energy Technology Data Exchange (ETDEWEB)
Rauret, G. [Universitat de Barcelona (Spain). Dept. of Quimica Analitica; Vallejo, V.R. [Universitat de barcelona (Spain). Dept. of Biologia Vegetal; Cancio, D. [Centro de Investigaciones Energeticas, Medioambientales y Tecnologicas (CIEMAT), Madrid (Spain); Real, J. [CEA Centre d`Etudes de Fontenay-aux-Roses, 92 (France). Inst. de Protection et de Surete Nucleaire
1995-12-31
The behaviour of {sup 134}Cs, {sup 110m}Ag and {sup 85}Sr was studied in different soil-plant systems, using two types of Mediterranean soil with contrasting properties (sandy and sandy-loam soils). The plant species used was lettuce (Lactuca sativa). Contamination was induced at different stages of plant growth, using a synthetic aerosol which simulated a distant contamination source. Characterisation of aerosol and soils, interception factors in the various growth stages, foliar and root uptake, leaching from leaves by irrigation and distribution and migration of radionuclides of soils were studied, in an attempt to understand the key factors involving radionuclide soil-to-plant transferance. (author).
Directory of Open Access Journals (Sweden)
C.S.K. Raju
2016-03-01
Full Text Available In this study we analyzed the flow, heat and mass transfer behavior of Casson fluid past an exponentially permeable stretching surface in presence of thermal radiation, magneticfield, viscous dissipation, heat source and chemical reaction. We presented dual solutions by comparing the results of the Casson fluid with the Newtonian fluid. The governing partial nonlinear differential equations of the flow, heat and mass transfer are transformed into ordinary differential equations by using similarity transformation and solved numerically by using Matlab bvp4c package. The effects of various non-dimensional governing parameters on velocity, temperature and concentration profiles are discussed and presented graphically. Also, the friction factor, Nusselt and Sherwood numbers are analyzed and presented in tabular form for both Casson and Newtonian fluids separately. Under some special conditions the results of the present study have an excellent agreement with existing studies for both Casson and Newtonian fluid cases.
Aerodynamics, heat and mass transfer in steam-aerosol turbulent flows in containment
Energy Technology Data Exchange (ETDEWEB)
Nigmatulin, B.I.; Pershukov, V.A.; Ris, V.V. [Research & Engineering Centre of Nuclear Plants Safety, Moscow (Russian Federation)] [and others
1995-09-01
In this report an analysis of aerodynamic and heat transfer processes at the blowdown of gas-dispersed mixture into the containment volume is presented. A few models for description of the volume averaged and local characteristics are analyzed. The mathematical model for description of the local characteristics of the turbulent gas-dispersed flows was developed. The calculation of aerodynamic, heat and mass transfer characteristics was based on the Navier-Stokes, energy and gas mass fractions conservation equations. For calculation of dynamics and deposition of the aerosols the original diffusion-inertia model is developed. The pulsating characteristics of the gaseous phase were calculated on the base (k-{xi}) model of turbulence with modification to account thermogravitational force action and influence of particle mass loading. The appropriate boundary conditions using the {open_quotes}near-wall function{close_quotes} approach was obtained. Testing of the mathematical models and boundary conditions has shown a good agreement between computation and data of comparison. The described mathematical models were applied to two- and three dimensional calculations of the turbulent flow in containment at the various stages of the accident.
Babu, C. Rajesh; Kumar, P.; Rajamohan, G.
2017-07-01
Computation of fluid flow and heat transfer in an economizer is simulated by a porous medium approach, with plain tubes having a horizontal in-line arrangement and cross flow arrangement in a coal-fired thermal power plant. The economizer is a thermal mechanical device that captures waste heat from the thermal exhaust flue gasses through heat transfer surfaces to preheat boiler feed water. In order to evaluate the fluid flow and heat transfer on tubes, a numerical analysis on heat transfer performance is carried out on an 110 t/h MCR (Maximum continuous rating) boiler unit. In this study, thermal performance is investigated using the computational fluid dynamics (CFD) simulation using ANSYS FLUENT. The fouling factor ε and the overall heat transfer coefficient ψ are employed to evaluate the fluid flow and heat transfer. The model demands significant computational details for geometric modeling, grid generation, and numerical calculations to evaluate the thermal performance of an economizer. The simulation results show that the overall heat transfer coefficient 37.76 W/(m2K) and economizer coil side pressure drop of 0.2 (kg/cm2) are found to be conformity within the tolerable limits when compared with existing industrial economizer data.
Fluid flow with heat transfer in a fix-bed
International Nuclear Information System (INIS)
Gasparetto, C.A.
1982-01-01
Tests with two different fluids, water and air, flowing in a bed with irregular particles of silica were done. The bed was confined inside a tube, which was heated by an external jacket. The bed is characterized by permeability and porosity. The tests showed a wall effect face to the relation between the tube diameter and the medium dimension of the particles. The results are presented as a relation between Nusselt number / Peclet number. (E.G.) [pt
Analytical prediction of forced convective heat transfer of fluids ...
Indian Academy of Sciences (India)
Nanoﬂuids are a new class of heat transfer ﬂuids developed by suspending nanosized solid particles in liquids. Larger thermal conductivity of solid particles compared to the base ﬂuid such as water, ethylene glycol, engine oil etc. signiﬁcantly enhances their thermal properties. Several phenomenological models have been ...
Directory of Open Access Journals (Sweden)
Christopher Ian Wright
2015-09-01
Full Text Available This article describes a series of experiments to assess the performance and suitability of a permittivity sensor in the area of heat transfer. The permittivity sensor measures condition index and temperature of a fluid. A series of 5 experiments was conducted. They assessed the reproducibility of the sensor using both clean and dirty fluid samples, and showed the sensor had good reproducibility based on calculations of coefficients of variation. The sensor also detected water contamination, assessed from construction of a stimulus-response curve to step-wise increases in water and from real-life samples where water content was reported to be out of specification. Further experiments tested the association between condition index and both water content and fluid cleanliness in a real-life setting. Results demonstrated the sensor that condition index reflected changes in fluid water and cleanliness and was therefore a measure of fluid condition. The implication of these findings is that the sensor can be used to make rapid and reliable assessments of fluid condition using only small samples (i.e., <50 ml. The sensor may be of benefit to customers that need to make a lot of regular samples over a large processing site, such as concentrated solar power plants.
Numerical Study on Mass Transfer of a Vapor Bubble Rising in Very High Viscous Fluid
Directory of Open Access Journals (Sweden)
T. Kunugi
2014-09-01
Full Text Available This study focused on a bubble rising behavior in a molten glass because it is important to improve the efficiency of removal of bubbles from the molten glass. On the other hand, it is expected that some gas species which exists in a bubble are transferred into the molten glass through the bubble interface, i.e., the mass transfer, subsequently, it may cause a bubble contraction in the molten glass. In this paper, in order to understand the bubble rising behavior with its contraction caused by the mass transfer through the bubble interface in the very high viscous fluid such as the molten glass, a bubble contraction model has been developed. The direct numerical simulations based on the MARS (Multi-interface Advection and Reconstruction Solver coupled with the mass transfer equation and the bubble contraction model regarding the mass transfer from the rising bubble in very high viscous fluid have been performed. Here, the working fluids were water vapor as the gas species and the molten glass as the very high viscous fluid. Also, the jump conditions at the bubble interface for the mass transfer were examined. Furthermore, the influence of the bubble contraction for the bubble rising compared to that in the water as a normal viscous fluid was investigated. From the result of the numerical simulations, it was found that the bubble rising behavior was strongly affected not only by the viscosity of the working fluid but also by the bubble contraction due to the mass transfer through the bubble interface.
Numerical simulation of nanofluids based on power-law fluids with flow and heat transfer
Li, Lin; Jiang, Yongyue; Chen, Aixin
2017-04-01
In this paper, we investigate the heat transfer of nanofluids based on power-law fluids and movement of nanoparticles with the effect of thermophoresis in a rotating circular groove. The velocity of circular groove rotating is a constant and the temperature on the wall is kept to be zero all the time which is different from the temperature of nanofluids in the initial time. The effects of thermophoresis and Brownian diffusion are considered in temperature and concentration equations, and it is assumed that the thermal conductivity of nanofluids is a function of concentration of nanoparticles. Based on numerical results, it can be found that nanofluids improve the process of heat transfer than base fluids in a rotating circular groove. The enhancement of heat transfer increases as the power law index of base fluids decreases.
Exact solutions for MHD flow of couple stress fluid with heat transfer
Directory of Open Access Journals (Sweden)
Najeeb Alam Khan
2016-01-01
Full Text Available This paper aims at presenting exact solutions for MHD flow of couple stress fluid with heat transfer. The governing partial differential equations (PDEs for an incompressible MHD flow of couple stress fluid are reduced to ordinary differential equations by employing wave parameter. The methodology is implemented for linearizing the flow equations without extra transformation and restrictive assumptions. Comparison is made with the result obtained previously.
International Nuclear Information System (INIS)
Li, Si-Ning; Zhang, Hong-Na; Li, Xiao-Bin; Li, Qian; Li, Feng-Chen; Qian, Shizhi; Joo, Sang Woo
2017-01-01
Highlights: • Heat transfer performance of non-Newtonian fluid flow in a MHS is studied. • Pseudo-plastic fluid flow can clearly promote the heat transfer efficiency in MMC. • Heat transfer enhancement is attributed to the emergence of secondary flow. • The heat transfer uniformity can also be improved by pseudo-plastic fluid flow. - Abstract: As the miniaturization and integration become the leading trend of the micro-electro-mechanical systems, it is of great significance to improve the microscaled heat transfer performance. This paper presents a three-dimensional (3D) numerical simulation on the flow characteristics and heat transfer performance of non-Newtonian fluid flow in a manifold microchannel (MMC) heat sink and traditional microchannel (TMC) heat sink. The non-Newtonian fluid was described by the power-law model. The analyses concentrated on the non-Newtonian fluid effect on the heat transfer performance, including the heat transfer efficiency and uniformity of temperature distribution, as well as the influence of inlet/outlet configurations on fluid flow and heat transfer. Comparing with Newtonian fluid flow, pseudo-plastic fluid could reduce the drag resistance in both MMC and TMC, while the dilatant fluid brought in quite larger drag resistance. For the heat transfer performance, the introduction of pseudo-plastic fluid flow greatly improved the heat transfer efficiency owing to the generation of secondary flow due to the shear-thinning property. Besides, the temperature distribution in MMC was more uniform by using pseudo-plastic fluid. Moreover, the inlet/outlet configuration was also important for the design and arrangement of microchannel heat sinks, since the present work showed that the maximum temperature was prone to locating in the corners near the inlet and outlet. This work provides guidance for optimal design of small-scale heat transfer devices in many cooling applications, such as biomedical chips, electronic systems, and
Prasad, D. V. V. Krishna; Chaitanya, G. S. Krishna; Raju, R. Srinivasa
2018-05-01
The aim of this research work is to find the EFGM solutions of the unsteady magnetohydromagnetic natural convection heat transfer flow of a rotating, incompressible, viscous, Boussinesq fluid is presented in this study in the presence of radiative heat transfer. The Rosseland approximation for an optically thick fluid is invoked to describe the radiative flux. Numerical results obtained show that a decrease in the temperature boundary layer occurs when the Prandtl number and the radiation parameter are increased and the flow velocity approaches steady state as the time parameter t is increased. These findings are in quantitative agreement with earlier reported studies.
Numerical simulation of heat transfer in power law fluid flow through a stenosed artery
Talib, Amira Husni; Abdullah, Ilyani
2017-11-01
A numerical study of heat transfer in a power law fluid is investigated in this paper. The blood flow is treated as power law fluid with a presence of cosine shaped stenosis. This study reveals the effect of stenosis on the heat transfer and velocity of blood flowing in the constricted artery. The governing and energy equations are formulated in a cylindrical coordinate system. Hence, the set of equations and boundary conditions are solved numerically by Marker and Cell (MAC) method. The graphical result shows the profile of blood temperature is increased while the blood velocity is decreased at the critical height of stenosis.
Models for fluid flows with heat transfer in mixed convection
International Nuclear Information System (INIS)
Mompean Munhoz da Cruz, G.
1989-06-01
Second order models were studied in order to predict turbulent flows with heat transfer. The equations used correspond to the characteristic scale of turbulent flows. The order of magnitude of the terms of the equation is analyzed by using Reynolds and Peclet numbers. The two-equation model (K-ε) is applied in the hydrodynamic study. Two models are developed for the heat transfer analysis: the Prt + teta 2 and the complete model. In the first model, the turbulent thermal diffusivity is calculated by using the Prandtl number for turbulent flow and an equation for the variance of the temperature fluctuation. The second model consists of three equations concerning: the turbulent heat flow, the variance of the temperature fluctuation and its dissipation ratio. The equations were validated by four experiments, which were characterized by the analysis of: the air flow after passing through a grid of constant average temperature and with temperature gradient, an axysymmetric air jet submitted to high and low heating temperature, the mixing (cold-hot) of two coaxial jets of sodium at high Peclet number. The complete model is shown to be the most suitable for the investigations presented [fr
Molten salt as a heat transfer fluid for heating a subsurface formation
Nguyen, Scott Vinh; Vinegar, Harold J.
2010-11-16
A heating system for a subsurface formation includes a conduit located in an opening in the subsurface formation. An insulated conductor is located in the conduit. A material is in the conduit between a portion of the insulated conductor and a portion of the conduit. The material may be a salt. The material is a fluid at operating temperature of the heating system. Heat transfers from the insulated conductor to the fluid, from the fluid to the conduit, and from the conduit to the subsurface formation.
Fluid and mass transfer at subduction interfaces-The field metamorphic record
Bebout, Gray E.; Penniston-Dorland, Sarah C.
2016-01-01
The interface between subducting oceanic slabs and the hanging wall is a structurally and lithologically complex region. Chemically disparate lithologies (sedimentary, mafic and ultramafic rocks) and mechanical mixtures thereof show heterogeneous deformation. These lithologies are tectonically juxtaposed at mm to km scales, particularly in more intensely sheared regions (mélange zones, which act as fluid channelways). This juxtaposition, commonly in the presence of a mobile fluid phase, offers up huge potential for mass transfer and related metasomatic alteration. Fluids in this setting appear capable of transporting mass over scales of kms, along flow paths with widely varying geometries and P-T trajectories. Current models of arc magmatism require km-scale migration of fluids from the interface into mantle wedge magma source regions and implicit in these models is the transport of any fluids generated in the subducting slab along and ultimately through the subduction interface. Field and geochemical studies of high- and ultrahigh-pressure metamorphic rocks elucidate the sources and compositions of fluids in subduction interfaces and the interplay between deformation and fluid and mass transfer in this region. Recent geophysical studies of the subduction interface - its thickness, mineralogy, density, and H2O content - indicate that its rheology greatly influences the ways in which the subducting plate is coupled with the hanging wall. Field investigation of the magnitude and styles of fluid-rock interaction in metamorphic rocks representing "seismogenic zone" depths (and greater) yields insight regarding the roles of fluids and elevated fluid pore pressure in the weakening of plate interface rocks and the deformation leading to seismic events. From a geochemical perspective, the plate interface contributes to shaping the "slab signature" observed in studies of the composition of arc volcanic rocks. Understanding the production of fluids with hybridized chemical
Numerical simulation of fluid flow and heat transfer in a concentric tube heat exchanger
International Nuclear Information System (INIS)
Mokamati, S.V.; Prasad, R.C.
2003-01-01
In this paper, numerical simulation of a concentric tube heat exchanger is presented to determine the convective heat transfer coefficient and friction factor in a smooth tube. Increasing the convective heat transfer coefficient can increase heat transfer rate in a concentric tube heat exchanger from a given tubular surface area. This can be achieved by using heat transfer augmentation devices. This work constitutes the initial phase of the numerical simulation of heat transfer from tubes employing augmentation devices, such as twisted tapes, wire-coil inserts, for heat transfer enhancement. A computational fluid dynamics (CFD) simulation tool was developed with CFX software and the results obtained from the simulations are validated with the empirical correlations for a smooth tube heat exchanger. The difficulties associated with the simulation of a heat exchanger augmented with wire-coil inserts are discussed. (author)
Teaching Computer-Aided Design of Fluid Flow and Heat Transfer Engineering Equipment.
Gosman, A. D.; And Others
1979-01-01
Describes a teaching program for fluid mechanics and heat transfer which contains both computer aided learning (CAL) and computer aided design (CAD) components and argues that the understanding of the physical and numerical modeling taught in the CAL course is essential to the proper implementation of CAD. (Author/CMV)
Finite element procedures for coupled linear analysis of heat transfer, fluid and solid mechanics
Sutjahjo, Edhi; Chamis, Christos C.
1993-01-01
Coupled finite element formulations for fluid mechanics, heat transfer, and solid mechanics are derived from the conservation laws for energy, mass, and momentum. To model the physics of interactions among the participating disciplines, the linearized equations are coupled by combining domain and boundary coupling procedures. Iterative numerical solution strategy is presented to solve the equations, with the partitioning of temporal discretization implemented.
Numerical analysis of fluid flow and heat transfer in a helical ...
African Journals Online (AJOL)
Helical channels are widely applied in different application areas. In a converging diverging nozzle, helical channels are mainly used for cooling of its wall. The characteristics of fluid flow and heat transfer inside helical duct for a converging diverging nozzle is not commonly dealt in present literatures. In this paper CFD ...
CSIR Research Space (South Africa)
Malan, AG
2011-08-01
Full Text Available to modelling both forced convection as well as heat transfer and fluid flow through heterogeneous saturated porous materials via an edge-based finite volume discretization scheme. A volume-averaged set of local thermal disequilibrium governing equations...
Kenjeres, S.
2016-01-01
In the present paper we give a concise review of some recent highlights of our research dealing with electromagnetic control of flow, mixing and heat transfer of electrically conductive or magnetized fluids. We apply a combination of state-of-art numerical (DNS and LES) and experimental (PIV and
2012-02-22
... Greenhouse Gas Reporting Program: Electronics Manufacturing: Revisions to Heat Transfer Fluid Provisions... technical revisions to the electronics manufacturing source category of the Greenhouse Gas Reporting Rule... final rule will also be available through the WWW on the EPA's Greenhouse Gas Reporting Program Web site...
DEFF Research Database (Denmark)
Christensen, M; Sparre-Ulrich, A H; Hartmann, B
2015-01-01
Treatment with liraglutide leads to weight loss. We investigated whether blood-to-cerebrospinal fluid (CSF) transfer of liraglutide occurs, and if so, whether it associates with clinical weight loss following liraglutide treatment in humans. We performed lumbar puncture and blood sampling in eight...
Directory of Open Access Journals (Sweden)
Melhem Omar A.
2017-01-01
Full Text Available In the present study, second law analysis is introduced for circular cylinder confined between parallel planes. An analytical approach is adopted to study the effects of block age, Reynolds and Prandtl numbers on the entropy generation due to the laminar flow and heat transfer. Four different fluids are considered in the present analysis for comparison purposes. Heat transfer for the cylinder at an isothermal boundary condition is incorporated. In general, the entropy generation rate decreases as the blockage ratio decreases. In addition, the entropy generation rate increases with increasing Reynolds and Prandtl numbers. At a fixed Reynolds number, the effect of block age becomes more notice able for higher Prandtl number fluid. Similarly, for the same fluid, the effect of block age becomes more no tice able as the Reynolds number increases.
Unsteady Magnetized Flow and Heat Transfer of a Viscoelastic fluid over a Stretching Surface
Ghosh, Sushil Kumar
2017-12-01
This paper is to study the flow of heated ferro-fluid over a stretching sheet under the influence of magnetic field. The fluid considered in the present investigation is a mixture of blood as well as fluid-dispersed magnetic nano particles and under this context blood is found to be the appropriate choice of viscoelastic, Walter's B fluid. The objective of the present work is to study the effect of various parameters found in the mathematical analysis. Taking into account the blood has zero electrical conductivity, magnetization effect has been considered in the governing equation of the present study with the use of ferro-fluid dynamics principle. By introducing appropriate non-dimensional variables into the governing equations of unsteady two-dimensional flow of viscoelastic fluid with heat transfer are converted to a set of ordinary differential equations with appropriate boundary conditions. Newton's linearization technique has been employed for the solution of non-linear ordinary differential equations. Important results found in the present investigation are the substantial influence of ferro-magnetic parameter, Prandlt number and the parameter associated with the thermal conductivity on the flow and heat transfer. It is observed that the presence of magnetic dipole essentially reduces the flow velocity in the vertical direction and that helps to damage the cancer cells in the tumor region.
Yang, H. Q.; West, Jeff
2015-01-01
Current reduced-order thermal model for cryogenic propellant tanks is based on correlations built for flat plates collected in the 1950's. The use of these correlations suffers from: inaccurate geometry representation; inaccurate gravity orientation; ambiguous length scale; and lack of detailed validation. The work presented under this task uses the first-principles based Computational Fluid Dynamics (CFD) technique to compute heat transfer from tank wall to the cryogenic fluids, and extracts and correlates the equivalent heat transfer coefficient to support reduced-order thermal model. The CFD tool was first validated against available experimental data and commonly used correlations for natural convection along a vertically heated wall. Good agreements between the present prediction and experimental data have been found for flows in laminar as well turbulent regimes. The convective heat transfer between tank wall and cryogenic propellant, and that between tank wall and ullage gas were then simulated. The results showed that commonly used heat transfer correlations for either vertical or horizontal plate over predict heat transfer rate for the cryogenic tank, in some cases by as much as one order of magnitude. A characteristic length scale has been defined that can correlate all heat transfer coefficients for different fill levels into a single curve. This curve can be used for the reduced-order heat transfer model analysis.
Heat transfer and thermal stress analysis in fluid-structure coupled field
International Nuclear Information System (INIS)
Li, Ming-Jian; Pan, Jun-Hua; Ni, Ming-Jiu; Zhang, Nian-Mei
2015-01-01
In this work, three-dimensional simulation on conjugate heat transfer in a fluid-structure coupled field was carried out. The structure considered is from the dual-coolant lithium-lead (DCLL) blanket, which is the key technology of International Thermo-nuclear Experimental Reactor (ITER). The model was developed based on finite element-finite volume method and was employed to investigate mechanical behaviours of Flow Channel Insert (FCI) and heat transfer in the blanket under nuclear reaction. Temperature distribution, thermal deformation and thermal stresses were calculated in this work, and the effects of thermal conductivity, convection heat transfer coefficient and flow velocity were analyzed. Results show that temperature gradients and thermal stresses of FCI decrease when FCI has better heat conductivity. Higher convection heat transfer coefficient will result in lower temperature, thermal deformations and stresses in FCI. Analysis in this work could be a theoretical basis of blanket optimization. - Highlights: • We use FVM and FEM to investigate FCI structural safety considering heat transfer and FSI effects. • Higher convective heat transfer coefficient is beneficial for the FCI structural safety without much affect to bulk flow temperature. • Smaller FCI thermal conductivity can better prevent heat leakage into helium, yet will increase FCI temperature gradient and thermal stress. • Three-dimensional simulation on conjugate heat transfer in a fluid-structure coupled field was carried out
Conjugate Heat Transfer of Mixed Convection for Viscoelastic Fluid Past a Stretching Sheet
Directory of Open Access Journals (Sweden)
Kai-Long Hsiao
2007-01-01
Full Text Available A conjugate heat transfer problem of a second-grade viscoelastic fluid past a stretching sheet has been studied. Governing equations include heat conduction equation of a stretching sheet, continuity equation, momentum equation, and energy equation of a second-grade fluid, analyzed by a combination of a series expansion method, the similarity transformation, and a second-order accurate finite-difference method. These solutions are used to iterate with the heat conduction equation of the stretching sheet to obtain distributions of the local convective heat transfer coefficient and the stretching sheet temperature. Ranges of dimensionless parameters, the Prandtl number Pr, the elastic number E and the conduction-convection coefficient Ncc are from 0.001 to 10, 0.0001 to 0.01, and 0.5 to 2.0, respectively. A parameter G, which is used to represent the dominance of the buoyant effect, is present in governing equations. Results indicated that elastic effect in the flow could increase the local heat transfer coefficient and enhance the heat transfer of a stretching sheet. In addition, same as the results from Newtonian fluid flow and conduction analysis of a stretching sheet, a better heat transfer is obtained with a larger Ncc, G, and E.
Heat transfer and fluid flow during laser spot welding of 304 stainless steel
He, X; Debroy, T
2003-01-01
The evolution of temperature and velocity fields during laser spot welding of 304 stainless steel was studied using a transient, heat transfer and fluid flow model based on the solution of the equations of conservation of mass, momentum and energy in the weld pool. The weld pool geometry, weld thermal cycles and various solidification parameters were calculated. The fusion zone geometry, calculated from the transient heat transfer and fluid flow model, was in good agreement with the corresponding experimentally measured values for various welding conditions. Dimensional analysis was used to understand the importance of heat transfer by conduction and convection and the roles of various driving forces for convection in the weld pool. During solidification, the mushy zone grew at a rapid rate and the maximum size of the mushy zone was reached when the pure liquid region vanished. The solidification rate of the mushy zone/liquid interface was shown to increase while the temperature gradient in the liquid zone at...
Modeling heat transfer in supercritical fluid using the lattice Boltzmann method.
Házi, Gábor; Márkus, Attila
2008-02-01
A lattice Boltzmann model has been developed to simulate heat transfer in supercritical fluids. A supercritical viscous fluid layer between two plates heated from the bottom has been studied. It is demonstrated that the model can be used to study heat transfer near the critical point where the so-called piston effect speeds up the transfer of heat and results in homogeneous heating in the bulk of the layer. We have also studied the onset of convection in a Rayleigh-Bénard configuration. It is shown that our model can well predict qualitatively the onset of convection near the critical point, where there is a crossover between the Rayleigh and Schwarzschild criteria.
Blockage effects on viscous fluid flow and heat transfer past a magnetic obstacle in a duct
International Nuclear Information System (INIS)
Zhang Xi-Dong; Huang Hu-Lin
2013-01-01
The effect of lateral walls on fluid flow and heat transfer is investigated when a fluid passes a magnetic obstacle. The blockage ratio β that represents the ratio between the width of external magnet M y and the spanwise width L y is employed to depict the effect. The finite volume method (FVM) based on the PISO algorithm is applied for the blockage ratios of 0.2, 0.3, and 0.4. The results show that the value of Strouhal number St increases as the blockage ratio β increases, and for small β, the variation of St is very small when the interaction parameter and Reynolds number are increasing. Moreover, the cross-stream mixing induced by the magnetic obstacle can enhance the wall-heat transfer and the maximum value of the overall heat transfer increment is about 50.5%
Fluid flow and heat transfer investigation of pebble bed reactors using mesh-adaptive LES
International Nuclear Information System (INIS)
Pavlidis, Dimitrios; Lathouwers, Danny
2013-01-01
The very high temperature reactor is one of the designs currently being considered for nuclear power generation. One its variants is the pebble bed reactor in which the coolant passes through complex geometries (pores) at high Reynolds numbers. A computational fluid dynamics model with anisotropic mesh adaptivity is used to investigate coolant flow and heat transfer in such reactors. A novel method for implicitly incorporating solid boundaries based on multi-fluid flow modelling is adopted. The resulting model is able to resolve and simulate flow and heat transfer in randomly packed beds, regardless of the actual geometry, starting off with arbitrarily coarse meshes. The model is initially evaluated using an orderly stacked square channel of channel-height-to-particle diameter ratio of unity for a range of Reynolds numbers. The model is then applied to the face-centred cubical geometry. coolant flow and heat transfer patterns are investigated
Directory of Open Access Journals (Sweden)
Waqar Azeem Khan
Full Text Available The present paper deals with the analysis of melting heat and mass transfer characteristics in the stagnation point flow of an incompressible generalized Burgers fluid over a stretching sheet in the presence of non-linear radiative heat flux. A uniform magnetic field is applied normal to the flow direction. The governing equations in dimensional form are reduced to a system of dimensionless expressions by implementation of suitable similarity transformations. The resulting dimensionless problem governing the generalized Burgers is solved analytically by using the homotopy analysis method (HAM. The effects of different flow parameters like the ratio parameter, magnetic parameter, Prandtl number, melting parameter, radiation parameter, temperature ratio parameter and Schmidt number on the velocity, heat and mass transfer characteristics are computed and presented graphically. Moreover, useful discussions in detail are carried out with the help of plotted graphs and tables. Keywords: Generalized Burgers fluid, Non-linear radiative flow, Magnetic field, Melting heat transfer
Study of Two-Phase Heat Transfer in Nano-fluids for Nuclear Applications
International Nuclear Information System (INIS)
Kim, S.J.; Truong, B.; Buongiorno, J.; Hu, L.W.; Bang, I.C.
2006-01-01
Nano-fluids are engineered colloidal suspensions of nano-particles in a base fluid. We are investigating the two-phase heat transfer behavior of water-based nano-fluids, to evaluate their potential use in nuclear applications, including the PWR primary coolant and PWR and BWR safety systems. A simple pool boiling wire experiment shows that a significant increase in Critical Heat Flux (CHF) can be achieved at modest nano-particle concentrations. For example, the CHF increases by 50% in nano-fluids with alumina nano-particles at 0.001%v concentration. The CHF enhancement appears to correlate with the presence of a layer of nano-particles that builds up on the heated surface during nucleate boiling. A review of the prevalent Departure from Nucleate Boiling (DNB) theories suggests that an alteration of the nucleation site density (brought about by the nano-particle layer) could plausibly explain the CHF enhancement. (authors)
DEFF Research Database (Denmark)
Larsson, Hilde Kristina
the velocity and pressure distributions in a fluid. CFD also enables the modelling of several fluids simultaneously, e.g. gas bubbles in a liquid, as well as the presence of turbulence and dissolved chemicals in a fluid, and many other phenomena. This makes CFD an appreciated tool for studying flow structures......, mixing, and other mass transfer phenomena in chemical and biochemical reactor systems. In this project, four selected case studies are investigated in order to explore the capabilities of CFD. The selected cases are a 1 ml stirred microbioreactor, an 8 ml magnetically stirred reactor, a Rushton impeller...... and an ion-exchange reaction are also modelled and compared to experimental data. The thesis includes a comprehensive overview of the fundamentals behind a CFD software, as well as a more detailed review of the fluid dynamic phenomena investigated in this project. The momentum and continuity equations...
Investigation of thermal transfers in super-fluid helium in porous media
International Nuclear Information System (INIS)
Allain, H.
2009-10-01
Particle accelerators are requiring increased magnetic fields for which niobium tin superconducting magnets are considered. This entails electric insulation and cooling problems. Porous ceramic insulations are potential candidates for cable insulation. As they are permeable to helium, they could allow a direct cooling by super-fluid helium. Therefore, this research thesis deals with the investigation of thermal transfers in superfluid helium in porous media. After a description of an accelerator's superconducting magnet, of its thermodynamics and its various cooling modes, the author describes the physical properties of super-fluid helium, its peculiarities with respect to conventional fluids as well as its different phases (fluid and super-fluid), its dynamics under different regimes (the Landau regime which is similar to the laminar regime for a conventional fluid, and the Gorter-Mellink regime which is the super-fluid turbulent regime). He determines the macroscopic equations governing the He II dynamics in porous media by applying the volume averaging method developed by Whitaker. Theoretical results are validated by comparison with a numerical analysis performed with a numerical code. Then, the author presents the various experimental setups which have been developed for the measurement of the intrinsic permeability, one at room temperature and another at high temperature. Experimental results are discussed, notably with respect to pore size and porosity
Non-Toxic, Low-Freezing, Drop-In Replacement Heat Transfer Fluids
Cutbirth, J. Michael
2012-01-01
A non-toxic, non-flammable, low-freezing heat transfer fluid is being developed for drop-in replacement within current and future heat transfer loops currently using water or alcohol-based coolants. Numerous water-soluble compounds were down-selected and screened for toxicological, physical, chemical, compatibility, thermodynamic, and heat transfer properties. Two fluids were developed, one with a freezing point near 0 C, and one with a suppressed freezing point. Both fluids contain an additive package to improve material compatibility and microbial resistance. The optimized sub-zero solution had a freezing point of 30 C, and a freezing volume expansion of 10-percent of water. The toxicity of the solutions was experimentally determined as LD(50) greater than 5g/kg. The solutions were found to produce minimal corrosion with materials identified by NASA as potentially existing in secondary cooling loops. Thermal/hydrodynamic performance exceeded that of glycol-based fluids with comparable freezing points for temperatures Tf greater than 20 C. The additive package was demonstrated as a buffering agent to compensate for CO2 absorption, and to prevent microbial growth. The optimized solutions were determined to have physically/chemically stable shelf lives for freeze/thaw cycles and longterm test loop tests.
International Nuclear Information System (INIS)
Joong Hun Bae; Jung Yul Yoo; Haecheon Choi
2005-01-01
Full text of publication follows: The influence of variable fluid property on turbulent convective heat transfer is investigated using direct numerical simulations. We consider thermally-developing flows of air and supercritical-pressure CO 2 in a vertical annular channel where the inner wall is heated with a constant heat flux and the outer wall is insulated. Turbulence statistics show that the heat and momentum transport characteristics of variable-property flows are significantly different from those of constant-property flows. The difference is mainly caused by the spatial and temporal variations of fluid density. The non-uniform density distribution causes fluid particles to be accelerated either by expansion or buoyancy force, while the temporal density fluctuations change the heat and momentum transfer via transport of turbulent mass flux, ρ'u' i . Both effects of the spatial and temporal variations of density are shown to be important in the analysis of turbulent convective heat transfer for supercritical-pressure fluids. For variable-property heated air flows, however, the effect of temporal density fluctuations can be neglected at low Mach number, which is in good accordance with the Morkovin's hypothesis. (authors)
Kenjeres, S.
2016-09-01
In the present paper we give a concise review of some recent highlights of our research dealing with electromagnetic control of flow, mixing and heat transfer of electrically conductive or magnetized fluids. We apply a combination of state-of-art numerical (DNS and LES) and experimental (PIV and LIF) techniques to provide fundamental insights into the complex phenomena of interactions between imposed (or induced) electromagnetic fields and underlying fluid flow. Our analysis covers an extensive range of working fluids, i.e. weakly- and highly-electrically-conductive, as well as magnetized fluids. These interactions are defined through the presence of different types of body forces acting per volume of fluid. A fully closed system of governing equations containing an extended set of the Navier-Stokes and a simplified set of the Maxwell equations is presented. The four characteristic examples are selected: the electromagnetic control of self-sustained jet oscillations, the electromagnetic enhancement of heat transfer in thermal convection, the wake interactions behind magnetic obstacles and finally, the thermo-magnetic convection in differentially heated cubical enclosure. The comparative assessment between experimental and numerical results is presented. It is concluded that generally good agreement between simulations and experiments is obtained for all cases considered, proving the concept of electromagnetic modulation, which can be used in numerous technological applications.
Magnetohydrodynamic Three-Dimensional Flowof a Second-Grade Fluid with Heat Transfer
Hayat, Tasawar; Nawaz, Muhammad
2010-09-01
An analysis has been carried out for the heat transfer on steady boundary layer flow of a secondgrade fluid bounded by a stretching sheet. The magnetohydrodynamic nature of the fluid is considered in the presence of Hall and ion-slip currents. The nonlinear mathematical problem is computed by a powerful tool, namely, the homotopy analysis method (HAM). A comparative study between the present and existing limiting results is carefully made. Convergence regarding the obtained solution is discussed. Skin friction coefficients and Nusselt number are analyzed. Effects of embedded parameters on the dimensionless velocities and temperature are examined
Effects of mass transfer on MHD flow of casson fluid with chemical reaction and suction
Directory of Open Access Journals (Sweden)
S. A. Shehzad
2013-03-01
Full Text Available Effect of mass transfer in the magnetohydrodynamic flow of a Casson fluid over a porous stretching sheet is addressed in the presence of a chemical reaction. A series solution for the resulting nonlinear flow is computed. The skin friction coefficient and local Sherwood number are analyzed through numerical values for various parameters of interest. The velocity and concentration fields are illustrated for several pertinent flow parameters. We observed that the Casson parameter and Hartman number have similar effects on the velocity in a qualitative sense. We further analyzed that the concentration profile decreases rapidly in comparison to the fluid velocity when we increased the values of the suction parameter.
International Nuclear Information System (INIS)
Sanghavi, Suniti; Davis, Anthony B.; Eldering, Annmarie
2014-01-01
In this paper, we build up on the scalar model smartMOM to arrive at a formalism for linearized vector radiative transfer based on the matrix operator method (vSmartMOM). Improvements have been made with respect to smartMOM in that a novel method of computing intensities for the exact viewing geometry (direct raytracing) without interpolation between quadrature points has been implemented. Also, the truncation method employed for dealing with highly peaked phase functions has been changed to a vector adaptation of Wiscombe's delta-m method. These changes enable speedier and more accurate radiative transfer computations by eliminating the need for a large number of quadrature points and coefficients for generalized spherical functions. We verify our forward model against the benchmarking results of Kokhanovsky et al. (2010) [22]. All non-zero Stokes vector elements are found to show agreement up to mostly the seventh significant digit for the Rayleigh atmosphere. Intensity computations for aerosol and cloud show an agreement of well below 0.03% and 0.05% at all viewing angles except around the solar zenith angle (60°), where most radiative models demonstrate larger variances due to the strongly forward-peaked phase function. We have for the first time linearized vector radiative transfer based on the matrix operator method with respect to aerosol optical and microphysical parameters. We demonstrate this linearization by computing Jacobian matrices for all Stokes vector elements for a multi-angular and multispectral measurement setup. We use these Jacobians to compare the aerosol information content of measurements using only the total intensity component against those using the idealized measurements of full Stokes vector [I,Q,U,V] as well as the more practical use of only [I,Q,U]. As expected, we find for the considered example that the accuracy of the retrieved parameters improves when the full Stokes vector is used. The information content for the full Stokes
Direct numerical simulations of fluid flow, heat transfer and phase changes
Juric, D.; Tryggvason, G.; Han, J.
1997-01-01
Direct numerical simulations of fluid flow, heat transfer, and phase changes are presented. The simulations are made possible by a recently developed finite difference/front tracking method based on the one-field formulation of the governing equations where a single set of conservation equations is written for all the phases involved. The conservation equations are solved on a fixed rectangular grid, but the phase boundaries are kept sharp by tracking them explicitly by a moving grid of lower dimension. The method is discussed and applications to boiling heat transfer and the solidification of drops colliding with a wall are shown.
On heat transfer to pulsatile flow of a two-phase fluid
Directory of Open Access Journals (Sweden)
S. P. Chakraborty
2005-09-01
Full Text Available The problem of heat transfer to pulsatile flow of a two-phase fluid-particle system contained in a channel bounded by two infinitely long rigid impervious parallel walls has been studied in this paper. The solutions for the steady and the fluctuating temperature distributions are obtained. The rates of heat transfer at the walls are also calculated. The results are discussed numerically with graphical presentations. It is shown that the presence of the particles not only diminishes the steady and unsteady temperature fields but also decreases the reversal of heat flux at the hotter wall irrespective of the influences of other flow parameters.
Falkner-Skan Flow of a Maxwell Fluid with Heat Transfer and Magnetic Field
Directory of Open Access Journals (Sweden)
M. Qasim
2013-01-01
Full Text Available This investigation deals with the Falkner-Skan flow of a Maxwell fluid in the presence of nonuniform applied magnetic fi eld with heat transfer. Governing problems of flow and heat transfer are solved analytically by employing the homotopy analysis method (HAM. Effects of the involved parameters, namely, the Deborah number, Hartman number, and the Prandtl number, are examined carefully. A comparative study is made with the known numerical solution in a limiting sense and an excellent agreement is noted.
Heat transfer and fluid flow in regular rod arrays with opposing flow
International Nuclear Information System (INIS)
Yang, J.W.
1979-01-01
The heat transfer and fluid flow problem of opposing flow in the fully developed laminar region has been solved analytically for regular rod arrays. The problem is governed by two parameters: the pitch-to-diameter ratio and the Grashof-to-Reynolds number ratio. The critical Gr/Re ratios for flow separation caused by the upward buoyancy force on the downward flow were evaluated for a large range of P/D ratios of the triangular array. Numerical results reveal that both the heat transfer and pressure loss are reduced by the buoyancy force. Applications to nuclear reactors are discussed
Directory of Open Access Journals (Sweden)
Kalidas Das
2016-10-01
Full Text Available The present work is concerned with heat and mass transfer of an electrically conducting second grade MHD fluid past a semi-infinite stretching sheet with convective surface heat flux. The analysis accounts for thermophoresis and thermal radiation. A similarity transformations is used to reduce the governing equations into a dimensionless form. The local similarity equations are derived and solved using Nachtsheim-Swigert shooting iteration technique together with Runge–Kutta sixth order integration scheme. Results for various flow characteristics are presented through graphs and tables delineating the effect of various parameters characterizing the flow. Our analysis explores that the rate of heat transfer enhances with increasing the values of the surface convection parameter. Also the fluid velocity and temperature in the boundary layer region rise significantly for increasing the values of thermal radiation parameter.
Wang, Zhiheng
2015-01-01
A simple multidomain Chebyshev pseudo-spectral method is developed for two-dimensional fluid flow and heat transfer over square cylinders. The incompressible Navier-Stokes equations with primitive variables are discretized in several subdomains of the computational domain. The velocities and pressure are discretized with the same order of Chebyshev polynomials, i.e., the PN-PN method. The Projection method is applied in coupling the pressure with the velocity. The present method is first validated by benchmark problems of natural convection in a square cavity. Then the method based on multidomains is applied to simulate fluid flow and heat transfer from square cylinders. The numerical results agree well with the existing results. © Taylor & Francis Group, LLC.
Natural convection heat transfer of fluid with temperature-dependent specific heat
International Nuclear Information System (INIS)
Tanaka, Amane; Kubo, Shinji; Akino, Norio
1998-01-01
The present study investigates natural convection from a heated vertical plate of fluid with temperature-dependent specific heat, which is introduced as a model of microencapsulated phase change material slurries (MCPCM slurries). The temperature dependence of specific heat is represented by Gauss function with three physical parameters (peak temperature, width of phase change temperature and latent heat). Boundary layer equations are solved numerically, and the velocity and temperature fields of the flow are obtained. The relation between the heat transfer coefficients and the physical parameters of specific heat is discussed. The results show that the velocities and temperatures are smaller, and the heat transfer coefficients are larger comparing with those of the fluid with constant specific heat. (author)
Directory of Open Access Journals (Sweden)
Vongsetskul Thammasit
2017-01-01
Full Text Available Graphene oxide-loaded shortening (GOS, an environmentally friendly heat transfer fluid with high thermal conductivity, was successfully prepared by mixing graphene oxide (GO with a shortening. Scanning electron microscopy revealed that GO particles, prepared by the modified Hummer’s method, dispersed well in the shortening. In addition, the latent heat of GOS decreased while their viscosity and thermal conductivity increased with increasing the amount of loaded GO. The thermal conductivity of the GOS with 4% GO was higher than that of pure shortening of ca. three times, from 0.1751 to 0.6022 W/mK, and increased with increasing temperature. The GOS started to be degraded at ca. 360°C. After being heated and cooled at 100°C for 100 cycles, its viscosity slightly decreased and no chemical degradation was observed. Therefore, the prepared GOS is potentially used as environmentally friendly heat transfer fluid at high temperature.
Effect of Mixed Working Fluid Composition on Binary Cycle Condenser Heat Transfer Coefficients
Energy Technology Data Exchange (ETDEWEB)
Dan Wendt; Greg Mines
2011-10-01
Effect of Mixed Working Fluid Composition on Binary Cycle Condenser Heat Transfer Coefficients Dan Wendt, Greg Mines Idaho National Laboratory The use of mixed working fluids in binary power plants can provide significant increases in plant performance, provided the heat exchangers are designed to take advantage of these fluids non-isothermal phase changes. In the 1980's testing was conducted at DOE's Heat Cycle Research Facility (HCRF) where mixtures of different compositions were vaporized at supercritical pressures and then condensed. This testing had focused on using the data collected to verify that Heat Transfer Research Incorporated (HTRI) codes were suitable for the design of heat exchangers that could be used with mixtures. The HCRF data includes mixture compositions varying from 0% to 40% isopentane and condenser tube orientations of 15{sup o}, 60{sup o}, and 90{sup o} from horizontal. Testing was performed over a range of working fluid and cooling fluid conditions. Though the condenser used in this testing was water cooled, the working fluid condensation occurred on the tube-side of the heat exchanger. This tube-side condensation is analogous to that in an air-cooled condenser. Tube-side condensing heat transfer coefficient information gleaned from the HCRF testing is used in this study to assess the suitability of air-cooled condenser designs for use with mixtures. Results of an air-cooled binary plant process model performed with Aspen Plus indicate that that the optimal mixture composition (producing the maximum net power for the scenario considered) is within the range of compositions for which data exist. The HCRF data is used to assess the impact of composition, tube orientation, and process parameters on the condensing heat transfer coefficients. The sensitivity of the condensing coefficients to these factors is evaluated and the suitability of air-cooled condenser designs with mixtures is assessed. This paper summarizes the evaluation
Mathematical Model for Fluid Flow and Heat Transfer Processes in Plate Exchanger
Directory of Open Access Journals (Sweden)
Cvete B. Dimitrieska
2015-11-01
Full Text Available Within the analytical solution of the system of equations which solve fluid flow and heat transfer processes, the elliptical and parabolic differential equations based on initial and boundary conditions is usually unfamiliar in a closed form. Numerical solution of equation system is necessarily obtained by discretization of equations. When system of equations relate to estimation of two dimensional stationary problems, the applicable method for estimation in basic two – dimensional form is recommended.
Directory of Open Access Journals (Sweden)
JUNG-SIK CHOI
2014-06-01
Full Text Available In this study, we proposed a newly designed sulfuric acid transfer system for the sulfur-iodine (SI thermochemical cycle. The proposed sulfuric acid transfer system was evaluated using a computational fluid dynamics (CFD analysis for investigating thermodynamic/hydrodynamic characteristics and material properties. This analysis was conducted to obtain reliable continuous operation parameters; in particular, a thermal analysis was performed on the bellows box and bellows at amplitudes and various frequencies (0.1, 0.5, and 1.0 Hz. However, the high temperatures and strongly corrosive operating conditions of the current sulfuric acid system present challenges with respect to the structural materials of the transfer system. To resolve this issue, we designed a novel transfer system using polytetrafluoroethylene (PTFE, Teflon® as a bellows material for the transfer of sulfuric acid. We also carried out a CFD analysis of the design. The CFD results indicated that the maximum applicable temperature of PTFE is about 533 K (260 °C, even though its melting point is around 600 K. This result implies that the PTFE is a potential material for the sulfuric acid transfer system. The CFD simulations also confirmed that the sulfuric acid transfer system was designed properly for this particular investigation.
Modeling Aerosol Particle Deposition on a Person Using Computational Fluid Dynamics
2015-04-03
Consulting Inc. 534 Paradise Crescent, Waterloo, Ontario PWGSC Contractor Number: W7702-155701/001/EDM Contract Scientific Authority: Eugene Yee...Fluid Dynamics Final Report Hua Ji and Fue-Sang Lien Waterloo CFD Engineering Consulting Inc. (WATCFD) 534 Paradise Cres, Waterloo Ontario, N2L 3G1...enters a new eddy. The time step is chosen to be the minimum of one fifth of the eddy lifetime or one fifth of the minimum side length of the local
Local heat transfer measurement and thermo-fluid characterization of a pulsating heat pipe
International Nuclear Information System (INIS)
Mameli, Mauro; Marengo, Marco; Khandekar, Sameer
2014-01-01
A compact Closed Loop Pulsating Heat Pipe (CLPHP), filled with ethanol (65% v/v), made of four transparent glass tubes forming the adiabatic section and connected with copper U-turns in the evaporator and condenser sections respectively, is designed in order to perform comprehensive thermal-hydraulic performance investigation. Local heat transfer coefficient is estimated by measurement of tube wall and internal fluid temperatures in the evaporator section. Simultaneously, fluid pressure oscillations are recorded together with the corresponding flow patterns. The thermal performances are measured for different heat input levels and global orientation of the device with respect to gravity. One exploratory test is also done with azeotropic mixture of ethanol and water. Results show that a stable device operation is achieved (i.e. evaporator wall temperatures can reach a pseudo-steady-state) only when a circulating flow mode is established superimposed on local pulsating flow. The heat transfer performance strongly depends on the heat input level and the inclination angle, which, in turn, also affect the ensuing flow pattern. The spectral analysis of the pressure signal reveals that even during the stable performance regimes, characteristic fluid oscillation frequencies are not uniquely recognizable. Equivalent thermal conductivities of the order of 10-15 times that of pure copper are achieved. Due to small number of turns horizontal mode operation is not feasible. Preliminary results indicate that filling azeotropic mixture of ethanol and water as working fluid does not alter the thermal performance as compared to pure ethanol case. (authors)
Axisymmetric flow and heat transfer to modified second grade fluid over a radially stretching sheet
Directory of Open Access Journals (Sweden)
Masood Khan
Full Text Available In the present work, an analysis is made to the two-dimensional axisymmetric flow and heat transfer of a modified second grade fluid over an isothermal non-linear radially stretching sheet. The momentum and energy equations are modelled and the boundary layer equations are derived. The governing equations for velocity and temperature are turned down into a system of ordinary differential equations by invoking appropriate transformations which are then solved numerically via fourth and fifth order Runge-Kutta Fehlberg method. Moreover, the influence of the pertinent parameters namely the generalized second grade parameter, stretching parameter, the power-law index and the generalized Prandtl number is graphically portrayed. It is inferred that the generalized second grade parameter uplifted the momentum boundary layer while lessened the thermal boundary layer. Furthermore, the impact of stretching parameter is more pronounced for the second grade fluid (m = 0 in contrast with the power-law fluid (k = 0. For some special cases, comparisons are made with previously reported results and an excellent agreement is established. Keywords: Modified second grade fluid, Axisymmetric flow, Heat transfer, Non-linear stretching sheet
Hydromagnetic Falkner-Skan flow of Casson fluid past a moving wedge with heat transfer
Directory of Open Access Journals (Sweden)
Imran Ullah
2016-09-01
Full Text Available Numerical solutions are carried out for steady state two dimensional electrically conducting mixed convection flow of Casson fluid along non-isothermal moving wedge through porous medium in the presence of viscous dissipation and heat generation/absorption. The governing partial differential equations, subject to boundary conditions are transformed into ordinary differential equations using similarity transformations. The transformed equations are then solved numerically by Keller-box method. To check the validity of present method, numerical results for dimensionless local skin friction coefficient and rate of heat transfer are compared with results of available literature as special cases and revealed in good agreement. The influence of pertinent parameters on velocity, temperature profiles, as well as wall shear stress and heat transfer rate is displayed in graphical form and discussed. It is found that fluid velocity increases with increase of Eckert number in case of assisting flow, while it decreases in case of opposing flow. It is also noticed that heat generation/absorption parameter influence fluid velocity and temperature significantly. A significant result obtained from this study is that heat transfer rate reduces with increase of Prandtl number in the presence of viscous dissipation effect. Also, increasing values of Eckert number have no effects on force convection flow.
International Nuclear Information System (INIS)
Aprile, I.; Principi, M.; Ottaviano, P.; Scapeccia, M.
2003-01-01
We assessed possible advantages of the use of fluid-attenuated inversion-recovery (FLAIR) sequences with magnetisation-transfer contrast (MTC) over conventional FLAIR images. We carried out cranial MRI at 1 tesla on 50 patients with both sequences. In nine patients with multiple sclerosis (MS) we performed a quantitative comparison of the two sequences, looking at the contrast-to-noise ratio between lesions and normal white matter and counting the number of lesions shown using each method. A qualitative comparison on all patients consisted of the analysis of the appearance of the normal parenchyma, of any lesions, and of artefacts, with particular reference to cerebrospinal fluid (CSF) motion artefacts. The quantitative analysis showed no meaningful difference between the two sequences. The cerebral parenchyma and lesions appeared substantially the same with both techniques. With FLAIR MTC there was a clear, and consistent reduction in CSF motion artefacts. FLAIR MTC sequences can usefully be used in place of the conventional sequence at 1 tesla. (orig.)
International Nuclear Information System (INIS)
Taylor, M.; Kosmopoulos, P.G.; Kazadzis, S.; Keramitsoglou, I.; Kiranoudis, C.T.
2016-01-01
This paper reports on the development of a neural network (NN) model for instantaneous and accurate estimation of solar radiation spectra and budgets geared toward satellite cloud data using a ≈2.4 M record, high-spectral resolution look up table (LUT) generated with the radiative transfer model libRadtran. Two NN solvers, one for clear sky conditions dominated by aerosol and one for cloudy skies, were trained on a normally-distributed and multiparametric subset of the LUT that spans a very broad class of atmospheric and meteorological conditions as inputs with corresponding high resolution solar irradiance target spectra as outputs. The NN solvers were tested by feeding them with a large (10 K record) “off-grid” random subset of the LUT spanning the training data space, and then comparing simulated outputs with target values provided by the LUT. The NN solvers demonstrated a capability to interpolate accurately over the entire multiparametric space. Once trained, the NN solvers allow for high-speed estimation of solar radiation spectra with high spectral resolution (1 nm) and for a quantification of the effect of aerosol and cloud optical parameters on the solar radiation budget without the need for a massive database. The cloudy sky NN solver was applied to high spatial resolution (54 K pixel) cloud data extracted from the Spinning Enhanced Visible and Infrared Imager (SEVIRI) onboard the geostationary Meteosat Second Generation 3 (MSG3) satellite and demonstrated that coherent maps of spectrally-integrated global horizontal irradiance at this resolution can be produced on the order of 1 min. - Highlights: • Neural network radiative transfer solvers for generation of solar irradiance spectra. • Sensitivity analysis of irradiance spectra with respect to aerosol and cloud parameters. • Regional maps of total global horizontal irradiance for cloudy sky conditions. • Regional solar radiation maps produced directly from MSG3/SEVIRI satellite inputs.
Evaluation of Interfacial Heat Transfer Models for Flashing Flow with Two-Fluid CFD
Directory of Open Access Journals (Sweden)
Yixiang Liao
2018-06-01
Full Text Available The complexity of flashing flows is increased vastly by the interphase heat transfer as well as its coupling with mass and momentum transfers. A reliable heat transfer coefficient is the key in the modelling of such kinds of flows with the two-fluid model. An extensive literature survey on computational modelling of flashing flows has been given in previous work. The present work is aimed at giving a brief review on available theories and correlations for the estimation of interphase heat transfer coefficient, and evaluating them quantitatively based on computational fluid dynamics simulations of bubble growth in superheated liquid. The comparison of predictions for bubble growth rate obtained by using different correlations with the experimental as well as direct numerical simulation data reveals that the performance of the correlations is dependent on the Jakob number and Reynolds number. No generally applicable correlations are available. Both conduction and convection are important in cases of bubble rising and translating in stagnant liquid at high Jakob numbers. The correlations combining the analytical solution for heat diffusion and the theoretical relation for potential flow give the best agreement.
