WorldWideScience

Sample records for trans-mexican volcanic belt-implications

  1. Subduction Contributions in the Trans-Mexican Volcanic Belt: Implications from Lava Chemistry and Hf-Nd-Pb Isotopes

    Science.gov (United States)

    Cai, Y.; Goldstein, S. L.; Langmuir, C. H.; Gómez-Tuena, A.; Lagatta, A.; Straub, S. M.; Martín Del Pozzo, A.

    2007-05-01

    Despite thick continental crust, near primitive lavas erupt throughout the Trans-Mexican Volcanic Belt (TMVB). In order to distinguish and better constrain subduction contributions and effects of crustal contamination, we analyzed samples representing subducting sediments from DSDP Site 487, and Quaternary lavas from stratovolcanoes and cinder cones, including alkaline "high-Nb" lavas from the Sierra Chichinautzin Volcanic Field (SCVF) showing negligible subduction signature in its trace element chemistry and representing melts of the mantle wedge. Our primary observations and implications are: (1) The high-Nb SCVF `intraplate' lavas define a linear trend along the "Nd-Hf mantle-crust array", defining the composition of the mantle wedge. (2) Popocatepetl and Nevado de Toluca stratovolcanoes show the highest Nd and Hf isotope ratios, higher than the `intraplate' lavas, indicating their sources are more "depleted mantle-like" than the regional mantle wedge. (3) The Popo and Toluca chemical and isotopic trends sharply contrast with Pico de Orizaba, which shows classic indications of crustal contamination (e.g. high 207Pb/204Pb, low Nd-Hf isotope ratios), consistent with contamination by local Precambrian crust. (4) Higher Nd-Hf isotopes in Popo and Toluca lavas also correlate with lower Pb isotope ratios, and lower Lu/Hf and Zr/Hf. Together, these data indicate contributions from subducted Pacific oceanic crust and hydrothermal sediment. (5) Popo and Toluca are also enriched in Th/LREE compared with `intraplate' lavas, reflecting subducted sediment contributions. (6) Nd-Hf isotope ratios of hydrothermal sediment from DSDP Site 487 lie on the "seawater array", with high Hf isotope ratios compared to the "mantle-crust array". Popo and Toluca Nd-Hf isotopes display a shallower slope than the "intraplate lava Nd-Hf array", reflecting contributions from hydrothermal sediment. Popocatepetl and Toluca lavas therefore avoid substantial crustal contamination of mantle wedge

  2. Estimation of the internal structure of Trans-Mexican volcanic belt by gravimetric data

    International Nuclear Information System (INIS)

    Flores R, J.H.

    1994-01-01

    The regional gravimetric data of Trans-Mexican volcanic belt and surroundings, has been analyzed in order to estimate the depth of its internal structure. The short profiles with N-S orientation give a model of four shells with an average depth in the rank 24, 34, 56 and 83 kilometers. Only the profiles included between 97 West degrees to 102 West degrees give a depth of crust larger than the rest of the profiles with the same orientation. This profiles are associated with that of the Valleys of Toluca, D.F. and Puebla where the maximum crust thickness was estimated. The 3 long profiles with S-W orientation, give a model of 3 shells. The tendency of the first shell has a cortical thickness of 38 kilometers in the latitude of 18 North degrees. This tendency to increase the depth in the crust is associated with the minimum gravimetric in the map of Bouguer anomaly. (Author)

  3. A shallow crustal earthquake doublet from the Trans-Mexican volcanic belt (Central Mexico)

    Science.gov (United States)

    Quintanar, L.; Rodríguez-González, M.; Campos-Enríquez, O.

    2003-04-01

    The trans-Mexican volcanic belt is an active volcanic arc related to subduction along the Middle America trench and characterized by shallow seismicity and synvolcanic to postvolcanic extensional arc-parallel faulting. The Mezquital graben is a major intra-arc basin of the central trans-Mexican volcanic belt. A doublet of moderate shallow shocks occurred in March and October 1976 in the region of this graben. These earthquakes were recorded by the Mexican National Seismological network, in particular by the Bosch-Omori seismograph (T_0 = 18 s) at the Tacubaya Observatory in Mexico City. We have carefully relocated the two main shocks and their major aftershocks by reading the original records and using a modified crustal velocity model for this region. A difference of ˜50 km is observed between the locations reported by the Mexican Seismological Service and those obtained in this study, which are additionally supported by the damage distribution of these earthquakes. A first motion analysis, based on regional and teleseismic records, defines for the March and October shocks normal fault mechanisms, characterized by E-W striking fault planes, which coincides with the orientation of the master faults of the Mezquital graben. After calculating the instrumental response, the source parameters were obtained from the Bosch-Omori seismograph records by body-wave modeling. For the March earthquake, we estimate a seismic moment of 4.5×1023 dyne-cm (equivalent to M_w=5.0) and a stress drop of 0.7 MPa assuming a circular rupture model (radius = 3 km). Given the poor quality of the Bosch-Omori record for the October earthquake, we used the comparison, between both events, of long-period (T=20 sec) teleseismic records at 2 stations to obtain its corresponding source parameters. By assuming a similar stress drop as for the March event, we obtain a M_0 of 5.6×1023 dyne-cm and M_w = 5.1 with a rupture length of 6.5 km. According to gravity data, the regional E-W faults are

  4. Shallow crustal structure of eastern-central Trans-Mexican Volcanic Belt.

    Science.gov (United States)

    Campos-Enriquez, J. O.; Ramón, V. M.; Lermo-Samaniego, J.

    2015-12-01

    Central-eastern Trans-Mexican Volcanic Belt (TMVB) is featured by large basins (i.e., Toluca, Mexico, Puebla-Tlaxcala, Libres-Oriental). It has been supposed that major crustal faults limit these basins. Sierra de Las Cruces range separates the Toluca and Mexico basins. The Sierra Nevada range separates Mexico basin from the Puebla-Tlaxcala basin. Based in gravity and seismic data we inferred the Toluca basin is constituted by the Ixtlahuaca sub-basin, to the north, and the Toluca sub-basin to the south, which are separated by a relative structural high. The Toluca depression is more symmetric and bounded by sub-vertical faults. In particular its eastern master fault controlled the emplacement of Sierra de Las Cruces range. Easternmost Acambay graben constitutes the northern and deepest part of the Ixtlahuaca depression. The Toluca-Ixtlahuaca basin is inside the Taxco-San Miguel de Allende fault system, and limited to the west by the Guerrero terrane which continues beneath the TMVB up to the Acambay graben. Mexico basin basement occupies an intermediate position and featured by a relative structural high to the north-east, as established by previous studies. This relative structural high is limited to the west by the north-south Mixhuca trough, while to the south it is bounded by the east-west Copilco-Xochimilco-Chalco sub-basin. The Puebla-Tlaxcala basin basement is the shallowest of these 3 tectonic depressions. In general, features (i.e., depth) and relationship between these basins, from west to east, are controlled by the regional behavior of the Sierra Madre Oriental fold and thrust belt basement (i.e., Oaxaca Complex?). This study indicates that an active east-west regional fault system limits to the south the TMVB (from the Nevado de Toluca volcano through the Popocatepetl volcano and eastward along southern Puebla-Tlaxcala basin). The Tenango and La Pera fault systems constituting the western part of this regional fault system coincide with northern

  5. Origin and Development of El Bajío Basin in the Central Sector of Trans-Mexican Volcanic Belt

    Science.gov (United States)

    Botero, P. A.; Alaniz Álvarez, S. A.; Nieto Samaniego, Á. F.; Lopez-Martinez, M.; Levresse, G.; Xu, S.; Ortega Obregón, C.

    2015-12-01

    Volcanism of the Trans-Mexican Volcanic Belt has been placed on pre-existing tectonic basins; one of them is El Bajío Basin. We present the origin and evolution of this basin through the study of its deformation events occurring mainly on the El Bajío fault, at the boundary between the Trans-Mexican Volcanic Belt and the Mesa Central. Detailed stratigraphy, and structural analysis suggest 4 deformation events in the northwest of the Sierra de Guanajuato. The first event (D1) with E-W shortening is characterized by the development of axial plane foliation (S1) with N-S direction, this event occurred between the Tithonian and Aptian age. In the second event (D2), occurred between the Albian and the early Eocene, foliations NW-SE (S2) were generated with a NE-SW shortening trend dated between the Albian and early Eocene, this deformation is related to the Laramide Orogeny. The Granito Comanja was emplaced during the third event (D3) and generated foliation (S3) in sediments of the complejo vulcanosedimentario Sierra de Guanajuato that circumscribes the Granito Comanja in response to its intrusion. After its emplacement, NW-SE normal faults were generated along the S-SE contact of the Granito Comanja, at that time El Bajío fault began. The fourth event (D4) has three phases that affected the sedimentary and volcanic Cenozoic rocks. D4F1 is marked by continental conglomerates deposition with variable thickness along of the main trace of the El Bajío fault. D4F2 affected the Oligocene volcanic rocks showing an important fault activity at that time, as evidenced the tilting above 45o in the Oligocene rocks, temporarily coincides with the triaxial extension to the Mesa Central. The direction of elongation of D4F3 is ESE-WNW, El Bajío fault had little movement. Since the Miocene the deformation was concentrated along the southern central sector of the Trans-mexican Volcanic Belt and there were few deformation in the Mesa central. During the three phases of deformation

  6. NW-SE Pliocene-Quaternary extension in the Apan-Acoculco region, eastern Trans-Mexican Volcanic Belt

    Science.gov (United States)

    García-Palomo, Armando; Macías, José Luis; Jiménez, Adrián; Tolson, Gustavo; Mena, Manuel; Sánchez-Núñez, Juan Manuel; Arce, José Luis; Layer, Paul W.; Santoyo, Miguel Ángel; Lermo-Samaniego, Javier

    2018-01-01

    The Apan-Acoculco area is located in the eastern portion of the Mexico basin and the Trans-Mexican Volcanic Belt. The area is transected by right-stepping variably dipping NE-SW normal faults. The Apan-Tlaloc Fault System is a major discontinuity that divides the region into two contrasting areas with different structural and volcanic styles. a) The western area is characterized by a horst-graben geometry with widespread Quaternary monogenetic volcanism and scattered outcrops of Miocene and Pliocene rocks. b) The eastern area is dominated by tilted horsts with a domino-like geometry with widespread Miocene and Pliocene rocks, scattered Quaternary monogenetic volcanoes and the Acoculco Caldera. Gravity data suggest that this structural geometry continues into the Mesozoic limestones. Normal faulting was active since the Pliocene with three stages of extension. One of them, an intense dilatational event began during late Pliocene and continues nowadays, contemporaneously with the emplacement of the Apan-Tezontepec Volcanic Field and the Acoculco caldera. Statistical analysis of cone elongation, cone instability, and the kinematic analysis of faults attest for a NW50°SE ± 7° extensional regime in the Apan-Acoculco area. The activity in some portions of the Apan-Tlaloc Fault System continues today as indicated by earthquake swarms recorded in 1992 and 1996, that disrupted late Holocene paleosols, and Holocene volcanism.

  7. The structural architecture of the Los Humeros volcanic complex and geothermal field, Trans-Mexican Volcanic Belt, Central Mexico

    Science.gov (United States)

    Norini, Gianluca; Groppelli, Gianluca; Sulpizio, Roberto; Carrasco Núñez, Gerardo; Davila Harris, Pablo

    2014-05-01

    The development of geothermal energy in Mexico is a very important goal, given the presence of a large heat anomaly, associated with the Trans-Mexican Volcanic Belt, the renewability of the resource and the low environmental impact. The Quaternary Los Humeros volcanic complex is an important geothermal target, whose evolution involved at least two caldera events, that alternated with other explosive and effusive activity. The first caldera forming event was the 460 ka eruption that produced the Xaltipan ignimbrite and formed a 15-20 km wide caldera. The second collapse event occurred 100 ka with the formation of the Zaragoza ignimbrite and a nested 8-10 km wide caldera. The whole volcano structure, the style of the collapses and the exact location of the calderas scarps and ring faults are still a matter of debate. The Los Humeros volcano hosts the productive Los Humeros Geothermal Field, with an installed capacity of 40 MW and additional 75 MW power plants under construction. Recent models of the geothermal reservoir predict the existence of at least two reservoirs in the geothermal system, separated by impermeable rock units. Hydraulic connectivity and hydrothermal fluids circulation occurs through faults and fractures, allowing deep steam to ascend while condensate flows descend. As a consequence, the plans for the exploration and exploitation of the geothermal reservoir have been based on the identification of the main channels for the circulation of hydrothermal fluids, constituted by faults, so that the full comprehension of the structural architecture of the caldera is crucial to improve the efficiency and minimize the costs of the geothermal field operation. In this study, we present an analysis of the Los Humeros volcanic complex focused on the Quaternary tectonic and volcanotectonics features, like fault scarps and aligned/elongated monogenetic volcanic centres. Morphostructural analysis and field mapping reveal the geometry, kinematics and dynamics of

  8. Debris Avalanches and Debris Flows Transformed from Collapses in the Trans-Mexican Volcanic Belt, México.

    Science.gov (United States)

    Capra, L.; Macias, J.; Scott, K.; Abrams, M.; Garduño, V.

    2001-12-01

    Volcanoes of the Trans-Mexican Volcanic Belt (TMVB) have yielded numerous sector and flank collapses during Pleistocene and Holocene time. Sector collapses associated with magmatic activity have yielded debris avalanches with generally limited runout extent (e.g. Popocatépetl, Jocotitlán, and Colima volcanoes). In contrast, flank collapses (smaller failures not involving the volcano summit), both associated and unassociated with magmatic activity and correlated with intense hydrothermal alteration in ice-capped volcanoes, commonly have yielded highly mobile cohesive debris flows (e.g. Pico de Orizaba and Nevado de Toluca volcanoes). Collapse orientation in the TMVB is preferentially to the south and north-east, probably reflecting the tectonic regime of active E-W and NNW faults. The different mobilities of the flows transformed from collapses have important implications for hazard assessment. Both sector and flank collapse can yield highly mobile debris flows, but this transformation is more common in the case of the smaller failures. High mobility is related to factors such as water and clay content of the failed material, the paleotopography, and the extent of entrainment of sediment during flow (bulking). Both debris-avalanches and debris-flows are volcanic hazards that occur from both active volcanoes, as well as those that are inactive or dormant volcanoes, and may by triggered by earthquakes, precipitation, or simple gravity. There will be no precursory warning in such non-volcanic cases.

  9. Hf Isotope Evidence for Subducted Basalt and Sediment Contributions to the Eastern Trans-Mexican Volcanic Belt

    Science.gov (United States)

    Cai, Y.; Tuena, A. G.; Capra, L.; Straub, S. M.; Goldstein, S. L.; Langmuir, C. H.

    2005-12-01

    Magmas generated at thick crust continental arcs often have enriched continental crust-like trace element patterns and Pb-Sr-Nd isotope ratios that are intermediate to both upper mantle and crustal compositions. Thus it is difficult to distinguish between contributions from (a) the subducted basalt and the upper mantle wedge, and (b) subducted sediment and the continental crust. These issues have been the focus of major controversy. Here we show evidence for subduction contributions to lavas in a classic thick crust environment. In Eastern Trans-Mexican Volcanic Belt, the upper continental crust is 30 km to 45 km thick. However, primitive mafic lavas erupt on many sites across the arc. We have analyzed the subducting sediments as represented by DSDP 487, located seaward of the trench, where the lower third of the sediment column has strongly hydrothermal pelagic features and the upper two-thirds is composed of terrigenous sediments. The pelagic sediments have distinctive features that could be used to identify a subduction component in the volcanics, including high REE/Hf, negative Ce anomalies, and Nd-Hf isotopes that lie on the "seawater array" and offset from the "mantle-crust" array. We have focused on a unique series of lavas from volcano Nevado de Toluca, located southwest of Mexico City. These lavas show negative Ce anomalies coupled with low REE/Hf and Zr/Nd ratios. Hf-Nd isotope ratios show a shallow trend compared to the mantle-crust array, consistent with a pelagic component. In addition, Hf isotopes show a striking positive correlation with Ce anomalies that trend toward the pelagic sediment compositions. These and other observations provide clear evidence for a component from subducted sediment in the lavas. In addition, there is a negative correlation of Lu/Hf and Hf isotopes that requires a mixing endmember with MORB-like Hf isotope ratios but with lower than MORB Lu/Hf. This indicates a melt from eclogitic subducted basalt. Compared to other

  10. Present and future ecological niche modeling of garter snake species from the Trans-Mexican Volcanic Belt

    Science.gov (United States)

    García-Vázquez, Uri; D’Addario, Maristella

    2018-01-01

    Land use and climate change are affecting the abundance and distribution of species. The Trans-Mexican Volcanic Belt (TMVB) is a very diverse region due to geological history, geographic position, and climate. It is also one of the most disturbed regions in Mexico. Reptiles are particularly sensitive to environmental changes due to their low dispersal capacity and thermal ecology. In this study, we define the important environmental variables (considering climate, topography, and land use) and potential distribution (present and future) of the five Thamnophis species present in TMVB. To do so, we used the maximum entropy modeling software (MAXENT). First, we modeled to select the most important variables to explain the distribution of each species, then we modeled again using only the most important variables and projected these models to the future considering a middle-moderate climate change scenario (rcp45), and land use and vegetation variables for the year 2050 (generated according to land use changes that occurred between years 2002 and 2011). Arid vegetation had an important negative effect on habitat suitability for all species, and minimum temperature of the coldest month was important for four of the five species. Thamnophis cyrtopsis was the species with the lowest tolerance to minimum temperatures. The maximum temperature of the warmest month was important for T. scalaris and T. cyrtopsis. Low percentages of agriculture were positive for T. eques and T. melanogaster but, at higher values, agriculture had a negative effect on habitat suitability for both species. Elevation was the most important variable to explain T. eques and T. melanogaster potential distribution while distance to Abies forests was the most important variable for T. scalaris and T. scaliger. All species had a high proportion of their potential distribution in the TMVB. However, according to our models, all Thamnophis species will experience reductions in their potential

  11. High variability of dung beetle diversity patterns at four mountains of the Trans-Mexican Volcanic Belt

    Directory of Open Access Journals (Sweden)

    Alfonsina Arriaga-Jiménez

    2018-02-01

    Full Text Available Insect diversity patterns of high mountain ecosystems remain poorly studied in the tropics. Sampling dung beetles of the subfamilies Aphodiinae, Scarabaeinae, and Geotrupinae was carried out at four volcanoes in the Trans-Mexican Volcanic Belt (TMVB in the Mexican transition zone at 2,700 and 3,400 MASL, and on the windward and leeward sides. Sampling units represented a forest–shrubland–pasture (FSP mosaic typical of this mountain region. A total of 3,430 individuals of 29 dung beetle species were collected. Diversity, abundance and compositional similarity (CS displayed a high variability at all scales; elevation, cardinal direction, or FSP mosaics did not show any patterns of higher or lower values of those measures. The four mountains were different regarding dispersion patterns and taxonomic groups, both for species and individuals. Onthophagus chevrolati dominated all four mountains with an overall relative abundance of 63%. CS was not related to distance among mountains, but when O. chevrolati was excluded from the analysis, CS values based on species abundance decreased with increasing distance. Speciation, dispersion, and environmental instability are suggested as the main drivers of high mountain diversity patterns, acting together at different spatial and temporal scales. Three species new to science were collected (>10% of all species sampled. These discoveries may indicate that speciation rate is high among these volcanoes—a hypothesis that is also supported by the elevated number of collected species with a restricted montane distribution. Dispersion is an important factor in driving species composition, although naturally limited between high mountains; horizontal colonization events at different time scales may best explain the observed species composition in the TMVB, complemented by vertical colonization events to a lesser extent. Environmental instability may be the main factor causing the high variability of diversity

  12. High variability of dung beetle diversity patterns at four mountains of the Trans-Mexican Volcanic Belt.

    Science.gov (United States)

    Arriaga-Jiménez, Alfonsina; Rös, Matthias; Halffter, Gonzalo

    2018-01-01

    Insect diversity patterns of high mountain ecosystems remain poorly studied in the tropics. Sampling dung beetles of the subfamilies Aphodiinae, Scarabaeinae, and Geotrupinae was carried out at four volcanoes in the Trans-Mexican Volcanic Belt (TMVB) in the Mexican transition zone at 2,700 and 3,400 MASL, and on the windward and leeward sides. Sampling units represented a forest-shrubland-pasture (FSP) mosaic typical of this mountain region. A total of 3,430 individuals of 29 dung beetle species were collected. Diversity, abundance and compositional similarity (CS) displayed a high variability at all scales; elevation, cardinal direction, or FSP mosaics did not show any patterns of higher or lower values of those measures. The four mountains were different regarding dispersion patterns and taxonomic groups, both for species and individuals. Onthophagus chevrolati dominated all four mountains with an overall relative abundance of 63%. CS was not related to distance among mountains, but when O. chevrolati was excluded from the analysis, CS values based on species abundance decreased with increasing distance. Speciation, dispersion, and environmental instability are suggested as the main drivers of high mountain diversity patterns, acting together at different spatial and temporal scales. Three species new to science were collected (>10% of all species sampled). These discoveries may indicate that speciation rate is high among these volcanoes-a hypothesis that is also supported by the elevated number of collected species with a restricted montane distribution. Dispersion is an important factor in driving species composition, although naturally limited between high mountains; horizontal colonization events at different time scales may best explain the observed species composition in the TMVB, complemented by vertical colonization events to a lesser extent. Environmental instability may be the main factor causing the high variability of diversity and abundance patterns

  13. Tectonic evolution of the central-eastern sector of Trans Mexican Volcanic Belt and its influence on the eruptive history of the Nevado de Toluca volcano (Mexico)

    Science.gov (United States)

    Bellotti, F.; Capra, L.; Groppelli, G.; Norini, G.

    2006-11-01

    The Nevado de Toluca is an andesitic to dacitic stratovolcano of Late Pliocene-Holocene age located within the central and eastern sectors of the Trans Mexican Volcanic Belt. Morphostructural analysis, aerial photograph and satellite image interpretation, structural analysis and geological fieldwork were methods used to investigate the relationship between the evolution of the volcano and the tectonic framework of its basement. The study revealed that the area of Nevado de Toluca is affected by three main fault systems that intersect close to the volcanic edifice. These are from oldest to youngest, the Taxco-Querétaro, San Antonio and Tenango fault systems. The NNW-SSE Taxco-Querétaro fault system was active in the area since Early Miocene, and is characterized by right-lateral transtensive movement. Its reactivation during Early to Middle Pleistocene was responsible for the emplacement of andesitic to dacitic lava flows and domes of La Cieneguilla Supersynthem. The NE-SW San Antonio fault system was active during Late Pliocene, before the reactivation of the Taxco-Querétaro fault system, and is characterized by extensional left-lateral oblique-slip kinematics. The youngest is the E-W Tenango fault system that has been active since Late Pleistocene. This fault system is characterized by transtensive left-lateral strike-slip movement, and partly coeval with the youngest eruptive phase, the Nevado Supersynthem, which formed the present summit cone of the Nevado de Toluca volcano. The stress re-orientation from the Taxco-Querétaro to the Tenango fault system during Late Pleistocene is responsible for the ˜ 1 Ma hiatus in the magmatic activity between 1.15 Ma and 42 ka. After this period of repose, the eruptive style drastically changed from effusive to explosive with the emission of dacitic products. The methodology presented here furnish new data that can be used to better assess the complex structural evolution of this sector of the Trans Mexican Volcanic Belt

  14. Debris avalanches and debris flows transformed from collapses in the Trans-Mexican Volcanic Belt, Mexico - behavior, and implications for hazard assessment

    Science.gov (United States)

    Capra, L.; Macías, J. L.; Scott, K. M.; Abrams, M.; Garduño-Monroy, V. H.

    2002-03-01

    Volcanoes of the Trans-Mexican Volcanic Belt (TMVB) have yielded numerous sector and flank collapses during Pleistocene and Holocene times. Sector collapses associated with magmatic activity have yielded debris avalanches with generally limited runout extent (e.g. Popocatépetl, Jocotitlán, and Colima volcanoes). In contrast, flank collapses (smaller failures not involving the volcano summit), both associated and unassociated with magmatic activity and correlating with intense hydrothermal alteration in ice-capped volcanoes, commonly have yielded highly mobile cohesive debris flows (e.g. Pico de Orizaba and Nevado de Toluca volcanoes). Collapse orientation in the TMVB is preferentially to the south and northeast, probably reflecting the tectonic regime of active E-W and NNW faults. The differing mobilities of the flows transformed from collapses have important implications for hazard assessment. Both sector and flank collapse can yield highly mobile debris flows, but this transformation is more common in the cases of the smaller failures. High mobility is related to factors such as water content and clay content of the failed material, the paleotopography, and the extent of entrainment of sediment during flow (bulking). The ratio of fall height to runout distance commonly used for hazard zonation of debris avalanches is not valid for debris flows, which are more effectively modeled with the relation inundated area to failure or flow volume coupled with the topography of the inundated area.

  15. Magma Diversity in the Trans-Mexican Volcanic Belt: the role of Mantle Heterogeneities, Slab-derived Fluxes and Crustal Contamination.

    Science.gov (United States)

    Schaaf, P.; Valdez, G.; Siebe, C.; Carrasco, G.

    2005-12-01

    The Plio-Quaternary Trans-Mexican Volcanic Belt (TMVB) is related to subduction of the Cocos and Rivera plates underneath the North American plate. Non-parallelism of the magmatic arc with respect to the trench can be explained by oblique subduction and changes of dip angle. In this contribution we compare geochemical and Sr-Nd-Pb isotope data of five TMVB stratovolcanoes (from east to west: Colima Volcano, Nevado de Toluca, Popocatepetl, La Malinche, and Pico de Orizaba) and associated cinder cones. Volcanic products range in stratovolcanoes from andesites (e.g. Colima, Popocatepetl) to rhyolites (e.g. Pico de Orizaba), and from basalts to andesites in the monogenetic cones. Concentrations of incompatible elements correlate positively with Sr-Nd-Pb isotope ratios from east to west along the arc. 87Sr/86Sr, eNd, and 206Pb/204Pb range from 0.7034-0.7050, +6.9 to minus 1.8, and 18.57-18.78, respectively, displaying considerable differences. In the central TMVB, REE patterns of closely spaced high-Mg basaltic andesites differ substantially. This cannot be explained by fractional crystallization processes or differential partial melting of a homogeneous mantle source. Instead, it points towards small-scale mantle heterogeneities. LILE (e.g. Cs, Rb, Ba, Pb) and HFSE (e.g. Ta, Nb, Zr) display variations of orders in magnitude at different segments along the arc. These variations might correlate with amounts of slab-derived aqueous fluids and intensity of metasomatic reactions between the subducting lithosphere and the overlying mantle wedge. Isotopic ratios of mid-lower crustal xenoliths found in nearly all stratovolcano products reflect the nature of the underlying crust beneath the TMVB. Tertiary-Cretaceous plagiogranites (Colima), Cretaceous limestones (Popocatepetl), and Grenvillian quartzites (Pico de Orizaba)and their increasing radiogenic isotope ratios match well with the observed isotopic signatures of the stratovolcanoes. Moreover, elevated CO2 amounts in

  16. COERCIVITY AND VECTOR MAGNETIZATION ANALYSIS OF OBSIDIAN SAMPLES FROM THE TRANS-MEXICAN VOLCANIC BELT (Coercitividad y análisis de magnetización vectorial de muestras de obsidianas de la faja volcánica transmexicana

    Directory of Open Access Journals (Sweden)

    Jaime Urrutia-Fucugauchi

    2017-09-01

    Full Text Available This note presents initial results of a paleomagnetic study of obsidian from twenty localities in the eastern, central and western sectors of the Trans-Mexican volcanic belt in central Mexico. We focus on the coercivity and vector composition of the remanent magnetization, which are critical for paleodirectional and paleointensity studies. Alternating field demagnetization shows that obsidians carry single and two-component magnetizations residing in low- and high-coercivity magnetic minerals, with discrete and overlapping coercivity spectra. Magnetic minerals are likely iron-titanium oxides with fine-grain sizes characterized by pseudo-single domain states. ESPAÑOL: Se presentan los resultados preliminares del estudio de obsidianas de veinte localidades en los sectores este, central y oeste de la faja volcánica transmexicana. Los análisis se concentran en la coercitividad y la composición vectorial de la magnetización remanente, que son propiedades claves para evaluar los registros de direcciones e intensidades. La desmagnetización por campos alternos revela la presencia de magnetizaciones de una y dos componentes, que residen en minerales con baja y alta coercitividad con espectros que traslapan y discretos. Los minerales magnéticos son óxidos de hierro-titanio con grano fino y estados de dominio seudosencillo.

  17. Complex landslides in the Trans-Mexican Volcanic Belt - a case study in the State of Veracruz

    Science.gov (United States)

    Wilde, M.; Terhorst, B.; Schwindt, D.; Rodriguez Elizarrarás, S. R.; Morales Barrera, W. V.; Bücker, M.; Flores Orozco, A.; García García, E.; Pita de la Paz, C.

    2017-12-01

    The State of Veracruz (Mexico) is a region which is highly affected by landslides, therefore detailed studies on triggering factors and process dynamics of landslides are required. Profound insights are essential for further hazard assessments and compilation of susceptibility maps. Exemplary landslide sites were investigated in order to determine characteristic features of specific regions. In the Chiconquiaco Mountain Range numerous damaging landslide events occurred in the year of 2013 and our case study corresponds to a deep-seated landslide originating from this slide-intensive year. The main scientific aspects are placed on the reconstruction of the landslides geometry and its process dynamics. Therefore, surface and subsurface analysis form the base of a multimethodological approach. In order to perform surface analysis, aerial photographs were collected by an unmanned aerial vehicle (UAV) aiming at the generation of a 3D model with the Structure from Motion (SfM) work routine. Ground control points (GCP) were used to ensure the geometric accuracy of the model. The obtained DEM of the 2013 slide mass as well as an elevation model representing the topographic situation before the event (year 2011) were used to detect surface changes. The data enabled determination of the most affected areas as well as areas characterized by secondary movements. Furthermore, the volume of the slide mass could be calculated. Geophysical methods, as electrical resistivity tomography (ERT) as well as seismic refraction tomography (SRT), were applied for subsurface analysis. Differences in subsurface composition, respectively density, allowed for separation of the slide mass and the underlying unit. Most relevant for our studies is the detection of an earlier landslide leading to the assumption that the 2013 landslide event corresponds to a reactivation process. This multimethodological approach enables a far-reaching visualization of complex landslides and strongly supports the reconstruction of interior structures and process dynamics.

  18. Intraspecific Variation in Pines from the Trans-Mexican Volcanic Belt Grown under Two Watering Regimes: Implications for Management of Genetic Resources

    Directory of Open Access Journals (Sweden)

    Andrés Flores

    2018-01-01

    Full Text Available Management of forest genetic resources requires experimental data related to the genetic variation of the species and populations under different climatic conditions. Foresters also demand to know how the main selective drivers will influence the adaptability of the genetic resources. To assess the inter- and intraspecific variation and plasticity in seedling drought tolerance at a relevant genetic resource management scale, we tested the changes in growth and biomass allocation of seedlings of Pinus oocarpa, P. patula and P. pseudostrobus under two contrasting watering regimes. We found general significant intraspecific variation and intraspecific differences in plasticity, since both population and watering by population interaction were significant for all three species. All the species and populations share a common general avoidance mechanism (allometric adjustment of shoot/root biomass. However, the intraspecific variation and differences in phenotypic plasticity among populations modify the adaptation strategies of the species to drought. Some of the differences are related to the climatic conditions of the location of origin. We confirmed that even at reduced geographical scales, Mexican pines present differences in the response to water stress. The differences among species and populations are relevant in afforestation programs as well as in genetic conservation activities.

  19. Volcanic activity in the Acambay Graben: a < 25 Ka subplinian eruption from the Temascalcingo volcano and implications for volcanic hazard.

    Science.gov (United States)

    Pedrazzi, Dario; Aguirre Díaz, Gerardo; Sunyé Puchol, Ivan; Bartolini, Stefania; Geyer, Adelina

    2016-04-01

    The Trans-Mexican Volcanic Belt (TMVB) contains a large number of stratovolcanoes, some well-known, as Popocatepetl, Iztaccihuatl, Nevado de Toluca, or Colima and many others of more modest dimensions that are not well known but constitute the majority in the TMVB. Such volcanoes are, for example, Tequila, San Juan, Sangangüey, Cerro Culiacán, Cerro Grande, El Zamorano, La Joya, Palo Huerfano, Jocotitlán, Altamirano and Temascalcingo, among many others. The Temascalcingo volcano (TV) is an andesitic-dacitic stratovolcano located in the Trans-Mexican Volcanic Belt (TMVB) at the eastern part of the Acambay Graben (northwest portion of Estado de México). The TV is composed mainly by dacitic, porphyritic lavas, block and ash deposits and subordinate pumice fall deposits and ignimbrites (Roldán-Quintana et al., 2011). The volcanic structure includes a summit caldera that has a rectangular shape, 2.5×3.5 km, with the largest side oriented E-W, parallel to major normal faults affecting the edifice. The San Mateo Pumice eruption is one of the greatest paroxysmal episodes of this volcano with pumice deposits mainly exposed at the scarp of the Acambay-Tixmadeje fault and at the northern and northeastern flanks of TV. It overlies a paleosol dated at 25 Ka. A NE-trending dispersion was obtained from field data covering an area of at least 80 km2. These deposits overlie older lava flows and mud flows and are discontinuously covered and eroded by younger reworked deposits of Temascalcingo volcano. This event represents a highly explosive phase that generated a relatively thick and widespread pumice fallout deposit that may occur again in future eruptions. A similar eruption today would have a significantly impact in the region, overall due to the fact that there has been no systematic assessment of the volcanic hazard in any of the studies that have been conducted so far in the area. So, this is a pending and urgent subject that must be tackled without delay. Financed by

  20. What governs the enrichment of Pb in the continental crust? An answer from the Mexican Volcanic Belt

    Science.gov (United States)

    Goldstein, S. L.; Lagatta, A.; Langmuir, C. H.; Straub, S. M.; Martin-Del-Pozzo, A.

    2009-12-01

    One of Al Hofmann’s many important contributions to our understanding of geochemical cycling in the Earth is the observation that Pb behaves like the light rare earth elements Ce and Nd during melting to form oceanic basalts, but is enriched in the continental crust compared to the LREE by nearly an order of magnitude (Hofmann et al. 1986). This is unusual behavior, and has been called one of the Pb paradoxes, since in most cases, the ratios of elements are effectively the same in the continental crust and oceanic basalts if they show similar mantle melting behavior. One of several mechanisms suggested to mediate this special enrichment is hydrothermal circulation at ocean ridges, which preferentially transports Pb compared to the REE from the interior of the ocean crust to the surface. We confirm the importance of hydrothermal processes at the East Pacific to mediate Pb enrichment at the Trans-Mexican Volcanic Belt (TMVB, through comparison of Pb isotope and Ce/Pb ratios of TMVB lavas with sediments from DSDP Site 487 near the Middle America trench. The lavas of the Trans-Mexican Volcanic Belt include “high Nb” alkali basalts (HNAB), whose trace element patterns lack subduction signatures. The HNAB basalts and hydrothermally affected sediments from DSDP 487, form end-members that bound calcalkaline lavas from volcanoes Colima, Toluca, Popocatépetl, and Malinche in Ce/Pb versus Pb isotope space. The HNAB represent the high Ce/Pb and high Pb-isotope end-member. The hydrothermal sediments have Pb isotopes like Pacific MORB but Ce/Pb ratios typical of the arcs and the continental crust, and an order of magnitude lower than MORB. No analyzed calcalkaline lavas are have compositions outside of the bounds formed by the HNAB and the hydrothermal sediments. The Ce/Pb and Pb isotope ratios show that the calcalkaline lava compositions are inconsistent with contributions from HNAB and EPR MORB, rather the contributions are from HNAB upper mantle and subducted

  1. In-situ monitoring of deformation of clayey and volcanic sequences in the lacustrine plain of Iztapalapa, Mexico City

    Science.gov (United States)

    Carreon-Freyre, D.; Cerca, M.; Barrientos, B.; Gutierrez, R.; Blancas, D.

    2012-12-01

    Major cities of Central Mexico with lowering of land elevation problems are located in inter-volcanic and fault bounded basins within the central Trans-Mexican Volcanic Belt (TMVB). The most representative and studied case of ground deformation is Mexico City, where the Iztapalapa Municipality presents the highest population density. This area is located over the geological contact between the "Sierra de Santa Catarina" volcanic range and a lacustrine plain. Filling of lacustrine basins includes silty and clayey sediments as well as pyroclastic deposits (coarse and fine grained) and volcanic rocks layers. We used Ground Penetrating Radar (GPR) and MASW prospection to evaluate contrasts in the physical properties of fine grained soils and identify geometry of the deformational features and implemented a mechanical system for in situ monitoring in fractured sites. Deformational features in this basin reflect an interplay between the geological history (depositional conditions), load history, seismic activity, and faulting. Plastic mechanical behaviour predominates in these clayey sediments and differential deformation locally triggers brittle fracturing and/or subsidence of the surface. In this work we present the results of monitoring and characterization of ground deformation and fracturing in different sequences, our results show a dynamic interplay between the mechanisms of ground fracturing and the stress history of sedimentary sequences. Relating the mechanical behaviour of the studied sequences with variations of physical and geological properties should be taken into account to estimate land level lowering and risk of fracturing for urban development planning.

  2. Characterization of open and closed volcanic systems in Indonesia and Mexico using InSAR time series

    Science.gov (United States)

    Chaussard, E.; Amelung, F.; Aoki, Y.

    2013-08-01

    use 2007-2011 Advanced Land Observing Satellite (ALOS) data to perform an arc-wide interferometric synthetic aperture radar (InSAR) time series survey of the Trans-Mexican Volcanic Belt (TMVB) and to study time-dependent ground deformation of four Indonesian volcanoes selected following the 2007-2009 study of Chaussard and Amelung (2012). Our objectives are to examine whether arc volcanoes exhibit long-term edifice-wide cyclic deformation patterns that can be used to characterize open and closed volcanic systems and to better constrain in which cases precursory inflation is expected. We reveal deformation cycles at both regularly active and previously inactive Indonesian volcanoes, but we do not detect deformation in the TMVB, reflecting a lower activity level. We identify three types of relationships between deformation and activity: inflation prior to eruption and associated with or followed by deflation (Kerinci and Sinabung), inflation without eruption and followed by slow deflation (Agung), and eruption without precursory deformation (Merapi, Colima, and Popocatépetl; at Merapi, no significant deformation is detected even during eruption). The first two cases correspond to closed volcanic systems and suggest that the traditional model of magmatic systems and eruptive cycles do apply to andesitic volcanoes (i.e., inflation and deflation episodes associated with magma accumulation or volatile exsolution in a crustal reservoir followed by eruptions or in situ cooling). In contrast, the last case corresponds to open volcanic systems where no significant pressurization of the magmatic reservoirs is taking place prior to eruptions and thus no long-term edifice-wide ground deformation can be detected. We discuss these results in terms of InSAR's potential for forecasting volcanic unrest.

  3. Volcanic risk

    International Nuclear Information System (INIS)

    Rancon, J.P.; Baubron, J.C.

    1995-01-01

    This project follows the previous multi-disciplinary studies carried out by the French Bureau de Recherches Geologiques et Minieres (BRGM) on the two active volcanoes of the French lesser Antilles: Mt Pelee (Martinique) and Soufriere (Guadeloupe) for which geological maps and volcanic risk studies have been achieved. The research program comprises 5 parts: the study of pyroclastic deposits from recent eruptions of the two volcanoes for a better characterization of their eruptive phenomenology and a better definition of crisis scenarios; the study of deposits and structures of active volcanoes from Central America and the study of eruptive dynamics of andesite volcanoes for a transposition to Antilles' volcanoes; the starting of a methodological multi-disciplinary research (volcanology, geography, sociology...) on the volcanic risk analysis and on the management of a future crisis; and finally, the development of geochemical survey techniques (radon, CO 2 , H 2 O) on active volcanoes of Costa-Rica and Europe (Fournaise, Furnas, Etna) and their application to the Soufriere. (J.S.). 9 refs., 3 figs

  4. Volcanic features of Io

    International Nuclear Information System (INIS)

    Carr, M.H.; Masursky, H.; Strom, R.G.; Terrile, R.J.

    1979-01-01

    The volcanic features of Io as detected during the Voyager mission are discussed. The volcanic activity is apparently higher than on any other body in the Solar System. Its volcanic landforms are compared with features on Earth to indicate the type of volcanism present on Io. (U.K.)

  5. Structural analysis and thermal remote sensing of the Los Humeros Volcanic Complex: Implications for volcano structure and geothermal exploration

    Science.gov (United States)

    Norini, G.; Groppelli, G.; Sulpizio, R.; Carrasco-Núñez, G.; Dávila-Harris, P.; Pellicioli, C.; Zucca, F.; De Franco, R.

    2015-08-01

    The Los Humeros Volcanic Complex (LHVC) is an important geothermal target in the Trans-Mexican Volcanic Belt. Understanding the structure of the LHVC and its influence on the occurrence of thermal anomalies and hydrothermal fluids is important to get insights into the interplay between the volcano-tectonic setting and the characteristics of the geothermal resources in the area. In this study, we present a structural analysis of the LHVC, focused on Quaternary tectonic and volcano-tectonic features, including the areal distribution of monogenetic volcanic centers. Morphostructural analysis and structural field mapping revealed the geometry, kinematics and dynamics of the structural features in the study area. Also, thermal infrared remote sensing analysis has been applied to the LHVC for the first time, to map the main endogenous thermal anomalies. These data are integrated with newly proposed Unconformity Bounded Stratigraphic Units, to evaluate the implications for the structural behavior of the caldera complex and geothermal field. The LHVC is characterized by a multistage formation, with at least two major episodes of caldera collapse: Los Humeros Caldera (460 ka) and Los Potreros Caldera (100 ka). The study suggests that the geometry of the first collapse recalls a trap-door structure and impinges on a thick volcanic succession (10.5-1.55 Ma), now hosting the geothermal reservoir. The main ring-faults of the two calderas are buried and sealed by the widespread post-calderas volcanic products, and for this reason they probably do not have enough permeability to be the main conveyers of the hydrothermal fluid circulation. An active, previously unrecognized fault system of volcano-tectonic origin has been identified inside the Los Potreros Caldera. This fault system is the main geothermal target, probably originated by active resurgence of the caldera floor. The active fault system defines three distinct structural sectors in the caldera floor, where the

  6. Volcanic signals in oceans

    KAUST Repository

    Stenchikov, Georgiy L.; Delworth, Thomas L.; Ramaswamy, V.; Stouffer, Ronald J.; Wittenberg, Andrew; Zeng, Fanrong

    2009-01-01

    Sulfate aerosols resulting from strong volcanic explosions last for 2–3 years in the lower stratosphere. Therefore it was traditionally believed that volcanic impacts produce mainly short-term, transient climate perturbations. However, the ocean

  7. Volcanic stratigraphy: A review

    Science.gov (United States)

    Martí, Joan; Groppelli, Gianluca; Brum da Silveira, Antonio

    2018-05-01

    Volcanic stratigraphy is a fundamental component of geological mapping in volcanic areas as it yields the basic criteria and essential data for identifying the spatial and temporal relationships between volcanic products and intra/inter-eruptive processes (earth-surface, tectonic and climatic), which in turn provides greater understanding of the geological evolution of a region. Establishing precise stratigraphic relationships in volcanic successions is not only essential for understanding the past behaviour of volcanoes and for predicting how they might behave in the future, but is also critical for establishing guidelines for exploring economic and energy resources associated with volcanic systems or for reconstructing the evolution of sedimentary basins in which volcanism has played a significant role. Like classical stratigraphy, volcanic stratigraphy should also be defined using a systematic methodology that can provide an organised and comprehensive description of the temporal and spatial evolution of volcanic terrain. This review explores different methods employed in studies of volcanic stratigraphy, examines four case studies that use differing stratigraphic approaches, and recommends methods for using systematic volcanic stratigraphy based on the application of the concepts of traditional stratigraphy but adapted to the needs of volcanological environment.

  8. Volcanism on Io

    Science.gov (United States)

    Davies, Ashley Gerard

    2014-03-01

    Preface; Introduction; Part I. Io, 1610 to 1995: Galileo to Galileo: 1. Io, 1610-1979; 2. Between Voyager and Galileo: 1979-95; 3. Galileo at Io; Part II. Planetary Volcanism: Evolution and Composition: 4. Io and Earth: formation, evolution, and interior structure; 5. Magmas and volatiles; Part III. Observing and Modeling Volcanic Activity: 6. Observations: thermal remote sensing of volcanic activity; 7. Models of effusive eruption processes; 8. Thermal evolution of volcanic eruptions; Part IV. Galileo at Io: the Volcanic Bestiary: 9. The view from Galileo; 10. The lava lake at Pele; 11. Pillan and Tvashtar: lava fountains and flows; 12. Prometheus and Amirani: Effusive activity and insulated flows; 13. Loki Patera: Io's powerhouse; 14. Other volcanoes and eruptions; Part V. Volcanism on Io: The Global View: 15. Geomorphology: paterae, shields, flows and mountains; 16. Volcanic plumes; 17. Hot spots; Part VI. Io after Galileo: 18. Volcanism on Io: a post-Galileo view; 19. The future of Io observations; Appendix 1; Appendix 2; References; Index.

  9. Volcanic signals in oceans

    KAUST Repository

    Stenchikov, Georgiy L.

    2009-08-22

    Sulfate aerosols resulting from strong volcanic explosions last for 2–3 years in the lower stratosphere. Therefore it was traditionally believed that volcanic impacts produce mainly short-term, transient climate perturbations. However, the ocean integrates volcanic radiative cooling and responds over a wide range of time scales. The associated processes, especially ocean heat uptake, play a key role in ongoing climate change. However, they are not well constrained by observations, and attempts to simulate them in current climate models used for climate predictions yield a range of uncertainty. Volcanic impacts on the ocean provide an independent means of assessing these processes. This study focuses on quantification of the seasonal to multidecadal time scale response of the ocean to explosive volcanism. It employs the coupled climate model CM2.1, developed recently at the National Oceanic and Atmospheric Administration\\'s Geophysical Fluid Dynamics Laboratory, to simulate the response to the 1991 Pinatubo and the 1815 Tambora eruptions, which were the largest in the 20th and 19th centuries, respectively. The simulated climate perturbations compare well with available observations for the Pinatubo period. The stronger Tambora forcing produces responses with higher signal-to-noise ratio. Volcanic cooling tends to strengthen the Atlantic meridional overturning circulation. Sea ice extent appears to be sensitive to volcanic forcing, especially during the warm season. Because of the extremely long relaxation time of ocean subsurface temperature and sea level, the perturbations caused by the Tambora eruption could have lasted well into the 20th century.

  10. Volcanic Rocks and Features

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — Volcanoes have contributed significantly to the formation of the surface of our planet. Volcanism produced the crust we live on and most of the air we breathe. The...

  11. Martian volcanism: A review

    International Nuclear Information System (INIS)

    Carr, M.H.

    1987-01-01

    Martian volcanism is reviewed. It is emphasized that lava plains constitute the major type of effusive flow, and can be differentiated by morphologic characteristics. Shield volcanoes, domes, and patera constitute the major constructional landforms, and recent work has suggested that explosive activity and resulting pyroclastic deposits may have been involved with formation of some of the small shields. Analysis of morphology, presumed composition, and spectroscopic data all indicate that Martian volcanism was dominantly basaltic in composition

  12. Volcanic hazards to airports

    Science.gov (United States)

    Guffanti, M.; Mayberry, G.C.; Casadevall, T.J.; Wunderman, R.

    2009-01-01

    Volcanic activity has caused significant hazards to numerous airports worldwide, with local to far-ranging effects on travelers and commerce. Analysis of a new compilation of incidents of airports impacted by volcanic activity from 1944 through 2006 reveals that, at a minimum, 101 airports in 28 countries were affected on 171 occasions by eruptions at 46 volcanoes. Since 1980, five airports per year on average have been affected by volcanic activity, which indicates that volcanic hazards to airports are not rare on a worldwide basis. The main hazard to airports is ashfall, with accumulations of only a few millimeters sufficient to force temporary closures of some airports. A substantial portion of incidents has been caused by ash in airspace in the vicinity of airports, without accumulation of ash on the ground. On a few occasions, airports have been impacted by hazards other than ash (pyroclastic flow, lava flow, gas emission, and phreatic explosion). Several airports have been affected repeatedly by volcanic hazards. Four airports have been affected the most often and likely will continue to be among the most vulnerable owing to continued nearby volcanic activity: Fontanarossa International Airport in Catania, Italy; Ted Stevens Anchorage International Airport in Alaska, USA; Mariscal Sucre International Airport in Quito, Ecuador; and Tokua Airport in Kokopo, Papua New Guinea. The USA has the most airports affected by volcanic activity (17) on the most occasions (33) and hosts the second highest number of volcanoes that have caused the disruptions (5, after Indonesia with 7). One-fifth of the affected airports are within 30 km of the source volcanoes, approximately half are located within 150 km of the source volcanoes, and about three-quarters are within 300 km; nearly one-fifth are located more than 500 km away from the source volcanoes. The volcanoes that have caused the most impacts are Soufriere Hills on the island of Montserrat in the British West Indies

  13. Modeling volcanic ash dispersal

    CERN Multimedia

    CERN. Geneva

    2010-01-01

    The assessment of volcanic fallout hazard is an important scientific, economic, and political issue, especially in densely populated areas. From a scientific point of view, considerable progress has been made during the last two decades through the use of increasingly powerful computational models and capabilities. Nowadays, models are used to quantify hazard...

  14. Backprojection of volcanic tremor

    Science.gov (United States)

    Haney, Matthew M.

    2014-01-01

    Backprojection has become a powerful tool for imaging the rupture process of global earthquakes. We demonstrate the ability of backprojection to illuminate and track volcanic sources as well. We apply the method to the seismic network from Okmok Volcano, Alaska, at the time of an escalation in tremor during the 2008 eruption. Although we are able to focus the wavefield close to the location of the active cone, the network array response lacks sufficient resolution to reveal kilometer-scale changes in tremor location. By deconvolving the response in successive backprojection images, we enhance resolution and find that the tremor source moved toward an intracaldera lake prior to its escalation. The increased tremor therefore resulted from magma-water interaction, in agreement with the overall phreatomagmatic character of the eruption. Imaging of eruption tremor shows that time reversal methods, such as backprojection, can provide new insights into the temporal evolution of volcanic sources.

  15. Volcanic eruptions on Io

    Science.gov (United States)

    Strom, R. G.; Schneider, N. M.; Terrile, R. J.; Hansen, C.; Cook, A. F.

    1981-01-01

    Nine eruption plumes which were observed during the Voyager 1 encounter with Io are discussed. During the Voyager 2 encounter, four months later, eight of the eruptions were still active although the largest became inactive sometime between the two encounters. Plumes range in height from 60 to over 300 km with corresponding ejection velocities of 0.5 to 1.0 km/s and plume sources are located on several plains and consist of fissures or calderas. The shape and brightness distribution together with the pattern of the surface deposition on a plume 3 is simulated by a ballistic model with a constant ejection velocity of 0.5 km/s and ejection angles which vary from 0-55 deg. The distribution of active and recent eruptions is concentrated in the equatorial regions and indicates that volcanic activity is more frequent and intense in the equatorial regions than in the polar regions. Due to the geologic setting of certain plume sources and large reservoirs of volatiles required for the active eruptions, it is concluded that sulfur volcanism rather than silicate volcanism is the most likely driving mechanism for the eruption plumes.

  16. Volcanic risk; Risque volcanique

    Energy Technology Data Exchange (ETDEWEB)

    Rancon, J.P.; Baubron, J.C.

    1995-12-31

    This project follows the previous multi-disciplinary studies carried out by the French Bureau de Recherches Geologiques et Minieres (BRGM) on the two active volcanoes of the French lesser Antilles: Mt Pelee (Martinique) and Soufriere (Guadeloupe) for which geological maps and volcanic risk studies have been achieved. The research program comprises 5 parts: the study of pyroclastic deposits from recent eruptions of the two volcanoes for a better characterization of their eruptive phenomenology and a better definition of crisis scenarios; the study of deposits and structures of active volcanoes from Central America and the study of eruptive dynamics of andesite volcanoes for a transposition to Antilles` volcanoes; the starting of a methodological multi-disciplinary research (volcanology, geography, sociology...) on the volcanic risk analysis and on the management of a future crisis; and finally, the development of geochemical survey techniques (radon, CO{sub 2}, H{sub 2}O) on active volcanoes of Costa-Rica and Europe (Fournaise, Furnas, Etna) and their application to the Soufriere. (J.S.). 9 refs., 3 figs.

  17. Volcanic Eruptions and Climate

    Science.gov (United States)

    LeGrande, Allegra N.; Anchukaitis, Kevin J.

    2015-01-01

    Volcanic eruptions represent some of the most climatically important and societally disruptive short-term events in human history. Large eruptions inject ash, dust, sulfurous gases (e.g. SO2, H2S), halogens (e.g. Hcl and Hbr), and water vapor into the Earth's atmosphere. Sulfurous emissions principally interact with the climate by converting into sulfate aerosols that reduce incoming solar radiation, warming the stratosphere and altering ozone creation, reducing global mean surface temperature, and suppressing the hydrological cycle. In this issue, we focus on the history, processes, and consequences of these large eruptions that inject enough material into the stratosphere to significantly affect the climate system. In terms of the changes wrought on the energy balance of the Earth System, these transient events can temporarily have a radiative forcing magnitude larger than the range of solar, greenhouse gas, and land use variability over the last millennium. In simulations as well as modern and paleoclimate observations, volcanic eruptions cause large inter-annual to decadal-scale changes in climate. Active debates persist concerning their role in longer-term (multi-decadal to centennial) modification of the Earth System, however.

  18. Friction in volcanic environments

    Science.gov (United States)

    Kendrick, Jackie E.; Lavallée, Yan

    2016-04-01

    Volcanic landscapes are amongst the most dynamic on Earth and, as such, are particularly susceptible to failure and frictional processes. In rocks, damage accumulation is frequently accompanied by the release of seismic energy, which has been shown to accelerate in the approach to failure on both a field and laboratory scale. The point at which failure occurs is highly dependent upon strain-rate, which also dictates the slip-zone properties that pertain beyond failure, in scenarios such as sector collapse and pyroclastic flows as well as the ascent of viscous magma. High-velocity rotary shear (HVR) experiments have provided new opportunities to overcome the grand challenge of understanding faulting processes during volcanic phenomena. Work on granular ash material demonstrates that at ambient temperatures, ash gouge behaves according to Byerlee's rule at low slip velocities, but is slip-weakening, becoming increasingly lubricating as slip ensues. In absence of ash along a slip plane, rock-rock friction induces cataclasis and heating which, if sufficient, may induce melting (producing pseudotachylyte) and importantly, vesiculation. The viscosity of the melt, so generated, controls the subsequent lubrication or resistance to slip along the fault plane thanks to non-Newtonian suspension rheology. The shear-thinning behaviour and viscoelasticity of frictional melts yield a tendency for extremely unstable slip, and occurrence of frictional melt fragmentation. This velocity-dependence acts as an important feedback mechanism on the slip plane, in addition to the bulk composition, mineralogy and glass content of the magma, that all influence frictional behaviour. During sector collapse events and in pyroclastic density currents it is the frictional properties of the rocks and ash that, in-part, control the run-out distance and associated risk. In addition, friction plays an important role in the eruption of viscous magmas: In the conduit, the rheology of magma is integral

  19. Closer look at lunar volcanism

    International Nuclear Information System (INIS)

    Vaniman, D.T.; Heiken, G.; Taylor, G.J.

    1984-01-01

    Although the American Apollo and Soviet Luna missions concentrated on mare basalt samples, major questions remain about lunar volcanism. Lunar field work will be indispensable for resolving the scientific questions about ages, compositions, and eruption processes of lunar volcanism. From a utilitarian standpoint, a better knowledge of lunar volcanism will also yield profitable returns in lunar base construction (e.g., exploitation of rille or lava-tube structures) and in access to materials such as volatile elements, pure glass, or ilmenite for lunar industry

  20. Volcanology: Volcanic bipolar disorder explained

    Science.gov (United States)

    Jellinek, Mark

    2014-02-01

    Eruptions come in a range of magnitudes. Numerical simulations and laboratory experiments show that rare, giant super-eruptions and smaller, more frequent events reflect a transition in the essential driving forces for volcanism.

  1. Lidar sounding of volcanic plumes

    Science.gov (United States)

    Fiorani, Luca; Aiuppa, Alessandro; Angelini, Federico; Borelli, Rodolfo; Del Franco, Mario; Murra, Daniele; Pistilli, Marco; Puiu, Adriana; Santoro, Simone

    2013-10-01

    Accurate knowledge of gas composition in volcanic plumes has high scientific and societal value. On the one hand, it gives information on the geophysical processes taking place inside volcanos; on the other hand, it provides alert on possible eruptions. For this reasons, it has been suggested to monitor volcanic plumes by lidar. In particular, one of the aims of the FP7 ERC project BRIDGE is the measurement of CO2 concentration in volcanic gases by differential absorption lidar. This is a very challenging task due to the harsh environment, the narrowness and weakness of the CO2 absorption lines and the difficulty to procure a suitable laser source. This paper, after a review on remote sensing of volcanic plumes, reports on the current progress of the lidar system.

  2. Volcanic eruption plumes on Io

    International Nuclear Information System (INIS)

    Strom, R.G.; Terrile, R.J.; Masursky, H.; Hansen, C.

    1979-01-01

    The detection of an umbrella-shaped plume extending about 280 km above the bright limb of Io was one of the most important discoveries made during the Voyager 1 encounter with the jovian system. This discovery proves that Io is volcanically active at present, and the number and magnitude of these eruptions indicate that Io is the most volcanically active body so far discovered in the Solar System. Preliminary analyses of these eruptive plumes are presented. (U.K.)

  3. Volcanic hazards and aviation safety

    Science.gov (United States)

    Casadevall, Thomas J.; Thompson, Theodore B.; Ewert, John W.; ,

    1996-01-01

    An aeronautical chart was developed to determine the relative proximity of volcanoes or ash clouds to the airports and flight corridors that may be affected by volcanic debris. The map aims to inform and increase awareness about the close spatial relationship between volcanoes and aviation operations. It shows the locations of the active volcanoes together with selected aeronautical navigation aids and great-circle routes. The map mitigates the threat that volcanic hazards pose to aircraft and improves aviation safety.

  4. Volcanic crisis in

    Directory of Open Access Journals (Sweden)

    Mgs. Víctor Manuel Pérez Martínez

    2007-01-01

    Full Text Available The article is the result of an investigation which is focussed on some deontological aspects of the scientificjournalism. In the first place it gives a theoretical vision about science, journalism, internet and including some reflectionsabout the deontological principles in handling the information about science and technology. This focus is useful as it formsthe base of an investigation where we deal with the information about a possible ”volcanic crisis” in El Teide during the years2004-2005 done by the digital newspaper” El Dïa” a canarian newspaper from Tenerife. The work required the revision of theinformation which was published and a followed analysis of its context. It was used the digital version with the purpose ofvisualizing the news which was published. It was also compared with a printed version, with local cover but divulged theinformation to the public who was most affected by this particular news. The results give rise to some questions regardinghow the information is given to a topic which is of local interest as well as national and international interest due to therepercussions in the social, economical and tourist field (the tourist field is the main industrial sector in Tenerife by receivingthis type of news.

  5. Multidisciplinary approach for the characterization of landslides in volcanic areas - a case study from the Palma Sola-Chiconquiaco Mountain Range, Mexico

    Science.gov (United States)

    Wilde, Martina; Rodríguez Elizarrarás, Sergio R.; Morales Barrera, Wendy V.; Schwindt, Daniel; Bücker, Matthias; Flores Orozco, Adrián; García García, Emilio; Pita de la Paz, Carlos; Terhorst, Birgit

    2017-04-01

    The Palma Sola-Chiconquiaco mountain range, situated in the State of Veracruz, Mexico, is highly susceptible to landslides, which is evidenced by the high frequency of landslide events of different sizes. The study area is located near the Gulf of Mexico coastline in the eastern sector of the Trans Mexican Volcanic Belt. There, landslide triggers are intense rainfalls related to tropical storms and hurricanes. Steeper slopes are commonly affected by rockfalls, whereas moderate slopes, covered by massive slope deposits, are affected by shallow as well as deep seated landslides. Some of the landslides in the slope deposits reach dimensions of more than 1000 m in length and depths of over 30 m. The heterogeneous parent material as well as older slide masses hamper the detailed characterization of the involved materials. Therefore, in this study, a multidisciplinary approach is applied that integrates geomorphological, geological, and geophysical data. The aim is the reconstruction of process dynamics by analyzing the geomorphological situation and subsurface conditions before and after the event. The focus lies on the identification of past landslide areas, which represent areas with high susceptibility for the reactivation of old slide masses. Furthermore, the analysis of digital terrain models, generated before the landslide event, indicate initial movements like extension cracks, which are located close to the current scarp area. In order to characterize the subsurface of slide masses geophysical investigations are applied. The geophysical survey consists of a total of nine profiles covering relevant key features of the large affected area. Along these profiles, electrical resistivity tomography (ERT) and seismic refraction tomography (SRT) data were collected. Both, electrical and seismic images reveal a sharp contrast between relatively loose and dry material of the slide mass (high resistivities and low seismic velocities) and the former land surface that is

  6. Climatic impact of volcanic eruptions

    Science.gov (United States)

    Rampino, Michael R.

    1991-01-01

    Studies have attempted to 'isolate' the volcanic signal in noisy temperature data. This assumes that it is possible to isolate a distinct volcanic signal in a record that may have a combination of forcings (ENSO, solar variability, random fluctuations, volcanism) that all interact. The key to discovering the greatest effects of volcanoes on short-term climate may be to concentrate on temperatures in regions where the effects of aerosol clouds may be amplified by perturbed atmospheric circulation patterns. This is especially true in subpolar and midlatitude areas affected by changes in the position of the polar front. Such climatic perturbation can be detected in proxy evidence such as decrease in tree-ring widths and frost rings, changes in the treeline, weather anomalies, severity of sea-ice in polar and subpolar regions, and poor grain yields and crop failures. In low latitudes, sudden temperature drops were correlated with the passage overhead of the volcanic dust cloud (Stothers, 1984). For some eruptions, such as Tambora, 1815, these kinds of proxy and anectdotal information were summarized in great detail in a number of papers and books (e.g., Post, 1978; Stothers, 1984; Stommel and Stommel, 1986; C. R. Harrington, in press). These studies lead to the general conclusion that regional effects on climate, sometimes quite severe, may be the major impact of large historical volcanic aerosol clouds.

  7. Rate of volcanism on Venus

    International Nuclear Information System (INIS)

    Fegley, B. Jr.; Prinn, R.G.

    1988-07-01

    The maintenance of the global H 2 SO 4 clouds on Venus requires volcanism to replenish the atmospheric SO 2 which is continually being removed from the atmosphere by reaction with calcium minerals on the surface of Venus. The first laboratory measurements of the rate of one such reaction, between SO 2 and calcite (CaCO 3 ) to form anhydrite (CaSO 4 ), are reported. If the rate of this reaction is representative of the SO 2 reaction rate at the Venus surface, then we estimate that all SO 2 in the Venus atmosphere (and thus the H 2 SO 4 clouds) will be removed in 1.9 million years unless the lost SO 2 is replenished by volcanism. The required rate of volcanism ranges from about 0.4 to about 11 cu km of magma erupted per year, depending on the assumed sulfur content of the erupted material. If this material has the same composition as the Venus surface at the Venera 13, 14 and Vega 2 landing sites, then the required rate of volcanism is about 1 cu km per year. This independent geochemically estimated rate can be used to determine if either (or neither) of the two discordant (2 cu km/year vs. 200 to 300 cu km/year) geophysically estimated rates is correct. The geochemically estimated rate also suggests that Venus is less volcanically active than the Earth

  8. Volcanic Eruptions in Kamchatka

    Science.gov (United States)

    2007-01-01

    [figure removed for brevity, see original site] [figure removed for brevity, see original site] Sheveluch Stratovolcano Click on the image for full resolution TIFF Klyuchevskoy Stratovolcano Click on the image for full resolution TIFF One of the most volcanically active regions of the world is the Kamchatka Peninsula in eastern Siberia, Russia. It is not uncommon for several volcanoes to be erupting at the same time. On April 26, 2007, the Advanced Spaceborne Thermal Emission and Reflection Radioneter (ASTER) on NASA's Terra spacecraft captured these images of the Klyuchevskoy and Sheveluch stratovolcanoes, erupting simultaneously, and 80 kilometers (50 miles) apart. Over Klyuchevskoy, the thermal infrared data (overlaid in red) indicates that two open-channel lava flows are descending the northwest flank of the volcano. Also visible is an ash-and-water plume extending to the east. Sheveluch volcano is partially cloud-covered. The hot flows highlighted in red come from a lava dome at the summit. They are avalanches of material from the dome, and pyroclastic flows. With its 14 spectral bands from the visible to the thermal infrared wavelength region, and its high spatial resolution of 15 to 90 meters (about 50 to 300 feet), ASTER images Earth to map and monitor the changing surface of our planet. ASTER is one of five Earth-observing instruments launched December 18, 1999, on NASA's Terra spacecraft. The instrument was built by Japan's Ministry of Economy, Trade and Industry. A joint U.S./Japan science team is responsible for validation and calibration of the instrument and the data products. The broad spectral coverage and high spectral resolution of ASTER provides scientists in numerous disciplines with critical information for surface mapping, and monitoring of dynamic conditions and temporal change. Example applications are: monitoring glacial advances and retreats; monitoring potentially active volcanoes; identifying crop stress; determining cloud morphology and

  9. Volcanic eruptions and solar activity

    Science.gov (United States)

    Stothers, Richard B.

