WorldWideScience

Sample records for transcriptional complexes formed

  1. The herpes viral transcription factor ICP4 forms a novel DNA recognition complex

    Science.gov (United States)

    Tunnicliffe, Richard B.; Lockhart-Cairns, Michael P.; Levy, Colin; Mould, A. Paul; Jowitt, Thomas A.; Sito, Hilary; Baldock, Clair; Sandri-Goldin, Rozanne M.

    2017-01-01

    Abstract The transcription factor ICP4 from herpes simplex virus has a central role in regulating the gene expression cascade which controls viral infection. Here we present the crystal structure of the functionally essential ICP4 DNA binding domain in complex with a segment from its own promoter, revealing a novel homo-dimeric fold. We also studied the complex in solution by small angle X-Ray scattering, nuclear magnetic resonance and surface-plasmon resonance which indicated that, in addition to the globular domain, a flanking intrinsically disordered region also recognizes DNA. Together the data provides a rationale for the bi-partite nature of the ICP4 DNA recognition consensus sequence as the globular and disordered regions bind synergistically to adjacent DNA motifs. Therefore in common with its eukaryotic host, the viral transcription factor ICP4 utilizes disordered regions to enhance the affinity and tune the specificity of DNA interactions in tandem with a globular domain. PMID:28505309

  2. MYB3Rs, plant homologs of Myb oncoproteins, control cell cycle-regulated transcription and form DREAM-like complexes.

    Science.gov (United States)

    Kobayashi, Kosuke; Suzuki, Toshiya; Iwata, Eriko; Magyar, Zoltán; Bögre, László; Ito, Masaki

    2015-01-01

    Plant MYB3R transcription factors, homologous to Myb oncoproteins, regulate the genes expressed at G2 and M phases in the cell cycle. Recent studies showed that MYB3Rs constitute multiprotein complexes that may correspond to animal complexes known as DREAM or dREAM. Discovery of the putative homologous complex in plants uncovered their significant varieties in structure, function, dynamics, and heterogeneity, providing insight into conserved and diversified aspects of cell cycle-regulated gene transcription.

  3. MYB3Rs, plant homologs of Myb oncoproteins, control cell cycle-regulated transcription and form DREAM-like complexes

    OpenAIRE

    Kobayashi, Kosuke; Suzuki, Toshiya; Iwata, Eriko; Magyar, Zoltán; Bögre, László; Ito, Masaki

    2015-01-01

    Plant MYB3R transcription factors, homologous to Myb oncoproteins, regulate the genes expressed at G2 and M phases in the cell cycle. Recent studies showed that MYB3Rs constitute multiprotein complexes that may correspond to animal complexes known as DREAM or dREAM. Discovery of the putative homologous complex in plants uncovered their significant varieties in structure, function, dynamics, and heterogeneity, providing insight into conserved and diversified aspects of cell cycle-regulated gen...

  4. A human Polycomb isoform lacking the Pc box does not participate to PRC1 complexes but forms protein assemblies and represses transcription

    DEFF Research Database (Denmark)

    Völkel, Pamela; Le Faou, Perrine; Vandamme, Julien

    2012-01-01

    and alternative splicing events, the human CBX2 locus produces two transcripts: a 5-exon transcript that encodes the 532-amino acid CBX2-1 isoform that contains the conserved chromodomain and Pc box and a 4-exon transcript encoding a shorter isoform, CBX2-2, lacking the Pc box but still possessing a chromodomain....... Using biochemical approaches and a novel in vivo imaging assay, we show that the short CBX2-2 isoform lacking the Pc box, does not participate in PRC1 protein complexes, but self-associates in vivo and forms complexes of high molecular weight. Furthermore, the CBX2 short isoform is still able to repress...

  5. SAF-A forms a complex with BRG1 and both components are required for RNA polymerase II mediated transcription.

    Directory of Open Access Journals (Sweden)

    Dzeneta Vizlin-Hodzic

    Full Text Available BACKGROUND: Scaffold attachment factor A (SAF-A participates in the regulation of gene expression by organizing chromatin into transcriptionally active domains and by interacting directly with RNA polymerase II. METHODOLOGY: Here we use co-localization, co-immunoprecipitation (co-IP and in situ proximity ligation assay (PLA to identify Brahma Related Gene 1 (BRG1, the ATP-driven motor of the human SWI-SNF chromatin remodeling complex, as another SAF-A interaction partner in mouse embryonic stem (mES cells. We also employ RNA interference to investigate functional aspects of the SAF-A/BRG1 interaction. PRINCIPAL FINDINGS: We find that endogenous SAF-A protein interacts with endogenous BRG1 protein in mES cells, and that the interaction does not solely depend on the presence of mRNA. Moreover the interaction remains intact when cells are induced to differentiate. Functional analyses reveal that dual depletion of SAF-A and BRG1 abolishes global transcription by RNA polymerase II, while the nucleolar RNA polymerase I transcription machinery remains unaffected. CONCLUSIONS: We demonstrate that SAF-A interacts with BRG1 and that both components are required for RNA Polymerase II Mediated Transcription.

  6. Cul8/Rtt101 Forms a Variety of Protein Complexes That Regulate DNA Damage Response and Transcriptional Silencing*

    OpenAIRE

    Mimura, Satoru; Yamaguchi, Tsuyoshi; Ishii, Satoru; Noro, Emiko; Katsura, Tomoya; Obuse, Chikashi; Kamura, Takumi

    2010-01-01

    The budding yeast, Saccharomyces cerevisiae, has three cullin proteins, which act as platforms for Cullin-based E3 ubiquitin ligases. Genetic evidence indicates that Cul8, together with Mms1, Mms22, and Esc4, is involved in the repair of DNA damage that can occur during DNA replication. Cul8 is thought to form a complex with these proteins, but the composition and the function of Cul8-based E3 ubiquitin ligases remain largely uncharacterized. Herein, we report a comprehensive biochemical anal...

  7. RelB and RelE of Escherichia coli Form a Tight Complex That Represses Transcription via The Ribbon-Helix-Helix Motif in RelB

    DEFF Research Database (Denmark)

    Overgaard, Martin; Borch, Jonas; Gerdes, Kenn

    2009-01-01

    RelB, the Ribbon-Helix-Helix (RHH) repressor encoded by the relBE toxin-antitoxin locus of Escherichia coli, forms a tight complex with RelE and thereby counteracts the mRNA cleavage activity of RelE. In addition, RelB dimers repress the strong relBE promoter and this repression by RelB is enhanced...... by RelE - that is - RelE functions as a transcriptional co-repressor. RelB is a Lon protease substrate and Lon is required both for activation of relBE transcription and for activation of the mRNA cleavage activity of RelE. Here we characterize the molecular interactions important for transcriptional...... motif recognizes four 6 bp repeats within the bipartite binding site. The spacing between each half-site was found to be essential for cooperative interactions between adjacently bound RelB dimers stabilized by the co-repressor RelE. Kinetic and stoichiometric measurements of the interaction between Rel...

  8. Structural insights into transcription complexes

    NARCIS (Netherlands)

    Berger, I.; Blanco, A.G.; Boelens, R.; Cavarelli, J.; Coll, M.; Folkers, G.E.; Nie, Y.; Pogenberg, V.; Schultz, P.; Wilmanns, M.; Moras, D.; Poterszman, A.

    2011-01-01

    Control of transcription allows the regulation of cell activity in response to external stimuli and research in the field has greatly benefited from efforts in structural biology. In this review, based on specific examples from the European SPINE2-COMPLEXES initiative, we illustrate the impact of

  9. The acidic transcription activator Gcn4 binds the mediator subunit Gal11/Med15 using a simple protein interface forming a fuzzy complex.

    Science.gov (United States)

    Brzovic, Peter S; Heikaus, Clemens C; Kisselev, Leonid; Vernon, Robert; Herbig, Eric; Pacheco, Derek; Warfield, Linda; Littlefield, Peter; Baker, David; Klevit, Rachel E; Hahn, Steven

    2011-12-23

    The structural basis for binding of the acidic transcription activator Gcn4 and one activator-binding domain of the Mediator subunit Gal11/Med15 was examined by NMR. Gal11 activator-binding domain 1 has a four-helix fold with a small shallow hydrophobic cleft at its center. In the bound complex, eight residues of Gcn4 adopt a helical conformation, allowing three Gcn4 aromatic/aliphatic residues to insert into the Gal11 cleft. The protein-protein interface is dynamic and surprisingly simple, involving only hydrophobic interactions. This allows Gcn4 to bind Gal11 in multiple conformations and orientations, an example of a "fuzzy" complex, where the Gcn4-Gal11 interface cannot be described by a single conformation. Gcn4 uses a similar mechanism to bind two other unrelated activator-binding domains. Functional studies in yeast show the importance of residues at the protein interface, define the minimal requirements for a functional activator, and suggest a mechanism by which activators bind to multiple unrelated targets. Copyright © 2011 Elsevier Inc. All rights reserved.

  10. Oct-2 forms a complex with Oct-1 on the iNOS promoter and represses transcription by interfering with recruitment of RNA PolII by Oct-1

    Science.gov (United States)

    Bentrari, Fatima; Chantôme, Aurelie; Knights, Andrew; Jeannin, Jean-François; Pance, Alena

    2015-01-01

    Oct-1 (POU2f1) and Oct-2 (POU2f2) are members of the POU family of transcription factors. They recognize the same DNA sequence but fulfil distinct functions: Oct-1 is ubiquitous and regulates a variety of genes while Oct-2 is restricted to B-cells and neurones. Here we examine the interplay and regulatory mechanisms of these factors to control the inducible nitric oxide synthase (iNOS, NOS2). Using two breast cancer cell lines as a comparative model, we found that MCF-7 express iNOS upon cytokine stimulation while MDA-MB-231 do not. Oct-1 is present in both cell lines but MDA-MB-231also express high levels of Oct-2. Manipulation of Oct-2 expression in these cell lines demonstrates that it is directly responsible for the repression of iNOS in MDA-MB-231. In MCF-7 cells Oct-1 binds the iNOS promoter, recruits RNA PolII and triggers initiation of transcription. In MDA-MB-231 cells, both Oct-1 and Oct-2 bind the iNOS promoter, forming a higher-order complex which fails to recruit RNA PolII, and as a consequence iNOS transcription does not proceed. Unravelling the mechanisms of transcription factor activity is paramount to the understanding of gene expression patterns that determine cell behaviour. PMID:26271992

  11. The Mediator complex and transcription regulation

    Science.gov (United States)

    Poss, Zachary C.; Ebmeier, Christopher C.

    2013-01-01

    The Mediator complex is a multi-subunit assembly that appears to be required for regulating expression of most RNA polymerase II (pol II) transcripts, which include protein-coding and most non-coding RNA genes. Mediator and pol II function within the pre-initiation complex (PIC), which consists of Mediator, pol II, TFIIA, TFIIB, TFIID, TFIIE, TFIIF and TFIIH and is approximately 4.0 MDa in size. Mediator serves as a central scaffold within the PIC and helps regulate pol II activity in ways that remain poorly understood. Mediator is also generally targeted by sequence-specific, DNA-binding transcription factors (TFs) that work to control gene expression programs in response to developmental or environmental cues. At a basic level, Mediator functions by relaying signals from TFs directly to the pol II enzyme, thereby facilitating TF-dependent regulation of gene expression. Thus, Mediator is essential for converting biological inputs (communicated by TFs) to physiological responses (via changes in gene expression). In this review, we summarize an expansive body of research on the Mediator complex, with an emphasis on yeast and mammalian complexes. We focus on the basics that underlie Mediator function, such as its structure and subunit composition, and describe its broad regulatory influence on gene expression, ranging from chromatin architecture to transcription initiation and elongation, to mRNA processing. We also describe factors that influence Mediator structure and activity, including TFs, non-coding RNAs and the CDK8 module. PMID:24088064

  12. The Transcription Bubble of the RNA Polymerase-Promoter Open Complex Exhibits Conformational Heterogeneity and Millisecond-Scale Dynamics : Implications for Transcription Start-Site Selection

    NARCIS (Netherlands)

    Robb, Nicole C.; Cordes, Thorben; Hwang, Ling Chin; Gryte, Kristofer; Duchi, Diego; Craggs, Timothy D.; Santoso, Yusdi; Weiss, Shimon; Ebright, Richard H.; Kapanidis, Achillefs N.

    2013-01-01

    Bacterial transcription is initiated after RNA polymerase (RNAP) binds to promoter DNA, melts similar to 14 bp around the transcription start site and forms a single-stranded "transcription bubble" within a catalytically active RNAP-DNA open complex (RPo). There is significant flexibility in the

  13. Star-Forming Complexes in Galaxies

    OpenAIRE

    Elmegreen, Bruce G.

    2004-01-01

    Star complexes are the largest globular regions of star formation in galaxies. If there is a spiral density wave, nuclear ring, tidal arm, or other well-defined stellar structure, then gravitational instabilities in the gaseous component produce giant cloud complexes with a spacing of about three times the width. These gas complexes form star complexes, giving the familiar beads on a string of star formation along spiral arms, or nuclear hotspots in the case of a ring. Turbulence compression,...

  14. Cocaine and the AP-1 transcription factor complex.

    Science.gov (United States)

    Hope, B T

    1998-05-30

    Cocaine addition in humans develops gradually with repeated administrations and persists long after cocaine has cleared the body. The mechanisms underlying this persistent form of neuroplasticity are not understood and can involve both structural and biochemical mechanisms. The long time course for cocaine addiction in humans and for development of cocaine self-administration in animal models suggest the involvement of alterations in gene expression leading to altered signaling in the brain. In the striatum (Str) and nucleus accumbens (NAc) of rats. Pretreatment with repeated cocaine administrations downregulates the induction of various immediate early genes (IEGs) by a subsequent acute challenge with cocaine. Some of these downregulated IEGs encode Fos-related components of the activator protein-1 (AP-1) complex, which is likely re regulate a number of genes important for neuronal function. Interestingly, repeated cocaine administration induces novel delta FosB-related proteins (called chronic Fos-related antigens (Fras)) in the NAc and Str that replace the downregulated isoforms of Fos. Unlike the acutely induced, short-lasting isoforms of Fos and FosB, the chronic Fras persist long after the last cocaine administration. The known form of delta FosB per se lacks the domain required to activate transcription. If the chronic Fras are similar in structure to delta FosB, then the induction of chronic Fras likely leads to a blockade of AP-1-dependent transcription resulting in altered gene expression. We presently purifying the chronic Fras to obtain amino acid sequence in order to directly examine our hypothesis about the effects of repeated cocaine administration on AP-1 dependent transcription and gene expression in the brain

  15. Genome-Wide Transcriptional Regulation Mediated by Biochemically Distinct SWI/SNF Complexes.

    Directory of Open Access Journals (Sweden)

    Jesse R Raab

    2015-12-01

    Full Text Available Multiple positions within the SWI/SNF chromatin remodeling complex can be filled by mutually exclusive subunits. Inclusion or exclusion of these proteins defines many unique forms of SWI/SNF and has profound functional consequences. Often this complex is studied as a single entity within a particular cell type and we understand little about the functional relationship between these biochemically distinct forms of the remodeling complex. Here we examine the functional relationships among three complex-specific ARID (AT-Rich Interacting Domain subunits using genome-wide chromatin immunoprecipitation, transcriptome analysis, and transcription factor binding maps. We find widespread overlap in transcriptional regulation and the genomic binding of distinct SWI/SNF complexes. ARID1B and ARID2 participate in wide-spread cooperation to repress hundreds of genes. Additionally, we find numerous examples of competition between ARID1A and another ARID, and validate that gene expression changes following loss of one ARID are dependent on the function of an alternative ARID. These distinct regulatory modalities are correlated with differential occupancy by transcription factors. Together, these data suggest that distinct SWI/SNF complexes dictate gene-specific transcription through functional interactions between the different forms of the SWI/SNF complex and associated co-factors. Most genes regulated by SWI/SNF are controlled by multiple biochemically distinct forms of the complex, and the overall expression of a gene is the product of the interaction between these different SWI/SNF complexes. The three mutually exclusive ARID family members are among the most frequently mutated chromatin regulators in cancer, and understanding the functional interactions and their role in transcriptional regulation provides an important foundation to understand their role in cancer.

  16. Combined in vitro transcription and reverse transcription to amplify and label complex synthetic oligonucleotide probe libraries

    Science.gov (United States)

    Murgha, Yusuf; Beliveau, Brian; Semrau, Kassandra; Schwartz, Donald; Wu, Chao-ting; Gulari, Erdogan; Rouillard, Jean-Marie

    2016-01-01

    Oligonucleotide microarrays allow the production of complex custom oligonucleotide libraries for nucleic acid detection–based applications such as fluorescence in situ hybridization (FISH). We have developed a PCR-free method to make single-stranded DNA (ssDNA) fluorescent probes through an intermediate RNA library. A double-stranded oligonucleotide library is amplified by transcription to create an RNA library. Next, dye- or hapten-conjugate primers are used to reverse transcribe the RNA to produce a dye-labeled cDNA library. Finally the RNA is hydrolyzed under alkaline conditions to obtain the single-stranded fluorescent probes library. Starting from unique oligonucleotide library constructs, we present two methods to produce single-stranded probe libraries. The two methods differ in the type of reverse transcription (RT) primer, the incorporation of fluorescent dye, and the purification of fluorescent probes. The first method employs dye-labeled reverse transcription primers to produce multiple differentially single-labeled probe subsets from one microarray library. The fluorescent probes are purified from excess primers by oligonucleotide-bead capture. The second method uses an RNA:DNA chimeric primer and amino-modified nucleotides to produce amino-allyl probes. The excess primers and RNA are hydrolyzed under alkaline conditions, followed by probe purification and labeling with amino-reactive dyes. The fluorescent probes created by the combination of transcription and reverse transcription can be used for FISH and to detect any RNA and DNA targets via hybridization. PMID:26054766

  17. Combined in vitro transcription and reverse transcription to amplify and label complex synthetic oligonucleotide probe libraries.

    Science.gov (United States)

    Murgha, Yusuf; Beliveau, Brian; Semrau, Kassandra; Schwartz, Donald; Wu, Chao-Ting; Gulari, Erdogan; Rouillard, Jean-Marie

    2015-06-01

    Oligonucleotide microarrays allow the production of complex custom oligonucleotide libraries for nucleic acid detection-based applications such as fluorescence in situ hybridization (FISH). We have developed a PCR-free method to make single-stranded DNA (ssDNA) fluorescent probes through an intermediate RNA library. A double-stranded oligonucleotide library is amplified by transcription to create an RNA library. Next, dye- or hapten-conjugate primers are used to reverse transcribe the RNA to produce a dye-labeled cDNA library. Finally the RNA is hydrolyzed under alkaline conditions to obtain the single-stranded fluorescent probes library. Starting from unique oligonucleotide library constructs, we present two methods to produce single-stranded probe libraries. The two methods differ in the type of reverse transcription (RT) primer, the incorporation of fluorescent dye, and the purification of fluorescent probes. The first method employs dye-labeled reverse transcription primers to produce multiple differentially single-labeled probe subsets from one microarray library. The fluorescent probes are purified from excess primers by oligonucleotide-bead capture. The second method uses an RNA:DNA chimeric primer and amino-modified nucleotides to produce amino-allyl probes. The excess primers and RNA are hydrolyzed under alkaline conditions, followed by probe purification and labeling with amino-reactive dyes. The fluorescent probes created by the combination of transcription and reverse transcription can be used for FISH and to detect any RNA and DNA targets via hybridization.

  18. PRIC320, a transcription coactivator, isolated from peroxisome proliferator-binding protein complex

    International Nuclear Information System (INIS)

    Surapureddi, Sailesh; Viswakarma, Navin; Yu Songtao; Guo Dongsheng; Rao, M. Sambasiva; Reddy, Janardan K.

    2006-01-01

    Ciprofibrate, a potent peroxisome proliferator, induces pleiotropic responses in liver by activating peroxisome proliferator-activated receptor α (PPARα), a nuclear receptor. Transcriptional regulation by liganded nuclear receptors involves the participation of coregulators that form multiprotein complexes possibly to achieve cell and gene specific transcription. SDS-PAGE and matrix-assisted laser desorption/ionization reflection time-of-flight mass spectrometric analyses of ciprofibrate-binding proteins from liver nuclear extracts obtained using ciprofibrate-Sepharose affinity matrix resulted in the identification of a new high molecular weight nuclear receptor coactivator, which we designated PRIC320. The full-length human cDNA encoding this protein has an open-reading frame that codes for a 320 kDa protein containing 2882 amino acids. PRIC320 contains five LXXLL signature motifs that mediate interaction with nuclear receptors. PRIC320 binds avidly to nuclear receptors PPARα, CAR, ERα, and RXR, but only minimally with PPARγ. PRIC320 also interacts with transcription cofactors CBP, PRIP, and PBP. Immunoprecipitation-immunoblotting as well as cellular localization studies confirmed the interaction between PPARα and PRIC320. PRIC320 acts as a transcription coactivator by stimulating PPARα-mediated transcription. We conclude that ciprofibrate, a PPARα ligand, binds a multiprotein complex and PRIC320 cloned from this complex functions as a nuclear receptor coactivator

  19. Secondary structure of the HIV reverse transcription initiation complex by NMR.

    Science.gov (United States)

    Puglisi, Elisabetta Viani; Puglisi, Joseph D

    2011-07-29

    Initiation of reverse transcription of genomic RNA is a key early step in replication of the human immunodeficiency virus (HIV) upon infection of a host cell. Viral reverse transcriptase initiates from a specific RNA-RNA complex formed between a host transfer RNA (tRNA(Lys)(3)) and a region at the 5' end of genomic RNA; the 3' end of the tRNA acts as a primer for reverse transcription of genomic RNA. We report here the secondary structure of the HIV genomic RNA-human tRNA(Lys)(3) initiation complex using heteronuclear nuclear magnetic resonance methods. We show that both RNAs undergo large-scale conformational changes upon complex formation. Formation of the 18-bp primer helix with the 3' end of tRNA(Lys)(3) drives large conformational rearrangements of the tRNA at the 5' end while maintaining the anticodon loop for potential loop-loop interactions. HIV RNA forms an intramolecular helix adjacent to the intermolecular primer helix. This helix, which must be broken by reverse transcription, likely acts as a kinetic block to reverse transcription. Copyright © 2011 Elsevier Ltd. All rights reserved.

  20. Isolation and mass spectrometry of transcription factor complexes.

    Science.gov (United States)

    Sebastiaan Winkler, G; Lacomis, Lynne; Philip, John; Erdjument-Bromage, Hediye; Svejstrup, Jesper Q; Tempst, Paul

    2002-03-01

    Protocols are described that enable the isolation of novel proteins associated with a known protein and the subsequent identification of these proteins by mass spectrometry. We review the basics of nanosample handling and of two complementary approaches to mass analysis, and provide protocols for the entire process. The protein isolation procedure is rapid and based on two high-affinity chromatography steps. The method does not require previous knowledge of complex composition or activity and permits subsequent biochemical characterization of the isolated factor. As an example, we provide the procedures used to isolate and analyze yeast Elongator, a histone acetyltransferase complex important for transcript elongation, which led to the identification of three novel subunits.

  1. HIV transcription is induced with some forms of cell killing

    International Nuclear Information System (INIS)

    Woloschak, G.E.; Schreck, S.; Chang-Liu, C.-M.; Libertin, C.R.

    1996-01-01

    Using HeLa cells stably transfected with an HIV-LTR-CAT construct', we demonstrated a peak in CAT induction that occurs in viable (but not necessarily cell-division-competent) cells 24 h following exposure to some cell-killing agents. Γ rays were the only cell-killing agent which did not induce HIV transcription; this can be attributed to the fact that γ-ray-induced apoptotic death requires function p53, which is missing in HeLa cells. For all other agents, HIV-LTR induction was dose-dependent and correlated with the amount of cell killing that occurred in the culture

  2. Structure and function of the mycobacterial transcription initiation complex with the essential regulator RbpA

    Energy Technology Data Exchange (ETDEWEB)

    Hubin, Elizabeth A.; Fay, Allison; Xu, Catherine; Bean, James M.; Saecker, Ruth M.; Glickman, Michael S.; Darst, Seth A.; Campbell, Elizabeth A. (Rockefeller); (SKI)

    2017-01-09

    RbpA and CarD are essential transcription regulators in mycobacteria. Mechanistic analyses of promoter open complex (RPo) formation establish that RbpA and CarD cooperatively stimulate formation of an intermediate (RP2) leading to RPo; formation of RP2 is likely a bottleneck step at the majority of mycobacterial promoters. Once RPo forms, CarD also disfavors its isomerization back to RP2. We determined a 2.76 Å-resolution crystal structure of a mycobacterial transcription initiation complex (TIC) with RbpA as well as a CarD/RbpA/TIC model. Both CarD and RbpA bind near the upstream edge of the -10 element where they likely facilitate DNA bending and impede transcription bubble collapse. In vivo studies demonstrate the essential role of RbpA, show the effects of RbpA truncations on transcription and cell physiology, and indicate additional functions for RbpA not evident in vitro. This work provides a framework to understand the control of mycobacterial transcription by RbpA and CarD.

  3. Structure and function of the mycobacterial transcription initiation complex with the essential regulator RbpA.

    Science.gov (United States)

    Hubin, Elizabeth A; Fay, Allison; Xu, Catherine; Bean, James M; Saecker, Ruth M; Glickman, Michael S; Darst, Seth A; Campbell, Elizabeth A

    2017-01-09

    RbpA and CarD are essential transcription regulators in mycobacteria. Mechanistic analyses of promoter open complex (RPo) formation establish that RbpA and CarD cooperatively stimulate formation of an intermediate (RP2) leading to RPo; formation of RP2 is likely a bottleneck step at the majority of mycobacterial promoters. Once RPo forms, CarD also disfavors its isomerization back to RP2. We determined a 2.76 Å-resolution crystal structure of a mycobacterial transcription initiation complex (TIC) with RbpA as well as a CarD/RbpA/TIC model. Both CarD and RbpA bind near the upstream edge of the -10 element where they likely facilitate DNA bending and impede transcription bubble collapse. In vivo studies demonstrate the essential role of RbpA, show the effects of RbpA truncations on transcription and cell physiology, and indicate additional functions for RbpA not evident in vitro. This work provides a framework to understand the control of mycobacterial transcription by RbpA and CarD.

  4. Fanconi anemia core complex-dependent HES1 mono-ubiquitination regulates its transcriptional activity.

    Science.gov (United States)

    Tremblay, Cédric S; Huang, Feng Fei; Lévesque, Georges; Carreau, Madeleine

    2018-02-20

    The Hairy Enhancer of Split 1 (HES1) is a transcriptional repressor that regulates cellular proliferation and differentiation during development. We previously found an interaction between HES1 and Fanconi anemia (FA) proteins. FA is a hematological and developmental disorder caused by mutations in more than 20 different genes. Eight FA gene products form a nuclear core complex containing E3 ligase activity required for mono-ubiquitination of FANCD2 and FANCI, both of which are FA proteins. Given that HES1 interacts with members of the FA core complex, the aim of this study was to determine whether HES1 is mono-ubiquitinated via the FA core complex. We show that HES1 is mono-ubiquitinated on a highly-conserved lysine residue that is located within a FA-like recognition motif. HES1 modification is dependent on a functional FA complex. Absence of HES1 mono-ubiquitination affects transcriptional repression of its own promoter. This study uncovers a novel post-translational modification of HES1 that regulates its transcriptional activity and suggests that ubiquitination of HES1 occurs in a FA core complex-dependent manner.

  5. Simplified Method for Predicting a Functional Class of Proteins in Transcription Factor Complexes

    KAUST Repository

    Piatek, Marek J.

    2013-07-12

    Background:Initiation of transcription is essential for most of the cellular responses to environmental conditions and for cell and tissue specificity. This process is regulated through numerous proteins, their ligands and mutual interactions, as well as interactions with DNA. The key such regulatory proteins are transcription factors (TFs) and transcription co-factors (TcoFs). TcoFs are important since they modulate the transcription initiation process through interaction with TFs. In eukaryotes, transcription requires that TFs form different protein complexes with various nuclear proteins. To better understand transcription regulation, it is important to know the functional class of proteins interacting with TFs during transcription initiation. Such information is not fully available, since not all proteins that act as TFs or TcoFs are yet annotated as such, due to generally partial functional annotation of proteins. In this study we have developed a method to predict, using only sequence composition of the interacting proteins, the functional class of human TF binding partners to be (i) TF, (ii) TcoF, or (iii) other nuclear protein. This allows for complementing the annotation of the currently known pool of nuclear proteins. Since only the knowledge of protein sequences is required in addition to protein interaction, the method should be easily applicable to many species.Results:Based on experimentally validated interactions between human TFs with different TFs, TcoFs and other nuclear proteins, our two classification systems (implemented as a web-based application) achieve high accuracies in distinguishing TFs and TcoFs from other nuclear proteins, and TFs from TcoFs respectively.Conclusion:As demonstrated, given the fact that two proteins are capable of forming direct physical interactions and using only information about their sequence composition, we have developed a completely new method for predicting a functional class of TF interacting protein partners

  6. Real hypersurfaces of a complex space form

    Indian Academy of Sciences (India)

    In this paper we are interested in obtaining a condition under which a compact real hypersurface of a complex projective space C P n is a geodesic sphere. We also study the question as to whether the characteristic vector field of a real hypersurface of the complex projective space C P n is harmonic, and show that the ...

  7. Real hypersurfaces of a complex space form

    Indian Academy of Sciences (India)

    Abstract. In this paper we are interested in obtaining a condition under which a com- pact real hypersurface of a complex projective space CPn is a geodesic sphere. We also study the question as to whether the characteristic vector field of a real hypersurface of the complex projective space CPn is harmonic, and show that ...

  8. Real hypersurfaces of a complex space form

    Indian Academy of Sciences (India)

    [10], the authors have studied the Laplacian operator acting on smooth vector fields on a. Riemannian manifold and used it to characterize Euclidean spheres as well as complex projective space CPn. It is known that on the sphere Sn there exists a smooth vector field ξ that satisfies ξ = −ξ and on the complex projective ...

  9. A Protein Complex Required for Polymerase V Transcripts and RNA- Directed DNA Methylation in Arabidopsis

    KAUST Repository

    Law, Julie A.

    2010-05-01

    DNA methylation is an epigenetic modification associated with gene silencing. In Arabidopsis, DNA methylation is established by DOMAINS REARRANGED METHYLTRANSFERASE 2 (DRM2), which is targeted by small interfering RNAs through a pathway termed RNA-directed DNA methylation (RdDM) [1, 2]. Recently, RdDM was shown to require intergenic noncoding (IGN) transcripts that are dependent on the Pol V polymerase. These transcripts are proposed to function as scaffolds for the recruitment of downstream RdDM proteins, including DRM2, to loci that produce both siRNAs and IGN transcripts [3]. However, the mechanism(s) through which Pol V is targeted to specific genomic loci remains largely unknown. Through affinity purification of two known RdDM components, DEFECTIVE IN RNA-DIRECTED DNA METHYLATION 1 (DRD1) [4] and DEFECTIVE IN MERISTEM SILENCING 3 (DMS3) [5, 6], we found that they copurify with each other and with a novel protein, RNA-DIRECTED DNA METHYLATION 1 (RDM1), forming a complex we term DDR. We also found that DRD1 copurified with Pol V subunits and that RDM1, like DRD1 [3] and DMS3 [7], is required for the production of Pol V-dependent transcripts. These results suggest that the DDR complex acts in RdDM at a step upstream of the recruitment or activation of Pol V. © 2010 Elsevier Ltd. All rights reserved.

  10. Migraine genetics : from monogenic to complex forms

    NARCIS (Netherlands)

    Vanmolkot, Kaate Raymond Josepha

    2008-01-01

    Migraine has a strong genetic component, but the identification of these factors has proven difficult mainly because of the complex interaction of multiple loci and environmental factors. Unraveling its molecular basis and deciphering pathways leading to migraine attacks will help identifying novel

  11. Promoter-bound p300 complexes facilitate post-mitotic transmission of transcriptional memory.

    Science.gov (United States)

    Wong, Madeline M; Byun, Jung S; Sacta, Maria; Jin, Qihuang; Baek, SongJoon; Gardner, Kevin

    2014-01-01

    A central hallmark of epigenetic inheritance is the parental transmission of changes in patterns of gene expression to progeny without modification of DNA sequence. Although, the trans-generational conveyance of this molecular memory has been traditionally linked to covalent modification of histone and/or DNA, recent studies suggest a role for proteins that persist or remain bound within chromatin to "bookmark" specific loci for enhanced or potentiated responses in daughter cells immediately following cell division. In this report we describe a role for p300 in enabling gene bookmarking by pre-initiation complexes (PICs) containing RNA polymerase II (pol II), Mediator and TBP. Once formed these complexes require p300 to enable reacquisition of protein complex assemblies, chromatin modifications and long range chromatin interactions that facilitate post-mitotic transmission of transcriptional memory of prior environmental stimuli.

  12. Promoter-bound p300 complexes facilitate post-mitotic transmission of transcriptional memory.

    Directory of Open Access Journals (Sweden)

    Madeline M Wong

    Full Text Available A central hallmark of epigenetic inheritance is the parental transmission of changes in patterns of gene expression to progeny without modification of DNA sequence. Although, the trans-generational conveyance of this molecular memory has been traditionally linked to covalent modification of histone and/or DNA, recent studies suggest a role for proteins that persist or remain bound within chromatin to "bookmark" specific loci for enhanced or potentiated responses in daughter cells immediately following cell division. In this report we describe a role for p300 in enabling gene bookmarking by pre-initiation complexes (PICs containing RNA polymerase II (pol II, Mediator and TBP. Once formed these complexes require p300 to enable reacquisition of protein complex assemblies, chromatin modifications and long range chromatin interactions that facilitate post-mitotic transmission of transcriptional memory of prior environmental stimuli.

  13. Genome-wide analysis of the Mediator transcription complex

    NARCIS (Netherlands)

    Peppel, H.J. van de

    2006-01-01

    Transcription regulation is an essential process that enables living organisms to develop, to respond to extra-cellular signals and to environmental changes. In S. cerevisiae more than 300 proteins are required for accurate transcription regulation. This thesis focuses on one of the more central

  14. NUCLEAR MYOSIN II REGULATES THE ASSEMBLY OF PREINITIATION COMPLEX FOR ICAM-1 GENE TRANSCRIPTION

    Science.gov (United States)

    Li, Qingjie; Sarna, Sushil K.

    2009-01-01

    Background and Aims Actin-myosin II motor converts chemical energy into force/motion in muscle and non-muscle cells. The phosphorylation of regulatory light chain (MLC20) is critical to the cytoplasmic functions of these motors. We do not know whether myosin II and actins in the nucleus function as motors to generate relative motion, such as that between RNA polymerase II holoenzyme and DNA, for assembly of the preinitiation complex. Methods The experiments were performed on primary cultures of human colonic circular smooth muscle cells (HCCSMCs) and rat colonic circular muscle strips. Results We show that myosin II and α- and β-actins are present in the nuclei of colonic smooth muscle cells. The nuclear myosin II is tethered to recognition sequence AGCTCC (−39/−34) in the ICAM-1 core promoter region. The actins are known to complex with RNA polymerase II and they are tethered to the nucleoskeleton. The dephosphorylation of MLC20 increases the transcription of ICAM-1, whereas its phosphorylation decreases it. Colonic inflammation suppresses nuclear MLCK, which increases the unphosphorylated form of nuclear MLC20, resulting in enhanced transcription of ICAM-1. Conclusions 1) Myosin II is a core transcription factor; 2) the phosphorylation/dephosphorylation of nuclear MLC20 results in the sliding of myosin and actin molecules past each other producing relative motion between the DNA bound to the myosin II and RNA polymerase II holoenzyme bound to actins and nucleoskeleton. PMID:19328794

  15. The MYST family histone acetyltransferase complex regulates stress resistance and longevity through transcriptional control of DAF-16/FOXO transcription factors.

    Science.gov (United States)

    Ikeda, Takako; Uno, Masaharu; Honjoh, Sakiko; Nishida, Eisuke

    2017-08-09

    The well-known link between longevity and the Sir2 histone deacetylase family suggests that histone deacetylation, a modification associated with repressed chromatin, is beneficial to longevity. However, the molecular links between histone acetylation and longevity remain unclear. Here, we report an unexpected finding that the MYST family histone acetyltransferase complex (MYS-1/TRR-1 complex) promotes rather than inhibits stress resistance and longevity in Caenorhabditis elegans Our results show that these beneficial effects are largely mediated through transcriptional up-regulation of the FOXO transcription factor DAF-16. MYS-1 and TRR-1 are recruited to the promoter regions of the daf-16 gene, where they play a role in histone acetylation, including H4K16 acetylation. Remarkably, we also find that the human MYST family Tip60/TRRAP complex promotes oxidative stress resistance by up-regulating the expression of FOXO transcription factors in human cells. Tip60 is recruited to the promoter regions of the foxo1 gene, where it increases H4K16 acetylation levels. Our results thus identify the evolutionarily conserved role of the MYST family acetyltransferase as a key epigenetic regulator of DAF-16/FOXO transcription factors. © 2017 The Authors.

  16. Specific defects in different transcription complexes compensate for the requirement of the negative cofactor 2 repressor in Saccharomyces cerevisiae.

    Science.gov (United States)

    Peiró-Chova, Lorena; Estruch, Francisco

    2007-05-01

    Negative cofactor 2 (NC2) has been described as an essential and evolutionarily conserved transcriptional repressor, although in vitro and in vivo experiments suggest that it can function as both a positive and a negative effector of transcription. NC2 operates by interacting with the core promoter and components of the basal transcription machinery, like the TATA-binding protein (TBP). In this work, we have isolated mutants that suppress the growth defect caused by the depletion of NC2. We have identified mutations affecting components of three different complexes involved in the control of basal transcription: the mediator, TFIIH, and RNA pol II itself. Mutations in RNA pol II include both overexpression of truncated forms of the two largest subunits (Rpb1 and Rpb2) and reduced levels of these proteins. Suppression of NC2 depletion was also observed by reducing the amounts of the mediator essential components Nut2 and Med7, as well as by deleting any of the nonessential mediator components, except Med2, Med3, and Gal11 subunits. Interestingly, the Med2/Med3/Gal11 triad forms a submodule within the mediator tail. Our results support the existence of different components within the basic transcription complexes that antagonistically interact with the NC2 repressor and suggest that the correct balance between the activities of specific positive and negative components is essential for cell growth.

  17. Structural hierarchy controlling dimerization and target DNA recognition in the AHR transcriptional complex

    Energy Technology Data Exchange (ETDEWEB)

    Seok, Seung-Hyeon; Lee, Woojong; Jiang, Li; Molugu, Kaivalya; Zheng, Aiping; Li, Yitong; Park, Sanghyun; Bradfield, Christopher A.; Xing, Yongna (UW)

    2017-04-10

    he aryl hydrocarbon receptor (AHR) belongs to the PAS (PER-ARNT-SIM) family transcription factors and mediates broad responses to numerous environmental pollutants and cellular metabolites, modulating diverse biological processes from adaptive metabolism, acute toxicity, to normal physiology of vascular and immune systems. The AHR forms a transcriptionally active heterodimer with ARNT (AHR nuclear translocator), which recognizes the dioxin response element (DRE) in the promoter of downstream genes. We determined the crystal structure of the mammalian AHR–ARNT heterodimer in complex with the DRE, in which ARNT curls around AHR into a highly intertwined asymmetric architecture, with extensive heterodimerization interfaces and AHR interdomain interactions. Specific recognition of the DRE is determined locally by the DNA-binding residues, which discriminates it from the closely related hypoxia response element (HRE), and is globally affected by the dimerization interfaces and interdomain interactions. Changes at the interdomain interactions caused either AHR constitutive nuclear localization or failure to translocate to nucleus, underlying an allosteric structural pathway for mediating ligand-induced exposure of nuclear localization signal. These observations, together with the global higher flexibility of the AHR PAS-A and its loosely packed structural elements, suggest a dynamic structural hierarchy for complex scenarios of AHR activation induced by its diverse ligands.

  18. Core Transcriptional Regulatory Circuit Controlled by the TAL1 Complex in Human T Cell Acute Lymphoblastic Leukemia

    OpenAIRE

    Sanda, Takaomi; Lawton, Lee N.; Barrasa, M. Inmaculada; Fan, Zi Peng; Kohlhammer, Holger; Gutierrez, Alejandro; Ma, Wenxue; Tatarek, Jessica; Ahn, Yebin; Kelliher, Michelle A.; Jamieson, Catriona H.M.; Staudt, Louis M.; Young, Richard A.; Look, A. Thomas

    2012-01-01

    The oncogenic transcription factor TAL1/SCL is aberrantly expressed in over 40% of cases of human T-cell acute lymphoblastic leukemia (T-ALL), emphasizing its importance in the molecular pathogenesis of T-ALL. Here we identify the core transcriptional regulatory circuit controlled by TAL1 and its regulatory partners HEB, E2A, LMO1/2, GATA3 and RUNX1. We show that TAL1 forms a positive interconnected auto-regulatory loop with GATA3 and RUNX1, and that the TAL1 complex directly activates the MY...

  19. Secondary Teachers' Conception of Various Forms of Complex Numbers

    Science.gov (United States)

    Karakok, Gulden; Soto-Johnson, Hortensia; Dyben, Stephenie Anderson

    2015-01-01

    This study explores in-service high school mathematics teachers' conception of various forms of complex numbers and ways in which they transition between different representations of these forms. One 90-min interview was conducted with three high school mathematics teachers after they completed three professional development sessions, each 4 h, on…

  20. Encountering Productive Forms of Complexity in Learning Modern Physics

    Science.gov (United States)

    Levrini, Olivia; Fantini, Paola

    2013-01-01

    This paper aims at supporting the claim that some forms of hyper-simplification, by making physics seem easy, are at risk of dangerously distorting the content as well as the process of learning physics. The paper presents examples of dangerous simplifications in the teaching of quantum physics. Then, examples of productive forms of complexity are…

  1. Dynamical complexity changes during two forms of meditation

    Science.gov (United States)

    Li, Jin; Hu, Jing; Zhang, Yinhong; Zhang, Xiaofeng

    2011-06-01

    Detection of dynamical complexity changes in natural and man-made systems has deep scientific and practical meaning. We use the base-scale entropy method to analyze dynamical complexity changes for heart rate variability (HRV) series during specific traditional forms of Chinese Chi and Kundalini Yoga meditation techniques in healthy young adults. The results show that dynamical complexity decreases in meditation states for two forms of meditation. Meanwhile, we detected changes in probability distribution of m-words during meditation and explained this changes using probability distribution of sine function. The base-scale entropy method may be used on a wider range of physiologic signals.

  2. Methods for forming complex oxidation reaction products including superconducting articles

    International Nuclear Information System (INIS)

    Rapp, R.A.; Urquhart, A.W.; Nagelberg, A.S.; Newkirk, M.S.

    1992-01-01

    This patent describes a method for producing a superconducting complex oxidation reaction product of two or more metals in an oxidized state. It comprises positioning at least one parent metal source comprising one of the metals adjacent to a permeable mass comprising at least one metal-containing compound capable of reaction to form the complex oxidation reaction product in step below, the metal component of the at least one metal-containing compound comprising at least a second of the two or more metals, and orienting the parent metal source and the permeable mass relative to each other so that formation of the complex oxidation reaction product will occur in a direction towards and into the permeable mass; and heating the parent metal source in the presence of an oxidant to a temperature region above its melting point to form a body of molten parent metal to permit infiltration and reaction of the molten parent metal into the permeable mass and with the oxidant and the at least one metal-containing compound to form the complex oxidation reaction product, and progressively drawing the molten parent metal source through the complex oxidation reaction product towards the oxidant and towards and into the adjacent permeable mass so that fresh complex oxidation reaction product continues to form within the permeable mass; and recovering the resulting complex oxidation reaction product

  3. The Prolactin Gene: A Paradigm of Tissue-Specific Gene Regulation with Complex Temporal Transcription Dynamics

    Science.gov (United States)

    Featherstone, K; White, M R H; Davis, J R E

    2012-01-01

    Transcription of numerous mammalian genes is highly pulsatile, with bursts of expression occurring with variable duration and frequency. The presence of this stochastic or ‘noisy’ expression pattern has been relatively unexplored in tissue systems. The prolactin gene provides a model of tissue-specific gene regulation resulting in pulsatile transcription dynamics in both cell lines and endocrine tissues. In most cell culture models, prolactin transcription appears to be highly variable between cells, with differences in transcription pulse duration and frequency. This apparently stochastic transcription is constrained by a transcriptional refractory period, which may be related to cycles of chromatin remodelling. We propose that prolactin transcription dynamics result from the summation of oscillatory cellular inputs and by regulation through chromatin remodelling cycles. Observations of transcription dynamics in cells within pituitary tissue show reduced transcriptional heterogeneity and can be grouped into a small number of distinct patterns. Thus, it appears that the tissue environment is able to reduce transcriptional noise to enable coordinated tissue responses to environmental change. We review the current knowledge on the complex tissue-specific regulation of the prolactin gene in pituitary and extra-pituitary sites, highlighting differences between humans and rodent experimental animal models. Within this context, we describe the transcription dynamics of prolactin gene expression and how this may relate to specific processes occurring within the cell. PMID:22420298

  4. Expression of mink cell focus-forming murine leukemia virus-related transcripts in AKR mice

    International Nuclear Information System (INIS)

    Khan, A.S.; Laigret, F.; Rodi, C.P.

    1987-01-01

    The authors used a synthetic 16-base-pair mink cell focus-forming (MCF) env-specific oligomer as radiolabeled probe to study MCF murine leukemia virus (MuLV)-related transcripts in brain, kidney, liver, spleen, and thymus tissues of AKR mice ranging from 5 weeks to 6 months (mo) of age. Tissue-specific expression of poly(A) + RNAs was seen. In addition, all the tissues tested contained 3.0-kb messages. The transcription of these MCF-related mRNAs was independent of the presence of ecotropic and xenotropic MuLVs. In general, expression of the MCF env-related transcripts appeared to peak at 2 mo of age; these messages were barely detectable in brain, kidney, liver, and spleen tissues after 2 mo and in thymus tissue after 4 mo of age. All of the subgenomic MCF env-related mRNAs appeared to contain the 190-base-pair cellular DNA insert, characteristic of the long terminal repeats associated with endogenous MCF env-related proviruses. No genomic-size (8.4-kb) transcripts corresponding to endogenous MCF-related proviruses were detected. An 8.4-kb MCF env-related mRNA was first seen at 3 mo of age, exclusively in thymus tissue. This species most likely represents the first appearance of a recombinant MCF-related MuLV genome. The transcripts which were detected in thymus tissue might be involved in the generation of leukemogenic MCF viruses

  5. Complexity on Acute Myeloid Leukemia mRNA Transcript Variant

    Directory of Open Access Journals (Sweden)

    Carlo Cattani

    2011-01-01

    Full Text Available This paper deals with the sequence analysis of acute myeloid leukemia mRNA. Six transcript variants of mlf1 mRNA, with more than 2000 bps, are analyzed by focusing on the autocorrelation of each distribution. Through the correlation matrix, some patches and similarities are singled out and commented, with respect to similar distributions. The comparison of Kolmogorov fractal dimension will be also given in order to classify the six variants. The existence of a fractal shape, patterns, and symmetries are discussed as well.

  6. Complexes of vesicular stomatitis virus matrix protein with host Rae1 and Nup98 involved in inhibition of host transcription.

    Science.gov (United States)

    Rajani, Karishma R; Pettit Kneller, Elizabeth L; McKenzie, Margie O; Horita, David A; Chou, Jeff W; Lyles, Douglas S

    2012-09-01

    Vesicular stomatitis virus (VSV) suppresses antiviral responses in infected cells by inhibiting host gene expression at multiple levels, including transcription, nuclear cytoplasmic transport, and translation. The inhibition of host gene expression is due to the activity of the viral matrix (M) protein. Previous studies have shown that M protein interacts with host proteins Rae1 and Nup98 that have been implicated in regulating nuclear-cytoplasmic transport. However, Rae1 function is not essential for host mRNA transport, raising the question of how interaction of a viral protein with a host protein that is not essential for gene expression causes a global inhibition at multiple levels. We tested the hypothesis that there may be multiple M protein-Rae1 complexes involved in inhibiting host gene expression at multiple levels. Using size exclusion chromatography and sedimentation velocity analysis, it was determined that Rae1 exists in high, intermediate, and low molecular weight complexes. The intermediate molecular weight complexes containing Nup98 interacted most efficiently with M protein. The low molecular weight form also interacted with M protein in cells that overexpress Rae1 or cells in which Nup98 expression was silenced. Silencing Rae1 expression had little if any effect on nuclear accumulation of host mRNA in VSV-infected cells, nor did it affect VSV's ability to inhibit host translation. Instead, silencing Rae1 expression reduced the ability of VSV to inhibit host transcription. M protein interacted efficiently with Rae1-Nup98 complexes associated with the chromatin fraction of host nuclei, consistent with an effect on host transcription. These results support the idea that M protein-Rae1 complexes serve as platforms to promote the interaction of M protein with other factors involved in host transcription. They also support the idea that Rae1-Nup98 complexes play a previously under-appreciated role in regulation of transcription.

  7. Complexes of vesicular stomatitis virus matrix protein with host Rae1 and Nup98 involved in inhibition of host transcription.

    Directory of Open Access Journals (Sweden)

    Karishma R Rajani

    2012-09-01

    Full Text Available Vesicular stomatitis virus (VSV suppresses antiviral responses in infected cells by inhibiting host gene expression at multiple levels, including transcription, nuclear cytoplasmic transport, and translation. The inhibition of host gene expression is due to the activity of the viral matrix (M protein. Previous studies have shown that M protein interacts with host proteins Rae1 and Nup98 that have been implicated in regulating nuclear-cytoplasmic transport. However, Rae1 function is not essential for host mRNA transport, raising the question of how interaction of a viral protein with a host protein that is not essential for gene expression causes a global inhibition at multiple levels. We tested the hypothesis that there may be multiple M protein-Rae1 complexes involved in inhibiting host gene expression at multiple levels. Using size exclusion chromatography and sedimentation velocity analysis, it was determined that Rae1 exists in high, intermediate, and low molecular weight complexes. The intermediate molecular weight complexes containing Nup98 interacted most efficiently with M protein. The low molecular weight form also interacted with M protein in cells that overexpress Rae1 or cells in which Nup98 expression was silenced. Silencing Rae1 expression had little if any effect on nuclear accumulation of host mRNA in VSV-infected cells, nor did it affect VSV's ability to inhibit host translation. Instead, silencing Rae1 expression reduced the ability of VSV to inhibit host transcription. M protein interacted efficiently with Rae1-Nup98 complexes associated with the chromatin fraction of host nuclei, consistent with an effect on host transcription. These results support the idea that M protein-Rae1 complexes serve as platforms to promote the interaction of M protein with other factors involved in host transcription. They also support the idea that Rae1-Nup98 complexes play a previously under-appreciated role in regulation of transcription.

  8. Chemically Modified Oligonucleotides Modulate an Epigenetically Varied and Transient Form of Transcription Silencing of HIV-1 in Human Cells

    Directory of Open Access Journals (Sweden)

    Stuart Knowling

    2012-01-01

    Full Text Available Small noncoding RNAs (ncRNAs have been shown to guide epigenetic silencing complexes to target loci in human cells. When targeted to gene promoters, these small RNAs can lead to long-term stable epigenetic silencing of gene transcription. To date, small RNAs have been shown to modulate transcriptional gene silencing (TGS of human immunodeficiency virus type 1 (HIV-1 as well as several other disease-related genes, but it has remained unknown as to what extent particular chemistries can be used to generate single-stranded backbone-modified oligonucleotides that are amenable to this form of gene targeting and regulation. Here, we present data indicating that specific combinations of backbone modifications can be used to generate single-stranded antisense oligonucleotides that can functionally direct TGS of HIV-1 in a manner that is however, independent of epigenetic changes at the target loci. Furthermore, this functionality appears contingent on the absence of a 5′ phosphate in the oligonucleotide. These data suggest that chemically modified oligonucleotide based approaches could be implemented as a means to regulate gene transcription in an epigenetically independent manner.

  9. Chromosomal contact permits transcription between coregulated genes

    CSIR Research Space (South Africa)

    Fanucchi, Stephanie

    2013-10-01

    Full Text Available Transcription of coregulated genes occurs in the context of long-range chromosomal contacts that form multigene complexes. Such contacts and transcription are lost in knockout studies of transcription factors and structural chromatin proteins...

  10. Potentiometric study of complexes formed between (s)-&alpha

    African Journals Online (AJOL)

    isoxazole ring. The first complex [CuHL], which is fully formed by pH 4 is proposed to be with {N,O} bonding which results in the formation of a stable five membered chelate ring. The [CuL] species has some enhanced stability which suggest ...

  11. A naturally occurring truncated form of FosB that inhibits Fos/Jun transcriptional activity.

    Science.gov (United States)

    Nakabeppu, Y; Nathans, D

    1991-02-22

    Fos and Jun transcription factors are induced by a variety of extracellular signaling agents. We describe here an unusual member of the Fos family that is also induced, namely, a truncated form of FosB (delta FosB) missing the C-terminal 101 amino acids of FosB. delta FosB retains the dimerization and DNA-binding activities of FosB but has lost the ability in transfection assays to activate a promoter with an AP-1 site and to repress the c-fos promoter. Rather, delta FosB inhibits gene activation by Jun or Jun + Fos and inhibits repression of the c-fos promoter by FosB or c-Fos, presumably by competing with full-length Fos proteins at the steps of dimerization with Jun and binding to DNA. In stimulated cells delta FosB may act to limit the transcriptional effects of Fos and Jun proteins.

  12. DBIRD complex integrates alternative mRNA splicing with RNA polymerase II transcript elongation

    DEFF Research Database (Denmark)

    Close, Pierre; East, Philip; Dirac-Svejstrup, A Barbara

    2012-01-01

    Alternative messenger RNA splicing is the main reason that vast mammalian proteomic complexity can be achieved with a limited number of genes. Splicing is physically and functionally coupled to transcription, and is greatly affected by the rate of transcript elongation. As the nascent pre-mRNA em...... elongation, particularly across areas encompassing affected exons. Together, these data indicate that the DBIRD complex acts at the interface between mRNP particles and RNAPII, integrating transcript elongation with the regulation of alternative splicing.......Alternative messenger RNA splicing is the main reason that vast mammalian proteomic complexity can be achieved with a limited number of genes. Splicing is physically and functionally coupled to transcription, and is greatly affected by the rate of transcript elongation. As the nascent pre...... and help to integrate transcript elongation with mRNA splicing remain unclear. Here we characterize the human interactome of chromatin-associated mRNP particles. This led us to identify deleted in breast cancer 1 (DBC1) and ZNF326 (which we call ZNF-protein interacting with nuclear mRNPs and DBC1 (ZIRD...

  13. Core transcriptional regulatory circuit controlled by the TAL1 complex in human T cell acute lymphoblastic leukemia.

    Science.gov (United States)

    Sanda, Takaomi; Lawton, Lee N; Barrasa, M Inmaculada; Fan, Zi Peng; Kohlhammer, Holger; Gutierrez, Alejandro; Ma, Wenxue; Tatarek, Jessica; Ahn, Yebin; Kelliher, Michelle A; Jamieson, Catriona H M; Staudt, Louis M; Young, Richard A; Look, A Thomas

    2012-08-14

    The oncogenic transcription factor TAL1/SCL is aberrantly expressed in over 40% of cases of human T cell acute lymphoblastic leukemia (T-ALL), emphasizing its importance in the molecular pathogenesis of T-ALL. Here we identify the core transcriptional regulatory circuit controlled by TAL1 and its regulatory partners HEB, E2A, LMO1/2, GATA3, and RUNX1. We show that TAL1 forms a positive interconnected autoregulatory loop with GATA3 and RUNX1 and that the TAL1 complex directly activates the MYB oncogene, forming a positive feed-forward regulatory loop that reinforces and stabilizes the TAL1-regulated oncogenic program. One of the critical downstream targets in this circuitry is the TRIB2 gene, which is oppositely regulated by TAL1 and E2A/HEB and is essential for the survival of T-ALL cells. Copyright © 2012 Elsevier Inc. All rights reserved.

  14. Translational Capacity of a Cell Is Determined during Transcription Elongation via the Ccr4-Not Complex

    Directory of Open Access Journals (Sweden)

    Ishaan Gupta

    2016-05-01

    Full Text Available The current understanding of gene expression considers transcription and translation to be independent processes. Challenging this notion, we found that translation efficiency is determined during transcription elongation through the imprinting of mRNAs with Not1, the central scaffold of the Ccr4-Not complex. We determined that another subunit of the complex, Not5, defines Not1 binding to specific mRNAs, particularly those produced from ribosomal protein genes. This imprinting mechanism specifically regulates ribosomal protein gene expression, which in turn determines the translational capacity of cells. We validate our model by SILAC and polysome profiling experiments. As a proof of concept, we demonstrate that enhanced translation compensates for transcriptional elongation stress. Taken together, our data indicate that in addition to defining mRNA stability, components of the Ccr4-Not imprinting complex regulate RNA translatability, thus ensuring global gene expression homeostasis.

  15. Synchronization of complex chaotic systems in series expansion form

    International Nuclear Information System (INIS)

    Ge Zhengming; Yang Chenghsiung

    2007-01-01

    This paper studies the synchronization of complex chaotic systems in series expansion form by Lyapunov asymptotical stability theorem. A sufficient condition is given for the asymptotical stability of an error dynamics, and is applied to guiding the design of the secure communication. Finally, numerical results are studied for the Quantum-CNN oscillators synchronizing with unidirectional/bidirectional linear coupling to show the effectiveness of the proposed synchronization strategy

  16. Eukaryotic elongation factor 1 complex subunits are critical HIV-1 reverse transcription cofactors.

    Science.gov (United States)

    Warren, Kylie; Wei, Ting; Li, Dongsheng; Qin, Fangyun; Warrilow, David; Lin, Min-Hsuan; Sivakumaran, Haran; Apolloni, Ann; Abbott, Catherine M; Jones, Alun; Anderson, Jenny L; Harrich, David

    2012-06-12

    Cellular proteins have been implicated as important for HIV-1 reverse transcription, but whether any are reverse transcription complex (RTC) cofactors or affect reverse transcription indirectly is unclear. Here we used protein fractionation combined with an endogenous reverse transcription assay to identify cellular proteins that stimulated late steps of reverse transcription in vitro. We identified 25 cellular proteins in an active protein fraction, and here we show that the eEF1A and eEF1G subunits of eukaryotic elongation factor 1 (eEF1) are important components of the HIV-1 RTC. eEF1A and eEF1G were identified in fractionated human T-cell lysates as reverse transcription cofactors, as their removal ablated the ability of active protein fractions to stimulate late reverse transcription in vitro. We observed that the p51 subunit of reverse transcriptase and integrase, two subunits of the RTC, coimmunoprecipitated with eEF1A and eEF1G. Moreover eEF1A and eEF1G associated with purified RTCs and colocalized with reverse transcriptase following infection of cells. Reverse transcription in cells was sharply down-regulated when eEF1A or eEF1G levels were reduced by siRNA treatment as a result of reduced levels of RTCs in treated cells. The combined evidence indicates that these eEF1 subunits are critical RTC stability cofactors required for efficient completion of reverse transcription. The identification of eEF1 subunits as unique RTC components provides a basis for further investigations of reverse transcription and trafficking of the RTC to the nucleus.

  17. Pan-Cancer Mutational and Transcriptional Analysis of the Integrator Complex

    Directory of Open Access Journals (Sweden)

    Antonio Federico

    2017-04-01

    Full Text Available The integrator complex has been recently identified as a key regulator of RNA Polymerase II-mediated transcription, with many functions including the processing of small nuclear RNAs, the pause-release and elongation of polymerase during the transcription of protein coding genes, and the biogenesis of enhancer derived transcripts. Moreover, some of its components also play a role in genome maintenance. Thus, it is reasonable to hypothesize that their functional impairment or altered expression can contribute to malignancies. Indeed, several studies have described the mutations or transcriptional alteration of some Integrator genes in different cancers. Here, to draw a comprehensive pan-cancer picture of the genomic and transcriptomic alterations for the members of the complex, we reanalyzed public data from The Cancer Genome Atlas. Somatic mutations affecting Integrator subunit genes and their transcriptional profiles have been investigated in about 11,000 patients and 31 tumor types. A general heterogeneity in the mutation frequencies was observed, mostly depending on tumor type. Despite the fact that we could not establish them as cancer drivers, INTS7 and INTS8 genes were highly mutated in specific cancers. A transcriptome analysis of paired (normal and tumor samples revealed that the transcription of INTS7, INTS8, and INTS13 is significantly altered in several cancers. Experimental validation performed on primary tumors confirmed these findings.

  18. RNA-SEQ reveals transcriptional level changes of poplar roots in different forms of nitrogen treatments

    Directory of Open Access Journals (Sweden)

    Chunpu eQu

    2016-02-01

    Full Text Available Poplar has emerged as a model plant for understanding molecular mechanisms of tree growth, development and response to environment. Long-term application of different forms of nitrogen (such as NO3--N and NH4+-N may cause morphological changes of poplar roots; however, the molecular level changes are still not well known. In this study, we analyzed the expression profiling of poplar roots treated by three forms of nitrogen: S1 (NH4+, S2 (NH4NO3 and S3 (NO3- by using RNA-SEQ technique. We found 463 genes significantly differentially expressed in roots by different N treatments, of which a total of 116 genes were found to differentially express between S1 and S2, 173 genes between S2 and S3, and 327 genes between S1 and S3. A cluster analysis shows significant difference in many transcription factor families and functional genes family under different N forms. Through an analysis of Mapman metabolic pathway, we found that the significantly differentially expressed genes are associated with fermentation, glycolysis and tricarboxylic acid cycle (TCA, secondary metabolism, hormone metabolism, and transport processing. Interestingly, we did not find significantly differentially expressed genes in N metabolism pathway, mitochondrial electron transport / ATP synthesis and mineral nutrition. We also found abundant candidate genes (20 transcription factors and 30 functional genes regulating morphology changes of poplar roots under the three N forms. The results obtained are beneficial to a better understanding of the potential molecular and cellular mechanisms regulating root morphology changes under different N treatments.

  19. Characterization of the adenoassociated virus Rep protein complex formed on the viral origin of DNA replication

    International Nuclear Information System (INIS)

    Li Zengi; Brister, J. Rodney; Im, Dong-Soo; Muzyczka, Nicholas

    2003-01-01

    Interaction between the adenoassociated virus (AAV) replication proteins, Rep68 and 78, and the viral terminal repeats (TRs) is mediated by a DNA sequence termed the Rep-binding element (RBE). This element is necessary for Rep-mediated unwinding of duplex DNA substrates, directs Rep catalyzed cleavage of the AAV origin of DNA replication, and is required for viral transcription and proviral integration. Six discrete Rep complexes with the AAV TR substrates have been observed in vitro, and cross-linking studies suggest these complexes contain one to six molecules of Rep. However, the functional relationship between Rep oligomerization and biochemical activity is unclear. Here we have characterized Rep complexes that form on the AAV TR. Both Rep68 and Rep78 appear to form the same six complexes with the AAV TR, and ATP seems to stimulate formation of specific, higher order complexes. When the sizes of these Rep complexes were estimated on native polyacrylamide gels, the four slower migrating complexes were larger than predicted by an amount equivalent to one or two TRs. To resolve this discrepancy, the molar ratio of protein and DNA was calculated for the three largest complexes. Data from these experiments indicated that the larger complexes included multiple TRs in addition to multiple Rep molecules and that the Rep-to-TR ratio was approximately 2. The two largest complexes were also associated with increased Rep-mediated, origin cleavage activity. Finally, we characterized a second, Rep-mediated cleavage event that occurs adjacent to the normal nicking site, but on the opposite strand. This second site nicking event effectively results in double-stranded DNA cleavage at the normal nicking site

  20. Chromatin reader L(3)mbt requires the Myb-MuvB/DREAM transcriptional regulatory complex for chromosomal recruitment.

    Science.gov (United States)

    Blanchard, Daniel P; Georlette, Daphne; Antoszewski, Lisa; Botchan, Michael R

    2014-10-07

    Lethal malignant brain tumors (lmbt) result from the loss of the conserved transcriptional repressor l(3)mbt, in Drosophila melanogaster. Similar mutations in the human homolog L3MBTL1 correlate with some cancers. The protein's C-terminal MBT repeats bind mono and dimethylated histones in vitro, which could influence recruitment of L3MBTL1 to its target sites. The L(3)mbt chromatin targeting mechanism, however, is controversial and several studies suggest insufficiency or a minor role for histone methylation in determining the site specificity for recruitment. We report that L(3)mbt colocalizes with core members of the Myb-MuvB/DREAM (MMB/DREAM) transcriptional regulatory complex genome-wide, and that L(3)mbt-mediated repression requires this complex in salivary glands and larval brains. Loss of l(3)mbt or of MMB components through mutation cause similar spurious expression of genes, including the transposon regulatory gene piwi, in terminally differentiated cells. The DNA-binding MMB core component Mip120 (Lin54) is required for L(3)mbt recruitment to chromosomes, whereas Mip130 (Lin9) (an MMB core protein) and E2f2 (an MMB transcriptional repressor) are not, but are essential for repression. Cytolocalization experiments suggest the presence of site-specific differential composition of MMB in polytene chromosomes where some loci were bound by a Myb-containing or alternatively, an E2f2 and L(3)mbt form of the complex.

  1. Datgan, a reusable software system for facile interrogation and visualization of complex transcription profiling data

    Directory of Open Access Journals (Sweden)

    King Benjamin L

    2011-08-01

    Full Text Available Abstract Background We introduce Glaucoma Discovery Platform (GDP, an online environment for facile visualization and interrogation of complex transcription profiling datasets for glaucoma. We also report the availability of Datgan, the suite of scripts that was developed to construct GDP. This reusable software system complements existing repositories such as NCBI GEO or EBI ArrayExpress as it allows the construction of searchable databases to maximize understanding of user-selected transcription profiling datasets. Description Datgan scripts were used to construct both the underlying data tables and the web interface that form GDP. GDP is populated using data from a mouse model of glaucoma. The data was generated using the DBA/2J strain, a widely used mouse model of glaucoma. The DBA/2J-Gpnmb+ strain provided a genetically matched control strain that does not develop glaucoma. We separately assessed both the retina and the optic nerve head, important tissues in glaucoma. We used hierarchical clustering to identify early molecular stages of glaucoma that could not be identified using morphological assessment of disease. GDP has two components. First, an interactive search and retrieve component provides the ability to assess gene(s of interest in all identified stages of disease in both the retina and optic nerve head. The output is returned in graphical and tabular format with statistically significant differences highlighted for easy visual analysis. Second, a bulk download component allows lists of differentially expressed genes to be retrieved as a series of files compatible with Excel. To facilitate access to additional information available for genes of interest, GDP is linked to selected external resources including Mouse Genome Informatics and Online Medelian Inheritance in Man (OMIM. Conclusion Datgan-constructed databases allow user-friendly access to datasets that involve temporally ordered stages of disease or developmental stages

  2. Peroxisome proliferator-activated receptor gamma recruits the positive transcription elongation factor b complex to activate transcription and promote adipogenesis

    DEFF Research Database (Denmark)

    Iankova, Irena; Petersen, Rasmus K; Annicotte, Jean-Sébastien

    2006-01-01

    Positive transcription elongation factor b (P-TEFb) phosphorylates the C-terminal domain of RNA polymerase II, facilitating transcriptional elongation. In addition to its participation in general transcription, P-TEFb is recruited to specific promoters by some transcription factors such as c-Myc...

  3. Comprehensive analysis of the transcriptional profile of the Mediator complex across human cancer types.

    Science.gov (United States)

    Syring, Isabella; Klümper, Niklas; Offermann, Anne; Braun, Martin; Deng, Mario; Boehm, Diana; Queisser, Angela; von Mässenhausen, Anne; Brägelmann, Johannes; Vogel, Wenzel; Schmidt, Doris; Majores, Michael; Schindler, Anne; Kristiansen, Glen; Müller, Stefan C; Ellinger, Jörg; Shaikhibrahim, Zaki; Perner, Sven

    2016-04-26

    The Mediator complex is a key regulator of gene transcription and several studies demonstrated altered expressions of particular subunits in diverse human diseases, especially cancer. However a systematic study deciphering the transcriptional expression of the Mediator across different cancer entities is still lacking.We therefore performed a comprehensive in silico cancer vs. benign analysis of the Mediator complex subunits (MEDs) for 20 tumor entities using Oncomine datasets. The transcriptional expression profiles across almost all cancer entities showed differentially expressed MEDs as compared to benign tissue. Differential expression of MED8 in renal cell carcinoma (RCC) and MED12 in lung cancer (LCa) were validated and further investigated by immunohistochemical staining on tissue microarrays containing large numbers of specimen. MED8 in clear cell RCC (ccRCC) associated with shorter survival and advanced TNM stage and showed higher expression in metastatic than primary tumors. In vitro, siRNA mediated MED8 knockdown significantly impaired proliferation and motility in ccRCC cell lines, hinting at a role for MED8 to serve as a novel therapeutic target in ccRCC. Taken together, our Mediator complex transcriptome proved to be a valid tool for identifying cancer-related shifts in Mediator complex composition, revealing that MEDs do exhibit cancer specific transcriptional expression profiles.

  4. High Molecular Weight Forms of Mammalian Respiratory Chain Complex II

    Czech Academy of Sciences Publication Activity Database

    Kovářová, Nikola; Mráček, Tomáš; Nůsková, Hana; Holzerová, Eliška; Vrbacký, Marek; Pecina, Petr; Hejzlarová, Kateřina; Klučková, Katarína; Rohlena, Jakub; Neužil, Jiří; Houštěk, Josef

    2013-01-01

    Roč. 8, č. 8 (2013), e71869 E-ISSN 1932-6203 R&D Projects: GA ČR(CZ) GPP303/10/P227; GA MŠk(CZ) LL1204; GA MZd(CZ) NT12370; GA ČR(CZ) GAP301/10/1937 Institutional research plan: CEZ:AV0Z50520701 Institutional support: RVO:67985823 Keywords : supercomplexes * high molecular weihgt forms of complex II * native electrophoretic systems Subject RIV: EB - Genetics ; Molecular Biology Impact factor: 3.534, year: 2013

  5. Targeted inhibition of transcription elongation in cells mediated by triplex-forming oligonucleotides

    Science.gov (United States)

    Faria, M.; Wood, C. D.; Perrouault, L.; Nelson, J. S.; Winter, A.; White, M. R. H.; Hélène, C.; Giovannangeli, C.

    2000-01-01

    Triple-helix-forming oligonucleotides (TFOs) bind in the major groove of double-stranded DNA at oligopyrimidine⋅oligopurine sequences and therefore are candidate molecules for artificial gene regulation, in vitro and in vivo. We recently have described oligonucleotide analogues containing N3′-P5′ phosphoramidate (np) linkages that exhibited efficient inhibition of transcription elongation in vitro. In the present work we provide conclusive evidence that np-modified TFOs targeted to the HIV-1 polypurine tract (PPT) sequence can inhibit transcriptional elongation in cells, either in transient or stable expression systems. The same constructs were used in transient expression assays (target sequence on transfected plasmid) and in the generation of stable cell lines (target sequence integrated into cellular chromosomes). In both cases the only distinguishable feature between the cellular systems is the presence of an insert containing the wild-type PPT/HIV-1 sequence, a mutated version with two mismatches, or the absence of the insert altogether. The inhibitory action induced by np-TFOs was restricted to the cellular systems containing the complementary wild-type PPT/HIV-1 target, and consequently can be attributed only to a triple-helix-mediated mechanism. As a part of this study we also have applied an imaging technique to quantitatively investigate the dynamics of TFO-mediated specific gene silencing in single cells. PMID:10760257

  6. Complex SUMO-1 regulation of cardiac transcription factor Nkx2-5.

    Directory of Open Access Journals (Sweden)

    Mauro W Costa

    Full Text Available Reversible post-translational protein modifications such as SUMOylation add complexity to cardiac transcriptional regulation. The homeodomain transcription factor Nkx2-5/Csx is essential for heart specification and morphogenesis. It has been previously suggested that SUMOylation of lysine 51 (K51 of Nkx2-5 is essential for its DNA binding and transcriptional activation. Here, we confirm that SUMOylation strongly enhances Nkx2-5 transcriptional activity and that residue K51 of Nkx2-5 is a SUMOylation target. However, in a range of cultured cell lines we find that a point mutation of K51 to arginine (K51R does not affect Nkx2-5 activity or DNA binding, suggesting the existence of additional Nkx2-5 SUMOylated residues. Using biochemical assays, we demonstrate that Nkx2-5 is SUMOylated on at least one additional site, and this is the predominant site in cardiac cells. The second site is either non-canonical or a "shifting" site, as mutation of predicted consensus sites and indeed every individual lysine in the context of the K51R mutation failed to impair Nkx2-5 transcriptional synergism with SUMO, or its nuclear localization and DNA binding. We also observe SUMOylation of Nkx2-5 cofactors, which may be critical to Nkx2-5 regulation. Our data reveal highly complex regulatory mechanisms driven by SUMOylation to modulate Nkx2-5 activity.

  7. saRNA-guided Ago2 targets the RITA complex to promoters to stimulate transcription.

    Science.gov (United States)

    Portnoy, Victoria; Lin, Szu Hua Sharon; Li, Kathy H; Burlingame, Alma; Hu, Zheng-Hui; Li, Hao; Li, Long-Cheng

    2016-03-01

    Small activating RNAs (saRNAs) targeting specific promoter regions are able to stimulate gene expression at the transcriptional level, a phenomenon known as RNA activation (RNAa). It is known that RNAa depends on Ago2 and is associated with epigenetic changes at the target promoters. However, the precise molecular mechanism of RNAa remains elusive. Using human CDKN1A (p21) as a model gene, we characterized the molecular nature of RNAa. We show that saRNAs guide Ago2 to and associate with target promoters. saRNA-loaded Ago2 facilitates the assembly of an RNA-induced transcriptional activation (RITA) complex, which, in addition to saRNA-Ago2 complex, includes RHA and CTR9, the latter being a component of the PAF1 complex. RITA interacts with RNA polymerase II to stimulate transcription initiation and productive elongation, accompanied by monoubiquitination of histone 2B. Our results establish the existence of a cellular RNA-guided genome-targeting and transcriptional activation mechanism and provide important new mechanistic insights into the RNAa process.

  8. The BAF complex interacts with Pax6 in adult neural progenitors to establish a neurogenic cross-regulatory transcriptional network.

    Science.gov (United States)

    Ninkovic, Jovica; Steiner-Mezzadri, Andrea; Jawerka, Melanie; Akinci, Umut; Masserdotti, Giacomo; Petricca, Stefania; Fischer, Judith; von Holst, Alexander; Beckers, Johanes; Lie, Chichung D; Petrik, David; Miller, Erik; Tang, Jiong; Wu, Jiang; Lefebvre, Veronique; Demmers, Jeroen; Eisch, Amelia; Metzger, Daniel; Crabtree, Gerald; Irmler, Martin; Poot, Raymond; Götz, Magdalena

    2013-10-03

    Numerous transcriptional regulators of neurogenesis have been identified in the developing and adult brain, but how neurogenic fate is programmed at the epigenetic level remains poorly defined. Here, we report that the transcription factor Pax6 directly interacts with the Brg1-containing BAF complex in adult neural progenitors. Deletion of either Brg1 or Pax6 in the subependymal zone (SEZ) causes the progeny of adult neural stem cells to convert to the ependymal lineage within the SEZ while migrating neuroblasts convert to different glial lineages en route to or in the olfactory bulb (OB). Genome-wide analyses reveal that the majority of genes downregulated in the Brg1 null SEZ and OB contain Pax6 binding sites and are also downregulated in Pax6 null SEZ and OB. Downstream of the Pax6-BAF complex, we find that Sox11, Nfib, and Pou3f4 form a transcriptional cross-regulatory network that drives neurogenesis and can convert postnatal glia into neurons. Taken together, elements of our work identify a tripartite effector network activated by Pax6-BAF that programs neuronal fate. Copyright © 2013 Elsevier Inc. All rights reserved.

  9. A structural model of the E. coli PhoB Dimer in the transcription initiation complex

    Directory of Open Access Journals (Sweden)

    Tung Chang-Shung

    2012-03-01

    Full Text Available Abstract Background There exist > 78,000 proteins and/or nucleic acids structures that were determined experimentally. Only a small portion of these structures corresponds to those of protein complexes. While homology modeling is able to exploit knowledge-based potentials of side-chain rotomers and backbone motifs to infer structures for new proteins, no such general method exists to extend our understanding of protein interaction motifs to novel protein complexes. Results We use a Motif Binding Geometries (MBG approach, to infer the structure of a protein complex from the database of complexes of homologous proteins taken from other contexts (such as the helix-turn-helix motif binding double stranded DNA, and demonstrate its utility on one of the more important regulatory complexes in biology, that of the RNA polymerase initiating transcription under conditions of phosphate starvation. The modeled PhoB/RNAP/σ-factor/DNA complex is stereo-chemically reasonable, has sufficient interfacial Solvent Excluded Surface Areas (SESAs to provide adequate binding strength, is physically meaningful for transcription regulation, and is consistent with a variety of known experimental constraints. Conclusions Based on a straightforward and easy to comprehend concept, "proteins and protein domains that fold similarly could interact similarly", a structural model of the PhoB dimer in the transcription initiation complex has been developed. This approach could be extended to enable structural modeling and prediction of other bio-molecular complexes. Just as models of individual proteins provide insight into molecular recognition, catalytic mechanism, and substrate specificity, models of protein complexes will provide understanding into the combinatorial rules of cellular regulation and signaling.

  10. Post-transcriptional regulation on a global scale: form and function of Csr/Rsm systems.

    Science.gov (United States)

    Romeo, Tony; Vakulskas, Christopher A; Babitzke, Paul

    2013-02-01

    Originally described as a repressor of gene expression in the stationary phase of growth, CsrA (RsmA) regulates primary and secondary metabolic pathways, biofilm formation, motility, virulence circuitry of pathogens, quorum sensing and stress response systems by binding to conserved sequences in its target mRNAs and altering their translation and/or turnover. While the binding of CsrA to RNA is understood at an atomic level, new mechanisms of gene activation and repression by this protein are still emerging. In the γ-proteobacteria, small non-coding RNAs (sRNAs) use molecular mimicry to sequester multiple CsrA dimers away from mRNA. In contrast, the FliW protein of Bacillus subtilis inhibits CsrA activity by binding to this protein, thereby establishing a checkpoint in flagellum morphogenesis. Turnover of CsrB and CsrC sRNAs in Escherichia coli requires a specificity protein of the GGDEF-EAL domain superfamily, CsrD, in addition to the housekeeping nucleases RNase E and PNPase. The Csr system of E. coli contains extensive autoregulatory circuitry, which governs the expression and activity of CsrA. Interaction of the Csr system with transcriptional regulatory networks results in a variety of complex response patterns. This minireview will highlight basic principles and new insights into the workings of these complex eubacterial regulatory systems. © 2012 Society for Applied Microbiology and Blackwell Publishing Ltd.