CFD analysis on heat transfer in low Prandtl number fluid flows
Energy Technology Data Exchange (ETDEWEB)
Borgohain, A.; Maheshwari, N.K.; Vijayan, P.K.; Sinha, R.K., E-mail: bananta@barc.gov.in [Bhabha Atomic Research Centre, Reactor Engineering Div., Trombay, Mumbai (India)
2011-07-01
Use of Computational Fluid Dynamics (CFD) code is helpful for designing liquid metal cooled nuclear reactor systems. Before using any CFD code proper evaluation of the code is essential for simulation of heat transfer in liquid metal flow. In this paper, a review of the literature on the correlations for liquid metal heat transfer is carried out and a comparison with experimental results is performed. CFD analysis is carried out using PHOENICS-3.6 code on heat transfer in molten Lead Bismuth Eutectic (LBE) flowing through tube. Turbulent flow analyses are carried out for the evaluation of the CFD code. The CFD results are compared with the available correlations. Assessment of various turbulence models and correlations for turbulent Prandtl number in the tube geometry are carried out. From the analysis it is found that, the CFD prediction can be improved with modified turbulent Prandtl number in the turbulence models. (author)
Tian, Ran; Dai, Xiaoye; Wang, Dabiao; Shi, Lin
2018-06-01
In order to improve the prediction performance of the numerical simulations for heat transfer of supercritical pressure fluids, a variable turbulent Prandtl number (Prt) model for vertical upward flow at supercritical pressures was developed in this study. The effects of Prt on the numerical simulation were analyzed, especially for the heat transfer deterioration conditions. Based on the analyses, the turbulent Prandtl number was modeled as a function of the turbulent viscosity ratio and molecular Prandtl number. The model was evaluated using experimental heat transfer data of CO2, water and Freon. The wall temperatures, including the heat transfer deterioration cases, were more accurately predicted by this model than by traditional numerical calculations with a constant Prt. By analyzing the predicted results with and without the variable Prt model, it was found that the predicted velocity distribution and turbulent mixing characteristics with the variable Prt model are quite different from that predicted by a constant Prt. When heat transfer deterioration occurs, the radial velocity profile deviates from the log-law profile and the restrained turbulent mixing then leads to the deteriorated heat transfer.
Directory of Open Access Journals (Sweden)
Christian R Svensson
Full Text Available An ongoing discussion whether traditional toxicological methods are sufficient to evaluate the risks associated with nanoparticle inhalation has led to the emergence of Air-Liquid interface toxicology. As a step in this process, this study explores the evolution of particle characteristics as they move from the airborne state into physiological solution. Airborne gold nanoparticles (AuNP are generated using an evaporation-condensation technique. Spherical and agglomerate AuNPs are deposited into physiological solutions of increasing biological complexity. The AuNP size is characterized in air as mobility diameter and in liquid as hydrodynamic diameter. AuNP:Protein aggregation in physiological solutions is determined using dynamic light scattering, particle tracking analysis, and UV absorption spectroscopy. AuNPs deposited into homocysteine buffer form large gold-aggregates. Spherical AuNPs deposited in solutions of albumin were trapped at the Air-Liquid interface but was readily suspended in the solutions with a size close to that of the airborne particles, indicating that AuNP:Protein complex formation is promoted. Deposition into serum and lung fluid resulted in larger complexes, reflecting the formation of a more complex protein corona. UV absorption spectroscopy indicated no further aggregation of the AuNPs after deposition in solution. The corona of the deposited AuNPs shows differences compared to AuNPs generated in suspension. Deposition of AuNPs from the aerosol phase into biological fluids offers a method to study the protein corona formed, upon inhalation and deposition in the lungs in a more realistic way compared to particle liquid suspensions. This is important since the protein corona together with key particle properties (e.g. size, shape and surface reactivity to a large extent may determine the nanoparticle effects and possible translocation to other organs.
Svensson, Christian R.; Messing, Maria E.; Lundqvist, Martin; Schollin, Alexander; Deppert, Knut; Pagels, Joakim H.; Rissler, Jenny; Cedervall, Tommy
2013-01-01
An ongoing discussion whether traditional toxicological methods are sufficient to evaluate the risks associated with nanoparticle inhalation has led to the emergence of Air-Liquid interface toxicology. As a step in this process, this study explores the evolution of particle characteristics as they move from the airborne state into physiological solution. Airborne gold nanoparticles (AuNP) are generated using an evaporation-condensation technique. Spherical and agglomerate AuNPs are deposited into physiological solutions of increasing biological complexity. The AuNP size is characterized in air as mobility diameter and in liquid as hydrodynamic diameter. AuNP:Protein aggregation in physiological solutions is determined using dynamic light scattering, particle tracking analysis, and UV absorption spectroscopy. AuNPs deposited into homocysteine buffer form large gold-aggregates. Spherical AuNPs deposited in solutions of albumin were trapped at the Air-Liquid interface but was readily suspended in the solutions with a size close to that of the airborne particles, indicating that AuNP:Protein complex formation is promoted. Deposition into serum and lung fluid resulted in larger complexes, reflecting the formation of a more complex protein corona. UV absorption spectroscopy indicated no further aggregation of the AuNPs after deposition in solution. The corona of the deposited AuNPs shows differences compared to AuNPs generated in suspension. Deposition of AuNPs from the aerosol phase into biological fluids offers a method to study the protein corona formed, upon inhalation and deposition in the lungs in a more realistic way compared to particle liquid suspensions. This is important since the protein corona together with key particle properties (e.g. size, shape and surface reactivity) to a large extent may determine the nanoparticle effects and possible translocation to other organs. PMID:24086363
International Nuclear Information System (INIS)
Deng, Jing; Li, Yaojian; Xu, Yongxiang; Sheng, Hongzhi
2010-01-01
In this work, Magnetic Fluid dynamics (MHD) model is used to stimulate the electromagnetic field, heat transfer and fluid flow in a DC non-transferred arc plasma torch. Through the coupled iterative computation about the electromagnetic equations described by magnetic vector potential format and the modified fluid dynamics equations, the electric potential, temperature and velocity distributions in the torch are obtained. The fluid-solid coupled computation method is applied to treat the electric current and heat transfer at the interface between the electrodes and fluid. The location of arc root attachment at the inside surface of anode and the arc voltage of the torch that we have predicted are very consistent with the corresponding experimental results. The calculated results of the torch are applied to the numerical simulation of the plasma jets under the laminar and turbulent condition. (author)
PREFACE: 32nd UIT (Italian Union of Thermo-fluid-dynamics) Heat Transfer Conference
2014-11-01
The annual Conference of the ''Unione Italiana di Termofluidodinamica'' (UIT) aims to promote cooperation in the field of heat transfer and thermal sciences by bringing together scientists and engineers working in related areas. The 32nd UIT Conference was held in Pisa, from the 23rd to the 25th of June, 2014 in the buildings of the School of Engineering, just a few months after the celebration of the 100th anniversary of the first Institution of the School of Engineering at the University of Pisa. The response was very good, with more than 100 participants and 80 high-quality contributions from 208 authors on seven different heat transfer related topics: Heat transfer and efficiency in energy systems, environmental technologies, and buildings (25 papers); Micro and nano scale thermo-fluid dynamics (9 papers); Multi-phase fluid dynamics, heat transfer and interface phenomena (14 papers); Computational fluid dynamics and heat transfer (10 papers); Heat transfer in nuclear plants (8 papers); Natural, forced and mixed convection (10 papers) and Conduction and radiation (4 papers). To encourage the debate, the Conference Program scheduled 16 oral sessions (44 papers), three ample poster sessions (36 papers) and four invited lectures given by experts in the various fields both from Industry and from University. Keynote Lectures were given by Dr. Roberto Parri (ENEL, Italy), Prof. Peter Stephan (TU Darmstadt, Germany), Prof. Bruno Panella (Politecnico di Torino), and Prof. Sara Rainieri (Universit;aacute; di Parma). This special volume collects a selection of the scientific contributions discussed during this conference. A total of 46 contributions, two keynote lectures and 44 papers both from oral and poster sessions, have been selected for publication in this special issue, after a second accurate revision process. These works give a good overview of the state of the art of Italian research in the field of Heat Transfer related topics at the date. The editors of the
Shang, Barry Z; Voulgarakis, Nikolaos K; Chu, Jhih-Wei
2012-07-28
This work illustrates that fluctuating hydrodynamics (FHD) simulations can be used to capture the thermodynamic and hydrodynamic responses of molecular fluids at the nanoscale, including those associated with energy and heat transfer. Using all-atom molecular dynamics (MD) trajectories as the reference data, the atomistic coordinates of each snapshot are mapped onto mass, momentum, and energy density fields on Eulerian grids to generate a corresponding field trajectory. The molecular length-scale associated with finite molecule size is explicitly imposed during this coarse-graining by requiring that the variances of density fields scale inversely with the grid volume. From the fluctuations of field variables, the response functions and transport coefficients encoded in the all-atom MD trajectory are computed. By using the extracted fluid properties in FHD simulations, we show that the fluctuations and relaxation of hydrodynamic fields quantitatively match with those observed in the reference all-atom MD trajectory, hence establishing compatibility between the atomistic and field representations. We also show that inclusion of energy transfer in the FHD equations can more accurately capture the thermodynamic and hydrodynamic responses of molecular fluids. The results indicate that the proposed MD-to-FHD mapping with explicit consideration of finite molecule size provides a robust framework for coarse-graining the solution phase of complex molecular systems.
Near-surface gravity actuated pipe (GAP{sup TM}) system for Brazilian deepwater fluid transfer
Energy Technology Data Exchange (ETDEWEB)
Fromage, Lionel; Brown, Paul A. [SBM Offshore (Monaco)
2009-12-19
The recent discovery of new deep water and ultra-deep water oil and gas fields offshore Brazil, including pre-salt reservoirs, has become a focal point for field development Operators and Contractors. The aggressive nature of fluids (sour, high density) in combination with deeper waters implies potential flow assurance issues. These issues challenge riser and pipeline technology to find cost effective solutions for hydrocarbon fluid transfer in field development scenarios involving phased tied-back. The near-surface GAP{sup TM}, system (Gravity Actuated Pipe{sup TM}), which has been in operation for more than two years on the Kikeh field offshore Malaysia in 1325 m of water between a Dry Tree Unit (SPAR) and a turret-moored FPSO, is considered to meet these challenges since such a product is quasi independent of water depth and takes advantage of being near surface to optimize flow assurance. Furthermore the GAP{sup TM} has undergone technical upgrades when compared to the Kikeh project in order to make it suitable for the more hostile met ocean conditions offshore Brazil. This paper presents the design features, the construction and assembly plans in Brazil and the offshore installation of a GAP fluid transfer system for operation in Brazilian deep waters. (author)
Directory of Open Access Journals (Sweden)
Jiazhou Wu
2018-06-01
Full Text Available A three-dimensional multiphysical transient model was developed to investigate keyhole formation, weld pool dynamics, and mass transfer in laser welding of dissimilar materials. The coupling of heat transfer, fluid flow, keyhole free surface evolution, and solute diffusion between dissimilar metals was simulated. The adaptive heat source model was used to trace the change of keyhole shape, and the Rayleigh scattering of the laser beam was considered. The keyhole wall was calculated using the fluid volume equation, primarily considering the recoil pressure induced by metal evaporation, surface tension, and hydrostatic pressure. Fluid flow, diffusion, and keyhole formation were considered simultaneously in mass transport processes. Welding experiments of 304L stainless steel and industrial pure titanium TA2 were performed to verify the simulation results. It is shown that spatters are shaped during the welding process. The thickness of the intermetallic reaction layer between the two metals and the diffusion of elements in the weld are calculated, which are important criteria for welding quality. The simulation results correspond well with the experimental results.
GPU accelerated study of heat transfer and fluid flow by lattice Boltzmann method on CUDA
Ren, Qinlong
Lattice Boltzmann method (LBM) has been developed as a powerful numerical approach to simulate the complex fluid flow and heat transfer phenomena during the past two decades. As a mesoscale method based on the kinetic theory, LBM has several advantages compared with traditional numerical methods such as physical representation of microscopic interactions, dealing with complex geometries and highly parallel nature. Lattice Boltzmann method has been applied to solve various fluid behaviors and heat transfer process like conjugate heat transfer, magnetic and electric field, diffusion and mixing process, chemical reactions, multiphase flow, phase change process, non-isothermal flow in porous medium, microfluidics, fluid-structure interactions in biological system and so on. In addition, as a non-body-conformal grid method, the immersed boundary method (IBM) could be applied to handle the complex or moving geometries in the domain. The immersed boundary method could be coupled with lattice Boltzmann method to study the heat transfer and fluid flow problems. Heat transfer and fluid flow are solved on Euler nodes by LBM while the complex solid geometries are captured by Lagrangian nodes using immersed boundary method. Parallel computing has been a popular topic for many decades to accelerate the computational speed in engineering and scientific fields. Today, almost all the laptop and desktop have central processing units (CPUs) with multiple cores which could be used for parallel computing. However, the cost of CPUs with hundreds of cores is still high which limits its capability of high performance computing on personal computer. Graphic processing units (GPU) is originally used for the computer video cards have been emerged as the most powerful high-performance workstation in recent years. Unlike the CPUs, the cost of GPU with thousands of cores is cheap. For example, the GPU (GeForce GTX TITAN) which is used in the current work has 2688 cores and the price is only 1
International Nuclear Information System (INIS)
Han, Chang-Liang; Ren, Jing-Jie; Wang, Yan-Qing; Dong, Wen-Ping; Bi, Ming-Shu
2017-01-01
Highlights: • Thermal performance analysis of submerged combustion vaporizer (SCV) was performed experimentally. • Visualization study of shell-side flow field for SCV was carried out. • The effects of various operational parameters on the overall system performance were discussed. • Two new non-dimensional Nusselt correlations were proposed to predict the heat transfer performance of SCV. - Abstract: Submerged combustion vaporizer (SCV) occupies a decisive position in liquefied natural gas (LNG) industrial chain. In this paper, a visual experimental apparatus was established to have a comprehensive knowledge about fluid flow and heat transfer performance of SCV. Trans-critical liquid nitrogen (LN_2) was selected as alternative fluid to substitute LNG because of safety reason. Some unique experimental phenomena inside the SCV (local water bath freezes on the external surface of tube bundle) were revealed. Meanwhile the influences of static water height, superficial flue gas velocity, heat load, tube-side inlet pressure and tube-side mass flux on the system performance were systematically discussed. Finally, based on the obtained experimental results, two new empirical Nusselt number correlations were regressed to predict the shell-side and tube-side heat transfer characteristics of SCV. The maximum errors between predicted results and experimental data were respectively ±25% and ±20%. The outcomes of this paper were critical to the optimum design and economical operation of SCV.
A coupled model on fluid flow, heat transfer and solidification in continuous casting mold
Directory of Open Access Journals (Sweden)
Xu-bin Zhang
2017-11-01
Full Text Available Fluid flow, heat transfer and solidification of steel in the mold are so complex but crucial, determining the surface quality of the continuous casting slab. In the current study, a 2D numerical model was established by Fluent software to simulate the fluid flow, heat transfer and solidification of the steel in the mold. The VOF model and k-ε model were applied to simulate the flow field of the three phases (steel, slag and air, and solidification model was used to simulate the solidification process. The phenomena at the meniscus were also explored through interfacial tension between the liquid steel and slag as well as the mold oscillation. The model included a 20 mm thick mold to clarify the heat transfer and the temperature distribution of the mold. The simulation results show that the liquid steel flows as upper backflow and lower backflow in the mold, and that a small circulation forms at the meniscus. The liquid slag flows away from the corner at the meniscus or infiltrates into the gap between the mold and the shell with the mold oscillating at the negative strip stage or at the positive strip stage. The simulated pitch and the depth of oscillation marks approximate to the theoretical pitch and measured depth on the slab.
Energy Technology Data Exchange (ETDEWEB)
McFarlane, Joanna [ORNL; Bell, Jason R [ORNL; Felde, David K [ORNL; Joseph III, Robert Anthony [ORNL; Qualls, A L [ORNL; Weaver, Samuel P [ORNL
2013-02-01
ORNL and subcontractor Cool Energy completed an investigation of higher-temperature, organic thermal fluids for solar thermal applications. Although static thermal tests showed promising results for 1-phenylnaphthalene, loop testing at temperatures to 450 C showed that the material isomerized at a slow rate. In a loop with a temperature high enough to drive the isomerization, the higher melting point byproducts tended to condense onto cooler surfaces. So, as experienced in loop operation, eventually the internal channels of cooler components such as the waste heat rejection exchanger may become coated or clogged and loop performance will decrease. Thus, pure 1-phenylnaphthalene does not appear to be a fluid that would have a sufficiently long lifetime (years to decades) to be used in a loop at the increased temperatures of interest. Hence a decision was made not to test the ORNL fluid in the loop at Cool Energy Inc. Instead, Cool Energy tested and modeled power conversion from a moderate-temperature solar loop using coupled Stirling engines. Cool Energy analyzed data collected on third and fourth generation SolarHeart Stirling engines operating on a rooftop solar field with a lower temperature (Marlotherm) heat transfer fluid. The operating efficiencies of the Stirling engines were determined at multiple, typical solar conditions, based on data from actual cycle operation. Results highlighted the advantages of inherent thermal energy storage in the power conversion system.
Energy Technology Data Exchange (ETDEWEB)
lewis, Kristen A.; Arnott, W. P.; Moosmuller, H.; Chakrabarti, Raj; Carrico, Christian M.; Kreidenweis, Sonia M.; Day, Derek E.; Malm, William C.; Laskin, Alexander; Jimenez, Jose L.; Ulbrich, Ingrid M.; Huffman, John A.; Onasch, Timothy B.; Trimborn, Achim; Liu, Li; Mishchenko, M.
2009-11-27
Smoke particle emissions from the combustion of biomass fuels typical for the western and southeastern United States were studied and compared under high humidity and ambient conditions in the laboratory. The fuels used are Montana ponderosa pine (Pinus ponderosa), southern California chamise (Adenostoma fasciculatum), and Florida saw palmetto (Serenoa repens). Information on the non-refractory chemical composition of biomass burning aerosol from each fuel was obtained with an aerosol mass spectrometer and through estimation of the black carbon concentration from light absorption measurements at 870 nm. Changes in the optical and physical particle properties under high humidity conditions were observed for hygroscopic smoke particles containing substantial inorganic mass fractions that were emitted from combustion of chamise and palmetto fuels. Light scattering cross sections increased under high humidity for these particles, consistent with the hygroscopic growth measured for 100 nm particles in HTDMA measurements. Photoacoustic measurements of aerosol light absorption coefficients reveal a 20% reduction with increasing relative humidity, contrary to the expectation of light absorption enhancement by the liquid coating taken up by hygroscopic particles. This reduction is hypothesized to arise from two mechanisms: 1. Shielding of inner monomers after particle consolidation or collapse with water uptake; 2. The contribution of mass transfer through evaporation and condensation at high relative humidity to the usual heat transfer pathway for energy release by laser heated particles in the photoacoustic measurement of aerosol light absorption. The mass transfer contribution is used to evaluate the fraction of aerosol surface covered with liquid water solution as a function of RH.
Analysis of Forced Convection Heat Transfer for Axial Annular Flow of Giesekus Viscoelastic Fluid
Energy Technology Data Exchange (ETDEWEB)
Mohseni, Mehdi Moayed; Rashidi, Fariborz; Movagar, Mohammad Reza Khorsand [Amirkabir University of Technology, Tehran (Iran, Islamic Republic of)
2015-02-15
Analytical solutions for the forced convection heat transfer of viscoelastic fluids obeying the Giesekus model are obtained in a concentric annulus under laminar flow for both thermal and hydrodynamic fully developed conditions. Boundary conditions are assumed to be (a) constant fluxes at the walls and (b) constant temperature at the walls. Temperature profiles and Nusselt numbers are derived from dimensionless energy equation. Subsequently, effects of elasticity, mobility parameter and viscous dissipation are discussed. Results show that by increasing elasticity, Nusselt number increases. However, this trend is reversed for constant wall temperature when viscous dissipation is weak. By increasing viscous dissipation, the Nusselt number decreases for the constant flux and increases for the constant wall temperature. For the wall cooling case, when the viscous dissipation exceeds a critical value, the generated heat overcomes the heat which is removed at the walls, and fluid heats up longitudinally.
Energy Technology Data Exchange (ETDEWEB)
Prevost, C [CEA Saclay, Departement de Prevention et d` Etude des Accidents, 91 - Gif-sur-Yvette (France); [Conservatoire National des Arts et Metiers (CNAM), 75 - Paris (France)
1996-06-01
The studies on aerosol transfer carried out in the field of staff protection and nuclear plants safety become more and more important. So techniques of pollutants simulation by specific tracers with the same aeraulic behaviour are an interesting tool in order to characterize their transfers. Resorting to aerosols tagged by a fluorescent dye allows to realize different studies in ventilation and filtration field. The feasibility of detection in real time for a particulate tracer is the main aim of this work. The need of such a technique is obvious because it can provide the specific aerosol behaviour. Furthermore, direct measurements in real time are required for model validation in calculation codes: they give the most realistic informations on interaction between contaminant and ventilation air flows. Up to now, the principle of fluorescent aerosol concentration measurement allows only an integral response in a delayed time, by means of sampling on filters and a fluorimetric analysis after a specific conditioning of these filters. In order to have the opportunity to detect in real time specific tracer, we have developed a new monitor able to count these particles on the following basis: fluorescent particles pass through a sampling nozzle up to a measurement chamber specially designed; sheath flow rate is defined to confine the test aerosol in the test aerosol in the sample flow rate at nozzle outlet; the interception of this stream by a highly focused laser beam allows aerosol detection and characterization particle by particle; the signature of a passing aerosol is the burst of photons that occurs when the fluoro-phore contained in the glycerol particle is excited by a light of adapted wavelength; these signals are transmitted to a photodetector by a patented optical arrangement. Then, an acquisition interfaced board connected to a computer, converts them into frequencies histograms. In the end, two kind of results could be provided simultaneously : the
Food processing: The use of non-fouling food grade heat transfer fluids
International Nuclear Information System (INIS)
Wright, Christopher Ian; Bembridge, Thomas; Picot, Eole; Premel, Julien
2015-01-01
It is reported that there are some 4000 companies operating high temperature thermal fluid systems in the UK and Ireland. This excludes steam or water based systems. The heat transfer fluids (HTFs) used in food processing are highly refined mineral HTFs that are non-toxic, non-irritating and lack an odour. If an HTF has been certified for use in food processing it carries an HT-1 certificate. HTFs suitable for use in food processing are commonly referred to as ‘non-fouling’ which means as they thermally degrade they produce small carbon particles that are suspended in the HTF. Moreover, the carbon formations are less sticky and this reduces the extent of adhesion to the internal surfaces of an HTF system. The current paper analysed the test reports from 1223 HTF systems and showed that, on average, the carbon residue for food grade HTF was lower than non-food grade HTF. This clearly demonstrates what the non-fouling nature of a food grade HTF. This paper then explored the regulatory, legal and environmental landscape for food grade HTFs. In this area of manufacturing, it is critical that the HTFs used are suitable for incidental contact with food. Other measures put consumer safety at the heart of all operations (i.e., internal company procedures such as hazard analysis and critical control points [HACCP]) and that food is safe for consumer consumption (e.g., external controls such as auditing manufacturers to ensure good quality and distribution practice). The authors introduce the idea that safety could be further enhanced through independent HTF sampling and chemical analysis of HTFs to ensure they are food grade and should be done without any interruption to a manufacturer's production. - Highlights: • Food grade heat transfer fluid (HTF) is colourless, non-toxic and non-irritating. • This HTF is non-fouling and less carbon forms. • Such HTFs can be safely used in food processing if they are HT-1 certified. • A number of controls (e.g., HACCP
Nonlinear radiative heat transfer to stagnation-point flow of Sisko fluid past a stretching cylinder
Directory of Open Access Journals (Sweden)
Masood Khan
2016-05-01
Full Text Available In the present paper, we endeavor to perform a numerical analysis in connection with the nonlinear radiative stagnation-point flow and heat transfer to Sisko fluid past a stretching cylinder in the presence of convective boundary conditions. The influence of thermal radiation using nonlinear Rosseland approximation is explored. The numerical solutions of transformed governing equations are calculated through forth order Runge-Kutta method using shooting technique. With the help of graphs and tables, the influence of non-dimensional parameters on velocity and temperature along with the local skin friction and Nusselt number is discussed. The results reveal that the temperature increases however, heat transfer from the surface of cylinder decreases with the increasing values of thermal radiation and temperature ratio parameters. Moreover, the authenticity of numerical solutions is validated by finding their good agreement with the HAM solutions.
A finite volume procedure for fluid flow, heat transfer and solid-body stress analysis
Jagad, P. I.
2018-04-12
A unified cell-centered unstructured mesh finite volume procedure is presented for fluid flow, heat transfer and solid-body stress analysis. An in-house procedure (A. W. Date, Solution of Transport Equations on Unstructured Meshes with Cell-Centered Colocated Variables. Part I: Discretization, International Journal of Heat and Mass Transfer, vol. 48 (6), 1117-1127, 2005) is extended to include the solid-body stress analysis. The transport terms for a cell-face are evaluated in a structured grid-like manner. The Cartesian gradients at the center of each cell-face are evaluated using the coordinate transformation relations. The accuracy of the procedure is demonstrated by solving several benchmark problems involving different boundary conditions, source terms, and types of loading.
Nonlinear radiative heat transfer to stagnation-point flow of Sisko fluid past a stretching cylinder
Energy Technology Data Exchange (ETDEWEB)
Khan, Masood [Department of Mathematics, Quaid-i-Azam University, Islamabad 44000 (Pakistan); Malik, Rabia, E-mail: rabiamalik.qau@gmail.com [Department of Mathematics, Quaid-i-Azam University, Islamabad 44000 (Pakistan); Department of Mathematics and Statistics, International Islamic University Islamabad 44000 (Pakistan); Hussain, M. [Department of Sciences and Humanities, National University of Computer and Emerging Sciences, Islamabad 44000 (Pakistan)
2016-05-15
In the present paper, we endeavor to perform a numerical analysis in connection with the nonlinear radiative stagnation-point flow and heat transfer to Sisko fluid past a stretching cylinder in the presence of convective boundary conditions. The influence of thermal radiation using nonlinear Rosseland approximation is explored. The numerical solutions of transformed governing equations are calculated through forth order Runge-Kutta method using shooting technique. With the help of graphs and tables, the influence of non-dimensional parameters on velocity and temperature along with the local skin friction and Nusselt number is discussed. The results reveal that the temperature increases however, heat transfer from the surface of cylinder decreases with the increasing values of thermal radiation and temperature ratio parameters. Moreover, the authenticity of numerical solutions is validated by finding their good agreement with the HAM solutions.
Discussion of heat transfer phenomena in fluids at supercritical pressure with the aid of CFD models
International Nuclear Information System (INIS)
Sharabi, Medhat; Ambrosini, Walter
2009-01-01
The paper discusses heat transfer enhancement and deterioration phenomena observed in experimental data for fluids at supercritical pressure. The results obtained by the application of various CFD turbulence models in the prediction of experimental data for water and carbon dioxide flowing in circular tubes are firstly described. On this basis, the capabilities of the addressed models in predicting the observed phenomena are shortly discussed. Then, the analysis focuses on further results obtained by a low-Reynolds number k - ε model addressing one of the considered experimental apparatuses by changing the operating conditions. In particular, the usual imposed heat flux boundary condition is changed to assigned wall temperature, in order to highlight effects otherwise impossible to point out. The obtained results, supported by considerations drawn from experimental information, allow comparing the trends observed for heat transfer deterioration at supercritical pressure with those typical of the thermal crisis in boiling systems, clarifying old concepts of similarity among them
Modelling of fluid flow and heat transfer in a reciprocating compressor
Tuhovcak, J.; Hejcik, J.; Jicha, M.
2015-08-01
Efficiency of reciprocating compressor is strongly dependent on several parameters. The most important are valve behaviour and heat transfer. Valves affect the flow through the suction and discharge line. Heat flow from the walls to working fluid increases the work of the cycle. Understanding of these phenomena inside the compressor is a necessary step in the development process. Commercial CFD tools offer wide range of opportunities how to simulate the flow inside the reciprocating compressor nowadays, however they are too demanding in terms of computational time and mesh creation. Several approaches using various correlation equation exist to describe the heat transfer inside the cylinder, however none of them was validated by measurements due to the complicated settings. The goal of this paper is to show a comparison between these correlations using in-house code based on energy balance through the cycle.
Tavassoli Estahbanati, H.; Peters, E.A.J.F.; Kuipers, J.A.M.
2015-01-01
Direct numerical simulations are conducted to characterize the fluid-particle heat transfer coefficient in fixed random arrays of non-spherical particles. The objective of this study is to examine the applicability of well-known heat transfer correlations, that are proposed for spherical particles,
Directory of Open Access Journals (Sweden)
Norfifah Bachok
2012-01-01
Full Text Available The steady boundary layer flow and heat transfer of a viscous fluid on a moving flat plate in a parallel free stream with variable fluid properties are studied. Two special cases, namely, constant fluid properties and variable fluid viscosity, are considered. The transformed boundary layer equations are solved numerically by a finite-difference scheme known as Keller-box method. Numerical results for the flow and the thermal fields for both cases are obtained for various values of the free stream parameter and the Prandtl number. It is found that dual solutions exist for both cases when the fluid and the plate move in the opposite directions. Moreover, fluid with constant properties shows drag reduction characteristics compared to fluid with variable viscosity.
Iacovino, K.; Till, C. B.
2017-12-01
It is widely observed that arc magmas are the most oxidized magmas on Earth. One frequently cited explanation calls on the flux of aqueous fluid from the highly oxidized down-going slab to catalyze sub-arc mantle melting and impose a highly oxidized redox signature on the mantle wedge. Fluid inclusions from sub-arc mantle xenoliths provide evidence that "slab fluids" may be highly oxidizing (fO2 QFM+1.5; Brandon & Draper, 1996; Frost and Ballhaus, 1998), but for decades, determination of the precise reactive mechanism potentially responsible for the transfer of O2 from slab to mantle has been elusive. Pure H2O has been shown to have insufficient oxidizing capacity to affect mantle redox, but H2O-rich fluids may facilitate the mobilization of Fe3+ or other multivalent cations and/or O2 transfer via the reduction of sulfate, particularly if such fluids are hypersaline. Here we present the first results from experiments designed to investigate fluid-mediated element transfer, including redox reactions, at the slab-mantle interface. These data include the first direct measurements of the intrinsic oxygen fugacity of fluids released during slab dehydration using sliding binary alloy redox sensors. Experiments were performed on natural Fe3+-bearing antigorite serpentinite at 1-2 GPa and 800°C in a piston cylinder at Arizona State University, analogous to conditions in a subducting slab and sufficient to cause the breakdown of starting material into forsteritic olivine, Mg-rich clinopyroxene, magnetite, and aqueous fluid. Experimental time series allow for the detection of (and correction for) any buffering effect on the sample by the experimental assembly. Initial results indicate that the dehydration of sulfur-free antigorite serpentinite can generate fluids with fO2 several orders of magnitude above that of MORB mantle and similar to those observed in natural sub-arc fluid inclusions. Careful measurements of the chemistry of fluid and solid run products will elucidate
Directory of Open Access Journals (Sweden)
Yu Bai
2017-12-01
Full Text Available This paper investigates the incompressible fractional MHD Maxwell fluid due to a power function accelerating plate with the first order slip, and the numerical analysis on the flow and heat transfer of fractional Maxwell fluid has been done. Moreover the deformation motion of fluid micelle is simply analyzed. Nonlinear velocity equation are formulated with multi-term time fractional derivatives in the boundary layer governing equations, and convective heat transfer boundary condition and viscous dissipation are both taken into consideration. A newly finite difference scheme with L1-algorithm of governing equations are constructed, whose convergence is confirmed by the comparison with analytical solution. Numerical solutions for velocity and temperature show the effects of pertinent parameters on flow and heat transfer of fractional Maxwell fluid. It reveals that the fractional derivative weakens the effects of motion and heat conduction. The larger the Nusselt number is, the greater the heat transfer capacity of fluid becomes, and the temperature gradient at the wall becomes more significantly. The lower Reynolds number enhances the viscosity of the fluid because it is the ratio of the viscous force and the inertia force, which resists the flow and heat transfer.
Bai, Yu; Jiang, Yuehua; Liu, Fawang; Zhang, Yan
2017-12-01
This paper investigates the incompressible fractional MHD Maxwell fluid due to a power function accelerating plate with the first order slip, and the numerical analysis on the flow and heat transfer of fractional Maxwell fluid has been done. Moreover the deformation motion of fluid micelle is simply analyzed. Nonlinear velocity equation are formulated with multi-term time fractional derivatives in the boundary layer governing equations, and convective heat transfer boundary condition and viscous dissipation are both taken into consideration. A newly finite difference scheme with L1-algorithm of governing equations are constructed, whose convergence is confirmed by the comparison with analytical solution. Numerical solutions for velocity and temperature show the effects of pertinent parameters on flow and heat transfer of fractional Maxwell fluid. It reveals that the fractional derivative weakens the effects of motion and heat conduction. The larger the Nusselt number is, the greater the heat transfer capacity of fluid becomes, and the temperature gradient at the wall becomes more significantly. The lower Reynolds number enhances the viscosity of the fluid because it is the ratio of the viscous force and the inertia force, which resists the flow and heat transfer.
Energy Technology Data Exchange (ETDEWEB)
Nichols, B. D.; Mueller, C.; Necker, G. A.; Travis, J. R.; Spore, J. W.; Lam, K. L.; Royl, P.; Wilson, T. L.
1998-10-01
Los Alamos National Laboratory (LANL) and Forschungszentrum Karlsruhe (FzK) are developing GASFLOW, a three-dimensional (3D) fluid dynamics field code as a best-estimate tool to characterize local phenomena within a flow field. Examples of 3D phenomena include circulation patterns; flow stratification; hydrogen distribution mixing and stratification; combustion and flame propagation; effects of noncondensable gas distribution on local condensation and evaporation; and aerosol entrainment, transport, and deposition. An analysis with GASFLOW will result in a prediction of the gas composition and discrete particle distribution in space and time throughout the facility and the resulting pressure and temperature loadings on the walls and internal structures with or without combustion. A major application of GASFLOW is for predicting the transport, mixing, and combustion of hydrogen and other gases in nuclear reactor containment and other facilities. It has been applied to situations involving transporting and distributing combustible gas mixtures. It has been used to study gas dynamic behavior in low-speed, buoyancy-driven flows, as well as sonic flows or diffusion dominated flows; and during chemically reacting flows, including deflagrations. The effects of controlling such mixtures by safety systems can be analyzed. The code version described in this manual is designated GASFLOW 2.1, which combines previous versions of the United States Nuclear Regulatory Commission code HMS (for Hydrogen Mixing Studies) and the Department of Energy and FzK versions of GASFLOW. The code was written in standard Fortran 90. This manual comprises three volumes. Volume I describes the governing physical equations and computational model. Volume II describes how to use the code to set up a model geometry, specify gas species and material properties, define initial and boundary conditions, and specify different outputs, especially graphical displays. Sample problems are included. Volume III
Woskie, S R; Smith, T J; Hallock, M F; Hammond, S K; Rosenthal, F; Eisen, E A; Kriebel, D; Greaves, I A
1994-01-01
The current metal-working fluid exposures at three locations that manufacture automotive parts were assessed in conjunction with epidemiological studies of the mortality and respiratory morbidity experiences of workers at these plants. A rationale is presented for selecting and characterizing epidemiologic exposure groups in this environment. More than 475 full-shift personal aerosol samples were taken using a two-stage personal cascade impactor with median size cut-offs of 9.8 microns and 3.5 microns, plus a backup filter. For a sample of 403 workers exposed to aerosols of machining or grinding fluids, the mean total exposure was 706 micrograms/m3 (standard error (SE) = 21 micrograms/m3). Among 72 assemblers unexposed to machining fluids, the mean total exposure was 187 +/- 10 (SE) micrograms/m3. An analysis of variance model identified factors significantly associated with exposure level and permitted estimates of exposure for workers in the unsampled machine type/metal-working fluid groups. Comparison of the results obtained from personal impactor samples with predictions from an aerosol-deposition model for the human respiratory tract showed high correlation. However, the amount collected on the impactor stage underestimates extrathoracic deposition and overestimates tracheobronchial and alveolar deposition, as calculated by the deposition model. When both the impactor concentration and the deposition-model concentration were used to estimate cumulative thoracic concentrations for the worklives of a subset of auto workers, there was no significant difference in the rank order of the subjects' cumulative concentration. However, the cumulative impactor concentration values were significantly higher than the cumulative deposition-model concentration values for the subjects.
Munir, Asif; Shahzad, Azeem; Khan, Masood
2014-01-01
The major focus of this article is to analyze the forced convective heat transfer in a steady boundary layer flow of Sisko fluid over a nonlinear stretching sheet. Two cases are studied, namely (i) the sheet with variable temperature (PST case) and (ii) the sheet with variable heat flux (PHF case). The heat transfer aspects are investigated for both integer and non-integer values of the power-law index. The governing partial differential equations are reduced to a system of nonlinear ordinary differential equations using appropriate similarity variables and solved numerically. The numerical results are obtained by the shooting method using adaptive Runge Kutta method with Broyden's method in the domain[Formula: see text]. The numerical results for the temperature field are found to be strongly dependent upon the power-law index, stretching parameter, wall temperature parameter, material parameter of the Sisko fluid and Prandtl number. In addition, the local Nusselt number versus wall temperature parameter is also graphed and tabulated for different values of pertaining parameters. Further, numerical results are validated by comparison with exact solutions as well as previously published results in the literature.
Kováts, Péter; Thévenin, Dominique; Zähringer, Katharina
2018-02-01
Bubble column reactors are multiphase reactors that are used in many process engineering applications. In these reactors a gas phase comes into contact with a fluid phase to initiate or support reactions. The transport process from the gas to the liquid phase is often the limiting factor. Characterizing this process is therefore essential for the optimization of multiphase reactors. For a better understanding of the transfer mechanisms and subsequent chemical reactions, a laboratory-scale bubble column reactor was investigated. First, to characterize the flow field in the reactor, two different methods have been applied. The shadowgraphy technique is used for the characterisation of the bubbles (bubble diameter, velocity, shape or position) for various process conditions. This technique is based on particle recognition with backlight illumination, combined with particle tracking velocimetry (PTV). The bubble trajectories in the column can also be obtained in this manner. Secondly, the liquid phase flow has been analysed by particle image velocimetry (PIV). The combination of both methods, delivering relevant information concerning disperse (bubbles) and continuous (liquid) phases, leads to a complete fluid dynamical characterization of the reactor, which is the pre-condition for the analysis of mass transfer between both phases.
FlowGo: An Educational Kit for Fluid Dynamics and Heat Transfer
Guri, Dominic; Portsmore, Merredith; Kemmerling, Erica
2015-11-01
The authors have designed and prototyped an educational toolkit that will help middle-school-aged students learn fundamental fluid mechanics and heat transfer concepts in a hands-on play environment. The kit allows kids to build arbitrary flow rigs to solve fluid mechanics and heat transfer challenge problems. Similar kits for other engineering fields, such as structural and electrical engineering, have resulted in pedagogical improvements, particularly in early engineering education, where visual demonstrations have a significant impact. Using the FlowGo kit, students will be able to conduct experiments and develop new design ideas to solve challenge problems such as building plant watering systems or modeling water and sewage reticulation. The toolkit consists of components such as tubes, junctions, and reservoirs that easily snap together via a modular, universal connector. Designed with the Massachusetts K-12 science standards in mind, this kit is intended to be affordable and suitable for classroom use. Results and user feedback from students conducting preliminary tests of the kit will be presented.
Calculation of laminar incompressible fluid flow and heat transfer during spherical annulus filling
International Nuclear Information System (INIS)
Tuft, D.B.
1979-04-01
A method of computing laminar incompressible fluid-flow and heat transfer during the filling of a spherical annulus is presented. Transient fluid temperatures and heat flux rates in the spherical annulus are calculated for an insulated outer sphere and a constant temperature inner sphere with heated water filling the annulus from the bottom. To achieve a solution, laminar axially symmetric flow is assumed and the Marker-and-Cell (MAC) free surface computational method is applied to this problem in spherical coordinates. Changes in the standard MAC treatment are incorporated and special methods for handling the free surface are introduced. A variable mesh is used to improve resolution near the inner sphere where temperature and velocity gradients are steep and the governing equations are derived for variable fluid properties to allow an eddy viscosity turbulence model to be applied later. Calculations of velocity, temperature, and inner sphere heat flux in a spherical annulus of 139.7 mm inner radius, and 168.3 mm outer radius within an inlet tube diameter of 38.1 mm are presented
Probing heat transfer, fluid flow and microstructural evolution during fusion welding of alloys
Zhang, Wei
The composition, geometry, structure and properties of the welded joints are affected by the various physical processes that take place during fusion welding. Understanding these processes has been an important goal in the contemporary welding research to achieve structurally sound and reliable welds. In the present thesis research, several important physical processes including the heat transfer, fluid flow and microstructural evolution in fusion welding were modeled based on the fundamentals of transport phenomena and phase transformation theory. The heat transfer and fluid flow calculation is focused on the predictions of the liquid metal convection in the weld pool, the temperature distribution in the entire weldment, and the shape and size of the fusion zone (FZ) and heat affected zone (HAZ). The modeling of microstructural evolution is focused on the quantitative understanding of phase transformation kinetics during welding of several important alloys under both low and high heating and cooling conditions. Three numerical models were developed in the present thesis work: (1) a three-dimensional heat transfer and free surface flow model for the gas metal arc (GMA) fillet welding considering the complex weld joint geometry, (2) a phase transformation model based on the Johnson-Mehl-Avrami (JMA) theory, and (3) a one-dimensional numerical diffusion model considering multiple moving interfaces. To check the capabilities of the developed models, several cases were investigated, in which the predictions from the models were compared with the experimental results. The cases studied are the follows. For the modeling of heat transfer and fluid flow, the welding processes studied included gas tungsten arc (GTA) linear welding, GTA transient spot welding, and GMA fillet welding. The calculated weldment geometry and thermal cycles was validated against the experimental data under various welding conditions. For the modeling of microstructural evolution, the welded
Directory of Open Access Journals (Sweden)
M. Das
2015-12-01
Full Text Available The influence of Newtonian heating on heat and mass transfer in unsteady hydromagnetic flow of a Casson fluid past a vertical plate in the presence of thermal radiation and chemical reaction is studied. The Casson fluid model is used to distinguish the non-Newtonian fluid behavior. The fluid flow is induced due to periodic oscillations of the plate along its length and a uniform transverse magnetic field is applied in a direction which is normal to the direction of fluid flow. The partial differential equations governing the flow, heat, and mass transfer are transformed to non-dimensional form using suitable non-dimensional variables which are then solved analytically by using Laplace transform technique. The numerical values of the fluid velocity, fluid temperature, and species concentration are depicted graphically whereas the values of skin-friction, Nusselt number, and Sherwood number are presented in tabular form. It is noticed that the fluid velocity and temperature decrease with increasing values of Casson parameter while concentration decreases with increasing values of chemical reaction parameter and Schmidt number. Such a fluid flow model has several industrial and medical applications such as in glass manufacturing, paper production, purification of crude oil and study of blood flow in the cardiovascular system.
PREFACE: 31st UIT (Italian Union of Thermo-fluid-dynamics) Heat Transfer Conference 2013
Vitali, Luigi; Niro, Alfonso; Colombo, Luigi; Sotgia, Giorgio
2014-04-01
The annual Conference of the ''Unione Italiana di Termofluidodinamica'' (UIT) aims at promoting cooperation in the field of heat transfer and thermal sciences, by bringing together scientists and engineers working in related areas. The 31st UIT Conference was held in Moltrasio (Como), Italy, 25-27 June, 2013 at the Grand Hotel Imperiale. The response has been enthusiastic, with more than 70 quality contributions from 224 authors on heat transfer related topics: natural, forced and mixed convection, conduction, radiation, multi-phase fluid dynamics and interface phenomena, computational fluid dynamics, micro- and nano-scales, efficiency in energy systems, environmental technologies and buildings. To encourage the debate, the Conference Program has scheduled ample poster sessions and invited lectures from the best experts in the field along with a few of the most talented researchers. Keynote Lectures were given by Professor Roberto Mauri (University of Pisa), Professor Lounés Tadrist (Polytech Marseille) and Professor Maurizio Quadrio (Politecnico di Milano). This special volume collects a selection of the scientific contributions discussed during this conference; these works give a good overview of the state-of-the art Italian research in the field of Heat Transfer related topics. I would like to thank sincerely the authors for presenting their works at the conference and in this special issue. I would also like to extend my thanks to the Scientific Committee and the authors for their accurate review process of each paper for this special issue. Special thanks go to the organizing committee and to our sponsors. As a professor of Politecnico di Milano, let me say I am very proud to have been the chair of this conference in the 150th anniversary of my university. Professor Alfonso Niro Details of organizers, sponsors and committees, as well as further information, are available in the PDF
International Nuclear Information System (INIS)
Haddad, Zoubida; Abu-Nada, Eiyad; Oztop, Hakan F.; Mataoui, Amina
2012-01-01
Natural convection heat transfer and fluid flow of CuO-Water nano-fluids is studied using the Rayleigh-Benard problem. A two component non-homogenous equilibrium model is used for the nano-fluid that incorporates the effects of Brownian motion and thermophoresis. Variable thermal conductivity and variable viscosity are taken into account in this work. Finite volume method is used to solve governing equations. Results are presented by streamlines, isotherms, nano-particle distribution, local and mean Nusselt numbers and nano-particle profiles at top and bottom side. Comparison of two cases as absence of Brownian and thermophoresis effects and presence of Brownian and thermophoresis effects showed that higher heat transfer is formed with the presence of Brownian and thermophoresis effect. In general, by considering the role of thermophoresis and Brownian motion, an enhancement in heat transfer is observed at any volume fraction of nano-particles. However, the enhancement is more pronounced at low volume fraction of nano-particles and the heat transfer decreases by increasing nano-particle volume fraction. On the other hand, by neglecting the role of thermophoresis and Brownian motion, deterioration in heat transfer is observed and this deterioration elevates by increasing the volume fraction of nano-particles. (authors)
Fukuda, Makoto; Yoshimura, Kengo; Namekawa, Koki; Sakai, Kiyotaka
2017-06-01
The objective of the present study is to evaluate the effect of filtration coefficient and internal filtration on dialysis fluid flow and mass transfer coefficient in dialyzers using dimensionless mass transfer correlation equations. Aqueous solution of vitamin B 12 clearances were obtained for REXEED-15L as a low flux dialyzer, and APS-15EA and APS-15UA as high flux dialyzers. All the other design specifications were identical for these dialyzers except for filtration coefficient. The overall mass transfer coefficient was calculated, moreover, the exponents of Reynolds number (Re) and film mass transfer coefficient of the dialysis-side fluid (k D ) for each flow rate were derived from the Wilson plot and dimensionless correlation equation. The exponents of Re were 0.4 for the low flux dialyzer whereas 0.5 for the high flux dialyzers. Dialysis fluid of the low flux dialyzer was close to laminar flow because of its low filtration coefficient. On the other hand, dialysis fluid of the high flux dialyzers was assumed to be orthogonal flow. Higher filtration coefficient was associated with higher k D influenced by mass transfer rate through diffusion and internal filtration. Higher filtration coefficient of dialyzers and internal filtration affect orthogonal flow of dialysis fluid.
Mckillop, A. A.; Baughn, J. W.; Dwyer, H. A.
1976-01-01
Major research advances in heat transfer and fluid dynamics are outlined, with particular reference to relevant energy problems. Of significant importance are such topics as synthetic fuels in combustion, turbulence models, combustion modeling, numerical methods for interacting boundary layers, and light-scattering diagnostics for gases. The discussion covers thermal convection, two-phase flow and boiling heat transfer, turbulent flows, combustion, and aerospace heat transfer problems. Other areas discussed include compressible flows, fluid mechanics and drag, and heat exchangers. Featured topics comprise heat and salt transfer in double-diffusive systems, limits of boiling heat transfer in a liquid-filled enclosure, investigation of buoyancy-induced flow stratification in a cylindrical plenum, and digital algorithms for dynamic analysis of a heat exchanger. Individual items are announced in this issue.
Refrigerant falling film evaporation review: Description, fluid dynamics and heat transfer
International Nuclear Information System (INIS)
Fernández-Seara, José; Pardiñas, Ángel Á.
2014-01-01
Falling film horizontal tube evaporators for refrigeration equipment are an interesting alternative to pool boiling evaporators concerning operation costs, safety, thermodynamic efficiency, charge of refrigerant or size. Plenty of literature works studied falling film evaporation, but for its application in fields such as desalination and petrochemical industry or OTEC. This review focuses mainly on those works from the literature that analysed the main issues of falling film evaporation of refrigerants, to better understand heat transfer and fluid dynamics in such evaporators. First, falling film evaporation is described and compared to pool boiling, to define its main advantages and inconveniences. Then, the literature concerning film around the tubes and between them is analysed, as well as the phenomenon of film breakdown, which sharply deteriorates the heat transfer performance of falling film evaporators. After it, the results from those works that studied analytically and experimentally the heat transfer coefficients (HTCs) with different types of tubes and refrigerants are discussed. The review finishes with a brief summary of important parameters of falling film evaporation, which might be useful for the design of such equipment. - Highlights: •We defined falling film evaporation and compared it with pool boiling. •We reviewed works from the literature concerning refrigerant falling film evaporation. •We classified the ideas from the works attending to crucial aspects of the process. •We developed a summary of the main ideas which could be useful for design purpose
Reduction of momentum transfer rates by parallel electric fields: A two-fluid demonstration
International Nuclear Information System (INIS)
Delamere, P.A.; Stenbaek-Nielsen, H.C.; Otto, A.
2002-01-01
Momentum transfer between an ionized gas cloud moving relative to an ambient magnetized plasma is a general problem in space plasma physics. Obvious examples include the Io-Jupiter interaction, comets, and coronal mass ejections. Active plasma experiments have demonstrated that momentum transfer rates associated with Alfven wave propagation are poorly understood. Barium injection experiments from the Combined Release and Radiation Effects Satellite (CRRES) have shown that dense ionized clouds are capable of ExB drifting over large distances perpendicular to the magnetic field. The CRRES 'skidding' distances were much larger than predicted by magnetohydrodynamic theory and it has been proposed that parallel electric fields were a key component in the skidding phenomenon. A two-fluid code was used to demonstrate the role of parallel electric fields in reducing momentum transfer between two distinct plasma populations. In this study, a dense plasma was initialized moving relative to an ambient plasma and perpendicular to B. Parallel electric fields were introduced via a friction term in the electron momentum equation and the collision frequency was scaled in proportion to the field-aligned current density. The simulation results showed that parallel electric fields decreased the decelerating magnetic tension force on the plasma cloud through a magnetic diffusion/reconnection process
International Nuclear Information System (INIS)
Nichols, B.D.; Mueller, C.; Necker, G.A.; Travis, J.R.; Spore, J.W.; Lam, K.L.; Royl, P.; Redlinger, R.; Wilson, T.L.
1998-01-01
Los Alamos National Laboratory (LANL) and Forschungszentrum Karlsruhe (FzK) are developing GASFLOW, a three-dimensional (3D) fluid dynamics field code as a best-estimate tool to characterize local phenomena within a flow field. Examples of 3D phenomena include circulation patterns; flow stratification; hydrogen distribution mixing and stratification; combustion and flame propagation; effects of noncondensable gas distribution on local condensation and evaporation; and aerosol entrainment, transport, and deposition. An analysis with GASFLOW will result in a prediction of the gas composition and discrete particle distribution in space and time throughout the facility and the resulting pressure and temperature loadings on the walls and internal structures with or without combustion. A major application of GASFLOW is for predicting the transport, mixing, and combustion of hydrogen and other gases in nuclear reactor containments and other facilities. It has been applied to situations involving transporting and distributing combustible gas mixtures. It has been used to study gas dynamic behavior (1) in low-speed, buoyancy-driven flows, as well as sonic flows or diffusion dominated flows; and (2) during chemically reacting flows, including deflagrations. The effects of controlling such mixtures by safety systems can be analyzed. The code version described in this manual is designated GASFLOW 2.1, which combines previous versions of the United States Nuclear Regulatory Commission code HMS (for Hydrogen Mixing Studies) and the Department of Energy and FzK versions of GASFLOW. The code was written in standard Fortran 90. This manual comprises three volumes. Volume I describes the governing physical equations and computational model. Volume II describes how to use the code to set up a model geometry, specify gas species and material properties, define initial and boundary conditions, and specify different outputs, especially graphical displays. Sample problems are included
International Nuclear Information System (INIS)
Bang, K. H.; Lee, J. Y.; Yoo, S. O.; Kim, M. W.; Kim, H. J.
2002-01-01
Three-dimensional analyses of fluid flow and heat transfer has been performed in this study. The simulation of SPEL experimental work and comparison with experimental data has been carried out to verify the analyses models. Moreover, to verify the CANDU-6 reactor type, analyses of fluid flow and heat transfer in the calandria under the condition of steady state has been performed using FLUENT code, which is the conventional code for a three-dimensional analyses of fluid flow and heat transfer for moderator integrity assessment in PHWR thermal-hydraulics. It is found that the maximum temperature in the moderator is 347K (74 ), so that the moderator has the enough subcoolability to ensure the integrity of pressure tube during LOCA conditions
Scaling options for integral experiments for molten salt fluid mechanics and heat transfer
International Nuclear Information System (INIS)
Philippe Bardet; Per F Peterson
2005-01-01
Full text of publication follows: Molten fluoride salts have potentially large benefits for use in high-temperature heat transport in fission and fusion energy systems, due to their very very low vapor pressures at high temperatures. Molten salts have high volumetric heat capacity compared to high-pressure helium and liquid metals, and have desirable safety characteristics due to their chemical inertness and low pressure. Therefore molten salts have been studied extensively for use in fusion blankets, as an intermediate heat transfer fluid for thermochemical hydrogen production in the Next Generation Nuclear Plant, as a primary coolant for the Advanced High Temperature Reactor, and as a solvent for fuel in the Molten Salt Reactor. This paper presents recent progress in the design and analysis of scaled thermal hydraulics experiments for molten salt systems. We have identified a category of light mineral oils that can be used for scaled experiments. By adjusting the length, velocity, average temperature, and temperature difference scales of the experiment, we show that it is possible to simultaneously match the Reynolds (Re), Froude (Fr), Prandtl (Pr) and Rayleigh (Ra) numbers in the scaled experiments. For example, the light mineral oil Penreco Drakesol 260 AT can be used to simulate the molten salt flibe (Li 2 BeF 4 ). At 110 deg. C, the oil Pr matches 600 deg. C flibe, and at 165 deg. C, the oil Pr matches 900 deg. C flibe. Re, Fr, and Ra can then be matched at a length scale of Ls/Lp = 0.40, velocity scale of U s /U p = 0.63, and temperature difference scale of ΔT s /ΔT p = 0.29. The Weber number is then matched within a factor of two, We s /We p = 0.7. Mechanical pumping power scales as Qp s /Qp p = 0.016, while heat inputs scale as Qh s /Qh p = 0.010, showing that power inputs to scaled experiments are very small compared to the prototype system. The scaled system has accelerated time, t s /t p = 0.64. When Re, Fr, Pr and Ra are matched, geometrically scaled
Calibration of a Numerical Model for Heat Transfer and Fluid Flow in an Extruder
DEFF Research Database (Denmark)
Hofstätter, Thomas; Pedersen, David Bue; Nielsen, Jakob Skov
2016-01-01
This paper discusses experiments performed in order to validate simulations on a fused deposition modelling (FDM) extruder. The nozzle has been simulated in terms of heat transfer and fluid flow. In order to calibrate and validate these simulations, experiments were performed giving a significant...... look into the physical behaviour of the nozzle, heating and cooling systems. Experiments on the model were performed at different sub-mm diameters of the extruder. Physical parameters of the model – especially temperature dependent parameters – were set into analytical relationships in order to receive...... dynamical parameters. This research sets the foundation for further research within melted extrusion based additive manufacturing. The heating process of the extruder will be described and a note on the material feeding will be given....