    1989-01-01

    The historical record of large volcanic eruptions from 1500 to 1980 is subjected to detailed time series analysis. In two weak but probably statistically significant periodicities of about 11 and 80 yr, the frequency of volcanic eruptions increases (decreases) slightly around the times of solar minimum (maximum). Time series analysis of the volcanogenic acidities in a deep ice core from Greenland reveals several very long periods ranging from about 80 to about 350 yr which are similar to the very slow solar cycles previously detected in auroral and C-14 records. Solar flares may cause changes in atmospheric circulation patterns that abruptly alter the earth's spin. The resulting jolt probably triggers small earthquakes which affect volcanism.

  10. The Lathrop Wells volcanic center

    International Nuclear Information System (INIS)

    Crowe, B.; Morley, R.

    1992-01-01

    The Lathrop Wells volcanic center is located 20 km south of the potential Yucca Mountain site, at the south end of the Yucca Mountain range. This paper discusses a detailed Study Plan which was prepared describing planned geochronology and field studies to assess the chronology of the Lathrop Wells volcanic center and other Quaternary volcanic centers in the region. A paper was published discussing the geomorphic and soil evidence for a late Pleistocene or Holoceno age for the main cone of the center. The purpose of this paper was to expose the ideas concerning the age of the Lathrop Wells center to scientific scrutiny. Additionally, field evidence was described suggesting the Lathrop Wells center may have formed from multiple eruptive events with significant intervals of no activity between events. This interpretation breaks with established convention in the volcanological literature that small volume basalt centers are monogenetic

  11. Recurrence models of volcanic events: Applications to volcanic risk assessment

    International Nuclear Information System (INIS)

    Crowe, B.M.; Picard, R.; Valentine, G.; Perry, F.V.

    1992-01-01

    An assessment of the risk of future volcanism has been conducted for isolation of high-level radioactive waste at the potential Yucca Mountain site in southern Nevada. Risk used in this context refers to a combined assessment of the probability and consequences of future volcanic activity. Past studies established bounds on the probability of magmatic disruption of a repository. These bounds were revised as additional data were gathered from site characterization studies. The probability of direct intersection of a potential repository located in an eight km 2 area of Yucca Mountain by ascending basalt magma was bounded by the range of 10 -8 to 10 -10 yr -1 2 . The consequences of magmatic disruption of a repository were estimated in previous studies to be limited. The exact releases from such an event are dependent on the strike of an intruding basalt dike relative to the repository geometry, the timing of the basaltic event relative to the age of the radioactive waste and the mechanisms of release and dispersal of the waste radionuclides in the accessible environment. The combined low probability of repository disruption and the limited releases associated with this event established the basis for the judgement that the risk of future volcanism was relatively low. It was reasoned that that risk of future volcanism was not likely to result in disqualification of the potential Yucca Mountain site

  12. The Volcanism Ontology (VO): a model of the volcanic system

    Science.gov (United States)

    Myer, J.; Babaie, H. A.

    2017-12-01

    We have modeled a part of the complex material and process entities and properties of the volcanic system in the Volcanism Ontology (VO) applying several top-level ontologies such as Basic Formal Ontology (BFO), SWEET, and Ontology of Physics for Biology (OPB) within a single framework. The continuant concepts in BFO describe features with instances that persist as wholes through time and have qualities (attributes) that may change (e.g., state, composition, and location). In VO, the continuants include lava, volcanic rock, and volcano. The occurrent concepts in BFO include processes, their temporal boundaries, and the spatio-temporal regions within which they occur. In VO, these include eruption (process), the onset of pyroclastic flow (temporal boundary), and the space and time span of the crystallization of lava in a lava tube (spatio-temporal region). These processes can be of physical (e.g., debris flow, crystallization, injection), atmospheric (e.g., vapor emission, ash particles blocking solar radiation), hydrological (e.g., diffusion of water vapor, hot spring), thermal (e.g., cooling of lava) and other types. The properties (predicates) relate continuants to other continuants, occurrents to continuants, and occurrents to occurrents. The ontology also models other concepts such as laboratory and field procedures by volcanologists, sampling by sensors, and the type of instruments applied in monitoring volcanic activity. When deployed on the web, VO will be used to explicitly and formally annotate data and information collected by volcanologists based on domain knowledge. This will enable the integration of global volcanic data and improve the interoperability of software that deal with such data.

  13. Candidate constructional volcanic edifices on Mercury

    OpenAIRE

    Wright, J.; Rothery, D. A.; Balme, M. R.; Conway, S. J.

    2018-01-01

    [Introduction] Studies using MESSENGER data suggest that Mercury’s crust is predominantly a product of effusive volcanism that occurred in the first billion years following the planet’s formation. Despite this planet-wide effusive volcanism, no constructional volcanic edifices, characterized by a topographic rise, have hitherto been robustly identified on Mercury, whereas constructional volcanoes are common on other planetary bodies in the solar system with volcanic histories. Here, we descri...

  14. Disruptive event analysis: volcanism and igneous intrusion

    International Nuclear Information System (INIS)

    Crowe, B.M.

    1979-01-01

    Three basic topics are addressed for the disruptive event analysis: first, the range of disruptive consequences of a radioactive waste repository by volcanic activity; second, the possible reduction of the risk of disruption by volcanic activity through selective siting of a repository; and third, the quantification of the probability of repository disruption by volcanic activity

  15. A Volcanic Hydrogen Habitable Zone

    International Nuclear Information System (INIS)

    Ramirez, Ramses M.; Kaltenegger, Lisa

    2017-01-01

    The classical habitable zone (HZ) is the circular region around a star in which liquid water could exist on the surface of a rocky planet. The outer edge of the traditional N_2–CO_2–H_2O HZ extends out to nearly ∼1.7 au in our solar system, beyond which condensation and scattering by CO_2 outstrips its greenhouse capacity. Here, we show that volcanic outgassing of atmospheric H_2 can extend the outer edge of the HZ to ∼2.4 au in our solar system. This wider volcanic-hydrogen HZ (N_2–CO_2–H_2O–H_2) can be sustained as long as volcanic H_2 output offsets its escape from the top of the atmosphere. We use a single-column radiative-convective climate model to compute the HZ limits of this volcanic hydrogen HZ for hydrogen concentrations between 1% and 50%, assuming diffusion-limited atmospheric escape. At a hydrogen concentration of 50%, the effective stellar flux required to support the outer edge decreases by ∼35%–60% for M–A stars. The corresponding orbital distances increase by ∼30%–60%. The inner edge of this HZ only moves out ∼0.1%–4% relative to the classical HZ because H_2 warming is reduced in dense H_2O atmospheres. The atmospheric scale heights of such volcanic H_2 atmospheres near the outer edge of the HZ also increase, facilitating remote detection of atmospheric signatures.

  16. A Volcanic Hydrogen Habitable Zone

    Energy Technology Data Exchange (ETDEWEB)

    Ramirez, Ramses M.; Kaltenegger, Lisa, E-mail: rmr277@cornell.edu [Carl Sagan Institute, Cornell University, Ithaca, NY (United States)

    2017-03-01

    The classical habitable zone (HZ) is the circular region around a star in which liquid water could exist on the surface of a rocky planet. The outer edge of the traditional N{sub 2}–CO{sub 2}–H{sub 2}O HZ extends out to nearly ∼1.7 au in our solar system, beyond which condensation and scattering by CO{sub 2} outstrips its greenhouse capacity. Here, we show that volcanic outgassing of atmospheric H{sub 2} can extend the outer edge of the HZ to ∼2.4 au in our solar system. This wider volcanic-hydrogen HZ (N{sub 2}–CO{sub 2}–H{sub 2}O–H{sub 2}) can be sustained as long as volcanic H{sub 2} output offsets its escape from the top of the atmosphere. We use a single-column radiative-convective climate model to compute the HZ limits of this volcanic hydrogen HZ for hydrogen concentrations between 1% and 50%, assuming diffusion-limited atmospheric escape. At a hydrogen concentration of 50%, the effective stellar flux required to support the outer edge decreases by ∼35%–60% for M–A stars. The corresponding orbital distances increase by ∼30%–60%. The inner edge of this HZ only moves out ∼0.1%–4% relative to the classical HZ because H{sub 2} warming is reduced in dense H{sub 2}O atmospheres. The atmospheric scale heights of such volcanic H{sub 2} atmospheres near the outer edge of the HZ also increase, facilitating remote detection of atmospheric signatures.

  17. Holocene volcanic geology, volcanic hazard, and risk on Taveuni, Fiji

    International Nuclear Information System (INIS)

    Cronin, S.J.; Neall, V.E.

    2001-01-01

    The Holocene volcanic geology of Taveuni has been mapped in order to produce a volcanic hazard and risk assessment for the island. Taveuni is the third-largest island of the Fiji group and home to 14,500 people. At least cubic km 2.7 of olivine-alkali-basalt magma was erupted from over 100 events throughout the Holocene. Vents are concentrated along a northeast-striking rift zone that is parallel to other regional structural trends. There is an overall trend of younging southward along the rift. Holocene lavas and tephras are grouped within six newly defined eruptive periods, established on a basis of radiocarbon dating. Within these periods, 14 tephra layers, useful as local marker horizons, are recognised. At least 58% of Holocene eruptions produced lava flows, while almost all produced some tephra. Individual eruption event volumes ranged between 0.001 and cubic km 0.20 (dense rock equivalent). Many eruptions involved at least some phases of phreatic and/or phreato-magmatic activity, although dominant hydrovolcanic activity was limited to only a few events. A volcanic hazard map is presented, based on the Holocene geology map and statistical analyses of eruption recurrence. The highest levels of ground-based and near-vent hazards are concentrated along the southern portion of the island's rift axis, with the paths of initial lava flows predicted from present topography. Tephra fall hazards are based on eruption parameters interpreted from mapped Holocene tephra layers. Hawaiian explosive-style eruptions appear to be a dominant eruptive process, with prevailing low-level (<3 km) southeasterly winds dispersing most tephra to the northwestern quadrant. Vulnerable elements (population centres, infrastructure, and economy) on Taveuni have been considered in deriving a volcanic risk assessment for the island. A number of infrastructural and subdivision developments are either under way or planned for the island, driven by its highly fertile soils and availability of

  18. Can rain cause volcanic eruptions?

    Science.gov (United States)

    Mastin, Larry G.

    1993-01-01

    Volcanic eruptions are renowned for their violence and destructive power. This power comes ultimately from the heat and pressure of molten rock and its contained gases. Therefore we rarely consider the possibility that meteoric phenomena, like rainfall, could promote or inhibit their occurrence. Yet from time to time observers have suggested that weather may affect volcanic activity. In the late 1800's, for example, one of the first geologists to visit the island of Hawaii, J.D. Dana, speculated that rainfall influenced the occurrence of eruptions there. In the early 1900's, volcanologists suggested that some eruptions from Mount Lassen, Calif., were caused by the infiltration of snowmelt into the volcano's hot summit. Most such associations have not been provable because of lack of information; others have been dismissed after careful evaluation of the evidence.

  19. Source mechanisms of volcanic tsunamis.

    Science.gov (United States)

    Paris, Raphaël

    2015-10-28

    Volcanic tsunamis are generated by a variety of mechanisms, including volcano-tectonic earthquakes, slope instabilities, pyroclastic flows, underwater explosions, shock waves and caldera collapse. In this review, we focus on the lessons that can be learnt from past events and address the influence of parameters such as volume flux of mass flows, explosion energy or duration of caldera collapse on tsunami generation. The diversity of waves in terms of amplitude, period, form, dispersion, etc. poses difficulties for integration and harmonization of sources to be used for numerical models and probabilistic tsunami hazard maps. In many cases, monitoring and warning of volcanic tsunamis remain challenging (further technical and scientific developments being necessary) and must be coupled with policies of population preparedness. © 2015 The Author(s).

  20. Volcanic hazards in Central America

    Science.gov (United States)

    Rose, William I.; Bluth, Gregg J.S.; Carr, Michael J.; Ewert, John W.; Patino, Lina C.; Vallance, James W.

    2006-01-01

    This volume is a sampling of current scientific work about volcanoes in Central America with specific application to hazards. The papers reflect a variety of international and interdisciplinary collaborations and employ new methods. The book will be of interest to a broad cross section of scientists, especially volcanologists. The volume also will interest students who aspire to work in the field of volcano hazards mitigation or who may want to work in one of Earth’s most volcanically active areas.

  1. Volcanic deformation in the Andes

    Science.gov (United States)

    Riddick, S.; Fournier, T.; Pritchard, M.

    2009-05-01

    We present the results from an InSAR survey of volcanic activity in South America. We use data from the Japanese Space Agency's ALOS L-band radar satellite from 2006-2009. The L-band instrument provides better coherence in densely vegetated regions, compared to the shorter wave length C-band data. The survey reveals volcano related deformation in regions, north, central and southern, of the Andes volcanic arc. Since observations are limited to the austral summer, comprehensive coverage of all volcanoes is not possible. Yet, our combined observations reveal volcanic/hydrothermal deformation at Lonquimay, Llaima, Laguna del Maule, and Chaitén volcanoes, extend deformation measurements at Copahue, and illustrate temporal complexity to the previously described deformation at Cerro Hudson and Cordón Caulle. No precursory deformation is apparent before the large Chaitén eruption (VEI_5) of 2 May 2008, (at least before 16 April) suggesting rapid magma movement from depth at this long dormant volcano. Subsidence at Ticsani Volcano occurred coincident with an earthquake swarm in the same region.

  2. Volcanic mercury in Pinus canariensis

    Science.gov (United States)

    Rodríguez Martín, José Antonio; Nanos, Nikos; Miranda, José Carlos; Carbonell, Gregoria; Gil, Luis

    2013-08-01

    Mercury (Hg) is a toxic element that is emitted to the atmosphere by both human activities and natural processes. Volcanic emissions are considered a natural source of mercury in the environment. In some cases, tree ring records taken close to volcanoes and their relation to volcanic activity over time are contradictory. In 1949, the Hoyo Negro volcano (La Palma-Canary Islands) produced significant pyroclastic flows that damaged the nearby stand of Pinus canariensis. Recently, 60 years after the eruption, we assessed mercury concentrations in the stem of a pine which survived volcano formation, located at a distance of 50 m from the crater. We show that Hg content in a wound caused by pyroclastic impacts (22.3 μg kg-1) is an order of magnitude higher than the Hg concentrations measured in the xylem before and after the eruption (2.3 μg kg-1). Thus, mercury emissions originating from the eruption remained only as a mark—in pyroclastic wounds—and can be considered a sporadic and very high mercury input that did not affect the overall Hg input in the xylem. In addition, mercury contents recorded in the phloem (9.5 μg kg-1) and bark (6.0 μg kg-1) suggest that mercury shifts towards non-living tissues of the pine, an aspect that can be related to detoxification in volcanism-adapted species.

  3. Source mechanism of volcanic tremor

    Energy Technology Data Exchange (ETDEWEB)

    Ferrick, M.G.; Qamar, A.; St. Lawrence, W.F.

    1982-10-10

    Low-frequency (<10 Hz) volcanic earthquakes originate at a wide range of depths and occur before, during, and after magmatic eruptions. The characteristics of these earthquakes suggest that they are not typical tectonic events. Physically analogous processes occur in hydraulic fracturing of rock formations, low-frequency icequakes in temperate glaciers, and autoresonance in hydroelectric power stations. We propose that unsteady fluid flow in volcanic conduits is the common source mechanism of low-frequency volcanic earthquakes (tremor). The fluid dynamic source mechanism explains low-frequency earthquakes of arbitrary duration, magnitude, and depth of origin, as unsteady flow is independent of physical properties of the fluid and conduit. Fluid transients occur in both low-viscosity gases and high-viscosity liquids. A fluid transient analysis can be formulated as generally as is warranted by knowledge of the composition and physical properties of the fluid, material properties, geometry and roughness of the conduit, and boundary conditions. To demonstrate the analytical potential of the fluid dynamic theory, we consider a single-phase fluid, a melt of Mount Hood andesite at 1250/sup 0/C, in which significant pressure and velocity variations occur only in the longitudinal direction. Further simplification of the conservation of mass and momentum equations presents an eigenvalue problem that is solved to determine the natural frequencies and associated damping of flow and pressure oscillations.

  4. Volcanic mercury in Pinus canariensis.

    Science.gov (United States)

    Rodríguez Martín, José Antonio; Nanos, Nikos; Miranda, José Carlos; Carbonell, Gregoria; Gil, Luis

    2013-08-01

    Mercury (Hg) is a toxic element that is emitted to the atmosphere by both human activities and natural processes. Volcanic emissions are considered a natural source of mercury in the environment. In some cases, tree ring records taken close to volcanoes and their relation to volcanic activity over time are contradictory. In 1949, the Hoyo Negro volcano (La Palma-Canary Islands) produced significant pyroclastic flows that damaged the nearby stand of Pinus canariensis. Recently, 60 years after the eruption, we assessed mercury concentrations in the stem of a pine which survived volcano formation, located at a distance of 50 m from the crater. We show that Hg content in a wound caused by pyroclastic impacts (22.3 μg kg(-1)) is an order of magnitude higher than the Hg concentrations measured in the xylem before and after the eruption (2.3 μg kg(-1)). Thus, mercury emissions originating from the eruption remained only as a mark-in pyroclastic wounds-and can be considered a sporadic and very high mercury input that did not affect the overall Hg input in the xylem. In addition, mercury contents recorded in the phloem (9.5 μg kg(-1)) and bark (6.0 μg kg(-1)) suggest that mercury shifts towards non-living tissues of the pine, an aspect that can be related to detoxification in volcanism-adapted species.

  5. Disruptive event analysis: volcanism and igneous intrusion

    International Nuclear Information System (INIS)

    Crowe, B.M.

    1980-08-01

    An evaluation is made of the disruptive effects of volcanic activity with respect to long term isolation of radioactive waste through deep geologic storage. Three major questions are considered. First, what is the range of disruption effects of a radioactive waste repository by volcanic activity. Second, is it possible, by selective siting of a repository, to reduce the risk of disruption by future volcanic activity. And third, can the probability of repository disruption by volcanic activity be quantified. The main variables involved in the evaluation of the consequences of repository disruption by volcanic activity are the geometry of the magma-repository intersection (partly controlled by depth of burial) and the nature of volcanism. Potential radionuclide dispersal by volcanic transport within the biosphere ranges in distance from several kilometers to global. Risk from the most catastrophic types of eruptions can be reduced by careful site selection to maximize lag time prior to the onset of activity. Certain areas or volcanic provinces within the western United States have been sites of significant volcanism and should be avoided as potential sites for a radioactive waste repository. Examples of projection of future sites of active volcanism are discussed for three areas of the western United States. Probability calculations require two types of data: a numerical rate or frequency of volcanic activity and a numerical evaluation of the areal extent of volcanic disruption for a designated region. The former is clearly beyond the current state of art in volcanology. The latter can be approximated with a reasonable degree of satisfaction. In this report, simplified probability calculations are attempted for areas of past volcanic activity

  6. Volcanic hazards and public response

    Science.gov (United States)

    Peterson, Donald W.

    1988-05-01

    Although scientific understanding of volcanoes is advancing, eruptions continue to take a substantial toll of life and property. Some of these losses could be reduced by better advance preparation, more effective flow of information between scientists and public officials, and better understanding of volcanic behavior by all segments of the public. The greatest losses generally occur at volcanoes that erupt infrequently where people are not accustomed to dealing with them. Scientists sometimes tend to feel that the blame for poor decisions in emergency management lies chiefly with officials or journalists because of their failure to understand the threat. However, the underlying problem embraces a set of more complex issues comprising three pervasive factors. The first factor is the volcano: signals given by restless volcanoes are often ambiguous and difficult to interpret, especially at long-quiescent volcanoes. The second factor is people: people confront hazardous volcanoes in widely divergent ways, and many have difficulty in dealing with the uncertainties inherent in volcanic unrest. The third factor is the scientists: volcanologists correctly place their highest priority on monitoring and hazard assessment, but they sometimes fail to explain clearly their conclusions to responsible officials and the public, which may lead to inadequate public response. Of all groups in society, volcanologists have the clearest understanding of the hazards and vagaries of volcanic activity; they thereby assume an ethical obligation to convey effectively their knowledge to benefit all of society. If society resists, their obligation nevertheless remains. They must use the same ingenuity and creativity in dealing with information for the public that they use in solving scientific problems. When this falls short, even excellent scientific results may be nullified.

  7. Thermal vesiculation during volcanic eruptions.

    Science.gov (United States)

    Lavallée, Yan; Dingwell, Donald B; Johnson, Jeffrey B; Cimarelli, Corrado; Hornby, Adrian J; Kendrick, Jackie E; von Aulock, Felix W; Kennedy, Ben M; Andrews, Benjamin J; Wadsworth, Fabian B; Rhodes, Emma; Chigna, Gustavo

    2015-12-24

    Terrestrial volcanic eruptions are the consequence of magmas ascending to the surface of the Earth. This ascent is driven by buoyancy forces, which are enhanced by bubble nucleation and growth (vesiculation) that reduce the density of magma. The development of vesicularity also greatly reduces the 'strength' of magma, a material parameter controlling fragmentation and thus the explosive potential of the liquid rock. The development of vesicularity in magmas has until now been viewed (both thermodynamically and kinetically) in terms of the pressure dependence of the solubility of water in the magma, and its role in driving gas saturation, exsolution and expansion during decompression. In contrast, the possible effects of the well documented negative temperature dependence of solubility of water in magma has largely been ignored. Recently, petrological constraints have demonstrated that considerable heating of magma may indeed be a common result of the latent heat of crystallization as well as viscous and frictional heating in areas of strain localization. Here we present field and experimental observations of magma vesiculation and fragmentation resulting from heating (rather than decompression). Textural analysis of volcanic ash from Santiaguito volcano in Guatemala reveals the presence of chemically heterogeneous filaments hosting micrometre-scale vesicles. The textures mirror those developed by disequilibrium melting induced via rapid heating during fault friction experiments, demonstrating that friction can generate sufficient heat to induce melting and vesiculation of hydrated silicic magma. Consideration of the experimentally determined temperature and pressure dependence of water solubility in magma reveals that, for many ascent paths, exsolution may be more efficiently achieved by heating than by decompression. We conclude that the thermal path experienced by magma during ascent strongly controls degassing, vesiculation, magma strength and the effusive

  8. Volcanism and associated hazards: the Andean perspective

    Science.gov (United States)

    Tilling, R. I.

    2009-12-01

    Andean volcanism occurs within the Andean Volcanic Arc (AVA), which is the product of subduction of the Nazca Plate and Antarctica Plates beneath the South America Plate. The AVA is Earth's longest but discontinuous continental-margin volcanic arc, which consists of four distinct segments: Northern Volcanic Zone, Central Volcanic Zone, Southern Volcanic Zone, and Austral Volcanic Zone. These segments are separated by volcanically inactive gaps that are inferred to indicate regions where the dips of the subducting plates are too shallow to favor the magma generation needed to sustain volcanism. The Andes host more volcanoes that have been active during the Holocene (past 10 000 years) than any other volcanic region in the world, as well as giant caldera systems that have produced 6 of the 47 largest explosive eruptions (so-called "super eruptions") recognized worldwide that have occurred from the Ordovician to the Pleistocene. The Andean region's most powerful historical explosive eruption occurred in 1600 at Huaynaputina Volcano (Peru). The impacts of this event, whose eruptive volume exceeded 11 km3, were widespread, with distal ashfall reported at distances >1000 km away. Despite the huge size of the Huaynaputina eruption, human fatalities from hazardous processes (pyroclastic flows, ashfalls, volcanogenic earthquakes, and lahars) were comparatively small owing to the low population density at the time. In contrast, lahars generated by a much smaller eruption (Colombia) killed about 25 000 people - the worst volcanic disaster in the Andean region as well as the second worst in the world in the 20th century. The Ruiz tragedy has been attributed largely to ineffective communications of hazards information and indecisiveness by government officials, rather than any major deficiencies in scientific data. Ruiz's disastrous outcome, however, together with responses to subsequent hazardous eruptions in Chile, Colombia, Ecuador, and Peru has spurred significant

  9. Electrostatic phenomena in volcanic eruptions

    Energy Technology Data Exchange (ETDEWEB)

    Lane, S J; James, M R; Gilbert, J S, E-mail: s.lane@lancaster.ac.uk [Lancaster Environment Centre, Lancaster University, Lancaster LA1 4YQ (United Kingdom)

    2011-06-23

    Electrostatic phenomena have long been associated with the explosive eruption of volcanoes. Lightning generated in volcanic plumes is a spectacular atmospheric electrical event that requires development of large potential gradients over distances of up to kilometres. This process begins as hydrated liquid rock (magma) ascends towards Earth's surface. Pressure reduction causes water supersaturation in the magma and the development of bubbles of supercritical water, where deeper than c. 1000 m, and water vapour at shallower depths that drives flow expansion. The generation of high strain rates in the expanding bubbly magma can cause it to fracture in a brittle manner, as deformation relaxation timescales are exceeded. The brittle fracture provides the initial charge separation mechanism, known as fractoemission. The resulting mixture of charged silicate particles and ions evolves over time, generating macro-scale potential gradients in the atmosphere and driving processes such as particle aggregation. For the silicate particles, aggregation driven by electrostatic effects is most significant for particles smaller than c. 100 {mu}m. Aggregation acts to change the effective aerodynamic behaviour of silicate particles, thus altering the sedimentation rates of particles from volcanic plumes from the atmosphere. The presence of liquid phases also promotes aggregation processes and lightning.

  10. Cenozoic volcanic rocks of Saudi Arabia

    Science.gov (United States)

    Coleman, R.G.; Gregory, R.T.; Brown, G.F.

    2016-01-01

    The Cenozoic volcanic rocks of Saudi Arabia cover about 90,000 km2, one of the largest areas of alkali olivine basalt in the world. These volcanic rocks are in 13 separate fields near the eastern coast of the Red Sea and in the western Arabian Peninsula highlands from Syria southward to the Yemen Arab Republic.

  11. Quaternary basaltic volcanism in the Payenia volcanic province, Argentina

    DEFF Research Database (Denmark)

    Søager, Nina

    primitive basalts and trachybasalts but also more evolved samples from the retroarc region and the larger volcanoes Payún Matrú and Payún Liso are presented. The samples cover a broad range of compositions from intraplate lavas similar to ocean island basalts to arc andesites. A common feature found...... are isotopically similar to the Andean Southern Volcanic Zone arc rocks and their mantle source possibly resembled the source of South Atlantic N-MORB prior to addition of fluids and melts from the subduction channel. However, it must have been more enriched than the estimates of depleted upper mantle from...... the lithosphere is thinnest and possibly in areas of elevated mantle temperatures. The pyroxenite melts formed at deeper levels react with the surrounding peridotite and thereby changes composition leading to eruption of melts which experienced variable degrees of melt-peridotite interaction. This can presumably...

  12. Geomorphological Approach for Regional Zoning In The Merapi Volcanic Area

    Directory of Open Access Journals (Sweden)

    Langgeng Wahyu Santosa

    2013-07-01

    Full Text Available Geomorphologial approach can be used as the basic for identifying and analyzing the natural resources potentials, especially in volcanic landscape. Based on its geomorphology, Merapi volcanic landscape can be divided into 5 morphological units, i.e.: volcanic cone, volcanic slope, volcanic foot, volcanic foot plain, and fluvio-volcanic plain. Each of these morphological units has specific characteristic and natural resources potential. Based on the condition of geomorphology, the regional zoning can be compiled to support the land use planning and to maintain the conservation of environmental function in the Merapi Volcanic area.

  13. Large Volcanic Rises on Venus

    Science.gov (United States)

    Smrekar, Suzanne E.; Kiefer, Walter S.; Stofan, Ellen R.

    1997-01-01

    Large volcanic rises on Venus have been interpreted as hotspots, or the surface manifestation of mantle upwelling, on the basis of their broad topographic rises, abundant volcanism, and large positive gravity anomalies. Hotspots offer an important opportunity to study the behavior of the lithosphere in response to mantle forces. In addition to the four previously known hotspots, Atla, Bell, Beta, and western Eistla Regiones, five new probable hotspots, Dione, central Eistla, eastern Eistla, Imdr, and Themis, have been identified in the Magellan radar, gravity and topography data. These nine regions exhibit a wider range of volcano-tectonic characteristics than previously recognized for venusian hotspots, and have been classified as rift-dominated (Atla, Beta), coronae-dominated (central and eastern Eistla, Themis), or volcano-dominated (Bell, Dione, western Eistla, Imdr). The apparent depths of compensation for these regions ranges from 65 to 260 km. New estimates of the elastic thickness, using the 90 deg and order spherical harmonic field, are 15-40 km at Bell Regio, and 25 km at western Eistla Regio. Phillips et al. find a value of 30 km at Atla Regio. Numerous models of lithospheric and mantle behavior have been proposed to interpret the gravity and topography signature of the hotspots, with most studies focusing on Atla or Beta Regiones. Convective models with Earth-like parameters result in estimates of the thickness of the thermal lithosphere of approximately 100 km. Models of stagnant lid convection or thermal thinning infer the thickness of the thermal lithosphere to be 300 km or more. Without additional constraints, any of the model fits are equally valid. The thinner thermal lithosphere estimates are most consistent with the volcanic and tectonic characteristics of the hotspots. Estimates of the thermal gradient based on estimates of the elastic thickness also support a relatively thin lithosphere (Phillips et al.). The advantage of larger estimates of

  14. Dinasour extinction and volcanic activity

    Science.gov (United States)

    Gledhill, J. A.

    There is at present some controversy about the reason for the mass extinction of dinosaurs and other forms of life at the end of the Cretaceous. A suggestion by Alvarez et al. [1980] that this was due to the collision of the earth with a meteorite 10 km or so in diameter has excited considerable interest [Silver and Schultz, 1982] and also some criticism [Stanley, 1984]. A recent publication [Wood, 1984] describing the catastrophic effects of a relatively minor lava flow in Iceland suggests that intense volcanic activity could have played a large part in the extinctions. In this letter it is pointed out that the Deccan lava flows in India took place in the appropriate time and may well have been of sufficient magnitude to be a major factor in the Cretaceous-Tertiary (C-T) boundary catastrophe.

  15. Volcanic Plume Measurements with UAV (Invited)

    Science.gov (United States)

    Shinohara, H.; Kaneko, T.; Ohminato, T.

    2013-12-01

    Volatiles in magmas are the driving force of volcanic eruptions and quantification of volcanic gas flux and composition is important for the volcano monitoring. Recently we developed a portable gas sensor system (Multi-GAS) to quantify the volcanic gas composition by measuring volcanic plumes and obtained volcanic gas compositions of actively degassing volcanoes. As the Multi-GAS measures variation of volcanic gas component concentrations in the pumped air (volcanic plume), we need to bring the apparatus into the volcanic plume. Commonly the observer brings the apparatus to the summit crater by himself but such measurements are not possible under conditions of high risk of volcanic eruption or difficulty to approach the summit due to topography etc. In order to overcome these difficulties, volcanic plume measurements were performed by using manned and unmanned aerial vehicles. The volcanic plume measurements by manned aerial vehicles, however, are also not possible under high risk of eruption. The strict regulation against the modification of the aircraft, such as installing sampling pipes, also causes difficulty due to the high cost. Application of the UAVs for the volcanic plume measurements has a big advantage to avoid these problems. The Multi-GAS consists of IR-CO2 and H2O gas analyzer, SO2-H2O chemical sensors and H2 semiconductor sensor and the total weight ranges 3-6 kg including batteries. The necessary conditions of the UAV for the volcanic plumes measurements with the Multi-GAS are the payloads larger than 3 kg, maximum altitude larger than the plume height and installation of the sampling pipe without contamination of the exhaust gases, as the exhaust gases contain high concentrations of H2, SO2 and CO2. Up to now, three different types of UAVs were applied for the measurements; Kite-plane (Sky Remote) at Miyakejima operated by JMA, Unmanned airplane (Air Photo Service) at Shinomoedake, Kirishima volcano, and Unmanned helicopter (Yamaha) at Sakurajima

  16. Volcanic Ash Advisory Database, 1983-2003

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — Volcanic ash is a significant hazard to aviation and can also affect global climate patterns. To ensure safe navigation and monitor possible climatic impact, the...

  17. Age of the Auckland Volcanic Field

    International Nuclear Information System (INIS)

    Lindsay, J.; Leonard, G.S.

    2009-01-01

    In 2008 a multi-disciplinary research programme was launched, a GNS Science-University of Auckland collaboration with the aim of DEtermining VOlcanic Risk in Auckland (DEVORA). A major aspiration of DEVORA is development of a probabilistic hazard model for the Auckland Volcanic Field (AVF). This will be achieved by investigating past eruption magnitude-frequency relationships and comparing these with similar data from analogous volcanic fields. A key data set underpinning this is an age database for the AVF. To this end a comprehensive dating campaign is planned as part of DEVORA. This report, Age of the Auckland Volcanic Field, is a synthesis of all currently available age data for the AVF. It represents one of several reports carried out as part of the 'synthesis' phase of DEVORA, whereby existing data from all previous work is collated and summarised, so that gaps in current knowledge can be identified and addressed. (author). 60 refs., 7 figs., 31 tabs.

  18. Volcanic eruptions are cooling the earth

    International Nuclear Information System (INIS)

    Groenaas, Sigbjoern

    2005-01-01

    The article discusses how volcanic eruptions may influence the climate. The environmental impacts both on the earth surface and the atmosphere are surveyed. Some major eruptions in modern times are mentioned

  19. Stochastic Modeling of Past Volcanic Crises

    Science.gov (United States)

    Woo, Gordon

    2018-01-01

    The statistical foundation of disaster risk analysis is past experience. From a scientific perspective, history is just one realization of what might have happened, given the randomness and chaotic dynamics of Nature. Stochastic analysis of the past is an exploratory exercise in counterfactual history, considering alternative possible scenarios. In particular, the dynamic perturbations that might have transitioned a volcano from an unrest to an eruptive state need to be considered. The stochastic modeling of past volcanic crises leads to estimates of eruption probability that can illuminate historical volcanic crisis decisions. It can also inform future economic risk management decisions in regions where there has been some volcanic unrest, but no actual eruption for at least hundreds of years. Furthermore, the availability of a library of past eruption probabilities would provide benchmark support for estimates of eruption probability in future volcanic crises.

  20. Imaging volcanic CO2 and SO2

    Science.gov (United States)

    Gabrieli, A.; Wright, R.; Lucey, P. G.; Porter, J. N.

    2017-12-01

    Detecting and quantifying volcanic carbon dioxide (CO2) and sulfur dioxide (SO2) emissions is of relevance to volcanologists. Changes in the amount and composition of gases that volcanoes emit are related to subsurface magma movements and the probability of eruptions. Volcanic gases and related acidic aerosols are also an important atmospheric pollution source that create environmental health hazards for people, animals, plants, and infrastructures. For these reasons, it is important to measure emissions from volcanic plumes during both day and night. We present image measurements of the volcanic plume at Kīlauea volcano, HI, and flux derivation, using a newly developed 8-14 um hyperspectral imaging spectrometer, the Thermal Hyperspectral Imager (THI). THI is capable of acquiring images of the scene it views from which spectra can be derived from each pixel. Each spectrum contains 50 wavelength samples between 8 and 14 um where CO2 and SO2 volcanic gases have diagnostic absorption/emission features respectively at 8.6 and 14 um. Plume radiance measurements were carried out both during the day and the night by using both the lava lake in the Halema'uma'u crater as a hot source and the sky as a cold background to detect respectively the spectral signatures of volcanic CO2 and SO2 gases. CO2 and SO2 path-concentrations were then obtained from the spectral radiance measurements using a new Partial Least Squares Regression (PLSR)-based inversion algorithm, which was developed as part of this project. Volcanic emission fluxes were determined by combining the path measurements with wind observations, derived directly from the images. Several hours long time-series of volcanic emission fluxes will be presented and the SO2 conversion rates into aerosols will be discussed. The new imaging and inversion technique, discussed here, are novel allowing for continuous CO2 and SO2 plume mapping during both day and night.

  1. Local and remote infrasound from explosive volcanism

    Science.gov (United States)

    Matoza, R. S.; Fee, D.; LE Pichon, A.

    2014-12-01

    Explosive volcanic eruptions can inject large volumes of ash into heavily travelled air corridors and thus pose a significant societal and economic hazard. In remote volcanic regions, satellite data are sometimes the only technology available to observe volcanic eruptions and constrain ash-release parameters for aviation safety. Infrasound (acoustic waves ~0.01-20 Hz) data fill this critical observational gap, providing ground-based data for remote volcanic eruptions. Explosive volcanic eruptions are among the most powerful sources of infrasound observed on earth, with recordings routinely made at ranges of hundreds to thousands of kilometers. Advances in infrasound technology and the efficient propagation of infrasound in the atmosphere therefore greatly enhance our ability to monitor volcanoes in remote regions such as the North Pacific Ocean. Infrasound data can be exploited to detect, locate, and provide detailed chronologies of the timing of explosive volcanic eruptions for use in ash transport and dispersal models. We highlight results from case studies of multiple eruptions recorded by the International Monitoring System and dedicated regional infrasound networks (2008 Kasatochi, Alaska, USA; 2008 Okmok, Alaska, USA; 2009 Sarychev Peak, Kuriles, Russian Federation; 2010 Eyjafjallajökull, Icleand) and show how infrasound is currently used in volcano monitoring. We also present progress towards characterizing and modeling the variability in source mechanisms of infrasound from explosive eruptions using dedicated local infrasound field deployments at volcanoes Karymsky, Russian Federation and Sakurajima, Japan.

  2. The Origin of Widespread Long-lived Volcanism Across the Galapagos Volcanic Province

    Science.gov (United States)

    O'Connor, J. M.; Stoffers, P.; Wijbrans, J. R.; Worthington, T. J.

    2005-12-01

    40Ar/39Ar ages for rocks dredged (SO144 PAGANINI expedition) and drilled (DSDP) from the Galapagos Volcanic Province (Cocos, Carnegie, Coiba and Malpelo aseismic ridges and associated seamounts) show evidence of 1) increasing age with distance from the Galapagos Archipelago, 2) long-lived episodic volcanism at many locations, and 3) broad overlapping regions of coeval volcanism. The widespread nature of synchronous volcanism across the Galapagos Volcanic Province (GVP) suggests a correspondingly large Galapagos hotspot melting anomaly (O'Connor et al., 2004). Development of the GVP via Cocos and Nazca plate migration and divergence over this broad melting anomaly would explain continued multiple phases of volcanism over millions of years following the initial onset of hotspot volcanism. The question arising from these observations is whether long-lived GVP episodic volcanism is equivalent to `rejuvenescent' or a `post-erosional' phase of volcanism that occurs hundreds of thousands or million years after the main shield-building phase documented on many mid-plate seamount chains, most notably along the Hawaiian-Emperor Seamount Chain? Thus, investigating the process responsible for long-lived episodic GVP volcanism provides the opportunity to evaluate this little understood process of rejuvenation in a physical setting very different to the Hawaiian-Emperor Chain (i.e. on/near spreading axis versus mid-plate). We consider here timing and geochemical information to test the various geodynamic models proposed to explain the origin of GVP hotspot volcanism, especially the possibility of rejuvenated phases that erupt long after initial shield-building.

  3. Volcanism on differentiated asteroids (Invited)

    Science.gov (United States)

    Wilson, L.

    2013-12-01

    after passing through optically dense fire fountains. At low eruption rates and high volatile contents many clasts cooled to form spatter or cinder deposits, but at high eruption rates and low volatile contents most clasts landed hot and coalesced into lava ponds to feed lava flows. Lava flow thickness varies with surface slope, acceleration due to gravity, and lava yield strength induced by cooling. Low gravity on asteroids caused flows to be relatively thick which reduced the effects of cooling, and many flows probably attained lengths of tens of km and stopped as a result of cessation of magma supply from the reservoir rather than cooling. On most asteroids larger than 100 km radius experiencing more than ~30% mantle melting, the erupted volcanic deposits will have buried the original chondritic surface layers of the asteroid to such great depths that they were melted, or at least heavily thermally metamorphosed, leaving no present-day meteoritical evidence of their prior existence. Tidal stresses from close encounters between asteroids and proto-planets may have very briefly increased melting and melt migration speeds in asteroid interiors but only gross structural disruption would have greatly have changed volcanic histories.

  4. Volcanic Supersites as cross-disciplinary laboratories

    Science.gov (United States)

    Provenzale, Antonello; Beierkuhnlein, Carl; Giamberini, Mariasilvia; Pennisi, Maddalena; Puglisi, Giuseppe

    2017-04-01

    Volcanic Supersites, defined in the frame of the GEO-GSNL Initiative, are usually considered mainly for their geohazard and geological characteristics. However, volcanoes are extremely challenging areas from many other points of view, including environmental and climatic properties, ecosystems, hydrology, soil properties and biogeochemical cycling. Possibly, volcanoes are closer to early Earth conditions than most other types of environment. During FP7, EC effectively fostered the implementation of the European volcano Supersites (Mt. Etna, Campi Flegrei/Vesuvius and Iceland) through the MED-SUV and FUTUREVOLC projects. Currently, the large H2020 project ECOPOTENTIAL (2015-2019, 47 partners, http://www.ecopotential-project.eu/) contributes to GEO/GEOSS and to the GEO ECO Initiative, and it is devoted to making best use of remote sensing and in situ data to improve future ecosystem benefits, focusing on a network of Protected Areas of international relevance. In ECOPOTENTIAL, remote sensing and in situ data are collected, processed and used for a better understanding of the ecosystem dynamics, analysing and modelling the effects of global changes on ecosystem functions and services, over an array of different ecosystem types, including mountain, marine, coastal, arid and semi-arid ecosystems, and also areas of volcanic origin such as the Canary and La Reunion Islands. Here, we propose to extend the network of the ECOPOTENTIAL project to include active Volcanic Supersites, such as Mount Etna and other volcanic Protected Areas, and we discuss how they can be included in the framework of the ECOPOTENTIAL workflow. A coordinated and cross-disciplinary set of studies at these sites should include geological, biological, ecological, biogeochemical, climatic and biogeographical aspects, as well as their relationship with the antropogenic impact on the environment, and aim at the global analysis of the volcanic Earth Critical Zone - namely, the upper layer of the Earth

  5. Volcanic Alert System (VAS) developed during the (2011-2013) El Hierro (Canary Islands) volcanic process

    Science.gov (United States)

    Ortiz, Ramon; Berrocoso, Manuel; Marrero, Jose Manuel; Fernandez-Ros, Alberto; Prates, Gonçalo; De la Cruz-Reyna, Servando; Garcia, Alicia

    2014-05-01

    In volcanic areas with long repose periods (as El Hierro), recently installed monitoring networks offer no instrumental record of past eruptions nor experience in handling a volcanic crisis. Both conditions, uncertainty and inexperience, contribute to make the communication of hazard more difficult. In fact, in the initial phases of the unrest at El Hierro, the perception of volcanic risk was somewhat distorted, as even relatively low volcanic hazards caused a high political impact. The need of a Volcanic Alert System became then evident. In general, the Volcanic Alert System is comprised of the monitoring network, the software tools for the analysis of the observables, the management of the Volcanic Activity Level, and the assessment of the threat. The Volcanic Alert System presented here places special emphasis on phenomena associated to moderate eruptions, as well as on volcano-tectonic earthquakes and landslides, which in some cases, as in El Hierro, may be more destructive than an eruption itself. As part of the Volcanic Alert System, we introduce here the Volcanic Activity Level which continuously applies a routine analysis of monitoring data (particularly seismic and deformation data) to detect data trend changes or monitoring network failures. The data trend changes are quantified according to the Failure Forecast Method (FFM). When data changes and/or malfunctions are detected, by an automated watchdog, warnings are automatically issued to the Monitoring Scientific Team. Changes in the data patterns are then translated by the Monitoring Scientific Team into a simple Volcanic Activity Level, that is easy to use and understand by the scientists and technicians in charge for the technical management of the unrest. The main feature of the Volcanic Activity Level is its objectivity, as it does not depend on expert opinions, which are left to the Scientific Committee, and its capabilities for early detection of precursors. As a consequence of the El Hierro

  6. Indirect Climatic Effects of Major Volcanic Eruptions

    Science.gov (United States)

    Hofmann, D. J.

    2007-05-01

    The direct effects on climate, related to atmospheric emissions to the atmosphere following major volcanic eruptions, are well-known although the sparseness of such eruptions make detailed study on the range of such variations difficult. In general terms, infrared absorption by volcanic emissions to the stratosphere result in local heating early in the event when gaseous sulfur compounds exist. This early period is followed by gas to particle conversion, on a time scale of 1-2 months, promoting the formation of sulfuric acid-water droplets. Coagulation and droplet growth result in the "volcanic stratospheric aerosol layer" which is related to the predominant direct climatic effect of large eruptions, the cooling of the troposphere by backscattering of solar visible radiation to space with a recovery time scale of 1-2 years. In this paper we will discuss some of the less-known "indirect" effects of the volcanic stratospheric aerosol on climate. We label them indirect as they act on climate through intermediary atmospheric constituents. The intermediaries in the volcanic indirect climatic effect are generally atmospheric greenhouse gases or other atmospheric gases and conditions which affect greenhouse gases. For example, cooling of the troposphere following major eruptions reduces the growth rate of atmospheric carbon dioxide related to respiration by the terrestrial biosphere. In addition, redirection of part of the direct solar beam into diffuse radiation by the volcanic stratospheric aerosol stimulates plant photosynthesis, further reducing the carbon dioxide growth rate. The growth rate of the second-most important atmospheric greenhouse gas, methane, is also affected by volcanic emissions. Volcanic stratospheric aerosol particles provide surface area which catalyzes heterogeneous chemical reactions thus stimulating removal of stratospheric ozone, also a greenhouse gas. Although major droughts usually related to ENSO events have opposite effects on carbon

  7. Ages of plains volcanism on Mars

    Science.gov (United States)

    Hauber, Ernst; Jagert, Felix; Broz, Petr

    2010-05-01

    Plain-style volcanism [1] is widespread in the Tharsis and Elysium volcanic provinces on Mars, [2,3]. Detailed images and topographic data reveal the morphology and topography of clusters of low shields and associated lava flows. The landforms of plains volcanism on Mars have all well-known terrestrial analogues in basaltic volcanic regions, such as Hawaii, Iceland, and in particular the Snake River Plains [4]. The very gentle flank slopes (J. (1981) Icarus, 45, 586-601. [3] Hodges C.A. and Moore H.J. (1994) Atlas of volcanic features on Mars: USGS Prof. Paper 1534, 194 p. [4] Hauber E. et al. (2009) J. Volcanol. Geotherm. Res. 185, 69-95. [5] Wilson L. et al. (2009) J. Volcanol. Geotherm. Res. 185, 28-46. [6] Vaucher, J. et al. (2009) Icarus 204, 418-442. [7] Baratoux D. et al. (2009) J. Volcanol. Geotherm. Res. 185, 47-68. [8] Bleacher J.E. et al. (2009) J. Volcanol. Geotherm. Res. 185, 96-102. [9] Ivanov B.A. (2001) Space Sci. Rev. 96, 87-104. [10] Hartmann W.H. and Neukum G. (2001) Space Sci. Rev. 96, 165-194 [11] Kneissl T. et al. (2010) LPS XVI, submitted. [12] Michael, G.G. and Neukum G. (2010) Earth Planet. Sci. Lett., in press. . [13] Malin M.C. et al. (2007) JGR 112, E05S04, doi: 10.1029/2006JE002808.

  8. Active Volcanic Eruptions on Io

    Science.gov (United States)

    1996-01-01

    Six views of the volcanic plume named Prometheus, as seen against Io's disk and near the bright limb (edge) of the satellite by the SSI camera on the Galileo spacecraft during its second (G2) orbit of Jupiter. North is to the top of each frame. To the south-southeast of Prometheus is another bright spot that appears to be an active plume erupting from a feature named Culann Patera. Prometheus was active 17 years ago during both Voyager flybys, but no activity was detected by Voyager at Culann. Both of these plumes were seen to glow in the dark in an eclipse image acquired by the imaging camera during Galileo's first (G1) orbit, and hot spots at these locations were detected by Galileo's Near-Infrared Mapping Spectrometer.The plumes are thought to be driven by heating sulfur dioxide in Io's subsurface into an expanding fluid or 'geyser'. The long-lived nature of these eruptions requires that a substantial supply of sulfur dioxide must be available in Io's subsurface, similar to groundwater. Sulfur dioxide gas condenses into small particles of 'snow' in the expanding plume, and the small particles scatter light and appear bright at short wavelengths. The images shown here were acquired through the shortest-wavelength filter (violet) of the Galileo camera. Prometheus is about 300 km wide and 75 km high and Culann is about 150 km wide and less than 50 km high. The images were acquired on September 4, 1996 at a range of 2,000,000 km (20 km/pixel resolution). Prometheus is named after the Greek fire god and Culann is named after the Celtic smith god.The Jet Propulsion Laboratory, Pasadena, CA manages the Galileo mission for NASA's Office of Space Science, Washington, DC. JPL is an operating division of California Institute of Technology (Caltech).This image and other images and data received from Galileo are posted on the World Wide Web, on the Galileo mission home page at URL http://galileo.jpl.nasa.gov. Background information and educational context for the images can

  9. National volcanic ash operations plan for aviation

    Science.gov (United States)

    ,; ,

    2007-01-01

    The National Aviation Weather Program Strategic Plan (1997) and the National Aviation Weather Initiatives (1999) both identified volcanic ash as a high-priority informational need to aviation services. The risk to aviation from airborne volcanic ash is known and includes degraded engine performance (including flameout), loss of visibility, failure of critical navigational and operational instruments, and, in the worse case, loss of life. The immediate costs for aircraft encountering a dense plume are potentially major—damages up to $80 million have occurred to a single aircraft. Aircraft encountering less dense volcanic ash clouds can incur longer-term costs due to increased maintenance of engines and external surfaces. The overall goal, as stated in the Initiatives, is to eliminate encounters with ash that could degrade the in-flight safety of aircrews and passengers and cause damage to the aircraft. This goal can be accomplished by improving the ability to detect, track, and forecast hazardous ash clouds and to provide adequate warnings to the aviation community on the present and future location of the cloud. To reach this goal, the National Aviation Weather Program established three objectives: (1) prevention of accidental encounters with hazardous clouds; (2) reduction of air traffic delays, diversions, or evasive actions when hazardous clouds are present; and (3) the development of a single, worldwide standard for exchange of information on airborne hazardous materials. To that end, over the last several years, based on numerous documents (including an OFCMsponsored comprehensive study on aviation training and an update of Aviation Weather Programs/Projects), user forums, and two International Conferences on Volcanic Ash and Aviation Safety (1992 and 2004), the Working Group for Volcanic Ash (WG/VA), under the OFCM-sponsored Committee for Aviation Services and Research, developed the National Volcanic Ash Operations Plan for Aviation and Support of the

  10. Venus - Volcanic features in Atla Region

    Science.gov (United States)

    1991-01-01

    This Magellan image from the Atla region of Venus shows several types of volcanic features and superimposed surface fractures. The area in the image is approximately 350 kilometers (217 miles) across, centered at 9 degrees south latitude, 199 degrees east longitude. Lava flows emanating from circular pits or linear fissures form flower-shaped patterns in several areas. A collapse depression approximately 20 kilometers by 10 kilometers (12 by 6 miles) near the center of the image is drained by a lava channel approximately 40 kilometers (25 miles) long. Numerous surface fractures and graben (linear valleys) criss-cross the volcanic deposits in north to northeast trends. The fractures are not buried by the lavas, indicating that the tectonic activity post-dates most of the volcanic activity.

  11. Ozone depletion following future volcanic eruptions

    Science.gov (United States)

    Eric Klobas, J.; Wilmouth, David M.; Weisenstein, Debra K.; Anderson, James G.; Salawitch, Ross J.

    2017-07-01

    While explosive volcanic eruptions cause ozone loss in the current atmosphere due to an enhancement in the availability of reactive chlorine following the stratospheric injection of sulfur, future eruptions are expected to increase total column ozone as halogen loading approaches preindustrial levels. The timing of this shift in the impact of major volcanic eruptions on the thickness of the ozone layer is poorly known. Modeling four possible climate futures, we show that scenarios with the smallest increase in greenhouse gas concentrations lead to the greatest risk to ozone from heterogeneous chemical processing following future eruptions. We also show that the presence in the stratosphere of bromine from natural, very short-lived biogenic compounds is critically important for determining whether future eruptions will lead to ozone depletion. If volcanic eruptions inject hydrogen halides into the stratosphere, an effect not considered in current ozone assessments, potentially profound reductions in column ozone would result.

  12. Geochemistry of volcanic series of Aragats province

    International Nuclear Information System (INIS)

    Meliksetyan, Kh.B.

    2012-01-01

    In this contribution we discuss geochemical and isotope characteristics of volcanism of the Aragats volcanic province and possible petrogenetical models of magma generation in collision zone of Armenian highland. We talk about combination of some specific features of collision related volcanism such as dry and high temperature conditions of magma generation, that demonstrate some similarities to intraplate-like petrogenesis and presence of mantle source enriched by earlier subductions, indicative to island-arc type magma generation models. Based on comprehensive analysis of isotope and geochemical data and some published models of magma generation beneath Aragats we lead to a petrogenetic model of origin of Aragats system to be a result of magma mixture between mantle originated mafic magma with felsic, adakite-type magmas

  13. Tropical Volcanic Soils From Flores Island, Indonesia

    Directory of Open Access Journals (Sweden)

    Hikmatullah

    2010-01-01

    Full Text Available Soils that are developed intropical region with volcanic parent materials have many unique properties, and high potential for agricultural use.The purpose of this study is to characterize the soils developed on volcanic materials from Flores Island, Indonesia,and to examine if the soils meet the requirements for andic soil properties. Selected five soils profiles developed fromandesitic volcanic materials from Flores Island were studied to determine their properties. They were compared intheir physical, chemical and mineralogical characteristics according to their parent material, and climatic characteristicdifferent. The soils were developed under humid tropical climate with ustic to udic soil moisture regimes withdifferent annual rainfall. The soils developed from volcanic ash parent materials in Flores Island showed differentproperties compared to the soils derived from volcanic tuff, even though they were developed from the sameintermediary volcanic materials. The silica contents, clay mineralogy and sand fractions, were shown as the differences.The different in climatic conditions developed similar properties such as deep solum, dark color, medium texture, andvery friable soil consistency. The soils have high organic materials, slightly acid to acid, low to medium cationexchange capacity (CEC. The soils in western region have higher clay content and showing more developed than ofthe eastern region. All the profiles meet the requirements for andic soil properties, and classified as Andisols order.The composition of sand mineral was dominated by hornblende, augite, and hypersthenes with high weatherablemineral reserves, while the clay fraction was dominated by disordered kaolinite, and hydrated halloysite. The soilswere classified into subgroup as Thaptic Hapludands, Typic Hapludands, and Dystric Haplustands

  14. Abies religiosa habitat prediction in climatic change scenarios and implications for monarch butterfly conservation in Mexico

    Science.gov (United States)

    Cuauhtemoc Saenz-Romero; Gerald E. Rehfeldt; Pierre Duval; Roberto A. Lindig-Cisneros

    2012-01-01

    Abies religiosa (HBK) Schl. & Cham. (oyamel fir) is distributed in conifer-dominated mountain forests at high altitudes along the Trans-Mexican Volcanic Belt. This fir is the preferred host for overwintering monarch butterfly (Danaus plexippus) migratory populations which habitually congregate within a few stands now located inside a Monarch Butterfly Biosphere...

  15. Tellurium in active volcanic environments: Preliminary results

    Science.gov (United States)

    Milazzo, Silvia; Calabrese, Sergio; D'Alessandro, Walter; Brusca, Lorenzo; Bellomo, Sergio; Parello, Francesco

    2014-05-01

    Tellurium is a toxic metalloid and, according to the Goldschmidt classification, a chalcophile element. In the last years its commercial importance has considerably increased because of its wide use in solar cells, thermoelectric and electronic devices of the last generation. Despite such large use, scientific knowledge about volcanogenic tellurium is very poor. Few previous authors report result of tellurium concentrations in volcanic plume, among with other trace metals. They recognize this element as volatile, concluding that volcanic gases and sulfur deposits are usually enriched with tellurium. Here, we present some results on tellurium concentrations in volcanic emissions (plume, fumaroles, ash leachates) and in environmental matrices (soils and plants) affected by volcanic emissions and/or deposition. Samples were collected at Etna and Vulcano (Italy), Turrialba (Costa Rica), Miyakejima, Aso, Asama (Japan), Mutnovsky (Kamchatka) at the crater rims by using common filtration techniques for aerosols (polytetrafluoroethylene filters). Filters were both eluted with Millipore water and acid microwave digested, and analyzed by inductively coupled plasma mass spectrometry (ICP-MS). Volcanic ashes emitted during explosive events on Etna and Copahue (Argentina) were analyzed for tellurium bulk composition and after leaching experiments to evaluate the soluble fraction of tellurium. Soils and leaves of vegetation were also sampled close to active volcanic vents (Etna, Vulcano, Nisyros, Nyiragongo, Turrialba, Gorely and Masaya) and investigated for tellurium contents. Preliminary results showed very high enrichments of tellurium in volcanic emissions comparing with other volatile elements like mercury, arsenic, thallium and bismuth. This suggests a primary transport in the volatile phase, probably in gaseous form (as also suggested by recent studies) and/or as soluble salts (halides and/or sulfates) adsorbed on the surface of particulate particles and ashes. First

  16. Volcanic air pollution hazards in Hawaii

    Science.gov (United States)

    Elias, Tamar; Sutton, A. Jeff

    2017-04-20

    Noxious sulfur dioxide gas and other air pollutants emitted from Kīlauea Volcano on the Island of Hawai‘i react with oxygen, atmospheric moisture, and sunlight to produce volcanic smog (vog) and acid rain. Vog can negatively affect human health and agriculture, and acid rain can contaminate household water supplies by leaching metals from building and plumbing materials in rooftop rainwater-catchment systems. U.S. Geological Survey scientists, along with health professionals and local government officials are working together to better understand volcanic air pollution and to enhance public awareness of this hazard.

  17. Volcanic Eruptions and Climate: Outstanding Research Issues

    Science.gov (United States)

    Robock, Alan

    2016-04-01

    Large volcanic eruptions inject sulfur gases into the stratosphere, which convert to sulfate aerosols with an e-folding residence time of about one year. The radiative and chemical effects of this aerosol cloud produce responses in the climate system. Based on observations after major eruptions of the past and experiments with numerical models of the climate system, we understand much about their climatic impact, but there are also a number of unanswered questions. Volcanic eruptions produce global cooling, and are an important natural cause of interannual, interdecadal, and even centennial-scale climate change. One of the most interesting volcanic effects is the "winter warming" of Northern Hemisphere continents following major tropical eruptions. During the winter in the Northern Hemisphere following every large tropical eruption of the past century, surface air temperatures over North America, Europe, and East Asia were warmer than normal, while they were colder over Greenland and the Middle East. This pattern and the coincident atmospheric circulation correspond to the positive phase of the Arctic Oscillation. While this response is observed after recent major eruptions, most state-of-the-art climate models have trouble simulating winter warming. Why? High latitude eruptions in the Northern Hemisphere, while also producing global cooling, do not have the same impact on atmospheric dynamics. Both tropical and high latitude eruptions can weaken the Indian and African summer monsoon, and the effects can be seen in past records of flow in the Nile and Niger Rivers. Since the Mt. Pinatubo eruption in the Philippines in 1991, there have been no large eruptions that affected climate, but the cumulative effects of small eruptions over the past decade have had a small effect on global temperature trends. Some important outstanding research questions include: How much seasonal, annual, and decadal predictability is possible following a large volcanic eruption? Do

  18. Winter warming from large volcanic eruptions

    Science.gov (United States)

    Robock, Alan; Mao, Jianping

    1992-01-01

    An examination of the Northern Hemisphere winter surface temperature patterns after the 12 largest volcanic eruptions from 1883-1992 shows warming over Eurasia and North America and cooling over the Middle East which are significant at the 95-percent level. This pattern is found in the first winter after tropical eruptions, in the first or second winter after midlatitude eruptions, and in the second winter after high latitude eruptions. The effects are independent of the hemisphere of the volcanoes. An enhanced zonal wind driven by heating of the tropical stratosphere by the volcanic aerosols is responsible for the regions of warming, while the cooling is caused by blocking of incoming sunlight.

  19. Evidences for a volcanic province in the Central Indian Basin

    Digital Repository Service at National Institute of Oceanography (India)

    Iyer, S.D.; Sudhakar, M.

    Based on various lines of evidence such as the widespread occurrence of basalts, pumice, volcanic glass shards and their transformational products (zeolites, palagonites, and smectite-rich sediments), we suggest the presence of a volcanic province...

  20. Improving volcanic ash forecasts with ensemble-based data assimilation

    NARCIS (Netherlands)

    Fu, Guangliang

    2017-01-01

    The 2010 Eyjafjallajökull volcano eruption had serious consequences to civil aviation. This has initiated a lot of research on volcanic ash forecasting in recent years. For forecasting the volcanic ash transport after eruption onset, a volcanic ash transport and diffusion model (VATDM) needs to be

  1. Volcanic Characteristics of Kueishantao in Northeast Taiwan and Their Implications

    Directory of Open Access Journals (Sweden)

    Ching-Lung Chiu

    2010-01-01

    Full Text Available Kueishantao (KST is a small offshore volcanic island located at the southernmost part of the Okinawa Trough. In this study, we conducted a detailed mapping incorporating the new high resolution LiDAR DTM laser scanning device to accurately construct a volcanic sequence. A new 1/5000 geological map was established. One primary volcanic cone, composed of layers of both lava flows and pyroclastic rocks constituted the major edifice of KST. The other minor volcanic cone, which consists of volcanic lapillis and blocks, is seated to the east of the main cone. The escarped and nearly straight coast in the southern part of the KST indicates that the volcano suffered a large post-volcanic edifice collapse erasing nearly one half of the volume of both volcanic cones. The increase in the abundance of the xenoliths of sedimentary rocks from the lower to the upper part of the volcanic sequence indicates that the formation of volcanic rocks of the KST involved an intensification of crustal contamination. The possibility of volcanic eruption can not be excluded in the future based on the present thermolu¬minescene age data of 7 ka. The associated eruptive ash fall and tsunami induced by the further collapse of the KST volcanic edifice might have great influence to the adjacent inland. Thus, long-term monitoring of volcanic activities around KST should be required for future hazard assessments.

  2. Apollo 15 mare volcanism: constraints and problems

    International Nuclear Information System (INIS)

    Delano, J.W.

    1985-01-01

    The Apollo 15 landing site contains more volcanics in the form of crystalline basalts and pristine glasses, which form the framework for all models dealing with the mantle beneath that site. Major issues on the petrology of the mare source regions beneath that portion of Mare Imbrium are summarized

  3. Monogenetic volcanism: personal views and discussion

    Science.gov (United States)

    Németh, K.; Kereszturi, G.

    2015-11-01

    Monogenetic volcanism produces small-volume volcanoes with a wide range of eruptive styles, lithological features and geomorphic architectures. They are classified as spatter cones, scoria (or cinder) cones, tuff rings, maars (maar-diatremes) and tuff cones based on the magma/water ratio, dominant eruption styles and their typical surface morphotypes. The common interplay between internal, such as the physical-chemical characteristics of magma, and external parameters, such as groundwater flow, substrate characteristics or topography, plays an important role in creating small-volume volcanoes with diverse architectures, which can give the impression of complexity and of similarities to large-volume polygenetic volcanoes. In spite of this volcanic facies complexity, we defend the term "monogenetic volcano" and highlight the term's value, especially to express volcano morphotypes. This study defines a monogenetic volcano, a volcanic edifice with a small cumulative volume (typically ≤1 km3) that has been built up by one continuous, or many discontinuous, small eruptions fed from one or multiple magma batches. This definition provides a reasonable explanation of the recently recognized chemical diversities of this type of volcanism.

  4. Payenia volcanic province, southern Mendoza, Argentina

    DEFF Research Database (Denmark)

    Søager, Nina; Holm, Paul Martin; Llambias, Eduardo Jorge

    2013-01-01

    The Pleistocene to Holocene Payenia volcanic province is a backarc region of 60,000 km2 in Mendoza, Argentina, which is dominated by transitional to alkaline basalts and trachybasalts. We present major and trace element compositions of 139 rocks from this area of which the majority are basaltic...