  11. Transcription initiation complexes and upstream activation with RNA polymerase II lacking the C-terminal domain of the largest subunit.

    OpenAIRE

    Buratowski, S; Sharp, P A

    1990-01-01

    RNA polymerase II assembles with other factors on the adenovirus type 2 major late promoter to generate pairs of transcription initiation complexes resolvable by nondenaturing gel electrophoresis. The pairing of the complexes is caused by the presence or absence of the C-terminal domain of the largest subunit. This domain is not required for transcription stimulation by the major late transcription factor in vitro.

  12. Characterisation of major histocompatibility complex class I transcripts in an Australian dragon lizard.

    Science.gov (United States)

    Hacking, Jessica; Bertozzi, Terry; Moussalli, Adnan; Bradford, Tessa; Gardner, Michael

    2018-07-01

    Characterisation of squamate major histocompatibility complex (MHC) genes has lagged behind other taxonomic groups. MHC genes encode cell-surface glycoproteins that present self- and pathogen-derived peptides to T cells and play a critical role in pathogen recognition. Here we characterise MHC class I transcripts for an agamid lizard (Ctenophorus decresii) and investigate the evolution of MHC class I in Iguanian lizards. An iterative assembly strategy was used to identify six full-length C. decresii MHC class I transcripts, which were validated as likely to encode classical class I MHC molecules. Evidence for exon shuffling recombination was uncovered for C. decresii transcripts and Bayesian phylogenetic analysis of Iguanian MHC class I sequences revealed a pattern expected under a birth-and-death mode of evolution. This work provides a stepping stone towards further research on the agamid MHC class I region. Copyright © 2018 Elsevier Ltd. All rights reserved.

  13. Lichen-forming fungus Caloplaca flavoruscens inhibits transcription factors and chromatin remodeling system in fungi.

    Science.gov (United States)

    Kwon, Youngho; Cha, Jaeyul; Chiang, Jennifer; Tran, Grant; Nislow, Corey; Hur, Jae-Seoun; Kwak, Youn-Sig

    2016-06-01

    Lichen-forming fungi and extracts derived from them have been used as alternative medicine sources for millennia and recently there has been a renewed interest in their known bioactive properties for anticancer agents, cosmetics and antibiotics. Although lichen-forming fungus-derived compounds are biologically and commercially valuable, few studies have been performed to determine their modes of action. This study used chemical-genetic and chemogenomic high-throughput analyses to gain insight into the modes of action of Caloplaca flavoruscens extracts. High-throughput screening of 575 lichen extracts was performed and 39 extracts were identified which inhibited yeast growth. A C. flavoruscens extract was selected as a promising antifungal and was subjected to genome-wide haploinsufficiency profiling and homozygous profiling assays. These screens revealed that yeast deletion strains lacking Rsc8, Pro1 and Toa2 were sensitive to three concentrations (IC25.5, IC25 and IC50, respectively) of C. flavoruscens extract. Gene-enrichment analysis of the data showed that C. flavoruscens extracts appear to perturb transcription and chromatin remodeling. © FEMS 2016. All rights reserved. For permissions, please e-mail: journals.permissions@oup.com.

  14. Roles of mono-ubiquitinated Smad4 in the formation of Smad transcriptional complexes

    OpenAIRE

    Wang, Bei; Suzuki, Hiroyuki; Kato, Mitsuyasu

    2008-01-01

    TGF-β activates receptor-regulated Smad (R-Smad) through phosphorylation by type I receptors. Activated R-Smad binds to Smad4 and the complex translocates into the nucleus and stimulates the transcription of target genes through association with co-activators including p300. It is not clear, however, how activated Smad complexes are removed from target genes. In this study, we show that TGF-β enhances the mono-ubiquitination of Smad4. Smad4 mono-ubiquitination was promoted by p300 and suppres...

  15. Roles of mono-ubiquitinated Smad4 in the formation of Smad transcriptional complexes.

    Science.gov (United States)

    Wang, Bei; Suzuki, Hiroyuki; Kato, Mitsuyasu

    2008-11-14

    TGF-beta activates receptor-regulated Smad (R-Smad) through phosphorylation by type I receptors. Activated R-Smad binds to Smad4 and the complex translocates into the nucleus and stimulates the transcription of target genes through association with co-activators including p300. It is not clear, however, how activated Smad complexes are removed from target genes. In this study, we show that TGF-beta enhances the mono-ubiquitination of Smad4. Smad4 mono-ubiquitination was promoted by p300 and suppressed by the c-Ski co-repressor. Smad4 mono-ubiquitination disrupted the interaction with Smad2 in the presence of constitutively active TGF-beta type I receptor. Furthermore, mono-ubiquitinated Smad4 was not found in DNA-binding Smad complexes. A Smad4-Ubiquitin fusion protein, which mimics mono-ubiquitinated Smad4, enhanced localization to the cytoplasm. These results suggest that mono-ubiquitination of Smad4 occurs in the transcriptional activator complex and facilitates the turnover of Smad complexes at target genes.

  16. MURC/Cavin-4 and cavin family members form tissue-specific caveolar complexes.

    Science.gov (United States)

    Bastiani, Michele; Liu, Libin; Hill, Michelle M; Jedrychowski, Mark P; Nixon, Susan J; Lo, Harriet P; Abankwa, Daniel; Luetterforst, Robert; Fernandez-Rojo, Manuel; Breen, Michael R; Gygi, Steven P; Vinten, Jorgen; Walser, Piers J; North, Kathryn N; Hancock, John F; Pilch, Paul F; Parton, Robert G

    2009-06-29

    Polymerase I and transcript release factor (PTRF)/Cavin is a cytoplasmic protein whose expression is obligatory for caveola formation. Using biochemistry and fluorescence resonance energy transfer-based approaches, we now show that a family of related proteins, PTRF/Cavin-1, serum deprivation response (SDR)/Cavin-2, SDR-related gene product that binds to C kinase (SRBC)/Cavin-3, and muscle-restricted coiled-coil protein (MURC)/Cavin-4, forms a multiprotein complex that associates with caveolae. This complex can constitutively assemble in the cytosol and associate with caveolin at plasma membrane caveolae. Cavin-1, but not other cavins, can induce caveola formation in a heterologous system and is required for the recruitment of the cavin complex to caveolae. The tissue-restricted expression of cavins suggests that caveolae may perform tissue-specific functions regulated by the composition of the cavin complex. Cavin-4 is expressed predominantly in muscle, and its distribution is perturbed in human muscle disease associated with Caveolin-3 dysfunction, identifying Cavin-4 as a novel muscle disease candidate caveolar protein.

  17. Structure-aided prediction of mammalian transcription factor complexes in conserved non-coding elements

    KAUST Repository

    Guturu, H.

    2013-11-11

    Mapping the DNA-binding preferences of transcription factor (TF) complexes is critical for deciphering the functions of cis-regulatory elements. Here, we developed a computational method that compares co-occurring motif spacings in conserved versus unconserved regions of the human genome to detect evolutionarily constrained binding sites of rigid TF complexes. Structural data were used to estimate TF complex physical plausibility, explore overlapping motif arrangements seldom tackled by non-structure-aware methods, and generate and analyse three-dimensional models of the predicted complexes bound to DNA. Using this approach, we predicted 422 physically realistic TF complex motifs at 18% false discovery rate, the majority of which (326, 77%) contain some sequence overlap between binding sites. The set of mostly novel complexes is enriched in known composite motifs, predictive of binding site configurations in TF-TF-DNA crystal structures, and supported by ChIP-seq datasets. Structural modelling revealed three cooperativity mechanisms: direct protein-protein interactions, potentially indirect interactions and \\'through-DNA\\' interactions. Indeed, 38% of the predicted complexes were found to contain four or more bases in which TF pairs appear to synergize through overlapping binding to the same DNA base pairs in opposite grooves or strands. Our TF complex and associated binding site predictions are available as a web resource at http://bejerano.stanford.edu/complex.

  18. RNA-Interference Components Are Dispensable for Transcriptional Silencing of the Drosophila Bithorax-Complex

    KAUST Repository

    Cernilogar, Filippo M.

    2013-06-13

    Background:Beyond their role in post-transcriptional gene silencing, Dicer and Argonaute, two components of the RNA interference (RNAi) machinery, were shown to be involved in epigenetic regulation of centromeric heterochromatin and transcriptional gene silencing. In particular, RNAi mechanisms appear to play a role in repeat induced silencing and some aspects of Polycomb-mediated gene silencing. However, the functional interplay of RNAi mechanisms and Polycomb group (PcG) pathways at endogenous loci remains to be elucidated.Principal Findings:Here we show that the endogenous Dicer-2/Argonaute-2 RNAi pathway is dispensable for the PcG mediated silencing of the homeotic Bithorax Complex (BX-C). Although Dicer-2 depletion triggers mild transcriptional activation at Polycomb Response Elements (PREs), this does not induce transcriptional changes at PcG-repressed genes. Moreover, Dicer-2 is not needed to maintain global levels of methylation of lysine 27 of histone H3 and does not affect PRE-mediated higher order chromatin structures within the BX-C. Finally bioinformatic analysis, comparing published data sets of PcG targets with Argonaute-2-bound small RNAs reveals no enrichment of these small RNAs at promoter regions associated with PcG proteins.Conclusions:We conclude that the Dicer-2/Argonaute-2 RNAi pathway, despite its role in pairing sensitive gene silencing of transgenes, does not have a role in PcG dependent silencing of major homeotic gene cluster loci in Drosophila. © 2013 Cernilogar et al.

  19. Myeloperoxidase, paraoxonase-1, and HDL form a functional ternary complex

    Science.gov (United States)

    Huang, Ying; Wu, Zhiping; Riwanto, Meliana; Gao, Shengqiang; Levison, Bruce S.; Gu, Xiaodong; Fu, Xiaoming; Wagner, Matthew A.; Besler, Christian; Gerstenecker, Gary; Zhang, Renliang; Li, Xin-Min; DiDonato, Anthony J.; Gogonea, Valentin; Tang, W.H. Wilson; Smith, Jonathan D.; Plow, Edward F.; Fox, Paul L.; Shih, Diana M.; Lusis, Aldons J.; Fisher, Edward A.; DiDonato, Joseph A.; Landmesser, Ulf; Hazen, Stanley L.

    2013-01-01

    Myeloperoxidase (MPO) and paraoxonase 1 (PON1) are high-density lipoprotein–associated (HDL-associated) proteins mechanistically linked to inflammation, oxidant stress, and atherosclerosis. MPO is a source of ROS during inflammation and can oxidize apolipoprotein A1 (APOA1) of HDL, impairing its atheroprotective functions. In contrast, PON1 fosters systemic antioxidant effects and promotes some of the atheroprotective properties attributed to HDL. Here, we demonstrate that MPO, PON1, and HDL bind to one another, forming a ternary complex, wherein PON1 partially inhibits MPO activity, while MPO inactivates PON1. MPO oxidizes PON1 on tyrosine 71 (Tyr71), a modified residue found in human atheroma that is critical for HDL binding and PON1 function. Acute inflammation model studies with transgenic and knockout mice for either PON1 or MPO confirmed that MPO and PON1 reciprocally modulate each other’s function in vivo. Further structure and function studies identified critical contact sites between APOA1 within HDL, PON1, and MPO, and proteomics studies of HDL recovered from acute coronary syndrome (ACS) subjects revealed enhanced chlorotyrosine content, site-specific PON1 methionine oxidation, and reduced PON1 activity. HDL thus serves as a scaffold upon which MPO and PON1 interact during inflammation, whereupon PON1 binding partially inhibits MPO activity, and MPO promotes site-specific oxidative modification and impairment of PON1 and APOA1 function. PMID:23908111

  20. Resistance to topoisomerase cleavage complex induced lethality in Escherichia coli via titration of transcription regulators PurR and FNR

    Directory of Open Access Journals (Sweden)

    Liu I-Fen

    2011-12-01

    Full Text Available Abstract Background Accumulation of gyrase cleavage complex in Escherichia coli from the action of quinolone antibiotics induces an oxidative damage cell death pathway. The oxidative cell death pathway has also been shown to be involved in the lethality following accumulation of cleavage complex formed by bacterial topoisomerase I with mutations that result in defective DNA religation. Methods A high copy number plasmid clone spanning the upp-purMN region was isolated from screening of an E. coli genomic library and analyzed for conferring increased survival rates following accumulation of mutant topoisomerase I proteins as well as treatment with the gyrase inhibitor norfloxacin. Results Analysis of the intergenic region upstream of purM demonstrated a novel mechanism of resistance to the covalent protein-DNA cleavage complex through titration of the cellular transcription regulators FNR and PurR responsible for oxygen sensing and repression of purine nucleotide synthesis respectively. Addition of adenine to defined growth medium had similar protective effect for survival following accumulation of topoisomerase cleavage complex, suggesting that increase in purine level can protect against cell death. Conclusions Perturbation of the global regulator FNR and PurR functions as well as increase in purine nucleotide availability could affect the oxidative damage cell death pathway initiated by topoisomerase cleavage complex.

  1. The Scc2/Scc4 complex acts in sister chromatid cohesion and transcriptional regulation by maintaining nucleosome-free regions

    Science.gov (United States)

    Lopez-Serra, Lidia; Kelly, Gavin; Patel, Harshil; Stewart, Aengus; Uhlmann, Frank

    2014-01-01

    The cohesin complex is at the heart of many chromosomal activities, including sister chromatid cohesion and transcriptional regulation1-3. Cohesin loading onto chromosomes depends on the Scc2/Scc4 cohesin loader complex4-6, but the chromatin features that form cohesin loading sites remain poorly understood. Here, we show that the RSC chromatin remodeling complex recruits budding yeast Scc2/Scc4 to broad nucleosome-free regions, that the cohesin loader itself helps to maintain. Consequently, inactivation of the cohesin loader or RSC complex have similar effects on nucleosome positioning, gene expression and sister chromatid cohesion. These results reveal an intimate link between local chromatin structure and higher order chromosome architecture. Our findings pertain to the similarities between two severe human disorders, Cornelia de Lange syndrome, caused by mutations in the human cohesin loader, and Coffin-Siris syndrome, resulting from mutations in human RSC complex components7-9. Both could arise from gene misregulation due to related changes in the nucleosome landscape. PMID:25173104

  2. Fanconi anemia core complex gene promoters harbor conserved transcription regulatory elements.

    Directory of Open Access Journals (Sweden)

    Daniel Meier

    Full Text Available The Fanconi anemia (FA gene family is a recent addition to the complex network of proteins that respond to and repair certain types of DNA damage in the human genome. Since little is known about the regulation of this novel group of genes at the DNA level, we characterized the promoters of the eight genes (FANCA, B, C, E, F, G, L and M that compose the FA core complex. The promoters of these genes show the characteristic attributes of housekeeping genes, such as a high GC content and CpG islands, a lack of TATA boxes and a low conservation. The promoters functioned in a monodirectional way and were, in their most active regions, comparable in strength to the SV40 promoter in our reporter plasmids. They were also marked by a distinctive transcriptional start site (TSS. In the 5' region of each promoter, we identified a region that was able to negatively regulate the promoter activity in HeLa and HEK 293 cells in isolation. The central and 3' regions of the promoter sequences harbor binding sites for several common and rare transcription factors, including STAT, SMAD, E2F, AP1 and YY1, which indicates that there may be cross-connections to several established regulatory pathways. Electrophoretic mobility shift assays and siRNA experiments confirmed the shared regulatory responses between the prominent members of the TGF-β and JAK/STAT pathways and members of the FA core complex. Although the promoters are not well conserved, they share region and sequence specific regulatory motifs and transcription factor binding sites (TBFs, and we identified a bi-partite nature to these promoters. These results support a hypothesis based on the co-evolution of the FA core complex genes that was expanded to include their promoters.

  3. Binding of transcription factors and creation of a large nucleoprotein complex on the human cytomegalovirus enhancer

    International Nuclear Information System (INIS)

    Ghazal, P.; Lubon, H.; Fleckenstein, B.; Hennighausen, L.

    1987-01-01

    The effect of the human cytomegalovirus immediate early region 1 enhancer on transcription was studied in vitro with HeLa cell nuclear extract. Stimulation of in vitro transcription mediated by the enhancer element involves its recognition by specific trans-acting factors present in the nuclear extract. DNase I protection analysis was used to determine at the nucleotide level those enhancer sequences that interact with nuclear factors. At least nine sites of protein-DNA interaction were detected over ≅ 400 base pairs of enhancer sequence. The regions of nuclease protection are associated with 21-, 19-, 18-, and 17-base-pair repeat elements as well as with a unique sequence, creating a large nucleoprotein complex. The relationship between the protein binding and the activity of the immediate early region 1 enhancer is discussed

  4. Reducing Errors from the Electronic Transcription of Data Collected on Paper Forms: A Research Data Case Study

    Science.gov (United States)

    Wahi, Monika M.; Parks, David V.; Skeate, Robert C.; Goldin, Steven B.

    2008-01-01

    We conducted a reliability study comparing single data entry (SE) into a Microsoft Excel spreadsheet to entry using the existing forms (EF) feature of the Teleforms software system, in which optical character recognition is used to capture data off of paper forms designed in non-Teleforms software programs. We compared the transcription of data from multiple paper forms from over 100 research participants representing almost 20,000 data entry fields. Error rates for SE were significantly lower than those for EF, so we chose SE for data entry in our study. Data transcription strategies from paper to electronic format should be chosen based on evidence from formal evaluations, and their design should be contemplated during the paper forms development stage. PMID:18308994

  5. Interconversion between active and inactive TATA-binding protein transcription complexes in the mouse genome.

    Science.gov (United States)

    Choukrallah, Mohamed-Amin; Kobi, Dominique; Martianov, Igor; Pijnappel, W W M Pim; Mischerikow, Nikolai; Ye, Tao; Heck, Albert J R; Timmers, H Th Marc; Davidson, Irwin

    2012-02-01

    The TATA binding protein (TBP) plays a pivotal role in RNA polymerase II (Pol II) transcription through incorporation into the TFIID and B-TFIID complexes. The role of mammalian B-TFIID composed of TBP and B-TAF1 is poorly understood. Using a complementation system in genetically modified mouse cells where endogenous TBP can be conditionally inactivated and replaced by exogenous mutant TBP coupled to tandem affinity purification and mass spectrometry, we identify two TBP mutations, R188E and K243E, that disrupt the TBP-BTAF1 interaction and B-TFIID complex formation. Transcriptome and ChIP-seq analyses show that loss of B-TFIID does not generally alter gene expression or genomic distribution of TBP, but positively or negatively affects TBP and/or Pol II recruitment to a subset of promoters. We identify promoters where wild-type TBP assembles a partial inactive preinitiation complex comprising B-TFIID, TFIIB and Mediator complex, but lacking TFIID, TFIIE and Pol II. Exchange of B-TFIID in wild-type cells for TFIID in R188E and K243E mutant cells at these primed promoters completes preinitiation complex formation and recruits Pol II to activate their expression. We propose a novel regulatory mechanism involving formation of a partial preinitiation complex comprising B-TFIID that primes the promoter for productive preinitiation complex formation in mammalian cells.

  6. The E2F-DP1 Transcription Factor Complex Regulates Centriole Duplication in Caenorhabditis elegans

    Directory of Open Access Journals (Sweden)

    Jacqueline G. Miller

    2016-03-01

    Full Text Available Centrioles play critical roles in the organization of microtubule-based structures, from the mitotic spindle to cilia and flagella. In order to properly execute their various functions, centrioles are subjected to stringent copy number control. Central to this control mechanism is a precise duplication event that takes place during S phase of the cell cycle and involves the assembly of a single daughter centriole in association with each mother centriole . Recent studies have revealed that posttranslational control of the master regulator Plk4/ZYG-1 kinase and its downstream effector SAS-6 is key to ensuring production of a single daughter centriole. In contrast, relatively little is known about how centriole duplication is regulated at a transcriptional level. Here we show that the transcription factor complex EFL-1-DPL-1 both positively and negatively controls centriole duplication in the Caenorhabditis elegans embryo. Specifically, we find that down regulation of EFL-1-DPL-1 can restore centriole duplication in a zyg-1 hypomorphic mutant and that suppression of the zyg-1 mutant phenotype is accompanied by an increase in SAS-6 protein levels. Further, we find evidence that EFL-1-DPL-1 promotes the transcription of zyg-1 and other centriole duplication genes. Our results provide evidence that in a single tissue type, EFL-1-DPL-1 sets the balance between positive and negative regulators of centriole assembly and thus may be part of a homeostatic mechanism that governs centriole assembly.

  7. Cell cycle transcription control: DREAM/MuvB and RB-E2F complexes.

    Science.gov (United States)

    Fischer, Martin; Müller, Gerd A

    2017-12-01

    The precise timing of cell cycle gene expression is critical for the control of cell proliferation; de-regulation of this timing promotes the formation of cancer and leads to defects during differentiation and development. Entry into and progression through S phase requires expression of genes coding for proteins that function in DNA replication. Expression of a distinct set of genes is essential to pass through mitosis and cytokinesis. Expression of these groups of cell cycle-dependent genes is regulated by the RB pocket protein family, the E2F transcription factor family, and MuvB complexes together with B-MYB and FOXM1. Distinct combinations of these transcription factors promote the transcription of the two major groups of cell cycle genes that are maximally expressed either in S phase (G1/S) or in mitosis (G2/M). In this review, we discuss recent work that has started to uncover the molecular mechanisms controlling the precisely timed expression of these genes at specific cell cycle phases, as well as the repression of the genes when a cell exits the cell cycle.

  8. Complex transcriptional regulation and independent evolution of fungal-like traits in a relative of animals.

    Science.gov (United States)

    de Mendoza, Alex; Suga, Hiroshi; Permanyer, Jon; Irimia, Manuel; Ruiz-Trillo, Iñaki

    2015-10-14

    Cell-type specification through differential genome regulation is a hallmark of complex multicellularity. However, it remains unclear how this process evolved during the transition from unicellular to multicellular organisms. To address this question, we investigated transcriptional dynamics in the ichthyosporean Creolimax fragrantissima, a relative of animals that undergoes coenocytic development. We find that Creolimax utilizes dynamic regulation of alternative splicing, long inter-genic non-coding RNAs and co-regulated gene modules associated with animal multicellularity in a cell-type specific manner. Moreover, our study suggests that the different cell types of the three closest animal relatives (ichthyosporeans, filastereans and choanoflagellates) are the product of lineage-specific innovations. Additionally, a proteomic survey of the secretome reveals adaptations to a fungal-like lifestyle. In summary, the diversity of cell types among protistan relatives of animals and their complex genome regulation demonstrates that the last unicellular ancestor of animals was already capable of elaborate specification of cell types.

  9. Structural insights into the mycobacteria transcription initiation complex from analysis of X-ray crystal structures

    Energy Technology Data Exchange (ETDEWEB)

    Hubin, Elizabeth A.; Lilic, Mirjana; Darst, Seth A.; Campbell, Elizabeth A.

    2017-07-13

    The mycobacteria RNA polymerase (RNAP) is a target for antimicrobials against tuberculosis, motivating structure/function studies. Here we report a 3.2 Å-resolution crystal structure of a Mycobacterium smegmatis (Msm) open promoter complex (RPo), along with structural analysis of the Msm RPo and a previously reported 2.76 Å-resolution crystal structure of an Msm transcription initiation complex with a promoter DNA fragment. We observe the interaction of the Msm RNAP α-subunit C-terminal domain (αCTD) with DNA, and we provide evidence that the αCTD may play a role in Mtb transcription regulation. Our results reveal the structure of an Actinobacteria-unique insert of the RNAP β' subunit. Finally, our analysis reveals the disposition of the N-terminal segment of Msm σA, which may comprise an intrinsically disordered protein domain unique to mycobacteria. The clade-specific features of the mycobacteria RNAP provide clues to the profound instability of mycobacteria RPo compared with E. coli.

  10. Analysis of the transcriptional complexity of Arabidopsis thaliana by massively parallel signature sequencing.

    Science.gov (United States)

    Meyers, Blake C; Vu, Tam H; Tej, Shivakundan Singh; Ghazal, Hassan; Matvienko, Marta; Agrawal, Vikas; Ning, Jianchang; Haudenschild, Christian D

    2004-08-01

    Large-scale sequencing of short mRNA-derived tags can establish the qualitative and quantitative characteristics of a complex transcriptome. We sequenced 12,304,362 tags from five diverse libraries of Arabidopsis thaliana using massively parallel signature sequencing (MPSS). A total of 48,572 distinct signatures, each representing a different transcript, were expressed at significant levels. These signatures were compared to the annotation of the A. thaliana genomic sequence; in the five libraries, this comparison yielded between 17,353 and 18,361 genes with sense expression, and between 5,487 and 8,729 genes with antisense expression. An additional 6,691 MPSS signatures mapped to unannotated regions of the genome. Expression was demonstrated for 1,168 genes for which expression data were previously unknown. Alternative polyadenylation was observed for more than 25% of A. thaliana genes transcribed in these libraries. The MPSS expression data suggest that the A. thaliana transcriptome is complex and contains many as-yet uncharacterized variants of normal coding transcripts.

  11. The laminA/NF-Y protein complex reveals an unknown transcriptional mechanism on cell proliferation.

    Science.gov (United States)

    Cicchillitti, Lucia; Manni, Isabella; Mancone, Carmine; Regazzo, Giulia; Spagnuolo, Manuela; Alonzi, Tonino; Carlomosti, Fabrizio; Dell'Anna, Maria Lucia; Dell'Omo, Giulia; Picardo, Mauro; Ciana, Paolo; Capogrossi, Maurizio C; Tripodi, Marco; Magenta, Alessandra; Rizzo, Maria Giulia; Gurtner, Aymone; Piaggio, Giulia

    2017-01-10

    Lamin A is a component of the nuclear matrix that also controls proliferation by largely unknown mechanisms. NF-Y is a ubiquitous protein involved in cell proliferation composed of three subunits (-YA -YB -YC) all required for the DNA binding and transactivation activity. To get clues on new NF-Y partner(s) we performed a mass spectrometry screening of proteins that co-precipitate with the regulatory subunit of the complex, NF-YA. By this screening we identified lamin A as a novel putative NF-Y interactor. Co-immunoprecipitation experiments and confocal analysis confirmed the interaction between the two endogenous proteins. Interestingly, this association occurs on euchromatin regions, too. ChIP experiments demonstrate lamin A enrichment in several promoter regions of cell cycle related genes in a NF-Y dependent manner. Gain and loss of function experiments reveal that lamin A counteracts NF-Y transcriptional activity. Taking advantage of a recently generated transgenic reporter mouse, called MITO-Luc, in which an NF-Y-dependent promoter controls luciferase expression, we demonstrate that lamin A counteracts NF-Y transcriptional activity not only in culture cells but also in living animals. Altogether, our data demonstrate the occurrence of lamin A/NF-Y interaction and suggest a possible role of this protein complex in regulation of NF-Y function in cell proliferation.

  12. Complex Number Representation in RCBNS Form for Arithmetic Operations and Conversion of the Result into Standard Binary Form

    Directory of Open Access Journals (Sweden)

    Hatim Zaini

    2004-12-01

    Full Text Available paper introduces a novel method for complex number representation. The proposed Redundant Complex Binary Number System (RCBNS is developed by combining a Redundant Binary Number and a complex number in base (-1+j. Donald [1] and Walter Penny [2,3] represented complex numbers using base –j and (-1+j in the classified algorithmic models. A Redundant Complex Binary Number System consists of both real and imaginary-radix number systems that form a redundant integer digit set. This system is formed by using complex radix of (-1+j and a digit set of á= 3, where á assumes a value of -3, -2, -1, 0, 1, 2, 3. The arithmetic operations of complex numbers with this system treat the real and imaginary parts as one unit. The carry-free addition has the advantage of Redundancy in number representation in the arithmetic operations. Results of the arithmetic operations are in the RCBNS form. The two methods for conversion from the RCBNS form to the standard binary number form have been presented. In this paper the RCBNS reduces the number of steps required to perform complex number arithmetic operations, thus enhancing the speed.

  13. The transcriptional form of the phosphoprotein of vesicular stomatitis virus is a trimer: structure and stability.

    Science.gov (United States)

    Gao, Y; Greenfield, N J; Cleverley, D Z; Lenard, J

    1996-11-19

    The phosphoprotein (P) of vesicular stomatitis virus was previously shown to assemble into a homomultimer upon phosphorylation by casein kinase II. It thus acquired transcriptional activity, including the ability to bind to the other two transcriptional components, the polymerase L and the N-RNA template. This multimer has now been found to be a trimer using a His-tag dilution method. Trimer stability was assessed using a variation of this method, by measuring the rate of exchange of monomers between preformed tagged and untagged trimers at different values of pH and ionic strength. Exchange rates increased with increasing ionic strength and were similar at pH 6, 8, and 10, but the trimer was completely dissociated at pH 4. This suggests that the trimer is stabilized by electrostatic interactions, probably involving carboxylate and guanidino groups. Addition of viral L protein stabilized the P trimers, completely preventing subunit exchange under transcription conditions. The association constants (Kass) for trimerization of partially active D and A substitution mutants were also determined by His-tag dilution and found to correlate well with transcriptional activity, further confirming that the active species is the trimer. Circular dichroism spectra were identical for phosphorylated and unphosphorylated wild-type P protein and for D and A mutants known to be predominantly trimeric and monomeric, respectively.

  14. Left Dislocation in Arabic: The complexity of form and meaning ...

    African Journals Online (AJOL)

    This paper studies the complexity of L(eft) D(islocation). It demonstrates that the function that is crosslinguistically associated with LD is conveyed in Arabic by a set of LD constructions. In the analyzed corpus, these constructions belong to two main types: Clitic LD and Subject LD. Some LD constructions formally and/or ...

  15. Left Dislocation in Arabic: The complexity of form and meaning

    African Journals Online (AJOL)

    Van der Merwe, CHJ, Prof

    the analyzed corpus, these constructions belong to two main types: Clitic LD and Subject LD. Some LD constructions .... In order to demonstrate the complexity of the LD construction in Arabic and propose a possible solution with which ..... type of LD found in Modern Arabic dialects, consult Abdel-Razaq 2011: 50–65). (3) a.

  16. RNA polymerase II components and Rrn7 form a preinitiation complex on the HomolD box to promote ribosomal protein gene expression in Schizosaccharomyces pombe.

    Science.gov (United States)

    Montes, Matías; Moreira-Ramos, Sandra; Rojas, Diego A; Urbina, Fabiola; Käufer, Norbert F; Maldonado, Edio

    2017-02-01

    In Schizosaccharomyces pombe, ribosomal protein gene (RPG) promoters contain a TATA box analog, the HomolD box, which is bound by the Rrn7 protein. Despite the importance of ribosome biogenesis for cell survival, the mechanisms underlying RPG transcription remain unknown. In this study, we found that components of the RNA polymerase II (RNAPII) system, consisting of the initiation or general transcription factors (GTFs) TFIIA, IIB, IIE, TATA-binding protein (TBP) and the RNAPII holoenzyme, interacted directly with Rrn7 in vitro, and were able to form a preinitiation complex (PIC) on the HomolD box. PIC complex formation follows an ordered pathway on these promoters. The GTFs and RNAPII can also be cross-linked to HomolD-containing promoters in vivo. In an in vitro reconstituted transcription system, RNAPII components and Rrn7 were necessary for HomolD-directed transcription. The Mediator complex was required for basal transcription from those promoters in whole cell extract (WCE). The Med17 subunit of Mediator also can be cross-linked to the promoter region of HomolD-containing promoters in vivo, suggesting the presence of the Mediator complex on HomolD box-containing promoters. Together, these data show that components of the RNAPII machinery and Rrn7 participate in the PIC assembly on the HomolD box, thereby directing RPG transcription. © 2017 Federation of European Biochemical Societies.

  17. FLO11 gene length and transcriptional level affect biofilm-forming ability of wild flor strains of Saccharomyces cerevisiae.

    Science.gov (United States)

    Zara, Giacomo; Zara, Severino; Pinna, Claudia; Marceddu, Salvatore; Budroni, Marilena

    2009-12-01

    In Saccharomyces cerevisiae, FLO11 encodes an adhesin that is associated with different phenotypes, such as adherence to solid surfaces, hydrophobicity, mat and air-liquid biofilm formation. In the present study, we analysed FLO11 allelic polymorphisms and FLO11-associated phenotypes of 20 flor strains. We identified 13 alleles of different lengths, varying from 3.0 to 6.1 kb, thus demonstrating that FLO11 is highly polymorphic. Two alleles of 3.1 and 5.0 kb were cloned into strain BY4742 to compare the FLO11-associated phenotypes in the same genetic background. We show that there is a significant correlation between biofilm-forming ability and FLO11 length both in different and in the same genetic backgrounds. Moreover, we propose a multiple regression model that allows prediction of air-liquid biofilm-forming ability on the basis of transcription levels and lengths of FLO11 alleles in a population of S. cerevisiae flor strains. Considering that transcriptional differences are only partially explained by the differences in the promoter sequences, our results are consistent with the hypothesis that FLO11 transcription levels are strongly influenced by genetic background and affect biofilm-forming ability.

  18. A complex variable form of the HEG technique

    Energy Technology Data Exchange (ETDEWEB)

    Killingbeck, John P [Mathematics Department, University of Hull, Hull HU6 7RX (United Kingdom); Grosjean, Alain [Laboratoire d' Astrophysique de l' Observatoire de Besancon (CNRS, UMR 6091), 41 bis Avenue de l' Observatoire, BP 1615, 25010 Besancon Cedex (France); Jolicard, Georges [Laboratoire d' Astrophysique de l' Observatoire de Besancon (CNRS, UMR 6091), 41 bis Avenue de l' Observatoire, BP 1615, 25010 Besancon Cedex (France)

    2005-10-21

    A previously reported simple method for calculating complex matrix eigenvalues is modified to incorporate the traditional HEG approach for the case of even parity potentials. Two examples of resonance calculations are given. Our matrix and perturbation results agree with each other, but are not in full accord with previously published results for one of the test potentials. New results are given for the resonances of the inverted Gaussian potential. (letter to the editor)

  19. Abiotic Stresses Cause Differential Regulation of Alternative Splice Forms of GATA Transcription Factor in Rice

    Directory of Open Access Journals (Sweden)

    Priyanka Gupta

    2017-11-01

    Full Text Available The GATA gene family is one of the most conserved families of transcription factors, playing a significant role in different aspects of cellular processes, in organisms ranging from fungi to angiosperms. GATA transcription factors are DNA-binding proteins, having a class IV zinc-finger motif CX2CX17−20CX2C followed by a highly basic region and are known to bind a consensus sequence WGATAR. In plants, GATAs are known to be involved in light-dependent gene regulation and nitrate assimilation. However, a comprehensive analysis of these GATA gene members has not yet been highlighted in rice when subjected to environmental stresses. In this study, we present an overview of the GATA gene family in rice (OsGATA in terms of, their chromosomal distribution, domain architecture, and phylogeny. Our study has revealed the presence of 28 genes, encoding 35 putative GATA transcription factors belonging to seven subfamilies in the rice genome. Transcript abundance analysis in contrasting genotypes of rice—IR64 (salt sensitive and Pokkali (salt tolerant, for individual GATA members indicated their differential expression in response to various abiotic stresses such as salinity, drought, and exogenous ABA. One of the members of subfamily VII—OsGATA23a, emerged as a multi-stress responsive transcription factor giving elevated expression levels in response to salinity and drought. ABA also induces expression of OsGATA23a by 35 and 55-folds in IR64 and Pokkali respectively. However, OsGATA23b, an alternative splice variant of OsGATA23 did not respond to above-mentioned stresses. Developmental regulation of the OsGATA genes based on a publicly available microarray database showed distinct expression patterns for most of the GATA members throughout different stages of rice development. Altogether, our results suggest inherent roles of diverse OsGATA factors in abiotic stress signaling and also throw some light on the tight regulation of the spliced variants of

  20. Tissue Tropism in Host Transcriptional Response to Members of the Bovine Respiratory Disease Complex.

    Science.gov (United States)

    Behura, Susanta K; Tizioto, Polyana C; Kim, JaeWoo; Grupioni, Natalia V; Seabury, Christopher M; Schnabel, Robert D; Gershwin, Laurel J; Van Eenennaam, Alison L; Toaff-Rosenstein, Rachel; Neibergs, Holly L; Regitano, Luciana C A; Taylor, Jeremy F

    2017-12-20

    Bovine respiratory disease (BRD) is the most common infectious disease of beef and dairy cattle and is characterized by a complex infectious etiology that includes a variety of viral and bacterial pathogens. We examined the global changes in mRNA abundance in healthy lung and lung lesions and in the lymphoid tissues bronchial lymph node, retropharyngeal lymph node, nasopharyngeal lymph node and pharyngeal tonsil collected at the peak of clinical disease from beef cattle experimentally challenged with either bovine respiratory syncytial virus, infectious bovine rhinotracheitis, bovine viral diarrhea virus, Mannheimia haemolytica or Mycoplasma bovis. We identified signatures of tissue-specific transcriptional responses indicative of tropism in the coordination of host's immune tissue responses to infection by viral or bacterial infections. Furthermore, our study shows that this tissue tropism in host transcriptional response to BRD pathogens results in the activation of different networks of response genes. The differential crosstalk among genes expressed in lymphoid tissues was predicted to be orchestrated by specific immune genes that act as 'key players' within expression networks. The results of this study serve as a basis for the development of innovative therapeutic strategies and for the selection of cattle with enhanced resistance to BRD.

  1. Ring and Volcano Structures Formed by a Metal Dipyrromethene Complex

    Energy Technology Data Exchange (ETDEWEB)

    Son, Seung Bae; Hahn, Jae Ryang [Chonbuk National Univ., Jeonju (Korea, Republic of); Miao, Qing; Shin, Jiyoung; Dolphin, David [Univ. of British Columbia, Columbia (Canada)

    2014-06-15

    Dichloromethane liquid droplets containing a cobalt dipyrromethene trimer deposited on a graphite surface were found to form coffee ring, toroid ring, or volcano dot structures due to the redistribution of the solute during solvent evaporation. The shapes and size distributions of the ring structures depended on the drying temperature. The shape differences were attributed to the fact that the solvent evaporation rate controlled the self-assembly process that yielded the coffee stain and pinhole structures.

  2. Surface active complexes formed between keratin polypeptides and ionic surfactants.

    Science.gov (United States)

    Pan, Fang; Lu, Zhiming; Tucker, Ian; Hosking, Sarah; Petkov, Jordan; Lu, Jian R

    2016-12-15

    Keratins are a group of important proteins in skin and hair and as biomaterials they can provide desirable properties such as strength, biocompatibility, and moisture regaining and retaining. The aim of this work is to develop water-soluble keratin polypeptides from sheep wool and then explore how their surface adsorption behaves with and without surfactants. Successful preparation of keratin samples was demonstrated by identification of the key components from gel electrophoresis and the reproducible production of gram scale samples with and without SDS (sodium dodecylsulphate) during wool fibre dissolution. SDS micelles could reduce the formation of disulphide bonds between keratins during extraction, reducing inter-molecular crosslinking and improving keratin polypeptide solubility. However, Zeta potential measurements of the two polypeptide batches demonstrated almost identical pH dependent surface charge distributions with isoelectric points around pH 3.5, showing complete removal of SDS during purification by dialysis. In spite of different solubility from the two batches of keratin samples prepared, very similar adsorption and aggregation behavior was revealed from surface tension measurements and dynamic light scattering. Mixing of keratin polypeptides with SDS and C 12 TAB (dodecyltrimethylammonium bromide) led to the formation of keratin-surfactant complexes that were substantially more effective at reducing surface tension than the polypeptides alone, showing great promise in the delivery of keratin polypeptides via the surface active complexes. Neutron reflection measurements revealed the coexistence of surfactant and keratin polypeptides at the interface, thus providing the structural support to the observed surface tension changes associated with the formation of the surface active complexes. Copyright © 2016. Published by Elsevier Inc.

  3. An X11alpha/FSBP complex represses transcription of the GSK3beta gene promoter.

    LENUS (Irish Health Repository)

    Lau, Kwok-Fai

    2010-08-04

    X11alpha is a neuronal adaptor protein that interacts with the amyloid precursor protein (APP) through a centrally located phosphotyrosine binding domain to inhibit the production of Abeta peptide that is deposited in Alzheimer\\'s disease brains. X11alpha also contains two C-terminal postsynaptic density-95, large discs, zona occludens 1 (PDZ) domains, and we show here that through its PDZ domains, X11alpha interacts with a novel transcription factor, fibrinogen silencer binding protein. Moreover, we show that an X11alpha\\/fibrinogen silencer binding protein complex signals to the nucleus to repress glycogen synthase kinase-3beta promoter activity. Glycogen synthase kinase-3beta is a favoured candidate kinase for phosphorylating tau in Alzheimer\\'s disease. Our findings show a new function for X11alpha that may impact on Alzheimer\\'s disease pathogenesis.

  4. The Mediator complex of Caenorhabditis elegans: insights into the developmental and physiological roles of a conserved transcriptional coregulator

    OpenAIRE

    Grants, Jennifer M.; Goh, Grace?Y. S.; Taubert, Stefan

    2015-01-01

    The Mediator multiprotein complex (?Mediator?) is an important transcriptional coregulator that is evolutionarily conserved throughout eukaryotes. Although some Mediator subunits are essential for the transcription of all protein-coding genes, others influence the expression of only subsets of genes and participate selectively in cellular signaling pathways. Here, we review the current knowledge of Mediator subunit function in the nematode Caenorhabditis elegans, a metazoan in which establish...

  5. Imaging Star forming Sites in the Carina Molecular Complex

    Science.gov (United States)

    Horiuchi, Shinji; Green, James; Young, Tye

    2011-10-01

    We recently detected NH3 emission and H2O masers for the first time toward the Carina Molecular Clouds using the Tidbinbilla 70m telescope. This emission is associated with ongoing massive star formation sites in the dark cloud associated with Car I, a dense cloud that is subject to an intense ultra-violet radiation field from the rich stellar cluster Trumpler 14. To image these young stellar objects we propose to map the Carina Molecular Complex region with the ATCA at 22-23 GHz in the following spectral line transitions: i) H2O masers, ii) NH3 emission (1,1), (2,2), (3,3), and (4,4), iii) Radio recombination line of H86alpha. We will also observe the radio continuum emission at this frequency.

  6. Transcriptional regulation of the mouse CD11c promoter by AP-1 complex with JunD and Fra2 in dendritic cells.

    Science.gov (United States)

    Hara, Mutsuko; Yokoyama, Hokuto; Fukuyama, Kanako; Kitamura, Nao; Shimokawa, Naomi; Maeda, Keiko; Kanada, Shunsuke; Ito, Tomonobu; Usui, Yoshihiko; Ogawa, Hideoki; Okumura, Ko; Nishiyama, Makoto; Nishiyama, Chiharu

    2013-03-01

    CD11c, a member of the β(2) integrin family of adhesion molecule, is expressed on the surface of myeloid lineages and activated lymphoid cells and forms a heterodimeric receptor with CD18. We analyzed the mouse CD11c promoter structure to elucidate the transcriptional regulation in dendritic cells (DCs). By reporter assay, the -84/-65 region was identified to be essential for activity of the mouse CD11c promoter in the mouse bone marrow-derived (BM) DCs and monocyte cell line RAW264.7. An electrophoretic mobility shift assay using a number of antibodies against transcription factors revealed that the target region was recognized by a complex including JunD and Fra2, which are transcription factors belonging to the AP-1 family. The direct interaction of JunD and Fra2 with the CD11c promoter was further confirmed by a chromatin immunoprecipitation assay using CD11c-positive cells purified from BMDCs. Finally, mouse JunD and/or Fra2 siRNA was introduced into BMDCs to evaluate the involvement of these factors against CD11c transcription and found that Fra2 siRNA reduced cell surface expression level of CD11c. These results indicate that AP-1 composed with JunD and Fra2 protein plays a primary role in enhancing the transcription level of the CD11c gene in DC. Copyright © 2012 Elsevier Ltd. All rights reserved.

  7. Overexpression of the transcriptional repressor complex BCL-6/BCoR leads to nuclear aggregates distinct from classical aggresomes.

    Directory of Open Access Journals (Sweden)

    Elisabeth Buchberger

    Full Text Available Nuclear inclusions of aggregated proteins have primarily been characterized for molecules with aberrant poly-glutamine repeats and for mutated or structurally altered proteins. They were termed "nuclear aggresomes" and misfolding was shown to promote association with molecular chaperones and proteasomes. Here, we report that two components of a transcriptional repressor complex (BCL-6 and BCoR of wildtype amino acid sequence can independently or jointly induce the formation of nuclear aggregates when overexpressed. The observation that the majority of cells rapidly downregulate BCL-6/BCoR levels, supports the notion that expression of these proteins is under tight control. The inclusions occur when BCL-6/BCoR expression exceeds 150-fold of endogenous levels. They preferentially develop in the nucleus by a gradual increase in aggregate size to form large, spheroid structures which are not associated with heat shock proteins or marked by ubiquitin. In contrast, we find the close association of BCL-6/BCoR inclusions with PML bodies and a reduction in aggregation upon the concomitant overexpression of histone deacetylases or heat shock protein 70. In summary, our data offer a perspective on nuclear aggregates distinct from classical "nuclear aggresomes": Large complexes of spheroid structure can evolve in the nucleus without being marked by the cellular machinery for protein refolding and degradation. However, nuclear proteostasis can be restored by balancing the levels of chaperones.

  8. Structure of a bacterial quorum-sensing transcription factor complexed with pheromone and DNA.

    Energy Technology Data Exchange (ETDEWEB)

    Zhang, R.; Pappas, T.; Brace, J.; Miller, P.; Oulmassov, T.; Molyneaux, J.; Anderson, J.; Bashkin, J.; Winans, S.; Joachimiak, A.; Biosciences Division; Cornell Univ.; Monsanto Co.

    2002-06-27

    Many proteobacteria are able to monitor their population densities through the release of pheromones known as N-acylhomoserine lactones. At high population densities, these pheromones elicit diverse responses that include bioluminescence, biofilm formation, production of antimicrobials, DNA exchange, pathogenesis and symbiosis1. Many of these regulatory systems require a pheromone-dependent transcription factor similar to the LuxR protein of Vibrio fischeri. Here we present the structure of a LuxR-type protein. TraR of Agrobacterium tumefaciens was solved at 1.66 A as a complex with the pheromone N-3-oxooctanoyl-l-homoserine lactone (OOHL) and its TraR DNA-binding site. The amino-terminal domain of TraR is an {alpha}/{beta}/{alpha} sandwich that binds OOHL, whereas the carboxy-terminal domain contains a helix-turn-helix DNA-binding motif. The TraR dimer displays a two-fold symmetry axis in each domain; however, these two axes of symmetry are at an approximately 90 degree angle, resulting in a pronounced overall asymmetry of the complex. The pheromone lies fully embedded within the protein with virtually no solvent contact, and makes numerous hydrophobic contacts with the protein as well as four hydrogen bonds: three direct and one water-mediated.

  9. Two sides of the same coin: TFIIH complexes in transcription and DNA repair.

    Science.gov (United States)

    Zhovmer, Alexander; Oksenych, Valentyn; Coin, Frédéric

    2010-04-13

    TFIIH is organized into a seven-subunit core associated with a three-subunit Cdk-activating kinase (CAK) module. TFIIH has roles in both transcription initiation and DNA repair. During the last 15 years, several studies have been conducted to identify the composition of the TFIIH complex involved in DNA repair. Recently, a new technique combining chromatin immunoprecipitation and western blotting resolved the hidden nature of the TFIIH complex participating in DNA repair. Following the recruitment of TFIIH to the damaged site, the CAK module is released from the core TFIIH, and the core subsequently associates with DNA repair factors. The release of the CAK is specifically driven by the recruitment of the DNA repair factor XPA and is required to promote the incision/excision of the damaged DNA. Once the DNA lesions have been repaired, the CAK module returns to the core TFIIH on the chromatin, together with the release of the repair factors. These data highlight the dynamic composition of a fundamental cellular factor that adapts its subunit composition to the cell needs.

  10. Light-harvesting complex gene expression is controlled by both transcriptional and post-transcriptional mechanisms during photoacclimation in Chlamydomonas reinhardtii

    CERN Document Server

    Durnford Dion, G; McKim, Sarah M; Sarchfield, Michelle L

    2003-01-01

    To compensate for increases in photon flux density (PFD), photosynthetic organisms possess mechanisms for reversibly modulating their photosynthetic apparatus to minimize photodamage. The photoacclimation response in Chlamydomonas reinhardtii was assessed following a 10-fold increase in PFD over 24h. In addition to a 50% reduction in the amount of chlorophyll and light-harvesting complexes (LHC) per cell, the expression of genes encoding polypeptides of the light-harvesting antenna were also affected. The abundance of Lhcb (a LHCH gene), Lhcb4 (a CP29-like gene), and Lhca (a LHCI gene) transcripts were reduced by 65 to 80%, within 1-2 h; however, the RNA levels of all three genes recovered to their low-light (LL) concentrations within 6-8 h. To determine the role of transcript turnover in this transient decline in abundance, the stability of all transcripts was measured. Although there was no change in the Lhcb or Lhca transcript turnover time, the Lhcb4 mRNA stability decreased 2.5-fold immediately following...

  11. The dynamic assembly of distinct RNA polymerase I complexes modulates rDNA transcription.

    Science.gov (United States)

    Torreira, Eva; Louro, Jaime Alegrio; Pazos, Irene; González-Polo, Noelia; Gil-Carton, David; Duran, Ana Garcia; Tosi, Sébastien; Gallego, Oriol; Calvo, Olga; Fernández-Tornero, Carlos

    2017-03-06

    Cell growth requires synthesis of ribosomal RNA by RNA polymerase I (Pol I). Binding of initiation factor Rrn3 activates Pol I, fostering recruitment to ribosomal DNA promoters. This fundamental process must be precisely regulated to satisfy cell needs at any time. We present in vivo evidence that, when growth is arrested by nutrient deprivation, cells induce rapid clearance of Pol I-Rrn3 complexes, followed by the assembly of inactive Pol I homodimers. This dual repressive mechanism reverts upon nutrient addition, thus restoring cell growth. Moreover, Pol I dimers also form after inhibition of either ribosome biogenesis or protein synthesis. Our mutational analysis, based on the electron cryomicroscopy structures of monomeric Pol I alone and in complex with Rrn3, underscores the central role of subunits A43 and A14 in the regulation of differential Pol I complexes assembly and subsequent promoter association.

  12. SUP35 expression is enhanced in yeast containing [ISP+], a prion form of the transcriptional regulator Sfp1.

    Science.gov (United States)

    Radchenko, Elina; Rogoza, Tatyana; Khokhrina, Maria; Drozdova, Polina; Mironova, Ludmila

    2011-01-01

    [ISP+] is a prion form of the global transcriptional regulator Sfp1 in Saccharomyces cerevisiae that manifests phenotypically as an antisuppressor of specific sup35 nonsense suppressor mutations. Although SUP35 is a Sfp1 target, the mechanism of antisuppression is unclear. Here we show that the level of SUP35 transcription in [ISP+] cells containing the sup35 mutation is increased relative to [isp-] cells and cells with a SFP1 deletion. As a result, [ISP+] cells have increased amounts of Sup35 encoded by the mutant allele. Indeed, additional experiments showed that increased amounts of mutant Sup35 may cause antisuppression. Remarkably, [ISP+] effects are not equivalent to those produced by SFP1 deletion, so [ISP+] represents an obvious example of a functionally active prion form of a protein. This feature distinguishes [ISP+] from other yeast prions, where prion switch often has the same effect as inactivation of a prion host gene. We suggest that enhancement of SUP35 expression in [ISP+] cells is caused by specific interaction of Sfp1 in its prion form with some negative SUP35 regulator. We also demonstrate that the advantage of [ISP+] strains over [isp-] strains described in our earlier work is specific for certain genetic background and growth conditions.

  13. Transcriptional Profiling Reveals a Common Metabolic Program in High-Risk Human Neuroblastoma and Mouse Neuroblastoma Sphere-Forming Cells

    Directory of Open Access Journals (Sweden)

    Mengling Liu

    2016-10-01

    Full Text Available High-risk neuroblastoma remains one of the deadliest childhood cancers. Identification of metabolic pathways that drive or maintain high-risk neuroblastoma may open new avenues of therapeutic interventions. Here, we report the isolation and propagation of neuroblastoma sphere-forming cells with self-renewal and differentiation potential from tumors of the TH-MYCN mouse, an animal model of high-risk neuroblastoma with MYCN amplification. Transcriptional profiling reveals that mouse neuroblastoma sphere-forming cells acquire a metabolic program characterized by transcriptional activation of the cholesterol and serine-glycine synthesis pathways, primarily as a result of increased expression of sterol regulatory element binding factors and Atf4, respectively. This metabolic reprogramming is recapitulated in high-risk human neuroblastomas and is prognostic for poor clinical outcome. Genetic and pharmacological inhibition of the metabolic program markedly decreases the growth and tumorigenicity of both mouse neuroblastoma sphere-forming cells and human neuroblastoma cell lines. These findings suggest a therapeutic strategy for targeting the metabolic program of high-risk neuroblastoma.

  14. Crystallization and preliminary crystallographic analysis of the transcriptional regulator RfaH from Escherichia coli and its complex with ops DNA

    International Nuclear Information System (INIS)

    Vassylyeva, Marina N.; Svetlov, Vladimir; Klyuyev, Sergiy; Devedjiev, Yancho D.; Artsimovitch, Irina; Vassylyev, Dmitry G.

    2006-01-01

    The E. coli transcriptional regulator RfaH was cloned, expressed, purified and crystallized and the complex of RfaH with its target DNA oligonucleotide was cocrystallized. Complete diffraction data sets were collected for the apo protein and its nucleic acid complex at 2.4 and at 1.6 Å resolution, respectively. The bacterial transcriptional factor and virulence regulator RfaH binds to rapidly moving transcription elongation complexes through specific interactions with the exposed segment of the non-template DNA strand. To elucidate this unusual mechanism of recruitment, determination of the three-dimensional structure of RfaH and its complex with DNA was initiated. To this end, the Escherichia coli rfaH gene was cloned and expressed. The purified protein was crystallized by the sitting-drop vapor-diffusion technique. The space group was P6 1 22 or P6 5 22, with unit-cell parameters a = b = 45.46, c = 599.93 Å. A complex of RfaH and a nine-nucleotide oligodeoxyribonucleotide was crystallized by the same technique, but under different crystallization conditions, yielding crystals that belonged to space group P1 (unit-cell parameters a = 36.79, b = 44.01, c = 62.37 Å, α = 80.62, β = 75.37, γ = 75.41°). Complete diffraction data sets were collected for RfaH and its complex with DNA at 2.4 and 1.6 Å resolution, respectively. Crystals of selenomethionine-labeled proteins in both crystal forms were obtained by cross-microseeding using the native microcrystals. The structure determination of RfaH and its complex with DNA is in progress

  15. Cloning, characterisation, and comparative quantitative expression analyses of receptor for advanced glycation end products (RAGE) transcript forms.

    Science.gov (United States)

    Sterenczak, Katharina A; Willenbrock, Saskia; Barann, Matthias; Klemke, Markus; Soller, Jan T; Eberle, Nina; Nolte, Ingo; Bullerdiek, Jörn; Murua Escobar, Hugo

    2009-04-01

    RAGE is a member of the immunoglobulin superfamily of cell surface molecules playing key roles in pathophysiological processes, e.g. immune/inflammatory disorders, Alzheimer's disease, diabetic arteriosclerosis and tumourigenesis. In humans 19 naturally occurring RAGE splicing variants resulting in either N-terminally or C-terminally truncated proteins were identified and are lately discussed as mechanisms for receptor regulation. Accordingly, deregulation of sRAGE levels has been associated with several diseases e.g. Alzheimer's disease, Type 1 diabetes, and rheumatoid arthritis. Administration of recombinant sRAGE to animal models of cancer blocked tumour growth successfully. In spite of its obvious relationship to cancer and metastasis data focusing sRAGE deregulation and tumours is rare. In this study we screened a set of tumours, healthy tissues and various cancer cell lines for RAGE splicing variants and analysed their structure. Additionally, we analysed the ratio of the mainly found transcript variants using quantitative Real-Time PCR. In total we characterised 24 previously not described canine and 4 human RAGE splicing variants, analysed their structure, classified their characteristics, and derived their respective protein forms. Interestingly, the healthy and the neoplastic tissue samples showed in majority RAGE transcripts coding for the complete receptor and transcripts showing insertions of intron 1.

  16. Synthesis and complex forming property of phosphor acid derivatives

    International Nuclear Information System (INIS)

    Babaev, B.N.

    2004-01-01

    Full text:With the aim to get new effective and selective extra gents of noble and non-ferrous metals from acid solution and industrial sewage, research of the dependence of 'structure effectiveness' the various phosphor acid derivatives with logical changeable structure (thio phosphor acids, derivatives of dialkoxythiophosphor, O-alkyl-methylphosphon, alkylphenylphosphon, diphenylphosphine acids also 4 methyl-1,3,2 dioxaphosphorinane) which contain different functional groups, the remains of heterocyclic amines and alkaloids, new derivatives of some analytical reagents were synthesized. The structure of synthesized compounds is approved by the results of IR-, PMR-, mass-spectrum analyze. Researching mass-spectrum decay of synthesized phosphor acid derivatives we defined that differing from O-dihexyl-S-propargyl-benzylthio phosphat, mass spectrum decay of O-dialkyl-S-(piperdynobutin-2-il)thio phosphat is characterized by the appearing [M-H] + ions and during the decay ions with high intensiveness are formed. Fragmentation of M + O-alkyl-O-(aminoalkyl)phenylphosphonate proceeds in various directions and characterized with the great number of phosphor containing ions, the possession of the second phenyl radical in the molecule of diphenylphosphon acid derivatives changes the fragmentation of molecular ion of diphenylphosphon acid derivatives. The process of extraction of noble (Au, Ag, Pt, Pd, Os) metals from hydrochloric-sulphur-nitrogen acid medium was analyzed by radioactive indicator's method. It was noticed that structure, strength, conformation of compounds, the temperature, of acid medium (0,1-10 M) and the nature of acids (HCL, H 2 SO 4 , HNO 3 ) could have strong influence to the effectiveness of metal extraction. During the research of metals extraction from pure solutions we can see the followings: 1) There are such substances, which can be used as effective group reagent towards the Au, Ag and Pd. 2) Derivatives with acetylene extract ions of gold from

  17. Optimal deconvolution of transcriptional profiling data using quadratic programming with application to complex clinical blood samples.

    Science.gov (United States)

    Gong, Ting; Hartmann, Nicole; Kohane, Isaac S; Brinkmann, Volker; Staedtler, Frank; Letzkus, Martin; Bongiovanni, Sandrine; Szustakowski, Joseph D

    2011-01-01

    Large-scale molecular profiling technologies have assisted the identification of disease biomarkers and facilitated the basic understanding of cellular processes. However, samples collected from human subjects in clinical trials possess a level of complexity, arising from multiple cell types, that can obfuscate the analysis of data derived from them. Failure to identify, quantify, and incorporate sources of heterogeneity into an analysis can have widespread and detrimental effects on subsequent statistical studies.We describe an approach that builds upon a linear latent variable model, in which expression levels from mixed cell populations are modeled as the weighted average of expression from different cell types. We solve these equations using quadratic programming, which efficiently identifies the globally optimal solution while preserving non-negativity of the fraction of the cells. We applied our method to various existing platforms to estimate proportions of different pure cell or tissue types and gene expression profilings of distinct phenotypes, with a focus on complex samples collected in clinical trials. We tested our methods on several well controlled benchmark data sets with known mixing fractions of pure cell or tissue types and mRNA expression profiling data from samples collected in a clinical trial. Accurate agreement between predicted and actual mixing fractions was observed. In addition, our method was able to predict mixing fractions for more than ten species of circulating cells and to provide accurate estimates for relatively rare cell types (<10% total population). Furthermore, accurate changes in leukocyte trafficking associated with Fingolomid (FTY720) treatment were identified that were consistent with previous results generated by both cell counts and flow cytometry. These data suggest that our method can solve one of the open questions regarding the analysis of complex transcriptional data: namely, how to identify the optimal mixing

  18. HYPER RECOMBINATION1 of the THO/TREX complex plays a role in controlling transcription of the REVERSION-TO-ETHYLENE SENSITIVITY1 gene in Arabidopsis.

    Directory of Open Access Journals (Sweden)

    Congyao Xu

    2015-02-01

    Full Text Available Arabidopsis REVERSION-TO-ETHYLENE SENSITIVITY1 (RTE1 represses ethylene hormone responses by promoting ethylene receptor ETHYLENE RESPONSE1 (ETR1 signaling, which negatively regulates ethylene responses. To investigate the regulation of RTE1, we performed a genetic screening for mutations that suppress ethylene insensitivity conferred by RTE1 overexpression in Arabidopsis. We isolated HYPER RECOMBINATION1 (HPR1, which is required for RTE1 overexpressor (RTE1ox ethylene insensitivity at the seedling but not adult stage. HPR1 is a component of the THO complex, which, with other proteins, forms the TRanscription EXport (TREX complex. In yeast, Drosophila, and humans, the THO/TREX complex is involved in transcription elongation and nucleocytoplasmic RNA export, but its role in plants is to be fully determined. We investigated how HPR1 is involved in RTE1ox ethylene insensitivity in Arabidopsis. The hpr1-5 mutation may affect nucleocytoplasmic mRNA export, as revealed by in vivo hybridization of fluorescein-labeled oligo(dT45 with unidentified mRNA in the nucleus. The hpr1-5 mutation reduced the total and nuclear RTE1 transcript levels to a similar extent, and RTE1 transcript reduction rate was not affected by hpr1-5 with cordycepin treatment, which prematurely terminates transcription. The defect in the THO-interacting TEX1 protein of TREX but not the mRNA export factor SAC3B also reduced the total and nuclear RTE1 levels. SERINE-ARGININE-RICH (SR proteins are involved mRNA splicing, and we found that SR protein SR33 co-localized with HPR1 in nuclear speckles, which agreed with the association of human TREX with the splicing machinery. We reveal a role for HPR1 in RTE1 expression during transcription elongation and less likely during export. Gene expression involved in ethylene signaling suppression was not reduced by the hpr1-5 mutation, which indicates selectivity of HPR1 for RTE1 expression affecting the consequent ethylene response. Thus

  19. Genome-wide Screening of Regulators of Catalase Expression: ROLE OF A TRANSCRIPTION COMPLEX AND HISTONE AND tRNA MODIFICATION COMPLEXES ON ADAPTATION TO STRESS.

    Science.gov (United States)

    García, Patricia; Encinar Del Dedo, Javier; Ayté, José; Hidalgo, Elena

    2016-01-08

    In response to environmental cues, the mitogen-activated protein kinase Sty1-driven signaling cascade activates hundreds of genes to induce a robust anti-stress cellular response in fission yeast. Thus, upon stress imposition Sty1 transiently accumulates in the nucleus where it up-regulates transcription through the Atf1 transcription factor. Several regulators of transcription and translation have been identified as important to mount an integral response to oxidative stress, such as the Spt-Ada-Gcn5-acetyl transferase or Elongator complexes, respectively. With the aim of identifying new regulators of this massive gene expression program, we have used a GFP-based protein reporter and screened a fission yeast deletion collection using flow cytometry. We find that the levels of catalase fused to GFP, both before and after a threat of peroxides, are altered in hundreds of strains lacking components of chromatin modifiers, transcription complexes, and modulators of translation. Thus, the transcription elongation complex Paf1, the histone methylase Set1-COMPASS, and the translation-related Trm112 dimers are all involved in full expression of Ctt1-GFP and in wild-type tolerance to peroxides. © 2016 by The American Society for Biochemistry and Molecular Biology, Inc.

  20. A global transcriptional switch between the attack and growth forms of Bdellovibrio bacteriovorus.

    Directory of Open Access Journals (Sweden)

    Iris Karunker

    Full Text Available Bdellovibrio bacteriovorus is an obligate predator of bacteria ubiquitously found in the environment. Its life cycle is composed of two essential phases: a free-living, non-replicative, fast swimming attack phase (AP wherein the predator searches for prey; and a non-motile, actively dividing growth phase (GP in which it consumes the prey. The molecular regulatory mechanisms governing the switch between AP and GP are largely unknown. We used RNA-seq to generate a single-base-resolution map of the Bdellovibrio transcriptome in AP and GP, revealing a specific "AP" transcriptional program, which is largely mutually exclusive of the GP program. Based on the expression map, most genes in the Bdellovibrio genome are classified as "AP only" or "GP only". We experimentally generated a genome-wide map of 140 AP promoters, controlling the majority of AP-specific genes. This revealed a common sigma-like DNA binding site highly similar to the E. coli flagellar genes regulator sigma28 (FliA. Further analyses suggest that FliA has evolved to become a global AP regulator in Bdellovibrio. Our results also reveal a non-coding RNA that is massively expressed in AP. This ncRNA contains a c-di-GMP riboswitch. We suggest it functions as an intracellular reservoir for c-di-GMP, playing a role in the rapid switch from AP to GP.

  1. MBD2 and multiple domains of CHD4 are required for transcriptional repression by Mi-2/NuRD complexes.

    Science.gov (United States)

    Ramírez, Julita; Dege, Carissa; Kutateladze, Tatiana G; Hagman, James

    2012-12-01

    Mi-2/nucleosome remodeling and deacetylase (NuRD) chromatin remodeling complexes are important regulators of chromatin structure and DNA accessibility. We examined requirements for individual domains of chromodomain helicase DNA-binding protein 4 (CHD4), a core catalytic component of NuRD complexes, as well as the NuRD subunit methyl-binding domain protein 2 (MBD2) and methylated DNA, for NuRD function in the context of tissue-specific transcription. By itself, loss of NuRD activity is not sufficient for transcriptional activation. However, NuRD complexes greatly reduce activation of the B cell-specific mb-1 (Cd79a) gene by the transcription factors EBF1 and Pax5. Using our B cell model system, we determined that the two chromodomains and ATPase/helicase and C-terminal domains (CTD) of CHD4 are all necessary for repression of mb-1 promoters by NuRD. All of these domains except the CTD are required for efficient association of CHD4 with mb-1 promoter chromatin. Loss of MBD2 expression or of DNA methylation impaired association of CHD4 with mb-1 promoter chromatin and enhanced its transcription. We conclude that repressive functions of MBD2-containing NuRD complexes are dependent on cooperative interactions between the major domains of CHD4 with histones and DNA and on binding of methylated DNA by MBD2.

  2. The CHR promoter element controls cell cycle-dependent gene transcription and binds the DREAM and MMB complexes.

    Science.gov (United States)

    Müller, Gerd A; Quaas, Marianne; Schümann, Michael; Krause, Eberhard; Padi, Megha; Fischer, Martin; Litovchick, Larisa; DeCaprio, James A; Engeland, Kurt

    2012-02-01

    Cell cycle-dependent gene expression is often controlled on the transcriptional level. Genes like cyclin B, CDC2 and CDC25C are regulated by cell cycle-dependent element (CDE) and cell cycle genes homology region (CHR) promoter elements mainly through repression in G(0)/G(1). It had been suggested that E2F4 binding to CDE sites is central to transcriptional regulation. However, some promoters are only controlled by a CHR. We identify the DREAM complex binding to the CHR of mouse and human cyclin B2 promoters in G(0). Association of DREAM and cell cycle-dependent regulation is abrogated when the CHR is mutated. Although E2f4 is part of the complex, a CDE is not essential but can enhance binding of DREAM. We show that the CHR element is not only necessary for repression of gene transcription in G(0)/G(1), but also for activation in S, G(2) and M phases. In proliferating cells, the B-myb-containing MMB complex binds the CHR of both promoters independently of the CDE. Bioinformatic analyses identify many genes which contain conserved CHR elements in promoters binding the DREAM complex. With Ube2c as an example from that screen, we show that inverse CHR sites are functional promoter elements that can bind DREAM and MMB. Our findings indicate that the CHR is central to DREAM/MMB-dependent transcriptional control during the cell cycle.

  3. The Not5 subunit of the ccr4-not complex connects transcription and translation.

    Directory of Open Access Journals (Sweden)

    Zoltan Villanyi

    2014-10-01

    Full Text Available Recent studies have suggested that a sub-complex of RNA polymerase II composed of Rpb4 and Rpb7 couples the nuclear and cytoplasmic stages of gene expression by associating with newly made mRNAs in the nucleus, and contributing to their translation and degradation in the cytoplasm. Here we show by yeast two hybrid and co-immunoprecipitation experiments, followed by ribosome fractionation and fluorescent microscopy, that a subunit of the Ccr4-Not complex, Not5, is essential in the nucleus for the cytoplasmic functions of Rpb4. Not5 interacts with Rpb4; it is required for the presence of Rpb4 in polysomes, for interaction of Rpb4 with the translation initiation factor eIF3 and for association of Rpb4 with mRNAs. We find that Rpb7 presence in the cytoplasm and polysomes is much less significant than that of Rpb4, and that it does not depend upon Not5. Hence Not5-dependence unlinks the cytoplasmic functions of Rpb4 and Rpb7. We additionally determine with RNA immunoprecipitation and native gel analysis that Not5 is needed in the cytoplasm for the co-translational assembly of RNA polymerase II. This stems from the importance of Not5 for the association of the R2TP Hsp90 co-chaperone with polysomes translating RPB1 mRNA to protect newly synthesized Rpb1 from aggregation. Hence taken together our results show that Not5 interconnects translation and transcription.

  4. Polycomb complex 2 is required for E-cadherin repression by the Snail1 transcription factor

    DEFF Research Database (Denmark)

    Herranz, Nicolás; Pasini, Diego; Díaz, Víctor M

    2008-01-01

    The transcriptional factor Snail1 is a repressor of E-cadherin gene (CDH1) expression essential for triggering epithelial-mesenchymal transition (EMT). Snail1 represses CDH1 directly binding its promoter and inducing the synthesis of Zeb1 repressor. In this article we show that repression of CDH1...... by Snail1, but not by Zeb1, is dependent on the activity of the Polycomb repressive complex 2 (PRC2). ES cells null for Suz12, one of the components of PRC2, show higher levels of Cdh1 mRNA than control ES cells. In tumour cells, interference of PRC2 activity prevents the ability of Snail1 to down......-regulate CDH1 and partially de-represses CDH1. Chromatin immunoprecipitation assays demonstrated that Snail1 increases the binding of Suz12 to CDH1 promoter and the tri-methylation of lysine 27 in the histone 3. Moreover, Snail1 interacts with Suz12 and Ezh2 as shown by coimmunoprecipitation experiments...

  5. Post-transcriptional controls by ribonucleoprotein complexes in the acquisition of drug resistance.

    Science.gov (United States)

    Kang, Hoin; Kim, Chongtae; Lee, Heejin; Kim, Wook; Lee, Eun Kyung

    2013-08-20

    Acquisition of drug resistance leads to failure of anti-cancer treatments and therapies. Although several successive chemotherapies are available, along with efforts towards clinical applications of new anti-cancer drugs, it is generally realized that there is a long way to go to treat cancers. Resistance to anti-cancer drugs results from various factors, including genetic as well as epigenetic differences in tumors. Determining the molecular and cellular mechanisms responsible for the acquisition of drug resistance may be a helpful approach for the development of new therapeutic strategies to overcome treatment failure. Several studies have shown that the acquisition of drug resistance is tightly regulated by post-transcriptional regulators such as RNA binding proteins (RBPs) and microRNAs (miRNAs), which change the stability and translation of mRNAs encoding factors involved in cell survival, proliferation, epithelial-mesenchymal transition, and drug metabolism. Here, we review our current understanding of ribonucleoprotein complexes, including RBPs and miRNAs, which play critical roles in the acquisition of drug resistance and have potential clinical implications for cancer.

  6. Post-Transcriptional Controls by Ribonucleoprotein Complexes in the Acquisition of Drug Resistance

    Directory of Open Access Journals (Sweden)

    Eun Kyung Lee

    2013-08-01

    Full Text Available Acquisition of drug resistance leads to failure of anti-cancer treatments and therapies. Although several successive chemotherapies are available, along with efforts towards clinical applications of new anti-cancer drugs, it is generally realized that there is a long way to go to treat cancers. Resistance to anti-cancer drugs results from various factors, including genetic as well as epigenetic differences in tumors. Determining the molecular and cellular mechanisms responsible for the acquisition of drug resistance may be a helpful approach for the development of new therapeutic strategies to overcome treatment failure. Several studies have shown that the acquisition of drug resistance is tightly regulated by post-transcriptional regulators such as RNA binding proteins (RBPs and microRNAs (miRNAs, which change the stability and translation of mRNAs encoding factors involved in cell survival, proliferation, epithelial-mesenchymal transition, and drug metabolism. Here, we review our current understanding of ribonucleoprotein complexes, including RBPs and miRNAs, which play critical roles in the acquisition of drug resistance and have potential clinical implications for cancer.

  7. Three gene products of a begomovirus-betasatellite complex restore expression of a transcriptionally silenced green fluorescent protein transgene in Nicotiana benthamiana.

    Science.gov (United States)

    Saeed, Muhammad; Krczal, Gabi; Wassenegger, Michael

    2015-04-01

    Single-stranded DNA geminiviruses replicate via double-stranded DNA intermediates forming mini-chromosomes that are targets for transcriptional gene silencing (TGS) in plants. The ability of the cotton leaf curl Kokhran virus (CLCuKoV)-cotton leaf curl Multan betasatellite (CLCuMuB) proteins, replication-associated protein (Rep), transcriptional activator protein (TrAP), C4, V2 and βC1, to suppress TGS was investigated by using the Nicotiana benthamiana line 16-TGS (16-TGS) harbouring a transcriptionally silenced green fluorescent protein (GFP) transgene. Inoculation of 16-TGS plants with a recombinant potato virus X vector carrying Rep, TrAP or βC1 resulted in re-expression of GFP. Northern blot analysis confirmed that the observed GFP fluorescence was associated with GFP mRNA accumulation. These results indicated that Rep, TrAP and βC1 proteins of CLCuKoV-CLCuMuB can re-activate the expression of a transcriptionally silenced GFP transgene in N. benthamiana. Although Rep, TrAP, or βC1 proteins have, for other begomoviruses or begomoviruses-betasatellites, been previously shown to have TGS suppressor activity, this is the first report demonstrating that a single begomovirus-betasatellite complex encodes three suppressors of TGS.

  8. Deciphering Fur transcriptional regulatory network highlights its complex role beyond iron metabolism in Escherichia coli

    DEFF Research Database (Denmark)

    Seo, Sang Woo; Kim, Donghyuk; Latif, Haythem

    2014-01-01

    The ferric uptake regulator (Fur) plays a critical role in the transcriptional regulation of iron metabolism. However, the full regulatory potential of Fur remains undefined. Here we comprehensively reconstruct the Fur transcriptional regulatory network in Escherichia coli K-12 MG1655 in response...

  9. The homeobox gene Mohawk represses transcription by recruiting the sin3A/HDAC co-repressor complex.

    Science.gov (United States)

    Anderson, Douglas M; Beres, Brian J; Wilson-Rawls, Jeanne; Rawls, Alan

    2009-03-01

    Mohawk is an atypical homeobox gene expressed in embryonic progenitor cells of skeletal muscle, tendon, and cartilage. We demonstrate that Mohawk functions as a transcriptional repressor capable of blocking the myogenic conversion of 10T1/2 fibroblasts. The repressor activity is located in three small, evolutionarily conserved domains (MRD1-3) in the carboxy-terminal half of the protein. Point mutation analysis revealed six residues in MRD1 are sufficient for repressor function. The carboxy-terminal half of Mohawk is able to recruit components of the Sin3A/HDAC co-repressor complex (Sin3A, Hdac1, and Sap18) and a subset of Polymerase II general transcription factors (Tbp, TFIIA1 and TFIIB). Furthermore, Sap18, a protein that bridges the Sin3A/HDAC complex to DNA-bound transcription factors, is co-immunoprecipitated by MRD1. These data predict that Mohawk can repress transcription through recruitment of the Sin3A/HDAC co-repressor complex, and as a result, repress target genes required for the differentiation of cells to the myogenic lineage. (c) 2009 Wiley-Liss, Inc.

  10. Transcription factor 19 interacts with histone 3 lysine 4 trimethylation and controls gluconeogenesis via the nucleosome-remodeling-deacetylase complex.

    Science.gov (United States)

    Sen, Sabyasachi; Sanyal, Sulagna; Srivastava, Dushyant Kumar; Dasgupta, Dipak; Roy, Siddhartha; Das, Chandrima

    2017-12-15

    Transcription factor 19 (TCF19) has been reported as a type 1 diabetes-associated locus involved in maintenance of pancreatic β cells through a fine-tuned regulation of cell proliferation and apoptosis. TCF19 also exhibits genomic association with type 2 diabetes, although the precise molecular mechanism remains unknown. It harbors both a plant homeodomain and a forkhead-associated domain implicated in epigenetic recognition and gene regulation, a phenomenon that has remained unexplored. Here, we show that TCF19 selectively interacts with histone 3 lysine 4 trimethylation through its plant homeodomain finger. Knocking down TCF19 under high-glucose conditions affected many metabolic processes, including gluconeogenesis. We found that TCF19 overexpression represses de novo glucose production in HepG2 cells. The transcriptional repression of key genes, induced by TCF19, coincided with NuRD (nucleosome-remodeling-deacetylase) complex recruitment to the promoters of these genes. TCF19 interacted with CHD4 (chromodomain helicase DNA-binding protein 4), which is a part of the NuRD complex, in a glucose concentration-independent manner. In summary, our results show that TCF19 interacts with an active transcription mark and recruits a co-repressor complex to regulate gluconeogenic gene expression in HepG2 cells. Our study offers critical insights into the molecular mechanisms of transcriptional regulation of gluconeogenesis and into the roles of chromatin readers in metabolic homeostasis. © 2017 by The American Society for Biochemistry and Molecular Biology, Inc.

  11. The CHR Promoter Element Controls Cell Cycle-Dependent Gene Transcription and Binds the DREAM and MMB Complexes

    OpenAIRE

    Müller, Gerd A.; Quaas, Marianne; Schümann, Michael; Krause, Eberhard; Fischer, Martin; Engeland, Kurt; Padi, Megha; Litovchick, Larisa; DeCaprio, James A.

    2011-01-01

    Cell cycle-dependent gene expression is often controlled on the transcriptional level. Genes like \\(cyclin B, CDC2\\) and \\(CDC25C\\) are regulated by cell cycle-dependent element (CDE) and cell cycle genes homology region (CHR) promoter elements mainly through repression in \\(G_0/G_1\\). It had been suggested that E2F4 binding to CDE sites is central to transcriptional regulation. However, some promoters are only controlled by a CHR. We identify the DREAM complex binding to the CHR of mouse and...

  12. Uracil DNA glycosylase interacts with the p32 subunit of the replication protein A complex to modulate HIV-1 reverse transcription for optimal virus dissemination.