Internal Thermal Control System Hose Heat Transfer Fluid Thermal Expansion Evaluation Test Report
Wieland, P. O.; Hawk, H. D.
2001-01-01
During assembly of the International Space Station, the Internal Thermal Control Systems in adjacent modules are connected by jumper hoses referred to as integrated hose assemblies (IHAs). A test of an IHA has been performed at the Marshall Space Flight Center to determine whether the pressure in an IHA filled with heat transfer fluid would exceed the maximum design pressure when subjected to elevated temperatures (up to 60 C (140 F)) that may be experienced during storage or transportation. The results of the test show that the pressure in the IHA remains below 227 kPa (33 psia) (well below the 689 kPa (100 psia) maximum design pressure) even at a temperature of 71 C (160 F), with no indication of leakage or damage to the hose. Therefore, based on the results of this test, the IHA can safely be filled with coolant prior to launch. The test and results are documented in this Technical Memorandum.
Corrosion of Nickel-Based Alloys in Ultra-High Temperature Heat Transfer Fluid
Wang, Tao; Reddy, Ramana G.
2017-03-01
MgCl2-KCl binary system has been proposed to be used as high temperature reactor coolant. Due to its relatively low melting point, good heat capacity and excellent thermal stability, this system can also be used in high operation temperature concentrating solar power generation system as heat transfer fluid (HTF). The corrosion behaviors of nickel based alloys in MgCl2-KCl molten salt system at 1,000 °C were determined based on long-term isothermal dipping test. After 500 h exposure tests under strictly maintained high purity argon gas atmosphere, the weight loss and corrosion rate analysis were conducted. Among all the tested samples, Ni-201 demonstrated the lowest corrosion rate due to the excellent resistance of Ni to high temperature element dissolution. Detailed surface topography and corrosion mechanisms were also determined by using scanning electron microscopy (SEM) equipped with energy dispersive spectrometer (EDS).
Gas Turbine/Solar Parabolic Trough Hybrid Design Using Molten Salt Heat Transfer Fluid: Preprint
Energy Technology Data Exchange (ETDEWEB)
Turchi, C. S.; Ma, Z.
2011-08-01
Parabolic trough power plants can provide reliable power by incorporating either thermal energy storage (TES) or backup heat from fossil fuels. This paper describes a gas turbine / parabolic trough hybrid design that combines a solar contribution greater than 50% with gas heat rates that rival those of natural gas combined-cycle plants. Previous work illustrated benefits of integrating gas turbines with conventional oil heat-transfer-fluid (HTF) troughs running at 390?C. This work extends that analysis to examine the integration of gas turbines with salt-HTF troughs running at 450 degrees C and including TES. Using gas turbine waste heat to supplement the TES system provides greater operating flexibility while enhancing the efficiency of gas utilization. The analysis indicates that the hybrid plant design produces solar-derived electricity and gas-derived electricity at lower cost than either system operating alone.
MINET: transient analysis of fluid-flow and heat-transfer networks
International Nuclear Information System (INIS)
Van Tuyle, G.J.; Guppy, J.G.; Nepsee, T.C.
1983-01-01
MINET, a computer code developed for the steady-state and transient analysis of fluid-flow and heat-transfer networks, is described. The code is based on a momentum integral network method, which offers significant computational advantages in the analysis of large systems, such as the balance of plant in a power-generating facility. An application is discussed in which MINET is coupled to the Super System Code (SSC), an advanced generic code for the transient analysis of loop- or pool-type LMFBR systems. In this application, the ability of the Clinch River Breeder Reactor Plant to operate in a natural circulation mode following an assumed loss of all electric power, was assessed. Results from the MINET portion of the calculations are compared against those generated independently by the Clinch River Project, using the DEMO code
Directory of Open Access Journals (Sweden)
M. J. Smith
2018-04-01
Full Text Available Direct measurements of marine dimethylsulfide (DMS fluxes are sparse, particularly in the Southern Ocean. The Surface Ocean Aerosol Production (SOAP voyage in February–March 2012 examined the distribution and flux of DMS in a biologically active frontal system in the southwest Pacific Ocean. Three distinct phytoplankton blooms were studied with oceanic DMS concentrations as high as 25 nmol L−1. Measurements of DMS fluxes were made using two independent methods: the eddy covariance (EC technique using atmospheric pressure chemical ionization–mass spectrometry (API-CIMS and the gradient flux (GF technique from an autonomous catamaran platform. Catamaran flux measurements are relatively unaffected by airflow distortion and are made close to the water surface, where gas gradients are largest. Flux measurements were complemented by near-surface hydrographic measurements to elucidate physical factors influencing DMS emission. Individual DMS fluxes derived by EC showed significant scatter and, at times, consistent departures from the Coupled Ocean–Atmosphere Response Experiment gas transfer algorithm (COAREG. A direct comparison between the two flux methods was carried out to separate instrumental effects from environmental effects and showed good agreement with a regression slope of 0.96 (r2 = 0.89. A period of abnormal downward atmospheric heat flux enhanced near-surface ocean stratification and reduced turbulent exchange, during which GF and EC transfer velocities showed good agreement but modelled COAREG values were significantly higher. The transfer velocity derived from near-surface ocean turbulence measurements on a spar buoy compared well with the COAREG model in general but showed less variation. This first direct comparison between EC and GF fluxes of DMS provides confidence in compilation of flux estimates from both techniques, as well as in the stable periods when the observations are not well predicted by the COAREG
Smith, Murray J.; Walker, Carolyn F.; Bell, Thomas G.; Harvey, Mike J.; Saltzman, Eric S.; Law, Cliff S.
2018-04-01
Direct measurements of marine dimethylsulfide (DMS) fluxes are sparse, particularly in the Southern Ocean. The Surface Ocean Aerosol Production (SOAP) voyage in February-March 2012 examined the distribution and flux of DMS in a biologically active frontal system in the southwest Pacific Ocean. Three distinct phytoplankton blooms were studied with oceanic DMS concentrations as high as 25 nmol L-1. Measurements of DMS fluxes were made using two independent methods: the eddy covariance (EC) technique using atmospheric pressure chemical ionization-mass spectrometry (API-CIMS) and the gradient flux (GF) technique from an autonomous catamaran platform. Catamaran flux measurements are relatively unaffected by airflow distortion and are made close to the water surface, where gas gradients are largest. Flux measurements were complemented by near-surface hydrographic measurements to elucidate physical factors influencing DMS emission. Individual DMS fluxes derived by EC showed significant scatter and, at times, consistent departures from the Coupled Ocean-Atmosphere Response Experiment gas transfer algorithm (COAREG). A direct comparison between the two flux methods was carried out to separate instrumental effects from environmental effects and showed good agreement with a regression slope of 0.96 (r2 = 0.89). A period of abnormal downward atmospheric heat flux enhanced near-surface ocean stratification and reduced turbulent exchange, during which GF and EC transfer velocities showed good agreement but modelled COAREG values were significantly higher. The transfer velocity derived from near-surface ocean turbulence measurements on a spar buoy compared well with the COAREG model in general but showed less variation. This first direct comparison between EC and GF fluxes of DMS provides confidence in compilation of flux estimates from both techniques, as well as in the stable periods when the observations are not well predicted by the COAREG model.
Numerical investigation of fluid flow and heat transfer characteristics in a helically-finned tube
Energy Technology Data Exchange (ETDEWEB)
Kim, Sangkeun; Kim, Minsung; Park, Yong Gap; Min, June Kee; Ha, Man Yeong [Pusan National University, Busan (Korea, Republic of)
2017-07-15
In order to investigate the characteristics of flow and heat transfer rate in a Helically-finned tub (HFT), we used continuity, momentum and energy equations under a steady, three-dimensional and incompressible fluid flow assumptions. For the performance metrics, we considered the Darcy friction factor, Colburn j-factor, volume goodness factor and area goodness factor of the HFT. We could also evaluate the effect of geometry parameters on the results of local pressure coefficient, fluid vorticity and Nusselt number of the HFT. We carried out the CFD calculation for a range of laminar flow (Re = 100) and turbulent flow (Re = 2000 and 10000). In a laminar and turbulent flow regime, the friction factor increases with increasing the each geometric parameter. While the Colburn j-factor decreases as increasing these geometric parameters. Consequently, the thermal performance of HFT is poorer than that of single straight circular tube type because of having a small volume and area goodness factor as increasing the Reynolds numbers.
On axisymmetric flow and heat transfer of Cross fluid over a radially stretching sheet
Khan, Masood; Manzur, Mehwish; ur Rahman, Masood
In this article, an analysis is made on the axisymmetric flow and heat transfer of the Cross fluid over a radially stretching sheet. The present study provides with the boundary layer equations of the Cross fluid in cylindrical polar co-ordinates. The modelled momentum and energy equations are further simplified into non-linear ordinary differential equations by applying suitable similarity transformations. The system of equation is then numerically solved by the help of well-known shooting technique. The velocity and temperature profiles are plotted for some values of the governing parameters such as power-law index, local Weissenberg number and the Prandtl number. It is found that growing values of the power-law index elevated the momentum boundary layer structures while the thermal boundary layer thickness lessened correspondingly. Further, the numerical values of the local skin friction coefficient and the local Nusselt number are tabulated for several set of physical parameters. An outstanding agreement is observed by comparing the present results with the previously reported results in the literature as a special case.
Directory of Open Access Journals (Sweden)
E. Jafar-Salehi
2016-03-01
Full Text Available In this paper, a transient Finite Element (FE method has been employed to solve the transport equations to investigate the heat transfer and fluid flow and the effect of thermodiffusion on vertical solidification of a binary molten metal alloy, forming a rod. The binary system considered in this study is SnBi composed of 65% Sn and 35% Bi subjected to bottom cooling. It is found that the flow of molten metal at the boundary of the mushy region plays an important role in the shape and geometry of the zone. The presence of thermodiffusion shows considerable difference in the composition of the solidified rod, compared with the one without considering the effect of thermodiffusion. Thermodiffusion also causes a faster solidification and a more uniform concentration distribution. The results of this study may be extended to similar binary and multicomponent systems in which a temperature gradient exists and the Soret coefficient is large enough so as to affect the fluid flow and concentration of the species.
International Nuclear Information System (INIS)
Yu, S.-O.; Kim, M.; Kim, H.-J.
2002-01-01
A CANDU reactor has the unique features and the intrinsic safety related characteristics that distinguish it from other water-cooled thermal reactors. If there is the loss of coolant accident (LOCA) and a coincident failure of the emergency coolant injection (ECI) system, the heavy water moderator is continuously cooled, providing a heat sink for decay heat produced in the fuel. Therefore, it is one of major concerns to estimate the local subcooling of moderator inside the calandria vessel under postulated accident in CANDU safety analyses. The Canadian Nuclear Safety Commission (CNSC), a regulatory body in Canada, categorized the integrity of moderator as a generic safety issue and recommended that a series of experimental works be performed to verify the safety evaluation codes for individual simulated condition of nuclear power plant, comparing with the results of three-dimensional experimental data. In this study, three-dimensional analyses of fluid flow and heat transfer have been performed to assess thermal-hydraulic characteristics for moderator simulation conducted by SPEL (Sheridan Park Experimental Laboratory) experimental facility. The parametric study has also carried out to investigate the effect of major parameters such as flowrate, temperature, and heat load generated from the heaters on the temperature and flow distribution inside the moderator. Three flow patterns have been identified in the moderator with flowrate, heat generation, or both. As the transition of fluid flow is progressed, it is found that the dimensionless numbers (Ar) and the ratio of buoyancy to inertia forces are constant. (author)
Gourdon, Mathias; Karlsson, Erik; Innings, Fredrik; Jongsma, Alfred; Vamling, Lennart
2016-02-01
In many industrial applications, falling film evaporation is an attractive technique for solvent removal due to high heat transfer and low residence times. Examples are the powder production in the dairy industry and in kraft pulp production process to remove water from so called black liquor. Common for both applications is that the fluids exhibit high viscosities in industrial practice. In this paper, results from experimental studies on both black liquor and a dairy product are reported for Prandtl numbers up to 800. The results are compared with several existing correlation in literature, and the need for a modified correlation is recognized especially to cover higher Prandtl-numbers. The following correlation for the turbulent flow region with 3 < Pr < 800 was derived from the data: {Nu}t = 0.0085 \\cdot Re^{0.2} \\cdot {Pr^{0.65}} The correlation has been compared to literature data from one additional study on two other fluids (propylene glycol and cyclohexanol) with fairly high Prandtl-numbers, from 40 to 58 and from 45 to 155 respectively and the agreement was within ±40 %.
Knudsen, P.; Ganni, V.
2017-12-01
Concurrent pressure drop and cooling of a super-critical or sub-cooled liquid stream can have the same effect as adiabatic expansion even though there is no work extraction. A practical implementation is as straight forward as counter-flow heat exchange with a colder fluid. The concurrent pressure drop need not be continuous with respect to the heat exchange, but may occur in a step-wise manner, in between heat exchange. Two aspects of this effect of pressure drop with heat transfer are examined; a thermodynamic and a practical process equivalent isentropic expansion efficiency. This real fluid phenomenon is useful to understand in applications where work extraction is either not practical or has not been developed. A super-critical helium supply, often around 3 bar and 4.5 K, being ultimately used as a superfluid (usually around 1.8 to 2.1 K) to cool a Niobium superconducting radio frequency cavity or a superconducting magnet is one such particular application. This paper examines the thermodynamic nature of this phenomenon.
Flow and Heat Transfer of Bingham Plastic Fluid over a Rotating Disk with Variable Thickness
Liu, Chunyan; Pan, Mingyang; Zheng, Liancun; Ming, Chunying; Zhang, Xinxin
2016-11-01
This paper studies the steady flow and heat transfer of Bingham plastic fluid over a rotating disk of finite radius with variable thickness radially in boundary layer. The boundary layer flow is caused by the rotating disk when the extra stress is greater than the yield stress of the Bingham fluid. The analyses of the velocity and temperature field related to the variable thickness disk have not been investigated in current literatures. The governing equations are first simplified into ordinary differential equations owing to the generalized von Kármán transformation for seeking solutions easily. Then semi-similarity approximate analytical solutions are obtained by using the homotopy analysis method for different physical parameters. It is found that the Bingham number clearly influences the velocity field distribution, and the skin friction coefficient Cfr is nonlinear growth with respect to the shape parameter m. Additionally, the effects of the involved parameters (i.e. shape parameter m, variable thickness parameter β, Reynolds number Rev, and Prandtl number Pr) on velocity and temperature distribution are investigated and analyzed in detail.
Study of single- and two-phase fluid transfer between subchannels at Kumamoto University
International Nuclear Information System (INIS)
Sadatomi, Michio
2004-01-01
Firstly, the definitions of turbulent mixing, void drift and diversion cross-flow, which are three components of fluid transfer between subchannels, are given together with the relations of each component with equilibrium or non-equilibrium two-phase subchannel flows. Secondly, measuring techniques of the three components are briefly presented in turn together with typical measurement results. In turbulent mixing measurement, a tracer injection method has been adopted at Kumamoto University, while an isokinetic discharge method for both void drift an diversion cross-flow measurements. In the experiment of hydraulically non-equilibrium flow with both void drift and/or diversion cross-flow, experimental data on flow redistribution process have been obtained. The data include the axial variations of gas and liquid flow rates and void fraction in each subchannel and pressure difference between the subchannels. After analyzing these variations, some correlations on the void drift and the diversion cross-flow are obtained. Finally, a subchannel analysis code used at Kumamoto University is presented together with the results of its validation test against the experimental data on flow redistribution process mentioned above. The code is based on a two-phase two-fluid model, and is applicable to adiabatic two-phase flows under steady state condition. Basic equations in the code are the conservation equations of mass, axial momentum and lateral momentum, while the constitutive equations include the correlations of void diffusion coefficient, both interfacial and wall friction coefficients for the cross-flow, etc. (author)
International Nuclear Information System (INIS)
Betchen, L.J.; Straatman, A.G.
2005-01-01
A mathematical and numerical model for the treatment of conjugate fluid flow and heat transfer problems in domains containing pure fluid, porous, and pure solid regions has been developed. The model is general and physically reasoned, and allows for local thermal non-equilibrium in the porous region. The model is developed for implementation on a simple collocated finite volume grid. Of particular novelty are the conditions implemented at the interfaces between porous regions, and those containing a pure solid or pure fluid. The model is validated by simulation of a three-dimensional porous plug problem for which experimental results are available. (author)
International Nuclear Information System (INIS)
Singh, K.; Rawat, S. K.; Kumar, M.
2016-01-01
Heat and mass transfer behavior of unsteady flow of squeezing between two parallel plates in the sight of uniform magnetic field with slip velocity effect is investigated. The governing equations representing fluid flow have been transformed into nonlinear ordinary differential equations using similarity transformation. The equations thus obtained have been solved numerically using Runge-Kutta-Fehlberg method with shooting technique. Effects on the behavior of velocity, temperature, and concentration for various values of relevant parameters are illustrated graphically. The skin-friction coefficient and heat and mass transfer rate are also tabulated for various governing parameters. The results indicate that, for nano fluid flow, the rates of heat and mass transfer are inversely proportional to nanoparticle volume fraction and magnetic parameter. The rate of mass transfer increases with increasing values of Schmidt number and squeeze number.
Directory of Open Access Journals (Sweden)
L. Liu
2009-11-01
Full Text Available Smoke particle emissions from the combustion of biomass fuels typical for the western and southeastern United States were studied and compared under high humidity and ambient conditions in the laboratory. The fuels used were Montana ponderosa pine (Pinus ponderosa, southern California chamise (Adenostoma fasciculatum, and Florida saw palmetto (Serenoa repens. Information on the non-refractory chemical composition of biomass burning aerosol from each fuel was obtained with an aerosol mass spectrometer and through estimation of the black carbon concentration from light absorption measurements at 870 nm. Changes in the optical and physical particle properties under high humidity conditions were observed for hygroscopic smoke particles containing substantial inorganic mass fractions that were emitted from combustion of chamise and palmetto fuels. Light scattering cross sections increased under high humidity for these particles, consistent with the hygroscopic growth measured for 100 nm particles in HTDMA measurements. Photoacoustic measurements of aerosol light absorption coefficients revealed a 20% reduction with increasing relative humidity, contrary to the expectation of light absorption enhancement by the liquid coating taken up by hygroscopic particles. This reduction is hypothesized to arise from two mechanisms: (1 shielding of inner monomers after particle consolidation or collapse with water uptake; (2 the lower case contribution of mass transfer through evaporation and condensation at high relative humidity (RH to the usual heat transfer pathway for energy release by laser-heated particles in the photoacoustic measurement of aerosol light absorption. The mass transfer contribution is used to evaluate the fraction of aerosol surface covered with liquid water solution as a function of RH.
Lewis, K. A.; Arnott, W. P.; Moosmüller, H.; Chakrabarty, R. K.; Carrico, C. M.; Kreidenweis, S. M.; Day, D. E.; Malm, W. C.; Laskin, A.; Jimenez, J. L.; Ulbrich, I. M.; Huffman, J. A.; Onasch, T. B.; Trimborn, A.; Liu, L.; Mishchenko, M. I.
2009-11-01
Smoke particle emissions from the combustion of biomass fuels typical for the western and southeastern United States were studied and compared under high humidity and ambient conditions in the laboratory. The fuels used were Montana ponderosa pine (Pinus ponderosa), southern California chamise (Adenostoma fasciculatum), and Florida saw palmetto (Serenoa repens). Information on the non-refractory chemical composition of biomass burning aerosol from each fuel was obtained with an aerosol mass spectrometer and through estimation of the black carbon concentration from light absorption measurements at 870 nm. Changes in the optical and physical particle properties under high humidity conditions were observed for hygroscopic smoke particles containing substantial inorganic mass fractions that were emitted from combustion of chamise and palmetto fuels. Light scattering cross sections increased under high humidity for these particles, consistent with the hygroscopic growth measured for 100 nm particles in HTDMA measurements. Photoacoustic measurements of aerosol light absorption coefficients revealed a 20% reduction with increasing relative humidity, contrary to the expectation of light absorption enhancement by the liquid coating taken up by hygroscopic particles. This reduction is hypothesized to arise from two mechanisms: (1) shielding of inner monomers after particle consolidation or collapse with water uptake; (2) the lower case contribution of mass transfer through evaporation and condensation at high relative humidity (RH) to the usual heat transfer pathway for energy release by laser-heated particles in the photoacoustic measurement of aerosol light absorption. The mass transfer contribution is used to evaluate the fraction of aerosol surface covered with liquid water solution as a function of RH.
International Nuclear Information System (INIS)
Gurin, Péter; Varga, Szabolcs
2015-01-01
We extend the transfer matrix method of one-dimensional hard core fluids placed between confining walls for that case where the particles can pass each other and at most two layers can form. We derive an eigenvalue equation for a quasi-one-dimensional system of hard squares confined between two parallel walls, where the pore width is between σ and 3σ (σ is the side length of the square). The exact equation of state and the nearest neighbor distribution functions show three different structures: a fluid phase with one layer, a fluid phase with two layers, and a solid-like structure where the fluid layers are strongly correlated. The structural transition between differently ordered fluids develops continuously with increasing density, i.e., no thermodynamic phase transition occurs. The high density structure of the system consists of clusters with two layers which are broken with particles staying in the middle of the pore
International Nuclear Information System (INIS)
Beckermann, C.; Ramadhyani, S.; Viskanta, R.
1986-01-01
A numerical and experimental study is performed to analyze the steady-state natural convection fluid flow and heat transfer in a vertical rectangular enclosure that is partially filled with a vertical layer of a fluid-saturated porous medium. The flow in the porous layer is modeled utilizing the Brinkman-Forchheimer-extended Darcy equations. The numerical model is verified by conducting a number of experiments with spherical glass beads as the porous medium and water and glycerin as the fluids in rectangular test-cells. The agreement between the flow visualization results and temperature measurements and the numerical model is, in general, good. It is found that the amount of fluid penetrating from the fluid region into the porous layer depends strongly on the Darcy (Da) and Rayleigh (Ra) numbers. For a relatively low product of Ra x Da, the flow takes place primarily in the fluid layer, and heat transfer in the porous layer is by conduction only. On the other hand, fluid penetrating into a relatively highly permeable porous layer has a significant impact on the natural convection flow patterns in the entire enclosure
Computational Fluid Dynamics Uncertainty Analysis Applied to Heat Transfer over a Flat Plate
Groves, Curtis Edward; Ilie, Marcel; Schallhorn, Paul A.
2013-01-01
There have been few discussions on using Computational Fluid Dynamics (CFD) without experimental validation. Pairing experimental data, uncertainty analysis, and analytical predictions provides a comprehensive approach to verification and is the current state of the art. With pressed budgets, collecting experimental data is rare or non-existent. This paper investigates and proposes a method to perform CFD uncertainty analysis only from computational data. The method uses current CFD uncertainty techniques coupled with the Student-T distribution to predict the heat transfer coefficient over a at plate. The inputs to the CFD model are varied from a specified tolerance or bias error and the difference in the results are used to estimate the uncertainty. The variation in each input is ranked from least to greatest to determine the order of importance. The results are compared to heat transfer correlations and conclusions drawn about the feasibility of using CFD without experimental data. The results provide a tactic to analytically estimate the uncertainty in a CFD model when experimental data is unavailable
Banerjee, Supratik; Kritsuk, Alexei G.
2018-02-01
Three-dimensional, compressible, magnetohydrodynamic turbulence of an isothermal, self-gravitating fluid is analyzed using two-point statistics in the asymptotic limit of large Reynolds numbers (both kinetic and magnetic). Following an alternative formulation proposed by Banerjee and Galtier [Phys. Rev. E 93, 033120 (2016), 10.1103/PhysRevE.93.033120; J. Phys. A: Math. Theor. 50, 015501 (2017), 10.1088/1751-8113/50/1/015501], an exact relation has been derived for the total energy transfer. This approach results in a simpler relation expressed entirely in terms of mixed second-order structure functions. The kinetic, thermodynamic, magnetic, and gravitational contributions to the energy transfer rate can be easily separated in the present form. By construction, the new formalism includes such additional effects as global rotation, the Hall term in the induction equation, etc. The analysis shows that solid-body rotation cannot alter the energy flux rate of compressible turbulence. However, the contribution of a uniform background magnetic field to the flux is shown to be nontrivial unlike in the incompressible case. Finally, the compressible, turbulent energy flux rate does not vanish completely due to simple alignments, which leads to a zero turbulent energy flux rate in the incompressible case.
Sedov, L
1968-01-01
At its meeting on April 23, 1965 in Paris the Bureau of IUTAM decided to have a Symposium on the Irreversible Aspects of Continaum Mechanics held in June 1966 in Vienna. In addition, a Symposium on the Transfer of Physical Characteristics in Moving Fluids which, orig inally, had been scheduled to take place in Stockholm was rescheduled to be held in Vienna immediately following the Symposium on the Irre versible Aspects of Continuum Mechanics. It was felt that the subjects of the two symposia were so closely related that participants should be given an opportunity to attend both. Both decisions were unanimously approved by the members of the General Assembly of IUTAM. Prof. H. PARKUS, Vienna, was appointed Chairman of the Symposium on the Irreversible Aspects, and Prof. L. I. SEDOV, Moscow, was appointed Chairman of the Symposium on the Transfer of Physical Characteristics, with Prof. P ARKUS being re sponsible for the local organization of both symposia. In accordance with the policy set forth by IUTAM...
Steam generator design for solar towers using solar salt as heat transfer fluid
González-Gómez, Pedro Ángel; Petrakopoulou, Fontina; Briongos, Javier Villa; Santana, Domingo
2017-06-01
Since the operation of a concentrating solar power plant depends on the intermittent character of solar energy, the steam generator is subject to daily start-ups, stops and load variations. Faster start-up and load changes increase the plant flexibility and the daily energy production. However, it involves high thermal stresses on thick-walled components. Continuous operational conditions may eventually lead to a material failure. For these reasons, it is important to evaluate the transient behavior of the proposed designs in order to assure the reliability. The aim of this work is to analyze different steam generator designs for solar power tower plants using molten salt as heat transfer fluid. A conceptual steam generator design is proposed and associated heat transfer areas and steam drum size are calculated. Then, dynamic models for the main parts of the steam generator are developed to represent its transient performance. A temperature change rate that ensures safe hot start-up conditions is studied for the molten salt. The thermal stress evolution on the steam drum is calculated as key component of the steam generator.
Fluid flow and heat transfer of carbon nanotubes along a flat plate with Navier slip boundary
Khan, W. A.; Khan, Z. H.; Rahi, M.
2014-06-01
Homogeneous flow model is used to study the flow and heat transfer of carbon nanotubes (CNTs) along a flat plate subjected to Navier slip and uniform heat flux boundary conditions. This is the first paper on the flow and heat transfer of CNTs along a flat plate. Two types of CNTs, namely, single- and multi-wall CNTs are used with water, kerosene or engine oil as base fluids. The empirical correlations are used for the thermophysical properties of CNTs in terms of the solid volume fraction of CNTs. For the effective thermal conductivity of CNTs, Xue (Phys B Condens Matter 368:302-307, 2005) model has been used and the results are compared with the existing theoretical models. The governing partial differential equations and boundary conditions are converted into a set of nonlinear ordinary differential equations using suitable similarity transformations. These equations are solved numerically using a very efficient finite difference method with shooting scheme. The effects of the governing parameters on the dimensionless velocity, temperature, skin friction, and Nusselt numbers are investigated and presented in graphical and tabular forms. The numerical results of skin friction and Nusselt numbers are compared with the available data for special cases and are found in good agreement.
Mass transfer between a fluid and an immersed object in liquid–solid packed and fluidized beds
Directory of Open Access Journals (Sweden)
NEVENKA BOSKOVIC-VRAGOLOVIC
2005-11-01
Full Text Available Themass transfer coefficient between fluid and an immersed sphere in liquid packed and fluidized beds of inert spherical particles have been studied experimentally using a column 40 mm in diameter. The mass transfer data were obtained by studying the transfer of benzoic acid from the immersed sphere to flowing water using the dissolution method. In all runs, the mass transfer rates were determined in the presence of inert glass particles 0.50-2.98 mm in diameter. The influence of different parameters, such as: liquid velocity, particles size and bed voidage, on the mass transfer in packed and fluidized beds is presented. The obtained experimental data for mass transfer in the packed and particulate fluidized bed were correlated by a single correlation, thus confirming the similarity between the two systems.
MASS TRANSFER COEFFICIENTS FOR A NON-NEWTONIAN FLUID AND WATER WITH AND WITHOUT ANTI-FOAM AGENTS
Energy Technology Data Exchange (ETDEWEB)
Leishear, R.
2009-09-09
Mass transfer rates were measured in a large scale system, which consisted of an 8.4 meter tall by 0.76 meter diameter column containing one of three fluids: water with an anti-foam agent, water without an anti-foam agent, and AZ101 simulant, which simulated a non-Newtonian nuclear waste. The testing contributed to the evaluation of large scale mass transfer of hydrogen in nuclear waste tanks. Due to its radioactivity, the waste was chemically simulated, and due to flammability concerns oxygen was used in lieu of hydrogen. Different liquids were used to better understand the mass transfer processes, where each of the fluids was saturated with oxygen, and the oxygen was then removed from solution as air bubbled up, or sparged, through the solution from the bottom of the column. Air sparging was supplied by a single tube which was co-axial to the column, the decrease in oxygen concentration was recorded, and oxygen measurements were then used to determine the mass transfer coefficients to describe the rate of oxygen transfer from solution. Superficial, average, sparging velocities of 2, 5, and 10 mm/second were applied to each of the liquids at three different column fill levels, and mass transfer coefficient test results are presented here for combinations of superficial velocities and fluid levels.
MASS TRANSFER COEFFICIENTS FOR A NON-NEWTONIAN FLUID AND WATER WITH AND WITHOUT ANTI-FOAM AGENTS
International Nuclear Information System (INIS)
Leishear, R.
2009-01-01
Mass transfer rates were measured in a large scale system, which consisted of an 8.4 meter tall by 0.76 meter diameter column containing one of three fluids: water with an anti-foam agent, water without an anti-foam agent, and AZ101 simulant, which simulated a non-Newtonian nuclear waste. The testing contributed to the evaluation of large scale mass transfer of hydrogen in nuclear waste tanks. Due to its radioactivity, the waste was chemically simulated, and due to flammability concerns oxygen was used in lieu of hydrogen. Different liquids were used to better understand the mass transfer processes, where each of the fluids was saturated with oxygen, and the oxygen was then removed from solution as air bubbled up, or sparged, through the solution from the bottom of the column. Air sparging was supplied by a single tube which was co-axial to the column, the decrease in oxygen concentration was recorded, and oxygen measurements were then used to determine the mass transfer coefficients to describe the rate of oxygen transfer from solution. Superficial, average, sparging velocities of 2, 5, and 10 mm/second were applied to each of the liquids at three different column fill levels, and mass transfer coefficient test results are presented here for combinations of superficial velocities and fluid levels
Yan, Yan
2015-01-01
We study a new optimization scheme that generates smooth and robust solutions for Dirichlet velocity boundary control (DVBC) of conjugate heat transfer (CHT) processes. The solutions to the DVBC of the incompressible Navier-Stokes equations are typically nonsmooth, due to the regularity degradation of the boundary stress in the adjoint Navier-Stokes equations. This nonsmoothness is inherited by the solutions to the DVBC of CHT processes, since the CHT process couples the Navier-Stokes equations of fluid motion with the convection-diffusion equations of fluid-solid thermal interaction. Our objective in the CHT boundary control problem is to select optimally the fluid inflow profile that minimizes an objective function that involves the sum of the mismatch between the temperature distribution in the fluid system and a prescribed temperature profile and the cost of the control.Our strategy to resolve the nonsmoothness of the boundary control solution is based on two features, namely, the objective function with a regularization term on the gradient of the control profile on both the continuous and the discrete levels, and the optimization scheme with either explicit or implicit smoothing effects, such as the smoothed Steepest Descent and the Limited-memory Broyden-Fletcher-Goldfarb-Shanno (L-BFGS) methods. Our strategy to achieve the robustness of the solution process is based on combining the smoothed optimization scheme with the numerical continuation technique on the regularization parameters in the objective function. In the section of numerical studies, we present two suites of experiments. In the first one, we demonstrate the feasibility and effectiveness of our numerical schemes in recovering the boundary control profile of the standard case of a Poiseuille flow. In the second one, we illustrate the robustness of our optimization schemes via solving more challenging DVBC problems for both the channel flow and the flow past a square cylinder, which use initial
International Nuclear Information System (INIS)
Heng, Kevin; Kitzmann, Daniel
2017-01-01
We present a novel generalization of the two-stream method of radiative transfer, which allows for the accurate treatment of radiative transfer in the presence of strong infrared scattering by aerosols. We prove that this generalization involves only a simple modification of the coupling coefficients and transmission functions in the hemispheric two-stream method. This modification originates from allowing the ratio of the first Eddington coefficients to depart from unity. At the heart of the method is the fact that this ratio may be computed once and for all over the entire range of values of the single-scattering albedo and scattering asymmetry factor. We benchmark our improved two-stream method by calculating the fraction of flux reflected by a single atmospheric layer (the reflectivity) and comparing these calculations to those performed using a 32-stream discrete-ordinates method. We further compare our improved two-stream method to the two-stream source function (16 streams) and delta-Eddington methods, demonstrating that it is often more accurate at the order-of-magnitude level. Finally, we illustrate its accuracy using a toy model of the early Martian atmosphere hosting a cloud layer composed of carbon dioxide ice particles. The simplicity of implementation and accuracy of our improved two-stream method renders it suitable for implementation in three-dimensional general circulation models. In other words, our improved two-stream method has the ease of implementation of a standard two-stream method, but the accuracy of a 32-stream method.
Energy Technology Data Exchange (ETDEWEB)
Heng, Kevin; Kitzmann, Daniel, E-mail: kevin.heng@csh.unibe.ch, E-mail: daniel.kitzmann@csh.unibe.ch [University of Bern, Center for Space and Habitability, Gesellschaftsstrasse 6, CH-3012, Bern (Switzerland)
2017-10-01
We present a novel generalization of the two-stream method of radiative transfer, which allows for the accurate treatment of radiative transfer in the presence of strong infrared scattering by aerosols. We prove that this generalization involves only a simple modification of the coupling coefficients and transmission functions in the hemispheric two-stream method. This modification originates from allowing the ratio of the first Eddington coefficients to depart from unity. At the heart of the method is the fact that this ratio may be computed once and for all over the entire range of values of the single-scattering albedo and scattering asymmetry factor. We benchmark our improved two-stream method by calculating the fraction of flux reflected by a single atmospheric layer (the reflectivity) and comparing these calculations to those performed using a 32-stream discrete-ordinates method. We further compare our improved two-stream method to the two-stream source function (16 streams) and delta-Eddington methods, demonstrating that it is often more accurate at the order-of-magnitude level. Finally, we illustrate its accuracy using a toy model of the early Martian atmosphere hosting a cloud layer composed of carbon dioxide ice particles. The simplicity of implementation and accuracy of our improved two-stream method renders it suitable for implementation in three-dimensional general circulation models. In other words, our improved two-stream method has the ease of implementation of a standard two-stream method, but the accuracy of a 32-stream method.
Burgher, J. K.; Finkel, D.; Adesope, O. O.; Van Wie, B. J.
2015-01-01
This study used a within-subjects experimental design to compare the effects of learning with lecture and hands-on desktop learning modules (DLMs) in a fluid mechanics and heat transfer class. The hands-on DLM implementation included the use of worksheets and one of two heat exchangers: an evaporative cooling device and a shell and tube heat…
International Nuclear Information System (INIS)
Menon, G.J.; Sielwa, J.T.
1977-01-01
The study is presented of the effects of heat transfer and the variations of the properties of the fluids in turbulent flow in tube. One model for the turbulent Eddy viscosity and termal Eddy diffusivity developed by CEBECI; NA and HABIB was utilized. The theoretical results agree well with experimental results [pt
An artificial Radial Basis Function (RBF) neural network model was developed for the prediction of mass transfer of the phospholipids from canola meal in supercritical CO2 fluid. The RBF kind of artificial neural networks (ANN) with orthogonal least squares (OLS) learning algorithm were used for mod...
Directory of Open Access Journals (Sweden)
Keke Xu
2015-12-01
Full Text Available The regenerative cooling technology is a promising approach for effective thermal protection of propulsion and power-generation systems. A mathematical model has been used to examine fluid flows and heat transfer of the aviation kerosene RP-3 with endothermic fuel pyrolysis at a supercritical pressure of 5 MPa. A pyrolytic reaction mechanism, which consists of 18 species and 24 elementary reactions, is incorporated to account for fuel pyrolysis. Detailed model validations are conducted against a series of experimental data, including fluid temperature, fuel conversion rate, various product yields, and chemical heat sink, fully verifying the accuracy and reliability of the model. Effects of fuel pyrolysis and inlet flow velocity on flow dynamics and heat transfer characteristics of RP-3 are investigated. Results reveal that the endothermic fuel pyrolysis significantly improves the heat transfer process in the high fluid temperature region. During the supercritical-pressure heat transfer process, the flow velocity significantly increases, caused by the drastic variations of thermophysical properties. Under all the tested conditions, the Nusselt number initially increases, consistent with the increased flow velocity, and then slightly decreases in the high fluid temperature region, mainly owing to the decreased heat absorption rate from the endothermic pyrolytic chemical reactions.
The influence of pH on gas-liquid mass transfer in non-Newtonian fluids
Li Shaobai; Fan Jungeng; Xu Shuang; Li Rundong; Luan Jingde
2017-01-01
In this study, the effect of pH on the mass transfer of oxygen bubble swarms in non-Newtonian fluids was experimentally studied. The volumetric liquid side mass transfer coefficient (kLa), liquid side mass transfer coefficient (kL), and specific interfacial area (a) were investigated. The pH was regulated by the addition of hydrochloric acid and sodium hydroxide (NaOH). It was found that the kLa increased with the gas flow rate increasing and decreased with the apparent viscosity of the liqui...
MINET, Transient Fluid Flow and Heat Transfer Power Plant Network Analysis
International Nuclear Information System (INIS)
Van Tuyle, G.J.
2002-01-01
1 - Description of program or function: MINET (Momentum Integral Network) was developed for the transient analysis of intricate fluid flow and heat transfer networks, such as those found in the balance of plant in power generating facilities. It can be utilized as a stand-alone program or interfaced to another computer program for concurrent analysis. Through such coupling, a computer code limited by either the lack of required component models or large computational needs can be extended to more fully represent the thermal hydraulic system thereby reducing the need for estimating essential transient boundary conditions. The MINET representation of a system is one or more networks of volumes, segments, and boundaries linked together via heat exchangers only, i.e., heat can transfer between networks, but fluids cannot. Volumes are used to represent tanks or other volume components, as well as locations in the system where significant flow divisions or combinations occur. Segments are composed of one or more pipes, pumps, heat exchangers, turbines, and/or valves each represented by one or more nodes. Boundaries are simply points where the network interfaces with the user or another computer code. Several fluids can be simulated, including water, sodium, NaK, and air. 2 - Method of solution: MINET is based on a momentum integral network method. Calculations are performed at two levels, the network level (volumes) and the segment level. Equations conserving mass and energy are used to calculate pressure and enthalpy within volumes. An integral momentum equation is used to calculate the segment average flow rate. In-segment distributions of mass flow rate and enthalpy are calculated using local equations of mass and energy. The segment pressure is taken to be the linear average of the pressure at both ends. This method uses a two-plus equation representation of the thermal hydraulic behavior of a system of heat exchangers, pumps, pipes, valves, tanks, etc. With the
International Nuclear Information System (INIS)
Tobias, M.L.
1979-01-01
The anticipated behavior of uranium oxide vapor bubbles produced by the capacitor discharge vaporization (CDV) method in the Fuel Aerosol Simulant Test (FAST) Facility is discussed on the basis of relatively simple physical models. Results of calculations for the rate of bubble rise and for heat and mass transfer rates are presented. Parametric studies indicate that future analysis efforts should emphasize the diffusion condensation process and the loss of heat from the bubble by radiation. Transfer of heat in the surrounding sodium is rapid enough that simplified models should be adequate. No important effects were noted in connection with bubble depth, initial quantity of UO 2 , or initial superheat
International Nuclear Information System (INIS)
Chamkha, Ali J.; Ismael, Muneer A.
2013-01-01
The conjugate natural convection-conduction heat transfer in a square domain composed of nano-fluids filled porous cavity heated by a triangular solid wall is studied under steady-state conditions. The vertical and horizontal walls of the triangular solid wall are kept isothermal and at the same hot temperature Th. The other boundaries surrounding the porous cavity are kept adiabatic except the right vertical wall where it is kept isothermally at the lower temperature T c . Equations governing the heat transfer in the triangular wall and heat and nano-fluid flow, based on the Darcy model, in the nano-fluid-saturated porous medium together with the derived relation of the interface temperature are solved numerically using the over-successive relaxation finite-difference method. A temperature independent nano-fluids properties model is adopted. Three nano-particle types dispersed in one base fluid (water) are investigated. The investigated parameters are the nano-particles volume fraction φ (0-0.2), Rayleigh number Ra (10-1000), solid wall to base-fluid saturated porous medium thermal conductivity ratio K ro (0.44, 1, 23.8), and the triangular wall thickness D (0.1-1). The results are presented in the conventional form; contours of streamlines and isotherms and the local and average Nusselt numbers. At a very low Rayleigh number Ra = 10, a significant enhancement in heat transfer within the porous cavity with φ is observed. Otherwise, the heat transfer may be enhanced or deteriorated with φ depending on the wall thickness D and the Rayleigh number Ra. At high Rayleigh numbers and low conductivity ratios, critical values of D, regardless of 4, are observed and accounted. (authors)
International Nuclear Information System (INIS)
Pavlidis, D.; Lathouwers, D.
2011-01-01
A computational fluid dynamics model with anisotropic mesh adaptivity is used to investigate coolant flow and heat transfer in pebble bed reactors. A novel method for implicitly incorporating solid boundaries based on multi-fluid flow modelling is adopted. The resulting model is able to resolve and simulate flow and heat transfer in randomly packed beds, regardless of the actual geometry, starting off with arbitrarily coarse meshes. The model is initially evaluated using an orderly stacked square channel of channel-height-to-particle diameter ratio of unity for a range of Reynolds numbers. The model is then applied to the face-centred cubical geometry. Coolant flow and heat transfer patterns are investigated. (author)
Radiative heat transfer in a heat generating and turbulently convecting fluid layer
International Nuclear Information System (INIS)
Cheung, F.B.; Chan, S.H.; Chawla, T.C.; Cho, D.H.
1980-01-01
The coupled problem of radiative transport and turbulent natural convection in a volumetrically heated, horizontal gray fluid medium, bounded from above by a rigid, isothermal wall and below by a rigid, adiabatic wall, is investigated analytically. An approximate method based upon the boundary layer approach is employed to obtain the dependence of heat transfer at the upper wall on the principal parameters of the problem, which, for moderate Prandtl number, are the Rayleigh number, Ra, the optical thickness, KL, and the conduction-radiation coupling parameter, N. Also obtained in this study is the behaviour of the thermal boundary layer at the upper wall. At large kL, the contribution of thermal radiation to heat transfer in the layer is found to be negligible for N > 10, moderate for N approximately 1, and overwhelming for N < 0.1. However, at small kL, thermal radiation is found to be important only for N < 0.01. While a higher level of turbulence results in a thinner boundary layer, a larger effect of radiation is found to result in a thicker one. Thus, in the presence of strong thermal radiation, a much larger value of Ra is required for the boundary layer approach to remain valid. Under severe radiation conditions, no boundary layer flow regime is found to exist even at very high Rayleigh numbers. Accordingly, the ranges of applicability of the present results are determined and the approximate method justified. In particular, the validity of the present analysis is tested in three limiting cases, ie those of kL → infinity, N → infinity, and Ra → infinity, and is further confirmed by comparison with the numerical solution (author)
Energy Technology Data Exchange (ETDEWEB)
Luna, N. [Secretaria de Energia, Direccion de Operacion Petrolera, Mexico DF (Mexico); Mendez, F. [UNAM, Facultad de Ingenieria, Mexico DF (Mexico); Bautista, O. [ITESM, Division de Ingenieria y Arquitectura, Mexico DF (Mexico)
2005-05-01
We treat numerically in this paper, the transient analysis of a conjugated heat transfer process in the thermal entrance region of a circular tube with a fully developed laminar power-law fluid flow. We apply the quasi-steady approximation for the power-law fluid, identifying the suitable time scales of the process. Thus, the energy equation in the fluids is solved analytically using the well-known integral boundary layer technique. This solution is coupled to the transient energy equation for the solid where the transverse and longitudinal heat conduction effects are taken into account. The numerical results for the temporal evolution of the average temperature of the tube wall, {theta}{sub av,} is plotted for different nondimensional parameters such as conduction parameter, {alpha}, the aspect ratios of the tube, {epsilon} and {epsilon}{sub 0} and the index of power-law fluid, n. (orig.)
Steady-state pool boiling heat transfer on nicr wire surface submerged in Al2O3 nano-fluids
International Nuclear Information System (INIS)
Dereje Shiferaw; Hyun Sun Park; Bal Raj Sehgal
2005-01-01
Full text of publication follows: nano-fluids, or conventional liquids, e.g., water, with small concentration of nano-particles uniformly suspended, have attracted attention as a new heat transport medium with enhanced thermo-physical properties. Up to the present, only exploratory experiments on nano-fluids have been reported. Das et al (Int. J. Heat Mass Transfer 43, pp 3701-3707, 2003) conducted boiling experiments with water containing 38 nm Al 2 O 3 nano-particles. They observed deterioration in the nucleate boiling heat transfer due to the deposition of nano-particles. Boiling experiments conducted by Vassallo et al (Int. J. Heat Mass Transfer 47, pp 407-411, 2004) using silica nano-fluid using 0.4 mm diameter NiCr wire showed three times higher critical heat flux (CHF) and the wire traversed the film boiling region before it failed. Another independent experiment performed on 1 cm 2 square plate with a very low concentration of nano-particles ranging from 0.01 to 0.05 g/liter and at under pressure (2.89 psia), nano-fluids resulted in drastic 2∼3 times enhancement of the CHF (You and Kim, Appl. Phys. Lett. 83. No 16, 2003). However in all the aforementioned studies no appropriate explanation of the CHF enhancement has been advanced. The measured 2-3 times higher critical heat flux for very dilute nano-fluids may have high significance if such nano-fluids could be employed in heat transport systems. Recently, we investigated the effect of nano-particles on film boiling, which governs heat transfer during accident conditions in a reactor plant, e.g., in coolability of a degraded core, or a particulate debris bed or a core melt, and in steam explosions. Our previous experiments performed on film boiling in nano-fluids having larger concentrations of 5, 10, and 20 g/liter than those in You's experiments showed that the nano-fluids lower the film boiling temperature, decrease the film boiling heat transfer and provide a much thicker and more stable film than
Energy Technology Data Exchange (ETDEWEB)
Worth Longest, P. [Virginia Commonwealth University, Richmond, VA (United States). Dept. of Mechanical Engineering; Kleinstreuer, C. [North Carolina State University, Raleigh, NC (United States). Dept. of Mechanical and Aerospace Engineering
2004-10-01
Individual and interacting effects of uniform flow, plane shear, and near-wall proximity on spherical droplet heat and mass transfer have been assessed for low Reynolds number conditions beyond the creeping flow regime. Validated resolved volume simulations were used to compute heat and mass transfer surface gradients of two-dimensional axisymmetric droplets and three-dimensional spherical droplets near planar wall boundaries for conditions consistent with inhalable aerosols (5 {<=} d {<=} 300 {mu}m) in the upper respiratory tract. Results indicate that planar shear significantly impacts droplet heat and mass transfer for shear-based Reynolds numbers greater than 1, which occur for near-wall respiratory aerosols with diameters in excess of 50 {mu}m. Wall proximity is shown to significantly enhance heat and mass transfer due to conduction and diffusion at separation distances less than five particle diameters and for small Reynolds numbers. For the Reynolds number conditions of interest, significant non-linear effects arise due to the concurrent interaction of uniform flow and shear such that linear superposition of Sherwood or Nusselt number terms is not allowable. Based on the validated numeric simulations, multivariable Sherwood and Nusselt number correlations are provided to account for individual flow characteristics and concurrent non-linear interactions of uniform flow, planar shear, and near-wall proximity. These heat and mass transfer correlations can be applied to effectively compute condensation and evaporation rates of potentially toxic or therapeutic aerosols in the upper respiratory tract, where non-uniform flow and wall proximity are expected to significantly affect droplet transport, deposition, and vapor formation. (author)
International Nuclear Information System (INIS)
Shah, Nehad Ali; Khan, Ilyas
2016-01-01
This paper presents a Caputo-Fabrizio fractional derivatives approach to the thermal analysis of a second grade fluid over an infinite oscillating vertical flat plate. Together with an oscillating boundary motion, the heat transfer is caused by the buoyancy force induced by temperature differences between the plate and the fluid. Closed form solutions of the fluid velocity and temperature are obtained by means of the Laplace transform. The solutions of ordinary second grade and Newtonian fluids corresponding to time derivatives of integer and fractional orders are obtained as particular cases of the present solutions. Numerical computations and graphical illustrations are used in order to study the effects of the Caputo-Fabrizio time-fractional parameter α, the material parameter α 2 , and the Prandtl and Grashof numbers on the velocity field. A comparison for time derivative of integer order versus fractional order is shown graphically for both Newtonian and second grade fluids. It is found that fractional fluids (second grade and Newtonian) have highest velocities. This shows that the fractional parameter enhances the fluid flow. (orig.)
Heat transfer and fluid flow research relevant to India's nuclear power program
International Nuclear Information System (INIS)
Mehta, S.K.; Venkatraj, V.
1988-01-01
The Indian Nuclear Power Programme envisages three important stages viz., installation of thermal reactors, fast reactors and utilization of Thorium. By the year 2000 AD, it is proposed to have an installed total capacity of nuclear power of about 10,000 MWe. Starting from the present installed capacity of 1330 MWe, the additional contribution will be mainly made by thermal power reactors of the Pressurized Heavy Water type (PHWR). Apart from the reactors presently under construction about 12 numbers of 235 MWe units are planned to be constructed, which will be based on the standardized design of the reactors at Narora Atomic Power Project (NAPP). In addition, 10 units of 500 MWe capacity each, the design for which is currently under progress, will also be installed. The design, construction and operating agency is the Nuclear Power Board (NPB), while the Bhabha Atomic Research Centre (BARC) is responsible for the research and development work required. In addition to the programme on thermal power reactors, a thermal research reactor (DHRUVA) of 100 MWth capacity has been designed, constructed and has been commissioned. Some of the important heat transfer and fluid flow research problems relevant to the Indian nuclear power and research reactors are discussed in this paper
Investigation of heat transfer and fluid flow in activating TIG welding by numerical modeling
International Nuclear Information System (INIS)
Wang, Xinxin; Huang, Jiankang; Huang, Yong; Fan, Ding; Guo, Yanning
2017-01-01
Highlights: • The heat input to the anode and subsequent thermal efficiency is almost equal for TIG and A-TIG welding. • Dominant effect heat convection and reversion of molten metal flow in weld pool causes significant increase in weld penetration. - Abstract: Heat transfer and fluid flow of arc plasma and weld pool in tungsten inert gas (TIG) welding and activated flux tungsten inert gas (A-TIG) welding of SUS 304 stainless steel are investigated comparatively though a 3D unified model. The model differs from the previous ones in that it considers the arc length more realistic for welding production. Tungsten electrode, anode (work piece) and arc plasma are all included. The effects of buoyance, plasma drag force, Lorentz force and Marangoni force on the weld pool flow are taken into account. By solving the conservation equations of mass, momentum, energy as well as Maxwell equations, the distributions of temperature and velocity of arc plasma and weld pool are obtained for TIG and A-TIG welding. The heat flux, current density and shear stress at the weld pool are presented. Dimensionless numbers are employed to compare the relative importance of the driven forces and that of convection and conduction in heat transfer of the weld pool. It is demonstrated that there is no significant difference in the heat flux at the weld pool, and total heat input to the anode and thermal efficiency is almost equal for TIG and A-TIG welding. The current density and the heat flux at the weld pool are more concentrated in more realistic welding condition. As a result, both of the temperature of the weld pool for TIG welding and A-TIG welding increases, while the latter is more significant. Marangoni force ranges from zero to 100 Pa and dominant the weld pool flow. Compared with the conventional TIG welding, the reversion of the Marangoni force results in inward flow and thus causes inward heat convection in weld pool of A-TIG welding. Heat convection was the main mechanism of
International Nuclear Information System (INIS)
Liu, Qibin; Bai, Zhang; Sun, Jie; Yan, Yuejun; Gao, Zhichao; Jin, Hongguang
2016-01-01
Highlights: • A new concentrating solar power system with a dual-solar field is proposed. • The superheated steam with more than 773 K is produced. • The performances of the proposed system are demonstrated. • The economic feasibility of the proposed system is validated. - Abstract: In this paper, a new parabolic trough solar power system that incorporates a dual-solar field with oil and molten salt as heat transfer fluids (HTFs) is proposed to effectively utilize the solar energy. The oil is chosen as a HTF in the low temperature solar field to heat the feeding water, and the high temperature solar field uses molten salt to superheat the steam that the temperature is higher than 773 K. The produced superheated steam enters a steam turbine to generate power. Energy analysis and exergy analysis of the system are implemented to evaluate the feasibility of the proposed system. Under considerations of variations of solar irradiation, the on-design and off-design thermodynamic performances of the system and the characteristics are investigated. The annual average solar-to-electric efficiency and the nominal efficiency under the given condition for the proposed solar thermal power generation system reach to 15.86% and 22.80%, which are higher than the reference system with a single HTF. The exergy losses within the solar heat transfer process of the proposed system are reduced by 7.8% and 45.23% compared with the solar power thermal systems using oil and molten salt as HTFs, respectively. The integrated approach with oil and molten salt as HTFs can make full use of the different physical properties of the HTFs, and optimize the heat transfer process between the HTFs and the water/steam. The exergy loss in the water evaporation and superheated process are reduced, the system efficiency and the economic performance are improved. The research findings provide a new approach for the improvement of the performances of solar thermal power plants.