  5. Monitoring and forecasting Etna volcanic plumes

    Directory of Open Access Journals (Sweden)

    S. Scollo

    2009-09-01

    Full Text Available In this paper we describe the results of a project ongoing at the Istituto Nazionale di Geofisica e Vulcanologia (INGV. The objective is to develop and implement a system for monitoring and forecasting volcanic plumes of Etna. Monitoring is based at present by multispectral infrared measurements from the Spin Enhanced Visible and Infrared Imager on board the Meteosat Second Generation geosynchronous satellite, visual and thermal cameras, and three radar disdrometers able to detect ash dispersal and fallout. Forecasting is performed by using automatic procedures for: i downloading weather forecast data from meteorological mesoscale models; ii running models of tephra dispersal, iii plotting hazard maps of volcanic ash dispersal and deposition for certain scenarios and, iv publishing the results on a web-site dedicated to the Italian Civil Protection. Simulations are based on eruptive scenarios obtained by analysing field data collected after the end of recent Etna eruptions. Forecasting is, hence, supported by plume observations carried out by the monitoring system. The system was tested on some explosive events occurred during 2006 and 2007 successfully. The potentiality use of monitoring and forecasting Etna volcanic plumes, in a way to prevent threats to aviation from volcanic ash, is finally discussed.

  6. X-ray microanalysis of volcanic ash

    International Nuclear Information System (INIS)

    Kearns, S L; Buse, B

    2012-01-01

    The 2010 eruption of Eyjafjallajökull volcano in Iceland demonstrated the disruptive nature of high-level volcanic ash emissions to the world's air traffic. The chemistry of volcanic material is complex and varied. Different eruptions yield both compositional and morphological variation. Equally a single eruption, such as that in Iceland will evolve over time and may potentially produce a range of volcanic products of varying composition and morphology. This variability offers the petrologist the opportunity to derive a tracer to the origins both spatially and temporally of a single particle by means of electron microbeam analysis. EPMA of volcanic ash is now an established technique for this type of analysis as used in tephrachronology. However, airborne paniculate material may, as in the case of Eyjafjallajökull, result in a particle size that is too small and too dispersed for preparation of standard EPMA mounts. Consequently SEM-EDS techniques are preferred for this type of quantitative analysis . Results of quantitative SEM-EDS analysis yield data with a larger precision error than EPMA yet sufficient to source the original eruption. Uncoated samples analyzed using variable pressure SEM yield slightly poorer results at modest pressures.

  7. Amazonian volcanism inside Valles Marineris on Mars

    Czech Academy of Sciences Publication Activity Database

    Brož, Petr; Hauber, E.; Wray, J. J.; Michael, G.

    2017-01-01

    Roč. 473, September (2017), s. 122-130 ISSN 0012-821X Institutional support: RVO:67985530 Keywords : Mars * Valles Marineris * volcanism * scoria cone * hydrothermal activity Subject RIV: DC - Siesmology, Volcanology, Earth Structure OBOR OECD: Volcanology Impact factor: 4.409, year: 2016

  8. The Elusive Evidence of Volcanic Lightning.

    Science.gov (United States)

    Genareau, K; Gharghabi, P; Gafford, J; Mazzola, M

    2017-11-14

    Lightning strikes are known to morphologically alter and chemically reduce geologic formations and deposits, forming fulgurites. A similar process occurs as the result of volcanic lightning discharge, when airborne volcanic ash is transformed into lightning-induced volcanic spherules (LIVS). Here, we adapt the calculations used in previous studies of lightning-induced damage to infrastructure materials to determine the effects on pseudo-ash samples of simplified composition. Using laboratory high-current impulse experiments, this research shows that within the lightning discharge channel there is an ideal melting zone that represents roughly 10% or less of the total channel radius at which temperatures are sufficient to melt the ash, regardless of peak current. The melted ash is simultaneously expelled from the channel by the heated, expanding air, permitting particles to cool during atmospheric transport before coming to rest in ash fall deposits. The limited size of this ideal melting zone explains the low number of LIVS typically observed in volcanic ash despite the frequent occurrence of lightning during explosive eruptions.

  9. Sources of Quaternary volcanism in the Itasy and Ankaratra volcanic fields, Madagascar

    Science.gov (United States)

    Rasoazanamparany, C.; Widom, E.; Kuentz, D. C.; Raharimahefa, T.; Rakotondrazafy, F. M. A.; Rakotondravelo, K. M.

    2017-12-01

    We present new major and trace element and Sr, Nd, Pb and Os isotope data for Quaternary basaltic lavas and tephra from the Itasy and Ankaratra volcanic fields, representing the most recent volcanism in Madagascar. Mafic magmas from Itasy and Ankaratra exhibit significant inter- and intra-volcanic field geochemical heterogeneity. The Itasy eruptive products range in composition from foidite to phonotephrite whereas Ankaratra lavas range from basanite to trachybasalts. Trace element signatures of samples from both volcanic fields are very similar to those of ocean island basalts (OIB), with significant enrichment in Nb and Ta, depletion in Rb, Cs, and K, and relatively high Nb/U and Ce/Pb. However, the Itasy volcanic rocks show enrichment relative to those of Ankaratra in most incompatible elements, indicative of a more enriched source and/or lower degrees of partial melting. Significant inter- and intra-volcanic field heterogeneity is also observed in Sr, Nd, Pb and Os isotope signatures. The Itasy volcanic rocks generally have less radiogenic Sr and Nd isotopic ratios but more radiogenic Pb isotopic signatures than the Ankaratra volcanic field. Together, the Itasy and Ankaratra volcanic rocks form a well-defined negative correlation in Sr vs. Pb isotopes that could be attributed to lithospheric contamination or variable degrees of mixing between distinct mantle sources. However, the lack of correlation between isotopes and indices of crustal contamination (e.g. MgO and Nb/U) are inconsistent with shallow lithospheric contamination, and instead suggest mixing between compositionally distinct mantle sources. Furthermore, although Sr-Pb isotope systematics are apparently consistent with mixing between two different sources, distinct trends in Sr vs. Nd isotopes displayed by samples from Itasy and Ankaratra, respectively, argue for more complex source mixing involving three or more sources. The current data demonstrate that although the Itasy and Ankaratra volcanic

  10. Microphysical Properties of Alaskan Volcanic Ash

    Science.gov (United States)

    Puthukkudy, A.; Espinosa, R.; Rocha Lima, A.; Remer, L.; Colarco, P. R.; Whelley, P.; Krotkov, N. A.; Young, K.; Dubovik, O.; Wallace, K.; Martins, J. V.

    2017-12-01

    Volcanic ash has the potential to cause a variety of severe problems for human health and the environment. Therefore, effective monitoring of the dispersion and fallout from volcanic ash clouds and characterization of the aerosol particle properties are essential. One way to acquire information from volcanic clouds is through satellite remote sensing: such images have greater coverage than ground-based observations and can present a "big picture" perspective. A challenge of remote sensing is that assumptions of certain properties of the target are often a pre-requisite for making accurate and quantitative retrievals. For example, detailed information about size distribution, sphericity, and optical properties of the constituent matter is needed or must be assumed. The same kind of information is also needed for atmospheric transport models to properly simulate the dispersion and fallout of volcanic ash. Presented here is a laboratory method to determine the microphysical and optical properties of volcanic ash samples collected from two Alaskan volcanoes with markedly different compositions. Our method uses a Polarized Imaging Nephelometer (PI-Neph) and a system that re-suspends the particles in an air flow. The PI-Neph measures angular light scattering and polarization of the re-suspended particles from 3o to 175o in scattering angle, with an angular resolution of 1o . Primary measurements include phase function and polarized phase function at three wavelengths (445nm, 532nm, and 661nm). Size distribution, sphericity, and complex refractive index are retrieved indirectly from the PI-Neph measurements using the GRASP (Generalized Retrieval of Aerosol and Surface Properties) inversion algorithm. We report the results of this method applied to samples from the Mt. Okmok (2008) and Mt. Katmai (1912) volcanic eruptions. To our knowledge, this is the first time direct measurements of phase matrix elements of ash from Mt. Okmok and Mt. Katmai have been reported. Retrieved

  11. Fluids in volcanic and geothermal systems

    Science.gov (United States)

    Sigvaldason, Gudmundur E.

    Mineral buffers control the composition of most volatile components of magmas and dissolved species in geothermal fluids. The only element which occurs in significant quantities in volcanic and geothermal fluids and is not controlled by mineral buffers is chlorine. It is argued that in absence of marine influence, geothermal fluids reflect the chlorine content of associated magmatic fluids. The chlorine content of oceanic volcanic rocks has a positive correlation with elements, which are believed to indicate a heterogenous source region. Since the source is generally believed to be the Earth's mantle, the implication is that the mantle is heterogenous with regard to chlorine and other volatiles. Such heterogeneities would have important consequences for genesis and distribution of ore. All major magma types of the oceanic environment occur in Iceland. Their spatial distribution is closely related to a volcanotectonic pattern, suggesting crustal control. A geophysical model of crustal accretion in a rift zone is used in conjunction with classical petrology to predict geochemical processes in a rift zone crust. The model has two kinematic parameters-drift rate and subsidence rate-which combined describe trajectories of mass particles deposited on the surface. When considering in conjunction with thermal gradients of the rift zone a series of metamorphic reactions and chemical fractionation processes are bound to occur, eventually resulting in a layering of the oceanic crust. The physical parameters result in a derived variable, rift zone residence time, which depends on the width of a rift zone. Long residence times in a wide rift zone lead to multistage recycling of material. Other properties of the model, based on geometric arrangement of productive fissure swarms within a rift zone, explain off-rift volcanism as directly related to rift zone processes, either as plate trapped magmatic domains or a transgressive thermal anomaly into an older crust. Off

  12. Pacific seamount volcanism in space and time

    Science.gov (United States)

    Hillier, J. K.

    2007-02-01

    Seamounts constitute some of the most direct evidence about intraplate volcanism. As such, when seamounts formed and into which tectonic setting they erupted (i.e. on-ridge or off-ridge) are a useful reflection of how the properties of the lithosphere interact with magma generation in the fluid mantle beneath. Proportionately few seamounts are radiometrically dated however, and these tend to be recently active. In order to more representatively sample and better understand Pacific seamount volcanism this paper estimates the eruption ages (tvolc) of 2706 volcanoes via automated estimates of lithospheric strength. Lithospheric strength (GTRrel) is deduced from the ratio of gravity to topography above the summits of volcanoes, and is shown to correlate with seafloor age at the time of volcanic loading (Δt) at 61 sites where radiometric constraints upon Δt exist. A trend of fits data for these 61, and with seafloor age (tsf) known, can date the 2706 volcanoes; tvolc = tsf - Δt. Widespread recurrences of volcanism proximal to older features (e.g. the Cook-Austral alignment in French Polynesia) suggest that the lithosphere exerts a significant element of control upon the location of volcanism, and that magmatic throughput leaves the lithosphere more susceptible to the passage of future melts. Observations also prompt speculation that: the Tavara seamounts share morphological characteristics and isostatic compensation state with the Musicians, and probably formed similarly; the Easter Island chain may be a modern analogy to the Cross-Lines; a Musicians - South Hawaiian seamounts alignment may be deflecting the Hawaiian hotspot trace.

  13. Cooling Rates of Lunar Volcanic Glass Beads

    Science.gov (United States)

    Hui, Hejiu; Hess, Kai-Uwe; Zhang, Youxue; Peslier, Anne; Lange, Rebecca; Dingwell, Donald; Neal, Clive

    2016-01-01

    It is widely accepted that the Apollo 15 green and Apollo 17 orange glass beads are of volcanic origin. The diffusion profiles of volatiles in these glass beads are believed to be due to degassing during eruption (Saal et al., 2008). The degree of degassing depends on the initial temperature and cooling rate. Therefore, the estimations of volatiles in parental magmas of lunar pyroclastic deposits depend on melt cooling rates. Furthermore, lunar glass beads may have cooled in volcanic environments on the moon. Therefore, the cooling rates may be used to assess the atmospheric condition in an early moon, when volcanic activities were common. The cooling rates of glasses can be inferred from direct heat capacity measurements on the glasses themselves (Wilding et al., 1995, 1996a,b). This method does not require knowledge of glass cooling environments and has been applied to calculate the cooling rates of natural silicate glasses formed in different terrestrial environments. We have carried out heat capacity measurements on hand-picked lunar glass beads using a Netzsch DSC 404C Pegasus differential scanning calorimeter at University of Munich. Our preliminary results suggest that the cooling rate of Apollo 17 orange glass beads may be 12 K/min, based on the correlation between temperature of the heat capacity curve peak in the glass transition range and glass cooling rate. The results imply that the parental magmas of lunar pyroclastic deposits may have contained more water initially than the early estimations (Saal et al., 2008), which used higher cooling rates, 60-180 K/min in the modeling. Furthermore, lunar volcanic glass beads could have been cooled in a hot gaseous medium released from volcanic eruptions, not during free flight. Therefore, our results may shed light on atmospheric condition in an early moon.

  14. The Online GVP/USGS Weekly Volcanic Activity Report: Providing Timely Information About Worldwide Volcanism

    Science.gov (United States)

    Mayberry, G. C.; Guffanti, M. C.; Luhr, J. F.; Venzke, E. A.; Wunderman, R. L.

    2001-12-01

    The awesome power and intricate inner workings of volcanoes have made them a popular subject with scientists and the general public alike. About 1500 known volcanoes have been active on Earth during the Holocene, approximately 50 of which erupt per year. With so much activity occurring around the world, often in remote locations, it can be difficult to find up-to-date information about current volcanism from a reliable source. To satisfy the desire for timely volcano-related information the Smithsonian Institution and US Geological Survey combined their strengths to create the Weekly Volcanic Activity Report. The Smithsonian's Global Volcanism Program (GVP) has developed a network of correspondents while reporting worldwide volcanism for over 30 years in their monthly Bulletin of the Global Volcanism Network. The US Geological Survey's Volcano Hazards Program studies and monitors volcanoes in the United States and responds (upon invitation) to selected volcanic crises in other countries. The Weekly Volcanic Activity Report is one of the most popular sites on both organization's websites. The core of the Weekly Volcanic Activity Report is the brief summaries of current volcanic activity around the world. In addition to discussing various types of volcanism, the summaries also describe precursory activity (e.g. volcanic seismicity, deformation, and gas emissions), secondary activity (e.g. debris flows, mass wasting, and rockfalls), volcanic ash hazards to aviation, and preventative measures. The summaries are supplemented by links to definitions of technical terms found in the USGS photoglossary of volcano terms, links to information sources, and background information about reported volcanoes. The site also includes maps that highlight the location of reported volcanoes, an archive of weekly reports sorted by volcano and date, and links to commonly used acronyms. Since the Weekly Volcanic Activity Report's inception in November 2000, activity has been reported at

  15. The Ngorongoro Volcanic Highland and its relationships to volcanic deposits at Olduvai Gorge and East African Rift volcanism.

    Science.gov (United States)

    Mollel, Godwin F; Swisher, Carl C

    2012-08-01

    The Ngorongoro Volcanic Highland (NVH), situated adjacent and to the east of Olduvai Gorge in northern Tanzania, is the source of the immense quantities of lava, ignimbrite, air fall ash, and volcaniclastic debris that occur interbedded in the Plio-Pleistocene sedimentary deposits in the Laetoli and Olduvai areas. These volcanics have proven crucial to unraveling stratigraphic correlations, the age of these successions, the archaeological and paleontological remains, as well as the source materials from which the bulk of the stone tools were manufactured. The NVH towers some 2,000 m above the Olduvai and Laetoli landscapes, affecting local climate, run-off, and providing varying elevation - climate controlled ecosystem, habitats, and riparian corridors extending into the Olduvai and Laetoli lowlands. The NVH also plays a crucial role in addressing the genesis and history of East African Rift (EAR) magmatism in northern Tanzania. In this contribution, we provide age and petrochemical compositions of the major NVH centers: Lemagurut, basalt to benmorite, 2.4-2.2 Ma; Satiman, tephrite to phonolite, 4.6-3.5 Ma; Oldeani, basalt to trachyandesite, 1.6-1.5 Ma; Ngorongoro, basalt to rhyolite, 2.3-2.0 Ma; Olmoti, basalt to trachyte, 2.0-1.8 Ma; Embagai, nephelinite to phonolite, 1.2-0.6 Ma; and Engelosin, phonolite, 3-2.7 Ma. We then discuss how these correlate in time and composition with volcanics preserved at Olduvai Gorge. Finally, we place this into context with our current understanding as to the eruptive history of the NVH and relationship to East African Rift volcanism. Copyright © 2011 Elsevier Ltd. All rights reserved.

  16. Conceptual model of volcanism and volcanic hazards of the region of Ararat valley, Armenia

    Science.gov (United States)

    Meliksetian, Khachatur; Connor, Charles; Savov, Ivan; Connor, Laura; Navasardyan, Gevorg; Manucharyan, Davit; Ghukasyan, Yura; Gevorgyan, Hripsime

    2015-04-01

    Armenia and the adjacent volcanically active regions in Iran, Turkey and Georgia are located in the collision zone between the Arabian and Eurasian lithospheric plates. The majority of studies of regional collision related volcanism use the model proposed by Keskin, (2003) where volcanism is driven by Neo-Tethyan slab break-off. In Armenia, >500 Quaternary-Holocene volcanoes from the Gegham, Vardenis and Syunik volcanic fields are hosted within pull-apart structures formed by active faults and their segments (Karakhanyan et al., 2002), while tectonic position of the large in volume basalt-dacite Aragats volcano and periphery volcanic plateaus is different and its position away from major fault lines necessitates more complex volcano-tectonic setup. Our detailed volcanological, petrological and geochemical studies provide insight into the nature of such volcanic activity in the region of Ararat Valley. Most magmas, such as those erupted in Armenia are volatile-poor and erupt fairly hot. Here we report newly discovered tephra sequences in Ararat valley, that were erupted from historically active Ararat stratovolcano and provide evidence for explosive eruption of young, mid K2O calc-alkaline and volatile-rich (>4.6 wt% H2O; amph-bearing) magmas. Such young eruptions, in addition to the ignimbrite and lava flow hazards from Gegham and Aragats, present a threat to the >1.4 million people (~ ½ of the population of Armenia). We will report numerical simulations of potential volcanic hazards for the region of Ararat valley near Yerevan that will include including tephra fallout, lava flows and opening of new vents. Connor et al. (2012) J. Applied Volcanology 1:3, 1-19; Karakhanian et al. (2002), JVGR, 113, 319-344; Keskin, M. (2003) Geophys. Res. Lett. 30, 24, 8046.

  17. Volcanic Gases and Hot Spring Water to Evaluate the Volcanic Activity of the Mt. Baekdusan

    Science.gov (United States)

    Yun, S. H.; Lee, S.; Chang, C.

    2017-12-01

    This study performed the analysis on the volcanic gases and hot spring waters from the Julong hot spring at Mt. Baekdu, also known as Changbaishan on the North Korea(DPRK)-China border, during the period from July 2015 to August 2016. Also, we confirmed the errors that HCO3- concentrations of hot spring waters in the previous study (Lee et al. 2014) and tried to improve the problem. Dissolved CO2 in hot spring waters was analyzed using gas chromatograph in Lee et al.(2014). Improving this, from 2015, we used TOC-IC to analysis dissolved CO2. Also, we analyzed the Na2CO3 standard solutions of different concentrations using GC, and confirmed the correlation between the analytical concentrations and the real concentrations. However, because the analytical results of the Julong hot spring water were in discord with the estimated values based on this correlation, we can't estimate the HCO3-concentrations of 2014 samples. During the period of study, CO2/CH4 ratios in volcanic gases are gradually decreased, and this can be interpreted in two different ways. The first interpretation is that the conditions inside the volcanic edifice are changing into more reduction condition, and carbon in volcanic gases become more favorable to distribute into CH4 or CO than CO2. The second interpretation is that the interaction between volcanic gases and water becomes greater than past, and the concentrations of CO2which have much higher solubility in water decreased, relatively. In general, the effect of scrubbing of volcanic gas is strengthened during the quiet periods of volcanic activity rather than active periods. Meanwhile, the analysis of hot spring waters was done on the anion of acidic gases species, the major cations, and some trace elements (As, Cd, Re).This work was funded by the Korea Meteorological Administration Research and Development Program under Grant KMIPA 2015-3060.

  18. [Effects of volcanic eruptions on human health in Iceland. Review].

    Science.gov (United States)

    Gudmundsson, Gunnar; Larsen, Guðrun

    2016-01-01

    Volcanic eruptions are common in Iceland and have caused health problems ever since the settlement of Iceland. Here we describe volcanic activity and the effects of volcanic gases and ash on human health in Iceland. Volcanic gases expelled during eruptions can be highly toxic for humans if their concentrations are high, irritating the mucus membranes of the eyes and upper respiratory tract at lower concentrations. They can also be very irritating to the skin. Volcanic ash is also irritating for the mucus membranes of the eyes and upper respiratory tract. The smalles particles of volcanic ash can reach the alveoli of the lungs. Described are four examples of volcanic eruptions that have affected the health of Icelanders. The eruption of Laki volcanic fissure in 1783-1784 is the volcanic eruption that has caused the highest mortality and had the greatest effects on the well-being of Icelanders. Despite multiple volcanic eruptions during the last decades in Iceland mortality has been low and effects on human health have been limited, although studies on longterm effects are lacking. Studies on the effects of the Eyjafjallajökul eruption in 2010 on human health showed increased physical and mental symptoms, especially in those having respiratory disorders. The Directorate of Health in Iceland and other services have responded promptly to recurrent volcanic eruptions over the last few years and given detailed instructions on how to minimize the effects on the public health. Key words: volcanic eruptions, Iceland, volcanic ash, volcanic gases, health effects, mortality. Correspondence: Gunnar Guðmundsson, ggudmund@landspitali.is.

  19. Obsidian hydration dating of volcanic events

    Science.gov (United States)

    Friedman, I.; Obradovich, J.

    1981-01-01

    Obsidian hydration dating of volcanic events had been compared with ages of the same events determined by the 14C and KAr methods at several localities. The localities, ranging in age from 1200 to over 1 million yr, include Newberry Craters, Oregon; Coso Hot Springs, California; Salton Sea, California; Yellowstone National Park, Wyoming; and Mineral Range, Utah. In most cases the agreement is quite good. A number of factors including volcanic glass composition and exposuretemperature history must be known in order to relate hydration thickness to age. The effect of composition can be determined from chemical analysis or the refractive index of the glass. Exposure-temperature history requires a number of considerations enumerated in this paper. ?? 1981.

  20. Volcanic Origin of Alkali Halides on Io

    Science.gov (United States)

    Schaefer, L.; Fegley, B., Jr.

    2003-01-01

    The recent observation of NaCl (gas) on Io confirms our earlier prediction that NaCl is produced volcanically. Here we extend our calculations by modeling thermochemical equilibrium of O, S, Li, Na, K, Rb, Cs, F, Cl, Br, and I as a function of temperature and pressure in a Pele-like volcanic gas with O/S/Na/Cl/K = 1.518/1/0.05/0.04/0.005 and CI chondritic ratios of the other (as yet unobserved) alkalis and halogens. For reference, the nominal temperature and pressure for Pele is 1760 plus or minus 210 K and 0.01 bars based on Galileo data and modeling.

  1. Volcanic ash impacts on critical infrastructure

    Science.gov (United States)

    Wilson, Thomas M.; Stewart, Carol; Sword-Daniels, Victoria; Leonard, Graham S.; Johnston, David M.; Cole, Jim W.; Wardman, Johnny; Wilson, Grant; Barnard, Scott T.

    2012-01-01

    Volcanic eruptions can produce a wide range of hazards. Although phenomena such as pyroclastic flows and surges, sector collapses, lahars and ballistic blocks are the most destructive and dangerous, volcanic ash is by far the most widely distributed eruption product. Although ash falls rarely endanger human life directly, threats to public health and disruption to critical infrastructure services, aviation and primary production can lead to significant societal impacts. Even relatively small eruptions can cause widespread disruption, damage and economic loss. Volcanic eruptions are, in general, infrequent and somewhat exotic occurrences, and consequently in many parts of the world, the management of critical infrastructure during volcanic crises can be improved with greater knowledge of the likely impacts. This article presents an overview of volcanic ash impacts on critical infrastructure, other than aviation and fuel supply, illustrated by findings from impact assessment reconnaissance trips carried out to a wide range of locations worldwide by our international research group and local collaborators. ‘Critical infrastructure’ includes those assets, frequently taken for granted, which are essential for the functioning of a society and economy. Electricity networks are very vulnerable to disruption from volcanic ash falls. This is particularly the case when fine ash is erupted because it has a greater tendency to adhere to line and substation insulators, where it can cause flashover (unintended electrical discharge) which can in turn cause widespread and disruptive outages. Weather conditions are a major determinant of flashover risk. Dry ash is not conductive, and heavy rain will wash ash from insulators, but light rain/mist will mobilise readily-soluble salts on the surface of the ash grains and lower the ash layer’s resistivity. Wet ash is also heavier than dry ash, increasing the risk of line breakage or tower/pole collapse. Particular issues for water

  2. Magnetic properties of frictional volcanic materials

    Science.gov (United States)

    Kendrick, Jackie E.; Lavallée, Yan; Biggin, Andrew; Ferk, Annika; Leonhardt, Roman

    2015-04-01

    During dome-building volcanic eruptions, highly viscous magma extends through the upper conduit in a solid-like state. The outer margins of the magma column accommodate the majority of the strain, while the bulk of the magma is able to extrude, largely undeformed, to produce magma spines. Spine extrusion is often characterised by the emission of repetitive seismicity, produced in the upper <1 km by magma failure and slip at the conduit margins. The rheology of the magma controls the depth at which fracture can occur, while the frictional properties of the magma are important in controlling subsequent marginal slip processes. Upon extrusion, spines are coated by a carapace of volcanic fault rocks which provide insights into the deeper conduit processes. Frictional samples from magma spines at Mount St. Helens (USA), Soufriere Hills (Montserrat) and Mount Unzen (Japan) have been examined using structural, thermal and magnetic analyses to reveal a history of comminution, frictional heating, melting and cooling to form volcanic pseudotachylyte. Pseudotachylyte has rarely been noted in volcanic materials, and the recent observation of its syn-eruptive formation in dome-building volcanoes was unprecedented. The uniquely high thermal conditions of volcanic environments means that frictional melt remains at elevated temperatures for longer than usual, causing slow crystallisation, preventing the development of some signature "quench" characteristics. As such, rock-magnetic tests have proven to be some of the most useful tools in distinguishing pseudotachylytes from their andesite/ dacite hosts. In volcanic pseudotachylyte the mass normalised natural remanent magnetisation (NRM) when further normalised with the concentration dependent saturation remanence (Mrs) was found to be higher than the host rock. Remanence carriers are defined as low coercive materials across all samples, and while the remanence of the host rock displays similarities to an anhysteretic remanent

  3. The scaling of experiments on volcanic systems

    Directory of Open Access Journals (Sweden)

    Olivier eMERLE

    2015-06-01

    Full Text Available In this article, the basic principles of the scaling procedure are first reviewed by a presentation of scale factors. Then, taking an idealized example of a brittle volcanic cone intruded by a viscous magma, the way to choose appropriate analogue materials for both the brittle and ductile parts of the cone is explained by the use of model ratios. Lines of similarity are described to show that an experiment simulates a range of physical processes instead of a unique natural case. The pi theorem is presented as an alternative scaling procedure and discussed through the same idealized example to make the comparison with the model ratio procedure. The appropriateness of the use of gelatin as analogue material for simulating dyke formation is investigated. Finally, the scaling of some particular experiments such as pyroclastic flows or volcanic explosions is briefly presented to show the diversity of scaling procedures in volcanology.

  4. Volcanic emission of radionuclides and magma dynamics

    International Nuclear Information System (INIS)

    Lambert, G.; Le Cloarec, M.F.; Ardouin, B.; Le Roulley, J.C.

    1985-01-01

    210 Pb, 210 Bi and 210 Po, the last decay products of the 238 U series, are highly enriched in volcanic plumes, relative to the magma composition. Moreover this enrichment varies over time and from volcano to volcano. A model is proposed to describe 8 years of measurements of Mt. Etna gaseous emissions. The lead and bismuth coefficients of partition between gaseous and condensated phases in the magma are determined by comparing their concentrations in lava flows and condensated volatiles. In the case of volatile radionuclides, an escaping time is calculated which appears to be related to the volcanic activity. Finally, it is shown that that magma which is degassing can already be partly degassed; it should be considered as a mixture of a few to 50% of deep non-degassed magma with a well degassed superficial magma cell. (orig.)

  5. Seasonal variations of volcanic eruption frequencies

    Science.gov (United States)

    Stothers, Richard B.

    1989-01-01

    Do volcanic eruptions have a tendency to occur more frequently in the months of May and June? Some past evidence suggests that they do. The present study, based on the new eruption catalog of Simkin et al.(1981), investigates the monthly statistics of the largest eruptions, grouped according to explosive magnitude, geographical latitude, and year. At the 2-delta level, no month-to-month variations in eruption frequency are found to be statistically significant. Examination of previously published month-to-month variations suggests that they, too, are not statistically significant. It is concluded that volcanism, at least averaged over large portions of the globe, is probably not periodic on a seasonal or annual time scale.

  6. Coping with volcanic hazards; a global perspective

    Science.gov (United States)

    Tilling, R.I.

    1990-01-01

    Compared to some other natural hazards-such as floods, storms, earthquakes, landslides- volcanic hazards strike infrequently. However, in populated areas , even very small eruptions can wreak havoc and cause widespread devastation. For example, the 13 November 1985 eruption of Nevado del Ruiz in Colombia ejected only about 3 percent of the volume of ash produced during the 18 May 1980 eruption of Mount St. Helens. Yet, the mudflows triggered by this tiny eruption killed more than 25,000 people.

  7. Feasibility study on volcanic power generation system

    Energy Technology Data Exchange (ETDEWEB)

    None

    1977-07-01

    Investigations were carried out to determine the feasibility of volcanic power generation on Satsuma Io Island. Earthquakes were studied, as were the eruptions of subaerial and submarine hot springs. Hydrothermal rock alteration was studied and electrical surveys were made. General geophysical surveying was performed with thermocameras and radiation monitoring equipment. In particular, the Toyoba mine was studied, both with respect to its hot spring and its subsurface temperatures.

  8. Volcanic alert system (VAS) developed during the 2011-2014 El Hierro (Canary Islands) volcanic process

    Science.gov (United States)

    García, Alicia; Berrocoso, Manuel; Marrero, José M.; Fernández-Ros, Alberto; Prates, Gonçalo; De la Cruz-Reyna, Servando; Ortiz, Ramón

    2014-06-01

    The 2011 volcanic unrest at El Hierro Island illustrated the need for a Volcanic Alert System (VAS) specifically designed for the management of volcanic crises developing after long repose periods. The VAS comprises the monitoring network, the software tools for analysis of the monitoring parameters, the Volcanic Activity Level (VAL) management, and the assessment of hazard. The VAS presented here focuses on phenomena related to moderate eruptions, and on potentially destructive volcano-tectonic earthquakes and landslides. We introduce a set of new data analysis tools, aimed to detect data trend changes, as well as spurious signals related to instrumental failure. When data-trend changes and/or malfunctions are detected, a watchdog is triggered, issuing a watch-out warning (WOW) to the Monitoring Scientific Team (MST). The changes in data patterns are then translated by the MST into a VAL that is easy to use and understand by scientists, technicians, and decision-makers. Although the VAS was designed specifically for the unrest episodes at El Hierro, the methodologies may prove useful at other volcanic systems.

  9. Geothermal and volcanism in west Java

    Science.gov (United States)

    Setiawan, I.; Indarto, S.; Sudarsono; Fauzi I, A.; Yuliyanti, A.; Lintjewas, L.; Alkausar, A.; Jakah

    2018-02-01

    Indonesian active volcanoes extend from Sumatra, Jawa, Bali, Lombok, Flores, North Sulawesi, and Halmahera. The volcanic arc hosts 276 volcanoes with 29 GWe of geothermal resources. Considering a wide distribution of geothermal potency, geothermal research is very important to be carried out especially to tackle high energy demand in Indonesia as an alternative energy sources aside from fossil fuel. Geothermal potency associated with volcanoes-hosted in West Java can be found in the West Java segment of Sunda Arc that is parallel with the subduction. The subduction of Indo-Australian oceanic plate beneath the Eurasian continental plate results in various volcanic products in a wide range of geochemical and mineralogical characteristics. The geochemical and mineralogical characteristics of volcanic and magmatic rocks associated with geothermal systems are ill-defined. Comprehensive study of geochemical signatures, mineralogical properties, and isotopes analysis might lead to the understanding of how large geothermal fields are found in West Java compared to ones in Central and East Java. The result can also provoke some valuable impacts on Java tectonic evolution and can suggest the key information for geothermal exploration enhancement.

  10. Global volcanic emissions: budgets, plume chemistry and impacts

    Science.gov (United States)

    Mather, T. A.

    2012-12-01

    Over the past few decades our understanding of global volcanic degassing budgets, plume chemistry and the impacts of volcanic emissions on our atmosphere and environment has been revolutionized. Global volcanic emissions budgets are needed if we are to make effective use of regional and global atmospheric models in order to understand the consequences of volcanic degassing on global environmental evolution. Traditionally volcanic SO2 budgets have been the best constrained but recent efforts have seen improvements in the quantification of the budgets of other environmentally important chemical species such as CO2, the halogens (including Br and I) and trace metals (including measurements relevant to trace metal atmospheric lifetimes and bioavailability). Recent measurements of reactive trace gas species in volcanic plumes have offered intriguing hints at the chemistry occurring in the hot environment at volcanic vents and during electrical discharges in ash-rich volcanic plumes. These reactive trace species have important consequences for gas plume chemistry and impacts, for example, in terms of the global fixed nitrogen budget, volcanically induced ozone destruction and particle fluxes to the atmosphere. Volcanically initiated atmospheric chemistry was likely to have been particularly important before biological (and latterly anthropogenic) processes started to dominate many geochemical cycles, with important consequences in terms of the evolution of the nitrogen cycle and the role of particles in modulating the Earth's climate. There are still many challenges and open questions to be addressed in this fascinating area of science.

  11. Neogene volcanism in Gutai Mts. (Eastern Carpathains: a review

    Directory of Open Access Journals (Sweden)

    Marinel Kovacs

    2003-04-01

    Full Text Available Two types of volcanism developed in Gutâi Mts. (inner volcanic chain of Eastern Carpathians: a felsic, extensional/“back-arc” type and an intermediate, arc type. The felsic volcanism of explosive origin, consisting of caldera-related rhyolitic ignimbrites and resedimented volcaniclastics, had taken place during Early-Middle Badenian and Early Sarmatian. The intermediate volcanism, consisting of extrusive (effusive and explosive and intrusive activity, had developed during Sarmatian and Pannonian (13.4-7.0 Ma. It is represented by typical calc-alkaline series, from basalts to rhyolites. Lava flows of basaltic andesites and andesites are predominant, often emplaced in subaqueous environment. Extrusive domes, mainly composed of dacites, are associated to the andesitic volcanic structures. The intermediate volcanism, consisting of extrusive (effusive and explosive and intrusive activity, had developed during Sarmatian and Pannonian (13.4-7.0 Ma. It is represented by typical calc-alkaline series, from basalts to rhyolites. Lava flows of basaltic andesites and andesites are predominant, often emplaced in subaqueous environment. Extrusive domes, mainly composed of dacites, are associated to the andesitic volcanic structures. The geochemical study on the volcanic rocks shows the calc-alkaline character of both felsic and intermediate volcanism and typical subduction zones geochemical signatures for the intermediate one. The felsic volcanism shows affinities with subduction-related rocks as well. The main petrogenetic process in Gutâi Mts. was crustal assimilation, strongly constrained by trace element and isotope geochemistry.

  12. Volcanic styles at Alba Patera, Mars: implications of lava flow morphology to the volcanic history

    International Nuclear Information System (INIS)

    Schneeberger, D.M.; Pieri, D.C.

    1988-01-01

    Alba Patera presents styles of volcanism that are unique to Mars. Its very low profile, large areal extent, unusually long and voluminous lava flows, and circumferential graben make it among Mars' most interesting volcanic features. Clues to Alba's volcanic history are preserved in its morphology and stratigraphy. Understanding the relationship of lava flow morphology to emplacement processes should enable estimates of viscosity, effusion rate, and gross composition to be made. Lava flows, with dimensions considered enormous by terrestrial standards, account for a major portion of the exposed surface of Alba Patera. These flows exhibit a range of morphologies. While most previous works have focused on the planimetric characteristics, attention was drawn to the important morphological attributes, paying particular attention to what the features suggest about the emplacement process

  13. Geophysical expression of caldera related volcanism, structures and mineralization in the McDermitt volcanic field

    Science.gov (United States)

    Rytuba, J. J.; Blakely, R. J.; Moring, B.; Miller, R.

    2013-12-01

    The High Rock, Lake Owyhee, and McDermitt volcanic fields, consisting of regionally extensive ash flow tuffs and associated calderas, developed in NW Nevada and SE Oregon following eruption of the ca. 16.7 Ma Steens flood basalt. The first ash flow, the Tuff of Oregon Canyon, erupted from the McDermitt volcanic field at 16.5Ma. It is chemically zoned from peralkaline rhyolite to dacite with trace element ratios that distinguish it from other ash flow tuffs. The source caldera, based on tuff distribution, thickness, and size of lithic fragments, is in the area in which the McDermitt caldera (16.3 Ma) subsequently formed. Gravity and magnetic anomalies are associated with some but not all of the calderas. The White Horse caldera (15.6 Ma), the youngest caldera in the McDermitt volcanic field has the best geophysical expression, with both aeromagnetic and gravity lows coinciding with the caldera. Detailed aeromagnetic and gravity surveys of the McDermitt caldera, combined with geology and radiometric surveys, provides insight into the complexities of caldera collapse, resurgence, post collapse volcanism, and hydrothermal mineralization. The McDermitt caldera is among the most mineralized calderas in the world, whereas other calderas in these three Mid Miocene volcanic fields do not contain important hydrothermal ore deposits, despite having similar age and chemistry. The McDermitt caldera is host to Hg, U, and Li deposits and potentially significant resources of Ga, Sb, and REE. The geophysical data indicate that post-caldera collapse intrusions were important in formation of the hydrothermal systems. An aeromagnetic low along the E caldera margin reflects an intrusion at a depth of 2 km associated with the near-surface McDermitt-hot-spring-type Hg-Sb deposit, and the deeper level, high-sulfidation Ga-REE occurrence. The Li deposits on the W side of the caldera are associated with a series of low amplitude, small diameter aeromagnetic anomalies that form a continuous

  14. Using Volcanic Lightning Measurements to Discern Variations in Explosive Volcanic Activity

    Science.gov (United States)

    Behnke, S. A.; Thomas, R. J.; McNutt, S. R.; Edens, H. E.; Krehbiel, P. R.; Rison, W.

    2013-12-01

    VHF observations of volcanic lightning have been made during the recent eruptions of Augustine Volcano (2006, Alaska, USA), Redoubt Volcano (2009, Alaska, USA), and Eyjafjallajökull (2010, Iceland). These show that electrical activity occurs both on small scales at the vent of the volcano, concurrent with an eruptive event and on large scales throughout the eruption column during and subsequent to an eruptive event. The small-scale discharges at the vent of the volcano are often referred to as 'vent discharges' and are on the order of 10-100 meters in length and occur at rates on the order of 1000 per second. The high rate of vent discharges produces a distinct VHF signature that is sometimes referred to as 'continuous RF' radiation. VHF radiation from vent discharges has been observed at sensors placed as far as 100 km from the volcano. VHF and infrasound measurements have shown that vent discharges occur simultaneously with the onset of eruption, making their detection an unambiguous indicator of explosive volcanic activity. The fact that vent discharges are observed concurrent with explosive volcanic activity indicates that volcanic ejecta are charged upon eruption. VHF observations have shown that the intensity of vent discharges varies between eruptive events, suggesting that fluctuations in eruptive processes affect the electrification processes giving rise to vent discharges. These fluctuations may be variations in eruptive vigor or variations in the type of eruption; however, the data obtained so far do not show a clear relationship between eruption parameters and the intensity or occurrence of vent discharges. Further study is needed to clarify the link between vent discharges and eruptive behavior, such as more detailed lightning observations concurrent with tephra measurements and other measures of eruptive strength. Observations of vent discharges, and volcanic lightning observations in general, are a valuable tool for volcano monitoring, providing a

  15. Supervolcanoes within an ancient volcanic province in Arabia Terra, Mars.

    Science.gov (United States)

    Michalski, Joseph R; Bleacher, Jacob E

    2013-10-03

    Several irregularly shaped craters located within Arabia Terra, Mars, represent a new type of highland volcanic construct and together constitute a previously unrecognized Martian igneous province. Similar to terrestrial supervolcanoes, these low-relief paterae possess a range of geomorphic features related to structural collapse, effusive volcanism and explosive eruptions. Extruded lavas contributed to the formation of enigmatic highland ridged plains in Arabia Terra. Outgassed sulphur and erupted fine-grained pyroclastics from these calderas probably fed the formation of altered, layered sedimentary rocks and fretted terrain found throughout the equatorial region. The discovery of a new type of volcanic construct in the Arabia volcanic province fundamentally changes the picture of ancient volcanism and climate evolution on Mars. Other eroded topographic basins in the ancient Martian highlands that have been dismissed as degraded impact craters should be reconsidered as possible volcanic constructs formed in an early phase of widespread, disseminated magmatism on Mars.

  16. Volcanism Studies: Final Report for the Yucca Mountain Project

    International Nuclear Information System (INIS)

    Crowe, Bruce M.; Perry, Frank V.; Valentine, Greg A.; Bowker, Lynn M.

    1998-01-01

    This report synthesizes the results of volcanism studies conducted by scientists at the Los Alamos National Laboratory and collaborating institutions on behalf of the Department of Energy's Yucca Mountain Project. An assessment of the risk of future volcanic activity is one of many site characterization studies that must be completed to evaluate the Yucca Mountain site for potential long-term storage of high-level radioactive waste. The presence of several basaltic volcanic centers in the Yucca Mountain region of Pliocene and Quaternary age indicates that there is a finite risk of a future volcanic event occurring during the 10,000-year isolation period of a potential repository. Chapter 1 introduces the volcanism issue for the Yucca Mountain site and provides the reader with an overview of the organization, content, and significant conclusions of this report. The risk of future basaltic volcanism is the primary topic of concern including both events that intersect a potential repository and events that occur near or within the waste isolation system of a repository. Future volcanic events cannot be predicted with certainty but instead are estimated using formal methods of probabilistic volcanic hazard assessment (PVHA). Chapter 2 describes the volcanic history of the Yucca Mountain region (YMR) and emphasizes the Pliocene and Quaternary volcanic record, the interval of primary concern for volcanic risk assessment. The distribution, eruptive history, and geochronology of Plio-Quaternary basalt centers are described by individual center emphasizing the younger postcaldera basalt ( than about 7 x 10 -8 events yr -1 . Simple probability estimates are used to assess possible implications of not drilling aeromagnetic anomalies in the Amargosa Valley. The sensitivity of the disruption probability to the location of northeast boundaries of volcanic zones near the Yucca Mountain sit

  17. Sr isotopes at Copahue Volcanic Center, Neuquen, Argentina: Preliminary report

    International Nuclear Information System (INIS)

    Linares, E.; Ostera, H.A.; Cagnoni, M.C

    2001-01-01

    The Copahue Volcanic Center is located in the Cordillera Principal, at 38 L.S., in the Argentina- Chilean border. Detailed geological, geochronological and structural studies were carried out during the last decade (Pesce, 1989; Delpino y Bermudez, 1993; Linares et al., 1995, 1999; Folguera y Ramos, 2000; among others). We present Sr isotopes data on the main units of the Volcanic Center, coupled with a major element geochemistry, to constrain the evolution of the volcanic center (au)

  18. Eocene volcanism and the origin of horizon A

    Science.gov (United States)

    Gibson, T.G.; Towe, K.M.

    1971-01-01

    A series of closely time-equivalent deposits that correlate with seismic reflector horizon A exists along the coast of eastern North America. These sediments of Late-Early to Early-Middle Eocene age contain an authigenic mineral suite indicative of the alteration of volcanic glass. A volcanic origin for these siliceous deposits onshore is consistent with a volcanic origin for the cherts of horizon A offshore.

  19. Volcanic Hazards in Site Evaluation for Nuclear Installations

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    2012-10-15

    This publication provides comprehensive and updated guidance for site evaluation in relation to volcanic hazards. It includes recommendations on assessing the volcanic hazards at a nuclear installation site, in order to identify and characterize, in a comprehensive manner, all potentially hazardous phenomena that may be associated with future volcanic events. It describes how some of these volcanic phenomena may affect the acceptability of the selected site, resulting in exclusion of a site or determining the corresponding design basis parameters for the installation. This Safety Guide is applicable to both existing and new sites, and a graded approach is recommended to cater for all types of nuclear installations. Contents: 1. Introduction; 2. Overview of volcanic hazard assessment; 3. General recommendations; 4. Necessary information and investigations (database); 5. Screening of volcanic hazards; 6. Site specific volcanic hazard assessment; 7. Nuclear installations other than nuclear power plants; 8. Monitoring and preparation for response; 9. Management system for volcanic hazard assessment; Annex I: Volcanic hazard scenarios; Annex II: Worldwide sources of information.

  20. Constructional Volcanic Edifices on Mercury: Candidates and Hypotheses of Formation

    Science.gov (United States)

    Wright, Jack; Rothery, David A.; Balme, Matthew R.; Conway, Susan J.

    2018-04-01

    Mercury, a planet with a predominantly volcanic crust, has perplexingly few, if any, constructional volcanic edifices, despite their common occurrence on other solar system bodies with volcanic histories. Using image and topographical data from the MErcury Surface, Space ENvironment, GEochemistry, and Ranging (MESSENGER) spacecraft, we describe two small (Earth and the Moon. Though we cannot definitively conclude that these landforms are volcanic, the paucity of constructional volcanic edifices on Mercury is intriguing in itself. We suggest that this lack is because volcanic eruptions with sufficiently low eruption volumes, rates, and flow lengths, suitable for edifice construction, were highly spatiotemporally restricted during Mercury's geological history. We suggest that volcanic edifices may preferentially occur in association with late-stage, postimpact effusive volcanic deposits. The European Space Agency/Japan Aerospace Exploration Agency BepiColombo mission to Mercury will be able to investigate further our candidate volcanic edifices; search for other, as-yet unrecognized edifices beneath the detection limits of MESSENGER data; and test our hypothesis that edifice construction is favored by late-stage, low-volume effusive eruptions.

  1. Basaltic volcanic episodes of the Yucca Mountain region

    International Nuclear Information System (INIS)

    Crowe, B.M.

    1990-01-01

    The purpose of this paper is to summarize briefly the distribution and geologic characteristics of basaltic volcanism in the Yucca Mountain region during the last 10--12 Ma. This interval largely postdates the major period of silicic volcanism and coincides with and postdates the timing of major extensional faulting in the region. Field and geochronologic data for the basaltic rocks define two distinct episodes. The patterns in the volume and spatial distribution of these basaltic volcanic episodes in the central and southern part of the SNVF are used as a basis for forecasting potential future volcanic activity in vicinity of Yucca Mountain. 33 refs., 2 figs

  2. Mud volcanism of South-Caspian depression

    International Nuclear Information System (INIS)

    Aliyev, A.A.

    2002-01-01

    Full text : South-Caspian depression is presented by area of large warping with thick (more than 25 km) sedimentary series and with wide development of mud volcanism. This depression is unique according to its number of mud volcanoes and intensity of their eruptions. There are about 400 mud volcanoes in this area, which is more than than a half of all volcanoes of the planet. Among them - 220 are continental, more 170 are marine, defined by different methods in the South-Caspian aquatorium. As a result of mudvolcanic activity islands, banks, shoals and underwater ridges are formed in marine conditions. Depths of underwater volcanoes vary from few meters to 900 m as the height of cones are different too. Marine mud volcanoes in geological history of Caspian sea evolution and in its recent history had and important significance. Activity of mud volcanoes in sea conditions lead to the formation of positive elements of relief. Products of ejection take part in the formation of microrelief of surrounding areas of sea bottom influence upon its dynamics and composition of bottom sediments. The carried out comparative analysis of mud volcanism manifestation both onshore and offshore showed the basic differences and similarities in morphology of volcanoes and geology-geochemical peculiarities of eruption products. New data on tectonics of mud volcanism development has been obtained over recent years. Mud volcanoes of South-Caspian depression are studied for assessment and oil-gas content of deep-seated deposits. Geochemical method of search of oil and gas deposits in mudvolcanic areas had been worked out.

  3. Volcanism/tectonics working group summary

    International Nuclear Information System (INIS)

    Kovach, L.A.; Young, S.R.

    1995-01-01

    This article is a summary of the proceedings of a group discussion which took place at the Workshop on the Role of Natural Analogs in Geologic Disposal of High-Level Nuclear Waste in San Antonio, Texas on July 22-25, 1991. The working group concentrated on the subject of the impacts of earthquakes, fault rupture, and volcanic eruption on the underground repository disposal of high-level radioactive wastes. The tectonics and seismic history of the Yucca Mountain site in Nevada is discussed and geologic analogs to that site are described

  4. VOLCANIC RISK ASSESSMENT - PROBABILITY AND CONSEQUENCES

    International Nuclear Information System (INIS)

    G.A. Valentine; F.V. Perry; S. Dartevelle

    2005-01-01

    Risk is the product of the probability and consequences of an event. Both of these must be based upon sound science that integrates field data, experiments, and modeling, but must also be useful to decision makers who likely do not understand all aspects of the underlying science. We review a decision framework used in many fields such as performance assessment for hazardous and/or radioactive waste disposal sites that can serve to guide the volcanological community towards integrated risk assessment. In this framework the underlying scientific understanding of processes that affect probability and consequences drive the decision-level results, but in turn these results can drive focused research in areas that cause the greatest level of uncertainty at the decision level. We review two examples of the determination of volcanic event probability: (1) probability of a new volcano forming at the proposed Yucca Mountain radioactive waste repository, and (2) probability that a subsurface repository in Japan would be affected by the nearby formation of a new stratovolcano. We also provide examples of work on consequences of explosive eruptions, within the framework mentioned above. These include field-based studies aimed at providing data for ''closure'' of wall rock erosion terms in a conduit flow model, predictions of dynamic pressure and other variables related to damage by pyroclastic flow into underground structures, and vulnerability criteria for structures subjected to conditions of explosive eruption. Process models (e.g., multiphase flow) are important for testing the validity or relative importance of possible scenarios in a volcanic risk assessment. We show how time-dependent multiphase modeling of explosive ''eruption'' of basaltic magma into an open tunnel (drift) at the Yucca Mountain repository provides insight into proposed scenarios that include the development of secondary pathways to the Earth's surface. Addressing volcanic risk within a decision

  5. Hubble Captures Volcanic Eruption Plume From Io

    Science.gov (United States)

    1997-01-01

    The Hubble Space Telescope has snapped a picture of a 400-km-high (250-mile-high) plume of gas and dust from a volcanic eruption on Io, Jupiter's large innermost moon.Io was passing in front of Jupiter when this image was taken by the Wide Field and Planetary Camera 2 in July 1996. The plume appears as an orange patch just off the edge of Io in the eight o'clock position, against the blue background of Jupiter's clouds. Io's volcanic eruptions blasts material hundreds of kilometers into space in giant plumes of gas and dust. In this image, material must have been blown out of the volcano at more than 2,000 mph to form a plume of this size, which is the largest yet seen on Io.Until now, these plumes have only been seen by spacecraft near Jupiter, and their detection from the Earth-orbiting Hubble Space Telescope opens up new opportunities for long-term studies of these remarkable phenomena.The plume seen here is from Pele, one of Io's most powerful volcanos. Pele's eruptions have been seen before. In March 1979, the Voyager 1 spacecraft recorded a 300-km-high eruption cloud from Pele. But the volcano was inactive when the Voyager 2 spacecraft flew by Jupiter in July 1979. This Hubble observation is the first glimpse of a Pele eruption plume since the Voyager expeditions.Io's volcanic plumes are much taller than those produced by terrestrial volcanos because of a combination of factors. The moon's thin atmosphere offers no resistance to the expanding volcanic gases; its weak gravity (one-sixth that of Earth) allows material to climb higher before falling; and its biggest volcanos are more powerful than most of Earth's volcanos.This image is a contrast-enhanced composite of an ultraviolet image (2600 Angstrom wavelength), shown in blue, and a violet image (4100 Angstrom wavelength), shown in orange. The orange color probably occurs because of the absorption and/or scattering of ultraviolet light in the plume. This light from Jupiter passes through the plume and is

  6. Seismological evidence for a sub-volcanic arc mantle wedge beneath the Denali volcanic gap, Alaska

    Science.gov (United States)

    McNamara, D.E.; Pasyanos, M.E.

    2002-01-01

    Arc volcanism in Alaska is strongly correlated with the 100 km depth contour of the western Aluetian Wadati-Benioff zone. Above the eastern portion of the Wadati-Benioff zone however, there is a distinct lack of volcanism (the Denali volcanic gap). We observe high Poisson's ratio values (0.29-0.33) over the entire length of the Alaskan subduction zone mantle wedge based on regional variations of Pn and Sn velocities. High Poisson's ratios at this depth (40-70 km), adjacent to the subducting slab, are attributed to melting of mantle-wedge peridotites, caused by fluids liberated from the subducting oceanic crust and sediments. Observations of high values of Poisson's ratio, beneath the Denali volcanic gap suggest that the mantle wedge contains melted material that is unable to reach the surface. We suggest that its inability to migrate through the overlying crust is due to increased compression in the crust at the northern apex of the curved Denali fault.

  7. Modelling ground deformation patterns associated with volcanic processes at the Okataina Volcanic Centre

    Science.gov (United States)

    Holden, L.; Cas, R.; Fournier, N.; Ailleres, L.

    2017-09-01

    The Okataina Volcanic Centre (OVC) is one of two large active rhyolite centres in the modern Taupo Volcanic Zone (TVZ) in the North Island of New Zealand. It is located in a complex section of the Taupo rift, a tectonically active section of the TVZ. The most recent volcanic unrest at the OVC includes the 1315 CE Kaharoa and 1886 Tarawera eruptions. Current monitoring activity at the OVC includes the use of continuous GPS receivers (cGPS), lake levelling and seismographs. The ground deformation patterns preceding volcanic activity the OVC are poorly constrained and restricted to predictions from basic modelling and comparison to other volcanoes worldwide. A better understanding of the deformation patterns preceding renewed volcanic activity is essential to determine if observed deformation is related to volcanic, tectonic or hydrothermal processes. Such an understanding also means that the ability of the present day cGPS network to detect these deformation patterns can also be assessed. The research presented here uses the finite element (FE) modelling technique to investigate ground deformation patterns associated with magma accumulation and diking processes at the OVC in greater detail. A number of FE models are produced and tested using Pylith software and incorporate characteristics of the 1315 CE Kaharoa and 1886 Tarawera eruptions, summarised from the existing body of research literature. The influence of a simple ring fault structure at the OVC on the modelled deformation is evaluated. The ability of the present-day continuous GPS (cGPS) GeoNet monitoring network to detect or observe the modelled deformation is also considered. The results show the modelled horizontal and vertical displacement fields have a number of key features, which include prominent lobe based regions extending northwest and southeast of the OVC. The results also show that the ring fault structure increases the magnitude of the displacements inside the caldera, in particular in the

  8. Slab dehydration in Cascadia and its relationship to volcanism, seismicity, and non-volcanic tremor

    Science.gov (United States)

    Delph, J. R.; Levander, A.; Niu, F.

    2017-12-01

    The characteristics of subduction beneath the Pacific Northwest (Cascadia) are variable along strike, leading to the segmentation of Cascadia into 3 general zones: Klamath, Siletzia, and Wrangelia. These zones show marked differences in tremor density, earthquake density, seismicity rates, and the locus and amount of volcanism in the subduction-related volcanic arc. To better understand what controls these variations, we have constructed a 3D shear-wave velocity model of the upper 80 km along the Cascadia margin from the joint inversion of CCP-derived receiver functions and ambient noise surface wave data using 900 temporary and permanent broadband seismic stations. With this model, we can investigate variations in the seismic structure of the downgoing oceanic lithosphere and overlying mantle wedge, the character of the crust-mantle transition beneath the volcanic arc, and local to regional variations in crustal structure. From these results, we infer the presence and distribution of fluids released from the subducting slab and how they affect the seismic structure of the overriding lithosphere. In the Klamath and Wrangelia zones, high seismicity rates in the subducting plate and high tremor density correlate with low shear velocities in the overriding plate's forearc and relatively little arc volcanism. While the cause of tremor is debated, intermediate depth earthquakes are generally thought to be due to metamorphic dehydration reactions resulting from the dewatering of the downgoing slab. Thus, the seismic characteristics of these zones combined with rather sparse arc volcanism may indicate that the slab has largely dewatered by the time it reaches sub-arc depths. Some of the water released during earthquakes (and possibly tremor) may percolate into the overriding plate, leading to slow seismic velocities in the forearc. In contrast, Siletzia shows relatively low seismicity rates and tremor density, with relatively higher shear velocities in the forearc

  9. VOLCANIC TSUNAMI GENERATING SOURCE MECHANISMS IN THE EASTERN CARIBBEAN REGION

    Directory of Open Access Journals (Sweden)

    George Pararas-Carayannis

    2004-01-01

    Full Text Available Earthquakes, volcanic eruptions, volcanic island flank failures and underwater slides have generated numerous destructive tsunamis in the Caribbean region. Convergent, compressional and collisional tectonic activity caused primarily from the eastward movement of the Caribbean Plate in relation to the North American, Atlantic and South American Plates, is responsible for zones of subduction in the region, the formation of island arcs and the evolution of particular volcanic centers on the overlying plate. The inter-plate tectonic interaction and deformation along these marginal boundaries result in moderate seismic and volcanic events that can generate tsunamis by a number of different mechanisms. The active geo-dynamic processes have created the Lesser Antilles, an arc of small islands with volcanoes characterized by both effusive and explosive activity. Eruption mechanisms of these Caribbean volcanoes are complex and often anomalous. Collapses of lava domes often precede major eruptions, which may vary in intensity from Strombolian to Plinian. Locally catastrophic, short-period tsunami-like waves can be generated directly by lateral, direct or channelized volcanic blast episodes, or in combination with collateral air pressure perturbations, nuéss ardentes, pyroclastic flows, lahars, or cascading debris avalanches. Submarine volcanic caldera collapses can also generate locally destructive tsunami waves. Volcanoes in the Eastern Caribbean Region have unstable flanks. Destructive local tsunamis may be generated from aerial and submarine volcanic edifice mass edifice flank failures, which may be triggered by volcanic episodes, lava dome collapses, or simply by gravitational instabilities. The present report evaluates volcanic mechanisms, resulting flank failure processes and their potential for tsunami generation. More specifically, the report evaluates recent volcanic eruption mechanisms of the Soufriere Hills volcano on Montserrat, of Mt. Pel

  10. Reduced cooling following future volcanic eruptions

    Science.gov (United States)

    Hopcroft, Peter O.; Kandlbauer, Jessy; Valdes, Paul J.; Sparks, R. Stephen J.

    2017-11-01

    Volcanic eruptions are an important influence on decadal to centennial climate variability. Large eruptions lead to the formation of a stratospheric sulphate aerosol layer which can cause short-term global cooling. This response is modulated by feedback processes in the earth system, but the influence from future warming has not been assessed before. Using earth system model simulations we find that the eruption-induced cooling is significantly weaker in the future state. This is predominantly due to an increase in planetary albedo caused by increased tropospheric aerosol loading with a contribution from associated changes in cloud properties. The increased albedo of the troposphere reduces the effective volcanic aerosol radiative forcing. Reduced sea-ice coverage and hence feedbacks also contribute over high-latitudes, and an enhanced winter warming signal emerges in the future eruption ensemble. These findings show that the eruption response is a complex function of the environmental conditions, which has implications for the role of eruptions in climate variability in the future and potentially in the past.

  11. Supercomputer modeling of volcanic eruption dynamics

    Energy Technology Data Exchange (ETDEWEB)

    Kieffer, S.W. [Arizona State Univ., Tempe, AZ (United States); Valentine, G.A. [Los Alamos National Lab., NM (United States); Woo, Mahn-Ling [Arizona State Univ., Tempe, AZ (United States)

    1995-06-01

    Our specific goals are to: (1) provide a set of models based on well-defined assumptions about initial and boundary conditions to constrain interpretations of observations of active volcanic eruptions--including movies of flow front velocities, satellite observations of temperature in plumes vs. time, and still photographs of the dimensions of erupting plumes and flows on Earth and other planets; (2) to examine the influence of subsurface conditions on exit plane conditions and plume characteristics, and to compare the models of subsurface fluid flow with seismic constraints where possible; (3) to relate equations-of-state for magma-gas mixtures to flow dynamics; (4) to examine, in some detail, the interaction of the flowing fluid with the conduit walls and ground topography through boundary layer theory so that field observations of erosion and deposition can be related to fluid processes; and (5) to test the applicability of existing two-phase flow codes for problems related to the generation of volcanic long-period seismic signals; (6) to extend our understanding and simulation capability to problems associated with emplacement of fragmental ejecta from large meteorite impacts.

  12. Robust satellite techniques for monitoring volcanic eruptions

    Energy Technology Data Exchange (ETDEWEB)

    Pergola, N.; Pietrapertosa, C. [Consiglio Nazionale delle Ricerche, Istituto di Metodologie Avanzate, Tito Scalo, PZ (Italy); Lacava, T.; Tramutoli, V. [Potenza Universita' della Basilicata, Potenza (Italy). Dipt. di Ingegneria e Fisica dell' Ambiente

    2001-04-01

    Through this paper the robust approach to monitoring volcanic aerosols by satellite is applied to an extended set of events affecting Stromboli and Etna volcanoes to assess its performance in automated detection of eruptive clouds and in monitoring pre-eruptive emission activities. Using only NOAA/AVHRR data at hand (without any specific atmospheric model or ancillary ground-based measurements) the proposed method automatically discriminates meteorological from eruptive volcanic clouds and, in several cases, identified pre-eruptive anomalies in the emission rates not identified by traditional methods. The main merit of this approach is its effectiveness in recognising field anomalies also in the presence of a highly variable surface background as well as its intrinsic exportability not only on different geographic areas but also on different satellite instrumental packages. In particular, the possibility to extend the proposed method to the incoming new MSG/SEVIRI satellite package (which is going to fly next year) with its improved spectral (specific bands for SO{sub 2}) and temporal (up to 15 min) resolutions has been evaluated representing the natural continuation of this work.

  13. Viscosity characteristics of selected volcanic rock melts

    Science.gov (United States)

    Hobiger, Manuel; Sonder, Ingo; Büttner, Ralf; Zimanowski, Bernd

    2011-02-01

    A basic experimental study of the behavior of magma rheology was carried out on remelted volcanic rocks using wide gap viscometry. The complex composition of magmatic melts leads to complicated rheologic behavior which cannot be described with one simple model. Therefore, measurement procedures which are able to quantify non-Newtonian behavior have to be employed. Furthermore, the experimental apparatus must be able to deal with inhomogeneities of magmatic melts. We measured the viscosity of a set of materials representing a broad range of volcanic processes. For the lower viscous melts (low-silica compositions), non-Newtonian behavior is observed, whereas the high-silica melts show Newtonian behavior in the measured temperature and shear rate range (T = 1423 K - 1623 K, γ˙ = 10 - 2 s - 1 - 20 s - 1 ). The non-Newtonian materials show power-law behavior. The measured viscosities η and power-law indexes m lie in the intervals 8 Pa s ≤ η ≤ 210 3 Pa s, 0.71 ≤ m ≤ 1.0 (Grímsvötn basalt), 0.9 Pa s ≤ η ≤ 350 Pa s, 0.61 ≤ m ≤ 0.93 (Hohenstoffeln olivine-melilitite), and 8 Pa s ≤ η ≤ 1.510 4 Pa s, 0.55 ≤ m ≤ 1.0 (Sommata basalt). Measured viscosities of the Newtonian high-silica melts lie in the range 10 4 Pa s ≤ η ≤ 310 5 Pa s.

  14. The scientific management of volcanic crises

    Science.gov (United States)

    Marzocchi, Warner; Newhall, Christopher; Woo, Gordon

    2012-12-01

    Sound scientific management of volcanic crises is the primary tool to reduce significantly volcanic risk in the short-term. At present, a wide variety of qualitative or semi-quantitative strategies is adopted, and there is not yet a commonly accepted quantitative and general strategy. Pre-eruptive processes are extremely complicated, with many degrees of freedom nonlinearly coupled, and poorly known, so scientists must quantify eruption forecasts through the use of probabilities. On the other hand, this also forces decision-makers to make decisions under uncertainty. We review the present state of the art in this field in order to identify the main gaps of the existing procedures. Then, we put forward a general quantitative procedure that may overcome the present barriers, providing guidelines on how probabilities may be used to take rational mitigation actions. These procedures constitute a crucial link between science and society; they can be used to establish objective and transparent decision-making protocols and also clarify the role and responsibility of each partner involved in managing a crisis.

  15. WSR-88D observations of volcanic ash

    Science.gov (United States)

    Wood, J.; Scott, C.; Schneider, D.