    Science.gov (United States)

    Herate, Cecile; Vigne, Clarisse; Guenzel, Carolin A; Lambele, Marie; Rouyez, Marie-Christine; Benichou, Serge

    2016-04-12

    Through incorporation into virus particles, the HIV-1 Vpr protein participates in the early steps of the virus life cycle by influencing the reverse transcription process. We previously showed that this positive impact on reverse transcription was related to Vpr binding to the uracil DNA glycosylase 2 enzyme (UNG2), leading to enhancement of virus infectivity in established CD4-positive cell lines via a nonenzymatic mechanism. We report here that Vpr can form a trimolecular complex with UNG2 and the p32 subunit (RPA32) of the replication protein A (RPA) complex and we explore how these cellular proteins can influence virus replication and dissemination in the primary target cells of HIV-1, which express low levels of both proteins. Virus infectivity and replication in peripheral blood mononuclear cells and monocyte-derived macrophages (MDMs), as well as the efficiency of the viral DNA synthesis, were significantly reduced when viruses were produced from cells depleted of endogenous UNG2 or RPA32. Moreover, viruses produced in macrophages failed to replicate efficiently in UNG2- and RPA32-depleted T lymphocytes. Reciprocally, viruses produced in UNG2-depleted T cells did not replicate efficiently in MDMs confirming the positive role of UNG2 for virus dissemination. Our data show the positive effect of UNG2 and RPA32 on the reverse transcription process leading to optimal virus replication and dissemination between the primary target cells of HIV-1.

  13. Levi-flat Minimal Hypersurfaces in Two-dimensional Complex Space Forms

    OpenAIRE

    Bryant, Robert L.

    1999-01-01

    The purpose of this article is to classify the real hypersurfaces in complex space forms of dimension 2 that are both Levi-flat and minimal. The main results are as follows: When the curvature of the complex space form is nonzero, there is a 1-parameter family of such hypersurfaces. Specifically, for each one-parameter subgroup of the isometry group of the complex space form, there is an essentially unique example that is invariant under this one-parameter subgroup. On the other hand, when th...

  14. Venezuelan equine Encephalitis virus capsid protein forms a tetrameric complex with CRM1 and importin alpha/beta that obstructs nuclear pore complex function.

    Science.gov (United States)

    Atasheva, Svetlana; Fish, Alexander; Fornerod, Maarten; Frolova, Elena I

    2010-05-01

    Development of the cellular antiviral response requires nuclear translocation of multiple transcription factors and activation of a wide variety of cellular genes. To counteract the antiviral response, several viruses have developed an efficient means of inhibiting nucleocytoplasmic traffic. In this study, we demonstrate that the pathogenic strain of Venezuelan equine encephalitis virus (VEEV) has developed a unique mechanism of nuclear import inhibition. Its capsid protein forms a tetrameric complex with the nuclear export receptor CRM1 and the nuclear import receptor importin alpha/beta. This unusual complex accumulates in the center channel of the nuclear pores and blocks nuclear import mediated by different karyopherins. The inhibitory function of VEEV capsid protein is determined by a short 39-amino-acid-long peptide that contains both nuclear import and supraphysiological nuclear export signals. Mutations in these signals or in the linker peptide attenuate or completely abolish capsid-specific inhibition of nuclear traffic. The less pathogenic VEEV strains contain a wide variety of mutations in this peptide that affect its inhibitory function in nuclear import. Thus, these mutations appear to be the determinants of this attenuated phenotype. This novel mechanism of inhibiting nuclear transport also shows that the nuclear pore complex is vulnerable to unusual cargo receptor complexes and sheds light on the importance of finely adjusted karyopherin-nucleoporin interactions for efficient cargo translocation.

  15. Pleiotropy constrains the evolution of protein but not regulatory sequences in a transcription regulatory network influencing complex social behaviours

    Directory of Open Access Journals (Sweden)

    Daria eMolodtsova

    2014-12-01

    Full Text Available It is increasingly apparent that genes and networks that influence complex behaviour are evolutionary conserved, which is paradoxical considering that behaviour is labile over evolutionary timescales. How does adaptive change in behaviour arise if behaviour is controlled by conserved, pleiotropic, and likely evolutionary constrained genes? Pleiotropy and connectedness are known to constrain the general rate of protein evolution, prompting some to suggest that the evolution of complex traits, including behaviour, is fuelled by regulatory sequence evolution. However, we seldom have data on the strength of selection on mutations in coding and regulatory sequences, and this hinders our ability to study how pleiotropy influences coding and regulatory sequence evolution. Here we use population genomics to estimate the strength of selection on coding and regulatory mutations for a transcriptional regulatory network that influences complex behaviour of honey bees. We found that replacement mutations in highly connected transcription factors and target genes experience significantly stronger negative selection relative to weakly connected transcription factors and targets. Adaptively evolving proteins were significantly more likely to reside at the periphery of the regulatory network, while proteins with signs of negative selection were near the core of the network. Interestingly, connectedness and network structure had minimal influence on the strength of selection on putative regulatory sequences for both transcription factors and their targets. Our study indicates that adaptive evolution of complex behaviour can arise because of positive selection on protein-coding mutations in peripheral genes, and on regulatory sequence mutations in both transcription factors and their targets throughout the network.

  16. Functional diversification of FD transcription factors in rice, components of florigen activation complexes.

    Science.gov (United States)

    Tsuji, Hiroyuki; Nakamura, Hiroyuki; Taoka, Ken-ichiro; Shimamoto, Ko

    2013-03-01

    Florigen, a protein encoded by the FLOWERING LOCUS T (FT) in Arabidopsis and Heading date 3a (Hd3a) in rice, is the universal flowering hormone in plants. Florigen is transported from leaves to the shoot apical meristem and initiates floral evocation. In shoot apical cells, conserved cytoplasmic 14-3-3 proteins act as florigen receptors. A hexameric florigen activation complex (FAC) composed of Hd3a, 14-3-3 proteins, and OsFD1, a transcription factor, activates OsMADS15, a rice homolog of Arabidopsis APETALA1, leading to flowering. Because FD is a key component of the FAC, we characterized the FD gene family and their functions. Phylogenetic analysis of FD genes indicated that this family is divided into two groups: (i) canonical FD genes that are conserved among eudicots and non-Poaceae monocots; and (ii) Poaceae-specific FD genes that are organized into three subgroups: Poaceae FD1, FD2 and FD3. The Poaceae FD1 group shares a small sequence motif, T(A/V)LSLNS, with FDs of eudicots and non-Poaceae monocots. Overexpression of OsFD2, a member of the Poaceae FD2 group, produced smaller leaves with shorter plastochrons, suggesting that OsFD2 controls leaf development. In vivo subcellular localization of Hd3a, 14-3-3 and OsFD2 suggested that in contrast to OsFD1, OsFD2 is restricted to the cytoplasm through its interaction with the cytoplasmic 14-3-3 proteins, and interaction of Hd3a with 14-3-3 facilitates nuclear translocation of the FAC containing OsFD2. These results suggest that FD function has diverged between OsFD1 and OsFD2, but formation of a FAC is essential for their function.

  17. Elongator and SPT4/SPT5 complexes as proxy to study RNA polymerase II transcript elongation control of plant development.

    Science.gov (United States)

    Van Lijsebettens, Mieke; Dürr, Julius; Woloszynska, Magdalena; Grasser, Klaus D

    2014-10-01

    The elongation phase of the RNA polymerase II (RNAPII) transcription process is dynamic and regulated. Elongator and SUPPRESSOR OF Ty4 (SPT4)/SPT5 are transcript elongation factors that contribute to the regulation of mRNA synthesis by RNA polymerase II in the chromatin context. Recently, the Elongator complex consisting of six subunits and the SPT4/SPT5 heterodimer were isolated from Arabidopsis. Mutant plants affected in the expression of Elongator or SPT4/SPT5 share various auxin-signaling phenotypes. In line with that observation, auxin-related genes are prominent among the genes differentially expressed in these mutants. Exemplified by Elongator and SPT4/SPT5, we discuss here the role that transcript elongation factors may play in the control of plant growth and development. © 2014 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  18. Convection in complex shaped vessel; Convection dans des enceintes de forme complexe

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    2000-07-01

    The 8 november 2000, the SFT (Societe Francaise de Thermique) organized a technical day on the convection in complex shaped vessels. Nine papers have been presented in the domains of the heat transfers, the natural convection, the fluid distribution, the thermosyphon effect, the steam flow in a sterilization cycle and the transformers cooling. Eight papers are analyzed in ETDE and one paper dealing with the natural convection in spent fuels depository is analyzed in INIS. (A.L.B.)

  19. Genome-Wide Phylogenetic Comparative Analysis of Plant Transcriptional Regulation: A Timeline of Loss, Gain, Expansion, and Correlation with Complexity

    Science.gov (United States)

    Lang, Daniel; Weiche, Benjamin; Timmerhaus, Gerrit; Richardt, Sandra; Riaño-Pachón, Diego M.; Corrêa, Luiz G. G.; Reski, Ralf; Mueller-Roeber, Bernd; Rensing, Stefan A.

    2010-01-01

    Evolutionary retention of duplicated genes encoding transcription-associated proteins (TAPs, comprising transcription factors and other transcriptional regulators) has been hypothesized to be positively correlated with increasing morphological complexity and paleopolyploidizations, especially within the plant kingdom. Here, we present the most comprehensive set of classification rules for TAPs and its application for genome-wide analyses of plants and algae. Using a dated species tree and phylogenetic comparative (PC) analyses, we define the timeline of TAP loss, gain, and expansion among Viridiplantae and find that two major bursts of gain/expansion occurred, coinciding with the water-to-land transition and the radiation of flowering plants. For the first time, we provide PC proof for the long-standing hypothesis that TAPs are major driving forces behind the evolution of morphological complexity, the latter in Plantae being shaped significantly by polyploidization and subsequent biased paleolog retention. Principal component analysis incorporating the number of TAPs per genome provides an alternate and significant proxy for complexity, ideally suited for PC genomics. Our work lays the ground for further interrogation of the shaping of gene regulatory networks underlying the evolution of organism complexity. PMID:20644220

  20. The Tax oncogene enhances ELL incorporation into p300 and P-TEFb containing protein complexes to activate transcription.

    Science.gov (United States)

    Fufa, Temesgen D; Byun, Jung S; Wakano, Clay; Fernandez, Alfonso G; Pise-Masison, Cynthia A; Gardner, Kevin

    2015-09-11

    The eleven-nineteen lysine-rich leukemia protein (ELL) is a key regulator of RNA polymerase II mediated transcription. ELL facilitates RNA polymerase II transcription pause site entry and release by dynamically interacting with p300 and the positive transcription elongation factor b (P-TEFb). In this study, we investigated the role of ELL during the HTLV-1 Tax oncogene induced transactivation. We show that ectopic expression of Tax enhances ELL incorporation into p300 and P-TEFb containing transcriptional complexes and the subsequent recruitment of these complexes to target genes in vivo. Depletion of ELL abrogates Tax induced transactivation of the immediate early genes Fos, Egr2 and NF-kB, suggesting that ELL is an essential cellular cofactor of the Tax oncogene. Thus, our study identifies a novel mechanism of ELL-dependent transactivation of immediate early genes by Tax and provides the rational for further defining the genome-wide targets of Tax and ELL. Published by Elsevier Inc.

  1. Elg1 forms an alternative RFC complex important for DNA replication and genome integrity

    NARCIS (Netherlands)

    Bellaoui, Mohammed; Chang, Michael; Ou, Jiongwen; Xu, Hong; Boone, Charles; Brown, Grant W

    2003-01-01

    Genome-wide synthetic genetic interaction screens with mutants in the mus81 and mms4 replication fork-processing genes identified a novel replication factor C (RFC) homolog, Elg1, which forms an alternative RFC complex with Rfc2-5. This complex is distinct from the DNA replication RFC, the DNA

  2. A probabilistic approach for mapping free-text queries to complex web forms

    NARCIS (Netherlands)

    Tjin-Kam-Jet, Kien; Trieschnigg, Rudolf Berend; Hiemstra, Djoerd

    Web applications with complex interfaces consisting of multiple input fields should understand free-text queries. We propose a probabilistic approach to map parts of a free-text query to the fields of a complex web form. Our method uses token models rather than only static dictionaries to create

  3. Transcriptional complexity of the HSPG2 gene in the human mast cell line, HMC-1.

    Science.gov (United States)

    Lord, Megan S; Jung, MoonSun; Cheng, Bill; Whitelock, John M

    2014-04-01

    The mammalian HSPG2 gene encodes the proteoglycan protein core perlecan, which has important functions in biology including cell adhesion via integrins, binding to the extracellular matrix via various protein-protein interactions and binding of growth factors via the heparan sulfate chains decorating the N-terminal domain I. Here we show that, in the human mast cell line HMC-1, the transcription of this gene results in a population of mRNA that is processed in such a way to provide a relative increase of transcripts corresponding to domain V or the C-terminus compared to transcripts from either domain III or the N-terminal domain I. This paper also presents evidence of splicing of the HSPG2 gene in HMC-1 cells at exons 2/3 and after comparing this sequence with those published in various databases, a model is postulated to explain what might be happening in these cells with regard to the transcription of the HSPG2 gene. As domain V of perlecan contains the α2β1 integrin binding site that modulates angiogenesis, we hypothesize that the transcriptional control of the HSPG2 gene in mast cells to synthesize these transcripts supports their stimulatory and specific role in wound healing and tissue regeneration. Copyright © 2013 International Society of Matrix Biology. All rights reserved.

  4. Characterization of the nanostructure of complexes formed by a redox-active cationic lipid and DNA.

    Science.gov (United States)

    Pizzey, Claire L; Jewell, Christopher M; Hays, Melissa E; Lynn, David M; Abbott, Nicholas L; Kondo, Yukishige; Golan, Sharon; Talmon, Yeshayahu

    2008-05-08

    We report characterization of the nanostructures of complexes formed between the redox-active lipid bis(n-ferrocenylundecyl)dimethylammonium bromide (BFDMA) and DNA using small-angle neutron scattering (SANS) and cryogenic transmission electron microscopy (cryo-TEM). A particular focus was directed to the influence of lipid oxidation state (where reduced BFDMA has a net charge of +1 and oxidized BFDMA has a charge of +3) on the nanostructures of the solution aggregates formed. Complexes were characterized over a range of charge ratios of reduced BFDMA to DNA (1.1:1, 2.75:1, and 4:1) in solutions of 1 mM Li2SO4. For these complexes, a single peak in the SANS data at 1.2 nm(-1) indicated that a nanostructure with a periodicity of 5.2 nm was present, similar to that observed with complexes of the classical lipids DODAB/DOPE and DNA (multilamellar spacing of 7.0 nm). The absence of additional Bragg peaks in all the SANS data indicated that the periodicity did not extend over large distances. Both inverse Fourier transform analysis and form factor fitting suggested formation of a multilamellar vesicle. These results were confirmed by cryo-TEM images in which multilamellar complexes with diameters between 50 and 150 nm were observed with no more than seven lamellae per aggregate. In contrast to complexes of reduced BFDMA and DNA, Bragg peaks were absent in SANS spectra of complexes formed by oxidized BFDMA and DNA at all charge ratios investigated. The low-q behavior of the SANS data obtained using oxidized BFDMA and DNA complexes suggested that large, loose aggregates were formed, consistent with complementary cryo-TEM images showing predominantly loose disordered aggregates. Some highly ordered spongelike and cubic phase nanostructures were also detected in cryo-TEM images. We conclude that control of BFDMA oxidation state can be used to manipulate the nanostructures of lipid-DNA complexes formed using BFDMA.

  5. Forms of iron in soils on basement complex rocks of Kaduna state in ...

    African Journals Online (AJOL)

    The forms of iron extracted by different methods were studied in soils developed on four basement complex rocks within Northern Guinea Savanna of Nigeria namely: migmatite gneisses, older granite, quartzites and mica schists. The study shows that forms of iron generally decreased in the order of total elemental iron ...

  6. The promyelocytic leukemia gene product (PML) forms stable complexes with the retinoblastoma protein

    DEFF Research Database (Denmark)

    Alcalay, M; Tomassoni, L; Colombo, E

    1998-01-01

    by the expression of PML-RAR alpha. We report that PML colocalizes with the nonphosphorylated fraction of the retinoblastoma protein (pRB) within nuclear bodies and that pRB is delocalized by PML-RAR alpha expression. Both PML and PML-RAR alpha form complexes with the nonphosphorylated form of pRB in vivo...

  7. Effects of family constellation and dynamics on the form of the Oedipus complex.

    Science.gov (United States)

    Werman, D S

    1980-01-01

    The Oedipus complex take its particular form from a variety of sources--biological and environmental. This paper focuses on the role of the family constellation in imparting a specific form to this schemata, here described as a double Oedipus complex. Some of the relevant psychoanalytic literature is reviewed. It is suggested that such a configuration of the Oedipus complex may not in itself lead to a pathologic outcome. In the case history presented, specific characteristics of the patient's family are presumed to have been pathogenetic leading to the inadequate resolution of his Oedipus complex. Relevant aspects of the analytic process are discussed, in particular, the vicissitudes of the transferences. It is concluded that the schemata of the Oedipus complex is significantly modified by external circumstances, in this case by a special family constellation and its dynamics.

  8. Mutant Forms of the Azotobacter vinelandii Transcriptional Activator NifA Resistant to Inhibition by the NifL Regulatory Protein

    OpenAIRE

    Reyes-Ramirez, Francisca; Little, Richard; Dixon, Ray

    2002-01-01

    The Azotobacter vinelandii σ54-dependent transcriptional activator protein NifA is regulated by the NifL protein in response to redox, carbon, and nitrogen status. Under conditions inappropriate for nitrogen fixation, NifL inhibits transcription activation by NifA through the formation of the NifL-NifA protein complex. NifL inhibits the ATPase activity of the central AAA+ domain of NifA required to drive open complex formation by σ54-RNA polymerase and may also inhibit the activator-polymeras...

  9. Elk3 from hamster-a ternary complex factor with strong transcriptional repressor activity

    DEFF Research Database (Denmark)

    Hjortoe, G.M.; Weilguny, D.; Willumsen, Berthe Marie

    2005-01-01

    the transcription of genes that are activated during entry into G1. We have isolated the Cricetulus griseus Elk3 gene from the Chinese hamster ovary (CHO) cell line and investigated the transcriptional potential of this factor. Transient transfections revealed that, in addition to its regulation of the c......-fos promoter, Elk3 from CHO cells seems to inhibit other promoters controlling expression of proteins involved in G1/S phase progression; Cyclin D1 and DHFR. As has been described for the Elk3 homologs Net (Mouse) and Sap-2 (Human), the results of the present study further indicate that hamster Elk3...

  10. Nucleolin forms a specific complex with a fragment of the viral (minus) strand of minute virus of mice DNA.

    Science.gov (United States)

    Barrijal, S; Perros, M; Gu, Z; Avalosse, B L; Belenguer, P; Amalric, F; Rommelaere, J

    1992-01-01

    Nucleolin, a major nucleolar protein, forms a specific complex with the genome (a single-stranded DNA molecule of minus polarity) of parvovirus MVMp in vitro. By means of South-western blotting experiments, we mapped the binding site to a 222-nucleotide motif within the non-structural transcription unit, referred to as NUBE (nucleolin-binding element). The specificity of the interaction was confirmed by competitive gel retardation assays. DNaseI and nuclease S1 probing showed that NUBE folds into a secondary structure, in agreement with a computer-assisted conformational prediction. The whole NUBE may be necessary for the interaction with nucleolin, as suggested by the failure of NUBE subfragments to bind the protein and by the nuclease footprinting experiments. The present work extends the previously reported ability of nucleolin to form a specific complex with ribosomal RNA, to a defined DNA substrate. Considering the tropism of MVMp DNA replication for host cell nucleoli, these data raise the possibility that nucleolin may contribute to the regulation of the parvoviral life-cycle. Images PMID:1408821

  11. The NBS1-Treacle complex controls ribosomal RNA transcription in response to DNA damage

    DEFF Research Database (Denmark)

    Larsen, Dorthe H; Hari, Flurina; Clapperton, Julie A

    2014-01-01

    Chromosome breakage elicits transient silencing of ribosomal RNA synthesis, but the mechanisms involved remained elusive. Here we discover an in trans signalling mechanism that triggers pan-nuclear silencing of rRNA transcription in response to DNA damage. This is associated with transient recrui...

  12. Hijacking of the O-GlcNAcZYME complex by the HTLV-1 Tax oncoprotein facilitates viral transcription.

    Science.gov (United States)

    Groussaud, Damien; Khair, Mostafa; Tollenaere, Armelle I; Waast, Laetitia; Kuo, Mei-Shiue; Mangeney, Marianne; Martella, Christophe; Fardini, Yann; Coste, Solène; Souidi, Mouloud; Benit, Laurence; Pique, Claudine; Issad, Tarik

    2017-07-01

    The viral Tax oncoprotein plays a key role in both Human T-cell lymphotropic virus type 1 (HTLV-1)-replication and HTLV-1-associated pathologies, notably adult T-cell leukemia. Tax governs the transcription from the viral 5'LTR, enhancing thereby its own expression, via the recruitment of dimers of phosphorylated CREB to cAMP-response elements located within the U3 region (vCRE). In addition to phosphorylation, CREB is also the target of O-GlcNAcylation, another reversible post-translational modification involved in a wide range of diseases, including cancers. O-GlcNAcylation consists in the addition of O-linked-N-acetylglucosamine (O-GlcNAc) on Serine or Threonine residues, a process controlled by two enzymes: O-GlcNAc transferase (OGT), which transfers O-GlcNAc on proteins, and O-GlcNAcase (OGA), which removes it. In this study, we investigated the status of O-GlcNAcylation enzymes in HTLV-1-transformed T cells. We found that OGA mRNA and protein expression levels are increased in HTLV-1-transformed T cells as compared to control T cell lines while OGT expression is unchanged. However, higher OGA production coincides with a reduction in OGA specific activity, showing that HTLV-1-transformed T cells produce high level of a less active form of OGA. Introducing Tax into HEK-293T cells or Tax-negative HTLV-1-transformed TL-om1 T cells is sufficient to inhibit OGA activity and increase total O-GlcNAcylation, without any change in OGT activity. Furthermore, Tax interacts with the OGT/OGA complex and inhibits the activity of OGT-bound OGA. Pharmacological inhibition of OGA increases CREB O-GlcNAcylation as well as HTLV-1-LTR transactivation by Tax and CREB recruitment to the LTR. Moreover, overexpression of wild-type CREB but not a CREB protein mutated on a previously described O-GlcNAcylation site enhances Tax-mediated LTR transactivation. Finally, both OGT and OGA are recruited to the LTR. These findings reveal the interplay between Tax and the O-GlcNAcylation pathway

  13. Structural Model of RNA Polymerase II Elongation Complex with Complete Transcription Bubble Reveals NTP Entry Routes.

    Directory of Open Access Journals (Sweden)

    Lu Zhang

    2015-07-01

    Full Text Available The RNA polymerase II (Pol II is a eukaryotic enzyme that catalyzes the synthesis of the messenger RNA using a DNA template. Despite numerous biochemical and biophysical studies, it remains elusive whether the "secondary channel" is the only route for NTP to reach the active site of the enzyme or if the "main channel" could be an alternative. On this regard, crystallographic structures of Pol II have been extremely useful to understand the structural basis of transcription, however, the conformation of the unpaired non-template DNA part of the full transcription bubble (TB is still unknown. Since diffusion routes of the nucleoside triphosphate (NTP substrate through the main channel might overlap with the TB region, gaining structural information of the full TB is critical for a complete understanding of Pol II transcription process. In this study, we have built a structural model of Pol II with a complete transcription bubble based on multiple sources of existing structural data and used Molecular Dynamics (MD simulations together with structural analysis to shed light on NTP entry pathways. Interestingly, we found that although both channels have enough space to allow NTP loading, the percentage of MD conformations containing enough space for NTP loading through the secondary channel is twice higher than that of the main channel. Further energetic study based on MD simulations with NTP loaded in the channels has revealed that the diffusion of the NTP through the main channel is greatly disfavored by electrostatic repulsion between the NTP and the highly negatively charged backbones of nucleotides in the non-template DNA strand. Taken together, our results suggest that the secondary channel is the major route for NTP entry during Pol II transcription.

  14. Analysis of Class I Major Histocompatibility Complex Gene Transcription in Human Tumors Caused by Human Papillomavirus Infection.

    Science.gov (United States)

    Gameiro, Steven F; Zhang, Ali; Ghasemi, Farhad; Barrett, John W; Nichols, Anthony C; Mymryk, Joe S

    2017-09-10

    Oncoproteins from high-risk human papillomaviruses (HPV) downregulate the transcription of the class I major histocompatibility complex (MHC-I) antigen presentation apparatus in tissue culture model systems. This could allow infected or transformed cells to evade the adaptive immune response. Using data from over 800 human cervical and head & neck tumors from The Cancer Genome Atlas (TCGA), we determined the impact of HPV status on the mRNA expression of all six MHC-I heavy chain genes, and the β2 microglobulin light chain. Unexpectedly, these genes were all expressed at high levels in HPV positive (HPV+) cancers compared with normal control tissues. Indeed, many of these genes were expressed at significantly enhanced levels in HPV+ tumors. Similarly, the transcript levels of several other components of the MHC-I peptide-loading complex were also high in HPV+ cancers. The coordinated expression of high mRNA levels of the MHC-I antigen presentation apparatus could be a consequence of the higher intratumoral levels of interferon γ in HPV+ carcinomas, which correlate with signatures of increased infiltration by T- and NK-cells. These data, which were obtained from both cervical and oral tumors in large human cohorts, indicates that HPV oncoproteins do not efficiently suppress the transcription of the antigen presentation apparatus in human tumors.

  15. EBF2 transcriptionally regulates brown adipogenesis via the histone reader DPF3 and the BAF chromatin remodeling complex.

    Science.gov (United States)

    Shapira, Suzanne N; Lim, Hee-Woong; Rajakumari, Sona; Sakers, Alexander P; Ishibashi, Jeff; Harms, Matthew J; Won, Kyoung-Jae; Seale, Patrick

    2017-04-01

    The transcription factor early B-cell factor 2 (EBF2) is an essential mediator of brown adipocyte commitment and terminal differentiation. However, the mechanisms by which EBF2 regulates chromatin to activate brown fat-specific genes in adipocytes were unknown. ChIP-seq (chromatin immunoprecipitation [ChIP] followed by deep sequencing) analyses in brown adipose tissue showed that EBF2 binds and regulates the activity of lineage-specific enhancers. Mechanistically, EBF2 physically interacts with the chromatin remodeler BRG1 and the BAF chromatin remodeling complex in brown adipocytes. We identified the histone reader protein DPF3 as a brown fat-selective component of the BAF complex that was required for brown fat gene programming and mitochondrial function. Loss of DPF3 in brown adipocytes reduced chromatin accessibility at EBF2-bound enhancers and led to a decrease in basal and catecholamine-stimulated expression of brown fat-selective genes. Notably, Dpf3 is a direct transcriptional target of EBF2 in brown adipocytes, thereby establishing a regulatory module through which EBF2 activates and also recruits DPF3-anchored BAF complexes to chromatin. Together, these results reveal a novel mechanism by which EBF2 cooperates with a tissue-specific chromatin remodeling complex to activate brown fat identity genes. © 2017 Shapira et al.; Published by Cold Spring Harbor Laboratory Press.

  16. THE COMPACT STAR-FORMING COMPLEX AT THE HEART OF NGC 253

    Energy Technology Data Exchange (ETDEWEB)

    Davidge, T. J., E-mail: tim.davidge@nrc.ca [Dominion Astrophysical Observatory, National Research Council of Canada, 5071 West Saanich Road, Victoria, BC V9E 2E7 (Canada)

    2016-02-20

    We discuss integral field spectra of the compact star-forming complex that is the brightest near-infrared (NIR) source in the central regions of the starburst galaxy NGC 253. The spectra cover the H and K passbands and were recorded with the Gemini NIR Spectrograph during subarcsecond seeing conditions. Absorption features in the spectrum of the star-forming complex are weaker than in the surroundings. An absorption feature is found near 1.78 μm that coincides with the location of a C{sub 2} bandhead. If this feature is due to C{sub 2} then the star-forming complex has been in place for at least a few hundred Myr. Emission lines of Brγ, [Fe ii], and He i 2.06 μm do not track the NIR continuum light. Pockets of star-forming activity that do not have associated concentrations of red supergiants, and so likely have ages <8 Myr, are found along the western edge of the complex, and there is evidence that one such pocket contains a rich population of Wolf–Rayet stars. Unless the star-forming complex is significantly more metal-poor than the surroundings, then a significant fraction of its total mass is in stars with ages <8 Myr. If the present-day star formation rate is maintained then the timescale to double its stellar mass ranges from a few Myr to a few tens of Myr, depending on the contribution made by stars older than ∼8 Myr. If—as suggested by some studies—the star-forming complex is centered on the galaxy’s nucleus, which presumably contains a large population of old and intermediate-age stars, then the nucleus of NGC 253 is currently experiencing a phase of rapid growth in its stellar mass.

  17. Evaluation of various processes for simultaneous complexation and granulation to incorporate drug-cyclodextrin complexes into solid dosage forms.

    Science.gov (United States)

    Gyanani, Vijay; Siddalingappa, Basavaraj; Betageri, Guru V

    2015-01-01

    Insoluble drugs often formulated with various excipients to enhance the dissolution. Cyclodextrins (CDs) are widely used excipients to improve dissolution profile of poorly soluble drugs. Drug-CD complexation process is complex and often requires multiple processes to produce solid dosage form. Hence, this study explored commonly used granulation processes for simultaneous complexation and granulation. Poorly soluble drugs ibuprofen and glyburide were selected as experimental drugs. Co-evaporation of drug:CD mixture from a solvent followed by wet granulation with water was considered as standard process for comparison. Spray granulation and fluid bed processing (FBP) using drug:CD solution in ethanol were evaluated as an alternative processes. The dissolution data of glyburide tablets indicated that tablets produced by spray granulation, FBP and co-evaporation-granulation have almost identical dissolution profile in water and 0.1% SLS (>70% in water and >60% in SLS versus 30 and 34%, respectively for plain tablet, in 120 min). Similarly, ibuprofen:CD tablets produced by co-evaporation-granulation and FBP displayed similar dissolution profile in 0.01 M HCl (pH 2.0) and buffer pH 5.5 (>90 and 100% versus 44 and 80% respectively for plain tablets, 120 min). Results of this study demonstrated that spray granulation is simple and cost effective process for low dose poorly soluble drugs to incorporate drug:CD complex into solid dosage form, whereas FBP is suitable for poorly soluble drugs with moderate dose.

  18. Facilitates Chromatin Transcription Complex Is an “Accelerator” of Tumor Transformation and Potential Marker and Target of Aggressive Cancers

    Directory of Open Access Journals (Sweden)

    Henry Garcia

    2013-07-01

    Full Text Available The facilitates chromatin transcription (FACT complex is involved in chromatin remodeling during transcription, replication, and DNA repair. FACT was previously considered to be ubiquitously expressed and not associated with any disease. However, we discovered that FACT is the target of a class of anticancer compounds and is not expressed in normal cells of adult mammalian tissues, except for undifferentiated and stem-like cells. Here, we show that FACT expression is strongly associated with poorly differentiated aggressive cancers with low overall survival. In addition, FACT was found to be upregulated during in vitro transformation and to be necessary, but not sufficient, for driving transformation. FACT also promoted survival and growth of established tumor cells. Genome-wide mapping of chromatin-bound FACT indicated that FACT’s role in cancer most likely involves selective chromatin remodeling of genes that stimulate proliferation, inhibit cell death and differentiation, and regulate cellular stress responses.

  19. Transcriptional intermediary factor 1γ binds to the anaphase-promoting complex/cyclosome and promotes mitosis

    DEFF Research Database (Denmark)

    Sedgwick, G.G.; Townsend, K.; Martin, A.

    2013-01-01

    The anaphase-promoting complex/cyclosome (APC/C) is an ubiquitin ligase that functions during mitosis. Here we identify the transcriptional regulator, transcriptional intermediary factor 1γ, TIF1γ, as an APC/C-interacting protein that regulates APC/C function. TIF1γ is not a substrate for APC....../C-dependent ubiquitylation but instead, associates specifically with the APC/C holoenzyme and Cdc20 to affect APC/C activity and progression through mitosis. RNA interference studies indicate that TIF1γ knockdown results in a specific reduction in APC/C ubiquitin ligase activity, the stabilization of APC/C substrates......, and an increase in the time taken for cells to progress through mitosis from nuclear envelope breakdown to anaphase. TIF1γ knockdown cells are also characterized by the inappropriate presence of cyclin A at metaphase, and an increase in the number of cells that fail to undergo metaphase-to-anaphase transition...

  20. Structure of the active form of human origin recognition complex and its ATPase motor module

    Energy Technology Data Exchange (ETDEWEB)

    Tocilj, Ante; On, Kin Fan; Yuan, Zuanning; Sun, Jingchuan; Elkayam, Elad; Li, Huilin; Stillman, Bruce; Joshua-Tor, Leemor

    2017-01-23

    Binding of the Origin Recognition Complex (ORC) to origins of replication marks the first step in the initiation of replication of the genome in all eukaryotic cells. Here, we report the structure of the active form of human ORC determined by X-ray crystallography and cryo-electron microscopy. The complex is composed of an ORC1/4/5 motor module lobe in an organization reminiscent of the DNA polymerase clamp loader complexes. A second lobe contains the ORC2/3 subunits. The complex is organized as a double-layered shallow corkscrew, with the AAA+ and AAA+-like domains forming one layer, and the winged-helix domains (WHDs) forming a top layer. CDC6 fits easily between ORC1 and ORC2, completing the ring and the DNA-binding channel, forming an additional ATP hydrolysis site. Analysis of the ATPase activity of the complex provides a basis for understanding ORC activity as well as molecular defects observed in Meier-Gorlin Syndrome mutations.

  1. Complex forms of mitochondrial DNA in human B cells transformed by Epstein-Barr virus (EBV)

    DEFF Research Database (Denmark)

    Christiansen, Gunna; Christiansen, C; Zeuthen, J

    1983-01-01

    Human lymphocytes and lymphoid cell lines were analyzed for the presence of complex forms of mitochondrial DNA (mtDNA) by electron microscopy. A high frequency (9%-14.5%) of catenated dimers, circular dimers, or oligomers were found in samples from Epstein-Barr-virus-(EBV) transformed lymphoblast......Human lymphocytes and lymphoid cell lines were analyzed for the presence of complex forms of mitochondrial DNA (mtDNA) by electron microscopy. A high frequency (9%-14.5%) of catenated dimers, circular dimers, or oligomers were found in samples from Epstein-Barr-virus-(EBV) transformed...

  2. Chaos synchronization and chaotization of complex chaotic systems in series form by optimal control

    International Nuclear Information System (INIS)

    Ge Zhengming; Yang, C.-H.

    2009-01-01

    By the method of quadratic optimum control, a quadratic optimal regulator is used for synchronizing two complex chaotic systems in series form. By this method the least error with less control energy is achieved, and the optimization on both energy and error is realized synthetically. The simulation results of two Quantum-CNN chaos systems in series form prove the effectiveness of this method. Finally, chaotization of the system is given by optimal control.

  3. Temporal regulation of Drosophila salivary gland degeneration by the Broad-Complex transcription factors

    Czech Academy of Sciences Publication Activity Database

    Kuchárová-Mahmood, S.; Raška, Ivan; Mechler, B. M.; Farkaš, R.

    2002-01-01

    Roč. 140, - (2002), s. 67-78 ISSN 1047-8477 R&D Projects: GA ČR GA304/02/0342 Grant - others:GA-(SK) VEGA:2/7194/20 Institutional research plan: CEZ:AV0Z5039906; CEZ:MSM 111100003 Keywords : programmed cell death * BR-C transcription factors * drosophila Subject RIV: EA - Cell Biology Impact factor: 4.194, year: 2002

  4. Targeting the Six1/Eya transcriptional complex for ovarian cancer therapy

    Science.gov (United States)

    2016-09-01

    ELISA assay at 50 µM. ( d ) Representative compounds from class 2-5 inhibit the transcription of the MEF3 reporter (a Six1 target) in a luciferase...is amplified in 15% of epithelial ovarian cancers (EOCs), is overexpressed in as many as 94% of epithelial ovarian cancers, and like Six1, is... amplified in 15% of epithelial ovarian cancers (EOCs), is overexpressed in as many as 94% of epithelial ovarian cancers, and like Six1, is associated with

  5. Unexpected complexity of the reef-building coral Acropora millepora transcription factor network.

    KAUST Repository

    Ryu, Tae Woo

    2011-04-28

    Coral reefs are disturbed on a global scale by environmental changes including rising sea surface temperatures and ocean acidification. Little is known about how corals respond or adapt to these environmental changes especially at the molecular level. This is mostly because of the paucity of genome-wide studies on corals and the application of systems approaches that incorporate the latter. Like in any other organism, the response of corals to stress is tightly controlled by the coordinated interplay of many transcription factors.

  6. Bovine proteins containing poly-glutamine repeats are often polymorphic and enriched for components of transcriptional regulatory complexes

    LENUS (Irish Health Repository)

    Whan, Vicki

    2010-11-23

    Abstract Background About forty human diseases are caused by repeat instability mutations. A distinct subset of these diseases is the result of extreme expansions of polymorphic trinucleotide repeats; typically CAG repeats encoding poly-glutamine (poly-Q) tracts in proteins. Polymorphic repeat length variation is also apparent in human poly-Q encoding genes from normal individuals. As these coding sequence repeats are subject to selection in mammals, it has been suggested that normal variations in some of these typically highly conserved genes are implicated in morphological differences between species and phenotypic variations within species. At present, poly-Q encoding genes in non-human mammalian species are poorly documented, as are their functions and propensities for polymorphic variation. Results The current investigation identified 178 bovine poly-Q encoding genes (Q ≥ 5) and within this group, 26 genes with orthologs in both human and mouse that did not contain poly-Q repeats. The bovine poly-Q encoding genes typically had ubiquitous expression patterns although there was bias towards expression in epithelia, brain and testes. They were also characterised by unusually large sizes. Analysis of gene ontology terms revealed that the encoded proteins were strongly enriched for functions associated with transcriptional regulation and many contributed to physical interaction networks in the nucleus where they presumably act cooperatively in transcriptional regulatory complexes. In addition, the coding sequence CAG repeats in some bovine genes impacted mRNA splicing thereby generating unusual transcriptional diversity, which in at least one instance was tissue-specific. The poly-Q encoding genes were prioritised using multiple criteria for their likelihood of being polymorphic and then the highest ranking group was experimentally tested for polymorphic variation within a cattle diversity panel. Extensive and meiotically stable variation was identified

  7. Automated local line rolling forming and simplified deformation simulation method for complex curvature plate of ships

    Directory of Open Access Journals (Sweden)

    Y. Zhao

    2017-06-01

    Full Text Available Local line rolling forming is a common forming approach for the complex curvature plate of ships. However, the processing mode based on artificial experience is still applied at present, because it is difficult to integrally determine relational data for the forming shape, processing path, and process parameters used to drive automation equipment. Numerical simulation is currently the major approach for generating such complex relational data. Therefore, a highly precise and effective numerical computation method becomes crucial in the development of the automated local line rolling forming system for producing complex curvature plates used in ships. In this study, a three-dimensional elastoplastic finite element method was first employed to perform numerical computations for local line rolling forming, and the corresponding deformation and strain distribution features were acquired. In addition, according to the characteristics of strain distributions, a simplified deformation simulation method, based on the deformation obtained by applying strain was presented. Compared to the results of the three-dimensional elastoplastic finite element method, this simplified deformation simulation method was verified to provide high computational accuracy, and this could result in a substantial reduction in calculation time. Thus, the application of the simplified deformation simulation method was further explored in the case of multiple rolling loading paths. Moreover, it was also utilized to calculate the local line rolling forming for the typical complex curvature plate of ships. Research findings indicated that the simplified deformation simulation method was an effective tool for rapidly obtaining relationships between the forming shape, processing path, and process parameters.

  8. Methodology development for the sustainability process assessment of sheet metal forming of complex-shaped products

    International Nuclear Information System (INIS)

    Pankratov, D L; Kashapova, L R

    2015-01-01

    A methodology was developed for automated assessment of the reliability of the process of sheet metal forming process to reduce the defects in complex components manufacture. The article identifies the range of allowable values of the stamp parameters to obtain defect-free punching of spars trucks. (paper)

  9. The Optimal Conditions for Form-Focused Instruction: Method, Target Complexity, and Types of Knowledge

    Science.gov (United States)

    Kim, Jeong-eun

    2012-01-01

    This dissertation investigates optimal conditions for form-focused instruction (FFI) by considering effects of internal (i.e., timing and types of FFI) and external (i.e., complexity and familiarity) variables of FFI when it is offered within a primarily meaning-focused context of adult second language (L2) learning. Ninety-two Korean-speaking…

  10. The Effect of Focus on Form and Task Complexity on L2 Learners' Oral Task Performance

    Science.gov (United States)

    Salimi, Asghar

    2015-01-01

    Second Language learners' oral task performance has been one of interesting and research generating areas of investigations in the field of second language acquisition specially, task-based language teaching and learning. The main purpose of the present study is to investigate the effect of focus on form and task complexity on L2 learners' oral…

  11. Photophysical and physicochemical studies of rare earths complexes formed with calyx(n)arenes

    International Nuclear Information System (INIS)

    Ramirez, F.M.; Varbanov, S.; Corine, C.; Muller, G.; Fatin-Rouge, N.; Scopelliti, R.; Bunzli J, C.G.

    2001-01-01

    In this work, some of the photophysical and physicochemical properties are presented which are observed in the rare earths complexes that are formed with diverse functionalized calyx(n)arenes receptors where n=4-6 designed with predetermined properties and synthesized by own methods. (Author)

  12. Post-transcriptional generation of miRNA variants by multiple nucleotidyl transferases contributes to miRNA transcriptome complexity

    OpenAIRE

    Wyman, Stacia K.; Knouf, Emily C.; Parkin, Rachael K.; Fritz, Brian R.; Lin, Daniel W.; Dennis, Lucas M.; Krouse, Michael A.; Webster, Philippa J.; Tewari, Muneesh

    2011-01-01

    Modification of microRNA sequences by the 3′ addition of nucleotides to generate so-called “isomiRs” adds to the complexity of miRNA function, with recent reports showing that 3′ modifications can influence miRNA stability and efficiency of target repression. Here, we show that the 3′ modification of miRNAs is a physiological and common post-transcriptional event that shows selectivity for specific miRNAs and is observed across species ranging from C. elegans to human. The modifications resul...

  13. Universal properties of complexes formed by two oppositely charged flexible polyelectrolytes

    International Nuclear Information System (INIS)

    Winkler, Roland G

    2004-01-01

    Results of molecular dynamics simulations for systems with two flexible, oppositely charged polymer chains are presented. It is shown that the chains aggregate into densely packed structures. The universal properties of the formed complexes are investigated as a function of chain length and interaction strength. For weakly interacting systems, a chain length-dependent effective interaction strength is obtained which governs the initiation of the aggregation process. At intermediate interaction strengths, the formed complexes exhibit a scaling behaviour with respect to molecular weight typically for chain molecules in a bad solvent. An unusual weak dependence of the radius of gyration on the interaction strength is found in this regime. Finally, for strong interactions, tightly packed globules are obtained. The radii of gyration and the densities of the complexes are discussed

  14. Calcium-dependent protein kinases responsible for the phosphorylation of a bZIP transcription factor FD crucial for the florigen complex formation.

    Science.gov (United States)

    Kawamoto, Nozomi; Sasabe, Michiko; Endo, Motomu; Machida, Yasunori; Araki, Takashi

    2015-02-09

    Appropriate timing of flowering is critical for reproductive success and necessarily involves complex genetic regulatory networks. A mobile floral signal, called florigen, is a key molecule in this process, and flowering locus T (FT) protein is its major component in Arabidopsis. FT is produced in leaves, but promotes the floral transition in the shoot apex, where it forms a complex with a basic region/leucine-zipper (bZIP) transcription factor, FD. Formation of the florigen complex depends on the supposed phosphorylation of FD; hitherto, however, the responsible protein kinase(s) have not been identified. In this study, we prepared protein extracts from shoot apices of plants around the floral transition, and detected a protein kinase activity that phosphorylates a threonine residue at position 282 of FD (FD T282), which is a crucial residue for the complex formation with FT via 14-3-3. The kinase activity was calcium-dependent. Subsequent biochemical, cellular, and genetic analyses showed that three calcium-dependent protein kinases (CDPKs) efficiently phosphorylate FD T282. Two of them (CPK6 and CPK33) are expressed in shoot apical meristem and directly interact with FD, suggesting they have redundant functions. The loss of function of one CDPK (CPK33) resulted in a weak but significant late-flowering phenotype.

  15. The Transcription Factor Nrf2 Protects Angiogenic Capacity of Endothelial Colony-Forming Cells in High-Oxygen Radical Stress Conditions

    NARCIS (Netherlands)

    Gremmels, Hendrik; De Jong, Olivier G.; Hazenbrink, Diënty H.; Fledderus, Joost O.; Verhaar, Marianne C.

    2017-01-01

    Background. Endothelial colony forming cells (ECFCs) have shown a promise in tissue engineering of vascular constructs, where they act as endothelial progenitor cells. After implantation, ECFCs are likely to be subjected to elevated reactive oxygen species (ROS). The transcription factor Nrf2

  16. Complex MHC class I gene transcription profiles and their functional impact in orangutans

    Science.gov (United States)

    de Groot, Natasja G.; Heijmans, Corrine M.C.; van der Wiel, Marit K.H.; Blokhuis, Jeroen H.; Mulder, Arend; Guethlein, Lisbeth A.; Doxiadis, Gaby G.M.; Claas, Frans H.J.; Parham, Peter; Bontrop, Ronald E.

    2015-01-01

    MHC haplotypes of humans and the African great ape species have one copy of the MHC-A, -B, and -C genes. In contrast, MHC haplotypes of orangutans, the Asian great ape species, exhibit variation in the number of gene copies. An in-depth analysis of the MHC class I gene repertoire in the two orangutan species, Pongo abelii and Pongo pygmaeus, is presented here. This analysis involved Sanger and next-generation sequencing methodologies, revealing diverse and complicated transcription profiles for orangutan MHC-A, -B, and -C. Thirty-five previously unreported MHC class I alleles are described. The data demonstrate that each orangutan MHC haplotype has one copy of the MHC-A gene, and that the MHC-B region has been subject to duplication, giving rise to at least three MHC-B genes. The MHC-B*03 and -B*08 lineages of alleles each account for a separate MHC-B gene. All MHC-B*08 allotypes have the C1-epitope motif recognized by KIR. At least one other MHC-B gene is present, pointing to MHC-B alleles that are not B*03 or B*08. The MHC-C gene is present only on some haplotypes, and each MHC-C allotype has the C1-epitope. The transcription profiles demonstrate that MHC-A alleles are highly transcribed, whereas MHC-C alleles, when present, are transcribed at very low levels. The MHC-B alleles are transcribed to a variable extent and over a wide range. For those orangutan MHC class I allotypes that are detected by human monoclonal anti-HLA class I antibodies, the level of cell-surface expression of proteins correlates with the level of transcription of the allele. PMID:26685209

  17. The Effect of Focus on Form and Task Complexity on L2 Learners’ Oral Task Performance

    Directory of Open Access Journals (Sweden)

    Asghar Salimi

    2015-12-01

    Full Text Available Second Language learners’ oral task performance has been one of interesting and research generating areas of investigations in the field of second language acquisition specially, task-based language teaching and learning. The main purpose of the present study is to investigate the effect of focus on form and task complexity on L2 learners’ oral task accuracy. To this end, sixty intermediate learners of English as a foreign language attending an English institute were chosen as the participant of the study and were divided into three groups control and two experimental groups with and without focus on form strategy. ANOVA and Independent Sample T-test were employed as the statistical means of analysis. The results a of analysis revealed significant differences among the performance of the groups. The study carries significant implications for syllabus and task designers, curriculum developers and language teachers. Keywords: Accuracy, Focus on form, Task, Task-based language teaching, Task complexity

  18. IDN2 and its paralogs form a complex required for RNA-directed DNA methylation.

    Directory of Open Access Journals (Sweden)

    Cui-Jun Zhang

    Full Text Available IDN2/RDM12 has been previously identified as a component of the RNA-directed DNA methylation (RdDM machinery in Arabidopsis thaliana, but how it functions in RdDM remains unknown. By affinity purification of IDN2, we co-purified two IDN2 paralogs IDP1 and IDP2 (IDN2 PARALOG 1 and 2. The coiled-coil domain between the XS and XH domains of IDN2 is essential for IDN2 homodimerization, whereas the IDN2 C-terminal XH domain but not the coiled-coil domain is required for IDN2 interaction with IDP1 and IDP2. By introducing the wild-type IDN2 sequence and its mutated derivatives into the idn2 mutant for complementation testing, we demonstrated that the previously uncharacterized IDN2 XH domain is required for the IDN2-IDP1/IDP2 complex formation as well as for IDN2 function. IDP1 is required for de novo DNA methylation, siRNA accumulation, and transcriptional gene silencing, whereas IDP2 has partially overlapping roles with IDP1. Unlike IDN2, IDP1 and IDP2 are incapable of binding double-stranded RNA, suggesting that the roles of IDP1 and IDP2 are different from those of IDN2 in the IDN2-IDP1/IDP2 complex and that IDP1 and IDP2 are essential for the functioning of the complex in RdDM.

  19. Nanostructures of colloidal complexes formed in oppositely charged polyelectrolyte/surfactant dilute aqueous solutions.

    Science.gov (United States)

    Trabelsi, S; Guillot, S; Ritacco, H; Boué, F; Langevin, D

    2007-07-01

    Small-angle neutron scattering measurements were performed on dilute solutions of carboxymethylcellulose/DTAB complexes in water in order to determine their size, shape and internal structures. At low polymer content, the complexes are spherical, rather monodisperse and probably made of polymer chains intercalated between surfactant micelles. Moreover, we show that these micelles have a similar cubic arrangement than found in polymer/surfactant precipitates formed at higher surfactant concentrations. At larger polymer content, in the semi-dilute polyelectrolyte regime, the complexes are larger, softer and polydisperse. However, they possess a similar internal structure in both regimes. Carboxymethylcellulose/CTAB complexes are also large, soft and polydisperse but do not seem to exhibit well-defined internal structures.

  20. Nanostructures of colloidal complexes formed in oppositely charged polyelectrolyte/surfactant dilute aqueous solutions

    Science.gov (United States)

    Trabelsi, S.; Guillot, S.; Ritacco, H.; Boué, F.; Langevin, D.

    2007-07-01

    Small-angle neutron scattering measurements were performed on dilute solutions of carboxymethylcellulose/DTAB complexes in water in order to determine their size, shape and internal structures. At low polymer content, the complexes are spherical, rather monodisperse and probably made of polymer chains intercalated between surfactant micelles. Moreover, we show that these micelles have a similar cubic arrangement than found in polymer/surfactant precipitates formed at higher surfactant concentrations. At larger polymer content, in the semi-dilute polyelectrolyte regime, the complexes are larger, softer and polydisperse. However, they possess a similar internal structure in both regimes. Carboxymethylcellulose/CTAB complexes are also large, soft and polydisperse but do not seem to exhibit well-defined internal structures.

  1. Dynamic changes in transcription factor complexes during erythroid differentiation revealed by quantitative proteomics.

    Science.gov (United States)

    Brand, Marjorie; Ranish, Jeffrey A; Kummer, Nicolas T; Hamilton, Joan; Igarashi, Kazuhiko; Francastel, Claire; Chi, Tian H; Crabtree, Gerald R; Aebersold, Ruedi; Groudine, Mark

    2004-01-01

    During erythroid differentiation, beta-globin gene expression is regulated by the locus control region (LCR). The transcription factor NF-E2p18/MafK binds within this region and is essential for beta-globin expression in murine erythroleukemia (MEL) cells. Here we use the isotope-coded affinity tag (ICAT) technique of quantitative mass spectrometry to compare proteins interacting with NF-E2p18/MafK during differentiation. Our results define MafK as a 'dual-function' molecule that shifts from a repressive to an activating mode during erythroid differentiation. The exchange of MafK dimerization partner from Bach1 to NF-E2p45 is a key step in the switch from the repressed to the active state. This shift is associated with changes in the interaction of MafK with co-repressors and co-activators. Thus, our results suggest that in addition to its role as a cis-acting activator of beta-globin gene expression in differentiated erythroid cells, the LCR also promotes an active repression of beta-globin transcription in committed cells before terminal differentiation.

  2. Complexity of CNC transcription factors as revealed by gene targeting of the Nrf3 locus.

    Science.gov (United States)

    Derjuga, Anna; Gourley, Tania S; Holm, Teresa M; Heng, Henry H Q; Shivdasani, Ramesh A; Ahmed, Rafi; Andrews, Nancy C; Blank, Volker

    2004-04-01

    Cap'n'collar (CNC) family basic leucine zipper transcription factors play crucial roles in the regulation of mammalian gene expression and development. To determine the in vivo function of the CNC protein Nrf3 (NF-E2-related factor 3), we generated mice deficient in this transcription factor. We performed targeted disruption of two Nrf3 exons coding for CNC homology, basic DNA-binding, and leucine zipper dimerization domains. Nrf3 null mice developed normally and revealed no obvious phenotypic differences compared to wild-type animals. Nrf3(-/-) mice were fertile, and gross anatomy as well as behavior appeared normal. The mice showed normal age progression and did not show any apparent additional phenotype during their life span. We observed no differences in various blood parameters and chemistry values. We infected wild-type and Nrf3(-/-) mice with acute lymphocytic choriomeningitis virus and found no differences in these animals with respect to their number of virus-specific CD8 and CD4 T cells as well as their B-lymphocyte response. To determine whether the mild phenotype of Nrf3 null animals is due to functional redundancy, we generated mice deficient in multiple CNC factors. Contrary to our expectations, an absence of Nrf3 does not seem to cause additional lethality in compound Nrf3(-/-)/Nrf2(-/-) and Nrf3(-/-)/p45(-/-) mice. We hypothesize that the role of Nrf3 in vivo may become apparent only after appropriate challenge to the mice.

  3. Structures of BmrR-Drug Complexes Reveal a Rigid Multidrug Binding Pocket And Transcription Activation Through Tyrosine Expulsion

    Energy Technology Data Exchange (ETDEWEB)

    Newberry, K.J.; Huffman, J.L.; Miller, M.C.; Vazquez-Laslop, N.; Neyfakh, A.A.; Brennan, R.G.

    2009-05-22

    BmrR is a member of the MerR family and a multidrug binding transcription factor that up-regulates the expression of the bmr multidrug efflux transporter gene in response to myriad lipophilic cationic compounds. The structural mechanism by which BmrR binds these chemically and structurally different drugs and subsequently activates transcription is poorly understood. Here, we describe the crystal structures of BmrR bound to rhodamine 6G (R6G) or berberine (Ber) and cognate DNA. These structures reveal each drug stacks against multiple aromatic residues with their positive charges most proximal to the carboxylate group of Glu-253 and that, unlike other multidrug binding pockets, that of BmrR is rigid. Substitution of Glu-253 with either alanine (E253A) or glutamine (E253Q) results in unpredictable binding affinities for R6G, Ber, and tetraphenylphosphonium. Moreover, these drug binding studies reveal that the negative charge of Glu-253 is not important for high affinity binding to Ber and tetraphenylphosphonium but plays a more significant, but unpredictable, role in R6G binding. In vitro transcription data show that E253A and E253Q are constitutively active, and structures of the drug-free E253A-DNA and E253Q-DNA complexes support a transcription activation mechanism requiring the expulsion of Tyr-152 from the multidrug binding pocket. In sum, these data delineate the mechanism by which BmrR binds lipophilic, monovalent cationic compounds and suggest the importance of the redundant negative electrostatic nature of this rigid drug binding pocket that can be used to discriminate against molecules that are not substrates of the Bmr multidrug efflux pump.

  4. G protein-coupled receptors form stable complexes with inwardly rectifying potassium channels and adenylyl cyclase.

    Science.gov (United States)

    Lavine, Natalie; Ethier, Nathalie; Oak, James N; Pei, Lin; Liu, Fang; Trieu, Phan; Rebois, R Victor; Bouvier, Michel; Hebert, Terence E; Van Tol, Hubert H M

    2002-11-29

    A large number of studies have demonstrated co-purification or co-immunoprecipitation of receptors with G proteins. We have begun to look for the presence of effector molecules in these receptor complexes. Co-expression of different channel and receptor permutations in COS-7 and HEK 293 cells in combination with co-immunoprecipitation experiments established that the dopamine D(2) and D(4), and beta(2)-adrenergic receptors (beta(2)-AR) form stable complexes with Kir3 channels. The D(4)/Kir3 and D(2) receptor/Kir3 interaction does not occur when the channel and receptor are expressed separately and mixed prior to immunoprecipitation, indicating that the interaction is not an artifact of the experimental protocol and reflects a biosynthetic event. The observed complexes are stable in that they are not disrupted by receptor activation or modulation of G protein alpha subunit function. However, using a peptide that binds Gbetagamma (betaARKct), we show that Gbetagamma is critical for dopamine receptor-Kir3 complex formation, but not for maintenance of the complex. We also provide evidence that Kir3 channels and another effector, adenylyl cyclase, are stably associated with the beta(2)-adrenergic receptor and can be co-immunoprecipitated by anti-receptor antibodies. Using bioluminescence resonance energy transfer, we have shown that in living cells under physiological conditions, beta(2)AR interacts directly with Kir3.1/3.4 and Kir3.1/3.2c heterotetramers as well as with adenylyl cyclase. All of these interactions are stable in the presence of receptor agonists, suggesting that these signaling complexes persist during signal transduction. In addition, we provide evidence that the receptor-effector complexes are also found in vivo. The observation that several G protein-coupled receptors form stable complexes with their effectors suggests that this arrangement might be a general feature of G protein-coupled signal transduction.

  5. Production of the 2400 kb Duchenne muscular dystrophy (DMD) gene transcript; transcription time and cotranscriptional splicing

    Energy Technology Data Exchange (ETDEWEB)

    Tennyson, C.N.; Worton, R.G. [Univ. of Toronto and the Hospital for Sick Children, Ontario (Canada)

    1994-09-01

    The largest known gene in any organism is the human DMD gene which has 79 exons that span 2400 kb. The extreme nature of the DMD gene raises questions concerning the time required for transcription and whether splicing begins before transcription is complete. DMD gene transcription is induced as cultured human myoblasts differentiate to form multinucleated myotubes, providing a system for studying the kinetics of transcription and splicing. Using quantitative RT-PCR, transcript accumulation was monitored from four different regions within the gene following induction of expression. By comparing the accumulation of transcripts from the 5{prime} and 3{prime} ends of the gene we have shown that approximately 12 hours are required to transcribe 1770 kb of the gene, extrapolating to a time of 16 hours for the transcription unit expressed in muscle. Comparison of accumulation profiles for spliced and total transcript demonstrated that transcripts are spliced at the 5{prime} end before transcription is complete, providing strong evidence for cotranscriptional splicing of DMD gene transcripts. Finally, the rate of transcript accumulation was reduced at the 3{prime} end of the gene relative to the 5{prime} end, perhaps due to premature termination of transcription complexes as they traverse this enormous transcription unit. The lag between transcription initiation and the appearance of complete transcripts could be important in limiting transcript production in dividing cells and to the timing of mRNA appearance in differentiating muscle.

  6. Loss of BAF (mSWI/SNF Complexes Causes Global Transcriptional and Chromatin State Changes in Forebrain Development

    Directory of Open Access Journals (Sweden)

    Ramanathan Narayanan

    2015-12-01

    Full Text Available BAF (Brg/Brm-associated factors complexes play important roles in development and are linked to chromatin plasticity at selected genomic loci. Nevertheless, a full understanding of their role in development and chromatin remodeling has been hindered by the absence of mutants completely lacking BAF complexes. Here, we report that the loss of BAF155/BAF170 in double-conditional knockout (dcKO mice eliminates all known BAF subunits, resulting in an overall reduction in active chromatin marks (H3K9Ac, a global increase in repressive marks (H3K27me2/3, and downregulation of gene expression. We demonstrate that BAF complexes interact with H3K27 demethylases (JMJD3 and UTX and potentiate their activity. Importantly, BAF complexes are indispensable for forebrain development, including proliferation, differentiation, and cell survival of neural progenitor cells. Our findings reveal a molecular mechanism mediated by BAF complexes that controls the global transcriptional program and chromatin state in development.

  7. The PAF complex and Prf1/Rtf1 delineate distinct Cdk9-dependent pathways regulating transcription elongation in fission yeast.

    Science.gov (United States)

    Mbogning, Jean; Nagy, Stephen; Pagé, Viviane; Schwer, Beate; Shuman, Stewart; Fisher, Robert P; Tanny, Jason C

    2013-01-01

    Cyclin-dependent kinase 9 (Cdk9) promotes elongation by RNA polymerase II (RNAPII), mRNA processing, and co-transcriptional histone modification. Cdk9 phosphorylates multiple targets, including the conserved RNAPII elongation factor Spt5 and RNAPII itself, but how these different modifications mediate Cdk9 functions is not known. Here we describe two Cdk9-dependent pathways in the fission yeast Schizosaccharomyces pombe that involve distinct targets and elicit distinct biological outcomes. Phosphorylation of Spt5 by Cdk9 creates a direct binding site for Prf1/Rtf1, a transcription regulator with functional and physical links to the Polymerase Associated Factor (PAF) complex. PAF association with chromatin is also dependent on Cdk9 but involves alternate phosphoacceptor targets. Prf1 and PAF are biochemically separate in cell extracts, and genetic analyses show that Prf1 and PAF are functionally distinct and exert opposing effects on the RNAPII elongation complex. We propose that this opposition constitutes a Cdk9 auto-regulatory mechanism, such that a positive effect on elongation, driven by the PAF pathway, is kept in check by a negative effect of Prf1/Rtf1 and downstream mono-ubiquitylation of histone H2B. Thus, optimal RNAPII elongation may require balanced action of functionally distinct Cdk9 pathways.

  8. The PAF complex and Prf1/Rtf1 delineate distinct Cdk9-dependent pathways regulating transcription elongation in fission yeast.

    Directory of Open Access Journals (Sweden)

    Jean Mbogning

    Full Text Available Cyclin-dependent kinase 9 (Cdk9 promotes elongation by RNA polymerase II (RNAPII, mRNA processing, and co-transcriptional histone modification. Cdk9 phosphorylates multiple targets, including the conserved RNAPII elongation factor Spt5 and RNAPII itself, but how these different modifications mediate Cdk9 functions is not known. Here we describe two Cdk9-dependent pathways in the fission yeast Schizosaccharomyces pombe that involve distinct targets and elicit distinct biological outcomes. Phosphorylation of Spt5 by Cdk9 creates a direct binding site for Prf1/Rtf1, a transcription regulator with functional and physical links to the Polymerase Associated Factor (PAF complex. PAF association with chromatin is also dependent on Cdk9 but involves alternate phosphoacceptor targets. Prf1 and PAF are biochemically separate in cell extracts, and genetic analyses show that Prf1 and PAF are functionally distinct and exert opposing effects on the RNAPII elongation complex. We propose that this opposition constitutes a Cdk9 auto-regulatory mechanism, such that a positive effect on elongation, driven by the PAF pathway, is kept in check by a negative effect of Prf1/Rtf1 and downstream mono-ubiquitylation of histone H2B. Thus, optimal RNAPII elongation may require balanced action of functionally distinct Cdk9 pathways.

  9. Nuclear pore complex evolution: a trypanosome Mlp analogue functions in chromosomal segregation but lacks transcriptional barrier activity.

    Science.gov (United States)

    Holden, Jennifer M; Koreny, Ludek; Obado, Samson; Ratushny, Alexander V; Chen, Wei-Ming; Chiang, Jung-Hsien; Kelly, Steven; Chait, Brian T; Aitchison, John D; Rout, Michael P; Field, Mark C

    2014-05-01

    The nuclear pore complex (NPC) has dual roles in nucleocytoplasmic transport and chromatin organization. In many eukaryotes the coiled-coil Mlp/Tpr proteins of the NPC nuclear basket have specific functions in interactions with chromatin and defining specialized regions of active transcription, whereas Mlp2 associates with the mitotic spindle/NPC in a cell cycle-dependent manner. We previously identified two putative Mlp-related proteins in African trypanosomes, TbNup110 and TbNup92, the latter of which associates with the spindle. We now provide evidence for independent ancestry for TbNup92/TbNup110 and Mlp/Tpr proteins. However, TbNup92 is required for correct chromosome segregation, with knockout cells exhibiting microaneuploidy and lowered fidelity of telomere segregation. Further, TbNup92 is intimately associated with the mitotic spindle and spindle anchor site but apparently has minimal roles in control of gene transcription, indicating that TbNup92 lacks major barrier activity. TbNup92 therefore acts as a functional analogue of Mlp/Tpr proteins, and, together with the lamina analogue NUP-1, represents a cohort of novel proteins operating at the nuclear periphery of trypanosomes, uncovering complex evolutionary trajectories for the NPC and nuclear lamina.

  10. The Compact Star-forming Complex at the Heart of NGC 253

    Science.gov (United States)

    Davidge, T. J.

    2016-02-01

    We discuss integral field spectra of the compact star-forming complex that is the brightest near-infrared (NIR) source in the central regions of the starburst galaxy NGC 253. The spectra cover the H and K passbands and were recorded with the Gemini NIR Spectrograph during subarcsecond seeing conditions. Absorption features in the spectrum of the star-forming complex are weaker than in the surroundings. An absorption feature is found near 1.78 μm that coincides with the location of a C2 bandhead. If this feature is due to C2 then the star-forming complex has been in place for at least a few hundred Myr. Emission lines of Brγ, [Fe II], and He I 2.06 μm do not track the NIR continuum light. Pockets of star-forming activity that do not have associated concentrations of red supergiants, and so likely have ages National Aeronautics and Space Administration.

  11. Lexical Complexity of Decision-Making Writing Tasks: Form-focused Guided Strategic Planning

    Directory of Open Access Journals (Sweden)

    Fatemeh Mahdavirad

    2016-06-01

    Full Text Available The present study is an attempt to investigate the effect of form-focused guided strategic planning on lexical complexity of learners’ performance in writing tasks. The twenty intermediate level participants of the study performed an unplanned and then a planned decision-making task. In the planned task condition, the participants were provided with form-focused guided strategic planning which contained detailed instructions about how to plan, by being instructed to focus on form. The guidance included an explanation of the necessary structural and lexical patterns employed to express the learners’ views while developing a comparison-and-contrast paragraph in each task. The results of the statistical analysis indicated that the participants produced a written product with a greater lexical complexity in their performance of the task in the form-focused strategic planning condition. The findings emphasize the importance of guided strategic planning as a task condition in syllabus design for task-based language teaching and the necessity of incorporating this task feature for accomplishing lexical complexity in decision-making writing tasks.

  12. Block Preconditioners for Complex Symmetric Linear System with Two-by-Two Block Form

    Directory of Open Access Journals (Sweden)

    Shi-Liang Wu

    2015-01-01

    Full Text Available Based on the previous work by Zhang and Zheng (A parameterized splitting iteration method for complex symmetric linear systems, Japan J. Indust. Appl. Math., 31 (2014 265–278, three block preconditioners for complex symmetric linear system with two-by-two block form are presented. Spectral properties of the preconditioned matrices are discussed in detail. It is shown that all the eigenvalues of the preconditioned matrices are well-clustered. Numerical experiments are reported to illustrate the efficiency of the proposed preconditioners.

  13. Surface Structures Formed by a Copper(II Complex of Alkyl-Derivatized Indigo

    Directory of Open Access Journals (Sweden)

    Akinori Honda

    2016-10-01

    Full Text Available Assembled structures of dyes have great influence on their coloring function. For example, metal ions added in the dyeing process are known to prevent fading of color. Thus, we have investigated the influence of an addition of copper(II ion on the surface structure of alkyl-derivatized indigo. Scanning tunneling microscope (STM analysis revealed that the copper(II complexes of indigo formed orderly lamellar structures on a HOPG substrate. These lamellar structures of the complexes are found to be more stable than those of alkyl-derivatized indigos alone. Furthermore, 2D chirality was observed.

  14. The NBS1-Treacle complex controls ribosomal RNA transcription in response to DNA damage.

    Science.gov (United States)

    Larsen, Dorthe H; Hari, Flurina; Clapperton, Julie A; Gwerder, Myriam; Gutsche, Katrin; Altmeyer, Matthias; Jungmichel, Stephanie; Toledo, Luis I; Fink, Daniel; Rask, Maj-Britt; Grøfte, Merete; Lukas, Claudia; Nielsen, Michael L; Smerdon, Stephen J; Lukas, Jiri; Stucki, Manuel

    2014-08-01

    Chromosome breakage elicits transient silencing of ribosomal RNA synthesis, but the mechanisms involved remained elusive. Here we discover an in trans signalling mechanism that triggers pan-nuclear silencing of rRNA transcription in response to DNA damage. This is associated with transient recruitment of the Nijmegen breakage syndrome protein 1 (NBS1), a central regulator of DNA damage responses, into the nucleoli. We further identify TCOF1 (also known as Treacle), a nucleolar factor implicated in ribosome biogenesis and mutated in Treacher Collins syndrome, as an interaction partner of NBS1, and demonstrate that NBS1 translocation and accumulation in the nucleoli is Treacle dependent. Finally, we provide evidence that Treacle-mediated NBS1 recruitment into the nucleoli regulates rRNA silencing in trans in the presence of distant chromosome breaks.

  15. Trypanin, a component of the flagellar Dynein regulatory complex, is essential in bloodstream form African trypanosomes.

    Directory of Open Access Journals (Sweden)

    Katherine S Ralston

    2006-09-01

    Full Text Available The Trypanosoma brucei flagellum is a multifunctional organelle with critical roles in motility, cellular morphogenesis, and cell division. Although motility is thought to be important throughout the trypanosome lifecycle, most studies of flagellum structure and function have been restricted to the procyclic lifecycle stage, and our knowledge of the bloodstream form flagellum is limited. We have previously shown that trypanin functions as part of a flagellar dynein regulatory system that transmits regulatory signals from the central pair apparatus and radial spokes to axonemal dyneins. Here we investigate the requirement for this dynein regulatory system in bloodstream form trypanosomes. We demonstrate that trypanin is localized to the flagellum of bloodstream form trypanosomes, in a pattern identical to that seen in procyclic cells. Surprisingly, trypanin RNA interference is lethal in the bloodstream form. These knockdown mutants fail to initiate cytokinesis, but undergo multiple rounds of organelle replication, accumulating multiple flagella, nuclei, kinetoplasts, mitochondria, and flagellum attachment zone structures. These findings suggest that normal flagellar beat is essential in bloodstream form trypanosomes and underscore the emerging concept that there is a dichotomy between trypanosome lifecycle stages with respect to factors that contribute to cell division and cell morphogenesis. This is the first time that a defined dynein regulatory complex has been shown to be essential in any organism and implicates the dynein regulatory complex and other enzymatic regulators of flagellar motility as candidate drug targets for the treatment of African sleeping sickness.

  16. A complex of meteorite-forming bodies (the Innisfree - Ridgedale family).

    Science.gov (United States)

    Shestaka, I. S.

    1994-12-01

    For the first time a swarm of meteorite-forming bodies was identified. Yearly this swarm's orbit approaches the Earth's orbit in early February. This swarm contains the Innisfree and Ridgedale fireballs, 9 small meteoric swarms, several asteroids and 12 fireballs photographed by the cameras of the Prairie Network and Canadian Meteorite Observation and Discovery Project. The discovery of this complex, intensive bombardments of the Moon's surface recorded by means of seismographs left on the Moon, the analysis of the time distributions of meteorite falls on the Earth and other established facts confirm the existence of swarms of meteorite-forming bodies which are crossing the Earth's orbit.

  17. Indefinitely stable iron(IV) cage complexes formed in water by air oxidation

    Science.gov (United States)

    Tomyn, Stefania; Shylin, Sergii I.; Bykov, Dmytro; Ksenofontov, Vadim; Gumienna-Kontecka, Elzbieta; Bon, Volodymyr; Fritsky, Igor O.

    2017-01-01

    In nature, iron, the fourth most abundant element of the Earth's crust, occurs in its stable forms either as the native metal or in its compounds in the +2 or +3 (low-valent) oxidation states. High-valent iron (+4, +5, +6) compounds are not formed spontaneously at ambient conditions, and the ones obtained synthetically appear to be unstable in polar organic solvents, especially aqueous solutions, and this is what limits their studies and use. Here we describe unprecedented iron(IV) hexahydrazide clathrochelate complexes that are assembled in alkaline aqueous media from iron(III) salts, oxalodihydrazide and formaldehyde in the course of a metal-templated reaction accompanied by air oxidation. The complexes can exist indefinitely at ambient conditions without any sign of decomposition in water, nonaqueous solutions and in the solid state. We anticipate that our findings may open a way to aqueous solution and polynuclear high-valent iron chemistry that remains underexplored and presents an important challenge.

  18. Down-regulation of the zinc-finger homeobox protein TSHZ2 releases GLI1 from the nuclear repressor complex to restore its transcriptional activity during mammary tumorigenesis

    Science.gov (United States)

    Riku, Miho; Inaguma, Shingo; Ito, Hideaki; Tsunoda, Takumi; Ikeda, Hiroshi; Kasai, Kenji

    2016-01-01

    Although breast cancer is one of the most common malignancies, the molecular mechanisms underlying its development and progression are not fully understood. To identify key molecules involved, we screened publicly available microarray datasets for genes differentially expressed between breast cancers and normal mammary glands. We found that three of the genes predicted in this analysis were differentially expressed among human mammary tissues and cell lines. Of these genes, we focused on the role of the zinc-finger homeobox protein TSHZ2, which is down-regulated in breast cancer cells. We found that TSHZ2 is a nuclear protein harboring a bipartite nuclear localization signal, and we confirmed its function as a C-terminal binding protein (CtBP)-dependent transcriptional repressor. Through comprehensive screening, we identified TSHZ2-suppressing genes such as AEBP1 and CXCR4, which are conversely up-regulated by GLI1, the downstream transcription factor of Hedgehog signaling. We found that GLI1 forms a ternary complex with CtBP2 in the presence of TSHZ2 and that the transcriptional activity of GLI1 is suppressed by TSHZ2 in a CtBP-dependent manner. Indeed, knockdown of TSHZ2 increases the expression of AEBP1 and CXCR4 in TSHZ2-expressing immortalized mammary duct epithelium. Concordantly, immunohistochemical staining of mammary glands revealed that normal duct cells expresses GLI1 in the nucleus along with TSHZ2 and CtBP2, whereas invasive ductal carcinoma cells, which does not express TSHZ2, show the increase in the expression of AEBP1 and CXCR4 and in the cytoplasmic localization of GLI1. Thus, we propose that down-regulation of TSHZ2 is crucial for mammary tumorigenesis via the activation of GLI1. PMID:26744317

  19. Principles for RNA metabolism and alternative transcription initiation within closely spaced promoters

    DEFF Research Database (Denmark)

    Chen, Yun; Pai, Athma A.; Herudek, Jan

    2016-01-01

    Mammalian transcriptomes are complex and formed by extensive promoter activity. In addition, gene promoters are largely divergent and initiate transcription of reverse-oriented promoter upstream transcripts (PROMPTs). Although PROMPTs are commonly terminated early, influenced by polyadenylation s...

  20. The role of empirical research in the study of complex forms of governance in agroindustrial systems

    Directory of Open Access Journals (Sweden)

    Guilherme Fowler A. Monteiro

    2012-12-01

    Full Text Available The growing complexity of supply chains poses new challenges for Agricultural Research Centers and statistical agencies. The aim of this perspective paper is to discuss the role of empirical research in understanding the complex forms of governance in agribusiness. The authors argue that there are three fundamental levels of analysis: (i the basic structure of the market, (ii the formal contractual arrangements that govern relations within the agroindustrial system and (iii the transactional dimensions governed by non-contractual means. The case of the agrochemical industry in Brazil illustrates how traditional analyses that only address market structure are insufficient to fully explain the agricultural sector and its supply chain. The article concludes by suggesting some indicators which could be collected by statistical agencies to improve understanding of the complex relationships among agribusiness segments. In doing so, the paper seeks to minimize costs and to enable a better formulation of public and private policies.

  1. Mannan-binding protein forms complexes with alpha-2-macroglobulin. A protein model for the interaction

    DEFF Research Database (Denmark)

    Storgaard, P; Holm Nielsen, E; Skriver, E

    1995-01-01

    We report that alpha-2-macroglobulin (alpha 2M) can form complexes with a high molecular weight porcine mannan-binding protein (pMBP-28). The alpha 2M/pMBP-28 complexes was isolated by PEG-precipitation and affinity chromatography on mannan-Sepharose, protein A-Sepharose and anti-IgM Sepharose......-PAGE, which reacted with antibodies against alpha 2M and pMBP-28, respectively, in Western blotting. Furthermore, alpha 2M/pMBP-28 complexes were demonstrated by electron microscopy. Fractionation of pMBP-containing D-mannose eluate from mannan-Sepharose on Superose 6 showed two protein peaks which reacted...

  2. Tor forms a dimer through an N-terminal helical solenoid with a complex topology

    Science.gov (United States)

    Baretić, Domagoj; Berndt, Alex; Ohashi, Yohei; Johnson, Christopher M.; Williams, Roger L.

    2016-04-01

    The target of rapamycin (Tor) is a Ser/Thr protein kinase that regulates a range of anabolic and catabolic processes. Tor is present in two complexes, TORC1 and TORC2, in which the Tor-Lst8 heterodimer forms a common sub-complex. We have determined the cryo-electron microscopy (EM) structure of Tor bound to Lst8. Two Tor-Lst8 heterodimers assemble further into a dyad-symmetry dimer mediated by Tor-Tor interactions. The first 1,300 residues of Tor form a HEAT repeat-containing α-solenoid with four distinct segments: a highly curved 800-residue N-terminal 'spiral', followed by a 400-residue low-curvature 'bridge' and an extended `railing' running along the bridge leading to the 'cap' that links to FAT region. This complex topology was verified by domain insertions and offers a new interpretation of the mTORC1 structure. The spiral of one TOR interacts with the bridge of another, which together form a joint platform for the Regulatory Associated Protein of TOR (RAPTOR) regulatory subunit.

  3. Cardiolipin synthesizing enzymes form a complex that interacts with cardiolipin-dependent membrane organizing proteins.

    Science.gov (United States)

    Serricchio, Mauro; Vissa, Adriano; Kim, Peter K; Yip, Christopher M; McQuibban, G Angus

    2018-04-01

    The mitochondrial glycerophospholipid cardiolipin plays important roles in mitochondrial biology. Most notably, cardiolipin directly binds to mitochondrial proteins and helps assemble and stabilize mitochondrial multi-protein complexes. Despite their importance for mitochondrial health, how the proteins involved in cardiolipin biosynthesis are organized and embedded in mitochondrial membranes has not been investigated in detail. Here we show that human PGS1 and CLS1 are constituents of large protein complexes. We show that PGS1 forms oligomers and associates with CLS1 and PTPMT1. Using super-resolution microscopy, we observed well-organized nanoscale structures formed by PGS1. Together with the observation that cardiolipin and CLS1 are not required for PGS1 to assemble in the complex we predict the presence of a PGS1-centered cardiolipin-synthesizing scaffold within the mitochondrial inner membrane. Using an unbiased proteomic approach we found that PGS1 and CLS1 interact with multiple cardiolipin-binding mitochondrial membrane proteins, including prohibitins, stomatin-like protein 2 and the MICOS components MIC60 and MIC19. We further mapped the protein-protein interaction sites between PGS1 and itself, CLS1, MIC60 and PHB. Overall, this study provides evidence for the presence of a cardiolipin synthesis structure that transiently interacts with cardiolipin-dependent protein complexes. Copyright © 2018 Elsevier B.V. All rights reserved.