C. A. Randles; V. Ramaswamy
2010-01-01
Tropospheric aerosols emitted from biomass burning reduce solar radiation at the surface and locally heat the atmosphere. Equilibrium simulations using an atmospheric general circulation model (GFDL AGCM) indicate that strong atmospheric absorption from these particles can cool the surface and increase upward motion and low-level convergence over southern Africa during the dry season. These changes increase sea level pressure over land in the biomass burning region and spin-up the hydrologic ...
International Nuclear Information System (INIS)
Reinaldy Nazar
2016-01-01
Results of several researches have shown that nano fluids have better thermal characteristics than conventional fluid (water). In this regard, ideas for using nano fluids as an alternative heat transfer fluid in the reactor coolant system have been well developed. Meanwhile the natural convection in a vertical annulus pipe is one of the important mechanisms of heat transfer and is found at the TRIGA research reactor, the new generation nuclear power plants and other energy conversion devices. On the other hand, the heat transfer characteristics of nano fluids in a vertical annulus pipe has not been known. Therefore, it is important to do research continuously to analyze the heat transfer nano fluids in a vertical annulus pipe. This study has carried out numerical analysis by using computer code of CFD (computational of fluids dynamic) on natural convection heat transfer characteristics of nano fluids flow of Al_2O_3-water 2 % volume in the vertical annulus pipe. The results showed an increase in heat transfer performance (Nusselt numbers - NU) by 20.5 % - 35 %. In natural convection mode with Rayleigh numbers 2.471 e"+"0"9 ≤ Ra ≤ 1.955 e"+"1"3 obtained empirical correlations for water is N_U = 1.065 (R_a(D_H/x))"0"."1"7"9 and empirical correlations for Al_2O_3-water nano fluids is N_U = 14.869 (R_a(D_H/x))"0"."1"1"5.(author)
International Nuclear Information System (INIS)
Salem, Ahmed M.
2007-01-01
The problem of flow and heat transfer of an electrically conducting viscoelastic fluid over a continuously stretching sheet in the presence of a uniform magnetic field is analyzed for the case of power-law variation in the sheet temperature. The fluid viscosity and thermal conductivity are assumed to vary as a function of temperature. The basic equations comprising the balance laws of mass, linear momentum, and energy modified to include the electromagnetic force effect, the viscous dissipation, internal heat generation or absorption and work due to deformation are solved numerically
Rehman, Khalil Ur; Malik, Aneeqa Ashfaq; Malik, M. Y.; Tahir, M.; Zehra, Iffat
2018-03-01
A short communication is structured to offer a set of scaling group of transformation for Prandtl-Eyring fluid flow yields by stretching flat porous surface. The fluid flow regime is carried with both heat and mass transfer characteristics. To seek solution of flow problem a set of scaling group of transformation is proposed by adopting Lie approach. These transformations are used to step down the partial differential equations into ordinary differential equations. The reduced system is solved by numerical method termed as shooting method. A self-coded algorithm is executed in this regard. The obtain results are elaborated by means of figures and tables.
Physical metrology of aerosols; Metrologie physique des aerosols
Energy Technology Data Exchange (ETDEWEB)
Boulaud, D.; Vendel, J. [CEA Saclay, 91 - Gif-sur-Yvette (France). Inst. de Protection et de Surete Nucleaire
1996-12-31
The various detection and measuring methods for aerosols are presented, and their selection is related to aerosol characteristics (size range, concentration or mass range), thermo-hydraulic conditions (carrier fluid temperature, pressure and flow rate) and to the measuring system conditions (measuring frequency, data collection speed, cost...). Methods based on aerosol dynamic properties (inertial, diffusional and electrical methods) and aerosol optical properties (localized and integral methods) are described and their performances and applications are compared
Subcooled film boiling heat transfer on a high temperature sphere in very dilute Al2O3 nano-fluids
International Nuclear Information System (INIS)
Hyun Sun Park; Dereje Shiferaw; Bal Raj Sehgal
2005-01-01
Full text of publication follows: nano-fluids, or conventional liquids, e.g., water, with small concentration of nano-particles uniformly suspended, have attracted attention as a new heat transport medium with enhanced thermo-physical properties. Up to the present, only exploratory experiments on nano-fluids have been reported. Das et al (Int. J. Heat Mass Transfer 43, pp 3701-3707, 2003) conducted boiling experiments with water containing 38 nm Al 2 O 3 nano-particles. They observed deterioration in the nucleate boiling heat transfer due to the deposition of nano-particles. Boiling experiments conducted by Vassallo et al (Int. J. Heat Mass Transfer 47, pp 407-411, 2004) using silica nano-fluid using 0.4 mm diameter NiCr wire showed three times higher critical heat flux (CHF) and the wire traversed the film boiling region before it failed. Another independent experiment performed on 1 cm 2 square plate with a very low concentration of nano-particles ranging from 0.01 to 0.05 g/liter and at under pressure (2.89 psia), nano-fluids resulted in drastic 2∼3 times enhancement of the CHF (You and Kim, Appl. Phys. Lett. 83. No 16, 2003). However in all the aforementioned studies no appropriate explanation of the CHF enhancement has been advanced. The measured 2-3 times higher critical heat flux for very dilute nano-fluids may have high significance if such nano-fluids could be employed in heat transport systems. Recently, we investigated the effect of nano-particles on film boiling, which governs heat transfer during accident conditions in a reactor plant, e.g., in coolability of a degraded core, or a particulate debris bed or a core melt, and in steam explosions. Our previous experiments performed on film boiling in nano-fluids having larger concentrations of 5, 10, and 20 g/liter than those in You's experiments showed that the nano-fluids lower the film boiling temperature, decrease the film boiling heat transfer and provide a much thicker and more stable film than
Energy Technology Data Exchange (ETDEWEB)
Duminil, M. [Association Francaise du Froid (AFF), 75 - Paris (France)
1997-12-31
The advantages and inconvenients of indirect cooling systems are summarized: simplification of the cooling distribution from a single refrigerating unit, a potential for a larger range of refrigerants, cooling circuit size diminution, but energy consumption increase, lower evaporation temperature, etc. The various types and characteristics of single- and two-phase refrigerant and heat transfer fluids are described, and more especially two-phase liquid-vapour and liquid-solid fluids. Based on the example of a two-temperature-level refrigerating system in a supermarket, the general architecture of the cold distribution circuit and the architecture of the refrigerant circuit itself, are presented with their different types, involving direct or indirect, and centralized or semi-centralized systems
Khan, Kashif Ali; Butt, Asma Rashid; Raza, Nauman
2018-03-01
In this study, an endeavor is to observe the unsteady two-dimensional boundary layer flow with heat and mass transfer behavior of Casson fluid past a stretching sheet in presence of wall mass transfer by ignoring the effects of viscous dissipation. Chemical reaction of linear order is also invoked here. Similarity transformation have been applied to reduce the governing equations of momentum, energy and mass into non-linear ordinary differential equations; then Homotopy analysis method (HAM) is applied to solve these equations. Numerical work is done carefully with a well-known software MATHEMATICA for the examination of non-dimensional velocity, temperature, and concentration profiles, and then results are presented graphically. The skin friction (viscous drag), local Nusselt number (rate of heat transfer) and Sherwood number (rate of mass transfer) are discussed and presented in tabular form for several factors which are monitoring the flow model.
Directory of Open Access Journals (Sweden)
Medhat M. Helal
2013-10-01
Full Text Available The problem of heat and mass transfer in a power law, two-dimensional, laminar, boundary layer flow of a viscous incompressible fluid over an inclined plate with heat generation and thermophoresis is investigated by the characteristic function method. The governing non-linear partial differential equations describing the flow and heat transfer problem are transformed into a set of coupled non-linear ordinary differential equation which was solved using Runge–Kutta shooting method. Exact solutions for the dimensionless temperature and concentration profiles, are presented graphically for different physical parameters and for the different power law exponents 0 0.5.
International Nuclear Information System (INIS)
Chen Lingen; Ge Yanlin; Sun Fengrui; Wu Chih
2006-01-01
The thermodynamic performance of an air standard dual cycle with heat transfer loss, friction like term loss and variable specific heats of working fluid is analyzed. The relations between the power output and the compression ratio, between the thermal efficiency and the compression ratio, as well as the optimal relation between power output and the efficiency of the cycle, are derived by detailed numerical examples. Moreover, the effects of variable specific heats of the working fluid and the friction like term loss on the irreversible cycle performance are analyzed. The results show that the effects of variable specific heats of working fluid and friction like term loss on the cycle performance are obvious, and they should be considered in practical cycle analysis. The results obtained in this paper may provide guidance for the design of practical internal combustion engines
International Nuclear Information System (INIS)
Ge Yanlin; Chen Lingen; Sun, Fengrui; Wu Chih
2006-01-01
The performance of an air standard Atkinson cycle with heat-transfer loss, friction-like term loss and variable specific-heats of the working fluid is analyzed using finite-time thermodynamics. The relations between the power output and the compression ratio, between the thermal efficiency and the compression ratio, as well as the optimal relation between the power output and the efficiency of the cycle are derived by detailed numerical examples. Moreover, the effects of variable specific-heats of the working fluid and the friction-like term loss on the irreversible cycle performance are analyzed. The results show that the effects of variable specific-heats of working fluid and friction-like term loss on the irreversible cycle performance should be considered in cycle analysis. The results obtained in this paper provide guidance for the design of Atkinson engines
Ara, Asmat; Khan, Najeeb Alam; Naz, Farah; Raja, Muhammad Asif Zahoor; Rubbab, Qammar
2018-01-01
This article explores the Jeffery-Hamel flow of an incompressible non-Newtonian fluid inside non-parallel walls and observes the influence of heat transfer in the flow field. The fluid is considered to be micropolar fluid that flows in a convergent/divergent channel. The governing nonlinear partial differential equations (PDEs) are converted to nonlinear coupled ordinary differential equations (ODEs) with the help of a suitable similarity transformation. The resulting nonlinear analysis is determined analytically with the utilization of the Taylor optimization method based on differential evolution (DE) algorithm. In order to understand the flow field, the effects of pertinent parameters such as the coupling parameter, spin gradient viscosity parameter and the Reynolds number have been examined on velocity and temperature profiles. It concedes that the good results can be attained by an implementation of the proposed method. Ultimately, the accuracy of the method is confirmed by comparing the present results with the results obtained by Runge-Kutta method.
Ramesh, K.
2017-07-01
In the current article, we have discussed the Poiseuille flow of an incompressible magnetohydrodynamic Jeffrey fluid between parallel plates through homogeneous porous medium using slip boundary conditions under the effect of heat transfer. The equations governing the fluid flow are modeled in Cartesian coordinate system. The energy equation is considered under the effects viscous dissipation and heat generation. Analytical solutions for the velocity and temperature profiles are obtained. The effects of the various involved parameters on the velocity and temperature profiles are studied and the results are presented through the graphs. It is observed from our analysis that, with increase of slip parameter and pressure gradient increase the velocity. The temperature is an increasing function of heat generation parameter, Brinkman number, thermal slip parameter and non-Newtonian fluid parameter.
International Nuclear Information System (INIS)
Milan, D.; Berthollon, G.
1979-01-01
This paper deals with the study of the vibratory behaviour of thin cylindrical structures under the turbulence of the heat transferring fluid. These simple structures constitute an idealization, often adequate, of several structures used in nuclear hydraulics. It is shown that an empiric representation of the excitation spatial field makes it possible, in the experimented cases, to predict with a fair accuracy the vibratory response of the first modes. The cases of application of such an approach are discussed. (author)
International Nuclear Information System (INIS)
Wong, C.N.C.; Cheng, S.K.; Todreas, N.E.
1982-01-01
This report provides the HEATRAN user with programming and input information. HEATRAN is a computer program which is written to analyze the transient three dimensional single phase incompressible fluid flow and heat transfer problem. In this report, the programming information is given first. This information includes details concerning the code and structure. The description of the required input variables is presented next. Following the input description, the sample problems are described and HEATRAN's results are presented
Tripathi, Dharmendra; Bég, O Anwar
2012-08-01
Magnetohydrodynamic peristaltic flows arise in controlled magnetic drug targeting, hybrid haemodynamic pumps and biomagnetic phenomena interacting with the human digestive system. Motivated by the objective of improving an understanding of the complex fluid dynamics in such flows, we consider in the present article the transient magneto-fluid flow and heat transfer through a finite length channel by peristaltic pumping. Reynolds number is small enough and the wavelength to diameter ratio is large enough to negate inertial effects. Analytical solutions for temperature field, axial velocity, transverse velocity, pressure gradient, local wall shear stress, volume flowrate and averaged volume flowrate are obtained. The effects of the transverse magnetic field, Grashof number and thermal conductivity on the flow patterns induced by peristaltic waves (sinusoidal propagation along the length of channel) are studied using graphical plots. The present study identifies that greater pressure is required to propel the magneto-fluid by peristaltic pumping in comparison to a non-conducting Newtonian fluid, whereas, a lower pressure is required if heat transfer is effective. The analytical solutions further provide an important benchmark for future numerical simulations.
International Nuclear Information System (INIS)
Seralini, G.E.; Underhill, C.M.; Smith, C.L.; Nguyen, V.T.; Hammond, G.L.
1989-01-01
Rabbit corticosteroid-binding globulin (CBG) from the serum of pregnant and nonpregnant females differs in terms of charge microheterogeneity, and both forms were, therefore, radiolabeled and injected iv into 23- to 27-day pregnant rabbits (n = 6) to assess their biological half-lives and possible transfer to the fetal compartment. After an initially rapid distribution phase, the serum half-lives of both forms of [ 125 I]CBG were essentially identical (approximately 13 h) and did not vary at different gestational ages. There was also no difference in the transfer of either form of [ 125 I]CBG from maternal to fetal compartments in any of the animals studied. Moreover, [ 125 I]CBG showed no sign of degradation and retained its steroid-binding activity in fetal urine and amniotic fluid. Twenty-two hours after administration of [ 125 I]CBG to rabbits (n = 2) at 23 days gestation, its mean level in fetal urine (7 cpm/microliter) and amniotic fluid (2.5 cpm/microliter) was much higher than that in fetal blood (0.6 cpm/microliter). More importantly, the specific activities of [ 125 I]CBG in fetal urine and amniotic fluid were comparable to that in maternal serum, and approximately 2 orders of magnitude higher than that in fetal serum. Taken together, these results suggest that CBG in fetal urine and amniotic fluid is largely of maternal origin, and that maternal CBG crosses the fetal kidney preferentially
Reddy, G. Janardhana; Hiremath, Ashwini; Kumar, Mahesh
2018-03-01
The present paper aims to investigate the effect of Prandtl number for unsteady third-grade fluid flow over a uniformly heated vertical cylinder using Bejan's heat function concept. The mathematical model of this problem is given by highly time-dependent non-linear coupled equations and are resolved by an efficient unconditionally stable implicit scheme. The time histories of average values of momentum and heat transport coefficients as well as the steady-state flow variables are displayed graphically for distinct values of non-dimensional control parameters arising in the system. As the non-dimensional parameter value gets amplified, the time taken for the fluid flow variables to attain the time-independent state is decreasing. The dimensionless heat function values are closely associated with an overall rate of heat transfer. Thermal energy transfer visualization implies that the heat function contours are compact in the neighborhood of the leading edge of the hot cylindrical wall. It is noticed that the deviations of flow-field variables from the hot wall for a non-Newtonian third-grade fluid flow are significant compared to the usual Newtonian fluid flow.
Sui, Jize; Zhao, Peng; Cheng, Zhengdong; Zheng, Liancun; Zhang, Xinxin
2017-02-01
The rheological and heat-conduction constitutive models of micropolar fluids (MFs), which are important non-Newtonian fluids, have been, until now, characterized by simple linear expressions, and as a consequence, the non-Newtonian performance of such fluids could not be effectively captured. Here, we establish the novel nonlinear constitutive models of a micropolar fluid and apply them to boundary layer flow and heat transfer problems. The nonlinear power law function of angular velocity is represented in the new models by employing generalized "n-diffusion theory," which has successfully described the characteristics of non-Newtonian fluids, such as shear-thinning and shear-thickening fluids. These novel models may offer a new approach to the theoretical understanding of shear-thinning behavior and anomalous heat transfer caused by the collective micro-rotation effects in a MF with shear flow according to recent experiments. The nonlinear similarity equations with a power law form are derived and the approximate analytical solutions are obtained by the homotopy analysis method, which is in good agreement with the numerical solutions. The results indicate that non-Newtonian behaviors involving a MF depend substantially on the power exponent n and the modified material parameter K 0 introduced by us. Furthermore, the relations of the engineering interest parameters, including local boundary layer thickness, local skin friction, and Nusselt number are found to be fitted by a quadratic polynomial to n with high precision, which enables the extraction of the rapid predictions from a complex nonlinear boundary-layer transport system.
Directory of Open Access Journals (Sweden)
Taymaz Imdat
2015-01-01
Full Text Available The Lattice Boltzmann Method is applied to computationally investigate the laminar flow and heat transfer of an incompressible fluid with constant material properties in a two-dimensional channel with a built-in bluff body. In this study, a triangular prism is taken as the bluff body. Not only the momentum transport, but also the energy transport is modeled by the Lattice Boltzmann Method. A uniform lattice structure with a single time relaxation rule is used. For obtaining a higher flexibility on the computational grid, interpolation methods are applied, where the information is transferred from the lattice structure to the computational grid by Lagrange interpolation. The flow is investigated for different Reynolds numbers, while keeping the Prandtl number at the constant value of 0.7. The results show how the presence of a triangular prism effects the flow and heat transfer patterns for the steady-state and unsteady-periodic flow regimes. As an assessment of the accuracy of the developed Lattice Boltzmann code, the results are compared with those obtained by a commercial Computational Fluid Dynamics code. It is observed that the present Lattice Boltzmann code delivers results that are of similar accuracy to the well-established Computational Fluid Dynamics code, with much smaller computational time for the prediction of the unsteady phenomena.
Sitepu, T.; Sembiring, J.; Ambarita, H.
2018-02-01
A prototype of a solar water heater by using refrigerant as a heat transfer fluid is investigated experimentally. The objective is to explore the characteristics and the performance of the prototype. To make heat transfer from the collector to the heated fluid effectively, refrigerant R134a is used as a transfer. In the experiments, the initial pressure inside the heat pipe is varied. The prototype is exposed to solar irradiation in a location in Medan city for three days of the experiment. Solar collector temperatures, solar radiation, water temperature, and ambient temperature are measured. The efficiency of the system is analyzed. The results show that temperature of the hot water increases as the initial pressure of the working fluid increase. However, the increasing is not linear, and there must exist an optimum initial pressure. For the case with the refrigerant pressure of 110 psi, the maximum hot water temperature and maximum thermal efficiency are 45.36oC and 53.23%, respectively. The main conclusion can be drawn here is that solar water heater by using refrigerant R134a should be operated at initial pressure 110 psi.
International Nuclear Information System (INIS)
Mohseni, Mahdi; Bazargan, Majid
2014-01-01
Highlights: • The entropy generation in supercritical fluid flows has been numerically investigated. • The mechanisms of entropy generation are different near and away from the walls. • In the near wall region, the energy dissipation is the deciding parameter. • Away from the wall, the heat transfer is the effective factor in entropy generation. • The bulk Be number is greater in the liquid-like region than in vapor-like region. - Abstract: In this study, a two dimensional CFD code has been developed to investigate entropy generation in turbulent mixed convection heat transfer flow of supercritical fluids. Since the fluid properties vary significantly under supercritical conditions, the changes of entropy generation are large. The contribution of each of the mechanisms of entropy production (heat transfer and energy dissipation) is compared in different regions of the flow. The results show that the mechanisms of entropy generation act differently in the near wall region within the viscous sub-layer and in the region away from the wall. The effects of the wall heat flux on the entropy generation are also investigated
International Nuclear Information System (INIS)
Bestman, A.R.; Adjepong, S.K.
1987-11-01
We study the unsteady free convection flow near a moving infinite flat plate in a rotating medium by imposing a time dependent perturbation on a constant plate temperature. The temperatures involved are assumed to be very large so that radiative heat transfer is significant, which renders the problem very nonlinear even on the assumption of a differential approximation for the radiative flux. When the perturbation is small, the transient flow is tackled by the Laplace transform technique. Complete first order solutions are deduced for an impulsive motion. (author). 12 refs, 2 figs
International Nuclear Information System (INIS)
Kimura, Nobuyuki; Ono, Ayako; Miyakoshi, Hiroyuki; Kamide, Hideki
2009-01-01
A quantitative evaluation on high cycle thermal fatigue due to temperature fluctuation in fluid is of importance for structural integrity in the reactor. It is necessary for the quantitative evaluation to investigate occurrence and propagation processes of temperature fluctuation, e.g., decay of fluctuation intensity near structures and transfer of temperature fluctuation from fluid to structures. The JSME published a guideline for evaluation of high-cycle thermal fatigue of a pipe as the JSME guideline in 2003. This JSME standard covers T-pipe junction used in LWRs operated in Japan. In the guideline, the effective heat transfer coefficients were obtained from temperature fluctuations in fluid and structure in experiments. In the previous studies, the effective heat transfer coefficients were 2 - 10 times larger than the heat transfer coefficients under steady state conditions in a straight tube. In this study, a water experiment of T-junction was performed to evaluate the transfer characteristics of temperature fluctuation from fluid to structure. In the experiment, temperatures in fluid and structure were measured simultaneously at 20 positions to obtain spatial distributions of the effective heat transfer coefficient. In addition, temperatures in structure and local velocities in fluid were measured simultaneously to evaluate the correlation between the temperature and velocity under the non-stationary fields. The large heat transfer coefficients were registered at the region where the local velocity was high. Furthermore it was found that the heat transfer coefficients were correlated with the time-averaged turbulent heat flux near the pipe wall. (author)
Milly, P J; Toledo, R T; Chen, J; Kazem, B
2007-11-01
Ultraviolet (UV)-induced chemical reactions and inactivation of microorganisms in transparent and opaque fluids are strongly dependent upon the homogenous exposure of the target species to the UV irradiation. Current UV technologies used in water disinfection and food preservation applications have limited efficacy due to suspended particles shading target species. An Ultraviolet-Shockwave Power Reactor (UV-SPR) consisting of an inner rotating rotor and a stationary quartz housing and 2 end plates was used to induce 'controlled cavitation.' Eight UV low-pressure mercury lamps spaced uniformly were installed lengthwise around the quartz housing periphery. A KI to I(3) (-)chemical dosimeter for UV was used to quantify photons received by fluid in the annular space of the SPR. UV dose (J/m(2)) increased from 97 J/m(2) at 0 rpm to over 700 J/m(2) for SPR speeds above 2400 rpm. Inactivation of E. coli 25922 in apple juice and skim milk in the UV-SPR at exit temperatures below 45 degrees C was greater than 4.5 and 3 logs, respectively. The UV-SPR system proved successful in increasing the mass transfer of transparent and opaque fluid to the UV irradiated surface.
Energy Technology Data Exchange (ETDEWEB)
Rashidi, S. [Department of Mechanical Engineering, Ferdowsi University of Mashhad, Mashhad 91775-1111 (Iran, Islamic Republic of); Dehghan, M. [Department of Mechanical Engineering, Semnan University, P.O. Box: 35196-45399, Semnan (Iran, Islamic Republic of); Ellahi, R., E-mail: rellahi@engr.ucr.edu [Department of Mathematics and Statistics, FBAS, IIUI, 44000 Islamabad (Pakistan); Department of Mechanical Engineering, Bourns Hall, University of California, Riverside, CA 92521 (United States); Riaz, M. [Department of QEC, National Defense University, E-9 Sector, 44000 Islamabad (Pakistan); Jamal-Abad, M.T. [Department of Mechanical Engineering, Semnan University, P.O. Box: 35196-45399, Semnan (Iran, Islamic Republic of)
2015-03-15
A mathematical model for two-dimensional fluid flow under the influence of stream wise transverse magnetic fields in laminar regime is simulated in this study. Heat transfer past a square diamond shaped porous obstacle is also taken into account. The attention is focused to investigate the effects of intensity and direction of magnetic field, Darcy and Reynolds numbers on the mechanism of convective heat transfer and flow structures. The Darcy–Brinkman–Forchheimer model along with the Maxwell equations is used. The nonlinear coupled equations using a finite volume approach (FVA) are solved numerically. The calculations are performed for different governing parameters such as Reynolds number, Nusselt number, Stuart number and Prandtl Number. The physical interpretation of velocity and isothermal contours is assigned through graphs. It is shown that the effects of a transverse magnetic field on flow behavior and heat transfer mechanism are more than that of the stream wise magnetic field. The configuration of streamlines and vorticity contours phenomena are also presented for porous diamond obstacle. Comparison of the numerical solutions with existing literature is also made. - Highlights: • This paper analyses two-dimensional fluid flow under the influence of stream wise transverse magnetic field. • Heat transfer past a square diamond shaped porous obstacle is taken into account. • The Darcy–Brinkman–Forchheimer model is used. • Finite volume approach is used to find numerical solutions. • The configuration of streamlines and vorticity contours phenomena are presented through graphs.
López, Dina L.; Smith, Leslie; Storey, Michael L.; Nielson, Dennis L.
1994-01-01
The hydrothermal systems of the Basin and Range Province are often located at or near major range bounding normal faults. The flow of fluid and energy at these faults is affected by the advective transfer of heat and fluid from an to the adjacent mountain ranges and valleys, This paper addresses the effect of the exchange of fluid and energy between the country rock, the valley fill sediments, and the fault zone, on the fluid and heat flow regimes at the fault plane. For comparative purposes, the conditions simulated are patterned on Leach Hot Springs in southern Grass Valley, Nevada. Our simulations indicated that convection can exist at the fault plane even when the fault is exchanging significant heat and fluid with the surrounding country rock and valley fill sediments. The temperature at the base of the fault decreased with increasing permeability of the country rock. Higher groundwater discharge from the fault and lower temperatures at the base of the fault are favored by high country rock permabilities and fault transmissivities. Preliminary results suggest that basal temperatures and flow rates for Leach Hot Springs can not be simulated with a fault 3 km deep and an average regional heat flow of 150 mW/m2 because the basal temperature and mass discharge rates are too low. A fault permeable to greater depths or a higher regional heat flow may be indicated for these springs.
Khan, Sami Ullah; Ali, Nasir; Abbas, Zaheer
2015-01-01
An analysis is carried out to study the heat transfer in unsteady two-dimensional boundary layer flow of a magnetohydrodynamics (MHD) second grade fluid over a porous oscillating stretching surface embedded in porous medium. The flow is induced due to infinite elastic sheet which is stretched periodically. With the help of dimensionless variables, the governing flow equations are reduced to a system of non-linear partial differential equations. This system has been solved numerically using the finite difference scheme, in which a coordinate transformation is used to transform the semi-infinite physical space to a bounded computational domain. The influence of the involved parameters on the flow, the temperature distribution, the skin-friction coefficient and the local Nusselt number is shown and discussed in detail. The study reveals that an oscillatory sheet embedded in a fluid-saturated porous medium generates oscillatory motion in the fluid. The amplitude and phase of oscillations depends on the rheology of the fluid as well as on the other parameters coming through imposed boundary conditions, inclusion of body force term and permeability of the porous medium. It is found that amplitude of flow velocity increases with increasing viscoelastic and mass suction/injection parameters. However, it decreases with increasing the strength of the applied magnetic field. Moreover, the temperature of fluid is a decreasing function of viscoelastic parameter, mass suction/injection parameter and Prandtl number.
Rayleigh-Bénard convection of a supercritical fluid : PIV and heat transfer study
Valori, V.
2018-01-01
Fluids above the critical point are widely used in industry. Chemical, pharmaceutical, food industry and energy production are some examples. In the energy production sector they are mainly used as cooling fluids, because they allow to increase the thermal efficiency of the power plants. However,
Application of computational fluid mechanics to atmospheric pollution problems
Hung, R. J.; Liaw, G. S.; Smith, R. E.
1986-01-01
One of the most noticeable effects of air pollution on the properties of the atmosphere is the reduction in visibility. This paper reports the results of investigations of the fluid dynamical and microphysical processes involved in the formation of advection fog on aerosols from combustion-related pollutants, as condensation nuclei. The effects of a polydisperse aerosol distribution, on the condensation/nucleation processes which cause the reduction in visibility are studied. This study demonstrates how computational fluid mechanics and heat transfer modeling can be applied to simulate the life cycle of the atmosphereic pollution problems.
Bandyopadhyay, Alak; Majumdar, Alok
2007-01-01
The present paper describes the verification and validation of a quasi one-dimensional pressure based finite volume algorithm, implemented in Generalized Fluid System Simulation Program (GFSSP), for predicting compressible flow with friction, heat transfer and area change. The numerical predictions were compared with two classical solutions of compressible flow, i.e. Fanno and Rayleigh flow. Fanno flow provides an analytical solution of compressible flow in a long slender pipe where incoming subsonic flow can be choked due to friction. On the other hand, Raleigh flow provides analytical solution of frictionless compressible flow with heat transfer where incoming subsonic flow can be choked at the outlet boundary with heat addition to the control volume. Nonuniform grid distribution improves the accuracy of numerical prediction. A benchmark numerical solution of compressible flow in a converging-diverging nozzle with friction and heat transfer has been developed to verify GFSSP's numerical predictions. The numerical predictions compare favorably in all cases.
The influence of pH on gas-liquid mass transfer in non-Newtonian fluids
Directory of Open Access Journals (Sweden)
Li Shaobai
2017-01-01
Full Text Available In this study, the effect of pH on the mass transfer of oxygen bubble swarms in non-Newtonian fluids was experimentally studied. The volumetric liquid side mass transfer coefficient (kLa, liquid side mass transfer coefficient (kL, and specific interfacial area (a were investigated. The pH was regulated by the addition of hydrochloric acid and sodium hydroxide (NaOH. It was found that the kLa increased with the gas flow rate increasing and decreased with the apparent viscosity of the liquid increasing. In the case of pH 7 was attributed to the decomposition of the Xanthan molecular structure by the hydroxyl of NaOH.
International Nuclear Information System (INIS)
Rovira, Antonio; Montes, María José; Varela, Fernando; Gil, Mónica
2013-01-01
At present time and in the medium term, Solar Thermal Power Plants are going to share scenario with conventional energy generation technologies, like fossil and nuclear. In such a context, Integrated Solar Combined Cycles (ISCCs) may be an interesting choice since integrated designs may lead to a very efficient use of the solar and fossil resources. In this work, different ISCC configurations including a solar field based on parabolic trough collectors and working with the so-called Heat Transfer Fluid (HTF) and Direct Steam Generation (DSG) technologies are compared. For each technology, four layouts have been studied: one in which solar heat is used to evaporate part of the high pressure steam of a bottoming Rankine cycle with two pressure levels, another that incorporates a preheating section to the previous layout, the third one that includes superheating instead of preheating and the last one including both preheating and superheating in addition to the evaporation. The analysis is made with the aim of finding out which of the different layouts reaches the best performance. For that purpose, three types of comparisons have been performed. The first one assesses the benefits of including a solar steam production fixed at 50 MW th . The second one compares the configurations with a standardised solar field size instead of a fixed solar steam production. Finally, the last one consists on an even more homogeneous comparison considering the same steam generator size for all the configurations as well as standardised solar fields. The configurations are studied by mean of exergy analyses. Several figures of merit are used to correctly assess the configurations. Results reveal that the only-evaporative DSG configuration becomes the best choice, since it benefits of both low irreversibility at the heat recovery steam generator and high thermal efficiency in the solar field. Highlights: ► ISCC configurations with DSG and HTF technologies are compared. ► Four
Energy Technology Data Exchange (ETDEWEB)
Parts, L; Miller, D R; Leffingwell, J W; Thompson, Q E
1980-09-01
The major objective of this program was the identification of superior, currently available organic heat transfer fluids for solar collector applications. Organic fluids used in the form of aqueous solutions were also to be identified. The required design and handling properties of the fluids were determined through a survey in which 115 designers and manufacturers of solar collectors and collection systems participated. A state-of-the-art survey of commercially available organic heat transfer fluids provided information on fifty fluids. These were grouped into nine classes. This report contains information on limiting, design, and handling properties of these fluids. The limiting properties affix the use temperature ranges of the fluids. The design properties include the following thermophysical data: densities, vapor pressures, viscosities, specific heats, thermal conductivities, heats of vaporization, and coefficients of thermal expansion. The handling properties include: compatibility and incompatibility, with construction materials, chemical sensitivity, ignitability, physiological effects, and biodegradability characteristics. Mutagenicity tests with Salmonella typhimurium bacteria, and ignitability tests were conducted with a number of fluids in this program. The properties of the fluids were analyzed with reference to the required design and handling properties established in the survey of collector manufacturers. Guidelines are provided for the selection of superior fluids to meet specific collector operational and compatibility requirements. These guidelines include the use of heat transfer efficiency factors, that were calculated or the temperature ranges for which thermophysical data were available.
Energy Technology Data Exchange (ETDEWEB)
Lee, Jung Eui; Yeo, Tae Jung; Oh, Kyu Hwan; Yoon, Jong Kyu [School of Materials Science and Engineering, Seoul Nat` l Univ., Seoul (Korea, Republic of); Han, Heung Nam [Oxford Center for Advanced Materials and Composites, Department of Materials, Univ. of Oxford (United Kingdom)
1998-12-31
A mathematical model for a coupled analysis of fluid flow, heat transfer and deformation behavior in the continuously cast beam blank has been developed. The fluid flow, heat transfer and solidification in the mold region were analyzed with 3-dimensional finite difference method (FDM) based on control volume method. A body fitted coordinate system was introduced for the complex geometry of the beam blank. The effects of turbulence and natural convection of molten steel were taken into account in determining the fluid flow in the strand. The thermo-elasto-plastic deformation behavior in the cast strand and the formation of air gap between the solidifying shell and the mold were analyzed by the finite element method (FEM) using the 2-dimensional slice temperature profile calculated by the FDM. The heat flow between the strand and the mold was evaluated by the coupled analysis between the fluid flow-heat transfer analysis and the thermo-elasto-plastic stress analysis. In order to determine the solid fraction in the mushy zone, the microsegregation of solute element was assessed. The effects of fluid flow on the heat transfer, the solidification of steel and the distribution of shell thickness during the casting of the beam blank were simulated. The deformation behavior of the solidifying shell and the possibility of cracking of the strand were also investigated. The recirculating flows were developed in the regions of the web and the flange tip. The impinging of the inlet flow from the nozzle retarded the growing of solidifying shell in the regions of the fillet and the flange. The air gap between the strand and the mold was formed near the region of the corner of the flange tip. At the initial stage of casting, the probability of the surface cracking was high in the regions of the fillet and the flange tip. After the middle stage of casting, the internal cracking was predicted in the regions of the flange tip, and between the fillet and the flange tip. (author) 38
Energy Technology Data Exchange (ETDEWEB)
Lee, Jung Eui; Yeo, Tae Jung; Oh, Kyu Hwan; Yoon, Jong Kyu [School of Materials Science and Engineering, Seoul Nat`l Univ., Seoul (Korea, Republic of); Han, Heung Nam [Oxford Center for Advanced Materials and Composites, Department of Materials, Univ. of Oxford (United Kingdom)
1997-12-31
A mathematical model for a coupled analysis of fluid flow, heat transfer and deformation behavior in the continuously cast beam blank has been developed. The fluid flow, heat transfer and solidification in the mold region were analyzed with 3-dimensional finite difference method (FDM) based on control volume method. A body fitted coordinate system was introduced for the complex geometry of the beam blank. The effects of turbulence and natural convection of molten steel were taken into account in determining the fluid flow in the strand. The thermo-elasto-plastic deformation behavior in the cast strand and the formation of air gap between the solidifying shell and the mold were analyzed by the finite element method (FEM) using the 2-dimensional slice temperature profile calculated by the FDM. The heat flow between the strand and the mold was evaluated by the coupled analysis between the fluid flow-heat transfer analysis and the thermo-elasto-plastic stress analysis. In order to determine the solid fraction in the mushy zone, the microsegregation of solute element was assessed. The effects of fluid flow on the heat transfer, the solidification of steel and the distribution of shell thickness during the casting of the beam blank were simulated. The deformation behavior of the solidifying shell and the possibility of cracking of the strand were also investigated. The recirculating flows were developed in the regions of the web and the flange tip. The impinging of the inlet flow from the nozzle retarded the growing of solidifying shell in the regions of the fillet and the flange. The air gap between the strand and the mold was formed near the region of the corner of the flange tip. At the initial stage of casting, the probability of the surface cracking was high in the regions of the fillet and the flange tip. After the middle stage of casting, the internal cracking was predicted in the regions of the flange tip, and between the fillet and the flange tip. (author) 38
Directory of Open Access Journals (Sweden)
Ayoub Abdollahi
2017-03-01
Full Text Available The fluid flow and heat transfer characteristics of laminar nanofluid flow in microchannel heat sink (MCHS with V-Type inlet/outlet arrangement are numerically studied. A constant heat flux boundary condition is applied on the base plate of MCHS and all the other surfaces of MCHS are insulated. Four different kinds of nanofluids are utilized as working fluids which are SiO2, Al2O3, ZnO and CuO dispersed in pure water as a base fluid. Three different volume fractions of 1%, 1.5% and 2% and three distinctive nanoparticle diameters of 30 nm, 40 nm and 60 nm were employed. The results specify that the SiO2 nanofluid has the uppermost heat transfer rate compared to other tested nanofluids. Increasing the nanoparticles volume fraction together with decreasing the nanoparticles diameter enhances the Nusselt number value. The pressure drop coefficient did not change significantly by using nanofluid with various volume fractions and varied nanoparticle diameters. Moreover, the results indicate that nanofluid can enhance the performance of MCHS with V-shaped inlet/outlet arrangement.
Proceedings of the 29th heat transfer and fluid mechanics institute
International Nuclear Information System (INIS)
Reardon, F.H.; Ngo, D.T.
1985-01-01
This book presents the papers given at a conference on two-phase flow and heat transfer. Topics considered at the conference included two-phase flow in zero gravity, approximate characteristics for one-dimensional two-phase flows, Soret transport in the production of silicon for solar cells, the dynamics of heat transfer in packed beds, and heat transfer in variable-property MHD entrance flow with a generalized temperature boundary condition
Hollow fiber apparatus and use thereof for fluids separations and heat and mass transfers
Energy Technology Data Exchange (ETDEWEB)
Bikson, Benjamin; Etter, Stephen; Ching, Nathaniel
2017-04-18
A hollow fiber fluid separation device includes a hollow fiber cartridge, comprising a plurality of hollow fiber membranes arranged around a central tubular core, a first tubesheet and a second tubesheet encapsulating respective distal ends of the hollow fiber bundle. The tubesheets have boreholes in fluid communication with bores of the hollow fiber membrane. In at least one of the tubesheets, the boreholes are formed radially and are in communication with the central tubular core. The hollow fiber fluid separation device can be utilized in liquid separation applications such as ultrafiltration and in gas separation processes such as air separation. The design disclosed herein is light weight and compact and is particularly advantageous at high operating temperatures when the pressure of the feed fluid introduced into the bores of hollow fibers is higher than the pressure on the shell side of the device.
Mansoor, Mohammad M.
2012-02-01
A 3D-conjugate numerical investigation was conducted to predict heat transfer characteristics in a rectangular cross-sectional micro-channel employing simultaneously developing single-phase flows. The numerical code was validated by comparison with previous experimental and numerical results for the same micro-channel dimensions and classical correlations based on conventional sized channels. High heat fluxes up to 130W/cm 2 were applied to investigate micro-channel thermal characteristics. The entire computational domain was discretized using a 120×160×100 grid for the micro-channel with an aspect ratio of (α=4.56) and examined for Reynolds numbers in the laminar range (Re 500-2000) using FLUENT. De-ionized water served as the cooling fluid while the micro-channel substrate used was made of copper. Validation results were found to be in good agreement with previous experimental and numerical data [1] with an average deviation of less than 4.2%. As the applied heat flux increased, an increase in heat transfer coefficient values was observed. Also, the Reynolds number required for transition from single-phase fluid to two-phase was found to increase. A correlation is proposed for the results of average Nusselt numbers for the heat transfer characteristics in micro-channels with simultaneously developing, single-phase flows. © 2011 Elsevier Ltd.
Cao, Qing; Nastac, Laurentiu
2018-06-01
In this study, the Euler-Euler and Euler-Lagrange modeling approaches were applied to simulate the multiphase flow in the water model and gas-stirred ladle systems. Detailed comparisons of the computational and experimental results were performed to establish which approach is more accurate for predicting the gas-liquid multiphase flow phenomena. It was demonstrated that the Euler-Lagrange approach is more accurate than the Euler-Euler approach. The Euler-Lagrange approach was applied to study the effects of the free surface setup, injected bubble size, gas flow rate, and slag layer thickness on the slag-steel interaction and mass transfer behavior. Detailed discussions on the flat/non-flat free surface assumption were provided. Significant inaccuracies in the prediction of the surface fluid flow characteristics were found when the flat free surface was assumed. The variations in the main controlling parameters (bubble size, gas flow rate, and slag layer thickness) and their potential impact on the multiphase fluid flow and mass transfer characteristics (turbulent intensity, mass transfer rate, slag-steel interfacial area, flow patterns, etc.,) in gas-stirred ladles were quantitatively determined to ensure the proper increase in the ladle refining efficiency. It was revealed that by injecting finer bubbles as well as by properly increasing the gas flow rate and the slag layer thickness, the ladle refining efficiency can be enhanced significantly.
Bogg, Tim; Lasecki, Leanne
2014-01-01
In recent years, cognitive scientists and commercial interests (e.g., Fit Brains, Lumosity) have focused research attention and financial resources on cognitive tasks, especially working memory tasks, to explore and exploit possible transfer effects to general cognitive abilities, such as fluid intelligence. The increased research attention has produced mixed findings, as well as contention about the disposition of the evidence base. To address this contention, Au et al. (2014) recently conducted a meta-analysis of extant controlled experimental studies of n-back task training transfer effects on measures of fluid intelligence in healthy adults; the results of which showed a small training transfer effect. Using several approaches, the current review evaluated and re-analyzed the meta-analytic data for the presence of two different forms of small-study effects: (1) publication bias in the presence of low power and; (2) low power in the absence of publication bias. The results of these approaches showed no evidence of selection bias in the working memory training literature, but did show evidence of small-study effects related to low power in the absence of publication bias. While the effect size estimate identified by Au et al. (2014) provided the most precise estimate to date, it should be interpreted in the context of a uniformly low-powered base of evidence. The present work concludes with a brief set of considerations for assessing the adequacy of a body of research findings for the application of meta-analytic techniques.
Racz, I.G.; Groot Wassink, J.; Klaassen, R.
1986-01-01
Concentration polarisation, decreasing the efficiency in membrane separation processes, can be reduced by increasing mass transfer between membrane surface and bulk of the feed stream. Analogous to techniques used in plate heat exchangers efforts have been made to enhance mass transfer in a plate
Directory of Open Access Journals (Sweden)
Abid Hussanan
Full Text Available In this paper, the heat transfer effect on the unsteady boundary layer flow of a Casson fluid past an infinite oscillating vertical plate with Newtonian heating is investigated. The governing equations are transformed to a systems of linear partial differential equations using appropriate non-dimensional variables. The resulting equations are solved analytically by using the Laplace transform method and the expressions for velocity and temperature are obtained. They satisfy all imposed initial and boundary conditions and reduce to some well-known solutions for Newtonian fluids. Numerical results for velocity, temperature, skin friction and Nusselt number are shown in various graphs and discussed for embedded flow parameters. It is found that velocity decreases as Casson parameters increases and thermal boundary layer thickness increases with increasing Newtonian heating parameter.
Hussanan, Abid; Zuki Salleh, Mohd; Tahar, Razman Mat; Khan, Ilyas
2014-01-01
In this paper, the heat transfer effect on the unsteady boundary layer flow of a Casson fluid past an infinite oscillating vertical plate with Newtonian heating is investigated. The governing equations are transformed to a systems of linear partial differential equations using appropriate non-dimensional variables. The resulting equations are solved analytically by using the Laplace transform method and the expressions for velocity and temperature are obtained. They satisfy all imposed initial and boundary conditions and reduce to some well-known solutions for Newtonian fluids. Numerical results for velocity, temperature, skin friction and Nusselt number are shown in various graphs and discussed for embedded flow parameters. It is found that velocity decreases as Casson parameters increases and thermal boundary layer thickness increases with increasing Newtonian heating parameter.
Directory of Open Access Journals (Sweden)
Mehrdad Shahmohammadi Beni
2017-06-01
Full Text Available Cold plasmas were proposed for treatment of leukemia. In the present work, conceptual designs of mixing chambers that increased the contact between the two fluids (plasma and blood through addition of obstacles within rectangular-block-shaped chambers were proposed and the dynamic mixing between the plasma and blood were studied using the level set method coupled with heat transfer. Enhancement of mixing between blood and plasma in the presence of obstacles was demonstrated. Continuous tracking of fluid mixing with determination of temperature distributions was enabled by the present model, which would be a useful tool for future development of cold plasma devices for treatment of blood-related diseases such as leukemia.
Laminar fluid flow and heat transfer in a fin-tube heat exchanger with vortex generators
Energy Technology Data Exchange (ETDEWEB)
Yanagihara, J.I.; Rodriques, R. Jr. [Polytechnic School of Univ. of Sao Paolo, Sao Paolo (Brazil). Dept. of Mechanical Engineering
1996-12-31
Development of heat transfer enhancement techniques for fin-tube heat exchangers has great importance in industry. In recent years, heat transfer augmentation by vortex generators has been considered for use in plate fin-tube heat exchangers. The present work describes a numerical investigation about the influence of delta winglet pairs of vortex generators on the flow structure and heat transfer of a plate fin-tube channel. The Navier-Stokes and Energy equations are solved by the finite volume method using a boundary-fitted coordinate system. The influence of vortex generators parameters such as position, angle of attack and aspect ratio were investigated. Local and global influences of vortex generators in heat transfer and flow losses were analyzed by comparison with a model using smooth fin. The results indicate great advantages of this type of geometry for application in plate fin-tube heat exchangers, in terms of large heat transfer enhancement and small pressure loss penalty. (author)
Laminar fluid flow and heat transfer in a fin-tube heat exchanger with vortex generators
Energy Technology Data Exchange (ETDEWEB)
Yanagihara, J I; Rodriques, R Jr [Polytechnic School of Univ. of Sao Paolo, Sao Paolo (Brazil). Dept. of Mechanical Engineering
1997-12-31
Development of heat transfer enhancement techniques for fin-tube heat exchangers has great importance in industry. In recent years, heat transfer augmentation by vortex generators has been considered for use in plate fin-tube heat exchangers. The present work describes a numerical investigation about the influence of delta winglet pairs of vortex generators on the flow structure and heat transfer of a plate fin-tube channel. The Navier-Stokes and Energy equations are solved by the finite volume method using a boundary-fitted coordinate system. The influence of vortex generators parameters such as position, angle of attack and aspect ratio were investigated. Local and global influences of vortex generators in heat transfer and flow losses were analyzed by comparison with a model using smooth fin. The results indicate great advantages of this type of geometry for application in plate fin-tube heat exchangers, in terms of large heat transfer enhancement and small pressure loss penalty. (author)
De Leersnyder, F; Vanhoorne, V; Bekaert, H; Vercruysse, J; Ghijs, M; Bostijn, N; Verstraeten, M; Cappuyns, P; Van Assche, I; Vander Heyden, Y; Ziemons, E; Remon, J P; Nopens, I; Vervaet, C; De Beer, T
2018-03-30
Although twin screw granulation has already been widely studied in recent years, only few studies addressed the subsequent continuous drying which is required after wet granulation and still suffers from a lack of detailed understanding. The latter is important for optimisation and control and, hence, a cost-effective practical implementation. Therefore, the aim of the current study is to increase understanding of the drying kinetics and the breakage and attrition phenomena during fluid bed drying after continuous twin screw granulation. Experiments were performed on a continuous manufacturing line consisting of a twin-screw granulator, a six-segmented fluid bed dryer, a mill, a lubricant blender and a tablet press. Granulation parameters were fixed in order to only examine the effect of drying parameters (filling time, drying time, air flow, drying air temperature) on the size distribution and moisture content of granules (both of the entire granulate and of size fractions). The wet granules were transferred either gravimetrically or pneumatically from the granulator exit to the fluid bed dryer. After a certain drying time, the moisture content reached an equilibrium. This drying time was found to depend on the applied airflow, drying air temperature and filling time. The moisture content of the granules decreased with an increasing drying time, airflow and drying temperature. Although smaller granules dried faster, the multimodal particle size distribution of the granules did not compromise uniform drying of the granules when the target moisture content was achieved. Extensive breakage of granules was observed during drying. Especially wet granules were prone to breakage and attrition during pneumatic transport, either in the wet transfer line or in the dry transfer line. Breakage and attrition of granules during transport and drying should be anticipated early on during process and formulation development by performing integrated experiments on the granulator
Directory of Open Access Journals (Sweden)
A. Rauf
2015-07-01
Full Text Available This article studies the simultaneous impacts of heat and mass transfer of an incompressible electrically conducting micropolar fluid generated by the stretchable disk in presence of porous medium. The thermal radiation effect is accounted via Rosseland’s approximation. The governing boundary layer equations are reduced into dimensionless form by employing the suitable similarity transformations. A finite difference base algorithm is utilized to obtain the solution expressions. The impacts of physical parameters on dimensionless axial velocity, radial velocity, micro-rotation, temperature and concentrations profiles are presented and examined carefully. Numerical computation is performed to compute shear stress, couple stress, heat and mass rate at the disk.
Energy Technology Data Exchange (ETDEWEB)
Rauf, A., E-mail: raufamar@ciitsahiwal.edu.pk; Meraj, M. A. [Department of Mathematics, CIIT Sahiwal 57000 (Pakistan); Ashraf, M.; Batool, K. [Department of CASPAM, Bahauddin Zakariya University, Multan 63000 (Pakistan); Hussain, M. [Department of Sciences & Humanities, National University of computer & Emerging Sciences, Islamabad 44000 (Pakistan)
2015-07-15
This article studies the simultaneous impacts of heat and mass transfer of an incompressible electrically conducting micropolar fluid generated by the stretchable disk in presence of porous medium. The thermal radiation effect is accounted via Rosseland’s approximation. The governing boundary layer equations are reduced into dimensionless form by employing the suitable similarity transformations. A finite difference base algorithm is utilized to obtain the solution expressions. The impacts of physical parameters on dimensionless axial velocity, radial velocity, micro-rotation, temperature and concentrations profiles are presented and examined carefully. Numerical computation is performed to compute shear stress, couple stress, heat and mass rate at the disk.
DEFF Research Database (Denmark)
Feyissa, Aberham Hailu; Christensen, Martin Gram; Pedersen, Søren Juhl
2015-01-01
This paper presents and demonstrates a novel idea of using spherical potatoes as a dispensable, cheap device for determining the fluid-to-particle heat transfer coefficient, hfp in vessel cooking processes. The transmission of heat through the potato can be traced by measuring the distance from...... that the method is rather precise at relevant values of hfp in vessel cooking (100–300 [W/m2K]), allowing a prediction of the centre temperature within ±0.6°C....
International Nuclear Information System (INIS)
Thiele, R.; Ma, W.; Anglart, H.
2011-01-01
Despite many advances in computational fluid dynamics (CFD), heat transfer modeling and validation of code for liquid metal flows needs to be improved. This contribution aims to provide validation of several turbulence models implemented in OpenFOAM. 6 different low Reynolds number and 3 high Reynolds number turbulence models have been validated against experimental data for 3 different Reynolds numbers. The results show that most models are able to predict the temperature profile tendencies and that especially the k-ω-SST by Menter has good predictive capabilities. However, all turbulence models show deteriorating capabilities with decreasing Reynolds numbers. (author)
Numerical Study on Heat Transfer Performance of PCHE With Supercritical CO2 as Working Fluid
International Nuclear Information System (INIS)
Jeon, Sang Woo; Ngo, Ich-long; Byon, Chan
2016-01-01
The printed circuit heat exchanger (PCHE) is regarded as a promising candidate for advanced heat exchangers for the next-generation supercritical CO 2 power generation owing to its high compactness and rigid structure. In this study, an innovative type of PCHE, in which the channel sizes for the heat source fluid and heat sink fluid are different, is considered for analysis. The thermal performance of the PCHE, with supercritical CO 2 as the working fluid, is numerically analyzed. The results have shown that the thermal performance of the PCHE decreases monotonically when the channel size of either the heat source channel or the heat sink channel, because of the decreased flow velocity. On the other hand, the thermal performance of the PCHE is found to be almost independent of the spacing between the channels. In addition, it was found that the channel cross sectional shape has little effect on the thermal performance when the hydraulic diameter of the channel remains constant.
Directory of Open Access Journals (Sweden)
W. M. Okita
2013-12-01
Full Text Available Heat transfer during the freezing of guava pulp conditioned in large containers such as in stacked boxes (34 L and buckets (20 L and unstacked drums (200 L is discussed. The air velocities across the cross-section of the tunnel were measured, and the values in the outlet of the evaporator were used as the initial conditions in computational fluid dynamics (CFD simulations. The model tested was turbulent standard k-ε. The CFD-generated convective heat transfer coefficients were mapped on the surfaces for each configuration and used in procedures for the calculation of freezing-time estimates. These estimates were compared with the experimental results for validation. The results showed that CFD determined representative coefficients and produced good correlations between the predicted and experimental values when applied to the freezing-time estimates for the box and drum configurations. The errors depended on the configuration and the adopted mesh (3-D grid construction.
Amera Aziz, Laila; Kasim, Abdul Rahman Mohd; Zuki Salleh, Mohd; Syahidah Yusoff, Nur; Shafie, Sharidan
2017-09-01
The main interest of this study is to investigate the effect of MHD on the boundary layer flow and heat transfer of viscoelastic micropolar fluid. Governing equations are transformed into dimensionless form in order to reduce their complexity. Then, the stream function is applied to the dimensionless equations to produce partial differential equations which are then solved numerically using the Keller-box method in Fortran programming. The numerical results are compared to published study to ensure the reliability of present results. The effects of selected physical parameters such as the viscoelastic parameter, K, micropolar parameter, K1 and magnetic parameter, M on the flow and heat transfer are discussed and presented in tabular and graphical form. The findings from this study will be of critical importance in the fields of medicine, chemical as well as industrial processes where magnetic field is involved.