    2007-01-01

    Conclusions that may impact operations are summarized below: ??? Current VCPs may not be optimal for the scharacterization of volcanic events. Therefore, the development of a new VCP that combines the enhanced low level elevation density and increased temporal resolution of VCP 12 with the enhanced sensitivity of VCP 31. ??? Given currently available scan strategies, this preliminary investigation would suggest that it is advisable to use VCP 12 during the initial explosive phase of an eruptive event. Once the maximum reflectivity has dropped below 30 dBZ, VCP 31 should be used. ??? This study clearly indicates that WSR-88D Level II data offers many advantages over Level III data currently available in Alaska. The ability to access this data would open up greater opportunities for research. Given the proximity of WSR-88D platforms to active volcanoes in Alaska, as well as in the western Lower 48 states and Hawaii, radar data will likely play a major operational role when volcanic eruptions again pose a threat to life and property. The utilization of this tool to its maximum capability is vital.

  16. Nano-volcanic Eruption of Silver

    Science.gov (United States)

    Lin, Shih-Kang; Nagao, Shijo; Yokoi, Emi; Oh, Chulmin; Zhang, Hao; Liu, Yu-Chen; Lin, Shih-Guei; Suganuma, Katsuaki

    2016-10-01

    Silver (Ag) is one of the seven metals of antiquity and an important engineering material in the electronic, medical, and chemical industries because of its unique noble and catalytic properties. Ag thin films are extensively used in modern electronics primarily because of their oxidation-resistance. Here we report a novel phenomenon of Ag nano-volcanic eruption that is caused by interactions between Ag and oxygen (O). It involves grain boundary liquation, the ejection of transient Ag-O fluids through grain boundaries, and the decomposition of Ag-O fluids into O2 gas and suspended Ag and Ag2O clusters. Subsequent coating with re-deposited Ag-O and the de-alloying of O yield a conformal amorphous Ag coating. Patterned Ag hillock arrays and direct Ag-to-Ag bonding can be formed by the homogenous crystallization of amorphous coatings. The Ag “nano-volcanic eruption” mechanism is elaborated, shedding light on a new mechanism of hillock formation and new applications of amorphous Ag coatings.

  17. Modulations of stratospheric ozone by volcanic eruptions

    Science.gov (United States)

    Blanchette, Christian; Mcconnell, John C.

    1994-01-01

    We have used a time series of aerosol surface based on the measurements of Hofmann to investigate the modulation of total column ozone caused by the perturbation to gas phase chemistry by the reaction N2O5(gas) + H2O(aero) yields 2HNO3(gas) on the surface of stratospheric aerosols. We have tested a range of values for its reaction probability, gamma = 0.02, 0.13, and 0.26 which we compared to unperturbed homogeneous chemistry. Our analysis spans a period from Jan. 1974 to Oct. 1994. The results suggest that if lower values of gamma are the norm then we would expect larger ozone losses for highly enhanced aerosol content that for larger values of gamma. The ozone layer is more sensitive to the magnitude of the reaction probability under background conditions than during volcanically active periods. For most conditions, the conversion of NO2 to HNO3 is saturated for reaction probability in the range of laboratory measurements, but is only absolutely saturated following major volcanic eruptions when the heterogeneous loss dominates the losses of N2O5. The ozone loss due to this heterogeneous reaction increases with the increasing chlorine load. Total ozone losses calculated are comparable to ozone losses reported from TOMS and Dobson data.

  18. Mantle updrafts and mechanisms of oceanic volcanism

    Science.gov (United States)

    Anderson, Don L.; Natland, James H.

    2014-10-01

    Convection in an isolated planet is characterized by narrow downwellings and broad updrafts-consequences of Archimedes' principle, the cooling required by the second law of thermodynamics, and the effect of compression on material properties. A mature cooling planet with a conductive low-viscosity core develops a thick insulating surface boundary layer with a thermal maximum, a subadiabatic interior, and a cooling highly conductive but thin boundary layer above the core. Parts of the surface layer sink into the interior, displacing older, colder material, which is entrained by spreading ridges. Magma characteristics of intraplate volcanoes are derived from within the upper boundary layer. Upper mantle features revealed by seismic tomography and that are apparently related to surface volcanoes are intrinsically broad and are not due to unresolved narrow jets. Their morphology, aspect ratio, inferred ascent rate, and temperature show that they are passively responding to downward fluxes, as appropriate for a cooling planet that is losing more heat through its surface than is being provided from its core or from radioactive heating. Response to doward flux is the inverse of the heat-pipe/mantle-plume mode of planetary cooling. Shear-driven melt extraction from the surface boundary layer explains volcanic provinces such as Yellowstone, Hawaii, and Samoa. Passive upwellings from deeper in the upper mantle feed ridges and near-ridge hotspots, and others interact with the sheared and metasomatized surface layer. Normal plate tectonic processes are responsible both for plate boundary and intraplate swells and volcanism.

  19. Developing International Guidelines on Volcanic Hazard Assessments for Nuclear Facilities

    Science.gov (United States)

    Connor, Charles

    2014-05-01

    Worldwide, tremendous progress has been made in recent decades in forecasting volcanic events, such as episodes of volcanic unrest, eruptions, and the potential impacts of eruptions. Generally these forecasts are divided into two categories. Short-term forecasts are prepared in response to unrest at volcanoes, rely on geophysical monitoring and related observations, and have the goal of forecasting events on timescales of hours to weeks to provide time for evacuation of people, shutdown of facilities, and implementation of related safety measures. Long-term forecasts are prepared to better understand the potential impacts of volcanism in the future and to plan for potential volcanic activity. Long-term forecasts are particularly useful to better understand and communicate the potential consequences of volcanic events for populated areas around volcanoes and for siting critical infrastructure, such as nuclear facilities. Recent work by an international team, through the auspices of the International Atomic Energy Agency, has focused on developing guidelines for long-term volcanic hazard assessments. These guidelines have now been implemented for hazard assessment for nuclear facilities in nations including Indonesia, the Philippines, Armenia, Chile, and the United States. One any time scale, all volcanic hazard assessments rely on a geologically reasonable conceptual model of volcanism. Such conceptual models are usually built upon years or decades of geological studies of specific volcanic systems, analogous systems, and development of a process-level understanding of volcanic activity. Conceptual models are used to bound potential rates of volcanic activity, potential magnitudes of eruptions, and to understand temporal and spatial trends in volcanic activity. It is these conceptual models that provide essential justification for assumptions made in statistical model development and the application of numerical models to generate quantitative forecasts. It is a

  20. Volcanic ash in ancient Maya ceramics of the limestone lowlands: implications for prehistoric volcanic activity in the Guatemala highlands

    Science.gov (United States)

    Ford, Anabel; Rose, William I.

    1995-07-01

    In the spirit of collaborative research, Glicken and Ford embarked on the problem of identifying the source of volcanic ash used as temper in prehistoric Maya ceramics. Verification of the presence of glass shards and associated volcanic mineralogy in thin sections of Maya ceramics was straightforward and pointed to the Guatemala Highland volcanic chain. Considering seasonal wind rose patterns, target volcanoes include those from the area west of and including Guatemala City. Joint field research conducted in 1983 by Glicken and Ford in the limestone lowlands of Belize and neighboring Guatemala, 300 km north of the volcanic zone and 150 km from the nearest identified ash deposits, was unsuccessful in discovering local volcanic ash deposits. The abundance of the ash in common Maya ceramic vessels coupled with the difficulties of long-distance procurement without draft animals lead Glicken to suggest that ashfall into the lowlands would most parsimoniously explain prehistoric procurement; it literally dropped into their hands. A major archaeological problem with this explanation is that the use of volcanic ash occurring over several centuries of the Late Classic Period (ca. 600-900 AD). To accept the ashfall hypothesis for ancient Maya volcanic ash procurement, one would have to demonstrate a long span of consistent volcanic activity in the Guatemala Highlands for the last half of the first millennium AD. Should this be documented through careful petrographic, microprobe and tephrachronological studies, a number of related archaeological phenomena would be explained. In addition, the proposed model of volcanic activity has implications for understanding volcanism and potential volcanic hazards in Central America over a significantly longer time span than the historic period. These avenues are explored and a call for further collaborative research of this interdisciplinary problem is extended in this paper.

  1. Compositional Differences between Felsic Volcanic rocks from the ...

    African Journals Online (AJOL)

    The elemental and Sr-Nd isotopic compositions of the volcanic rocks suggest that fractional crystallization from differing basic parents accompanied by a limited assimilation (AFC) was the dominant process controlling the genesis of the MER felsic volcanic rocks. Keywords: Ethiopia; Northern Main Ethiopian Rift; Bimodal ...

  2. Assessment of the atmospheric impact of volcanic eruptions

    Science.gov (United States)

    Sigurdsson, H.

    1988-01-01

    The dominant global impact of volcanic activity is likely to be related to the effects of volcanic gases on the Earth's atmosphere. Volcanic gas emissions from individual volcanic arc eruptions are likely to cause increases in the stratospheric optical depth that result in surface landmass temperature decline of 2 to 3 K for less than a decade. Trachytic and intermediate magmas are much more effective in this regard than high-silica magmas, and may also lead to extensive ozone depletion due to effect of halogens and magmatic water. Given the assumed relationship between arc volcanism and subduction rate, and the relatively small variation in global spreading rates in the geologic record, it is unlikely that the rates of arc volcanism have varied greatly during the Cenozoic. Hotspot related basaltic fissure eruptions in the subaerial environment have a higher mass yield of sulfur, but lofting of the valcanic aerosol to levels above the tropopause is required for a climate impact. High-latitude events, such as the Laki 1783 eruption can easily penetrate the tropopause and enter the stratosphere, but formation of a stratospheric volcanic aerosol form low-latitude effusive basaltic eruptions is problematical, due to the elevated low-latitude tropopause. Due to the high sulfur content of hotspot-derived basaltic magmas, their very high mass eruption rates and the episodic behavior, hotspots must be regarded as potentially major modifiers of Earth's climate through the action of their volcanic volatiles on the chemistry and physics of the atmosphere.

  3. Volcanic Ash from the 1999 Eruption of Mount Cameroon Volcano ...

    African Journals Online (AJOL)

    2008-10-21

    Oct 21, 2008 ... fluorine (F) content of the ash was determined by the selective ion electrode method. The results ... the main mineral in volcanic ash responsible for causing silicosis. The F ... volcanic ash with little or no attention to the < 4 µm.

  4. Improving communication during volcanic crises on small, vulnerable islands

    Science.gov (United States)

    McGuire, W. J.; Solana, M. C.; Kilburn, C. R. J.; Sanderson, D.

    2009-05-01

    Increased exposure to volcanic hazard, particularly at vulnerable small islands, is driving an urgent and growing need for improved communication between monitoring scientists, emergency managers and the media, in advance of and during volcanic crises. Information gathering exercises undertaken on volcanic islands (Guadeloupe, St. Vincent and Montserrat) in the Lesser Antilles (eastern Caribbean), which have recently experienced - or are currently experiencing - volcanic action, have provided the basis for the compilation and publication of a handbook on Communication During Volcanic Emergencies, aimed at the principal stakeholder groups. The findings of the on-island surveys point up the critical importance of (1) bringing together monitoring scientists, emergency managers, and representatives of the media, well in advance of a volcanic crisis, and (2), ensuring that procedures and protocols are in place that will allow, as far as possible, effective and seamless cooperation and coordination when and if a crisis situation develops. Communication During Volcanic Emergencies is designed to promote and encourage both of these priorities through providing the first source-book addressing working relationships and inter-linkages between the stakeholder groups, and providing examples of good and bad practice. While targeting the volcanic islands of the eastern Caribbean, the source-book and its content are largely generic, and the advice and guidelines contained therein have equal validity in respect of improving communication before and during crises at any volcano, and have application to the communication issue in respect of a range of other geophysical hazards.

  5. Formation and evolution of mesozoic volcanic basins in Gan-Hang tectonic belt

    International Nuclear Information System (INIS)

    Zhang Xingpu

    1999-01-01

    The author mainly discusses the principle model for the formation and the evolution of Mesozoic volcanic basins in the Gan-Hang Tectonic Belt, and describes the distinct evolution features between the internal and external sites of volcanic basins, the natural relation between the down-warped, down-faulted, collapse volcanic basins and volcanic domes, the relationship between the formation of inter layered fractured zones of the volcanic cover and the evolution of volcanic basins

  6. Explosive Volcanic Activity at Extreme Depths: Evidence from the Charles Darwin Volcanic Field, Cape Verdes

    Science.gov (United States)

    Kwasnitschka, T.; Devey, C. W.; Hansteen, T. H.; Freundt, A.; Kutterolf, S.

    2013-12-01

    Volcanic eruptions on the deep sea floor have traditionally been assumed to be non-explosive as the high-pressure environment should greatly inhibit steam-driven explosions. Nevertheless, occasional evidence both from (generally slow-) spreading axes and intraplate seamounts has hinted at explosive activity at large water depths. Here we present evidence from a submarine field of volcanic cones and pit craters called Charles Darwin Volcanic Field located at about 3600 m depth on the lower southwestern slope of the Cape Verdean Island of Santo Antão. We examined two of these submarine volcanic edifices (Tambor and Kolá), each featuring a pit crater of 1 km diameter, using photogrammetric reconstructions derived from ROV-based imaging followed by 3D quantification using a novel remote sensing workflow, aided by sampling. The measured and calculated parameters of physical volcanology derived from the 3D model allow us, for the first time, to make quantitative statements about volcanic processes on the deep seafloor similar to those generated from land-based field observations. Tambor cone, which is 2500 m wide and 250 m high, consists of dense, probably monogenetic medium to coarse-grained volcaniclastic and pyroclastic rocks that are highly fragmented, probably as a result of thermal and viscous granulation upon contact with seawater during several consecutive cycles of activity. Tangential joints in the outcrops indicate subsidence of the crater floor after primary emplacement. Kolá crater, which is 1000 m wide and 160 m deep, appears to have been excavated in the surrounding seafloor and shows stepwise sagging features interpreted as ring fractures on the inner flanks. Lithologically, it is made up of a complicated succession of highly fragmented deposits, including spheroidal juvenile lapilli, likely formed by spray granulation. It resembles a maar-type deposit found on land. The eruption apparently entrained blocks of MORB-type gabbroic country rocks with

  7. Ash production by attrition in volcanic conduits and plumes.

    Science.gov (United States)

    Jones, T J; Russell, J K

    2017-07-17

    Tephra deposits result from explosive volcanic eruption and serve as indirect probes into fragmentation processes operating in subsurface volcanic conduits. Primary magmatic fragmentation creates a population of pyroclasts through volatile-driven decompression during conduit ascent. In this study, we explore the role that secondary fragmentation, specifically attrition, has in transforming primary pyroclasts upon transport in volcanic conduits and plumes. We utilize total grain size distributions from a suite of natural and experimentally produced tephra to show that attrition is likely to occur in all explosive volcanic eruptions. Our experimental results indicate that fine ash production and surface area generation is fast (eruption column stability, tephra dispersal, aggregation, volcanic lightening generation, and has concomitant effects on aviation safety and Earth's climate.

  8. Explosive volcanism, shock metamorphism and the K-T boundary

    International Nuclear Information System (INIS)

    Desilva, S.L.; Sharpton, V.L.

    1988-01-01

    The issue of whether shocked quartz can be produced by explosive volcanic events is important in understanding the origin of the K-T boundary constituents. Proponents of a volcanic origin for the shocked quartz at the K-T boundary cite the suggestion of Rice, that peak overpressures of 1000 kbars can be generated during explosive volcanic eruptions, and may have occurred during the May, 1980 eruption of Mt. St. Helens. Attention was previously drawn to the fact that peak overpressures during explosive eruptions are limited by the strength of the rock confining the magma chamber to less than 8 kbars even under ideal conditions. The proposed volcanic mechanisms for generating pressures sufficient to shock quartz are further examined. Theoretical arguments, field evidence and petrographic data are presented showing that explosive volcanic eruptions cannot generate shock metamorphic features of the kind seen in minerals at the K-T boundary

  9. Global time-size distribution of volcanic eruptions on Earth.

    Science.gov (United States)

    Papale, Paolo

    2018-05-01

    Volcanic eruptions differ enormously in their size and impacts, ranging from quiet lava flow effusions along the volcano flanks to colossal events with the potential to affect our entire civilization. Knowledge of the time and size distribution of volcanic eruptions is of obvious relevance for understanding the dynamics and behavior of the Earth system, as well as for defining global volcanic risk. From the analysis of recent global databases of volcanic eruptions extending back to more than 2 million years, I show here that the return times of eruptions with similar magnitude follow an exponential distribution. The associated relative frequency of eruptions with different magnitude displays a power law, scale-invariant distribution over at least six orders of magnitude. These results suggest that similar mechanisms subtend to explosive eruptions from small to colossal, raising concerns on the theoretical possibility to predict the magnitude and impact of impending volcanic eruptions.

  10. Assessment of volcanic hazards, vulnerability, risk and uncertainty (Invited)

    Science.gov (United States)

    Sparks, R. S.

    2009-12-01

    A volcanic hazard is any phenomenon that threatens communities . These hazards include volcanic events like pyroclastic flows, explosions, ash fall and lavas, and secondary effects such as lahars and landslides. Volcanic hazards are described by the physical characteristics of the phenomena, by the assessment of the areas that they are likely to affect and by the magnitude-dependent return period of events. Volcanic hazard maps are generated by mapping past volcanic events and by modelling the hazardous processes. Both these methods have their strengths and limitations and a robust map should use both approaches in combination. Past records, studied through stratigraphy, the distribution of deposits and age dating, are typically incomplete and may be biased. Very significant volcanic hazards, such as surge clouds and volcanic blasts, are not well-preserved in the geological record for example. Models of volcanic processes are very useful to help identify hazardous areas that do not have any geological evidence. They are, however, limited by simplifications and incomplete understanding of the physics. Many practical volcanic hazards mapping tools are also very empirical. Hazards maps are typically abstracted into hazards zones maps, which are some times called threat or risk maps. Their aim is to identify areas at high levels of threat and the boundaries between zones may take account of other factors such as roads, escape routes during evacuation, infrastructure. These boundaries may change with time due to new knowledge on the hazards or changes in volcanic activity levels. Alternatively they may remain static but implications of the zones may change as volcanic activity changes. Zone maps are used for planning purposes and for management of volcanic crises. Volcanic hazards maps are depictions of the likelihood of future volcanic phenomena affecting places and people. Volcanic phenomena are naturally variable, often complex and not fully understood. There are

  11. Classifcation of volcanic structure in mesozoic era in the Fuzhou-Shaoxing area

    International Nuclear Information System (INIS)

    Zhang Fengqi.

    1989-01-01

    The volcanic structure in the Fuzhou-Shaoxing area can be classified into IV grades: the grade I be the zone of volcanic activity; the grade II be the second zone of volcanic activity; the grade III be the positive, negative volcanic structure; the grade IV be volcanic conduit, volcanic crater, concealed eruption breccia pipe. Based on the geological situation in this area, the different types of volcanic structure are also dealt with. In the mean time, both the embossed type in the depression area and the depressed type in the embossed area in the volcanic basin are pointed out. It is of great advantage to Uranium mineralization

  12. Volcanic sulfur dioxide index and volcanic explosivity index inferred from eruptive volume of volcanoes in Jeju Island, Korea: application to volcanic hazard mitigation

    Science.gov (United States)

    Ko, Bokyun; Yun, Sung-Hyo

    2016-04-01

    Jeju Island located in the southwestern part of Korea Peninsula is a volcanic island composed of lavaflows, pyroclasts, and around 450 monogenetic volcanoes. The volcanic activity of the island commenced with phreatomagmatic eruptions under subaqueous condition ca. 1.8-2.0 Ma and lasted until ca. 1,000 year BP. For evaluating volcanic activity of the most recently erupted volcanoes with reported age, volcanic explosivity index (VEI) and volcanic sulfur dioxide index (VSI) of three volcanoes (Ilchulbong tuff cone, Songaksan tuff ring, and Biyangdo scoria cone) are inferred from their eruptive volumes. The quantity of eruptive materials such as tuff, lavaflow, scoria, and so on, is calculated using a model developed in Auckland Volcanic Field which has similar volcanic setting to the island. The eruptive volumes of them are 11,911,534 m3, 24,987,557 m3, and 9,652,025 m3, which correspond to VEI of 3, 3, and 2, respectively. According to the correlation between VEI and VSI, the average quantity of SO2 emission during an eruption with VEI of 3 is 2-8 × 103 kiloton considering that the island was formed under intraplate tectonic setting. Jeju Island was regarded as an extinct volcano, however, several studies have recently reported some volcanic eruption ages within 10,000 year BP owing to the development in age dating technique. Thus, the island is a dormant volcano potentially implying high probability to erupt again in the future. The volcanoes might have explosive eruptions (vulcanian to plinian) with the possibility that SO2 emitted by the eruption reaches stratosphere causing climate change due to backscattering incoming solar radiation, increase in cloud reflectivity, etc. Consequently, recommencement of volcanic eruption in the island is able to result in serious volcanic hazard and this study provides fundamental and important data for volcanic hazard mitigation of East Asia as well as the island. ACKNOWLEDGMENTS: This research was supported by a grant [MPSS

  13. Volcanism in the Sumisu Rift. Pt. 2

    International Nuclear Information System (INIS)

    Hochstaedter, A.G.; Gill, J.B.; Morris, J.D.

    1990-01-01

    A bimodal suite of volcanic rocks collected from the Sumisu Rift by ALVIN provide present day example of the first magmatic products of arc rifting during the initiation of back-arc spreading. The trace element and isotopic composition of these rocks, which are contemporaneous with island arc tholeiite lavas of the Izu-Ogasawara arc 20 km to the east, differ from those of arc rocks and N-MORB in their relative incorporation of both subduction-related and non-subduction-related components. Subduction-related components, i.e., those that distinguish volcanic arc basalts from N-MORB, are less pronounced in rift lavas than in arc lavas. Alkali and alkaline earth to high field strength element and REE ratios as well as 87 Sr/ 86 Sr are intermediate between those of N-MORB and Izu arc lavas and indicate that Sumisu Rift basalts are similar to BABB erupted in other, more mature back-arc basins. These results show that back-arc basins may begin their magmatic evolution with BABB rather than more arc-like lavas. Evidence of non-subduction related components remains after the effects of subduction related components are removed or accounted for. Compared to the arc, higher HFSE and REE concentrations, contrasting REE patterns, and ≤ε Nd in the rift reflect derivation of rift lavas from more enriched components. Although SR basalt resembles E-MORB in many trace element ratios, it is referred to as BABB because low concentrations of Nb are similar to those in volcanic arcs and H 2 O/REE and H 2 O/K 2 O exceed those of E-MORB. Differences in HREE pattern and ε Nd require that the E-MORB characteristics result from source heterogeneities and not lower degrees of melting. Enriched mantle beneath the rift may reflect enriched blobs entrained in a more depleted matrix, or injection of new, more enriched mantle. High 208 Pb/ 204 Pb and moderate 207 Pb/ 204 Pb ratios with respect to Pacific MORB also reflect ancient mantle enrichment. (orig.)

  14. Volcanism Studies: Final Report for the Yucca Mountain Project

    Energy Technology Data Exchange (ETDEWEB)

    Bruce M. Crowe; Frank V. Perry; Greg A. Valentine; Lynn M. Bowker

    1998-12-01

    This report synthesizes the results of volcanism studies conducted by scientists at the Los Alamos National Laboratory and collaborating institutions on behalf of the Department of Energy's Yucca Mountain Project. An assessment of the risk of future volcanic activity is one of many site characterization studies that must be completed to evaluate the Yucca Mountain site for potential long-term storage of high-level radioactive waste. The presence of several basaltic volcanic centers in the Yucca Mountain region of Pliocene and Quaternary age indicates that there is a finite risk of a future volcanic event occurring during the 10,000-year isolation period of a potential repository. Chapter 1 introduces the volcanism issue for the Yucca Mountain site and provides the reader with an overview of the organization, content, and significant conclusions of this report. The risk of future basaltic volcanism is the primary topic of concern including both events that intersect a potential repository and events that occur near or within the waste isolation system of a repository. Future volcanic events cannot be predicted with certainty but instead are estimated using formal methods of probabilistic volcanic hazard assessment (PVHA). Chapter 2 describes the volcanic history of the Yucca Mountain region (YMR) and emphasizes the Pliocene and Quaternary volcanic record, the interval of primary concern for volcanic risk assessment. The distribution, eruptive history, and geochronology of Plio-Quaternary basalt centers are described by individual center emphasizing the younger postcaldera basalt (<5 Ma). The Lathrop Wells volcanic center is described in detail because it is the youngest basalt center in the YMR. The age of the Lathrop Wells center is now confidently determined to be about 75 thousand years old. Chapter 3 describes the tectonic setting of the YMR and presents and assesses the significance of multiple alternative tectonic models. The Crater Flat volcanic zone is

  15. Tungsten abundances in some volcanic rocks

    International Nuclear Information System (INIS)

    Helsen, J.N.; Shaw, D.M.; Crocket, J.H.

    1978-01-01

    A radiochemical N.A.A. method was used to obtain new values on W distribution in some 125 volcanic rocks, mainly basalts and andesites, from different petrotectonic environments. These W data are below previously reported abundances. New median values in various types of rocks are suggested (ppm W). Basalts: ocean floor, 0.15; ocean islands subalkaline, 0.28; ocean islands alkaline, 0.60; island arc, 0.19; continental margin, 0.40; continental subalkaline, 0.30; continental alkaline, 1.35. Andesites: island arc, 0.23; continental margin, 1.05. Median values for all 91 basalts and all 20 andesites are 0.36 and 0.29 ppm respectively. (author)

  16. Inside the volcanic boiler room: knowledge exchange among stakeholders of volcanic unrest

    Science.gov (United States)

    Gottsmann, Joachim; Christie, Ryerson; Bretton, Richard

    2014-05-01

    The knowledge of the causative links between subsurface processes, resulting monitoring signals and imminent eruption is incomplete. As a consequence, hazard assessment and risk mitigation strategies are subject to uncertainty. Discussion of unrest and pre-eruptive scenarios with uncertain outcomes are central during the discourse between a variety of stakeholders in volcanic unrest including scientists, emergency managers, policy makers and the public. Drawing from research within the EC FP7 VUELCO project, we argue that knowledge exchange amongst the different stakeholders of volcanic unrest evolves along three dimensions: 1) the identification of knowledge holders (including local communities) and their needs and expectations, 2) vehicles of communication and 3) trust. In preparing products that feed into risk assessment and management, scientists need to ensure that their deliverables are timely, accurate, clear, understandable and cater to the expectations of emergency managers. The means and content of communication amongst stakeholders need to be defined and adhered to. Finally, efficient and effective interaction between stakeholders is ideally based on mutual trust between those that generate knowledge and those that receive knowledge. For scientists, this entails contextualising volcanic hazard and risk in the framework of environmental and social values. Periods of volcanic quiescence are ideally suited to test established protocols of engagement between stakeholders in preparation for crises situations. The different roles of stakeholders and associated rules of engagement can be scrutinised and reviewed in antecessum rather than ad-hoc during a crisis situation to avoid issues related to distrust, loss of credibility and overall poor risk management. We will discuss these themes drawing from exploitation of research results from Mexico and Ecuador.

  17. The monogenetic Bayuda Volcanic Field, Sudan - New insights into geology and volcanic morphology

    Science.gov (United States)

    Lenhardt, Nils; Borah, Suranjana B.; Lenhardt, Sukanya Z.; Bumby, Adam J.; Ibinoof, Montasir A.; Salih, Salih A.

    2018-05-01

    The small monogenetic Bayuda Volcanic Field (BVF; 480 km2), comprising at least 53 cinder cones and 15 maar volcanoes in the Bayuda desert of northern Sudan is one of a few barely studied volcanic occurrences of Quaternary age in Sudan. The exact age of the BVF and the duration of volcanic activity has not yet been determined. Furthermore, not much is known about the eruptional mechanisms and the related magmatic and tectonic processes that led to the formation of the volcanic field. In the framework of a larger project focusing on these points it is the purpose of this contribution to provide a first account of the general geology of the BVF volcanoes as well as a first description of a general stratigraphy, including a first description of their morphological characteristics. This was done by means of fieldwork, including detailed rock descriptions, as well as the analysis of satellite images (SRTM dataset at 30 m spatial resolution). The BVF cinder cones are dominated by scoracious lapilli tephra units, emplaced mainly by pyroclastic fallout from Strombolian eruptions. Many cones are breached and are associated with lava flows. The subordinate phreatomagmatism represented by maar volcanoes suggests the presence of ground and/or shallow surface water during some of the eruptions. The deposits constituting the rims around the maar volcanoes are interpreted as having mostly formed due to pyroclastic surges. Many of the tephra rings around the maars are underlain by thick older lava flows. These are inferred to be the horizons where rising magma interacted with groundwater. The existence of phreatomagmatic deposits may point to a time of eruptive activity during a phase with wetter conditions and therefore higher groundwater levels than those encountered historically. This is supported by field observations as well as the morphological analysis, providing evidence for relatively high degrees of alteration of the BVF volcanoes and therefore older eruption ages as

  18. Volcanic glasses, their origins and alteration processes

    Science.gov (United States)

    Friedman, I.; Long, W.

    1984-01-01

    Natural glass can be formed by volcanic processes, lightning (fulgarites) burning coal, and by meteorite impact. By far the most common process is volcanic - basically the glass is rapidly chilled molten rock. All natural glasses are thermodynamically unstable and tend to alter chemically or to crystallize. The rate of these processes is determined by the chemical composition of the magma. The hot and fluid basaltic melts have a structure that allows for rapid crystal growth, and seldom forms glass selvages greater than a few centimeters thick, even when the melt is rapidly cooled by extrusion in the deep sea. In contrast the cooler and very viscous rhyolitic magmas can yield bodies of glass that are tens of meters thick. These highly polymerized magmas have a high silica content - often 71-77% SiO2. Their high viscosity inhibits diffusive crystal growth. Basalt glass in sea water forms an alteration zone called palagonite whose thickness increases linearly with time. The rate of diffusion of water into rhyolitic glass, which follows the relationship - thickness = k (time) 1 2, has been determined as a function of the glass composition and temperature. Increased SiO2 increases the rate, whereas increased CaO, MgO and H2O decrease the rate. The activation energy of water diffusion varies from about 19 to 22 kcal/mol. for the glasses studied. The diffusion of alkali out of rhyolite glass occurs simultaneously with water diffusion into the glass. The rate of devitrification of rhyolitic glass is a function of the glass viscosity, which in turn is a function of water content and temperature. Although all of the aforementioned processes tend to destroy natural glasses, the slow rates of these processes, particularly for rhyolitic glass, has allowed samples of glass to persist for 60 million years. ?? 1984.

  19. Detecting Volcanic Ash Plumes with GNSS Signals

    Science.gov (United States)

    Rainville, N.; Larson, K. M.; Palo, S. E.; Mattia, M.; Rossi, M.; Coltelli, M.; Roesler, C.; Fee, D.

    2016-12-01

    Global Navigation Satellite Systems (GNSS) receivers are commonly placed near volcanic sites to measure ground deformation. In addition to the carrier phase data used to measure ground position, these receivers also record Signal to Noise ratio (SNR) data. Larson (2013) showed that attenuations in SNR data strongly correlate with ash emissions at a series of eruptions of Redoubt Volcano. This finding has been confirmed at eruptions for Tongariro, Mt Etna, Mt Shindake, and Sakurajima. In each of these detections, very expensive geodetic quality GNSS receivers were used. If low-cost GNSS instruments could be used instead, a networked array could be deployed and optimized for plume detection and tomography. The outputs of this sensor array could then be used by both local volcanic observatories and Volcano Ash Advisory Centers. Here we will describe progress in developing such an array. The sensors we are working with are intended for navigation use, and thus lack the supporting power and communications equipment necessary for a networked system. Reliably providing those features is major challenge for the overall sensor design. We have built prototypes of our Volcano Ash Plume Receiver (VAPR), with solar panels, lithium-ion batteries and onboard data storage for preliminary testing. We will present results of our field tests of both receivers and antennas. A second critical need for our array is a reliable detection algorithm. We have tested our algorithm on data from recent eruptions and have incorporated the noise characteristics of the low-cost GNSS receiver. We have also developed a simulation capability so that the receivers can be deployed to optimize vent crossing GNSS signals.

  20. Chemical deposits in volcanic caves of Argentina

    Directory of Open Access Journals (Sweden)

    Carlos Benedetto

    1998-01-01

    Full Text Available During the last Conference of the FEALC (Speleological Federation of Latin America and Caribbean Islands which was held in the town of Malargue, Mendoza, in February 1997, two volcanic caves not far from that town were visited and sampled for cave mineral studies. The first cave (Cueva del Tigre opens close to the Llancanelo lake, some 40 kms far from Malargue and it is a classical lava tube. Part of the walls and of the fallen lava blocks are covered by white translucent fibres and grains. The second visited cave is a small tectonic cavity opened on a lava bed some 100 km southward of Malargue. The cave “El Abrigo de el Manzano” is long no more than 10-12 meters with an average width of 3 meters and it hosts several bird nests, the larger of which is characterized by the presence of a relatively thick pale yellow, pale pink flowstone. Small broken or fallen samples of the secondary chemical deposits of both these caves have been collected in order to detect their mineralogical composition. In the present paper the results of the detailed mineralogical analyses carried out on the sampled material are shortly reported. In the Cueva del Tigre lava tube the main detected minerals are Sylvite, Thenardite, Bloedite and Kieserite, all related to the peculiar dry climate of that area. The flowstone of “El Abrigo de el Manzano” consists of a rather complex admixture of several minerals, the large majority of which are phosphates but also sulfates and silicates, not all yet identified. The origin of all these minerals is related to the interaction between bird guano and volcanic rock.

  1. Global volcanic earthquake swarm database and preliminary analysis of volcanic earthquake swarm duration

    Directory of Open Access Journals (Sweden)

    S. R. McNutt

    1996-06-01

    Full Text Available Global data from 1979 to 1989 pertaining to volcanic earthquake swarms have been compiled into a custom-designed relational database. The database is composed of three sections: 1 a section containing general information on volcanoes, 2 a section containing earthquake swarm data (such as dates of swarm occurrence and durations, and 3 a section containing eruption information. The most abundant and reliable parameter, duration of volcanic earthquake swarms, was chosen for preliminary analysis. The distribution of all swarm durations was found to have a geometric mean of 5.5 days. Precursory swarms were then separated from those not associated with eruptions. The geometric mean precursory swarm duration was 8 days whereas the geometric mean duration of swarms not associated with eruptive activity was 3.5 days. Two groups of precursory swarms are apparent when duration is compared with the eruption repose time. Swarms with durations shorter than 4 months showed no clear relationship with the eruption repose time. However, the second group, lasting longer than 4 months, showed a significant positive correlation with the log10 of the eruption repose period. The two groups suggest that different suites of physical processes are involved in the generation of volcanic earthquake swarms.

  2. The Te Rere and Okareka eruptive episodes : Okataina Volcanic Centre, Taupo Volcanic Zone, New Zealand

    International Nuclear Information System (INIS)

    Nairn, I.A.

    1992-01-01

    The Te Rere and Okareka eruptive episodes occurred within the Okataina Volcanic Centre at c. 21 000 and 18 000 yr B.P., respectively. The widespread rhyolitic pumice fall deposits of Te Rere Ash (volume 5 km 3 ) and Okareka Ash (6 km 3 ) are only rarely exposed in near-source areas, and locations of their vent areas have been uncertain. New exposures and petrographic and chemical analyses show that the Te Rere episode eruptions occurred from multiple vents, up to 20 km apart, on the Haroharo linear vent zone. The Okareka episode eruptions occurred from vents since buried beneath the Tarawera volcanic massif. Eruption of the rhyolitic Okareka pumice fall was immediately preceded by a small basaltic scoria eruption, apparently from vents close to those for the following rhyolite eruptions. Dacitic mixed pumices scattered within the rhyolite pumice layers immediately overlying the scoria were formed by mixing of the basalt and rhyolite magmas. The Te Rere and Okareka pyroclastic eruptions were both followed by extrusion of voluminous rhyolite lavas. These eruptive episodes mark the commencement of growth of the present-day Haroharo and Tarawera volcanic complexes. (author). 27 refs., 14 figs., 6 tabs

  3. What, When, Where, and Why of Secondary Hawaiian Hotspot Volcanism

    Science.gov (United States)

    Garcia, M. O.; Ito, G.; Applegate, B.; Weis, D.; Swinnard, L.; Flinders, A.; Hanano, D.; Nobre-Silva, I.; Bianco, T.; Naumann, T.; Geist, D.; Blay, C.; Sciaroni, L.; Maerschalk, C.; Harpp, K.; Christensen, B.

    2007-12-01

    Secondary hotspot volcanism occurs on most oceanic island groups (Hawaii, Canary, Society) but its origins remain enigmatic. A 28-day marine expedition used multibeam bathymetry and acoustic imagery to map the extent of submarine volcanic fields around the northern Hawaiian Islands (Kauai, Niihau and Kaula), and the JASON2 ROV to sample many volcanoes to characterize the petrology, geochemistry (major and trace elements, and isotopes) and ages of the lavas from these volcanoes. Our integrated geological, geochemical and geophysical study attempts to examine the what (compositions and source), where (distribution and volumes), when (ages), and why (mechanisms) of secondary volcanism on and around the northern Hawaiian Islands. A first-order objective was to establish how the submarine volcanism relates in space, time, volume, and composition to the nearby shield volcanoes and their associated onshore secondary volcanism. Our surveying and sampling revealed major fields of submarine volcanoes extending from the shallow slopes of these islands to more than 100 km offshore. These discoveries dramatically expand the volumetric importance, distribution and geodynamic framework for Hawaiian secondary volcanism. New maps and rock petrology on the samples collected will be used to evaluate currently proposed mechanisms for secondary volcanism and to consider new models such as small-scale mantle convection driven by thermal and melt-induced buoyancy to produce the huge volume of newly discovered lava. Our results seem to indicate substantial revisions are needed to our current perceptions of hotspot dynamics for Hawaii and possibly elsewhere.

  4. The Role of Volcanic Activity in Climate and Global Change

    KAUST Repository

    Stenchikov, Georgiy L.

    2015-09-23

    Explosive volcanic eruptions are magnificent events that in many ways affect the Earth\\'s natural processes and climate. They cause sporadic perturbations of the planet\\'s energy balance, activating complex climate feedbacks and providing unique opportunities to better quantify those processes. We know that explosive eruptions cause cooling in the atmosphere for a few years, but we have just recently realized that volcanic signals can be seen in the subsurface ocean for decades. The volcanic forcing of the previous two centuries offsets the ocean heat uptake and diminishes global warming by about 30%. The explosive volcanism of the twenty-first century is unlikely to either cause any significant climate signal or to delay the pace of global warming. The recent interest in dynamic, microphysical, chemical, and climate impacts of volcanic eruptions is also excited by the fact that these impacts provide a natural analogue for climate geoengineering schemes involving deliberate development of an artificial aerosol layer in the lower stratosphere to counteract global warming. In this chapter we aim to discuss these recently discovered volcanic effects and specifically pay attention to how we can learn about the hidden Earth-system mechanisms activated by explosive volcanic eruptions. To demonstrate these effects we use our own model results when possible along with available observations, as well as review closely related recent publications.

  5. Volcanic hazard studies for the Yucca Mountain project

    International Nuclear Information System (INIS)

    Crowe, B.; Turrin, B.; Wells, S.; Perry, F.; McFadden, L.; Renault, C.E.; Champion, D.; Harrington, C.

    1989-01-01

    Volcanic hazard studies are ongoing to evaluate the risk of future volcanism with respect to siting of a repository for disposal of high-level radioactive waste at the Yucca Mountain site. Seven Quaternary basaltic volcanic centers are located a minimum distance of 12 km and a maximum distance of 47 km from the outer boundary of the exploration block. The conditional probability of disruption of a repository by future basaltic volcanism is bounded by the range of 10/sup /minus/8/ to 10/sup /minus/10/ yr/sup /minus/1/. These values are currently being reexamined based on new developments in the understanding of the evaluation of small volume, basaltic volcanic centers including: (1) Many, perhaps most, of the volcanic centers exhibit brief periods of eruptive activity separated by longer periods of inactivity. (2) The centers may be active for time spans exceeding 10 5 yrs, (3) There is a decline in the volume of eruptions of the centers through time, and (4) Small volume eruptions occurred at two of the Quaternary centers during latest Pleistocene or Holocene time. We classify the basalt centers as polycyclic, and distinguish them from polygenetic volcanoes. Polycyclic volcanism is characterized by small volume, episodic eruptions of magma of uniform composition over time spans of 10 3 to 10 5 yrs. Magma eruption rates are low and the time between eruptions exceeds the cooling time of the magma volumes. 25 refs., 2 figs

  6. Lunar cryptomaria: Physical characteristics, distribution, and implications for ancient volcanism

    Science.gov (United States)

    Whitten, Jennifer L.; Head, James W.

    2015-02-01

    Cryptomaria, lunar volcanic deposits obscured by crater and basin impact ejecta, can provide important information about the thermal and volcanic history of the Moon. The timing of cryptomare deposition has implications for the duration and flux of mare basalt volcanism. In addition, knowing the distribution of cryptomaria can provide information about mantle convection and lunar magma ocean solidification. Here we use multiple datasets (e.g., M3, LOLA, LROC, Diviner) to undertake a global analysis to identify the general characteristics (e.g., topography, surface roughness, rock abundance, albedo, etc.) of lunar light plains in order to better distinguish between ancient volcanic deposits (cryptomaria) and impact basin and crater ejecta deposits. We find 20 discrete regions of cryptomaria, covering approximately 2% of the Moon, which increase the total area covered by mare volcanism to 18% of the lunar surface. Comparisons of light plains deposits indicate that the two deposit types (volcanic and impact-produced) are best distinguished by mineralogic data. On the basis of cryptomaria locations, the distribution of mare volcanism does not appear to have changed in the time prior to its exposed mare basalt distribution. There are several hypotheses explaining the distribution of mare basalts, which include the influence of crustal thickness, mantle convection patterns, asymmetric distribution of source regions, KREEP distribution, and the influence of a proposed Procellarum impact basin. The paucity of farside mare basalts means that multiple factors, such as crustal thickness variations and mantle convection, are likely to play a role in mare basalt emplacement.

  7. Submarine Volcanic Eruptions and Potential Analogs for Venus

    Science.gov (United States)

    Wilson, L.; Mouginismark, P. J.; Fryer, P.; Gaddis, L. R.

    1985-01-01

    As part of an analysis program to better understand the diversity of volcanic processes on the terrestrial planets, an investigation of the volcanic landforms which exist on the Earth's ocean floor was initiated. In part, this analysis is focused toward gaining a better understanding of submarine volcanic landforms in their own right, but also it is hoped that these features may show similarities to volcanic landforms on Venus, due to the high ambient water (Earth) and atmospheric (Venus) pressures. A series of numerical modelling experiments was performed to investigate the relative importance of such attributes as water pressure and temperature on the eruption process, and to determine the rate of cooling and emplacement of lava flows in the submarine environment. Investigations to date show that the confining water pressure and the buoyancy effects of the surrounding water significantly affect the styles of volcanism on the ocean floor. In the case of Venusian volcanism, confining pressures will not be as great as that found at the ocean's abyssal plains, but nevertheless the general trend toward reducing magma vesiculation will hold true for Venus as well as the ocean floor. Furthermore, other analogs may also be found between submarine volcanism and Venusian activity.

  8. Lidar detection of carbon dioxide in volcanic plumes

    Science.gov (United States)

    Fiorani, Luca; Santoro, Simone; Parracino, Stefano; Maio, Giovanni; Del Franco, Mario; Aiuppa, Alessandro

    2015-06-01

    Volcanic gases give information on magmatic processes. In particular, anomalous releases of carbon dioxide precede volcanic eruptions. Up to now, this gas has been measured in volcanic plumes with conventional measurements that imply the severe risks of local sampling and can last many hours. For these reasons and for the great advantages of laser sensing, the thorough development of volcanic lidar has been undertaken at the Diagnostics and Metrology Laboratory (UTAPRAD-DIM) of the Italian National Agency for New Technologies, Energy and Sustainable Economic Development (ENEA). In fact, lidar profiling allows one to scan remotely volcanic plumes in a fast and continuous way, and with high spatial and temporal resolution. Two differential absorption lidar instruments will be presented in this paper: BILLI (BrIdge voLcanic LIdar), based on injection seeded Nd:YAG laser, double grating dye laser, difference frequency mixing (DFM) and optical parametric amplifier (OPA), and VULLI (VULcamed Lidar), based on injection seeded Nd:YAG laser and optical parametric oscillator (OPO). The first one is funded by the ERC (European Research Council) project BRIDGE and the second one by the ERDF (European Regional Development Fund) project VULCAMED. While VULLI has not yet been tested in a volcanic site, BILLI scanned the gas emitted by Pozzuoli Solfatara (Campi Flegrei volcanic area, Naples, Italy) during a field campaign carried out from 13 to 17 October 2014. Carbon dioxide concentration maps were retrieved remotely in few minutes in the crater area. Lidar measurements were in good agreement with well-established techniques, based on different operating principles. To our knowledge, it is the first time that carbon dioxide in a volcanic plume is retrieved by lidar, representing the first direct measurement of this kind ever performed on an active volcano and showing the high potential of laser remote sensing in geophysical research.

  9. Volcanic hazards of North Island, New Zealand-overview

    Science.gov (United States)

    Dibble, R. R.; Nairn, I. A.; Neall, V. E.

    1985-10-01

    In October 1980, a National Civil Defence Planning Committee on Volcanic Hazards was formed in New Zealand, and solicited reports on the likely areas and types of future eruptions, the risk to public safety, and the need for special precautions. Reports for eight volcanic centres were received, and made available to the authors. This paper summarises and quantifies the type and frequency of hazard, the public risk, and the possibilities for mitigation at the 7 main volcanic centres: Northland, Auckland, White Island, Okataina, Taupo, Tongariro, and Egmont. On the basis of Recent tephrostratigraphy, eruption probabilities up to 20% per century (but commonly 5%), and tephra volumes up to 100 km 3 are credible.

  10. Volcanic ash as fertiliser for the surface ocean

    Directory of Open Access Journals (Sweden)

    B. Langmann

    2010-04-01

    Full Text Available Iron is a key limiting micro-nutrient for marine primary productivity. It can be supplied to the ocean by atmospheric dust deposition. Volcanic ash deposition into the ocean represents another external and so far largely neglected source of iron. This study demonstrates strong evidence for natural fertilisation in the iron-limited oceanic area of the NE Pacific, induced by volcanic ash from the eruption of Kasatochi volcano in August 2008. Atmospheric and oceanic conditions were favourable to generate a massive phytoplankton bloom in the NE Pacific Ocean which for the first time strongly suggests a connection between oceanic iron-fertilisation and volcanic ash supply.

  11. Long term volcanic hazard analysis in the Canary Islands

    Science.gov (United States)

    Becerril, L.; Galindo, I.; Laín, L.; Llorente, M.; Mancebo, M. J.

    2009-04-01

    Historic volcanism in Spain is restricted to the Canary Islands, a volcanic archipelago formed by seven volcanic islands. Several historic eruptions have been registered in the last five hundred years. However, and despite the huge amount of citizens and tourist in the archipelago, only a few volcanic hazard studies have been carried out. These studies are mainly focused in the developing of hazard maps in Lanzarote and Tenerife islands, especially for land use planning. The main handicap for these studies in the Canary Islands is the lack of well reported historical eruptions, but also the lack of data such as geochronological, geochemical or structural. In recent years, the use of Geographical Information Systems (GIS) and the improvement in the volcanic processes modelling has provided an important tool for volcanic hazard assessment. Although this sophisticated programs are really useful they need to be fed by a huge amount of data that sometimes, such in the case of the Canary Islands, are not available. For this reason, the Spanish Geological Survey (IGME) is developing a complete geo-referenced database for long term volcanic analysis in the Canary Islands. The Canarian Volcanic Hazard Database (HADA) is based on a GIS helping to organize and manage volcanic information efficiently. HADA includes the following groups of information: (1) 1:25.000 scale geologic maps, (2) 1:25.000 topographic maps, (3) geochronologic data, (4) geochemical data, (5) structural information, (6) climatic data. Data must pass a quality control before they are included in the database. New data are easily integrated in the database. With the HADA database the IGME has started a systematic organization of the existing data. In the near future, the IGME will generate new information to be included in HADA, such as volcanological maps of the islands, structural information, geochronological data and other information to assess long term volcanic hazard analysis. HADA will permit

  12. Variational data assimilation of satellite observations to estimate volcanic ash emissions

    NARCIS (Netherlands)

    Lu, S.

    2017-01-01

    Volcanic eruptions release a large amount of volcanic ash, which can pose hazard to human and animal health, land transportation, and aviation safety. Volcanic Ash Transport and Dispersion (VATD) models are critical tools to provide advisory information and timely volcanic ash forecasts. Due to the

  13. Volcanic geomorphology using TanDEM-X

    Science.gov (United States)

    Poland, Michael; Kubanek, Julia

    2016-04-01

    Topography is perhaps the most fundamental dataset for any volcano, yet is surprisingly difficult to collect, especially during the course of an eruption. For example, photogrammetry and lidar are time-intensive and often expensive, and they cannot be employed when the surface is obscured by clouds. Ground-based surveys can operate in poor weather but have poor spatial resolution and may expose personnel to hazardous conditions. Repeat passes of synthetic aperture radar (SAR) data provide excellent spatial resolution, but topography in areas of surface change (from vegetation swaying in the wind to physical changes in the landscape) between radar passes cannot be imaged. The German Space Agency's TanDEM-X satellite system, however, solves this issue by simultaneously acquiring SAR data of the surface using a pair of orbiting satellites, thereby removing temporal change as a complicating factor in SAR-based topographic mapping. TanDEM-X measurements have demonstrated exceptional value in mapping the topography of volcanic environments in as-yet limited applications. The data provide excellent resolution (down to ~3-m pixel size) and are useful for updating topographic data at volcanoes where surface change has occurred since the most recent topographic dataset was collected. Such data can be used for applications ranging from correcting radar interferograms for topography, to modeling flow pathways in support of hazards mitigation. The most valuable contributions, however, relate to calculating volume changes related to eruptive activity. For example, limited datasets have provided critical measurements of lava dome growth and collapse at volcanoes including Merapi (Indonesia), Colima (Mexico), and Soufriere Hills (Montserrat), and of basaltic lava flow emplacement at Tolbachik (Kamchatka), Etna (Italy), and Kīlauea (Hawai`i). With topographic data spanning an eruption, it is possible to calculate eruption rates - information that might not otherwise be available

  14. The Variable Climate Impact of Volcanic Eruptions

    Science.gov (United States)

    Graf, H.

    2011-12-01

    The main effect of big volcanic eruptions in the climate system is due to their efficient transport of condensable gases and their precursors into the stratosphere. There the formation of aerosols leads to effects on atmospheric radiation transfer inducing a reduction of incoming solar radiation by reflection (i.e. cooling of the Earth surface) and absorption of near infrared radiation (i.e. heating) in the aerosol laden layers. In the talk processes determining the climate effect of an eruption will be illustrated by examples, mainly from numerical modelling. The amount of gases released from a magma during an eruption and the efficiency of their transport into very high altitudes depends on the geological setting (magma type) and eruption style. While mid-sized eruption plumes of Plinian style quickly can develop buoyancy by entrainment of ambient air, very large eruptions with high magma flux rates often tend to collapsing plumes and co-ignimbrite style. These cover much bigger areas and are less efficient in entraining ambient air. Vertical transport in these plumes is chaotic and less efficient, leading to lower neutral buoyancy height and less gas and particles reaching high stratospheric altitudes. Explosive energy and amount of released condensable gases are not the only determinants for the climatic effect of an eruption. The effect on shortwave radiation is not linear with the amount of aerosols formed since according to the Lambert-Beer Law atmospheric optical depth reaches a saturation limit with increased absorber concentration. In addition, if more condensable gas is available for aerosol growth, particles become larger and this affects their optical properties to less reflection and more absorption. Larger particles settle out faster, thus reducing the life time of the aerosol disturbance. Especially for big tropical eruptions the strong heating of the stratosphere in low latitudes leads to changes in atmospheric wave propagation by strengthened

  15. Gas measurements from the Costa Rica-Nicaragua volcanic segment suggest possible along-arc variations in volcanic gas chemistry

    Science.gov (United States)

    Aiuppa, A.; Robidoux, P.; Tamburello, G.; Conde, V.; Galle, B.; Avard, G.; Bagnato, E.; De Moor, J. M.; Martínez, M.; Muñóz, A.

    2014-12-01

    Obtaining accurate estimates of the CO2 output from arc volcanism requires a precise understanding of the potential along-arc variations in volcanic gas chemistry, and ultimately of the magmatic gas signature of each individual arc segment. In an attempt to more fully constrain the magmatic gas signature of the Central America Volcanic Arc (CAVA), we present here the results of a volcanic gas survey performed during March and April 2013 at five degassing volcanoes within the Costa Rica-Nicaragua volcanic segment (CNVS). Observations of the volcanic gas plume made with a multicomponent gas analyzer system (Multi-GAS) have allowed characterization of the CO2/SO2-ratio signature of the plumes at Poás (0.30±0.06, mean ± SD), Rincón de la Vieja (27.0±15.3), and Turrialba (2.2±0.8) in Costa Rica, and at Telica (3.0±0.9) and San Cristóbal (4.2±1.3) in Nicaragua (all ratios on molar basis). By scaling these plume compositions to simultaneously measured SO2 fluxes, we estimate that the CO2 outputs at CNVS volcanoes range from low (25.5±11.0 tons/day at Poás) to moderate (918 to 1270 tons/day at Turrialba). These results add a new information to the still fragmentary volcanic CO2 output data set, and allow estimating the total CO2 output from the CNVS at 2835±1364 tons/day. Our novel results, with previously available information about gas emissions in Central America, are suggestive of distinct volcanic gas CO2/ST (= SO2 + H2S)-ratio signature for magmatic volatiles in Nicaragua (∼3) relative to Costa Rica (∼0.5-1.0). We also provide additional evidence for the earlier theory relating the CO2-richer signature of Nicaragua volcanism to increased contributions from slab-derived fluids, relative to more-MORB-like volcanism in Costa Rica. The sizeable along-arc variations in magmatic gas chemistry that the present study has suggested indicate that additional gas observations are urgently needed to more-precisely confine the volcanic CO2 from the CAVA, and from

  16. Timing and compositional evolution of Late Pleistocene to Holocene volcanism within the Harrat Rahat volcanic field, Kingdom of Saudi Arabia

    Science.gov (United States)

    Stelten, M. E.; Downs, D. T.; Dietterich, H. R.

    2017-12-01

    Harrat Rahat is one of the largest ( 20,000 km2) of 15 active Cenozoic volcanic fields that stretch 3,000 km along the western Arabian Peninsula from Yemen to Syria. The Harrat Rahat volcanic field is 310 km long (N-S) by 75 km wide (E-W), and is dominated by alkalic basalts with minor hawaiite, mugearite, benmoreite, and trachyte eruptives. The timing of volcanism within greater Harrat Rahat is poorly constrained, but field relations and geochronology indicate that northern Harrat Rahat hosted the most recent eruptions. To better constrain the timing and compositional evolution of Harrat Rahat during this recent phase, we present 743 geochemical analyses, 144 40Ar/39Ar ages, and 9 36Cl exposure ages for volcanic strata from northernmost Harrat Rahat. These data demonstrate that volcanism has been ongoing from at least 1.2 Ma to the present, with the most recent eruption known from historical accounts at 1256 CE. Basalt has erupted persistently from 1.2 Ma to the present, but more evolved volcanism has been episodic. Benmoreite erupted at 1.1 Ma and between 550 to 400 ka. Trachytic volcanism has only occurred over the past 150 ka, with the most recent eruption at 5 ka. Aside from the well-documented basaltic eruption at 1256 CE, prior workers interpreted 6 additional basaltic eruptions during the Holocene. However, our 36Cl exposure ages demonstrate that these erupted between 60 to 13 ka. Interestingly, in the northern part of our field area, where the spatial density of volcanic vents is low, young volcanism (<150 ka) is dominated by basaltic eruptions. Conversely, young volcanism in the southern part of our field area, where volcanic vent density is high, is dominated by trachyte. This observation is consistent with a process wherein the time-integrated effects of basaltic influx into the crust in the south produced a mafic intrusive complex, through which younger basaltic magmas cannot ascend. Instead, these magmas stall and produce trachyte, likely through

  17. Palynology and clay mineralogy of the Deccan volcanic associated ...

    Indian Academy of Sciences (India)

    ontological studies of Deccan volcanic associated intertrappean sediments at ... and also for bridging the gap in the knowledge of palynofloral ..... G P, Systematic Association Special Volume, (Oxford: Clarendon .... Traps: A review; Geol. Surv.

  18. Observations of volcanic plumes using small balloon soundings

    Science.gov (United States)

    Voemel, H.

    2015-12-01

    Eruptions of volcanoes are very difficult to predict and for practical purposes may occur at any time. Any observing system intending to observe volcanic eruptions has to be ready at any time. Due to transport time scales, emissions of large volcanic eruptions, in particular injections into the stratosphere, may be detected at locations far from the volcano within days to weeks after the eruption. These emissions may be observed using small balloon soundings at dedicated sites. Here we present observations of particles of the Icelandic Grimsvotn eruption at the Meteorological Observatory Lindenberg, Germany in the months following the eruption and observations of opportunity of other volcanic particle events. We also present observations of the emissions of SO2 from the Turrialba volcano at San Jose, Costa Rica. We argue that dedicated sites for routine observations of the clean and perturbed atmosphere using small sounding balloons are an important element in the detection and quantification of emissions from future volcanic eruptions.

  19. Petrogeochemistry of Mesozoic basaltic volcanics in Daqingshan area

    International Nuclear Information System (INIS)

    Li Xiaoguang; Li Ziying; Wei Sanyuan; Qi Da'neng

    2009-01-01

    Through the discussion on petrogeochemistry of Later Mesozoic basaltic volcanics in Daqingshan Basin in Manzhouli area, combined with field observation and the predecessors' study, its magma evolution,genesis and diagenetic structural environment are discussed, and some suggestion are provided for the further work. Basaltic magma in this area is believed to be derived from mantle with incompatible elements which were later participated by some crustal materials. It is a partially melting product of mantle by early metasomatized fluid under lithosphere extension. Through petrogeochemical analysis of the volcanics and the contrast to the adjacent uranium-producing volcanics, it is concluded that this region has structural environment to form magma evolution series which are more favorable for volcanic hydrothermal-type uranium and polymetallic mineralization. (authors)

  20. MEVTV Workshop on Early Tectonic and Volcanic Evolution of Mars

    International Nuclear Information System (INIS)

    Frey, H.

    1988-01-01

    Although not ignored, the problems of the early tectonic and volcanic evolution of Mars have generally received less attention than those later in the evolution of the planet. Specifically, much attention was devoted to the evolution of the Tharsis region of Mars and to the planet itself at the time following the establishment of this major tectonic and volcanic province. By contrast, little attention was directed at fundamental questions, such as the conditions that led to the development of Tharsis and the cause of the basic fundamental dichotomy of the Martian crust. It was to address these and related questions of the earliest evolution of Mars that a workshop was organized under the auspices of the Mars: Evolution of Volcanism, Tectonism, and Volatiles (MEVTV) Program. Four sessions were held: crustal dichotomy; crustal differentiation/volcanism; Tharsis, Elysium, and Valles Marineris; and ridges and fault tectonics

  1. Solid State Multiwavelength LIDAR for Volcanic Ash Monitoring, Phase I

    Data.gov (United States)

    National Aeronautics and Space Administration — Physical Sciences Inc. proposes to develop a compact, multiwavelength LIDAR with polarization analysis capability that will be able to identify volcanic ash clouds...

  2. Global Significant Volcanic Eruptions Database, 4360 BC to present

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — The Significant Volcanic Eruptions Database is a global listing of over 600 eruptions from 4360 BC to the present. A significant eruption is classified as one that...

  3. eVADE: Volcanic Ash Detection Raman LIDAR, Phase I

    Data.gov (United States)

    National Aeronautics and Space Administration — Volcanic ash is a significant hazard to aircraft engine and electronics and has caused damage to unwary aircraft and disrupted air travel for thousands of travelers,...

  4. Volcanic Ash Detection Using Raman LIDAR: "VADER", Phase I

    Data.gov (United States)

    National Aeronautics and Space Administration — Volcanic ash is a significant hazard to aircraft engine and electronics and has caused damage to unwary aircraft and disrupted air travel for thousands of travelers,...

  5. A great volcanic eruption around AD 1300 recorded in lacustrine ...

    Indian Academy of Sciences (India)

    2National Synchrotron Radiation Laboratory, University of Science and Technology of China, Hefei, .... Island; and (d) sampling sites of sediment cores DY6 in Cattle Pond. ..... African dust and volcanic ash inputs to terra rossa soils on.

  6. The Role of Volcanic Activity in Climate and Global Change

    KAUST Repository

    Stenchikov, Georgiy L.

    2015-01-01

    . The recent interest in dynamic, microphysical, chemical, and climate impacts of volcanic eruptions is also excited by the fact that these impacts provide a natural analogue for climate geoengineering schemes involving deliberate development of an artificial

  7. Compositional Differences between Felsic Volcanic Rocks from the ...

    African Journals Online (AJOL)

    Bheema

    characteristics of the volcanic units, we describe the compositional differences ...... Geology and mineral resources of Somalia and surrounding regions. ... zone (Ethiopia) Journal of Volcanological and Geothermal Research, 80: 267-280.

  8. Impacts of a Pinatubo-size volcanic eruption on ENSO

    KAUST Repository

    Predybaylo, Evgeniya; Stenchikov, Georgiy L.; Wittenberg, Andrew T.; Zeng, Fanrong

    2017-01-01

    Observations and model simulations of the climate responses to strong explosive low-latitude volcanic eruptions suggest a significant increase in the likelihood of El Niño during the eruption and posteruption years, though model results have been

  9. Large-scale volcanism associated with coronae on Venus

    Science.gov (United States)

    Roberts, K. Magee; Head, James W.

    1993-01-01

    The formation and evolution of coronae on Venus are thought to be the result of mantle upwellings against the crust and lithosphere and subsequent gravitational relaxation. A variety of other features on Venus have been linked to processes associated with mantle upwelling, including shield volcanoes on large regional rises such as Beta, Atla and Western Eistla Regiones and extensive flow fields such as Mylitta and Kaiwan Fluctus near the Lada Terra/Lavinia Planitia boundary. Of these features, coronae appear to possess the smallest amounts of associated volcanism, although volcanism associated with coronae has only been qualitatively examined. An initial survey of coronae based on recent Magellan data indicated that only 9 percent of all coronae are associated with substantial amounts of volcanism, including interior calderas or edifices greater than 50 km in diameter and extensive, exterior radial flow fields. Sixty-eight percent of all coronae were found to have lesser amounts of volcanism, including interior flooding and associated volcanic domes and small shields; the remaining coronae were considered deficient in associated volcanism. It is possible that coronae are related to mantle plumes or diapirs that are lower in volume or in partial melt than those associated with the large shields or flow fields. Regional tectonics or variations in local crustal and thermal structure may also be significant in determining the amount of volcanism produced from an upwelling. It is also possible that flow fields associated with some coronae are sheet-like in nature and may not be readily identified. If coronae are associated with volcanic flow fields, then they may be a significant contributor to plains formation on Venus, as they number over 300 and are widely distributed across the planet. As a continuation of our analysis of large-scale volcanism on Venus, we have reexamined the known population of coronae and assessed quantitatively the scale of volcanism associated

  10. Volcanic sulfur degassing and the role of sulfides in controlling volcanic metal emissions

    Science.gov (United States)

    Edmonds, M.; Liu, E.

    2017-12-01

    Volcanoes emit prodigious quantities of sulfur and metals, their behaviour inextricably linked through pre-eruptive sulfide systematics and through degassing and speciation in the volcanic plume. Fundamental differences exist in the metal output of ocean island versus arc volcanoes, with volcanoes in Hawaii and Iceland outgassing large fluxes of gaseous and particulate chalcophiles; and arc volcanoes' plumes, in contrast, enriched in Zn, Cu, Tl and Pb. Metals and metalloids partition into a magmatic vapor phase from silicate melt at crustal pressures. Their abundance in magmatic vapor is influenced strongly by sulfide saturation and by the composition of the magmatic vapor phase, particularly with respect to chloride. These factors are highly dependent on tectonic setting. Metal outgassing is controlled by magma water content and redox: deep saturation in vapor and minimal sulfide in arc basalts yields metal-rich vapor; shallow degassing and resorption of sulfides feeds the metal content of volcanic gas in ocean islands. We present a detailed study of the sulfide systematics of the products of the 2014-2015 Holuhraun basaltic fissure eruption (Bárðarbunga volcanic system, Iceland) to illustrate the interplay between late water and sulfur outgassing; sulfide saturation and breakdown; and metal partitioning into a vapor phase. Sulfide globules, representing quenched droplets of an immiscible sulfide liquid, are preserved within erupted tephra. Sulfide globules in rapidly quenched tephra are preserved within both matrix glass and as inclusions in crystals. The stereologically-corrected 3D size distribution of sulfide globules ranges from importance in supplying sulfur and metals to the atmosphere during eruption.