  4. TERRA transcripts are bound by a complex array of RNA-binding proteins.

    Science.gov (United States)

    López de Silanes, Isabel; Stagno d'Alcontres, Martina; Blasco, Maria A

    2010-06-29

    Telomeres are transcribed from the telomeric C-rich strand, giving rise to UUAGGG repeat-containing telomeric transcripts or TERRA, which are novel structural components of telomeres. TERRA abundance is highly dependent on developmental status (including nuclear reprogramming), telomere length, cellular stresses, tumour stage and chromatin structure. However, the molecular mechanisms and factors controlling TERRA levels are still largely unknown. In this study, we identify a set of RNA-binding proteins, which endogenously bind and regulate TERRA in the context of primary mouse embryonic fibroblasts. The identification was carried out by biotin pull-down assays followed by LC-MALDI TOF/TOF mass spectrometry. Different members of the heterogeneous nuclear ribonucleoprotein family are among the ribonucleoprotein family that bind more abundantly to TERRA. Downregulation of TERRA-bound RBPs by small interfering RNA further shows that they can impact on TERRA abundance, their location and telomere lengthening. These findings anticipate an impact of TERRA-associated RBPs on telomere biology and telomeres diseases, such as cancer and aging.

  5. Yeast Sub1 and human PC4 are G-quadruplex binding proteins that suppress genome instability at co-transcriptionally formed G4 DNA.

    Science.gov (United States)

    Lopez, Christopher R; Singh, Shivani; Hambarde, Shashank; Griffin, Wezley C; Gao, Jun; Chib, Shubeena; Yu, Yang; Ira, Grzegorz; Raney, Kevin D; Kim, Nayun

    2017-06-02

    G-quadruplex or G4 DNA is a non-B secondary DNA structure consisting of a stacked array of guanine-quartets that can disrupt critical cellular functions such as replication and transcription. When sequences that can adopt Non-B structures including G4 DNA are located within actively transcribed genes, the reshaping of DNA topology necessary for transcription process stimulates secondary structure-formation thereby amplifying the potential for genome instability. Using a reporter assay designed to study G4-induced recombination in the context of an actively transcribed locus in Saccharomyces cerevisiae, we tested whether co-transcriptional activator Sub1, recently identified as a G4-binding factor, contributes to genome maintenance at G4-forming sequences. Our data indicate that, upon Sub1-disruption, genome instability linked to co-transcriptionally formed G4 DNA in Top1-deficient cells is significantly augmented and that its highly conserved DNA binding domain or the human homolog PC4 is sufficient to suppress G4-associated genome instability. We also show that Sub1 interacts specifically with co-transcriptionally formed G4 DNA in vivo and that yeast cells become highly sensitivity to G4-stabilizing chemical ligands by the loss of Sub1. Finally, we demonstrate the physical and genetic interaction of Sub1 with the G4-resolving helicase Pif1, suggesting a possible mechanism by which Sub1 suppresses instability at G4 DNA. © The Author(s) 2017. Published by Oxford University Press on behalf of Nucleic Acids Research.

  6. Characterizing highly dynamic conformational states: The transcription bubble in RNAP-promoter open complex as an example

    Science.gov (United States)

    Lerner, Eitan; Ingargiola, Antonino; Weiss, Shimon

    2018-03-01

    Bio-macromolecules carry out complicated functions through structural changes. To understand their mechanism of action, the structure of each step has to be characterized. While classical structural biology techniques allow the characterization of a few "structural snapshots" along the enzymatic cycle (usually of stable conformations), they do not cover all (and often fast interconverting) structures in the ensemble, where each may play an important functional role. Recently, several groups have demonstrated that structures of different conformations in solution could be solved by measuring multiple distances between different pairs of residues using single-molecule Förster resonance energy transfer (smFRET) and using them as constrains for hybrid/integrative structural modeling. However, this approach is limited in cases where the conformational dynamics is faster than the technique's temporal resolution. In this study, we combine existing tools that elucidate sub-millisecond conformational dynamics together with hybrid/integrative structural modeling to study the conformational states of the transcription bubble in the bacterial RNA polymerase-promoter open complex (RPo). We measured microsecond alternating laser excitation-smFRET of differently labeled lacCONS promoter dsDNA constructs. We used a combination of burst variance analysis, photon-by-photon hidden Markov modeling, and the FRET-restrained positioning and screening approach to identify two conformational states for RPo. The experimentally derived distances of one conformational state match the known crystal structure of bacterial RPo. The experimentally derived distances of the other conformational state have characteristics of a scrunched RPo. These findings support the hypothesis that sub-millisecond dynamics in the transcription bubble are responsible for transcription start site selection.

  7. Characterization of transcriptional complexity during adipose tissue development in bovines of different ages and sexes.

    Directory of Open Access Journals (Sweden)

    Yang Zhou

    Full Text Available Adipose tissue has long been recognized to play an extremely important role in development. In bovines, it not only serves a fundamental function but also plays a key role in the quality of beef and, consequently, has drawn much public attention. Age and sex are two key factors that affect the development of adipose tissue, and there has not yet been a global study detailing the effects of these two factors on expressional differences of adipose tissues.In this study, total RNA from the back fat of fetal bovines, adult bulls, adult heifers and adult steers were used to construct libraries for Illumina next-generation sequencing. We detected the expression levels of 12,233 genes, with over 3,000 differently expressed genes when comparing fetal and adult patterns and an average of 1000 differently expressed genes when comparing adult patterns. Multiple Gene Ontology terms and pathways were found to be significantly enriched for these differentially expressed genes. Of the 12,233 detected genes, a total of 4,753 genes (38.85% underwent alternative splicing events, and over 50% were specifically expressed in each library. Over 4,000 novel transcript units were discovered for one library, whereas only approximately 30% were considered to have coding ability, which supplied a large amount of information for the lncRNA study. Additionally, we detected 56,564 (fetal bovine, 65,154 (adult bull, 78,061 (adult heifer and 86,965 (adult steer putative single nucleotide polymorphisms located in coding regions of the four pooled libraries.Here, we present, for the first time, a complete dataset involving the spatial and temporal transcriptome of bovine adipose tissue using RNA-seq. These data will facilitate the understanding of the effects of age and sex on the development of adipose tissue and supply essential information towards further studies on the genomes of beef cattle and other related mammals.

  8. SWI/SNF chromatin remodeling complex is critical for the expression of microphthalmia-associated transcription factor in melanoma cells

    Energy Technology Data Exchange (ETDEWEB)

    Vachtenheim, Jiri, E-mail: jivach@upn.anet.cz [Laboratory of Molecular Biology, University Hospital, Charles University, Prague (Czech Republic); Ondrusova, Lubica [Laboratory of Molecular Biology, University Hospital, Charles University, Prague (Czech Republic); Borovansky, Jan [Institute of Biochemistry and Experimental Oncology, 1st Faculty of Medicine, Charles University, Prague (Czech Republic)

    2010-02-12

    The microphthalmia-associated transcription factor (MITF) is required for melanocyte development, maintenance of the melanocyte-specific transcription, and survival of melanoma cells. MITF positively regulates expression of more than 25 genes in pigment cells. Recently, it has been demonstrated that expression of several MITF downstream targets requires the SWI/SNF chromatin remodeling complex, which contains one of the two catalytic subunits, Brm or Brg1. Here we show that the expression of MITF itself critically requires active SWI/SNF. In several Brm/Brg1-expressing melanoma cell lines, knockdown of Brg1 severely compromised MITF expression with a concomitant dowregulation of MITF targets and decreased cell proliferation. Although Brm was able to substitute for Brg1 in maintaining MITF expression and melanoma cell proliferation, sequential knockdown of both Brm and Brg1 in 501mel cells abolished proliferation. In Brg1-null SK-MEL-5 melanoma cells, depletion of Brm alone was sufficient to abrogate MITF expression and cell proliferation. Chromatin immunoprecipitation confirmed the binding of Brg1 or Brm to the promoter of MITF. Together these results demonstrate the essential role of SWI/SNF for expression of MITF and suggest that SWI/SNF may be a promissing target in melanoma therapy.

  9. Redox Reactions of Copper Complexes Formed with Different β-amyloid Peptides and Their Neuropathalogical Relevance†

    Science.gov (United States)

    Jiang, Dianlu; Men, Lijie; Wang, Jianxiu; Zhang, Yi; Chickenyen, Sara; Wang, Yinsheng; Zhou, Feimeng

    2011-01-01

    The binding stoichiometry between Cu(II) and the full-length β-amyloid Aβ(1–42) and the oxidation state of copper in the resultant complex were determined by electrospray ionization-Fourier transform ion cyclotron resonance mass spectrometry (ESI-FTICR-MS) and cyclic voltammetry. The same approach was extended to the copper complexes of Aβ(1–16) and Aβ(1–28). A stoichiometric ratio of 1:1 was directly observed and the oxidation state of copper was deduced to be 2+ for all the complexes and residues tyrosine-10 and methionine-35 are not oxidized in the Aβ(1–42)-Cu(II) complex. The stoichiometric ratio remains the same in the presence of more than 10 fold excess of Cu(II). Redox potentials of the sole tyrosine residue and the Cu(II) center were determined to be ca. 0.75 V and 0.08 V vs. Ag/AgCl (or 0.95 V and 0.28 V vs. normal hydrogen electrode (NHE)), respectively. More importantly, for the first time, Aβ-Cu(I) complex has been generated electrochemically and was found to catalyze the reduction of oxygen to produce hydrogen peroxide. The voltammetric behaviors of the three Aβ segments suggest that diffusion of oxygen to the metal center can be affected by the length and hydrophobicity of the Aβ peptide. The determination and assignment of the redox potentials clarify some misconceptions in the redox reactions involving Aβ and provide new insight into the possible roles of redox metal ions in the Alzheimer’s disease (AD) pathogenesis. In cellular environments, the reduction potential of the Aβ-Cu(II) complex is sufficiently low to react with antioxidants (e.g., ascorbic acid) and cellular redox buffers (e.g., glutathione), and the Aβ-Cu(I) complex produced could subsequently reduce oxygen to form hydrogen peroxide via a catalytic cycle. Using voltammetry, the Aβ-Cu(II) complex formed in solution was found to be readily reduced by ascorbic acid. Hydrogen peroxide produced, in addition to its role in damaging DNA, protein, and lipid molecules

  10. VGLL4 functions as a new tumor suppressor in lung cancer by negatively regulating the YAP-TEAD transcriptional complex.

    Science.gov (United States)

    Zhang, Wenjing; Gao, Yijun; Li, Peixue; Shi, Zhubing; Guo, Tong; Li, Fei; Han, Xiangkun; Feng, Yan; Zheng, Chao; Wang, Zuoyun; Li, Fuming; Chen, Haiquan; Zhou, Zhaocai; Zhang, Lei; Ji, Hongbin

    2014-03-01

    Lung cancer is one of the most devastating diseases worldwide with high incidence and mortality. Hippo (Hpo) pathway is a conserved regulator of organ size in both Drosophila and mammals. Emerging evidence has suggested the significance of Hpo pathway in cancer development. In this study, we identify VGLL4 as a novel tumor suppressor in lung carcinogenesis through negatively regulating the formation of YAP-TEAD complex, the core component of Hpo pathway. Our data show that VGLL4 is frequently observed to be lowly expressed in both mouse and human lung cancer specimens. Ectopic expression of VGLL4 significantly suppresses the growth of lung cancer cells in vitro. More importantly, VGLL4 significantly inhibits lung cancer progression in de novo mouse model. We further find that VGLL4 inhibits the activity of the YAP-TEAD transcriptional complex. Our data show that VGLL4 directly competes with YAP in binding to TEADs and executes its growth-inhibitory function through two TDU domains. Collectively, our study demonstrates that VGLL4 is a novel tumor suppressor for lung cancer through negatively regulating the YAP-TEAD complex formation and thus the Hpo pathway.

  11. The transcriptional regulator Aire coopts the repressive ATF7ip-MBD1 complex for the induction of immunotolerance.

    Science.gov (United States)

    Waterfield, Michael; Khan, Imran S; Cortez, Jessica T; Fan, Una; Metzger, Todd; Greer, Alexandra; Fasano, Kayla; Martinez-Llordella, Marc; Pollack, Joshua L; Erle, David J; Su, Maureen; Anderson, Mark S

    2014-03-01

    The maintenance of immunological tolerance requires the deletion of self-reactive T cells in the thymus. The expression of genes encoding tissue-specific antigens (TSAs) by thymic epithelial cells is critical for this process and depends on activity of the transcriptional regulator Aire; however, the molecular mechanisms Aire uses to target loci encoding TSAs are unknown. Here we identified two Aire-interacting proteins known to be involved in gene repression, ATF7ip and MBD1, that were required for Aire's targeting of loci encoding TSAs. Moreover, Mbd1(-/-) mice developed pathological autoimmunity and had a defect in Aire-dependent thymic expression of genes encoding TSAs, which underscores the importance of Aire's interaction with the ATF7ip-MBD1 protein complex in maintaining central tolerance.

  12. Deciphering Transcriptome and Complex Alternative Splicing Transcripts in Mammary Gland Tissues from Cows Naturally Infected with Staphylococcus aureus Mastitis.

    Directory of Open Access Journals (Sweden)

    Xiu Ge Wang

    Full Text Available Alternative splicing (AS contributes to the complexity of the mammalian proteome and plays an important role in diseases, including infectious diseases. The differential AS patterns of these transcript sequences between the healthy (HS3A and mastitic (HS8A cows naturally infected by Staphylococcus aureus were compared to understand the molecular mechanisms underlying mastitis resistance and susceptibility. In this study, using the Illumina paired-end RNA sequencing method, 1352 differentially expressed genes (DEGs with higher than twofold changes were found in the HS3A and HS8A mammary gland tissues. Gene ontology and KEGG pathway analyses revealed that the cytokine-cytokine receptor interaction pathway is the most significantly enriched pathway. Approximately 16k annotated unigenes were respectively identified in two libraries, based on the bovine Bos taurus UMD3.1 sequence assembly and search. A total of 52.62% and 51.24% annotated unigenes were alternatively spliced in term of exon skipping, intron retention, alternative 5' splicing and alternative 3' splicing. Additionally, 1,317 AS unigenes were HS3A-specific, whereas 1,093 AS unigenes were HS8A-specific. Some immune-related genes, such as ITGB6, MYD88, ADA, ACKR1, and TNFRSF1B, and their potential relationships with mastitis were highlighted. From Chromosome 2, 4, 6, 7, 10, 13, 14, 17, and 20, 3.66% (HS3A and 5.4% (HS8A novel transcripts, which harbor known quantitative trait locus associated with clinical mastitis, were identified. Many DEGs in the healthy and mastitic mammary glands are involved in immune, defense, and inflammation responses. These DEGs, which exhibit diverse and specific splicing patterns and events, can endow dairy cattle with the potential complex genetic resistance against mastitis.

  13. Deciphering Transcriptome and Complex Alternative Splicing Transcripts in Mammary Gland Tissues from Cows Naturally Infected with Staphylococcus aureus Mastitis

    Science.gov (United States)

    Jiang, Qiang; Yang, Chun Hong; Zhang, Yan; Sun, Yan; Li, Rong Ling; Wang, Chang Fa; Zhong, Ji Feng; Huang, Jin Ming

    2016-01-01

    Alternative splicing (AS) contributes to the complexity of the mammalian proteome and plays an important role in diseases, including infectious diseases. The differential AS patterns of these transcript sequences between the healthy (HS3A) and mastitic (HS8A) cows naturally infected by Staphylococcus aureus were compared to understand the molecular mechanisms underlying mastitis resistance and susceptibility. In this study, using the Illumina paired-end RNA sequencing method, 1352 differentially expressed genes (DEGs) with higher than twofold changes were found in the HS3A and HS8A mammary gland tissues. Gene ontology and KEGG pathway analyses revealed that the cytokine–cytokine receptor interaction pathway is the most significantly enriched pathway. Approximately 16k annotated unigenes were respectively identified in two libraries, based on the bovine Bos taurus UMD3.1 sequence assembly and search. A total of 52.62% and 51.24% annotated unigenes were alternatively spliced in term of exon skipping, intron retention, alternative 5′ splicing and alternative 3ʹ splicing. Additionally, 1,317 AS unigenes were HS3A-specific, whereas 1,093 AS unigenes were HS8A-specific. Some immune-related genes, such as ITGB6, MYD88, ADA, ACKR1, and TNFRSF1B, and their potential relationships with mastitis were highlighted. From Chromosome 2, 4, 6, 7, 10, 13, 14, 17, and 20, 3.66% (HS3A) and 5.4% (HS8A) novel transcripts, which harbor known quantitative trait locus associated with clinical mastitis, were identified. Many DEGs in the healthy and mastitic mammary glands are involved in immune, defense, and inflammation responses. These DEGs, which exhibit diverse and specific splicing patterns and events, can endow dairy cattle with the potential complex genetic resistance against mastitis. PMID:27459697

  14. REF4 and RFR1, subunits of the transcriptional coregulatory complex mediator, are required for phenylpropanoid homeostasis in Arabidopsis.

    Science.gov (United States)

    Bonawitz, Nicholas D; Soltau, Whitney L; Blatchley, Michael R; Powers, Brendan L; Hurlock, Anna K; Seals, Leslie A; Weng, Jing-Ke; Stout, Jake; Chapple, Clint

    2012-02-17

    The plant phenylpropanoid pathway produces an array of metabolites that impact human health and the utility of feed and fiber crops. We previously characterized several Arabidopsis thaliana mutants with dominant mutations in REDUCED EPIDERMAL FLUORESCENCE 4 (REF4) that cause dwarfing and decreased accumulation of phenylpropanoids. In contrast, ref4 null plants are of normal stature and have no apparent defect in phenylpropanoid biosynthesis. Here we show that disruption of both REF4 and its paralog, REF4-RELATED 1 (RFR1), results in enhanced expression of multiple phenylpropanoid biosynthetic genes, as well as increased accumulation of numerous downstream products. We also show that the dominant ref4-3 mutant protein interferes with the ability of the PAP1/MYB75 transcription factor to induce the expression of PAL1 and drive anthocyanin accumulation. Consistent with our experimental results, both REF4 and RFR1 have been shown to physically associate with the conserved transcriptional coregulatory complex, Mediator, which transduces information from cis-acting DNA elements to RNA polymerase II at the core promoter. Taken together, our data provide critical genetic support for a functional role of REF4 and RFR1 in the Mediator complex, and for Mediator in the maintenance of phenylpropanoid homeostasis. Finally, we show that wild-type RFR1 substantially mitigates the phenotype of the dominant ref4-3 mutant, suggesting that REF4 and RFR1 may compete with one another for common binding partners or for occupancy in Mediator. Determining the functions of diverse Mediator subunits is essential to understand eukaryotic gene regulation, and to facilitate rational manipulation of plant metabolic pathways to better suit human needs.

  15. Regulation of the anthocyanin biosynthetic pathway by the TTG1/bHLH/Myb transcriptional complex in Arabidopsis seedlings.

    Science.gov (United States)

    Gonzalez, Antonio; Zhao, Mingzhe; Leavitt, John M; Lloyd, Alan M

    2008-03-01

    In all higher plants studied to date, the anthocyanin pigment pathway is regulated by a suite of transcription factors that include Myb, bHLH and WD-repeat proteins. However, in Arabidopsis thaliana, the Myb regulators remain to be conclusively identified, and little is known about anthocyanin pathway regulation by TTG1-dependent transcriptional complexes. Previous overexpression of the PAP1 Myb suggested that genes from the entire phenylpropanoid pathway are targets of regulation by Myb/bHLH/WD-repeat complexes in Arabidopsis, in contrast to other plants. Here we demonstrate that overexpression of Myb113 or Myb114 results in substantial increases in pigment production similar to those previously seen as a result of over-expression of PAP1, and pigment production in these overexpressors remains TTG1- and bHLH-dependent. Also, plants harboring an RNAi construct targeting PAP1 and three Myb candidates (PAP2, Myb113 and Myb114) showed downregulated Myb gene expression and obvious anthocyanin deficiencies. Correlated with these anthocyanin deficiencies is downregulation of the same late anthocyanin structural genes that are downregulated in ttg1 and bHLH anthocyanin mutants. Expression studies using GL3:GR and TTG1:GR fusions revealed direct regulation of the late biosynthetic genes only. Functional diversification between GL3 and EGL3 with regard to activation of gene targets was revealed by GL3:GR studies in single and double bHLH mutant seedlings. Expression profiles for Myb and bHLH regulators are also presented in the context of pigment production in young seedlings.

  16. An interesting coordination complex formed between the azo dye Sudan Red G and cobalt ion

    Science.gov (United States)

    Garcia, Humberto C.; Ferreira, Gilson Rodrigues; de Oliveira, Luiz Fernando C.

    2014-03-01

    In this study, the synthesis, spectroscopic analysis (Raman and infrared) and crystal structure of compound denominated [Co(SRG)2]·CH3CH2OH have been investigated, were SRG is 1-(2-methoxyphenyl-azo)-2-naphthol or simply Sudan Red G and CH3CH2OH is one molecule of ethanol. The repeating unit is formed by the presence of an adduct complex constituted by two SRG ligands coordinated to the cobalt ion in a slightly distorted octahedral geometry. The other building block consists of a molecule of ethanol, which was used as the reaction solvent. The spectroscopic analysis provided important information related to coordination and formation of molecular complex through its mains bands. In the Raman spectrum the presence of marker bands as in at 1224 cm-1 ascribed to the binder SRG [δ(NH) + ν(COC) + δ(CH) + ν(CC)] were displaced in the complex formed to 1232 cm-1 due to the loss of the proton from the azo group and the formation of a bond between the oxygen of the ether group with the metal ion. In the infrared spectrum the bands at 653/489 cm-1 and 622/528 cm-1 were attributed to [ν(CoO) + νCC)] and [νCoN + νCC] characteristic of the metal-ligand bond.

  17. Analysis Of Hydro Formed Complex Shape Parts Using A Ductile Fracture Criterion

    Science.gov (United States)

    Palumbo, G.; Pinto, S.; Sorgente, D.; Tricarico, L.

    2004-06-01

    Nowadays the Hydro Forming techniques have been largely accepted by industries for the production of components characterized by complex shape, good surface quality, near net shape and low volume batch. In particular the Sheet Hydro Forming (SHF) process offers the possibility of no restrictions in the final shape of the part. This is the reason why a deeper investigation on the chance of using the SHF process for the production of complex shaped parts could be of great interest. In this work, the authors have considered as case of study a compound part which is made of a cylindrical region (the base) connected to a square part (the protrusion). Experimental and numerical activities have been performed. In particular, a commercial Finite Element (FE) code has been chosen to simulate the SHF process; a stress-strain based damage variable according to the Oh's criterion (derived from the Cockroft and Latham one) has been also used to evaluate the process limits. The Critical Damage Value (CDV) of the steel adopted for the analysis (AISI 304) has been set using experimental test results. The critical regions and the blank thinning have been analyzed for different geometrical configurations of the compound die cavity. Thus, a complexity shape factor has been defined.

  18. Immunotherapy of tumors with α2-macroglobulin-antigen complexes pre-formed in vivo.

    Directory of Open Access Journals (Sweden)

    Sudesh Pawaria

    Full Text Available The cell surface receptor CD91/LRP-1 binds to immunogenic heat shock proteins (HSP and α(2M ligands to elicit T cell immune responses. In order to generate specific immune responses, the peptides chaperoned by HSPs or α(2M are cross-presented on MHC molecules to T cells. While the immunogenic HSPs naturally chaperone peptides within cells and can be purified as an intact HSP-peptide complex, the peptides have had to be complexed artificially to α(2M in previous studies. Here, we show that immunogenic α(2M-peptide complexes can be isolated from the blood of tumor-bearing mice without further experimental manipulation in vitro demonstrating the natural association of tumor antigens with α(2M. The naturally formed immunogenic α(2M-peptide complexes are effective in prophylaxis and therapy of cancer in mouse models. We investigate the mechanisms of cross-presentation of associated peptides and co-stimulation by APCs that interact with α(2M. These data have implications for vaccine design in immunotherapy of cancer and infectious disease.

  19. Form-finding of complex tensegrity structures: application to cell cytoskeleton modelling

    Science.gov (United States)

    Baudriller, Haïmad; Maurin, Bernard; Cañadas, Patrick; Montcourrier, Philippe; Parmeggiani, Andrea; Bettache, Nadir

    2006-11-01

    The ability to model the mechanical behaviour of the cell cytoskeleton as realistically as possible is a key point in understanding numerous biological mechanisms. Tensegrity systems have already demonstrated their pertinence for this purpose. However, the structures considered until now are based only on models with simplified geometry and topology compared to the true complexity of cytoskeleton architecture. The aim of this Note is to propose a form-finding method for generating nonregular tensegrity shapes of higher diversity and complexity. The process relies on the use of the dynamic relaxation method. Further improvements have made it possible to control the computed morphologies and to modify them to approach experimentally observed configurations. Various examples illustrate the use of the method and the results obtained for different cell typologies. To cite this article: H. Baudriller et al., C. R. Mecanique 334 (2006).

  20. Egg-sphingomyelin and cholesterol form a stoichiometric molecular complex in bilayers of egg-phosphatidylcholine.

    Science.gov (United States)

    Quinn, Peter J; Wolf, Claude

    2010-12-02

    Sphingomyelin and cholesterol are membrane lipids that interact to form liquid-ordered phase believed to act as a platform for the organization of signaling proteins. We report analyses of synchrotron X-ray powder diffraction patterns recorded from aqueous dispersions of ternary mixtures of sphingomyelin and phosphatidylcholine from egg yolk and cholesterol to investigate how cholesterol distributes between the two phospholipids. In the absence of cholesterol the two phospholipids are immiscible between 20 and 50 °C. Addition of up to 22 mol % cholesterol to equimolar mixtures of the phospholipids results in partition of some sphingomyelin into a phosphatidylcholine phase at 37 °C. Increased proportions of cholesterol result in partition of the excess cholesterol into the phosphatidylcholine phase which is in equilibrium with a stoichiometric complex of 1.7:1, sphingomyelin:cholesterol. The molecular order of the complex may explain the basis upon which proteins are assembled within the membrane raft.

  1. Simplified Representation of Partial and Total Rate Constants of Complex-Forming Bimolecular Reactions.

    Science.gov (United States)

    Troe, J

    2015-12-17

    The temperature and pressure dependence of partial and total rate constants of complex-forming bimolecular reactions are investigated with the goal to obtain simplified and compact rate constant expressions suitable for data compilations. The transition of the reactions from low pressure chemical activation to high pressure association character is analyzed. The two processes are modeled separately first by solving master equations, leading to "inverse" and "normal" falloff curves, respectively, and allowing for a compact representation of the separated rate constants. It is shown that broadening factors of the two falloff curves are different, and those of chemical activation often approaching unity. Coupling of the two separate processes then is modeled in a simplified manner. Finally, thermal redissociation of the adducts formed by association is accounted for.

  2. Formation of ethylene glycol and other complex organic molecules in star-forming regions

    Science.gov (United States)

    Rivilla, V. M.; Beltrán, M. T.; Cesaroni, R.; Fontani, F.; Codella, C.; Zhang, Q.

    2017-02-01

    Context. The detection of complex organic molecules related with prebiotic chemistry in star-forming regions allows us to investigate how the basic building blocks of life are formed. Aims: Ethylene glycol (CH2OH)2 is the simplest sugar alcohol and the reduced alcohol of the simplest sugar glycoladehyde (CH2OHCHO). We study the molecular abundance and spatial distribution of (CH2OH)2, CH2OHCHO and other chemically related complex organic species (CH3OCHO, CH3OCH3, and C2H5OH) towards the chemically rich massive star-forming region G31.41+0.31. Methods: We analyzed multiple single-dish (Green Bank Telescope and IRAM 30 m) and interferometric (Submillimeter Array) spectra towards G31.41+0.31, covering a range of frequencies from 45 to 258 GHz. We fitted the observed spectra with a local thermodynamic equilibrium (LTE) synthetic spectra, and obtained excitation temperatures and column densities. We compared our findings in G31.41+0.31 with the results found in other environments, including low- and high-mass star-forming regions, quiescent clouds and comets. Results: We report for the first time the presence of the aGg' conformer of (CH2OH)2 towards G31.41+0.31, detecting more than 30 unblended lines. We also detected multiple transitions of other complex organic molecules such as CH2OHCHO, CH3OCHO, CH3OCH3, and C2H5OH. The high angular resolution images show that the (CH2OH)2 emission is very compact, peaking towards the maximum of the 1.3 mm continuum. These observations suggest that low abundance complex organic molecules, like (CH2OH)2 or CH2OHCHO, are good probes of the gas located closer to the forming stars. Our analysis confirms that (CH2OH)2 is more abundant than CH2OHCHO in G31.41+0.31, as previously observed in other interstellar regions. Comparing different star-forming regions we find evidence of an increase of the (CH2OH)2/CH2OHCHO abundance ratio with the luminosity of the source. The CH3OCH3/CH3OCHO and (CH2OH)2/C2H5OH ratios are nearly constant with

  3. Manufacture of a four-sheet complex component from different titanium alloys by superplastic forming

    Science.gov (United States)

    Allazadeh, M. R.; Zuelli, N.

    2017-10-01

    A superplastic forming (SPF) technology process was deployed to form a complex component with eight-pocket from a four-sheet sandwich panel sheetstock. Six sheetstock packs were composed of two core sheets made of Ti-6Al-4V or Ti-5Al-4Cr-4Mo-2Sn-2Zr titanium alloy and two skin sheets made of Ti-6Al-4V or Ti-6Al-2Sn-4Zr-2Mo titanium alloy in three different combinations. The sheets were welded with two subsequent welding patterns over the core and skin sheets to meet the required component's details. The applied welding methods were intermittent and continuous resistance seam welding for bonding the core sheets to each other and the skin sheets over the core panel, respectively. The final component configuration was predicted based on the die drawings and finite element method (FEM) simulations for the sandwich panels. An SPF system set-up with two inlet gas pipe feeding facilitated the trials to deliver two pressure-time load cycles acting simultaneously which were extracted from FEM analysis for specific forming temperature and strain rate. The SPF pressure-time cycles were optimized via GOM scanning and visually inspecting some sections of the packs in order to assess the levels of core panel formation during the inflation process of the sheetstock. Two sets of GOM scan results were compared via GOM software to inspect the surface and internal features of the inflated multisheet packs. The results highlighted the capability of the tested SPF process to form complex components from a flat multisheet pack made of different titanium alloys.

  4. The respiratory syncytial virus nucleoprotein-RNA complex forms a left-handed helical nucleocapsid.

    Science.gov (United States)

    Bakker, Saskia E; Duquerroy, Stéphane; Galloux, Marie; Loney, Colin; Conner, Edward; Eléouët, Jean-François; Rey, Félix A; Bhella, David

    2013-08-01

    Respiratory syncytial virus (RSV) is an important human pathogen. Its nucleocapsid (NC), which comprises the negative sense RNA viral genome coated by the viral nucleoprotein N, is a critical assembly that serves as template for both mRNA synthesis and genome replication. We have previously described the X-ray structure of an NC-like structure: a decameric ring formed of N-RNA that mimics one turn of the helical NC. In the absence of experimental data we had hypothesized that the NC helix would be right-handed, as the N-N contacts in the ring appeared to more easily adapt to that conformation. We now unambiguously show that the RSV NC is a left-handed helix. We further show that the contacts in the ring can be distorted to maintain key N-N-protein interactions in a left-handed helix, and discuss the implications of the resulting atomic model of the helical NC for viral replication and transcription.

  5. Smoothened transduces Hedgehog signal by forming a complex with Evc/Evc2.

    Science.gov (United States)

    Yang, Cuiping; Chen, Wenlin; Chen, Yongbin; Jiang, Jin

    2012-11-01

    Hedgehog (Hh) signaling plays pivotal roles in embryonic development and adult tissue homeostasis in species ranging from Drosophila to mammals. The Hh signal is transduced by Smoothened (Smo), a seven-transmembrane protein related to G protein coupled receptors. Despite a conserved mechanism by which Hh activates Smo in Drosophila and mammals, how mammalian Hh signal is transduced from Smo to the Gli transcription factors is poorly understood. Here, we provide evidence that two ciliary proteins, Evc and Evc2, the products of human disease genes responsible for the Ellis-van Creveld syndrome, act downstream of Smo to transduce the Hh signal. We found that loss of Evc/Evc2 does not affect Sonic Hedgehog-induced Smo phosphorylation and ciliary localization but impedes Hh pathway activation mediated by constitutively active forms of Smo. Evc/Evc2 are dispensable for the constitutive Gli activity in Sufu(-/-) cells, suggesting that Evc/Evc2 act upstream of Sufu to promote Gli activation. Furthermore, we demonstrated that Hh stimulates binding of Evc/Evc2 to Smo depending on phosphorylation of the Smo C-terminal intracellular tail and that the binding is abolished in Kif3a(-/-) cilium-deficient cells. We propose that Hh activates Smo by inducing its phosphorylation, which recruits Evc/Evc2 to activate Gli proteins by antagonizing Sufu in the primary cilia.

  6. Solvent hydrophobicity induced complex coacervation of dsDNA and in situ formed zein nanoparticles.

    Science.gov (United States)

    Pandey, Pankaj Kumar; Kaushik, Priyanka; Rawat, Kamla; Aswal, V K; Bohidar, H B

    2017-10-04

    Zein, a predominantly hydrophobic protein, was sustained as a stable dispersion in ethanol-water (80 : 20, % (v/v)) binary solvent at room temperature (25 °C). Addition of aqueous dsDNA solution (1% (w/v)) to the above dispersion prepared with the protein concentration of C zein = 0.01-0.5% (w/v) caused a concomitant change in ethanol content from 14-35% (v/v), which in turn generated zein nanoparticles in situ of size 80-120 nm increasing with water content. The subsequent associative interaction between DNA (polyanion; 2000 bps) and the positively charged zein nanoparticles, (at pH = 4) was driven by Coulombic forces, and by the solvent hydrophobicity due to the ethanol content of the binary solvent. Experimentally, two interesting regions of interaction were observed from turbidity, zeta potential, particle sizing, and viscosity data: (i) for C zein nanoparticles of size 80 nm bind to dsDNA (primary complex) causing its condensation (apparent hydrodynamic size decreased from ≈2100 to 560 nm), and (ii) for 0.2% nanoparticles (>80 nm) were selectively bound to primary complexes to form partially charge neutralized interpolymer soluble complexes (secondary complexes), followed by complex coacervation. During this process, there was depletion of water in the vicinity of the nucleic acid, which was replaced by hydration provided by the ethanol-water binary solvent. Equilibrium coacervate samples were probed for their microstructure by small angle neutron scattering, and for their viscoelastic properties by rheology. The interplay of solvent hydrophobicity, electrostatic interaction, and zein nanoparticle size dependent charge neutralization had a commensurate effect on this hitherto unexplored coacervation phenomenon.

  7. Mechanism of transcription termination: PTRF interacts with the largest subunit of RNA polymerase I and dissociates paused transcription complexes from yeast and mouse

    Czech Academy of Sciences Publication Activity Database

    Jansa, Petr; Grummt, I.

    1999-01-01

    Roč. 262, č. 3 (1999), s. 508-514 ISSN 0026-8925 Institutional research plan: CEZ:AV0Z5052915 Keywords : PTRF (Pol I and transcript release factor) * mouse * yeast Subject RIV: EB - Genetics ; Molecular Biology Impact factor: 2.539, year: 1999

  8. SARS-coronavirus replication/transcription complexes are membrane-protected and need a host factor for activity in vitro.

    Directory of Open Access Journals (Sweden)

    Martijn J van Hemert

    2008-05-01

    Full Text Available SARS-coronavirus (SARS-CoV replication and transcription are mediated by a replication/transcription complex (RTC of which virus-encoded, non-structural proteins (nsps are the primary constituents. The 16 SARS-CoV nsps are produced by autoprocessing of two large precursor polyproteins. The RTC is believed to be associated with characteristic virus-induced double-membrane structures in the cytoplasm of SARS-CoV-infected cells. To investigate the link between these structures and viral RNA synthesis, and to dissect RTC organization and function, we isolated active RTCs from infected cells and used them to develop the first robust assay for their in vitro activity. The synthesis of genomic RNA and all eight subgenomic mRNAs was faithfully reproduced by the RTC in this in vitro system. Mainly positive-strand RNAs were synthesized and protein synthesis was not required for RTC activity in vitro. All RTC activity, enzymatic and putative membrane-spanning nsps, and viral RNA cosedimented with heavy membrane structures. Furthermore, the pelleted RTC required the addition of a cytoplasmic host factor for reconstitution of its in vitro activity. Newly synthesized subgenomic RNA appeared to be released, while genomic RNA remained predominantly associated with the RTC-containing fraction. RTC activity was destroyed by detergent treatment, suggesting an important role for membranes. The RTC appeared to be protected by membranes, as newly synthesized viral RNA and several replicase/transcriptase subunits were protease- and nuclease-resistant and became susceptible to degradation only upon addition of a non-ionic detergent. Our data establish a vital functional dependence of SARS-CoV RNA synthesis on virus-induced membrane structures.

  9. VHL type 2B mutations retain VBC complex form and function.

    Directory of Open Access Journals (Sweden)

    Kathryn E Hacker

    Full Text Available von Hippel-Lindau disease is characterized by a spectrum of hypervascular tumors, including renal cell carcinoma, hemangioblastoma, and pheochromocytoma, which occur with VHL genotype-specific differences in penetrance. VHL loss causes a failure to regulate the hypoxia inducible factors (HIF-1alpha and HIF-2alpha, resulting in accumulation of both factors to high levels. Although HIF dysregulation is critical to VHL disease-associated renal tumorigenesis, increasing evidence points toward gradations of HIF dysregulation contributing to the degree of predisposition to renal cell carcinoma and other manifestations of the disease.This investigation examined the ability of disease-specific VHL missense mutations to support the assembly of the VBC complex and to promote the ubiquitylation of HIF. Our interaction analysis supported previous observations that VHL Type 2B mutations disrupt the interaction between pVHL and Elongin C but maintain partial regulation of HIF. We additionally demonstrated that Type 2B mutant pVHL forms a remnant VBC complex containing the active members ROC1 and Cullin-2 which retains the ability to ubiquitylate HIF-1alpha.Our results suggest that subtypes of VHL mutations support an intermediate level of HIF regulation via a remnant VBC complex. These findings provide a mechanism for the graded HIF dysregulation and genetic predisposition for cancer development in VHL disease.

  10. Systematic analysis of barrier-forming FG hydrogels from Xenopus nuclear pore complexes

    Science.gov (United States)

    Labokha, Aksana A; Gradmann, Sabine; Frey, Steffen; Hülsmann, Bastian B; Urlaub, Henning; Baldus, Marc; Görlich, Dirk

    2013-01-01

    Nuclear pore complexes (NPCs) control the traffic between cell nucleus and cytoplasm. While facilitating translocation of nuclear transport receptors (NTRs) and NTR·cargo complexes, they suppress passive passage of macromolecules ⩾30 kDa. Previously, we reconstituted the NPC barrier as hydrogels comprising S. cerevisiae FG domains. We now studied FG domains from 10 Xenopus nucleoporins and found that all of them form hydrogels. Related domains with low FG motif density also substantially contribute to the NPC's hydrogel mass. We characterized all these hydrogels and observed the strictest sieving effect for the Nup98-derived hydrogel. It fully blocks entry of GFP-sized inert objects, permits facilitated entry of the small NTR NTF2, but arrests importin β-type NTRs at its surface. O-GlcNAc modification of the Nup98 FG domain prevented this arrest and allowed also large NTR·cargo complexes to enter. Solid-state NMR spectroscopy revealed that the O-GlcNAc-modified Nup98 gel lacks amyloid-like β-structures that dominate the rigid regions in the S. cerevisiae Nsp1 FG hydrogel. This suggests that FG hydrogels can assemble through different structural principles and yet acquire the same NPC-like permeability. PMID:23202855

  11. EXAFS investigation of uranium(6) complexes formed at Acidithiobacillus ferro oxidans types

    International Nuclear Information System (INIS)

    Merroun, M.; Reich, T.; Hennig, Ch.; Selenska-Pobell, S.

    2002-01-01

    Mining activities have brought excessive amounts of uranium into the environment. In uranium deposits a number of acidophilic chemo-litho-autotrophic bacteria have been identified which are able to oxidize sulphide minerals, elemental sulphur, ferrous iron and also (in the presence of uranium mineral) U(IV). In particular, the interaction of one representative of the group Acidithiobacillus ferro oxidans (new designation of Thiobacillus ferro oxidans) with uranium has been investigated. Uranium(VI) complex formations at the surfaces of Acidithiobacillus ferro oxidans were studied using uranium L III -edge extended X-ray absorption fine structure (EXAFS) spectroscopy. In all samples uranium is co-ordinated by two axial oxygen atoms (O ax ) at a distance of 1.77-1.78 angstrom. The average distance between uranium and the equatorial oxygen atoms (O eq ) is 2.35 angstrom. The co-ordination number for O eq is 5-6. In comparison to the uranium crystal structure data, the U-O eq distance indicates a co-ordination number of the equatorial oxygen of 5. Within the experimental error, there are no differences in the U-O bond distances between samples from the three types of A. ferro oxidans investigated. The fit to the EXAFS data of samples measured as wet pastes gave the same results as for dried samples. No significant structural differences were observed for the uranium complexes formed by the eco-types of A. ferro oxidans. However, the EXAFS spectra do indicate a formation of uranium complexes which are different from those formed by Bacilli where the bond length of 2.28 angstrom indicates a co-ordination number of 4 for the equatorial oxygen atoms. (authors)

  12. The morphogenetic MreBCD proteins of Escherichia coli form an essential membrane-bound complex

    DEFF Research Database (Denmark)

    Kruse, Torben; Bork-Jensen, J.; Gerdes, Kenn

    2005-01-01

    . subtilis and C. crescentus, the mreB gene is essential. However, in E. coli, mreB was inferred not to be essential. Using a tight, conditional gene depletion system, we systematically investigated whether the E. coli mreBCD-encoded components were essential. We found that cells depleted of mreBCD became......D. In contrast, MreB and MreD did not interact in this assay. Thus, we conclude that the E. coli MreBCD form an essential membrane-bound complex. Curiously, MreB did not form cables in cell depleted for MreC, MreD or RodA, indicating a mutual interdependency between MreB filament morphology and cell shape. Based......MreB proteins of Escherichia coli, Bacillus subtilis and Caulobacter crescentus form actin-like cables lying beneath the cell surface. The cables are required to guide longitudinal cell wall synthesis and their absence leads to merodiploid spherical and inflated cells prone to cell lysis. In B...

  13. β-Catenin/POU5F1/SOX2 transcription factor complex mediates IGF-I receptor signaling and predicts poor prognosis in lung adenocarcinoma.

    Science.gov (United States)

    Xu, Chuan; Xie, Dan; Yu, Shi-Cang; Yang, Xiao-Jun; He, Li-Ru; Yang, Jing; Ping, Yi-Fang; Wang, Bin; Yang, Lang; Xu, Sen-Lin; Cui, Wei; Wang, Qing-Liang; Fu, Wen-Juan; Liu, Qing; Qian, Cheng; Cui, You-Hong; Rich, Jeremy N; Kung, Hsiang-Fu; Zhang, Xia; Bian, Xiu-Wu

    2013-05-15

    Cancer stem-like cells (CSLC) are crucial in tumor initiation and progression; however, the underlying mechanism for the self-renewal of cancer cells remains undefined. In the study, immunohistochemical analysis of specimens freshly excised from patients with lung adenocarcinoma showed that high expression of insulin-like growth factor I receptor (IGF-IR) in lung adenocarcinoma cells was positively correlated with the expressions of cancer stem cell markers CD133 and aldehyde dehydrogenase 1 family member A1 (ALDH1A1). IGF-IR activation enhanced POU class 5 homeobox 1 (POU5F1) expression on human lung adenocarcinoma stem-like cells (LACSLC) through PI3K/AKT/GSK3β/β-catenin cascade. POU5F1 could form a novel complex with β-catenin and SOX2 to bind Nanog promoter for transcription to maintain self-renewal of LACSLCs, which was dependent on the functional IGF-IR. Genetic and pharmacologic inhibition of IGF-IR abrogated LACSLC capabilities for self-renewal and tumorigenicity in vitro. In an in vivo xenograft tumor model, knockdown of either IGF-IR or POU5F1 impeded tumorigenic potentials of LACSLCs. By analyzing pathologic specimens excised from 200 patients with lung adenocarcinoma, we found that colocalization of highly expressed IGF-IR with β-catenin and POU5F1 predicted poor prognosis. Taken together, we show that IGF-IR-mediated POU5F1 expression to form a complex with β-catenin and SOX2 is crucial for the self-renewal and oncogenic potentials of LACSLCs, and the integrative clinical detection of the expressions of IGF-IR, β-catenin, and POU5F1 is indicatory for predicting prognosis in the patients of lung adenocarcinoma. ©2013 AACR.

  14. Complex disposition of methylthioninium redox forms determines efficacy in tau aggregation inhibitor therapy for Alzheimer's disease.

    Science.gov (United States)

    Baddeley, Thomas C; McCaffrey, Jennifer; Storey, John M D; Cheung, John K S; Melis, Valeria; Horsley, David; Harrington, Charles R; Wischik, Claude M

    2015-01-01

    Methylthioninium (MT) is a tau aggregation inhibitor with therapeutic potential in Alzheimer's disease (AD). MT exists in equilibrium between reduced [leucomethylthioninium (LMT)] and oxidized (MT(+)) forms; as a chloride salt [methylthioninium chloride (MTC), "methylene blue"], it is stabilized in its MT(+) form. Although the results of a phase 2 study of MTC in 321 mild/moderate AD subjects identified a 138-mg MT/day dose as the minimum effective dose on cognitive and imaging end points, further clinical development of MT was delayed pending resolution of the unexpected lack of efficacy of the 228-mg MT/day dose. We hypothesized that the failure of dose response may depend on differences known at the time in dissolution in simulated gastric and intestinal fluids of the 100-mg MTC capsules used to deliver the 228-mg dose and reflect previously unsuspected differences in redox processing of MT at different levels in the gut. The synthesis of a novel chemical entity, LMTX (providing LMT in a stable anhydrous crystalline form), has enabled a systematic comparison of the pharmacokinetic properties of MTC and LMTX in preclinical and clinical studies. The quantity of MT released in water or gastric fluid within 60 minutes proved in retrospect to be an important determinant of clinical efficacy. A further factor was a dose-dependent limitation in the ability to absorb MT in the presence of food when delivered in the MT(+) form as MTC. A model is presented to account for the complexity of MT absorption, which may have relevance for other similar redox molecules. Copyright © 2014 by The American Society for Pharmacology and Experimental Therapeutics.

  15. Alternatively spliced short and long isoforms of adaptor protein intersectin 1 form complexes in mammalian cells

    Directory of Open Access Journals (Sweden)

    Rynditch A. V.

    2012-12-01

    Full Text Available Intersectin 1 (ITSN1 is an adaptor protein involved in membrane trafficking and cell signaling. Long and short isoforms of ITSN1 (ITSN1-L and ITSN1-S are produced by alternative splicing. The aim of our study was to investigate whether ITSN1-L and ITSN1-S could interact in mammalian cells. Methods. During this study we employed immunoprecipitation and confocal microscopy. Results. We have shown that endogenous ITSN1-S co-precipitates with overexpressed ITSN1-L in PC12, 293 and 293T cells. Long and short isoforms of ITSN1 also co-localize in 293T cells. Conclusions. ITSN1-L and ITSN1-S form complexes in mammalian cells.

  16. Formal Killing fields for minimal Lagrangian surfaces in complex space forms

    Science.gov (United States)

    Wang, Joe S.

    2017-04-01

    The differential system for minimal Lagrangian surfaces in a 2C-dimensional, non-flat, complex space form is an elliptic integrable system defined on the Grassmann bundle of oriented Lagrangian 2-planes. This is a 6-symmetric space associated with the Lie group SL(3 , C) , and the minimal Lagrangian surfaces arise as the primitive maps. Utilizing this property, we derive the inductive differential algebraic formulas for a pair of the formal loop algebra sl(3 , C) [ [ λ ] ] -valued canonical formal Killing fields. For applications, (a) we give a complete classification of the (pseudo) Jacobi fields for the minimal Lagrangian system, (b) we obtain an infinite sequence of conservation laws from the components of the canonical formal Killing fields.

  17. Fluvial obstacle marks as complex geomorphic systems: a comparison between physically modelled and natural forms

    Science.gov (United States)

    Euler, T.

    2009-04-01

    Fluvial obstacle marks are bedforms that develop if flow is separated by an immobile obstacle at the stream bed. Due to local acceleration and deceleration of the flow, areas of potential erosion and deposition arise in the obstacle surrounding. This results in forms that commonly consist of a scour hole reaching from the upstream part to the sides of an obstacle and an adjacent depositional ridge. Natural fluvial obstacle marks develop around pebbles, boulders, woody debris and plants. Individual forms of obstacle marks result from specific current patterns in the obstacle surrounding, which in turn are dependent on a variety of independent parameters like obstacle shape, -inclination, -alignment, -geometry, -porosity, -surface roughness and -flexibility as well as on sediment grading, bed-resistance, flow velocity, flow depth and steadiness of flow. Reciprocal interactions of these parameters make natural obstacle marks noteworthy examples of complex geomorphic systems. In contrast, experimentally simulated obstacle marks in laboratory flumes can be regarded as complexity-reduced geomorphic systems and are characterised by diverging morphological features compared to natural obstacle marks. In spite of these emergent divergences flume experiments are still inevitable to identify principle formative processes. Also experimental simulations are necessary to develop physically-based explanatory approaches that can predict significant morphometric features (like maximum depth of scour, eroded/deposited material) of fluvial obstacle marks. Within the scope of this work examples of natural fluvial obstacle marks are compared with obstacle marks simulated experimentally in a laboratory flume. In spite of morphological differences it can be deduced that a horseshoe-vortex system is the main agent that drives formative processes in the obstacle surrounding. The input of kinetic energy into this vortex system can be well described by determining the obstacle Reynolds

  18. Complex fine-scale diffusion coating formed at low temperature on high-speed steel substrate

    Science.gov (United States)

    Chaus, A. S.; Pokorný, P.; Čaplovič, Ľ.; Sitkevich, M. V.; Peterka, J.

    2018-04-01

    A complex B-C-N diffusion coating was produced at 580 °C for 1 h on AISI M35 steel substrate and compared with a reference coating formed at 880 °C for 2.5 h. The surface and the cross-sections of the samples were subjected to detailed characterisation. The surface roughness, hardness, residual stresses and adhesion of the coatings were also evaluated together with cutting tests using drills on coated and uncoated samples while monitoring cutting force and torque. The surface of the steel treated at 580 °C revealed Fe2B, boron nitride and boron iron carbide, but FeB was noted to be absent. The 580 °C coating had the fine-scale microstructure, which resulted in the excellent adhesion and enhanced wear resistance, relative to reference samples that contained coarse borides. The results established that a complex fine-scale diffusion coating enhanced the wear resistance and reduces the cutting force and torque during drilling, thereby increasing the drill life by a factor of 2.2.

  19. Aroylhydrazone Cu(II Complexes in keto Form: Structural Characterization and Catalytic Activity towards Cyclohexane Oxidation

    Directory of Open Access Journals (Sweden)

    Manas Sutradhar

    2016-03-01

    Full Text Available The reaction of the Schiff base (3,5-di-tert-butyl-2-hydroxybenzylidene-2-hydroxybenzohydrazide (H3L with a copper(II salt of a base of a strong acid, i.e., nitrate, chloride or sulphate, yielded the mononuclear complexes [Cu(H2L(NO3(H2O] (1, [Cu(H2LCl]·2MeOH (2 and the binuclear complex [{Cu(H2L}2(µ-SO4]·2MeOH (3, respectively, with H2L− in the keto form. Compounds 1–3 were characterized by elemental analysis, Infrared (IR spectroscopy, Electrospray Ionisation Mass Spectrometry (ESI-MS and single crystal X-ray crystallography. All compounds act as efficient catalysts towards the peroxidative oxidation of cyclohexane to cyclohexyl hydroperoxide, cyclohexanol and cyclohexanone, under mild conditions. In the presence of an acid promoter, overall yields (based on the alkane up to 25% and a turnover number (TON of 250 (TOF of 42 h−1 after 6 h, were achieved.

  20. Role of Hepatic-Specific Transcription Factors and Polycomb Repressive Complex 2 during Induction of Fibroblasts to Hepatic Fate.

    Directory of Open Access Journals (Sweden)

    Shima Rastegar-Pouyani

    Full Text Available Direct reprogramming using defined sets of transcription factors (TFs is a recent strategy for generating induced hepatocytes (iHeps from fibroblasts for use in regenerative medicine and drug development. Comprehensive studies detailing the regulatory role of TFs during this reprogramming process could help increase its efficiency. This study aimed to find the TFs with the greatest influences on the generation of iHeps from fibroblasts, and to further understand their roles in the regulation of the gene expression program. Here, we used systems biology approaches to analyze high quality expression data sets in combination with TF-binding sites data and protein-protein interactions data during the direct reprogramming of fibroblasts to iHeps. Our results revealed two main patterns for differentially expressed genes (DEGs: up-regulated genes were categorized as hepatic-specific pattern, and down-regulated genes were categorized as mesoderm- and fibroblast-specific pattern. Interestingly, hepatic-specific genes co-expressed and were regulated by hepatic-specific TFs, specifically Hnf4a and Foxa2. Conversely, the mesoderm- and fibroblast-specific pattern was mainly silenced by polycomb repressive complex 2 (PRC2 members, including Suz12, Mtf2, Ezh2, and Jarid2. Independent analysis of both the gene and core regulatory network of DE-TFs showed significant roles for Hnf4a, Foxa2, and PRC2 members in the regulation of the gene expression program and in biological processes during the direct conversion process. Altogether, using systems biology approaches, we clarified the role of Hnf4a and Foxa2 as hepatic-specific TFs, and for the first time, introduced the PRC2 complex as the main regulator that favors the direct reprogramming process in cooperation with hepatic-specific factors.

  1. Assessment of complex water pollution with heavy metals and Pyrethroid pesticides on transcript levels of metallothionein and immune related genes.

    Science.gov (United States)

    Ghazy, Haneen A; Abdel-Razek, Mohamed A S; El Nahas, Abeer F; Mahmoud, Shawky

    2017-09-01

    Alteration of immunological function of an aquatic organism can be used as an indicator for evaluating the direct effect of exposure to pollutants. The aim of this work is to assess the impact of complex water pollution with special reference to Pyrethroid pesticides and heavy metals on mRNA transcript levels of Metallothionine and some immune related genes of Nile tilapia (Oreochromas Niloticus). Residues of six heavy metals and six Pyrethroid were assessed in water as well as fish tissues at three different sites of Lake Burullus, located at Northern Egypt. Variations of water physicochemical properties associated with different levels of heavy metals at the three different sections were recorded. Tissue residues of Fe, Mn and Zn, Cu, Ni exceed water levels in contrast to elevated water level of Pb. All assessed Pyrethroids are detected in fish tissue samples with higher concentration (3-42 folds) than that found in water samples especially Cypermethrin. Significant down-regulation of expression levels of metallothionein (MT) at the three sections of the lake was observed. The expression of immune related genes (IgM) and inflammatory cytokines (TNF, IL.8 and IL.1) were affected. IgM and TNF were significantly down-regulated at eastern and western section of the lake; meanwhile the expression of IL8 is down regulated at the three sections of the lack. IL1 was significantly up-regulated at eastern and middle sections. We conclude that, variable gene expression of MT and immune-related genes at the three sections of the lack impose different response to complex water pollution in relation to variable aquatic environment. Copyright © 2017 Elsevier Ltd. All rights reserved.

  2. A linguistic representation of the regulation of transcription initiation. I. An ordered array of complex symbols with distinctive features.

    Science.gov (United States)

    Collado-Vides, J

    1993-01-01

    The inadequacy of context-free grammars in the description of regulatory information contained in DNA gave the formal justification for a linguistic approach to the study of gene regulation. Based on that result, we have initiated a linguistic formalization of the regulatory arrays of 107 sigma 70 E. coli promoters. The complete sequences of promoter (Pr), operator (Op) and activator binding sites (I) have previously been identified as the smallest elements, or categories, for a combinatorial analysis of the range of transcription initiation of sigma 70 promoters. These categories are conceptually equivalent to phonemes of natural language. Several features associated with these categories are required in a complete description of regulatory arrays of promoters. We have to select the best way to describe the properties that are pertinent for the description of such regulatory regions. In this paper we define distinctive features of regulatory regions based on the following criteria: identification of subclasses of substitutable elements, simplicity, selection of the most directly related information, and distinction of one array among the whole set of promoters. Alternative ways to represent distances in between regulatory sites are discussed, permitting, together with a principle of precedence, the identification of an ordered set of complex symbols as a unique representation for a promoter and its associated regulatory sites. In the accompanying paper additional distinctive features of promoters and regulatory sites are identified.

  3. Genome-wide identification and characterization of Notch transcription complex-binding sequence paired sites in leukemia cells

    Science.gov (United States)

    Severson, Eric; Arnett, Kelly L.; Wang, Hongfang; Zang, Chongzhi; Taing, Len; Liu, Hudan; Pear, Warren S.; Liu, X. Shirley; Blacklow, Stephen C.; Aster, Jon C.

    2018-01-01

    Notch transcription complexes (NTCs) drive target gene expression by binding to two distinct types of genomic response elements, NTC monomer-binding sites and sequence-paired sites (SPSs) that bind NTC dimers. SPSs are conserved and are linked to the Notch-responsiveness of a few genes, but their overall contribution to Notch-dependent gene regulation is unknown. To address this issue, we determined the DNA sequence requirements for NTC dimerization using a fluorescence resonance energy transfer (FRET) assay, and applied insights from these in vitro studies to Notch-“addicted” leukemia cells. We find that SPSs contribute to the regulation of approximately a third of direct Notch target genes. While originally described in promoters, SPSs are present mainly in long-range enhancers, including an enhancer containing a newly described SPS that regulates HES5. Our work provides a general method for identifying sequence-paired sites in genome-wide data sets and highlights the widespread role of NTC dimerization in Notch-transformed leukemia cells. PMID:28465412

  4. Genome-wide identification and characterization of Notch transcription complex-binding sequence-paired sites in leukemia cells.

    Science.gov (United States)

    Severson, Eric; Arnett, Kelly L; Wang, Hongfang; Zang, Chongzhi; Taing, Len; Liu, Hudan; Pear, Warren S; Shirley Liu, X; Blacklow, Stephen C; Aster, Jon C

    2017-05-02

    Notch transcription complexes (NTCs) drive target gene expression by binding to two distinct types of genomic response elements, NTC monomer-binding sites and sequence-paired sites (SPSs) that bind NTC dimers. SPSs are conserved and have been linked to the Notch responsiveness of a few genes. To assess the overall contribution of SPSs to Notch-dependent gene regulation, we determined the DNA sequence requirements for NTC dimerization using a fluorescence resonance energy transfer (FRET) assay and applied insights from these in vitro studies to Notch-"addicted" T cell acute lymphoblastic leukemia (T-ALL) cells. We found that SPSs contributed to the regulation of about a third of direct Notch target genes. Although originally described in promoters, SPSs are present mainly in long-range enhancers, including an enhancer containing a newly described SPS that regulates HES5 expression. Our work provides a general method for identifying SPSs in genome-wide data sets and highlights the widespread role of NTC dimerization in Notch-transformed leukemia cells. Copyright © 2017, American Association for the Advancement of Science.

  5. Diversity and Transcriptional Levels of RuBisCO Form II of Sulfur-Oxidizing γ-Proteobacteria in Coastal-Upwelling Waters with Seasonal Anoxia

    Directory of Open Access Journals (Sweden)

    Bárbara Léniz

    2017-07-01

    Full Text Available Seasonal wind-driven upwelling, high primary production in surface waters, and oxygen deficiency in subsurface waters characterize the coastal ecosystem of the subtropical eastern South Pacific (ESP, and shape the nature and dynamics of the microbial community structure and function. We investigated the diversity, abundance, and transcriptional levels of the gene encoding the large subunit form II of the RuBisCO enzyme (cbbM in the pelagic microbial community at a continental-shelf site off central Chile over 2 years. We focused on cbbM genes affiliated with the sulfur-oxidizing γ-proteobacteria cluster, whose members are known to dominate in oxygen-deficient marine environments and are highly abundant in the study area. Phylogenetic analysis of cbbM sequences suggests the presence of a novel group of chemolithoautotrophs, closely related to the SUP05/ARCTIC96BD-19 clade. Through (RT-qPCR, we studied the cbbM gene abundance and transcript dynamics over an annual cycle, finding a significantly higher number of cbbM copies per unit volume in months of active upwelling and at depths in which oxygen was scarce or absent. The same temporal pattern was observed at the transcriptional level. We also analyzed the relative expression of key genes for carbon, nitrogen and sulfur cycling in six metatranscriptomic datasets, for two characteristic periods within the annual cycle: the anoxic upwelling and the suboxic downwelling. Our results indicate that coastal waters of the subtropical ESP contain transcriptionally active populations of carbon fixing pelagic bacteria, whose dynamics is controlled, in large part, by fluctuations in oxygen levels. They also suggest that chemolithoautotrophic processes coupled to the sulfur and nitrogen cycles become increasingly important for the carbon economy of marine coastal waters as oxygen concentrations decline.

  6. Recombinant Adeno-Associated Virus Vector Genomes Take the Form of Long-Lived, Transcriptionally Competent Episomes in Human Muscle

    Science.gov (United States)

    Schnepp, Bruce C.; Chulay, Jeffrey D.; Ye, Guo-Jie; Flotte, Terence R.; Trapnell, Bruce C.; Johnson, Philip R.

    2016-01-01

    Gene augmentation therapy as a strategy to treat alpha-1 antitrypsin (AAT) deficiency has reached phase 2 clinical testing in humans. Sustained serum levels of AAT have been observed beyond one year after intramuscular administration of a recombinant adeno-associated virus (rAAV) vector expressing the AAT gene. In this study, sequential muscle biopsies obtained at 3 and 12 months after vector injection were examined for the presence of rAAV vector genomes. Each biopsy sample contained readily detectable vector DNA, the majority of which existed as double-stranded supercoiled and open circular episomes. Episomes persisted through 12 months, although at slightly lower levels than observed at 3 months. There was a clear dose response when comparing the low- and mid-vector-dose groups to the high-dose group. The highest absolute copy numbers were found in a high-dose subject, and serum AAT levels at 12 months confirmed that the high-dose group also had the highest sustained serum AAT levels. Sequence analysis revealed that the vast majority of episomes contained double-D inverted terminal repeats ranging from fully intact to severely deleted. Molecular clones of vector genomes derived directly from the biopsies were transcriptionally active, potentially identifying them as the source of serum AAT in the trial subjects. PMID:26650966

  7. Complexation of HSA with different forms of antimony (Sb): An application of fluorescence spectroscopy

    International Nuclear Information System (INIS)

    Song, Wenjuan; Zhang, Daoyong; Pan, Xiangliang; Lee, Duu-Jong

    2013-01-01

    Antimony (Sb) pollution has been of a great environmental concern in some areas in China. Sb enters human body via drinking water, inhalation and food chain, unavoidably interacts with human serum albumin (HSA) in blood plasma, and consequently does harm to human health. The harmful effects of Sb on human health depend on the Sb species and their binding ability to HSA. In the present study, binding of three forms of Sb with HSA was investigated by excitation-emission matrix (EEM) spectroscopy. All of antimony potassium tartrate, antimony trichloride and potassium pyroantimonate quenched fluorescence of HSA. Values of conditional stability constant K a (×10 5 /M) for Sb and HSA systems were 8.13–9.12 for antimony potassium tartrate, 2.51–4.27 for antimony trichloride and 3.63–9.77 for potassium pyroantimonate. The binding constant K b (×10 4 /M) values of HSA with antimony potassium tartrate, antimony trichloride and potassium pyroantimonate were 0.02–0.07, 3.55–5.01, and 0.07–1.08, respectively. There was one independent class of binding site for antimony trichloride towards HSA. There was more than one Sb binding site and negative cooperativity between multiple binding sites for potassium pyroantimonate and antimony potassium tartrate towards HSA. The binding ability of HSA to complex Sb followed the order: antimony trichloride>potassium pyroantimonate>antimony potassium tartrate. -- Highlights: ► The first study reporting interaction of Sb with HSA. ► Sb can effectively quench the fluorescence of HSA. ► The binding ability of HSA to Sb was dependent on the form of Sb. ► Binding differences indicate differences in toxicity of various forms Sb to human. ► HAS-Sb binding parameters are important for understanding toxicity of Sb

  8. [Forming mechanism of humic acid-kaolin complexes and the adsorption of trichloroethylene].

    Science.gov (United States)

    Zhu, Xiao-jing; He, Jiang-tao; Su, Si-hui

    2015-01-01

    The interaction between soil organic components and mineral components was explored in this study. Humic acid and kaolin were used for the preparation of organic-mineral complexes with different contents of organic matter, for experimental study of the adsorption of trichloroethylene. The results showed that the adsorption of trichlorethylene fitted the Freundlich isotherm model. The existence of interaction between humic acid and kaolin was indicated by the significant difference between the actual value and the theoretically overlaid value of the adsorption capacity. With various characterizations, such as FTIR and surface area & pore analysis, the mechanism of interaction between humic acid and kaolin was suggested as follows. When their contents were low, humic acid molecules firstly loaded on the surface binding sites of kaolin. Then with the content increased, as O/M( organic-mineral mass ratio) was 0.02-0.04, some surface pores of kaolin were filled by part of the molecules. After reaching a relatively stable stage, as O/M was 0.04-0.08, humic molecules continued to load on the surface of kaolin and formed the first humic molecule-layer. With humic acid content continued increasing, as O/M was 0.08-0.10, more humic molecules attached to kaolin surface through the interaction with the first layer of molecules and then formed the second layer. O/M was 0.10-0.16 as the whole second layer stage, meanwhile the first layer was compressed. Then when O/M was 0.16-0.4, there were still some humic loadings onto the second layer as the third layer, and further compressed the inner humic acid layers. Besides, some humic acid molecules or aggregates might go on attaching to form as further outer layer.

  9. Transcription of non-classic major histocompatibility complex (MHC) class I in the bovine placenta throughout gestation and after Brucella abortus infection.

    Science.gov (United States)

    Dos Santos, Larissa Sarmento; da Silva Mol, Juliana Pinto; de Macedo, Auricélio Alves; Silva, Ana Patrícia Carvalho; Dos Santos Ribeiro, Diego Luiz; Santos, Renato Lima; da Paixão, Tatiane Alves; de Carvalho Neta, Alcina Vieira

    2015-10-15

    Transcription of non-classical major histocompatibility complex class I (MHC-I) was assessed in the bovine placenta throughout gestation. Additionally, the effect of Brucella abortus infection on expression of non-classical MHC-I was also evaluated using a chorioallantoic membrane explant model of infection. The non-classical MHC-I genes MICB and NC3 had higher levels of transcription in the intercotyledonary region when compared to the placentome, which had higher levels of transcription at the second trimester of gestation. NC1 and classical MHC-I had very low levels of transcription throughout gestation. Trophoblastic cells of B. abortus-infected chorioallantoic membrane explants had an increase in transcription of non-classical MHC-I at 4h post infection. Therefore, this study provides an analysis of non-classical MHC-I transcription at different stages of gestation and different placental tissues, and during B. abortus infection. These findings provide additional knowledge on immune regulation in placental tissues, a known immune-privileged site. Copyright © 2015. Published by Elsevier B.V.

  10. Peat humic acids and their complex forming properties as influenced by peat humification

    Science.gov (United States)

    Dudare, D.; Klavins, M.

    2012-04-01

    To study paleoenvironmental changes of importance is understanding of processes of organic matter diagenesis, especially changes of refractory part of natural organic substances - humic substances. Studies of the living organic matter humification process are also essential for understanding of the carbon biogeochemical cycle. The aim of this study was to analyze peat organic matter diagenesis: changes of properties of humic acids, relations between the humification process, properties of peat, peat humic acids, their ability to interact with metal ions, as well ability to accumulate metals. The analysis were carried out on samples of humic substances preparatively extracted from three ombrotrophic bog peat profiles to identify the links between peat age, decomposition and humification degree, botanical composition and properties of peat humic acids elemental (C, H, N, O), functional (-COOH, -OH) composition, structural characteristics - UV, fluorescence, FTIR. The found variability of peat properties is less significant than differences in the properties of peat-forming living matter, thus revealing the dominant impact of humification process on the properties of peat. Correspondingly, composition of peat humic acids is little affected by differences in the properties of precursor living organic material, and such indicators as decomposition degree, humification degree, humic acid elemental ratio and concentrations of acidic functional groups are the best descriptors of changes in organic matter during the process of organic matter diagenesis and humification. Peat ability to accumulate major and trace elements depends on the character of element supply, potency of metal ions to bind functionalities in the peat, with an emphasis on the structure of peat humic acid, pH reaction, oxygen presence, presence of complexing compounds, inorganic ions and many other factors. Major and trace element presence in peat is of importance as an indicator of peat genesis and

  11. The Yeast Iron Regulatory Proteins Grx3/4 and Fra2 Form Heterodimeric Complexes Containing a [2Fe-2S] Cluster with Cysteinyl and Histidyl Ligation

    Energy Technology Data Exchange (ETDEWEB)

    Li, H.; Mapolelo, D; Dingra, N; Naik, S; Lees, N; Hoffman, B; Riggs-Gelasco, P; Huynh, B; Johnson, M; Outten, C

    2009-01-01

    The transcription of iron uptake and storage genes in Saccharomyces cerevisiae is primarily regulated by the transcription factor Aft1. Nucleocytoplasmic shuttling of Aft1 is dependent upon mitochondrial Fe-S cluster biosynthesis via a signaling pathway that includes the cytosolic monothiol glutaredoxins (Grx3 and Grx4) and the BolA homologue Fra2. However, the interactions between these proteins and the iron-dependent mechanism by which they control Aft1 localization are unclear. To reconstitute and characterize components of this signaling pathway in vitro, we have overexpressed yeast Fra2 and Grx3/4 in Escherichia coli. We have shown that coexpression of recombinant Fra2 with Grx3 or Grx4 allows purification of a stable [2Fe-2S]{sup 2+} cluster-containing Fra2-Grx3 or Fra2-Grx4 heterodimeric complex. Reconstitution of a [2Fe-2S] cluster on Grx3 or Grx4 without Fra2 produces a [2Fe-2S]-bridged homodimer. UV?visible absorption and CD, resonance Raman, EPR, ENDOR, M{umlt o}ssbauer, and EXAFS studies of [2Fe-2S] Grx3/4 homodimers and the [2Fe-2S] Fra2-Grx3/4 heterodimers indicate that inclusion of Fra2 in the Grx3/4 Fe-S complex causes a change in the cluster stability and coordination environment. Taken together, our analytical, spectroscopic, and mutagenesis data indicate that Grx3/4 and Fra2 form a Fe-S-bridged heterodimeric complex with Fe ligands provided by the active site cysteine of Grx3/4, glutathione, and a histidine residue. Overall, these results suggest that the ability of the Fra2-Grx3/4 complex to assemble a [2Fe-2S] cluster may act as a signal to control the iron regulon in response to cellular iron status in yeast.

  12. Ultrastructural characterisation of Bacillus subtilis TatA complexes suggests they are too small to form homooligomeric translocation pores.

    Science.gov (United States)

    Beck, Daniel; Vasisht, Nishi; Baglieri, Jacopo; Monteferrante, Carmine G; van Dijl, Jan Maarten; Robinson, Colin; Smith, Corinne J

    2013-08-01

    Tat-dependent protein transport permits the traffic of fully folded proteins across membranes in bacteria and chloroplasts. The mechanism by which this occurs is not understood. Current theories propose that a key step requires the coalescence of a substrate-binding TatC-containing complex with a TatA complex, which forms pores of varying sizes that could accommodate different substrates. We have studied the structure of the TatAd complex from Bacillus subtilis using electron microscopy to generate the first 3D model of a TatA complex from a Gram-positive bacterium. We observe that TatAd does not exhibit the remarkable heterogeneity of Escherichia coli TatA complexes but instead forms ring-shaped complexes of 7.5-9nm diameter with potential pores of 2.5-3nm diameter that are occluded at one end. Such structures are consistent with those seen for E. coli TatE complexes. Furthermore, the small diameter of the TatAd pore, and the homogeneous nature of the complexes, suggest that TatAd cannot form the translocation channel by itself. Biochemical data indicate that another B. subtilis TatA complex, TatAc, has similar properties, suggesting a common theme for TatA-type complexes from Bacillus. Copyright © 2013 Elsevier B.V. All rights reserved.

  13. A Polypyrimidine Tract Binding Protein, Pumpkin RBP50, Forms the Basis of a Phloem-Mobile Ribonucleoprotein Complex[W

    Science.gov (United States)

    Ham, Byung-Kook; Brandom, Jeri L.; Xoconostle-Cázares, Beatriz; Ringgold, Vanessa; Lough, Tony J.; Lucas, William J.

    2009-01-01

    RNA binding proteins (RBPs) are integral components of ribonucleoprotein (RNP) complexes and play a central role in RNA processing. In plants, some RBPs function in a non-cell-autonomous manner. The angiosperm phloem translocation stream contains a unique population of RBPs, but little is known regarding the nature of the proteins and mRNA species that constitute phloem-mobile RNP complexes. Here, we identified and characterized a 50-kD pumpkin (Cucurbita maxima cv Big Max) phloem RNA binding protein (RBP50) that is evolutionarily related to animal polypyrimidine tract binding proteins. In situ hybridization studies indicated a high level of RBP50 transcripts in companion cells, while immunolocalization experiments detected RBP50 in both companion cells and sieve elements. A comparison of the levels of RBP50 present in vascular bundles and phloem sap indicated that this protein is highly enriched in the phloem sap. Heterografting experiments confirmed that RBP50 is translocated from source to sink tissues. Collectively, these findings established that RBP50 functions as a non-cell-autonomous RBP. Protein overlay, coimmunoprecipitation, and cross-linking experiments identified the phloem proteins and mRNA species that constitute RBP50-based RNP complexes. Gel mobility-shift assays demonstrated that specificity, with respect to the bound mRNA, is established by the polypyrimidine tract binding motifs within such transcripts. We present a model for RBP50-based RNP complexes within the pumpkin phloem translocation stream. PMID:19122103

  14. Two forms of acid alpha-D-mannosidase in monkey brain: evidence for the co-existence of high mannose and complex oligosaccharides in one form.

    Science.gov (United States)

    Mathur, R; Alvares, K; Balasubramanian, A S

    1984-09-28

    Lysosomal alpha-D-mannosidase of monkey brain existed in two forms. One form of mannosidase was bound to the Ricinus communis agglutinin120 (RCA1)-Sepharose and could be specifically eluted with lactose. The other form did not bind to the RCA1-Sepharose. Both forms of mannosidase could bind to a similar extent to the immobilized brain lysosomal receptor protein. Both the forms were purified to apparent homogeneity. Neutral sugar analysis by GLC showed the presence of glucose, mannose and galactose in the RCA1-Sepharose bindable mannosidase and glucose and mannose in the non-bindable mannosidase. Several other brain lysosomal hydrolases did not bind to the RCA1-Sepharose. The results suggested the existence of only high mannose oligosaccharides in the RCA1 non-bindable mannosidase and both high mannose and complex oligosaccharides in the bindable mannosidase.

  15. Formation of aqueous complexes of metal ions formed during the reprocessing of nuclear fuels with ortho-phenanthroline and dibutylphosphate

    International Nuclear Information System (INIS)

    Musikas, C.; Le Marois, G.; Racinoux, J.

    1979-01-01

    In this work the formation of aqueous complexes of metalions (lanthanides, actinides) was investigated that occurs during reprocessing of nuclear combustibles with ortho-phenanthroline and dibutylphosphate. Complexes with different ligand numbers and solubility are formed. Cationic and anionic forms according to the DBP concentration in the extraction solution. Acid-base titrations, absorption spectra and solubility determinations were used for the characterization. (RB) [de

  16. Human ISWI complexes are targeted by SMARCA5 ATPase and SLIDE domains to help resolve lesion-stalled transcription

    NARCIS (Netherlands)

    Ö.Z. Aydin (Özge); J.A. Marteijn (Jurgen); C. Ribeiro-Silva (Cristina); A. Rodríguez López (Aida); N. Wijgers (Nils); G. Smeenk (Godelieve); H. van Attikum (Haico); R.A. Poot (Raymond); W. Vermeulen (Wim); H. Lans (Hannes)

    2014-01-01

    textabstractChromatin compaction of deoxyribonucleic acid (DNA) presents a major challenge to the detection and removal of DNA damage. Helix-distorting DNA lesions that block transcription are specifically repaired by transcription-coupled nucleotide excision repair, which is initiated by binding of

  17. Non-Mendelian determinant [ISP+] in yeast is a nuclear-residing prion form of the global transcriptional regulator Sfp1.

    Science.gov (United States)

    Rogoza, Tatyana; Goginashvili, Alexander; Rodionova, Sofia; Ivanov, Maxim; Viktorovskaya, Olga; Rubel, Alexander; Volkov, Kirill; Mironova, Ludmila

    2010-06-08

    Four protein-based genetic determinants or prions-[SWI(+)], [MCA], [OCT(+)], and [MOT3(+)]-are recent additions to the list of well-known Saccharomyces cerevisiae prions, [PSI(+)], [URE3], and [PIN(+)]. A rapid expansion of this list may indicate that many yeast proteins can convert into heritable prion forms and underscores a problem of prion input into cellular physiology. Here, we prove that the global transcriptional regulator Sfp1 can become a prion corresponding to the prion-like determinant [ISP(+)] described earlier. We show that SFP1 deletion causes an irreversible [ISP(+)] loss, whereas increased SFP1 expression induces [ISP(+)] appearance. Cells that display the [ISP(+)] phenotype contain the aggregated form of Sfp1. Indeed, these aggregates demonstrate a nuclear location. We also show that the phenotypic manifestation of Sfp1 prionization differs from the manifestation of SFP1 deletion. These properties and others distinguish [ISP(+)] from yeast prions described to date.

  18. Events during eucaryotic rRNA transcription initiation and elongation: Conversion from the closed to the open promoter complex requires nucleotide substrates

    Energy Technology Data Exchange (ETDEWEB)

    Bateman, E.; Paule, M.R.