International Nuclear Information System (INIS)
Sheely, W.F.
1986-01-01
The Submerged Gravel Scrubber is an air cleaning system developed by the Department of Energy's Liquid Metal Reactor Program. The Scrubber System has been patented by the Department of Energy. This technology is being transferred to industry by the DOE. Its basic principles can be adapted for individual applications and the commercialized version can be used to perform a variety of tasks. The gas to be cleaned is percolated through a continuously washed gravel bed. The passage of the gas through the gravel breaks the stream into many small bubbles rising in a turbulent body of water. These conditions allow very highly efficient removal of aerosols from the gas
Bhatti, M M; Zeeshan, A; Ellahi, R
2016-12-01
In this article, heat transfer analysis on clot blood model of the particle-fluid suspension through a non-uniform annulus has been investigated. The blood propagating along the whole length of the annulus was induced by peristaltic motion. The effects of variable viscosity and slip condition are also taken into account. The governing flow problem is modeled using lubrication approach by taking the assumption of long wavelength and creeping flow regime. The resulting equation for fluid phase and particle phase is solved analytically and closed form solutions are obtained. The physical impact of all the emerging parameters is discussed mathematically and graphically. Particularly, we considered the effects of particle volume fraction, slip parameter, the maximum height of clot, viscosity parameter, average volume flow rate, Prandtl number, Eckert number and fluid parameter on temperature profile, pressure rise and friction forces for outer and inner tube. Numerical computations have been used to determine the behavior of pressure rise and friction along the whole length of the annulus. The present study is also presented for an endoscope as a special case of our study. It is observed that greater influence of clot tends to rise the pressure rise significantly. It is also found that temperature profile increases due to the enhancement in Prandtl number, Eckert number, and fluid parameter. The present study reveals that friction forces for outer tube have higher magnitude as compared to the friction forces for an inner tube. In fact, the results for present study can also be reduced to the Newtonian fluid by taking ζ → ∞. Copyright © 2016 Elsevier Ireland Ltd. All rights reserved.
Investigation of Heat Transfer in Supercritical Fluids for Application to the Generation IV
Energy Technology Data Exchange (ETDEWEB)
Bae, Y. Y.; Kim, H. D.; Song, J. H.; Kim, H. Y.; Cho, B. H.; Kim, H.; Kang, D. J.
2007-08-15
Using a facility named SPHINX, which can accommodate a heat transfer test with CO{sub 2} at supercritical pressure, a series of tests was performed. The test geometries include tubes with the inner diameter of 4.4, 6.32 and 9 mm. a concentric annular passages with 8 x 10 mm, and an eccentric annular passages with 9.5 x 12.5 mm. Based on the test results, heat transfer correlations were developed and compared with the existing correlations. The heat transfer deterioration which may occur at certain conditions of heat and mass flux, were carefully studied and the published criteria were reviewed against our test results. Numerical calculation by using commercial CFD code, Fluent, were performed in order to provide the pre-test information for the heat transfer tests. Various turbulence models were evaluated and reliable models were suggested for each case
Local shell-to-shell energy transfer via nonlocal interactions in fluid ...
Indian Academy of Sciences (India)
However, the shell-to-shell energy transfer rate is found to be local and forward. .... interaction was strong, but the energy exchange occurred predominantly between ..... The wave-number range considered is in the inverse cascade regime.
Dissolution of LMFBR fuel-sodium aerosols
International Nuclear Information System (INIS)
Allen, M.D.; Moss, O.R.
1979-01-01
Plutonium dioxide, normally insoluble in biological fluids, becomes much more soluble when mixed with sodium as the aerosol is formed. Sodium-fuel aerosols are approximately 20 times less soluble in simulated lung fluid than in distilled water. Solubility of sodium-fuel aerosols increases when Na 2 CO 3 are added to the distilled-water dissolution fluid. Mixed-oxide fuel aerosols without sodium present are relatively insoluble in distilled water, simulated lung fluid, and distilled water with Na 2 CO 3 and NaHCO 3 added
Dholey, S.
2018-04-01
In this paper, we have investigated numerically the laminar unsteady separated stagnation-point flow and heat transfer of a viscous fluid over a moving flat surface in the presence of a time dependent free stream velocity which causes the unsteadiness of this flow problem. The plate is assumed to move in the same or opposite direction of the free stream velocity. The flow is therefore governed by the velocity ratio parameter λ (ratio of the plate velocity to the free stream velocity) and the unsteadiness parameter β. When the plate surface moves in the same direction of the free stream velocity (i.e., when λ > 0), the solution of this flow problem continues for any given value of β. On the other hand, when they move in opposite directions (i.e., when λ heat transfer analysis is that for a given value of λ(= 0), first the heat transfer rate increases with the increase of the Prandtl number Pr and after attaining a maximum value, it decreases and finally tends to be zero for large values of Pr depending upon the values of β > 0. On the contrary, for a given value of β(≤ 0), the rate of heat transfer increases consistently with the increase of Pr.
Zawadzka, Olga; Stachlewska, Iwona S.; Markowicz, Krzysztof M.; Nemuc, Anca; Stebel, Kerstin
2018-04-01
During an exceptionally warm September of 2016, the unique, stable weather conditions over Poland allowed for an extensive testing of the new algorithm developed to improve the Meteosat Second Generation (MSG) Spinning Enhanced Visible and Infrared Imager (SEVIRI) aerosol optical depth (AOD) retrieval. The development was conducted in the frame of the ESA-ESRIN SAMIRA project. The new AOD algorithm aims at providing the aerosol optical depth maps over the territory of Poland with a high temporal resolution of 15 minutes. It was tested on the data set obtained between 11-16 September 2016, during which a day of relatively clean atmospheric background related to an Arctic airmass inflow was surrounded by a few days with well increased aerosol load of different origin. On the clean reference day, for estimating surface reflectance the AOD forecast available on-line via the Copernicus Atmosphere Monitoring Service (CAMS) was used. The obtained AOD maps were validated against AODs available within the Poland-AOD and AERONET networks, and with AOD values obtained from the PollyXT-UW lidar. of the University of Warsaw (UW).
Heat transfer to MHD oscillatory dusty fluid flow in a channel filled ...
Indian Academy of Sciences (India)
In this paper, we examine the combined effects of thermal radiation, buoyancy force and magnetic field on oscillatory flow of a conducting optically thin dusty fluid through a vertical channel filled with a saturated porous medium. The governing partial differential equations are obtained and solved analytically by variable ...
MHD flow and heat transfer of a viscous reacting fluid over a ...
African Journals Online (AJOL)
This paper presents a boundary layer flow analysis for a viscous, incompressible, electrically conducting reacting fluid over a stretching sheet in the presence of a magnetic field. It is shown that the Hartmann, Prandtl and the Eckert numbers have effect on the velocity and temperature fields. Journal of the Nigerian ...
Molecular energy transfer by fluid mixing. Progress report, 1 January 1968--1 January 1971
International Nuclear Information System (INIS)
Cool, T.A.
1971-01-01
Highlights are discussed of a program on the use of rapid mixing techniques and high speed flows for laser power enhancement. Three tasks are reviewed: (1) continuous wave chemical laser development, (2) N 2 --CO 2 electrically excited fluid mixing laser techniques, and (3) gas dynamic mixing behind shock waves. Purely chemical HF and DF laser operation is also discussed
Analysis of heat transfer and stress in the pipe with hot fluid flowing through
International Nuclear Information System (INIS)
Charoensri, Apisara; Pichestapong, Pipat; Rodthongkom, Chouvana
2003-10-01
At incomplete mixing area of high temperature and low temperature liquid near the surface of structures, temperature fluctuation of liquid gives thermal fatigue damage to wall structure. This phenomenon is called thermal striping. For designing of piping system, it is important to know thermal stresses of structure due to heat convection. In this study, authors proposed a simplified evaluation method to predict thermal stress from temperature fluctuation, for rational design against thermal striping. It is required to estimate structural responses to temperature fluctuation of fluid. The attenuation process is a thermal coupling problem between fluids and structures and has a sensitive characteristics to frequencies of temperature fluctuations were analyzed by FINAS, which is a computer program based on the finite element method by comparisons of theoretical method. When the inner surface of the pipe is due to heat convection of contained fluid with sinusoidal temperature fluctuation and the outer surface is kept insulated, temperature distribution of structure is analyzed by solving the equation of transient heat conduction. From these temperature distributions, induced thermal stresses in the structure are calculated by thermal elastic analysis. Frequency response characteristics of structures and its mechanism were investigated by both numerical and theoretical methods. Based on above investigation, a structural response diagram was derived, which can predict stress amplitude of structures from temperature amplitude and frequency of fluids
Energy Technology Data Exchange (ETDEWEB)
Muller, J [IRSID, Institut de Recherches Siderurgie, 57 - Maizieres-les-Metz (France)
1997-12-31
Radiant heat transfer is the main solution retained in many iron and steel metallurgy installations (re-heating and annealing furnaces etc..). Today, it has become important to dispose of performing radiant heat transfer models in heat transfer and fluid mechanics simulation softwares, and well adapted to multidimensional industrial problems. This work presents the discrete ordinate radiant heat transfer model developed at the IRSID (the French institute of research in iron and steel metallurgy) and coupled with the PHOENICS heat transfer-fluid mechanics software. Three modeling approaches are presented concerning the radiative properties of gases (H{sub 2}O-CO{sub 2}). A ``weighted grey gases sum`` model gives satisfactory results for several 1-D validation cases. (J.S.) 20 refs.
Energy Technology Data Exchange (ETDEWEB)
Muller, J. [IRSID, Institut de Recherches Siderurgie, 57 - Maizieres-les-Metz (France)
1996-12-31
Radiant heat transfer is the main solution retained in many iron and steel metallurgy installations (re-heating and annealing furnaces etc..). Today, it has become important to dispose of performing radiant heat transfer models in heat transfer and fluid mechanics simulation softwares, and well adapted to multidimensional industrial problems. This work presents the discrete ordinate radiant heat transfer model developed at the IRSID (the French institute of research in iron and steel metallurgy) and coupled with the PHOENICS heat transfer-fluid mechanics software. Three modeling approaches are presented concerning the radiative properties of gases (H{sub 2}O-CO{sub 2}). A ``weighted grey gases sum`` model gives satisfactory results for several 1-D validation cases. (J.S.) 20 refs.
Smith, S. A. F.; Scott, J.; Tarling, M.; Tulley, C. J.; le Roux, P. J.
2017-12-01
At the slab-mantle interface in subduction zones, hydrous fluids released by dehydration reactions are fluxed upwards into the fore-arc mantle corner. The extent to which these fluids can move across the plate interface shear zone has significant implications for understanding the composition of the mantle wedge and the origin of episodic tremor and slow slip. The >1000 km long Livingstone Fault in New Zealand provides a superbly exposed analogue (both in terms of scale and the rock types involved) for the serpentinite shear zone likely to be present along the slab-mantle interface. The Livingstone Fault is a sheared serpentinite mélange up to several hundreds of meters wide that separates greenschist-facies quartzofeldspathic metasediments (e.g. analogue for slab sediments) from variably-serpentinized harzburgitic peridotite (e.g. analogue for mantle wedge). To track element mobility and paleo-fluid flow across the shear zone, Sr and Nd isotopes were measured in five transects across the metasediments, mélange and serpentinized peridotites. Results show that the mélange and serpentinized peridotites (originally with Sr and Nd similar to Permian MORB) were progressively overprinted with the isotopic composition of the metasediments at distances of up to c. 400 m from the mélange-metasediment contact. Mass balance calculations require that many elements were mobile across the mélange shear zone, but permeability modeling indicates that diffusive transfer of such elements is unrealistically slow. Instead, it appears that fluid and element percolation in to and across the mélange was aided by episodic over-pressuring and fracturing, as indicated by the widespread presence of tremolite-bearing breccias and veins that mutually cross-cut the serpentinite mélange fabrics. Overall, the field and isotopic results indicate that fluid and element redistribution within major serpentinite-bearing shear zones is strongly aided by fracturing and brecciation that are
Energy Technology Data Exchange (ETDEWEB)
Lattanzi, Aaron [Univ. of Colorado, Boulder, CO (United States); Hrenya, Christine [Univ. of Colorado, Boulder, CO (United States)
2016-03-31
In today’s industrial economy, energy consumption has never been higher. Over the last 15 years the US alone has consumed an average of nearly 100 quadrillion BTUs per year [21]. A need for clean and renewable energy sources has become quite apparent. The SunShot Initiative is an ambitious effort taken on by the United States Department of Energy that targets the development of solar energy that is cost-competitive with other methods for generating electricity. Specifically, this work is concerned with the development of concentrating solar power plants (CSPs) with granular media as the heat transfer fluid (HTF) from the solar receiver. Unfortunately, the prediction of heat transfer in multiphase flows is not well understood. For this reason, our aim is to fundamentally advance the understanding of multiphase heat transfer, particularly in gas-solid flows, while providing quantitative input for the design of a near black body receiver (NBB) that uses solid grains (like sand) as the HTF. Over the course of this three-year project, a wide variety of contributions have been made to advance the state-of-the art description for non-radiative heat transfer in dense, gas-solid systems. Comparisons between a state-of-the-art continuum heat transfer model and discrete element method (DEM) simulations have been drawn. The results of these comparisons brought to light the limitations of the continuum model due to inherent assumptions in its derivation. A new continuum model was then developed for heat transfer at a solid boundary by rigorously accounting for the most dominant non-radiative heat transfer mechanism (particle-fluid-wall conduction). The new model is shown to be in excellent agreement with DEM data and captures the dependence of heat transfer on particle size, a dependency that previous continuum models were not capable of. DEM and the new continuum model were then employed to model heat transfer in a variety of receiver geometries. The results provided crucial
Energy Technology Data Exchange (ETDEWEB)
Bennion, Kevin; Moreno, Gilberto
2015-09-29
Thermal management for electric machines (motors/ generators) is important as the automotive industry continues to transition to more electrically dominant vehicle propulsion systems. Cooling of the electric machine(s) in some electric vehicle traction drive applications is accomplished by impinging automatic transmission fluid (ATF) jets onto the machine's copper windings. In this study, we provide the results of experiments characterizing the thermal performance of ATF jets on surfaces representative of windings, using Ford's Mercon LV ATF. Experiments were carried out at various ATF temperatures and jet velocities to quantify the influence of these parameters on heat transfer coefficients. Fluid temperatures were varied from 50 degrees C to 90 degrees C to encompass potential operating temperatures within an automotive transaxle environment. The jet nozzle velocities were varied from 0.5 to 10 m/s. The experimental ATF heat transfer coefficient results provided in this report are a useful resource for understanding factors that influence the performance of ATF-based cooling systems for electric machines.
Energy Technology Data Exchange (ETDEWEB)
Johnston, Henry [National Renewable Energy Laboratory (NREL), Golden, CO (United States); Wang, Cong [Colorado School of Mines; Winterfeld, Philip [Colorado School of Mines; Wu, Yu-Shu [Colorado School of Mines
2018-02-14
An efficient modeling approach is described for incorporating arbitrary 3D, discrete fractures, such as hydraulic fractures or faults, into modeling fracture-dominated fluid flow and heat transfer in fractured geothermal reservoirs. This technique allows 3D discrete fractures to be discretized independently from surrounding rock volume and inserted explicitly into a primary fracture/matrix grid, generated without including 3D discrete fractures in prior. An effective computational algorithm is developed to discretize these 3D discrete fractures and construct local connections between 3D fractures and fracture/matrix grid blocks of representing the surrounding rock volume. The constructed gridding information on 3D fractures is then added to the primary grid. This embedded fracture modeling approach can be directly implemented into a developed geothermal reservoir simulator via the integral finite difference (IFD) method or with TOUGH2 technology This embedded fracture modeling approach is very promising and computationally efficient to handle realistic 3D discrete fractures with complicated geometries, connections, and spatial distributions. Compared with other fracture modeling approaches, it avoids cumbersome 3D unstructured, local refining procedures, and increases computational efficiency by simplifying Jacobian matrix size and sparsity, while keeps sufficient accuracy. Several numeral simulations are present to demonstrate the utility and robustness of the proposed technique. Our numerical experiments show that this approach captures all the key patterns about fluid flow and heat transfer dominated by fractures in these cases. Thus, this approach is readily available to simulation of fractured geothermal reservoirs with both artificial and natural fractures.
Energy Technology Data Exchange (ETDEWEB)
Di Piazza, Ivan, E-mail: ivandipiazza@yahoo.i [Dipartimento di Ingegneria Nucleare, Universita degli studi di Palermo, Viale delle Scienze, Edificio 6, CAP 90128, Palermo (Italy)
2009-12-15
An analytical model of fluid flow and heat transfer of a Nuclear Thermal Rocket (NTR) engine concept is presented. The engine is based on the direct conversion of the kinetic energy of the fission fragments (FFs) into the propellant enthalpy. The FFs can escape from an extremely thin layer of fissionable material: a sufficiently large surface coated with few micrometers of Americium 242m, confined by a neutron moderator-reflector, may become a critical reactor. Three dimensional coupled CFD-Monte Carlo simulations have already been presented in . In this paper, an analytical integral 1-D model of fluid dynamics and heat transfer is built in order to foresee the performances on the basis of simple, physically founded correlations. The Peclet number has been identified as the main governing parameter of the system, and theoretically based correlations have been found for the thermodynamic efficiency of the engine and for the specific impulse. The correlations show a good agreement with numerical results presented in from fully coupled 3D CFD-Monte Carlo calculations.
International Nuclear Information System (INIS)
Selvakumar, P.; Somasundaram, P.; Thangavel, P.
2014-01-01
Highlights: • Instant hot water at temperatures between 40 °C and 68 °C in the low solar radiation range of 240–540 W/m 2 . • Usage of therminol D-12 and parabolic trough in low temperature application. • Stability of thermal and flow properties of therminol D-12 are studied. - Abstract: Fossil fuels and electrical energy are widely used for instant hot water generation in rural and urban areas. Also, conventional solar water heaters do not support instant hot water generation because of various problems. A new system with evacuated tube collector using synthetic oil as heat transfer fluid coupled with parabolic trough is developed and studied experimentally for instant hot water generation in the presence of low solar irradiance. Among the different grades of therminol, therminol D-12 is chosen for the study because of its thermal stability. Parabolic trough is coupled to evacuated tube to enhance the flow as well as heating characteristics of therminol. Heating efficiency and temperature characteristics are determined for the newly developed system under low solar irradiance conditions. Instant hot water can be produced by the new system at a temperature of 60 °C in the presence of low solar radiation. This newly developed system has the ability to check the fossil fuel consumption and electrical energy consumption for instant hot water generation in household applications. The stability of the heat transfer fluid is also ensured by repeated experiments
Heat transfer control in a plane magnetic fluid layer with a free surface
International Nuclear Information System (INIS)
Bashtovoi, V.G.; Pogirnitskaya, S.G.; Reks, A.G.
1993-01-01
The heat transfer mechanisms that are specific to a magnetic liquid have been already investigated extensively. The high sensitivity of the free magnetic liquid surface to the external magnetic field introduces a new feature into the heat transfer process. In the present work, the authors have investigated the possibility of controlling the heat transfer through the phenomenon of magnetic liquid surface instability in a uniform magnetic field. The conditions for heat transfer through a chamber, partially filled with a magnetic liquid, are governed by the characteristics of the free liquid surface and by its stability and development in the supercritical magnetic fields. The authors consider a model two-dimensional problem of heat transfer through a two-layer medium consisting of horizontally situated immiscible layers of magnetic and nonmagnetic liquids with given thermal conductivities. In the absence of an external magnetic field, the interface of the liquids represents a plane surface. In fields which exceed the critical magnitude, the interface is deformed along the wave. As the field intensity is increased, the amplitude of interface distortion becomes larger. The two-dimensional shape of the free magnetic liquid surface may be realized experimentally using two plane layers of magnetic and nonmagnetic liquids in a uniform magnetic field tangent to the interface of the component layers. 7 refs., 9 figs
Johnson, Alexander; Brace, Christopher
2015-01-01
Interventional oncology procedures such as thermal ablation are becoming widely used for many tumours in the liver, kidney and lung. Thermal ablation refers to the focal destruction of tissue by generating cytotoxic temperatures in the treatment zone. Hydrodissection - separating tissues with fluids - protects healthy tissues adjacent to the ablation treatment zone to improve procedural safety, and facilitate more aggressive power application or applicator placement. However, fluids such as normal saline and 5% dextrose in water (D5W) can migrate into the peritoneum, reducing their protective efficacy. As an alternative, a thermo-gelable poloxamer 407 (P407) solution has been recently developed to facilitate hydrodissection procedures. We hypothesise that the P407 gel material does not provide convective heat dissipation from the ablation site, and therefore may alter the heat transfer dynamics compared to liquid materials during hydrodissection-assisted thermal ablation. The purpose of this study was to investigate the heat dissipation mechanics within D5W, liquid P407 and gel P407 hydrodissection barriers. Overall it was shown that the gel P407 dissipated heat primarily through conduction, whereas the liquid P407 and D5W dissipated heat through convection. Furthermore, the rate of temperature change within the gel P407 was greater than liquid P407 and D5W. Testing to evaluate the in vivo efficacy of the fluids with different modes of heat dissipation seems warranted for further study.
International Nuclear Information System (INIS)
Ahola, M.P.; Karimi, A.
1996-01-01
In boundary layer analyses involving heat transfer, the Prandtl number (Pr) relates the diffusion of momentum to the diffusion of heat, and can be shown to directly correlate to the ratio of the thermal boundary layer thickness to the velocity boundary layer thickness. For large Prandtl number fluids (i.e., Pr > 1) the velocity boundary layer thickness is larger than the thermal boundary layer thickness, and vice versa. In some applications in the industry heating does not occur over the entire plate, such as in the case of an unheated starting region or spot heating along a finite segment of the plate. For such applications solutions only exist for the simpler case of large Prandtl number fluids where the thermal boundary layer is assumed to be smaller than the velocity boundary layer. The analyses presented in this paper extends the solution to the unheated starting region problem for small Prandtl number fluids, where the thermal boundary layer grows larger and crosses the velocity boundary layer. The solution is based on the integral method approach assuming laminar flow, and both cases of constant wall temperature as well as constant wall heat flux are analyzed
Directory of Open Access Journals (Sweden)
Asmat Ara
2018-01-01
Full Text Available This article explores the Jeffery-Hamel flow of an incompressible non-Newtonian fluid inside non-parallel walls and observes the influence of heat transfer in the flow field. The fluid is considered to be micropolar fluid that flows in a convergent/divergent channel. The governing nonlinear partial differential equations (PDEs are converted to nonlinear coupled ordinary differential equations (ODEs with the help of a suitable similarity transformation. The resulting nonlinear analysis is determined analytically with the utilization of the Taylor optimization method based on differential evolution (DE algorithm. In order to understand the flow field, the effects of pertinent parameters such as the coupling parameter, spin gradient viscosity parameter and the Reynolds number have been examined on velocity and temperature profiles. It concedes that the good results can be attained by an implementation of the proposed method. Ultimately, the accuracy of the method is confirmed by comparing the present results with the results obtained by Runge-Kutta method.
Hamid, Aamir; Hashim; Khan, Masood
2018-06-01
The main concern of this communication is to investigate the two-layer flow of a non-Newtonian rheological fluid past a wedge-shaped geometry. One remarkable aspect of this article is the mathematical formulation for two-dimensional flow of Williamson fluid by incorporating the effect of infinite shear rate viscosity. The impacts of heat transfer mechanism on time-dependent flow field are further studied. At first, we employ the suitable non-dimensional variables to transmute the time-dependent governing flow equations into a system of non-linear ordinary differential equations. The converted conservation equations are numerically integrated subject to physically suitable boundary conditions with the aid of Runge-Kutta Fehlberg integration procedure. The effects of involved pertinent parameters, such as, moving wedge parameter, wedge angle parameter, local Weissenberg number, unsteadiness parameter and Prandtl number on the non-dimensional velocity and temperature distributions have been evaluated. In addition, the numerical values of the local skin friction coefficient and the local Nusselt number are compared and presented through tables. The outcomes of this study indicate that the rate of heat transfer increases with the growth of both wedge angle parameter and unsteadiness parameter. Moreover, a substantial rise in the fluid velocity is observed with enhancement in the viscosity ratio parameter while an opposite trend is true for the non-dimensional temperature field. A comparison is presented between the current study and already published works and results found to be in outstanding agreement. Finally, the main findings of this article are highlighted in the last section.
Zhong, Efang; Li, Qian; Sun, Shufen; Chen, Wen; Chen, Shangfeng; Nath, Debashis
2017-11-01
The presence of light-absorbing aerosols (LAA) in snow profoundly influence the surface energy balance and water budget. However, most snow-process schemes in land-surface and climate models currently do not take this into consideration. To better represent the snow process and to evaluate the impacts of LAA on snow, this study presents an improved snow albedo parameterization in the Snow-Atmosphere-Soil Transfer (SAST) model, which includes the impacts of LAA on snow. Specifically, the Snow, Ice and Aerosol Radiation (SNICAR) model is incorporated into the SAST model with an LAA mass stratigraphy scheme. The new coupled model is validated against in-situ measurements at the Swamp Angel Study Plot (SASP), Colorado, USA. Results show that the snow albedo and snow depth are better reproduced than those in the original SAST, particularly during the period of snow ablation. Furthermore, the impacts of LAA on snow are estimated in the coupled model through case comparisons of the snowpack, with or without LAA. The LAA particles directly absorb extra solar radiation, which accelerates the growth rate of the snow grain size. Meanwhile, these larger snow particles favor more radiative absorption. The average total radiative forcing of the LAA at the SASP is 47.5 W m-2. This extra radiative absorption enhances the snowmelt rate. As a result, the peak runoff time and "snow all gone" day have shifted 18 and 19.5 days earlier, respectively, which could further impose substantial impacts on the hydrologic cycle and atmospheric processes.
Analysis of fluid flow and heat transfer in a double pipe heat exchanger with porous structures
International Nuclear Information System (INIS)
Targui, N.; Kahalerras, H.
2008-01-01
A numerical study of flow and heat transfer characteristics is made in a double pipe heat exchanger with porous structures inserted in the annular gap in two configurations: on the inner cylinder (A) and on both the cylinders in a staggered fashion (B). The flow field in the porous regions is modelled by the Darcy-Brinkman-Forchheimer model and the finite volume method is used to solve the governing equations. The effects of several parameters such as Darcy number, porous structures thickness and spacing and thermal conductivity ratio are considered in order to look for the most appropriate properties of the porous structures that allow optimal heat transfer enhancement. It is found that the highest heat transfer rates are obtained when the porous structures are attached in configuration B especially at small spacing and high thicknesses
SWIFT, 3-D Fluid Flow, Heat Transfer, Decay Chain Transport in Geological Media
International Nuclear Information System (INIS)
Cranwell, R.M.; Reeves, M.
2003-01-01
1 - Description of problem or function: SWIFT solves the coupled or individual equations governing fluid flow, heat transport, brine displacement, and radionuclide displacement in geologic media. Fluid flow may be transient or steady-state. One, two, or three dimensions are available and transport of radionuclides chains is possible. 4. Method of solution: Finite differencing is used to discretize the partial differential equations in space and time. The user may choose centered or backward spatial differencing, coupled with either central or backward temporal differencing. The matrix equations may be solved iteratively (two line successive-over-relaxation) or directly (special matrix banding and Gaussian elimination). 5. Restrictions on the complexity of the problem: On the CDC7600 in direct solution mode, the maximum number of grid blocks allowed is approximately 1400
A multi-fluid model to simulate heat and mass transfer in a PEM fuel cell
DEFF Research Database (Denmark)
Berning, Torsten; Odgaard, Madeleine; Kær, Søren Knudsen
2011-01-01
This article summarizes a multi-phase model of a polymer electrolyte membrane fuel cell based on the formerly commercial CFD code CFX-4. It is three-dimensional in nature and includes multiphase heat and mass transfer in porous media. An overview is given and some numerical issues are discussed...... heat and mass transfer properties are superior. Another important aspect of this study is the wetting status of the electrolyte menbrane and the effective drag of water through the menbrane, which indicates what fraction of the product water created at the cathode side diffuses through the membrane...
Energy transfer between a nanosystem and its host fluid: A multiscale factorization approach
Sereda, Yuriy V.; Espinosa-Duran, John M.; Ortoleva, Peter J.
2014-02-01
Energy transfer between a macromolecule or supramolecular assembly and a host medium is considered from the perspective of Newton's equations and Lie-Trotter factorization. The development starts by demonstrating that the energy of the molecule evolves slowly relative to the time scale of atomic collisions-vibrations. The energy is envisioned to be a coarse-grained variable that coevolves with the rapidly fluctuating atomistic degrees of freedom. Lie-Trotter factorization is shown to be a natural framework for expressing this coevolution. A mathematical formalism and workflow for efficient multiscale simulation of energy transfer is presented. Lactoferrin and human papilloma virus capsid-like structure are used for validation.
Energy transfer between a nanosystem and its host fluid: A multiscale factorization approach
International Nuclear Information System (INIS)
Sereda, Yuriy V.; Espinosa-Duran, John M.; Ortoleva, Peter J.
2014-01-01
Energy transfer between a macromolecule or supramolecular assembly and a host medium is considered from the perspective of Newton's equations and Lie-Trotter factorization. The development starts by demonstrating that the energy of the molecule evolves slowly relative to the time scale of atomic collisions-vibrations. The energy is envisioned to be a coarse-grained variable that coevolves with the rapidly fluctuating atomistic degrees of freedom. Lie-Trotter factorization is shown to be a natural framework for expressing this coevolution. A mathematical formalism and workflow for efficient multiscale simulation of energy transfer is presented. Lactoferrin and human papilloma virus capsid-like structure are used for validation
Transfer effects after working memory training lead to improved fluid intelligence
Onken, Johanna
2013-01-01
Fluid intelligence describes the ability to think abstract, to adapt to new situations and to solve unknown problems. It is important for learning as well as for academic and professional success. Working memory is characterized as a cognitive system, that saves information over a short period of time in spite of possible distractions. More- over, working memory is able to assess the relevance of information while requirements change. Effective implicit training is able to increase the workin...
Directory of Open Access Journals (Sweden)
Tim eBogg
2015-01-01
Full Text Available In recent years, cognitive scientists and commercial interests (e.g., Fit Brains, Lumosity have focused research attention and financial resources on cognitive tasks, especially working memory tasks, to explore and exploit possible transfer effects to general cognitive abilities, such as fluid intelligence. The increased research attention has produced mixed findings, as well as contention about the disposition of the evidence base. To address this contention, J. Au and colleagues (2014; doi:10.3758/s13423-014-0699-x recently conducted a meta-analysis of extant controlled experimental studies of n-back task training transfer effects on measures of fluid intelligence in healthy adults; the results of which showed a small training transfer effect. Using several approaches, the current review evaluated and re-analyzed the meta-analytic data for the presence of two different forms of small-study effects: 1 publication bias in the presence of low power and; 2 low power in the absence of publication bias. The results of these approaches showed no evidence of selection bias in the working memory training literature, but did show evidence of small-study effects related to low power in the absence of publication bias. While the effect size estimate identified by Au and colleagues provided the most precise estimate to date, it should be interpreted in the context of a uniformly low-powered base of evidence. The present work concludes with a brief set of considerations for assessing the adequacy of a body of research findings for the application of meta-analytic techniques.
Heat Transfer and Fluid Dynamics Measurements in the Expansion Space of a Stirling Cycle Engine
Jiang, Nan; Simon, Terrence W.
2006-01-01
The heater (or acceptor) of a Stirling engine, where most of the thermal energy is accepted into the engine by heat transfer, is the hottest part of the engine. Almost as hot is the adjacent expansion space of the engine. In the expansion space, the flow is oscillatory, impinging on a two-dimensional concavely-curved surface. Knowing the heat transfer on the inside surface of the engine head is critical to the engine design for efficiency and reliability. However, the flow in this region is not well understood and support is required to develop the CFD codes needed to design modern Stirling engines of high efficiency and power output. The present project is to experimentally investigate the flow and heat transfer in the heater head region. Flow fields and heat transfer coefficients are measured to characterize the oscillatory flow as well as to supply experimental validation for the CFD Stirling engine design codes. Presented also is a discussion of how these results might be used for heater head and acceptor region design calculations.
Numerical analysis of fluid flow and heat transfer in a helical ...
African Journals Online (AJOL)
DR OKE
combustion gases to convergent divergent nozzles of a liquid propellant rocket engine. Lin et al. (1997)conducted a fully elliptic numerical study to investigate three-dimensional turbulent developing convective heat transfer in helical pipes with finite pitches. Results discuss the developments of effective thermal conductivity, ...
Directory of Open Access Journals (Sweden)
M. M. Keshtkar
2017-06-01
Full Text Available This paper focuses on solving the fluid flow and heat transfer equations inside a two-dimensional square enclosure containing three hot obstacles affected by gravity and magnetic force placed on a ramp using Boltzmann method (LBM applying multiple relaxation times (MRT. Although, the Lattice Boltzmann with MRT is a complex technique, it is a relatively new, stable, fast and high-accurate one. The main objective of this research was to numerically model the fluid flow and ultimately obtaining the velocity field, flow and temperature contour lines inside a two-dimensional enclosure. The results and their comparisons for different types of heat transfer revealed that free or forced heat transfer has a considerable impact on the heat transfer and stream lines. This can be controlled by modifying the Richardson number. It is revealed that changing the intensity of the magnetic field (Hartman number has an appreciable effect on the heat transfer.
Energy Technology Data Exchange (ETDEWEB)
Pioro, I.L.; Duffey, R.B
2003-04-01
This survey consists of 430 references, including 269 Russian publications and 161 Western publications devoted to the problems of heat transfer and hydraulic resistance of a fluid at near-critical and supercritical pressures. The objective of the literature survey is to compile and summarize findings in the area of heat transfer and hydraulic resistance at supercritical pressures for various fluids for the last fifty years published in the open Russian and Western literature. The analysis of the publications showed that the majority of the papers were devoted to the heat transfer of fluids at near-critical and supercritical pressures flowing inside a circular tube. Three major working fluids are involved: water, carbon dioxide, and helium. The main objective of these studies was the development and design of supercritical steam generators for power stations (utilizing water as a working fluid) in the 1950s, 1960s, and 1970s. Carbon dioxide was usually used as the modeling fluid due to lower values of the critical parameters. Helium, and sometimes carbon dioxide, were considered as possible working fluids in some special designs of nuclear reactors. (author)
Tian, C.; Weng, J.; Liu, Y.
2017-11-01
The convection heat transfer coefficient is one of the evaluation indexes of the brake disc performance. The method used in this paper to calculate the convection heat transfer coefficient is a fluid-solid coupling simulation method, because the calculation results through the empirical formula method have great differences. The model, including a brake disc, a car body, a bogie and flow field, was built, meshed and simulated in the software FLUENT. The calculation models were K-epsilon Standard model and Energy model. The working condition of the brake disc was considered. The coefficient of various parts can be obtained through the method in this paper. The simulation result shows that, under 160 km/h speed, the radiating ribs have the maximum convection heat transfer coefficient and the value is 129.6W/(m2·K), the average coefficient of the whole disc is 100.4W/(m2·K), the windward of ribs is positive-pressure area and the leeward of ribs is negative-pressure area, the maximum pressure is 2663.53Pa.
Hina, S; Mustafa, M; Hayat, T; Alsaedi, A
2016-10-01
In this work, we explore the heat transfer characteristics in the peristaltic transport of Powell-Eyring fluid inside a curved channel with complaint walls. The study has motivation toward the understanding of blood flow in microcirculatory system. Formulation is developed in the existence of velocity slip and temperature jump conditions. Perturbation approach has been utilized to present series expressions of axial velocity and temperature distributions. Streamlines are prepared to analyze the interesting phenomenon of trapping. Moreover, the plots of heat transfer coefficient for a broad range of embedded parameters are presented and discussed. The results indicate that slip effects substantially influence the velocity and temperature distributions. Axial flow accelerates when slip parameter is incremented. Temperature rises and wall heat flux grows when viscous dissipation effect is strengthened. In contrast to the planar channels, here velocity and temperature functions do not exhibit symmetry with respect to the central line. In addition, bolus size and its shape are different in upper and lower portions of the channel. Heat transfer coefficient enlarges when the curvature effects are reduced. The behaviors of wall tension and wall mass parameters on the profiles are qualitatively similar. Copyright © 2016 Elsevier Ireland Ltd. All rights reserved.
Energy Technology Data Exchange (ETDEWEB)
Braun, T.
2004-07-01
Today, German nuclear power plants are leading in safety standards worldwide. Increasing potentials arise continuously along with improvements in technology. One of these potentials is the best-estimate simulation of fission product transport in case of a severe accident. A main part of the fission products is allocated on aerosols. Therefore, the aerosol behavior before containment leakage is important for the radioactive source term to the environment. Having a good knowledge about the main aerosol phenomena, it is possible to simulate them numerically. This enables to develop and test safety measures to limit damages before accidents occur. Within this study, the main aerosol phenomena have been ascertained and accordingly classified into formation, transport and reduction. On this basis, simulations of one- and multi-component aerosol experiments of the KAEVER series have been performed with the COCOSYS code. Due to an overprediction of the computed volume condensation rate, the results showed an overestimation of the reduction rate of insoluble aerosols. The reason was found to be the underestimation of the wall condensation rate. Based on an additional plain thermal hydraulic multi compartment experiment, these uncertainties in the wall heat transfer correlations were investigated in detail. The results show a strong dependency between the wall condensation rate and the convective heat transfer, resp. the characteristic length. In case of mainly forced convection, correct values for the characteristic length led to an underestimation of the calculated heat transfer coefficients. The analysis of the heat transfer models show an inconsistency in the coupling of free and forced convection. Therefore, an improved and consistent convection model has been developed and implemented. Both models have been tested on different experiments. Although the new model shows only minor improvements, it could be proven that the influence for forced convection is significant
Mass transfer of Disperse Red 153 and its crude dye in supercritical CO2 fluid
Directory of Open Access Journals (Sweden)
Zheng Huan-Da
2017-01-01
Full Text Available In this paper, polyester fibers were dyed with Disperse Red 153 and its crude dye in supercritical CO2. The effect of dyeing temperature, dyeing time, dyeing pressure, as well as auxiliaries in the commercialized Disperse Red 153 on the dyeing performance of polyester fibers was investigated. The obtained results showed that the dyeing effect of crude dye for polyester was better than that of Disperse Red 153 in the same dyeing condition. The color strength values of the dyed polyester samples were increased gradually with the increase of temperature and pressure since mass transfer of dye was improved. In addition, the mass transfer model of Disperse Red 153 in supercritical CO2 was also proposed.
Energy transfer between a nanosystem and its host fluid: A multiscale factorization approach
Energy Technology Data Exchange (ETDEWEB)
Sereda, Yuriy V.; Espinosa-Duran, John M.; Ortoleva, Peter J., E-mail: ortoleva@indiana.edu [Center for Cell and Virus Theory, Department of Chemistry, Indiana University, 800 E. Kirkwood Ave, Bloomington, Indiana 47405 (United States)
2014-02-21
Energy transfer between a macromolecule or supramolecular assembly and a host medium is considered from the perspective of Newton's equations and Lie-Trotter factorization. The development starts by demonstrating that the energy of the molecule evolves slowly relative to the time scale of atomic collisions-vibrations. The energy is envisioned to be a coarse-grained variable that coevolves with the rapidly fluctuating atomistic degrees of freedom. Lie-Trotter factorization is shown to be a natural framework for expressing this coevolution. A mathematical formalism and workflow for efficient multiscale simulation of energy transfer is presented. Lactoferrin and human papilloma virus capsid-like structure are used for validation.
Modelling flow and heat transfer around a seated human body by computational fluid dynamics
DEFF Research Database (Denmark)
Sørensen, Dan Nørtoft; Voigt, Lars Peter Kølgaard
2003-01-01
A database (http://www.ie.dtu.dk/manikin) containing a detailed representation of the surface geometry of a seated female human body was created from a surface scan of a thermal manikin (minus clothing and hair). The radiative heat transfer coefficient and the natural convection flow around...... of the computational manikin has all surface features of a human being; (2) the geometry is an exact copy of an experimental thermal manikin, enabling detailed comparisons between calculations and experiments....
Energy Technology Data Exchange (ETDEWEB)
Ramadhan, Anwar Ilmar, E-mail: anwar.ilmar@ftumj.ac.id; Diniardi, Ery, E-mail: ery.diniardi@ftumj.ac.id [Mechanical Engineering Department, Faculty of Engineering, Universitas Muhammadiyah Jakarta Jl. Cempaka Putih Tengah 27 Jakarta 10510 Indonesia (Indonesia); Dermawan, Erwin, E-mail: erwin.dermawan@ftumj.ac.id [Electrical Engineering Department, Faculty of Engineering, Universitas Muhammadiyah Jakarta Jl. Cempaka Putih Tengah 27 Jakarta 10510 Indonesia (Indonesia)
2016-06-03
Heating or cooling fluid is a major requirement in the industrial sector, including transport, energy and production needs of the field and the field of electronics. It is known that the thermal properties of the working fluid hold an important role in the development of energy efficiency of heat transfer equipment. The cooling system can be improved either by replacing conventional cooling fluid from the fluid into the fluid of water mixed with nanoparticles (nanofluid). The method of this research is to analyze the calculations and numerical simulations of the nanofluid Al{sub 2}O{sub 3}− Water with the volume fraction of 1% and 3% coolant fluid using CFD Codes. The results of this research show the rate of heat transfer at the increasing velocity of fluid flow, with the velocity of 5 [m/s]. Whereas the 3% nanofluid have greater value than the 1% nanofluid and water, as well as for the velocity of 10 [m/s] which has almost the same pattern. Shown that the concentration of nanofluid has a value effective for improving heat release along the fluid flow rate.
Numerical simulation of fluid flow and heat transfer in enhanced copper tube
International Nuclear Information System (INIS)
Rahman, M M; Zhen, T; Kadir, A K
2013-01-01
Inner grooved tube is enhanced with grooves by increasing the inner surface area. Due to its high efficiency of heat transfer, it is used widely in power generation, air conditioning and many other applications. Heat exchanger is one of the example that uses inner grooved tube to enhance rate heat transfer. Precision in production of inner grooved copper tube is very important because it affects the tube's performance due to various tube parameters. Therefore, it is necessary to carry out analysis in optimizing tube performance prior to production in order to avoid unnecessary loss. The analysis can be carried out either through experimentation or numerical simulation. However, experimental study is too costly and takes longer time in gathering necessary information. Therefore, numerical simulation is conducted instead of experimental research. Firstly, the model of inner grooved tube was generated using SOLIDWORKS. Then it was imported into GAMBIT for healing, followed by meshing, boundary types and zones settings. Next, simulation was done in FLUENT where all the boundary conditions are set. The simulation results were observed and compared with published experimental results. It showed that heat transfer enhancement in range of 649.66% to 917.22% of inner grooved tube compared to plain tube.
Numerical simulation of fluid flow and heat transfer in enhanced copper tube
Rahman, M. M.; Zhen, T.; Kadir, A. K.
2013-06-01
Inner grooved tube is enhanced with grooves by increasing the inner surface area. Due to its high efficiency of heat transfer, it is used widely in power generation, air conditioning and many other applications. Heat exchanger is one of the example that uses inner grooved tube to enhance rate heat transfer. Precision in production of inner grooved copper tube is very important because it affects the tube's performance due to various tube parameters. Therefore, it is necessary to carry out analysis in optimizing tube performance prior to production in order to avoid unnecessary loss. The analysis can be carried out either through experimentation or numerical simulation. However, experimental study is too costly and takes longer time in gathering necessary information. Therefore, numerical simulation is conducted instead of experimental research. Firstly, the model of inner grooved tube was generated using SOLIDWORKS. Then it was imported into GAMBIT for healing, followed by meshing, boundary types and zones settings. Next, simulation was done in FLUENT where all the boundary conditions are set. The simulation results were observed and compared with published experimental results. It showed that heat transfer enhancement in range of 649.66% to 917.22% of inner grooved tube compared to plain tube.
Effects of fluid flow on heat transfer in large rotating electrical machines
International Nuclear Information System (INIS)
Lancial, Nicolas
2014-01-01
EDF operates a large number of electrical rotating machines in its electricity generation capacity. Thermal stresses which affect them can cause local heating, sufficient to damage their integrity. The present work contributes to provide methodologies for detecting hot spots in these machines, better understanding the topology of rotating flows and identifying their effects on heat transfer. Several experimental scale model were used by increasing their complexity to understand and validate the numerical simulations. A first study on a turbulent wall jet over a non-confined backward-facing step (half-pole hydro-generator) notes significant differences compared to results from confined case: both of them are present in an hydro-generator. A second study was done on a small confined rotating scale model to determinate the effects of a Taylor-Couette-Poiseuille on temperature distribution and position of hot spots on the heated rotor, by studying the overall flow regimes flow. These studies have helped to obtain a reliable method based on conjugate heat transfer (CHT) simulations. Another method, based on FEM coupled with the use of an inverse method, has been studied on a large model of hydraulic generator so as to solve the computation time issue of the first methodology. It numerically calculates the convective heat transfer from temperature measurements, but depends on the availability of experimental data. This work has also developed new no-contact measurement techniques as the use of a high-frequency pyrometer which can be applied on rotating machines for monitoring temperature. (author)
Energy Technology Data Exchange (ETDEWEB)
Bell, Jason R [ORNL; Joseph III, Robert Anthony [ORNL; McFarlane, Joanna [ORNL; Qualls, A L [ORNL
2012-05-01
Concentrating solar power (CSP) may be an alternative to generating electricity from fossil fuels; however, greater thermodynamic efficiency is needed to improve the economics of CSP operation. One way of achieving improved efficiency is to operate the CSP loop at higher temperatures than the current maximum of about 400 C. ORNL has been investigating a synthetic polyaromatic oil for use in a trough type CSP collector, to temperatures up to 500 C. The oil was chosen because of its thermal stability and calculated low vapor and critical pressures. The oil has been synthesized using a Suzuki coupling mechanism and has been tested in static heating experiments. Analysis has been conducted on the oil after heating and suggests that there may be some isomerization taking place at 450 C, but the fluid appears to remain stable above that temperature. Tests were conducted over one week and further tests are planned to investigate stabilities after heating for months and in flow configurations. Thermochemical data and thermophysical predictions indicate that substituted polyaromatic hydrocarbons may be useful for applications that run at higher temperatures than possible with commercial fluids such as Therminol-VP1.
Analyses of fluid flow and heat transfer inside calandria vessel of CANDU-6 reactor using CFD
International Nuclear Information System (INIS)
Yu, Seon Oh; Kim, Man Woong; Kim, Hho Jung
2005-01-01
In a CANDU (CANada Deuterium Uranium) reactor, fuel channel integrity depends on the coolability of the moderator as an ultimate heat sink under transient conditions such as a Loss Of Coolant Accident (LOCA) with coincident Loss Of Emergency Core Cooling (LOECC). as well as normal operating conditions. This study presents assessments of moderator thermal-hydraulic characteristics in the normal operating conditions and one transient condition for CANDU-6 reactors, using a general purpose three-dimensional computational fluid dynamics code. First, an optimized calculation scheme is obtained by many-sided comparisons of the predicted results with the related experimental data, and by evaluating the fluid flow and temperature distributions. Then, using the optimized scheme, analyses of real CANDU-6 in normal operating conditions and the transition condition have been performed. The present model successfully predicted the experimental results and also reasonably assessed the thermal-hydraulic characteristics of a real CANDU-6 with 380 fuel channels. A flow regime map with major parameters representing the flow pattern inside a calandria vessel has also proposed to be used as operational and/or regulatory guidelines
Use and groundwater risk potential of additives in heat transfer fluids for borehole heat exchangers
International Nuclear Information System (INIS)
Ilieva, Dafina
2014-01-01
Ground based heat exchanger systems need to be evaluated in terms of potential effects on groundwater quality due to the risk of leakage of borehole heat exchanger fluids. The aim of this work was to identify the compounds which are present in additive mixtures and to investigate experimentally their biodegradability and effects on the biodegradation of the major organic component in borehole heat exchanger fluids. A data survey was carried out in cooperation with the State Ministry of the Environment Baden-Wuerttemberg, Germany to collect detailed information about the identity and application amounts of additives in borehole heat exchanger fluids. The survey revealed that numerous additives of various chemical classes and properties are used as corrosion inhibitors, alkalis, dyes, organic solvents, flavors, defoamers and surfactants. Furthermore, it was shown that glycols are among the most often applied antifreeze agents, the main component of the heat exchanger fluids. Based on the prioritization criteria (i) abundance in the borehole heat exchanger fluids, (ii) persistence, and (iii) mobility in the subsurface, the additives benzotriazole, tolyltriazole, 2-ethylhexanoate, benzoate and decane dicarboxylate were selected for further biodegradation experiments. The biodegradation experiments were carried out in batch systems with 60- or 70-m-deep sediments (sandstone or marl) as inoculum. The samples were taken during the installation of borehole heat exchanger systems at two different sites. The microcosms were conducted under oxic, denitrifying, iron- and sulfate-reducing as well as fermentative conditions at the presumed aquifer temperature of 12 C. The major component ethylene glycol was degraded under all conditions studied. The fastest biodegradation occurred under oxic and nitrate-reducing conditions (< 15 days). In all anoxic, nitrate free experiments with marl-sediment fermentation was the predominant process involved in the biodegradation of ethylene
International Nuclear Information System (INIS)
Harvego, E. A.; Siefken, L. J.
2000-01-01
The SCDAP/RELAP5 code is being developed at the Idaho National Engineering and Environmental Laboratory under the primary sponsorship of the U.S. Nuclear Regulatory Commission (NRC) to provide best-estimate transient simulations of light water reactor coolant systems during severe accidents. This paper describes the modeling approach used in the SCDAP/RELAP5 code to calculate fluid heat transfer and flow losses through porous debris that has accumulated in the vessel lower head and core regions during the latter stages of a severe accident. The implementation of heat transfer and flow loss correlations into the code is discussed, and calculations performed to assess the validity of the modeling approach are described. The different modes of heat transfer in porous debris include: (1) forced convection to liquid, (2) forced convection to gas, (3) nucleate boiling, (4) transition boiling, (5) film boiling, and (6) transition from film boiling to convection to vapor. The correlations for flow losses in porous debris include frictional and form losses. The correlations for flow losses were integrated into the momentum equations in the RELAP5 part of the code. Since RELAP5 is a very general non-homogeneous non-equilibrium thermal-hydraulics code, the resulting modeling methodology is applicable to a wide range of debris thermal-hydraulic conditions. Assessment of the SCDAP/RELAP5 debris bed thermal-hydraulic models included comparisons with experimental measurements and other models available in the open literature. The assessment calculations, described in the paper, showed that SCDAP/RELAP5 is capable of calculating the heat transfer and flow losses occurring in porous debris regions that may develop in a light water reactor during a severe accident
Directory of Open Access Journals (Sweden)
Waini Iskandar
2017-01-01
Full Text Available In this paper, the effect of aligned magnetic field towards the flow and heat transfer of the upper-convected Maxwell (UCM fluid over a stretching/shrinking sheet is numerically studied. The governing partial differential equations are reduced into a system of ordinary differential equations using a similarity transformation, which are then solved numerically using the shooting method. The skin friction and heat transfer coefficients, the velocity, as well as the temperature profiles of the fluid are presented and discussed. Results indicate that an increase in the aligned angle strengthens the applied magnetic field which decrease the velocity and increase the temperature profiles of the fluid. This implies that an increase in the aligned angle increases the skin friction coefficient and decreases the heat transfer coefficients.
Directory of Open Access Journals (Sweden)
B. Y. Ogunmola
2016-01-01
Full Text Available Regular perturbation technique is applied to analyze the fluid flow and heat transfer in a pipe containing third-grade fluid with temperature-dependent viscosities and heat generation under slip and no slip conditions. The obtained approximate solutions were used to investigate the effects of slip on the heat transfer characteristics of the laminar flow in a pipe under Reynolds’s and Vogel’s temperature-dependent viscosities. Also, the effects of parameters such as variable viscosity, non-Newtonian parameter, viscous dissipation, and pressure gradient at various values were established. The results of this work were compared with the numerical results found in literature and good agreements were established. The results can be used to advance the analysis and study of the behavior of third-grade fluid flow and steady state heat transfer processes such as those found in coal slurries, polymer solutions, textiles, ceramics, catalytic reactors, and oil recovery applications.
Directory of Open Access Journals (Sweden)
A. Sami Bataineh
2016-09-01
Full Text Available In this paper, we present an approximate solution method for the problem of magnetohydrodynamic (MHD flow and heat transfer of a second grade fluid in a channel with a porous wall. The method is based on the Bernstein polynomials with their operational matrices and collocation method. Under some regularity conditions, upper bounds of the absolute errors are given. We apply the residual correction procedure which may estimate the absolute error to the problem. We may estimate the absolute error by using a procedure depends on the sequence of the approximate solutions. For some certain cases, we apply the method to the problem in the numerical examples. Moreover, we test the impact of changing the flow parameters numerically. The results are consistent with the results of Runge-Kutta fourth order method and homotopy analysis method.
Energy Technology Data Exchange (ETDEWEB)
Karampatzakis, Andreas; Samaras, Theodoros, E-mail: theosama@auth.g [Department of Physics, Aristotle University of Thessaloniki, GR-54124 Thessaloniki (Greece)
2010-10-07
In this work we present a new 3D numerical model for heat transfer in the human eye, which takes into account the aqueous humour flow in the anterior chamber. We show that consideration of this phenomenon in the calculations alters the temperature distribution on the corneal and lens surfaces, without, however, noticeably changing their absolute values. The most notable effect is that the coolest area of the cornea moves at a point of 2 mm inferior to its geometric centre. The maximum velocity of the fluid in the anterior chamber was found to be 3.36 x 10{sup -4} m s{sup -1}. The effect of the flow on displacing the cool area of the corneal surface temperature is counterbalanced by assuming anisotropic thermal conductivity. The model was implemented in the case of an artificial intraocular lens to show the resulting temperature variations.
International Nuclear Information System (INIS)
Sharma, D.