  11. Optimal likelihood-based matching of volcanic sources and deposits in the Auckland Volcanic Field

    Science.gov (United States)

    Kawabata, Emily; Bebbington, Mark S.; Cronin, Shane J.; Wang, Ting

    2016-09-01

    In monogenetic volcanic fields, where each eruption forms a new volcano, focusing and migration of activity over time is a very real possibility. In order for hazard estimates to reflect future, rather than past, behavior, it is vital to assemble as much reliable age data as possible on past eruptions. Multiple swamp/lake records have been extracted from the Auckland Volcanic Field, underlying the 1.4 million-population city of Auckland. We examine here the problem of matching these dated deposits to the volcanoes that produced them. The simplest issue is separation in time, which is handled by simulating prior volcano age sequences from direct dates where known, thinned via ordering constraints between the volcanoes. The subproblem of varying deposition thicknesses (which may be zero) at five locations of known distance and azimuth is quantified using a statistical attenuation model for the volcanic ash thickness. These elements are combined with other constraints, from widespread fingerprinted ash layers that separate eruptions and time-censoring of the records, into a likelihood that was optimized via linear programming. A second linear program was used to optimize over the Monte-Carlo simulated set of prior age profiles to determine the best overall match and consequent volcano age assignments. Considering all 20 matches, and the multiple factors of age, direction, and size/distance simultaneously, results in some non-intuitive assignments which would not be produced by single factor analyses. Compared with earlier work, the results provide better age control on a number of smaller centers such as Little Rangitoto, Otuataua, Taylors Hill, Wiri Mountain, Green Hill, Otara Hill, Hampton Park and Mt Cambria. Spatio-temporal hazard estimates are updated on the basis of the new ordering, which suggest that the scale of the 'flare-up' around 30 ka, while still highly significant, was less than previously thought.

  12. Mainshock-Aftershocks Clustering Detection in Volcanic Regions

    Science.gov (United States)

    Garza Giron, R.; Brodsky, E. E.; Prejean, S. G.

    2017-12-01

    Crustal earthquakes tend to break their general Poissonean process behavior by gathering into two main kinds of seismic bursts: swarms and mainshock-aftershocks sequences. The former is commonly related to volcanic or geothermal processes whereas the latter is a characteristic feature of tectonically driven seismicity. We explore the mainshock-aftershock clustering behavior of different active volcanic regions in Japan and its comparison to non-volcanic regions. We find that aftershock production in volcanoes shows mainshock-aftershocks clustering similar to what is observed in non-volcanic areas. The ratio of volanic areas that cluster in mainshock-aftershocks sequences vs the areas that do not is comparable to the ratio of non-volcanic regions that show clustering vs the ones that do not. Furthermore, the level of production of aftershocks for most volcanic areas where clustering is present seems to be of the same order of magnitude, or slightly higher, as the median of the non-volcanic regions. An interesting example of highly aftershock-productive volcanoes emerges from the 2000 Miyakejima dike intrusion. A big seismic cluster started to build up rapidly in the south-west flank of Miyakejima to later propagate to the north-west towards the Kozushima and Niijima volcanoes. In Miyakejima the seismicity showed a swarm-like signature with a constant earthquake rate, whereas Kozushima and Niijima both had expressions of highly productive mainshock-aftershocks sequences. These findings are surprising given the alternative mechanisms available in volcanic systems for releasing deviatoric strain. We speculate that aftershock behavior might hold a relationship with the rheological properties of the rocks of each system and with the capacity of a system to accumulate or release the internal pressures caused by magmatic or hydrothermal systems.

  13. Inferring climate sensitivity from volcanic events

    Energy Technology Data Exchange (ETDEWEB)

    Boer, G.J. [Environment Canada, University of Victoria, Canadian Centre for Climate Modelling and Analysis, Victoria, BC (Canada); Stowasser, M.; Hamilton, K. [University of Hawaii, International Pacific Research Centre, Honolulu, HI (United States)

    2007-04-15

    The possibility of estimating the equilibrium climate sensitivity of the earth-system from observations following explosive volcanic eruptions is assessed in the context of a perfect model study. Two modern climate models (the CCCma CGCM3 and the NCAR CCSM2) with different equilibrium climate sensitivities are employed in the investigation. The models are perturbed with the same transient volcano-like forcing and the responses analysed to infer climate sensitivities. For volcano-like forcing the global mean surface temperature responses of the two models are very similar, despite their differing equilibrium climate sensitivities, indicating that climate sensitivity cannot be inferred from the temperature record alone even if the forcing is known. Equilibrium climate sensitivities can be reasonably determined only if both the forcing and the change in heat storage in the system are known very accurately. The geographic patterns of clear-sky atmosphere/surface and cloud feedbacks are similar for both the transient volcano-like and near-equilibrium constant forcing simulations showing that, to a considerable extent, the same feedback processes are invoked, and determine the climate sensitivity, in both cases. (orig.)

  14. CO2 flux from Javanese mud volcanism.

    Science.gov (United States)

    Queißer, M; Burton, M R; Arzilli, F; Chiarugi, A; Marliyani, G I; Anggara, F; Harijoko, A

    2017-06-01

    Studying the quantity and origin of CO 2 emitted by back-arc mud volcanoes is critical to correctly model fluid-dynamical, thermodynamical, and geochemical processes that drive their activity and to constrain their role in the global geochemical carbon cycle. We measured CO 2 fluxes of the Bledug Kuwu mud volcano on the Kendeng Fold and thrust belt in the back arc of Central Java, Indonesia, using scanning remote sensing absorption spectroscopy. The data show that the expelled gas is rich in CO 2 with a volume fraction of at least 16 vol %. A lower limit CO 2 flux of 1.4 kg s -1 (117 t d -1 ) was determined, in line with the CO 2 flux from the Javanese mud volcano LUSI. Extrapolating these results to mud volcanism from the whole of Java suggests an order of magnitude total CO 2 flux of 3 kt d -1 , comparable with the expected back-arc efflux of magmatic CO 2 . After discussing geochemical, geological, and geophysical evidence we conclude that the source of CO 2 observed at Bledug Kuwu is likely a mixture of thermogenic, biogenic, and magmatic CO 2 , with faulting controlling potential pathways for magmatic fluids. This study further demonstrates the merit of man-portable active remote sensing instruments for probing natural gas releases, enabling bottom-up quantification of CO 2 fluxes.

  15. Volcanic Eruption: Students Develop a Contingency Plan

    Science.gov (United States)

    Meisinger, Philipp; Wittlich, Christian

    2013-04-01

    Dangerous, loud, sensational, exciting - natural hazards have what it takes to get students attention around the globe. Arising interest is the first step to develop an intrinsic motivation to learn about the matter and endure the hardships that students might discover along the way of the unit. Natural hazards thereby establish a close-knit connection between physical and anthropological geography through analyzing the hazardous event and its consequences for the people living in the affected area. Following a general principle of didactics we start searching right on our doorsteps to offer students the possibility to gain knowledge on the familiar and later transfer it to the unknown example. Even in Southwest Germany - a region that is rather known for its wine than its volcanic activity - we can find a potentially hazardous region. The "Laacher See" volcano (a caldera lake) in northern Rhineland-Palatinate is according to Prof. H.U. Schminke a "potentially active volcano" . Its activity can be proven by seismic activities, or experienced when visiting the lake's southeastern shore, where carbondioxid and sulphur gases from the underlying magma chamber still bubble up. The Laacher See is part of a range of volcanoes (classified from 'potentially active' to 'no longer active') of the East Eifel Volcanic Field. Precariously the Laacher See is located closely to the densely populated agglomerations of Cologne (NE, distance: 45 km) and the former capital Bonn (NE: 35km), as well as Koblenz (E: 24km) and the Rhine river. Apart from that, the towns of Andernach (E: 8km ± 30 000 inhabitants) and Mayen (SW: 11km ±20 000 inhabitants) and many smaller towns and villages are nearby due to economic reasons. The number of people affected by a possible eruption easily exceeds two million people considering the range as prime measurement. The underlying danger, as projected in a simulation presented by Prof. Schminke, is a lava stream running down the Brohltal valley

  16. Communicating Volcanic Hazards in the North Pacific

    Science.gov (United States)

    Dehn, J.; Webley, P.; Cunningham, K. W.

    2014-12-01

    For over 25 years, effective hazard communication has been key to effective mitigation of volcanic hazards in the North Pacific. These hazards are omnipresent, with a large event happening in Alaska every few years to a decade, though in many cases can happen with little or no warning (e.g. Kasatochi and Okmok in 2008). Here a useful hazard mitigation strategy has been built on (1) a large database of historic activity from many datasets, (2) an operational alert system with graduated levels of concern, (3) scenario planning, and (4) routine checks and communication with emergency managers and the public. These baseline efforts are then enhanced in the time of crisis with coordinated talking points, targeted studies and public outreach. Scientists naturally tend to target other scientists as their audience, whereas in effective monitoring of hazards that may only occur on year to decadal timescales, details can distract from the essentially important information. Creating talking points and practice in public communications can help make hazard response a part of the culture. Promoting situational awareness and familiarity can relieve indecision and concerns at the time of a crisis.

  17. Volcanism and Subduction: The Kamchatka Region

    Science.gov (United States)

    Eichelberger, John; Gordeev, Evgenii; Izbekov, Pavel; Kasahara, Minoru; Lees, Jonathan

    The Kamchatka Peninsula and contiguous North Pacific Rim is among the most active regions in the world. Kamchatka itself contains 29 active volcanoes, 4 now in a state of semi-continuous eruption, and I has experienced 14 magnitude 7 or greater earthquakes since accurate recording began in 1962. At its heart is the uniquely acute subduction cusp where the Kamchatka and Aleutian Arcs and Emperor Seamount Chain meet. Volcanism and Subduction covers coupled magmatism and tectonics in this spectacular region, where the torn North Pacific slab dives into hot mantle. Senior Russian and American authors grapple with the dynamics of the cusp with perspectives from the west and east of it, respectively, while careful tephrostratigraphy yields a remarkably precise record of behavior of storied volcanoes such as Kliuchevskoi and Shiveluch. Towards the south, Japanese researchers elucidate subduction earthquake processes with unprecedented geodetic resolution. Looking eastward, new insights on caldera formation, monitoring, and magma ascent are presented for the Aleutians. This is one of the first books of its kind printed in the English language. Students and scientists beginning research in the region will find in this book a useful context and introduction to the region's scientific leaders. Others who wish to apply lessons learned in the North Pacific to their areas of interest will find the volume a valuable reference.

  18. Volcanism at 1.45 Ma within the Yellowstone Volcanic Field, United States

    Science.gov (United States)

    Rivera, Tiffany A.; Furlong, Ryan; Vincent, Jaime; Gardiner, Stephanie; Jicha, Brian R.; Schmitz, Mark D.; Lippert, Peter C.

    2018-05-01

    Rhyolitic volcanism in the Yellowstone Volcanic Field has spanned over two million years and consisted of both explosive caldera-forming eruptions and smaller effusive flows and domes. Effusive eruptions have been documented preceding and following caldera-forming eruptions, however the temporal and petrogenetic relationships of these magmas to the caldera-forming eruptions are relatively unknown. Here we present new 40Ar/39Ar dates for four small-volume eruptions located on the western rim of the second-cycle caldera, the source of the 1.300 ± 0.001 Ma Mesa Falls Tuff. We supplement our new eruption ages with whole rock major and trace element chemistry, Pb isotopic ratios of feldspar, and paleomagnetic and rock magnetic analyses. Eruption ages for the effusive Green Canyon Flow (1.299 ± 0.002 Ma) and Moonshine Mountain Dome (1.302 ± 0.003 Ma) are in close temporal proximity to the eruption age of the Mesa Falls Tuff. In contrast, our results indicate a period of volcanism at ca 1.45 Ma within the Yellowstone Volcanic Field, including the eruption of the Bishop Mountain Flow (1.458 ± 0.002 Ma) and Tuff of Lyle Spring (1.450 ± 0.003 Ma). These high-silica rhyolites are chemically and isotopically distinct from the Mesa Falls Tuff and related 1.3 Ma effusive eruptions. The 40Ar/39Ar data from the Tuff of Lyle Spring demonstrate significant antecrystic inheritance, prevalent within the upper welded ash-flow tuff matrix, and minimal within individual pumice. Antecrysts are up to 20 kyr older than the eruption, with subpopulations of grains occurring every few thousand years. We interpret these results as an indicator for the timing of magmatic pulses into a growing magmatic system that would ultimately erupt the Tuff of Lyle Spring, and which we more broadly interpret as the tempo of crustal accumulation associated with bimodal magmatism. We propose a system whereby chemically, isotopically, and temporally distinct, isolated small-volume magma batches are

  19. Volcanic passive margins: another way to break up continents.

    Science.gov (United States)

    Geoffroy, L; Burov, E B; Werner, P

    2015-10-07

    Two major types of passive margins are recognized, i.e. volcanic and non-volcanic, without proposing distinctive mechanisms for their formation. Volcanic passive margins are associated with the extrusion and intrusion of large volumes of magma, predominantly mafic, and represent distinctive features of Larges Igneous Provinces, in which regional fissural volcanism predates localized syn-magmatic break-up of the lithosphere. In contrast with non-volcanic margins, continentward-dipping detachment faults accommodate crustal necking at both conjugate volcanic margins. These faults root on a two-layer deformed ductile crust that appears to be partly of igneous nature. This lower crust is exhumed up to the bottom of the syn-extension extrusives at the outer parts of the margin. Our numerical modelling suggests that strengthening of deep continental crust during early magmatic stages provokes a divergent flow of the ductile lithosphere away from a central continental block, which becomes thinner with time due to the flow-induced mechanical erosion acting at its base. Crustal-scale faults dipping continentward are rooted over this flowing material, thus isolating micro-continents within the future oceanic domain. Pure-shear type deformation affects the bulk lithosphere at VPMs until continental breakup, and the geometry of the margin is closely related to the dynamics of an active and melting mantle.

  20. Volcanic Ash Data Assimilation System for Atmospheric Transport Model

    Science.gov (United States)

    Ishii, K.; Shimbori, T.; Sato, E.; Tokumoto, T.; Hayashi, Y.; Hashimoto, A.

    2017-12-01

    The Japan Meteorological Agency (JMA) has two operations for volcanic ash forecasts, which are Volcanic Ash Fall Forecast (VAFF) and Volcanic Ash Advisory (VAA). In these operations, the forecasts are calculated by atmospheric transport models including the advection process, the turbulent diffusion process, the gravitational fall process and the deposition process (wet/dry). The initial distribution of volcanic ash in the models is the most important but uncertain factor. In operations, the model of Suzuki (1983) with many empirical assumptions is adopted to the initial distribution. This adversely affects the reconstruction of actual eruption plumes.We are developing a volcanic ash data assimilation system using weather radars and meteorological satellite observation, in order to improve the initial distribution of the atmospheric transport models. Our data assimilation system is based on the three-dimensional variational data assimilation method (3D-Var). Analysis variables are ash concentration and size distribution parameters which are mutually independent. The radar observation is expected to provide three-dimensional parameters such as ash concentration and parameters of ash particle size distribution. On the other hand, the satellite observation is anticipated to provide two-dimensional parameters of ash clouds such as mass loading, top height and particle effective radius. In this study, we estimate the thickness of ash clouds using vertical wind shear of JMA numerical weather prediction, and apply for the volcanic ash data assimilation system.

  1. Topographic stress and catastrophic collapse of volcanic islands

    Science.gov (United States)

    Moon, S.; Perron, J. T.; Martel, S. J.

    2017-12-01

    Flank collapse of volcanic islands can devastate coastal environments and potentially induce tsunamis. Previous studies have suggested that factors such as volcanic eruption events, gravitational spreading, the reduction of material strength due to hydrothermal alteration, steep coastal cliffs, or sea level change may contribute to slope instability and induce catastrophic collapse of volcanic flanks. In this study, we examine the potential influence of three-dimensional topographic stress perturbations on flank collapses of volcanic islands. Using a three-dimensional boundary element model, we calculate subsurface stress fields for the Canary and Hawaiian islands to compare the effects of stratovolcano and shield volcano shapes on topographic stresses. Our model accounts for gravitational stresses from the actual shapes of volcanic islands, ambient stress in the underlying plate, and the influence of pore water pressure. We quantify the potential for slope failure of volcanic flanks using a combined model of three-dimensional topographic stress and slope stability. The results of our analysis show that subsurface stress fields vary substantially depending on the shapes of volcanoes, and can influence the size and spatial distribution of flank failures.

  2. Self-potential anomalies in some Italian volcanic areas

    Directory of Open Access Journals (Sweden)

    C. Silenziario

    1996-06-01

    Full Text Available The study of Self-Potential (SP space and time variations in volcanic areas may provide useful information on both the geometrical structure of the volcanic apparatuses and the dynamical behaviour of the feeding and uprising systems. In this paper, the results obtained on the islands of Vulcano (Eolian arc and Ponza (Pontine archipelago and on the Mt. Somma-Vesuvius complex are shown. On the island of Vulcano and on the Mt. Somma-Vesuvius apparatus areal SP surveys were performed with the aim of evidencing anomalies closely associated to the zones of major volcanic activity. On the island of Vulcano a profile across the fumaroles along the crater rim of the Fossa Cone was also carried out in order to have a direct relationship between fumarolic fracture migration and flow rate and SP anomaly space and time variations. The areal survey on the island of Ponza, which is considered an inactive area, is assumed as a reference test with which to compare the amplitude and pattern of the anomalies in the active areas. A tentative interpretation of the SP anomalies in volcanic areas is suggested in terms of electrokinetic phenomena, related to the movement of fluids of both volcanic and non-volcanic origin.

  3. Scaling properties of planetary calderas and terrestrial volcanic eruptions

    Directory of Open Access Journals (Sweden)

    L. Sanchez

    2012-11-01

    Full Text Available Volcanism plays an important role in transporting internal heat of planetary bodies to their surface. Therefore, volcanoes are a manifestation of the planet's past and present internal dynamics. Volcanic eruptions as well as caldera forming processes are the direct manifestation of complex interactions between the rising magma and the surrounding host rock in the crust of terrestrial planetary bodies. Attempts have been made to compare volcanic landforms throughout the solar system. Different stochastic models have been proposed to describe the temporal sequences of eruptions on individual or groups of volcanoes. However, comprehensive understanding of the physical mechanisms responsible for volcano formation and eruption and more specifically caldera formation remains elusive. In this work, we propose a scaling law to quantify the distribution of caldera sizes on Earth, Mars, Venus, and Io, as well as the distribution of calderas on Earth depending on their surrounding crustal properties. We also apply the same scaling analysis to the distribution of interevent times between eruptions for volcanoes that have the largest eruptive history as well as groups of volcanoes on Earth. We find that when rescaled with their respective sample averages, the distributions considered show a similar functional form. This result implies that similar processes are responsible for caldera formation throughout the solar system and for different crustal settings on Earth. This result emphasizes the importance of comparative planetology to understand planetary volcanism. Similarly, the processes responsible for volcanic eruptions are independent of the type of volcanism or geographical location.

  4. Volcanic hazards of the Idaho National Engineering Laboratory and adjacent areas

    International Nuclear Information System (INIS)

    Hackett, W.R.; Smith, R.P.

    1994-12-01

    Potential volcanic hazards are assessed, and hazard zone maps are developed for the Idaho National Engineering Laboratory (INEL) and adjacent areas. The basis of the hazards assessment and mapping is the past volcanic history of the INEL region, and the apparent similarity of INEL volcanism with equivalent, well-studied phenomena in other regions of active volcanism, particularly Hawaii and Iceland. The most significant hazards to INEL facilities are associated with basaltic volcanism, chiefly lava flows, which move slowly and mainly threaten property by inundation or burning. Related hazards are volcanic gases and tephra, and ground disturbance associated with the ascent of magma under the volcanic zones. Several volcanic zones are identified in the INEL area. These zones contain most of the volcanic vents and fissures of the region and are inferred to be the most probable sites of future INEL volcanism. Volcanic-recurrence estimates are given for each of the volcanic zones based on geochronology of the lavas, together with the results of field and petrographic investigations concerning the cogenetic relationships of INEL volcanic deposits and associated magma intrusion. Annual probabilities of basaltic volcanism within the INEL volcanic zones range from 6.2 x 10 -5 per year (average 16,000-year interval between eruptions) for the axial volcanic zone near the southern INEL boundary and the Arco volcanic-rift zone near the western INEL boundary, to 1 x 10 -5 per year (average 100,000-year interval between eruptions) for the Howe-East Butte volcanic rift zone, a geologically old and poorly defined feature of the central portion of INEL. Three volcanic hazard zone maps are developed for the INEL area: lava flow hazard zones, a tephra (volcanic ash) and gas hazard zone, and a ground-deformation hazard zone. The maps are useful in land-use planning, site selection, and safety analysis

  5. Structural control of monogenetic volcanism in the Garrotxa volcanic field (Northeastern Spain) from gravity and self-potential measurements

    Science.gov (United States)

    Barde-Cabusson, S.; Gottsmann, J.; Martí, J.; Bolós, X.; Camacho, A. G.; Geyer, A.; Planagumà, Ll.; Ronchin, E.; Sánchez, A.

    2014-01-01

    We report new geophysical observations on the distribution of subsurface structures associated with monogenetic volcanism in the Garrotxa volcanic field (Northern Spain). As part of the Catalan Volcanic Zone, this Quaternary volcanic field is associated with the European rifts system. It contains the most recent and best preserved volcanic edifices of the Catalan Volcanic Zone with 38 monogenetic volcanoes identified in the Garrotxa Natural Park. We conducted new gravimetric and self-potential surveys to enhance our understanding of the relationship between the local geology and the spatial distribution of the monogenetic volcanoes. The main finding of this study is that the central part of the volcanic field is dominated by a broad negative Bouguer anomaly of around -0.5 mGal, within which a series of gravity minima are found with amplitudes of up to -2.3 mGal. Inverse modelling of the Bouguer data suggests that surficial low-density material dominates the volcanic field, most likely associated with effusive and explosive surface deposits. In contrast, an arcuate cluster of gravity minima to the NW of the Croscat volcano, the youngest volcano of this zone, is modelled by vertically extended low-density bodies, which we interpret as a complex ensemble of fault damage zones and the roots of young scoria cones. A ground-water infiltration zone identified by a self-potential anomaly is associated with a steep horizontal Bouguer gravity gradient and interpreted as a fault zone and/or magmatic fissure, which fed the most recent volcanic activity in the Garrotxa. Gravimetric and self-potential data are well correlated and indicate a control on the locations of scoria cones by NNE-SSW and NNW-SSE striking tectonic features, which intersect the main structural boundaries of the study area to the north and south. Our interpretation of the data is that faults facilitated magma ascent to the surface. Our findings have major implications for understanding the relationship

  6. Monitoring diffuse volcanic degassing during volcanic unrests: the case of Campi Flegrei (Italy).

    Science.gov (United States)

    Cardellini, C; Chiodini, G; Frondini, F; Avino, R; Bagnato, E; Caliro, S; Lelli, M; Rosiello, A

    2017-07-28

    In volcanoes with active hydrothermal systems, diffuse CO 2 degassing may constitute the primary mode of volcanic degassing. The monitoring of CO 2 emissions can provide important clues in understanding the evolution of volcanic activity especially at calderas where the interpretation of unrest signals is often complex. Here, we report eighteen years of CO 2 fluxes from the soil at Solfatara of Pozzuoli, located in the restless Campi Flegrei caldera. The entire dataset, one of the largest of diffuse CO 2 degassing ever produced, is made available for the scientific community. We show that, from 2003 to 2016, the area releasing deep-sourced CO 2 tripled its extent. This expansion was accompanied by an increase of the background CO 2 flux, over most of the surveyed area (1.4 km 2 ), with increased contributions from non-biogenic source. Concurrently, the amount of diffusively released CO 2 increased up to values typical of persistently degassing active volcanoes (up to 3000 t d -1 ). These variations are consistent with the increase in the flux of magmatic fluids injected into the hydrothermal system, which cause pressure increase and, in turn, condensation within the vapor plume feeding the Solfatara emission.

  7. Volcanic systems of Iceland and their magma source

    Science.gov (United States)

    Sigmarsson, Olgeir

    2017-04-01

    Several active hot-spot volcanoes produce magma from mantle sources which composition varies on decadal time scale. This is probably best demonstrated by the recent work of Pietruszka and collaborators on Kilauea, Hawaii. In marked contrast, basalt lavas from volcanic system in Iceland located above the presumed centre of the Iceland mantle plume have uniform isotope composition over the last 10 thousand years. Volcanic systems are composed of a central volcano and a fissure swarm, or a combination of both and they represent a fundamental component of the neovolcanic zones in Iceland. Four such systems, those of Askja, Bárðarbunga, Kverkfjöll and Grímsvötn in central Iceland were chosen for investigation. The last three have central volcanoes covered by the Vatnajökull ice-sheet whereas part of their fissure swarms is ice-free. Tephra produced during subglacial eruptions together with lavas from the fissure swarms of Holocene age have been collected and analysed for Sr, Nd and Th isotope ratios. Those volcanic formations that can be univocally correlated to a given volcanic system display uniform isotope ratio but different from one volcanic system to another. An exception to this regularity is that Askja products have isotope ratios indistinguishable from those of Gímsvötn, but since these volcanic systems lies far apart their lava fields do not overlap. A practical aspect of these findings was demonstrated during the rifting event of Bárðarbunga and fissure eruption forming the Holuhraun lava field. Relatively low, O isotope ratios in these basalts and heterogeneous macrocrystal composition have been ascribed to important metabasaltic crustal contamination with or without crystal mush recycling. In that case a surprisingly efficient magma mixing and melt homogenization must have occurred in the past beneath the volcanic systems. One possibility is that during the rapid deglaciation much mantle melting occurred and melts accumulated at the mantle

  8. Volcanic unrest and hazard communication in Long Valley Volcanic Region, California

    Science.gov (United States)

    Hill, David P.; Mangan, Margaret T.; McNutt, Stephen R.

    2017-01-01

    The onset of volcanic unrest in Long Valley Caldera, California, in 1980 and the subsequent fluctuations in unrest levels through May 2016 illustrate: (1) the evolving relations between scientists monitoring the unrest and studying the underlying tectonic/magmatic processes and their implications for geologic hazards, and (2) the challenges in communicating the significance of the hazards to the public and civil authorities in a mountain resort setting. Circumstances special to this case include (1) the sensitivity of an isolated resort area to media hype of potential high-impact volcanic and earthquake hazards and its impact on potential recreational visitors and the local economy, (2) a small permanent population (~8000), which facilitates face-to-face communication between scientists monitoring the hazard, civil authorities, and the public, and (3) the relatively frequent turnover of people in positions of civil authority, which requires a continuing education effort on the nature of caldera unrest and related hazards. Because of delays associated with communication protocols between the State and Federal governments during the onset of unrest, local civil authorities and the public first learned that the U.S. Geological Survey was about to release a notice of potential volcanic hazards associated with earthquake activity and 25-cm uplift of the resurgent dome in the center of the caldera through an article in the Los Angeles Times published in May 1982. The immediate reaction was outrage and denial. Gradual acceptance that the hazard was real required over a decade of frequent meetings between scientists and civil authorities together with public presentations underscored by frequently felt earthquakes and the onset of magmatic CO2 emissions in 1990 following a 11-month long earthquake swarm beneath Mammoth Mountain on the southwest rim of the caldera. Four fatalities, one on 24 May 1998 and three on 6 April 2006, underscored the hazard posed by the CO2

  9. Galileo observations of volcanic plumes on Io

    Science.gov (United States)

    Geissler, P.E.; McMillan, M.T.

    2008-01-01

    Io's volcanic plumes erupt in a dazzling variety of sizes, shapes, colors and opacities. In general, the plumes fall into two classes, representing distinct source gas temperatures. Most of the Galileo imaging observations were of the smaller, more numerous Prometheus-type plumes that are produced when hot flows of silicate lava impinge on volatile surface ices of SO2. Few detections were made of the giant, Pele-type plumes that vent high temperature, sulfur-rich gases from the interior of Io; this was partly because of the insensitivity of Galileo's camera to ultraviolet wavelengths. Both gas and dust spout from plumes of each class. Favorably located gas plumes were detected during eclipse, when Io was in Jupiter's shadow. Dense dust columns were imaged in daylight above several Prometheus-type eruptions, reaching heights typically less than 100 km. Comparisons between eclipse observations, sunlit images, and the record of surface changes show that these optically thick dust columns are much smaller in stature than the corresponding gas plumes but are adequate to produce the observed surface deposits. Mie scattering calculations suggest that these conspicuous dust plumes are made up of coarse grained “ash” particles with radii on the order of 100 nm, and total masses on the order of 106 kg per plume. Long exposure images of Thor in sunlight show a faint outer envelope apparently populated by particles small enough to be carried along with the gas flow, perhaps formed by condensation of sulfurous “snowflakes” as suggested by the plasma instrumentation aboard Galileo as it flew through Thor's plume [Frank, L.A., Paterson, W.R., 2002. J. Geophys. Res. (Space Phys.) 107, doi:10.1029/2002JA009240. 31-1]. If so, the total mass of these fine, nearly invisible particles may be comparable to the mass of the gas, and could account for much of Io's rapid resurfacing.

  10. Magma wagging and whirling in volcanic conduits

    Science.gov (United States)

    Liao, Yang; Bercovici, David; Jellinek, Mark

    2018-02-01

    Seismic tremor characterized by 0.5-7 Hz ground oscillations commonly occur before and during eruptions at silicic volcanoes with widely ranging vent geometries and edifice structures. The ubiquitous characteristics of this tremor imply that its causes are potentially common to silicic volcanoes. Here we revisit and extend to three dimensions the magma-wagging model for tremor (Jellinek and Bercovici, 2011; Bercovici et al., 2013), wherein a stiff magma column rising in a vertical conduit oscillates against a surrounding foamy annulus of bubbly magma, giving rise to tremor. While prior studies were restricted to two-dimensional lateral oscillations, here we explore three-dimensional motion and additional modes of oscillations. In the absence of viscous damping, the magma column undergoes 'whirling' motion: the center of each horizontal section of the column traces an elliptical trajectory. In the presence of viscous effect we identify new 'coiling' and 'uncoiling' column bending shapes with relatively higher and comparable rates of dissipation to the original two-dimensional magma wagging model. We also calculate the seismic P-wave response of the crustal material around the volcanic conduit to the new whirling motions and propose seismic diagnostics for different wagging patterns using the time-lag between seismic stations. We test our model by analyzing pre-eruptive seismic data from the 2009 eruption of Redoubt Volcano. In addition to suggesting that the occurrence of elliptical whirling motion more than 1 week before the eruption, our analysis of seismic time-lags also implies that the 2009 eruption was accompanied by qualitative changes in the magma wagging behavior including fluctuations in eccentricity and a reversal in the direction of elliptical whirling motion when the eruption was immediately impending.

  11. Properties of volcanic soils in cold climate conditions

    Science.gov (United States)

    Kuznetsova, Elena

    2017-04-01

    Layers of volcanic ash and the Andosol soils derived from them may play an important role in preserving snow and ice as well as developing permafrost conditions in the immediate vicinity of volcanoes of high elevation or those situated at high latitudes, and land areas, often distant from volcanic activity that are either prone to permafrost or covered by snow and ice, but are affected by the deposition of subaerial ash. The special properties of volcanic ash that are responsible are critically reviewed particularly in relation to recent research in Kamchatka in the Far East of Russia. Of particular importance are the thermal properties and the unfrozen water contents of ash layers and the rate at which the weathering of volcanic glass takes place. Volcanic glass is the most easily weathered component of volcanic ejecta (Shoji et al., 1993; Kimble et al., 2000). There are many specific environmental conditions, including paleoclimate and present-day climate, the composition of volcanic tephra and glaciation history, which cause the differences in weathering and development of volcanic ash soils (Zehetner et al., 2003). The preservation of in situ, unweathered, and unaltered surficial ash-fall deposits in the cold regions has important implications for paleoclimate and glacial history. Ash-fall deposits, which trap and preserve the soils, sediments, and landforms on which they fall, can be used to resolve local climate conditions (temperature and moisture) at the ash site during ash-fall deposition. The preservation of detailed sedimentary features (e.g. bedding in the ash, sharpness of stratigraphic contacts) can tell us about their post-depositional history, whether they have been redeposited by wind or water, or overridden by glaciers (Marchant et al., 1996). Weathering of volcanic glass results in the development of amorphous clay minerals (e.g. allophane, opal, palagonite) but this takes place much slower in cold than under warmer climate conditions. Only few

  12. Groundwater characteristics and problems in volcanic rock terrains

    International Nuclear Information System (INIS)

    Custodio, E.

    1989-01-01

    Volcanic rock formations, each with their own particular hydrogeological characteristics, occur in circumstances that cover a multiplicity of situations. These range from permeable porous rock formations to permeable fissured formations and include all types of intermediate situation between the two. The type of volcanism, distance from the source of emission, age, alteration processes and tectonics are all factors which determine their behaviour. Volcanic formations usually constitute a single aquifer system, even though this may be very heterogeneous and may locally be separated into clearly defined subunits. At times, formations may be hundreds of metres thick and are fairly permeable almost throughout. As a rule, volcanic material does not yield directly soluble salts to the water that flows through it. Mineralization of the water is due to the concentration of rainfall and the hydrolysis of silicates as a result of CO 2 being absorbed from the atmosphere and the ground, or as a result of volcanism itself. Cationic grouping is usually closely correlated to that of the rock formation in which the chemical composition is formed. Most environmental isotope and radioisotope techniques may be used, and at times are of unquestionable value. However, the existence of evaporation in the soil with possible isotopic fractionation, the effects of marked relief, the dilution of dissolved carbon by volcanic carbon and isotopic exchange brought about by volcanic carbon, etc., should be taken into account before valid conclusions are drawn. The paper uses examples taken from existing studies, mainly those being carried out in the Canary Islands (Spain). (author). 98 refs, 18 figs, 4 tabs

  13. Pseudotachylyte formation in volcanic conduits: Montserrat vs. Mount St. Helens

    Science.gov (United States)

    Kendrick, J. E.; Lavallee, Y.; Petrakova, L.; Ferk, A.; Di Toro, G.; Hess, K.; Ferri, F.; Dingwell, D. B.

    2012-12-01

    Seismogenic fracture and faulting may result in non-equilibrium frictional melting of rock, which upon cooling and recrystallisation forms pseudotachylyte. In volcanic environments, the transition from endogenous to exogenous growth can be attributed to a shift in magma rheology into the brittle regime, and thus the ascent of high-viscosity magma can form discrete shear zones, comparable to tectonic faults, along conduit margins. Pseudotachylytes have, until now, rarely been noted in exogenous volcanic materials and seldom in active volcanic environments. This is despite the simultaneous occurrence of high pressures and differential stresses, which make high-viscosity magmas ideal candidates for the occurrence of frictional melting. Here, we compare the chemical, thermal, magnetic and structural properties of two candidate volcanic pseudotachylytes; one from Soufriere Hills (Montserrat) and one from Mount St. Helens (USA). Additionally, we present data from a set of high-velocity rotary shear experiments on the host materials of these natural pseudotachylytes in which melting was induced after just 10's of centimeters of slip at realistic extrusion velocities (0.4 - 1.6 ms-1) and low normal stresses (0.5-2 MPa). After 1-2 meters of slip a continuous melt layer formed, at which point friction decreased and the fault zone displayed slip-weakening behaviour. For volcanic conduits, this would facilitate temporarily elevated slip rates, or an increase in extrusion rate, and could cause transitions in dome morphology and eruption style. This study demonstrates that shear fracturing in magma or sliding along conduit margins can readily result in frictional melting. The conspicuous absence of pseudotachylytes in active volcanic environments is likely the result of exceptionally high background temperatures which precipitate near-equilibrium melting, thereby obviating one of the characteristic signatures of pseudotachylyte - glassy protomelts formed by selective melting of

  14. Critical review of a new volcanic eruption chronology

    Science.gov (United States)

    Neuhäuser, Dagmar L.; Neuhäuser, Ralph

    2016-04-01

    Sigl. et al. (2015, Nature) present historical evidence for 32 volcanic eruptions to evaluate their new polar ice core 10-Be chronology - 24 are dated within three years of sulfur layers in polar ice. Most of them can be interpreted as weather phenomena (Babylonia: disk of sun like moon, reported for only one day, e.g. extinction due to clouds), Chinese sunspot reports (pellet, black vapor, etc.), solar eclipses, normal ice-halos and coronae (ring, bow, etc.), one aurora (redness), red suns due to mist drops in wet fog or fire-smoke, etc. Volcanic dust may facilitate detections of sunspots and formation of Bishop's ring, but tend to inhibit ice-halos, which are otherwise often reported in chronicles. We are left with three reports possibly indicating volcanic eruptions, namely fulfilling genuine criteria for atmospheric disturbances due to volcanic dust, e.g. bluish or faint sun, orange sky, or fainting of stars for months (BCE 208, 44-42, and 32). Among the volcanic eruptions used to fix the chronology (CE 536, 626, 939, 1257), the reports cited for the 930s deal only with 1-2 days, at least one reports an eclipse. In the new chronology, there is a sulfur detection eight years after the Vesuvius eruption, but none in CE 79. It may appear surprising that, from BCE 500 to 1, all five northern sulfur peaks labeled in figure 2 in Sigl et al. are systematically later by 2-4 years than the (corresponding?) southern peaks, while all five southern peaks from CE 100 to 600 labeled in figure 2 are systematically later by 1-4 years than the (corresponding?) northern peaks. Furthermore, in most of their six strongest volcanic eruptions, temperatures decreased years before their sulfur dating - correlated with weak solar activity as seen in radiocarbon, so that volcanic climate forcing appears dubious here. Also, their 10-Be peaks at CE 775 and 994 are neither significant nor certain in dating.

  15. The volcanic rocks construction of the late paleozoic era and uranium mineralization in Beishan area of Gansu province

    International Nuclear Information System (INIS)

    An Zhengchang; Luo Xiaoqiang

    2010-01-01

    Late Paleozoic volcanic rocks in Beishan area are the favorable constructions of hydrothermal type and volcanic type deposit. From the distribution of volcanic rocks, the volcanic compositions, the volcanic facies, volcanic eruption method and rhythm, chemical and trace elements compositions, and so on, it discusses the characteristics of the Late Devonian volcanic construction in this area and its relationship with uranium mineralization, analyzes the role of volcanic ore-control mechanism, and summarizes uranium ore forming regularity of volcanic construction in Late Paleozoic. (authors)

  16. The onset of the volcanism in the Ciomadul Volcanic Dome Complex (Eastern Carpathians): Eruption chronology and magma type variation

    Science.gov (United States)

    Molnár, Kata; Harangi, Szabolcs; Lukács, Réka; Dunkl, István; Schmitt, Axel K.; Kiss, Balázs; Garamhegyi, Tamás; Seghedi, Ioan

    2018-04-01

    Combined zircon U-Th-Pb and (U-Th)/He dating was applied to refine the eruption chronology of the last 2 Myr for the andesitic and dacitic Pilişca volcano and Ciomadul Volcanic Dome Complex (CVDC), the youngest volcanic area of the Carpathian-Pannonian region, located in the southernmost Harghita, eastern-central Europe. The proposed eruption ages, which are supported also by the youngest zircon crystallization ages, are much younger than the previously determined K/Ar ages. By dating every known eruption center in the CVDC, repose times between eruptive events were also accurately determined. Eruption of the andesite at Murgul Mare (1865 ± 87 ka) and dacite of the Pilişca volcanic complex (1640 ± 37 ka) terminated an earlier pulse of volcanic activity within the southernmost Harghita region, west of the Olt valley. This was followed by the onset of the volcanism in the CVDC, which occurred after several 100s kyr of eruptive quiescence. At ca. 1 Ma a significant change in the composition of erupted magma occurred from medium-K calc-alkaline compositions to high-K dacitic (Baba-Laposa dome at 942 ± 65 ka) and shoshonitic magmas (Malnaş and Bixad domes; 964 ± 46 ka and 907 ± 66 ka, respectively). Noteworthy, eruptions of magmas with distinct chemical compositions occurred within a restricted area, a few km from one another. These oldest lava domes of the CVDC form a NNE-SSW striking tectonic lineament along the Olt valley. Following a brief (ca. 100 kyr) hiatus, extrusion of high-K andesitic magma continued at Dealul Mare (842 ± 53 ka). After another ca. 200 kyr period of quiescence two high-K dacitic lava domes extruded (Puturosul: 642 ± 44 ka and Balvanyos: 583 ± 30 ka). The Turnul Apor lava extrusion occurred after a ca. 200 kyr repose time (at 344 ± 33 ka), whereas formation of the Haramul Mic lava dome (154 ± 16 ka) represents the onset of the development of the prominent Ciomadul volcano. The accurate determination of eruption dates shows that the

  17. Division of volcanic activity cycles in the late mesozoic in South Jiangxi and North Guangdong

    International Nuclear Information System (INIS)

    Li Qinglong; Wu Jianhua

    1999-01-01

    Based on stratigraphical unconformity, rock association, fossil assemblage, isotope age and tectonic features, the volcanic activity in late Mesozoic in south Jiangxi and north Guandong can be divided into four cycles: Yutian volcanic activity cycle, Lianhuazhai volcanic activity cycle. Banshi volcanic activity cycle and Nanxiong volcanic activity cycle. Yutian volcanic cycle which occurs in middle Jurassic epoch is the bimodal rock association composed of rhyolite and basalt. Lianhuazhai volcanic cycle which occurs in late Jurassic epoch is unimodal rock association composed of rhyolite. Banshi volcanic cycle occurs from the late stage of early Cretaceous to the early stage of late Cretaceous epoch. There are two types of rock associations related to this cycle: unimodal rock association composed of rhyolite or basalt and bimodal rock association composed of rhyolite and basalt. Nanxiong volcanic activity cycle which occurred in late stage of late Cretaceous epoch is the unimodal rock association composed of basalt which is the interlayer of the red sedimentary series

  18. Lithium, boron and chloride in volcanics and greywackes in Northland, Auckland and the Taupo Volcanic Zone

    International Nuclear Information System (INIS)

    Reyes, A.G.; Trompetter, W.J.

    1998-01-01

    During magmatic differentiation processes B preferentially partitions into the glassy mesostasis of rhyolite and andesite. The behaviour of Li, on the other hand, varies with the silica content of the rock. Lithium, B, Cl and water contents increase proportionally with the silica concentration of the volcanic rocks. Their relative proportions in andesites of the Taupo Volcanic Zone (TVZ) appear to reflect the nature of the underlying crust, the dip of the subducting slab and hence the depth and temperature of magma generation. The B/Li ratios of rhyolites associated with the northern Rotorua and Okataina eruptive centres yield lower B/Li ratios than those from Maroa and Taupo centres in the south, where the slab subducts at a shallower angle. Apparently, volcanics associated with a younger subduction event as in the TVZ, contain and retain more Cl, yielding lower Li/Cl ratios for the TVZ than Northland-Auckland basalts. The B/Li ratio of greywackes from the Torlesse terrane ( 1.4). In geothermal wells in Ngawha, hydrothermal alteration yields higher B/Li ratios of >2.8 for Waipapa terrane sedimentary rocks. The Li/Cl ratios for average South and North Island greywackes are similar and may reflect similar degrees of metamorphism. In general, the relative Li, B and Cl contents in greywackes are dictated by the composition of the detrital fragments, the clay fraction, the type of clays and the metamorphic grade. During hydrothermal alteration of rhyolite in the TVZ, Cl always partitions into solution while Li and B have an affinity for the rock. However, more Li remains in the rock than B at any given temperature. The distribution coefficients of Li and B between water and rock increase with increasing temperature. The partitioning of Li between rock and solution in TVZ hydrothermal systems is mainly dictated by temperature, whereas the mass distribution coefficient for B is related to the tectonic setting. An increase in relative Li of the rock is associated with the

  19. The Valle de Bravo Volcanic Field. A monogenetic field in the central front of the Mexican Volcanic Belt

    Science.gov (United States)

    Aguirre-Diaz, G. J.; Jaimes-Viera, M. D.; Nieto-Obreg¢n, J.; Lozano-Santacruz, R.

    2003-12-01

    The Valle de Bravo volcanic field, VBVF, is located in the central-southern front of the Mexican Volcanic Belt just to the southwest of Nevado de Toluca volcano. The VBVF covers 3,703 square Km and includes at least 122 cinder cones, 1 shield volcano, several domes, and the 2 volcanic complexes of Zitacuaro and Villa de Allende. Morphometric parameters calibrated with isotopic ages of the volcanic products indicate four groups or units for the VBVF, Pliocene domes and lava flows, undifferentiated Pleistocene lava flows,> 40 Ka cones and lavas, 40 to 25 Ka cones and lavas, 25 to 10 Ka cones and lavas, and < 10 Ka cones and lavas. Whole-rock chemistry shows that all products of the VBVF range from basaltic andesites to dacites. No basalts were found, in spite of many units are olivine-rich and large some with large weight percent contents of MgO, 1 to 9. There is the possibility that some or all of the olivines in some samples could be xenocrysts. Some andesites are high in Sr, 1000 to 1800 ppm, that correlates with relatively high values of Ba, Cr, Ni, Cu, CaO and MgO. Y and Nb have the typical low values for orogenic rocks. The only shield volcano of the VBVF has a base of 9 Km, and its composition is practically the average composition of the whole field. Stratigraphycally, it is one of the earlier events of the VBVF. Compared with other volcanic fields of the Mexican Volcanic Belt, it lacks basalts and alkalic rocks. All volcanism of this field is calcalkaline

  20. Global volcanic aerosol properties derived from emissions, 1990-2014, using CESM1(WACCM): VOLCANIC AEROSOLS DERIVED FROM EMISSIONS

    Energy Technology Data Exchange (ETDEWEB)

    Mills, Michael J. [Atmospheric Chemistry Observations and Modeling Laboratory, National Center for Atmospheric Research, Boulder Colorado USA; Schmidt, Anja [School of Earth and Environment, University of Leeds, Leeds UK; Easter, Richard [Atmospheric Sciences and Global Change Division, Pacific Northwest National Laboratory, Richland Washington USA; Solomon, Susan [Department of Earth, Atmospheric, and Planetary Sciences, Massachusetts Institute of Technology, Cambridge Massachusetts USA; Kinnison, Douglas E. [Atmospheric Chemistry Observations and Modeling Laboratory, National Center for Atmospheric Research, Boulder Colorado USA; Ghan, Steven J. [Atmospheric Sciences and Global Change Division, Pacific Northwest National Laboratory, Richland Washington USA; Neely, Ryan R. [School of Earth and Environment, University of Leeds, Leeds UK; National Centre for Atmospheric Science, University of Leeds, Leeds UK; Marsh, Daniel R. [Atmospheric Chemistry Observations and Modeling Laboratory, National Center for Atmospheric Research, Boulder Colorado USA; Conley, Andrew [Atmospheric Chemistry Observations and Modeling Laboratory, National Center for Atmospheric Research, Boulder Colorado USA; Bardeen, Charles G. [Atmospheric Chemistry Observations and Modeling Laboratory, National Center for Atmospheric Research, Boulder Colorado USA; Gettelman, Andrew [Atmospheric Chemistry Observations and Modeling Laboratory, National Center for Atmospheric Research, Boulder Colorado USA

    2016-03-06

    Accurate representation of global stratospheric aerosol properties from volcanic and non-volcanic sulfur emissions is key to understanding the cooling effects and ozone-loss enhancements of recent volcanic activity. Attribution of climate and ozone variability to volcanic activity is of particular interest in relation to the post-2000 slowing in the apparent rate of global average temperature increases, and variable recovery of the Antarctic ozone hole. We have developed a climatology of global aerosol properties from 1990 to 2014 calculated based on volcanic and non-volcanic emissions of sulfur sources. We have complied a database of volcanic SO2 emissions and plume altitudes for eruptions between 1990 and 2014, and a new prognostic capability for simulating stratospheric sulfate aerosols in version 5 of the Whole Atmosphere Community Climate Model, a component of the Community Earth System Model. Our climatology shows remarkable agreement with ground-based lidar observations of stratospheric aerosol optical depth (SAOD), and with in situ measurements of aerosol surface area density (SAD). These properties are key parameters in calculating the radiative and chemical effects of stratospheric aerosols. Our SAOD climatology represents a significant improvement over satellite-based analyses, which ignore aerosol extinction below 15 km, a region that can contain the vast majority of stratospheric aerosol extinction at mid- and high-latitudes. Our SAD climatology significantly improves on that provided for the Chemistry-Climate Model Initiative, which misses 60% of the SAD measured in situ. Our climatology of aerosol properties is publicly available on the Earth System Grid.

  1. Months between rejuvenation and volcanic eruption at Yellowstone caldera, Wyoming

    Science.gov (United States)

    Till, Christy B.; Vazquez, Jorge A.; Boyce, Jeremy W

    2015-01-01

    Rejuvenation of previously intruded silicic magma is an important process leading to effusive rhyolite, which is the most common product of volcanism at calderas with protracted histories of eruption and unrest such as Yellowstone, Long Valley, and Valles, USA. Although orders of magnitude smaller in volume than rare caldera-forming super-eruptions, these relatively frequent effusions of rhyolite are comparable to the largest eruptions of the 20th century and pose a considerable volcanic hazard. However, the physical pathway from rejuvenation to eruption of silicic magma is unclear particularly because the time between reheating of a subvolcanic intrusion and eruption is poorly quantified. This study uses geospeedometry of trace element profiles with nanometer resolution in sanidine crystals to reveal that Yellowstone’s most recent volcanic cycle began when remobilization of a near- or sub-solidus silicic magma occurred less than 10 months prior to eruption, following a 220,000 year period of volcanic repose. Our results reveal a geologically rapid timescale for rejuvenation and effusion of ~3 km3 of high-silica rhyolite lava even after protracted cooling of the subvolcanic system, which is consistent with recent physical modeling that predict a timescale of several years or less. Future renewal of rhyolitic volcanism at Yellowstone is likely to require an energetic intrusion of mafic or silicic magma into the shallow subvolcanic reservoir and could rapidly generate an eruptible rhyolite on timescales similar to those documented here.

  2. Volcanic influence on centennial to millennial Holocene Greenland temperature change.

    Science.gov (United States)

    Kobashi, Takuro; Menviel, Laurie; Jeltsch-Thömmes, Aurich; Vinther, Bo M; Box, Jason E; Muscheler, Raimund; Nakaegawa, Toshiyuki; Pfister, Patrik L; Döring, Michael; Leuenberger, Markus; Wanner, Heinz; Ohmura, Atsumu

    2017-05-03

    Solar variability has been hypothesized to be a major driver of North Atlantic millennial-scale climate variations through the Holocene along with orbitally induced insolation change. However, another important climate driver, volcanic forcing has generally been underestimated prior to the past 2,500 years partly owing to the lack of proper proxy temperature records. Here, we reconstruct seasonally unbiased and physically constrained Greenland Summit temperatures over the Holocene using argon and nitrogen isotopes within trapped air in a Greenland ice core (GISP2). We show that a series of volcanic eruptions through the Holocene played an important role in driving centennial to millennial-scale temperature changes in Greenland. The reconstructed Greenland temperature exhibits significant millennial correlations with K + and Na + ions in the GISP2 ice core (proxies for atmospheric circulation patterns), and δ 18 O of Oman and Chinese Dongge cave stalagmites (proxies for monsoon activity), indicating that the reconstructed temperature contains hemispheric signals. Climate model simulations forced with the volcanic forcing further suggest that a series of large volcanic eruptions induced hemispheric-wide centennial to millennial-scale variability through ocean/sea-ice feedbacks. Therefore, we conclude that volcanic activity played a critical role in driving centennial to millennial-scale Holocene temperature variability in Greenland and likely beyond.

  3. Monitoring the Sumatra volcanic arc with InSAR

    Science.gov (United States)

    Chaussard, E.; Hong, S.; Amelung, F.

    2009-12-01

    The Sumatra volcanic arc is the result of the subduction of the Indo-Australian plate under the Sunda plate. The arc consists of 35 known volcanic centers, subaerials on the west coast of the Sumatra and Andaman Islands and submarines between these islands. Six active centers are known in the Sumatra volcanic arc. Surface deformation in volcanic areas usually indicates movement of magma or hydrothermal fluids at depth. Here we present a satellite-based Interferometric synthetic aperture radar (InSAR) survey of the Sumatra volcanic arc using ALOS data. Spanning the years 2007 to beginning of 2009, our survey reveals the background level of activity of the 35 volcanoes. We processed data from 40 tracks (24 in descending orbit and 16 in ascending orbit) to cover the whole Sumatra arc. In the first results five of these six known active centers show no sign of activity: Dempo, Kaba, Marapi, Talang and Peuet. The remaining active volcano, Mount Kerinci, has an ambiguous signal. We used pair-wise logic and InSAR time series of the available ALOS data to determine if the observed InSAR signal is caused by ground deformation or by atmospheric delays.

  4. Radon gas as a tracer for volcanic processes

    International Nuclear Information System (INIS)

    Thomas, D.M.

    1990-01-01

    Radon emissions from volcanic systems have been under investigation for several decades. Soil gas and groundwater radon activities have been used to map faults and to characterize geothermal systems, and measurements of atmospheric radon and radon daughter concentrations have been used to estimate the volume of magma chambers feeding active eruptions. Several studies have also shown that temporal variations in radon concentration have been associated with the onset of volcanic eruptions or changes in the rates or character of an eruption. Some of these studies have been able to clearly define the cause of the radon anomalies but others have proposed models of radon emission and transport that are not well supported by the known physical and chemical processes that occur in a volcanic system. In order to better characterize the processes that control radon activities in volcanic systems, it is recommended that future radon monitoring programs attempt to maintain continuous recording of radon activities; individual radon measurements should be made over the shortest time intervals possible that are consistent with acceptable counting statistics and geophysical, meteorological, and hydrological parameters should be measured in order to better define the physical processes that affect radon activities in volcanic systems. (author). 63 refs

  5. Global monsoon precipitation responses to large volcanic eruptions

    Science.gov (United States)

    Liu, Fei; Chai, Jing; Wang, Bin; Liu, Jian; Zhang, Xiao; Wang, Zhiyuan

    2016-01-01

    Climate variation of global monsoon (GM) precipitation involves both internal feedback and external forcing. Here, we focus on strong volcanic forcing since large eruptions are known to be a dominant mechanism in natural climate change. It is not known whether large volcanoes erupted at different latitudes have distinctive effects on the monsoon in the Northern Hemisphere (NH) and the Southern Hemisphere (SH). We address this issue using a 1500-year volcanic sensitivity simulation by the Community Earth System Model version 1.0 (CESM1). Volcanoes are classified into three types based on their meridional aerosol distributions: NH volcanoes, SH volcanoes and equatorial volcanoes. Using the model simulation, we discover that the GM precipitation in one hemisphere is enhanced significantly by the remote volcanic forcing occurring in the other hemisphere. This remote volcanic forcing-induced intensification is mainly through circulation change rather than moisture content change. In addition, the NH volcanic eruptions are more efficient in reducing the NH monsoon precipitation than the equatorial ones, and so do the SH eruptions in weakening the SH monsoon, because the equatorial eruptions, despite reducing moisture content, have weaker effects in weakening the off-equatorial monsoon circulation than the subtropical-extratropical volcanoes do. PMID:27063141

  6. Lahar—River of volcanic mud and debris

    Science.gov (United States)

    Major, Jon J.; Pierson, Thomas C.; Vallance, James W.

    2018-05-09

    Lahar, an Indonesian word for volcanic mudflow, is a mixture of water, mud, and volcanic rock flowing swiftly along a channel draining a volcano. Lahars can form during or after eruptions, or even during periods of inactivity. They are among the greatest threats volcanoes pose to people and property. Lahars can occur with little to no warning, and may travel great distances at high speeds, destroying or burying everything in their paths.Lahars form in many ways. They commonly occur when eruptions melt snow and ice on snow-clad volcanoes; when rains fall on steep slopes covered with fresh volcanic ash; when crater lakes, volcano glaciers or lakes dammed by volcanic debris suddenly release water; and when volcanic landslides evolve into flowing debris. Lahars are especially likely to occur at erupting or recently active volcanoes.Because lahars are so hazardous, U.S. Geological Survey scientists pay them close attention. They study lahar deposits and limits of inundation, model flow behavior, develop lahar-hazard maps, and work with community leaders and governmental authorities to help them understand and minimize the risks of devastating lahars.

  7. Eruptive history of the Elysium volcanic province of Mars

    International Nuclear Information System (INIS)

    Tanaka, K.L.; Scott, D.H.

    1987-01-01

    New geologic mapping of the Elysium volcanic province at 1:2,000,000 scale and crater counts provide a basis for describing its overall eruptive history. Four stages are listed and described in order of their relative age. They are also distinguished by eruption style and location. Stage 1: Central volcanism at Hecates and Albor Tholi. Stage 2: Shield and complex volcanism at Elysium Mons and Elysium Fossae. Stage 3: Rille volcanism at Elysium Fossae and Utopia Planitia. Stage 4: Flood lava and pyroclastic eruptions at Hecates Tholus and Elysium Mons. Tectonic and channeling activity in the Elysium region is intimately associated with volcanism. Recent work indicates that isostatic uplift of Tharsis, loading by Elysium Mons, and flexural uplift of the Elysium rise produced the stresses responsible for the fracturing and wrinkle-ridge formation in the region. Coeval faulting and channel formation almost certainly occurred in the pertinent areas in Stages 2 to 4. Older faults east of the lava flows and channels on Hecates Tholus may be coeval with Stage 1

  8. On a Possible Unified Scaling Law for Volcanic Eruption Durations.

    Science.gov (United States)

    Cannavò, Flavio; Nunnari, Giuseppe

    2016-03-01

    Volcanoes constitute dissipative systems with many degrees of freedom. Their eruptions are the result of complex processes that involve interacting chemical-physical systems. At present, due to the complexity of involved phenomena and to the lack of precise measurements, both analytical and numerical models are unable to simultaneously include the main processes involved in eruptions thus making forecasts of volcanic dynamics rather unreliable. On the other hand, accurate forecasts of some eruption parameters, such as the duration, could be a key factor in natural hazard estimation and mitigation. Analyzing a large database with most of all the known volcanic eruptions, we have determined that the duration of eruptions seems to be described by a universal distribution which characterizes eruption duration dynamics. In particular, this paper presents a plausible global power-law distribution of durations of volcanic eruptions that holds worldwide for different volcanic environments. We also introduce a new, simple and realistic pipe model that can follow the same found empirical distribution. Since the proposed model belongs to the family of the self-organized systems it may support the hypothesis that simple mechanisms can lead naturally to the emergent complexity in volcanic behaviour.

  9. Global monsoon precipitation responses to large volcanic eruptions.

    Science.gov (United States)

    Liu, Fei; Chai, Jing; Wang, Bin; Liu, Jian; Zhang, Xiao; Wang, Zhiyuan

    2016-04-11

    Climate variation of global monsoon (GM) precipitation involves both internal feedback and external forcing. Here, we focus on strong volcanic forcing since large eruptions are known to be a dominant mechanism in natural climate change. It is not known whether large volcanoes erupted at different latitudes have distinctive effects on the monsoon in the Northern Hemisphere (NH) and the Southern Hemisphere (SH). We address this issue using a 1500-year volcanic sensitivity simulation by the Community Earth System Model version 1.0 (CESM1). Volcanoes are classified into three types based on their meridional aerosol distributions: NH volcanoes, SH volcanoes and equatorial volcanoes. Using the model simulation, we discover that the GM precipitation in one hemisphere is enhanced significantly by the remote volcanic forcing occurring in the other hemisphere. This remote volcanic forcing-induced intensification is mainly through circulation change rather than moisture content change. In addition, the NH volcanic eruptions are more efficient in reducing the NH monsoon precipitation than the equatorial ones, and so do the SH eruptions in weakening the SH monsoon, because the equatorial eruptions, despite reducing moisture content, have weaker effects in weakening the off-equatorial monsoon circulation than the subtropical-extratropical volcanoes do.

  10. Io - One of at Least Four Simultaneous Erupting Volcanic Eruptions

    Science.gov (United States)

    1979-01-01

    This photo of an active volcanic eruption on Jupiter's satellite Io was taken 1 hour, 52 minutes after the accompanying picture, late in the evening of March 4, 1979, Pacific time. On the limb of the satellite can be seen one of at least four simultaneous volcanic eruptions -- the first such activity ever observed on another celestial body. Seen against the limb are plume-like structures rising more than 60 miles (100 kilometers) above the surface. Several eruptions have been identified with volcanic structures on the surface of Io, which have also been identified by Voyager 1's infrared instrument as being abnormally hot -- several hundred degrees warmer than surrounding terrain. The fact that several eruptions appear to be occurring at the same time suggests that Io has the most active surface in the solar system and that volcanism is going on there essentially continuously. Another characteristic of the observed volcanism is that it appears to be extremely explosive, with velocities more than 2,000 miles an hour (at least 1 kilometer per second). That is more violent than terrestrial volcanoes like Etna, Vesuvius or Krakatoa.

  11. Systematic change in global patterns of streamflow following volcanic eruptions.

    Science.gov (United States)

    Iles, Carley E; Hegerl, Gabriele C

    2015-11-01

    Following large explosive volcanic eruptions precipitation decreases over much of the globe1-6, particularly in climatologically wet regions4,5. Stratospheric volcanic aerosols reflect sunlight, which reduces evaporation, whilst surface cooling stabilises the atmosphere and reduces its water-holding capacity7. Circulation changes modulate this global precipitation reduction on regional scales1,8-10. Despite the importance of rivers to people, it has been unclear whether volcanism causes detectable changes in streamflow given large natural variability. Here we analyse observational records of streamflow volume for fifty large rivers from around the world which cover between two and 6 major volcanic eruptions in the 20 th and late 19 th century. We find statistically significant reductions in flow following eruptions for the Amazon, Congo, Nile, Orange, Ob, Yenisey and Kolyma amongst others. When data from neighbouring rivers are combined - based on the areas where climate models simulate either an increase or a decrease in precipitation following eruptions - a significant (peruptions is detected in northern South American, central African and high-latitude Asian rivers, and on average across wet tropical and subtropical regions. We also detect a significant increase in southern South American and SW North American rivers. This suggests that future volcanic eruptions could substantially affect global water availability.

  12. Impact of major volcanic eruptions on stratospheric water vapour

    Directory of Open Access Journals (Sweden)

    M. Löffler

    2016-05-01

    Full Text Available Volcanic eruptions can have a significant impact on the Earth's weather and climate system. Besides the subsequent tropospheric changes, the stratosphere is also influenced by large eruptions. Here changes in stratospheric water vapour after the two major volcanic eruptions of El Chichón in Mexico in 1982 and Mount Pinatubo on the Philippines in 1991 are investigated with chemistry–climate model simulations. This study is based on two simulations with specified dynamics of the European Centre for Medium-Range Weather Forecasts Hamburg – Modular Earth Submodel System (ECHAM/MESSy Atmospheric Chemistry (EMAC model, performed within the Earth System Chemistry integrated Modelling (ESCiMo project, of which only one includes the long-wave volcanic forcing through prescribed aerosol optical properties. The results show a significant increase in stratospheric water vapour induced by the eruptions, resulting from increased heating rates and the subsequent changes in stratospheric and tropopause temperatures in the tropics. The tropical vertical advection and the South Asian summer monsoon are identified as sources for the additional water vapour in the stratosphere. Additionally, volcanic influences on tropospheric water vapour and El Niño–Southern Oscillation (ENSO are evident, if the long-wave forcing is strong enough. Our results are corroborated by additional sensitivity simulations of the Mount Pinatubo period with reduced nudging and reduced volcanic aerosol extinction.

  13. The Earth System Science Pathfinder VOLCAM Volcanic Hazard Mission

    Science.gov (United States)

    Krueger, Arlin J.

    1999-01-01

    The VOLCAM mission is planned for research on volcanic eruptions and as a demonstration of a satellite system for measuring the location and density of volcanic eruption clouds for use in mitigating hazards to aircraft by the operational air traffic control systems. A requirement for 15 minute time resolution is met by flight as payloads of opportunity on geostationary satellites. Volcanic sulfur dioxide and ash are detected using techniques that have been developed from polar orbiting TOMS (UV) and AVHRR (IR) data. Seven band UV and three band IR filter wheel cameras are designed for continuous observation of the full disk of the earth with moderate (10 - 20 km) ground resolution. This resolution can be achieved with small, low cost instruments but is adequate for discrimination of ash and sulfur dioxide in the volcanic clouds from meteorological clouds and ozone. The false alarm rate is small through use of sulfur dioxide as a unique tracer of volcanic clouds. The UV band wavelengths are optimized to detect very small sulfur dioxide amounts that are present in pre-eruptive outgassing of volcanoes. The system is also capable of tracking dust and smoke clouds, and will be used to infer winds at tropopause level from the correlation of total ozone with potential vorticity.

  14. Kaolin from Acoculco (Puebla, Mexico) as a raw material: mineralogical and thermal characterization

    OpenAIRE

    Garcia Vallès, Maite; Pi, T.; Alfonso, P.; Canet, C.; Martínez Manent, Salvador; Jiménez-Franco, A.; Tarragó Aymerich, Mariona; Hernández-Cruz, B.

    2015-01-01

    The present study determined the mineralogy and thermal properties of kaolin from Acoculco (Puebla), at the eastern Trans-Mexican Volcanic Belt and compared it with the nearby deposits of Agua Blanca (Hidalgo) and Huayacocotla (Veracruz). The mineralogy of the kaolins was determined by X-ray diffraction, infrared spectroscopy and scanning electron microscopy. Thermal behaviour was studied by differential thermal analysis, dilatometry and hot-stage microscopy. The Acoculco deposit is composed ...