    1988-05-01

    Chemical footprinting and topological analysis were carried out on the Acanthamoeba castellanii rRNA transcription initiation factor (TIF) and RNA polymerase I complexes with DNA during transcription initiation and elongation. The results show that the binding of TIF and polymerase to the promoter does not alter the supercoiling of the DNA template and the template does not become sensitive to modification by diethylpyro-carbonate, which can identify melted DNA regions. Thus, in contrast to bacterial RNA polymerase, the eucaryotic RNA polymerase I-promoter complex is in a closed configuration preceding addition of nucleotides in vitro. Initiation and 3'-O-methyl CTP-limited translocation by RNA polymerase I results in separation of the polymerase-TIF footprints, leaving the TIF footprint unaltered. In contrast, initiation and translocation result in a significant change in the conformation of the polymerase-DNA complex, culminating in an unwound DNA region of at least 10 base pairs.

  19. The role of empirical research in the study of complex forms of governance in agroindustrial systems

    Directory of Open Access Journals (Sweden)

    Guilherme Fowler A. Monteiro

    2012-12-01

    Full Text Available The growing complexity of supply chains poses new challenges for Agricultural Research Centers and statistical agencies. The aim of this perspective paper is to discuss the role of empirical research in understanding the complex forms of governance in agribusiness. The authors argue that there are three fundamental levels of analysis: (i the basic structure of the market, (ii the formal contractual arrangements that govern relations within the agroindustrial system and (iii the transactional dimensions governed by non-contractual means. The case of the agrochemical industry in Brazil illustrates how traditional analyses that only address market structure are insufficient to fully explain the agricultural sector and its supply chain. The article concludes by suggesting some indicators which could be collected by statistical agencies to improve understanding of the complex relationships among agribusiness segments. In doing so, the paper seeks to minimize costs and to enable a better formulation of public and private policies.A crescente complexidade das relações entre os agentes das cadeias produtivas coloca novos desafios para os centros de pesquisa e estatística do setor agrícola. O objetivo do presente artigo é discutir o papel da pesquisa empírica para o entendimento das formas complexas de governança no setor agroindustrial. Os autores argumentam que há três níveis fundamentais de análise: (i a estrutura básica do mercado, (ii o regime contratual formal que rege as relações dentro do sistema agroindustrial e (iii as dimensões transacionais governadas por meios não contratuais. O caso da indústria de agroquímicos no Brasil ilustra como as análises tradicionais que trazem apenas informações sobre a estrutura de mercado são insuficientes para se entender completamente o setor agrícola e sua cadeia produtiva. Conclui-se com algumas sugestões de indicadores que poderiam ser coletados pelos centros de estatística como

  20. Post-transcriptional generation of miRNA variants by multiple nucleotidyl transferases contributes to miRNA transcriptome complexity.

    Science.gov (United States)

    Wyman, Stacia K; Knouf, Emily C; Parkin, Rachael K; Fritz, Brian R; Lin, Daniel W; Dennis, Lucas M; Krouse, Michael A; Webster, Philippa J; Tewari, Muneesh

    2011-09-01

    Modification of microRNA sequences by the 3' addition of nucleotides to generate so-called "isomiRs" adds to the complexity of miRNA function, with recent reports showing that 3' modifications can influence miRNA stability and efficiency of target repression. Here, we show that the 3' modification of miRNAs is a physiological and common post-transcriptional event that shows selectivity for specific miRNAs and is observed across species ranging from C. elegans to human. The modifications result predominantly from adenylation and uridylation and are seen across tissue types, disease states, and developmental stages. To quantitatively profile 3' nucleotide additions, we developed and validated a novel assay based on NanoString Technologies' nCounter platform. For certain miRNAs, the frequency of modification was altered by processes such as cell differentiation, indicating that 3' modification is a biologically regulated process. To investigate the mechanism of 3' nucleotide additions, we used RNA interference to screen a panel of eight candidate miRNA nucleotidyl transferases for 3' miRNA modification activity in human cells. Multiple enzymes, including MTPAP, PAPD4, PAPD5, ZCCHC6, ZCCHC11, and TUT1, were found to govern 3' nucleotide addition to miRNAs in a miRNA-specific manner. Three of these enzymes-MTPAP, ZCCHC6, and TUT1-have not previously been known to modify miRNAs. Collectively, our results indicate that 3' modification observed in next-generation small RNA sequencing data is a biologically relevant process, and identify enzymatic mechanisms that may lead to new approaches for modulating miRNA activity in vivo.

  1. Complex-forming polymer prepared by electron beam radiation-induced graft polymerization

    Science.gov (United States)

    Okamoto, Jiro; Sugo, Takanobu; Katakai, Akio; Omichi, Hideki

    In order to prepare a complex-forming polymer useful as a selective adsorbent, radiation-induced graft polymerization of acrylonitrile onto a fibrous tetrafluoroethylene ethylene copolymer has been studied by using preirradiation method. The resulting grafted fibers were treated with 3% hydroxylamine alcohol-water solution, followed by controlling in alkali solution. The adsorbents containing amidoxime are able to take up transition metal ions from neutral and weakly acidic solutions while not sorbing the ions of alkaline and alkaline earth metals to any significant extent. It was shown that by introducing a small amount of hydrophilic groups to the fiber, it was possible to increase the exchange rate between the external water and the internal water interacted with functional groups in polymer matrix and to induce the diffusion of hydrated metal ions. The efficiency for adsorption of transition metal ions was successfully improved either by adding small amount of hydrophilic part composed of poly(acrylic acid) or by restricting the distribution of amidoxime groups at the fiber surface. A high stability of this adsorbents to various treatments ( alkali treatment at 80° C, contact with seawater for 24 h at 30° C, etc.) was confirmed. It's applicability to the recovery of uranium from seawater is demonstrated by laboratory scale experiments.

  2. Rictor forms a complex with Cullin-1 to promote SGK1 ubiquitination and destruction

    Science.gov (United States)

    Gao, Daming; Wan, Lixin; Inuzuka, Hiroyuki; Berg, Anders H.; Tseng, Alan; Zhai, Bo; Shaik, Shavali; Bennett, Eric; Tron, Adriana E.; Gasser, Jessica A.; Lau, Alan; Gygi, Steven; Harper, J. Wade; DeCaprio, James A.; Toker, Alex; Wei, Wenyi

    2010-01-01

    Summary The Rictor/mTOR complex (also known as mTORC2) plays a critical role in cellular homeostasis by phosphorylating AGC kinases such as Akt and SGK at their hydrophobic motifs to activate downstream signaling. However, the regulation of mTORC2 and whether it has additional function(s), remains largely unknown. Here we report that Rictor associates with Cullin-1 to form a functional E3 ubiquitin ligase. Rictor, but not Raptor or mTOR alone promotes SGK1 ubiquitination. Loss of Rictor/Cullin-1-mediated ubiquitination leads to increased SGK1 protein levels as detected in Rictor null cells. Moreover, as part of a feedback mechanism, phosphorylation of Rictor at T1135 by multiple AGC kinases disrupts the interaction between Rictor and Cullin-1 to impair SGK1 ubiquitination. These findings indicate that the Rictor/Cullin-1 E3 ligase activity is regulated by a specific signal relay cascade and that misregulation of this mechanism may contribute to the frequent overexpression of SGK1 in various human cancers. PMID:20832730

  3. Odontoblasts: Specialized hard-tissue-forming cells in the dentin-pulp complex.

    Science.gov (United States)

    Kawashima, Nobuyuki; Okiji, Takashi

    2016-07-01

    Odontoblasts are specialized cells that produce dentin and exhibit unique morphological characteristics; i.e., they extend cytoplasmic processes into dentinal tubules. While osteoblasts, which are typical hard-tissue-forming cells, are generated from mesenchymal stem cells during normal and pathological bone metabolism, the induction of odontoblasts only occurs once during tooth development, and odontoblasts survive throughout the lives of healthy teeth. During the differentiation of odontoblasts, signaling molecules from the inner enamel epithelium are considered necessary for the differentiation of odontoblast precursors, i.e., peripheral dental papilla cells. If odontoblasts are destroyed by severe external stimuli, such as deep caries, the differentiation of dental pulp stem cells into odontoblast-like cells is induced. Various bioactive molecules, such as non-collagenous proteins, might be involved in this process, although the precise mechanisms responsible for odontoblast differentiation have not been fully elucidated. Recently, our knowledge about the other functional activities of odontoblasts (apart from dentin formation) has increased. For example, it has been suggested that odontoblasts might act as nociceptive receptors, and surveillance cells that detect the invasion of exogenous pathogens. The regeneration of the dentin-pulp complex has recently gained much attention as a promising future treatment modality that could increase the longevity of pulpless teeth. Finally, congenital dentin anomalies, which are concerned with the disturbance of odontoblast functions, are summarized. © 2016 Japanese Teratology Society.

  4. A tetranuclear ruthenium complex with bridging pyridine-2,4-dicarboxylato ligands forming a square metallamacrocycle

    Energy Technology Data Exchange (ETDEWEB)

    Xie, Yu-Feng; Jia, Ai-Quan; Zhu, Hang; Shi, Hua-Tian; Zhang, Qian-Feng [Anhui Univ. of Technology (China). Inst. of Molecular Engineering and Applied Chemistry

    2016-04-01

    Treatment of [RuCl{sub 2}(PPh{sub 3}){sub 3}] with equimolar amounts of 2,4-pyridinedicarboxylic acid (2,4-dipicH{sub 2}) in the presence of Et{sub 3}N afforded a tetranuclear complex [Ru(μ-2,4-dipic)(PPh{sub 3}){sub 2}]{sub 4} (1) as red crystals. The crystal and molecular structure of [Ru(μ-2,4-dipic)(PPh{sub 3}){sub 2}]{sub 4}.CHCl{sub 3}.8H{sub 2}O (1.CHCl{sub 3}.8H{sub 2}O) was determined by single-crystal X-ray diffraction. Each ruthenium center in 1 is six-coordinated with two phosphorus atoms from triphenylphosphine ligands, one nitrogen atom from a pyridyl moiety and three oxygen atoms from two 2,4-dipic{sup 2-} ligands. 2,4-Pyridinedicarboxylate dianions (2,4-dipic{sup 2-}) act as bridging ligands to form the stable tetranuclear metallamacrocyclic compound. The electrochemical properties of 1 were also investigated.

  5. Microparticles That Form Immune Complexes as Modulatory Structures in Autoimmune Responses

    Directory of Open Access Journals (Sweden)

    Catalina Burbano

    2015-01-01

    Full Text Available Microparticles (MPs are induced during apoptosis, cell activation, and even “spontaneous” release. Initially MPs were considered to be inert cellular products with no biological function. However, an extensive research and functional characterization have shown that the molecular composition and the effects of MPs depend upon the cellular background and the mechanism inducing them. They possess a wide spectrum of biological effects on intercellular communication by transferring different molecules able to modulate other cells. MPs interact with their target cells through different mechanisms: membrane fusion, macropinocytosis, and receptor-mediated endocytosis. However, when MPs remain in the extracellular milieu, they undergo modifications such as citrullination, glycosylation, and partial proteolysis, among others, becoming a source of neoantigens. In rheumatoid arthritis (RA and systemic lupus erythematosus (SLE, reports indicated elevated levels of MPs with different composition, content, and effects compared with those isolated from healthy individuals. MPs can also form immune complexes amplifying the proinflammatory response and tissue damage. Their early detection and characterization could facilitate an appropriate diagnosis optimizing the pharmacological strategies, in different diseases including cancer, infection, and autoimmunity. This review focuses on the current knowledge about MPs and their involvement in the immunopathogenesis of SLE and RA.

  6. Multiple 5' ends of human cytomegalovirus UL57 transcripts identify a complex, cycloheximide-resistant promoter region that activates oriLyt

    International Nuclear Information System (INIS)

    Kiehl, Anita; Huang, Lili; Franchi, David; Anders, David G.

    2003-01-01

    The human cytomegalovirus (HCMV) UL57 gene lies adjacent to HCMV oriLyt, from which it is separated by an organizationally conserved, mostly noncoding region that is thought to both regulate UL57 expression and activate oriLyt function. However, the UL57 promoter has not been studied. We determined the 5' ends of UL57 transcripts toward an understanding of the potential relationship between UL57 expression and oriLyt activation. The results presented here identified three distinct 5' ends spread over 800 bp, at nt 90302, 90530, and 91138; use of these sites exhibited differential sensitivity to phosphonoformic acid treatment. Interestingly, a 10-kb UL57 transcript accumulated in cycloheximide-treated infected cells, even though other early transcripts were not detectable. However, the 10-kb transcript did not accumulate in cells treated with the more stringent translation inhibitor anisomycin. Consistent with the notion that the identified 5' ends arise from distinct transcription start sites, the sequences upstream of sites I and II functioned as promoters responsive to HCMV infection in transient assays. However, the origin-proximal promoter region III required downstream sequences for transcriptional activity. Mutation of candidate core promoter elements suggested that promoter III is regulated by an initiator region (Inr) and a downstream promoter element. Finally, a 42-bp sequence containing the candidate Inr activated a minimal oriLyt core construct in transient replication assays. Thus, these studies showed that a large, complex promoter region with novel features controls UL57 expression, and identified a sequence that regulates both UL57 transcription and oriLyt activation

  7. Overexpression of the PAP1 transcription factor reveals a complex regulation of flavonoid and phenylpropanoid metabolism in Nicotiana tabacum plants attacked by Spodoptera litura.

    Science.gov (United States)

    Mitsunami, Tomoko; Nishihara, Masahiro; Galis, Ivan; Alamgir, Kabir Md; Hojo, Yuko; Fujita, Kohei; Sasaki, Nobuhiro; Nemoto, Keichiro; Sawasaki, Tatsuya; Arimura, Gen-ichiro

    2014-01-01

    Anthocyanin pigments and associated flavonoids have demonstrated antioxidant properties and benefits for human health. Consequently, current plant bioengineers have focused on how to modify flavonoid metabolism in plants. Most of that research, however, does not consider the role of natural biotic stresses (e.g., herbivore attack). To understand the influence of herbivore attack on the metabolic engineering of flavonoids, we examined tobacco plants overexpressing the Arabidopsis PAP1 gene (encoding an MYB transcription factor), which accumulated anthocyanin pigments and other flavonoids/phenylpropanoids. In comparison to wild-type and control plants, transgenic plants exhibited greater resistance to Spodoptera litura. Moreover, herbivory suppressed the PAP1-induced increase of transcripts of flavonoid/phenylpropanoid biosynthetic genes (e.g., F3H) and the subsequent accumulation of these genes' metabolites, despite the unaltered PAP1 mRNA levels after herbivory. The instances of down-regulation were independent of the signaling pathways mediated by defense-related jasmonates but were relevant to the levels of PAP1-induced and herbivory-suppressed transcription factors, An1a and An1b. Although initially F3H transcripts were suppressed by herbivory, after the S. litura feeding was interrupted, F3H transcripts increased. We hypothesize that in transgenic plants responding to herbivory, there is a complex mechanism regulating enriched flavonoid/phenylpropanoid compounds, via biotic stress signals.

  8. Overexpression of the PAP1 transcription factor reveals a complex regulation of flavonoid and phenylpropanoid metabolism in Nicotiana tabacum plants attacked by Spodoptera litura.

    Directory of Open Access Journals (Sweden)

    Tomoko Mitsunami

    Full Text Available Anthocyanin pigments and associated flavonoids have demonstrated antioxidant properties and benefits for human health. Consequently, current plant bioengineers have focused on how to modify flavonoid metabolism in plants. Most of that research, however, does not consider the role of natural biotic stresses (e.g., herbivore attack. To understand the influence of herbivore attack on the metabolic engineering of flavonoids, we examined tobacco plants overexpressing the Arabidopsis PAP1 gene (encoding an MYB transcription factor, which accumulated anthocyanin pigments and other flavonoids/phenylpropanoids. In comparison to wild-type and control plants, transgenic plants exhibited greater resistance to Spodoptera litura. Moreover, herbivory suppressed the PAP1-induced increase of transcripts of flavonoid/phenylpropanoid biosynthetic genes (e.g., F3H and the subsequent accumulation of these genes' metabolites, despite the unaltered PAP1 mRNA levels after herbivory. The instances of down-regulation were independent of the signaling pathways mediated by defense-related jasmonates but were relevant to the levels of PAP1-induced and herbivory-suppressed transcription factors, An1a and An1b. Although initially F3H transcripts were suppressed by herbivory, after the S. litura feeding was interrupted, F3H transcripts increased. We hypothesize that in transgenic plants responding to herbivory, there is a complex mechanism regulating enriched flavonoid/phenylpropanoid compounds, via biotic stress signals.

  9. Structure and Function of the Ankyrin Repeats in the Sw14/Sw16 Transcription Complex of Budding Yeast

    National Research Council Canada - National Science Library

    Breeden, Linda

    1998-01-01

    ANK repeats were first found in the Swi6 transcription factor of Saccharomyces cerevisiae and since then were identified in many proteins, including oncogenes and tumor suppressors We have previously...

  10. c-Myb protein interacts with Rcd-1, a component of the CCR4 transcription mediator complex.

    Science.gov (United States)

    Haas, Martin; Siegert, Michaela; Schürmann, André; Sodeik, Beate; Wolfes, Heiner

    2004-06-29

    Transcriptional initiation of eukaryotic genes depends on the cooperative interaction of various transcription factors. Using the yeast two-hybrid assay, we have identified the murine Rcd-1 protein as a cofactor of the c-myb proto-oncogene product. Rcd-1 is evolutionarily conserved among many species, and moreover the yeast homologue CAF40 is part of the carbon catabolite repressor protein transcriptional mediator thought to be involved in the negative regulation of genes transcribed by RNA polymerase II. Rcd-1 is located mainly in the nucleus, and it interacts with c-Myb both in vitro and in vivo. The activation of the myeloid c-myb-specific mim-1 promoter is repressed by Rcd-1. Interestingly, rcd-1 is an erythropoietin regulated gene, which also represses the action of the AP-1 transcription factor on its target genes.

  11. CRISPR-Cas type I-A Cascade complex couples viral infection surveillance to host transcriptional regulation in the dependence of Csa3b.

    Science.gov (United States)

    He, Fei; Vestergaard, Gisle; Peng, Wenfang; She, Qunxin; Peng, Xu

    2017-02-28

    CRISPR-Cas (clustered regularly interspaced short palindromic repeats and the associated genes) constitute adaptive immune systems in bacteria and archaea and they provide sequence specific immunity against foreign nucleic acids. CRISPR-Cas systems are activated by viral infection. However, little is known about how CRISPR-Cas systems are activated in response to viral infection or how their expression is controlled in the absence of viral infection. Here, we demonstrate that both the transcriptional regulator Csa3b, and the type I-A interference complex Cascade, are required to transcriptionally repress the interference gene cassette in the archaeon Sulfolobus. Csa3b binds to two palindromic repeat sites in the promoter region of the cassette and facilitates binding of the Cascade to the promoter region. Upon viral infection, loading of Cascade complexes onto crRNA-matching protospacers leads to relief of the transcriptional repression. Our data demonstrate a mechanism coupling CRISPR-Cas surveillance of protospacers to transcriptional regulation of the interference gene cassette thereby allowing a fast response to viral infection. © The Author(s) 2016. Published by Oxford University Press on behalf of Nucleic Acids Research.

  12. CRISPR-Cas type I-A Cascade complex couples viral infection surveillance to host transcriptional regulation in the dependence of Csa3b

    Science.gov (United States)

    He, Fei; Vestergaard, Gisle; Peng, Wenfang; She, Qunxin

    2017-01-01

    Abstract CRISPR-Cas (clustered regularly interspaced short palindromic repeats and the associated genes) constitute adaptive immune systems in bacteria and archaea and they provide sequence specific immunity against foreign nucleic acids. CRISPR-Cas systems are activated by viral infection. However, little is known about how CRISPR-Cas systems are activated in response to viral infection or how their expression is controlled in the absence of viral infection. Here, we demonstrate that both the transcriptional regulator Csa3b, and the type I-A interference complex Cascade, are required to transcriptionally repress the interference gene cassette in the archaeon Sulfolobus. Csa3b binds to two palindromic repeat sites in the promoter region of the cassette and facilitates binding of the Cascade to the promoter region. Upon viral infection, loading of Cascade complexes onto crRNA-matching protospacers leads to relief of the transcriptional repression. Our data demonstrate a mechanism coupling CRISPR-Cas surveillance of protospacers to transcriptional regulation of the interference gene cassette thereby allowing a fast response to viral infection. PMID:27980065

  13. Rubber pad forming - Efficient approach for the manufacturing of complex structured sheet metal blanks for food industry

    Science.gov (United States)

    Spoelstra, Paul; Djakow, Eugen; Homberg, Werner

    2017-10-01

    The production of complex organic shapes in sheet metals is gaining more importance in the food industry due to increasing functional and hygienic demands. Hence it is necessary to produce parts with complex geometries promoting cleanability and general sanitation leading to improvement of food safety. In this context, and especially when stainless steel has to be formed into highly complex geometries while maintaining desired surface properties, it is inevitable that alternative manufacturing processes will need to be used which meet these requirements. Rubber pad forming offers high potential when it comes to shaping complex parts with excellent surface quality, with virtually no tool marks and scratches. Especially in cases where only small series are to be produced, rubber pad forming processes offers both technological and economic advantages. Due to the flexible punch, variation in metal thickness can be used with the same forming tool. The investments to set-up Rubber pad forming is low in comparison to conventional sheet metal forming processes. The process facilitates production of shallow sheet metal parts with complex contours and bends. Different bending sequences in a multiple tool set-up can also be conducted. The planned contribution thus describes a brief overview of the rubber pad technology. It shows the prototype rubber pad forming machine which can be used to perform complex part geometries made from stainless steel (1.4301). Based on an analysis of the already existing systems and new machines for rubber pad forming processes, together with their process properties, influencing variables and areas of application, some relevant parts for the food industry are presented.

  14. Structure of a mitochondrial supercomplex formed by respiratory-chain complexes I and III

    NARCIS (Netherlands)

    Dudkina, Natalia V.; Eubel, Holger; Keegstra, Wilko; Boekema, Egbert J.; Braun, Hans-Peter

    2005-01-01

    Mitochondria are central to the efficient provision of energy for eukaryotic cells. The oxidative-phosphorylation system of mitochondria consists of a series of five major membrane complexes: NADH–ubiquinone oxidoreductase (commonly known as complex I), succinate–ubiquinone oxidoreductase (complex

  15. SOXE transcription factors form selective dimers on non-compact DNA motifs through multifaceted interactions between dimerization and high-mobility group domains.

    Science.gov (United States)

    Huang, Yong-Heng; Jankowski, Aleksander; Cheah, Kathryn S E; Prabhakar, Shyam; Jauch, Ralf

    2015-05-27

    The SOXE transcription factors SOX8, SOX9 and SOX10 are master regulators of mammalian development directing sex determination, gliogenesis, pancreas specification and neural crest development. We identified a set of palindromic SOX binding sites specifically enriched in regulatory regions of melanoma cells. SOXE proteins homodimerize on these sequences with high cooperativity. In contrast to other transcription factor dimers, which are typically rigidly spaced, SOXE group proteins can bind cooperatively at a wide range of dimer spacings. Using truncated forms of SOXE proteins, we show that a single dimerization (DIM) domain, that precedes the DNA binding high mobility group (HMG) domain, is sufficient for dimer formation, suggesting that DIM : HMG rather than DIM:DIM interactions mediate the dimerization. All SOXE members can also heterodimerize in this fashion, whereas SOXE heterodimers with SOX2, SOX4, SOX6 and SOX18 are not supported. We propose a structural model where SOXE-specific intramolecular DIM:HMG interactions are allosterically communicated to the HMG of juxtaposed molecules. Collectively, SOXE factors evolved a unique mode to combinatorially regulate their target genes that relies on a multifaceted interplay between the HMG and DIM domains. This property potentially extends further the diversity of target genes and cell-specific functions that are regulated by SOXE proteins.

  16. SOXE transcription factors form selective dimers on non-compact DNA motifs through multifaceted interactions between dimerization and high-mobility group domains

    Science.gov (United States)

    Huang, Yong-Heng; Jankowski, Aleksander; Cheah, Kathryn S. E.; Prabhakar, Shyam; Jauch, Ralf

    2015-01-01

    The SOXE transcription factors SOX8, SOX9 and SOX10 are master regulators of mammalian development directing sex determination, gliogenesis, pancreas specification and neural crest development. We identified a set of palindromic SOX binding sites specifically enriched in regulatory regions of melanoma cells. SOXE proteins homodimerize on these sequences with high cooperativity. In contrast to other transcription factor dimers, which are typically rigidly spaced, SOXE group proteins can bind cooperatively at a wide range of dimer spacings. Using truncated forms of SOXE proteins, we show that a single dimerization (DIM) domain, that precedes the DNA binding high mobility group (HMG) domain, is sufficient for dimer formation, suggesting that DIM : HMG rather than DIM:DIM interactions mediate the dimerization. All SOXE members can also heterodimerize in this fashion, whereas SOXE heterodimers with SOX2, SOX4, SOX6 and SOX18 are not supported. We propose a structural model where SOXE-specific intramolecular DIM:HMG interactions are allosterically communicated to the HMG of juxtaposed molecules. Collectively, SOXE factors evolved a unique mode to combinatorially regulate their target genes that relies on a multifaceted interplay between the HMG and DIM domains. This property potentially extends further the diversity of target genes and cell-specific functions that are regulated by SOXE proteins. PMID:26013289

  17. Nonlinear eigen-structures in star-forming gyratory nonthermal complex molecular clouds

    Science.gov (United States)

    Karmakar, Pralay Kumar; Dutta, Pranamika

    2018-01-01

    This paper deals with the nonlinear gravito-electrostatic fluctuations in star-forming rotating complex partially ionized dust molecular clouds, evolutionarily well-governed by a derived pair of the Korteweg-de Vries (KdV) equations of a unique analytical shape, in a bi-fluidic-model fabric. The lighter constituent species, such as electrons and ions, are considered thermo-statistically as the nonthermal ones in nature, governed by the anti-equilibrium kappa-distribution laws, due to inherent nonlocal gradient effects stemming from large-scale inhomogeneity. The heavier species, such as the constitutive identical neutral and charged dust micro-spheres, are treated as separate turbulent viscous fluids in the Larson logatropic tapestry. Application of a standard technique of multiple scale analysis over the nonlinearly perturbed cloud procedurally yields the pair KdV system. It comprises of the gravitational KdV and electrostatic KdV equations with exclusive constructs of diversified multi-parametric coefficients. A numerical constructive platform is provided to see the excitation and propagatory dynamics of gravitational rarefactive periodic soliton-trains and electrostatic rarefactive aperiodic damped soliton-trains of distinctive patterns as the pair-KdV-supported discrete coherent eigen-mode structures illustratively. The varied key stabilizing and tonality destabilizing factors behind the cloud dynamics are identified. An elaborated contrast of the eigen-mode conjugacy is reconnoitered. The main implications and applications of the semi-analytical results explored here are summarily outlined in the real astro-space-cosmic statuses.

  18. Oligomeric adiponectin forms and their complexes in the blood of healthy donors and patients with type 2 diabetes mellitus.

    Science.gov (United States)

    Kogan, Alexander E; Filatov, Vladimir L; Kolosova, Olga V; Katrukha, Ivan A; Mironova, Ekaterina V; Zhuravleva, Natalya S; Nagibin, Oleg A; Kara, Andrei N; Bereznikova, Anastasiya V; Katrukha, Alexey G

    2013-01-01

    Adiponectin (Adn) is a protein that circulates in the blood in several oligomeric forms, namely low-, medium-, and high-molecular-weight forms. Adn may serve as a risk factor for type 2 diabetes mellitus (T2DM). The aims of this work were (1) to produce monoclonal antibodies (MAbs) specific to different Adn oligomeric forms, (2) to design immunoassays suitable for measuring the Adn forms present in human blood, and (3) to investigate the changes in Adn forms that occur in patients with T2DM. Gel filtration, fluoroimmunoassays, and Western blotting were utilized as major techniques in this study. MAbs recognizing various oligomeric forms of Adn were obtained. Complexes between Adn and complement component C1q and between the low molecular weight form of Adn and albumin were described in human blood. A decrease in the total Adn and Adn-albumin complex levels in the blood of patients with T2DM and no difference in the levels of the Adn-C1q complex in comparison with healthy volunteers were demonstrated. An Adn94-Adn63 fluoroimmunoassay was selected as the technique that most accurately measured the mass ratio of Adn oligomers in blood samples, and an Adn214-Adn27 assay that measured the low-molecular-weight form of Adn only.

  19. Gas-phase complexes formed between amidoxime ligands and vanadium or iron investigated using electrospray ionization mass spectrometry.

    Science.gov (United States)

    Mustapha, Adetayo M; Pasilis, Sofie P

    2016-08-15

    Amidoxime-functionalized sorbents can be used to extract uranium from seawater. Iron(III) and vanadium(V) may compete with uranium for adsorption sites. We use 2,6-dihydroxyiminopiperidine (DHIP) and N(1) ,N(5) -dihydroxypentanediimidamide (DHPD) to model amidoxime functional groups and characterize the vanadium(V) and iron(III) complexes with these ligands. We also examine the effect of iron(III) and vanadium(V) on uranyl(VI) complexation by DHIP and DHPD. The experiments were carried out in positive ion mode using a quadrupole ion trap mass spectrometer equipped with an electrospray ionization source. The effect on the mass spectra of changes in ligand, metal:ligand mole ratio, and pH was examined. Iron(III) formed a 1:2 metal:ligand complex with DHIP at all metal:ligand mole ratios and pH values investigated; it formed both 1:2 and 1:3 metal:ligand complexes with DHPD. Vanadium(V) formed 1:1 and 1:2 metal:ligand complexes with DHIP. A 1:2 metal:ligand complex was formed with DHPD at all vanadium(V):DHPD mole ratios investigated. Changes in solution pH did not affect the ions observed. The relative binding affinities of the metal ions towards DHIP followed the order iron(III) > vanadium(V) > uranyl(VI). This study presents a first look at the gas-phase vanadium(V)- and iron(III)-DHIP and -DHPD complexes using electrospray ionization mass spectrometry. These metals form stronger complexes with amidoxime ligands than uranyl(VI), and will affect uranyl(VI) adsorption to amidoxime-based sorbents. Copyright © 2016 John Wiley & Sons, Ltd. Copyright © 2016 John Wiley & Sons, Ltd.

  20. Histone methyltransferases G9a and GLP form heteromeric complexes and are both crucial for methylation of euchromatin at H3-K9.

    Science.gov (United States)

    Tachibana, Makoto; Ueda, Jun; Fukuda, Mikiko; Takeda, Naoki; Ohta, Tsutomu; Iwanari, Hiroko; Sakihama, Toshiko; Kodama, Tatsuhiko; Hamakubo, Takao; Shinkai, Yoichi

    2005-04-01

    Histone H3 Lys 9 (H3-K9) methylation is a crucial epigenetic mark for transcriptional silencing. G9a is the major mammalian H3-K9 methyltransferase that targets euchromatic regions and is essential for murine embryogenesis. There is a single G9a-related methyltransferase in mammals, called GLP/Eu-HMTase1. Here we show that GLP is also important for H3-K9 methylation of mouse euchromatin. GLP-deficiency led to embryonic lethality, a severe reduction of H3-K9 mono- and dimethylation, the induction of Mage-a gene expression, and HP1 relocalization in embryonic stem cells, all of which were phenotypes of G9a-deficiency. Furthermore, we show that G9a and GLP formed a stoichiometric heteromeric complex in a wide variety of cell types. Biochemical analyses revealed that formation of the G9a/GLP complex was dependent on their enzymatic SET domains. Taken together, our new findings revealed that G9a and GLP cooperatively exert H3-K9 methyltransferase function in vivo, likely through the formation of higher-order heteromeric complexes.

  1. Nipah and Hendra Virus Nucleoproteins Inhibit Nuclear Accumulation of Signal Transducer and Activator of Transcription 1 (STAT1) and STAT2 by Interfering with Their Complex Formation.

    Science.gov (United States)

    Sugai, Akihiro; Sato, Hiroki; Takayama, Ikuyo; Yoneda, Misako; Kai, Chieko

    2017-11-01

    Henipaviruses, such as Nipah (NiV) and Hendra (HeV) viruses, are highly pathogenic zoonotic agents within the Paramyxoviridae family. The phosphoprotein (P) gene products of the paramyxoviruses have been well characterized for their interferon (IFN) antagonist activity and their contribution to viral pathogenicity. In this study, we demonstrated that the nucleoprotein (N) of henipaviruses also prevents the host IFN signaling response. Reporter assays demonstrated that the NiV and HeV N proteins (NiV-N and HeV-N, respectively) dose-dependently suppressed both type I and type II IFN responses and that the inhibitory effect was mediated by their core domains. Additionally, NiV-N prevented the nuclear transport of signal transducer and activator of transcription 1 (STAT1) and STAT2. However, NiV-N did not associate with Impα5, Impβ1, or Ran, which are members of the nuclear transport system for STATs. Although P protein is known as a binding partner of N protein and actively retains N protein in the cytoplasm, the IFN antagonist activity of N protein was not abolished by the coexpression of P protein. This suggests that the IFN inhibition by N protein occurs in the cytoplasm. Furthermore, we demonstrated that the complex formation of STATs was hampered in the N protein-expressing cells. As a result, STAT nuclear accumulation was reduced, causing a subsequent downregulation of interferon-stimulated genes (ISGs) due to low promoter occupancy by STAT complexes. This novel route for preventing host IFN responses by henipavirus N proteins provides new insight into the pathogenesis of these viruses. IMPORTANCE Paramyxoviruses are well known for suppressing interferon (IFN)-mediated innate immunity with their phosphoprotein (P) gene products, and the henipaviruses also possess P, V, W, and C proteins for evading host antiviral responses. There are numerous studies providing evidence for the relationship between viral pathogenicity and antagonistic activities against IFN

  2. Visão complexa para uma forma complexa de agir / Complex vision for a complex form of action

    Directory of Open Access Journals (Sweden)

    Maria Cecilia de Souza Minayo

    2013-02-01

    Full Text Available Este artigo contém uma introdução à abordagem científi ca denominada “pensamento complexo”, complementa a visão tradicional e racionalista da ciência, oriunda do século XVII. Os autores mostram que coexistem hoje várias formas de se pensar a produção de conhecimento. Evidenciam também que a forma com que se organiza essa produção tem muito a ver com a própria organização da sociedade, da economia e do trabalho. Por exemplo, a ciência tradicional se desenvolveu a partir da lógica da revolução industrial. Já o pensamento complexo é fruto tanto das transformações sociais como de descobertas científi cas atuais e relevantes na Física, na Matemática, na Biologia, na Cibernética e nas Ciências Sociais. O texto termina mostrando que a visão complexa da ciência é fundamental para transformar as formas de pensar e de agir em saúde, particularmente, para a vigilância sanitária, para a formação de pessoas e para a gestão dos serviços. ------------------------------------------------------- This article contains an introduction to the scientifi c approach called “complex thought” that complements the traditional view of science and rationalism, coming from the seventeenth century. The authors show that coexist today several ways of thinking about knowledge production. Also show that the way that production is organized has a lot to do with the very organization of society, economy and labor. For example, the rationalist science has developed from traditional logic of the industrial revolution. Already, complex thinking is fruit of contemporary social changes and relevant scientifi c discoveries in physics, mathematics, biology, cybernetics and social sciences. The text ends by showing that the complex view of science is essential to transform the ways of thinking and acting on health, particularly for surveillance, to train people and for the management of services.

  3. Identification of chromatophore membrane protein complexes formed under different nitrogen availability conditions in Rhodospirillum rubrum

    DEFF Research Database (Denmark)

    Selao, Tiago Toscano; Branca, Rui; Chae, Pil Seok

    2011-01-01

    of two-dimensional Blue Native/SDS-PAGE and NSI-LC-LTQ-Orbitrap mass spectrometry. We have identified several membrane protein complexes, including components of the ATP synthase, reaction center, light harvesting, and NADH dehydrogenase complexes. Additionally, we have identified differentially...

  4. Systematic analysis of barrier-forming FG hydrogels from Xenopus nuclear pore complexes

    NARCIS (Netherlands)

    Labokha, A.A.; Gradmann, S.H.E.; Frey, S.; Hülsmann, B.B.; Urlaub, H.; Baldus, M.; Görlich, D.

    2013-01-01

    Nuclear pore complexes (NPCs) control the traffic between cell nucleus and cytoplasm. While facilitating translocation of nuclear transport receptors (NTRs) and NTR·cargo complexes, they suppress passive passage of macromolecules ⩾30 kDa. Previously, we reconstituted the NPC barrier as hydrogels

  5. Characteristic Ligand-Induced Crystal Forms of HIV-1 Protease Complexes: A Novel Discovery of X-Ray Crystallography

    International Nuclear Information System (INIS)

    Olajuyigbe, Folasade M.; Geremia, Silvano

    2009-10-01

    Mixtures of saquinavir (SQV) and ritonavir (RTV) were cocrystallized with HIV-1 protease (PR) in an attempt to compare their relative potencies using a crystallographic approach and factors responsible for the respective crystal forms obtained were examined. The mixture ratio of the SQV/RTV was in the range of 1:1 to 1:50 with increasing concentration of dimethyl sulphoxide (DMSO) used. Two crystal forms of PR complexes were obtained. At concentrations of 0.8 and 1.2 % DMSO using 1:1 and 1:15 ratios of SQV/RTV, the crystal form was monoclinic while increasing the concentration of DMSO to 3.2 and 5.0% using 1:15 and 1:50 ratios of SQV/RTV, the orthorhombic crystal form was obtained. The high resolution X-ray crystal structures of the PR/ inhibitor complexes reveal that crystal forms with respective space groups are dependent on the occupancy of either SQV or RTV in the active site of the PR. The occupancy of either of the PR inhibitors in the active site of PR has interestingly demonstrated unique cooperativity effects in crystallization of protein-ligand complexes. The crystal forms obtained were also related to the concentration of DMSO and ammonium sulphate in crystallization, and storage conditions of purified PR. Surprisingly, the relative occupancies of these inhibitors in the active site suggested a competition between the two inhibitors which were not inhibition constants related. Analysis of the structures in both crystal forms show no difference in DMSO content but at higher concentration of DMSO (3.2 - 5.0%) in the orthorhombic crystal forms, there were protein-sulphate interactions which were absent in the monoclinic forms with lower concentration (0.8 - 1.2%) of DMSO. This work has clearly demonstrated that there is cooperativity in crystallization and the conditions of crystallization influence specific intermolecular contacts in crystal packing (crystal form). (author)

  6. Human RNA polymerase II associated factor 1 complex promotes tumorigenesis by activating c-MYC transcription in non-small cell lung cancer

    Energy Technology Data Exchange (ETDEWEB)

    Zhi, Xiuyi [Department of Thoracic Surgery, Xuanwu Hospital, Capital Medical University, Beijing, 100053 (China); Giroux-Leprieur, Etienne [ER2 GRC UPMC04 Theranoscan, Pierre et Marie Curie University, Tenon Hospital, 4 Rue de La Chine, 75020, Paris (France); Respiratory Diseases and Thoracic Oncology Department, Ambroise Pare Hospital – APHP, Versailles Saint Quentin en Yvelines University, 9 Avenue Charles de Gaulle, 92100, Boulogne-Billancourt (France); Wislez, Marie [ER2 GRC UPMC04 Theranoscan, Pierre et Marie Curie University, Tenon Hospital, 4 Rue de La Chine, 75020, Paris (France); Hu, Mu; Zhang, Yi [Department of Thoracic Surgery, Xuanwu Hospital, Capital Medical University, Beijing, 100053 (China); Shi, Huaiyin [Department of Pathology, Chinese PLA General Hospital, Fu-xing Road #28, Beijing, 100853 (China); Du, Kaiqi, E-mail: kaiqidu_zhejiang@163.com [Department of Cardiothoracic Surgery, Chinese People' s Armed Police Force, Zhejiang Corps Hospital, Jiaxing, Zhejiang Province (China); Wang, Lei, E-mail: leiwang_hebei@163.com [Department of Human Anatomy, Hebei Medical University, Hebei Province (China)

    2015-10-02

    Human RNA polymerase II (RNAPII)-associated factor 1 complex (hPAF1C) plays a crucial role in protein-coding gene transcription. Overexpression of hPAF1C has been implicated in the initiation and progression of various human cancers. However, the molecular pathways involved in tumorigenesis through hPAF1C remain to be elucidated. The current study suggested hPAF1C expression as a prognostic biomarker for early stage non-small cell lung cancer (NSCLC) and patients with low hPAF1C expression levels had significantly better overall survival. Furthermore, the expression of hPAF1C was found to be positively correlated with c-MYC expression in patient tumor samples and in cancer cell lines. Mechanistic studies indicated that hPAF1C could promote lung cancer cell proliferation through regulating c-MYC transcription. These results demonstrated the prognostic value of hPAF1C in early-stage NSCLC and the role of hPAF1C in the transcriptional regulation of c-MYC oncogene during NSCLC tumorigenesis. - Highlights: • hPAF1C expression is a prognostic biomarker for early stage non-small cell lung cancer. • The expression of hPAF1C was positively correlated with c-MYC in tumor samples of patients and in several NSCLC cell lines. • hPAF1C could promote lung cancer cell proliferation through regulating c-MYC transcription.

  7. Human RNA polymerase II associated factor 1 complex promotes tumorigenesis by activating c-MYC transcription in non-small cell lung cancer

    International Nuclear Information System (INIS)

    Zhi, Xiuyi; Giroux-Leprieur, Etienne; Wislez, Marie; Hu, Mu; Zhang, Yi; Shi, Huaiyin; Du, Kaiqi; Wang, Lei

    2015-01-01

    Human RNA polymerase II (RNAPII)-associated factor 1 complex (hPAF1C) plays a crucial role in protein-coding gene transcription. Overexpression of hPAF1C has been implicated in the initiation and progression of various human cancers. However, the molecular pathways involved in tumorigenesis through hPAF1C remain to be elucidated. The current study suggested hPAF1C expression as a prognostic biomarker for early stage non-small cell lung cancer (NSCLC) and patients with low hPAF1C expression levels had significantly better overall survival. Furthermore, the expression of hPAF1C was found to be positively correlated with c-MYC expression in patient tumor samples and in cancer cell lines. Mechanistic studies indicated that hPAF1C could promote lung cancer cell proliferation through regulating c-MYC transcription. These results demonstrated the prognostic value of hPAF1C in early-stage NSCLC and the role of hPAF1C in the transcriptional regulation of c-MYC oncogene during NSCLC tumorigenesis. - Highlights: • hPAF1C expression is a prognostic biomarker for early stage non-small cell lung cancer. • The expression of hPAF1C was positively correlated with c-MYC in tumor samples of patients and in several NSCLC cell lines. • hPAF1C could promote lung cancer cell proliferation through regulating c-MYC transcription.

  8. The transcription coactivator ASC-1 is a regulator of skeletal myogenesis, and its deficiency causes a novel form of congenital muscle disease.

    Science.gov (United States)

    Davignon, Laurianne; Chauveau, Claire; Julien, Cédric; Dill, Corinne; Duband-Goulet, Isabelle; Cabet, Eva; Buendia, Brigitte; Lilienbaum, Alain; Rendu, John; Minot, Marie Christine; Guichet, Agnès; Allamand, Valérie; Vadrot, Nathalie; Fauré, Julien; Odent, Sylvie; Lazaro, Leïla; Leroy, Jean Paul; Marcorelles, Pascale; Dubourg, Odile; Ferreiro, Ana

    2016-04-15

    Despite recent progress in the genetic characterization of congenital muscle diseases, the genes responsible for a significant proportion of cases remain unknown. We analysed two branches of a large consanguineous family in which four patients presented with a severe new phenotype, clinically marked by neonatal-onset muscle weakness predominantly involving axial muscles, life-threatening respiratory failure, skin abnormalities and joint hyperlaxity without contractures. Muscle biopsies showed the unreported association of multi-minicores, caps and dystrophic lesions. Genome-wide linkage analysis followed by gene and exome sequencing in patients identified a homozygous nonsense mutation in TRIP4 encoding Activating Signal Cointegrator-1 (ASC-1), a poorly characterized transcription coactivator never associated with muscle or with human inherited disease. This mutation resulted in TRIP4 mRNA decay to around 10% of control levels and absence of detectable protein in patient cells. ASC-1 levels were higher in axial than in limb muscles in mouse, and increased during differentiation in C2C12 myogenic cells. Depletion of ASC-1 in cultured muscle cells from a patient and in Trip4 knocked-down C2C12 led to a significant reduction in myotube diameter ex vivo and in vitro, without changes in fusion index or markers of initial myogenic differentiation. This work reports the first TRIP4 mutation and defines a novel form of congenital muscle disease, expanding their histological, clinical and molecular spectrum. We establish the importance of ASC-1 in human skeletal muscle, identify transcriptional co-regulation as novel pathophysiological pathway, define ASC-1 as a regulator of late myogenic differentiation and suggest defects in myotube growth as a novel myopathic mechanism. © The Author 2016. Published by Oxford University Press. All rights reserved. For Permissions, please email: journals.permissions@oup.com.

  9. Type III effectors orchestrate a complex interplay between transcriptional networks to modify basal defence responses during pathogenesis and resistance.

    Science.gov (United States)

    Truman, William; de Zabala, Marta Torres; Grant, Murray

    2006-04-01

    To successfully infect a plant, bacterial pathogens inject a collection of Type III effector proteins (TTEs) directly into the plant cell that function to overcome basal defences and redirect host metabolism for nutrition and growth. We examined (i) the transcriptional dynamics of basal defence responses between Arabidopsis thaliana and Pseudomonas syringae and (ii) how basal defence is subsequently modulated by virulence factors during compatible interactions. A set of 96 genes displaying an early, sustained induction during basal defence was identified. These were also universally co-regulated following other bacterial basal resistance and non-host responses or following elicitor challenges. Eight hundred and eighty genes were conservatively identified as being modulated by TTEs within 12 h post-inoculation (hpi), 20% of which represented transcripts previously induced by the bacteria at 2 hpi. Significant over-representation of co-regulated transcripts encoding leucine rich repeat receptor proteins and protein phosphatases were, respectively, suppressed and induced 12 hpi. These data support a model in which the pathogen avoids detection through diminution of extracellular receptors and attenuation of kinase signalling pathways. Transcripts associated with several metabolic pathways, particularly plastid based primary carbon metabolism, pigment biosynthesis and aromatic amino acid metabolism, were significantly modified by the bacterial challenge at 12 hpi. Superimposed upon this basal response, virulence factors (most likely TTEs) targeted genes involved in phenylpropanoid biosynthesis, consistent with the abrogation of lignin deposition and other wall modifications likely to restrict the passage of nutrients and water to the invading bacteria. In contrast, some pathways associated with stress tolerance are transcriptionally induced at 12 hpi by TTEs.

  10. Crystallization and diffraction patterns of the oxy and cyano forms of the Lucina pectinata haemoglobins complex

    International Nuclear Information System (INIS)

    Ruiz-Martínez, Carlos R.; Nieves-Marrero, Carlos A.; Estremera-Andújar, Rafael A.; Gavira, José A.; González-Ramírez, Luis A.; López-Garriga, Juan; García-Ruiz, Juan M.

    2008-01-01

    The native oxygen-carrier haemoglobins complex (HbII–III) is composed of haemoglobin II (HbII) and haemoglobin III (HbIII), which are found in the ctenidia tissue of the bivalve mollusc Lucina pectinata. This protein complex was isolated and purified from its natural source and crystallized using the vapour-diffusion and capillary counter-diffusion methods. The native oxygen-carrier haemoglobins complex (HbII–III) is composed of haemoglobin II (HbII) and haemoglobin III (HbIII), which are found in the ctenidia tissue of the bivalve mollusc Lucina pectinata. This protein complex was isolated and purified from its natural source and crystallized using the vapour-diffusion and capillary counter-diffusion methods. Oxy and cyano derivatives of the complex crystallized using several conditions, but the best crystals in terms of quality and size were obtained from sodium formate pH 5 using the counter-diffusion method in a single capillary. Crystals of the oxy and cyano complexes, which showed a ruby-red colour and nonsingular prismatic shapes, scattered X-rays to resolution limits of 2.15 and 2.20 Å, respectively, using a 0.886 Å synchrotron-radiation source. The crystals belonged to the tetragonal system, space group P4 2 2 1 2, with unit-cell parameters a = b = 74.07, c = 152.07 and a = b = 73.83, c = 152.49 Å for the oxy and cyano complexes, respectively. The asymmetric unit of both crystals is composed of a single copy of the heterodimer, with Matthew coefficients (V M ) of 3.08 and 3.06 Å 3 Da −1 for the oxy and cyano complexes, respectively, which correspond to a solvent content of approximately 60.0% by volume

  11. Control over Dimensionality and Magnetic Properties in Metal Complexes formed with Substituted Salicyl Ligands

    OpenAIRE

    Mukherjee, Sudarshana

    2008-01-01

    The goal was to design and synthesise molecule-based materials, and characterise their magnetic behaviour. Homometallic mixed-valence manganese and heterometallic Fe-Ln coordination polymers, and discrete oligomeric complexes of Mn, Cu and Fe from substituted salicylic acids are presented. Detailed NMR studies of the synthesised Schiff base ligands and a comparision of the structure and properties of the resulting Mn(II) and Ni(II) complexes are also shown.

  12. Contradiction between plastid gene transcription and function due to complex posttranscriptional splicing: an exemplary study of ycf15 function and evolution in angiosperms.

    Directory of Open Access Journals (Sweden)

    Chao Shi

    Full Text Available Plant chloroplast genes are usually co-transcribed while its posttranscriptional splicing is fairly complex and remains largely unsolved. On basis of sequencing the three complete Camellia (Theaceae chloroplast genomes for the first time, we comprehensively analyzed the evolutionary patterns of ycf15, a plastid gene quite paradoxical in terms of its function and evolution, along the inferred angiosperm phylogeny. Although many species in separate lineages including the three species reported here contained an intact ycf15 gene in their chloroplast genomes, the phylogenetic mixture of both intact and obviously disabled ycf15 genes imply that they are all non-functional. Both intracellular gene transfer (IGT and horizontal gene transfer (HGT failed to explain such distributional anomalies. While, transcriptome analyses revealed that ycf15 was transcribed as precursor polycistronic transcript which contained ycf2, ycf15 and antisense trnL-CAA. The transcriptome assembly was surprisingly found to cover near the complete Camellia chloroplast genome. Many non-coding regions including pseudogenes were mapped by multiple transcripts, indicating the generality of pseudogene transcriptions. Our results suggest that plastid DNA posttranscriptional splicing may involve complex cleavage of non-functional genes.

  13. Quantitative analysis of free and bonded forms of volatile sulfur compouds in wine. Basic methodologies and evidences showing the existence of reversible cation-complexed forms.

    Science.gov (United States)

    Franco-Luesma, Ernesto; Ferreira, Vicente

    2014-09-12

    This paper examines first some basic aspects critical to the analysis of Volatile Sulfur Compounds (VSCs), such as the analytical characteristics of the GC-pFPD system and the stability of the different standard solutions required for a proper calibration. Following, a direct static headspace analytical method for the determination of exclusively free forms of VSCs has been developed. Method repeatability is better than 4%, detection limits for main analytes are below 0.5μgL(-1), and the method dynamic linear range (r(2)>0.99) is expanded by controlling the split ratio in the chromatographic inlet to cover the natural range of occurrence of these compounds in wines. The method gives reliable estimates of headspace concentrations but, as expected, suffers from strong matrix effects with recoveries ranging from 0 to 100% or from 60 to 100 in the cases of H2S and the other mercaptans, respectively. This demonstrates the existence of strong interactions of these compounds with different matrix components. The complexing ability of Cu(2+) and to a lower extent Fe(2+) and Zn(2+) has been experimentally checked. A previously developed method in which the wine is strongly diluted with brine and the volatiles are preconcentrated by HS-SPME, was found to give a reliable estimation of the total amount (free+complexed) of mercaptans, demonstrating that metal-mercaptan complexes are reversible. The comparative analysis of different wines by the two procedures reveals that in normal wines H2S and methanethiol can be complexed at levels above 99%, with averages around 97% for H2S and 75% for methanethiol, while thioethers such as dimethyl sulfide (DMS) are not complexed. Overall, the proposed strategy may be generalized to understand problems caused by VSCs in different matrices. Copyright © 2014 Elsevier B.V. All rights reserved.

  14. SV40 large T-p53 complex: evidence for the presence of two immunologically distinct forms of p53

    International Nuclear Information System (INIS)

    Milner, J.; Gamble, J.

    1985-01-01

    The transforming protein of SV40 is the large T antigen. Large T binds a cellular protein, p53, which is potentially oncogenic by virtue of its functional involvement in the control of cell proliferation. This raises the possibility that p53 may mediate, in part, the transforming function of SV40 large T. Two immunologically distinct forms of p53 have been identified in normal cells: the forms are cell-cycle dependent, one being restricted to nondividing cells (p53-Go) and the second to dividing cells (p53-G divided by). The authors have now dissociated and probed the multimeric complex of SV40 large T-p53 for the presence of immunologically distinct forms of p53. Here they present evidence for the presence of p53-Go and p53-G divided by complexed with SV40 large T

  15. Breakdown by Streptomycin of Initiation Complexes Formed on Ribosomes of Escherichia coli*

    Science.gov (United States)

    Modolell, Juan; Davis, Bernard D.

    1970-01-01

    Streptomycin induces breakdown of the completed 70S initiation complex on ribosomes of Escherichia coli, but it does not interfere with any step in the formation of the complex. Moreover, it does not appear to interact with the ribosome in any special way during initiation, since the kinetics of breakdown are the same whether streptomycin is added before formation of the initiation complex, or after its completion, or (as previously observed) after formation of a polypeptide. fMet-tRNA is released as such, without chain elongation; it is released from a puromycin-reactive („P”) site. Streptomycin thus appears to distort not only the A site of the ribosome (as suggested earlier) but also the P site. PMID:4922285

  16. Breakdown by streptomycin of initiation complexes formed on ribosomes of Escherichia coli.

    Science.gov (United States)

    Modolell, J; Davis, B D

    1970-11-01

    Streptomycin induces breakdown of the completed 70S initiation complex on ribosomes of Escherichia coli, but it does not interfere with any step in the formation of the complex. Moreover, it does not appear to interact with the ribosome in any special way during initiation, since the kinetics of breakdown are the same whether streptomycin is added before formation of the initiation complex, or after its completion, or (as previously observed) after formation of a polypeptide. fMet-tRNA is released as such, without chain elongation; it is released from a puromycin-reactive ("P") site. Streptomycin thus appears to distort not only the A site of the ribosome (as suggested earlier) but also the P site.

  17. Spectral properties of uranyl chloride complexes with protonated forms of hexamethylenetetramine

    International Nuclear Information System (INIS)

    Kobets, L.V.; Bend', N.G.; Umrejko, D.S.

    1988-01-01

    Methods of oscillating spectroscopy and luminescence have been applied to investigate uranylchloride complexes with one- and two-protonates molecules of hexamethylenetetramine (C 6 H 12 N 4 H) 2 (UO 2 Cl 4 ) and (C 6 H 12 N 4 H 2 )x(UO 2 Cl 4 xH 2 O) as well as their products of attachment with hydrogen chloride molecules. The conclusion on its direct attachment to UO 2 2+ and formation of the coordination sphere mixed composition with the coordination number 5 is made from the analysis of water state in (C 6 H 12 N 4 H 2 )x(UO 2 Cl 4 xH 2 O). Spectral properties of amine participating by one and two nitrogen atoms in hydrogen bonds with complex anions are discussed. Composition of the investigated complexes is suggested

  18. Sorted bed forms as self-organized patterns: 2. complex forcing scenarios

    Science.gov (United States)

    Coco, Giovanni; Murray, A. Brad; Green, Malcom O.; Thieler, E. Robert; Hume, T.M.

    2007-01-01

    We employ a numerical model to study the development of sorted bed forms under a variety of hydrodynamic and sedimentary conditions. Results indicate that increased variability in wave height decreases the growth rate of the features and can potentially give rise to complicated, a priori unpredictable, behavior. This happens because the system responds to a change in wave characteristics by attempting to self-organize into a patterned seabed of different geometry and spacing. The new wavelength might not have enough time to emerge before a new change in wave characteristics occurs, leading to less regular seabed configurations. The new seabed configuration is also highly dependent on the preexisting morphology, which further limits the possibility of predicting future behavior. For the same reasons, variability in the mean current magnitude and direction slows down the growth of features and causes patterns to develop that differ from classical sorted bed forms. Spatial variability in grain size distribution and different types of net sediment aggradation/degradation can also result in the development of sorted bed forms characterized by a less regular shape. Numerical simulations qualitatively agree with observed geometry (spacing and height) of sorted bed forms. Also in agreement with observations is that at shallower depths, sorted bed forms are more likely to be affected by changes in the forcing conditions, which might also explain why, in shallow waters, sorted bed forms are described as ephemeral features. Finally, simulations indicate that the different sorted bed form shapes and patterns observed in the field might not necessarily be related to diverse physical mechanisms. Instead, variations in sorted bed form characteristics may result from variations in local hydrodynamic and/or sedimentary conditions.

  19. MiR171h restricts root symbioses and shows like its target NSP2 a complex transcriptional regulation in Medicago truncatula

    Science.gov (United States)

    2014-01-01

    Background Legumes have the unique capability to undergo root nodule and arbuscular mycorrhizal symbiosis. Both types of root endosymbiosis are regulated by NSP2, which is a target of microRNA171h (miR171h). Although, recent data implies that miR171h specifically restricts arbuscular mycorrhizal symbiosis in the root elongation zone of Medicago truncatula roots, there is limited knowledge available about the spatio-temporal regulation of miR171h expression at different physiological and symbiotic conditions. Results We show that miR171h is functionally expressed from an unusual long primary transcript, previously predicted to encode two identical miR171h strands. Both miR171h and NSP2 transcripts display a complex regulation pattern, which involves the symbiotic status and the fertilization regime of the plant. Quantitative Real-time PCR revealed that miR171h and NSP2 transcript levels show a clear anti-correlation in all tested conditions except in mycorrhizal roots, where NSP2 transcript levels were induced despite of an increased miR171h expression. This was also supported by a clear correlation of transcript levels of NSP2 and MtPt4, a phosphate transporter specifically expressed in a functional AM symbiosis. MiR171h is strongly induced in plants growing in sufficient phosphate conditions, which we demonstrate to be independent of the CRE1 signaling pathway and which is also not required for transcriptional induction of NSP2 in mycorrhizal roots. In situ hybridization and promoter activity analysis of both genes confirmed the complex regulation involving the symbiotic status, P and N nutrition, where both genes show a mainly mutual exclusive expression pattern. Overexpression of miR171h in M. truncatula roots led to a reduction in mycorrhizal colonization and to a reduced nodulation by Sinorhizobium meliloti. Conclusion The spatio-temporal expression of miR171h and NSP2 is tightly linked to the nutritional status of the plant and, together with the results from

  20. Complexity, depth, and rapidity of processes that formed the lunar crust

    International Nuclear Information System (INIS)

    Ryder, G.; Dasch, J.

    1988-01-01

    From its birth the moon had a large-scale, complex magma system. The evidence is the massive differentiation of the moon that was partially preserved. The system might be a magma ocean or a magmasphere; even in the former case it was superposed by smaller but also very complex magma systems. The main episode produced a plagioclase-rich crust including genuine anorthosites; it was over by about 4.35 b.y. ago, although magmatism continues. The processes of crust-building remain in serious dispute. Lunar crusts; massive differentiation; crustal material composition; processes which produced crustal materials; and differences from earth are briefly discussed

  1. Selective binding and reverse transcription inhibition of single-strand poly(A) RNA by metal TMPyP complexes.

    Science.gov (United States)

    Zhou, Zhu-Xin; Gao, Feng; Chen, Xing; Tian, Xiang-Jing; Ji, Liang-Nian

    2014-10-06

    Ni-, Cu-, and Zn-TMPyP are capable of binding to single-strand poly(A) RNA with high preference and affinity and inhibiting the reverse transcription of RNA by both M-MuLV and HIV-1 reverse transcriptase. With 10 nM azidothymidine, the IC50 value of M-TMPyP could be lowered to 10(-1) μM order.

  2. GW182-Free microRNA Silencing Complex Controls Post-transcriptional Gene Expression during Caenorhabditis elegans Embryogenesis.

    Directory of Open Access Journals (Sweden)

    Guillaume Jannot

    2016-12-01

    Full Text Available MicroRNAs and Argonaute form the microRNA induced silencing complex or miRISC that recruits GW182, causing mRNA degradation and/or translational repression. Despite the clear conservation and molecular significance, it is unknown if miRISC-GW182 interaction is essential for gene silencing during animal development. Using Caenorhabditis elegans to explore this question, we examined the relationship and effect on gene silencing between the GW182 orthologs, AIN-1 and AIN-2, and the microRNA-specific Argonaute, ALG-1. Homology modeling based on human Argonaute structures indicated that ALG-1 possesses conserved Tryptophan-binding Pockets required for GW182 binding. We show in vitro and in vivo that their mutations severely altered the association with AIN-1 and AIN-2. ALG-1 tryptophan-binding pockets mutant animals retained microRNA-binding and processing ability, but were deficient in reporter silencing activity. Interestingly, the ALG-1 tryptophan-binding pockets mutant phenocopied the loss of alg-1 in worms during larval stages, yet was sufficient to rescue embryonic lethality, indicating the dispensability of AINs association with the miRISC at this developmental stage. The dispensability of AINs in miRNA regulation is further demonstrated by the capacity of ALG-1 tryptophan-binding pockets mutant to regulate a target of the embryonic mir-35 microRNA family. Thus, our results demonstrate that the microRNA pathway can act independently of GW182 proteins during C. elegans embryogenesis.

  3. Extruded foams prepared from high amylose starch with sodium stearate to form amylose inclusion complexes

    Science.gov (United States)

    Starch foams were prepared from high amylose corn starch in the presence and absence of sodium stearate and PVOH to determine how the formation of amylose-sodium stearate inclusion complexes and the addition of PVOH would affect foam properties. Low extrusion temperatures were used, and X-ray diffra...

  4. Representation of wavefronts in free-form transmission pupils with Complex Zernike Polynomials

    Science.gov (United States)

    Navarro, Rafael; Rivera, Ricardo; Aporta, Justiniano

    2011-01-01

    Purpose To propose and evaluate Complex Zernike polynomials (CZPs) to represent general wavefronts with non uniform intensity (amplitude) in free-from transmission pupils. Methods They consist of three stages: (1) theoretical formulation; (2) numerical implementation; and (3) two studies of the fidelity of the reconstruction obtained as a function of the number of Zernike modes used (36 or 91). In the first study, we generated complex wavefronts merging wave aberration data from a group of 11 eyes, with a generic Gaussian model of the Stiles-Crawford effective pupil transmission. In the second study we simulated the wavefront passing through different pupil stop shapes (annular, semicircular, elliptical and triangular). Results The reconstructions of the wave aberration (phase of the generalized pupil function) were always good, the reconstruction RMS error was of the order of 10−4 wave lengths, no matter the number of modes used. However, the reconstruction of the amplitude (effective transmission) was highly dependent of the number of modes used. In particular, a high number of modes is necessary to reconstruct sharp edges, due to their high frequency content. Conclusions CZPs provide a complete orthogonal basis able to represent generalized pupil functions (or complex wavefronts). This provides a unified general framework in contrast to the previous variety of ad oc solutions. Our results suggest that complex wavefronts require a higher number of CZP, but they seem especially well-suited for inhomogeneous beams, pupil apodization, etc.

  5. The forming of the complexes of soil mezofauna in the zone of radioactive contamination

    International Nuclear Information System (INIS)

    Maksimova, S.L.

    2002-01-01

    We carried out the pedobiological research in the different biogeocenoses in the zone of radioactive contamination. Based on the obtained data we can conclude a direct correlation between the viability of the soil invertebrates and the background gamma-radiation intensity. All the facts indicate that soil animal complexes in biogeocenoses exposed to radiation for a long time impact clearly noticeable suppression

  6. Deep sequencing reveals the complex and coordinated transcriptional regulation of genes related to grain quality in rice cultivars

    Directory of Open Access Journals (Sweden)

    An Gynheung

    2011-04-01

    Full Text Available Abstract Background Milling yield and eating quality are two important grain quality traits in rice. To identify the genes involved in these two traits, we performed a deep transcriptional analysis of developing seeds using both massively parallel signature sequencing (MPSS and sequencing-by-synthesis (SBS. Five MPSS and five SBS libraries were constructed from 6-day-old developing seeds of Cypress (high milling yield, LaGrue (low milling yield, Ilpumbyeo (high eating quality, YR15965 (low eating quality, and Nipponbare (control. Results The transcriptomes revealed by MPSS and SBS had a high correlation co-efficient (0.81 to 0.90, and about 70% of the transcripts were commonly identified in both types of the libraries. SBS, however, identified 30% more transcripts than MPSS. Among the highly expressed genes in Cypress and Ilpumbyeo, over 100 conserved cis regulatory elements were identified. Numerous specifically expressed transcription factor (TF genes were identified in Cypress (282, LaGrue (312, Ilpumbyeo (363, YR15965 (260, and Nipponbare (357. Many key grain quality-related genes (i.e., genes involved in starch metabolism, aspartate amino acid metabolism, storage and allergenic protein synthesis, and seed maturation that were expressed at high levels underwent alternative splicing and produced antisense transcripts either in Cypress or Ilpumbyeo. Further, a time course RT-PCR analysis confirmed a higher expression level of genes involved in starch metabolism such as those encoding ADP glucose pyrophosphorylase (AGPase and granule bound starch synthase I (GBSS I in Cypress than that in LaGrue during early seed development. Conclusion This study represents the most comprehensive analysis of the developing seed transcriptome of rice available to date. Using two high throughput sequencing methods, we identified many differentially expressed genes that may affect milling yield or eating quality in rice. Many of the identified genes are involved

  7. Deep sequencing reveals the complex and coordinated transcriptional regulation of genes related to grain quality in rice cultivars.

    Science.gov (United States)

    Venu, Rc; Sreerekha, Mv; Nobuta, Kan; Beló, André; Ning, Yuese; An, Gynheung; Meyers, Blake C; Wang, Guo-Liang

    2011-04-14

    Milling yield and eating quality are two important grain quality traits in rice. To identify the genes involved in these two traits, we performed a deep transcriptional analysis of developing seeds using both massively parallel signature sequencing (MPSS) and sequencing-by-synthesis (SBS). Five MPSS and five SBS libraries were constructed from 6-day-old developing seeds of Cypress (high milling yield), LaGrue (low milling yield), Ilpumbyeo (high eating quality), YR15965 (low eating quality), and Nipponbare (control). The transcriptomes revealed by MPSS and SBS had a high correlation co-efficient (0.81 to 0.90), and about 70% of the transcripts were commonly identified in both types of the libraries. SBS, however, identified 30% more transcripts than MPSS. Among the highly expressed genes in Cypress and Ilpumbyeo, over 100 conserved cis regulatory elements were identified. Numerous specifically expressed transcription factor (TF) genes were identified in Cypress (282), LaGrue (312), Ilpumbyeo (363), YR15965 (260), and Nipponbare (357). Many key grain quality-related genes (i.e., genes involved in starch metabolism, aspartate amino acid metabolism, storage and allergenic protein synthesis, and seed maturation) that were expressed at high levels underwent alternative splicing and produced antisense transcripts either in Cypress or Ilpumbyeo. Further, a time course RT-PCR analysis confirmed a higher expression level of genes involved in starch metabolism such as those encoding ADP glucose pyrophosphorylase (AGPase) and granule bound starch synthase I (GBSS I) in Cypress than that in LaGrue during early seed development. This study represents the most comprehensive analysis of the developing seed transcriptome of rice available to date. Using two high throughput sequencing methods, we identified many differentially expressed genes that may affect milling yield or eating quality in rice. Many of the identified genes are involved in the biosynthesis of starch, aspartate

  8. Fluorescence enhancement of the aflatoxin B{sub 1} by forming inclusion complexes with some cyclodextrins and molecular modeling study

    Energy Technology Data Exchange (ETDEWEB)

    Aghamohammadi, Mohammad [Department of Chemistry, Faculty of Science, Tarbiat Modarres University, P.O. Box 14115-111, Tehran (Iran, Islamic Republic of); Alizadeh, Naader [Department of Chemistry, Faculty of Science, Tarbiat Modarres University, P.O. Box 14115-111, Tehran (Iran, Islamic Republic of)], E-mail: alizaden@modares.ac.ir

    2007-12-15

    The interaction between the aflatoxin B{sub 1} (AFB{sub 1}) and three cyclodextrins, {alpha}-cyclodextrin ({alpha}-CD), {beta}-cyclodextrin ({beta}-CD) and heptakis-2,6-dimethyl-o-{beta}-cyclodextrin (ome-CD), was studied by spectrofluorescence technique. It was found that the inclusion association behavior occurs for the complexes of cyclodextrins with AFB{sub 1}. The fluorescence of AFB{sub 1} is generally enhanced in the complexes with cyclodextrins in aqueous solutions. The inclusion complex constants of the three types of cyclodextrins at different temperatures were evaluated from Benesi-Hildebrand plot and also by non-linear regression analysis. These cyclodextrins can only form the 1:1 (host:guest) inclusion complex in the studied temperature range of 20-50 deg. C. The enthalpy ({delta}H{sup o}) and entropy ({delta}S{sup o}) changes of complexation were extracted from the temperature dependency of complex formation constants (K). Temperature-dependent measurements showed that the association step is controlled by enthalpy-entropy compensation effect. The use of ome-CD generally resulted in the greatest fluorescence intensity. On the other hand, the discrepancy between the exhibited enhanced fluorescence and thermodynamic parameters ({delta}G{sup o}) is proposed to be different only by the orientation of the AFB{sub 1} within the cyclodextrin cavity. To find the most favorable structure, the geometry of complex was investigated by molecular modeling approach employing the semiemperical HF-SCF calculations.

  9. Theoretical binding affinities and spectroscopy of complexes formed by cyclobis(paraquat- p-anthrancene) with some pharmaceutical molecules

    Science.gov (United States)

    Ren, Xin; Luo, Zhouyang; Du, Jinpei; Wu, Shi

    2010-05-01

    Theoretical investigation on the stabilities and spectroscopic properties of the complexes formed by cyciobis(paraquat- p-anthracene) with pharmaceutical molecules were performed using the semi-empirical PM3 and B3LYP/3-21G methods. Based on the B3LYP/3-21G optimized geometries, the energies of the complexes were calculated at B3LYP/6-31G( d) level. The binding energies of the complexes were computed after the correction of basis set superposition error (BSSE). The energy gaps of the complexes are decreased due to the formation of the hydrogen bonds. The stretching vibrations of the C-H bonds adjacent to the hydrogen bonds in the IR spectra of the complexes calculated with PM3 method are red-shifted compared with those of the host. The chemical shifts of α-C and β-C atoms in the complexes calculated at B3LYP/3-21G level are shifted downfield due to the formation of the hydrogen bonds and the electron-withdrawing effect of the nitrogen atoms. The aromaticities of the complexes are improved because of the enlargement of the conjugation system and the overlap of electron cloud based on the nuclear independent chemical shifts (NICS) calculated at B3LYP/3-21G level.

  10. p53 and cell cycle dependent transcription of kinesin family member 23 (KIF23 is controlled via a CHR promoter element bound by DREAM and MMB complexes.

    Directory of Open Access Journals (Sweden)

    Martin Fischer

    Full Text Available The microtubule-dependent molecular motor KIF23 (Kinesin family member 23 is one of two components of the centralspindlin complex assembled during late stages of mitosis. Formation of this complex is known as an essential step for cytokinesis. Here, we identified KIF23 as a new transcriptional target gene of the tumor suppressor protein p53. We showed that p53 reduces expression of KIF23 on the mRNA as well as the protein level in different cell types. Promoter reporter assays revealed that this repression results from downregulation of KIF23 promoter activity. CDK inhibitor p21(WAF1/CIP1 was shown to be necessary to mediate p53-dependent repression. Furthermore, we identified the highly conserved cell cycle genes homology region (CHR in the KIF23 promoter to be strictly required for p53-dependent repression as well as for cell cycle-dependent expression of KIF23. Cell cycle- and p53-dependent regulation of KIF23 appeared to be controlled by differential binding of DREAM and MMB complexes to the CHR element. With this study, we describe a new mechanism for transcriptional regulation of KIF23. Considering the strongly supporting function of KIF23 in cytokinesis, its p53-dependent repression may contribute to the prevention of uncontrolled cell growth.

  11. Development of Indirect Spectrophotometric Method for Quantification of Cephalexin in Pure Form and Commercial Formulation Using Complexation Reaction

    Directory of Open Access Journals (Sweden)

    Muhammad Naeem Khan

    2016-12-01

    Full Text Available A simple, accurate and indirect spectrophotometric method was developed for the quantification of cephalexin in pure form and pharmaceutical products using complexation reaction. The developed method is based on the oxidation of the cephalexin with Fe3+ in acidic medium. Then 1, 10-phenanthroline reacts with Fe2+ and a red colored complex was formed. The absorbance of the complex was measured at 510 nm by spectrophotometer. Different experimental parameters affecting the complexation reactions were studied and optimized. Beer’s law was obeyed in the concentration range 0.4 -10 µgmL-1 with a good correlation of 0.992. The limit of detection and limit of quantification were found to be 0.065 µgmL-1 and 0.218 µgmL-1, respectively. The method have good reproducibility with a relative standard deviation of 6.26 % (n = 6. The method was successfully applied for the determination of cephalexin in bulk powder and commercial formulation. Percent recoveries were found to range from 95.47 to 103.87 % for the pure form and 98.62 to 103.35 % for commercial formulations.

  12. Primes of the form x2+ny2 Fermat, class field theory, and complex multiplication

    CERN Document Server

    Cox, David A

    2014-01-01

    An exciting approach to the history and mathematics of number theory ". . . the author's style is totally lucid and very easy to read . . .the result is indeed a wonderful story." -Mathematical ReviewsWritten in a unique and accessible style for readers of varied mathematical backgrounds, the Second Edition of Primes of the Form p = x2+ ny2 details the history behind how Pierre de Fermat's work ultimately gave birth to quadratic reciprocity and the genus theory of quadratic forms. The book also illustrates how results of Euler and Gauss can be fully understood only in the context of class fi

  13. The Transcription Factor Nrf2 Protects Angiogenic Capacity of Endothelial Colony-Forming Cells in High-Oxygen Radical Stress Conditions

    Directory of Open Access Journals (Sweden)

    Hendrik Gremmels

    2017-01-01

    Full Text Available Background. Endothelial colony forming cells (ECFCs have shown a promise in tissue engineering of vascular constructs, where they act as endothelial progenitor cells. After implantation, ECFCs are likely to be subjected to elevated reactive oxygen species (ROS. The transcription factor Nrf2 regulates the expression of antioxidant enzymes in response to ROS. Methods. Stable knockdown of Nrf2 and Keap1 was achieved by transduction with lentiviral shRNAs; activation of Nrf2 was induced by incubation with sulforaphane (SFN. Expression of Nrf2 target genes was assessed by qPCR, oxidative stress was assessed using CM-DCFDA, and angiogenesis was quantified by scratch-wound and tubule-formation assays. Results. Nrf2 knockdown led to a reduction of antioxidant gene expression and increased ROS. Angiogenesis was disturbed after Nrf2 knockdown even in the absence of ROS. Conversely, angiogenesis was preserved in high ROS conditions after knockdown of Keap1. Preincubation of ECFCs with SFN reduced intracellular ROS in the presence of H2O2 and preserved scratch-wound closure and tubule-formation. Conclusion. The results of this study indicate that Nrf2 plays an important role in the angiogenic capacity of ECFCs, particularly under conditions of increased oxidative stress. Pretreatment of ECFCs with SFN prior to implantation may be a protective strategy for tissue-engineered constructs or cell therapies.

  14. The GRAS gene family in pine: transcript expression patterns associated with the maturation-related decline of competence to form adventitious roots.

    Science.gov (United States)

    Abarca, Dolores; Pizarro, Alberto; Hernández, Inmaculada; Sánchez, Conchi; Solana, Silvia P; Del Amo, Alicia; Carneros, Elena; Díaz-Sala, Carmen

    2014-12-30

    Adventitious rooting is an organogenic process by which roots are induced from differentiated cells other than those specified to develop roots. In forest tree species, age and maturation are barriers to adventitious root formation by stem cuttings. The mechanisms behind the respecification of fully differentiated progenitor cells, which underlies adventitious root formation, are unknown. Here, the GRAS gene family in pine is characterized and the expression of a subset of these genes during adventitious rooting is reported. Comparative analyses of protein structures showed that pine GRAS members are conserved compared with their relatives in angiosperms. Relatively high GRAS mRNA levels were measured in non-differentiated proliferating embryogenic cultures and during embryo development. The mRNA levels of putative GRAS family transcription factors, including Pinus radiata's SCARECROW (SCR), PrSCR, and SCARECROW-LIKE (SCL) 6, PrSCL6, were significantly reduced or non-existent in adult tissues that no longer had the capacity to form adventitious roots, but were maintained or induced after the reprogramming of adult cells in rooting-competent tissues. A subset of genes, SHORT-ROOT (PrSHR), PrSCL1, PrSCL2, PrSCL10 and PrSCL12, was also expressed in an auxin-, age- or developmental-dependent manner during adventitious root formation. The GRAS family of pine has been characterized by analyzing protein structures, phylogenetic relationships, conserved motifs and gene expression patterns. Individual genes within each group have acquired different and specialized functions, some of which could be related to the competence and reprogramming of adult cells to form adventitious roots.

  15. Spectrophotometric Determination of Metoprolol Tartrate in Pharmaceutical Dosage Forms on Complex Formation with Cu(II

    Directory of Open Access Journals (Sweden)

    Mustafa Cesme

    2011-06-01

    Full Text Available A new, simple, sensitive and accurate spectrophotometric method has been developed for the assay of metoprolol tartrate (MPT, which is based on the complexation of drug with copper(II [Cu(II] at pH 6.0, using Britton-Robinson buffer solution, to produce a blue adduct. The latter has a maximum absorbance at 675 nm and obeys Beer’s law within the concentration range 8.5-70 mg/mL. Regression analysis of the calibration data showed a good correlation coefficient (r = 0.998 with a limit of detection of 5.56 mg/mL. The proposed procedure has been successfully applied to the determination of this drug in its tablets. In addition, the spectral data and stability constant for the binuclear copper(II complex of MPT (Cu2MPT2Cl2 have been reported.

  16. Soft microcapsules with highly plastic shells formed by interfacial polyelectrolyte-nanoparticle complexation.

    Science.gov (United States)

    Kaufman, Gilad; Nejati, Siamak; Sarfati, Raphael; Boltyanskiy, Rostislav; Loewenberg, Michael; Dufresne, Eric R; Osuji, Chinedum O

    2015-10-14

    Composite microcapsules have been aggressively pursued as designed chemical entities for biomedical and other applications. Common preparations rely on multi-step, time consuming processes. Here, we present a single-step approach to fabricate such microcapsules with shells composed of nanoparticle-polyelectrolyte and protein-polyelectrolyte complexes, and demonstrate control of the mechanical and release properties of these constructs. Interfacial polyelectrolyte-nanoparticle and polyelectrolyte-protein complexation across a water-oil droplet interface results in the formation of capsules with shell thicknesses of a few μm. Silica shell microcapsules exhibited a significant plastic response at small deformations, whereas lysozyme incorporated shells displayed a more elastic response. We exploit the plasticity of nanoparticle incorporated shells to produce microcapsules with high aspect ratio protrusions by micropipette aspiration.