1982-01-01
This paper presents the formulation and applications of a mathematical model designed to predict the fluid dynamics and associated mass transfers in variably saturated porous media. Novelties in the formulation are emphasized and demonstrated to provide several computational advantages. The numerical procedure employed is of the integrated finite-difference variety which employs a hybrid differencing scheme. This procedure, while solving the coupled governing equations in conservative form, permits accommodation of substantial heterogeneities and anisotropies in material properties of the porous media. Accordingly, it is capable of making reliable predictions of steeply varying moisture and chemical-specie concentration fronts. The paper provides several examples of application of the model to the solution of practical problems. It is demonstrated that economical solutions to highly non-linear problems associated with solid and liquid waste disposal practices can be obtained
Li, Linmin; Li, Baokuan; Liu, Lichao; Motoyama, Yuichi
2017-04-01
The present work develops a multi-region dynamic coupling model for fluid flow, heat transfer and arc-melt interaction in tungsten inert gas (TIG) welding using the dynamic mesh technique. The arc-weld pool unified model is developed on basis of magnetohydrodynamic (MHD) equations and the interface is tracked using the dynamic mesh method. The numerical model for arc is firstly validated by comparing the calculated temperature profiles and essential results with the former experimental data. For weld pool convection solution, the drag, Marangoni, buoyancy and electromagnetic forces are separately validated, and then taken into account. Moreover, the model considering interface deformation is adopted in a stationary TIG welding process with SUS304 stainless steel and the effect of interface deformation is investigated. The depression of weld pool center and the lifting of pool periphery are both predicted. The results show that the weld pool shape calculated with considering the interface deformation is more accurate.
Karampatzakis, Andreas; Samaras, Theodoros
2010-10-07
In this work we present a new 3D numerical model for heat transfer in the human eye, which takes into account the aqueous humour flow in the anterior chamber. We show that consideration of this phenomenon in the calculations alters the temperature distribution on the corneal and lens surfaces, without, however, noticeably changing their absolute values. The most notable effect is that the coolest area of the cornea moves at a point of 2 mm inferior to its geometric centre. The maximum velocity of the fluid in the anterior chamber was found to be 3.36 × 10(-4) m s(-1). The effect of the flow on displacing the cool area of the corneal surface temperature is counterbalanced by assuming anisotropic thermal conductivity. The model was implemented in the case of an artificial intraocular lens to show the resulting temperature variations.
Riedewald, Frank; Goode, Kieran; Sexton, Aidan; Sousa-Gallagher, Maria J
2016-01-01
Every year about 1.5 billion tyres are discarded worldwide representing a large amount of solid waste, but also a largely untapped source of raw materials. The objective of the method was to prove the concept of a novel scrap tyre recycling process which uses molten zinc as the direct heat transfer fluid and, simultaneously, uses this media to separate the solids products (i.e. steel and rCB) in a sink-float separation at an operating temperature of 450-470 °C. This methodology involved: •construction of the laboratory scale batch reactor,•separation of floating rCB from the zinc,•recovery of the steel from the bottom of the reactor following pyrolysis.
International Nuclear Information System (INIS)
Karampatzakis, Andreas; Samaras, Theodoros
2010-01-01
In this work we present a new 3D numerical model for heat transfer in the human eye, which takes into account the aqueous humour flow in the anterior chamber. We show that consideration of this phenomenon in the calculations alters the temperature distribution on the corneal and lens surfaces, without, however, noticeably changing their absolute values. The most notable effect is that the coolest area of the cornea moves at a point of 2 mm inferior to its geometric centre. The maximum velocity of the fluid in the anterior chamber was found to be 3.36 x 10 -4 m s -1 . The effect of the flow on displacing the cool area of the corneal surface temperature is counterbalanced by assuming anisotropic thermal conductivity. The model was implemented in the case of an artificial intraocular lens to show the resulting temperature variations.
Anghaie, S.; Chen, G.
1996-01-01
A computational model based on the axisymmetric, thin-layer Navier-Stokes equations is developed to predict the convective, radiation and conductive heat transfer in high temperature space nuclear reactors. An implicit-explicit, finite volume, MacCormack method in conjunction with the Gauss-Seidel line iteration procedure is utilized to solve the thermal and fluid governing equations. Simulation of coolant and propellant flows in these reactors involves the subsonic and supersonic flows of hydrogen, helium and uranium tetrafluoride under variable boundary conditions. An enthalpy-rebalancing scheme is developed and implemented to enhance and accelerate the rate of convergence when a wall heat flux boundary condition is used. The model also incorporated the Baldwin and Lomax two-layer algebraic turbulence scheme for the calculation of the turbulent kinetic energy and eddy diffusivity of energy. The Rosseland diffusion approximation is used to simulate the radiative energy transfer in the optically thick environment of gas core reactors. The computational model is benchmarked with experimental data on flow separation angle and drag force acting on a suspended sphere in a cylindrical tube. The heat transfer is validated by comparing the computed results with the standard heat transfer correlations predictions. The model is used to simulate flow and heat transfer under a variety of design conditions. The effect of internal heat generation on the heat transfer in the gas core reactors is examined for a variety of power densities, 100 W/cc, 500 W/cc and 1000 W/cc. The maximum temperature, corresponding with the heat generation rates, are 2150 K, 2750 K and 3550 K, respectively. This analysis shows that the maximum temperature is strongly dependent on the value of heat generation rate. It also indicates that a heat generation rate higher than 1000 W/cc is necessary to maintain the gas temperature at about 3500 K, which is typical design temperature required to achieve high
Study on heat transfer and fluid flow in the stand pipe rupture accident
International Nuclear Information System (INIS)
Fumizawa, Motoo; Hishida, Makoto
1991-09-01
This paper deals with an experimental investigation of the buoyancy driven exchange flow which takes place through a narrow cylindrical channel, during the stand pipe rupture accident in a high temperature gas-cooled reactor (HTGR). The velocity distribution through the cylindrical channel is measured by a laser Doppler velocimeter, in order to evaluate the air ingress flow rate. The experiments are performed under atmospheric pressure with nitrogen as a working fluid. Rayleigh number ranges from 1.3 x 10 7 to 7.0 x 10 7 . The following conclusions were obtained: (1) The laser Doppler velocimeter was found a good method for the measurement of the velocity of the exchange flow. (2) When the temperature of the hemisphere and the bottom heated plate, which simulate the top cover of the reactor, was kept uniform, the volumetric exchange flow rate agreed well with Epstein's result. (3) The exchange flow through a narrow cylindrical channel fluctuated irregularly with time and space. (author)
A research program: The investigation of heat transfer and fluid flow at low pressure
International Nuclear Information System (INIS)
El-Genk, Mohamed S.; Philbin, Jeffrey S.; Foushee, Fabian C.
1986-01-01
This paper gives an overview of a multiyear joint research program being conducted at the University of New Mexico (UNM) with support from Sandia National Laboratories and GA Technologies. This research focuses on heat removal and fluid dynamics in flow regimes characterized by low pressure and low Reynolds number. The program was motivated by a desire to characterize and analyze cooling in a broad class of TRIGA-type reactors under: a) typical operating conditions, b) anticipated, new operating regimes, and c) postulated accident conditions. It has also provided experimental verification of analytical tools used in design analysis. The paper includes descriptions of the UNM thermal-hydraulics test facility and the experimental test sections. During the first two years experiments were conducted using single, electrically heated rod in water and air annuli. This configuration provides an observable and serviceable simulation of a fuel rod and its coolant channel. (author)
Energy transfer between a passing vortex ring and a flexible plate in an ideal quiescent fluid
Energy Technology Data Exchange (ETDEWEB)
Hu, JiaCheng; Peterson, Sean D., E-mail: peterson@mme.uwaterloo.ca [Department of Mechanical and Mechatronics Engineering, University of Waterloo, 200 University Avenue West, Waterloo, Ontario N2L 3G1 (Canada); Porfiri, Maurizio [Department of Mechanical and Aerospace Engineering, New York University Polytechnic School of Engineering, Brooklyn, New York 11201 (United States)
2015-09-21
Recent advancements in highly deformable smart materials have lead to increasing interest in small-scale energy harvesting research for powering low consumption electronic devices. One such recent experimental study by Goushcha et al. explored energy harvesting from a passing vortex ring by a cantilevered smart material plate oriented parallel to and offset from the path of the ring in an otherwise quiescent fluid. The present study focuses on modeling this experimental study using potential flow to facilitate optimization of the energy extraction from the passing ring to raise the energy harvesting potential of the device. The problem is modeled in two-dimensions with the vortex ring represented as a pair of counter-rotating free vortices. Vortex pair parameters are determined to match the convection speed of the ring in the experiments, as well as the imposed pressure loading on the plate. The plate is approximated as a Kirchhoff-Love plate and represented as a finite length vortex sheet in the fluid domain. The analytical model matches experimental measurements, including the tip displacement, the integrated force along the entire plate length as a function of vortex ring position, and the pressure along the plate. The potential flow solution is employed in a parametric study of the governing dimensionless parameters in an effort to guide the selection of plate properties for optimal energy harvesting performance. Results of the study indicate an optimal set of plate properties for a given vortex ring configuration, in which the time-scale of vortex advection matches that of the plate vibration.
International Nuclear Information System (INIS)
Sieniutycz, S.; Berry, R.S.
1993-01-01
A Lagrangian with dissipative (e.g., Onsager's) potentials is constructed for the field description of irreversible heat-conducting fluids, off local equilibrium. Extremum conditions of action yield Clebsch representations of temperature, chemical potential, velocities, and generalized momenta, including a thermal momentum introduced recently [R. L. Selinger and F. R. S. Whitham, Proc. R. Soc. London, Ser. A 302, 1 (1968); S. Sieniutycz and R. S. Berry, Phys. Rev. A 40, 348 (1989)]. The basic question asked is ''To what extent may irreversibility, represented by a given form of the entropy source, influence the analytical form of the conservation laws for the energy and momentum?'' Noether's energy for a fluid with heat flow is obtained, which leads to a fundamental equation and extended Hamiltonian dynamics obeying the second law of thermodynamics. While in the case of the Onsager potentials this energy coincides numerically with the classical energy E, it contains an extra term (vanishing along the path) still contributing to an irreversible evolution. Components of the energy-momentum tensor preserve all terms regarded standardly as ''irreversible'' (heat, tangential stresses, etc.) generalized to the case when thermodynamics includes the state gradients and the so-called thermal phase, which we introduce here. This variable, the Lagrange multiplier of the entropy generation balance, is crucial for consistent treatment of irreversible processes via an action formalism. We conclude with the hypothesis that embedding the first and second laws in the context of the extremal behavior of action under irreversible conditions may imply accretion of an additional term to the classical energy
Xu, Shuangqing; Chen, Xuedong; Fan, Zhichao; Chen, Yongdong; Nie, Defu; Wu, Qiaoguo
2018-04-01
A three-dimensional transient computational fluid dynamics (CFD) model has been established for the simulations of supercritical heat transfer of real liquefied natural gas (LNG) mixture in a single tube and a tube bundle of an intermediate fluid vaporizer (IFV). The influence of chemical composition of LNG on the thermal performance has been analyzed. The results have also been compared with those obtained from the one-dimensional steady-state calculations using the distributed parameter model (DPM). It is found that the current DPM approach can give reasonable prediction accuracy for the thermal performance in the tube bundle but unsatisfactory prediction accuracy for that in a single tube as compared with the corresponding CFD data. As benchmarked against pure methane, the vaporization of an LNG containing about 90% (mole fraction) of methane would lead to an absolute deviation of 5.5 K in the outlet NG temperature and a maximum relative deviation of 11.4% in the tube side HTC in a bundle of about 816 U tubes at the inlet pressure of 12 MPa and mass flux of 200 kg·m-2·s-1. It is concluded that the influence of LNG composition on the thermal performance should be taken into consideration in order to obtain an economic and reliable design of an IFV.
International Nuclear Information System (INIS)
Srinivasacharya, D.; Mendu, Upendar
2011-01-01
The steady laminar free convection heat and mass transfer boundary layer flow of a thermomicropolar fluid past a non-isothermal vertical flat plate in the presence of a homogeneous first order chemical reaction and a radiation with transverse magnetic field has been reported. It has been established that the flow problem has similarity solutions when the variation in temperature of the plate and variation in concentration of the fluid are linear functions of the distance from the leading edge measured along the plate. The nonlinear governing equations of the flow along with their appropriate boundary conditions are initially cast into dimensionless forms using similarity transformations which are used to reduce the governing partial differential equations into ordinary differential equations. The resulting system of equations thus formed is then solved numerically by using the Keller-box method. The non-dimensional Nusselt number, Sherwood number and the skin friction coefficient and wall couple stress at the plate are derived, and a parametric study of the governing parameters, namely the magnetic field strength parameter, radiation parameter, chemical reaction parameter, Sherwood number profiles against to the coupling number as well as the skin friction coefficient, wall couple stress coefficient is conducted. (author)
International Nuclear Information System (INIS)
Sohrabi, M.R.; Marjani, A.; Davallo, M.; Moradi, S.; Shirazian, S.
2011-01-01
A 2D mass transfer model was developed to study carbon dioxide removal by absorption in membrane contactors. The model predicts the steady state absorbent and carbon dioxide concentrations in the membrane by solving the conservation equations. The continuity equations for three sub domains of the membrane contactor involving the tube; membrane and shell were obtained and solved by finite element method (FEM). The model was based on 'non-wetted mode' in which the gas phase filled the membrane pores. Laminar parabolic velocity profile was used for the liquid flow in the tube side; whereas, the gas flow in the shell side was characterized by Happel's free surface model. Axial and radial diffusion transport inside the shell, through the membrane, and within the tube side of the contactor was considered in the mass transfer model. The predictions of percent CO/sub 2/ removal obtained by modeling were compared with the experimental values obtained from literature. They were the experimental results for CO/sub 2/ removal from CO/sub 2//N/sub 2/ gas mixture with amines aqueous solutions as the liquid solvent using polypropylene membrane contactor. The modeling predictions were in good agreement with the experimental values for different values of gas and liquid flow rates. (author)
Topics in current aerosol research
Hidy, G M
1971-01-01
Topics in Current Aerosol Research deals with the fundamental aspects of aerosol science, with emphasis on experiment and theory describing highly dispersed aerosols (HDAs) as well as the dynamics of charged suspensions. Topics covered range from the basic properties of HDAs to their formation and methods of generation; sources of electric charges; interactions between fluid and aerosol particles; and one-dimensional motion of charged cloud of particles. This volume is comprised of 13 chapters and begins with an introduction to the basic properties of HDAs, followed by a discussion on the form
Directory of Open Access Journals (Sweden)
C. A. Randles
2010-10-01
Full Text Available Tropospheric aerosols emitted from biomass burning reduce solar radiation at the surface and locally heat the atmosphere. Equilibrium simulations using an atmospheric general circulation model (GFDL AGCM indicate that strong atmospheric absorption from these particles can cool the surface and increase upward motion and low-level convergence over southern Africa during the dry season. These changes increase sea level pressure over land in the biomass burning region and spin-up the hydrologic cycle by increasing clouds, atmospheric water vapor, and, to a lesser extent, precipitation. Cloud increases serve to reinforce the surface radiative cooling tendency of the aerosol. Conversely, if the climate over southern Africa were hypothetically forced by high loadings of scattering aerosol, then the change in the low-level circulation and increased subsidence would serve to decrease clouds, precipitation, and atmospheric water vapor. Surface cooling associated with scattering-only aerosols is mitigated by warming from cloud decreases. The direct and semi-direct climate impacts of biomass burning aerosol over southern Africa are sensitive to the total amount of aerosol absorption and how clouds change in response to the aerosol-induced heating of the atmosphere.
International Nuclear Information System (INIS)
Lahey, Richard T.; Drew, Donald A.
2001-01-01
This paper reviews the state-of-the-art in the prediction of multidimensional multiphase flow and heat transfer phenomena using a four field, two-fluid model. It is shown that accurate mechanistic computational fluid dynamic (CFD) predictions are possible for a wide variety of adiabatic and diabatic flows using this computational model. In particular, the model is able to predict the bubbly air/water upflow data of Serizawa (Serizawa, A., 1974. Fluid dynamic characteristics of two-phase flow. Ph.D. thesis, (Nuclear Engineering), Kyoto University, Japan), the downflow data of Wang et al. (Wang, S.K., Lee, S.J., Lahey Jr., R.T., Jones, O.C., 1987. 3-D turbulence structure and phase distribution measurements in bubbly two-phase flows. Int. J. Multiphase Flow 13 (3), 327-343), the isosceles triangle upflow data of Lopez de Bertodano et al. (Lopez de Bertodano, M., Lahey Jr., R.T., Jones, O.C., 1994b. Phase distribution in bubbly two-phase flow in vertical ducts. Int. J. Multiphase Flow 20 (5), 805-818), the heated annular R-113 subcooled boiling data of Velidandala, et al. (Velidandla, V., Pulta, S., Roy, P., Kaira, S.P., 1995. Velocity field in turbulent subcooled boiling flow. ASME Preprint HTD-314, 107-123) and the R-113 CHF data of Hino and Ueda (Hino, R., Ueda, T., 1985. Studies on heat transfer and flow characteristics in subcooled boiling-part 2, flow characteristics. Int. J. Multiphase Flow 11, 283-297). It can also predict external two-phase flows, such as those for spreading two-phase jets (Bonetto, F., Lahey Jr., R.T., 1993. An experimental study on air carryunder due to a plunging liquid jet. Int. J. Multiphase Flow 19 (2), 281-294) and multiphase flows around the hull of naval surface ships (Carrica, P.M., Bonetto, F., Drew, D.A., Lahey, R.T., 1999. A polydispersed model for bubbly two-phase flow around a surface ship. Int. J. Multiphase Flow 25 (2), 257-305)
Sayar, Ersin; Sari, Ugurcan
2017-04-01
Experimental evaluation of the heat transfer in oscillating flow under the constant heat flux and constant amplitude fluid displacement conditions is presented for a vertical annular flow through a stainless steel wool porous media. The analysis is carried out for two different heat fluxes and for five different frequencies. The data is acquired from the measurements both in the initial transient period and in the pseudo-steady (cyclic) period by the system. The physical and mathematical behavior of the resulting Nusselt numbers are analyzed, according to data acquired from the experiments and in accordance with the results of the Buckingham Pi theorem. A cycle and space averaged Nusselt number correlation is suggested as a function of kinetic Reynolds number for oscillating flows. The suggested correlation is useful in predicting heat transfer from oscillating flows through highly porous and permeable solid media at low actuation frequencies and at low heat fluxes applied in the wall. The validity of the Nusselt numbers acquired by correlation is discussed using experimental Nusselt numbers for the selected kinetic Reynolds number interval. The present investigation has possible applications in moderate sized wicked heat pipes, solid matrix compact heat exchangers compromising of metallic foams, filtration equipment, and steam generators.
Directory of Open Access Journals (Sweden)
Liou Tong-Miin
2005-01-01
Full Text Available The local turbulent fluid flow and heat transfer in a rotating two-pass square duct with 19 pairs of in-line 90 ∘ ribs have been investigated computationally. A Reynolds-averaged Navier-Stokes equation (RANS with a two-layer k − ϵ turbulence model was solved. The in-line 90 ∘ ribs were arranged on the leading and trailing walls with rib height-to-hydraulic diameter ratio and pitch-to-height ratio of 0.136 and 10, respectively. The Reynolds number, based on duct hydraulic diameter and bulk mean velocity, was fixed at 1.0 × 10 4 whereas the rotational number varied from 0 to 0.2 . Results are validated with previous measured velocity field and heat transfer coefficient distributions. The validation shows that the effect of rotation on the passage-averaged Nusselt number ratio can be predicted reasonably well; nevertheless, the transverse mean velocity and, in turn, the distribution of regional-averaged Nusselt number ratio are markedly underpredicted in the regions toward which the Coriolis force is directed. Further CFD studies are needed.
Murphy, V A; Rapoport, S I
1988-06-28
Recent studies have shown regulation of central nervous system [Ca] after chronic hypo- and hypercalcemia. To investigate the mechanism of this regulation, 3-week-old rats were fed diets for 8 weeks that contained low or normal levels of Ca. Plasma [Ca] was 40% less in rats fed the low Ca diet than in animals fed normal diet. Unidirectional transfer coefficients for Ca (KCa) and Cl (KCl) into cerebrospinal fluid (CSF) and brain were determined from the 10 min uptake of intravenously injected 45Ca and 36Cl in awake animals. KCa for CSF was 68% greater in low-Ca rats than in normal rats. Likewise, the values of KCa for brain regions with areas adjacent to the ventricles like the hippocampus and pons-medulla were 50% higher than in normal animals. On the other hand, KCas for parietal cortex, a brain region distant from the choroid plexus and not expected to be influenced by Ca entry into CSF, were similar between the groups. Comparison of the regional ratios of KCa/KCl revealed that a selective increase of Ca transport occurred into CSF and all brain regions except the parietal cortex in Ca-deficient rats. The results suggest that Ca homeostasis of CSF and brain [Ca] during chronic hypocalcemia is due to increased transfer of Ca from blood to brain, and that the regulation occurs via the CSF, possibly at the choroid plexus, but not via the cerebral capillaries.
Carlos Varas, Álvaro E; Peters, E A J F; Kuipers, J A M
2017-05-17
We report a computational fluid dynamics-discrete element method (CFD-DEM) simulation study on the interplay between mass transfer and a heterogeneous catalyzed chemical reaction in cocurrent gas-particle flows as encountered in risers. Slip velocity, axial gas dispersion, gas bypassing, and particle mixing phenomena have been evaluated under riser flow conditions to study the complex system behavior in detail. The most important factors are found to be directly related to particle cluster formation. Low air-to-solids flux ratios lead to more heterogeneous systems, where the cluster formation is more pronounced and mass transfer more influenced. Falling clusters can be partially circumvented by the gas phase, which therefore does not fully interact with the cluster particles, leading to poor gas-solid contact efficiencies. Cluster gas-solid contact efficiencies are quantified at several gas superficial velocities, reaction rates, and dilution factors in order to gain more insight regarding the influence of clustering phenomena on the performance of riser reactors.
Ong, Robert H.; King, Andrew J. C.; Mullins, Benjamin J.; Cooper, Timothy F.; Caley, M. Julian
2012-01-01
We present Computational Fluid Dynamics (CFD) models of the coupled dynamics of water flow, heat transfer and irradiance in and around corals to predict temperatures experienced by corals. These models were validated against controlled laboratory experiments, under constant and transient irradiance, for hemispherical and branching corals. Our CFD models agree very well with experimental studies. A linear relationship between irradiance and coral surface warming was evident in both the simulation and experimental result agreeing with heat transfer theory. However, CFD models for the steady state simulation produced a better fit to the linear relationship than the experimental data, likely due to experimental error in the empirical measurements. The consistency of our modelling results with experimental observations demonstrates the applicability of CFD simulations, such as the models developed here, to coral bleaching studies. A study of the influence of coral skeletal porosity and skeletal bulk density on surface warming was also undertaken, demonstrating boundary layer behaviour, and interstitial flow magnitude and temperature profiles in coral cross sections. Our models compliment recent studies showing systematic changes in these parameters in some coral colonies and have utility in the prediction of coral bleaching. PMID:22701582
Tecklenburg, Jan; Neuweiler, Insa; Dentz, Marco; Carrera, Jesus; Geiger, Sebastian
2013-04-01
Flow processes in geotechnical applications do often take place in highly heterogeneous porous media, such as fractured rock. Since, in this type of media, classical modelling approaches are problematic, flow and transport is often modelled using multi-continua approaches. From such approaches, multirate mass transfer models (mrmt) can be derived to describe the flow and transport in the "fast" or mobile zone of the medium. The porous media is then modeled with one mobile zone and multiple immobile zones, where the immobile zones are connected to the mobile zone by single rate mass transfer. We proceed from a mrmt model for immiscible displacement of two fluids, where the Buckley-Leverett equation is expanded by a sink-source-term which is nonlocal in time. This sink-source-term models exchange with an immobile zone with mass transfer driven by capillary diffusion. This nonlinear diffusive mass transfer can be approximated for particular imbibition or drainage cases by a linear process. We present a numerical scheme for this model together with simulation results for a single fracture test case. We solve the mrmt model with the finite volume method and explicit time integration. The sink-source-term is transformed to multiple single rate mass transfer processes, as shown by Carrera et. al. (1998), to make it local in time. With numerical simulations we studied immiscible displacement in a single fracture test case. To do this we calculated the flow parameters using information about the geometry and the integral solution for two phase flow by McWorther and Sunnada (1990). Comparision to the results of the full two dimensional two phase flow model by Flemisch et. al. (2011) show good similarities of the saturation breakthrough curves. Carrera, J., Sanchez-Vila, X., Benet, I., Medina, A., Galarza, G., and Guimera, J.: On matrix diffusion: formulations, solution methods and qualitative effects, Hydrogeology Journal, 6, 178-190, 1998. Flemisch, B., Darcis, M
A Numerical Study of Fluid Flow and Heat Transfer in Carbon Dioxide Enclosures on Mars
Directory of Open Access Journals (Sweden)
Yue Sun
2018-03-01
Full Text Available In order to support the future thermal control and energy conservation design for the Mars rover, numerical studies on natural convection in CO2 enclosures on Mars’ surface were conducted for both horizontal and vertical enclosures. The parameters are as follows: the atmospheric pressure was 1000 Pa, the gravitational acceleration was 3.62 m/s2, and the Prandtl number was 0.77. The heat flux, temperature, and velocity fields of the CO2 enclosures were obtained with the aspect ratio ranging from 5.56 to 200 and the Grashof number ranging from 430 to 2.6 × 104. It was found that natural convection formed more easily in the horizontal enclosures than that in the vertical enclosures when the enclosures had same thickness. With the increasing thickness of the enclosures, Rayleigh–Bénard convections formed in the horizontal enclosures, while only single-cell convections formed in the vertical enclosures. The heat flux through the horizontal enclosures was greater than that through the vertical enclosures with the same thickness when natural convection formed. The maximum difference between them reached 35.26%, which was illustrated by the field synergy principle. A hysteresis phenomenon of the natural convection dominating the heat transfer was found in the vertical enclosure on Mars’ surface. New values for the critical Grashof number and correlations for the average Nusselt number for both the horizontal and vertical CO2 enclosures on Mars’ surface were also developed.
Flow and heat transfer in water based liquid film fluids dispensed with graphene nanoparticles
Zuhra, Samina; Khan, Noor Saeed; Khan, Muhammad Altaf; Islam, Saeed; Khan, Waris; Bonyah, Ebenezer
2018-03-01
The unsteady flow and heat transfer characteristics of electrically conducting water based thin liquid film non-Newtonian (Casson and Williamson) nanofluids dispensed with graphene nanoparticles past a stretching sheet are considered in the presence of transverse magnetic field and non-uniform heat source/sink. Embedding the graphene nanoparticles effectively amplifies the thermal conductivity of Casson and Williamson nanofluids. Ordinary differential equations together with the boundary conditions are obtained through similarity variables from the governing equations of the problem, which are solved by the HAM (Homotopy Analysis Method). The solution is expressed through graphs and illustrated which show the influences of all the parameters. The convergence of the HAM solution for the linear operators is obtained. Favorable comparison with previously published research paper is performed to show the correlation for the present work. Skin friction coefficient and Nusselt number are presented through Tables and graphs which show the validation for the achieved results demonstrating that the thin liquid films results from this study are in close agreement with the results reported in the literature. Results achieved by HAM and residual errors are evaluated numerically, given in Tables and also depicted graphically which show the accuracy of the present work.
Flow and heat transfer in water based liquid film fluids dispensed with graphene nanoparticles
Directory of Open Access Journals (Sweden)
Samina Zuhra
2018-03-01
Full Text Available The unsteady flow and heat transfer characteristics of electrically conducting water based thin liquid film non-Newtonian (Casson and Williamson nanofluids dispensed with graphene nanoparticles past a stretching sheet are considered in the presence of transverse magnetic field and non-uniform heat source/sink. Embedding the graphene nanoparticles effectively amplifies the thermal conductivity of Casson and Williamson nanofluids. Ordinary differential equations together with the boundary conditions are obtained through similarity variables from the governing equations of the problem, which are solved by the HAM (Homotopy Analysis Method. The solution is expressed through graphs and illustrated which show the influences of all the parameters. The convergence of the HAM solution for the linear operators is obtained. Favorable comparison with previously published research paper is performed to show the correlation for the present work. Skin friction coefficient and Nusselt number are presented through Tables and graphs which show the validation for the achieved results demonstrating that the thin liquid films results from this study are in close agreement with the results reported in the literature. Results achieved by HAM and residual errors are evaluated numerically, given in Tables and also depicted graphically which show the accuracy of the present work. Keywords: Graphene nanoparticles, MHD, Casson and Williamson nanofluids, Stretching sheet, Skin friction coefficient, Nusselt number, Residual errors, Homotopy Analysis Method
Study of heat transfer at the upper boundary of a fluid bath with voluminal power dissipation
International Nuclear Information System (INIS)
Bernaz, L.
1998-01-01
In order to examine the possibilities of external cooling of reactor vessels in the case of core meltdown accident in PWR reactors, it is necessary to determine the distribution of heat fluxes at the boundaries of the hemispherical bath. This distribution is controlled by the natural convection movements inside the bath. The first part of the document introduces the problem. The second part is a bibliographic analysis of previous works performed on natural convection inside a liquid bath with an internal heat source. The modeling of heat transfer at the upper boundary is assimilated to the Rayleigh-Benard turbulent convection. An analytical model of weak turbulence regime is developed in part 3. Different laws about the relationship between thermal plume characteristics and the parameters of the system are defined. Part 4 presents the experimental devices and scale models (MARABEC and BALI) used for the validation of the theoretical model and for the obtention of a database of reactor parameters. The laser induced fluorescence visualisation technique is used for the parametric study of between plumes spacing. The fifth part is devoted to the presentation and interpretation of results. (J.S.)
Modeling of Heat Transfer and Fluid Flow in the Laser Multilayered Cladding Process
Kong, Fanrong; Kovacevic, Radovan
2010-12-01
The current work examines the heat-and-mass transfer process in the laser multilayered cladding of H13 tool steel powder by numerical modeling and experimental validation. A multiphase transient model is developed to investigate the evolution of the temperature field and flow velocity of the liquid phase in the molten pool. The solid region of the substrate and solidified clad, the liquid region of the melted clad material, and the gas region of the surrounding air are included. In this model, a level-set method is used to track the free surface motion of the molten pool with the powder material feeding and scanning of the laser beam. An enthalpy-porosity approach is applied to deal with the solidification and melting that occurs in the cladding process. Moreover, the laser heat input and heat losses from the forced convection and heat radiation that occurs on the top surface of the deposited layer are incorporated into the source term of the governing equations. The effects of the laser power, scanning speed, and powder-feed rate on the dilution and height of the multilayered clad are investigated based on the numerical model and experimental measurements. The results show that an increase of the laser power and powder feed rate, or a reduction of the scanning speed, can increase the clad height and directly influence the remelted depth of each layer of deposition. The numerical results have a qualitative agreement with the experimental measurements.
CFD Simulation of Heat Transfer and Turbulent Fluid Flow over a Double Forward-Facing Step
Directory of Open Access Journals (Sweden)
Hussein Togun
2013-01-01
Full Text Available Heat transfer and turbulent water flow over a double forward-facing step were investigated numerically. The finite volume method was used to solve the corresponding continuity, momentum, and energy equations using the K-ε model. Three cases, corresponding to three different step heights, were investigated for Reynolds numbers ranging from 30,000 to 100,000 and temperatures ranging from 313 to 343 K. The bottom of the wall was heated, whereas the top was insulated. The results show that the Nusselt number increased with the Reynolds number and step height. The maximum Nusselt number was observed for case 3, with a Reynolds number of 100,000 and temperature of 343 K, occurring at the second step. The behavior of the Nusselt number was similar for all cases at a given Reynolds number and temperature. A recirculation zone was observed before and after the first and second steps in the contour maps of the velocity field. In addition, the results indicate that the coefficient pressure increased with increasing Reynolds number and step height. ANSYS FLUENT 14 (CFD software was employed to run the simulations.
Shit, G. C.; Mondal, A.; Sinha, A.; Kundu, P. K.
2016-11-01
A mathematical model has been developed for studying the electro-osmotic flow and heat transfer of bio-fluids in a micro-channel in the presence of Joule heating effects. The flow of bio-fluid is governed by the non-Newtonian power-law fluid model. The effects of thermal radiation and velocity slip condition have been examined in the case of hydrophobic channel. The Poisson-Boltzmann equation governing the electrical double layer field and a body force generated by the applied electric potential field are taken into consideration. The results presented here pertain to the case where the height of the channel is much greater than the thickness of electrical double layer comprising the Stern and diffuse layers. The expressions for flow characteristics such as velocity, temperature, shear stress and Nusselt number have been derived analytically under the purview of the present model. The results estimated on the basis of the data available in the existing scientific literatures are presented graphically. The effects of thermal radiation have an important bearing on the therapeutic procedure of hyperthermia, particularly in understanding the heat transfer in micro-channel in the presence of electric potential. The dimensionless Joule heating parameter has a reducing impact on Nusselt number for both pseudo-plastic and dilatant fluids, nevertheless its impact on Nusselt number is more pronounced for dilatant fluid. Furthermore, the effect of viscous dissipation has a significant role in controlling heat transfer and should not be neglected.
Kasagi, Nobuhide
2000-01-01
The Nusselt Reynolds Prize has been established by the Assembly of World Conferences to commemorate outstanding contributions by Wilhelm Nusselt and Osborne Reynolds as experimentalists, researchers, educators, and authors. As many as three prizes may be bestowed at every World Conference, one in each of the areas of heat transfer, fluid mechanics, thermodynamics, or any combination of these.
International Nuclear Information System (INIS)
Ishii, Takemasa; Marui, Atsunao; Takahashi, Manabu; Tsukamoto, Hitoshi
1999-01-01
Aim of this study are to elucidate transfer and diffusion mechanism of fluid under an environment of deep geological environment by each two geological media such as fractured and porous media, to establish a precise evaluation method on hydrogeological features, to develop a new researching method on transfer and diffusion mechanism of fluid at field, and to conduct model construction and effect evaluation of fluid at deep underground based on measuring values. As a result, on cracking medium, it was found that a value relating to storage rate could be evaluated simultaneously, that both water permeability coefficient and storage rate decreased as sealing pressure of specimen increased, and that change of hydrologic features in specimen could be evaluated more accurately. And, on porous medium, it was conducted to compare mutually two water permeability coefficients obtained by using three kinds of sedimentation rock with different interstitial ratio and two testing methods of transient pulse method and changing water level method. (G.K.)
Large Eddy Simulation of Fluid flow and Heat Transfer in the Upper Plenum of Fast Reactor
Energy Technology Data Exchange (ETDEWEB)
Choi, Seokki; Lee, Taeho; Kim, Dongeun [Korea Atomic Energy Research Institute, Daejeon (Korea, Republic of); Ko, Sungho [Chungnam National Univ., Daejeon (Korea, Republic of)
2014-05-15
The important parameters in the thermal striping are the frequency and the amplitude of the temperature fluctuation. Since the sodium used as coolant in the PGSFR has a high thermal conductivity, the temperature fluctuation can be easily transferred to the solid walls of the components in the upper plenum. To remedy these problems, numerical studies are performed in the present study to analyze the thermal striping for possible improvement of the design and safety of the reactor. For the numerical works, Chacko et al. performed LES for the experiment by Nam and Kim, and found that the LES can produce the oscillation of temperature fluctuation properly, while the realizable k - ε model predicts the amplitude and frequency of the temperature fluctuation very poorly indicating that the LES method is an appropriate calculation method for the thermal striping. In this paper, the simulation of thermal striping in the upper plenum of PGSFR is performed using the LES method. The WALE eddy viscosity model by Nicoud and Ducros built in CFX-13 commercial code is employed for the LES eddy viscosity model. The numerical investigation of the thermal striping is performed with the LES method using the CFX-13 commercial code, where the solution domain is the upper plenum of the PGSFR. As the first step, dozens of monitoring points are set to locations that are anticipated to cause thermal striping. Then, the temperature fluctuations were calculated along with the time-averaged variables such as the velocity and temperature. From these results we have obtained the following conclusions. At the side wall of IHX, a slight fluctuation is observed, but it seems that there is no risk of thermal striping. The flows from the reactor core are not mixed when reaching the UIS. So both the first and second plates need to be considered. Among the first grid plate regions, the shape region is the weakest region for thermal striping. The second weakest region for thermal striping is the shape
Heat transfer with organic fluids; Transferts de chaleur par liquides organiques
Energy Technology Data Exchange (ETDEWEB)
Lanza, F [Association Euratom-CEA, Centre d' Etudes de Grenoble, 38 (France). Dept. de Recherches sur la Fusion Controlee; Ricque, R; Villeneuve, J P [Commissariat a l' Energie Atomique, Grenoble (France). Centre d' Etudes Nucleaires
1964-07-01
Using a test channel with a circular cross-section of 12 mm internal diameter the following heat transfer correlation, valid to about {+-} 6 p. 100, was determined for the terphenyls OMP and OM2 with 0, 10, 20 or 30 p. 100 of high polymers: Nu{sub b} = 0.00835 Re{sub b}{sup 0.9} Pr{sub L}{sup 0.4}. This correlation was established with fluxes ranging from 50 to 100 W/cm{sup 2}, temperatures from 290 to 420 C and Reynolds number from 30 000 to 350 000. 8 long-term tests were carried out (250 to 1000 hours continuous running) to determine how deposition on the heating surfaces affects the exchange coefficient. The loops is made of stainless steel except for one part in soft steel. No deposits are observed even if the terphenyl contains 30 ppm of chlorure, while on the other hand deposition is appreciable when heavy substances containing combined oxygen are added. (authors) [French] On a determine sur un canal d'essai de section circulaire de 12 mm de diametre interieur, la correlation de transfert de chaleur suivante valable a {+-} 6 p.100 pres pour les terphenyles OMP et OM2 avec 0, 10, 20 ou 30 p. 100 de haute polymeres Nu{sub b} = 0,00835 Re{sub b}{sup 0.9} Pr{sub L}{sup 0.4}. Cette correlation a ete etablie dans une gamme de flux de 50 a 100 W/cm{sup 2}, de temperature de 290 a 420 C, de Reynolds de 30 000 a 350 000. On a effectue 8 essais de longue duree (250 a 1 000 heures en regime continu) pour determiner l'effet sur le coefficient d'echange de l'encrassement des surfaces chauffantes. La boucle est en acier inoxydable sauf une partie en acier doux; on n'observe aucun encrassement meme si le terphenyle contient 30 ppm de chlore; par contre l'encrassement est sensible quand on ajoute des produits lourds contenant de l'oxygene combine. (auteurs)
DEFF Research Database (Denmark)
Wahlgren, Bjarne; Aarkrog, Vibe
Bogen er den første samlede indføring i transfer på dansk. Transfer kan anvendes som praksis-filosofikum. Den giver en systematisk indsigt til den studerende, der spørger: Hvordan kan teoretisk viden bruges til at reflektere over handlinger i situationer, der passer til min fremtidige arbejdsplads?...
Walait, Ahsan; Siddiqui, A M; Rana, M A
2018-02-13
The present theoretical analysis deals with biomechanics of the self-propulsion of a swimming sheet with heat transfer through non-isothermal fluid filling an inclined human cervical canal. Partial differential equations arising from the mathematical modeling of the proposed model are solved analytically. Flow variables like pressure gradient, propulsive velocity, fluid velocity, time mean flow rate, fluid temperature, and heat-transfer coefficients are analyzed for the pertinent parameters. Striking features of the pumping characteristics are explored. Propulsive velocity of the swimming sheet becomes faster for lower Froude number, higher Reynolds number, and for a vertical channel. Temperature and peak value of the heat-transfer coefficients below the swimming sheet showed an increase by the increment of Brinkmann number, inclination, pressure difference over wavelength, and Reynolds number whereas these quantities decrease with increasing Froude number. Aforesaid parameters have shown opposite effects on the peak value of the heat-transfer coefficients below and above the swimming sheet. Relevance of the current results to the spermatozoa transport with heat transfer through non-isothermal cervical mucus filling an inclined human cervical canal is also explored.
Energy Technology Data Exchange (ETDEWEB)
Grogan, Dylan C. P.
2013-08-15
Executive Summary This Final Report for the "Development of Molten-Salt Heat Transfer Fluid (HTF) Technology for Parabolic Trough Solar Power Plants” describes the overall project accomplishments, results and conclusions. Phase 1 analyzed the feasibility, cost and performance of a parabolic trough solar power plant with a molten salt heat transfer fluid (HTF); researched and/or developed feasible component options, detailed cost estimates and workable operating procedures; and developed hourly performance models. As a result, a molten salt plant with 6 hours of storage was shown to reduce Thermal Energy Storage (TES) cost by 43.2%, solar field cost by 14.8%, and levelized cost of energy (LCOE) by 9.8% - 14.5% relative to a similar state-of-the-art baseline plant. The LCOE savings range met the project’s Go/No Go criteria of 10% LCOE reduction. Another primary focus of Phase 1 and 2 was risk mitigation. The large risk areas associated with a molten salt parabolic trough plant were addressed in both Phases, such as; HTF freeze prevention and recovery, collector components and piping connections, and complex component interactions. Phase 2 analyzed in more detail the technical and economic feasibility of a 140 MWe,gross molten-salt CSP plant with 6 hours of TES. Phase 2 accomplishments included developing technical solutions to the above mentioned risk areas, such as freeze protection/recovery, corrosion effects of applicable molten salts, collector design improvements for molten salt, and developing plant operating strategies for maximized plant performance and freeze risk mitigation. Phase 2 accomplishments also included developing and thoroughly analyzing a molten salt, Parabolic Trough power plant performance model, in order to achieve the project cost and performance targets. The plant performance model and an extensive basic Engineering, Procurement, and Construction (EPC) quote were used to calculate a real levelized cost of energy (LCOE) of 11.50
International Nuclear Information System (INIS)
Ventola, Luigi; Dialameh, Masoud; Fasano, Matteo; Chiavazzo, Eliodoro; Asinari, Pietro
2016-01-01
Highlights: • A novel methodology for optimal design of patterned heat sink surfaces is proposed. • Heat transfer enhancement by patterned surfaces is measured experimentally. • Role of fluid dynamics and geometrical scales on heat transfer is clarified. - Abstract: In the present work, micro-protruded patterns on flush mounted heat sinks for convective heat transfer enhancement are investigated and a novel methodology for thermal optimization is proposed. Patterned heat sinks are experimentally characterized in fully turbulent regime, and the role played by geometrical parameters and fluid dynamic scales is discussed. A methodology specifically suited for micro-protruded pattern optimization is designed, leading to 73% enhancement in thermal performance respect to commercially available heat sinks, at fixed costs. This work is expected to introduce a new methodological approach for a more systematic and efficient development of solutions for electronics cooling.
International Nuclear Information System (INIS)
Penner, J.E.
1994-01-01
Organic aerosols scatter solar radiation. They may also either enhance or decrease concentrations of cloud condensation nuclei. This paper summarizes observed concentrations of aerosols in remote continental and marine locations and provides estimates for the sources of organic aerosol matter. The anthropogenic sources of organic aerosols may be as large as the anthropogenic sources of sulfate aerosols, implying a similar magnitude of direct forcing of climate. The source estimates are highly uncertain and subject to revision in the future. A slow secondary source of organic aerosols of unknown origin may contribute to the observed oceanic concentrations. The role of organic aerosols acting as cloud condensation nuclei (CCN) is described and it is concluded that they may either enhance or decrease the ability of anthropogenic sulfate aerosols to act as CCN
Radischat, Christian; Sippula, Olli; Stengel, Benjamin; Klingbeil, Sophie; Sklorz, Martin; Rabe, Rom; Streibel, Thorsten; Harndorf, Horst; Zimmermann, Ralf
2015-08-01
Organic combustion aerosols from a marine medium-speed diesel engine, capable to run on distillate (diesel fuel) and residual fuels (heavy fuel oil), were investigated under various operating conditions and engine parameters. The online chemical characterisation of the organic components was conducted using a resonance-enhanced multiphoton ionisation time-of-flight mass spectrometer (REMPI TOF MS) and a proton transfer reaction-quadrupole mass spectrometer (PTR-QMS). Oxygenated species, alkenes and aromatic hydrocarbons were characterised. Especially the aromatic hydrocarbons and their alkylated derivatives were very prominent in the exhaust of both fuels. Emission factors of known health-hazardous compounds (e.g. mono- and poly-aromatic hydrocarbons) were calculated and found in higher amounts for heavy fuel oil (HFO) at typical engine loadings. Lower engine loads lead in general to increasing emissions for both fuels for almost every compound, e.g. naphthalene emissions varied for diesel fuel exhaust between 0.7 mg/kWh (75 % engine load, late start of injection (SOI)) and 11.8 mg/kWh (10 % engine load, late SOI) and for HFO exhaust between 3.3 and 60.5 mg/kWh, respectively. Both used mass spectrometric techniques showed that they are particularly suitable methods for online monitoring of combustion compounds and very helpful for the characterisation of health-relevant substances. Graphical abstract Three-dimensional REMPI data of organic species in diesel fuel and heavy fuel oil exhaust.
International Nuclear Information System (INIS)
McHugh, P.R.; Ramshaw, J.D.
1991-11-01
MAGMA is a FORTRAN computer code designed to viscous flow in in situ vitrification melt pools. It models three-dimensional, incompressible, viscous flow and heat transfer. The momentum equation is coupled to the temperature field through the buoyancy force terms arising from the Boussinesq approximation. All fluid properties, except density, are assumed variable. Density is assumed constant except in the buoyancy force terms in the momentum equation. A simple melting model based on the enthalpy method allows the study of the melt front progression and latent heat effects. An indirect addressing scheme used in the numerical solution of the momentum equation voids unnecessary calculations in cells devoid of liquid. Two-dimensional calculations can be performed using either rectangular or cylindrical coordinates, while three-dimensional calculations use rectangular coordinates. All derivatives are approximated by finite differences. The incompressible Navier-Stokes equations are solved using a new fully implicit iterative technique, while the energy equation is differenced explicitly in time. Spatial derivatives are written in conservative form using a uniform, rectangular, staggered mesh based on the marker and cell placement of variables. Convective terms are differenced using a weighted average of centered and donor cell differencing to ensure numerical stability. Complete descriptions of MAGMA governing equations, numerics, code structure, and code verification are provided. 14 refs
Directory of Open Access Journals (Sweden)
M.C. Raju
2015-03-01
Full Text Available A theoretical analysis is performed to study induced magnetic field effects on free convection flow past a vertical plate. The x¯-axis is taken vertically upwards along the plate, y¯-axis normal to the plate into the fluid region. It is assumed that the plate is electrically non-conducting and the applied magnetic field is of uniform strength (H0 and perpendicular to the plate. The magnetic Reynolds number of the flow is not taken to be small enough so that the induced magnetic field is taken into account. The coupled nonlinear partial differential equations are solved by Perturbation technique and the effects of various physical parameters on velocity, temperature, and induced magnetic fields are studied through graphs and tables. Variations in Skin friction and rate of heat transfer are also studied. It is observed that an increase in magnetic parameter decreases the velocity for both water and air. It is also seen that there is a fall in induced magnetic field as magnetic Prandtl number, and magnetic field parameter increase.
Ramakrishnan, Divakar; Curtis, Wayne R
2004-10-20
Trickle-bed root culture reactors are shown to achieve tissue concentrations as high as 36 g DW/L (752 g FW/L) at a scale of 14 L. Root growth rate in a 1.6-L reactor configuration with improved operational conditions is shown to be indistinguishable from the laboratory-scale benchmark, the shaker flask (mu=0.33 day(-1)). These results demonstrate that trickle-bed reactor systems can sustain tissue concentrations, growth rates and volumetric biomass productivities substantially higher than other reported bioreactor configurations. Mass transfer and fluid dynamics are characterized in trickle-bed root reactors to identify appropriate operating conditions and scale-up criteria. Root tissue respiration goes through a minimum with increasing liquid flow, which is qualitatively consistent with traditional trickle-bed performance. However, liquid hold-up is much higher than traditional trickle-beds and alternative correlations based on liquid hold-up per unit tissue mass are required to account for large changes in biomass volume fraction. Bioreactor characterization is sufficient to carry out preliminary design calculations that indicate scale-up feasibility to at least 10,000 liters.
Energy Technology Data Exchange (ETDEWEB)
Khan, Masood; Malik, Rabia, E-mail: rabiamalik.qau@gmail.com; Munir, Asif [Department of Mathematics, Quaid-i-Azam University, Islamabad 44000 (Pakistan)
2015-08-15
In this article, the mixed convective heat transfer to Sisko fluid over a radially stretching surface in the presence of convective boundary conditions is investigated. The viscous dissipation and thermal radiation effects are also taken into account. The suitable transformations are applied to convert the governing partial differential equations into a set of nonlinear coupled ordinary differential equations. The analytical solution of the governing problem is obtained by using the homotopy analysis method (HAM). Additionally, these analytical results are compared with the numerical results obtained by the shooting technique. The obtained results for the velocity and temperature are analyzed graphically for several physical parameters for the assisting and opposing flows. It is found that the effect of buoyancy parameter is more prominent in case of the assisting flow as compared to the opposing flow. Further, in tabular form the numerical values are given for the local skin friction coefficient and local Nusselt number. A remarkable agreement is noticed by comparing the present results with the results reported in the literature as a special case.
International Nuclear Information System (INIS)
Khan, Masood; Malik, Rabia; Munir, Asif
2015-01-01
In this article, the mixed convective heat transfer to Sisko fluid over a radially stretching surface in the presence of convective boundary conditions is investigated. The viscous dissipation and thermal radiation effects are also taken into account. The suitable transformations are applied to convert the governing partial differential equations into a set of nonlinear coupled ordinary differential equations. The analytical solution of the governing problem is obtained by using the homotopy analysis method (HAM). Additionally, these analytical results are compared with the numerical results obtained by the shooting technique. The obtained results for the velocity and temperature are analyzed graphically for several physical parameters for the assisting and opposing flows. It is found that the effect of buoyancy parameter is more prominent in case of the assisting flow as compared to the opposing flow. Further, in tabular form the numerical values are given for the local skin friction coefficient and local Nusselt number. A remarkable agreement is noticed by comparing the present results with the results reported in the literature as a special case
Wang, Qiang; Gosselin, Louis; Fafard, Mario; Peng, Jianping; Li, Baokuan
2016-04-01
In order to understand the impact of anode change on heat transfer and magnetohydrodynamic flow in aluminum smelting cells, a transient three-dimensional (3D) coupled mathematical model has been developed. The solutions of the mass, momentum, and energy conservation equations were simultaneously implemented by the finite volume method with full coupling of the Joule heating and Lorentz force through solving the electrical potential equation. The volume of fluid approach was employed to describe the two-phase flow. The phase change of molten electrolyte (bath) as well as molten aluminum (metal) was modeled by an enthalpy-based technique, where the mushy zone is treated as a porous medium with a porosity equal to the liquid fraction. The effect of the new anode temperature on recovery time was also analyzed. A reasonable agreement between the test data and simulated results is obtained. The results indicate that the temperature of the bath under cold anodes first decreases reaching the minimal value and rises under the effect of increasing Joule heating, and finally returns to steady state. The colder bath decays the velocity, and the around ledge becomes thicker. The lowest temperature of the bath below new anodes increases from 1118 K to 1143 K (845 °C to 870 °C) with the new anode temperature ranging from 298 K to 498 K (25°C to 225°C), and the recovery time reduces from 22.5 to 20 hours.
Energy Technology Data Exchange (ETDEWEB)
McHugh, P.R.; Ramshaw, J.D.
1991-11-01
MAGMA is a FORTRAN computer code designed to viscous flow in in situ vitrification melt pools. It models three-dimensional, incompressible, viscous flow and heat transfer. The momentum equation is coupled to the temperature field through the buoyancy force terms arising from the Boussinesq approximation. All fluid properties, except density, are assumed variable. Density is assumed constant except in the buoyancy force terms in the momentum equation. A simple melting model based on the enthalpy method allows the study of the melt front progression and latent heat effects. An indirect addressing scheme used in the numerical solution of the momentum equation voids unnecessary calculations in cells devoid of liquid. Two-dimensional calculations can be performed using either rectangular or cylindrical coordinates, while three-dimensional calculations use rectangular coordinates. All derivatives are approximated by finite differences. The incompressible Navier-Stokes equations are solved using a new fully implicit iterative technique, while the energy equation is differenced explicitly in time. Spatial derivatives are written in conservative form using a uniform, rectangular, staggered mesh based on the marker and cell placement of variables. Convective terms are differenced using a weighted average of centered and donor cell differencing to ensure numerical stability. Complete descriptions of MAGMA governing equations, numerics, code structure, and code verification are provided. 14 refs.
International Nuclear Information System (INIS)
Montes, M.J.; Rovira, A.; Martínez-Val, J.M.; Ramos, A.
2012-01-01
The main objective of concentrated solar power is to increase the thermal energy of a fluid, for the fluid to be used, for example, in a power cycle to generate electricity. Such applications present the requirement of appropriately designing the receiver active absorber surface, as the incident radiation flux can be very high. Besides that, the solar image in the receiver is not uniform, so conventional boilers designs are not well suited for these purposes. That point is particularly critical in solar central receivers systems (CRS), where concentrated solar flux is usually above 500 kW/m 2 , causing thermal and mechanical stress in the absorber panels. This paper analyzes a new thermofluidynamic design of a solar central receiver, which optimizes the heat transfer in the absorber surface. This conceptual receiver presents the following characteristics: the fluid flow pattern is designed according to the radiation flux map symmetry, so more uniform fluid temperatures at the receiver outlet are achieved; the heat transfer irreversibilities are reduced by circulating the fluid from the lower temperature region to the higher temperature region of the absorber surface; the width of each pass is adjusted to the solar flux gradient, to get lower temperature differences between the side tubes of the same pass; and the cooling requirement is ensured by means of adjusting the fluid flow velocity per tube, taking into account the pressure drop. This conceptual scheme has been applied to the particular case of a molten salt single cavity receiver, although the configuration proposed is suitable for other receiver designs and working fluids. - Highlights: ► The solar receiver design proposed optimizes heat transfer in the absorber surface. ► The fluid flow pattern is designed according to the solar flux map symmetry at noon. ► The fluid circulates from the lower to the higher temperature regions. ► The width of each pass is adjusted to the solar flux gradient.
Directory of Open Access Journals (Sweden)
Mohammad M. Rahman
2016-11-01
Full Text Available The aim of the present study is to analyze numerically the steady boundary layer flow and heat transfer characteristics of Casson fluid with variable temperature and viscous dissipation past a permeable shrinking sheet with second order slip velocity. Using appropriate similarity transformations, the basic nonlinear partial differential equations have been transformed into ordinary differential equations. These equations have been solved numerically for different values of the governing parameters namely: shrinking parametersuction parameterCasson parameterfirst order slip parametersecond order slip parameter Prandtl number and the Eckert number using the bvp4c function from MATLAB. A stability analysis has also been performed. Numerical results have been obtained for the reduced skin-friction, heat transfer and the velocity and temperature profiles. The results indicate that dual solutions exist for the shrinking surface for certain values of the parameter space. The stability analysis indicates that the lower solution branch is unstable, while the upper solution branch is stable and physically realizable. In addition, it is shown that for a viscous fluida very good agreement exists between the present numerical results and those reported in the open literature. The present results are original and new for the boundary-layer flow and heat transfer past a shrinking sheet in a Casson fluid. Therefore, this study has importance for researchers working in the area of non-Newtonian fluids, in order for them to become familiar with the flow behavior and properties of such fluids.