  15. Combining ammonium mapping and short-wave infrared (SWIR) reflectance spectroscopy to constrain a model of hydrothermal alteration for the Acoculco geothermal zone, Eastern Mexico

    OpenAIRE

    Canet Miquel, Carles; Hernández-Cruz, B; Jiménez Franco, Abigail; Pi, Teresa; Peláez, B; Villanueva Estrada, Ruth Esther; Alfonso Abella, María Pura; González Partida, Eduardo; Salinas, S.

    2015-01-01

    The Acoculco geothermal system is hosted by a caldera complex located at the eastern portion of the Trans-Mexican Volcanic Belt. Surface manifestations are scarce and consist of low temperature, bubbling, acid–sulfate springs that are concentrated in two zones separated from each other by ~1750 m. In the northernmost one, there are conspicuous features suggesting recent, explosive, hydrothermal activity. Most of the rocks that crop out are tuffs and breccias that show pervasive hydrothermal a...

  16. Commercial helium reserves, continental rifting and volcanism

    Science.gov (United States)

    Ballentine, C. J.; Barry, P. H.; Hillegonds, D.; Fontijn, K.; Bluett, J.; Abraham-James, T.; Danabalan, D.; Gluyas, J.; Brennwald, M. S.; Pluess, B.; Seneshens, D.; Sherwood Lollar, B.

    2017-12-01

    Helium has many industrial applications, but notably provides the unique cooling medium for superconducting magnets in medical MRI scanners and high energy beam lines. In 2013 the global supply chainfailed to meet demand causing significant concern - the `Liquid Helium Crisis' [1]. The 2017 closure of Quatar borders, a major helium supplier, is likely to further disrupt helium supply, and accentuates the urgent need to diversify supply. Helium is found in very few natural gas reservoirs that have focused 4He produced by the dispersed decay (a-particle) of U and Th in the crust. We show here, using the example of the Rukwa section of the Tanzanian East African Rift, how continental rifting and local volcanism provides the combination of processes required to generate helium reserves. The ancient continental crust provides the source of 4He. Rifting and associated magmatism provides the tectonic and thermal mechanism to mobilise deep fluid circulation, focusing flow to the near surface along major basement faults. Helium-rich springs in the Tanzanian Great Rift Valley were first identified in the 1950's[2]. The isotopic compositions and major element chemistry of the gases from springs and seeps are consistent with their release from the crystalline basement during rifting [3]. Within the Rukwa Rift Valley, helium seeps occur in the vicinity of trapping structures that have the potential to store significant reserves of helium [3]. Soil gas surveys over 6 prospective trapping structures (1m depth, n=1486) show helium anomalies in 5 out of the 6 at levels similar to those observed over a known helium-rich gas reservoir at 1200m depth (7% He - Harley Dome, Utah). Detailed macroseep gas compositions collected over two days (n=17) at one site allows us to distinguish shallow gas contributions and shows the deep gas to contain between 8-10% helium, significantly increasing resource estimates based on uncorrected values (1.8-4.2%)[2,3]. The remainder of the deep gas is

  17. Study on the Effect of Straw Fiber on the Performance of Volcanic Slag Concrete

    Science.gov (United States)

    Xiao, Li-guang; Liu, Xi-xu

    2018-03-01

    In this paper, the effects of straw fiber on the working performance, mechanical properties and frost resistance of volcanic slag lightweight aggregate concrete were studied. The experimental results show that the straw fiber is subjected to surface carbonization treatment and mixed into the volcanic slag light aggregate concrete. The flexural strength and fracture pressure ratio of volcanic slag lightweight aggregate concrete are improved obviously Improved volcanic slag lightweight aggregate concrete brittleness improves toughness. Carbonized straw fiber greatly improves the frost resistance of volcanic slag lightweight aggregate concrete. So that the volcanic slag light aggregate concrete freeze-thaw cycle can reach 300 times.

  18. Volcanic tremor and local earthquakes at Copahue volcanic complex, Southern Andes, Argentina

    Science.gov (United States)

    Ibáñez, J. M.; Del Pezzo, E.; Bengoa, C.; Caselli, A.; Badi, G.; Almendros, J.

    2008-07-01

    In the present paper we describe the results of a seismic field survey carried out at Copahue Volcano, Southern Andes, Argentina, using a small-aperture, dense seismic antenna. Copahue Volcano is an active volcano that exhibited a few phreatic eruptions in the last 20 years. The aim of this experiment was to record and classify the background seismic activity of this volcanic area, and locate the sources of local earthquakes and volcanic tremor. Data consist of several volcano-tectonic (VT) earthquakes, and many samples of back-ground seismic noise. We use both ordinary spectral, and multi-spectral techniques to measure the spectral content, and an array technique [Zero Lag Cross Correlation technique] to measure the back-azimuth and apparent slowness of the signals propagating across the array. We locate VT earthquakes using a procedure based on the estimate of slowness vector components and S-P time. VT events are located mainly along the border of the Caviahue caldera lake, positioned at the South-East of Copahue volcano, in a depth interval of 1-3 km below the surface. The background noise shows the presence of many transients with high correlation among the array stations in the frequency band centered at 2.5 Hz. These transients are superimposed to an uncorrelated background seismic signal. Array solutions for these transients show a predominant slowness vector pointing to the exploited geothermal field of "Las Maquinitas" and "Copahue Village", located about 6 km north of the array site. We interpret this coherent signal as a tremor generated by the activity of the geothermal field.

  19. Volcanic Infrasound - A technical topic communicated in an entertaining way

    Science.gov (United States)

    Kerlow, Isaac

    2017-04-01

    Volcanic Infrasound is a 9-minute film about using infrasound waves to detect and measure volcanic eruptions as they unfold. The film was made by an interdisciplinary team of filmmakers and scientists for a general audience. The movie explains the basic facts of using infrasound to detect volcanic activity, and it also shows volcano researchers as they install infrasound sensors in a natural reserve in the middle of the city. This is the first in a series of films that seek to address natural hazards of relevance to Singapore, a country shielded from violent hazards. This presentation reviews the science communication techniques and assumptions used to develop and produce this entertaining scientific documentary short. Trailer: https://vimeo.com/192206460

  20. Areal and time distributions of volcanic formations on Mars

    International Nuclear Information System (INIS)

    Katterfeld, G.N.; Vityaz, V.I.

    1987-01-01

    The analysis of igneous rock distribution has been fulfilled on the basis of the geomorphological map of Mars at scale 1:5,000,000, according to data obtained from interpretation of 1:2,000,000 scale pictures of Mariner 9, Mars 4, Mars 5, Viking 1 and 2. Areological areas are listed as having been distinguished as the stratigraphic basis for a martian time scale. The area of volcanic eruptions and the number of eruptive centers are calculated on 10 x 10 deg cells and for each areological eras. The largest area of eruptive happening at different times is related with Tharsis tectonic uplift. The study of distribution of igneous rock area and volcanic centers number on 10 deg sectors and zones revealed the concentration belts of volcanic formations

  1. Areal and time distributions of volcanic formations on Mars

    Science.gov (United States)

    Katterfeld, G. N.; Vityaz, V. I.

    1987-01-01

    The analysis of igneous rock distribution has been fulfilled on the basis of the geomorphological map of Mars at scale 1:5,000,000, according to data obtained from interpretation of 1:2,000,000 scale pictures of Mariner 9, Mars 4, Mars 5, Viking 1 and 2. Areological areas are listed as having been distinguished as the stratigraphic basis for a martian time scale. The area of volcanic eruptions and the number of eruptive centers are calculated on 10 x 10 deg cells and for each areological eras. The largest area of eruptive happening at different times is related with Tharsis tectonic uplift. The study of distribution of igneous rock area and volcanic centers number on 10 deg sectors and zones revealed the concentration belts of volcanic formations.

  2. Local to global: a collaborative approach to volcanic risk assessment

    Science.gov (United States)

    Calder, Eliza; Loughlin, Sue; Barsotti, Sara; Bonadonna, Costanza; Jenkins, Susanna

    2017-04-01

    Volcanic risk assessments at all scales present challenges related to the multitude of volcanic hazards, data gaps (hazards and vulnerability in particular), model representation and resources. Volcanic hazards include lahars, pyroclastic density currents, lava flows, tephra fall, ballistics, gas dispersal and also earthquakes, debris avalanches, tsunamis and more ... they can occur in different combinations and interact in different ways throughout the unrest, eruption and post-eruption period. Volcanoes and volcanic hazards also interact with other natural hazards (e.g. intense rainfall). Currently many hazards assessments consider the hazards from a single volcano but at national to regional scales the potential impacts of multiple volcanoes over time become important. The hazards that have the greatest tendency to affect large areas up to global scale are those transported in the atmosphere: volcanic particles and gases. Volcanic ash dispersal has the greatest potential to directly or indirectly affect the largest number of people worldwide, it is currently the only volcanic hazard for which a global assessment exists. The quantitative framework used (primarily at a regional scale) considers the hazard at a given location from any volcano. Flow hazards such as lahars and floods can have devastating impacts tens of kilometres from a source volcano and lahars can be devastating decades after an eruption has ended. Quantitative assessment of impacts is increasingly undertaken after eruptions to identify thresholds for damage and reduced functionality. Some hazards such as lava flows could be considered binary (totally destructive) but others (e.g. ash fall) have varying degrees of impact. Such assessments are needed to enhance available impact and vulnerability data. Currently, most studies focus on physical vulnerability but there is a growing emphasis on social vulnerability showing that it is highly variable and dynamic with pre-eruption socio

  3. Ejection age of volcano rocks and trend of volcanic activity

    Energy Technology Data Exchange (ETDEWEB)

    Sakaguchi, Keiichi

    1987-10-01

    This report is II-7 of an interim report on research and development of the Sunshine Project for 1986. This report considers on the trend of volcanic activities in the South of Kyushu area. K-Ar age measurement was newly made and reported. Age values obtained were 1.09 plus minus 0.21 Ma for Nagaoyama andesite, 1.33 plus minus 0.18 Ma for Nozato andesite, and 0.3 plus minus 0.1 Ma for Imuta volcanos. Including these age values, from the age values and their distribution of the volcanic rocks in the South Kyushu district, the following three districts were selected to represent the volcanic activities since the Pliocene Epoch. As these districts are mutually overwrapped, verification at these overwrapped districts are necessary. (4 figs, 1 tab, 12 refs)

  4. How Did Climate and Humans Respond to Past Volcanic Eruptions?

    Science.gov (United States)

    Toohey, Matthew; Ludlow, Francis; Legrande, Allegra N.

    2016-01-01

    To predict and prepare for future climate change, scientists are striving to understand how global-scale climatic change manifests itself on regional scales and also how societies adapt or don't to sometimes subtle and complex climatic changes. In this regard, the strongest volcanic eruptions of the past are powerful test cases, showcasing how the broad climate system responds to sudden changes in radiative forcing and how societies have responded to the resulting climatic shocks. These issues were at the heart of the inaugural workshop of the Volcanic Impacts on Climate and Society (VICS) Working Group, convened in June 2016 at the Lamont-Doherty Earth Observatory of Columbia University in Palisades, N.Y. The 3-day meeting gathered approximately 50 researchers, who presented work intertwining the history of volcanic eruptions and the physical processes that connect eruptions with human and natural systems on a global scale.

  5. Smelters as Analogs for a Volcanic Eruption at Yucca Mountain

    International Nuclear Information System (INIS)

    Ross, Benjamin

    2004-01-01

    The distribution of trace radionuclides in secondary metal smelters provides an analog for spent fuel released from packages during a volcanic eruption. The fraction of the inventory of a radionuclide that would be released into the air in a volcanic eruption is called the dust partitioning factor. In consequence analyses of a volcanic eruption at Yucca Mountain, a value of one has been used for this parameter for all elements. This value is too high for the refractory elements. Reducing the dust partitioning factor for refractory elements to a value equal to the fraction of the magma that becomes ash would still yield conservative estimates of how much radioactivity would be released in an eruption

  6. Was there a volcanic eruption off Vietnam in AD 608?

    Science.gov (United States)

    Khoo, T. T.

    In the Sui-shu (Annals of the Sui Dynasty, 581-618), there is a record that returning envoys of the Chinese court to a state in northeastern Malay peninsula had in April-June AD 608 reached the state of Lin-i where for a whole day's sail the air around the vessel was yellowish and fetid. Lin-i was located at the southern end of the Annam Highlands chain and it is interpreted here that the phenominon reported could be due to a volcanic eruption in the Poulo Cecir-Ile des Cendres-Veteran volcanic islands group near the area. During the months of May to June the winds of the southwest monsoon, too, blow from the volcanic area toward the southern end of the Annam Highlands.

  7. Using Digital Cameras to Detect Warning Signs of Volcanic Eruptions

    Science.gov (United States)

    Girona, T.; Huber, C.; Trinh, K. T.; Protti, M.; Pacheco, J. F.

    2017-12-01

    Monitoring volcanic outgassing is fundamental to improve the forecasting of volcanic eruptions. Recent efforts have led to the advent of new methods to measure the concentration and flux of volcanic gases with unprecedented temporal resolution, thus allowing us to obtain reliable high-frequency (up to 1 Hz) time series of outgassing activity. These high-frequency methods have shown that volcanic outgassing can be periodic sometimes (with periodicities ranging from 101 s to 103 s), although it remains unknown whether the spectral features of outgassing reflect the processes that ultimately trigger volcanic unrest and eruptions. In this study, we explore the evolution of the spectral content of the outgassing activity of Turrialba volcano (Costa Rica) using digital images (with digital brightness as a proxy for the emissions of water vapor [Girona et al., 2015]). Images were taken at 1 km distance with 1 Hz sampling rate, and the time period analyzed (from April 2016 to April 2017) is characterized by episodes of quiescent outgassing, ash explosions, and sporadic eruptions of ballistics. Our preliminary results show that: 1) quiescent states of Turrialba volcano are characterized by outgassing frequency spectra with fractal distribution; 2) superimposed onto the fractal frequency spectra, well-defined pulses with period around 100 s emerge hours to days before some of the eruptions of ballistics. An important conclusion of this study is that digital cameras can be potentially used in real-time volcano monitoring to detect warning signs of eruptions, as well as to better understand subsurface processes and track the changing conditions below volcanic craters. Our ongoing study also explores the correlation between the evolution of the spectral content of outgassing, infrasound data, and shallow seismicity. Girona, T., F. Costa, B. Taisne, B. Aggangan, and S. Ildefonso (2015), Fractal degassing from Erebus and Mayon volcanoes revealed by a new method to monitor H2O

  8. Effects of volcanic deposit disaggregation on exposed water composition

    Science.gov (United States)

    Back, W. E.; Genareau, K. D.

    2016-12-01

    Explosive volcanic eruptions produce a variety of hazards. Pyroclastic material can be introduced to water through ash fallout, pyroclastic flows entering water bodies, and/or lahars. Remobilization of tephras can occur soon after eruption or centuries later, introducing additional pyroclastic material into the environment. Introduction of pyroclastic material may alter the dissolved element concentration and pH of exposed waters, potentially impacting drinking water supplies, agriculture, and ecology. This study focuses on the long-term impacts of volcanic deposits on water composition due to the mechanical breakup of volcanic deposits over time. Preliminary work has shown that mechanical milling of volcanic deposits will cause significant increases in dissolved element concentrations, conductivity, and pH of aqueous solutions. Pyroclastic material from seven eruptions sites was collected, mechanically milled to produce grain sizes Soufriere Hills, Ruapehu), mafic (Lathrop Wells) and ultramafic (mantle xenoliths) volcanic deposits. Lathrop Wells has an average bulk concentration of 49.15 wt.% SiO2, 6.11 wt. % MgO, and 8.39 wt. % CaO and produces leachate concentrations of 85.69 mg/kg for Ca and 37.22 mg/kg for Mg. Taupo and Valles Caldera samples have a bulk concentration of 72.9 wt.% SiO2, 0.59 wt. % MgO, and 1.48 wt. % CaO, and produces leachate concentrations of 4.08 mg/kg for Ca and 1.56 mg/kg for Mg. Similar testing will be conducted on the intermediate and ultramafic samples to test the hypothesis that bulk magma composition and mineralogy will directly relate to the increased dissolved element concentration of exposed waters. The measured effects on aqueous solutions will aid in evaluation of impacts to marine and freshwater systems exposed to volcanic deposits.

  9. Lichen Persistence and Recovery in Response to Varied Volcanic Disturbances

    Science.gov (United States)

    Nelson, P.; Wheeler, T. B.

    2015-12-01

    Volcanic eruptions produce many ecological disturbances that structure vegetation. While lichens are sensitive to disturbances, little is known about their responses to volcanic disturbances, except for colonization of lava. We examined lichen community responses through time to different disturbances produced by the May 1, 2008 eruption of Volcan Chaiten in south-central Chile. Pre-eruption vegetation near the volcano was old-growth Valdivian temperate rainforest dominated by closed-canopy Nothofagus sp... In 2012, we installed thirteen 1-acre plots across volcanic disturbance zones on which a time-constrained search was done for all macrolichen species, each of which was assigned an approximate log10 categorical abundance. We also installed a 0.2 m2 quadrat on two representative trees per plot for repeat photography of lichen cover. We remeasured at least one plot per disturbance zone in 2014 and re-photographed tree quadrats in 2013 and 2014. We then analyzed species composition and abundance differences among disturbance zones. In 2012, the blast (pyroclastic density flow), scorch (standing scorched forest at the edge of the blast) and deep tephra (>10 cm) zones had the lowest lichen species richness (5-13 species), followed by reference (unimpacted) and shallow (lichen species since 2012 while the light tephra and reference were essentially unchanged. Gravel rain, gravel rain + pumice and flooded forest plots all had about the same number of species in 2014 as 2012. Lichen colonization and growth in tree quadrats varied widely, from very little colonization in the blast to prolific colonization in the gravel rain + pumice zone. Lichen's varied responses to different volcanic disturbances were attributable to varying degrees of mortality and subsequent availability of substrate, quantity of light and removal of competitors. While sensitive to disturbance, lichens are apparently resilient to and can quickly recolonize after a variety of large, violent volcanic

  10. Evidence for volcanism in NW Ishtar Terra, Venus

    International Nuclear Information System (INIS)

    Gaddis, L.; Greeley, R.

    1989-01-01

    Venera 15/16 radar data for an area in NW Ishtar Terra, Venus, show an area with moderate radar return and a smooth textured surface which embays low lying areas of the surrounding mountainous terrain. Although this unit may be an extension of the lava plains of Lakshmi Planum to the southeast, detailed study suggests a separate volcanic center in NW Ishtar Terra. Lakshmi Planum, on the Ishtar Terra highland, exhibits major volcanic and tectonic features. On the Venera radar image radar brightness is influenced by slope and roughness; radar-facing slopes (east-facing) and rough surfaces (approx. 8 cm average relief) are bright, while west-facing slopes and smooth surfaces are dark. A series of semi-circular features, apparently topographic depressions, do not conform in orientation to major structural trends in this region of NW Ishtar Terra. The large depression in NW Ishtar Terra is similar to the calderas of Colette and Sacajawea Paterae, as all three structures are large irregular depressions. NW Ishtar Terra appears to be the site of a volcanic center with a complex caldera structure, possibly more than one eruptive vent, and associated lobed flows at lower elevations. The morphologic similarity between this volcanic center and those of Colette and Sacajawea suggests that centralized eruptions have been the dominant form of volcanism in Ishtar. The location of this volcanic center at the intersection of two major compressional mountain belts and the large size of the calders (with an inferred larg/deep magma source) support a crustal thickening/melting rather than a hot-spot origin for these magmas

  11. A contribution to the knowledge of the mountain entomofauna of Mexico with a description of two new species of Onthophagus Latreille, 1802 (Coleoptera, Scarabaeidae, Scarabaeinae)

    Science.gov (United States)

    Moctezuma, Victor; Rossini, Michele; Zunino, Mario; Halffter, Gonzalo

    2016-01-01

    Abstract Recent intensive samplings carried out across the mountainous regions of El Pinal (Puebla, Mexico) have provided new insights into the main environmental factors that affect the geographic distribution of the scarabaeinae beetles of the Trans-Mexican Volcanic Belt above 2500 m a.s.l. This study is part of an ongoing project investigating the diversity and biogeography of copro-necrophagous beetles (Scarabaeinae, Aphodiinae, Geotrupinae and Silphidae) in the easternmost areas of the Trans-Mexican Volcanic Belt. Previous experience allows us to propose a series of predictions that we expect will provide possible explanations for current distribution patterns observed in Scarabaeinae and other groups of insects found in the Trans-Mexican Volcanic Belt. This mountain range has a primarily biogeographic importance, limiting the Mexican High Plateau in the South and connecting the western and eastern Sierra Madre mountain chains, which are considered the most important routes for dispersal of mountain fauna of northern origin. The taxonomic and biogeographic study of the species collected so far in El Pinal (including Onthophagus clavijeroi sp. n. and Onthophagus martinpierai sp. n. described here), along with their possible relationships with other known species, allows us to answer the preliminary assumptions proposed. PMID:28050158

  12. Sulfate Formation on Mars by Volcanic Aerosols: A New Look

    Science.gov (United States)

    Blaney, D. L.

    1996-03-01

    Sulfur was measured at both Viking Lander sites in abundances of 5-9 wt % SO3. Because the sulfur was more concentrated in clumps which disintegrated and the general oxidized nature of the Martian soil, these measurements led to the assumption that a sulfate duricrust existed. Two types of models for sulfate formation have been proposed. One is a formation by upwardly migrating ground water. The other is the formation of sulfates by the precipitation of volcanic aerosols. Most investigators have tended to favor the ground water origin of sulfates on Mars. However, evidence assemble since Viking may point to a volcanic aerosol origin.

  13. Treatment of low-level radioactive waste using Volcanic ash

    International Nuclear Information System (INIS)

    Valdezco, E.M.; Marcelo, E.A.; Junio, J.B.; Caseria, E.S.; Salom, D.S.; Alamares, A.L.

    1997-01-01

    The effective application of volcanic ash, an indigenous adsorptive material abundant in the Mt. Pinatubo area, in the removal of radioiodine from radioactive waste streams was demonstrated. Factors such as availability, low cost and comparative retention capacity with respect to activated charcoal make volcanic ash an attractive alternative in the conditioning of radioactive waste containing radioiodine. Chemical precipitation was employed in the treatment of low level aqueous waste containing 137 Cs. It was shown that there exists an optimum concentration of ferric ion that promotes maximum precipitation of caesium. It was further demonstrated that complete removal of caesium can be achieved with the addition of nickel hexacyanoferrate. (author). 5 refs, 3 figs

  14. Self-potential anomalies preceding tectonic and volcanic crises

    International Nuclear Information System (INIS)

    Patella, D.

    1993-01-01

    In this paper I consider a possible physical mechanism capable of explaining self-potential anomalies, which are currently observed on the ground surface prior to tectonic and volcanic activities. A rock cracking-fluid diffusion-charge polarization model is described. The electrical charge polarization is assumed to be the electrokinetic effect due to invasion of fluid into new fissures, which open inside a stressed rock material because of dilatancy, in the case of tectonic activity, and of the rising of a magma intrusion in the case of volcanic activity. (author). 10 refs, 2 figs

  15. Treatment of low-level radioactive waste using Volcanic ash

    Energy Technology Data Exchange (ETDEWEB)

    Valdezco, E M; Marcelo, E A; Junio, J B; Caseria, E S; Salom, D S; Alamares, A L [Philippine Nuclear Research Inst., Manila (Philippines). Radiation Protection Services

    1997-02-01

    The effective application of volcanic ash, an indigenous adsorptive material abundant in the Mt. Pinatubo area, in the removal of radioiodine from radioactive waste streams was demonstrated. Factors such as availability, low cost and comparative retention capacity with respect to activated charcoal make volcanic ash an attractive alternative in the conditioning of radioactive waste containing radioiodine. Chemical precipitation was employed in the treatment of low level aqueous waste containing {sup 137}Cs. It was shown that there exists an optimum concentration of ferric ion that promotes maximum precipitation of caesium. It was further demonstrated that complete removal of caesium can be achieved with the addition of nickel hexacyanoferrate. (author). 5 refs, 3 figs.

  16. Evaluation of added phosphorus in six volcanic ash soils

    International Nuclear Information System (INIS)

    Pino N, I.; Casas G, L.; Urbinsa P, M.C.

    1984-01-01

    The behaviour of added phosphorus in six volcanic ash soils (Andepts) was studied. Two phosphate retention solution were used; one of them labeled with 32 P carrier free. The phosphate retention solution (25 ml) was added to 5 gr of air dry soil. The remainder phosphorus in solution was measured through colorimetry and liquid scintillation. Over 85% phosphorus retention was measured in five soils. A phosphate retention solution labeled with 32 P carrier free proved to be efficient for the determination of phosphorus retention rates in the volcanic ash soils studied. (Author)

  17. STABILIZATION OF GRANULAR VOLCANIC ASH IN SANA'A AREA

    Directory of Open Access Journals (Sweden)

    SUBHI A. ALI

    2014-02-01

    Full Text Available This paper presents the findings of compaction and strength characteristics of a Granular Volcanic Ash from Sana'a city center, which was mixed with various percentages of two binders to form a stabilized material namely; fine soil and Portland cement. The study showed a significant improvement of the Volcanic Ash properties. The maximum dry density and California bearing ration (CBR were considerably increased by addition of stabilizers at different rates for different binder contents. Optimum fine soil content for the maximum dry density and CBR is determined. A relationship between the optimum moisture content and the binder combination content for different fine soil percentages was established.

  18. Revised paleomagnetic pole for the Sonoma Volcanics, California

    Science.gov (United States)

    Mankinen, E.A.

    1989-01-01

    Paleomagnetic sampling of the Miocene and Pliocene Sonoma Volcanics, northern California, was undertaken to supplement an earlier collection. Data from 25 cooling units yield positive fold and reversal tests, and a paleomagnetic pole located at 80.2??N., 069.2??E., with ??95 = 6.8??. This paleopole is significantly displaced (9.6?? ?? 5.3?? of latitude) to the farside of the geographic pole. A highly elliptical distribution of the data in both direction and VGP space indicates that incomplete averaging of geomagnetic secular variation is a more likely explanation for this anomaly than is northward translation of the volcanic field. -Author

  19. Characterization of the volcanic eruption emissions using neutron activation analysis

    International Nuclear Information System (INIS)

    Pla, Rita R.; Tafuri, Victoria V.

    1997-01-01

    Characterization of the volcanic particulate material has been performed by analyzing aerosols and ashes with instrumental neutron activation analysis. Crustal enrichment factors were calculated using the elemental concentration and clustering techniques, and multivariate analysis were done. The analytical and data treatment methodologies allowed the sample differentiation from their geographical origin viewpoint, based on their chemical composition patterns, which are related to the deposit formation processes, which consist of direct deposition from the volcanic cloud, and removal by wind action after the end of the eruption, and and finally the deposition. (author). 8 refs., 5 figs

  20. Role of volcanic forcing on future global carbon cycle

    Directory of Open Access Journals (Sweden)

    J. F. Tjiputra

    2011-06-01

    Full Text Available Using a fully coupled global climate-carbon cycle model, we assess the potential role of volcanic eruptions on future projection of climate change and its associated carbon cycle feedback. The volcanic-like forcings are applied together with a business-as-usual IPCC-A2 carbon emissions scenario. We show that very large volcanic eruptions similar to Tambora lead to short-term substantial global cooling. However, over a long period, smaller eruptions similar to Pinatubo in amplitude, but set to occur frequently, would have a stronger impact on future climate change. In a scenario where the volcanic external forcings are prescribed with a five-year frequency, the induced cooling immediately lower the global temperature by more than one degree before it returns to the warming trend. Therefore, the climate change is approximately delayed by several decades, and by the end of the 21st century, the warming is still below two degrees when compared to the present day period. Our climate-carbon feedback analysis shows that future volcanic eruptions induce positive feedbacks (i.e., more carbon sink on both the terrestrial and oceanic carbon cycle. The feedback signal on the ocean is consistently smaller than the terrestrial counterpart and the feedback strength is proportionally related to the frequency of the volcanic eruption events. The cooler climate reduces the terrestrial heterotrophic respiration in the northern high latitude and increases net primary production in the tropics, which contributes to more than 45 % increase in accumulated carbon uptake over land. The increased solubility of CO2 gas in seawater associated with cooler SST is offset by a reduced CO2 partial pressure gradient between the ocean and the atmosphere, which results in small changes in net ocean carbon uptake. Similarly, there is nearly no change in the seawater buffer capacity simulated between the different volcanic scenarios. Our study shows that even

  1. Radon in active volcanic areas of Southern Italy

    International Nuclear Information System (INIS)

    Avino, R.; Capaldi, G.; Pece, R.

    1999-01-01

    The paper presents the preliminary data dealing with the variations in time of the radiogenic gas radon in soils and waters of many active volcanic areas of Southern Italy. The greatest differences in Rn content of the investigated volcanic areas are: Ischia and Campi Flegrei, which have more Rn than Vesuvio and Volcano, both in soils and in waters. The thermalized waters of Ischia are enriched in Rn 15 times with respect to soils, while in the other areas soils and underground waters have comparable Rn contents

  2. 129I in volcanic fluids: Testing for the presence of marine sediments in the Central American volcanic arc

    International Nuclear Information System (INIS)

    Snyder, Glen; Fehn, Udo

    2000-01-01

    The long half-life and the geochemical behavior of the 129 I system suggest that this cosmogenic radioisotope can contribute significantly to the understanding of processes associated with subduction zones and volcanic arc systems. Because iodine is not incorporated into igneous rocks, the age-signal associated with 129 I permits the determination of the origin of volatiles within arc volcanic systems. We report here results of a study to test the application of 129 I in fluids collected from hotsprings, crater lakes, fumaroles and geothermal wells from the Central American volcanic arc. Both the Momotombo geothermal field in Nicaragua and the Miravalles geothermal field in Costa Rica show 129 I/I ratios consistent with magmatic contributions from subducted marine pelagic sediments (minimum iodine ages of 25-30 Ma). In addition, several wells provide iodine isotopic ratios indicative of an older end-member, presumably located in the shallow crust (minimum iodine age = 65 Ma)

  3. Small instrument to volcanic seismic signals

    Science.gov (United States)

    Carreras, Normandino; Gomariz, Spartacus; Manuel, Antoni

    2014-05-01

    Currently, the presence of volcanoes represents a threat to their local populations, and for this reason, scientific communities invest resources to monitor seismic activity of an area, and to obtain information to identify risk situations. To perform such monitoring, it can use different general purpose acquisition systems commercially available, but these devices do not meet to the specifications of reduced dimensions, low weight, low power consumption and low cost. These features allow the system works in autonomous mode for a long period of time, and it makes easy to be carried and to be installed. In the line of designing a volcanic acquisition system with the previously mentioned specifications, exists the Volcanology Department of CSIC, developers of a system with some of these specifications. The objective of this work is to improve the energy consumption requirements of the previous system, providing three channels of data acquisition and with the possibility to transmit data acquisition via radio frequency to a base station, allowing operation it in remote mode. The developed acquisition system consists of three very low-power acquisition modules of Texas Instruments (ADS1246), and this is designed to capture information of the three coordinate axes. A microprocessor also of Texas Instruments (MSP430F5438) is used to work in low-power, due to it is ready to run this consumption and also takes advantage the power save mode in certain moments when system is not working. This system is configurable by serial port, and it has a SD memory to storage data. Contrast to the previous system, it has a RF communication module incorporated specially to work in remote mode of Lynx (YLX-TRM8053-025-05), and boasts also with a GPS module which keeps the time reference synchronized with module of SANAV (GM-1315LA). Thanks to this last selection of components, it is designed a small system about 106 x 106 mm. Assuming that the power supply system is working during all the

  4. Northeast Atlantic Igneous Province volcanic margin development

    Science.gov (United States)

    Mjelde, R.; Breivik, A. J.; Faleide, J. I.

    2009-04-01

    Early Eocene continental breakup in the NE Atlantic Volcanic Province (NAIP) was associated with voluminous extrusive and intrusive magmatism, and initial seafloor spreading produced anomalously thick oceanic crust. Recent publications based on crustal-scale wide-angle seismic data show that there is a positive correlation between igneous crustal thickness (H) and average P-wave velocity (Vp) on all investigated margins in the NAIP. Vp can be used as a proxy for crustal composition, which can be related to the mode of mantle melting. A positive H-Vp correlation indicates that excessive mantle melting the first few million years after breakup was driven by an initial increased temperature that cools off as seafloor spreading develops, consistent with a mantle plume model. Variations in mantle composition can explain excess magmatism, but will generate a negative H-Vp correlation. Active mantle convection may increase the flux of mantle rocks through the melting zone above the rate of passive corner flow, which can also produce excessive magmatism. This would produce little H-Vp correlation, and place the curve lower than the passive flow melting curve in the diagram. We have compiled earlier published results with our own analyses of published and unpublished data from different groups to look for systematic variations in the mantle melting mode along the NAIP margins. Earlier studies (Holbrook et al., 2002, White et al, 2008) on the southeast Greenland conjugate system, indicate that the thick igneous crust of the southern NAIP (SE Greenland ? Hatton Bank) was dominated by increased mantle temperature only, while magmatism closer to the southern side of and including the Greenland-Iceland-Færøy Ridge (GIFR) was created by combined temperature increase and active mantle convection. Recent publications (Breivik et al., 2008, White et al, 2008) north of the GIFR for the Norway Basin segment, indicate temperature dominated magmatism between the Jan Mayen Fracture

  5. Inexpensive Instrument for In Situ Characterization of Particulate Matter in Volcanic Ash Plumes, Phase I

    Data.gov (United States)

    National Aeronautics and Space Administration — Volcanic research is a significant part of the "Earth Surface & Interior" focus area of the NASA Earth Science program. After a volcanic eruption, the smallest...

  6. Screening criteria of volcanic hazards aspect in the NPP site evaluation

    International Nuclear Information System (INIS)

    Nur Siwhan

    2013-01-01

    Studies have been conducted on the completeness of regulation in Indonesia particularly on volcanic hazards aspects in the evaluation of nuclear power plant site. Volcanic hazard aspect needed to identify potential external hazards that may endanger the safety of the operation of nuclear power plants. There are four stages for evaluating volcanic hazards, which are initial assessment, characterization sources of volcanic activity in the future, screening volcanic hazards and assessment of capable volcanic hazards. This paper discuss the third stage of the general evaluation which is the screening procedure of volcanic hazards. BAPETEN Chairman Regulation No. 2 Year of 2008 has only one screening criteria for missile volcanic phenomena, so it required screening criteria for other hazard phenomena that are pyroclastic flow density; lava flows; avalanche debris materials; lava; opening hole new eruptions, volcano missile; tsunamis; ground deformation; and hydrothermal system and ground water anomaly. (author)

  7. Exploring the Potential Impacts of Historic Volcanic Eruptions on the Contemporary Global Food System

    Science.gov (United States)

    Puma, Michael J.; Chon, S.; Wada, Y.

    2015-01-01

    A better understanding of volcanic impacts on crops is urgently needed, as volcanic eruptions and the associated climate anomalies can cause unanticipated shocks to food production. Such shocks are a major concern given the fragility of the global food system.

  8. Eruptive and environmental processes recorded by diatoms in volcanically-dispersed lake sediments from the Taupo Volcanic Zone, New Zealand

    Science.gov (United States)

    Harper, Margaret A.; Pledger, Shirley A.; Smith, Euan G. C.; Van Eaton, Alexa; Wilson, Colin J. N.

    2015-01-01

    Late Pleistocene diatomaceous sediment was widely dispersed along with volcanic ash (tephra) across and beyond New Zealand by the 25.4 ka Oruanui supereruption from Taupo volcano. We present a detailed analysis of the diatom populations in the Oruanui tephra and the newly discovered floras in two other eruptions from the same volcano: the 28.6 ka Okaia and 1.8 ka Taupo eruptions. For comparison, the diatoms were also examined in Late Pleistocene and Holocene lake sediments from the Taupo Volcanic Zone (TVZ). Our study demonstrates how these microfossils provide insights into the lake history of the TVZ since the Last Glacial Maximum. Morphometric analysis of Aulacoseira valve dimensions provides a useful quantitative tool to distinguish environmental and eruptive processes within and between individual tephras. The Oruanui and Okaia diatom species and valve dimensions are highly consistent with a shared volcanic source, paleolake and eruption style (involving large-scale magma-water interaction). They are distinct from lacustrine sediments sourced elsewhere in the TVZ. Correspondence analysis shows that small, intact samples of erupted lake sediment (i.e., lithic clasts in ignimbrite) contain heterogeneous diatom populations, reflecting local variability in species composition of the paleolake and its shallowly-buried sediments. Our analysis also shows a dramatic post-Oruanui supereruption decline in Cyclostephanos novaezelandiae, which likely reflects a combination of (1) reorganisation of the watershed in the aftermath of the eruption, and (2) overall climate warming following the Last Glacial Maximum. This decline is reflected in substantially lower proportions of C. novaezelandiae in the 1.8 ka Taupo eruption deposits, and even fewer in post-1.8 ka sediments from modern (Holocene) Lake Taupo. Our analysis highlights how the excellent preservation of siliceous microfossils in volcanic tephra may fingerprint the volcanic source region and retain a valuable record

  9. Volcanic stratigraphy and geochemistry of the Soufrière Volcanic Centre, Saint Lucia with implications for volcanic hazards

    Science.gov (United States)

    Lindsay, Jan M.; Trumbull, Robert B.; Schmitt, Axel K.; Stockli, Daniel F.; Shane, Phil A.; Howe, Tracy M.

    2013-05-01

    The Soufrière Volcanic Complex (SVC), Saint Lucia, represents one of the largest silicic centres in the Lesser Antilles arc. It comprises extensive pumiceous pyroclastic flow deposits, lava flows as well as Peléan-style domes and dome collapse block-and-ash-flow deposits. These deposits occur within and around the Qualibou Depression, a ~ 10-km diameter wide sector collapse structure. To date, vent locations for SVC pyroclastic deposits and their relationship to the sector collapse have been unclear because of limited stratigraphic correlation and few radiometric ages. In this study we reconstruct the geologic history of the SVC in light of new and recently published (U-Th)/He, U-Th and U-Pb zircon chronostratigraphic data, aided by mineralogical and geochemical correlation. Compositionally, SVC deposits are monotonous medium-K, calc-alkaline rocks with 61.6 to 67.7 wt.% SiO2 and display similar trace element abundances. Combined U-Th and (U-Th)/He zircon dating together with 14C ages and mineral fingerprinting reveals significant explosive eruptions at 640, 515, 265, 104, 60 and 40 ka (producing deposits previously grouped together as the "Choiseul" unit) and at 20 ka (Belfond unit). The mineralogically and geochemically distinct Belfond unit is a large, valley-filling pumiceous pyroclastic flow deposit distributed to the north, northeast, south and southeast of the Qualibou Depression that was probably deposited during a single plinian eruption. The unit previously referred to as ‘Choiseul tuff' is much less well defined. The typical Choiseul unit comprises a series of yellowish-white, crystal-poor, non-welded pumiceous pyroclastic deposits cropping out to the north and southeast of the Qualibou depression; however its age is poorly constrained. A number of other units previously mapped as Choiseul can be distinguished based on age, and in some cases mineral and whole rock chemistry. Pyroclastic deposits at Micoud (640 ± 19 ka), Bellevue (264 ± 8 ka), Anse

  10. Sediment-infill volcanic breccia from the Neoarchean Shimoga greenstone terrane, western Dharwar Craton: Implications on pyroclastic volcanism and sedimentation in an active continental margin

    Science.gov (United States)

    Manikyamba, C.; Saha, Abhishek; Ganguly, Sohini; Santosh, M.; Lingadevaru, M.; Rajanikanta Singh, M.; Subba Rao, D. V.

    2014-12-01

    We report sediment-infill volcanic breccia from the Neoarchean Shimoga greenstone belt of western Dharwar Craton which is associated with rhyolites, chlorite schists and pyroclastic rocks. The pyroclastic rocks of Yalavadahalli area of Shimoga greenstone belt host volcanogenic Pb-Cu-Zn mineralization. The sediment-infill volcanic breccia is clast-supported and comprises angular to sub-angular felsic volcanic clasts embedded in a dolomitic matrix that infilled the spaces in between the framework of volcanic clasts. The volcanic clasts are essentially composed of alkali feldspar and quartz with accessory biotite and opaques. These clasts have geochemical characteristics consistent with that of the associated potassic rhyolites from Daginkatte Formation. The rare earth elements (REE) and high field strength element (HFSE) compositions of the sediment-infill volcanic breccia and associated mafic and felsic volcanic rocks suggest an active continental margin setting for their generation. Origin, transport and deposition of these rhyolitic clasts and their aggregation with infiltrated carbonate sediments may be attributed to pyroclastic volcanism, short distance transportation of felsic volcanic clasts and their deposition in a shallow marine shelf in an active continental margin tectonic setting where the rhyolitic clasts were cemented by carbonate material. This unique rock type, marked by close association of pyroclastic volcanic rocks and shallow marine shelf sediments, suggest shorter distance between the ridge and shelf in the Neoarchean plate tectonic scenario.

  11. Transition of neogene arc volcanism in central-western Hokkaido, viewed from K-Ar ages, style of volcanic activity, and bulk rock chemistry

    Energy Technology Data Exchange (ETDEWEB)

    Hirose, Wataru; Iwasaki, Miyuki; Nakagawa, Mitsuhiro [Hokkaido Univ., Sapporo (Japan)

    2000-02-01

    Spatial and temporal variations in late Cenozoic volcanism of southwestern Hokkaido at the northern end of NE-Japan arc have been clarified by 261 K-Ar and 76 FT ages including 49 newly determined K-Ar ages, volcanic stratigraphy, physical volcanology and whole-rock geochemistry. Arc volcanism characterized by rocks with low-Ti and Nb, and by across-arc increase in K{sub 2}O content in these rocks has continued at least since 12 Ma. Based on volcanic stratigraphy, physical volcanology and whole-rock geochemistry, volcanism after 12 Ma can be subdivided into 4 stages, 12-5, 5-1.7, and 1.7-0 Ma. The volcanism from 12 Ma to 5 Ma extended northward widely compared with distribution of Quaternary arc volcanism (1.7-0 Ma). This suggests that the arc trench junction between Kuril and NE-Japan arc's trenches was located about 100 km northward from the present position. Since around 5 Ma until 1.7 Ma, different type of volcanism under local extension field, characterized by a group of monogenetic volcanoes of alkali basalt and shield volcanoes of calc-alkaline andesite, had occurred at northern end of the volcanic region (Takikawa-Mashike region). During and after this volcanism, the northern edge of arc volcanism in the area has migrated southward. This suggests that the trench junction has migrated about 100 km southward since {approx}5 Ma. The quaternary arc volcanism (1.7-0 Ma) has been restricted at the southern part of the region. The volcanism since 12 Ma might be influenced by oblique subduction of Pacific plate beneath Kuril arc, resulting in the formation of local back arc basin at the junction and to southward migration of the trench junction. (author)

  12. Sedimentary response to volcanic activity in the Okinawa Trough since the last deglaciation

    Institute of Scientific and Technical Information of China (English)

    蒋富清; 李安春; 李铁刚

    2010-01-01

    To investigate the relationship between volcanic activity and sediment record on regional and temporal scales,158 surface sediment samples were collected from the East China Sea Shelf to the northern Okinawa Trough (OT),and two cores recovered in the northern and southern OT,respectively.Mineralogy,grain-size,and geochemical analyses of those samples show that:1) volcanic glass,volcanic-type pyroxene,hypersthenes,and magnetite increase in sediment influenced by volcanic activity;2) sediment grain sizes (and...

  13. Stratigraphical sequence and geochronology of the volcanic rock series in caifang basin, south jiangxi

    International Nuclear Information System (INIS)

    Xu Xunsheng; Wu Jianhua

    2010-01-01

    The late Mesozoic volcanic rocks in Jiangxi constitute two volcanic belts: the northern is Xiajiang-Guangfeng volcanic belt, the volcanic rocks series belong to one volcano cycle and named Wuyi group which is subdivided into three formations (Shuangfengling formation, Ehuling formation and Shixi formation); the southern is Sannan-Xunwu volcanic belt, the volcanic rocks series in Caifang basin which locates on Sannan-Xunwu volcanic belt also belong to only one volcano cycle. It can be subdivided into two lithology and lithofacies units (upper and lower): the lower unit consists of sedimentary rocks and associated with a subordinate amount of volcanic rocks, it belongs to erupt-deposit facies which is the product of early volcanic stage; the upper unit is mostly composed of volcanic rocks, it belongs to erupt facies that is the volcanic eruption product. SHRIMP zircon U-Pb age of rhyolite? which locates at the top of the upper unit is 130.79 ± 0.73) Ma. According to the new International Stratigraphic Chart, the boundary of Jurassic and Cretaceous is (145.4 ± 4.0) Ma, so the age shows that the geologic period of Caifang volcanic rocks series is early Early Cretaceous epoch. On the basis of lithological correlation, lithofacies and stratigraphic horizon analysis, the volcanic rock series in Caifang basin fall under Wuyi group, and the lower unit could be incorporated into Shuangfengling formation, the upper unit could be incorporated into Ehuling formation. The subdivision of sequence and the determination of geochronology of the volcanic rock series in Caifang basin provide some references for the study of the late Mesozoic volcanic rocks series of the Sannan-Xunwu volcanic belt. (authors)

  14. Model-based aviation advice on distal volcanic ash clouds by assimilating aircraft in situ measurements

    NARCIS (Netherlands)

    Fu, G.; Heemink, A.; Lu, S.; Segers, A.; Weber, K.; Lin, H.X.

    2016-01-01

    The forecast accuracy of distal volcanic ash clouds is important for providing valid aviation advice during volcanic ash eruption. However, because the distal part of volcanic ash plume is far from the volcano, the influence of eruption information on this part becomes rather indirect and uncertain,

  15. The use of Remote Sensing for the Study of the Relationships Between Tectonics and Volcanism

    Science.gov (United States)

    Chorowicz, J.; Dhont, D.; Yanev, Y.; Bardintzeff, J.

    2004-12-01

    Observations of geometric relationships between tectonics and volcanism is a fruitful approach in geology. On the one hand analysis of the distribution and types of volcanic vents provides information on the geodynamics. On the other hand tectonic analysis explains the location of volcanics vents. Volcanic edifices often result from regional scale deformation, forming open structures constituting preferred pathways for the rise of magmas. Analysis of the shape and the distribution of vents can consequently provide data on the regional deformation. Remote sensing imagery gives synoptic views of the earth surface allowing the analysis of landforms of still active tectonic and volcanic features. Shape and distribution of volcanic vents, together with recent tectonic patterns are best observed by satellite data and Digital Elevation Models than in the field. The use of radar scenes for the study of the structural relationships between tectonic and volcanic features is particularly efficient because these data express sensitive changes in the morphology. In various selected areas, we show that volcanic edifices are located on tension fractures responsible for fissure eruptions, volcanic linear clusters and elongate volcanoes. Different types of volcanic emplacements can be also distinguished such as tail-crack or horse-tail features, and releasing bend basins along strike-slip faults. Caldera complexes seem to be associated to horse-tail type fault terminations. At a regional scale, the distribution of volcanic vents and their relationships with the faults is able to explain the occurrence of volcanism in collisional areas.

  16. Crustal Structure of the Tengchong Intra-plate Volcanic Area

    Science.gov (United States)

    Qian, Rongyi; Tong, Vincent C. H.

    2015-09-01

    We here provide an overview of our current understanding of the crustal structure of Tengchong in southwest China, a key intra-plate volcanic area along the Himalayan geothermal belt. Given that there is hitherto a lack of information about the near-surface structure of intra-plate volcanic areas, we present the first seismic reflection and velocity constraints on the shallow crust between intra-plate volcanoes. Our near-surface seismic images reveal the existence of dome-shaped seismic reflectors (DSRs) in the shallow crust between intra-plate volcanic clusters in Tengchong. The two DSRs are both ~2 km wide, and the shallowest parts of the DSRs are found at the depth of 200-300 m. The velocity model shows that the shallow low-velocity layer (<4 km/s) is anomalously thick (~1 km) in the region where the DSRs are observed. The presence of DSRs indicates significant levels of intra-plate magmatism beneath the along-axis gap separating two volcano clusters. Along-axis gaps between volcano clusters are therefore not necessarily an indicator of lower levels of magmatism. The seismic images obtained in this technically challenging area for controlled-source seismology allow us to conclude that shallow crustal structures are crucial for understanding the along-axis variations of magmatism and hydrothermal activities in intra-plate volcanic areas.

  17. Multivariate statistical tools for the radiometric features of volcanic islands

    International Nuclear Information System (INIS)

    Basile, S.; Brai, M.; Marrale, M.; Micciche, S.; Lanzo, G.; Rizzo, S.

    2009-01-01

    The Aeolian Islands represents a Quaternary volcanic arc related to the subduction of the Ionian plate beneath the Calabrian Arc. The geochemical variability of the islands has led to a broad spectrum of magma rocks. Volcanic products from calc-alkaline (CA) to calc-alkaline high in potassium (HKCA) are present throughout the Archipelago, but products belonging to shoshonitic (SHO) and potassium (KS) series characterize the southern portion of Lipari, Vulcano and Stromboli. Tectonics also plays an important role in the process of the islands differentiation. In this work, we want to review and cross-analyze the data on Lipari, Stromboli and Vulcano, collected in measurement and sampling campaigns over the last years. Chemical data were obtained by X-ray fluorescence. High resolution gamma-ray spectrometry with germanium detectors was used to measure primordial radionuclide activities. The activity of primordial radionuclides in the volcanic products of these three islands is strongly dependent on their chemism. The highest contents are found in more differentiated products (rhyolites). The CA products have lower concentrations, while the HKCA and Shoshonitic product concentrations are in between. Calculated dose rates have been correlated with the petrochemical features in order to gain further insight in evolution and differentiation of volcanic products. Ratio matching technique and multivariate statistical analyses, such as Principal Component Analysis and Minimum Spanning Tree, have been applied as an additional tool helpful to better describe the lithological affinities of the samples. (Author)

  18. Assessment and Evaluation of Volcanic Rocks Used as Construction ...

    African Journals Online (AJOL)

    Assessment and Evaluation of Volcanic Rocks Used as Construction Materials in the City of Addis Ababa. ... So, field observation and sample collection for laboratory investigations were conducted on six selected target areas of the city periphery. In doing so, the compressive strength, open porosity, water absorption and ...

  19. Aluminium fractionation of European volcanic soils by selective dissolution techniques

    NARCIS (Netherlands)

    Garcia-Rodeja, E.; Novoa, J.C.; Pontevedra, X.; Martinez-Cortizas, A.; Buurman, P.

    2004-01-01

    Several selective dissolution methods were used to differentiate Al forms in 12 soils formed from volcanic materials (64 andic, vitric and organic horizons) in Iceland, Azores (Portugal), Tenerife (Spain) and Italy. The soils differ in many properties because of differences in parent materials,

  20. Tephra stratification of volcanic ash soils in Nothern Ecuador

    NARCIS (Netherlands)

    Tonneijck, F.H.; Hageman, J.A.; Sevink, J.; Verstraten, J.M.

    2008-01-01

    We combined proxies traditionally used in stratigraphic research (mineral assemblages, grain size distribution, and element ratios) with soil organic carbon contents and radiocarbon dating both at a high vertical resolution, to unravel the tephra stratigraphy in volcanic ash soils. Our results show

  1. An approach of understanding acid volcanics and tuffaceous ...

    Indian Academy of Sciences (India)

    Sukanta Goswami

    2018-03-06

    Mar 6, 2018 ... Presence of bimodal volcanism is an indication of continental rift setting. Various genetic processes ... relatively fast accumulation and great variety that .... The areas where fall deposits are better preserved ...... nental margin tectonism; Precamb. Res. ... arcs: An example from the Izu–Bonin Arc; J. Petrol. 43.

  2. “Points requiring elucidation” about Hawaiian volcanism: Chapter 24

    Science.gov (United States)

    Poland, Michael P.; Carey, Rebecca; Cayol, Valérie; Poland, Michael P.; Weis, Dominique

    2015-01-01

    Hawaiian volcanoes, which are easily accessed and observed at close range, are among the most studied on the planet and have spurred great advances in the geosciences, from understanding deep Earth processes to forecasting volcanic eruptions. More than a century of continuous observation and study of Hawai‘i's volcanoes has also sharpened focus on those questions that remain unanswered. Although there is good evidence that volcanism in Hawai‘i is the result of a high-temperature upwelling plume from the mantle, the source composition and dynamics of the plume are controversial. Eruptions at the surface build the volcanoes of Hawai‘i, but important topics, including how the volcanoes grow and collapse and how magma is stored and transported, continue to be subjects of intense research. Forecasting volcanic activity is based mostly on pattern recognition, but determining and predicting the nature of eruptions, especially in serving the critical needs of hazards mitigation, require more realistic models and a greater understanding of what drives eruptive activity. These needs may be addressed by better integration among disciplines as well as by developing dynamic physics- and chemistry-based models that more thoroughly relate the physiochemical behavior of Hawaiian volcanism, from the deep Earth to the surface, to geological, geochemical, and geophysical data.

  3. Volcanic rises on Venus: Geology, formation, and sequence of evolution

    Science.gov (United States)

    Senske, D. A.; Stofan, E. R.; Bindschadler, D. L.; Smrekar, S. E.

    1993-01-01

    Large centers of volcanism on Venus are concentrated primarily in the equatorial region of the planet and are associated with regional topographic rises. Analysis of both radar images and geophysical data suggest that these uplands are sites of mantle upwelling. Magellan radar imaging provides a globally contiguous data set from which the geology of these regions is evaluated and compared. In addition, high resolution gravity data currently being collected provide a basis to assess the relationship between these uplands and processes in the planet's interior. Studies of the geology of the three largest volcanic highlands (Beta Regio, Atla Regio, Western Eistla Regio) show them to be distinct, having a range of volcanic and tectonic characteristics. In addition to these large areas, a number of smaller uplands are identified and are being analyzed (Bell Regio, Imdr Regio, Dione Regio (Ushas, Innini, and Hathor Montes), and Themis Regio). To understand better the mechanisms by which these volcanic rises form and evolve, we assess their geologic and geophysical characteristics.

  4. Delineation of a volcanic ash body using electrical resistivity profiling

    International Nuclear Information System (INIS)

    Xia, Jianghai; Ludvigson, Greg; Miller, Richard D; Mayer, Lindsay; Haj, Adel

    2010-01-01

    Four lines of electrical resistivity profiling (ERP) were performed to define the extent of a shallow Quaternary volcanic ash deposit being mined in the United States. Inversion results of ERP proved suitable for defining the thickness and lateral extent of the volcanic ash deposit at this testing site. These interpretations were confirmed by shallow borehole drilling. The model sensitivity information indicates that inverted models possess sufficient resolving power down to a depth of 7 m and are fairly consistent in terms of horizontal resolution along the four ERP lines. The bottom of most of the volcanic ash deposit in the study area is less than 7 m in depth. Based on synthesis of the ERP and drill information, the limits of the mineable ash bed resources were clearly defined. Moreover, by integrating the ERP results with a minimal number of optimally placed borings, the volume of the volcanic ash deposit was established at a lesser cost, and with greater accuracy than would be possible with a traditionally designed grid drilling programme

  5. Analysis of volcanic tephra as a material of environment

    Science.gov (United States)

    Sitek, J.; Dekan, J.; Fang, X.; Xiaoli, P.; Chmielewská, E.

    2012-10-01

    Tephra is a fragmental material produced by volcanic eruption. Here, volcanic tephra deposit from the northeast of China was used for our study. Samples of unaltered tephra are usually composed of feldspar, glass, pyroxene, and olivine. Moreover, these volcanic alteration products also contain Fe oxides, phylosilicates, sulfates, and amorphous Al-Si-bearing material. Six different samples of tephra obtained were analyzed by Mössbauer spectroscopy. A typical Mössbauer spectrum of tephra consists of magnetic and non-magnetic components (magnetic component represents about 11% and non-magnetic component about 89% of spectral area). According to the structural composition, it may be supposed that the magnetic component can be assigned to titanomagnetite. Non-magnetic components contain two quadrupole doublets (Fe2+ species) and one doublet containing Fe3+. According to the measured values of Mössbauer spectra, the first two doublets are very similar with pyroxene, olivine and the third to phylosilicate, aluminosilicate or iron oxide of FeO type. Recently, volcanic tephra was applied as an ecological substance. Special solution was proposed for tephra utilization, especially for phosphate removal from contaminated water.

  6. Permeability of volcanic rocks to gas and water

    Science.gov (United States)

    Heap, M. J.; Reuschlé, T.; Farquharson, J. I.; Baud, P.

    2018-04-01

    The phase (gas or liquid) of the fluids within a porous volcanic system varies in both time and space. Laboratory experiments have shown that gas and water permeabilities can differ for the same rock sample, but experiments are biased towards rocks that contain minerals that are expected react with the pore fluid (such as the reaction between liquid water and clay). We present here the first study that systematically compares the gas and water permeability of volcanic rocks. Our data show that permeabilities to argon gas and deionised water can differ by a factor between two and five in two volcanic rocks (basalt and andesite) over a confining pressure range from 2 to 50 MPa. We suggest here that the microstructural elements that offer the shortest route through the sample-estimated to have an average radius 0.1-0.5 μm using the Klinkenberg slip factor-are accessible to gas, but restricted or inaccessible to water. We speculate that water adsorption on the surface of these thin microstructural elements, assumed here to be tortuous/rough microcracks, reduces their effective radius and/or prevents access. These data have important implications for fluid flow and therefore the distribution and build-up of pore pressure within volcanic systems.

  7. Birth of two volcanic islands in the southern Red Sea

    KAUST Repository

    Xu, Wenbin; Ruch, Joel; Jonsson, Sigurjon

    2015-01-01

    on two new volcanic islands that were formed in the Zubair archipelago of the southern Red Sea in 2011–2013. Using high-resolution optical satellite images, we find that the new islands grew rapidly during their initial eruptive phases and that coastal

  8. Relationships between mineralization and silicic volcanism in the central Andes

    Energy Technology Data Exchange (ETDEWEB)

    Francis, P.W.; Halls, C.; Baker, M.C.W.

    1983-10-01

    Studies of late Tertiary silicic volcanic centers in the Western and Eastern Cordilleras of the Central Andes show that three volcanic environments are appropriate sites for mineralization: (1) ring-fracture extrusions post-dating large calderas; (2) similar extrusions within ignimbrite shields; and (3) isolated, small silicic volcanoes. Subvolcanic tin mineralization in the Eastern Cordillera is located in silicic stocks and associated breccias of Miocene age. The Cerro Rico stock, Potosi, Bolivia, contains tin and silver mineralization and has an intrusion age apparently millions of years younger than that of the associated Kari Kari caldera. Similar age relationships between mineralization and caldera formation have been described from the San Juan province, Colorado. The vein deposits of Chocaya, southern Bolivia, were emplaced in the lower part of an ignimbrite shield, a type of volcanic edifice as yet unrecognized in comparable areas of silicic volcanism. The El Salvador porphyry copper deposit, Chile, is related to silicic stocks which may have been intruded along a caldera ring fracture. Existing models for the genesis of porphyry copper deposits suggest that they formed in granodioritic stocks located in the infrastructure of andesitic stratovolcanoes. The dome of La Soufriere, Guadeloupe is proposed as a modern analog for the surface expression of subvolcanic mineralization processes, the phreatic eruptions there suggesting the formation of hydrothermal breccia bodies in depth.

  9. An Overview of the Soutpansberg Sedimentary and Volcanic Rocks

    Directory of Open Access Journals (Sweden)

    J.W. Bristow

    1986-11-01

    Full Text Available Volcanic and sedimentary rocks occupy a faulted graben within the previously uplifted and eroded high-grade gneiss terrain of the Limpopo Mobile Belt. The rocks comprise the Soutpansberg Group and represent an important sequence of Proterozoic rocks. Their general geology and volcanology is summarised in this paper.

  10. Very recent and wide-spread basaltic volcanism on Mars

    Czech Academy of Sciences Publication Activity Database

    Hauber, E.; Brož, Petr; Jagert, F.; Jodlowski, P.; Platz, T.

    2011-01-01

    Roč. 38, č. 10 (2011), L10201/1-L10201/5 ISSN 0094-8276 Institutional research plan: CEZ:AV0Z30120515 Keywords : volcanism * Mars * Tharsis Subject RIV: DC - Siesmology, Volcanology, Earth Structure Impact factor: 3.792, year: 2011

  11. Spatio-volumetric hazard estimation in the Auckland volcanic field

    Science.gov (United States)

    Bebbington, Mark S.

    2015-05-01

    The idea of a volcanic field `boundary' is prevalent in the literature, but ill-defined at best. We use the elliptically constrained vents in the Auckland Volcanic Field to examine how spatial intensity models can be tested to assess whether they are consistent with such features. A means of modifying the anisotropic Gaussian kernel density estimate to reflect the existence of a `hard' boundary is then suggested, and the result shown to reproduce the observed elliptical distribution. A new idea, that of a spatio-volumetric model, is introduced as being more relevant to hazard in a monogenetic volcanic field than the spatiotemporal hazard model due to the low temporal rates in volcanic fields. Significant dependencies between the locations and erupted volumes of the observed centres are deduced, and expressed in the form of a spatially-varying probability density. In the future, larger volumes are to be expected in the `gaps' between existing centres, with the location of the greatest forecast volume lying in the shipping channel between Rangitoto and Castor Bay. The results argue for tectonic control over location and magmatic control over erupted volume. The spatio-volumetric model is consistent with the hypothesis of a flat elliptical area in the mantle where tensional stresses, related to the local tectonics and geology, allow decompressional melting.

  12. Mylonitic volcanics near Puging, Upper Siang district, Arunachal ...

    Indian Academy of Sciences (India)

    the minor presence of tiny plagioclase indicate that the alkali feldspars might have replaced the plagio- clase grains. However, in the mylonitic volcanics, the alkali feldspars, pyroxenes, actinolites and chlo- ritoids appear as porphyroclasts in a matrix dom- inated by feldspar, pyroxene in a calcareous and cherty matrix.

  13. Triassic volcanic units in coastal region of Antofagasta, northern Chile

    International Nuclear Information System (INIS)

    Basso, M.; Cortes, J.A.; Marinovic, N

    2001-01-01

    U-Pb geochronological evidence of a Middle to Late Triassic volcanic event was found in the coastal region of Antofagasta, northern Chile (23 o -23 o 30 ). Two new ages were obtained from rhyolitic tuffs and an associated dome, which have classically been attributed to the Jurassic La Negra Formation (au)

  14. Unzen volcanic rocks as heat source of geothermal activity

    Energy Technology Data Exchange (ETDEWEB)

    Hayashi, Masao; Sugiyama, Hiromi

    1987-03-25

    Only a few radiometric ages have been reported so far for the Unzen volcanic rocks. In this connection, in order to clarify the relation between volcanism and geothermal activity, fission track ages of zircon seperated from the Unzen volcanic rocks in western Kyushu have been dated. Since all the rocks are thought to be young, the external surface re-etch method was adopted. The results are that the age and standard error of the basal volcaniclastic rocks of the Tatsuishi formation are 0.28 +- 0.05 Ma and 0.25 +- 0.05 Ma. The next oldest Takadake lavas range from 0.26 to 0.20 Ma. The Kusenbudake lavas fall in a narrow range from 0.19 to 0.17 Ma. The latest Fugendake lavas are younger than 0.07 Ma.In conclusion, the most promising site for geothermal power generation is the Unzen hot spring field because of its very high temperature. After that, comes the Obama hot spring field because of the considerable high temperature chemically estimated. In addition, the northwestern area of the Unzen volcanic region will be promising for electric power generation in spite of no geothermal manifestations, since its volcanos are younger than 0.2 Ma. (14 figs, 14 tabs, 22 refs)

  15. Natural radioactivity in volcanic ash from Mt. Pinatubo eruption

    International Nuclear Information System (INIS)

    Duran, E.B.; De Vera, C.M.; Garcia, T.Y.; Dela Cruz, F.M.; Esguerra, L.V.; Castaneda, S.S.