  17. Characterization of the nanostructure of complexes formed by single- or double-stranded oligonucleotides with a cationic surfactant.

    Science.gov (United States)

    Liu, Xiaoyang; Abbott, Nicholas L

    2010-12-02

    We report the use of dynamic light scattering (DLS), small-angle neutron scattering (SANS), and small-angle X-ray scattering (SAXS) to characterize the nanostructure of complexes formed by either single- or double-stranded oligonucleotides with a cationic surfactant (cetyltrimethylammonium bromide, CTAB) in aqueous solution (1 mM Li(2)SO(4)). For single-stranded oligonucleotides 5'-A(20)-3' and 5'-CCCCATTCTAGCAGCCCGGG-3', both the appearance of two Bragg peaks (at 0.14 and 0.28 Å(-1)) in SAXS spectra with a spacing of 1:2 and form factor fits to SANS spectra are consistent with the presence of multilamellar vesicles (with, on average, 6-9 layers with a periodicity of 45-48 Å). Some samples showed evidence of an additional Bragg peak (at 0.20 Å(-1)) associated with periodic packing (with a periodicity of 31 Å) of the oligonucleotides within the lamellae of the nanostructure. The nucleotide composition of the single-stranded oligonucleotides was also found to impact the number and size of the complexes formed with CTAB. In contrast to 5'-A(20)-3' and 5'-CCCCATTCTAGCAGCCCGGG-3', 5'-T(20)-3' did not change the state of aggregation of CTAB (globular micelles) over a wide range of oligonucleotide:CTAB charge ratios. These results support the proposition that hydrophobic interactions, as well as electrostatics, play a central role in the formation of complexes between cationic amphiphiles and single-stranded oligonucleotides and thus give rise to nanostructures that depend on nucleotide composition. In contrast to the single-stranded oligonucleotides, for double-stranded oligonucleotides mixed with CTAB, three Bragg peaks (0.13, 0.23, and 0.25 Å(-1)) in SAXS spectra with a spacing ratio of 1:√3:√4 and characteristic changes in SANS spectra indicate formation of a hexagonal nanostructure. Also, the composition of the double-stranded oligonucleotides did not measurably impact the nanostructure of complexes formed with CTAB, suggesting that electrostatic

  18. Onebox: Free-Text Interfaces as an Alternative to Complex Web Forms

    NARCIS (Netherlands)

    Tjin-Kam-Jet, Kien; Trieschnigg, Rudolf Berend; Hiemstra, Djoerd

    2011-01-01

    This paper investigates the problem of translating free-text queries into key-value pairs as an alternative means for searching `behind' web forms. We introduce a novel specication language for specifying free-text interfaces, and report the results of a user study where we evaluated our prototype

  19. Novel approaches to pin cluster synchronization on complex dynamical networks in Lur'e forms

    Science.gov (United States)

    Tang, Ze; Park, Ju H.; Feng, Jianwen

    2018-04-01

    This paper investigates the cluster synchronization of complex dynamical networks consisted of identical or nonidentical Lur'e systems. Due to the special topology structure of the complex networks and the existence of stochastic perturbations, a kind of randomly occurring pinning controller is designed which not only synchronizes all Lur'e systems in the same cluster but also decreases the negative influence among different clusters. Firstly, based on an extended integral inequality, the convex combination theorem and S-procedure, the conditions for cluster synchronization of identical Lur'e networks are derived in a convex domain. Secondly, randomly occurring adaptive pinning controllers with two independent Bernoulli stochastic variables are designed and then sufficient conditions are obtained for the cluster synchronization on complex networks consisted of nonidentical Lur'e systems. In addition, suitable control gains for successful cluster synchronization of nonidentical Lur'e networks are acquired by designing some adaptive updating laws. Finally, we present two numerical examples to demonstrate the validity of the control scheme and the theoretical analysis.

  20. Muscle Lim Protein and myosin binding protein C form a complex regulating muscle differentiation.

    Science.gov (United States)

    Arvanitis, Demetrios A; Vafiadaki, Elizabeth; Papalouka, Vasiliki; Sanoudou, Despina

    2017-12-01

    Muscle Lim Protein (MLP) is a protein with multiple functional roles in striated muscle physiology and pathophysiology. Herein, we demonstrate that MLP directly binds to slow, fast, and cardiac myosin-binding protein C (MyBP-C) during myogenesis, as shown by yeast two-hybrid and a range of protein-protein interaction assays. The minimal interacting domains involve MLP inter-LIM and MyBP-C [C4]. The interaction is sensitive to cytosolic Ca 2+ concentrations changes and to MyBP-C phosphorylation by PKA or CaMKII. Confocal microscopy of differentiating myoblasts showed MLP and MyBP-C colocalization during myoblast differentiation. Suppression of the complex formation with recombinant MyBP-C [C4] peptide overexpression, inhibited myoblast differentiation by 65%. Suppression of both MLP and MyBP-C expression in myoblasts by siRNA revealed negative synergistic effects on differentiation. The MLP/MyBP-C complex modulates the actin activated myosin II ATPase activity in vitro, which could interfere with sarcomerogenesis and myofilaments assembly during differentiation. Our data demonstrate a critical role of the MLP/MyBP-C complex during early myoblast differentiation. Its absence in muscles with mutations or aberrant expression of MLP or MyBP-C could be directly implicated in the development of cardiac and skeletal myopathies. Copyright © 2017 Elsevier B.V. All rights reserved.

  1. Activation of the Anti-Aging and Cognition-Enhancing Gene Klotho by CRISPR-dCas9 Transcriptional Effector Complex.

    Science.gov (United States)

    Chen, Ci-Di; Zeldich, Ella; Li, Yuexuan; Yuste, Andrea; Abraham, Carmela R

    2018-02-01

    Multiple lines of evidence show that the anti-aging and cognition-enhancing protein Klotho fosters neuronal survival, increases the anti-oxidative stress defense, and promotes remyelination of demyelinated axons. Thus, upregulation of the Klotho gene can potentially alleviate the symptoms and/or prevent the progression of age-associated neurodegenerative diseases such as Alzheimer's disease and demyelinating diseases such as multiple sclerosis. Here we used a CRISPR-dCas9 complex to investigate single-guide RNA (sgRNA) targeting the Klotho promoter region for efficient transcriptional activation of the Klotho gene. We tested the sgRNAs within the - 1 to - 300 bp of the Klotho promoter region and identified two sgRNAs that can effectively enhance Klotho gene transcription. We examined the transcriptional activation of the Klotho gene using three different systems: a Firefly luciferase (FLuc) and NanoLuc luciferase (NLuc) coincidence reporter system, a NLuc knock-in in Klotho 3'-UTR using CRISPR genomic editing, and two human cell lines: neuronal SY5Y cells and kidney HK-2 cells that express Klotho endogenously. The two sgRNAs enhanced Klotho expression at both the gene and protein levels. Our results show the feasibility of gene therapy for targeting Klotho using CRISPR technology. Enhancing Klotho levels has a therapeutic potential for increasing cognition and treating age-associated neurodegenerative, demyelinating and other diseases, such as chronic kidney disease and cancer.

  2. Data on structural transitions in domains of hordeivirus TGB1 protein forming ribonucleoprotein complex

    Directory of Open Access Journals (Sweden)

    Valentin V. Makarov

    2016-09-01

    Full Text Available This data article is related to the research article entitled “in vitro properties of hordeivirus TGB1 protein forming ribonucleoprotein complexes” (Makarov et al., 2015 [1], demonstrating that upon incubation with viral RNA the poa semilatent hordeivirus (PSLV TGB1 protein (the movement 63 K protein encoded by the first gene of the triple gene block in vitro forms RNP structures resembling filamentous virus-like particles and its internal domain (ID performs a major structural role in this process. This article reports the additional results on the structural lability of ID and the structural transitions in the C-terminal NTPase/helicase domain (HELD induced by interaction with tRNA and phosphorylation.

  3. Replication and transcription activities of ribonucleoprotein complexes reconstituted from avian H5N1, H1N1pdm09 and H3N2 influenza A viruses.

    Directory of Open Access Journals (Sweden)

    Karry L K Ngai

    Full Text Available Avian influenza viruses pose a serious pandemic threat to humans. Better knowledge on cross-species adaptation is important. This study examined the replication and transcription efficiency of ribonucleoprotein complexes reconstituted by plasmid co-transfection between H5N1, H1N1pdm09 and H3N2 influenza A viruses, and to identify mutations in the RNA polymerase subunit that affect human adaptation. Viral RNA polymerase subunits PB1, PB2, PA and NP derived from influenza viruses were co-expressed with pPolI-vNP-Luc in human cells, and with its function evaluated by luciferase reporter assay. A quantitative RT-PCR was used to measure vRNA, cRNA, and mRNA levels for assessing the replication and transcription efficiency. Mutations in polymerase subunit were created to identify signature of increased human adaptability. H5N1 ribonucleoprotein complexes incorporated with PB2 derived from H1N1pdm09 and H3N2 viruses increased the polymerase activity in human cells. Furthermore, single amino acid substitutions at PB2 of H5N1 could affect polymerase activity in a temperature-dependent manner. By using a highly sensitive quantitative reverse transcription-polymerase chain reaction, an obvious enhancement in replication and transcription activities of ribonucleoproteins was observed by the introduction of lysine at residue 627 in the H5N1 PB2 subunit. Although less strongly in polymerase activity, E158G mutation appeared to alter the accumulation of H5N1 RNA levels in a temperature-dependent manner, suggesting a temperature-dependent mechanism in regulating transcription and replication exists. H5N1 viruses can adapt to humans either by acquisition of PB2 from circulating human-adapted viruses through reassortment, or by mutations at critical sites in PB2. This information may help to predict the pandemic potential of newly emerged influenza strains, and provide a scientific basis for stepping up surveillance measures and vaccine production.

  4. Varying electronic structural forms of ruthenium complexes of non-innocent 9,10-phenanthrenequinonoid ligands.

    Science.gov (United States)

    Mandal, Abhishek; Kundu, Tanaya; Ehret, Fabian; Bubrin, Martina; Mobin, Shaikh M; Kaim, Wolfgang; Lahiri, Goutam Kumar

    2014-02-14

    Bis(acetylacetonato)ruthenium complexes [Ru(acac)2(Q1-3)], 1-3, incorporating redox non-innocent 9,10-phenanthrenequinonoid ligands (Q1 = 9,10-phenanthrenequinone, 1; Q2 = 9,10-phenanthrenequinonediimine, 2; Q3 = 9,10-phenanthrenequinonemonoimine, 3) have been characterised electrochemically, spectroscopically and structurally. The four independent molecules in the unit cell of 2 are involved in intermolecular hydrogen bonding and π-π interactions, leading to a 2D network. The oxidation state-sensitive bond distances of the coordinated ligands Q(n) at 1.296(5)/1.289(5) Å (C-O), 1.315(3)/1.322(4) Å (C-N), and 1.285(3)/1.328(3) Å (C-O/C-N) in 1, 2 and 3, respectively, and the well resolved (1)H NMR resonances within the standard chemical shift range suggest DFT supported variable contributions from valence formulations [Ru(III)(acac)2(Q˙(-))] (spin-coupled) and [Ru(II)(acac)2(Q(0))], respectively. Complexes 1-3 exhibit one oxidation and two reduction steps with comproportionation constants Kc∼ 10(7)-10(22) for the intermediates. The electrochemically generated persistent redox states 1(n) (n = 0, 1-, 2-) and 2(n)/3(n) (n = 1+, 0, 1-, 2-) have been analysed by UV-vis-NIR spectroelectrochemistry and by EPR for the paramagnetic intermediates in combination with DFT and TD-DFT calculations, revealing significant differences in the oxidation state distribution at the {Ru-Q} interface for 1(n)-3(n). In particular, the diminished propensity of the NH-containing systems for reduction results in the preference for Ru(II)(Q(0)) relative to Ru(III)(Q˙(-)) (neutral compounds) and for Ru(II)(Q˙(-)) over the Ru(III)(Q(2-)) alternative in the case of the monoanionic complexes.

  5. Structural-energetic interpretation of competition between complex forms in the UBr3-MBr systems

    International Nuclear Information System (INIS)

    Suglobova, I.G.; Chirkst, D.Eh.

    1978-01-01

    The calorimetric method has been used for determining standard enthalpy values of the formation of bromouranates of alkali metals (M 2 UBr 5 ) and for checking the enthalpy value of the uranium tribromide formation. ΔH 0 of UBr 3 formation is -182.2+-0.5 kcal/mol. Enthalpies of the formation of pentabromouranates from binary bromides (and from simple substances) are: -6.6(-384.3) for K 2 VBr 5 , -9.7(-390.9) for Rb 2 VBr 5 , -10.21(-395.0) kcal/mol for Cs 2 VBr 5 . The error is +-0.5(+-10) kcal/mol. For Cs 3 VBr 6 the enthalpy of the formation is -10+-2 (-496+-3) kcal/mol. The M 2 VBr 5 compounds have rhombic lattices of the Tl 2 AlF 5 type. Sizes of elementary cells and uranium-alkali metal distances in polycrystals of the complexes have been determined on the base of X-ray diffraction patterns. Obtained picnometric densities of 4.51 (M=K), 4.79 (M=Rb), and 4.86+-0.01 g/cm 3 (M=Cs) agree with calculated values. The energy of the V(3)-Br bond is 53+-2 kcal/mol when the uranium coordination number equals 6. A new method has been proposed for evaluating the energy of the crystal lattice of the complexes by interionic distance with the aid of linear extrapolation of expeimental data for binary compounds in logarythmic coordinates. The relationship has been shown between the values and the nature of outer-spherical energetic effects and crystal structure of the complexes

  6. [LABORATORY AND EXPERIMENTAL STUDY OF THE COMPLEX PROBIOTIC PREPARATION "BIFILACT-BILS" IN CAPSULATED FORM].

    Science.gov (United States)

    Neschislyaev, V A; Stolbova, M G; Mokin, P A; Orlova, E V; Ershov, A E

    2016-01-01

    The composition and technology of complex probiotic in hard gelatin capsules was developed in Perm Branch "Biomed" of "Microgen" State Company. The preparation contains three production strains: Lactobacillus plantarum 8P-A3, L. acidophilus K3W24 and Bifidobacterium bifidum 1. Laboratory and experimental (preclinical) study of the probiotic included investigation of the antagonistic activity, "acute" and "chronic" toxicity, the effect of the preparation on histology and hematology of laboratory animals. The result of these studies suggested of the probiotic had high inhibitory activity against pathogenic microflora when compared with probiotic monopreparations and had no toxic effects on laboratory animals.

  7. Raf-1 forms a stable complex with Mek1 and activates Mek1 by serine phosphorylation.

    OpenAIRE

    Huang, W; Alessandrini, A; Crews, C M; Erikson, R L

    1993-01-01

    Recombinant Mek1 and Raf-1 proteins produced in Sf9 cells undergo a tight association both in vivo and in vitro, which apparently does not depend on additional factors or the kinase activity of Mek1 or Raf-1. The complex can be disrupted by two polyclonal antibodies raised against Raf-1 peptides. Coinfection with Raf-1 activates Mek1 > 150-fold, and coinfection with Raf-1 and Mek1 activates Erk1 approximately 90-fold. The activation of Mek1 by Raf-1 involves only serine phosphorylation, which...

  8. Synthesis and Self-Assembly of Chiral Cylindrical Molecular Complexes: Functional Heterogeneous Liquid-Solid Materials Formed by Helicene Oligomers

    Directory of Open Access Journals (Sweden)

    Nozomi Saito

    2018-01-01

    Full Text Available Chiral cylindrical molecular complexes of homo- and hetero-double-helices derived from helicene oligomers self-assemble in solution, providing functional heterogeneous liquid-solid materials. Gels and liotropic liquid crystals are formed by fibril self-assembly in solution; molecular monolayers and fibril films are formed by self-assembly on solid surfaces; gels containing gold nanoparticles emit light; silica nanoparticles aggregate and adsorb double-helices. Notable dynamics appears during self-assembly, including multistep self-assembly, solid surface catalyzed double-helix formation, sigmoidal and stairwise kinetics, molecular recognition of nanoparticles, discontinuous self-assembly, materials clocking, chiral symmetry breaking and homogeneous-heterogeneous transitions. These phenomena are derived from strong intercomplex interactions of chiral cylindrical molecular complexes.

  9. Automated image analysis to quantify the subnuclear organization of transcriptional coregulatory protein complexes in living cell populations

    Science.gov (United States)

    Voss, Ty C.; Demarco, Ignacio A.; Booker, Cynthia F.; Day, Richard N.

    2004-06-01

    Regulated gene transcription is dependent on the steady-state concentration of DNA-binding and coregulatory proteins assembled in distinct regions of the cell nucleus. For example, several different transcriptional coactivator proteins, such as the Glucocorticoid Receptor Interacting Protein (GRIP), localize to distinct spherical intranuclear bodies that vary from approximately 0.2-1 micron in diameter. We are using multi-spectral wide-field microscopy of cells expressing coregulatory proteins labeled with the fluorescent proteins (FP) to study the mechanisms that control the assembly and distribution of these structures in living cells. However, variability between cells in the population makes an unbiased and consistent approach to this image analysis absolutely critical. To address this challenge, we developed a protocol for rigorous quantification of subnuclear organization in cell populations. Cells transiently co-expressing a green FP (GFP)-GRIP and the monomeric red FP (mRFP) are selected for imaging based only on the signal in the red channel, eliminating bias due to knowledge of coregulator organization. The impartially selected images of the GFP-coregulatory protein are then analyzed using an automated algorithm to objectively identify and measure the intranuclear bodies. By integrating all these features, this combination of unbiased image acquisition and automated analysis facilitates the precise and consistent measurement of thousands of protein bodies from hundreds of individual living cells that represent the population.

  10. Structural Interface Forms and Their Involvement in Stabilization of Multidomain Proteins or Protein Complexes

    Directory of Open Access Journals (Sweden)

    Jacek Dygut

    2016-10-01

    Full Text Available The presented analysis concerns the inter-domain and inter-protein interface in protein complexes. We propose extending the traditional understanding of the protein domain as a function of local compactness with an additional criterion which refers to the presence of a well-defined hydrophobic core. Interface areas in selected homodimers vary with respect to their contribution to share as well as individual (domain-specific hydrophobic cores. The basic definition of a protein domain, i.e., a structural unit characterized by tighter packing than its immediate environment, is extended in order to acknowledge the role of a structured hydrophobic core, which includes the interface area. The hydrophobic properties of interfaces vary depending on the status of interacting domains—In this context we can distinguish: (1 Shared hydrophobic cores (spanning the whole dimer; (2 Individual hydrophobic cores present in each monomer irrespective of whether the dimer contains a shared core. Analysis of interfaces in dystrophin and utrophin indicates the presence of an additional quasi-domain with a prominent hydrophobic core, consisting of fragments contributed by both monomers. In addition, we have also attempted to determine the relationship between the type of interface (as categorized above and the biological function of each complex. This analysis is entirely based on the fuzzy oil drop model.

  11. Isolation of complexes formed between insulin-like growth factor-binding protein-3 and transferrin from the human serum

    Directory of Open Access Journals (Sweden)

    Miljuš Goran

    2012-01-01

    Full Text Available Insulin-like growth factors (IGFs play an important role in the regulation of cell growth, differentiation and metabolism. The amount of free, biologically active IGFs is regulated by the IGF-binding proteins (IGFBPs. IGFBP-3 is the most abundant binding protein and it is known to interact with other circulating proteins, including transferrin (Tf. In order to elucidate the possible role of IGF/IGFBP-3 in the iron metabolism, it is necessary to isolate IGFBP-3/Tf complexes. Several affinity-based techniques were employed. Results have shown that only double immunoprecipitation method with anti-Tf and anti-IGFBP-3 antibodies selectively separated complexes from other molecular forms, such as monomers, oligomers or fragments of IGFBP-3 and Tf. Isolated complexes can now be used to investigate the relationship between IGF/IGFBP-3 and iron, both in structural and metabolic tеrms.

  12. PUBLIC-PRIVATE PARTNERSHIP AS A FORM OF DEVELOPMENT OF THE AGRO-INDUSTRIAL COMPLEX OF THE RUSSIAN FEDERATION

    Directory of Open Access Journals (Sweden)

    Albert G. Mnatsakanyan

    2018-03-01

    Full Text Available The article examines the current state of public-private partnership in the agro-industrial complex of the Russian Federation, provides a refined definition of public-private partnership. The authors give a full determination of the public-private partnership in Russia. The structure of existing agro-industrial clusters on the territory of the Russian Federation is studied. The article contains characteristics of the agro-industrial complex, which affect the low involvement of private investment. The state of the agro-industrial complex is analyzed, the main problems of applying public-private partnerships in the agro-industrial complex are revealed, and recommendations for improving the mechanism for applying public-private partnerships are given. The study highlights the main advantages of using the mechanism of public-private partnership, analyzes trends and prospects for using this mechanism. The scientific works of domestic and foreign scientists in the field of public-private partnership and agro-industrial complex became the methodological basis of scientific research. System analysis, a set of methods of economic and statistical analysis, methods of synthesis and analysis of economic information, a comparative method were used as the methods of research. The article concludes that it is necessary to use the mechanisms of public-private partnership in the agro-industrial complex of the Russian Federation regarding the need for significant investments in the industry to maintain competitiveness. It is necessary to use such forms of public-private partnership that will use financial and administrative resources of state authorities even at the initial stage of the project, and later private business will repay the share of the invested state funds, up to the privatization of the property complex. This form of cooperation will help reduce the risks of private investors and attract new investments in the agro-industrial complex of the Russian

  13. Knockout of the Arp2/3 complex in epidermis causes a psoriasis-like disease hallmarked by hyperactivation of transcription factor Nrf2.

    Science.gov (United States)

    van der Kammen, Rob; Song, Ji-Ying; de Rink, Iris; Janssen, Hans; Madonna, Stefania; Scarponi, Claudia; Albanesi, Cristina; Brugman, Wim; Innocenti, Metello

    2017-12-15

    The Arp2/3 complex assembles branched actin filaments, which are key to many cellular processes, but its organismal roles remain poorly understood. Here, we employed conditional A rpc4 knockout mice to study the function of the Arp2/3 complex in the epidermis. We found that depletion of the Arp2/3 complex by knockout of Arpc4 results in skin abnormalities at birth that evolve into a severe psoriasis-like disease hallmarked by hyperactivation of transcription factor Nrf2. Knockout of Arpc4 in cultured keratinocytes was sufficient to induce nuclear accumulation of Nrf2, upregulation of Nrf2 target genes and decreased filamentous actin levels. Furthermore, pharmacological inhibition of the Arp2/3 complex unmasked the role of branched actin filaments in Nrf2 regulation. Consistent with this, we revealed that Nrf2 associates with the actin cytoskeleton in cells and binds to filamentous actin in vitro Finally, we discovered that Arpc4 is downregulated in both human and mouse psoriatic epidermis. Thus, the Arp2/3 complex affects keratinocyte shape and transcriptome through an actin-based cell-autonomous mechanism that influences epidermal morphogenesis and homeostasis. © 2017. Published by The Company of Biologists Ltd.

  14. The Rep78 gene product of adeno-associated virus (AAV) self-associates to form a hexameric complex in the presence of AAV ori sequences.

    Science.gov (United States)

    Smith, R H; Spano, A J; Kotin, R M

    1997-06-01

    The Rep78 and Rep68 proteins of adeno-associated virus (AAV) are replication initiator proteins that bind the viral replicative-form origin of replication, nick the origin in a site- and strand-specific fashion, and mediate vectorial unwinding of the DNA duplex via an ATP-dependent helicase activity, thus initiating a strand displacement mechanism of viral DNA replication. Genetic and biochemical studies have identified Rep mutants that demonstrate a trans-dominant negative phenotype in vitro and in vivo, suggesting the possibility that multimerization of Rep is essential for certain replicative functions. In this study, we have investigated the ability of the largest of the Rep proteins, Rep78, to self-associate in vitro and in vivo. Self-association of Rep78 in vivo was demonstrated through the use of a mammalian two-hybrid system. Rep-Rep protein interaction was confirmed in vitro through coimmunoprecipitation experiments with a bacterially expressed maltose-binding protein-Rep78 fusion protein in combination with [35S]methionine-labeled Rep78 synthesized in a coupled in vitro transcription-translation system. Mapping studies with N- and C-terminal truncation mutant forms of Rep indicate that amino acid sequences required for maximal self-association occur between residues 164 and 484. Site-directed mutagenesis identified two essential motifs within this 321-amino-acid region: (i) a putative alpha-helix bearing a 3,4-hydrophobic heptad repeat reminiscent of those found in coiled-coil domains and (ii) a previously recognized nucleoside triphosphate-binding motif. Deletion of either of these regions from the full-length polypeptide resulted in severe impairment of Rep-Rep interaction. In addition, gel filtration chromatography and protein cross-linking experiments indicated that Rep78 forms a hexameric complex in the presence of AAV ori sequences.

  15. Differential Roles of Transcriptional Mediator Complex Subunits Crsp34/Med27, Crsp150/Med14 and Trap100/Med24 During Zebrafish Retinal Development

    Science.gov (United States)

    Dürr, Katrin; Holzschuh, Jochen; Filippi, Alida; Ettl, Anne-Kathrin; Ryu, Soojin; Shepherd, Iain T.; Driever, Wolfgang

    2006-01-01

    The transcriptional mediator complex has emerged as an important component of transcriptional regulation, yet it is largely unknown whether its subunits have differential functions in development. We demonstrate that the zebrafish mutation m885 disrupts a subunit of the mediator complex, Crsp34/Med27. To explore the role of the mediator in the control of retinal differentiation, we employed two additional mutations disrupting the mediator subunits Trap100/Med24 and Crsp150/Med14. Our analysis shows that loss of Crsp34/Med27 decreases amacrine cell number, but increases the number of rod photoreceptor cells. In contrast, loss of Trap100/Med24 decreases rod photoreceptor cells. Loss of Crsp150/Med14, on the other hand, only slightly reduces dopaminergic amacrine cells, which are absent from both crsp34m885 and trap100lessen mutant embryos. Our data provide evidence for differential requirements for Crsp34/Med27 in developmental processes. In addition, our data point to divergent functions of the mediator subunits Crsp34/Med27, Trap100/Med24, and Crsp150/Med14 and, thus, suggest that subunit composition of the mediator contributes to the control of differentiation in the vertebrate CNS. PMID:16582438

  16. Mannan-binding protein forms complexes with alpha-2-macroglobulin. A protein model for the interaction

    DEFF Research Database (Denmark)

    Storgaard, P; Holm Nielsen, E; Skriver, E

    1995-01-01

    . The occurrence of alpha 2M/pMBP-28 complexes was further indicated by crossed immunoelectrophoresis and by use of an anti-alpha 2M affinity column and chelating Sepharose loaded with Zn2+. The eluates from these affinity columns showed alpha 2M subunits (94 and 180 kDa) and pMBP subunits (28kDa) in SDS-PAGE...... with anti-C1 s antibodies in ELISA, one of about 650-800 kDa, which in addition contained pMBP-28 and anti-alpha 2M reactive material, the other with an M(r) of 100-150 kDa. The latter peak revealed rhomboid molecules (7 x 15 nm) in the electron microscope and a 67 kDa band in SDS-PAGE under reducing...

  17. Serratia marcescens ShlA pore-forming toxin is responsible for early induction of autophagy in host cells and is transcriptionally regulated by RcsB.

    Science.gov (United States)

    Di Venanzio, Gisela; Stepanenko, Tatiana M; García Véscovi, Eleonora

    2014-09-01

    Serratia marcescens is a Gram-negative bacterium that thrives in a wide variety of ambient niches and interacts with an ample range of hosts. As an opportunistic human pathogen, it has increased its clinical incidence in recent years, being responsible for life-threatening nosocomial infections. S. marcescens produces numerous exoproteins with toxic effects, including the ShlA pore-forming toxin, which has been catalogued as its most potent cytotoxin. However, the regulatory mechanisms that govern ShlA expression, as well as its action toward the host, have remained unclear. We have shown that S. marcescens elicits an autophagic response in host nonphagocytic cells. In this work, we determine that the expression of ShlA is responsible for the autophagic response that is promoted prior to bacterial internalization in epithelial cells. We show that a strain unable to express ShlA is no longer able to induce this autophagic mechanism, while heterologous expression of ShlA/ShlB suffices to confer on noninvasive Escherichia coli the capacity to trigger autophagy. We also demonstrate that shlBA harbors a binding motif for the RcsB regulator in its promoter region. RcsB-dependent control of shlBA constitutes a feed-forward regulatory mechanism that allows interplay with flagellar-biogenesis regulation. At the top of the circuit, activated RcsB downregulates expression of flagella by binding to the flhDC promoter region, preventing FliA-activated transcription of shlBA. Simultaneously, RcsB interaction within the shlBA promoter represses ShlA expression. This circuit offers multiple access points to fine-tune ShlA production. These findings also strengthen the case for an RcsB role in orchestrating the expression of Serratia virulence factors. Copyright © 2014, American Society for Microbiology. All Rights Reserved.

  18. A non-inflammatory form of immune competence prevails in acute pre-pubescent malnutrition: new evidence based on critical mRNA transcripts in the mouse.

    Science.gov (United States)

    Monk, Jennifer M; Richard, Cynthia L; Woodward, Bill

    2012-05-01

    The declining inflammatory immune competence of acute (i.e. wasting) pre-pubescent protein-energy malnutrition has been regarded as reflecting an unregulated immunological disintegration. Recent evidence, however, suggests that malnutrition stimulates a regulated immunological reconfiguration to achieve a non-inflammatory form of competence, perhaps offering protection against autoimmune reactions - the 'Tolerance Model'. Our objective was to determine the influence of acute pre-pubescent malnutrition on the expression of genes critical to tolerogenic regulation. Male and female C57BL/6J mice, initially 19 d old, consumed a complete purified diet either ad libitum (age-matched controls) or in restricted daily quantities (mimicking marasmus), or consumed an isoenergetic low-protein diet ad libitum (mimicking incipient kwashiorkor) for 14 d (six animals per dietary group). Gene expression in the spleen, typically an inflammatory organ, and in the small intestine, a site designed for non-inflammatory defence, was assessed by real-time quantitative RT-PCR, and normalised to β-actin. In the spleen of the malnourished groups, both IL-10 and transforming growth factor-β1 mRNA expression increased compared with controls (P 0.05). Moreover, forkhead box P3 mRNA expression, indicative of cell-based tolerogenic potential, was sustained in both the spleen and intestine of the malnourished groups (P>0.05). Thus, despite limited supplies of energy and substrates, the spleen shifted towards a non-inflammatory character and the intestine was sustained in this mode in advanced pre-pubescent weight loss. These findings provide the first support for the Tolerance Model at the level of mRNA transcript expression.

  19. Chemical modelling of complex organic molecules with peptide-like bonds in star-forming regions

    Science.gov (United States)

    Quénard, David; Jiménez-Serra, Izaskun; Viti, Serena; Holdship, Jonathan; Coutens, Audrey

    2018-02-01

    Peptide bonds (N-C = O) play a key role in metabolic processes since they link amino acids into peptide chains or proteins. Recently, several molecules containing peptide-like bonds have been detected across multiple environments in the interstellar medium, growing the need to fully understand their chemistry and their role in forming larger pre-biotic molecules. We present a comprehensive study of the chemistry of three molecules containing peptide-like bonds: HNCO, NH2CHO, and CH3NCO. We also included other CHNO isomers (HCNO, HOCN) and C2H3NO isomers (CH3OCN, CH3CNO) to the study. We have used the UCLCHEM gas-grain chemical code and included in our chemical network all possible formation/destruction pathways of these peptide-like molecules recently investigated either by theoretical calculations or in laboratory experiments. Our predictions are compared to observations obtained towards the proto-star IRAS 16293-2422 and the L1544 pre-stellar core. Our results show that some key reactions involving the CHNO and C2H3NO isomers need to be modified to match the observations. Consistently with recent laboratory findings, hydrogenation is unlikely to produce NH2CHO on grain surfaces, while a combination of radical-radical surface reactions and gas-phase reactions is a better alternative. In addition, better results are obtained for NH2CHO when a slightly higher activation energy of 25 K is considered for the gas-phase reaction NH2 + H2CO → NH2CHO + H. Finally, our modelling shows that the observed correlation between NH2CHO and HNCO in star-forming regions may come from the fact that HNCO and NH2CHO react to temperature in the same manner rather than from a direct chemical link between the two species.

  20. Characterization and biotransformation in the plasma and red blood cells of V(IV)O(2+) complexes formed by ceftriaxone.

    Science.gov (United States)

    Sanna, Daniele; Fabbri, Davide; Serra, Maria; Buglyó, Péter; Bíró, Linda; Ugone, Valeria; Micera, Giovanni; Garribba, Eugenio

    2015-06-01

    The coordination mode and geometry in aqueous solution of oxidovanadium(IV) complexes formed by a third-generation cephalosporin, ceftriaxone (H3cef), were studied by spectroscopic (EPR, electron paramagnetic resonance), pH-potentiometric and computational (DFT, density functional theory) methods. The behavior of the model systems containing 6-hydroxy-2-methyl-3-thioxo-3,4-dihydro-1,2,4-triazine-5(2H)-one (H2hmtdt) and 3-benzylthio-6-hydroxy-2-methyl-1,2,4-triazine-5(2H)-one (Hbhmt) was examined for comparison. The stability of the tautomers of ceftriaxone and 6-hydroxy-2-methyl-3-thioxo-3,4-dihydro-1,2,4-triazine-5(2H)-one in the neutral, mono- and bi-anionic form was calculated by DFT methods, both in the gas phase and in aqueous solution, and the electron density on the oxygen atoms of the hydroxytriazinone ring was related to the pKa of the ligands. The data demonstrate that ceftriaxone coordinates V(IV)O(2+) forming mono- and bis-chelated complexes with (Oket, O(-)) donor set and formation of five-membered chelate rings. The geometry of the bis-chelated complex, cis-[VO(Hcef)2(H2O)](2-), is cis-octahedral and this species can deprotonate, around physiological pH, to form the corresponding mono-hydroxido cis-[VO(Hcef)2(OH)](3-). The interaction of cis-[VO(Hcef)2(H2O)](2-) with apo-transferrin (apo-hTf) was studied and the results suggest that V(IV)O(2+) distributes between (VO)apo-hTf/(VO)2apo-hTf and cis-[VO(Hcef)2(H2O)](2-), whereas mixed complexes are not formed for charge and steric effects. The interaction of cis-[VO(Hcef)2(H2O)](2-) with red blood cells shows that ceftriaxone helps V(IV)O(2+) ion to cross the erythrocyte membrane. Inside the cell cis-[VO(Hcef)2(H2O)](2-) decomposes and the same species formed by inorganic V(IV)O(2+) are observed. The relationship between the biotransformation in the plasma and red blood cells and the potential pharmacological activity of V(IV)O(2+) species of ceftriaxone is finally discussed. Copyright © 2015 Elsevier

  1. Polyion Complex Vesicles with Solvated Phosphobetaine Shells Formed from Oppositely Charged Diblock Copolymers

    Directory of Open Access Journals (Sweden)

    Keita Nakai

    2017-02-01

    Full Text Available Diblock copolymers consisting of a hydrophilic poly(2-(methacryloyloxyethyl phosphorylcholine (PMPC block and either a cationic or anionic block were prepared from (3-(methacrylamidopropyltrimethylammonium chloride (MAPTAC or sodium 2-(acrylamido-2-methylpropanesulfonate (AMPS. Polymers were synthesized via reversible addition-fragmentation chain transfer (RAFT radical polymerization using a PMPC macro-chain transfer agent. The degree of polymerization for PMPC, cationic PMAPTAC, and anionic PAMPS blocks was 20, 190, and 196, respectively. Combining two solutions of oppositely charged diblock copolymers, PMPC-b-PMAPTAC and PMPC-b-PAMPS, led to the spontaneous formation of polyion complex vesicles (PICsomes. The PICsomes were characterized using 1H NMR, static abd dynamic light scattering, transmittance electron microscopy (TEM, and atomic force microscopy. Maximum hydrodynamic radius (Rh for the PICsome was observed at a neutral charge balance of the cationic and anionic diblock copolymers. The Rh value and aggregation number (Nagg of PICsomes in 0.1 M NaCl was 78.0 nm and 7770, respectively. A spherical hollow vesicle structure was observed in TEM images. The hydrodynamic size of the PICsomes increased with concentration of the diblock copolymer solutions before mixing. Thus, the size of the PICsomes can be controlled by selecting an appropriate preparation method.

  2. Controllability analysis of transcriptional regulatory networks reveals circular control patterns among transcription factors

    DEFF Research Database (Denmark)

    Österlund, Tobias; Bordel, Sergio; Nielsen, Jens

    2015-01-01

    we analyze the topology and organization of nine transcriptional regulatory networks for E. coli, yeast, mouse and human, and we evaluate how the structure of these networks influences two of their key properties, namely controllability and stability. We calculate the controllability for each network......Transcriptional regulation is the most committed type of regulation in living cells where transcription factors (TFs) control the expression of their target genes and TF expression is controlled by other TFs forming complex transcriptional regulatory networks that can be highly interconnected. Here...... as a measure of the organization and interconnectivity of the network. We find that the number of driver nodes n(D) needed to control the whole network is 64% of the TFs in the E. coli transcriptional regulatory network in contrast to only 17% for the yeast network, 4% for the mouse network and 8...

  3. Effect of Film-Forming Alginate/Chitosan Polyelectrolyte Complex on the Storage Quality of Pork

    Directory of Open Access Journals (Sweden)

    Dominika Kulig

    2017-01-01

    Full Text Available Meat is one of the most challenging food products in the context of maintaining quality and safety. The aim of this work was to improve the quality of raw/cooked meat by coating it with sodium alginate (A, chitosan (C, and sodium alginate-chitosan polyelectrolyte complex (PEC hydrosols. Antioxidant properties of A, C, and PEC hydrosols were determined. Subsequently, total antioxidant capacity (TAC, sensory quality of raw/cooked pork coated with experimental hydrosols, and antimicrobial efficiency of those hydrosols on the surface microbiota were analysed. Application analyses of hydrosol were performed during 0, 7, and 14 days of refrigerated storage in MAP (modified atmosphere packaging. Ferric reducing antioxidant power (FRAP and (2,2-diphenyll-picrylhydrazyl (DPPH analysis confirmed the antioxidant properties of A, C, and PEC. Sample C (1.0% was characterized by the highest DPPH value (174.67 μM Trolox/mL of all variants. PEC samples consisted of A 0.3%/C 1.0% and A 0.6%/C 1.0% were characterized by the greatest FRAP value (~7.21 μM Fe2+/mL of all variants. TAC losses caused by thermal treatment of meat were reduced by 45% by coating meat with experimental hydrosols. Application of PEC on the meat surface resulted in reducing the total number of micro-organisms, psychrotrophs, and lactic acid bacteria by about 61%, and yeast and molds by about 45% compared to control after a two-week storage.

  4. Narrow absorption lines complex I: one form of broad absorption line

    Science.gov (United States)

    Lu, Wei-Jian; Lin, Ying-Ru

    2018-03-01

    We discover that some of the broad absorption lines (BALs) are actually a complex of narrow absorption lines (NALs). As a pilot study of this type of BAL, we show this discovery through a typical example in this paper. Utilizing the two-epoch observations of J002710.06-094435.3 (hereafter J0027-0944) from the Sloan Digital Sky Survey (SDSS), we find that each of the C IV and Si IV BAL troughs contains at least four NAL doublets. By resolving the Si IV BAL into multiple NALs, we present the following main results and conclusions. First, all these NALs show coordinated variations between the two-epoch SDSS observations, suggesting that they all originate in the quasar outflow, and that their variations are due to global changes in the ionization condition of the absorbing gas. Secondly, a BAL consisting of a number of NAL components indicates that this type of BAL is basically the same as the intrinsic NAL, which tends to support the inclination model rather than the evolution model. Thirdly, although both the C IV and Si IV BALs originate from the same clumpy substructures of the outflow, they show different profile shapes: multiple absorption troughs for the Si IV BAL in a wider velocity range, while P-Cygni for the C IV BAL in a narrower velocity range. This can be interpreted by the substantial differences in fine structure and oscillator strength between the Si IVλλ1393, 1402 and C IVλλ1548, 1551 doublets. Based on the above conclusions, we consider that the decomposition of a BAL into NALs can serve as a way to resolve the clumpy structure for outflows, and it can be used to learn more about characteristics of the clumpy structure and to test the outflow model, when utilizing high-resolution spectra and photoionization model.

  5. Complexing in the systems of thorium tetrabromide-alkali metal bromide and structure of formed compounds

    International Nuclear Information System (INIS)

    Gershanovich, A.Ya.; Suglobova, I.G.

    1981-01-01

    Phase diagrams of the ThBr 4 -MBr binary systems (M=Na, K, Rb, Cs) are obtained using the methods of thermographic and X-ray phase analyses. Congruently melting compounds of the M 2 ThBr 6 form (M=K, Rb, Cs) with melting temperatures of 635, 650 and 680 deg C, respectively, and the NaThBr 5 decomposing in the solid phase reaction at 356 deg C, realized in the systems. The presence of eutectic points is established, their composition and melting temperatures are determined. Roentgenograms of all compounds prepared by the polycrystal method are obtained. K 2 ThBr 6 and Rb 2 ThBr 6 crystallize in the hexagonal crystal system (Rb 2 MnF 6 structure type) with 2 formula units in the lattice cell. The parameters of the K 2 ThBr 6 cell are a=0.752 nm, c=1.180 nm. The cell parameters of the Rb 2 ThBr 6 cell are a=0.758 nm, c=1.224 nm. The Cs 2 ThBr 6 has a pseudocubic tetragonal structure with 4 formula units in a cell. Parameters of the Cs 2 ThBr 6 cell are a=1.137 nm; c=1.069 nm [ru

  6. Kahlbaum, Hecker, and Kraepelin and the Transition From Psychiatric Symptom Complexes to Empirical Disease Forms.

    Science.gov (United States)

    Kendler, Kenneth S; Engstrom, Eric J

    2017-02-01

    The nosology for major psychiatric disorders developed by Emil Kraepelin in the 1890s has substantially shaped psychiatry. His theories, however, did not arise de novo, being strongly influenced by Karl Kahlbaum and Ewald Hecker. From the 1860-1880s, they articulated a paradigm shift in the conceptualization of psychiatric diagnosis, from symptom-based syndromes, popular since the late 18th century, to proto-disease entities. This effort was influenced by parallel developments in general medicine, especially the rise of bacterial theories of disease where different syndromes had distinctive symptoms, courses, and etiologies. Their thinking was particularly shaped by the increasing understanding of general paresis of the insane. Indeed, this disorder, with its distinct course and characteristic symptoms, was paradigmatic for them. Their hope was that a similar progression of medical understanding would evolve for the other major psychiatric syndromes. Their thinking and its connection with Kraepelin's nosology are illustrated through a close reading of their essays on hebephrenia, catatonia, and cyclic insanity. Kahlbaum, Hecker, and Kraepelin shared both a commitment to a clinical research agenda for psychiatry (to utilize methods of clinical assessment and follow-up to help define disease forms) and a skepticism for the brain-based neuropathological paradigm of psychiatric research then dominant in most European centers. Understanding the historical origins of our key diagnostic concepts can help us to evaluate their strengths and limitations. It remains to be determined whether this "Kahlbaum-Hecker-Kraepelin paradigm"-defining disorders based on distinctive symptoms and course-will produce psychiatric syndromes of sufficient homogeneity to yield their etiologic secrets.

  7. Saponins from Quillaja saponaria Molina: isolation, characterization and ability to form immuno stimulatory complexes (ISCOMs).

    Science.gov (United States)

    Pham, Hoang L; Ross, Benjamin P; McGeary, Ross P; Shaw, P Nicholas; Hewavitharana, Amitha K; Davies, Nigel M

    2006-10-01

    ISCOMs have received much attention as vaccine adjuvants due to their immunostimulatory effects. They are colloidal particles typically comprised of phospholipids, cholesterol and Quil A, a crude mixture of saponins extracted from the bark of Quillaja saponaria Molina. We have previously shown that ISCOMs can be prepared by ether injection wherein an ether solution of phospholipids and cholesterol in a mass ratio of 5:2 is injected into a solution of Quil A at a mass ratio of 7 lipids: 3 Quil A. The aim of this study was firstly to isolate and characterise discrete fractions of Quil A and secondly to investigate which of these fractions were able to form ISCOMs by the method of ether injection. Six fractions of Quil A were isolated by semi-preparative reverse phase high performance liquid chromatography (RP-HPLC) and characterised by analytical HPLC, liquid chromatography tandem mass spectrometry (LC-MS) and the qualitative Liebermann-Burchard and Molisch tests for triterpenoids and carbohydrates respectively. ISCOMs were subsequently prepared from the isolated fractions by the method of ether injection and the resulting preparations characterized by photon correlation spectroscopy (PCS) and negative stain transmission electron microscopy (TEM). The molecular weights of the major compounds in the fractions ranged from approximately 1200 to approximately 2300 Da; all fractions tested positive for triterpenoids and saccharides and four of the fractions were identified as QS-7, QS-17, QS-18 and QS-21 by analysis (LC-MS and analytical HPLC). Injection of ether solutions of lipids into aqueous solutions of QS-17, QS-18 or QS-21 all resulted in homogeneous ISCOM dispersions. The combination of lipids and QS-7 by ether injection produced lamellae and liposomes as the prominent structures and a minor amount of ISCOMs. The remaining two hydrophilic, low molecular weight fractions of Quil A did not produce ISCOMs, instead liposomes and helical structures predominated in the

  8. KCNQ1, KCNE2, and Na+-coupled solute transporters form reciprocally regulating complexes that affect neuronal excitability.

    Science.gov (United States)

    Abbott, Geoffrey W; Tai, Kwok-Keung; Neverisky, Daniel L; Hansler, Alex; Hu, Zhaoyang; Roepke, Torsten K; Lerner, Daniel J; Chen, Qiuying; Liu, Li; Zupan, Bojana; Toth, Miklos; Haynes, Robin; Huang, Xiaoping; Demirbas, Didem; Buccafusca, Roberto; Gross, Steven S; Kanda, Vikram A; Berry, Gerard T

    2014-03-04

    Na(+)-coupled solute transport is crucial for the uptake of nutrients and metabolic precursors, such as myo-inositol, an important osmolyte and precursor for various cell signaling molecules. We found that various solute transporters and potassium channel subunits formed complexes and reciprocally regulated each other in vitro and in vivo. Global metabolite profiling revealed that mice lacking KCNE2, a K(+) channel β subunit, showed a reduction in myo-inositol concentration in cerebrospinal fluid (CSF) but not in serum. Increased behavioral responsiveness to stress and seizure susceptibility in Kcne2(-/-) mice were alleviated by injections of myo-inositol. Suspecting a defect in myo-inositol transport, we found that KCNE2 and KCNQ1, a voltage-gated potassium channel α subunit, colocalized and coimmunoprecipitated with SMIT1, a Na(+)-coupled myo-inositol transporter, in the choroid plexus epithelium. Heterologous coexpression demonstrated that myo-inositol transport by SMIT1 was augmented by coexpression of KCNQ1 but was inhibited by coexpression of both KCNQ1 and KCNE2, which form a constitutively active, heteromeric K(+) channel. SMIT1 and the related transporter SMIT2 were also inhibited by a constitutively active mutant form of KCNQ1. The activities of KCNQ1 and KCNQ1-KCNE2 were augmented by SMIT1 and the glucose transporter SGLT1 but were suppressed by SMIT2. Channel-transporter signaling complexes may be a widespread mechanism to facilitate solute transport and electrochemical crosstalk.

  9. Synthesis and biological activity of novel mono-indole and mono-benzofuran inhibitors of bacterial transcription initiation complex formation.

    Science.gov (United States)

    Mielczarek, Marcin; Thomas, Ruth V; Ma, Cong; Kandemir, Hakan; Yang, Xiao; Bhadbhade, Mohan; Black, David StC; Griffith, Renate; Lewis, Peter J; Kumar, Naresh

    2015-04-15

    Our ongoing research focused on targeting transcription initiation in bacteria has resulted in synthesis of several classes of mono-indole and mono-benzofuran inhibitors that targeted the essential protein-protein interaction between RNA polymerase core and σ(70)/σ(A) factors in bacteria. In this study, the reaction of indole-2-, indole-3-, indole-7- and benzofuran-2-glyoxyloyl chlorides with amines and hydrazines afforded a variety of glyoxyloylamides and glyoxyloylhydrazides. Similarly, condensation of 2- and 7-trichloroacetylindoles with amines and hydrazines delivered amides and hydrazides. The novel molecules were found to inhibit the RNA polymerase-σ(70)/σ(A) interaction as measured by ELISA, and also inhibited the growth of both Gram-positive and Gram-negative bacteria in culture. Structure-activity relationship (SAR) studies of the mono-indole and mono-benzofuran inhibitors suggested that the hydrophilic-hydrophobic balance is an important determinant of biological activity. Copyright © 2015 Elsevier Ltd. All rights reserved.

  10. Dopamine D1 and adenosine A1 receptors form functionally interacting heteromeric complexes

    Science.gov (United States)

    Ginés, Silvia; Hillion, Joëlle; Torvinen, Maria; Le Crom, Stèphane; Casadó, Vicent; Canela, Enric I.; Rondin, Sofia; Lew, Jow Y.; Watson, Stanley; Zoli, Michele; Agnati, Luigi Francesco; Vernier, Philippe; Lluis, Carmen; Ferré, Sergi; Fuxe, Kjell; Franco, Rafael

    2000-01-01

    The possible molecular basis for the previously described antagonistic interactions between adenosine A1 receptors (A1R) and dopamine D1 receptors (D1R) in the brain have been studied in mouse fibroblast Ltk− cells cotransfected with human A1R and D1R cDNAs or with human A1R and dopamine D2 receptor (long-form) (D2R) cDNAs and in cortical neurons in culture. A1R and D1R, but not A1R and D2R, were found to coimmunoprecipitate in cotransfected fibroblasts. This selective A1R/D1R heteromerization disappeared after pretreatment with the D1R agonist, but not after combined pretreatment with D1R and A1R agonists. A high degree of A1R and D1R colocalization, demonstrated in double immunofluorescence experiments with confocal laser microscopy, was found in both cotransfected fibroblast cells and cortical neurons in culture. On the other hand, a low degree of A1R and D2R colocalization was observed in cotransfected fibroblasts. Pretreatment with the A1R agonist caused coclustering (coaggregation) of A1R and D1R, which was blocked by combined pretreatment with the D1R and A1R agonists in both fibroblast cells and in cortical neurons in culture. Combined pretreatment with D1R and A1R agonists, but not with either one alone, substantially reduced the D1R agonist-induced accumulation of cAMP. The A1R/D1R heteromerization may be one molecular basis for the demonstrated antagonistic modulation of A1R of D1R receptor signaling in the brain. The persistence of A1R/D1R heteromerization seems to be essential for the blockade of A1R agonist-induced A1R/D1R coclustering and for the desensitization of the D1R agonist-induced cAMP accumulation seen on combined pretreatment with D1R and A1R agonists, which indicates a potential role of A1R/D1R heteromers also in desensitization mechanisms and receptor trafficking. PMID:10890919

  11. Complex patterns of speciation in cosmopolitan "rock posy" lichens--discovering and delimiting cryptic fungal species in the lichen-forming Rhizoplaca melanophthalma species-complex (Lecanoraceae, Ascomycota).

    Science.gov (United States)

    Leavitt, Steven D; Fankhauser, Johnathon D; Leavitt, Dean H; Porter, Lyndon D; Johnson, Leigh A; St Clair, Larry L

    2011-06-01

    A growing body of evidence indicates that in some cases morphology-based species circumscription of lichenized fungi misrepresents the number of existing species. The cosmopolitan "rock posy" lichen (Rhizoplaca melanophthalma) species-complex includes a number of morphologically distinct species that are both geographically and ecologically widespread, providing a model system to evaluate speciation in lichen-forming ascomycetes. In this study, we assembled multiple lines of evidence from nuclear DNA sequence data, morphology, and biochemistry for species delimitation in the R. melanophthalma species-complex. We identify a total of ten candidate species in this study, four of which were previously recognized as distinct taxa and six previously unrecognized lineages found within what has been thus far considered a single species. Candidate species are supported using inferences from multiple empirical operational criteria. Multiple instances of sympatry support the view that these lineages merit recognition as distinct taxa. Generally, we found little corroboration between morphological and chemical characters, and previously unidentified lineages were morphologically polymorphic. However, secondary metabolite data supported one cryptic saxicolous lineage, characterized by orsellinic-derived gyrophoric and lecanoric acids, which we consider to be taxonomically significant. Our study of the R. melanophthalma species-complex indicates that the genus Rhizoplaca, as presently circumscribed, is more diverse in western North American than originally perceived, and we present our analyses as a working example of species delimitation in morphologically cryptic and recently diverged lichenized fungi. Copyright © 2011 Elsevier Inc. All rights reserved.

  12. Utility of Charge Transfer and Ion-Pair Complexation for Spectrophotometric Determination of Eletriptan Hydrobromide in Pure and Dosage Forms

    Directory of Open Access Journals (Sweden)

    Ayman A. Gouda

    2013-01-01

    Full Text Available Three simple, sensitive, and accurate spectrophotometric methods have been developed for the determination of eletriptan hydrobromide (ELT in pure and dosage forms. The first two methods are based on charge transfer complex formation between ELT and chromogenic reagents quinalizarin (Quinz and alizarin red S (ARS producing charge transfer complexes which showed an absorption maximum at 569 and 533 nm for Quinz and ARS, respectively. The third method is based on the formation of ion-pair complex between ELT with molybdenum(V-thiocyanate inorganic complex in hydrochloric acid medium followed by extraction of the colored ion-pair with dichloromethane and measured at 470 nm. Different variables affecting the reactions were studied and optimized. Beer's law is obeyed in the concentration ranges 2.0–18, 1.0–8.0, and 2.0–32 μg mL−1 for Quinz, ARS, and Mo(V-thiocyanate, respectively. The molar absorptivity, Sandell sensitivity, detection, and quantification limits are also calculated. The correlation coefficients were ≥0.9994 with a relative standard deviation (R.S.D%. of ≤0.925. The proposed methods were successfully applied for simultaneous determination of ELT in tablets with good accuracy and precision and without interferences from common additives, and the validity is assessed by applying the standard addition technique, which is compared with those obtained using the reported method.

  13. Chitin-Like Molecules Associate with Cryptococcus neoformans Glucuronoxylomannan To Form a Glycan Complex with Previously Unknown Properties

    Science.gov (United States)

    Ramos, Caroline L.; Fonseca, Fernanda L.; Rodrigues, Jessica; Guimarães, Allan J.; Cinelli, Leonardo P.; Miranda, Kildare; Nimrichter, Leonardo; Casadevall, Arturo; Travassos, Luiz R.

    2012-01-01

    In prior studies, we demonstrated that glucuronoxylomannan (GXM), the major capsular polysaccharide of the fungal pathogen Cryptococcus neoformans, interacts with chitin oligomers at the cell wall-capsule interface. The structural determinants regulating these carbohydrate-carbohydrate interactions, as well as the functions of these structures, have remained unknown. In this study, we demonstrate that glycan complexes composed of chitooligomers and GXM are formed during fungal growth and macrophage infection by C. neoformans. To investigate the required determinants for the assembly of chitin-GXM complexes, we developed a quantitative scanning electron microscopy-based method using different polysaccharide samples as inhibitors of the interaction of chitin with GXM. This assay revealed that chitin-GXM association involves noncovalent bonds and large GXM fibers and depends on the N-acetyl amino group of chitin. Carboxyl and O-acetyl groups of GXM are not required for polysaccharide-polysaccharide interactions. Glycan complex structures composed of cryptococcal GXM and chitin-derived oligomers were tested for their ability to induce pulmonary cytokines in mice. They were significantly more efficient than either GXM or chitin oligomers alone in inducing the production of lung interleukin 10 (IL-10), IL-17, and tumor necrosis factor alpha (TNF-α). These results indicate that association of chitin-derived structures with GXM through their N-acetyl amino groups generates glycan complexes with previously unknown properties. PMID:22562469

  14. Serum albumin forms a lactoferrin-like soluble iron-binding complex in presence of hydrogen carbonate ions.

    Science.gov (United States)

    Ueno, Hiroshi M; Urazono, Hiroshi; Kobayashi, Toshiya

    2014-02-15

    The iron-lactoferrin complex is a common food ingredient because of its iron-solubilizing capability in the presence of hydrogen carbonate ions. However, it is unclear whether the formation of a stable iron-binding complex is limited to lactoferrin. In this study, we investigated the effects of bovine serum albumin (BSA) on iron solubility and iron-catalyzed lipid oxidation in the presence of hydrogen carbonate ions. BSA could solubilize >100-fold molar equivalents of iron at neutral pH, exceeding the specific metal-binding property of BSA. This iron-solubilizing capability of BSA was impaired by thermally denaturing BSA at ≥ 70 °C for 10 min at pH 8.5. The resulting iron-BSA complex inhibited iron-catalyzed oxidation of soybean oil in a water-in-oil emulsion measured using the Rancimat test. Our study is the first to show that BSA, like lactoferrin, forms a soluble iron-binding complex in the presence of hydrogen carbonate ions. Copyright © 2013 Elsevier Ltd. All rights reserved.

  15. The physical size of transcription factors is key to transcriptional regulation in chromatin domains

    Science.gov (United States)

    Maeshima, Kazuhiro; Kaizu, Kazunari; Tamura, Sachiko; Nozaki, Tadasu; Kokubo, Tetsuro; Takahashi, Koichi

    2015-02-01

    Genetic information, which is stored in the long strand of genomic DNA as chromatin, must be scanned and read out by various transcription factors. First, gene-specific transcription factors, which are relatively small (˜50 kDa), scan the genome and bind regulatory elements. Such factors then recruit general transcription factors, Mediators, RNA polymerases, nucleosome remodellers, and histone modifiers, most of which are large protein complexes of 1-3 MDa in size. Here, we propose a new model for the functional significance of the size of transcription factors (or complexes) for gene regulation of chromatin domains. Recent findings suggest that chromatin consists of irregularly folded nucleosome fibres (10 nm fibres) and forms numerous condensed domains (e.g., topologically associating domains). Although the flexibility and dynamics of chromatin allow repositioning of genes within the condensed domains, the size exclusion effect of the domain may limit accessibility of DNA sequences by transcription factors. We used Monte Carlo computer simulations to determine the physical size limit of transcription factors that can enter condensed chromatin domains. Small gene-specific transcription factors can penetrate into the chromatin domains and search their target sequences, whereas large transcription complexes cannot enter the domain. Due to this property, once a large complex binds its target site via gene-specific factors it can act as a ‘buoy’ to keep the target region on the surface of the condensed domain and maintain transcriptional competency. This size-dependent specialization of target-scanning and surface-tethering functions could provide novel insight into the mechanisms of various DNA transactions, such as DNA replication and repair/recombination.

  16. hMSH2 forms specific mispair-binding complexes with hMSH3 and hMSH6.

    Science.gov (United States)

    Acharya, S; Wilson, T; Gradia, S; Kane, M F; Guerrette, S; Marsischky, G T; Kolodner, R; Fishel, R

    1996-11-26

    The genetic and biochemical properties of three human MutS homologues, hMSH2, hMSH3, and hMSH6, have been examined. The full-length hMSH6 cDNA and genomic locus were isolated and characterized, and it was demonstrated that the hMSH6 gene consisted of 10 exons and mapped to chromosome 2p15-16. The hMSH3 cDNA was in some cases found to contain a 27-bp deletion resulting in a loss of nine amino acids, depending on the individual from which the cDNA was isolated. hMSH2, hMSH3, and hMSH6 all showed similar tissue-specific expression patterns. hMSH2 protein formed a complex with both hMSH3 and hMSH6 proteins, similar to protein complexes demonstrated by studies of the Saccharomyces cerevisiae MSH2, MSH3, and MSH6. hMSH2 was also found to form a homomultimer complex, but neither hMSH3 nor hMSH6 appear to interact with themselves or each other. Analysis of the mismatched nucleotide-binding specificity of the hMSH2-hMSH3 and hMSH2-hMSH6 protein complexes showed that they have overlapping but not identical binding specificity. These results help to explain the distribution of mutations in different mismatch-repair genes seen in hereditary nonpolyposis colon cancer.

  17. FOXA and master transcription factors recruit Mediator and Cohesin to the core transcriptional regulatory circuitry of cancer cells

    Science.gov (United States)

    Fournier, Michèle; Bourriquen, Gaëlle; Lamaze, Fabien C.; Côté, Maxime C.; Fournier, Éric; Joly-Beauparlant, Charles; Caron, Vicky; Gobeil, Stéphane; Droit, Arnaud; Bilodeau, Steve

    2016-10-01

    Controlling the transcriptional program is essential to maintain the identity and the biological functions of a cell. The Mediator and Cohesin complexes have been established as central cofactors controlling the transcriptional program in normal cells. However, the distribution, recruitment and importance of these complexes in cancer cells have not been fully investigated. Here we show that FOXA and master transcription factors are part of the core transcriptional regulatory circuitry of cancer cells and are essential to recruit M ediator and Cohesin. Indeed, Mediator and Cohesin occupied the enhancer and promoter regions of actively transcribed genes and maintained the proliferation and colony forming potential. Through integration of publically available ChIP-Seq datasets, we predicted the core transcriptional regulatory circuitry of each cancer cell. Unexpectedly, for all cells investigated, the pioneer transcription factors FOXA1 and/or FOXA2 were identified in addition to cell-specific master transcription factors. Loss of both types of transcription factors phenocopied the loss of Mediator and Cohesin. Lastly, the master and pioneer transcription factors were essential to recruit Mediator and Cohesin to regulatory regions of actively transcribed genes. Our study proposes that maintenance of the cancer cell state is dependent on recruitment of Mediator and Cohesin through FOXA and master transcription factors.

  18. Psp Stress Response Proteins Form a Complex with Mislocalized Secretins in theYersinia enterocoliticaCytoplasmic Membrane.

    Science.gov (United States)

    Srivastava, Disha; Moumene, Amal; Flores-Kim, Josué; Darwin, Andrew J

    2017-09-12

    The bacterial phage shock protein system (Psp) is a conserved extracytoplasmic stress response that is essential for the virulence of some pathogens, including Yersinia enterocolitica It is induced by events that can compromise inner membrane (IM) integrity, including the mislocalization of outer membrane pore-forming proteins called secretins. In the absence of the Psp system, secretin mislocalization permeabilizes the IM and causes rapid cell death. The Psp proteins PspB and PspC form an integral IM complex with two independent roles. First, the PspBC complex is required to activate the Psp response in response to some inducing triggers, including a mislocalized secretin. Second, PspBC are sufficient to counteract mislocalized secretin toxicity. Remarkably, secretin mislocalization into the IM induces psp gene expression without significantly affecting the expression of any other genes. Furthermore, psp null strains are killed by mislocalized secretins, whereas no other null mutants have been found to share this specific secretin sensitivity. This suggests an exquisitely specific relationship between secretins and the Psp system, but there has been no mechanism described to explain this. In this study, we addressed this deficiency by using a coimmunoprecipitation approach to show that the Psp proteins form a specific complex with mislocalized secretins in the Y. enterocolitica IM. Importantly, analysis of different secretin mutant proteins also revealed that this interaction is absolutely dependent on a secretin adopting a multimeric state. Therefore, the Psp system has evolved with the ability to detect and detoxify dangerous secretin multimers while ignoring the presence of innocuous monomers. IMPORTANCE The phage shock protein (Psp) response has been linked to important phenotypes in diverse bacteria, including those related to antibiotic resistance, biofilm formation, and virulence. This has generated widespread interest in understanding various aspects of

  19. Progesterone Receptor–Cyclin D1 Complexes Induce Cell Cycle–Dependent Transcriptional Programs in Breast Cancer Cells

    Science.gov (United States)

    Dressing, Gwen E.; Knutson, Todd P.; Schiewer, Matthew J.; Daniel, Andrea R.; Hagan, Christy R.; Diep, Caroline H.; Knudsen, Karen E.

    2014-01-01

    The progesterone receptor (PR) and its coactivators are direct targets of activated cyclin-dependent kinases (CDKs) in response to peptide growth factors, progesterone, and deregulation of cell cycle inhibitors. Herein, using the T47D breast cancer model, we probed mechanisms of cell cycle–dependent PR action. In the absence of exogenous progestin, the PR is specifically phosphorylated during the G2/M phase. Accordingly, numerous PR target genes are cell cycle regulated, including HSPB8, a heat-shock protein whose high expression is associated with tamoxifen resistance. Progestin-induced HSPB8 expression required cyclin D1 and was insensitive to antiestrogens but blocked by antiprogestins or inhibition of specificity factor 1 (SP1). HSPB8 expression increased with or without ligand when cells were G2/M synchronized or contained high levels of cyclin D1. Knockdown of PRs abrogated ligand-independent HSPB8 expression in synchronized cells. Notably, PRs and cyclin D1 copurified in whole-cell lysates of transiently transfected COS-1 cells and in PR-positive T47D breast cancer cells expressing endogenous cyclin D1. PRs, cyclin D1, and SP1 were recruited to the HSPB8 promoter in progestin-treated T47D breast cancer cells. Mutation of PR Ser345 to Ala (S345A) or inhibition of CDK2 activity using roscovitine disrupted PR/cyclin D1 interactions with DNA and blocked HSPB8 mRNA expression. Interaction of phosphorylated PRs with SP1 and cyclin D1 provides a mechanism for targeting transcriptionally active PRs to selected gene promoters relevant to breast cancer progression. Understanding the functional linkage between PRs and cell cycle regulatory proteins will provide keys to targeting novel PR/cyclin D1 cross talk in both hormone-responsive disease and HSPB8-high refractory disease with high HSPB8 expression. PMID:24606123

  20. The upstream regulatory sequence of the light harvesting complex Lhcf2 gene of the marine diatom Phaeodactylum tricornutum enhances transcription in an orientation- and distance-independent fashion.

    Science.gov (United States)

    Russo, Monia Teresa; Annunziata, Rossella; Sanges, Remo; Ferrante, Maria Immacolata; Falciatore, Angela

    2015-12-01

    Diatoms are a key phytoplankton group in the contemporary ocean, showing extraordinary adaptation capacities to rapidly changing environments. The recent availability of whole genome sequences from representative species has revealed distinct features in their genomes, like novel combinations of genes encoding distinct metabolisms and a significant number of diatom-specific genes. However, the regulatory mechanisms driving diatom gene expression are still largely uncharacterized. Considering the wide variety of fields of study orbiting diatoms, ranging from ecology, evolutionary biology to biotechnology, it is thus essential to increase our understanding of fundamental gene regulatory processes such as transcriptional regulation. To this aim, we explored the functional properties of the 5'-flanking region of the Phaeodatylum tricornutum Lhcf2 gene, encoding a member of the Light Harvesting Complex superfamily and we showed that this region enhances transcription of a GUS reporter gene in an orientation- and distance-independent fashion. This represents the first example of a cis-regulatory sequence with enhancer-like features discovered in diatoms and it is instrumental for the generation of novel genetic tools and diatom exploitation in different areas of study. Copyright © 2015 Elsevier B.V. All rights reserved.

  1. The putative Agrobacterium transcriptional activator-like virulence protein VirD5 may target T-complex to prevent the degradation of coat proteins in the plant cell nucleus.

    Science.gov (United States)

    Wang, Yafei; Peng, Wei; Zhou, Xu; Huang, Fei; Shao, Lingyun; Luo, Meizhong

    2014-09-01

    Agrobacterium exports at least five virulence proteins (VirE2, VirE3, VirF, VirD2, VirD5) into host cells and hijacks some host plant factors to facilitate its transformation process. Random DNA binding selection assays (RDSAs), electrophoretic mobility shift assays (EMSAs) and yeast one-hybrid systems were used to identify protein-bound DNA elements. Bimolecular fluorescence complementation, glutathione S-transferase pull-down and yeast two-hybrid assays were used to detect protein interactions. Protoplast transformation, coprecipitation, competitive binding and cell-free degradation assays were used to analyze the relationships among proteins. We found that Agrobacterium VirD5 exhibits transcriptional activation activity in yeast, is located in the plant cell nucleus, and forms homodimers. A specific VirD5-bound DNA element designated D5RE (VirD5 response element) was identified. VirD5 interacted directly with Arabidopsis VirE2 Interacting Protein 1 (AtVIP1). However, the ternary complex of VirD5-AtVIP1-VirE2 could be detected, whereas that of VirD5-AtVIP1-VBF (AtVIP1 Binding F-box protein) could not. We demonstrated that VirD5 competes with VBF for binding to AtVIP1 and stabilizes AtVIP1 and VirE2 in the cell-free degradation system. Our results indicated that VirD5 may act as both a transcriptional activator-like effector to regulate host gene expression and a protector preventing the coat proteins of the T-complex from being quickly degraded by the host's ubiquitin proteasome system (UPS). © 2014 The Authors. New Phytologist © 2014 New Phytologist Trust.

  2. Evidence for the complex relationship between free amino acid and sugar concentrations and acrylamide-forming potential in potato.

    Science.gov (United States)

    Muttucumaru, N; Powers, Sj; Elmore, Js; Briddon, A; Mottram, Ds; Halford, Ng

    2014-01-01

    Free amino acids and reducing sugars participate in the Maillard reaction during high-temperature cooking and processing. This results not only in the formation of colour, aroma and flavour compounds, but also undesirable contaminants, including acrylamide, which forms when the amino acid that participates in the reaction is asparagine. In this study, tubers of 13 varieties of potato ( Solanum tuberosum ), which had been produced in a field trial in 2010 and sampled immediately after harvest or after storage for 6 months, were analysed to show the relationship between the concentrations of free asparagine, other free amino acids, sugars and acrylamide-forming potential. The varieties comprised five that are normally used for crisping, seven that are used for French fry production and one that is used for boiling. Acrylamide formation was measured in heated flour, and correlated with glucose and fructose concentration. In French fry varieties, which contain higher concentrations of sugars, acrylamide formation also correlated with free asparagine concentration, demonstrating the complex relationship between precursor concentration and acrylamide-forming potential in potato. Storage of the potatoes for 6 months at 9°C had a significant, variety-dependent impact on sugar and amino acid concentrations and acrylamide-forming potential.

  3. Insights into HIV-1 proviral transcription from integrative structure and dynamics of the Tat:AFF4:P-TEFb:TAR complex.

    Science.gov (United States)

    Schulze-Gahmen, Ursula; Echeverria, Ignacia; Stjepanovic, Goran; Bai, Yun; Lu, Huasong; Schneidman-Duhovny, Dina; Doudna, Jennifer A; Zhou, Qiang; Sali, Andrej; Hurley, James H

    2016-10-12

    HIV-1 Tat hijacks the human superelongation complex (SEC) to promote proviral transcription. Here we report the 5.9 Å structure of HIV-1 TAR in complex with HIV-1 Tat and human AFF4, CDK9, and CycT1. The TAR central loop contacts the CycT1 Tat-TAR recognition motif (TRM) and the second Tat Zn 2+ -binding loop. Hydrogen-deuterium exchange (HDX) shows that AFF4 helix 2 is stabilized in the TAR complex despite not touching the RNA, explaining how it enhances TAR binding to the SEC 50-fold. RNA SHAPE and SAXS data were used to help model the extended (Tat Arginine-Rich Motif) ARM, which enters the TAR major groove between the bulge and the central loop. The structure and functional assays collectively support an integrative structure and a bipartite binding model, wherein the TAR central loop engages the CycT1 TRM and compact core of Tat, while the TAR major groove interacts with the extended Tat ARM.

  4. Direct determination of tungsten in the presence of high content of molybdenum in the form of its complex with bromopyrogallol red and hydrogen peroxide

    International Nuclear Information System (INIS)

    Andreeva, I.Yu.; Lebedeva, L.I.; Flotskaya, E.A.

    1982-01-01

    It has been shown that tungsten reacts with Bromopyrogallol Red and hydrogen peroxide to form a ternary complex. A procedure has been developed of determining tungsten(6) in the presence of 500 times molar amounts of molybdenum(6). Under the conditions chosen molybdenum forms a stable peroxide complex and does not interfere with the determination

  5. Folylpolyglutamate Synthetase Gene Transcription is Regulated by a Multiprotein Complex that Binds the TEL-AML1 Fusion in Acute Lymphoblastic Leukemia

    Science.gov (United States)

    Leclerc, Guy J.; Sanderson, Christopher; Hunger, Stephen; Devidas, Meenakshi; Barredo, Julio C.

    2010-01-01

    Acute Lymphoblastic Leukemia (ALL) non-random fusions influence clinical outcome and alter the accumulation of MTX-PGs in vivo. Analysis of primary ALL samples uncovered subtype-specific patterns of folate gene expression. Using an FPGS-luciferase reporter gene assay, we determined that E2A-PBX1 and TEL-AML1 expression decreased FPGS transcription. ChIP assays uncovered HDAC1,AML1, mSin3A, E2F, and Rb interactions with the FPGS promoter region. We demonstrate that FPGS expression is epigenetically regulated through binding of selected ALL fusions to a multiprotein complex, which also controls the cell cycle dependence of FPGS expression. This study provides insights into the pharmacogenomics of MTX in ALL subtypes. PMID:20538338

  6. The transcriptional regulator Aire co-opts the repressive ATF7ip-MBD1 complex for induction of immune tolerance

    Science.gov (United States)

    Waterfield, Michael; Khan, Imran S.; Cortez, Jessica T.; Fan, Una; Metzger, Todd; Greer, Alexandra; Fasano, Kayla; Martinez-Llordella, Marc; Pollack, Joshua L.; Erle, David J.; Su, Maureen; Anderson, Mark S.

    2014-01-01

    The maintenance of immune tolerance requires the deletion of self-reactive T cells in the thymus. The expression of tissue-specific antigen genes (TSAs) by thymic epithelial cells is critical for this process and depends on the activity of the Autoimmune Regulator (Aire) protein, however, the molecular mechanism(s) Aire uses to target TSA gene loci are unknown. Here we identified two Aire-interacting proteins – activating transcription factor 7 interacting protein (ATF7ip) and methyl CpG binding protein 1 (MBD1) –that are required for Aire’s targeting of TSA geneloci. Moreover, Mbd1−/− mice developed pathological autoimmunity and had a defect in Aire-dependent thymic TSA gene expression underscoring the critical importance of Aire’s interaction with the ATF7ip-MBD1 protein complex in maintaining central tolerance. PMID:24464130

  7. The E. coli monothiol glutaredoxin GrxD forms homodimeric and heterodimeric FeS cluster containing complexes.

    Science.gov (United States)

    Yeung, N; Gold, B; Liu, N L; Prathapam, R; Sterling, H J; Willams, E R; Butland, G

    2011-10-18

    Monothiol glutaredoxins (mono-Grx) represent a highly evolutionarily conserved class of proteins present in organisms ranging from prokaryotes to humans. Mono-Grxs have been implicated in iron sulfur (FeS) cluster biosynthesis as potential scaffold proteins and in iron homeostasis via an FeS-containing complex with Fra2p (homologue of E. coli BolA) in yeast and are linked to signal transduction in mammalian systems. However, the function of the mono-Grx in prokaryotes and the nature of an interaction with BolA-like proteins have not been established. Recent genome-wide screens for E. coli genetic interactions reported the synthetic lethality (combination of mutations leading to cell death; mutation of only one of these genes does not) of a grxD mutation when combined with strains defective in FeS cluster biosynthesis (isc operon) functions [Butland, G., et al. (2008) Nature Methods 5, 789-795]. These data connected the only E. coli mono-Grx, GrxD to a potential role in FeS cluster biosynthesis. We investigated GrxD to uncover the molecular basis of this synthetic lethality and observed that GrxD can form FeS-bound homodimeric and BolA containing heterodimeric complexes. These complexes display substantially different spectroscopic and functional properties, including the ability to act as scaffold proteins for intact FeS cluster transfer to the model [2Fe-2S] acceptor protein E. coli apo-ferredoxin (Fdx), with the homodimer being significantly more efficient. In this work, we functionally dissect the potential cellular roles of GrxD as a component of both homodimeric and heterodimeric complexes to ultimately uncover if either of these complexes performs functions linked to FeS cluster biosynthesis. © 2011 American Chemical Society

  8. Systematic Complex Haploinsufficiency-Based Genetic Analysis of Candida albicans Transcription Factors: Tools and Applications to Virulence-Associated Phenotypes.

    Science.gov (United States)

    Glazier, Virginia E; Murante, Thomas; Koselny, Kristy; Murante, Daniel; Esqueda, Marisol; Wall, Gina A; Wellington, Melanie; Hung, Chiung-Yu; Kumar, Anuj; Krysan, Damian J

    2018-03-28

    Genetic interaction analysis is a powerful approach to the study of complex biological processes that are dependent on multiple genes. Because of the largely diploid nature of the human fungal pathogen Candida albicans , genetic interaction analysis has been limited to a small number of large-scale screens and a handful for gene-by-gene studies. Complex haploinsufficiency, which occurs when a strain containing two heterozygous mutations at distinct loci shows a phenotype that is distinct from either of the corresponding single heterozygous mutants, is an expedient approach to genetic interactions analysis in diploid organisms. Here, we describe the construction of a barcoded-library of 133 heterozygous TF deletion mutants and deletion cassettes for designed to facilitate complex haploinsufficiency-based genetic interaction studies of the TF networks in C. albicans We have characterized the phenotypes of these heterozygous mutants under a broad range of in vitro conditions using both agar-plate and pooled signature tag-based assays. Consistent with previous studies, haploinsufficiency is relative uncommon. In contrast, a set of 12 TFs enriched in mutants with a role in adhesion were found to have altered competitive fitness at early time points in a murine model of disseminated candidiasis. Finally, we characterized the genetic interactions of a set of biofilm related TFs in the first two steps of biofilm formation, adherence and filamentation of adherent cells. The genetic interaction networks at each stage of biofilm formation are significantly different indicating that the network is not static but dynamic. Copyright © 2018 Glazier et al.

  9. E2F-Rb complexes assemble and inhibit cdc25A transcription in cervical carcinoma cells following repression of human papillomavirus oncogene expression

    DEFF Research Database (Denmark)

    Wu, L; Goodwin, E C; Naeger, L K

    2000-01-01

    in the absence of E2 expression. Expression of the E2 protein also led to posttranscriptional increase in the level of E2F4, p105(Rb), and p130 and induced the formation of nuclear E2F4-p130 and E2F4-p105(Rb) complexes. This resulted in marked rearrangement of the protein complexes that formed at the distal E2F...... site in the cdc25A promoter, including the replacement of free E2F complexes with E2F4-p105(Rb) complexes. These experiments indicated that repression of E2F-responsive promoters following HPV E6/E7 repression was mediated by activation of the Rb tumor suppressor pathway and the assembly of repressing...