Directory of Open Access Journals (Sweden)
Oyeniyi A. Oyewunmi
2016-06-01
Full Text Available In the present paper, we consider the employment of working-fluid mixtures in organic Rankine cycle (ORC systems with respect to thermodynamic and heat-transfer performance, component sizing and capital costs. The selected working-fluid mixtures promise reduced exergy losses due to their non-isothermal phase-change behaviour, and thus improved cycle efficiencies and power outputs over their respective pure-fluid components. A multi-objective cost-power optimization of a specific low-temperature ORC system (operating with geothermal water at 98 °C reveals that the use of working-fluid-mixtures does indeed show a thermodynamic improvement over the pure-fluids. At the same time, heat transfer and cost analyses, however, suggest that it also requires larger evaporators, condensers and expanders; thus, the resulting ORC systems are also associated with higher costs. In particular, 50% n-pentane + 50% n-hexane and 60% R-245fa + 40% R-227ea mixtures lead to the thermodynamically optimal cycles, whereas pure n-pentane and pure R-245fa have lower plant costs, both estimated as having ∼14% lower costs per unit power output compared to the thermodynamically optimal mixtures. These conclusions highlight the importance of using system cost minimization as a design objective for ORC plants.
International Nuclear Information System (INIS)
Baoku, I.G.; Olajuwon, B.I.; Mustapha, A.O.
2013-01-01
Highlights: ► We model the flow of a MHD third grade fluid, heat and mass transfer in a porous medium with partial slip flow regime. ► We examine the effects of pertinent parameters on the velocity, temperature and species concentration distributions. ► The values momentum and thermal boundary layers increase with increasing third grade parameter β. ► The consequences of increasing the permeability parameter m and partial slip parameter λ give rise to fluid velocity. ► The magnetic field parameter H decreases the momentum boundary layer and increases the concentration boundary layer. -- Abstract: The influence of third grade, partial slip and other thermophysical parameters on the steady flow, heat and mass transfer of viscoelastic third grade fluid past an infinite vertical insulated plate subject to suction across the boundary layer has been investigated. The space occupying the fluid is porous. The momentum equation is characterized by a highly nonlinear boundary value problem in which the order of the differential equation exceeds the number of available boundary conditions. An efficient numerical scheme of midpoint technique with Richardson’s extrapolation is employed to solve the governing system of coupled nonlinear equations of momentum, energy and concentration. Numerical calculations were carried out for different values of various interesting non-dimensional quantities in the slip flow regime with heat and mass transfer and were shown with the aid of figures. The values of the wall shear stress, the local rate of heat and mass transfers were obtained and tabulated. The analysis shows that as the fluid becomes more shear thickening, the momentum boundary layer decreases but the thermal boundary layer increases; the magnetic field strength is found to decrease with an increasing temperature distribution when the porous plate is insulated. The consequences of increasing the permeability parameter and Schmidt number decrease both the momentum
International Nuclear Information System (INIS)
Lamsaadi, M.; Naimi, M.; Hasnaoui, M.
2006-01-01
A combined analytical and numerical study is conducted for two dimensional, steady state, buoyancy driven flows of non-Newtonian power law fluids confined in a shallow rectangular cavity submitted to uniform fluxes of heat along both its short vertical sides, while its long horizontal walls are considered adiabatic. The effect of the non-Newtonian behavior on the fluid flow and heat transfer characteristics is examined. An approximate theoretical solution is developed on the basis of the parallel flow assumption and validated numerically by solving the full governing equations
DEFF Research Database (Denmark)
Andersen, Søren Bøgh; Santos, Ilmar F.; Fuerst, Axel
2015-01-01
This paper presents an improved completely interconnected procedure for estimating the losses, cooling flows, fluid characteristics and temperature distribution in a gearless mill drive using real life data. The presented model is part of a larger project building a multi-physics model combining...... iteratively according to the heat flux transferred to the fluid, is modeled as a lumped model with two nodes interconnected by 11 channels and one pump. The flow model is based on Bernoulli's energy equation and solved by Newton-Raphson method. All the results from the three physical areas have been verified...
International Nuclear Information System (INIS)
Akram, Safia; Nadeem, S.; Hussain, Anwar
2014-01-01
In the present analysis we discussed the influence of heat and mass transfer on the peristaltic flow of a Bingham in an inclined magnetic field and channel with different wave forms. The governing two dimensional equations of momentum, heat and mass transfer are simplified under the assumptions of long wavelength and low Reynolds number approximation. The exact solutions of momentum, heat and mass transfer are calculated. Finally, graphical behaviors of various physical parameters are also discussed through the graphical behavior of pressure rise, pressure gradient, temperature concentration and stream functions. - Highlights: • Combine effects of heat and mass transfer on peristaltic flow problem is discussed. • Effects of inclined magnetic field and channel on new fluid model are discussed. • Effects of different wave forms are also discussed in the present flow problem
African Journals Online (AJOL)
This paper reports on further studies on long range energy transfer between curcumine as donor and another thiazine dye, thionine, which is closely related to methylene blue as energy harvester (Figure 1). Since thionine is known to have a higher quantum yield of singlet oxygen sensitization than methylene blue [8], it is ...
Directory of Open Access Journals (Sweden)
Mahmood H. Ali
2015-02-01
Full Text Available A numerical study of non-Darcian natural convection heat transfer in a rectangular enclosure filled with porous medium saturated with viscous fluid was carried out. The effects of medium Rayleigh number, porosity, particle to fluid thermal conductivity ratio, Darcy number and enclosure aspect ratio on heat transfer were examined to demonstrate the ability of using this construction in thermal insulation of buildings walls.A modified Brinkman-Forchheimer-extended Darcy flow model was used and no-slip boundary conditions were imposed for velocity at the walls and the governing equations were expressed in dimensionless stream function, vorticity, and temperature formulation. The resulting algebraic equations obtained from finite difference discritization of vorticity and temperature equations are solved using (ADI method which uses Three Diagonal Matrix Algorithm (TDMA in each direction, while that of the stream function equation solved using successive iteration method.The study was done for the range of enclosure aspect ratio ( which is in the tall layers region at medium Rayleigh number ( , Darcy number (Da=10-3, 10-4, 10-5 , porosity (e=0.35, 0.45, 0.55, particle to fluid thermal conductivity (kS/kf=5.77, 38.5, 1385.5.The results showed that the Nusselt number is direct proportional to medium Rayleigh number and porosity and reversely proportional to Darcy number, ratio of particle to fluid thermal conductivity and enclosure aspect ratio. The variables that affect the heat transfer in the above arrangement was correlated in a mathematical equation that account better for their affects on heat transfer which is represented by mean Nusselt number (Nu.
International Nuclear Information System (INIS)
Siddiqui, Faisal A.; Dasgupta, Engr Sarbadaman; Fartaj, Amir
2012-01-01
Highlights: ► Air side heat transfer and flow characteristics of mesochannel cross-flow heat exchanger are studied experimentally. ► Hot ethylene glycol–water mixture (50:50) at constant mass flow rate is used against varying air flow. ► Air side heat transfer and fluid flow key parameters such as Nusselt number, Colburn factor, friction factor are obtained. ► General correlations are proposed for air side heat transfer and fluid flow parameters. - Abstract: Air side force convective heat transfer and flow characteristics of cross-flow mesochannel heat exchanger are investigated experimentally. A series of experiments representing 36 different operating conditions have been conducted on a finned mesochannel heat exchanger through the fully automated dynamic single-phase experimental facility which is capable of handling a wide variety of working fluids in air-to-liquid cross-flow orientation. The mesochannel heat exchanger is made of 15 aluminum slabs with arrays of wavy fins between slabs; 68 one millimeter circular diameter port located at each slab, and the air side frontal area of 304-mm × 304-mm. The ethylene glycol–water mixture as the working fluid in the liquid side was forced to flow through mesochannels maintaining constant inlet temperature and flow rate at 74 °C and 0.0345 kg/s respectively whereas the inlet flowing air into the arrays of wavy fins was changed at four different temperature levels from 28 °C to 43 °C. Frontal air velocity was altered in nine steps from 3 m/s to 11 m/s at each temperature level corresponding range of Reynolds number 752 a a ) and Colburn factor (j a ) were found higher in comparison with other studies.
International Nuclear Information System (INIS)
Lemaitre, Pascal; Porcheron, Emmanuel; Nuboer, Amandine
2007-01-01
In order to study the interactions between a spray and an atmosphere representative of a severe accident in a Pressurized Water Reactor, in terms of pressure, temperature and composition (steam and aerosol), the French Institute for Radiological Protection and Nuclear Safety (IRSN) developed the TOSQAN facility. This paper presents the development and qualification of the global rainbow refractometry and Interferometric Laser Imaging for Droplets Sizing (ILIDS) that are respectively dedicated to measure the spray droplets temperature and size. In addition we present an extension of these two techniques in order to determine the aerosol concentration inside the droplet and the aerosol removal rate. (author)
Energy Technology Data Exchange (ETDEWEB)
Isa, Sharena Mohamad; Ali, Anati [Department of Mathematical Sciences, Faculty of Science Universiti Teknologi Malaysia, 81310 UTM Johor Bahru, Johor, Malaysia sharena-ina@yahoo.com, anati@utm.my (Malaysia)
2015-10-22
In this paper, the hydromagnetic flow of dusty fluid over a vertical stretching sheet with thermal radiation is investigated. The governing partial differential equations are reduced to nonlinear ordinary differential equations using similarity transformation. These nonlinear ordinary differential equations are solved numerically using Runge-Kutta Fehlberg fourth-fifth order method (RKF45 Method). The behavior of velocity and temperature profiles of hydromagnetic fluid flow of dusty fluid is analyzed and discussed for different parameters of interest such as unsteady parameter, fluid-particle interaction parameter, the magnetic parameter, radiation parameter and Prandtl number on the flow.
C. A. Randles; V. Ramaswamy
2010-01-01
Tropospheric aerosols emitted from biomass burning reduce solar radiation at the surface and locally heat the atmosphere. Equilibrium simulations using an atmospheric general circulation model (GFDL AGCM) indicate that strong atmospheric absorption from these particles can cool the surface and increase upward motion and low-level convergence over southern Africa during the dry season. These changes increase sea level pressure over land in the biomass burning region and spin-up the hydrologic ...
Direct measurement of aerosol shape factors
International Nuclear Information System (INIS)
Zeller, W.
1983-12-01
The dynamic shape factor whereas the coagulation shape factor is an average over the total examined size range. The experiments have shown that the results of experiments with a certain aerosol system cannot be transferred to other aerosol systems without further consideration. The outer shape of particles of a certain size depends on the specific properties of the material as well as on the experimental conditions during the aerosol generation. For both aerosol systems examined the mean dynamic shape factor, averaged over the total examined size range, agrees roughly with the coagulation shape factor. (Description of aerosol centrifuge and of differential mobility analyzer). (orig./HP) [de
Directory of Open Access Journals (Sweden)
B. R. Rout
2013-01-01
Full Text Available This paper aims to investigate the influence of chemical reaction and the combined effects of internal heat generation and a convective boundary condition on the laminar boundary layer MHD heat and mass transfer flow over a moving vertical flat plate. The lower surface of the plate is in contact with a hot fluid while the stream of cold fluid flows over the upper surface with heat source and chemical reaction. The basic equations governing the flow, heat transfer, and concentration are reduced to a set of ordinary differential equations by using appropriate transformation for variables and solved numerically by Runge-Kutta fourth-order integration scheme in association with shooting method. The effects of physical parameters on the velocity, temperature, and concentration profiles are illustrated graphically. A table recording the values of skin friction, heat transfer, and mass transfer at the plate is also presented. The discussion focuses on the physical interpretation of the results as well as their comparison with previous studies which shows good agreement as a special case of the problem.
Chiappini, L; Perraudin, E; Durand-Jolibois, R; Doussin, J F
2006-11-01
A new one-step method for the analysis of highly polar components of secondary organic aerosols (SOA) has been developed. This method should lead to a better understanding of SOA formation and evolution since it enables the compounds responsible for SOA formation to be identified. Since it is based on supercritical fluid extraction coupled to gas chromatography-mass spectrometry, it minimizes the analysis time and significantly enhances sensitivity, which makes it suitable for trace-level compounds, which are constituents of SOA. One of the key features of this method is the in situ derivatisation step: an online silylation allowing the measurement of highly polar, polyfunctional compounds, which is a prerequisite for the elucidation of chemical mechanisms. This paper presents the development of this analytical method and highlights its ability to address this major atmospheric issue through the analysis of SOA formed from the ozonolysis of a biogenic hydrocarbon (sabinene). Ozonolysis of sabinene was performed in a 6 m3 Teflon chamber. The aerosol components were derivatised in situ. More than thirty products, such as sabinaketone, sabinic acid and other multifunctional compounds including dicarboxylic acids and oxoacids, were measured. Nine of them were identified and quantified. The sensitivity and the linearity (0.91
Energy Technology Data Exchange (ETDEWEB)
Chiappini, L.; Perraudin, E.; Durand-Jolibois, R.; Doussin, J.F. [Universites Paris, Laboratoire Interuniversitaire des Systemes Atmospheriques, UMR CNRS 7583, Creteil (France)
2006-11-15
A new one-step method for the analysis of highly polar components of secondary organic aerosols (SOA) has been developed. This method should lead to a better understanding of SOA formation and evolution since it enables the compounds responsible for SOA formation to be identified. Since it is based on supercritical fluid extraction coupled to gas chromatography-mass spectrometry, it minimizes the analysis time and significantly enhances sensitivity, which makes it suitable for trace-level compounds, which are constituents of SOA. One of the key features of this method is the in situ derivatisation step: an online silylation allowing the measurement of highly polar, polyfunctional compounds, which is a prerequisite for the elucidation of chemical mechanisms. This paper presents the development of this analytical method and highlights its ability to address this major atmospheric issue through the analysis of SOA formed from the ozonolysis of a biogenic hydrocarbon (sabinene). Ozonolysis of sabinene was performed in a 6 m{sup 3} Teflon chamber. The aerosol components were derivatised in situ. More than thirty products, such as sabinaketone, sabinic acid and other multifunctional compounds including dicarboxylic acids and oxoacids, were measured. Nine of them were identified and quantified. The sensitivity and the linearity (0.91 < R < 0.98) of the method were both good and detection limits ranged from 1.2 to 6.4 ng for the investigated compounds. (orig.)
Mabood, Fazle; Khan, Waqar A; Ismail, Ahmad Izani Md
2013-01-01
In this article, an approximate analytical solution of flow and heat transfer for a viscoelastic fluid in an axisymmetric channel with porous wall is presented. The solution is obtained through the use of a powerful method known as Optimal Homotopy Asymptotic Method (OHAM). We obtained the approximate analytical solution for dimensionless velocity and temperature for various parameters. The influence and effect of different parameters on dimensionless velocity, temperature, friction factor, and rate of heat transfer are presented graphically. We also compared our solution with those obtained by other methods and it is found that OHAM solution is better than the other methods considered. This shows that OHAM is reliable for use to solve strongly nonlinear problems in heat transfer phenomena.
Ilinca, A.; Mangini, D.; Mameli, M.; Fioriti, D.; Filippeschi, S.; Araneo, L.; Roth, N.; Marengo, M.
2017-11-01
A Novel Single Loop Pulsating Heat Pipe (SLPHP), with an inner diameter of 2 mm, filled up with two working fluids (Ethanol and FC-72, Filling Ratio of 60%), is tested in Bottom Heated mode varying the heating power and the orientation. The static confinement diameter for Ethanol and FC-72, respectively 3.4 mm and 1.7mm, is above and slightly under the inner diameter of the tube. This is important for a better understanding of the working principle of the device very close to the limit between the Loop Thermosyphon and Pulsating Heat Pipe working modes. With respect to previous SLPHP experiments found in the literature, such device is designed with two transparent inserts mounted between the evaporator and the condenser allowing direct fluid flow visualization. Two highly accurate pressure transducers permit local pressure measurements just at the edges of one of the transparent inserts. Additionally, three heating elements are controlled independently, so as to vary the heating distribution at the evaporator. It is found that peculiar heating distributions promote the slug/plug flow motion in a preferential direction, increasing the device overall performance. Pressure measurements point out that the pressure drop between the evaporator and the condenser are related to the flow pattern. Furthermore, at high heat inputs, the flow regimes recorded for the two fluids are very similar, stressing that, when the dynamic effects start to play a major role in the system, the device classification between Loop Thermosyphon and Pulsating Heat Pipe is not that sharp anymore.
Littleton, Helen X; Daigger, Glen T; Strom, Peter F
2007-06-01
A full-scale, closed-loop bioreactor (Orbal oxidation ditch, Envirex brand technologies, Siemens, Waukesha, Wisconsin), previously examined for simultaneous biological nutrient removal (SBNR), was further evaluated using computational fluid dynamics (CFD). A CFD model was developed first by imparting the known momentum (calculated by tank fluid velocity and mass flowrate) to the fluid at the aeration disc region. Oxygen source (aeration) and sink (consumption) terms were introduced, and statistical analysis was applied to the CFD simulation results. The CFD model was validated with field data obtained from a test tank and a full-scale tank. The results indicated that CFD could predict the mixing pattern in closed-loop bioreactors. This enables visualization of the flow pattern, both with regard to flow velocity and dissolved-oxygen-distribution profiles. The velocity and oxygen-distribution gradients suggested that the flow patterns produced by directional aeration in closed-loop bioreactors created a heterogeneous environment that can result in dissolved oxygen variations throughout the bioreactor. Distinct anaerobic zones on a macroenvironment scale were not observed, but it is clear that, when flow passed around curves, a secondary spiral flow was generated. This second current, along with the main recirculation flow, could create alternating anaerobic and aerobic conditions vertically and horizontally, which would allow SBNR to occur. Reliable SBNR performance in Orbal oxidation ditches may be a result, at least in part, of such a spatially varying environment.
Energy Technology Data Exchange (ETDEWEB)
Xiao, Jianjun; Travis, Jack; Royl, Peter; Necker, Gottfried; Svishchev, Anatoly; Jordan, Thomas
2016-07-01
Karlsruhe Institute of Technology (KIT) is developing the parallel computational fluid dynamics code GASFLOW-MPI as a best-estimate tool for predicting transport, mixing, and combustion of hydrogen and other gases in nuclear reactor containments and other facility buildings. GASFLOW-MPI is a finite-volume code based on proven computational fluid dynamics methodology that solves the compressible Navier-Stokes equations for three-dimensional volumes in Cartesian or cylindrical coordinates.
Energy Technology Data Exchange (ETDEWEB)
Xiao, Jianjun; Travis, Jack; Royl, Peter; Necker, Gottfried; Svishchev, Anatoly; Jordan, Thomas
2016-07-01
Karlsruhe Institute of Technology (KIT) is developing the parallel computational fluid dynamics code GASFLOW-MPI as a best-estimate tool for predicting transport, mixing, and combustion of hydrogen and other gases in nuclear reactor containments and other facility buildings. GASFLOW-MPI is a finite-volume code based on proven computational fluid dynamics methodology that solves the compressible Navier-Stokes equations for three-dimensional volumes in Cartesian or cylindrical coordinates.
International Nuclear Information System (INIS)
Cristy, G.A.; Fish, M.E.
1978-01-01
As part of the continuing studies of the effects of very severe reactor accidents, an effort was made to develop, test, and improve simple, effective, and inexpensive methods by which the average citizen, using only materials readily available, could protect his residence, himself, and his family from injury by toxic aerosols. The methods for protection against radioactive aerosols should be equally effective against a clandestine biological attack by terrorists. The results of the tests to date are limited to showing that spores of the harmless bacterium, bacillus globegii (BG), can be used as a simulant for the radioactive aerosols. An aerosol generator of Lauterbach type was developed which will produce an essentially monodisperse aerosol at the rate of 10 9 spores/min. Analytical techniques have been established which give reproducible results. Preliminary field tests have been conducted to check out the components of the system. Preliminary tests of protective devices, such as ordinary vacuum sweepers, have given protection factors of over 1000
International Nuclear Information System (INIS)
Rosen, J.; Ivanov, V.A.
1993-01-01
Stratospheric aerosol measurements can provide both spatial and temporal data of sufficient resolution to be of use in climate models. Relatively recent results from a wide range of instrument techniques for measuring stratospheric aerosol parameters are described. Such techniques include impactor sampling, lidar system sensing, filter sampling, photoelectric particle counting, satellite extinction-sensing using the sun as a source, and optical depth probing, at sites mainly removed from tropospheric aerosol sources. Some of these techniques have also had correlative and intercomparison studies. The main methods for determining the vertical profiles of stratospheric aerosols are outlined: lidar extinction measurements from satellites; impactor measurements from balloons and aircraft; and photoelectric particle counter measurements from balloons, aircraft, and rockets. The conversion of the lidar backscatter to stratospheric aerosol mass loading is referred to. Absolute measurements of total solar extinction from satellite orbits can be used to extract the aerosol extinction, and several examples of vertical profiles of extinction obtained with the SAGE satellite are given. Stratospheric mass loading can be inferred from extinction using approximate linear relationships but under restrictive conditions. Impactor sampling is essentially the only method in which the physical nature of the stratospheric aerosol is observed visually. Vertical profiles of stratospheric aerosol number concentration using impactor data are presented. Typical profiles using a dual-size-range photoelectric dustsonde particle counter are given for volcanically disturbed and inactive periods. Some measurements of the global distribution of stratospheric aerosols are also presented. Volatility measurements are described, indicating that stratospheric aerosols are composed primarily of about 75% sulfuric acid and 25% water
Directory of Open Access Journals (Sweden)
Jorge M. Llamas
2017-08-01
Full Text Available Currently, operating parabolic trough (PT solar thermal power plants, either solar-only or with thermal storage block, use the solar field as a heat transfer fluid (HTF thermal storage system to provide extra thermal capacity when it is needed. This is done by circulating heat transfer fluid into the solar field piping in order to create a heat fluid buffer. In the same way, by oversizing the solar field, it can work as an alternative thermal energy storage (TES system to the traditionally applied methods. This paper presents a solar field TES model for a standard solar field from a 50-MWe solar power plant. An oversized solar model is analyzed to increase the capacity storage system (HTF buffering. A mathematical model has been developed and different simulations have been carried out over a cycle of one year with six different solar multiples considered to represent the different oversized solar field configurations. Annual electricity generation and levelized cost of energy (LCOE are calculated to find the solar multiple (SM which makes the highest solar field thermal storage capacity possible within the minimum LCOE.
International Nuclear Information System (INIS)
Han, Kyu Il; Cho, Dong Hyun
2005-01-01
This study concerns the performance of condensing heat transfer in two-phase closed thermosyphons with various helical grooves. Distilled water, methanol, ethanol have been used as the working fluid. In the present work, a copper tube of the length of 1200mm and 14.28mm of inside diameter is used as the container of the thermosyphon. Each of the evaporator and the condenser section has a length of 550mm, while the remaining part of the thermosyphon tube is adiabatic section. A experimental study was carried out for analyzing the performances of having 50, 60, 70, 80, 90 helical grooves. A plain thermosyphon having the same inner and outer diameter as the grooved thermosyphons is also tested for the comparison. The type of working fluid and the numbers of grooves of the thermosyphons with various helical grooves have been used as the experimental parameters. The experimental results have been assessed and compared with existing theories. The results show that the type of working fluids are very important factors for the operation of thermosyphons. And the maximum enhancement (i.e. the ratio of the heat transfer coefficients the helical thermosyphons to plain thermosyphons) is 1.5∼2 for condensation
International Nuclear Information System (INIS)
Anand Rao, J.; Prabhakar Reddy, B.
2010-01-01
The numerical solution of unsteady hydro-magnetic natural convection heat and mass transfer flow of a rotating, incompressible, viscous Boussinesq fluid is presented in this study in the presence of radiative heat transfer and a first order chemical reaction between the fluid and diffusing species. The Rosseland approximation for an optically thick fluid is invoked to describe the radiative flux. The solutions for velocity, temperature and concentration fields have been obtained by using Ritz finite element method. The results obtained are discussed for Grashof number(G r > 0) corresponding to cooling of the plate and (G r r , Sc, M, N, K, G r , G c and t with the help of graphs and tables. The numerical values of skin-friction coefficient entered in the tables. Results obtained show that a decrease in the temperature boundary layer occurs when the Prandtl number and the radiation parameter are increased and the flow velocity approaches steady state as the time parameter t, is increased. These findings are in quantitative agreement with earlier reported studies. (author)
Directory of Open Access Journals (Sweden)
Asma Khalid
2018-06-01
Full Text Available The intention here is to investigate the effects of wall couple stress with energy and concentration transfer in magnetohydrodynamic (MHD flow of a micropolar fluid embedded in a porous medium. The mathematical model contains the set of linear conservation forms of partial differential equations. Laplace transforms and convolution technique are used for computation of exact solutions of velocity, microrotations, temperature and concentration equations. Numerical values of skin friction, couple wall stress, Nusselt and Sherwood numbers are also computed. Characteristics for the significant variables on the physical quantities are graphically discussed. Comparison with previously published work in limiting sense shows an excellent agreement. Keywords: Micropolor fluid, Microrotation, MHD, Porosity, Wall couple stress, Exact solutions
Sobhani, M.; Behzadmehr, A.
2018-05-01
This study is a numerical investigation of the effect of improving heat transfer namely, modified rough (dimples and protrusions) surfaces on the mixed convective heat transfer of a turbulent flow in a horizontal tube. The effects of different dimples-protrusions arrangements on the improving the thermal performance of a rough tube are investigated at various Richardson numbers. Three dimensional governing equations are discretized by the finite-volume technique. Based on the obtained results the dimples-protrusions arrangements are modified to find a suitable configuration for which heat transfer coefficient and pressure drop to be balanced. Modified dimples-protrusions arrangements that shows higher performance is presented. Its average thermal performance 18% and 11% is higher than the other arrangements. In addition, the results show that roughening a smooth tube is more effective at the higher Richardson number.
Energy Technology Data Exchange (ETDEWEB)
Zhao, Chen-Ru; Zhang, Zhen [Institute of Nuclear and New Energy Technology of Tsinghua University, Advanced Nuclear Energy Technology Cooperation Innovation Centre, Key Laboratory of Advanced Nuclear Engineering and Safety, Ministry of Education, Beijing 100084 (China); Jiang, Pei-Xue, E-mail: jiangpx@tsinghua.edu.cn [Beijing Key Laboratory of CO_2 Utilization and Reduction Technology/Key Laboratory for Thermal Science and Power Engineering of Ministry of Education, Department of Thermal Engineering, Tsinghua University, Beijing 100084 (China); Bo, Han-Liang [Institute of Nuclear and New Energy Technology of Tsinghua University, Advanced Nuclear Energy Technology Cooperation Innovation Centre, Key Laboratory of Advanced Nuclear Engineering and Safety, Ministry of Education, Beijing 100084 (China)
2017-03-15
Highlights: • Understanding of the mechanism of buoyancy effect on supercritical heat transfer. • Turbulence related parameters in upward and downward flows were compared. • Turbulent Prandtl number affected the prediction insignificantly. • Buoyancy production was insignificant compared with shear production. • Damping function had the greatest effect and is a priority for further modification. - Abstract: Heat transfer to supercritical pressure fluids was modeled for normal and buoyancy affected conditions using several low Reynolds number k-ε models, including the Launder and Sharma, Myong and Kasagi, and Abe, Kondoh and Nagano, with the predictions compared with experimental data. All three turbulence models accurately predicted the cases without heat transfer deterioration, but failed to accurately predict the cases with heat transfer deterioration although the general trends were captured, indicating that further improvements and modifications are needed for the low Reynolds number k-ε turbulence models to better predict buoyancy deteriorated heat transfer. Further investigations studied the influence of various aspects of the low Reynolds number k-ε turbulence models, including the turbulent Prandtl number, the buoyancy production of turbulent kinetic energy, and the damping function to provide guidelines for model development to more precisely predict buoyancy affected heat transfer. The results show that the turbulent Prandtl number and the buoyancy production of turbulent kinetic energy have little influence on the predictions for cases in this study, while new damping functions with carefully selected control parameters are needed in the low Reynolds number k-ε turbulence models to correctly predict the buoyancy effect for heat transfer simulations in various applications such as supercritical pressure steam generators (SPSGs) in the high temperature gas cooled reactor (HTR) and the supercritical pressure water reactor (SCWR).
International Nuclear Information System (INIS)
Zhao, Chen-Ru; Zhang, Zhen; Jiang, Pei-Xue; Bo, Han-Liang
2017-01-01
Highlights: • Understanding of the mechanism of buoyancy effect on supercritical heat transfer. • Turbulence related parameters in upward and downward flows were compared. • Turbulent Prandtl number affected the prediction insignificantly. • Buoyancy production was insignificant compared with shear production. • Damping function had the greatest effect and is a priority for further modification. - Abstract: Heat transfer to supercritical pressure fluids was modeled for normal and buoyancy affected conditions using several low Reynolds number k-ε models, including the Launder and Sharma, Myong and Kasagi, and Abe, Kondoh and Nagano, with the predictions compared with experimental data. All three turbulence models accurately predicted the cases without heat transfer deterioration, but failed to accurately predict the cases with heat transfer deterioration although the general trends were captured, indicating that further improvements and modifications are needed for the low Reynolds number k-ε turbulence models to better predict buoyancy deteriorated heat transfer. Further investigations studied the influence of various aspects of the low Reynolds number k-ε turbulence models, including the turbulent Prandtl number, the buoyancy production of turbulent kinetic energy, and the damping function to provide guidelines for model development to more precisely predict buoyancy affected heat transfer. The results show that the turbulent Prandtl number and the buoyancy production of turbulent kinetic energy have little influence on the predictions for cases in this study, while new damping functions with carefully selected control parameters are needed in the low Reynolds number k-ε turbulence models to correctly predict the buoyancy effect for heat transfer simulations in various applications such as supercritical pressure steam generators (SPSGs) in the high temperature gas cooled reactor (HTR) and the supercritical pressure water reactor (SCWR).
Directory of Open Access Journals (Sweden)
Moussa Tembely
2017-10-01
Full Text Available Most of the pore-scale imaging and simulations of non-Newtonian fluid are based on the simplifying geometry of network modeling and overlook the fluid rheology and heat transfer. In the present paper, we developed a non-isothermal and non-Newtonian numerical model of the flow properties at pore-scale by simulation of the 3D micro-CT images using a Finite Volume Method (FVM. The numerical model is based on the resolution of the momentum and energy conservation equations. Owing to an adaptive mesh generation technique and appropriate boundary conditions, rock permeability and mobility are accurately computed. A temperature and concentration-dependent power-law viscosity model in line with the experimental measurement of the fluid rheology is adopted. The model is first applied at isothermal condition to 2 benchmark samples, namely Fontainebleau sandstone and Grosmont carbonate, and is found to be in good agreement with the Lattice Boltzmann method (LBM. Finally, at non-isothermal conditions, an effective mobility is introduced that enables to perform a numerical sensitivity study to fluid rheology, heat transfer, and operating conditions. While the mobility seems to evolve linearly with polymer concentration in agreement with a derived theoretical model, the effect of the temperature seems negligible by comparison. However, a sharp contrast is found between carbonate and sandstone under the effect of a constant temperature gradient. Besides concerning the flow index and consistency factor, a master curve is derived when normalizing the mobility for both the carbonate and the sandstone.
Khalid, Asma; Khan, Ilyas; Khan, Arshad; Shafie, Sharidan
2018-06-01
The intention here is to investigate the effects of wall couple stress with energy and concentration transfer in magnetohydrodynamic (MHD) flow of a micropolar fluid embedded in a porous medium. The mathematical model contains the set of linear conservation forms of partial differential equations. Laplace transforms and convolution technique are used for computation of exact solutions of velocity, microrotations, temperature and concentration equations. Numerical values of skin friction, couple wall stress, Nusselt and Sherwood numbers are also computed. Characteristics for the significant variables on the physical quantities are graphically discussed. Comparison with previously published work in limiting sense shows an excellent agreement.
International Nuclear Information System (INIS)
Cheng, L.; Kuznetsov, A.V.
2005-01-01
This paper presents the first attempt to investigate numerically heat transfer in a helical pipe filled with a fluid saturated porous medium; the analysis is based on the full momentum equation for porous media that accounts for the Brinkman and Forchheimer extensions of the Darcy law as well as for the flow inertia. Numerical computations are performed in an orthogonal helical coordinate system. The effects of the Darcy number, the Forchheimer coefficient as well as the Dean and Germano numbers on the axial flow velocity, secondary flow, temperature distribution, and the Nusselt number are investigated. (authors)
Energy Technology Data Exchange (ETDEWEB)
Cheng, L.; Kuznetsov, A.V. [North Carolina State Univ., Raleigh, NC (United States). Dept. of Mechanical and Aerospace Engineering
2005-07-01
This paper presents the first attempt to investigate numerically heat transfer in a helical pipe filled with a fluid saturated porous medium; the analysis is based on the full momentum equation for porous media that accounts for the Brinkman and Forchheimer extensions of the Darcy law as well as for the flow inertia. Numerical computations are performed in an orthogonal helical coordinate system. The effects of the Darcy number, the Forchheimer coefficient as well as the Dean and Germano numbers on the axial flow velocity, secondary flow, temperature distribution, and the Nusselt number are investigated. (authors)
Two-Phase Flow in Wire Coating with Heat Transfer Analysis of an Elastic-Viscous Fluid
Directory of Open Access Journals (Sweden)
Zeeshan Khan
2016-01-01
Full Text Available This work considers two-phase flow of an elastic-viscous fluid for double-layer coating of wire. The wet-on-wet (WOW coating process is used in this study. The analytical solution of the theoretical model is obtained by Optimal Homotopy Asymptotic Method (OHAM. The expression for the velocity field and temperature distribution for both layers is obtained. The convergence of the obtained series solution is established. The analytical results are verified by Adomian Decomposition Method (ADM. The obtained velocity field is compared with the existing exact solution of the same flow problem of second-grade fluid and with analytical solution of a third-grade fluid. Also, emerging parameters on the solutions are discussed and appropriate conclusions are drawn.
Large eddy simulation on thermal mixing of fluids in a T-junction with conjugate heat transfer
Energy Technology Data Exchange (ETDEWEB)
Selvam, P. Karthick, E-mail: karthick.selvam@ike.uni-stuttgart.de; Kulenovic, Rudi, E-mail: rudi.kulenovic@ike.uni-stuttgart.de; Laurien, Eckart, E-mail: eckart.laurien@ike.uni-stuttgart.de
2015-04-01
Highlights: • LES of fluid mixing in a T-junction at ΔT = 117 K and 123 K is performed. • Dynamical thermal stratification flow behavior downstream of T-junction. • Temperature fluctuations have maximum amplitudes of about 3.4–5.6% of ΔT. • High amplitude fluctuations occur near stratification layer in the mixing region. • Energy of temperature fluctuations mainly contained in the range 0.1–3 Hz. - Abstract: High cycle thermal fatigue failure in a nuclear power plant T-junction piping system may be caused by near-wall temperature fluctuations due to thermal mixing of hot and cold fluid streams. In the present study, thermal mixing at temperature differences (ΔT) of 117 K and 123 K between the mixing fluids is numerically investigated using Large Eddy Simulation (LES) method with the commercial Computational Fluid Dynamics (CFD) software ANSYS CFX 14.0. LES results from the study are validated with experimental data obtained from Fluid–Structure Interaction (FSI) test facility at the Materials Testing Institute (MPA), University of Stuttgart. Mass flow rate ratios (main/branch) in both cases are 4 and 6, respectively. LES results in both cases show that there is incomplete mixing of fluids and within three diameters downstream of T-junction, the mixing results in a dynamical thermal stratification flow behavior, which is maintained throughout the computational domain. Mean temperature predictions by LES show good agreement with the experimental data, whereas the root mean square (RMS) temperature fluctuations are over or understated at a few positions. The temperature fluctuations have amplitudes ranging from 0.09 to 5.6% of ΔT between the mixing fluids. Incomplete mixing of fluids and relatively lower amplitude of temperature fluctuations are mainly due to lower Reynolds number of 3670 in the cold fluid coming from the branch pipe along with buoyancy effects in the flow due to higher inflow temperature in the main pipe.
International Nuclear Information System (INIS)
La Madrid, Raul; Marcelo, Daniel; Orbegoso, Elder Mendoza; Saavedra, Rafael
2016-01-01
Highlights: • Heat transfer modeling and simulation between flue gases and sugar cane juice. • Use of Computational Fluid Dynamics to get thermal parameters of a jaggery furnace. • Data acquisition system installed in the jaggery production module. • Parametric analysis changing the flue-gases velocity to represent temperature drops. - Abstract: Jaggery (also called organic sugar) is a concentrated product of sugarcane juice that is produced in rural communities in the highlands and jungle of Peru. In the last few years there has been an increase in the exports of jaggery and higher volumes of production are required driving this activity from a rural process with small production to an industry seeking greater productivity. In this framework, optimization of the use of energy becomes essential for the proper development of the process of production and the correct performance of the involved equipment. Open heat exchangers made of stainless steel are used in the production of jaggery. These heat exchangers containing sugarcane juice are placed over a flue gas duct. The thermal energy contained in the gas is used to evaporate the water contained in the sugarcane juice thickening the juice and after evaporating almost all the water, a pasty crystalline yellow substance is left in the boiling pan which becomes solid after cooling, this is the jaggery. The modeling and simulation of heat transfer between the combustion gases and the juice is very important in order to improve the thermal efficiency of the process. It permits to know with a high level of detail the physical phenomena of heat transfer occurring from bagasse combustion flue gases to sugarcane juice. This paper presents the results of the numerical simulation of heat transfer phenomena in the open heat exchangers and those results are compared to field measured data. Numerical results about temperature drop of flue gases in the several locations of the jaggery furnace are in good accordance with
2013-01-01
profound effect of aerosol-water interaction both on radiation propagation in, and the thermodynamic structure of, the marine boundary layer. Specific... beer when we next meet. Regards, Dean lofl 1/24/2013 4:38 PM w DEPARTMENT OF ATMOSPHERIC SCIENCES UNIVERSITY of WASHINGTON January 25, 2013
Yang, Zhibin; Tao, Wang; Li, Liqun; Chen, Yanbin; Shi, Chunyuan
2017-06-01
In comparison with conventional laser beam welding, double-sided laser beam welding has two laser heat sources simultaneously and symmetrically loaded from both sides makes it to be a more complicated coupled heat transport and fluid flow process. In this work, in order to understand the heat transfer and fluid flow, a three-dimensional model was developed and validated with the experimental results. The temperature field, fluid flow field, and keyhole characteristic were calculated using the developed model by FLUENT software. Calculated results indicated that the temperature and fluid flow fields were bilateral symmetry along the stringer center, and the molten pool maximum length was located near the keyhole intersection position. The skin side had higher temperature and faster cooling speed. Several characteristic flow patterns in the weld pool cross section, including the vortexes flows near the keyhole opening position, the convection flows above the keyhole intersection location, the regularity downward flows at the molten pool bottom. And in the lengthwise section, a distinct vortex flow below the keyhole, and the liquid metal behind the keyhole first flowed to near the molten pool maximum length location and then to the molten pool surface. Perpendicular to and along welding direction the keyhole liquid metal flowed to the weld molten pool surface and around the keyhole, respectively. The special temperature fields and fluid flow patterns were closely related to the effects of the double sides' laser energy coupling and enhancement. The calculated weld pool geometry basically in good agreement with the experimental results indicated that the developed model was validity and reasonable.
International Nuclear Information System (INIS)
Hamid, Mohammed O.A.; Zhang, Bo; Yang, Luopeng
2014-01-01
The big problems facing solar-assisted MED (multiple-effect distillation) desalination unit are the low efficiency and bulky heat exchangers, which worsen its systematic economic feasibility. In an attempt to develop heat transfer technologies with high energy efficiency, a mathematical study is established, and optimization analysis using FSP (field synergy principle) is proposed to support meaning of heat transfer enhancement of a pre-heater in a solar-assisted MED desalination unit. Numerical simulations are performed on fluid flow and heat transfer characteristics in a circular and elliptical tube bundle. The numerical results are analyzed using the concept of synergy angle and synergy number as an indication of synergy between velocity vector and temperature gradient fields. Heat transfer in elliptical tube bundle is enhanced significantly with increasing initial velocity of the feed seawater and field synergy number and decreasing of synergy angle. Under the same operating conditions of the two designs, the total average synergy angle is 78.97° and 66.31° in circular and elliptical tube bundle, respectively. Optimization of the pre-heater by FSP shows that in case of elliptical tube bundle design, the average synergy number and heat transfer rate are increased by 22.68% and 35.98% respectively. - Highlights: • FSP (field synergy principle) is used to investigate heat transfer enhancement. • Numerical simulations are performed in circular and elliptical tubes pre-heater. • Numerical results are analyzed using concept of synergy angle and synergy number. • Optimization of elliptical tube bundle by FSP has better performance
Mansoor, Mohammad M.; Wong, Kokcheong; Siddique, Mansoor M.
2012-01-01
computational domain was discretized using a 120×160×100 grid for the micro-channel with an aspect ratio of (α=4.56) and examined for Reynolds numbers in the laminar range (Re 500-2000) using FLUENT. De-ionized water served as the cooling fluid while the micro
Kleinstreuer, Clement
2018-01-01
Modern Fluid Dynamics, Second Edition provides up-to-date coverage of intermediate and advanced fluids topics. The text emphasizes fundamentals and applications, supported by worked examples and case studies. Scale analysis, non-Newtonian fluid flow, surface coating, convection heat transfer, lubrication, fluid-particle dynamics, microfluidics, entropy generation, and fluid-structure interactions are among the topics covered. Part A presents fluids principles, and prepares readers for the applications of fluid dynamics covered in Part B, which includes computer simulations and project writing. A review of the engineering math needed for fluid dynamics is included in an appendix.
International Nuclear Information System (INIS)
Runchal, A.K.; Sagar, B.; Baca, R.G.; Kline, N.W.
1985-09-01
Postclosure performance assessment of the proposed high-level nuclear waste repository in flood basalts at Hanford requires that the processes of fluid flow, heat transfer, and mass transport be numerically modeled at appropriate space and time scales. A suite of computer models has been developed to meet this objective. The theory of one of these models, named PORFLO, is described in this report. Also presented are a discussion of the numerical techniques in the PORFLO computer code and a few computational test cases. Three two-dimensional equations, one each for fluid flow, heat transfer, and mass transport, are numerically solved in PORFLO. The governing equations are derived from the principle of conservation of mass, momentum, and energy in a stationary control volume that is assumed to contain a heterogeneous, anisotropic porous medium. Broad discrete features can be accommodated by specifying zones with distinct properties, or these can be included by defining an equivalent porous medium. The governing equations are parabolic differential equations that are coupled through time-varying parameters. Computational tests of the model are done by comparisons of simulation results with analytic solutions, with results from other independently developed numerical models, and with available laboratory and/or field data. In this report, in addition to the theory of the model, results from three test cases are discussed. A users' manual for the computer code resulting from this model has been prepared and is available as a separate document. 37 refs., 20 figs., 15 tabs
International Nuclear Information System (INIS)
Anand, Vishal
2016-01-01
Highlights: • Exponential formulation of s-PTT model used. • Heat transfer and entropy generation characteristics studied. • Effects of three slip laws examined. • Exponential formulation more accurate than linear formulation. - Abstract: This study concerns the heat transfer and entropy generation characteristics of viscoelastic fluid flow modeled by the exponential formulation of simplified Phan-Thien–Tanner (s-PTT) model. This is the first such study in literature of thermal behavior of viscoelastic fluids modeled by the exponential formulation of s-PTT model. The flow between two parallel plates is laminar, hydrodynamically and thermally fully developed, viscous dissipative and subject to uniform heat flux on the walls. The slip velocity boundary condition is imposed on the fluid–solid interface and the slip is captured by three slip laws, namely, Navier's non-linear slip law, Hatzikiriakos slip law, and asymptotic slip law. The governing equations have been solved analytically. Closed form solutions for the velocity distribution have been derived while the temperature distribution is presented in terms of an infinite but convergent series. The results pertaining to the three slip laws have been presented in detail. Finally, a comparison has been made between the results for exponential formulation and those for the linear formulation of the s-PTT model. The comparison shows that results for linear formulation deviate significantly from those for exponential formulation and thus the accuracy of the exponential formulation justifies the extra mathematical complexity which it entails.
Buseck, P. R.; Schwartz, S. E.
2003-12-01
It is widely believed that "On a clear day you can see forever," as proclaimed in the 1965 Broadway musical of the same name. While an admittedly beautiful thought, we all know that this concept is only figurative. Aside from Earth's curvature and Rayleigh scattering by air molecules, aerosols - colloidal suspensions of solid or liquid particles in a gas - limit our vision. Even on the clearest day, there are billions of aerosol particles per cubic meter of air.Atmospheric aerosols are commonly referred to as smoke, dust, haze, and smog, terms that are loosely reflective of their origin and composition. Aerosol particles have arisen naturally for eons from sea spray, volcanic emissions, wind entrainment of mineral dust, wildfires, and gas-to-particle conversion of hydrocarbons from plants and dimethylsulfide from the oceans. However, over the industrial period, the natural background aerosol has been greatly augmented by anthropogenic contributions, i.e., those produced by human activities. One manifestation of this impact is reduced visibility (Figure 1). Thus, perhaps more than in other realms of geochemistry, when considering the composition of the troposphere one must consider the effects of these activities. The atmosphere has become a reservoir for vast quantities of anthropogenic emissions that exert important perturbations on it and on the planetary ecosystem in general. Consequently, much recent research focuses on the effects of human activities on the atmosphere and, through them, on the environment and Earth's climate. For these reasons consideration of the geochemistry of the atmosphere, and of atmospheric aerosols in particular, must include the effects of human activities. (201K)Figure 1. Impairment of visibility by aerosols. Photographs at Yosemite National Park, California, USA. (a) Low aerosol concentration (particulate matter of aerodynamic diameter less than 2.5 μm, PM2.5=0.3 μg m-3; particulate matter of aerodynamic diameter less than 10
Khan, Zeeshan; Shah, Rehan Ali; Islam, Saeed; Jan, Bilal; Imran, Muhammad; Tahir, Farisa
2016-10-06
Modern optical fibers require double-layer coating on the glass fiber to provide protection from signal attenuation and mechanical damage. The most important plastic resins used in wires and optical fibers are plastic polyvinyl chloride (PVC) and low-high density polyethylene (LDPE/HDPE), nylon and Polysulfone. In this paper, double-layer optical fiber coating is performed using melt polymer satisfying PTT fluid model in a pressure type die using wet-on-wet coating process. The assumption of fully developed flow of Phan-Thien-Tanner (PTT) fluid model, two-layer liquid flows of an immiscible fluid is modeled in an annular die, where the fiber is dragged at a higher speed. The equations characterizing the flow and heat transfer phenomena are solved exactly and the effects of emerging parameters (Deborah and slip parameters, characteristic velocity, radii ratio and Brinkman numbers on the axial velocity, flow rate, thickness of coated fiber optics, and temperature distribution) are reported in graphs. It is shown that an increase in the non-Newtonian parameters increase the velocity in the absence or presence of slip parameters which coincides with related work. The comparison is done with experimental work by taking λ → 0 (non-Newtonian parameter).
Directory of Open Access Journals (Sweden)
Melnyk R. S.
2017-04-01
Full Text Available Aluminium and copper heat pipes with grooved and metal fibrous capillary structure are high effective heat transfer devices. They are used in different cooling systems of electronic equipment like a LED modules, microprocessors, receive-transmit modules and so on. However thus heat pipes have heat transfer limitations. There are few types of this limitations: hydraulic limitation, boiling limitation, liquid entrainment by vapor flow and sonic limitation. There is necessity to know which one of these limitations is determinant for heat pipe due to design process. At a present article calculations of maximum heat transfer ability represented. All these calculations were made for LED cooling by using heat pipes with grooved and metal fibrous capillary structures. Pentane, acetone, isobutane and water were used as a coolants. It was shown that the main operation limit for axial grooved heat pipe, which determinate maximum heat transfer ability due to inclination angle for location of cooling zone higher than evaporation zone case, is entrainment limit for pentane and acetone coolants. Nevertheless, for isobutane coolant the main limitation is a boiling limit. However, for heat pipes with metal fibrous capillary structure the main limitation is a capillary limit. This limitation was a determinant for all calculated coolants: water, pentane and acetone. For high porosity range of capillary structure, capillary limit transfer to sonic limit for heat pipes with water, that means that the vapor velocity increases to sonic velocity and can't grow any more. Due to this, coolant cant in a needed quantity infill condensation zone and the last one drained. For heat pipes with acetone and pentane, capillary limit transfer to boiling limit. All calculations were made for vapor temperature equal to 50°C, and for porosity range from 30% to 90%.
Simultaneous fluid-flow, heat-transfer and solid-stress computation in a single computer code
Energy Technology Data Exchange (ETDEWEB)
Spalding, D B [Concentration Heat and Momentum Ltd, London (United Kingdom)
1998-12-31
Computer simulation of flow- and thermally-induced stresses in mechanical-equipment assemblies has, in the past, required the use of two distinct software packages, one to determine the forces and the temperatures, and the other to compute the resultant stresses. The present paper describes how a single computer program can perform both tasks at the same time. The technique relies on the similarity of the equations governing velocity distributions in fluids to those governing displacements in solids. The same SIMPLE-like algorithm is used for solving both. Applications to 1-, 2- and 3-dimensional situations are presented. It is further suggested that Solid-Fluid-Thermal, ie SFT analysis may come to replace CFD on the one hand and the analysis of stresses in solids on the other, by performing the functions of both. (author) 7 refs.
Simultaneous fluid-flow, heat-transfer and solid-stress computation in a single computer code
Energy Technology Data Exchange (ETDEWEB)
Spalding, D.B. [Concentration Heat and Momentum Ltd, London (United Kingdom)
1997-12-31
Computer simulation of flow- and thermally-induced stresses in mechanical-equipment assemblies has, in the past, required the use of two distinct software packages, one to determine the forces and the temperatures, and the other to compute the resultant stresses. The present paper describes how a single computer program can perform both tasks at the same time. The technique relies on the similarity of the equations governing velocity distributions in fluids to those governing displacements in solids. The same SIMPLE-like algorithm is used for solving both. Applications to 1-, 2- and 3-dimensional situations are presented. It is further suggested that Solid-Fluid-Thermal, ie SFT analysis may come to replace CFD on the one hand and the analysis of stresses in solids on the other, by performing the functions of both. (author) 7 refs.
Reflooding phase of the LOCA - state of the art I. Heat transfer and fluid flow during reflooding
International Nuclear Information System (INIS)
Yadigaroglu, G.
1977-01-01
Complex heat transfer processes take place during the reflooding phase of the Loss-of-Coolant Accident in Light-Water Reactors. Reflooding experiments conducted with simple single-channel geometries (round tubes and annuli) and with rod bundles are reviewed. The experimental findings and various parametric trends are critically discussed, explained, and summarized. Analytical methods that are in use in safety analysis and features of advanced models that have been proposed are outlined. These advanced models attempt to solve the conservation equations in the core channels in order to find the local coolant conditions. The values of the heat transfer coefficients are related to local parameters to arrive at cladding temperature predictions
A New Paradigm for Diagnosing Contributions to Model Aerosol Forcing Error
Jones, A. L.; Feldman, D. R.; Freidenreich, S.; Paynter, D.; Ramaswamy, V.; Collins, W. D.; Pincus, R.
2017-12-01
A new paradigm in benchmark absorption-scattering radiative transfer is presented that enables both the globally averaged and spatially resolved testing of climate model radiation parameterizations in order to uncover persistent sources of biases in the aerosol instantaneous radiative effect (IRE). A proof of concept is demonstrated with the Geophysical Fluid Dynamics Laboratory AM4 and Community Earth System Model 1.2.2 climate models. Instead of prescribing atmospheric conditions and aerosols, as in prior intercomparisons, native snapshots of the atmospheric state and aerosol optical properties from the participating models are used as inputs to an accurate radiation solver to uncover model-relevant biases. These diagnostic results show that the models' aerosol IRE bias is of the same magnitude as the persistent range cited ( 1 W/m2) and also varies spatially and with intrinsic aerosol optical properties. The findings underscore the significance of native model error analysis and its dispositive ability to diagnose global biases, confirming its fundamental value for the Radiative Forcing Model Intercomparison Project.