    1992-01-01

    Last June 15, 1991, a major pyroclastic eruption occurred from Mt. Pinatubo volcano located in Zambales, Central Luzon. The radiological impact of this eruption was assessed based on the concentrations of the principal naturally occurring radionuclides observed in volcanic ash. The volcanic ash samples were collected from locations which are within 50-km radius of Mt. Pinatubo at various times after the eruption. The mean activity concentrations in Bq/kg wet weight of the natural radionuclides in volcanic ash were as follows: 12.6 for 238 U, 14.0 for 232 Th and 330 for 40 K. These values are significantly higher than the mean activity concentrations of these radionuclides observed in topsoil in the same provinces before the eruption. This suggests that with the deposition of large quantities of volcanic ash and lahar in Central Luzon and concomitant topographic changes, the distribution and quantities of radionuclides which gave rise to terrestrial radiation may have also changed. Outdoor radon concentrations measured three days and later after the eruption were within normal background values. (auth.). 4 refs.; 5 tabs.; 1 fig

  16. Meteorological Controls on Local and Regional Volcanic Ash Dispersal.

    Science.gov (United States)

    Poulidis, Alexandros P; Phillips, Jeremy C; Renfrew, Ian A; Barclay, Jenni; Hogg, Andrew; Jenkins, Susanna F; Robertson, Richard; Pyle, David M

    2018-05-02

    Volcanic ash has the capacity to impact human health, livestock, crops and infrastructure, including international air traffic. For recent major eruptions, information on the volcanic ash plume has been combined with relatively coarse-resolution meteorological model output to provide simulations of regional ash dispersal, with reasonable success on the scale of hundreds of kilometres. However, to predict and mitigate these impacts locally, significant improvements in modelling capability are required. Here, we present results from a dynamic meteorological-ash-dispersion model configured with sufficient resolution to represent local topographic and convectively-forced flows. We focus on an archetypal volcanic setting, Soufrière, St Vincent, and use the exceptional historical records of the 1902 and 1979 eruptions to challenge our simulations. We find that the evolution and characteristics of ash deposition on St Vincent and nearby islands can be accurately simulated when the wind shear associated with the trade wind inversion and topographically-forced flows are represented. The wind shear plays a primary role and topographic flows a secondary role on ash distribution on local to regional scales. We propose a new explanation for the downwind ash deposition maxima, commonly observed in volcanic eruptions, as resulting from the detailed forcing of mesoscale meteorology on the ash plume.

  17. A submarine volcanic eruption leads to a novel microbial habitat.

    Science.gov (United States)

    Danovaro, Roberto; Canals, Miquel; Tangherlini, Michael; Dell'Anno, Antonio; Gambi, Cristina; Lastras, Galderic; Amblas, David; Sanchez-Vidal, Anna; Frigola, Jaime; Calafat, Antoni M; Pedrosa-Pàmies, Rut; Rivera, Jesus; Rayo, Xavier; Corinaldesi, Cinzia

    2017-04-24

    Submarine volcanic eruptions are major catastrophic events that allow investigation of the colonization mechanisms of newly formed seabed. We explored the seafloor after the eruption of the Tagoro submarine volcano off El Hierro Island, Canary Archipelago. Near the summit of the volcanic cone, at about 130 m depth, we found massive mats of long, white filaments that we named Venus's hair. Microscopic and molecular analyses revealed that these filaments are made of bacterial trichomes enveloped within a sheath and colonized by epibiotic bacteria. Metagenomic analyses of the filaments identified a new genus and species of the order Thiotrichales, Thiolava veneris. Venus's hair shows an unprecedented array of metabolic pathways, spanning from the exploitation of organic and inorganic carbon released by volcanic degassing to the uptake of sulfur and nitrogen compounds. This unique metabolic plasticity provides key competitive advantages for the colonization of the new habitat created by the submarine eruption. A specialized and highly diverse food web thrives on the complex three-dimensional habitat formed by these microorganisms, providing evidence that Venus's hair can drive the restart of biological systems after submarine volcanic eruptions.

  18. Volcanic Eruptions as the Cause of the Little Ice Age

    Science.gov (United States)

    Zambri, B.; Robock, A.

    2017-12-01

    Both external forcing (solar radiation, volcanic eruptions) and internal fluctuations have been proposed to explain such multi-centennial perturbations as the Little Ice Age. Confidence in these hypotheses is limited due to the limited number of proxies, as well as only one observed realization of the Last Millennium. Here, we evaluate different hypotheses on the origin of Little Ice Age-like anomalies, focusing in particular on the long-term response of North Atlantic and Arctic climate perturbations to solar and volcanic perturbations. For that, we conduct a range of sensitivity tests carried out with the Community Earth System Model (CESM) at the National Center for Atmospheric Research, focusing in particular on the sensitivity to initial conditions and the strength of solar and volcanic forcing. By comparing the climate response to various combinations of external perturbations, we demonstrate nonlinear interactions that are necessary to explain trends observed in the fully coupled system and discuss physical mechanisms through which these external forcings can trigger multidecadal modes of the Atlantic Multidecadal Oscillation and subsequently lead to a Little-Ice-Age-like regime. For that, we capture and compare patterns of the coupled atmosphere-sea-ice-ocean response as revealed through a range of data analysis techniques. We show that the large 1257 Samalas, 1452 Kuwae, and 1600 Huaynaputina volcanic eruptions were the main causes of the multi-centennial glaciation associated with the Little Ice Age.

  19. Handbook for Volcanic Risk Management: an outcome from MIAVITA project

    Science.gov (United States)

    Bignami, Christian; Bosi, Vittorio; Costantini, Licia; Cristiani, Chiara; Lavigne, Franck; Thierry, Pierre

    2013-04-01

    Volcanic eruptions are one of the most impressive, violent and dramatic agents of change on Earth, threatening hundreds of millions of people. The crises management implies a strong cooperation among the main stakeholders (e.g., civil protection authorities, scientific institutions, operational forces). Considering the great amount of different actions required during the whole volcanic cycle (e.g., preparedness, unrest phase, crisis management, resilience), the role and responsibilities of stakeholders should be clarified in advance. In particular, the role of scientists, fundamental in all the phases, should be well discussed with the other stakeholders and well defined, for every country. This will allow a better management and response, and contribute to avoid misunderstanding. The new "Handbook for Volcanic Risk Management" issued by the MIAVITA European project, funded by the European Commission (Mitigate and Assess risk from Volcanic Impact on Terrain and human Activities) gives a contribution to that. Indeed, this handbook aims at synthesizing the acquired knowledge on volcanic risk management, such as prevention, preparedness, mitigation, intervention, crisis management and resilience, in a practical and useful way. It promotes the creation of an ideal bridge between different actors involved in risk management, improving and facilitating interactions among authorities and scientists. This work is based on current scientific research and the shared experience of the different MIAVITA project partners as well as on international good practices previously recommended. The handbook is composed of six sections. The first one briefly explains the global volcanic context and the principles of corresponding risk management. Section 2 contains a description of volcanic phenomena, damage and understanding size and effects that can be expected. Sections 3, 4 and 5 meet preparation and prevention issues and describe actions to be undertaken during the response phase

  20. Global Volcanism on Mercury at About 3.8 Ga

    Science.gov (United States)

    Byrne, P. K.; Ostrach, L. R.; Denevi, B. W.; Head, J. W., III; Hauck, S. A., II; Murchie, S. L.; Solomon, S. C.

    2014-12-01

    Smooth plains occupy c. 27% of the surface of Mercury. Embayment relations, spectral contrast with surroundings, and morphologic characteristics indicate that the majority of these plains are volcanic. The largest deposits are located in Mercury's northern hemisphere and include the extensive northern plains (NP) and the Caloris interior and exterior plains (with the latter likely including basin material). Both the NP and Caloris deposits are, within statistical error, the same age (~3.8-3.9 Ga). To test whether this age reflects a period of global volcanism on Mercury, we determined crater size-frequency distributions for four smooth plains units in the planet's southern hemisphere interpreted to be volcanic. Two deposits are situated within the Beethoven and Tolstoj impact basins; two are located close to the Debussy and the Alver and Disney basins, respectively. Each deposit hosts two populations of craters, one that postdates plains emplacement and one that consists of partially to nearly filled craters that predate the plains. This latter population indicates that some time elapsed between formation of the underlying basement and plains volcanism, though we cannot statistically resolve this interval at any of the four sites. Nonetheless, we find that the age given by the superposed crater population in each case is ~3.8 Ga, and crater density values are consistent with those for the NP and Caloris plains. This finding supports a global phase of volcanism near the end of the late heavy bombardment of Mercury and may indicate a period of widespread partial melting of Mercury's mantle. Notably, superposition relations between smooth plains, degraded impact structures, and contractional landforms suggest that by this time interior cooling had already placed Mercury's lithosphere in horizontal compression, tending to inhibit voluminous dike-fed volcanism such as that inferred responsible for the NP. Most smooth plains units, including the Caloris plains and our

  1. Agricultural Fragility Estimates Subjected to Volcanic Ash Fall Hazards

    Science.gov (United States)

    Ham, H. J.; Lee, S.; Choi, S. H.; Yun, W. S.

    2015-12-01

    Agricultural Fragility Estimates Subjected to Volcanic Ash Fall Hazards Hee Jung Ham1, Seung-Hun Choi1, Woo-Seok Yun1, Sungsu Lee2 1Department of Architectural Engineering, Kangwon National University, Korea 2Division of Civil Engineering, Chungbuk National University, Korea ABSTRACT In this study, fragility functions are developed to estimate expected volcanic ash damages of the agricultural sector in Korea. The fragility functions are derived from two approaches: 1) empirical approach based on field observations of impacts to agriculture from the 2006 eruption of Merapi volcano in Indonesia and 2) the FOSM (first-order second-moment) analytical approach based on distribution and thickness of volcanic ash observed from the 1980 eruption of Mt. Saint Helens and agricultural facility specifications in Korea. Fragility function to each agricultural commodity class is presented by a cumulative distribution function of the generalized extreme value distribution. Different functions are developed to estimate production losses from outdoor and greenhouse farming. Seasonal climate influences vulnerability of each agricultural crop and is found to be a crucial component in determining fragility of agricultural commodities to an ash fall. In the study, the seasonality coefficient is established as a multiplier of fragility function to consider the seasonal vulnerability. Yields of the different agricultural commodities are obtained from Korean Statistical Information Service to create a baseline for future agricultural volcanic loss estimation. Numerically simulated examples of scenario ash fall events at Mt. Baekdu volcano are utilized to illustrate the application of the developed fragility functions. Acknowledgements This research was supported by a grant 'Development of Advanced Volcanic Disaster Response System considering Potential Volcanic Risk around Korea' [MPSS-NH-2015-81] from the Natural Hazard Mitigation Research Group, Ministry of Public Safety and Security of

  2. Effects of Volcanic Eruptions on Stratospheric Ozone Recovery

    Science.gov (United States)

    Rosenfield, Joan E.

    2002-01-01

    The effects of the stratospheric sulfate aerosol layer associated with the Mt. Pinatubo volcano and future volcanic eruptions on the recovery of the ozone layer is studied with an interactive two-dimensional photochemical model. The time varying chlorine loading and the stratospheric cooling due to increasing carbon dioxide have been taken into account. The computed ozone and temperature changes associated with the Mt. Pinatubo eruption in 1991 agree well with observations. Long model runs out to the year 2050 have been carried out, in which volcanoes having the characteristics of the Mount Pinatubo volcano were erupted in the model at 10-year intervals starting in the year 2010. Compared to a non-volcanic run using background aerosol loading, transient reductions of globally averaged column ozone of 2-3 percent were computed as a result of each of these eruptions, with the ozone recovering to that computed for the non-volcanic case in about 5 years after the eruption. Computed springtime Arctic column ozone losses of from 10 to 18 percent also recovered to the non-volcanic case within 5 years. These results suggest that the long-term recovery of ozone would not be strongly affected by infrequent volcanic eruptions with a sulfur loading approximating Mt. Pinatubo. Sensitivity studies in which the Arctic lower stratosphere was forced to be 4 K and 10 K colder resulted in transient ozone losses of which also recovered to the non-volcanic case in 5 years. A case in which a volcano five times Mt. Pinatubo was erupted in the year 2010 led to maximum springtime column ozone losses of 45 percent which took 10 years to recover to the background case. Finally, in order to simulate a situation in which frequent smaller volcanic eruptions result in increasing the background sulfate loading, a simulation was made in which the background aerosol was increased by 10 percent per year. This resulted in a delay of the recovery of column ozone to 1980 values of more than 10 years.

  3. Diffuse Helium Emission as a Precursory Sign of Volcanic Unrest

    Science.gov (United States)

    Padron, E.; Perez, N.; Hernandez Perez, P. A.; Sumino, H.; Melian Rodriguez, G.; Barrancos, J.; Nolasco, D.; Padilla, G.; Dionis, S.; Rodriguez, F.; Hernandez, I.; Calvo, D.; Peraza, M.; Nagao, K.

    2012-12-01

    Since July 16, 2011, an anomalous seismicity at El Hierro island, the youngest and smallest of the Canary Islands, was recorded by IGN seismic network. After the occurrence of more than 10,000 seismic events, volcanic tremor was recorded since 05:15 of the October 10, by all of the seismic stations on the island, with highest amplitudes recorded in the southernmost station. During the afternoon of October 12 a large light-green coloured area was observed in the sea to the souht of La Restinga village (at the southernmost part of El Hierro island), suggesting the existence of a submarine eruption. Since October 12, frequent episodes of, turbulent gas emission and foaming, and the appearance of steamy lava fragments has been observed on the sea surface. As part of the volcanic surveillance of the island, the Instituto Volcanologico de Canarias (INVOLCAN) geochemical monitoring program is carrying out diffuse helium surveys on the surface environment of El Hierro (soil atmosphere). This nobel gas has been investigated because it has been considered an almost ideal geochemical indicator because it is chemically inert, physically stable, nonbiogenic, sparingly soluble in water under ambient conditions and almost non-adsorbable. At each survey, 600 sampling sites covering the whole island and following an homogeneous distribution are selected for helium measurements in the soil gases, The helium concentration gradients with respect to its value on air (5.24 ppm) allow us to estimate a pure diffusive emission rate of helium throughout the island. The first survey was carried out on the summer of 2003, when the island was on a quiescence period. At this survey, the amount of helium released by the volcanic system of El Hierro was estimated in 6 kg/d. Since the beginning of the seismic unrest, 13 helium emission surveys have been carried out. The helium emission rate has shown an excellent agreement with the evolution of the volcanic crisis of the island, reaching 30 kg

  4. Constraining volcanic inflation at Three Sisters Volcanic Field in Oregon, USA, through microgravity and deformation modeling

    Science.gov (United States)

    Zurek, Jeffrey; William-Jones, Glyn; Johnson, Dan; Eggers, Al

    2012-10-01

    Microgravity data were collected between 2002 and 2009 at the Three Sisters Volcanic Complex, Oregon, to investigate the causes of an ongoing deformation event west of South Sister volcano. Three different conceptual models have been proposed as the causal mechanism for the deformation event: (1) hydraulic uplift due to continual injection of magma at depth, (2) pressurization of hydrothermal systems and (3) viscoelastic response to an initial pressurization at depth. The gravitational effect of continual magma injection was modeled to be 20 to 33 μGal at the center of the deformation field with volumes based on previous deformation studies. The gravity time series, however, did not detect a mass increase suggesting that a viscoelactic response of the crust is the most likely cause for the deformation from 2002 to 2009. The crust, deeper than 3 km, in the Three Sisters region was modeled as a Maxwell viscoelastic material and the results suggest a dynamic viscosity between 1018 to 5 × 1019 Pa s. This low crustal viscosity suggests that magma emplacement or stall depth is controlled by density and not the brittle ductile transition zone. Furthermore, these crustal properties and the observed geochemical composition gaps at Three Sisters can be best explained by different melt sources and limited magma mixing rather than fractional crystallization. More generally, low intrusion rates, low crustal viscosity, and multiple melt sources could also explain the whole rock compositional gaps observed at other arc volcanoes.

  5. Volcanic signatures in time gravity variations during the volcanic unrest on El Hierro (Canary Islands)

    Science.gov (United States)

    Sainz-Maza Aparicio, S.; Arnoso Sampedro, J.; Gonzalez Montesinos, F.; Martí Molist, J.

    2014-06-01

    Gravity changes occurring during the initial stage of the 2011-2012 El Hierro submarine eruption are interpreted in terms of the preeruptive signatures during the episode of unrest. Continuous gravity measurements were made at two sites on the island using the relative spring gravimeter LaCoste and Romberg gPhone-054. On 15 September 2011, an observed gravity decrease of 45 μGal, associated with the southward migration of seismic epicenters, is consistent with a lateral magma migration that occurred beneath the volcanic edifice, an apparently clear precursor of the eruption that took place 25 days later on 10 October 2011. High-frequency gravity signals also appeared on 6-11 October 2011, pointing to an occurring interaction between a magmatic intrusion and the ocean floor. These important gravity changes, with amplitudes varying from 10 to -90 μGal, during the first 3 days following the onset of the eruption are consistent with the northward migration of the eruptive focus along an active eruptive fissure. An apparent correlation of gravity variations with body tide vertical strain was also noted, which could indicate that concurrent tidal triggering occurred during the initial stage of the eruption.

  6. Seismic network based detection, classification and location of volcanic tremors

    Science.gov (United States)

    Nikolai, S.; Soubestre, J.; Seydoux, L.; de Rosny, J.; Droznin, D.; Droznina, S.; Senyukov, S.; Gordeev, E.

    2017-12-01

    Volcanic tremors constitute an important attribute of volcanic unrest in many volcanoes, and their detection and characterization is a challenging issue of volcano monitoring. The main goal of the present work is to develop a network-based method to automatically classify volcanic tremors, to locate their sources and to estimate the associated wave speed. The method is applied to four and a half years of seismic data continuously recorded by 19 permanent seismic stations in the vicinity of the Klyuchevskoy volcanic group (KVG) in Kamchatka (Russia), where five volcanoes were erupting during the considered time period. The method is based on the analysis of eigenvalues and eigenvectors of the daily array covariance matrix. As a first step, following Seydoux et al. (2016), most coherent signals corresponding to dominating tremor sources are detected based on the width of the covariance matrix eigenvalues distribution. With this approach, the volcanic tremors of the two volcanoes known as most active during the considered period, Klyuchevskoy and Tolbachik, are efficiently detected. As a next step, we consider the array covariance matrix's first eigenvectors computed every day. The main hypothesis of our analysis is that these eigenvectors represent the principal component of the daily seismic wavefield and, for days with tremor activity, characterize the dominant tremor sources. Those first eigenvectors can therefore be used as network-based fingerprints of tremor sources. A clustering process is developed to analyze this collection of first eigenvectors, using correlation coefficient as a measure of their similarity. Then, we locate tremor sources based on cross-correlations amplitudes. We characterize seven tremor sources associated with different periods of activity of four volcanoes: Tolbachik, Klyuchevskoy, Shiveluch, and Kizimen. The developed method does not require a priori knowledge, is fully automatic and the database of network-based tremor fingerprints

  7. [Effects of volcanic eruptions on environment and health].

    Science.gov (United States)

    Zuskin, Eugenija; Mustajbegović, Jadranka; Doko Jelinić, Jagoda; Pucarin-Cvetković, Jasna; Milosević, Milan

    2007-12-01

    Volcanoes pose a threat to almost half a billion people; today there are approximately 500 active volcanoes on Earth, and every year there are 10 to 40 volcanic eruptions. Volcanic eruptions produce hazardous effects for the environment, climate, and the health of the exposed persons, and are associated with the deterioration of social and economic conditions. Along with magma and steam (H2O), the following gases surface in the environment: carbon dioxide (CO2) and sulphur dioxide (SO2), carbon monoxide (CO), hydrogen sulphide (H2S), carbon sulphide (CS), carbon disulfide (CS2), hydrogen chloride (HCl), hydrogen (H2), methane (CH4), hydrogen fluoride (HF), hydrogen bromide (HBr) and various organic compounds, as well as heavy metals (mercury, lead, gold).Their unfavourable effects depend on the distance from a volcano, on magma viscosity, and on gas concentrations. The hazards closer to the volcano include pyroclastic flows, flows of mud, gases and steam, earthquakes, blasts of air, and tsunamis. Among the hazards in distant areas are the effects of toxic volcanic ashes and problems of the respiratory system, eyes and skin, as well as psychological effects, injuries, transport and communication problems, waste disposal and water supplies issues, collapse of buildings and power outage. Further effects are the deterioration of water quality, fewer periods of rain, crop damages, and the destruction of vegetation. During volcanic eruptions and their immediate aftermath, increased respiratory system morbidity has been observed as well as mortality among those affected by volcanic eruptions. Unfavourable health effects could partly be prevented by timely application of safety measures.

  8. Geochemical characterization of Parana Basin volcanic rocks: petrogenetic implications

    International Nuclear Information System (INIS)

    Marques, L.S.

    1988-01-01

    A detailed study of the geochemical characteristics of Parana Basin volcanic rocks is presented. The results are based on the analyses of major and trace elements of 158 samples. Ninety three of these volcanic samples belong to 8 flow sequences from Rio Grande do Sul and Santa Catarina States. The remaining sixty five samples are distributed over the entire basin. In order to study the influence of crustal contamination processes in changing chemical characteristics of the volcanic rocks, 47 samples representative of the crystalline basement of the southern and southeastern Parana Basin were also analysed. Several petrogenetic models were tested to explain the compocional variability of the volcanic rocks, in particular those of southern region. The results obtained sugest an assimilation-fractional crystallization process as viable to explain the differences of both the chemical characteristics and Sr isotope initial ratios observed in basic and intermediate rocks. A model involving melting processes of basic material, trapped at the base of the crust, with composition similar to low and high TiO 2 basalts appears to be a possibility to originate the Palmas and Chapeco acid melts, respectively. The study of ''uncontaminated'' or poorly contaminated low TiO 2 basic rocks from the southern, central and northern regions shows the existence of significant differences in the geochemical charactetistics according to their geographical occurrence. A similar geochemical diversity is also observed in high TiO 2 basalts and Chapeco volcanics. Differences in incompatible element ratios between low and high TiO 2 ''uncontaminated'' or poorly contaminated basalts suggest that they could have been produced by different degrees of melting in a garnet peridotite source. Geochemical and isotopic (Sr and Nd) data also support the view that basalts from northern and southern regions of Parana Basin originated from mantle source with different composition. (author) [pt

  9. Review of the petrology of the Auckland Volcanic Field

    International Nuclear Information System (INIS)

    Smith, I.E.M.; McGee, L.E.; Lindsay, J.M.

    2009-01-01

    Research has long shown that the petrology of suites of volcanic rock can be used to define and understand the fundamental parameters of the magmatic systems that feed volcanoes. The geochemistry of volcanic rocks provides information about the nature of the source rocks, depths and amounts of melting, the processes that act on magmas as they rise to the surface and, most importantly, the rates of these processes. In turn, the answers to fundamental petrological questions can provide input to important questions concerning volcano hazard scenarios and hazard mitigation challenges. The multi-disciplinary DEVORA research programme, launched in 2008, is a GNS Science-University of Auckland collaboration with the aim of DEtermining VOlcanic Risk in Auckland. One of its main themes is the development of an integrated geological model for the Auckland Volcanic Field (AVF) by investigating the physical controls on magma generation, ascent and eruption though detailed structural and petrological investigations. A key data set underpinning this theme is a comprehensive geochemical database for the rocks of the AVF. This report, Review of the Petrology of the Auckland Volcanic Field, is a synthesis and commentary of all petrological and geochemical data currently available for the AVF. It represents one of several reports carried out as part of the 'synthesis' phase of DEVORA, whereby existing data from previous work is collated and summarised, so that gaps in current knowledge can be appropriately addressed. In this report we utilise published and unpublished sources to summarise the petrological data available up to May 2009, and identify where new data and approaches will improve our understanding of the magmatic system which feeds the field. (author). 53 refs., 7 figs., 2 tabs.

  10. Scientific Drilling in a Central Italian Volcanic District

    Directory of Open Access Journals (Sweden)

    Paola Montone

    2007-09-01

    Full Text Available The Colli Albani Volcanic District, located 15 km SE of Rome (Fig. 1, is part of the Roman Magmatic Province, a belt of potassic to ultra-potassic volcanic districts that developed along the Tyrrhenian Sea margin since Middle Pleistocene time (Conticelli and Peccerillo, 1992; Marra et al., 2004; Giordano et al., 2006 and references therein. Eruption centers are aligned along NW-SE oriented majorextensional structures guiding the dislocation of Meso-Cenozoic siliceous-carbonate sedimentary successions at the rear of the Apennine belt. Volcanic districts developed in structural sectors with most favorable conditions for magma uprise. In particular, the Colli Albani volcanism is located in a N-S shear zone where it intersects the extensional NW- and NE-trending fault systems. In the last decade, geochronological measurements allowed for reconstructions of the eruptive history and led to the classification as "dormant" volcano. The volcanic history may be roughly subdivided into three main phases marked by different eruptive mechanisms andmagma volumes. The early Tuscolano-Artemisio Phase (ca. 561–351 ky, the most explosive and voluminous one, is characterized by five large pyroclastic flow-forming eruptions. After a ~40-ky-long dormancy, a lesser energetic phase of activity took place (Faete Phase; ca. 308–250 ky, which started with peripheral effusive eruptions coupled with subordinate hydromagmatic activity. A new ~50-ky-long dormancypreceded the start of the late hydromagmatic phase (ca. 200–36 ky, which was dominated by pyroclastic-surge eruptions, with formation of several monogenetic or multiple maars and/or tuff rings.

  11. Using Satellite Observations to Evaluate the AeroCOM Volcanic Emissions Inventory and the Dispersal of Volcanic SO2 Clouds in MERRA

    Science.gov (United States)

    Hughes, Eric J.; Krotkov, Nickolay; da Silva, Arlindo; Colarco, Peter

    2015-01-01

    Simulation of volcanic emissions in climate models requires information that describes the eruption of the emissions into the atmosphere. While the total amount of gases and aerosols released from a volcanic eruption can be readily estimated from satellite observations, information about the source parameters, like injection altitude, eruption time and duration, is often not directly known. The AeroCOM volcanic emissions inventory provides estimates of eruption source parameters and has been used to initialize volcanic emissions in reanalysis projects, like MERRA. The AeroCOM volcanic emission inventory provides an eruptions daily SO2 flux and plume top altitude, yet an eruption can be very short lived, lasting only a few hours, and emit clouds at multiple altitudes. Case studies comparing the satellite observed dispersal of volcanic SO2 clouds to simulations in MERRA have shown mixed results. Some cases show good agreement with observations Okmok (2008), while for other eruptions the observed initial SO2 mass is half of that in the simulations, Sierra Negra (2005). In other cases, the initial SO2 amount agrees with the observations but shows very different dispersal rates, Soufriere Hills (2006). In the aviation hazards community, deriving accurate source terms is crucial for monitoring and short-term forecasting (24-h) of volcanic clouds. Back trajectory methods have been developed which use satellite observations and transport models to estimate the injection altitude, eruption time, and eruption duration of observed volcanic clouds. These methods can provide eruption timing estimates on a 2-hour temporal resolution and estimate the altitude and depth of a volcanic cloud. To better understand the differences between MERRA simulations and volcanic SO2 observations, back trajectory methods are used to estimate the source term parameters for a few volcanic eruptions and compared to their corresponding entry in the AeroCOM volcanic emission inventory. The nature of

  12. Nature and origin of secondary mineral coatings on volcanic rocks of the Black Mountain, Stonewall Mountain, and Kane Springs Wash volcanic centers, southern, Nevada

    Science.gov (United States)

    Taranik, James V.; Hsu, Liang C.; Spatz, David M.; Chenevey, Michael J.

    1989-01-01

    The following subject areas are covered: (1) genetic, spectral, and LANDSAT Thematic Mapper imagery relationship between desert varnish and tertiary volcanic host rocks, southern Nevada; (2) reconnaissance geologic mapping of the Kane Springs Wash Volcanic Center, Lincoln County, Nevada, using multispectral thermal infrared imagery; (3) interregional comparisons of desert varnish; and (4) airborne scanner (GERIS) imagery of the Kane Springs Wash Volcanic Center, Lincoln County, Nevada.

  13. Community food environment measures in the Alabama Black Belt: Implications for cancer risk reduction

    Science.gov (United States)

    Gyawu, Rebecca; Quansah, Joseph E.; Fall, Souleymane; Gichuhi, Peter N.; Bovell-Benjamin, Adelia C.

    2015-01-01

    In-store measures were utilized to evaluate the availability of healthy food choices and nutrition/health promotion messages for cancer risk reduction in the selected Alabama Black Belt counties/cities. Sixty one retail food outlets (RFOs) were audited in 12 Alabama Black Belt cities. Store types included convenience stores (49.2%), restaurants (19.7%), fast food restaurants (16.4%), small supermarkets (8.2%), and large supermarket and farmers' markets (3.3 %), respectively. Although there were low numbers of farmers' markets/street stands and large supermarkets, these had significantly (p food environment had limited opportunities for healthy food choices. PMID:26844138

  14. Community food environment measures in the Alabama Black Belt: Implications for cancer risk reduction

    Directory of Open Access Journals (Sweden)

    Rebecca Gyawu

    2015-01-01

    Full Text Available In-store measures were utilized to evaluate the availability of healthy food choices and nutrition/health promotion messages for cancer risk reduction in the selected Alabama Black Belt counties/cities. Sixty one retail food outlets (RFOs were audited in 12 Alabama Black Belt cities. Store types included convenience stores (49.2%, restaurants (19.7%, fast food restaurants (16.4%, small supermarkets (8.2%, and large supermarket and farmers' markets (3.3 %, respectively. Although there were low numbers of farmers' markets/street stands and large supermarkets, these had significantly (p < 0.0001 higher health scores than the other store types. A few health promotion messages were highly visible or obscurely positioned in some RFOs. The Alabama Black Belt food environment had limited opportunities for healthy food choices.

  15. Time of uplift and thermal history of the Papuan Fold-belt -implications for hydrocarbon potential

    International Nuclear Information System (INIS)

    Hill, K.C.

    1987-01-01

    Apatite fission track analysis of 35 Mesozoic sandstone and basement samples from outcrop, core and cuttings from the Papuan Fold-Belt(PFB) has demonstrated that the rocks throughout the fold-belt were uplifted close to 4.0±0.5 Ma. With increasing temperature, fission tracks in apatite crystals are progressively annealed, becoming shorter and less abundant, therefore giving a reduced apparent age. At temperatures of 100 deg.C. - 130 deg.C. the track damage is repaired (complete annealing). A typical partial annealing zone is illustrated. By comparing the annealing curves of the various stratigraphic sections with the idealized partial annealing zone curve, it is possible to determine the thermal maturity of each section, shown by the relative depths of burial of the Toro sandstone, the main hydrocarbon reservoir. Determining depth of burial assumes a consistent temperature gradient throughout the PFB, but increased thermal maturity could also be caused by higher local heat flow. From this analysis it is inferred that in the western PFB the rocks were more deeply buried, so would have generated gas-condensate, whilst shallower burial to the east allowed oil generation. This concurs with the gas-condensate at Juha, in the west, and oil at Iagifu, in the east. 4 refs

  16. Deriving spatial patterns from a novel database of volcanic rock geochemistry in the Virunga Volcanic Province, East African Rift

    Science.gov (United States)

    Poppe, Sam; Barette, Florian; Smets, Benoît; Benbakkar, Mhammed; Kervyn, Matthieu

    2016-04-01

    The Virunga Volcanic Province (VVP) is situated within the western branch of the East-African Rift. The geochemistry and petrology of its' volcanic products has been studied extensively in a fragmented manner. They represent a unique collection of silica-undersaturated, ultra-alkaline and ultra-potassic compositions, displaying marked geochemical variations over the area occupied by the VVP. We present a novel spatially-explicit database of existing whole-rock geochemical analyses of the VVP volcanics, compiled from international publications, (post-)colonial scientific reports and PhD theses. In the database, a total of 703 geochemical analyses of whole-rock samples collected from the 1950s until recently have been characterised with a geographical location, eruption source location, analytical results and uncertainty estimates for each of these categories. Comparative box plots and Kruskal-Wallis H tests on subsets of analyses with contrasting ages or analytical methods suggest that the overall database accuracy is consistent. We demonstrate how statistical techniques such as Principal Component Analysis (PCA) and subsequent cluster analysis allow the identification of clusters of samples with similar major-element compositions. The spatial patterns represented by the contrasting clusters show that both the historically active volcanoes represent compositional clusters which can be identified based on their contrasted silica and alkali contents. Furthermore, two sample clusters are interpreted to represent the most primitive, deep magma source within the VVP, different from the shallow magma reservoirs that feed the eight dominant large volcanoes. The samples from these two clusters systematically originate from locations which 1. are distal compared to the eight large volcanoes and 2. mostly coincide with the surface expressions of rift faults or NE-SW-oriented inherited Precambrian structures which were reactivated during rifting. The lava from the Mugogo

  17. First volcanic CO2 budget estimate for three actively degassing volcanoes in the Central American Volcanic Arc

    Science.gov (United States)

    Robidoux, Philippe; Aiuppa, Alessandro; Conde, Vladimir; Galle, Bo; Giudice, Gaetano; Avard, Geoffroy; Muñoz, Angélica

    2014-05-01

    CO2 is a key chemical tracer for exploring volcanic degassing mechanisms of basaltic magmatic systems (1). The rate of CO2 release from sub-aerial volcanism is monitored via studies on volcanic plumes and fumaroles, but information is still sparse and incomplete for many regions of the globe, including the majority of the volcanoes in the Central American Volcanic Arc (2). Here, we use a combination of remote sensing techniques and in-situ measurements of volcanic gas plumes to provide a first estimate of the CO2 output from three degassing volcanoes in Central America: Turrialba, in Costa Rica, and Telica and San Cristobal, in Nicaragua. During a field campaign in March-April 2013, we obtained (for the three volcanoes) a simultaneous record of SO2 fluxes (from the NOVAC network (3)) and CO2 vs. SO2 concentrations in the near-vent plumes (obtained via a temporary installed fully-automated Multi-GAS instrument (4)). The Multi-GAS time-series allowed to calculate the plume CO2/SO2 ratios for different intervals of time, showing relatively stable gas compositions. Distinct CO2 - SO2 - H2O proportions were observed at the three volcanoes, but still within the range of volcanic arc gas (5). The CO2/SO2 ratios were then multiplied by the SO2 flux in order to derive the CO2 output. At Turrialba, CO2/SO2 ratios fluctuated, between March 12 and 19, between 1.1 and 5.7, and the CO2flux was evaluated at ~1000-1350 t/d (6). At Telica, between March 23 and April 8, a somewhat higher CO2/SO2 ratio was observed (3.3 ± 1.0), although the CO2 flux was evaluated at only ~100-500 t/d (6). At San Cristobal, where observations were taken between April 11 and 15, the CO2/SO2 ratio ranged between 1.8 and 7.4, with a mean CO2 flux of 753 t/d. These measurements contribute refining the current estimates of the total CO2 output from the Central American Volcanic Arc (7). Symonds, R.B. et al., (2001). J. Volcanol. Geotherm. Res., 108, 303-341 Burton, M. R. et al. (2013). Reviews in

  18. Some isotopic and geochemical anomalies observed in Mexico prior to large scale earthquakes and volcanic eruptions

    International Nuclear Information System (INIS)

    Cruz R, S. de la; Armienta, M.A.; Segovia A, N.

    1992-05-01

    A brief account of some experiences obtained in Mexico, related with the identification of geochemical precursors of volcanic eruptions and isotopic precursors of earthquakes and volcanic activity is given. The cases of three recent events of volcanic activity and one large earthquake are discussed in the context of an active geological environment. The positive results in the identification of some geochemical precursors that helped to evaluate the eruptive potential during two volcanic crises (Tacana 1986 and Colima 1991), and the significant radon-in-soil anomalies observed during a volcanic catastrophic eruption (El Chichon, 1982) and prior to a major earthquake (Michoacan, 1985) are critically analysed. (Author)

  19. Some isotopic and geochemical anomalies observed in Mexico prior to large scale earthquakes and volcanic eruptions

    Energy Technology Data Exchange (ETDEWEB)

    Cruz R, S. de la; Armienta, M A; Segovia A, N

    1992-05-15

    A brief account of some experiences obtained in Mexico, related with the identification of geochemical precursors of volcanic eruptions and isotopic precursors of earthquakes and volcanic activity is given. The cases of three recent events of volcanic activity and one large earthquake are discussed in the context of an active geological environment. The positive results in the identification of some geochemical precursors that helped to evaluate the eruptive potential during two volcanic crises (Tacana 1986 and Colima 1991), and the significant radon-in-soil anomalies observed during a volcanic catastrophic eruption (El Chichon, 1982) and prior to a major earthquake (Michoacan, 1985) are critically analysed. (Author)

  20. Active Volcanism on Io as Seen by Galileo SSI

    Science.gov (United States)

    McEwen, A.S.; Keszthelyi, L.; Geissler, P.; Simonelli, D.P.; Carr, M.H.; Johnson, T.V.; Klaasen, K.P.; Breneman, H.H.; Jones, T.J.; Kaufman, J.M.; Magee, K.P.; Senske, D.A.; Belton, M.J.S.; Schubert, G.

    1998-01-01

    Active volcanism on Io has been monitored during the nominal Galileo satellite tour from mid 1996 through late 1997. The Solid State Imaging (SSI) experiment was able to observe many manifestations of this active volcanism, including (1) changes in the color and albedo of the surface, (2) active airborne plumes, and (3) glowing vents seen in eclipse. About 30 large-scale (tens of kilometers) surface changes are obvious from comparison of the SSI images to those acquired by Voyager in 1979. These include new pyroclastic deposits of several colors, bright and dark flows, and caldera-floor materials. There have also been significant surface changes on Io during the Galileo mission itself, such as a new 400-km-diameter dark pyroclastic deposit around Pillan Patera. While these surface changes are impressive, the number of large-scale changes observed in the four months between the Voyager 1 and Voyager 2 flybys in 1979 suggested that over 17 years the cumulative changes would have been much more impressive. There are two reasons why this was not actually the case. First, it appears that the most widespread plume deposits are ephemeral and seem to disappear within a few years. Second, it appears that a large fraction of the volcanic activity is confined to repeated resurfacing of dark calderas and flow fields that cover only a few percent of Io's surface. The plume monitoring has revealed 10 active plumes, comparable to the 9 plumes observed by Voyager. One of these plumes was visible only in the first orbit and three became active in the later orbits. Only the Prometheus plume has been consistently active and easy to detect. Observations of the Pele plume have been particularly intriguing since it was detected only once by SSI, despite repeated attempts, but has been detected several times by the Hubble Space Telescope at 255 nm. Pele's plume is much taller (460 km) than during Voyager 1 (300 km) and much fainter at visible wavelengths. Prometheus-type plumes (50

  1. Geologic Mapping, Volcanic Stages and Magmatic Processes in Hawaiian Volcanoes

    Science.gov (United States)

    Sinton, J. M.

    2005-12-01

    The concept of volcanic stages arose from geologic mapping of Hawaiian volcanoes. Subaerial Hawaiian lava successions can be divided generally into three constructional phases: an early (shield) stage dominated by thin-bedded basaltic lava flows commonly associated with a caldera; a later (postshield) stage with much thicker bedded, generally lighter colored lava flows commonly containing clinopyroxene; calderas are absent in this later stage. Following periods of quiescence of a half million years or more, some Hawaiian volcanoes have experienced renewed (rejuvenated) volcanism. Geological and petrographic relations irrespective of chemical composition led to the identification of mappable units on Niihau, Kauai, Oahu, Molokai, Maui and Hawaii, which form the basis for this 3-fold division of volcanic activity. Chemical data have complicated the picture. There is a growing tendency to assign volcanic stage based on lava chemistry, principally alkalicity, into tholeiitic shield, alkalic postshield, and silica undersaturated rejuvenation, despite the evidence for interbedded tholeiitic and alkalic basalts in many shield formations, and the presence of mildly tholeiitic lavas in some postshield and rejuvenation formations. A consistent characteristic of lava compositions from most postshield formations is evidence for post-melting evolution at moderately high pressures (3-7 kb). Thus, the mapped shield to postshield transitions primarily reflect the disappearance of shallow magma chambers (and associated calderas) in Hawaiian volcanoes, not the earlier (~100 ka earlier in Waianae Volcano) decline in partial melting that leads to the formation of alkalic parental magmas. Petrological signatures of high-pressure evolution are high-temperature crystallization of clinopyroxene and delayed crystallization of plagioclase, commonly to <3 % MgO. Petrologic modeling using pMELTS and MELTS algorithms allows for quantification of the melting and fractionation conditions giving

  2. The Effect of Volcanic Ash Composition on Ice Nucleation Affinity

    Science.gov (United States)

    Genareau, K. D.; Cloer, S.; Primm, K.; Woods, T.; Tolbert, M. A.

    2017-12-01

    Understanding the role that volcanic ash plays in ice nucleation is important for knowledge of lightning generation in both volcanic plumes and in clouds developing downwind from active volcanoes. Volcanic ash has long been suggested to influence heterogeneous ice nucleation following explosive eruptions, but determining precisely how composition and mineralogy affects ice nucleation affinity (INA) is poorly constrained. For the study presented here, volcanic ash samples with different compositions and mineral/glass contents were tested in both the deposition and immersion modes, following the methods presented in Schill et al. (2015). Bulk composition was determined with X-ray fluorescence (XRF), grain size distribution was determined with laser diffraction particle size analysis (LDPSA), and mineralogy was determined with X-ray diffraction (XRD) and scanning electron microscopy (SEM). Results of the deposition-mode experiments reveal that there is no relationship between ice saturation ratios (Sice) and either mineralogy or bulk ash composition, as all samples have similar Sice ratios. In the immersion-mode experiments, frozen fractions were determined from -20 °C to -50 °C using three different amounts of ash (0.5, 1.0, and 2.0 wt% of slurry). Results from the immersion freezing reveal that the rhyolitic samples (73 wt% SiO2) nucleate ice at higher temperatures compared to the basaltic samples (49 wt% SiO2). There is no observed correlation between frozen fractions and mineral content of ash samples, but the two most efficient ice nuclei are rhyolites that contain the greatest proportion of amorphous glass (> 90 %), and are enriched in K2O relative to transition metals (MnO and TiO2), the latter of which show a negative correlation with frozen fraction. Higher ash abundance in water droplets increases the frozen fraction at all temperatures, indicating that ash amount plays the biggest role in ice nucleation. If volcanic ash can reach sufficient abundance (

  3. Unraveling the diversity in arc volcanic eruption styles: Examples from the Aleutian volcanic arc, Alaska

    Science.gov (United States)

    Larsen, Jessica F.

    2016-11-01

    The magmatic systems feeding arc volcanoes are complex, leading to a rich diversity in eruptive products and eruption styles. This review focuses on examples from the Aleutian subduction zone, encompassed within the state of Alaska, USA because it exhibits a rich diversity in arc structure and tectonics, sediment and volatile influx feeding primary magma generation, crustal magma differentiation processes, with the resulting outcome the production of a complete range in eruption styles from its diverse volcanic centers. Recent and ongoing investigations along the arc reveal controls on magma production that result in diversity of eruptive products, from crystal-rich intermediate andesites to phenocryst-poor, melt-rich silicic and mafic magmas and a spectrum in between. Thus, deep to shallow crustal "processing" of arc magmas likely greatly influences the physical and chemical character of the magmas as they accumulate in the shallow crust, the flow physics of the magmas as they rise in the conduit, and eruption style through differences in degassing kinetics of the bubbly magmas. The broad spectrum of resulting eruption styles thus depends on the bulk magma composition, melt phase composition, and the bubble and crystal content (phenocrysts and/or microlites) of the magma. Those fundamental magma characteristics are in turn largely determined by the crustal differentiation pathway traversed by the magma as a function of tectonic location in the arc, and/or the water content and composition of the primary magmas. The physical and chemical character of the magma, set by the arc differentiation pathway, as it ascends towards eruption determines the kinetic efficiency of degassing versus the increasing internal gas bubble overpressure. The balance between degassing rate and the rate at which gas bubble overpressure builds then determines the conditions of fragmentation, and ultimately eruption intensity.

  4. Thermoluminescence dating. Application to the chronology of volcanic ashes

    International Nuclear Information System (INIS)

    Pilleyre, T.

    1991-09-01

    Thermoluminescent (TL) dating is generally used for minerals heated in the past and can be used for absolute chronology of volcanic ashes but seems limited to less than 15.000 years. The aim of the thesis is the study of thermoluminescent properties of quartz for high doses and long irradiations using the red TL peak of quartz which is situated at high temperature (about 370 deg. C) to extend the method for higher ages. A theory, based on spatial correlation between electron and hole created during the same ionization, is developed. A chapter is devoted to dosimetry because of its importance in TL dating, especially alpha scintillation counting and the influence of humidity on the determination of annual dose. Volcanic samples are dated from 10.000 to 80.000 years before present

  5. Birth of two volcanic islands in the southern Red Sea

    KAUST Repository

    Xu, Wenbin

    2015-05-26

    Submarine eruptions that lead to the formation of new volcanic islands are rare and far from being fully understood; only a few such eruptions have been witnessed since Surtsey Island emerged to the south of Iceland in the 1960s. Here we report on two new volcanic islands that were formed in the Zubair archipelago of the southern Red Sea in 2011–2013. Using high-resolution optical satellite images, we find that the new islands grew rapidly during their initial eruptive phases and that coastal erosion significantly modified their shapes within months. Satellite radar data indicate that two north–south-oriented dykes, much longer than the small islands might suggest, fed the eruptions. These events occurred contemporaneously with several local earthquake swarms of the type that typically accompany magma intrusions. Earthquake activity has been affecting the southern Red Sea for decades, suggesting the presence of a magmatically active zone that has previously escaped notice.

  6. Volcanic ash hazards and aviation risk: Chapter 4

    Science.gov (United States)

    Guffanti, Marianne C.; Tupper, Andrew C.

    2015-01-01

    The risks to safe and efficient air travel from volcanic-ash hazards are well documented and widely recognized. Under the aegis of the International Civil Aviation Organization, globally coordinated mitigation procedures are in place to report explosive eruptions, detect airborne ash clouds and forecast their expected movement, and issue specialized messages to warn aircraft away from hazardous airspace. This mitigation framework is based on the integration of scientific and technical capabilities worldwide in volcanology, meteorology, and atmospheric physics and chemistry. The 2010 eruption of Eyjafjallajökull volcano in Iceland, which led to a nearly week-long shutdown of air travel into and out of Europe, has prompted the aviation industry, regulators, and scientists to work more closely together to improve how hazardous airspace is defined and communicated. Volcanic ash will continue to threaten aviation and scientific research will continue to influence the risk-mitigation framework.

  7. Remote Sensing of Volcanic ASH at the Met Office

    Directory of Open Access Journals (Sweden)

    Marenco F.

    2016-01-01

    Full Text Available The eruption of Eyjafjallajökull in 2010 has triggered the rapid development of volcanic ash remote sensing activities at the Met Office. Volcanic ash qualitative and quantitative mapping have been achieved using lidar on board the Facility for Airborne Atmospheric Measurements (FAAM research aircraft, and using improved satellite retrieval algorithms. After the eruption, a new aircraft facility, the Met Office Civil Contingencies Aircraft (MOCCA, has been set up to enable a rapid response, and a network of ground-based remote sensing sites with lidars and sunphotometers is currently being developed. Thanks to these efforts, the United Kingdom (UK will be much better equipped to deal with such a crisis, should it happen in the future.

  8. Mode switching in volcanic seismicity: El Hierro 2011-2013

    Science.gov (United States)

    Roberts, Nick S.; Bell, Andrew F.; Main, Ian G.

    2016-05-01

    The Gutenberg-Richter b value is commonly used in volcanic eruption forecasting to infer material or mechanical properties from earthquake distributions. Such studies typically analyze discrete time windows or phases, but the choice of such windows is subjective and can introduce significant bias. Here we minimize this sample bias by iteratively sampling catalogs with randomly chosen windows and then stack the resulting probability density functions for the estimated b>˜ value to determine a net probability density function. We examine data from the El Hierro seismic catalog during a period of unrest in 2011-2013 and demonstrate clear multimodal behavior. Individual modes are relatively stable in time, but the most probable b>˜ value intermittently switches between modes, one of which is similar to that of tectonic seismicity. Multimodality is primarily associated with intermittent activation and cessation of activity in different parts of the volcanic system rather than with respect to any systematic inferred underlying process.

  9. Strength and deformation properties of volcanic rocks in Iceland

    DEFF Research Database (Denmark)

    Foged, Niels Nielsen; Andreassen, Katrine Alling

    2016-01-01

    rock from Iceland has been the topic for rock mechanical studies carried out by Ice-landic guest students at the Department of Civil Engineering at the Technical University of Den-mark over a number of years in cooperation with University of Iceland, Vegagerðin (The Icelandic Road Directorate......) and Landsvirkjun (The National Power Company of Iceland). These projects involve engineering geological properties of volcanic rock in Iceland, rock mechanical testing and parameter evaluation. Upscaling to rock mass properties and modelling using Q- or GSI-methods have been studied by the students......Tunnelling work and preinvestigations for road traces require knowledge of the strength and de-formation properties of the rock material involved. This paper presents results related to tunnel-ling for Icelandic water power plants and road tunnels from a number of regions in Iceland. The volcanic...

  10. Descartes region - Evidence for Copernican-age volcanism.

    Science.gov (United States)

    Head, J. W., III; Goetz, A. F. H.

    1972-01-01

    A model that suggests that the high-albedo central region of the Descartes Formation was formed by Copernican-age volcanism was developed from Orbiter photography, Apollo 12 multispectral photography, earth-based spectrophotometry, and thermal IR and radar data. The bright surface either is abundant in centimeter-sized rocks or is formed from an insulating debris layer overlying a surface with an abundance of rocks in the 1- to 20-cm size range. On the basis of these data, the bright unit is thought to be a young pyroclastic deposit mantling older volcanic units of the Descartes Formation. Since the Apollo 16 target point is only 50 km NW of the central part of this unit, evidence for material associated with this unique highland formation should be searched for in returned soil and rock samples.

  11. Volcanic risk perception in the Campi Flegrei area

    Science.gov (United States)

    Ricci, T.; Barberi, F.; Davis, M. S.; Isaia, R.; Nave, R.

    2013-03-01

    The Campi Flegrei which includes part of the city of Naples, is an active volcanic system; its last eruption occurred in 1538 AD. More recently two significant crises occurred between 1969 and 72 and 1982-84 and were accompanied by ground movements (bradyseism) and seismic activity, forcing people of the town of Pozzuoli to be evacuated. Since 1984 development of a volcanic emergency plan has been underway. In 2000 Civil Protection published a risk map which defined the Red Zone, an area highly at risk from pyroclastic flows, which would need to be evacuated before an eruption. The first study to evaluate the volcanic risk perceptions of the people living within the Campi Flegrei area was completed in spring 2006, resulting in the largest sample ever studied on this topic except for one on Vesuvio area residents by Barberi et al. (2008). A 46 item questionnaire was distributed to 2000 of the approximately 300,000 residents of the Campi Flegrei Red Zone, which includes three towns and four neighborhoods within the city of Naples. A total of 1161 questionnaires were returned, for an overall response rate of 58%. Surveys were distributed to junior high and high school students, as well as to adult members of the general population. Results indicated that unlike issues such as crime, traffic, trash, and unemployment, volcanic hazards are not spontaneously mentioned as a major problem facing their community. However, when asked specific questions about volcanic risks, respondents believe that an eruption is likely and could have serious consequences for themselves and their communities and they are quite worried about the threat. Considering the events of 1969-72 and 1982-84, it was not surprising that respondents indicated earthquakes and ground deformations as more serious threats than eruptive phenomena. Of significant importance is that only 17% of the sample knows about the existence of the Emergency Plan, announced in 2001, and 65% said that they have not received

  12. Depleted arc volcanism in the Alboran Sea and shoshonitic volcanism in Morocco: geochemical and isotopic constraints on Neogene tectonic processes

    Science.gov (United States)

    Gill, R. C. O.; Aparicio, A.; El Azzouzi, M.; Hernandez, J.; Thirlwall, M. F.; Bourgois, J.; Marriner, G. F.

    2004-12-01

    Samples of volcanic rocks from Alborán Island, the Alboran Sea floor and from the Gourougou volcanic centre in northern Morocco have been analyzed for major and trace elements and Sr-Nd isotopes to test current theories on the tectonic geodynamic evolution of the Alboran Sea. The Alborán Island samples are low-K tholeiitic basaltic andesites whose depleted contents of HFS elements (˜0.5×N-MORB), especially Nb (˜0.2×N-MORB), show marked geochemical parallels with volcanics from immature intra-oceanic arcs and back-arc basins. Several of the submarine samples have similar compositions, one showing low-Ca boninite affinity. 143Nd/ 144Nd ratios fall in the same range as many island-arc and back-arc basin samples, whereas 87Sr/ 86Sr ratios (on leached samples) are somewhat more radiogenic. Our data point to active subduction taking place beneath the Alboran region in Miocene times, and imply the presence of an associated back-arc spreading centre. Our sea floor suite includes a few more evolved dacite and rhyolite samples with ( 87Sr/ 86Sr) 0 up to 0.717 that probably represent varying degrees of crustal melting. The shoshonite and high-K basaltic andesite lavas from Gourougou have comparable normalized incompatible-element enrichment diagrams and Ce/Y ratios to shoshonitic volcanics from oceanic island arcs, though they have less pronounced Nb deficits. They are much less LIL- and LREE-enriched than continental arc analogues and post-collisional shoshonites from Tibet. The magmas probably originated by melting in subcontinental lithospheric mantle that had experienced negligible subduction input. Sr-Nd isotope compositions point to significant crustal contamination which appears to account for the small Nb anomalies. The unmistakable supra-subduction zone (SSZ) signature shown by our Alboran basalts and basaltic andesite samples refutes geodynamic models that attribute all Neogene volcanism in the Alboran domain to decompression melting of upwelling asthenosphere

  13. Mercury and Iodine systematics of volcanic arc fluids

    Science.gov (United States)

    Varekamp, J. C.; Kading, T.; Fehn, U.; Lu, Z.

    2008-12-01

    The mantle has low Mercury and Iodine concentrations, but these elements occur in volcanic gases and hydrothermal fluids at ppb (Hg) and ppm (Iodine) levels. Possibly, the Hg and Iodine concentrations in volcanic fluids reflect subducted sediment sources in arc magmas. Iodine is a biophilic element, and I129/I values indicate that subducted sediment (especially organic matter) is an important Iodine source for arc magmas. It is uncertain if this is true for Hg as well, although in the surface environment Hg is commonly associated with organic matter. We present 60 new analyses of Hg and I in fluids from volcanoes in Central America, New Zealand, Japan, and the Cascades. A first assessment suggests that Iodine is released to some degree in the early stage of subduction in the forearc, whereas Hg may be released largely below the main volcanic arc. Isotope and trace element signatures of volcanic rocks of the investigated volcanoes show no simple correlation with Hg or Iodine abundances. The acid hot spring fluids of Copahue volcano (Argentina) carried ~ 200 ppt Hg in January 1999, ~80 ppt Hg in March 2008, and 90 ppt Hg in the crater lake in March 1997. The dissolved Hg fluxes from the Copahue hydrothermal system are ~300 gr Hg/year in 1999 and ~130 gr Hg/year in 2008. The bulk hydrothermal Hg flux (particle bound+dissolved) in 2008 was ~ 350 gr Hg/year. The potential Mercury evasion from these hydrothermal spring fluids into the air has not yet been incorporated in these estimates.

  14. Small volcanic eruptions and the stratospheric sulfate aerosol burden

    Science.gov (United States)

    Pyle, David M.

    2012-09-01

    Understanding of volcanic activity and its impacts on the atmosphere has evolved in discrete steps, associated with defining eruptions. The eruption of Krakatau, Indonesia, in August 1883 was the first whose global reach was recorded through observations of atmospheric phenomena around the world (Symons 1888). The rapid equatorial spread of Krakatau's ash cloud revealed new details of atmospheric circulation, while the vivid twilights and other optical phenomena were soon causally linked to the effects of particles and gases released from the volcano (e.g. Stothers 1996, Schroder 1999, Hamilton 2012). Later, eruptions of Agung, Bali (1963), El Chichón, Mexico (1982) and Pinatubo, Philippines (1991) led to a fuller understanding of how volcanic SO2 is transformed to a long-lived stratospheric sulfate aerosol, and its consequences (e.g. Meinel and Meinel 1967, Rampino and Self 1982, Hoffman and Rosen 1983, Bekki and Pyle 1994, McCormick et al 1995). While our ability to track the dispersal of volcanic emissions has been transformed since Pinatubo, with the launch of fleets of Earth-observing satellites (e.g. NASA's A-Train; ESA's MetOp) and burgeoning networks of ground-based remote-sensing instruments (e.g. lidar and sun-photometers; infrasound and lightning detection systems), there have been relatively few significant eruptions. Thus, there have been limited opportunities to test emerging hypotheses including, for example, the vexed question of the role of 'smaller' explosive eruptions in perturbations of the atmosphere—those that may just be large enough to reach the stratosphere (of size 'VEI 3', Newhall and Self 1982, Pyle 2000). Geological evidence, from ice-cores and historical eruptions, suggests that small explosive volcanic eruptions with the potential to transport material into the stratosphere should be frequent (5-10 per decade), and responsible for a significant proportion of the long-term time-averaged flux of volcanic sulfur into the stratosphere

  15. Vesuvio civil protection exercise MESIMEX: survey on volcanic risk perception

    Directory of Open Access Journals (Sweden)

    Tullio Ricci

    2013-11-01

    Full Text Available In October 2006 the European Civil Protection Exercise MESIMEX (Somma Vesuvio Mesimex – Major Emergency SIMulation Exercise on volcanic risk took place at Vesuvio, promoted by Campania Region and coordinated by the Italian Civil Protection Department. The exercise was focused on the preparedness phase for a major volcanic emergency in the area of Vesuvio. An evacuation of a sample of 1800 inhabitants from the Vesuvio Red Zone was also tested during the drill because the emergency plan ensures the complete evacuation of the population from the higher risk zone before the onset of the eruption. During that event a survey on volcanic risk perception was carried out on the evacuated population in order to compare the results with the ones coming from a previous similar survey, using the same questionnaire, carried out on a wider sample of residents in the Vesuvio Red Zone few months before MESIMEX exercise. The aim was to point out any differences in population’s attitude towards volcanic risk after having received detailed information on the emergency plan and on the hazards and risk related to the reactivation of Vesuvio, and experiencing the exercise. 463 questionnaires were distributed to the population evacuated from the 18 municipalities of the Red Zone and participating to the exercise. Main results in comparing data from MESIMEX survey with the Vesuvio previous one, put in evidence how the general level of Vesuvio residents’ trust remains quite low, indicating that a continuous and effective effort has to be done by both scientific community and Civil Protection Department. Particular attention should be paid in education and outreach activities and in involving people in risk mitigation procedures, also through more frequent exercises.

  16. Database for volcanic processes and geology of Augustine Volcano, Alaska

    Science.gov (United States)

    McIntire, Jacqueline; Ramsey, David W.; Thoms, Evan; Waitt, Richard B.; Beget, James E.

    2012-01-01

    Augustine Island (volcano) in lower Cook Inlet, Alaska, has erupted repeatedly in late-Holocene and historical times. Eruptions typically beget high-energy volcanic processes. Most notable are bouldery debris avalanches containing immense angular clasts shed from summit domes. Coarse deposits of these avalanches form much of Augustine's lower flanks. This geologic map at 1:25,000 scale depicts these deposits, these processes.

  17. Seismic tremors and magma wagging during explosive volcanism.

    Science.gov (United States)

    Jellinek, A Mark; Bercovici, David

    2011-02-24

    Volcanic tremor is a ubiquitous feature of explosive eruptions. This oscillation persists for minutes to weeks and is characterized by a remarkably narrow band of frequencies from about 0.5 Hz to 7 Hz (refs 1-4). Before major eruptions, tremor can occur in concert with increased gas flux and related ground deformation. Volcanic tremor is thus of particular value for eruption forecasting. Most models for volcanic tremor rely on specific properties of the geometry, structure and constitution of volcanic conduits as well as the gas content of the erupting magma. Because neither the initial structure nor the evolution of the magma-conduit system will be the same from one volcano to the next, it is surprising that tremor characteristics are so consistent among different volcanoes. Indeed, this universality of tremor properties remains a major enigma. Here we employ the contemporary view that silicic magma rises in the conduit as a columnar plug surrounded by a highly vesicular annulus of sheared bubbles. We demonstrate that, for most geologically relevant conditions, the magma column will oscillate or 'wag' against the restoring 'gas-spring' force of the annulus at observed tremor frequencies. In contrast to previous models, the magma-wagging oscillation is relatively insensitive to the conduit structure and geometry, which explains the narrow band of tremor frequencies observed around the world. Moreover, the model predicts that as an eruption proceeds there will be an upward drift in both the maximum frequency and the total signal frequency bandwidth, the nature of which depends on the explosivity of the eruption, as is often observed.

  18. Characterizing Volcanic Eruptions on Venus: Some Realistic (?) Scenarios

    Science.gov (United States)

    Stofan, E. R.; Glaze, L. S.; Grinspoon, D. H.

    2011-01-01

    When Pioneer Venus arrived at Venus in 1978, it detected anomalously high concentrations of SO2 at the top of the troposphere, which subsequently declined over the next five years. This decline in SO2 was linked to some sort of dynamic process, possibly a volcanic eruption. Observations of SO2 variability have persisted since Pioneer Venus. More recently, scientists from the Venus Express mission announced that the SPICAV (Spectroscopy for Investigation of Characteristics of the Atmosphere of Venus) instrument had measured varying amounts of SO2 in the upper atmosphere; VIRTIS (Visible and Infrared Thermal Imaging Spectrometer) measured no similar variations in the lower atmosphere (ESA, 4 April, 2008). In addition, Fegley and Prinn stated that venusian volcanoes must replenish SO2 to the atmosphere, or it would react with calcite and disappear within 1.9 my. Fegley and Tremain suggested an eruption rate on the order of approx 1 cubic km/year to maintain atmospheric SO2; Bullock and Grinspoon posit that volcanism must have occurred within the last 20-50 my to maintain the sulfuric acid/water clouds on Venus. The abundance of volcanic deposits on Venus and the likely thermal history of the planet suggest that it is still geologically active, although at rates lower than Earth. Current estimates of resurfacing rates range from approx 0.01 cubic km/yr to approx 2 cubic km/yr. Demonstrating definitively that Venus is still volcanically active, and at what rate, would help to constrain models of evolution of the surface and interior, and help to focus future exploration of Venus.

  19. Sulphur-rich volcanic eruptions and stratospheric aerosols

    Science.gov (United States)

    Rampino, M. R.; Self, S.

    1984-01-01

    Data from direct measurements of stratospheric optical depth, Greenland ice-core acidity, and volcanological studies are compared, and it is shown that relatively small but sulfur-rich volcanic eruptions can have atmospheric effects equal to or even greater than much larger sulfur-poor eruptions. These small eruptions are probably the most frequent cause of increased stratospheric aerosols. The possible sources of the excess sulfur released in these eruptions are discussed.

  20. On the climate impacts from the volcanic and solar forcings

    Science.gov (United States)

    Varotsos, Costas A.; Lovejoy, Shaun

    2016-04-01

    The observed and the modelled estimations show that the main forcings on the atmosphere are of volcanic and solar origins, which act however in an opposite way. The former can be very strong and decrease at short time scales, whereas, the latter increase with time scale. On the contrary, the observed fluctuations in temperatures increase at long scales (e.g. centennial and millennial), and the solar forcings do increase with scale. The common practice is to reduce forcings to radiative equivalents assuming that their combination is linear. In order to clarify the validity of the linearity assumption and determine its range of validity, we systematically compare the statistical properties of solar only, volcanic only and combined solar and volcanic forcings over the range of time scales from one to 1000 years. Additionally, we attempt to investigate plausible reasons for the discrepancies observed between the measured and modeled anomalies of tropospheric temperatures in the tropics. For this purpose, we analyse tropospheric temperature anomalies for both the measured and modeled time series. The results obtained show that the measured temperature fluctuations reveal white noise behavior, while the modeled ones exhibit long-range power law correlations. We suggest that the persistent signal, should be removed from the modeled values in order to achieve better agreement with observations. Keywords: Scaling, Nonlinear variability, Climate system, Solar radiation

  1. Fluid and rock interaction in permeable volcanic rock

    International Nuclear Information System (INIS)

    Lindley, J.I.

    1985-01-01

    Four types of interrelated changes -geochemical, mineralogic, isotopic, and physical - occur in Oligocene volcanic units of the Mogollon-Datil volcanic field, New Mexico. These changes resulted from the operation of a geothermal system that, through fluid-rock interaction, affected 5 rhyolite ash-flow tuffs and an intercalated basaltic andesite lava flow causing a potassium metasomatism type of alteration. (1) Previous studies have shown enrichment of rocks in K 2 O as much as 130% of their original values at the expense of Na 2 O and CaO with an accompanying increase in Rb and decreases in MgO and Sr. (2) X-ray diffraction results of this study show that phenocrystic plagioclase and groundmass feldspar have been replaced with pure potassium feldspar and quartz in altered rock. Phenocrystic potassium feldspar, biotite, and quartz are unaffected. Pyroxene in basaltic andesite is replaced by iron oxide. (3) delta 18 O increases for rhyolitic units from values of 8-10 permil, typical of unaltered rock, to 13-15 permil, typical of altered rock. Basaltic andesite, however, shows opposite behavior with a delta 18 of 9 permil in unaltered rock and 6 permit in altered. (4) Alteration results in a density decrease. SEM revealed that replacement of plagioclase by fine-grained quartz and potassium feldspar is not a volume for volume replacement. Secondary porosity is created in the volcanics by the chaotic arrangement of secondary crystals

  2. Observations of volcanic SO2 from MLS on Aura

    Directory of Open Access Journals (Sweden)

    H. C. Pumphrey

    2015-01-01

    Full Text Available Sulfur dioxide (SO2 is an important atmospheric constituent, particularly in the aftermath of volcanic eruptions. These events can inject large amounts of SO2 into the lower stratosphere, where it is oxidised to form sulfate aerosols; these in turn have a significant effect on the climate. The MLS instrument on the Aura satellite has observed the SO2 mixing ratio in the upper troposphere and lower stratosphere from August 2004 to the present, during which time a number of volcanic eruptions have significantly affected those regions of the atmosphere. We describe the MLS SO2 data and how various volcanic events appear in the data. As the MLS SO2 data are currently not validated we take some initial steps towards their validation. First we establish the level of internal consistency between the three spectral regions in which MLS is sensitive to SO2. We compare SO2 column values calculated from MLS data to total column values reported by the OMI instrument. The agreement is good (within about 1 DU in cases where the SO2 is clearly at altitudes above 147 hPa.