  10. Activation of EVI1 transcription by the LEF1/β-catenin complex with p53-alteration in myeloid blast crisis of chronic myeloid leukemia.

    Science.gov (United States)

    Manachai, Nawin; Saito, Yusuke; Nakahata, Shingo; Bahirvani, Avinash Govind; Osato, Motomi; Morishita, Kazuhiro

    2017-01-22

    The presence of a BCR-ABL1 fusion gene is necessary for the pathogenesis of chronic myeloid leukemia (CML) through t(9;22)(q34;q11) translocation. Imatinib, an ABL tyrosine kinase inhibitor, is dramatically effective in CML patients; however, 30% of CML patients will need further treatment due to progression of CML to blast crisis (BC). Aberrant high expression of ecotropic viral integration site 1 (EVI1) is frequently observed in CML during myeloid-BC as a potent driver with a CML stem cell signature; however, the precise molecular mechanism of EVI1 transcriptional regulation during CML progression is poorly defined. Here, we demonstrate the transcriptional activity of EVI1 is dependent on activation of lymphoid enhancer-binding factor 1 (LEF1)/β-catenin complex by BCR-ABL with loss of p53 function during CML-BC. The activation of β-catenin is partly dependent on BCR-ABL expression through enhanced GSK3β phosphorylation, and EVI1 expression is directly enhanced by the LEF1/β-catenin complex bound to the EVI1 promoter region. Moreover, the loss of p53 expression is inversely correlated with high expression of EVI1 in CML leukemia cells with an aggressive phase of CML, and a portion of the activation mechanism of EVI1 expression is dependent on β-catenin activation through GSK3β phosphorylation by loss of p53. Therefore, we found that the EVI1 activation in CML-BC is dependent on LEF1/β-catenin activation by BCR-ABL expression with loss of p53 function, representing a novel selective therapeutic approach targeting myeloid blast crisis progression. Copyright © 2016 Elsevier Inc. All rights reserved.

  11. Cotton leaf curl Burewala virus with intact or mutant transcriptional activator proteins: complexity of cotton leaf curl disease.

    Science.gov (United States)

    Kumar, Jitendra; Gunapati, Samatha; Alok, Anshu; Lalit, Adarsh; Gadre, Rekha; Sharma, Naresh C; Roy, Joy K; Singh, Sudhir P

    2015-05-01

    Cotton leaf curl disease (CLCuD) is a serious disease of cotton on the Indian subcontinent. In the present study, three cotton leaf curl viruses, cotton leaf curl Burewala virus (CLCuBuV), cotton leaf curl Kokhran virus (CLCuKoV) and cotton leaf curl Multan virus (CLCuMV), and their associated satellites, cotton leaf curl Multan betasatellite (CLCuMB) and cotton leaf curl Multan alphasatellite (CLCuMA), were detected. CLCuBuV with either intact (CLCuBuV-1) or mutant (CLCuBuV-2) transcriptional activator protein (TrAP) were detected in different plants. Agroinoculation with CLCuBuV-1 or CLCuBuV-2 together with CLCuMB and CLCuMA, resulted in typical leaf curling and stunting of tobacco plants. Inoculation with CLCuKoV or an isolate of CLCuMV (CLCuMV-2), together with CLCuMB and CLCuMA, induced severe leaf curling, while the other isolate of CLCuMV (CLCuMV-1), which was recombinant in origin, showed mild leaf curling in tobacco. To investigate the effect of intact or mutant TrAP and also the recombination events, CLCuBuV-1, CLCuBuV-2, CLCuMV-1 or CLCuMV-2 together with the satellites (CLCuMA and CLCuMB) were transferred to cotton via whitefly-mediated transmission. Cotton plants containing CLCuBuV-1, CLCuBuV-2 or CLCuMV-2 together with satellites showed curling and stunting, whereas the plants having CLCuMV-1 and the satellites showed only mild and indistinguishable symptoms. CLCuBuV-1 (intact TrAP) showed severe symptoms in comparison to CLCuBuV-2 (mutant TrAP). The present study reveals that two types of CLCuBuV, one with an intact TrAP and the other with a mutant TrAP, exist in natural infection of cotton in India. Additionally, CLCuMuV-1, which has a recombinant origin, induces mild symptoms in comparison to the other CLCuMV isolates.

  12. Human Cytomegalovirus gH/gL Forms a Stable Complex with the Fusion Protein gB in Virions.

    Directory of Open Access Journals (Sweden)

    Adam L Vanarsdall

    2016-04-01

    Full Text Available Human cytomegalovirus (HCMV is a ubiquitous virus that is a major pathogen in newborns and immunocompromised or immunosuppressed patients. HCMV infects a wide variety of cell types using distinct entry pathways that involve different forms of the gH/gL glycoprotein: gH/gL/gO and gH/gL/UL128-131 as well as the viral fusion glycoprotein, gB. However, the minimal or core fusion machinery (sufficient for cell-cell fusion is just gH/gL and gB. Here, we demonstrate that HCMV gB and gH/gL form a stable complex early after their synthesis and in the absence of other viral proteins. gH/gL can interact with gB mutants that are unable to mediate cell-cell fusion. gB-gH/gL complexes included as much as 16-50% of the total gH/gL in HCMV virus particles. In contrast, only small amounts of gH/gL/gO and gH/gL/UL128-131 complexes were found associated with gB. All herpesviruses express gB and gH/gL molecules and most models describing herpesvirus entry suggest that gH/gL interacts with gB to mediate membrane fusion, although there is no direct evidence for this. For herpes simplex virus (HSV-1 it has been suggested that after receptor binding gH/gL binds to gB either just before, or coincident with membrane fusion. Therefore, our results have major implications for these models, demonstrating that HCMV gB and gH/gL forms stable gB-gH/gL complexes that are incorporated virions without receptor binding or membrane fusion. Moreover, our data is the best support to date for the proposal that gH/gL interacts with gB.

  13. Truncated forms of the prion protein PrP demonstrate the need for complexity in prion structure

    Energy Technology Data Exchange (ETDEWEB)

    Wan, William; Stöhr, Jan; Kendall, Amy; Stubbs, Gerald

    2015-09-01

    Self-propagation of aberrant protein folds is the defining characteristic of prions. Knowing the structural basis of self-propagation is essential to understanding prions and their related diseases. Prion rods are amyloid fibrils, but not all amyloids are prions. Prions have been remarkably intractable to structural studies, so many investigators have preferred to work with peptide fragments, particularly in the case of the mammalian prion protein PrP. We compared the structures of a number of fragments of PrP by X-ray fiber diffraction, and found that although all of the peptides adopted amyloid conformations, only the larger fragments adopted conformations that modeled the complexity of self-propagating prions, and even these fragments did not always adopt the PrP structure. It appears that the relatively complex structure of the prion form of PrP is not accessible to short model peptides, and that self-propagation may be tied to a level of structural complexity unobtainable in simple model systems. The larger fragments of PrP, however, are useful to illustrate the phenomenon of deformed templating (heterogeneous seeding), which has important biological consequences.

  14. BRCA1 Forms a Functional Complex with γ-H2AX as a Late Response to Genotoxic Stress

    Directory of Open Access Journals (Sweden)

    Susan A. Krum

    2010-01-01

    Full Text Available Following genotoxic stress, the histone H2AX becomes phosphorylated at serine 139 by the ATM/ATR family of kinases. The tumor suppressor BRCA1, also phosphorylated by ATM/ATR kinases, is one of several proteins that colocalize with phospho-H2AX (γ-H2AX at sites of active DNA repair. Both the precise mechanism and the purpose of BRCA1 recruitment to sites of DNA damage are unknown. Here we show that BRCA1 and γ-H2AX form an acid-stable biochemical complex on chromatin after DNA damage. Maximal association of BRCA1 with γ-H2AX correlates with reduced global γ-H2AX levels on chromatin late in the repair process. Since BRCA1 is known to have E3 ubiquitin ligase activity in vitro, we examined H2AX for evidence of ubiquitination. We found that H2AX is ubiquitinated at lysines 119 and 119 in vivo and that blockage of 26S proteasome function stabilizes γ-H2AX levels within cells. When BRCA1 levels were reduced, ubiquitination of H2AX was also reduced, and the cells retained higher levels of phosphorylated H2AX. These results indicate that BRCA1 is recruited into stable complexes with γ-H2AX and that the complex is involved in attenuation of the γ-H2AX repair signal after DNA damage.

  15. From lizard body form to serpentiform morphology: The atlas-axis complex in African cordyliformes and their relatives.

    Science.gov (United States)

    Čerňanský, Andrej

    2016-04-01

    The comparative vertebral morphology of the atlas-axis complex in cordyliforms, xantusiid and several skinks is studied here. These lizards are particularly interesting because of their different ecological adaptations and anti-predation strategies, where conformation ranges from the lizard-like body to a snake-like body. This transition to serpentiform morphology shows several evolutionary patterns in the atlas-axis complex: 1) the zygapophyseal articulations are lost in the early stage of the transition. In contrast to mammals, the atlas is more or less locked to the axis in lepidosaurs, but the absence of zygapophyseal articulation releases this locking for rotation. However despite its serpentiform morphology, Chamaesaura is different, in possessing this articulation; 2) the first intercentrum of Chamaesaura and Tetradactylus africanus (serpentiform grass-swimmers) is fully curved anteriorly, underlying the occipital condyle. While this limits ventral skull rotation beyond a certain angle, it locks the skull, which is a crucial adaptation for a sit-and-wait position in grassland habitats that needs to keep the head stabilized; and 3) in Acontias, most of the atlas articular surface with the occipital condyle is formed by the lateral aspect of the articulation area relative to the area located in the dorsal region of the slightly reduced intercentrum. A similar state occurs in amphisbaenians, most likely reflecting a fossorial lifestyle of the limbless lizards. Although Chamaesaura and Tetradactylus live sympatrically in grasslands, Chamaesaura differs in several ways in atlas-axis complex: for example, aforementioned presence of the atlas-axis zygapophyseal articulation, and long posterodorsal processes. Its occipital condyle protrudes further posteriorly, placing the atlas-axis complex further from the endocranium than in Tetradactylus. Hence, adaptation in the same niche, even among sister clades, can lead to different atlas-axis morphology due to different

  16. Closed form of the Baker-Campbell-Hausdorff formula for the generators of semisimple complex Lie algebras

    International Nuclear Information System (INIS)

    Matone, Marco

    2016-01-01

    Recently it has been introduced an algorithm for the Baker-Campbell-Hausdorff (BCH) formula, which extends the Van-Brunt and Visser recent results, leading to new closed forms of BCH formula. More recently, it has been shown that there are 13 types of such commutator algebras. We show, by providing the explicit solutions, that these include the generators of the semisimple complex Lie algebras. More precisely, for any pair, X, Y of the Cartan-Weyl basis, we find W, linear combination of X, Y, such that exp(X) exp(Y) = exp(W). The derivation of such closed forms follows, in part, by using the above mentioned recent results. The complete derivation is provided by considering the structure of the root system. Furthermore, if X, Y, and Z are three generators of the Cartan-Weyl basis, we find, for a wide class of cases, W, a linear combination of X, Y and Z, such that exp(X) exp(Y) exp(Z) = exp(W). It turns out that the relevant commutator algebras are type 1c-i, type 4 and type 5. A key result concerns an iterative application of the algorithm leading to relevant extensions of the cases admitting closed forms of the BCH formula. Here we provide the main steps of such an iteration that will be developed in a forthcoming paper. (orig.)

  17. Transcriptional regulation of long-term potentiation.

    Science.gov (United States)

    Bliim, Nicola; Leshchyns'ka, Iryna; Sytnyk, Vladimir; Janitz, Michael

    2016-10-01

    Long-term potentiation (LTP), the persistent strengthening of synapses following high levels of stimulation, is a form of synaptic plasticity that has been studied extensively as a possible mechanism for learning and memory formation. The strengthening of the synapse that occurs during LTP requires cascades of complex molecular processes and the coordinated remodeling of pre-synaptic and post-synaptic neurons. Despite over four decades of research, our understanding of the transcriptional mechanisms and molecular processes underlying LTP remains incomplete. Identification of all the proteins and non-coding RNA transcripts expressed during LTP may provide greater insight into the molecular mechanisms involved in learning and memory formation.

  18. Gene transcription of TLR2, TLR4, LPS ligands and prostaglandin synthesis enzymes are up-regulated in canine uteri with cystic endometrial hyperplasia-pyometra complex.

    Science.gov (United States)

    Silva, E; Leitão, S; Henriques, S; Kowalewski, M P; Hoffmann, B; Ferreira-Dias, G; da Costa, L Lopes; Mateus, L

    2010-01-01

    Escherichia coli (E. coli) is the most frequent bacterium isolated in cases of cystic endometrial hyperplasia-pyometra complex, the most frequent endometrial disorder in the bitch. Toll-like receptors (TLRs) play an essential role in the innate immune system. The aim of this study was to compare transcription of genes encoding TLR2, TLR4 and LPS ligands (CD14, MD-2, LBP), prostaglandin synthesis enzymes (COX1, COX2, PGES1 and PGFS), and to compare COX1 and COX2 protein expression and PGE(2) and PGF(2alpha) endometrial content in the endometrium of canine diestrous uteri with (n=7) or without (n=7) pyometra. All cases of pyometra were hyperplastic and E. coli was the only isolated bacteria, while diestrous normal uteri did not present signs of cystic endometrial hyperplasia and were negative for bacteriology. Except for COX1, transcription of all genes was significantly higher in pyometra than in normal endometria. COX1 protein was observed in both normal and pyometra uteri, but COX2 protein was only present in pyometra cases. Endometrial PGE(2) and PGF(2alpha) content were significantly higher in pyometra than in normal diestrous endometria. In conclusion, data obtained in this study provides evidence that pyometra-isolated E. coli induces the up-regulation of TLR2 and TLR4 genes in the canine diestrous endometrium. This up-regulation, which is probably the result of the stimulation by LPS and lipoprotein E. coli constituents, leads to the endometrial up-regulation of PG synthesis genes. This, in turn, results in a higher endometrial concentration of PGE(2) and PGF(2alpha), which may further regulate the local inflammatory response. 2009 Elsevier Ireland Ltd. All rights reserved.

  19. A flagellar A-kinase anchoring protein with two amphipathic helices forms a structural scaffold in the radial spoke complex.

    Science.gov (United States)

    Sivadas, Priyanka; Dienes, Jennifer M; St Maurice, Martin; Meek, William D; Yang, Pinfen

    2012-11-12

    A-kinase anchoring proteins (AKAPs) contain an amphipathic helix (AH) that binds the dimerization and docking (D/D) domain, RIIa, in cAMP-dependent protein kinase A (PKA). Many AKAPs were discovered solely based on the AH-RIIa interaction in vitro. An RIIa or a similar Dpy-30 domain is also present in numerous diverged molecules that are implicated in critical processes as diverse as flagellar beating, membrane trafficking, histone methylation, and stem cell differentiation, yet these molecules remain poorly characterized. Here we demonstrate that an AKAP, RSP3, forms a dimeric structural scaffold in the flagellar radial spoke complex, anchoring through two distinct AHs, the RIIa and Dpy-30 domains, in four non-PKA spoke proteins involved in the assembly and modulation of the complex. Interestingly, one AH can bind both RIIa and Dpy-30 domains in vitro. Thus, AHs and D/D domains constitute a versatile yet potentially promiscuous system for localizing various effector mechanisms. These results greatly expand the current concept about anchoring mechanisms and AKAPs.

  20. Fabrication of Compositionally and Topographically Complex Robust Tissue Forms by 3D-Electrochemical Compaction of Collagen

    Science.gov (United States)

    Younesi, Mousa; Islam, Anowarul; Kishore, Vipuil; Panit, Stefi; Akkus, Ozan

    2015-01-01

    Collagen solutions are phase-transformed to mechanically robust shell structures with curviplanar topographies using electrochemically induced pH gradients. The process enables rapid layer-by-layer deposition of collagen-rich mixtures over the entire field simultaneously to obtain compositionally diverse multilayered structures. In-plane tensile strength and modulus of the electrocompacted collagen sheet samples were 5200 -fold and 2300 -fold greater than that of uncompacted collagen samples. Out of plane compression tests showed 27 -fold and fold increase in compressive stress and 46 -fold increase in compressive modulus compared to uncompacted collagen sheets. Cells proliferated 4.9 times faster, and cellular area spread was 2.7 times greater on compacted collagen sheets. Electrocompaction also resulted in 2.9 times greater focal adhesion area than on regular collagen hydrogel. The reported improvements in the cell-matrix interactions with electrocompaction would serve to expedite the population of electrocompacted collagen scaffolds by cells. The capacity of the method to fabricate nonlinear curved topographies with compositional heterogeneous layers is demonstrated by sequential deposition of collagenhydroxyapatite layer over a collagen layer. The complex curved topography of the nasal structure is replicated by the electrochemical compaction method. The presented electrochemical compaction process is an enabling modality which holds significant promise for reconstruction of a wide spectrum of topographically complex systems such as joint surfaces, craniofacial defects, ears, nose or urogenital forms. PMID:26069162

  1. Trypanosoma brucei Bloodstream Forms Depend upon Uptake of myo-Inositol for Golgi Complex Phosphatidylinositol Synthesis and Normal Cell Growth.

    Science.gov (United States)

    González-Salgado, Amaia; Steinmann, Michael; Major, Louise L; Sigel, Erwin; Reymond, Jean-Louis; Smith, Terry K; Bütikofer, Peter

    2015-06-01

    myo-Inositol is a building block for all inositol-containing phospholipids in eukaryotes. It can be synthesized de novo from glucose-6-phosphate in the cytosol and endoplasmic reticulum. Alternatively, it can be taken up from the environment via Na(+)- or H(+)-linked myo-inositol transporters. While Na(+)-coupled myo-inositol transporters are found exclusively in the plasma membrane, H(+)-linked myo-inositol transporters are detected in intracellular organelles. In Trypanosoma brucei, the causative agent of human African sleeping sickness, myo-inositol metabolism is compartmentalized. De novo-synthesized myo-inositol is used for glycosylphosphatidylinositol production in the endoplasmic reticulum, whereas the myo-inositol taken up from the environment is used for bulk phosphatidylinositol synthesis in the Golgi complex. We now provide evidence that the Golgi complex-localized T. brucei H(+)-linked myo-inositol transporter (TbHMIT) is essential in bloodstream-form T. brucei. Downregulation of TbHMIT expression by RNA interference blocked phosphatidylinositol production and inhibited growth of parasites in culture. Characterization of the transporter in a heterologous expression system demonstrated a remarkable selectivity of TbHMIT for myo-inositol. It tolerates only a single modification on the inositol ring, such as the removal of a hydroxyl group or the inversion of stereochemistry at a single hydroxyl group relative to myo-inositol. Copyright © 2015, American Society for Microbiology. All Rights Reserved.

  2. Water oxidation by manganese oxides formed from tetranuclear precursor complexes: the influence of phosphate on structure and activity.

    Science.gov (United States)

    Shevchenko, Denys; Anderlund, Magnus F; Styring, Stenbjörn; Dau, Holger; Zaharieva, Ivelina; Thapper, Anders

    2014-06-28

    Two types of manganese oxides have been prepared by hydrolysis of tetranuclear Mn(iii) complexes in the presence or absence of phosphate ions. The oxides have been characterized structurally using X-ray absorption spectroscopy and functionally by O2 evolution measurements. The structures of the oxides prepared in the absence of phosphate are dominated by di-μ-oxo bridged manganese ions that form layers with limited long-range order, consisting of edge-sharing MnO6 octahedra. The average manganese oxidation state is +3.5. The structure of these oxides is closely related to other manganese oxides reported as water oxidation catalysts. They show high oxygen evolution activity in a light-driven system containing [Ru(bpy)3](2+) and S2O8(2-) at pH 7. In contrast, the oxides formed by hydrolysis in the presence of phosphate ions contain almost no di-μ-oxo bridged manganese ions. Instead the phosphate groups are acting as bridges between the manganese ions. The average oxidation state of manganese ions is +3. This type of oxide has much lower water oxidation activity in the light-driven system. Correlations between different structural motifs and the function as a water oxidation catalyst are discussed and the lower activity in the phosphate containing oxide is linked to the absence of protonable di-μ-oxo bridges.

  3. Experience of using hippotherapy in complex effects on muscle spirals in children with spastic forms of cerebral palsy.

    Science.gov (United States)

    Strashko, Evhen Y; Kapustianska, Аnna A; Bobyreva, Lyudmyla E

    Matters of physical and medical rehabilitation of children with organic lesions of the nervous system, in particular, with cerebral palsy, are actual in countries around the world. Hippotherapy is neurophysiologically oriented therapy using horses. Determine whether a combination of hippotherapy as a method of rehabilitation in the aftermath of outpatient comprehensive impact on MS on a stationary phase; Study of the effect of hippotherapy as securing and preparation method for learning new postures and movements in children with spastic cerebral palsy forms; The study of the possible optimization of psychophysical state, activation motivations of patients; Determination of the optimal timing of hippotherapy sessions, the number of procedures, the study of possible fatigue factor children. HT classes were conducted at the Ippotsentra "Wind of Change" in the period 2010-2013 the main group of children surveyed (36 people) with spastic forms of cerebral palsy. HT procedure took place twice a day - morning and evening - 30 minutes during 10-12 days. Thus, the proposed integration of the HT program of complex effects on muscle spirals children with spastic cerebral palsy forms is physiologically and anthropologically based on 4-5 day training children adequately transferred the full amount of lessons learned new postures and movements, HT does not cause complications in the somatic and psycho-emotional state of the children, HT enables sensorimotor and psychomotor effects, save and normalize muscle tone for a longer period (up to three months), compared with traditional methods of physiotherapy. HT can serve as a method of learning a new "postures and movements", the preparation of the locomotor apparatus to learn walking.

  4. Host-derived, pore-forming toxin-like protein and trefoil factor complex protects the host against microbial infection.

    Science.gov (United States)

    Xiang, Yang; Yan, Chao; Guo, Xiaolong; Zhou, Kaifeng; Li, Sheng'an; Gao, Qian; Wang, Xuan; Zhao, Feng; Liu, Jie; Lee, Wen-Hui; Zhang, Yun

    2014-05-06

    Aerolysins are virulence factors belonging to the bacterial β-pore-forming toxin superfamily. Surprisingly, numerous aerolysin-like proteins exist in vertebrates, but their biological functions are unknown. βγ-CAT, a complex of an aerolysin-like protein subunit (two βγ-crystallin domains followed by an aerolysin pore-forming domain) and two trefoil factor subunits, has been identified in frogs (Bombina maxima) skin secretions. Here, we report the rich expression of this protein, in the frog blood and immune-related tissues, and the induction of its presence in peritoneal lavage by bacterial challenge. This phenomena raises the possibility of its involvement in antimicrobial infection. When βγ-CAT was administrated in a peritoneal infection model, it greatly accelerated bacterial clearance and increased the survival rate of both frogs and mice. Meanwhile, accelerated Interleukin-1β release and enhanced local leukocyte recruitments were determined, which may partially explain the robust and effective antimicrobial responses observed. The release of interleukin-1β was potently triggered by βγ-CAT from the frog peritoneal cells and murine macrophages in vitro. βγ-CAT was rapidly endocytosed and translocated to lysosomes, where it formed high molecular mass SDS-stable oligomers (>170 kDa). Lysosomal destabilization and cathepsin B release were detected, which may explain the activation of caspase-1 inflammasome and subsequent interleukin-1β maturation and release. To our knowledge, these results provide the first functional evidence of the ability of a host-derived aerolysin-like protein to counter microbial infection by eliciting rapid and effective host innate immune responses. The findings will also largely help to elucidate the possible involvement and action mechanisms of aerolysin-like proteins and/or trefoil factors widely existing in vertebrates in the host defense against pathogens.

  5. Micro-oxygenation does not eliminate hydrogen sulfide and mercaptans from wine; it simply shifts redox and complex-related equilibria to reversible oxidized species and complexed forms.

    Science.gov (United States)

    Vela, Eduardo; Hernandez-Orte, Purificación; Franco-Luesma, Ernesto; Ferreira, Vicente

    2018-03-15

    This work seeks to assess the effects of micro-oxygenation (MOX) on the present and potential levels of Volatile Sulfur Compounds (VSCs) of wine. With such purpose, three red wines with a tendency to develop sulfury off-odors were subjected to three different MOX conditions (4.4-20mg/L delivered at 0.05 or 0.2mg/L/day). Samples were further subjected to Accelerated Reductive aging (AR) and analyzed for free and Brine Releasable (BR) VSCs and redox potential. Although MOX induced strong decreases in the levels of all free VSCs, hardly affected the ability of the wine to release back hydrogen sulfide and other mercaptans during AR-aging. During aging BR-levels of MOX samples became in most cases similar or higher than non-oxygenated controls. BR-levels and the fractions free/BR follow characteristic sigmoid plots when represented versus redox potential suggesting that all changes are the result of reversible equilibria between free, metal-complexed and oxidized forms of VSCs. Copyright © 2017 Elsevier Ltd. All rights reserved.

  6. Novel forms of Paired-like homeodomain transcription factor 2 (PITX2): Generation by alternative translation initiation and mRNA splicing

    OpenAIRE

    Bernard Daniel J; Hjalt Tord A; Lamba Pankaj

    2008-01-01

    Abstract Background Members of the Paired-like homeodomain transcription factor (PITX) gene family, particularly PITX1 and PITX2, play important roles in normal development and in differentiated cell functions. Three major isoforms of PITX2 were previously reported to be produced through both alternative mRNA splicing (PITX2A and PITX2B) and alternative promoter usage (PITX2C). The proteins derived from these mRNAs contain identical homeodomain and carboxyl termini. Differences in the amino-t...

  7. Combinatorial analysis of lupulin gland transcription factors from R2R3Myb, bHLH and WDR families indicates a complex regulation of chs_H1 genes essential for prenylflavonoid biosynthesis in hop (Humulus lupulus L.)

    Czech Academy of Sciences Publication Activity Database

    Matoušek, Jaroslav; Kocábek, Tomáš; Patzak, J.; Füssy, Zoltán; Procházková, Jitka; Heyerick, A.

    2012-01-01

    Roč. 12, č. 27 (2012), s. 1471-2229 ISSN 1471-2229 R&D Projects: GA ČR GA521/08/0740; GA MZe QH81052 Institutional research plan: CEZ:AV0Z50510513 Keywords : transcription factor * protein complexes * transient expression assay Subject RIV: EB - Genetics ; Molecular Biology Impact factor: 4.354, year: 2012

  8. Complexation of europium(III) with the zwitterionic form of amino acids studied with ultraviolet-visible and time-resolved laser-induced fluorescence spectroscopy.

    Science.gov (United States)

    Heller, Anne; Rönitz, Olivia; Barkleit, Astrid; Bernhard, Gert; Ackermann, Jörg-Uwe

    2010-08-01

    The complex formation of europium(III) with the zwitterionic form of amino acids (alanine, phenylalanine, and threonine) has been studied in aqueous solution. Measurements were performed at I = 0.1 M (NaCl/NaClO(4)), room temperature, and trace metal concentrations in the range of pH 2 to 8 using ultraviolet-visible (UV-Vis) and time-resolved laser-induced fluorescence spectroscopy (TRLFS). While complexation leads to a significant luminescence enhancement in the emission spectrum of the metal ion, absorption in the UV-Vis spectrum of the amino acid (AA) decreases. As zwitterionic species (AAH), all three ligands form weak complexes with 1:1 stoichiometry and a general formula of EuAAH(3+) with the metal. The complex stability constants were determined to be log K approximately 1 for all complexes, indicating the negligible contribution of the amino acid side chain to the complex formation reaction.

  9. Axon Regeneration Is Regulated by Ets-C/EBP Transcription Complexes Generated by Activation of the cAMP/Ca2+ Signaling Pathways.

    Directory of Open Access Journals (Sweden)

    Chun Li

    2015-10-01

    Full Text Available The ability of specific neurons to regenerate their axons after injury is governed by cell-intrinsic regeneration pathways. In Caenorhabditis elegans, the JNK and p38 MAPK pathways are important for axon regeneration. Axonal injury induces expression of the svh-2 gene encoding a receptor tyrosine kinase, stimulation of which by the SVH-1 growth factor leads to activation of the JNK pathway. Here, we identify ETS-4 and CEBP-1, related to mammalian Ets and C/EBP, respectively, as transcriptional activators of svh-2 expression following axon injury. ETS-4 and CEBP-1 function downstream of the cAMP and Ca2+-p38 MAPK pathways, respectively. We show that PKA-dependent phosphorylation of ETS-4 promotes its complex formation with CEBP-1. Furthermore, activation of both cAMP and Ca2+ signaling is required for activation of svh-2 expression. Thus, the cAMP/Ca2+ signaling pathways cooperatively activate the JNK pathway, which then promotes axon regeneration.

  10. The Exon Junction Complex Controls the Efficient and Faithful Splicing of a Subset of Transcripts Involved in Mitotic Cell-Cycle Progression

    Directory of Open Access Journals (Sweden)

    Kazuhiro Fukumura

    2016-08-01

    Full Text Available The exon junction complex (EJC that is deposited onto spliced mRNAs upstream of exon–exon junctions plays important roles in multiple post-splicing gene expression events, such as mRNA export, surveillance, localization, and translation. However, a direct role for the human EJC in pre-mRNA splicing has not been fully understood. Using HeLa cells, we depleted one of the EJC core components, Y14, and the resulting transcriptome was analyzed by deep sequencing (RNA-Seq and confirmed by RT–PCR. We found that Y14 is required for efficient and faithful splicing of a group of transcripts that is enriched in short intron-containing genes involved in mitotic cell-cycle progression. Tethering of EJC core components (Y14, eIF4AIII or MAGOH to a model reporter pre-mRNA harboring a short intron showed that these core components are prerequisites for the splicing activation. Taken together, we conclude that the EJC core assembled on pre-mRNA is critical for efficient and faithful splicing of a specific subset of short introns in mitotic cell cycle-related genes.

  11. HLA-F complex without peptide binds to MHC class I protein in the open conformer form.

    Science.gov (United States)

    Goodridge, Jodie P; Burian, Aura; Lee, Ni; Geraghty, Daniel E

    2010-06-01

    HLA-F has low levels of polymorphism in humans and is highly conserved among primates, suggesting a conserved function in the immune response. In this study, we probed the structure of HLA-F on the surface of B lymphoblastoid cell lines and activated lymphocytes by direct measurement of peptide binding to native HLA-F. Our findings suggested that HLA-F is expressed independently of bound peptide, at least in regard to peptide complexity profiles similar to those of either HLA-E or classical MHC class I (MHC-I). As a further probe of native HLA-F structure, we used a number of complementary approaches to explore the interactions of HLA-F with other molecules, at the cell surface, intracellularly, and in direct physical biochemical measurements. This analysis demonstrated that HLA-F surface expression was coincident with MHC-I H chain (HC) expression and was downregulated upon perturbation of MHC-I HC structure. It was further possible to directly demonstrate that MHC-I would interact with HLA-F only when in the form of an open conformer free of peptide and not as a trimeric complex. This interaction was directly observed by coimmunoprecipitation and by surface plasmon resonance and indirectly on the surface of cells through coincident tetramer and MHC-I HC colocalization. These data suggest that HLA-F is expressed independently of peptide and that a physical interaction specific to MHC-I HC plays a role in the function of MHC-I HC expression in activated lymphocytes.

  12. Functional proteomic of Matrix Metallo-proteinases (MMP) dedicated to the detection of active forms of MMP in complex proteome

    International Nuclear Information System (INIS)

    David, A.

    2007-07-01

    The Matrix Metallo-proteinases (M.M.P.) represent a family of Zinc dependent extracellular proteinases able to cleave collectively all the proteins constituting the extracellular matrix. Currently, 23 human M.M.P. have been identified and are characterized by their sequence in amino-acids and their highly conserved 3 D structure. These enzymes are expressed constitutively during the tissue remodeling process. Their over-expression in various diseases tightly related to inflammatory processes (arthritis, emphysema, cancer) described M.M.P. as choice therapeutic targets. However, as the tissue remodeling implicates modification of cellular contacts, M.M.P. appear currently as proteins involved in signalling pathways. Recent works demonstrating that M.M.P. are able to cleave substrates, which are different than proteins constituting the extracellular matrix, reinforce this vision. In order to identify the individual role and the protein expression level of M.M.P. in pathological context, we developed a new technique of functional proteomics dedicated to the detection of active forms of M.M.P. in tumour samples. This technique relied on the development of a new photoaffinity probe, based on the structure of a potent phosphinic inhibitor of M.M.P., allowing targeting and isolating active forms of M.M.P. by photoaffinity labelling. Furthermore, as the new developed probe incorporated a radioactive element, photoaffinity labelling permitted to radiolabel the targeted proteins. This probe demonstrated in vitro its remarkable ability to covalently modify the h M.M.P.-12, with a singular cross-linking yield, determined at 42 %, displaying an extremely sensitive detection (2.5 fmoles of h M.M.P.-12). When added to complex proteome, the photoaffinity probe presents the same sensibility of detection for the h M.M.P.-12 (5 fmoles); importantly, in this case, h M.M.P.-12 represents only 0.001 % of the totality of the proteins present in the sample. Moreover, this technique allows

  13. Proliferating cell nuclear antigen is protected from degradation by forming a complex with MutT Homolog2.

    Science.gov (United States)

    Yu, Yu; Cai, Jian-Ping; Tu, Bo; Wu, Lipeng; Zhao, Ying; Liu, Xiangyu; Li, Lian; McNutt, Michael A; Feng, Jingnan; He, Qihua; Yang, Yang; Wang, Haiying; Sekiguchi, Mutsuo; Zhu, Wei-Guo

    2009-07-17

    Proliferating cell nuclear antigen (PCNA) has been demonstrated to interact with multiple proteins involved in several metabolic pathways such as DNA replication and repair. However, there have been fewer reports about whether these PCNA-binding proteins influence stability of PCNA. Here, we observed a physical interaction between PCNA and MutT homolog2 (MTH2), a new member of the MutT-related proteins that hydrolyzes 8-oxo-7,8-dihydrodeoxyguanosine triphosphate (8-oxo-dGTP). In several unstressed human cancer cell lines and in normal human fibroblast cells, PCNA and MTH2 formed a complex and their mutual binding fragments were confirmed. It was intriguing that PCNA and MTH2 were dissociated dependent on acetylation of PCNA, which in turn induced degradation of PCNA in response to UV irradiation, but not in response to other forms of DNA-damaging stress. To further explore the link between dissociation of PCNA-MTH2 and degradation of PCNA, RNAi against MTH2 was performed to mimic the dissociated status of PCNA to evaluate changes in the half-life of PCNA. Knockdown of MTH2 significantly promoted degradation of PCNA, suggesting that the physiological interaction of PCNA-MTH2 may confer protection from degradation for PCNA, whereas UV irradiation accelerates PCNA degradation by inducing dissociation of PCNA-MTH2. Moreover, secondary to degradation of PCNA, UV-induced inhibition of DNA synthesis or cell cycle progression was enhanced. Collectively, our data demonstrate for the first time that PCNA is protected by this newly identified partner molecule MTH2, which is related to DNA synthesis and cell cycle progression.

  14. Systematics of the Podarcis hispanicus complex (Sauria, Lacertidae) III: valid nomina of the western and central Iberian forms.

    Science.gov (United States)

    Geniez, Philippe; Sá-Sousa, Paulo; Guillaume, Claude P; Cluchier, Alexandre; Crochet, Pierre-André

    2014-05-05

    Recent genetic works have suggested that the Iberian wall lizard Podarcis hispanicus (Steindachner, 1870) sensu lato is a species complex. Several forms have already been elevated to species rank and linked to available nomina, but at least three still have to be formally named, including the western Iberian forms currently designated as Podarcis hispanicus "type 1A", "type 1B" and "type 2". The aim of the present work is to assign a valid nomen to these taxa. Using multivariate analyses, we first checked that the morphological differences reported in Portugal between type 1 and type 2 are maintained over their distribution range. We then investigated phenotypic differentiation between type 1A and type 1B, which were found to be so similar that identification based on phenotype is currently not advisable. We propose to treat type 1 and type 2 as distinct species because of their level of genetic and phenotypic divergence, large area of distribution and ample evidence for reduced or absent introgression in contact zones. We maintain type 1A and 1B as subspecies for the time being, pending further analyses of their contact zone. The valid nomen for "Podarcis hispanica type 1 (sensu lato)" is Lacerta muralis guadarramae Boscá, 1916 which becomes Podarcis guadarramae (Boscá, 1916). Lineage type 1A is here described as a new taxon: P. guadarramae lusitanicus ssp. nov., inhabiting northern Portugal and northwestern Spain. The type 1B lineage corresponds to the nominotypical subspecies that inhabits Spain, mostly the Central Iberian Mountains. We were unable to locate an available nomen for "Podarcis hispanica type 2", which is here described as Podarcis virescens sp. nov. This species is widely distributed in the plains and plateaus of central and parts of south-western Spain as well as central and southern Portugal.

  15. The covariant form of Maxwell equations for the fast simulation of the eddy current non destructive testing of complex specimens

    International Nuclear Information System (INIS)

    Caire, Francois

    2014-01-01

    This PhD work concerns the development of fast numerical tools, dedicated to the computation of the electromagnetic interaction between a low frequency 3D current source and a complex conductor, presenting rough interfaces and/or conductivity variations. The main application concerns the simulation of the Eddy Current nondestructive testing process applied to complex specimens. Indeed, the semi-analytical models available today are restricted to canonical geometries. The proposed method is based on the covariant form of Maxwell's equations, which translates the physical equations and relationships in a non-orthogonal coordinate system depending on the geometry of the specimen. Historically, this method (Curvilinear Coordinate Method, CCM or C-method) has been developed in the framework of optical applications, particularly for the characterization of diffraction gratings. Here, we transpose this formalism into the quasi-static regime and we extend the Second Order Vector Potential formalism, initially dedicated to orthonormal curvilinear coordinates systems, to general curvilinear coordinate systems. Thanks to this change of base, we are able to determine numerically a set of modal solutions of the source-free Maxwell equations in the new coordinate system introduced, and this allows us to represent the unknown fields as modal expansions in source-free domains. Then, the coefficients of these expansions are computed by introducing the source fields and by enforcing the boundary conditions that the total fields must verify at interfaces between the different media. In order to tackle the case of a layered conductor presenting rough interfaces, the generalized SOVP formalism is coupled with a recursive routine called the S-matrix algorithm. On the other hand, the application case of a complex shape specimen with depth-varying physical properties is treated by coupling the modal method we developed with a high-order numerical method: pseudo-spectral method. The

  16. THE METHOD OF FORMING A RATIONAL ASPECT OF THE ONBOARD COMPLEX OF RADAR DEFENSE UNMANNED AERIAL VEHICLE

    Directory of Open Access Journals (Sweden)

    A. B. Guseynov

    2017-01-01

    Full Text Available The urgency of the problem of increasing the efficiency by reducing the visibility of aircraft and installing radio interference on the radio-electronic systems of the air defense complex is substantiated. The main characteristics of the on-board electronic radio protection system of an unmanned aerial vehicle are determined. When designing a low-visibility aircraft, it is advisable to simultaneously solve three-level tasks – the formation of a technical task for the design of aircraft, technical proposals and design sketches. In solving the problems of the first level, operational-tactical, flight-technical characteristics of the aircraft are analyzed and requirements for indicators of visibility are justified, the second one – a matrix of alternative design solutions is formed and rational structural solutions for the airborne complex and aircraft appearance as a whole are determined, the third one determines optimal design -Ballistic, geometric design parameters of technical solutions and aircraft in general. The statement of the problem is formulated in the article. A block diagram of the analysis of design solutions for the placement of an active noise station on board an unmanned aerial vehicle and optimization of their parameters based on a complex "cost-effectiveness" criterion is given. At the same time, it is necessary to take into account the influence of alternative technical solutions on low visibility and their design parameters on geometric, aerodynamic, energy, ballistic, thermal characteristics, mass, cost, indicators of visibility and combat effectiveness. The structural and logical scheme for solving the problem for a given technical assignment for the design of an unmanned aerial vehicle includes the following steps: the formation of the initial information and the development of a "support" version of the aircraft structure; formation of a morphological matrix of design decisions on aircraft; compatibility assessment

  17. Conifer R2R3-MYB transcription factors: sequence analyses and gene expression in wood-forming tissues of white spruce (Picea glauca

    Directory of Open Access Journals (Sweden)

    Grima-Pettenati Jacqueline

    2007-03-01

    Full Text Available Abstract Background Several members of the R2R3-MYB family of transcription factors act as regulators of lignin and phenylpropanoid metabolism during wood formation in angiosperm and gymnosperm plants. The angiosperm Arabidopsis has over one hundred R2R3-MYBs genes; however, only a few members of this family have been discovered in gymnosperms. Results We isolated and characterised full-length cDNAs encoding R2R3-MYB genes from the gymnosperms white spruce, Picea glauca (13 sequences, and loblolly pine, Pinus taeda L. (five sequences. Sequence similarities and phylogenetic analyses placed the spruce and pine sequences in diverse subgroups of the large R2R3-MYB family, although several of the sequences clustered closely together. We searched the highly variable C-terminal region of diverse plant MYBs for conserved amino acid sequences and identified 20 motifs in the spruce MYBs, nine of which have not previously been reported and three of which are specific to conifers. The number and length of the introns in spruce MYB genes varied significantly, but their positions were well conserved relative to angiosperm MYB genes. Quantitative RTPCR of MYB genes transcript abundance in root and stem tissues revealed diverse expression patterns; three MYB genes were preferentially expressed in secondary xylem, whereas others were preferentially expressed in phloem or were ubiquitous. The MYB genes expressed in xylem, and three others, were up-regulated in the compression wood of leaning trees within 76 hours of induction. Conclusion Our survey of 18 conifer R2R3-MYB genes clearly showed a gene family structure similar to that of Arabidopsis. Three of the sequences are likely to play a role in lignin metabolism and/or wood formation in gymnosperm trees, including a close homolog of the loblolly pine PtMYB4, shown to regulate lignin biosynthesis in transgenic tobacco.

  18. Bacterial interference with host epithelial junctional complexes: Probiotic bacteria vs. A/E lesion-forming Escherichia coli

    Directory of Open Access Journals (Sweden)

    TANIA TOPOUZOVA-HRISTOVA

    2012-01-01

    Full Text Available During colonization, enteropathogenic (EPEC and enterohaemorrhagic (EHEC Escherichia coli are capable to manipulate host cytoskeleton and colonize gut epithelia by a specific mode of attachment known as the attaching and effacing lesion (A/E lesion. While actin rearrangements during A/E lesion formation have been extensively investigated, the possible alterations of other cytoskeletal elements like those comprising the intercellular junctional complexes (JC of polarized cells during infection have only lately attracted attention. The present mini-review addresses the opposite effects of two groups of bacteria, A/E lesion-forming pathogenic E. coli and probiotic bacterial strains, on JC. JC are important in maintaining gut barrier functions. EPEC and EHEC can disrupt JC which as a consequence leads to reduction in the transepitelial electrical resistance (TER and an increase of the permeability to macromolecules. Probiotic bacteria on the other hand stabilize JC thus increasing TER and reducing permeability to macromolecular markers. Probiotic strains can protect JC integrity of polarized cells from the damage caused by EPEC or EHEC. Together with the promise of these results, of concern is the fact that the outcome of the studies can differ dependent on experimental protocols. Studies with living bacteria and different strain combinations have also put forward strain specific effects. Therefore, an important practical item for future studies is the identification of the molecules synthesized by probiotic bacteria that may be active on JC stability.

  19. Hydroxytyrosol and its complex forms (secoiridoids) modulate aorta and heart proteome in healthy rats: Potential cardio-protective effects.

    Science.gov (United States)

    Catalán, Úrsula; Rubió, Laura; López de Las Hazas, Maria-Carmen; Herrero, Pol; Nadal, Pedro; Canela, Núria; Pedret, Anna; Motilva, Maria-José; Solà, Rosa

    2016-10-01

    Hydroxytyrosol (HT) is the major phenolic compound in virgin olive oil (VOO) in both free and complex forms (secoiridoids; SEC). Proteomics of cardiovascular tissues such as aorta or heart represents a promising tool to uncover the mechanisms of action of phenolic compounds in healthy animals. Twelve female Wistar rats were separated into three groups: a standard diet and two diets supplemented in phenolic compounds (HT and SEC) adjusted to 5 mg/kg/day during 21 days. Proteomic analyses of aorta and heart tissues were performed by nano-LC and MS. Ingenuity Pathway Analysis was used to generate interaction networks. HT or SEC modulated aorta and heart proteome compared to the standard diet. The top-scored networks were related to Cardiovascular System. HT and SEC downregulated proteins related to proliferation and migration of endothelial cells and occlusion of blood vessels in aorta and proteins related to heart failure in heart tissue. SEC showed higher fold change values compared to HT, attributed to higher concentration of HT detected in heart tissue. Changes at proteomic level in cardiovascular tissues may partially account for the underlying mechanisms of VOO phenols cardiovascular protection being the SEC effects higher than free HT. © 2016 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  20. The main early and late promoters of Bacillus subtilis phage phi 29 form unstable open complexes with sigma A-RNA polymerase that are stabilized by DNA supercoiling.

    Science.gov (United States)

    Rojo, F; Nuez, B; Mencía, M; Salas, M

    1993-02-25

    Most Escherichia coli promoters studied so far form stable open complexes with sigma 70-RNA polymerase which have relatively long half-lives and, therefore, are resistant to a competitor challenge. A few exceptions are nevertheless known. The analysis of a number of promoters in Bacillus subtilis has suggested that the instability of open complexes formed by the vegetative sigma A-RNA polymerase may be a more general phenomenon than in Escherichia coli. We show that the main early and late promoters from the Bacillus subtilis phage phi 29 form unstable open complexes that are stabilized either by the formation of the first phosphodiester bond between the initiating nucleoside triphosphates or by DNA supercoiling. The functional characteristics of these two strong promoters suggest that they are not optimized for a tight and stable RNA polymerase binding. Their high activity is probably the consequence of the efficiency of further steps leading to the formation of an elongation complex.

  1. Polycomb group protein-mediated repression of transcription

    DEFF Research Database (Denmark)

    Morey, Lluís; Helin, Kristian

    2010-01-01

    The polycomb group (PcG) proteins are essential for the normal development of multicellular organisms. They form multi-protein complexes that work as transcriptional repressors of several thousand genes controlling differentiation pathways during development. How the PcG proteins work as transcri...

  2. Self-complexity, self-evaluation, and depression: an examination of form and content within the self-schema.

    Science.gov (United States)

    Woolfolk, R L; Novalany, J; Gara, M A; Allen, L A; Polino, M

    1995-06-01

    Six studies examined the relationship between self-complexity and variables related to self-evaluation. Self-complexity was found to comprise two components: positive self-complexity and negative self-complexity. Positive self-complexity was sensitive to methodological factors, namely, variations in stimulus materials used for self-ratings. Negative self-complexity was relatively stable in the face of different rating stimuli and tasks and was related to trait measures of self-evaluation, psychic distress, and psychopathology. These findings were observed and replicated. Higher negative self-complexity was associated with increases in depression symptoms over time. Higher negative self-complexity also predicted a poorer prognosis and less complete recovery from depression in a clinical sample. Results are discussed in light of related research and possible social-cognitive mechanisms.

  3. Transcriptional activation by the thyroid hormone receptor through ligand-dependent receptor recruitment and chromatin remodelling

    DEFF Research Database (Denmark)

    Grøntved, Lars; Waterfall, Joshua J; Kim, Dong Wook

    2015-01-01

    A bimodal switch model is widely used to describe transcriptional regulation by the thyroid hormone receptor (TR). In this model, the unliganded TR forms stable, chromatin-bound complexes with transcriptional co-repressors to repress transcription. Binding of hormone dissociates co-repressors and......A bimodal switch model is widely used to describe transcriptional regulation by the thyroid hormone receptor (TR). In this model, the unliganded TR forms stable, chromatin-bound complexes with transcriptional co-repressors to repress transcription. Binding of hormone dissociates co......-repressors and facilitates recruitment of co-activators to activate transcription. Here we show that in addition to hormone-independent TR occupancy, ChIP-seq against endogenous TR in mouse liver tissue demonstrates considerable hormone-induced TR recruitment to chromatin associated with chromatin remodelling and activated...... gene transcription. Genome-wide footprinting analysis using DNase-seq provides little evidence for TR footprints both in the absence and presence of hormone, suggesting that unliganded TR engagement with repressive complexes on chromatin is, similar to activating receptor complexes, a highly dynamic...

  4. A parallel offline CFD and closed-form approximation strategy for computationally efficient analysis of complex fluid flows

    Science.gov (United States)

    Allphin, Devin

    Computational fluid dynamics (CFD) solution approximations for complex fluid flow problems have become a common and powerful engineering analysis technique. These tools, though qualitatively useful, remain limited in practice by their underlying inverse relationship between simulation accuracy and overall computational expense. While a great volume of research has focused on remedying these issues inherent to CFD, one traditionally overlooked area of resource reduction for engineering analysis concerns the basic definition and determination of functional relationships for the studied fluid flow variables. This artificial relationship-building technique, called meta-modeling or surrogate/offline approximation, uses design of experiments (DOE) theory to efficiently approximate non-physical coupling between the variables of interest in a fluid flow analysis problem. By mathematically approximating these variables, DOE methods can effectively reduce the required quantity of CFD simulations, freeing computational resources for other analytical focuses. An idealized interpretation of a fluid flow problem can also be employed to create suitably accurate approximations of fluid flow variables for the purposes of engineering analysis. When used in parallel with a meta-modeling approximation, a closed-form approximation can provide useful feedback concerning proper construction, suitability, or even necessity of an offline approximation tool. It also provides a short-circuit pathway for further reducing the overall computational demands of a fluid flow analysis, again freeing resources for otherwise unsuitable resource expenditures. To validate these inferences, a design optimization problem was presented requiring the inexpensive estimation of aerodynamic forces applied to a valve operating on a simulated piston-cylinder heat engine. The determination of these forces was to be found using parallel surrogate and exact approximation methods, thus evidencing the comparative

  5. A model of EcoRII restriction endonuclease action: the active complex is most likely formed by one protein subunit and one DNA recognition site

    Science.gov (United States)

    Karpova, E. A.; Kubareva, E. A.; Shabarova, Z. A.

    1999-01-01

    To elucidate the mechanism of interaction of restriction endonuclease EcoRII with DNA, we studied by native gel electrophoresis the binding of this endonuclease to a set of synthetic DNA-duplexes containing the modified or canonical recognition sequence 5'-d(CCA/TGG)-3'. All binding substrate or substrate analogues tested could be divided into two major groups: (i) duplexes that, at the interaction with endonuclease EcoRII, form two types of stable complexes on native gel in the absence of Mg2+ cofactor; (ii) duplexes that form only one type of complex, observed both in the presence and absence of Mg2+. Unlike the latter, duplexes under the first group can be hydrolyzed by endonuclease. Data obtained suggest that the active complex is most likely formed by one protein subunit and one DNA recognition sequence. A model of EcoRII endonuclease action is presented.

  6. Differential recall of derived and inflected word forms in working memory: Examining the role of morphological information in simple and complex working memory tasks

    Directory of Open Access Journals (Sweden)

    Elisabet eService

    2015-01-01

    Full Text Available Working memory has been described as an interface between cognition and action, or a system for access to a limited amount of information needed in complex cognition. Access to morphological information is needed for comprehending and producing sentences. The present study probed working memory for morphologically complex word forms in Finnish, a morphologically rich language. We studied monomorphemic (boy, inflected (boy+’s and derived (boy+hood words in three tasks. Simple span, immediate serial recall of words, in Experiment 1, is assumed to mainly rely on information in the focus of attention. Sentence span, a dual task combining sentence reading with recall of the last word (Experiment 2 or of a word not included in the sentence (Experiment 3 is assumed to involve establishment of a search set in long-term memory for fast activation into the focus of attention. Recall was best for monomorphemic and worst for inflected word forms with performance on derived words in between. However, there was an interaction between word type and experiment, suggesting that complex span is more sensitive to morphological complexity in derivations than simple span. This was explored in a within-subjects Experiment 4 combining all three tasks. An interaction between morphological complexity and task was replicated. Both inflected and derived forms increased load in working memory. In simple span, recall of inflectional forms resulted in form errors. Complex span tasks were more sensitive to morphological load in derived words, possibly resulting from interference from morphological neighbors in the mental lexicon. The results are best understood as involving competition among inflectional forms when binding words from input into an output structure, and competition from morphological neighbors in secondary memory during cumulative retrieval-encoding cycles. Models of verbal recall need to be able to represent morphological as well as phonological and

  7. Purification, crystallization and preliminary X-ray crystallographic analysis of the ATPase domain of human TAP in nucleotide-free and ADP-, vanadate- and azide-complexed forms

    International Nuclear Information System (INIS)

    Meena, Sita R.; Gangwar, Shanti P.; Saxena, Ajay K.

    2012-01-01

    The ATPase domain of human TAP in nucleotide free, ADP, vanadate and azide complexed forms were purified and crystallized. The X-ray diffraction data sets were collected for all crystals in the resolution range of 2.8–3.0 Å. The human transporter associated with antigen processing (TAP) protein belongs to the ATP-binding cassette (ABC) transporter superfamily and is formed by the heterodimerization of TAP1 and TAP2 subunits. TAP selectively pumps cytosolic peptides into the lumen of the endoplasmic reticulum in an ATP-dependent manner. The catalytic cycle of the ATPase domain of TAP is not understood at the molecular level. The structures of catalytic intermediates of the ATPase domain of TAP will contribute to the understanding of the chemical mechanism of ATP hydrolysis. In order to understand this mechanism, the ATPase domain of human TAP1 (NBD1) was expressed and purified, crystallized in nucleotide-free and transition-state complex forms and X-ray crystallographic studies were performed. The NBD1 protein was crystallized (i) in the nucleotide-free apo form; (ii) in complex with ADP–Mg 2+ , mimicking the product-bound state; (iii) in complex with vanadate–ADP–Mg 2+ , mimicking the ATP-bound state; and (iv) in complex with azide–ADP–Mg 2+ , also mimicking the ATP-bound state. X-ray diffraction data sets were collected for apo and complexed NBD1 using an in-house X-ray diffraction facility at a wavelength of 1.5418 Å. The apo and complexed NBD1 crystals belonged to the primitive hexagonal space group P6 2 , with one monomer in the asymmetric unit. Here, the crystallization, data collection and preliminary crystallographic analysis of apo and complexed NBD1 are reported

  8. Novel forms of Paired-like homeodomain transcription factor 2 (PITX2: Generation by alternative translation initiation and mRNA splicing

    Directory of Open Access Journals (Sweden)

    Bernard Daniel J

    2008-03-01

    Full Text Available Abstract Background Members of the Paired-like homeodomain transcription factor (PITX gene family, particularly PITX1 and PITX2, play important roles in normal development and in differentiated cell functions. Three major isoforms of PITX2 were previously reported to be produced through both alternative mRNA splicing (PITX2A and PITX2B and alternative promoter usage (PITX2C. The proteins derived from these mRNAs contain identical homeodomain and carboxyl termini. Differences in the amino-termini of the proteins may confer functional differences in some contexts. Results Here, we report the identification of two novel PITX2 isoforms. First, we demonstrate that the Pitx2c mRNA generates two protein products, PITX2Cα and PITX2Cβ, via alternative translation initiation. Second, we identified a novel mRNA splice variant, Pitx2b2, which uses the same 5' splice donor in intron 2 as Pitx2b (hereafter referred to as Pitx2b1, but employs an alternative 3' splice acceptor, leading to an in-frame deletion of 39 base pairs relative to Pitx2b1. Pitx2b2 mRNA is expressed in both murine and human pituitary. The data show that in a murine gonadotrope cell line and adult murine pituitary what was previously thought to be PITX2B1 is actually PITX2Cβ, or perhaps PITX2B2. PITX2B1 is expressed at lower levels than previously thought. PITX2Cβ and PITX2B2 activate gonadotrope-specific gene promoter-reporters similarly to known PITX2 isoforms. Conclusion We have identified and characterized two novel isoforms of PITX2, generated by alternative translation initiation (PITX2Cβ and alternative mRNA splicing (PITX2B2. These proteins show similar DNA binding and trans-activation functions as other PITX2 isoforms in vitro, though their conservation across species suggests that they may play distinct, as yet unidentified, roles in vivo.

  9. Stabilization of the soluble, cleaved, trimeric form of the envelope glycoprotein complex of human immunodeficiency virus type 1

    NARCIS (Netherlands)

    Sanders, Rogier W.; Vesanen, Mika; Schuelke, Norbert; Master, Aditi; Schiffner, Linnea; Kalyanaraman, Roopa; Paluch, Maciej; Berkhout, Ben; Maddon, Paul J.; Olson, William C.; Lu, Min; Moore, John P.

    2002-01-01

    The envelope glycoprotein (Env) complex of human immunodeficiency virus type I has evolved a structure that is minimally immunogenic while retaining its natural function of receptor-mediated virus-cell fusion. The Env complex is trimeric; its six individual subunits (three gp120 and three gp41

  10. Crystal structure of the complex of carboxypeptidase A with a strongly bound phosphonate in a new crystalline form: Comparison with structures of other complexes

    Energy Technology Data Exchange (ETDEWEB)

    Kim, Hidong; Lipscomb, W.N. (Harvard Univ., Cambridge, MA (USA))

    1990-06-12

    O-(((1R)-((N-(Phenylmethoxycarbonyl)-L-alanyl)amino)ethyl)hydroxyphosphinyl)-L-3-phenyllacetate (ZZA{sup P}(O)F), an analogue of (benzyloxycarbonyl)-Ala-Ala-Phe or (benzyloxycarbonyl)-Ala-Ala-phenyllactate, binds to carboxypeptidase A with great affinity. Similar phosphonates have been shown to be transition-state analogues of the CPA-catalyzed hydrolysis. In the present study, the structure of the complex of phosphonate with carboxypeptidase A has been determined by X-ray crystallography to a resolution of 2.0 {angstrom}. The structure of the complex was solved by molecular replacement. Refinement of the structure against 20,776 unique reflections between 10.0 and 2.0 {angstrom} yields a crystallographic residual of 0.193, including 140 water molecules. The two phosphinyl oxygens of the inhibitor bind to the active-site zinc at 2.2 {angstrom} on the electrophilic (Arg-127) side and 3.1 {angstrom} on the nucleophilic (Glu-270) side. Various features of the binding mode of this phosphonate inhibitor are consistent with the hypothesis that carboxypeptidase A catalyzed hydrolysis proceeds through a general-base mechanism in which the carbonyl carbon of the substrate is attached by Zn-hydroxyl (or Zn-water). This complex structure is compared with previous structures of carboxypeptidase A, including the complexes with the potato inhibitor, a hydrated keto methylene substrate analogue, and a phosphonamidate inhibitor. Comparisons are also made with the complexes of thermolysin with some phosphonamidate inhibitors.

  11. Extractive spectrophotometric determination of five selected drugs by ion-pair complex formation with bromothymol blue in pure form and pharmaceutical preparations

    Directory of Open Access Journals (Sweden)

    Sneha G. Nair

    2015-12-01

    Full Text Available Simple, precise, selective, and expeditious spectrophotometric methods have been developed for the determination of itopride (ITO, midodrine (MID, diclofenac (DIC, mesalamine (MES, and sumatriptan (SUM in their pure form as well as in pharmaceutical preparations. The method was based on ion-pair complex formation between the drugs and anionic dye, bromothymol blue in an acidic medium (pH 2.0–4.0. The yellow colored complexes formed were quantitatively extracted into chloroform and measured at 411, 410, 413, 412, and 414 nm wavelength for ITO, MID, DIC, MES, and SUM, respectively. Beer’s law was obeyed in the concentration range of 3.0–30 µg/mL for ITO, 1.0–20 µg/mL for MID, 1.5–40 µg/mL for DIC, 1.2–12 µg/mL for MES, and 0.5–15 µg/mL for SUM. The stoichiometry of the complexes formed between the drugs and the dye was 1:1 as determined by Job’s method of continuous variation. The association constant (KIP of the ion-pair complexes formed was evaluated using Benesi–Hildebrand equation. Limit of detection, limit of quantification, and Sandell’s sensitivity of the methods were also estimated. The proposed methods were successfully employed for the determination of these drugs in their pharmaceutical dosage forms.

  12. Purified Bacillus anthracis Lethal Toxin Complex Formed in Vitro and During Infection Exhibits Functional and Biological Activity

    National Research Council Canada - National Science Library

    Panchal, Rekha G; Halverson, Kelly M; Ribot, Wilson; Lane, Douglas; Kenny, Tara

    2005-01-01

    .... Purified LF complexed with PA63 heptamer was able to cleave both a synthetic peptide substrate and endogenous mitogen-activated protein kinase kinase substrates and kill susceptible macrophage...

  13. Supra-optimal expression of the cold-regulated OsMyb4 transcription factor in transgenic rice changes the complexity of transcriptional network with major effects on stress tolerance and panicle development

    KAUST Repository

    Park, Myoungryoul

    2010-09-28

    The R2R3-type OsMyb4 transcription factor of rice has been shown to play a role in the regulation of osmotic adjustment in heterologous overexpression studies. However, the exact composition and organization of its underlying transcriptional network has not been established to be a robust tool for stress tolerance enhancement by regulon engineering. OsMyb4 network was dissected based on commonalities between the global chilling stress transcriptome and the transcriptome configured by OsMyb4 overexpression. OsMyb4 controls a hierarchical network comprised of several regulatory sub-clusters associated with cellular defense and rescue, metabolism and development. It regulates target genes either directly or indirectly through intermediary MYB, ERF, bZIP, NAC, ARF and CCAAT-HAP transcription factors. Regulatory sub-clusters have different combinations of MYB-like, GCC-box-like, ERD1-box-like, ABRE-like, G-box-like, as1/ocs/TGA-like, AuxRE-like, gibberellic acid response element (GARE)-like and JAre-like cis-elements. Cold-dependent network activity enhanced cellular antioxidant capacity through radical scavenging mechanisms and increased activities of phenylpropanoid and isoprenoid metabolic processes involving various abscisic acid (ABA), jasmonic acid (JA), salicylic acid (SA), ethylene and reactive oxygen species (ROS) responsive genes. OsMyb4 network is independent of drought response element binding protein/C-repeat binding factor (DREB/CBF) and its sub-regulons operate with possible co-regulators including nuclear factor-Y. Because of its upstream position in the network hierarchy, OsMyb4 functions quantitatively and pleiotrophically. Supra-optimal expression causes misexpression of alternative targets with costly trade-offs to panicle development. © 2010 Blackwell Publishing Ltd.

  14. Crystal structure of the complex of carboxypeptidase A with a strongly bound phosphonate in a new crystalline form: comparison with structures of other complexes.

    Science.gov (United States)

    Kim, H; Lipscomb, W N

    1990-06-12

    O-[[(1R)-[[N-(Phenylmethoxycarbonyl)-L-alanyl]amino]ethyl] hydroxyphosphinyl]-L-3-phenyllacetate [ZAAP(O)F], an analogue of (benzyloxycarbonyl)-Ala-Ala-Phe or (benzyloxycarbonyl)-Ala-Ala-phenyllactate, binds to carboxypeptidase A with great affinity (Ki = 3 pM). Similar phosphonates have been shown to be transition-state analogues of the CPA-catalyzed hydrolysis [Hanson, J. E., Kaplan, A. P., & Bartlett, P. A. (1989) Biochemistry 28, 6294-6305]. In the present study, the structure of the complex of this phosphonate with carboxypeptidase A has been determined by X-ray crystallography to a resolution of 2.0 A. The complex crystallizes in the space group P2(1)2(1)2(1) with cell dimensions a = 61.9 A, b = 67.2 A, and c = 76.2 A. The structure of the complex was solved by molecular replacement. Refinement of the structure against 20,776 unique reflections between 10.0 and 2.0 A yields a crystallographic residual of 0.193, including 140 water molecules. The two phosphinyl oxygens of the inhibitor bind to the active-site zinc at 2.2 A on the electrophilic (Arg-127) side and 3.1 A on the nucleophilic (Glu-270) side. Various features of the binding mode of this phosphonate inhibitor are consistent with the hypothesis that carboxypeptidase A catalyzed hydrolysis proceeds through a general-base mechanism in which the carbonyl carbon of the substrate is attacked by Zn-hydroxyl (or Zn-water). An unexpected feature of the bound inhibitor, the cis carbamoyl ester bond at the benzyloxycarbonyl linkage to alanine, allows the benzyloxycarbonyl phenyl ring of the inhibitor to interact favorably with Tyr-198. This complex structure is compared with previous structures of carboxypeptidase A, including the complexes with the potato inhibitor, a hydrated keto methylene substrate analogue, and a phosphonamidate inhibitor. Comparisons are also made with the complexes of thermolysin with some phosphonamidate inhibitors.

  15. Dynamics of water around the complex structures formed between the KH domains of far upstream element binding protein and single-stranded DNA molecules

    Energy Technology Data Exchange (ETDEWEB)

    Chakraborty, Kaushik; Bandyopadhyay, Sanjoy, E-mail: sanjoy@chem.iitkgp.ernet.in [Molecular Modeling Laboratory, Department of Chemistry, Indian Institute of Technology, Kharagpur 721302 (India)

    2015-07-28

    Single-stranded DNA (ss-DNA) binding proteins specifically bind to the single-stranded regions of the DNA and protect it from premature annealing, thereby stabilizing the DNA structure. We have carried out atomistic molecular dynamics simulations of the aqueous solutions of two DNA binding K homology (KH) domains (KH3 and KH4) of the far upstream element binding protein complexed with two short ss-DNA segments. Attempts have been made to explore the influence of the formation of such complex structures on the microscopic dynamics and hydrogen bond properties of the interfacial water molecules. It is found that the water molecules involved in bridging the ss-DNA segments and the protein domains form a highly constrained thin layer with extremely retarded mobility. These water molecules play important roles in freezing the conformational oscillations of the ss-DNA oligomers and thereby forming rigid complex structures. Further, it is demonstrated that the effect of complexation on the slow long-time relaxations of hydrogen bonds at the interface is correlated with hindered motions of the surrounding water molecules. Importantly, it is observed that the highly restricted motions of the water molecules bridging the protein and the DNA components in the complexed forms originate from more frequent hydrogen bond reformations.

  16. Automatic Music Transcription

    Science.gov (United States)

    Klapuri, Anssi; Virtanen, Tuomas

    Written musical notation describes music in a symbolic form that is suitable for performing a piece using the available musical instruments. Traditionally, musical notation indicates the pitch, target instrument, timing, and duration of each sound to be played. The aim of music transcription either by humans or by a machine is to infer these musical parameters, given only the acoustic recording of a performance.

  17. Platelet-derived growth factor receptors form complexes with neuropilin-1 during megakaryocytic differentiation of thrombopoietin-dependent UT-7/TPO cells.

    Science.gov (United States)

    Ohsaka, Akimichi; Hirota-Komatsu, Satoko; Araki, Marito; Komatsu, Norio

    2015-04-10

    Neuropilin-1 (NRP-1) is involved in angiogenesis, but the role of NRP-1 in megakaryocytopoiesis is not yet fully understood. In this study, we investigated whether thrombopoietin (TPO) regulates the expression of platelet-derived growth factor (PDGF) and its receptors (PDGFRs) on TPO-dependent UT-7/TPO cells and whether PDGFRs and NRP-1 on UT-7/TPO cells form complexes during megakaryocytic differentiation. When UT-7/TPO cells were starved of TPO for 24 h and then stimulated with 5 ng/ml TPO, the expression of PDGF-B, PDGFRα, and PDGFRβ were significantly up-regulated after the addition of TPO. TPO also induced tyrosine phosphorylation of PDGFRα but not PDGFRβ, and promoted the formation of PDGFRαβ heterodimer complexes. Furthermore, megakaryocytic differentiation of UT-7/TPO cells on treatment with phorbol myristate acetate (PMA) was accompanied by a marked up-regulation of PDGFRβ and NRP-1 protein expression, complex formation between PDGFRs and NRP-1, PDGFRαβ heterodimer complexes, and an increase in PDGF-BB-binding activity. Immunocytochemistry confirmed complex formation between PDGFRs and NRP-1 and PDGFRαβ heterodimer complexes in PMA-differentiated UT-7/TPO cells. Our observations suggest that NRP-1 is involved in megakaryocytopoiesis through complex formation with PDGFRs, and that NRP-1-PDGFR-complexes may contribute to effective cellular functions mediated by TPO and PDGF in megakaryocytic cells. Copyright © 2015 Elsevier Inc. All rights reserved.

  18. Crystal structures of the ADP and ATP bound forms of the Bacillus anti-sigma factor SpoIIAB in complex with the anti-anti-sigma SpoIIAA.

    Science.gov (United States)

    Masuda, Shoko; Murakami, Katsuhiko S; Wang, Sheng; Anders Olson, C; Donigian, Jill; Leon, Fred; Darst, Seth A; Campbell, Elizabeth A

    2004-07-23

    Cell type-specific transcription during Bacillus sporulation is established by sigma(F), the activity of which is controlled by a regulatory circuit involving the anti-sigma factor and serine kinase SpoIIAB, and the anti-anti-sigma SpoIIAA. When ATP is present in the nucleotide-binding site of SpoIIAB, SpoIIAA is phosphorylated, followed by dissociation. The nucleotide-binding site of SpoIIAB is left bound to ADP. SpoIIAB(ADP) can bind an unphosphorylated molecule of SpoIIAA as a stable binding partner. Thus, in this circuit, SpoIIAA plays a dual role as a substrate of the SpoIIAB kinase activity, as well as a tight binding inhibitor. Crystal structures of both the pre-phosphorylation complex and the inhibitory complex, SpoIIAB(ATP) and SpoIIAB(ADP) bound to SpoIIAA, respectively, have been determined. The structural differences between the two forms are subtle and confined to interactions with the phosphoryl groups of the nucleotides. The structures reveal details of the SpoIIAA:SpoIIAB interactions and how phosphorylated SpoIIAA dissociates from SpoIIAB(ADP). Finally, the results confirm and expand upon the docking model for SpoIIAA function as an anti-anti-sigma in releasing sigma(F) from SpoIIAB.

  19. Contributions to a review of the Dendrelaphis pictus (Gmelin, 1789) complex - 2. the eastern forms (Serpentes: Colubridae)

    NARCIS (Netherlands)

    Vogel, G.; van Rooijen, J.

    2008-01-01

    The Southeast Asian, Indonesian and Philippine forms of the polytypic Dendrelaphis pictus (Gmelin, 1789) are reviewed using multivariate analyses. Several distinct phenetic clusters are discerned. Geographically, these clusters are separated by important biogeographic boundaries, such as the Isthmus

  20. Anopheles gambiae complex along The Gambia river, with particular reference to the molecular forms of An. gambiae s.s

    Directory of Open Access Journals (Sweden)

    Petrarca Vincenzo

    2008-09-01

    Full Text Available Abstract Background The geographic and temporal distribution of M and S molecular forms of the major Afrotropical malaria vector species Anopheles gambiae s.s. at the western extreme of their range of distribution has never been investigated in detail. Materials and methods Collections of indoor-resting An. gambiae s.l. females were carried out along a ca. 400 km west to east transect following the River Gambia from the western coastal region of The Gambia to south-eastern Senegal during 2005 end of rainy season/early dry season and the 2006 rainy season. Specimens were identified to species and molecular forms by PCR-RFLP and the origin of blood-meal of fed females was determined by ELISA test. Results Over 4,000 An. gambiae s.l. adult females were collected and identified, 1,041 and 3,038 in 2005 and 2006, respectively. M-form was mainly found in sympatry with Anopheles melas and S-form in the western part of the transect, and with Anopheles arabiensis in the central part. S-form was found to prevail in rural Sudan-Guinean savannah areas of Eastern Senegal, in sympatry with An. arabiensis. Anopheles melas and An. arabiensis relative frequencies were generally lower in the rainy season samples, when An. gambiae s.s. was prevailing. No large seasonal fluctuations were observed for M and S-forms. In areas where both M and S were recorded, the frequency of hybrids between them ranged from to 0.6% to 7%. Discussion The observed pattern of taxa distribution supports the hypothesis of a better adaptation of M-form to areas characterized by water-retaining alluvial deposits along the Gambia River, characterized by marshy vegetation, mangrove woods and rice cultivations. In contrast, the S-form seems to be better adapted to free-draining soil, covered with open woodland savannah or farmland, rich in temporary larval breeding sites characterizing mainly the eastern part of the transect, where the environmental impact of the Gambia River is much less

  1. Initiation of HIV Reverse Transcription

    Directory of Open Access Journals (Sweden)

    Roland Marquet

    2010-01-01

    Full Text Available Reverse transcription of retroviral genomes into double stranded DNA is a key event for viral replication. The very first stage of HIV reverse transcription, the initiation step, involves viral and cellular partners that are selectively packaged into the viral particle, leading to an RNA/protein complex with very specific structural and functional features, some of which being, in the case of HIV-1, linked to particular isolates. Recent understanding of the tight spatio-temporal regulation of reverse transcription and its importance for viral infectivity further points toward reverse transcription and potentially its initiation step as an important drug target.

  2. Solid State Structures of Alkali Metal Ion Complexes Formed by Low-Molecular-Weight Ligands of Biological Relevance.

    Science.gov (United States)

    Aoki, Katsuyuki; Murayama, Kazutaka; Hu, Ning-Hai

    2016-01-01

    This chapter provides structural data, mainly metal binding sites/modes, observed in crystal structures of alkali metal ion complexes containing low-molecular-weight ligands of biological relevance, mostly obtained from the Cambridge Structural Database (the CSD version 5.35 updated to February 2014). These ligands include (i) amino acids and small peptides, (ii) nucleic acid constituents (excluding quadruplexes and other oligonucleotides), (iii) simple carbohydrates, and (iv) naturally occurring antibiotic ionophores. For some representative complexes of these ligands, some details on the environment of the metal coordination and structural characteristics are described.

  3. A pathway-specific microarray analysis highlights the complex and co-ordinated transcriptional networks of the developing grain of field-grown barley

    DEFF Research Database (Denmark)

    Hansen, Michael; Friis, Carsten; Bowra, Steve

    2009-01-01

    The aim of the study was to describe the molecular and biochemical interactions associated with amino acid biosynthesis and storage protein accumulation in the developing grains of field-grown barley. Our strategy was to analyse the transcription of genes associated with the biosynthesis of stora...

  4. Exchange of organic radicals with organo-cobalt complexes formed in the living radical polymerization of vinyl acetate

    NARCIS (Netherlands)

    Li, S.; de Bruin, B.; Peng, C.-H.; Fryd, M.; Wayland, B.B.

    2008-01-01

    Exchange of organic radicals between solution and organo-cobalt complexes is experimentally observed and the reaction pathway is probed through DFT calculations. Cyanoisopropyl radicals from AIBN (2,2'-azobisisobutyronitrile) enter solutions of cobalt(II) tetramesityl porphyrin ((TMP)Co-II center

  5. Dehydrogenative Coupling of Primary Alcohols To Form Esters Catalyzed by a Ruthenium N-Heterocyclic Carbene Complex

    DEFF Research Database (Denmark)

    Sølvhøj, Amanda Birgitte; Madsen, Robert

    2011-01-01

    The ruthenium complex [RuCl2(IiPr)(p-cymene)] catalyzes the direct condensation of primary alcohols into esters and lactones with the release of hydrogen gas. The reaction is most effective with linear aliphatic alcohols and 1,4-diols and is believed to proceed with a ruthenium dihydride...

  6. Crystallization and preliminary X-ray analysis of Escherichia coli MutT in binary and ternary complex forms.

    Science.gov (United States)

    Nakamura, Teruya; Doi, Takefumi; Sekiguchi, Mutsuo; Yamagata, Yuriko

    2004-09-01

    During replication, Escherichia coli MutT prevents the misincorporation of mutagenic 8-oxoguanine into nascent DNA strands opposite adenine by hydrolyzing 8-oxo-dGTP in nucleotide pools to 8-oxo-dGMP. E. coli MutT is the most widely investigated member of the Nudix hydrolase family, which is large and found in all organisms. By co-crystallization of MutT with 8-oxo-dGMP, a reaction product, crystals of the binary complex were obtained using ammonium sulfate as a precipitant. The crystals belong to space group P2(1)2(1)2(1), with unit-cell parameters a = 37.9, b = 56.0, c = 59.4 A. Assuming the presence of one protein-nucleotide complex in the asymmetric unit, the Matthews coefficient V(M) is 2.1 A(3) Da(-1). Crystals of the ternary complex were prepared by soaking crystals of the binary complex in 1 mM MnCl(2) solution. They diffracted to 1.96 and 2.56 A resolution, respectively.

  7. Ultrastructural characterisation of Bacillus subtilis TatA complexes suggests they are too small to form homooligomeric translocation pores

    NARCIS (Netherlands)

    Beck, Daniel; Vasisht, Nishi; Baglieri, Jacopo; Monteferrante, Carmine G.; van Dijl, Jan Maarten; Robinson, Colin; Smith, Corinne J.

    Tat-dependent protein transport permits the traffic of fully folded proteins across membranes in bacteria and chloroplasts. The mechanism by which this occurs is not understood. Current theories propose that a key step requires the coalescence of a substrate-binding TatC-containing complex with a

  8. Developpement of a photoaffinity probe for the sensitive detection of matrix metallo-protease active forms from complex biological systems

    International Nuclear Information System (INIS)

    Nury, Catherine

    2012-01-01

    A new activity-based probe able to covalently modify the active site of proteases belonging to the matrix metallo-protease family (MMPs) has been developed in this thesis project. The probe was shown to behave as potent inhibitor of several MMPs, with nanomolar Ki values. This probe was also able to modify specifically only the free active site of MMPs, with particular high yields of cross-linking varying from 50 % to 11 %, depending of the MMPs tested. Using radioactivity as means of detection, this probe was able to detect active form of MMPs with a threshold of 1 femto-mole. Applied to the study of bronchoalveolar fluids (BAL) from mice exposed to nanoparticles by a lung aspiration protocol, this probe revealed the presence of the catalytic domain of MMP-12 under its active form, but not in control animals. When used to detect active form of MMPs from extracts obtained from human arteries of patient suffering from atherosclerosis, the probe was not able to detect such MMP active forms. Despite this negative result, the detection of active form of MMP in pathological fluid like BAL has never been reported before this work. Having validated this novel MMP activity-based probe, it will be possible to use it now for detecting MMPs from other pathological fluids or tissues extracts in which MMPs can be good markers of the pathology. (author) [fr

  9. Comparison of transcript levels and mRNA half-lives for the subunits of the branched-chain {alpha}-keto acid dehydrogenase (BCKD) complex in two human cell lines

    Energy Technology Data Exchange (ETDEWEB)

    Bowers, B.A.; Danner, D.J. [Emory Univ., Atlanta, GA (United States)

    1994-09-01

    BCKD is a mitochondrial multienzyme complex that catalyzes the committed step in catabolism of the keto acid derivatives of leucine, isoleucine and valine. Three subunits, El{alpha}, E1{beta} and E2 are specific to the complex. The subunits are nuclearly encoded from genes located on separate chromosomes, and it is not yet understood how gene expression of the components is regulated to maintain proper stoichiometry of the complex. The focus of the present study is to establish mRNA half-lives for the BCKD subunits in two human cell lines and to examine whether expression of transcripts for the subunits is similar in different cell types. HepG2 cells, a hepatocarcinoma cell line, and DG75 cells, a Burkitt`s lymphoma cell line, express comparable levels of BCKD complex based on total enzyme activity. Half-lives of the mRNAs for each subunit have been determined in HepG2 cells and are presently being defined in DG75 cells. mRNA half-lives were calculated by quantifying message levels over a 24 hour period following an actinomycin D block. Transcripts for the BCKD subunits are relatively stable in HepG2 cells with mRNA half-lives for the E1{alpha} of 11 hours, E1{beta}, 24 hours and E2, 22 hours. Steady-state message levels have been analyzed in both cell lines by RNase protection and quantified as a percentage of total RNA. mRNA levels for all three subunits are higher in DG75 cells than in HepG2 cells (E1{alpha}, 4-fold; E1{beta}, 1.9-fold; E2, 1.8-fold). Preliminary data indicates that the half-life of the E1{alpha} transcript in DG75 cells is approximately 29 hours, and it is possible that differences in steady-state levels of the mRNAs are achieved through different half-lives of the transcripts. The relationship between transcript levels and protein levels for the three subunits is being examined in both cell types.