International Nuclear Information System (INIS)
Yang, Jian; Wu, Jiangquan; Zhou, Lang; Wang, Qiuwang
2016-01-01
Highlights: • Flow and heat transfer in composite packed beds with low d_t/d_p_e are investigated. • The wall effect would be restrained with radially layered composite packing (RLM). • Heat flux and overall heat transfer efficiency can be improved with RLM packing. - Abstract: The effect of the tube wall on the fluid flow and heat transfer would be important in the packed bed with low tube to particle diameter ratio, which may lead to flow and temperature maldistributions inside, and the heat transfer performance may be lowered. In the present paper, the flow and heat transfer performances in both the composite and uniform packed beds of spheres with low tube to particle diameter were numerically investigated, where the composite packing means randomly packing with non-uniform spheres and the uniform packing means randomly packing with uniform spheres, including radially layered composite packing (RLM), axially layered composite packing (ALM), randomly composite packing (RCM) and randomly uniform packing (RPM). Both the composite and uniform packings were generated with discrete element method (DEM), and the influence of the wall effect on the flow and heat transfer in the packed beds were carefully studied and compared with each other. Firstly, it is found that, the wall effect on the velocity and temperature distributions in the randomly packed bed of uniform spheres (RPM) with low tube to particle diameter ratio were obvious. The average velocity of the near-tube-wall region is higher than that of the inner-tube region in the bed. When the tube wall is adiabatic, the average temperature of the near-tube-wall region is lower. With radially layered composite packing method (RLM), smaller pores would be formed close to the tube wall and big flow channels would be formed in the inner-tube region of the bed, which would be benefit to restrain the wall effect and improve heat transfer in the bed with low tube to particle diameter ratio. Furthermore, it is also
Energy Technology Data Exchange (ETDEWEB)
Yang, Jian, E-mail: yangjian81@mail.xjtu.edu.cn [Key Laboratory of Thermo-Fluid Science and Engineering, Ministry of Education, School of Energy and Power Engineering, Xi’an Jiaotong University, Xi’an, Shaanxi 710049 (China); Wu, Jiangquan [CSR Research of Electrical Technology and Material Engineering, Zhuzhou, Hunan 412001 (China); Zhou, Lang; Wang, Qiuwang [Key Laboratory of Thermo-Fluid Science and Engineering, Ministry of Education, School of Energy and Power Engineering, Xi’an Jiaotong University, Xi’an, Shaanxi 710049 (China)
2016-04-15
Highlights: • Flow and heat transfer in composite packed beds with low d{sub t}/d{sub pe} are investigated. • The wall effect would be restrained with radially layered composite packing (RLM). • Heat flux and overall heat transfer efficiency can be improved with RLM packing. - Abstract: The effect of the tube wall on the fluid flow and heat transfer would be important in the packed bed with low tube to particle diameter ratio, which may lead to flow and temperature maldistributions inside, and the heat transfer performance may be lowered. In the present paper, the flow and heat transfer performances in both the composite and uniform packed beds of spheres with low tube to particle diameter were numerically investigated, where the composite packing means randomly packing with non-uniform spheres and the uniform packing means randomly packing with uniform spheres, including radially layered composite packing (RLM), axially layered composite packing (ALM), randomly composite packing (RCM) and randomly uniform packing (RPM). Both the composite and uniform packings were generated with discrete element method (DEM), and the influence of the wall effect on the flow and heat transfer in the packed beds were carefully studied and compared with each other. Firstly, it is found that, the wall effect on the velocity and temperature distributions in the randomly packed bed of uniform spheres (RPM) with low tube to particle diameter ratio were obvious. The average velocity of the near-tube-wall region is higher than that of the inner-tube region in the bed. When the tube wall is adiabatic, the average temperature of the near-tube-wall region is lower. With radially layered composite packing method (RLM), smaller pores would be formed close to the tube wall and big flow channels would be formed in the inner-tube region of the bed, which would be benefit to restrain the wall effect and improve heat transfer in the bed with low tube to particle diameter ratio. Furthermore, it
Numerical Study on Heat Transfer Performance of PCHE With Supercritical CO{sub 2} as Working Fluid
Energy Technology Data Exchange (ETDEWEB)
Jeon, Sang Woo; Ngo, Ich-long; Byon, Chan [Yeungnam Univ., Gyeongsan (Korea, Republic of)
2016-11-15
The printed circuit heat exchanger (PCHE) is regarded as a promising candidate for advanced heat exchangers for the next-generation supercritical CO{sub 2} power generation owing to its high compactness and rigid structure. In this study, an innovative type of PCHE, in which the channel sizes for the heat source fluid and heat sink fluid are different, is considered for analysis. The thermal performance of the PCHE, with supercritical CO{sub 2} as the working fluid, is numerically analyzed. The results have shown that the thermal performance of the PCHE decreases monotonically when the channel size of either the heat source channel or the heat sink channel, because of the decreased flow velocity. On the other hand, the thermal performance of the PCHE is found to be almost independent of the spacing between the channels. In addition, it was found that the channel cross sectional shape has little effect on the thermal performance when the hydraulic diameter of the channel remains constant.
Batch top-spray fluid bed coating: Scale-up insight using dynamic heat- and mass-transfer modelling
DEFF Research Database (Denmark)
Hede, Peter Dybdahl; Bach, P.; Jensen, Anker Degn
2009-01-01
A mathematical model was developed for batch top-spray fluid bed coating processes based on Ronsse et al. [2007a.b. Combined population balance and thermodynamic modelling of the batch top-spray fluidised bed coating process. Part I-model development and validation. journal of Food Engineering 78......, 296-307; Combined population balance and thermodynamic modelling of the batch top-spray fluidised bed coating process. Part II-model and process analysis. journal of Food Engineering 78, 308-322]. The model is based on one-dimensional discretisation of the fluid bed into a number of well-mixed control......-up principles by comparing simulation results with experimental temperature and humidity data obtained from inorganic salt coating of placebo cores in three pilot fluid bed scales being a 0.5kg small-scale (GEA Aeromatic-Fielder Strea-1), 4kg medium-scale (GEA Niro MP-1) and 24kg large-scale (GEA MP-2...
Institute of Scientific and Technical Information of China (English)
朱祖德; 段懿行; 王穗苹
2017-01-01
While some previous studies have found significant transfer effect from working memory to fluid intelligence, other studies have failed. The discrepancy may due to individual difference. One type of individual differences is the working memory training improvement. It was found that, transfer effect was found only in subjects who showed significant training improvement. Another type of individual differences is the cognitive ability at baseline, such as baseline fluid intelligence. It remains unclear how such individual differences modulate transfer effect in working memory training. Specifically, the aim of the present study was to investigate how the individual fluid intelligence at baseline modulates the working memory transfer effect. In total, 40 college students were recruited and randomly assigned into active control group (N = 19, 8 males/ 11 females) and training group (N = 21, 9 males /12 females). The training group was asked to complete a dual n-back task. The participants were asked to perform the training 25 minutes a day, 5 days per week in four weeks. The dual n-back task was computerized, in which participants were required to determine if the stimulus position and voice in the current trial were the same as that in the previous n-1 trial. The n was adaptively changed according to the participants' performances. Meanwhile, the active control group received a scientific knowledge reading training. To make sure the participants' engaged in the task, the reading material was different for each time. The training time setting in the active control group was the same as that in the training group. All participants were tested by the Raven's Standard Progressive Matrices (RSPM) before and after the training. In order to avoid the impact of repeated measures, the RSPM were divided into two parallel tests and were counterbalanced across groups and test sessions. The training group showed significant improvement in the dual n-back task, with an average
Directory of Open Access Journals (Sweden)
Foroutani Saeed
2017-01-01
Full Text Available This research investigates the laminar steady-forced convection heat transfer of a Cu-water nanofluid in a 2-D horizontal channel with different block geometries attached to the bottom wall. The block geometries assumed in this research are triangular and curve blocks. The governing equations associated with the required boundary conditions are solved using finite volume method based on the SIMPLE technique and the effects of Reynolds number, nanofluid volume fraction, block geometry, and the numbers of blocks on the local and average Nusselt numbers are explored. The obtained results show that nanoparticles can effectively enhance the heat transfer in a channel. Furthermore, the local and average Nusselt number distribution is strongly dependent on the block geometry. As observed, the heat transfer augments with the increase in the Reynolds number and nanofluid volume fraction for both block geometries. It is also concluded that the average Nusselt number of the curve block is higher than that of the triangular block for different Reynolds numbers which declares the importance of the block geometry in the heat transfer enhancement.
DEFF Research Database (Denmark)
Hærvig, Jakob; Sørensen, Kim; Condra, Thomas Joseph
2017-01-01
A numerical study has been carried out to investigate heat transfer enhancing flow field in 28 geometrically different sinusoidally, spirally corrugated tubes. To vary the corrugation, the height of corrugation e/D and the length between two successive corrugated sections p/D are varied in the ra...
Directory of Open Access Journals (Sweden)
B.I. Olajuwon
2014-12-01
Full Text Available Heat and mass transfer effects on unsteady flow of a viscoelastic micropolar fluid over an infinite moving permeable plate in a saturated porous medium in the presence of a transverse magnetic field with Hall effect and thermal radiation are studied. The governing system of partial differential equations is transformed to dimensionless equations using dimensionless variables. The dimensionless equations are then solved analytically using perturbation technique to obtain the expressions for velocity, microrotation, temperature and concentration. With the help of graphs, the effects of magnetic field parameter M, thermal radiation parameter Nr, Hall current parameter m, K, viscoelastic parameter a, and slip parameter h on the velocity, microrotation, temperature and concentration fields within the boundary layer are discussed. The result showed that increase in Nr and m increases translational velocity across the boundary layer while (a decreases translational velocity in the vicinity of the plate but the reverse happens when away from the plate. As h increases the translational velocity across the boundary layer increases. The higher the values of Nr, the higher the micro-rotational velocity effect while m lowers it. Also the effects n, a, m, Nr, Pr and Sc on the skin friction coefficient, Nusselt number and Sherwood numbers are presented numerically in tabular form. The result also revealed that increase in n reduces the skin friction coefficient. Pr enhances the rate of heat transfer while Sc enhances the rate of mass transfer.
Directory of Open Access Journals (Sweden)
Zhiping Zhang
2014-11-01
Full Text Available Temperature is one of the most important parameters in biohydrogen production by way of photo-fermentation. Enzymatic hydrolysate of corncob powder was utilized as a substrate. Computational fluid dynamics (CFD modeling was conducted to simulate the temperature distribution in an up-flow baffle photo-bioreactor (UBPB. Commercial software, GAMBIT, was utilized to mesh the photobioreactor geometry, while the software FLUENT was adopted to simulate the heat transfer in the photo-fermentation process. The inlet velocity had a marked impact on heat transfer; the most optimum velocity value was 0.0036 m•s-1 because it had the smallest temperature fluctuation and the most uniform temperature distribution. When the velocity decreased from 0.0036 m•s-1 to 0.0009 m•s-1, more heat was accumulated. The results obtained from the established model were consistent to the actual situation by comparing the simulation values and experimental values. The hydrogen production simulation verified that the novel UBPB was suitable for biohydrogen production by photosynthetic bacteria because of its uniform temperature and lighting distribution, with the serpentine flow pattern also providing mixing without additional energy input, thus enhancing the mass transfer and biohydrogen yield.
Akbar, Noreen Sher; Raza, M; Ellahi, R
2016-07-01
The peristaltic flow of a copper oxide water fluid investigates the effects of heat generation and magnetic field in permeable tube is studied. The mathematical formulation is presented, the resulting equations are solved exactly. The obtained expressions for pressure gradient, pressure rise, temperature, velocity profile are described through graphs for various pertinent parameters. It is found that pressure gradient is reduce with enhancement of particle concentration and velocity profile is upturn, beside it is observed that temperature increases as more volume fraction of copper oxide. The streamlines are drawn for some physical quantities to discuss the trapping phenomenon. Copyright © 2016. Published by Elsevier Ireland Ltd.
Space Station fluid management logistics
Dominick, Sam M.
1990-01-01
Viewgraphs and discussion on space station fluid management logistics are presented. Topics covered include: fluid management logistics - issues for Space Station Freedom evolution; current fluid logistics approach; evolution of Space Station Freedom fluid resupply; launch vehicle evolution; ELV logistics system approach; logistics carrier configuration; expendable fluid/propellant carrier description; fluid carrier design concept; logistics carrier orbital operations; carrier operations at space station; summary/status of orbital fluid transfer techniques; Soviet progress tanker system; and Soviet propellant resupply system observations.
International Nuclear Information System (INIS)
Ali, Ahmed Hamza H.; Ahmed, Mahmoud; Abdel-Gaied, S.M.
2013-01-01
This study investigates experimentally and theoretically the effects of operating and configuration parameters on convection heat transfer process and fluid flow characteristics for air flowing in transitional regimes through parallel plate channels with staggered plates segments heated by radiant heat flux. This configuration is to be utilized in air heater solar collectors and/or in a combined photovoltaic and air heater solar collector systems (PV/T). The operating parameters tested were Reynolds number (Re) values ranging from 2580 to 4650 with a combination of incident radiation heat flux (q inc ) values of 400, 700, and 1000 W/m 2 , respectively. The experimental results show that the local Nusselt number (Nu x ) is not unique function of the axial distance, in addition, a linear relationship between Re and apparent friction factor (f) was observed. Moreover, the model results show that combination of Re values in the laminar flow regime with proper selection of both plate's length and thickness can lead to enhancement in the heat transfer from the plate segments to the air stream. This is due to self-oscillatory flow mixer in wake zone behind each plate segment. Consequently, this will lead to avoid the need of more pumping power for the case of the flow falling within the transitional regime in the channel. - Highlights: • The local heat transfer coefficient is not unique function in the axial distance. • A linear relationship between Reynolds number and apparent friction factor is observed for Re > 3500. • The plate thickness is the dominant parameter affects both values of the heat transfer and friction factor. • Shorter plates' length, at any plate thickness, leads to periodic boundary layers interruption mechanisms
Faghri, Amir; Swanson, Theodore D.
1990-01-01
In the first section, improvements in the theoretical model and computational procedure for the prediction of film height and heat-transfer coefficient of the free surface flow of a radially-spreading thin liquid film adjacent to a flat horizontal surface of finite extent are presented. Flows in the presence and absence of gravity are considered. Theoretical results are compared to available experimental data with good agreement. In the presence of gravity, a hydraulic jump is present, isolating the flow into two regimes: supercritical upstream from the jump and subcritical downstream of it. In this situation, the effects of surface tension are important near the outer edge of the disk where the fluid experiences a free fall. A region of flow separation is present just downstream of the jump. In the absence of gravity, no hydraulic jump or separated flow region is present. The variation of the heat-transfer coefficient for flows in the presence and absence of gravity are also presented. In the second section, the results of a numerical simulation of the flow field and associated heat transfer coefficients are presented for the free surface flow of a thin liquid film adjacent to a horizontal rotating disk. The computation was performed for different flow rates and rotational velocities using a 3-D boundary-fitted coordinate system. Since the geometry of the free surface is unknown and dependent on flow rate, rate of rotation, and other parameters, an iterative procedure had to be used to ascertain its location. The computed film height agreed well with existing experimental measurements. The flow is found to be dominated by inertia near the entrance and close to the free surface and dominated by centrifugal force at larger radii and adjacent to the disk. The rotation enhances the heat transfer coefficient by a significant amount.
Two-phase cooling fluids; Les fluides frigoporteurs diphasiques
Energy Technology Data Exchange (ETDEWEB)
Lallemand, A. [Institut National des Sciences Appliquees (INSA), 69 - Lyon (France)
1997-12-31
In the framework of the diminution of heat transfer fluid consumption, the concept of indirect refrigerating circuits, using cooling intermediate fluids, is reviewed and the fluids that are currently used in these systems are described. Two-phase cooling fluids advantages over single-phase fluids are presented with their thermophysical characteristics: solid fraction, two-phase mixture enthalpy, thermal and rheological properties, determination of heat and mass transfer characteristics, and cold storage through ice slurry
Directory of Open Access Journals (Sweden)
Dulal Pal
2016-03-01
Full Text Available This paper deals with the perturbation analysis of mixed convection heat and mass transfer of an oscillatory viscous electrically conducting micropolar fluid over an infinite moving permeable plate embedded in a saturated porous medium in the presence of transverse magnetic field. Analytical solutions are obtained for the governing basic equations. The effects of permeability, chemical reaction, viscous dissipation, magnetic field parameter and thermal radiation on the velocity distribution, micro-rotation, skin friction and wall couple stress coefficients are analyzed in detail. The results indicate that the effect of increasing the chemical reaction has a tendency to decrease the skin friction coefficient at the wall, while opposite trend is seen by increasing the permeability parameter of the porous medium. Also micro-rotational velocity distribution increases with an increase in the magnetic field parameter.
Energy Technology Data Exchange (ETDEWEB)
Krukovsky, P G [Institute of Engineering Thermophysics, National Academy of Sciences of Ukraine, Kiev (Ukraine)
1998-12-31
The description of method and software FRIEND which provide a possibility of solution of inverse and inverse design problems on the basis of existing (base) CFD-software for solution of direct problems (in particular, heat-transfer and fluid-flow problems using software PHOENICS) are presented. FRIEND is an independent additional module that widens the operational capacities of the base software unified with this module. This unifying does not require any change or addition to the base software. Interfacing of FRIEND and the base software takes place through input and output files of the base software. A brief description of the computational technique applied for the inverse problem solution, same detailed information on the interfacing of FRIEND and CFD-software and solution results for testing inverse and inverse design problems, obtained using the tandem CFD-software PHOENICS and FRIEND, are presented. (author) 9 refs.
DEFF Research Database (Denmark)
Momeni, M.; Jamshidi, N.; Barari, Amin
2011-01-01
equations governing on the problem. It has been attempted to show the capabilities and wide-range applications of the Homotopy Analysis Method in comparison with the numerical method in solving this problems. The obtained solutions, in comparison with the exact solutions admit a remarkable accuracy. A clear...... conclusion can be drawn from the numerical method results that the HAM provides highly accurate solutions for nonlinear differential equations. Design/methodology/approach - In this paper a study of the flow and heat transfer of an incompressible homogeneous second grade fluid past a stretching sheet channel...... is presented and the Homotopy Analysis Method (HAM) is employed to compute an approximation to the solution of the system of nonlinear differential equations governing on the problem. It has been attempted to show the capabilities and wide-range applications of the Homotopy Analysis Method in comparison...
Energy Technology Data Exchange (ETDEWEB)
Krukovsky, P.G. [Institute of Engineering Thermophysics, National Academy of Sciences of Ukraine, Kiev (Ukraine)
1997-12-31
The description of method and software FRIEND which provide a possibility of solution of inverse and inverse design problems on the basis of existing (base) CFD-software for solution of direct problems (in particular, heat-transfer and fluid-flow problems using software PHOENICS) are presented. FRIEND is an independent additional module that widens the operational capacities of the base software unified with this module. This unifying does not require any change or addition to the base software. Interfacing of FRIEND and the base software takes place through input and output files of the base software. A brief description of the computational technique applied for the inverse problem solution, same detailed information on the interfacing of FRIEND and CFD-software and solution results for testing inverse and inverse design problems, obtained using the tandem CFD-software PHOENICS and FRIEND, are presented. (author) 9 refs.
Aerosol retrieval algorithm for the characterization of local aerosol using MODIS L1B data
International Nuclear Information System (INIS)
Wahab, A M; Sarker, M L R
2014-01-01
Atmospheric aerosol plays an important role in radiation budget, climate change, hydrology and visibility. However, it has immense effect on the air quality, especially in densely populated areas where high concentration of aerosol is associated with premature death and the decrease of life expectancy. Therefore, an accurate estimation of aerosol with spatial distribution is essential, and satellite data has increasingly been used to estimate aerosol optical depth (AOD). Aerosol product (AOD) from Moderate Resolution Imaging Spectroradiometer (MODIS) data is available at global scale but problems arise due to low spatial resolution, time-lag availability of AOD product as well as the use of generalized aerosol models in retrieval algorithm instead of local aerosol models. This study focuses on the aerosol retrieval algorithm for the characterization of local aerosol in Hong Kong for a long period of time (2006-2011) using high spatial resolution MODIS level 1B data (500 m resolution) and taking into account the local aerosol models. Two methods (dark dense vegetation and MODIS land surface reflectance product) were used for the estimation of the surface reflectance over land and Santa Barbara DISORT Radiative Transfer (SBDART) code was used to construct LUTs for calculating the aerosol reflectance as a function of AOD. Results indicate that AOD can be estimated at the local scale from high resolution MODIS data, and the obtained accuracy (ca. 87%) is very much comparable with the accuracy obtained from other studies (80%-95%) for AOD estimation
International Nuclear Information System (INIS)
Ezzat, M.A.; El-Bary, A.A.
2016-01-01
In this study, the constitutive relation for the heat flux vector is derived to be the Fourier's law of heat conduction with a variable thermal conductivity and time-fractional order. The Stokes' flow of unsteady incompressible thermoelectric fluid due to a moving plate in the presence of a transverse magnetic field is molded. Stokes' first problem is solved by applying Laplace transform with respect to time variable and evaluating the inverse transform integrals by using a numerical approach. Numerical results for the temperature and the velocity distributions are given and illustrated graphically for given problem. The results indicate that the thermal conductivity and time-fractional order play a major role in the temperature and velocity distributions. (authors)
Energy Technology Data Exchange (ETDEWEB)
Kim, Y.H.
2000-07-01
A numerical model adopting a partially staggered grid system for the location of dependent variables has been developed to analyze the fluid flow and temperature distributions in a molten zinc pot of No. 2 CGL of POSCO K wangyang strip mills. A control volume based finite difference procedure was employed to solve the conservation equations transformed by using the boundary-fitted-coordinate (BFC) system. The calculation results have shown that a change in the steel strip velocity has little influence on the overall flow pattern developed in the pot. The overall temperature distribution was rather uniform as predicted. However, charging cold ingots directly into the pot produced a non-uniform distribution of temperature. The local temperature fluctuations will promote the formation of intermetallic dross particles. It has been proposed that the non-uniform distribution of temperature could be reduced by selecting an appropriate channel inductor position as well as by optimizing the zinc ingot loading position. (author)
Directory of Open Access Journals (Sweden)
Taza Gul
Full Text Available This article aims to study the thin film layer flowing on a vertical oscillating belt. The flow is considered to satisfy the constitutive equation of unsteady second grade fluid. The governing equation for velocity and temperature fields with subjected initial and boundary conditions are solved by two analytical techniques namely Adomian Decomposition Method (ADM and Optimal Homotopy Asymptotic Method (OHAM. The comparisons of ADM and OHAM solutions for velocity and temperature fields are shown numerically and graphically for both the lift and drainage problems. It is found that both these solutions are identical. In order to understand the physical behavior of the embedded parameters such as Stock number, frequency parameter, magnetic parameter, Brinkman number and Prandtl number, the analytical results are plotted graphically and discussed.
Gul, Taza; Islam, Saeed; Shah, Rehan Ali; Khan, Ilyas; Khalid, Asma; Shafie, Sharidan
2014-01-01
This article aims to study the thin film layer flowing on a vertical oscillating belt. The flow is considered to satisfy the constitutive equation of unsteady second grade fluid. The governing equation for velocity and temperature fields with subjected initial and boundary conditions are solved by two analytical techniques namely Adomian Decomposition Method (ADM) and Optimal Homotopy Asymptotic Method (OHAM). The comparisons of ADM and OHAM solutions for velocity and temperature fields are shown numerically and graphically for both the lift and drainage problems. It is found that both these solutions are identical. In order to understand the physical behavior of the embedded parameters such as Stock number, frequency parameter, magnetic parameter, Brinkman number and Prandtl number, the analytical results are plotted graphically and discussed. PMID:25383797
International Nuclear Information System (INIS)
Manikandan, S.; Rajan, K.S.
2017-01-01
Highlights: • Hybrid nanofluid containing sand nanoparticles & encapsulated paraffin wax prepared. • Specific heat of hybrid nanofluid 9% greater than that of PG-water mixture. • Specific heat & thermal conductivity enhanced at optimum paraffin wax concentration. • Hybrid nanofluid with 1 wt.% paraffin wax & 1 vol% sand nanoparticles best suited. - Abstract: The reduction in specific heat commonly encountered due to the addition of nanoparticles to a heat transfer fluid such as propylene glycol-water mixture, can be overcome by co-dispersing surfactant-encapsulated paraffin wax, leading to formation of a hybrid nanofluid. Experimental investigations have been carried out on the preparation and evaluation of thermophysical properties of a hybrid nanofluid containing pluronic P-123 encapsulated paraffin wax (70–120 nm diameter, 1–5 wt.%) and sand nanoparticles (1 vol%) in propylene glycol-water mixture. The comparison of results of differential scanning calorimetry of pure paraffin wax and encapsulated paraffin wax revealed encapsulation efficiency of 84.4%. The specific heat of hybrid nanofluids monotonously increased with paraffin wax concentration, with 9.1% enhancement in specific heat for hybrid nanofluid containing 5 wt.% paraffin wax, in comparison to propylene glycol-water mixture. There exists an optimum paraffin wax concentration (1 wt.%) for the hybrid nanofluid at which the combination of various thermophysical properties such as specific heat, thermal conductivity and viscosity are favorable for use as heat transfer fluid. Such a hybrid nanofluid can be used as a substitute for propylene glycol-water mixture in solar thermal systems.
Energy Technology Data Exchange (ETDEWEB)
Brown, Nicholas R. [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States); Wysocki, Aaron J. [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States); Terrani, Kurt A. [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States); Ali, Amir [Univ. of New Mexico, Albuquerque, NM (United States); Liu, Maolong [Univ. of New Mexico, Albuquerque, NM (United States); Blandford, Edward [Univ. of New Mexico, Albuquerque, NM (United States)
2016-06-01
The U.S. Department of Energy Office of Nuclear Energy (DOE-NE) Advanced Fuels Campaign (AFC) is working closely with the nuclear industry to develop fuel and cladding candidates with potentially enhanced accident tolerance, also known as accident tolerant fuel (ATF). Thermal-fluids characteristics are a vital element of a holistic engineering evaluation of ATF concepts. One vital characteristic related to boiling heat transfer is the critical heat flux (CHF). CHF plays a vital role in determining safety margins during normal operation and also in the progression of potential transient or accident scenarios. This deliverable is a scoping survey of thermal-fluids evaluation and confirmatory experimental validation requirements of accident tolerant cladding concepts with a focus on boiling heat transfer characteristics. The key takeaway messages of this report are: 1. CHF prediction accuracy is important and the correlations may have significant uncertainty. 2. Surface conditions are important factors for CHF, primarily the wettability that is characterized by contact angle. Smaller contact angle indicates greater wettability, which increases the CHF. Surface roughness also impacts wettability. Results in the literature for pool boiling experiments indicate changes in CHF by up to 60% for several ATF cladding candidates. 3. The measured wettability of FeCrAl (i.e., contact angle and roughness) indicates that CHF should be investigated further through pool boiling and flow boiling experiments. 4. Initial measurements of static advancing contact angle and surface roughness indicate that FeCrAl is expected to have a higher CHF than Zircaloy. The measured contact angle of different FeCrAl alloy samples depends on oxide layer thickness and composition. The static advancing contact angle tends to decrease as the oxide layer thickness increases.
Meteorological support for aerosol radiometers: special aerosol sources
Energy Technology Data Exchange (ETDEWEB)
Belkina, S.K.; Zalmanzon, Yu.E.; Kuznetsov, Yu.V.; Fertman, D.E.
1988-07-01
A new method is described for transfer of the measure of unit volume activity of radioactive aerosols from the state special standard to the working instruments in the stage of regular operation. The differences from existing methods are examined. The principal distinction of the new method is the possibility of direct (rather than through the conversion factor) determination and subsequent testing of the fundamental meteorological characteristics of the instrument by means of special aerosol sources, which fosters a significant reduction in individual components of the indicated errors.
Directory of Open Access Journals (Sweden)
Manoj Kumar Nayak
2016-03-01
Full Text Available An attempt has been made to study the heat and mass transfer effects in a boundary layer flow through porous medium of an electrically conducting viscoelastic fluid subject to transverse magnetic field in the presence of heat source/sink and chemical reaction. It has been considered the effects of radiation, viscous and Joule dissipations and internal heat generation/absorption. Closed form solutions for the boundary layer equations of viscoelastic, second-grade and Walters׳ B′ fluid models are obtained. The method of solution involves similarity transformation. The transformed equations of thermal and mass transport are solved by applying Kummer׳s function. The solutions of temperature field for both prescribed surface temperature (PST as well as prescribed surface heat flux (PHF are obtained. It is important to remark that the interaction of magnetic field is found to be counterproductive in enhancing velocity and concentration distribution whereas the presence of chemical reaction as well as porous matrix with moderate values of magnetic parameter reduces the temperature and concentration fields at all points of flow domain.
Directory of Open Access Journals (Sweden)
Joseph M Dhahbi
2018-02-01
Full Text Available Extracellular RNAs are gaining clinical interest as biofluid-based noninvasive markers for diseases, especially cancer. In particular, derivatives of transfer RNA (tRNA are emerging as a new class of small-noncoding RNAs with high biomarker potential. We and others previously reported alterations in serum levels of specific tRNA halves in disease states including cancer. Here, we explored seminal fluid for tRNA halves as potential markers of prostate cancer. We found that 5′ tRNA halves are abundant in seminal fluid and are elevated in prostate cancer relative to noncancer patients. Importantly, most of these tRNA halves are also detectable in prostatic tissues, and a subset were increased in malignant relative to adjacent normal tissue. These findings emphasize the potential of 5′ tRNA halves as noninvasive markers for prostate cancer screening and diagnosis and provide leads for future work to elucidate a putative role of the 5′ tRNA halves in carcinogenesis.
On the solution of fluid flow and heat transfer problem in a 2D channel with backward-facing step
Directory of Open Access Journals (Sweden)
Alexander A. Fomin
2017-06-01
Full Text Available The stable stationary solutions of the test problem of hydrodynamics and heat transfer in a plane channel with the backward-facing step have been considered in the work for extremely high Reynolds numbers and expansion ratio of the stream $ER$. The problem has been solved by numerical integration of the 2D Navier–Stokes equations in ‘velocity-pressure’ formulation and the heat equation in the range of Reynolds number $500 \\leqslant \\mathrm{ Re} \\leqslant 3000$ and expansion ratio $1.43 \\leqslant ER \\leqslant 10$ for Prandtl number $\\mathrm{ Pr} = 0.71$. Validity of the results has been confirmed by comparing them with literature data. Detailed flow patterns, fields of stream overheating, and profiles of horizontal component of velocity and relative overheating of flow in the cross section of the channel have been presented. Complex behaviors of the coefficients of friction, hydrodynamic resistance and heat transfer (Nusselt number along the channel depending on the problem parameters have been analyzed.
Alonso-Torres, Beatriz; Hernández-Pérez, José Alfredo; Sierra-Espinoza, Fernando; Schenker, Stefan; Yeretzian, Chahan
2013-01-01
Heat and mass transfer in individual coffee beans during roasting were simulated using computational fluid dynamics (CFD). Numerical equations for heat and mass transfer inside the coffee bean were solved using the finite volume technique in the commercial CFD code Fluent; the software was complemented with specific user-defined functions (UDFs). To experimentally validate the numerical model, a single coffee bean was placed in a cylindrical glass tube and roasted by a hot air flow, using the identical geometrical 3D configuration and hot air flow conditions as the ones used for numerical simulations. Temperature and humidity calculations obtained with the model were compared with experimental data. The model predicts the actual process quite accurately and represents a useful approach to monitor the coffee roasting process in real time. It provides valuable information on time-resolved process variables that are otherwise difficult to obtain experimentally, but critical to a better understanding of the coffee roasting process at the individual bean level. This includes variables such as time-resolved 3D profiles of bean temperature and moisture content, and temperature profiles of the roasting air in the vicinity of the coffee bean.
Directory of Open Access Journals (Sweden)
FUE-SANG LIEN
2010-09-01
Full Text Available Early experimental work, conducted at Defence R&D Canada–Suffield, measured and characterized the personal and environmental contamination associated with simulated anthrax-tainted letters under a number of different scenarios in order to obtain a better understanding of the physical and biological processes for detecting, assessing, and formulating potential mitigation strategies for managing the risks associated with opening an anthrax-tainted letter. These experimental investigations have been extended in the present study to simulate numerically the contamination from the opening of anthrax-tainted letters in an open office environment using computational fluid dynamics (CFD. A quantity of 0.1 g of Bacillus atropheus (formerly referred to as Bacillus subtilis var globigii (BG spores in dry powder form, which was used here as a surrogate species for Bacillus anthracis (anthrax, was released from an opened letter in the experiment. The accuracy of the model for prediction of the spatial distribution of BG spores in the office from the opened letter is assessed qualitatively (and to the extent possible, quantitatively by detailed comparison with measured BG concentrations obtained under a number of different scenarios, some involving people moving within the office. The observed discrepancy between the numerical predictions and experimental measurements of concentration was probably the result of a number of physical processes which were not accounted for in the numerical simulation. These include air flow leakage from cracks and crevices of the building shell; the dispersion of BG spores in the Heating, Ventilation, and Air Conditioning (HVAC system; and, the effect of deposition and re-suspension of BG spores from various surfaces in the office environment.
International Nuclear Information System (INIS)
Ezato, Koichiro; Shimizu, Akihiko; Kunugi, Tomoaki.
1995-01-01
Numerical simulations are presented on the flow and heat transfer characteristics of an impinging round jet of argon plasma with atmospheric pressure. The target slab with finite thickness upon which plasma jet impinges is assumed to be as SiC which is a candidate material for plasma facing material of fusion reactor. The plasma jet is treated by use of a magnetohydrodynamics model that takes its two-temperature non-equilibrium state into account. The rear side of the target slab is assumed to be cooled by a gas-solid suspension impinging round jet. The result shows that the plasma is in non-equilibrium state in which the electron temperature is higher than the heavy particle in the outer region of plasma jet core and that the heat flux to the target slab is over 8 MW/m 2 in the region of the plasma jet core contacts. (author)
Abdollahzadeh Jamalabadi, Mohammad Yaghoub; Daqiqshirazi, Mohammadreza; Nasiri, Hossein; Safaei, Mohammad Reza; Nguyen, Truong Khang
2018-01-01
We present a numerical investigation of tapered arteries that addresses the transient simulation of non-Newtonian bio-magnetic fluid dynamics (BFD) of blood through a stenosis artery in the presence of a transverse magnetic field. The current model is consistent with ferro-hydrodynamic (FHD) and magneto-hydrodynamic (MHD) principles. In the present work, blood in small arteries is analyzed using the Carreau-Yasuda model. The arterial wall is assumed to be fixed with cosine geometry for the stenosis. A parametric study was conducted to reveal the effects of the stenosis intensity and the Hartman number on a wide range of flow parameters, such as the flow velocity, temperature, and wall shear stress. Current findings are in a good agreement with recent findings in previous research studies. The results show that wall temperature control can keep the blood in its ideal blood temperature range (below 40°C) and that a severe pressure drop occurs for blockages of more than 60 percent. Additionally, with an increase in the Ha number, a velocity drop in the blood vessel is experienced.
Buchard, V.; da Silva, A. M.; Colarco, P. R.; Darmenov, A.; Randles, C. A.; Govindaraju, R.; Torres, O.; Campbell, J.; Spurr, R.
2015-05-01
A radiative transfer interface has been developed to simulate the UV aerosol index (AI) from the NASA Goddard Earth Observing System version 5 (GEOS-5) aerosol assimilated fields. The purpose of this work is to use the AI and aerosol absorption optical depth (AAOD) derived from the Ozone Monitoring Instrument (OMI) measurements as independent validation for the Modern Era Retrospective analysis for Research and Applications Aerosol Reanalysis (MERRAero). MERRAero is based on a version of the GEOS-5 model that is radiatively coupled to the Goddard Chemistry, Aerosol, Radiation, and Transport (GOCART) aerosol module and includes assimilation of aerosol optical depth (AOD) from the Moderate Resolution Imaging Spectroradiometer (MODIS) sensor. Since AI is dependent on aerosol concentration, optical properties and altitude of the aerosol layer, we make use of complementary observations to fully diagnose the model, including AOD from the Multi-angle Imaging SpectroRadiometer (MISR), aerosol retrievals from the AErosol RObotic NETwork (AERONET) and attenuated backscatter coefficients from the Cloud-Aerosol Lidar and Infrared Pathfinder Satellite Observation (CALIPSO) mission to ascertain potential misplacement of plume height by the model. By sampling dust, biomass burning and pollution events in 2007 we have compared model-produced AI and AAOD with the corresponding OMI products, identifying regions where the model representation of absorbing aerosols was deficient. As a result of this study over the Saharan dust region, we have obtained a new set of dust aerosol optical properties that retains consistency with the MODIS AOD data that were assimilated, while resulting in better agreement with aerosol absorption measurements from OMI. The analysis conducted over the southern African and South American biomass burning regions indicates that revising the spectrally dependent aerosol absorption properties in the near-UV region improves the modeled-observed AI comparisons
Landscape fires dominate terrestrial natural aerosol - climate feedbacks
Scott, C.; Arnold, S.; Monks, S. A.; Asmi, A.; Paasonen, P.; Spracklen, D. V.
2017-12-01
The terrestrial biosphere is an important source of natural aerosol including landscape fire emissions and secondary organic aerosol (SOA) formed from biogenic volatile organic compounds (BVOCs). Atmospheric aerosol alters the Earth's climate by absorbing and scattering radiation (direct radiative effect; DRE) and by perturbing the properties of clouds (aerosol indirect effect; AIE). Natural aerosol sources are strongly controlled by, and can influence, climate; giving rise to potential natural aerosol-climate feedbacks. Earth System Models (ESMs) include a description of some of these natural aerosol-climate feedbacks, predicting substantial changes in natural aerosol over the coming century with associated radiative perturbations. Despite this, the sensitivity of natural aerosols simulated by ESMs to changes in climate or emissions has not been robustly tested against observations. Here we combine long-term observations of aerosol number and a global aerosol microphysics model to assess terrestrial natural aerosol-climate feedbacks. We find a strong positive relationship between the summertime anomaly in observed concentration of particles greater than 100 nm diameter and the anomaly in local air temperature. This relationship is reproduced by the model and driven by variability in dynamics and meteorology, as well as natural sources of aerosol. We use an offline radiative transfer model to determine radiative effects due to changes in two natural aerosol sources: landscape fire and biogenic SOA. We find that interannual variability in the simulated global natural aerosol radiative effect (RE) is negatively related to the global temperature anomaly. The magnitude of global aerosol-climate feedback (sum of DRE and AIE) is estimated to be -0.15 Wm-2 K-1 for landscape fire aerosol and -0.06 Wm-2 K-1 for biogenic SOA. These feedbacks are comparable in magnitude, but opposite in sign to the snow albedo feedback, highlighting the need for natural aerosol feedbacks to
Review of recent research on the climatic effect of aerosols
International Nuclear Information System (INIS)
Charlock, T.P.; Kondratyev, K.; Prokofyev, M.
1993-01-01
A review of relatively recent research on the climatic effects of aerosols is presented. Most of the inferences of the climatic effects of aerosols have been obtained through assuming a certain aerosol model in conjunction with a particular climate model. The following radiative effects of aerosols are identified: The planetary albedo is generally increased due to the backscatter of solar radiation by aerosols, with the exception of aerosols situated above a highly reflecting surface. Solar radiation absorption by some aerosols can offset the cooling due to aerosol backscatter. Although aerosol effects dominate for short-wave radiation, absorption and emission of terrestrial radiation by aerosols produces a warming effect. Various climate models are used to assess the impact of aerosols on climate. A two-stream approximation to the radiation transfer equation is adequate for optically thin layers where single scattering is applicable. Improved models to include aerosol terrestrial radiation effects, important feedback mechanisms, and the prediction of globally and seasonally averaged surface and atmospheric temperatures are provided by the so-called radiative-convective models (RCM's). The basic structure of the RCM's, which is regarded as adequate for many aerosol climate applications, is described. The general circulation model (GCM) is also described briefly. A full-scale GCM incorporating realistic aerosol inputs is yet to be formulated to include regional variability of the aerosol. Moreover, detailed computer modeling associated with GCM climate models can often confuse the basic physics. Because volcanic aerosols injected into the stratosphere have long residence times, they provide a good case study of the climate response to a change in the atmospheric aerosol. The chapter gives a critique of modeling work done to establish climatic effects of stratospheric aerosols
International Nuclear Information System (INIS)
Klein, M.; Goossens, W.R.A.; De Smet, M.; Trine, J.; Hertschap, M.
1984-01-01
This report summarizes the work on the development of fibre metallic prefilters to be placed upstream of HEPA filters for the exhaust gases of nuclear process plants. Investigations at ambient and high temperature were carried out. Measurements of the filtration performance of Bekipor porous webs and sintered mats were performed in the AFLT (aerosol filtration at low temperature) unit with a throughput of 15 m 3 /h. A parametric study on the influence of particle size, fibre diameter, number of layers and superficial velocity led to the optimum choice of the working parameters. Three selected filter types were then tested with polydisperse aerosols using a candle-type filter configuration or a flat-type filter configuration. The small-diameter candle type is not well suited for a spraying nozzles regeneration system so that only the flat-type filter was retained for high-temperature tests. A high-temperature test unit (AFHT) with a throughput of 8 to 10 m 3 /h at 400 0 C was used to test the three filter types with an aerosol generated by high-temperature calcination of a simulated nitric acid waste solution traced with 134 Cs. The regeneration of the filter by spray washing and the effect of the regeneration on the filter performance was studied for the three filter types. The porous mats have a higher dust loading capacity than the sintered web which means that their regeneration frequency can be kept lower
Washington University St Louis — TOMS_AI_G is an aerosol related dataset derived from the Total Ozone Monitoring Satellite (TOMS) Sensor. The TOMS aerosol index arises from absorbing aerosols such...
Davis, Anthony B.; Xu, Feng; Diner, David J.
2018-01-01
We demonstrate the computational advantage gained by introducing non-exponential transmission laws into radiative transfer theory for two specific situations. One is the problem of spatial integration over a large domain where the scattering particles cluster randomly in a medium uniformly filled with an absorbing gas, and only a probabilistic description of the variability is available. The increasingly important application here is passive atmospheric profiling using oxygen absorption in the visible/near-IR spectrum. The other scenario is spectral integration over a region where the absorption cross-section of a spatially uniform gas varies rapidly and widely and, moreover, there are scattering particles embedded in the gas that are distributed uniformly, or not. This comes up in many applications, O2 A-band profiling being just one instance. We bring a common framework to solve these problems both efficiently and accurately that is grounded in the recently developed theory of Generalized Radiative Transfer (GRT). In GRT, the classic exponential law of transmission is replaced by one with a slower power-law decay that accounts for the unresolved spectral or spatial variability. Analytical results are derived in the single-scattering limit that applies to optically thin aerosol layers. In spectral integration, a modest gain in accuracy is obtained. As for spatial integration of near-monochromatic radiance, we find that, although both continuum and in-band radiances are affected by moderate levels of sub-pixel variability, only extreme variability will affect in-band/continuum ratios.
International Nuclear Information System (INIS)
Avezova, N.R.; Avezov, R.R.
2015-01-01
A brand new no-contact method of determining the average working-surface temperature of plate-type radiation-absorbing thermal exchange panels (RATEPs) of flat solar collectors (FSCs) for heating a heat-transfer fluid (HTF) is suggested on the basis of the results of thermal tests in full-scale quasistationary conditions. (authors)
Waichman, Karol; Barmashenko, Boris D.; Rosenwaks, Salman
2017-10-01
Analysis of beam propagation, kinetic and fluid dynamic processes in Cs diode pumped alkali lasers (DPALs), using wave optics model and gasdynamic code, is reported. The analysis is based on a three-dimensional, time-dependent computational fluid dynamics (3D CFD) model. The Navier-Stokes equations for momentum, heat and mass transfer are solved by a commercial Ansys FLUENT solver based on the finite volume discretization technique. The CFD code which solves the gas conservation equations includes effects of natural convection and temperature diffusion of the species in the DPAL mixture. The DPAL kinetic processes in the Cs/He/C2H6 gas mixture dealt with in this paper involve the three lowest energy levels of Cs, (1) 62S1/2, (2) 62P1/2 and (3) 62P3/2. The kinetic processes include absorption due to the 1->3 D2 transition followed by relaxation the 3 to 2 fine structure levels and stimulated emission due to the 2->1 D1 transition. Collisional quenching of levels 2 and 3 and spontaneous emission from these levels are also considered. The gas flow conservation equations are coupled to fast-Fourier-transform algorithm for transverse mode propagation to obtain a solution of the scalar paraxial propagation equation for the laser beam. The wave propagation equation is solved by the split-step beam propagation method where the gain and refractive index in the DPAL medium affect the wave amplitude and phase. Using the CFD and beam propagation models, the gas flow pattern and spatial distributions of the pump and laser intensities in the resonator were calculated for end-pumped Cs DPAL. The laser power, DPAL medium temperature and the laser beam quality were calculated as a function of pump power. The results of the theoretical model for laser power were compared to experimental results of Cs DPAL.
International Nuclear Information System (INIS)
Azad, Rajiv; Tayal, Mohit; Azad, Sheenam; Sharma, Garima; Srivastava, Rajendra Kumar
2017-01-01
To compare the contrast-enhanced fluid-attenuated inversion recovery (CE-FLAIR), the CE T1-weighted (CE-T1W) sequence with fat suppression (FS) and magnetization transfer (MT) for early detection and characterization of infectious meningitis. Fifty patients and 10 control subjects were evaluated with the CE-FLAIR and the CE-T1W sequences with FS and MT. Qualitative assessment was done by two observers for presence and grading of abnormal leptomeningeal enhancement. Quantitative assessment included computation of net meningeal enhancement, using single pixel signal intensity software. A newly devised FLAIR based scoring system, based on certain imaging features including ventricular dilatation, ependymal enhancement, infarcts and subdural effusions was used to indicate the etiology. Data were analysed using the Student's t test, Cohen's Kappa coefficient, Pearson's correlation coefficient, the intraclass correlation coefficient, one way analysis of variance, and Fisher's exact test with Bonferroni correction as the post hoc test. The CE-FLAIR sequence demonstrated a better sensitivity (100%), diagnostic accuracy (95%), and a stronger correlation with the cerebrospinal fluid, total leukocyte count (r = 0.75), protein (r = 0.77), adenosine deaminase (r = 0.81) and blood glucose (r = -0.6) values compared to the CE-T1W sequences. Qualitative grades and quantitative meningeal enhancement on the CE-FLAIR sequence were also significantly greater than those on the other sequences. The FLAIR based scoring system yielded a diagnostic accuracy of 91.6% and a sensitivity of 96%. A strong inverse Pearson's correlation (r = -0.95) was found between the assigned score and patient's Glasgow Coma Scale at the time of admission. The CE-FLAIR sequence is better suited for evaluating infectious meningitis and could be included as a part of the routine MR imaging protocol
Energy Technology Data Exchange (ETDEWEB)
Azad, Rajiv; Tayal, Mohit; Azad, Sheenam; Sharma, Garima; Srivastava, Rajendra Kumar [SGRR Institute of Medical and Health Sciences, Patel Nagar, Dehradun (India)
2017-11-15
To compare the contrast-enhanced fluid-attenuated inversion recovery (CE-FLAIR), the CE T1-weighted (CE-T1W) sequence with fat suppression (FS) and magnetization transfer (MT) for early detection and characterization of infectious meningitis. Fifty patients and 10 control subjects were evaluated with the CE-FLAIR and the CE-T1W sequences with FS and MT. Qualitative assessment was done by two observers for presence and grading of abnormal leptomeningeal enhancement. Quantitative assessment included computation of net meningeal enhancement, using single pixel signal intensity software. A newly devised FLAIR based scoring system, based on certain imaging features including ventricular dilatation, ependymal enhancement, infarcts and subdural effusions was used to indicate the etiology. Data were analysed using the Student's t test, Cohen's Kappa coefficient, Pearson's correlation coefficient, the intraclass correlation coefficient, one way analysis of variance, and Fisher's exact test with Bonferroni correction as the post hoc test. The CE-FLAIR sequence demonstrated a better sensitivity (100%), diagnostic accuracy (95%), and a stronger correlation with the cerebrospinal fluid, total leukocyte count (r = 0.75), protein (r = 0.77), adenosine deaminase (r = 0.81) and blood glucose (r = -0.6) values compared to the CE-T1W sequences. Qualitative grades and quantitative meningeal enhancement on the CE-FLAIR sequence were also significantly greater than those on the other sequences. The FLAIR based scoring system yielded a diagnostic accuracy of 91.6% and a sensitivity of 96%. A strong inverse Pearson's correlation (r = -0.95) was found between the assigned score and patient's Glasgow Coma Scale at the time of admission. The CE-FLAIR sequence is better suited for evaluating infectious meningitis and could be included as a part of the routine MR imaging protocol.
Lee, Y.; Alexander, L.; Newburn, M.; Jayne, J.; Hubbe, J.; Springston, S.; Senum, G.; Andrews, B.; Ogren, J.; Kleinman, L.; Daum, P.; Berg, L.; Berkowitz, C.
2007-12-01
Chemical composition of submicron aerosol particles was determined using an Aerodyne Time-of-Flight Aerosol Mass Spectrometer (AMS) outfitted on the DOE G-1 aircraft during the Cumulus Humilis Aerosol Processing Study (CHAPS) conducted in Oklahoma City area in June 2007. The primary objective of CHAPS was to investigate the effects of urban emissions on cloud aerosol interactions as a function of processing of the emissions. Aerosol composition was typically determined at three different altitudes: below, in, and above cloud, in both upwind and downwind regions of the urban area. Aerosols were sampled from an isokinetic inlet with an upper size cut-off of ~1.5 micrometer. During cloud passages, the AMS also sampled particles that were dried from cloud droplets collected using a counter-flow virtual impactor (CVI) sampler. The aerosol mass concentrations were typically below 10 microgram per cubic meter, and were dominated by organics and sulfate. Ammonium was often less than required for complete neutralization of sulfate. Aerosol nitrate levels were very low. We noted that nitrate levels were significantly enhanced in cloud droplets compared to aerosols, most likely resulting from dissolution of gaseous nitric acid. Organic to sulfate ratios appeared to be lower in cloud droplets than in aerosols, suggesting cloud condensation nuclei properties of aerosol particles might be affected by loading and nature of the organic components in aerosols. In-cloud formation of sulfate was considered unimportant because of the very low SO2 concentration in the region. A detailed examination of the sources of the aerosol organic components (based on hydrocarbons determined using a proton transfer reaction mass spectrometer) and their effects on cloud formation as a function of atmospheric processing (based on the degree of oxidation of the organic components) will be presented.
Energy Technology Data Exchange (ETDEWEB)
Ali, Ahmed Hamza H. [Department of Energy Resources and Environmental Engineering, Egypt-Japan University of Science and Technology (E-JUST), P.O. Box 179, New Borg El-Arab City, Alexandria 21934 (Egypt); Ahmed, Mahmoud; Youssef, M.S. [Department of Mechanical Engineering, Faculty of Engineering, Assiut University, Assiut 71516 (Egypt)
2010-09-15
This study has been carried out to investigate the characteristics of convective heat transfer and fluid flow for a single row of oblique plates array to the flow direction inside a channel. The flow inside the channel is laminar and the plates array have spanwise distance between the plates and heated by radiation. This configuration has been designed to be used for Photovoltaic/Thermal system (PV/T) applications. The theoretical results are validated with measured values, and a good agreement prevailed. The results show that an increase in the plate oblique angle ({gamma}) in the range from 0 to 15 degrees, leads to an increase in the Nusselt number (Nu) up to a maximum value and then decreases. The oblique angle at the maximum value of Nu depends on the flow Reynolds Number (Re), and (l{sub w}/l{sub pl}), where (l{sub w}/l{sub pl}) is defined as the ratio of the plates' spacing at zero oblique angle to the plate length. Furthermore, increasing (l{sub w}/l{sub pl}) results in a significant increase in the heat transfer coefficient depending on the values of Re, and plate oblique angle ({gamma}). In addition, increasing ({gamma}) from 0 to 15 degrees results in a decrease in the friction factor up to a certain value, after which the friction value approaches a constant value depending on Re value and (l{sub w}/l{sub pl}). It was found that for any value of the plate oblique angle ({gamma}), the friction factor decreases with the increase of the values of (l{sub w}/l{sub pl}) and Re, respectively. (author)
International Nuclear Information System (INIS)
Ali, Ahmed Hamza H.; Ahmed, Mahmoud; Youssef, M.S.
2010-01-01
This study has been carried out to investigate the characteristics of convective heat transfer and fluid flow for a single row of oblique plates array to the flow direction inside a channel. The flow inside the channel is laminar and the plates array have spanwise distance between the plates and heated by radiation. This configuration has been designed to be used for Photovoltaic/Thermal system (PV/T) applications. The theoretical results are validated with measured values, and a good agreement prevailed. The results show that an increase in the plate oblique angle (γ) in the range from 0 to 15 degrees, leads to an increase in the Nusselt number (Nu) up to a maximum value and then decreases. The oblique angle at the maximum value of Nu depends on the flow Reynolds Number (Re), and (l w /l pl ), where (l w /l pl ) is defined as the ratio of the plates' spacing at zero oblique angle to the plate length. Furthermore, increasing (l w /l pl ) results in a significant increase in the heat transfer coefficient depending on the values of Re, and plate oblique angle (γ). In addition, increasing (γ) from 0 to 15 degrees results in a decrease in the friction factor up to a certain value, after which the friction value approaches a constant value depending on Re value and (l w /l pl ). It was found that for any value of the plate oblique angle (γ), the friction factor decreases with the increase of the values of (l w /l pl ) and Re, respectively.
International Nuclear Information System (INIS)
Introini, C.
2010-01-01
In the late phases of some scenario of hypothetical severe accident in Pressurized Water Reactors, a molten mixture of core and vessel structures, called corium, comes to interact with the concrete basemat. The safety numerical tools are lumped parameter codes. They are based on a large averaged description of heat and mass transfers which raises some uncertainties about the multi-scale description of the exchanges but also about the adopted boundary layer structure in the vicinity of the ablation front. In this context, the aim of this work is to tackle the problem of the boundary layer structure by means of direct numerical simulation. This work joins within the more general framework of a multi-scale description and a multi-scale modeling, namely from the local scale associated with the vicinity of the ablation front to the scale associated with the lumped parameter codes. Such a multi-scale description raises not only the problem of the local description of the multiphase multicomponent flow but also the problem of the up-scaling between the local- and the macro-scale which is associated with the convective structures within the pool of corium. Here, we are particularly interested in the building of effective boundary conditions or wall laws for macro-scale models. The difficulty of the multiphase multicomponent problem at the local scale leads us to consider a relatively simplified problem. Effective boundary conditions are built in the frame of a domain decomposition method and numerical experiments are performed for a natural convection problem in a stamp shaped cavity to assess the validity of the proposed wall laws. Even if the treated problem is still far from the target applications, this contribution can be viewed as a first step of a multi-scale modeling of the exchanges for the molten core concrete issue. In the more complicated case of multiphase multicomponent flows, it is necessary to have a direct numerical simulation tool of the flow at the local
Calibration of aerosol radiometers. Special aerosol sources
International Nuclear Information System (INIS)
Belkina, S.K.; Zalmanzon, Yu.E.; Kuznetsov, Yu.V.; Fertman, D.E.
1988-01-01
Problems of calibration of artificial aerosol radiometry and information-measurement systems of radiometer radiation control, in particular, are considered. Special aerosol source is suggested, which permits to perform certification and testing of aerosol channels of the systems in situ without the dismantling
Suriyanto; Ng, E Y K; Kumar, S D
2017-03-23
Current clinically accepted technologies for cancer treatment still have limitations which lead to the exploration of new therapeutic methods. Since the past few decades, the hyperthermia treatment has attracted the attention of investigators owing to its strong biological rationales in applying hyperthermia as a cancer treatment modality. Advancement of nanotechnology offers a potential new heating method for hyperthermia by using nanoparticles which is termed as magnetic fluid hyperthermia (MFH). In MFH, superparamagnetic nanoparticles dissipate heat through Néelian and Brownian relaxation in the presence of an alternating magnetic field. The heating power of these particles is dependent on particle properties and treatment settings. A number of pre-clinical and clinical trials were performed to test the feasibility of this novel treatment modality. There are still issues yet to be solved for the successful transition of this technology from bench to bedside. These issues include the planning, execution, monitoring and optimization of treatment. The modeling and simulation play crucial roles in solving some of these issues. Thus, this review paper provides a basic understanding of the fundamental and rationales of hyperthermia and recent development in the modeling and simulation applied to depict the heat generation and transfer phenomena in the MFH.
International Nuclear Information System (INIS)
1987-01-01
The lectures of the colloquium are discussed in summary form. There were 5 lectures on aerosol deposition, 5 on aerosol elimination, 7 on toxicology, and 7 on the uses of aerosols in medical therapy. In some cases aerosols with radioactive labels were used. Several lectures reviewed the kinetics and toxicology of airborne environmental pollutants. (MG) [de