  10. Human orexin/hypocretin receptors form constitutive homo- and heteromeric complexes with each other and with human CB1 cannabinoid receptors

    International Nuclear Information System (INIS)

    Jäntti, Maria H.; Mandrika, Ilona; Kukkonen, Jyrki P.

    2014-01-01

    Highlights: • OX 1 and OX 2 orexin and CB 1 cannabinoid receptor dimerization was investigated. • Bioluminescence resonance energy transfer method was used. • All receptors readily formed constitutive homo- and heteromeric complexes. - Abstract: Human OX 1 orexin receptors have been shown to homodimerize and they have also been suggested to heterodimerize with CB 1 cannabinoid receptors. The latter has been suggested to be important for orexin receptor responses and trafficking. In this study, we wanted to assess the ability of the other combinations of receptors to also form similar complexes. Vectors for expression of human OX 1 , OX 2 and CB 1 receptors, C-terminally fused with either Renilla luciferase or GFP 2 green fluorescent protein variant, were generated. The constructs were transiently expressed in Chinese hamster ovary cells, and constitutive dimerization between the receptors was assessed by bioluminescence energy transfer (BRET). Orexin receptor subtypes readily formed homo- and hetero(di)mers, as suggested by significant BRET signals. CB 1 receptors formed homodimers, and they also heterodimerized with both orexin receptors. Interestingly, BRET efficiency was higher for homodimers than for almost all heterodimers. This is likely to be due to the geometry of the interaction; the putatively symmetric dimers may place the C-termini in a more suitable orientation in homomers. Fusion of luciferase to an orexin receptor and GFP 2 to CB 1 produced more effective BRET than the opposite fusions, also suggesting differences in geometry. Similar was seen for the OX 1 –OX 2 interaction. In conclusion, orexin receptors have a significant propensity to make homo- and heterodi-/oligomeric complexes. However, it is unclear whether this affects their signaling. As orexin receptors efficiently signal via endocannabinoid production to CB 1 receptors, dimerization could be an effective way of forming signal complexes with optimal cannabinoid concentrations

  11. Neuropilin-1 forms complexes with vascular endothelial growth factor receptor-2 during megakaryocytic differentiation of UT-7/TPO cells

    Energy Technology Data Exchange (ETDEWEB)

    Ohsaka, Akimichi, E-mail: ohsaka@juntendo.ac.jp [Department of Transfusion Medicine and Stem Cell Regulation, Juntendo University School of Medicine, 2-1-1 Hongo, Bunkyo-ku, Tokyo 113-8421 (Japan); Hirota-Komatsu, Satoko; Shibata, Miki [Department of Transfusion Medicine and Stem Cell Regulation, Juntendo University School of Medicine, 2-1-1 Hongo, Bunkyo-ku, Tokyo 113-8421 (Japan); Komatsu, Norio [Department of Hematology, Juntendo University School of Medicine, 2-1-1 Hongo, Bunkyo-ku, Tokyo 113-8421 (Japan)

    2009-12-25

    We investigated whether the gene expression of vascular endothelial growth factor (VEGF) and its receptors (VEGFR and neuropilin-1 [NRP-1]) could be specifically regulated during the megakaryocytic differentiation of human thrombopoietin (TPO)-dependent UT-7/TPO cells. Undifferentiated UT-7/TPO cells expressed a functional VEGFR-2, leading to VEGF binding and VEGF{sub 165}-induced tyrosine phosphorylation, cell proliferation, and apoptosis inhibition. The megakaryocytic differentiation of UT-7/TPO cells on treatment with phorbol myristate acetate (PMA) was accompanied by a marked up-regulation of NRP-1 mRNA and protein expression and by an increase in VEGF-binding activity, which was mainly mediated by VEGFR-2. VEGF{sub 165} promoted the formation of complexes containing NRP-1 and VEGFR-2 in undifferentiated UT-7/TPO cells in a dose-dependent manner. Unlike human umbilical vein endothelial cells, PMA-differentiated UT-7/TPO cells exhibited complex formation between NRP-1 and VEGFR-2 even in the absence of VEGF{sub 165}. These findings suggest that NRP-1-VEGFR-2-complex formation may contribute to effective cellular functions mediated by VEGF{sub 165} in megakaryocytic cells.

  12. Neuropilin-1 forms complexes with vascular endothelial growth factor receptor-2 during megakaryocytic differentiation of UT-7/TPO cells.

    Science.gov (United States)

    Ohsaka, Akimichi; Hirota-Komatsu, Satoko; Shibata, Miki; Komatsu, Norio

    2009-12-25

    We investigated whether the gene expression of vascular endothelial growth factor (VEGF) and its receptors (VEGFR and neuropilin-1 [NRP-1]) could be specifically regulated during the megakaryocytic differentiation of human thrombopoietin (TPO)-dependent UT-7/TPO cells. Undifferentiated UT-7/TPO cells expressed a functional VEGFR-2, leading to VEGF binding and VEGF(165)-induced tyrosine phosphorylation, cell proliferation, and apoptosis inhibition. The megakaryocytic differentiation of UT-7/TPO cells on treatment with phorbol myristate acetate (PMA) was accompanied by a marked up-regulation of NRP-1 mRNA and protein expression and by an increase in VEGF-binding activity, which was mainly mediated by VEGFR-2. VEGF(165) promoted the formation of complexes containing NRP-1 and VEGFR-2 in undifferentiated UT-7/TPO cells in a dose-dependent manner. Unlike human umbilical vein endothelial cells, PMA-differentiated UT-7/TPO cells exhibited complex formation between NRP-1 and VEGFR-2 even in the absence of VEGF(165). These findings suggest that NRP-1-VEGFR-2-complex formation may contribute to effective cellular functions mediated by VEGF(165) in megakaryocytic cells.

  13. Chl12 (Ctf18) Forms a Novel Replication Factor C-Related Complex and Functions Redundantly with Rad24 in the DNA Replication Checkpoint Pathway

    OpenAIRE

    Naiki, Takahiro; Kondo, Tae; Nakada, Daisuke; Matsumoto, Kunihiro; Sugimoto, Katsunori

    2001-01-01

    RAD24 has been identified as a gene essential for the DNA damage checkpoint in budding yeast. Rad24 is structurally related to subunits of the replication factor C (RFC) complex, and forms an RFC-related complex with Rfc2, Rfc3, Rfc4, and Rfc5. The rad24Δ mutation enhances the defect of rfc5-1 in the DNA replication block checkpoint, implicating RAD24 in this checkpoint. CHL12 (also called CTF18) encodes a protein that is structurally related to the Rad24 and RFC proteins. We show here that a...

  14. High-resolution structures of Thermus thermophilus enoyl-acyl carrier protein reductase in the apo form, in complex with NAD+ and in complex with NAD+ and triclosan

    International Nuclear Information System (INIS)

    Otero, José M.; Noël, Ann-Josée; Guardado-Calvo, Pablo; Llamas-Saiz, Antonio L.; Wende, Wolfgang; Schierling, Benno; Pingoud, Alfred; Raaij, Mark J. van

    2012-01-01

    T. thermophilus enoyl-acyl carrier protein reductase was crystallized in the apo form, with NAD + bound and with NAD + and the inhibitor triclosan bound. The structures were solved by molecular replacement and refined at 1.50, 1.86 and 1.90 Å resolution, respectively. The structures are described, analysed and compared with those of enoyl-acyl carrier protein reductases from other species. Enoyl-acyl carrier protein reductase (ENR; the product of the fabI gene) is an important enzyme that is involved in the type II fatty-acid-synthesis pathway of bacteria, plants, apicomplexan protozoa and mitochondria. Harmful pathogens such as Mycobacterium tuberculosis and Plasmodium falciparum use the type II fatty-acid-synthesis system, but not mammals or fungi, which contain a type I fatty-acid-synthesis pathway consisting of one or two multifunctional enzymes. For this reason, specific inhibitors of ENR are attractive antibiotic candidates. Triclosan, a broad-range antibacterial agent, binds to ENR, inhibiting fatty-acid synthesis. As humans do not have an ENR enzyme, they are not affected. Here, high-resolution structures of Thermus thermophilus (Tth) ENR in the apo form, bound to NAD + and bound to NAD + plus triclosan are reported. Differences from and similarities to other known ENR structures are reported; in general, the structures are very similar. The cofactor-binding site is also very similar to those of other ENRs and, as reported for other species, triclosan leads to greater ordering of the loop that covers the cofactor-binding site, which, together with the presence of triclosan itself, presumably provides tight binding of the dinucleotide, preventing cycling of the cofactor. Differences between the structures of Tth ENR and other ENRs are the presence of an additional β-sheet at the N-terminus and a larger number of salt bridges and side-chain hydrogen bonds. These features may be related to the high thermal stability of Tth ENR

  15. Processing by rhomboid protease is required for Providencia stuartii TatA to interact with TatC and to form functional homo-oligomeric complexes.

    Science.gov (United States)

    Fritsch, Maximilian J; Krehenbrink, Martin; Tarry, Michael J; Berks, Ben C; Palmer, Tracy

    2012-06-01

    The twin arginine transport (Tat) system transports folded proteins across the prokaryotic cytoplasmic membrane and the plant thylakoid membrane. In Escherichia coli three membrane proteins, TatA, TatB and TatC, are essential components of the machinery. TatA from Providencia stuartii is homologous to E. coli TatA but is synthesized as an inactive pre-protein with an N-terminal extension of eight amino acids. Removal of this extension by the rhomboid protease AarA is required to activate P. stuartii TatA. Here we show that P. stuartii TatA can functionally substitute for E. coli TatA provided that the E. coli homologue of AarA, GlpG, is present. The oligomerization state of the P. stuartii TatA pro-protein was compared with that of the proteolytically activated protein and with E. coli TatA. The pro-protein still formed small homo-oligomers but cannot form large TatBC-dependent assemblies. In the absence of TatB, E. coli TatA or the processed form of P. stuartii TatA form a complex with TatC. However, this complex is not observed with the pro-form of P. stuartii TatA. Taken together our results suggest that the P. stuartii TatA pro-protein is inactive because it is unable to interact with TatC and cannot form the large TatA complexes required for transport. © 2012 Blackwell Publishing Ltd.

  16. Nuclear adaptor Ldb1 regulates a transcriptional program essential for the maintenance of hematopoietic stem cells.

    Science.gov (United States)

    Li, LiQi; Jothi, Raja; Cui, Kairong; Lee, Jan Y; Cohen, Tsadok; Gorivodsky, Marat; Tzchori, Itai; Zhao, Yangu; Hayes, Sandra M; Bresnick, Emery H; Zhao, Keji; Westphal, Heiner; Love, Paul E

    2011-02-01

    The nuclear adaptor Ldb1 functions as a core component of multiprotein transcription complexes that regulate differentiation in diverse cell types. In the hematopoietic lineage, Ldb1 forms a complex with the non-DNA-binding adaptor Lmo2 and the transcription factors E2A, Scl and GATA-1 (or GATA-2). Here we demonstrate a critical and continuous requirement for Ldb1 in the maintenance of both fetal and adult mouse hematopoietic stem cells (HSCs). Deletion of Ldb1 in hematopoietic progenitors resulted in the downregulation of many transcripts required for HSC maintenance. Genome-wide profiling by chromatin immunoprecipitation followed by sequencing (ChIP-Seq) identified Ldb1 complex-binding sites at highly conserved regions in the promoters of genes involved in HSC maintenance. Our results identify a central role for Ldb1 in regulating the transcriptional program responsible for the maintenance of HSCs.

  17. An Epstein-Barr Virus-Encoded Protein Complex Requires an Origin of Lytic Replication In Cis to Mediate Late Gene Transcription

    Science.gov (United States)

    Djavadian, Reza; Chiu, Ya-Fang; Johannsen, Eric

    2016-01-01

    Epstein-Barr virus lytic replication is accomplished by an intricate cascade of gene expression that integrates viral DNA replication and structural protein synthesis. Most genes encoding structural proteins exhibit “true” late kinetics–their expression is strictly dependent on lytic DNA replication. Recently, the EBV BcRF1 gene was reported to encode a TATA box binding protein homolog, which preferentially recognizes the TATT sequence found in true late gene promoters. BcRF1 is one of seven EBV genes with homologs found in other β- and γ-, but not in α-herpesviruses. Using EBV BACmids, we systematically disrupted each of these “βγ” genes. We found that six of them, including BcRF1, exhibited an identical phenotype: intact viral DNA replication with loss of late gene expression. The proteins encoded by these six genes have been found by other investigators to form a viral protein complex that is essential for activation of TATT-containing reporters in EBV-negative 293 cells. Unexpectedly, in EBV infected 293 cells, we found that TATT reporter activation was weak and non-specific unless an EBV origin of lytic replication (OriLyt) was present in cis. Using two different replication-defective EBV genomes, we demonstrated that OriLyt-mediated DNA replication is required in cis for TATT reporter activation and for late gene expression from the EBV genome. We further demonstrate by fluorescence in situ hybridization that the late BcLF1 mRNA localizes to EBV DNA replication factories. These findings support a model in which EBV true late genes are only transcribed from newly replicated viral genomes. PMID:27348612

  18. The EZH1-SUZ12 complex positively regulates the transcription of NF-κB target genes through interaction with UXT.

    Science.gov (United States)

    Su, Shuai-Kun; Li, Chun-Yuan; Lei, Pin-Ji; Wang, Xiang; Zhao, Quan-Yi; Cai, Yang; Wang, Zhen; Li, Lianyun; Wu, Min

    2016-06-15

    Unlike other members of the polycomb group protein family, EZH1 has been shown to positively associate with active transcription on a genome-wide scale. However, the underlying mechanism for this behavior still remains elusive. Here, we report that EZH1 physically interacts with UXT, a small chaperon-like transcription co-activator. UXT specifically interacts with EZH1 and SUZ12, but not EED. Similar to upon knockdown of UXT, knockdown of EZH1 or SUZ12 through RNA interference in the cell impairs the transcriptional activation of nuclear factor (NF)-κB target genes induced by TNFα. EZH1 deficiency also increases TNFα-induced cell death. Interestingly, chromatin immunoprecipitation and the following next-generation sequencing analysis show that H3K27 mono-, di- and tri-methylation on NF-κB target genes are not affected in EZH1- or UXT-deficient cells. EZH1 also does not affect the translocation of the p65 subunit of NF-κB (also known as RELA) from the cytosol to the nucleus. Instead, EZH1 and SUZ12 regulate the recruitment of p65 and RNA Pol II to target genes. Taken together, our study shows that EZH1 and SUZ12 act as positive regulators for NF-κB signaling and demonstrates that EZH1, SUZ12 and UXT work synergistically to regulate pathway activation in the nucleus. © 2016. Published by The Company of Biologists Ltd.

  19. Serum Inter-α-inhibitor activates the Yes tyrosine kinase and YAP/TEAD transcriptional complex in mouse embryonic stem cells.

    Science.gov (United States)

    Pijuan-Galitó, Sara; Tamm, Christoffer; Annerén, Cecilia

    2014-11-28

    We have previously demonstrated that the Src family kinase Yes, the Yes-associated protein (YAP) and TEA domain TEAD2 transcription factor pathway are activated by leukemia inhibitory factor (LIF) and contribute to mouse embryonic stem (mES) cell maintenance of pluripotency and self-renewal. In addition, we have shown that fetal bovine serum (FBS) induces Yes auto-phosphorylation and activation. In the present study we confirm that serum also activates TEAD-dependent transcription in a time- and dose-dependent manner and we identify Inter-α-inhibitor (IαI) as a component in serum capable of activating the Yes/YAP/TEAD pathway by inducing Yes auto-phosphorylation, YAP nuclear localization and TEAD-dependent transcription. The cleaved heavy chain 2 (HC2) sub-component of IαI, is demonstrated to be responsible for this effect. Moreover, IαI is also shown to efficiently increase expression of TEAD-downstream target genes including well-known stem cell factors Nanog and Oct 3/4. IαI is not produced by the ES cells per se but is added to the cells via the cell culture medium containing serum or serum-derived components such as bovine serum albumin (BSA). In conclusion, we describe a novel function of IαI in activating key pluripotency pathways associated with ES cell maintenance and self-renewal. © 2014 by The American Society for Biochemistry and Molecular Biology, Inc.

  20. Serum Inter-α-inhibitor Activates the Yes Tyrosine Kinase and YAP/TEAD Transcriptional Complex in Mouse Embryonic Stem Cells*

    Science.gov (United States)

    Pijuan-Galitó, Sara; Tamm, Christoffer; Annerén, Cecilia

    2014-01-01

    We have previously demonstrated that the Src family kinase Yes, the Yes-associated protein (YAP) and TEA domain TEAD2 transcription factor pathway are activated by leukemia inhibitory factor (LIF) and contribute to mouse embryonic stem (mES) cell maintenance of pluripotency and self-renewal. In addition, we have shown that fetal bovine serum (FBS) induces Yes auto-phosphorylation and activation. In the present study we confirm that serum also activates TEAD-dependent transcription in a time- and dose-dependent manner and we identify Inter-α-inhibitor (IαI) as a component in serum capable of activating the Yes/YAP/TEAD pathway by inducing Yes auto-phosphorylation, YAP nuclear localization and TEAD-dependent transcription. The cleaved heavy chain 2 (HC2) sub-component of IαI, is demonstrated to be responsible for this effect. Moreover, IαI is also shown to efficiently increase expression of TEAD-downstream target genes including well-known stem cell factors Nanog and Oct 3/4. IαI is not produced by the ES cells per se but is added to the cells via the cell culture medium containing serum or serum-derived components such as bovine serum albumin (BSA). In conclusion, we describe a novel function of IαI in activating key pluripotency pathways associated with ES cell maintenance and self-renewal. PMID:25301940

  1. NMR structure of the chimeric hybrid duplex r(gcaguggc).r(gcca)d(CTGC) comprising the tRNA-DNA junction formed during initiation of HIV-1 reverse transcription

    International Nuclear Information System (INIS)

    Szyperski, Thomas; Goette, Matthias; Billeter, Martin; Perola, Emanuele; Cellai, Luciano; Heumann, Hermann; Wuethrich, Kurt

    1999-01-01

    A high-quality NMR solution structure of the chimeric hybrid duplex r(gcaguggc).r(gcca)d(CTGC) was determined using the program DYANA with its recently implemented new module FOUND, which performs exhaustive conformational grid searches for dinucleotides. To ensure conservative data interpretation, the use of 1H-1H lower distance limit constraints was avoided. The duplex comprises the tRNA-DNA junction formed during the initiation of HIV-1 reverse transcription. It forms an A-type double helix that exhibits distinct structural deviations from a standard A-conformation. In particular, the minor groove is remarkably narrow, and its width decreases from about 7.5 A in the RNA/RNA stem to about 4.5 A in the RNA/DNA segment. This is unexpected, since minor groove widths for A-RNA and RNA/DNA hybrid duplexes of ∼11 A and ∼8.5 A, respectively, were previously reported. The present, new structure supports that reverse transcriptase-associated RNaseH specificity is related primarily to conformational adaptability of the nucleic acid in 'induced-fit'-type interactions, rather than the minor groove width of a predominantly static nucleic acid duplex

  2. The Fos-Related Antigen 1–JUNB/Activator Protein 1 Transcription Complex, a Downstream Target of Signal Transducer and Activator of Transcription 3, Induces T Helper 17 Differentiation and Promotes Experimental Autoimmune Arthritis

    Directory of Open Access Journals (Sweden)

    Young-Mee Moon

    2017-12-01

    Full Text Available Dysfunction of T helper 17 (Th17 cells leads to chronic inflammatory disorders. Signal transducer and activator of transcription 3 (STAT3 orchestrates the expression of proinflammatory cytokines and pathogenic cell differentiation from interleukin (IL-17-producing Th17 cells. However, the pathways mediated by STAT3 signaling are not fully understood. Here, we observed that Fos-related antigen 1 (FRA1 and JUNB are directly involved in STAT3 binding to sites in the promoters of Fosl1 and Junb. Promoter binding increased expression of IL-17 and the development of Th17 cells. Overexpression of Fra1 and Junb in mice resulted in susceptibility to collagen-induced arthritis and an increase in Th17 cell numbers and inflammatory cytokine production. In patients with rheumatoid arthritis, FRA1 and JUNB were colocalized with STAT3 in the inflamed synovium. These observations suggest that FRA1 and JUNB are associated closely with STAT3 activation, and that this activation leads to Th17 cell differentiation in autoimmune diseases and inflammation.

  3. Novel complex formed between a nonproteolytic cell wall protein of group A streptococci and α2-macroglobulin

    International Nuclear Information System (INIS)

    Chhatwal, G.S.; Albohn, G.; Blobel, H.

    1987-01-01

    Binding of 125 I-labeled α 2 -macroglobulin (α 2 M) to streptococci belonging to serological groups A, B, C, and G was studied. Streptococci of groups A and G interacted only with native α 2 M, and those of group C reacted only with α 2 M-trypsin complex. Binding of α 2 M to group A streptococci was saturable and reversible. The dissociation constant was 2.02 x 10 -7 M, and the number of binding sites was calculated to be 18,000 per streptococcus. The α 2 M-binding protein could be solubilized by treatment of group A streptococci with a murolytic enzyme and subsequently purified by affinity chromatography and high-pressure liquid chromatography. The purified protein was homogeneous on sodium dodecyl sulfate-polyacrylamide gel electrophoresis and had a molecular weight of 78,000. It possessed no proteolytic activity and interacted with native α 2 M in Western blots (immunoblots). Interaction of purified binding protein with α 2 M led to a change in the conformation of α 2 M similar to that obtained by α 2 M-protease complexes. Reversible binding of a nonproteolytic streptococcal component of α 2 M is thus a novel feature of α 2 M reactivity

  4. Differential transcript profiling through cDNA-AFLP showed complexity of rutin biosynthesis and accumulation in seeds of a nutraceutical food crop (Fagopyrum spp.

    Directory of Open Access Journals (Sweden)

    Gupta Nidhi

    2012-06-01

    Full Text Available Abstract Background Buckwheat, consisting of two cultivated species Fagopyrum tataricum and F. esculentum, is the richest source of flavonoid rutin. Vegetative tissues of both the Fagopyrum species contain almost similar amount of rutin; however, rutin content in seed of F. tataricum are ~50 folds of that in seed of F. esculentum. In order to understand the molecular basis of high rutin content in F. tataricum, differential transcript profiling through cDNA-AFLP has been utilized to decipher what genetic factors in addition to flavonoid structural genes contribute to high rutin content of F. tataricum compared to F. esculentum. Results Differential transcript profiling through cDNA-AFLP in seed maturing stages (inflorescence to seed maturation with 32 primer combinations generated total of 509 transcript fragments (TDFs. 167 TDFs were then eluted, cloned and sequenced from F. tataricum and F. esculentum. Categorization of TDFs on the basis of their presence/absence (qualitative variation or differences in the amount of expression (quantitative variation between both the Fagopyrum species showed that majority of variants are quantitative (64%. The TDFs represented genes controlling different biological processes such as basic and secondary metabolism (33%, regulation (18%, signal transduction (14%, transportation (13%, cellular organization (10%, and photosynthesis & energy (4%. Most of the TDFs except belonging to cellular metabolism showed relatively higher transcript abundance in F. tataricum over F. esculentum. Quantitative RT-PCR analysis of nine TDFs representing genes involved in regulation, metabolism, signaling and transport of secondary metabolites showed that all the tested nine TDFs (Ubiquitin protein ligase, ABC transporter, sugar transporter except MYB 118 showed significantly higher expression in early seed formation stage (S7 of F. tataricum compared to F. esculentum. qRT-PCR results were found to be consistent with the c

  5. Polyphenol Compound as a Transcription Factor Inhibitor

    Directory of Open Access Journals (Sweden)

    Seyeon Park

    2015-10-01

    Full Text Available A target-based approach has been used to develop novel drugs in many therapeutic fields. In the final stage of intracellular signaling, transcription factor–DNA interactions are central to most biological processes and therefore represent a large and important class of targets for human therapeutics. Thus, we focused on the idea that the disruption of protein dimers and cognate DNA complexes could impair the transcriptional activation and cell transformation regulated by these proteins. Historically, natural products have been regarded as providing the primary leading compounds capable of modulating protein–protein or protein-DNA interactions. Although their mechanism of action is not fully defined, polyphenols including flavonoids were found to act mostly as site-directed small molecule inhibitors on signaling. There are many reports in the literature of screening initiatives suggesting improved drugs that can modulate the transcription factor interactions responsible for disease. In this review, we focus on polyphenol compound inhibitors against dimeric forms of transcription factor components of intracellular signaling pathways (for instance, c-jun/c-fos (Activator Protein-1; AP-1, c-myc/max, Nuclear factor kappa-light-chain-enhancer of activated B cells (NF-κB and β-catenin/T cell factor (Tcf.

  6. H-induced dangling bonds in H-isoelectronic-impurity complexes formed in GaAs1-yNy alloys.

    Science.gov (United States)

    Amore Bonapasta, A; Filippone, F; Mattioli, G

    2007-05-18

    Complexes formed by H and the isoelectronic impurity N in GaAs1-yNy alloys have been widely investigated because the significant effects of N on the GaAs properties and their passivation by H represent a unique tool for a defect engineering of semiconductors. However, available results still present a quite puzzling picture. Both the N-H2* and C2v complexes proposed by theory were challenged indeed by experimental results. In the present Letter, we disclose a double-faced behavior of a H atom interacting with an isoelectronic impurity: while H, on one side, binds to N and induces the formation of dangling bonds (DB) on its Ga neighbors, on the other side, it saturates these DBs, thus permitting the formation of multiple-H complexes. This peculiar H behavior fully explains the experimental findings and likely represents a general feature of H-isoelectronic-impurity interactions.

  7. Immune complexes in chronic Chagas disease patients are formed by exovesicles from Trypanosoma cruzi carrying the conserved MASP N-terminal region

    Science.gov (United States)

    Díaz Lozano, Isabel María; de Pablos, Luis Miguel; Longhi, Silvia Andrea; Zago, María Paola; Schijman, Alejandro Gabriel; Osuna, Antonio

    2017-03-01

    The exovesicles (EVs) are involved in pathologic host-parasite immune associations and have been recently used as biomarkers for diagnosis of infectious diseases. The release of EVs by Trypanosoma cruzi, the causative agent of Chagas disease, has recently been described, with different protein cargoes including the MASP multigene family of proteins MASPs are specific to this parasite and characterized by a conserved C-terminal (C-term) region and an N-terminal codifying for a signal peptide (SP). In this investigation, we identified immature MASP proteins containing the MASP SP in EVs secreted by the infective forms of the parasite. Those EVs are responsible for the formation of immune complexes (ICs) containing anti-MASP SP IgGs in patients with different (cardiac, digestive and asymptomatic) chronic Chagas disease manifestations. Moreover, purified EVs as well as the MASP SP inhibit the action of the complement system and also show a significant association with the humoral response in patients with digestive pathologies. These findings reveal a new route for the secretion of MASP proteins in T. cruzi, which uses EVs as vehicles for immature and misfolded proteins, forming circulating immune complexes. Such complexes could be used in the prognosis of digestive pathologies of clinical forms of Chagas disease.

  8. Quantitative Analysis of Dynamic Protein Interactions during Transcription Reveals a Role for Casein Kinase II in Polymerase-associated Factor (PAF) Complex Phosphorylation and Regulation of Histone H2B Monoubiquitylation.

    Science.gov (United States)

    Bedard, Lynn Glowczewski; Dronamraju, Raghuvar; Kerschner, Jenny L; Hunter, Gerald O; Axley, Elizabeth DeVlieger; Boyd, Asha K; Strahl, Brian D; Mosley, Amber L

    2016-06-24

    Using affinity purification MS approaches, we have identified a novel role for casein kinase II (CKII) in the modification of the polymerase associated factor complex (PAF-C). Our data indicate that the facilitates chromatin transcription complex (FACT) interacts with CKII and may facilitate PAF complex phosphorylation. Posttranslational modification analysis of affinity-isolated PAF-C shows extensive CKII phosphorylation of all five subunits of PAF-C, although CKII subunits were not detected as interacting partners. Consistent with this, recombinant CKII or FACT-associated CKII isolated from cells can phosphorylate PAF-C in vitro, whereas no intrinsic kinase activity was detected in PAF-C samples. Significantly, PAF-C purifications combined with stable isotope labeling in cells (SILAC) quantitation for PAF-C phosphorylation from wild-type and CKII temperature-sensitive strains (cka1Δ cka2-8) showed that PAF-C phosphorylation at consensus CKII sites is significantly reduced in cka1Δ cka2-8 strains. Consistent with a role of CKII in FACT and PAF-C function, we show that decreased CKII function in vivo results in decreased levels of histone H2B lysine 123 monoubiquitylation, a modification dependent on FACT and PAF-C. Taken together, our results define a coordinated role of CKII and FACT in the regulation of RNA polymerase II transcription through chromatin via phosphorylation of PAF-C. © 2016 by The American Society for Biochemistry and Molecular Biology, Inc.

  9. Spectrophotometric Study of Ternary Complex Forming Systems of Some Lanthanide Metal Ions with Eriochrome Cyanine R in Presence of Cetylpyridinium Bromide for Microdetermination

    Directory of Open Access Journals (Sweden)

    A. S. Dhepe

    2011-01-01

    Full Text Available Study of coordination compounds of lanthanide elements has received a great attention due to growing applications in science and technology. Number of chromogenic reagents form water soluble colored complexes with lanthanides. Eriochrome cyanine R (ECR a member of triphenylmethane type of dye has been reported to form green colored complexes with lanthanides and has been used for microdetermination of these metal ions. Addition of cationic surfactant, Cetylpyridinium bromide (CPB, a cationic surfactant sensitizes the color reactions of Gd(III, Tb(III, Dy(III, Ho(III and Lu(III with ECR. Formation of water soluble, highly colored ternary complexes with a considerable bathochromic shift of about 50 nm in presence of surfactant has been observed. Optimum reaction conditions and other analytical parameters were also evaluated. Stoichiometric ratio 1:3:3 of Ln: ECR: CPB are responsible for the observed rise in molar absorptivity and sensitivity. Beer’s law was obeyed between 0.50 to 13.00 ppm. Effective photometric range and molar absorptivity of these ternary complexes have been calculated. Effect of some common interfering ions on determination of these lanthanide metal ions was studied. A simple, rapid and highly sensitive spectrophotometeric method has been proposed for the determination of metal ions understudy.

  10. Reaction of Pb(II) and Zn(II) with Ethyl Linoleate To Form Structured Hybrid Inorganic–Organic Complexes: A Model for Degradation in Historic Paint Films

    Energy Technology Data Exchange (ETDEWEB)

    MacDonald, Margaret G.; Palmer, Michael R.; Suchomel, Matthew R.; Berrie, Barbara H. (NGA); (Bordeaux)

    2016-09-23

    To investigate soap formation in drying oils in historic paints, the reaction between metal acetates (K+, Zn2+, Pb2+) and ethyl linoleate (EL) was studied using optical microscopy, X-ray powder diffraction, and electron microscopy. Pb(II) and Zn(II) react rapidly with EL to form highly structured, spherulitic, luminescent crystallites that aggregate. Evidence from Fourier transform infrared (FTIR) and scanning electron microscopy/energy dispersive X-ray analysis and high-resolution synchrotron powder X-ray diffraction indicates that these are organic–inorganic hybrid complexes or coordination polymers. FTIR absorbance peaks at ca. 1540 cm–1 for Pb(II) and ca. 1580 cm–1 for Zn(II) are consistent with the formation of carboxylate complexes. The complexes formed offer insight into the degradation processes observed in oil paint films, suggesting that soap formation is rapid when metal ions are solubilized and can occur with unsaturated fatty acids that are present in fresh oils. These complexes may account for the atypical luminescence observed in lead-containing cured oil paint films.

  11. Heteroreceptor Complexes Formed by Dopamine D1, Histamine H3, and N-Methyl-D-Aspartate Glutamate Receptors as Targets to Prevent Neuronal Death in Alzheimer's Disease.

    Science.gov (United States)

    Rodríguez-Ruiz, Mar; Moreno, Estefanía; Moreno-Delgado, David; Navarro, Gemma; Mallol, Josefa; Cortés, Antonio; Lluís, Carme; Canela, Enric I; Casadó, Vicent; McCormick, Peter J; Franco, Rafael

    2017-08-01

    Alzheimer's disease (AD) is a neurodegenerative disorder causing progressive memory loss and cognitive dysfunction. Anti-AD strategies targeting cell receptors consider them as isolated units. However, many cell surface receptors cooperate and physically contact each other forming complexes having different biochemical properties than individual receptors. We here report the discovery of dopamine D 1 , histamine H 3 , and N-methyl-D-aspartate (NMDA) glutamate receptor heteromers in heterologous systems and in rodent brain cortex. Heteromers were detected by co-immunoprecipitation and in situ proximity ligation assays (PLA) in the rat cortex where H 3 receptor agonists, via negative cross-talk, and H 3 receptor antagonists, via cross-antagonism, decreased D 1 receptor agonist signaling determined by ERK1/2 or Akt phosphorylation, and counteracted D 1 receptor-mediated excitotoxic cell death. Both D 1 and H 3 receptor antagonists also counteracted NMDA toxicity suggesting a complex interaction between NMDA receptors and D 1 -H 3 receptor heteromer function. Likely due to heteromerization, H 3 receptors act as allosteric regulator for D 1 and NMDA receptors. By bioluminescence resonance energy transfer (BRET), we demonstrated that D 1 or H 3 receptors form heteromers with NR1A/NR2B NMDA receptor subunits. D 1 -H 3 -NMDA receptor complexes were confirmed by BRET combined with fluorescence complementation. The endogenous expression of complexes in mouse cortex was determined by PLA and similar expression was observed in wild-type and APP/PS1 mice. Consistent with allosteric receptor-receptor interactions within the complex, H 3 receptor antagonists reduced NMDA or D 1 receptor-mediated excitotoxic cell death in cortical organotypic cultures. Moreover, H 3 receptor antagonists reverted the toxicity induced by ß 1-42 -amyloid peptide. Thus, histamine H 3 receptors in D 1 -H 3 -NMDA heteroreceptor complexes arise as promising targets to prevent neurodegeneration.

  12. HER4 Cyt1 and Cyt2 Isoforms Regulate Transcription through Differential Interaction with a Transcriptional Regulator, Yap

    Science.gov (United States)

    2012-10-01

    TEAD ...transcriptional  factor  regulated  by  Yap,  and  have  found  that   HER4  forms  complex  with   TEAD ;  however,  this...phosphorylation  of   TEAD .  We  were  also  unable  to  find  any  transcriptional  consequences  of  HER4  interaction  with

  13. EPR and UV/VIS spectroscopic investigations of VO2+ complexes and compounds formed in alkali pyrosulfates

    DEFF Research Database (Denmark)

    Rasmussen, Søren Birk; Eriksen, Kim Michael; Fehrmann, Rasmus

    2002-01-01

    fraction of the sample occupied by the cation. This indicates that spin-spin relaxation effects are the major contribution to line broadening. Combining information from UV/VIS and EPR spectra shows that the VO2+ unit in the molten salt solvent exhibits electronic properties close to aqueous solutions of V(IV).......The catalytically important molten salt-gas system M2S2O7-M2SO4-V2O5/SO2(g) (M = Na. K, Rb, Cs) has been investigated by X- and Q-band EPR spectroscopy. In order to obtain information about the V(IV) complex formation in the melts, samples rather dilute in V2O5 were quenched from the molten state...

  14. The concept of sustainable development as a methodological base to form strategy for enterprises of oil complex

    Directory of Open Access Journals (Sweden)

    D. Smirnov

    2015-01-01

    Full Text Available The article substantiates the need for the enterprises of the oil complex as a methodological basis of their strategy concept of sustainable development, according to which natural resources are treated as natural capital, similar in quality funds. The author of the article analyzed the research of Russian and foreign scientists on the theory of sustainable development from different perspectives, as well as the Concept of the Russian Federation transition to sustainable development, the main criteria for sustainability, particularly management of industrial enterprises in the field of nature and the environment. It was found that the implementation of sustainable development ideas "oil for future generations" is not only a moral and environmental dimension, and financial performance. If companies invest in the exploration work sufficient to sustain growth of proved reserves of raw materials, it will inevitably raise the level of its capitalization.

  15. Optimized cutting and forming parameters for a robust collar drawing process for hot-rolled complex-phase steels

    Science.gov (United States)

    Kovacs, S.; Beier, T.; Woestmann, S.

    2017-09-01

    The demands on materials for automotive applications are steadily increasing. For chassis components, the trend is towards thinner and higher strength materials for weight and cost reduction. In view of attainable strengths of up to 1200 MPa for hot rolled materials, certain aspects need to be analysed and evaluated in advance in the development process using these materials. Collars in particular, for example in control arms, have been in focus for part and process design. Issues concerning edge and surface cracks are observed due to improper geometry and process layout. The hole expansion capability of the chosen material grade has direct influence on the achievable collar height. In general, shear cutting reduces the residual formability of blank edges and the hole expansion capability. In this paper, using the example of the complex phase steel CP-W® 800 of thyssenkrupp, it is shown how a suitable geometry of a collar and optimum shear cutting parameters can be chosen.

  16. Enantioselective ecotoxicity of the herbicide dichlorprop and complexes formed with chitosan in two fresh water green algae.

    Science.gov (United States)

    Wen, Yuezhong; Chen, Hui; Yuan, Yuli; Xu, Dongmei; Kang, Xiaodong

    2011-04-01

    To reduce the leaching potential, to prevent groundwater contamination and to maintain the efficacy of a pesticide, natural polysaccharides have received increasing attention due to their biocompatibility and useful biological reactivity for controlled release formulations (CRFs) of pesticides. In this paper, the toxicities of the chiral herbicide dichlorprop (DCPP) and its complexes with chitosan molecules (DCPP-CS) and chitosan nanoparticles (DCPP-NP) to two different green algae were determined and compared. The inhibition rates of DCPP, DCPP-CS and DCPP-NP were determined at 24, 48, 72, 96, 120, 144, 168 h, and the results show that (S)-DCPP was more toxic to Chlorella vulgaris than (R)-DCPP, while the (R)-DCPP was more toxic to Scenedesmus obliquus than (S)-DCPP. The study also found that the chiral selectivity of DCPP to Chlorella vulgaris and Scenedesmus obliquus could be changed when DCPP was complexed with chitosan molecules (CS) or chitosan nanoparticles (NP). For Chlorella vulgaris, the order of inhibition was (R)-DCPP-CS > (S)-DCPP-CS and (R)-DCPP-NP > (S)-DCPP-NP; for Scenedesmus obliquus, the order was (S)-DCPP-CS > (R)-DCPP-CS and (S)-DCPP-NP > (R)-DCPP-NP. This phenomenon suggests that the enantioselective behaviors of chiral compounds might shift when interactions with other chiral receptors coexist in different biological environments. Additionally, chitosan molecules and chitosan nanoparticles also showed different toxicities, which could be ascribed to the difference in the physicochemical properties between CS and NP or the differences in the cell walls of the two fresh water green algae.

  17. Thermal Analysis by Structural Characterization as a Method for Assessing Heterogeneity in Complex Solid Pharmaceutical Dosage Forms.

    Science.gov (United States)

    Alhijjaj, Muqdad; Reading, Mike; Belton, Peter; Qi, Sheng

    2015-11-03

    Characterizing inter- and intrasample heterogeneity of solid and semisolid pharmaceutical products is important both for rational design of dosage forms and subsequent quality control during manufacture; however, most pharmaceutical products are multicomponent formulations that are challenging in this regard. Thermal analysis, in particular differential scanning calorimetry, is commonly used to obtain structural information, such as degree of crystallinity, or identify the presence of a particular polymorph, but the results are an average over the whole sample; it cannot directly provide information about the spatial distribution of phases. This study demonstrates the use of a new thermo-optical technique, thermal analysis by structural characterization (TASC), that can provide spatially resolved information on thermal transitions by applying a novel algorithm to images acquired by hot stage microscopy. We determined that TASC can be a low cost, relatively rapid method of characterizing heterogeneity and other aspects of structure. In the examples studied, it was found that high heating rates enabled screening times of 3-5 min per sample. In addition, this study demonstrated the higher sensitivity of TASC for detecting the metastable form of polyethylene glycol (PEG) compared to conventional differential scanning calorimetry (DSC). This preliminary work suggests that TASC will be a worthwhile additional tool for characterizing a broad range of materials.

  18. WES in a family trio suggests involvement of TECPR2 in a complex form of progressive motor neuron disease.

    Science.gov (United States)

    Covone, A E; Fiorillo, C; Acquaviva, M; Trucco, F; Morana, G; Ravazzolo, R; Minetti, C

    2016-08-01

    We have performed whole-exome sequencing in a family trio with a 16-year-old girl suffering of progressive motor neuron disease. There was no family history of the disease and no parental consanguinity. Our exome analysis indicated the proband as a compound heterozygote for two missense variants in the TECPR2 gene according to a recessive mode of inheritance. The TECPR2 gene has been reported as a positive regulator of autophagy which is an essential mechanism for maintaining neuron homeostasis and survival and plays a key role in major adult and pediatric neurodegenerative diseases. Variants in this gene have been found responsible for a recently described form of hereditary spastic paraplegia called SPG49 in two previous reports. We propose that both variants causing amino acid substitution, p.Leu684Val and p.Thr903Met, inherited in trans-phase compound heterozygote form, can be responsible for the phenotype observed in our patient. We also consider the possible contribution of a heterozygous variant in the SPG7 gene. Sanger sequencing confirmed the segregation of variants within the family tree including the patient's unaffected brother. © 2016 John Wiley & Sons A/S. Published by John Wiley & Sons Ltd.

  19. A model for genesis of transcription systems.

    Science.gov (United States)

    Burton, Zachary F; Opron, Kristopher; Wei, Guowei; Geiger, James H

    2016-01-01

    Repeating sequences generated from RNA gene fusions/ligations dominate ancient life, indicating central importance of building structural complexity in evolving biological systems. A simple and coherent story of life on earth is told from tracking repeating motifs that generate α/β proteins, 2-double-Ψ-β-barrel (DPBB) type RNA polymerases (RNAPs), general transcription factors (GTFs), and promoters. A general rule that emerges is that biological complexity that arises through generation of repeats is often bounded by solubility and closure (i.e., to form a pseudo-dimer or a barrel). Because the first DNA genomes were replicated by DNA template-dependent RNA synthesis followed by RNA template-dependent DNA synthesis via reverse transcriptase, the first DNA replication origins were initially 2-DPBB type RNAP promoters. A simplifying model for evolution of promoters/replication origins via repetition of core promoter elements is proposed. The model can explain why Pribnow boxes in bacterial transcription (i.e., (-12)TATAATG(-6)) so closely resemble TATA boxes (i.e., (-31)TATAAAAG(-24)) in archaeal/eukaryotic transcription. The evolution of anchor DNA sequences in bacterial (i.e., (-35)TTGACA(-30)) and archaeal (BRE(up); BRE for TFB recognition element) promoters is potentially explained. The evolution of BRE(down) elements of archaeal promoters is potentially explained.

  20. Action mechanism of bis(allixinato)oxovanadium(IV) as a novel potent insulin-mimetic complex: regulation of GLUT4 translocation and FoxO1 transcription factor.

    Science.gov (United States)

    Hiromura, Makoto; Nakayama, Akihiro; Adachi, Yusuke; Doi, Miyuki; Sakurai, Hiromu

    2007-11-01

    Bis(allixinato)oxovanadium(IV), VO(alx)(2) (alx is 3-hydroxy-5-methoxy-6-methyl-2-pentyl-4-pyrone), has been reported to act as an antidiabetic agent in streptozotocin-induced type-1-like and obesity-linked KKA(y) type 2 diabetic model mice. VO(alx)(2) is also proposed as a candidate agent for treating metabolic syndromes in animals. However, its functional mechanism is yet to be clarified. In this study, we examined whether VO(alx)(2) contributes to both the activation of the insulin signaling cascade that activates glucose transporter 4 (GLUT4) translocation and the regulation of the forkhead box O1 (FoxO1) transcription factor that controls the gene transcription of gluconeogenesis genes. The following three important results were obtained: (1) intracellular vanadium concentration in 3T3-L1 adipocytes is higher after treatment with VO(alx)(2) than with VOSO(4); (2) VO(alx)(2) stimulates the translocation of GLUT4 to the plasma membrane following activation of the tyrosine phosphorylation of the insulin receptor beta-subunit (IRbeta) and insulin receptor substrate (IRS) as well as Akt kinase in 3T3-L1 adipocytes; and (3) the mechanism of inhibition of glucose-6-phosphatase (G6Pase) catalytic subunit gene expression by vanadium is due to disruption of FoxO1 binding with the G6Pase promoter, which indicates that FoxO1 is phosphorylated by VO(alx)(2)-stimulated Akt in HepG2 cells. On the basis of these results, we propose that the critical functions of VO(alx)(2) involve the activation of phosphatidylinositol 3-kinase-Akt signaling through the enhancement of tyrosine phosphorylation of IRbeta and IRS, which in turn transmits the signal to activate GLUT4 translocation, and the regulation of the DNA binding activity of the FoxO1 transcription factor.

  1. JAK1 kinase forms complexes with interleukin-4 receptor and 4PS/insulin receptor substrate-1-like protein and is activated by interleukin-4 and interleukin-9 in T lymphocytes.

    Science.gov (United States)

    Yin, T; Tsang, M L; Yang, Y C

    1994-10-28

    Interleukin (IL)-4 and IL-9 regulate the proliferation of T lymphocytes through interactions with their receptors. Previous studies have shown that unknown tyrosine kinases are involved in the proliferative signaling triggered by IL-4 and IL-9. Here we show that IL-4 and IL-9 induce overlapping (170, 130, and 125 kilodalton (kDa)) and distinct (45 and 88/90 kDa, respectively) protein tyrosine phosphorylation in T lymphocytes. We further identify the 170-kDa tyrosine-phosphorylated protein as 4PS/insulin receptor substrate-1-like (IRS-1L) protein and 130-kDa protein as JAK1 kinase. Furthermore, we demonstrate for the first time that JAK1 forms complexes with the IL-4 receptor and 4PS/IRS-1L protein following ligand-receptor interaction. In addition, we demonstrate that IL-9, but not IL-4, induced tyrosine phosphorylation of Stat 91 transcriptional factor. The overlapping and distinct protein tyrosine phosphorylation and activation of the same JAK1 kinase in T lymphocytes strongly suggests that IL-4 and IL-9 share the common signal transduction pathways and that the specificity for each cytokine could be achieved through the unique tyrosine-phosphorylated proteins triggered by individual cytokines.

  2. Insulin enhances the peroxidase activity of heme by forming heme-insulin complex: Relevance to type 2 diabetes mellitus.

    Science.gov (United States)

    Huang, Yi; Yang, Zhen; Xu, Huan; Zhang, Pengfei; Gao, Zhonghong; Li, Hailing

    2017-09-01

    Evidences have implicated the involvement of heme in the type 2 diabetes mellitus (T2Dm) pathogenesis, but possible mediators linking between heme and diabetes are still poorly understood. Here, we explored a potential mechanism that linked heme, insulin and diabetes. Our results demonstrated the formation of heme-insulin complex by two classical methods, i.e. UV-vis and capillary electrophoresis-frontal analysis (CE-FA). UV-vis results implied heme binding insulin via bis-histidine sites, and CE-FA further revealed that, when insulin uses two sites binding with heme, this interaction occurs at high affinity (K d =3.13×10 -6 M). Molecule docking supported that histidine-B5 of insulin binds with heme-Fe. In addition to that, tyrosine-B26, phenylalanine-B1 and valine-B2 are also contributed to binding heme. The binding amplified the peroxidase activity of heme itself. Under oxidative and nitrative stress, it affects pathogenesis of diabetes from two aspects: promoting insulin cross-linking that leads to permanent loss of insulin functionality on one hand, and enhancing protein tyrosine nitration that may result in inactivation of proteins associated with diabetes on the other hand. This study suggested that the enhanced peroxidase activity of heme through binding with insulin might be a previously unrecognized contributor to the pathogenesis of T2Dm in some heme-associated disorders. Copyright © 2017 Elsevier B.V. All rights reserved.

  3. THE METHDOLOGICAL WAYS OF FORM OF THE KNOWLEDGE BASE OF THE AUTOMATIC SYSTEM DIAGNOSTICS OF THE COMPLEX AIRCRAFT OBJECT

    Directory of Open Access Journals (Sweden)

    Ю. Чоха

    2012-04-01

    Full Text Available Development of the Systems provides reception of the multitude of information and improvement of theiranalysis for diagnostics of aviation techniques. However theoretical bases deficiently are motivated forstructure and analysis of information. On modern stage of evolution of the artificial intelligence the trend istracked the outrun of technological (practical of the facilities of the development of the intellectual systemscomparatively their theoretical developments. In this connection in article the idea is emphasized thatclassical approaches to the analytical bases of the cybernetics have grown old. Accordingly by the base forensuring of functioning of the automatic diagnostics systems requisite to consider the ways (the strategies ofdecompositions and creature structure of the knowledge base in relation to of the concrete aviation object.However use of the syntheses of the deductive and of inductive strategy shaping the structure of theknowledge’s can be insufficient in some cases of making of the diagnostics system of the complex object ofthe aviation techniques with depth diagnosis at the constructive node. For this case on each of levels ofstructurization of the knowledge base, authors offer to apply also strategy of parallel (horizontaldecomposition of object of diagnosing concerning its behaviour at transition from one stationary operationalregimen on another. As a base paradigm of methodology of the structural analysis and formation of a field ofknowledge by authors are proffered to use generalised objective - the structural approach, which developedto technological and program realisation.

  4. A Long-Distance Translocatable Phloem Protein from Cucumber Forms a Ribonucleoprotein Complex In Vivo with Hop Stunt Viroid RNA†

    Science.gov (United States)

    Gómez, Gustavo; Pallás, Vicente

    2004-01-01

    Viroids are highly structured plant pathogenic RNAs that do not code for any protein, and thus, their long-distance movement within the plant must be mediated by direct interaction with cellular factors, the nature of which is presently unknown. In addition to this type of RNAs, recent evidence indicates that endogenous RNAs move through the phloem acting as macromolecular signals involved in plant defense and development. The form in which these RNA molecules are transported to distal parts of the plant is unclear. Viroids can be a good model system to try to identify translocatable proteins that could assist the vascular movement of RNA molecules. Here, we demonstrate by use of immunoprecipitation experiments, that the phloem protein 2 from cucumber (CsPP2) is able to interact in vivo with a viroid RNA. Intergeneric graft assays revealed that both the CsPP2 and the Hop stunt viroid RNA were translocated to the scion. The translocated viroid is symptomatic in the nonhost scion, indicating that the translocated RNA is functional. The CsPP2 gene was cloned and sequenced. The analysis of its primary structure revealed the existence of a potential double-spaced-RNA-binding motif, previously identified in a set of proteins that bind to highly structured RNAs, which could explain its RNA-binding properties. The possible involvement of this phloem protein in assisting the long-distance movement of the viroid RNA within the plant is discussed. PMID:15331743

  5. Anterior provisional restorations used to determine form, function, and esthetics for complex restorative situations, using all-ceramic restorative systems.

    Science.gov (United States)

    Reshad, Mamaly; Cascione, Domenico; Kim, Tae

    2010-02-01

    A technique is proposed for the restoration of a large and visible maxillary anterior defect. The importance of proper diagnosis, treatment planning, and communication is emphasized. Irreversible treatment should only be rendered once patient approval has been obtained through objective evaluation with provisional restorations. The techniques presented in this article use a combination of ceramic systems currently available to satisfy functional demands while achieving acceptable esthetics. A controlled series of steps, where the provisional restorative components are being replaced by the definitive ones is planned. The only difference between the provisional and definitive restorative components is the material used. The definitive restorations consisted of an implant-supported zirconium oxide framework. Individual pressed porcelain restorations were luted to the framework and a natural tooth. CLINICAL SIGNIFICANCE Provisional restorations allow an objective form of communication. Vertical and horizontal transitional lines can be effectively masked with appropriate treatment planning and a skilled ceramist. Many traditional dental laboratory steps may be eliminated or simplified without compromising the definitive restorations.

  6. The Spt-Ada-Gcn5-acetyltransferase complex interaction motif of E2a is essential for a subset of transcriptional and oncogenic properties of E2a-Pbx1.

    Science.gov (United States)

    Scheele, Jürgen S; Kolanczyk, Mateusz; Gantert, Melanie; Zemojtel, Tomasz; Dorn, Annette; Sykes, David B; Sykes, David P; Möbest, Dietrich C C; Kamps, Mark P; Räpple, Daniel; Duchniewicz, Marlena

    2009-05-01

    The oncogene E2a-Pbx1 is formed by the t(1;19) translocation, which joins the N-terminal transactivation domain of E2a with the C-terminal homeodomain of PBX1. The goal of this work was to elucidate the mechanisms by which E2a-Pbx1 can lead to deregulated target gene expression. For reporter constructs it was shown that E2a-Pbx1 can activate transcription through homodimer elements (TGATTGAT) or through heterodimer elements with Hox proteins (e.g. TGATTAAT). We show a novel mechanism by which E2a-Pbx1 activates transcription of EF-9 using a promoter in intron 1 of the EF-9 gene, resulting in an aminoterminal truncated transcript. Our results indicate that the LDFS motif of E2a is essential for the transactivation of EF-9, but dispensable for transactivation of fibroblast growth factor 15. The E2a LDFS motif was also essential for proliferation of NIH3T3 fibroblasts but was dispensable for the E2a-Pbx1-induced differentiation arrest of myeloid progenitors.

  7. Human orexin/hypocretin receptors form constitutive homo- and heteromeric complexes with each other and with human CB{sub 1} cannabinoid receptors

    Energy Technology Data Exchange (ETDEWEB)

    Jäntti, Maria H., E-mail: maria.jantti@helsinki.fi [Department of Veterinary Biosciences, POB 66, FIN-00014 University of Helsinki (Finland); Mandrika, Ilona, E-mail: ilona@biomed.lu.lv [Latvian Biomedical Research and Study Centre, Ratsupites Str. 1, Riga LV 1067 (Latvia); Kukkonen, Jyrki P., E-mail: jyrki.kukkonen@helsinki.fi [Department of Veterinary Biosciences, POB 66, FIN-00014 University of Helsinki (Finland)

    2014-03-07

    Highlights: • OX{sub 1} and OX{sub 2} orexin and CB{sub 1} cannabinoid receptor dimerization was investigated. • Bioluminescence resonance energy transfer method was used. • All receptors readily formed constitutive homo- and heteromeric complexes. - Abstract: Human OX{sub 1} orexin receptors have been shown to homodimerize and they have also been suggested to heterodimerize with CB{sub 1} cannabinoid receptors. The latter has been suggested to be important for orexin receptor responses and trafficking. In this study, we wanted to assess the ability of the other combinations of receptors to also form similar complexes. Vectors for expression of human OX{sub 1}, OX{sub 2} and CB{sub 1} receptors, C-terminally fused with either Renilla luciferase or GFP{sup 2} green fluorescent protein variant, were generated. The constructs were transiently expressed in Chinese hamster ovary cells, and constitutive dimerization between the receptors was assessed by bioluminescence energy transfer (BRET). Orexin receptor subtypes readily formed homo- and hetero(di)mers, as suggested by significant BRET signals. CB{sub 1} receptors formed homodimers, and they also heterodimerized with both orexin receptors. Interestingly, BRET efficiency was higher for homodimers than for almost all heterodimers. This is likely to be due to the geometry of the interaction; the putatively symmetric dimers may place the C-termini in a more suitable orientation in homomers. Fusion of luciferase to an orexin receptor and GFP{sup 2} to CB{sub 1} produced more effective BRET than the opposite fusions, also suggesting differences in geometry. Similar was seen for the OX{sub 1}–OX{sub 2} interaction. In conclusion, orexin receptors have a significant propensity to make homo- and heterodi-/oligomeric complexes. However, it is unclear whether this affects their signaling. As orexin receptors efficiently signal via endocannabinoid production to CB{sub 1} receptors, dimerization could be an effective way

  8. Cells, walls, and endless forms.

    Science.gov (United States)

    Monniaux, Marie; Hay, Angela

    2016-12-01

    A key question in biology is how the endless diversity of forms found in nature evolved. Understanding the cellular basis of this diversity has been aided by advances in non-model experimental systems, quantitative image analysis tools, and modeling approaches. Recent work in plants highlights the importance of cell wall and cuticle modifications for the emergence of diverse forms and functions. For example, explosive seed dispersal in Cardamine hirsuta depends on the asymmetric localization of lignified cell wall thickenings in the fruit valve. Similarly, the iridescence of Hibiscus trionum petals relies on regular striations formed by cuticular folds. Moreover, NAC transcription factors regulate the differentiation of lignified xylem vessels but also the water-conducting cells of moss that lack a lignified secondary cell wall, pointing to the origin of vascular systems. Other novel forms are associated with modified cell growth patterns, including oriented cell expansion or division, found in the long petal spurs of Aquilegia flowers, and the Sarracenia purpurea pitcher leaf, respectively. Another good example is the regulation of dissected leaf shape in C. hirsuta via local growth repression, controlled by the REDUCED COMPLEXITY HD-ZIP class I transcription factor. These studies in non-model species often reveal as much about fundamental processes of development as they do about the evolution of form. Copyright © 2016 Elsevier Ltd. All rights reserved.

  9. Accurate Hardening Modeling As Basis For The Realistic Simulation Of Sheet Forming Processes With Complex Strain-Path Changes

    International Nuclear Information System (INIS)

    Levkovitch, Vladislav; Svendsen, Bob

    2007-01-01

    Sheet metal forming involves large strains and severe strain-path changes. Large plastic strains lead in many metals to the development of persistent dislocation structures resulting in strong flow anisotropy. This induced anisotropic behavior manifests itself in the case of a strain path change through very different stress-strain responses depending on the type of the strain-path change. While many metals exhibit a drop of the yield stress (Bauschinger effect) after a load reversal, some metals show an increase of the yield stress after an orthogonal strain-path change (so-called cross hardening). To model the Bauschinger effect, kinematic hardening has been successfully used for years. However, the usage of the kinematic hardening leads automatically to a drop of the yield stress after an orthogonal strain-path change contradicting tests exhibiting the cross hardening effect. Another effect, not accounted for in the classical elasto-plasticity, is the difference between the tensile and compressive strength, exhibited e.g. by some steel materials. In this work we present a phenomenological material model whose structure is motivated by polycrystalline modeling that takes into account the evolution of polarized dislocation structures on the grain level - the main cause of the induced flow anisotropy on the macroscopic level. The model considers besides the movement of the yield surface and its proportional expansion, as it is the case in conventional plasticity, also the changes of the yield surface shape (distortional hardening) and accounts for the pressure dependence of the flow stress. All these additional attributes turn out to be essential to model the stress-strain response of dual phase high strength steels subjected to non-proportional loading

  10. Accurate hardening modeling as basis for the realistic simulation of sheet forming processes with complex strain-path changes

    International Nuclear Information System (INIS)

    Levkovitch, Vladislav; Svendsen, Bob

    2007-01-01

    Sheet metal forming involves large strains and severe strain-path changes. Large plastic strains lead in many metals to the development of persistent dislocation structures resulting in strong flow anisotropy. This induced anisotropic behavior manifests itself in the case of a strain path change through very different stress-strain responses depending on the type of the strain-path change. While many metals exhibit a drop of the yield stress (Bauschinger effect) after a load reversal, some metals show an increase of the yield stress after an orthogonal strain-path change (so-called cross hardening). To model the Bauschinger effect, kinematic hardening has been successfully used for years. However, the usage of the kinematic hardening leads automatically to a drop of the yield stress after an orthogonal strain-path change contradicting tests exhibiting the cross hardening effect. Another effect, not accounted for in the classical elasto-plasticity, is the difference between the tensile and compressive strength, exhibited e.g. by some steel materials. In this work we present a phenomenological material model whose structure is motivated by polycrystalline modeling that takes into account the evolution of polarized dislocation structures on the grain level - the main cause of the induced flow anisotropy on the macroscopic level. The model considers besides the movement of the yield surface and its proportional expansion, as it is the case in conventional plasticity, also the changes of the yield surface shape (distortional hardening) and accounts for the pressure dependence of the flow stress. All these additional attributes turn out to be essential to model the stress-strain response of dual phase high strength steels subjected to non-proportional loading

  11. STAR-FORMING ACTIVITY IN THE H ii REGIONS ASSOCIATED WITH THE IRAS 17160–3707 COMPLEX

    Energy Technology Data Exchange (ETDEWEB)

    Nandakumar, G.; Veena, V. S.; Vig, S.; Tej, A. [Indian Institute of Space Science and Technology, Thiruvananthapuram 695 547 (India); Ghosh, S. K.; Ojha, D. K. [Tata Institute of Fundamental Research, Mumbai (Bombay) 400 005 (India)

    2016-11-01

    We present a multiwavelength investigation of star formation activity toward the southern H ii regions associated with IRAS 17160–3707, located at a distance of 6.2 kpc with a bolometric luminosity of 8.3 × 10{sup 5} L {sub ⊙}. The ionized gas distribution and dust clumps in the parental molecular cloud are examined in detail using measurements at infrared, submillimeter and radio wavelengths. The radio continuum images at 1280 and 610 MHz obtained using the Giant Metrewave Radio Telescope reveal the presence of multiple compact sources as well as nebulous emission. At submillimeter wavelengths, we identify seven dust clumps and estimate their physical properties such as temperature: 24–30 K, mass: 300–4800 M {sub ⊙} and luminosity: 9–317 × 10{sup 2} L {sub ⊙} using modified blackbody fits to the spectral energy distributions (SEDs) between 70 and 870 μ m. We find 24 young stellar objects (YSOs) in the mid-infrared, with a few of them coincident with the compact radio sources. The SEDs of the YSOs have been fitted by the Robitaille models and the results indicate that those having radio compact sources as counterparts host massive objects in early evolutionary stages with best fit age ≤0.2 Myr. We compare the relative evolutionary stages of clumps using various signposts such as masers, ionized gas, presence of YSOs and infrared nebulosity, and find six massive star-forming clumps and one quiescent clump. Of the former, five are in a relatively advanced stage and one in an earlier stage.

  12. DECIPHERING THE IONIZED GAS CONTENT IN THE MASSIVE STAR-FORMING COMPLEX G75.78+0.34

    International Nuclear Information System (INIS)

    Sánchez-Monge, Álvaro; Kurtz, Stan; Lizano, Susana; Palau, Aina; Estalella, Robert; Shepherd, Debra; Franco, José; Garay, Guido

    2013-01-01

    We present subarcsecond observations toward the massive star-forming region G75.78+0.34. We used the Very Large Array to study the centimeter continuum and H 2 O and CH 3 OH maser emission, and the Owens Valley Radio Observatory and Submillimeter Array to study the millimeter continuum and recombination lines (H40α and H30α). We found radio continuum emission at all wavelengths, coming from three components: (1) a cometary ultracompact (UC) H II region with an electron density ∼3.7 × 10 4 cm –3 , excited by a B0 type star, and with no associated dust emission; (2) an almost unresolved UCH II region (EAST), located ∼6'' to the east of the cometary UCH II region, with an electron density ∼1.3 × 10 5 cm –3 , and associated with a compact dust clump detected at millimeter and mid-infrared wavelengths; and (3) a compact source (CORE), located ∼2'' to the southwest of the cometary arc, with a flux density increasing with frequency, and embedded in a dust condensation of 30 M ☉ . The CORE source is resolved into two compact and unresolved sources which can be well fit by two homogeneous hypercompact H II regions each one photoionized by a B0.5 zero-age main sequence star, or by free-free radiation from shock-ionized gas resulting from the interaction of a jet/outflow system with the surrounding environment. The spatial distribution and kinematics of water masers close to the CORE-N and S sources, together with excess emission at 4.5 μm and the detected dust emission, suggest that the CORE source is a massive protostar driving a jet/outflow.

  13. Insights into the complex formed by matrix metalloproteinase-2 and alloxan inhibitors: molecular dynamics simulations and free energy calculations.

    Directory of Open Access Journals (Sweden)

    Ilenia Giangreco

    Full Text Available Matrix metalloproteinases (MMP are well-known biological targets implicated in tumour progression, homeostatic regulation, innate immunity, impaired delivery of pro-apoptotic ligands, and the release and cleavage of cell-surface receptors. Hence, the development of potent and selective inhibitors targeting these enzymes continues to be eagerly sought. In this paper, a number of alloxan-based compounds, initially conceived to bias other therapeutically relevant enzymes, were rationally modified and successfully repurposed to inhibit MMP-2 (also named gelatinase A in the nanomolar range. Importantly, the alloxan core makes its debut as zinc binding group since it ensures a stable tetrahedral coordination of the catalytic zinc ion in concert with the three histidines of the HExxHxxGxxH metzincin signature motif, further stabilized by a hydrogen bond with the glutamate residue belonging to the same motif. The molecular decoration of the alloxan core with a biphenyl privileged structure allowed to sample the deep S(1' specificity pocket of MMP-2 and to relate the high affinity towards this enzyme with the chance of forming a hydrogen bond network with the backbone of Leu116 and Asn147 and the side chains of Tyr144, Thr145 and Arg149 at the bottom of the pocket. The effect of even slight structural changes in determining the interaction at the S(1' subsite of MMP-2 as well as the nature and strength of the binding is elucidated via molecular dynamics simulations and free energy calculations. Among the herein presented compounds, the highest affinity (pIC(50 = 7.06 is found for BAM, a compound exhibiting also selectivity (>20 towards MMP-2, as compared to MMP-9, the other member of the gelatinases.

  14. Insights into the complex formed by matrix metalloproteinase-2 and alloxan inhibitors: molecular dynamics simulations and free energy calculations.

    Science.gov (United States)

    Giangreco, Ilenia; Lattanzi, Gianluca; Nicolotti, Orazio; Catto, Marco; Laghezza, Antonio; Leonetti, Francesco; Stefanachi, Angela; Carotti, Angelo

    2011-01-01

    Matrix metalloproteinases (MMP) are well-known biological targets implicated in tumour progression, homeostatic regulation, innate immunity, impaired delivery of pro-apoptotic ligands, and the release and cleavage of cell-surface receptors. Hence, the development of potent and selective inhibitors targeting these enzymes continues to be eagerly sought. In this paper, a number of alloxan-based compounds, initially conceived to bias other therapeutically relevant enzymes, were rationally modified and successfully repurposed to inhibit MMP-2 (also named gelatinase A) in the nanomolar range. Importantly, the alloxan core makes its debut as zinc binding group since it ensures a stable tetrahedral coordination of the catalytic zinc ion in concert with the three histidines of the HExxHxxGxxH metzincin signature motif, further stabilized by a hydrogen bond with the glutamate residue belonging to the same motif. The molecular decoration of the alloxan core with a biphenyl privileged structure allowed to sample the deep S(1)' specificity pocket of MMP-2 and to relate the high affinity towards this enzyme with the chance of forming a hydrogen bond network with the backbone of Leu116 and Asn147 and the side chains of Tyr144, Thr145 and Arg149 at the bottom of the pocket. The effect of even slight structural changes in determining the interaction at the S(1)' subsite of MMP-2 as well as the nature and strength of the binding is elucidated via molecular dynamics simulations and free energy calculations. Among the herein presented compounds, the highest affinity (pIC(50) = 7.06) is found for BAM, a compound exhibiting also selectivity (>20) towards MMP-2, as compared to MMP-9, the other member of the gelatinases.

  15. DECIPHERING THE IONIZED GAS CONTENT IN THE MASSIVE STAR-FORMING COMPLEX G75.78+0.34

    Energy Technology Data Exchange (ETDEWEB)

    Sanchez-Monge, Alvaro [Osservatorio Astrofisico di Arcetri, INAF, Largo E. Fermi 5, I-50125 Firenze (Italy); Kurtz, Stan; Lizano, Susana [Centro de Radioastronomia y Astrofisica, Universidad Nacional Autonoma de Mexico, Apdo. Postal 3-72, 58090, Morelia, Michoacan (Mexico); Palau, Aina [Institut de Ciencies de l' Espai (CSIC-IEEC), Campus UAB-Facultat de Ciencies, Torre C5p 2, E-08193 Bellaterra, Catalunya (Spain); Estalella, Robert [Dpt d' Astronomia i Meteorologia (IEEC-UB), Institut de Ciencies del Cosmos, Universitat de Barcelona, Marti i Franques, 1, E-08028 Barcelona (Spain); Shepherd, Debra [NRAO, P.O. Box O, Socorro, NM 87801-0387 (United States); Franco, Jose [Instituto de Astronomia, Universidad Nacional Autonoma de Mexico, Apdo. Postal 70-264, 04510 Mexico, D.F. (Mexico); Garay, Guido, E-mail: asanchez@arcetri.astro.it [Departamento de Astronomia, Universidad de Chile, Camino el Observatorio 1515, Las Condes, Santiago (Chile)

    2013-04-01

    We present subarcsecond observations toward the massive star-forming region G75.78+0.34. We used the Very Large Array to study the centimeter continuum and H{sub 2}O and CH{sub 3}OH maser emission, and the Owens Valley Radio Observatory and Submillimeter Array to study the millimeter continuum and recombination lines (H40{alpha} and H30{alpha}). We found radio continuum emission at all wavelengths, coming from three components: (1) a cometary ultracompact (UC) H II region with an electron density {approx}3.7 Multiplication-Sign 10{sup 4} cm{sup -3}, excited by a B0 type star, and with no associated dust emission; (2) an almost unresolved UCH II region (EAST), located {approx}6'' to the east of the cometary UCH II region, with an electron density {approx}1.3 Multiplication-Sign 10{sup 5} cm{sup -3}, and associated with a compact dust clump detected at millimeter and mid-infrared wavelengths; and (3) a compact source (CORE), located {approx}2'' to the southwest of the cometary arc, with a flux density increasing with frequency, and embedded in a dust condensation of 30 M{sub Sun }. The CORE source is resolved into two compact and unresolved sources which can be well fit by two homogeneous hypercompact H II regions each one photoionized by a B0.5 zero-age main sequence star, or by free-free radiation from shock-ionized gas resulting from the interaction of a jet/outflow system with the surrounding environment. The spatial distribution and kinematics of water masers close to the CORE-N and S sources, together with excess emission at 4.5 {mu}m and the detected dust emission, suggest that the CORE source is a massive protostar driving a jet/outflow.

  16. Physicochemical impact studies of gamma rays on "aspirin" analgesics drug and its metal complexes in solid form: Synthesis, spectroscopic and biological assessment of Ca(II), Mg(II), Sr(II) and Ba(II) aspirinate complexes

    Science.gov (United States)

    Refat, Moamen S.; Sharshar, T.; Elsabawy, Khaled M.; Heiba, Zein K.

    2013-09-01

    Metal aspirinate complexes, M2(Asp)4, where M is Mg(II), Ca(II), Sr(II) or Ba(II) are formed by refluxed of aspirin (Asp) with divalent non-transition metal ions of group (II) and characterized by elemental analysis and spectroscopic measurements (infrared, electronic, 1H NMR, Raman, X-ray powder diffraction and scanning electron microscopy). Elemental analysis of the chelates suggests the stoichiometry is 1:2 (metal:ligand). Infrared spectra of the complexes agree with the coordination to the central metal atom through three donation sites of two oxygen atoms of bridge bidentate carboxylate group and oxygen atom of sbnd Cdbnd O of acetyl group. Infrared spectra coupled with the results of elemental analyzes suggested a distorted octahedral structure for the M(II) aspirinate complexes. Gamma irradiation was tested as a method for stabilization of aspirin as well as their complexes. The effect of gamma irradiation, with dose of 80 Gy, on the properties of aspirinate complexes was studied. The aspirinate chelates have been screened for their in vitro antibacterial activity against four bacteria, gram-positive (Bacillus subtilis and Staphylococcus aureus) and gram-negative (Escherichia coli and Pseudomonas aeruginosa) and two strains of fungus (Aspergillus flavus and Candida albicans). The metal chelates were shown to possess more antibacterial activity than the free aspirin chelate.

  17. Timing of transcription during the cell cycle: Protein complexes binding to E2F, E2F/CLE, CDE/CHR, or CHR promoter elements define early and late cell cycle gene expression

    Science.gov (United States)

    Müller, Gerd A.; Stangner, Konstanze; Schmitt, Thomas; Wintsche, Axel; Engeland, Kurt

    2017-01-01

    A central question in cell cycle control is how differential gene expression is regulated. Timing of expression is important for correct progression through the cell cycle. E2F, CDE, and CHR promoter sites have been linked to transcriptional repression in resting cells and activation during the cell cycle. Further, the DREAM complex binds CHR or CDE/CHR elements of G2/M genes resulting in repression during G0/G1. Here, we show that DREAM also binds to E2F sites of S phase genes in quiescence and upon p53 activation. Furthermore, we describe a novel class of promoter sites, the CHR-like elements (CLE), which can support binding of DREAM to E2F elements. Activation of such S phase genes is achieved through binding of E2F1-3/DP complexes to E2F sites. In contrast, the activating MuvB complexes MMB and FOXM1-MuvB bind to CHR elements and mediate peak expression in G2/M. In conclusion, data presented here in combination with earlier results leads us to propose a model that explains how DREAM can repress early cell cycle genes through E2F or E2F/CLE sites and late genes through CHR or CDE/CHR elements. Also p53-dependent indirect transcriptional repression through the p53-p21-Cyclin/CDK-DREAM-E2F/CLE/CDE/CHR pathway requires DREAM binding to E2F or E2F/CLE sites in early cell cycle genes and binding of DREAM to CHR or CDE/CHR elements of late cell cycle genes. Specific timing of activation is achieved through binding of E2F1-3/DP to E2F sites and MMB or FOXM1-MuvB complexes to CHR elements. PMID:29228647

  18. Initiation of HIV Reverse Transcription

    OpenAIRE

    Isel, Catherine; Ehresmann, Chantal; Marquet, Roland

    2010-01-01

    Reverse transcription of retroviral genomes into double stranded DNA is a key event for viral replication. The very first stage of HIV reverse transcription, the initiation step, involves viral and cellular partners that are selectively packaged into the viral particle, leading to an RNA/protein complex with very specific structural and functional features, some of which being, in the case of HIV-1, linked to particular isolates. Recent understanding of the tight spatio-temporal regulation of...

  19. GAS PHASE STRUCTURE AND STABILITY OF COMPLEX FORMED BY H2O, NH3, H2S AND THEIR METHYL DERIVATIVES WITH THE CATION CO2+

    Directory of Open Access Journals (Sweden)

    Cahyorini Kusumawardani

    2010-06-01

    Full Text Available Ab initio molecular orbital calculations at the Hartree-Fock-Self Consistent Field (HF-SCF have been performed in order to determine the structure and gas phase energies of complex formed by the Lewis bases of H2O, NH3, H2S and their methyl derivatives with the cation Co2+. The relative basicities of the base studied depend on both the substituent. The gas-phase interaction energies computed by the SCF method including electron correlation Møller-Plesset 2 (MP2 dan Configuration Iteration (CI were comparable in accuracy. The binding energies computed by these two methods reach the targeted chemical accuracy.   Keywords: ab initio calculation, cobalt complex, structure stability

  20. The CDC50A extracellular domain is required for forming a functional complex with and chaperoning phospholipid flippases to the plasma membrane.

    Science.gov (United States)

    Segawa, Katsumori; Kurata, Sachiko; Nagata, Shigekazu

    2018-02-09

    Flippases are enzymes that translocate phosphatidylserine (PtdSer) and phosphatidylethanolamine (PtdEtn) from the outer to the inner leaflet in the lipid bilayer of the plasma membrane, leading to the asymmetric distribution of aminophospholipids in the membrane. One mammalian phospholipid flippase at the plasma membrane is ATP11C, a type IV P-type ATPase (P4-ATPase) that forms a heterocomplex with the transmembrane protein CDC50A. However, the structural features in CDC50A that support the function of ATP11C and other P4-ATPases have not been characterized. Here, using error-prone PCR-mediated mutagenesis of human CDC50A cDNA followed by functional screening and deep sequencing, we identified 14 amino acid residues that affect ATP11C's flippase activity. These residues were all located in CDC50A's extracellular domain and were evolutionarily well-conserved. Most of the mutations decreased CDC50A's ability to chaperone ATP11C and other P4-ATPases to their destinations. The CDC50A mutants failed to form a stable complex with ATP11C and could not induce ATP11C's PtdSer-dependent ATPase activity. Notably, one mutant variant could form a stable complex with ATP11C and transfer ATP11C to the plasma membrane, yet the ATP11C complexed with this CDC50A variant had very weak or little PtdSer- or PtdEtn-dependent ATPase activity. These results indicated that the extracellular domain of CDC50A has important roles both in CDC50A's ability to chaperone ATP11C to the plasma membrane and in inducing ATP11C's ATP hydrolysis-coupled flippase activity. © 2018 by The American Society for Biochemistry and Molecular Biology, Inc.

  1. X-ray and neutron small-angle scattering analysis of the complex formed by the Met receptor and the Listeria monocytogenes invasion protein InlB.

    Science.gov (United States)

    Niemann, Hartmut H; Petoukhov, Maxim V; Härtlein, Michael; Moulin, Martine; Gherardi, Ermanno; Timmins, Peter; Heinz, Dirk W; Svergun, Dmitri I

    2008-03-21

    The Listeria monocytogenes surface protein InlB binds to the extracellular domain of the human receptor tyrosine kinase Met, the product of the c-met proto-oncogene. InlB binding activates the Met receptor, leading to uptake of Listeria into normally nonphagocytic host cells. The N-terminal half of InlB (InlB(321)) is sufficient for Met binding and activation. The complex between this Met-binding domain of InlB and various constructs of the Met ectodomain was characterized by size exclusion chromatography and dynamic light scattering, and structural models were built using small-angle X-ray scattering