  3. Rapid laccolith intrusion driven by explosive volcanic eruption.

    Science.gov (United States)

    Castro, Jonathan M; Cordonnier, Benoit; Schipper, C Ian; Tuffen, Hugh; Baumann, Tobias S; Feisel, Yves

    2016-11-23

    Magmatic intrusions and volcanic eruptions are intimately related phenomena. Shallow magma intrusion builds subsurface reservoirs that are drained by volcanic eruptions. Thus, the long-held view is that intrusions must precede and feed eruptions. Here we show that explosive eruptions can also cause magma intrusion. We provide an account of a rapidly emplaced laccolith during the 2011 rhyolite eruption of Cordón Caulle, Chile. Remote sensing indicates that an intrusion began after eruption onset and caused severe (>200 m) uplift over 1 month. Digital terrain models resolve a laccolith-shaped body ∼0.8 km 3 . Deformation and conduit flow models indicate laccolith depths of only ∼20-200 m and overpressures (∼1-10 MPa) that likely stemmed from conduit blockage. Our results show that explosive eruptions may rapidly force significant quantities of magma in the crust to build laccoliths. These iconic intrusions can thus be interpreted as eruptive features that pose unique and previously unrecognized volcanic hazards.

  4. Using Volcanic Ash to Remove Dissolved Uranium and Lead

    Science.gov (United States)

    McKay, David S.; Cuero, Raul G.

    2009-01-01

    Experiments have shown that significant fractions of uranium, lead, and possibly other toxic and/or radioactive substances can be removed from an aqueous solution by simply exposing the solution, at ambient temperature, to a treatment medium that includes weathered volcanic ash from Pu'u Nene, which is a cinder cone on the Island of Hawaii. Heretofore, this specific volcanic ash has been used for an entirely different purpose: simulating the spectral properties of Martian soil. The treatment medium can consist of the volcanic ash alone or in combination with chitosan, which is a natural polymer that can be produced from seafood waste or easily extracted from fungi, some bacteria, and some algae. The medium is harmless to plants and animals and, because of the abundance and natural origin of its ingredient( s), is inexpensive. The medium can be used in a variety of ways and settings: it can be incorporated into water-filtration systems; placed in contact or mixed with water-containing solids (e.g., soils and sludges); immersed in bodies of water (e.g., reservoirs, lakes, rivers, or wells); or placed in and around nuclear power plants, mines, and farm fields.

  5. Magnetotelluric Investigation of the South Aegean Volcanic Arc, Greece

    Science.gov (United States)

    Kalisperi, Despina; Romano, Gerardo; Smirnov, Maxim; Kouli, Maria; Perrone, Angela; Makris, John P.; Vallianatos, Filippos

    2014-05-01

    The South Aegean Volcanic Arc (SAVA) is a chain of volcanic islands in the South Aegean resulting from the subduction of the African tectonic plate beneath the Eurasian plate. It extends from Methana, northwest, to the Island of Nisyros southeast (450 km total length). SAVA comprises a series of dormant and historically active volcanoes, with the most prominent to be Aegina, Methana, Milos, Santorini, Kolumbo, Kos and Nisyros. The aim of the ongoing research project "MagnetoTellurics in studying Geodynamics of the hEllenic ARc (MT-GEAR)" is to contribute to the investigation of the geoelectric structure of Southern Aegean, and particularly to attempt to image the Hellenic Subduction Zone. In this context, onshore magnetotelluric (MT) measurements were recently carried out on the central and eastern part of SAVA (Milos, Santorini, Nisyros and Kos Islands). Data were collected using two MT systems running simultaneously plus a remote reference station installed in Omalos plateau (Western Crete). Robust MT data analysis of the broad-band MT soundings and the resulting model of the conductivity structure of the South Aegean Volcanic Arc is presented. The research is co-funded by the European Social Fund (ESF) and National Resources under the Operational Programme 'Education and Lifelong Learning (EdLL) within the context of the Action 'Supporting Postdoctoral Researchers' in the framework of the project title "MagnetoTellurics in studying Geodynamics of the hEllenic ARc (MT-GEAR)".

  6. Diffuse volcanic emissions of carbon dioxide from Vulcano Island, Italy.

    Science.gov (United States)

    Baubron, J C; Allard, P; Toutain, J P

    1990-03-01

    RECENT investigations on Mount Etna (Sicily)(1-3) have revealed that volcanoes may release abundant carbon dioxide not only from their active craters, but also from their flanks, as diffuse soil emanations. Here we present analyses of soil gases and air in water wells on Vulcano Island which provide further evidence of such lateral degassing. Nearly pure carbon dioxide, enriched in helium and radon, escapes from the slopes of the Fossa active cone, adding a total output of 30 tonnes per day to the fumarolic crater discharge ( 180 tonnes CO(2) per day). This emanation has similar He/CO(2) and (13)C/(12)C ratios to those of the crater fumaroles (300%ndash;500 degrees C) and therefore a similar volcanic origin. Gases rich in carbon dioxide also escape at sea level along the isthmus between the Fossa and Vulcanello volcanic cones, but their depletion in both He and (13)C suggests a distinct source. Diffuse volcanic gas emanations, once their genetic link with central fumarole degassing has been demonstrated, can be used for continuous volcano monitoring, at safe distances from active craters. Such monitoring has been initiated at Vulcano, where soil and well emanations of nearly pure CO(2) themselves represent a threat to the local population.

  7. Hail formation triggers rapid ash aggregation in volcanic plumes.

    Science.gov (United States)

    Van Eaton, Alexa R; Mastin, Larry G; Herzog, Michael; Schwaiger, Hans F; Schneider, David J; Wallace, Kristi L; Clarke, Amanda B

    2015-08-03

    During explosive eruptions, airborne particles collide and stick together, accelerating the fallout of volcanic ash and climate-forcing aerosols. This aggregation process remains a major source of uncertainty both in ash dispersal forecasting and interpretation of eruptions from the geological record. Here we illuminate the mechanisms and timescales of particle aggregation from a well-characterized 'wet' eruption. The 2009 eruption of Redoubt Volcano, Alaska, incorporated water from the surface (in this case, a glacier), which is a common occurrence during explosive volcanism worldwide. Observations from C-band weather radar, fall deposits and numerical modelling demonstrate that hail-forming processes in the eruption plume triggered aggregation of ∼95% of the fine ash and stripped much of the erupted mass out of the atmosphere within 30 min. Based on these findings, we propose a mechanism of hail-like ash aggregation that contributes to the anomalously rapid fallout of fine ash and occurrence of concentrically layered aggregates in volcanic deposits.

  8. Major-element geochemistry of the Silent Canyon--Black Mountain peralkaline volcanic centers, northwestern Nevada Test Site: applications to an assessment of renewed volcanism

    International Nuclear Information System (INIS)

    Crowe, B.M.; Sargent, K.A.

    1979-01-01

    The Silent Canyon and Black Mountain volcanic centers are located in the northern part of the Nevada Test Site. The Silent Canyon volcanic center is a buried cauldron complex of Miocene age (13 to 15 m.y.). Black Mountain volcanic center is an elliptical-shaped cauldron complex of late Miocene age. The lavas and tuffs of the two centers comprise a subalkaline-peralkaline association. Rock types range from quartz normative subalkaline trachyte and rhyolite to peralkaline commendite. The Gold Flat Member of the Thirsty Canyon Tuff (Black Mountain) is a pantellerite. The major-element geochemistry of the Black Mountain--Silent Canyon volcanic centers differ in the total range and distribution of SiO 2 , contents, the degree of peralkalinity (molecular Na 2 O + K 2 O > Al 2 O 3 ) and in the values of total iron and alumina through the range of rock types. These differences indicate that the suites were unrelated and evolved from differing magma bodies. The Black Mountain volcanic cycle represents a renewed phase of volcanism following cessation of the Timber Mountain--Silent Canyon volcanic cycles. Consequently, there is a small but numerically incalculable probability of recurrence of Black Mountain-type volcanism within the Nevada Test Site region. This represents a potential risk with respect to deep geologic storage of high-level radioactive waste at the Nevada Test Site

  9. Geochemical constraints on the relationship between the Miocene-Pliocene volcanism and tectonics in the Palaoco and Fortunoso volcanic fields, Mendoza Region, Argentina

    DEFF Research Database (Denmark)

    Dyhr, Charlotte Thorup; Holm, Paul Martin; Llambias, Eduardo J.

    2013-01-01

    New 40Ar/39Ar analyses constrain the formation of the volcanic succession of Sierra de Palaoco in the present back-arc of the Andean Southern Volcanic Zone (SVZ), near 36°S, to the Late Miocene and assigns them to the Huincán II Formation. The composition of major and trace elements, Sr, Nd and P...

  10. Geochemical and geochronological constrains on the Chiang Khong volcanic rocks (northwestern Thailand) and its tectonic implications

    Science.gov (United States)

    Qian, Xin; Feng, Qinglai; Chonglakmani, Chongpan; Monjai, Denchok

    2013-12-01

    Volcanic rocks in northwestern Thailand exposed dominantly in the Chiang Khong area, are commonly considered to be genetically linked to the tectonic evolution of the Paleo-Tethyan Ocean. The volcanic rocks consist mainly of andesitic to rhyolitic rocks and are traditionally mapped as Permian-Triassic sequences. Our zircon U-Pb geochronological results show that two andesitic samples (TL-1-B and TL-31-B), are representative of the Doi Yao volcanic zone, and give a mean weighted age of 241.2±4.6 Ma and 241.7±2.9 Ma, respectively. The rhyolitic sample (TL-32-B1) from the Doi Khun Ta Khuan volcanic zone erupted at 238.3±3.8 Ma. Such ages indicate that Chiang Khong volcanic rocks erputed during the early Middle Triassic period. Seven samples from the Doi Yao and Doi Khun Ta Khuan zones exhibit an affinity to arc volcanics. Three rhyolitic samples from the Chiang Khong area have a geochemical affinity to both arc and syn-collisional volcanic rocks. The Chiang Khong arc volcanic rocks can be geochemically compared with those in the Lampang area in northern Thailand, also consistent with those in Jinghong area of southwestern Yunnan. This indicates that the Chiang Rai arc-volcanic zone might northwardly link to the Lancangjiang volcanic zone in southwestern China.

  11. Status of volcanism studies for the Yucca Mountain Site Characterization Project

    Energy Technology Data Exchange (ETDEWEB)

    Crowe, B.; Perry, F.; Murrell, M.; Poths, J.; Valentine, G.A. [Los Alamos National Lab., NM (United States); Wells, S. [Univ. of California, Riverside, CA (United States); Bowker, L.; Finnegan, K. [Univ. of Nevada, Las Vegas, NV (United States); Geissman, J.; McFadden, L.

    1995-02-01

    Chapter 1 introduces the volcanism issue for the Yucca Mountain site and provides the reader with an overview of the organization, content, and significant conclusions of this report. The risk of future basaltic volcanism is the primary topic of concern including both events that intersect a potential repository and events that occur near or within the waste isolation system of a repository. Chapter 2 describes the volcanic history of the Yucca Mountain region (YMR) and emphasizes the Pliocene and Quaternary volcanic record, the interval of primary concern for volcanic risk assessment. The Lathrop Wells volcanic center is described in detail because it is the youngest basalt center in the YMR. Chapter 3 describes the tectonic setting of the YMR and presents and assesses the significance of multiple alternative tectonic models. Geophysical data are described for the YMR and are used as an aid to understand the distribution of basaltic volcanic centers. Chapter 4 discusses the petrologic and geochemical features of basaltic volcanism in the YMR, the southern Great Basin and the Basin and Range province. The long time of activity and characteristic small volume of the Postcaldera basalt of the YMR result in one of the lowest eruptive rates in a volcanic field in the southwest United States. Chapter 5 summarizes current concepts of the segregation, ascent, and eruption of basalt magma. Chapter 6 summarizes the history of volcanism studies (1979 through early 1994), including work for the Yucca Mountain Site Characterization Project and overview studies by the state of Nevada and the Nuclear Regulatory Commission. Chapter 7 summarizes probabilistic volcanic hazard assessment using a three-part conditional probability model. Chapter 8 describes remaining volcanism work judged to be needed to complete characterization studies for the YMR. Chapter 9 summarizes the conclusions of this volcanism status report.

  12. Status of volcanism studies for the Yucca Mountain Site Characterization Project

    International Nuclear Information System (INIS)

    Crowe, B.; Perry, F.; Murrell, M.; Poths, J.; Valentine, G.A.; Wells, S.; Bowker, L.; Finnegan, K.; Geissman, J.; McFadden, L.

    1995-02-01

    Chapter 1 introduces the volcanism issue for the Yucca Mountain site and provides the reader with an overview of the organization, content, and significant conclusions of this report. The risk of future basaltic volcanism is the primary topic of concern including both events that intersect a potential repository and events that occur near or within the waste isolation system of a repository. Chapter 2 describes the volcanic history of the Yucca Mountain region (YMR) and emphasizes the Pliocene and Quaternary volcanic record, the interval of primary concern for volcanic risk assessment. The Lathrop Wells volcanic center is described in detail because it is the youngest basalt center in the YMR. Chapter 3 describes the tectonic setting of the YMR and presents and assesses the significance of multiple alternative tectonic models. Geophysical data are described for the YMR and are used as an aid to understand the distribution of basaltic volcanic centers. Chapter 4 discusses the petrologic and geochemical features of basaltic volcanism in the YMR, the southern Great Basin and the Basin and Range province. The long time of activity and characteristic small volume of the Postcaldera basalt of the YMR result in one of the lowest eruptive rates in a volcanic field in the southwest United States. Chapter 5 summarizes current concepts of the segregation, ascent, and eruption of basalt magma. Chapter 6 summarizes the history of volcanism studies (1979 through early 1994), including work for the Yucca Mountain Site Characterization Project and overview studies by the state of Nevada and the Nuclear Regulatory Commission. Chapter 7 summarizes probabilistic volcanic hazard assessment using a three-part conditional probability model. Chapter 8 describes remaining volcanism work judged to be needed to complete characterization studies for the YMR. Chapter 9 summarizes the conclusions of this volcanism status report

  13. Volcanic Metal Emissions and Implications for Geochemical Cycling and Mineralization

    Science.gov (United States)

    Edmonds, M.; Mather, T. A.

    2016-12-01

    Volcanoes emit substantial fluxes of metals to the atmosphere in volcanic gas plumes in the form of aerosol, adsorbed onto silicate particles and even in some cases as gases.. A huge database of metal emissions has been built over the preceding decades, which shows that volcanoes emit highly volatile metals into the atmosphere, such as As, Bi, Cd, Hg, Re, Se, Tl, among others. Understanding the cycling of metals through the Solid Earth system has importance for tackling a wide range of Earth Science problems, e.g. (1) the environmental impacts of metal emissions; (2) the sulfur and metal emissions of volcanic eruptions; (3) the behavior of metals during subduction and slab devolatilization; (4) the influence of redox on metal behavior in subduction zones; (5) the partitioning of metals between magmatic vapor, brines and melts; and (6) the relationships between volcanism and ore deposit formation. It is clear, when comparing the metal composition and flux in the gases and aerosols emitted from volcanoes, that they vary with tectonic setting. These differences allow insights into how the magmatic vapor was generated and how it interacted with melts and sulfides during magma differentiation and decompression. Hotspot volcanoes (e.g. Kilauea, Hawaii; volcanoes in Iceland) outgas a metal suite that mirrors the sulfide liquid-silicate melt partitioning behaviors reconstructed from experiments (as far as they are known), suggesting that the aqueous fluids (that will later be outgassed from the volcano) receive metals directly from oxidation of sulfide liquids during degassing and ascent of magmas towards the surface. At arc volcanoes, the gaseous fluxes of metals are typically much higher; and there are greater enrichments in elements that partition strongly into vapor or brine from silicate melts such as Cu, Au, Zn, Pb, W. We collate and present data on volcanic metal emissions from volcanoes worldwide and review the implications of the data array for metal cycling

  14. The Snake River Plain Volcanic Province: Insights from Project Hotspot

    Science.gov (United States)

    Shervais, J. W.; Potter, K. E.; Hanan, B. B.; Jean, M. M.; Duncan, R. A.; Champion, D. E.; Vetter, S.; Glen, J. M. G.; Christiansen, E. H.; Miggins, D. P.; Nielson, D. L.

    2017-12-01

    The Snake River Plain (SRP) Volcanic Province is the best modern example of a time-transgressive hotspot track beneath continental crust. The SRP began 17 Ma with massive eruptions of Columbia River basalt and rhyolite. After 12 Ma volcanism progressed towards Yellowstone, with early rhyolite overlain by basalts that may exceed 2 km thick. The early rhyolites are anorogenic with dry phenocryst assemblages and eruption temperatures up to 950C. Tholeiitic basalts have major and trace element compositions similar to ocean island basalts (OIB). Project Hotspot cored three deep holes in the central and western Snake River Plain: Kimama (mostly basalt), Kimberly (mostly rhyolite), and Mountain Home (lake sediments and basaslt). The Kimberly core documents rhyolite ash flows up to 700 m thick, possibly filling a caldera or sag. Chemical stratigraphy in Kimama and other basalt cores document fractional crystallization in relatively shallow magma chambers with episodic magma recharge. Age-depth relations in the Kimama core suggest accumulation rates of roughly 305 m/Ma. Surface and subsurface basalt flows show systematic variations in Sr-Nd-Pb isotopes with distance from Yellowstone interpreted to reflect changes in the proportion of plume source and the underlying heterogeneous cratonic lithosphere, which varies in age, composition, and thickness from west to east. Sr-Nd-Pb isotopes suggest <5% lithospheric input into a system dominated by OIB-like plume-derived basalts. A major flare-up of basaltic volcanism occurred 75-780 ka throughout the entire SRP, from Yellowstone in the east to Boise in the west. The youngest western SRP basalts are transitional alkali basalts that range in age from circa 900 ka to 2 ka, with trace element and isotopic compositions similar to the plume component of Hawaiian basalts. These observations suggest that ancient SCLM was replaced by plume mantle after the North America passed over the hotspot in the western SRP, which triggered renewed

  15. Temporal evolution of the Roccamonfina volcanic complex (Pleistocene), Central Italy

    Science.gov (United States)

    Rouchon, V.; Gillot, P. Y.; Quidelleur, X.; Chiesa, S.; Floris, B.

    2008-10-01

    The Roccamonfina volcanic complex (RVC), in southern Italy, is an Early to Middle Pleistocene stratovolcano sharing temporal and morphological characteristics with the Somma-Vesuvius and the Alban Hills; both being associated with high volcanic hazard for the cities of Naples and Rome, respectively. The RVC is important for the understanding of volcanic evolution in the Roman and Campanian volcanic provinces. We report a comprehensive study of its evolution based on morphological, geochemical and K-Ar geochronological data. The RVC was active from c.a. 550 ka to 150 ka. Its evolution is divided into five stages, defining a volcanic pulse recurrence time of c.a. 90-100 kyr. The two initial stages, consisted in the construction of two successive stratovolcanoes of the tephrite-phonolite, namely "High-K series". The first stage was terminated by a major plinian eruption emplacing the trachytic Rio Rava pumices at 439 ± 9 ka. At the end of the second stage, the last High-K series stratovolcano was destroyed by a large sector collapse and the emplacement of the Brown Leucitic Tuff (BLT) at 353 ± 5 ka. The central caldera of the RVC is the result of the overlapping of the Rio Rava and of the BLT explosions. The plinian eruption of the BLT is related to the emptying of a stratified, deep-seated HKS magma chamber during the upwelling of K series (KS) magma, marking a major geochemical transition and plumbing system re-organization. The following stage was responsible for the emplacement of the Lower White Trachytic Tuff at 331 ± 2 ka, and of basaltic-trachytic effusive products erupted through the main vent. The subsequent activity was mainly restricted to the emplacement of basaltic-shoshonitic parasitic cones and lava flows, and of minor subplinian deposits of the Upper White Trachytic Tuff between 275 and 230 ka. The northern crater is most probably a maar that formed by the phreatomagmatic explosion of the Yellow Trachytic Tuff at 230 ka. The latest stage of

  16. Volcanic Ash -Aircraft Encounter Damages: in Volcanological Point of View

    Science.gov (United States)

    Aydar, Erkan; Aladaǧ, Çaǧdaş Hakan; Menteş, Turhan

    2017-04-01

    The jet era or age began at 1930 and 40's in aviation sector, with the production of first jet engine for the aircrafts. Since 1950's, the commercial aviation with regular flights were established. Civil aviation and air-transport drastically increased due to intensive demand, and declared at least 10 fold since 1970 by IATA report. Parallelly to technological and economical developpement, the commercial jets became more comfortable, secure and rapid, bringing the world smaller, the countries closer. On the other hand, according to Global Volcanism Program Catalogues of Smithsonian Institute, about 1,500 volcanoes have erupted in the Holocene, 550 of them have had historical eruptions and considered as active. Besides an average of 55-60 volcanoes erupt each year, and about 8-10 of these eruptions produce ash clouds that reach aircraft flight altitudes (Salinas and Watt, 2004). Volcanic ash can be expected to be in air routes at altitudes greater than 9 km (30,000 ft) for roughly 20 days per year worldwide (Miller &Casadeval, 2000). A precious compilation of incidents due to encounters of aircrafts with volcanic ash clouds covering the years between 1953 and 2009 was used in this work (Guffanti et al., 2010-USGS Report) with an additional information on Eyfjallajökull-2010 eruption. According to this compilation,129 incidents happened within the concerned time interval. The damages, in general, fall in second and third class of Severity index, indicating the damages are limited on airframe of the planes, or some abrasions in jet engine, windblast etc.. We focused on fourth class of severity index involving the damages on jet engine of aircraft (engine fail) due to ingestion of volcanic ash and investigate eruption style and caused damage relationships. During the eruptive sequences of Mts Saint Helen (USA), Galunggung (Indonesia, 2 incidents), Redoubt (USA), Pinatubo (Philipinnes), Unzen (Japan), Manam (Papua New Guinea), Soufriere Hills (Lesser Antilles), Chaiten

  17. Shock Deformation and Volcanism across the Cretaceous - Transition.

    Science.gov (United States)

    Huffman, Alan Royce

    1990-01-01

    The cause of the Cretaceous-Tertiary (K/T) transition remains one of the most controversial scientific topics in the geosciences. Geological and geophysical evidence associated with the K/T boundary have been used to argue that the extinctions were caused by meteor impact or volcanism. The goal of this study was to assess the viability of a volcanic model for the K/T transition. Comparison of natural and experimentally-shocked quartz and feldspar using optical and transmission electron microscopy (TEM) revealed that the optical and statistical character of shock-induced microstructures in volcanic rocks are different from both classic impact microstructures, and from the Raton K/T samples. A series of 31 high-explosive (HE) shock-recovery experiments at pressures to 25 GPa and temperatures to 750^circC were completed on samples of granite and quartzite. TEM and optical microscopy reveal that pre-shock temperature and pulse duration have a first-order effect on the development of shock-induced microstructures in quartz and feldspar. Application of the experimental results to natural shock-induced microstructures indicates that the volcanic microstructures are probably produced at elevated temperatures and shock pressures that do not exceed 15 GPa. The results also suggest that the Raton K/T deposits were produced at pressures below about 25 GPa. Analysis of samples from the K/T transition at DSDP Site 527 and correlations between biostratigraphy, isotopes, and the data from this study suggest that the decline in marine productivity over an extended period of time may be due to climate changes induced by basaltic volcanism. The eruption of the Deccan Traps is a viable mechanism for the K/T extinctions, and the correlation of flood basalts with every major biotic crisis in the last 250 Ma supports the link between these two phenomena. Eruption of flood basalts enriched in F, Cl, CO_2 , and SO_2, could disrupt the terrestrial ecosystem, and could produce effects

  18. Heavy metals in the volcanic environment and thyroid cancer.

    Science.gov (United States)

    Vigneri, R; Malandrino, P; Gianì, F; Russo, M; Vigneri, P

    2017-12-05

    In the last two decades thyroid cancer incidence has increased worldwide more than any other cancer. Overdiagnosis of subclinical microcarcinomas has certainly contributed to this increase but many evidences indicate that a true increase, possibly due to environmental factors, has also occurred. Thyroid cancer incidence is markedly increased in volcanic areas. Thus, the volcanic environment is a good model to investigate the possible factors favoring thyroid cancer. In the volcanic area of Mt. Etna in Sicily, as well as in other volcanic areas, a non-anthropogenic pollution with heavy metals has been documented, a consequence of gas, ash and lava emission. Soil, water and atmosphere contamination, via the food chain, biocontaminate the residents as documented by high levels in the urines and the scalp hair compared to individuals living in adjacent non-volcanic areas. Trace amounts of metals are essential nutrients but, at higher concentrations, can be toxic for living cells. Metals can behave both as endocrine disruptors, perturbing the hormonal system, and as carcinogens, promoting malignant transformation. Similarly to other carcinogens, the transforming effect of heavy metals is higher in developing organisms as the fetus (contaminated via the mother) and individuals in early childhood. In the last decades environment metal pollution has greatly increased in industrialized countries. Although still within the "normal" limits for each single metal the hormesis effect (heavy metal activity at very low concentration because of biphasic, non linear cell response) and the possible potentiation effect resulting from the mixture of different metals acting synergistically can explain cell damage at very low concentrations. The effect of metals on the human thyroid is poorly studied: for some heavy metals no data are available. The scarce studies that have been performed mainly focus on metal effect as thyroid endocrine disruptors. The metal concentration in tissues has

  19. Petrologic Modeling of Magmatic Evolution in The Elysium Volcanic Province

    Science.gov (United States)

    Susko, D.; Karunatillake, S.; Hood, D.

    2017-12-01

    The Elysium Volcanic Province (EVP) on Mars is a massive expanse of land made up of many hundreds of lava flows of various ages1. The variable surface ages within this volcanic province have distinct elemental compositions based on the derived values from the Gamma Ray Spectrometer (GRS) suite2. Without seismic data or ophiolite sequences on Mars, the compositions of lavas on the surface provide some of the only information to study the properties of the interior of the planet. The Amazonian surface age and isolated nature of the EVP in the northern lowlands of Mars make it ideal for analyzing the mantle beneath Elysium during the most recent geologic era on Mars. The MELTS algorithm is one of the most commonly used programs for simulating compositions and mineral phases of basaltic melt crystallization3. It has been used extensively for both terrestrial applications4 and for other planetary bodies3,5. The pMELTS calibration of the algorithm allows for higher pressure (10-30 kbars) regimes, and is more appropriate for modeling melt compositions and equilibrium conditions for a source within the martian mantle. We use the pMELTS program to model how partial melting of the martian mantle could evolve magmas into the surface compositions derived from the GRS instrument, and how the mantle beneath Elysium has changed over time. We attribute changes to lithospheric loading by long term, episodic volcanism within the EVP throughout its history. 1. Vaucher, J. et al. The volcanic history of central Elysium Planitia: Implications for martian magmatism. Icarus 204, 418-442 (2009). 2. Susko, D. et al. A record of igneous evolution in Elysium, a major martian volcanic province. Scientific Reports 7, 43177 (2017). 3. El Maarry, M. R. et al. Gamma-ray constraints on the chemical composition of the martian surface in the Tharsis region: A signature of partial melting of the mantle? Journal of Volcanology and Geothermal Research 185, 116-122 (2009). 4. Ding, S. & Dasgupta, R. The

  20. Video Games in Volcanic Hazard Communications: Methods & Issues

    Science.gov (United States)

    Mani, Lara; Cole, Paul; Stewart, Iain

    2016-04-01

    Educational outreach plays a vital role in improving the resilience of vulnerable populations at risk from natural disasters. Currently, that activity is undertaken in many guises including the distribution of leaflets and posters, maps, presentations, education sessions and through radio and TV broadcasts. Such tried-and-tested communication modes generally target traditional stakeholder groups, but it is becoming increasingly important to engage with the new generation of learners who, due to advancements in technology, obtain information in ways different to their predecessors. That new generation is defined by a technological way of life and it remains a challenge to keep them motivated. On the eastern Caribbean island of St. Vincent, the La Soufriere Volcano lies in quiescence since the last eruption in 1979. Since then, an entire generation - over 56% of the population (Worldbank, 2015) - has little or no direct experience of a volcanic eruption. The island experiences, more frequently, other hazards (hurricanes, flooding, earthquakes landsliding), such that disaster preparedness measures give less priority to volcanic threats, which are deemed to pose less of a risk. With no accurate predictions to warn of the next eruption, it is especially important to educate residents about the potential of future volcanic hazards on the island, and to motivate them to prepare to mitigate their risk. This research critically examines the application of video games in supporting and enhancing existing public education and outreach programmes for volcanic hazards. St. Vincent's Volcano is a computer game designed to improve awareness and knowledge of the eruptive phenomena from La Soufriere that could pose a threat to residents. Within an interactive and immersive environment, players become acquainted with a 3D model of St. Vincent together with an overlay of the established volcanic hazard map (Robertson, 2005). Players are able to view visualisations of two historical

  1. Linking Volcanism and Gas Release from the North East Atlantic Volcanic Province to the PETM: Challenges and Updates

    Science.gov (United States)

    Svensen, H.; Jones, M. T.; Jerram, D. A.; Planke, S.; Kjoberg, S.; Schmid, D. W.; Iyer, K.; Tegner, C.

    2016-12-01

    The main phase of the development of the North East Atlantic Volcanic Province took place about 56 Ma and coincides with the Paleocene Eocene Thermal Maximum (PETM). The volcanic activity was characterized by voluminous flood basalts, large plutonic complexes, sub-marine eruptions, widespread tephra deposition, and emplacement of sills and dikes along the continental margins of Norway, Greenland, Ireland, and the UK. Here we review the style and tempo of volcanism during this important period of Earth's history and discuss the sources and volumes of the carbon gases emitted to the ocean and atmosphere. Moreover, we present new data and models from 1) West Greenland showing the impact on sill intrusions on gas generation from heated Cretaceous mudstones, 2) a 3D seismic survey of gas release structures offshore Norway, and 3) Paleocene-Eocene tephra layers from Svalbard and Denmark. Gas migrated out of the contact aureoles by either explosive venting or by slower seepage towards the seafloor as demonstrated by 3D seismic data. Some of the gas was permanently trapped (dry gas and CO2-rich gas) in the source rocks and aureoles. Combined with high-precision zircon ages and a time model for the PETM, our approach may give robust fluxes that can explain both the onset and the body of the PETM.

  2. Development of a risk assessment tool for volcanic urban environments: RiskScape and the Auckland Volcanic Field, New Zealand

    Science.gov (United States)

    Deligne, N. I.; Leonard, G.; King, A.; Wilson, G.; Wilson, T.; Lindsay, J. M.

    2013-12-01

    Auckland city, home to a third of New Zealand's population, is situated on top of the Auckland Volcanic Field (AVF), which last erupted roughly 500 years ago. Since 2008, the Determining Volcanic Risk in Auckland (DEVORA) program has investigated the geologic context of the AVF, improved timing constraints of past eruptions, explored possible tempo-spatial-volume eruption trends, and identified likely styles and hazards of future eruptions. DEVORA is now moving into development of risk and societal models for Auckland. The volcanic module of RiskScape, a multi-hazard risk assessment tool developed by Crown Research Institutes GNS Science and NIWA, will be expanded and used to model risk and impact to the built environment and population caused by a future AVF eruption. RiskScape models casualties, damage and disruption caused by various hazards, the resulting reduced functionality of assets, and associated clean up costs. A strength of RiskScape is that the effect of various mitigation strategies can be explored by strengthening asset attributes and examining resulting changes in the output risk evaluation. We present our framework for building a volcano hazard exposure module for RiskScape along with our approach for assessing asset vulnerability through the development of fragility functions. We also present the framework for engagement with regional Auckland stakeholders, including representatives of local and regional governments and utility companies, to identify complementary needs to ensure that final risk products are relevant and useable by end users.

  3. Soil CO2 flux baseline in an urban monogenetic volcanic field: the Auckland Volcanic Field, New Zealand

    Science.gov (United States)

    Mazot, Agnès; Smid, Elaine R.; Schwendenmann, Luitgard; Delgado-Granados, Hugo; Lindsay, Jan

    2013-11-01

    The Auckland Volcanic Field (AVF) is a dormant monogenetic basaltic field located in Auckland, New Zealand. Though soil gas CO2 fluxes are routinely used to monitor volcanic regions, there have been no published studies of soil CO2 flux or soil gas CO2 concentrations in the AVF to date or many other monogenetic fields worldwide. We measured soil gas CO2 fluxes and soil gas CO2 concentrations in 2010 and 2012 in varying settings, seasons, and times of day to establish a baseline soil CO2 flux and to determine the major sources of and controlling influences on Auckland's soil CO2 flux. Soil CO2 flux measurements varied from 0 to 203 g m-2 day-1, with an average of 27.1 g m-2 day-1. Higher fluxes were attributed to varying land use properties (e.g., landfill). Using a graphical statistical approach, two populations of CO2 fluxes were identified. Isotope analyses of δ13CO2 confirmed that the source of CO2 in the AVF is biogenic with no volcanic component. These data may be used to assist with eruption forecasting in the event of precursory activity in the AVF, and highlight the importance of knowing land use history when assessing soil gas CO2 fluxes in urban environments.

  4. Shield Through Rejuvenated Stage Volcanism On Kauai and Niihau, Hawaii

    Science.gov (United States)

    Cousens, B.; Clague, D. A.

    2013-12-01

    Kauai and Niihau are the northwesternmost large islands in the Hawaiian chain and consist of shield, rare postshield, and abundant rejuvenated stage lavas. We present new geochronological, geochemical and isotopic data for all phases of volcanic activity on the adjacent islands. K-Ar ages show Niihau shield volcanism occurred from 6.3-4.4 Ma, and K-Ar and new Ar-Ar ages for postshield volcanism range from 5.4-4.7 Ma. Kauai shield volcanism (K-Ar) overlaps with shield volcanism on Niihau. A new Ar-Ar age for a Kauai postshield dike is 4.4 Ma, older than previously-dated postshield lavas (3.95-3.58 Ma). New Ar-Ar ages show that Kauai rejuvenated stage volcanism began prior to 3.42 Ma (Izuka & Sherrod, 2011), compared to ~2.3 Ma on Niihau. Tholeiitic shield lavas from Kauai vary only slightly in trace element chemistry but have variable isotopic compositions. Subtle trends in some trace element and isotopic ratios between Napali Member shield lavas from the east and west side of Kauai support the two-shield hypothesis of Holcomb et al. (1997). Shield lavas from Niihau are chemically similar to those on Kauai, although Niihau tholeiites extend to higher 143Nd/144Nd ratios. Onland and submarine postshield rocks from Niihau are slightly more alkaline and LREE-enriched compared to shield lavas, but postshield rocks from Kauai are more chemically evolved, more LREE-enriched, and have more depleted Sr and Nd isotopic signatures than Kauai tholeiites. Postshield rocks on Kauai overlap in apparent age with lavas that are chemically like later rejuvenated stage lavas, suggesting either interfingering of the chemically distinct lavas or problems with the K-Ar ages. Rejuvenated stage lavas from the two islands differ dramatically; Kauai lavas are alkaline, LREE-enriched, and have even more depleted Sr and Nd isotopic compositions than postshield lavas, whereas Niihau lavas are only mildly alkaline, have lower REE abundances than postshield basalts, but isotopically are like

  5. Sediment transport dynamics in steep, tropical volcanic catchments

    Science.gov (United States)

    Birkel, Christian; Solano Rivera, Vanessa; Granados Bolaños, Sebastian; Brenes Cambronero, Liz; Sánchez Murillo, Ricardo; Geris, Josie

    2017-04-01

    How volcanic landforms in tropical mountainous regions are eroded, and how eroded materials move through these mostly steep landscapes from the headwaters to affect sediment fluxes are critical to water resources management in their downstream rivers. Volcanic landscapes are of particular importance because of the short timescales (transform. Owing to volcanism and seismic activity, landslides and other mass movements frequently occur. These processes are amplified by high intensity precipitation inputs resulting in significant, but natural runoff, erosion and sediment fluxes. Sediment transport is also directly linked to carbon and solute export. However, knowledge on the sediment sources and transport dynamics in the humid tropics remains limited and their fluxes largely unquantified. In order to increase our understanding of the dominant erosion and sediment transport dynamics in humid tropical volcanic landscapes, we conducted an extensive monitoring effort in a pristine and protected (biological reserve Alberto Manuel Brenes, ReBAMB) tropical forest catchment (3.2 km2), located in the Central Volcanic Cordillera of Costa Rica (Figure 1A). Typical for tropical volcanic and montane regions, deeply incised V-form headwaters (Figure 1B) deliver the majority of water (>70%) and sediments to downstream rivers. At the catchment outlet (Figure 1C) of the San Lorencito stream, we established high temporal resolution (5min) water quantity and sediment monitoring (turbidity). We also surveyed the river network on various occasions to characterize fluvial geomorphology including material properties. We could show that the rainfall-runoff-sediment relationships and their characteristic hysteresis patterns are directly linked to variations in the climatic input (storm intensity and duration) and the size, form and mineralogy of the transported material. Such a relationship allowed us to gain the following insights: (i) periodic landslides contribute significant volumes of

  6. A Conceptual Model of Future Volcanism at Medicine Lake Volcano, California - With an Emphasis on Understanding Local Volcanic Hazards

    Science.gov (United States)

    Molisee, D. D.; Germa, A.; Charbonnier, S. J.; Connor, C.

    2017-12-01

    Medicine Lake Volcano (MLV) is most voluminous of all the Cascade Volcanoes ( 600 km3), and has the highest eruption frequency after Mount St. Helens. Detailed mapping by USGS colleagues has shown that during the last 500,000 years MLV erupted >200 lava flows ranging from basalt to rhyolite, produced at least one ash-flow tuff, one caldera forming event, and at least 17 scoria cones. Underlying these units are 23 additional volcanic units that are considered to be pre-MLV in age. Despite the very high likelihood of future eruptions, fewer than 60 of 250 mapped volcanic units (MLV and pre-MLV) have been dated reliably. A robust set of eruptive ages is key to understanding the history of the MLV system and to forecasting the future behavior of the volcano. The goals of this study are to 1) obtain additional radiometric ages from stratigraphically strategic units; 2) recalculate recurrence rate of eruptions based on an augmented set of radiometric dates; and 3) use lava flow, PDC, ash fall-out, and lahar computational simulation models to assess the potential effects of discrete volcanic hazards locally and regionally. We identify undated target units (units in key stratigraphic positions to provide maximum chronological insight) and obtain field samples for radiometric dating (40Ar/39Ar and K/Ar) and petrology. Stratigraphic and radiometric data are then used together in the Volcano Event Age Model (VEAM) to identify changes in the rate and type of volcanic eruptions through time, with statistical uncertainty. These newly obtained datasets will be added to published data to build a conceptual model of volcanic hazards at MLV. Alternative conceptual models, for example, may be that the rate of MLV lava flow eruptions are nonstationary in time and/or space and/or volume. We explore the consequences of these alternative models on forecasting future eruptions. As different styles of activity have different impacts, we estimate these potential effects using simulation

  7. The relational of Mesozoic volcanism to uranium mineralization in Guyuan-Hongshanzi area

    International Nuclear Information System (INIS)

    Wu Rengui; Xu Zhe; Yu Zhenqing; Jiang Shan; Shen Kefeng

    2011-01-01

    Based on the time of Mesozoic volcanism,the characteristic of major and trace element, and REE pattern of the volcanic rocks in Guyuan-Hongshanzi area, The Mesozoic volcanism can be divided into the early cycle and later cycle during the Early Cretaceous, and it's magma series is classified in two sub-series, one is alkaline series of trachyte dominated and another is subalkaline series of rhyolite dominated. The relations between Mesozoic volcanism and uranium mineralization is mainly shown in four aspects: (1) Uranium mineralization controlled by the coexist of two magma series; (2) Uranium mineralization controlled by superhypabyssal porphyry body in later cycle volcanism during the Early Cretaceous; (3) The porphyry body close to uranium mineralization,bearing the genesis characteristics of crust-mantle action; and (4) High Si and K content in the chemical composition of the mineralization volcanic rocks. (authors)

  8. Petrogenesis of volcanic rocks that host the world-class Agsbnd Pb Navidad District, North Patagonian Massif: Comparison with the Jurassic Chon Aike Volcanic Province of Patagonia, Argentina

    Science.gov (United States)

    Bouhier, Verónica E.; Franchini, Marta B.; Caffe, Pablo J.; Maydagán, Laura; Rapela, Carlos W.; Paolini, Marcelo

    2017-05-01

    We present the first study of the volcanic rocks of the Cañadón Asfalto Formation that host the Navidad world-class Ag + Pb epithermal district located in the North Patagonian Massif, Patagonia, Argentina. These volcanic and sedimentary rocks were deposited in a lacustrine environment during an extensional tectonic regime associated with the breakup of Gondwana and represent the mafic to intermediate counterparts of the mainly silicic Jurassic Chon Aike Volcanic Province. Lava flows surrounded by autobrecciated carapace were extruded in subaerial conditions, whereas hyaloclastite and peperite facies suggest contemporaneous subaqueous volcanism and sedimentation. LA-ICPMS Usbnd Pb ages of zircon crystals from the volcanic units yielded Middle Jurassic ages of 173.9 ± 1.9 Ma and 170.8 ± 3 Ma. In the Navidad district, volcanic rocks of the Cañadón Asfalto Formation show arc-like signatures including high-K basaltic-andesite to high-K dacite compositions, Rb, Ba and Th enrichment relative to the less mobile HFS elements (Nb, Ta), enrichment in light rare earth elements (LREE), Ysbnd Ti depletion, and high Zr contents. These characteristics could be explained by assimilation of crustal rocks in the Jurassic magmas, which is also supported by the presence of zircon xenocrysts with Permian and Middle-Upper Triassic ages (281.3 Ma, 246.5, 218.1, and 201.3 Ma) and quartz xenocrysts recognized in these volcanic units. Furthermore, Sr and Nd isotope compositions suggest a contribution of crustal components in these Middle Jurassic magmas. High-K basaltic andesite has initial 87Sr/86Sr ratios of 0.70416-0.70658 and ξNd(t) values of -5.3 and -4. High-K dacite and andesite have initial 87Sr/86Sr compositions of 0.70584-0.70601 and ξNd(t) values of -4,1 and -3,2. The range of Pb isotope values (206Pb/204Pb = 18.28-18.37, 207Pb/204Pb = 15.61-15.62, and 208Pb/204Pb = 38.26-38.43) of Navidad volcanic rocks and ore minerals suggest mixing Pb sources with contributions of

  9. Fluidal deep-sea volcanic ash as an indicator of explosive volcanism (Invited)

    Science.gov (United States)

    Clague, D. A.; Portner, R. A.; Paduan, J. B.; Dreyer, B. M.

    2013-12-01

    Fluidal glassy lava fragments are now known to be abundant at sites of submarine eruptions including the mid-ocean ridge system, near-ridge seamount chains, mid-plate volcanoes and the submarine rifts of ocean islands, deep-sea (4200m) alkalic lava fields, back-arc spreading centers, and arc volcanoes. Fluidal fragments at these diverse settings have compositions including basanite, tholeiite, boninite, andesite, dacite, and rhyolite. Fragments include straight, bent, curved, and coiled Pele's hair; flat, curved, twisted, folded, bent, or keeled ribbons; and flat, curved, or intensely folded limu o Pele. Most of these morphologies attach to blocky glass fragments. The fluidal fragments from different settings and depths are strikingly similar in morphology with variable vesicularity and particle thickness. They have been sampled flat and steep, rocky to sediment-covered substrates. Two different mechanisms are proposed to explain their origin: magmatic-volatile fragmentation during eruption and sea floor lava-water interactions. Volatiles in the melts and ambient water are present in all submarine volcanic settings, making it difficult to separate their role in forming the fragments. Submarine bubble-burst (strombolian) activity has been observed in situ at an active vent at -1200m on West Mata Volcano. However, lava-water interaction at elevated pressure has not been observed to make such fluidal fragments except in laboratory simulations. Lava-water interaction models suggest that pore water in sediment trapped beneath advancing lava flows migrates into the overlying flow where it expands to steam, and the expanding steam bubble escapes explosively through the flow top to form the fluidal fragments. This is different from the hollow (water-filled) pillars that form in inflating flows as trapped water escapes. Pillars grow upwards at contacts between flow lobes, thus the water exiting through pillars never enters (or exits) the molten lava flow interior. Another

  10. Experimental study on the effect of volcanic residue on the performance of recycled lightweight aggregate concrete

    Science.gov (United States)

    Xiao, Li-guang; Li, Ji-heng; Liu, Qing-shun

    2017-08-01

    Recycled lightweight aggregate concrete prepared with waste brick recycled light aggregate has high water absorption, large apparent density and poor frost resistance. The technical measures of regen-erating lightweight aggregate concrete with modified waste bricks from volcanic slag are put forward. The effects of volcanic slag on the properties of waste lightweight aggregate concrete were studied. The experi-mental results show that volcanic slag can significantly reduce the apparent density of recycled lightweight aggregate concrete and improve its frost resistance.

  11. Volcanic Structures Within Niger and Dao Valles, Mars, and Implications for Outflow Channel Evolution and Hellas Basin Rim Development

    Science.gov (United States)

    Korteniemi, J.; Kukkonen, S.

    2018-04-01

    Outflow channel formation on the eastern Hellas rim region is traditionally thought to have been triggered by activity phases of the nearby volcanoes Hadriacus and Tyrrhenus Montes: As a result of volcanic heating subsurface volatiles were mobilized. It is, however, under debate, whether eastern Hellas volcanism was in fact more extensive, and if there were volcanic centers separate from the identified central volcanoes. This work describes previously unrecognized structures in the Niger-Dao Valles outflow channel complex. We interpret them as volcanic edifices: cones, a shield, and a caldera. The structures provide evidence of an additional volcanic center within the valles and indicate volcanic activity both prior to and following the formation of the outflow events. They expand the extent, type, and duration of volcanic activity in the Circum-Hellas Volcanic Province and provide new information on interaction between volcanism and fluvial activity.

  12. Model-based aviation advice on distal volcanic ash clouds by assimilating aircraft in situ measurements

    Directory of Open Access Journals (Sweden)

    G. Fu

    2016-07-01

    Full Text Available The forecast accuracy of distal volcanic ash clouds is important for providing valid aviation advice during volcanic ash eruption. However, because the distal part of volcanic ash plume is far from the volcano, the influence of eruption information on this part becomes rather indirect and uncertain, resulting in inaccurate volcanic ash forecasts in these distal areas. In our approach, we use real-life aircraft in situ observations, measured in the northwestern part of Germany during the 2010 Eyjafjallajökull eruption, in an ensemble-based data assimilation system combined with a volcanic ash transport model to investigate the potential improvement on the forecast accuracy with regard to the distal volcanic ash plume. We show that the error of the analyzed volcanic ash state can be significantly reduced through assimilating real-life in situ measurements. After a continuous assimilation, it is shown that the aviation advice for Germany, the Netherlands and Luxembourg can be significantly improved. We suggest that with suitable aircrafts measuring once per day across the distal volcanic ash plume, the description and prediction of volcanic ash clouds in these areas can be greatly improved.

  13. Reservoir Space Evolution of Volcanic Rocks in Deep Songliao Basin, China

    Science.gov (United States)

    Zheng, M.; Wu, X.; Zheng, M.; HU, J.; Wang, S.

    2015-12-01

    Recent years, large amount of natural gas has been discovered in volcanic rock of Lower Crataceous of Songliao basin. Volcanic reservoirs have become one of the important target reservoir types of eastern basin of China. In order to study the volcanic reservoirs, we need to know the main factors controlling the reservoir space. By careful obsercation on volcanic drilling core, casting thin sections and statistical analysis of petrophysical properties of volcanic reservoir in Songliao basin, it can be suggested that the igneous rock reservoir in Yingcheng formation of Lower Crataceous is composed of different rock types, such ad rohylite, rohylitic crystal tuff, autoclastic brecciation lava and so on. There are different reservoirs storage space in in various lithological igneous rocks, but they are mainly composed of primary stoma, secondary solution pores and fractures.The evolution of storage space can be divided into 3 stage: the pramary reservoir space,exogenic leaching process and burial diagenesis.During the evolution process, the reservoir space is effected by secondary minerals, tectonic movement and volcanic hydrothermal solution. The pore of volcanic reservoirs can be partially filled by secondary minerals, but also may be dissoluted by other chemical volcanic hydrothermal solution. Therefore, the favorable places for better-quality volcanic reservoirs are the near-crater facies of vocanic apparatus and dissolution zones on the high position of paleo-structures.

  14. PYROCLASTIC FLOW MODELING TO RECONSTRUCT A VOLCANIC EDIFICE IN PAIPA (BOYACÁ-COLOMBIA.

    Directory of Open Access Journals (Sweden)

    Rodríguez Óscar

    2004-06-01

    Full Text Available Pyroclastic deposits produced by the domes collapse (resurgence of a caldera collapse, at the west of the Honda Grande creek (Paipa, Boyacá-Colombia were related by INGEOMINAS. These deposits fill the valleys of Olitas, Calderitas and a creek at the south of the Alto de los Volcanes reaching distances near to 3 km from the focus between the Alto de los Volcanes and El Mirador Hill.The flows were modeled using 3D Software (Sheridan and Kover, 1996. A volcanic simulation was done obtaining the height and morphology of the volcanic edifice before the collapse during the last eruptive event.

  15. 1992-93 Results of geomorphological and field studies Volcanic Studies Program, Yucca Mountain Project

    International Nuclear Information System (INIS)

    Wells, S.G.

    1993-10-01

    Field mapping and stratigraphic studies were completed of the Black Tank volcanic center, which represents the southwestern most eruptive center in the Cima volcanic field of California. The results of this mapping are presented. Contacts between volcanic units and geomorphic features were field checked, incorporating data from eight field trenches as well as several exposures along Black Tank Wash. Within each of the eight trenches, logs were measured and stratigraphic sections were described. These data indicate that three, temporally separate volcanic eruptions occurred at the Black Tank center. The field evidence for significant time breaks between each stratigraphic unit is the presence of soil and pavement-bounded unconformities

  16. Strike-slip pull-apart process and emplacement of Xiangshan uranium-producing volcanic basin

    International Nuclear Information System (INIS)

    Qiu Aijin; Guo Lingzhi; Shu Liangshu

    2001-01-01

    Xiangshan volcanic basin is one of the famous uranium-producing volcanic basins in China. Emplacement mechanism of Xiangshan uranium-producing volcanic basin is discussed on the basis of the latest research achievements of deep geology in Xiangshan area and the theory of continental dynamics. The study shows that volcanic activity in Xiangshan volcanic basin may be divided into two cycles, and its emplacement is controlled by strike-ship pull-apart process originated from the deep regional faults. Volcanic apparatus in the first cycle was emplaced in EW-trending structure activated by clockwise strike-slipping of NE-trending deep fault, forming the EW-trending fissure-type volcanic effusion belt. Volcanic apparatus in the second cycle was emplaced at junction points of SN-trending pull-apart structure activated by sinistral strike-slipping of NE-trending deep faults and EW-trending basement faults causing the center-type volcanic magma effusion and extrusion. Moreover, the formation mechanism of large-rich uranium deposits is discussed as well

  17. Research on petrologic, geochemical characteristics and genesis of volcanic rocks in Dachangsha basin

    International Nuclear Information System (INIS)

    Wei Sanyuan

    1999-01-01

    On the basis of research on petrologic, geochemical characteristics and isotope composition of volcanic rocks in Dachangsha basin, the author concludes that the volcanic rocks formed from magma of different genesis and depth are double-cycle effusive. It is proposed that the magma forming the intermediate-basic volcanics of the first cycle comes from the mixing of the partial melting of the deep crust and mantle, and the intermediate-acidic volcanics of the secondary cycle are derived from the remelting of the upper crust

  18. Principal geological characteristics of the volcanic-type uranium deposits in China

    International Nuclear Information System (INIS)

    Fang Xiheng

    2009-01-01

    The volcanic-type uranium deposits in China distribute in two gigantic active belts, that is, circum-Pacific belt and latitudinal structure belt crossing Europe-Asia. The volcanic-type uranium deposits occur in continental volcanics,which are mainly composed of acid or alkali volcanics. Based on the study of 87 Sr/ 86 Sr initial ratio, REE distribution pattern and melt inclusion thermometry of volcanics, it is found that volcanic magma originated mainly from high-temperature melt of sialsphere and they were propably contaiminated partially by mantle materials. The volcanic eruption was controlled by regional fault and formed eruption belt, the beld can be divided into several sub-belt which was comprised by a serial eruption centres. The volcanic-type uranium deposits occur by the side of down-faulted red basin or associated with basic swarm. This means that the uranium mineralization is related to deep tectonics-magmatism. The paper proposes that the moderate erosion of volcanic belt is an important precondition to find uranium deposits. (authors)

  19. The Potential for Volcanism and Tectonics on Extrasolar Terrestrial Planets

    Science.gov (United States)

    Quick, Lynnae C.; Roberge, Aki

    2018-01-01

    JWST and other next-generation space telescopes (e.g., LUVOIR, HabEx, & OST) will usher in a new era of exoplanet characterization that may lead to the identification of habitable, Earth-like worlds. Like the planets and moons in our solar system, the surfaces and interiors of terrestrial exoplanets may be shaped by volcanism and tectonics (Fu et al., 2010; van Summeren et al., 2011; Henning and Hurford, 2014). The magnitude and rate of occurrence of these dynamic processes can either facilitate or preclude the existence of habitable environments. Likewise, it has been suggested that detections of cryovolcanism on icy exoplanets, in the form of geyser-like plumes, could indicate the presence of subsurface oceans (Quick et al., 2017).The presence of volcanic and tectonic activity on solid exoplanets will be intimately linked to planet size and heat output in the form of radiogenic and/or tidal heating. In order to place bounds on the potential for such activity, we estimated the heat output of a variety of exoplanets observed by Kepler. We considered planets whose masses and radii range from 0.067 ME (super-Ganymede) to 8 ME (super-Earth), and 0.5 to 1.8 RE, respectively. These heat output estimates were then compared to those of planets, moons, and dwarf planets in our solar system for which we have direct evidence for the presence/absence of volcanic and tectonic activity. After exoplanet heating rates were estimated, depths to putative molten layers in their interiors were also calculated. For planets such as TRAPPIST-1h, whose densities, orbital parameters, and effective temperatures are consistent with the presence of significant amounts of H2O (Luger et al., 2017), these calculations reveal the depths to internal oceans which may serve as habitable niches beneath surface ice layers.

  20. Preliminary geologic map of the Sleeping Butte volcanic centers

    International Nuclear Information System (INIS)

    Crowe, B.M.; Perry, F.V.

    1991-07-01

    The Sleeping Butte volcanic centers comprise two, spatially separate, small-volume ( 3 ) basaltic centers. The centers were formed by mildly explosive Strombolian eruptions. The Little Black Peak cone consists of a main scoria cone, two small satellitic scoria mounds, and associated lobate lava flows that vented from sites at the base of the scoria cone. The Hidden Cone center consists of a main scoria cone that developed on the north-facing slope of Sleeping Butte. The center formed during two episodes. The first included the formation of the main scoria cone, and venting of aa lava flows from radial dikes at the northeast base of the cone. The second included eruption of scoria-fall deposits from the summit crater. The ages of the Little Black Peak and the Hidden Cone are estimated to be between 200 to 400 ka based on the whole-rock K-Ar age determinations with large analytical undertainty. This age assignment is consistent with qualitative observations of the degree of soil development and geomorphic degradation of volcanic landforms. The younger episode of the Hidden Cone is inferred to be significantly younger and probably of Late Pleistocene or Holocene age. This is based on the absence of cone slope rilling, the absence of cone-slope apron deposits, and erosional unconformity between the two episodes, the poor horizon- development of soils, and the presence of fall deposits on modern alluvial surfaces. Paleomagnetic data show that the centers record similar but not identical directions of remanent magnetization. Paleomagnetic data have not been obtained for the youngest deposits of the Hidden Cone center. Further geochronology, soils, geomorphic, and petrology studies are planned of the Sleeping Butte volcanic centers 20 refs., 3 figs

  1. The thermoluminescence as tool in the reconstruction of volcanic events

    International Nuclear Information System (INIS)

    Ramirez L, A.; Schaaf, P.; Martin del Pozzo, A.L.; Gonzalez M, P.

    2000-01-01

    Within the Mexican land a great number of volcanoes are situated which a considerable part of them are still active. The relevance of dating pomex deposits, ash or lava of these poly genetic volcanoes is to determine the periodicity and magnitude of the volcanic events happened. In this work is presented the preliminary result of the dating by thermoluminescence in a pomex of a pyroclastic flux coming from a volcano in the state of Puebla with the purpose of providing elements to the knowledge which describe the eruptive history of the explosive volcanism at center of Mexico. For the sample dating the volcanic glasses of pomex were separated and it was applied the fine grain technique with a grain size between 4-11 μ m. In order to calculate the rate of annual dose it was carried out the following: in the determination of 238 U and 232 Th radioisotope concentration was used the neutron activation technique in a nuclear reactor, in the determination of the K 40 radioisotope was used a scanning electron microscope, the rate of environmental and cosmic dose was measured arranging Tl dosemeters of CaSO 4 : Dy in the sampling place. In order to calculate the paleodoses it was carried out the following: the equivalent dose (Q) was determined starting form the additive method and the supra linearity factor (I) starting from regenerative method and in both methods the irradiated process was realized with a 90 Sr beta source. With the above determinations it was calculated a paleodoses of 231 Gy and a rate of annual dose of 6.074 x 10 -3 Gy/year, estimating an age of: Age pomez = 231 Gy / 6.074 Gy x 10 -3 Gy /year = 38030 ± 4000 years. (Author)

  2. Plateau subduction, intraslab seismicity, and the Denali (Alaska) volcanic gap

    Science.gov (United States)

    Chuang, Lindsay Yuling; Bostock, Michael; Wech, Aaron; Plourde, Alexandre

    2018-01-01

    Tectonic tremors in Alaska (USA) are associated with subduction of the Yakutat plateau, but their origins are unclear due to lack of depth constraints. We have processed tremor recordings to extract low-frequency earthquakes (LFEs), and generated a set of six LFE waveform templates via iterative network matched filtering and stacking. The timing of impulsive P (compressional) wave and S (shear) wave arrivals on template waveforms places LFEs at 40–58 km depth, near the upper envelope of intraslab seismicity and immediately updip of increased levels of intraslab seismicity. S waves at near-epicentral distances display polarities consistent with shear slip on the plate boundary. We compare characteristics of LFEs, seismicity, and tectonic structures in central Alaska with those in warm subduction zones, and propose a new model for the region’s unusual intraslab seismicity and the enigmatic Denali volcanic gap (i.e., an area of no volcanism where expected). We argue that fluids in the Yakutat plate are confined to its upper crust, and that shallow subduction leads to hydromechanical conditions at the slab interface in central Alaska akin to those in warm subduction zones where similar LFEs and tremor occur. These conditions lead to fluid expulsion at shallow depths, explaining strike-parallel alignment of tremor occurrence with the Denali volcanic gap. Moreover, the lack of double seismic zone and restriction of deep intraslab seismicity to a persistent low-velocity zone are simple consequences of anhydrous conditions prevailing in the lower crust and upper mantle of the Yakutat plate.

  3. Biogeochemistry and nitrogen cycling in an Arctic, volcanic ecosystem

    Science.gov (United States)

    Fogel, M. L.; Benning, L.; Conrad, P. G.; Eigenbrode, J.; Starke, V.

    2007-12-01

    As part of a study on Mars Analogue environments, the biogeochemistry of Sverrefjellet Volcano, Bocfjorden, Svalbard, was conducted and compared to surrounding glacial, thermal spring, and sedimentary environments. An understanding of how nitrogen might be distributed in a landscape that had extinct or very cold adapted, slow- growing extant organisms should be useful for detecting unknown life forms. From high elevations (900 m) to the base of the volcano (sea level), soil and rock ammonium concentrations were uniformly low, typically less than 1- 3 micrograms per gm of rock or soil. In weathered volcanic soils, reduced nitrogen concentrations were higher, and oxidized nitrogen concentrations lower. The opposite was found in a weathered Devonian sedimentary soil. Plants and lichens growing on volcanic soils have an unusually wide range in N isotopic compositions from -5 to +12‰, a range rarely measured in temperate ecosystems. Nitrogen contents and isotopic compositions of volcanic soils and rocks were strongly influenced by the presence or absence of terrestrial herbivores or marine avifauna with higher concentrations of N and elevated N isotopic compositions occurring as patches in areas immediately influenced by reindeer, Arctic fox ( Alopex lagopus), and marine birds. Because of the extreme conditions in this area, ephemeral deposition of herbivore feces results in a direct and immediate N pulses into the ecosystem. The lateral extent and distribution of marine- derived nitrogen was measured on a landscape scale surrounding an active fox den. Nitrogen was tracked from the bones of marine birds to soil to vegetation. Because of extreme cold, slow biological rates and nitrogen cycling, a mosaic of N patterns develops on the landscape scale.

  4. Mass movement processes associated with volcanic structures in Mexico City

    Directory of Open Access Journals (Sweden)

    Víctor Carlos Valerio

    2012-11-01

    Full Text Available Mexico City, one of the most populated areas of the world, has been affected by various hazards of natural origin, such as subsidence and cracking of the soil, seismicity, floods and mass movement processes (MMPs. Owing to the lack of space on the plain, in recent years urban growth has been concentrated particularly on the slopes of the surrounding mountain ranges, and this has significantly modified the dynamics of the relief as well as the hydrogeological conditions. The specific character of natural susceptibility to mass movements is strongly dependent on the geological–structural and morphological characteristics of the volcanic bodies that form the mountainous relief. This natural susceptibility, combined with the characteristics of vulnerability of the society, creates risk conditions that can generate severe consequences for the population and the economy. Hence, based on an inventory of mass movement processes comprising 95 data points, the present study aimed to achieve a zoning of the areas susceptible to these processes, as well as to characterize the mechanisms of instability in the volcanic structures that form the relief of the area in question. The results of this work clearly show the role of the lithology, the mode of emplacement and the morpho–structural characteristics of the volcanic structures, in the types of mass movement processes. In addition, it identifies the diverse activities of anthropogenic origin that favour slope instability in the zone: deforestation and burning of rubbish, felling of timber on the slopes for building infrastructure and dwellings, leakages of water, vibrations of vehicles, rotating machinery and the use of explosives in mining works, overloading the heads of the slopes, disturbance of the geohydrological regime, generation of rubbish tips, terracing of the slopes for cultivation, inadequate building regulations, and the use of counterproductive or ineffectual stabilization measures.

  5. Improved prediction and tracking of volcanic ash clouds

    Science.gov (United States)

    Mastin, Larry G.; Webley, Peter

    2009-01-01

    During the past 30??years, more than 100 airplanes have inadvertently flown through clouds of volcanic ash from erupting volcanoes. Such encounters have caused millions of dollars in damage to the aircraft and have endangered the lives of tens of thousands of passengers. In a few severe cases, total engine failure resulted when ash was ingested into turbines and coating turbine blades. These incidents have prompted the establishment of cooperative efforts by the International Civil Aviation Organization and the volcanological community to provide rapid notification of eruptive activity, and to monitor and forecast the trajectories of ash clouds so that they can be avoided by air traffic. Ash-cloud properties such as plume height, ash concentration, and three-dimensional ash distribution have been monitored through non-conventional remote sensing techniques that are under active development. Forecasting the trajectories of ash clouds has required the development of volcanic ash transport and dispersion models that can calculate the path of an ash cloud over the scale of a continent or a hemisphere. Volcanological inputs to these models, such as plume height, mass eruption rate, eruption duration, ash distribution with altitude, and grain-size distribution, must be assigned in real time during an event, often with limited observations. Databases and protocols are currently being developed that allow for rapid assignment of such source parameters. In this paper, we summarize how an interdisciplinary working group on eruption source parameters has been instigating research to improve upon the current understanding of volcanic ash cloud characterization and predictions. Improved predictions of ash cloud movement and air fall will aid in making better hazard assessments for aviation and for public health and air quality. ?? 2008 Elsevier B.V.

  6. Volcanic risk: the responsibility of science in communication

    Science.gov (United States)

    Piccione, Caterina

    2013-04-01

    The knowledge of the places where we live comes both from the experience handed down from one generation to the other and from scientific knowledge. In some cases, natural risks are "invisible", such as earthquakes, in some other cases, natural risks are seemingly "invisible", such as a wall in danger of collapse or a valley in a flood zone. And besides all this, there is volcanic risk, where the power of the forces of nature appears in all its beauty and majesty. The possibility to see volcanoes, to perceive their changes, to observe them closely and the need to live with them, makes it very important for the population living in these areas to have an adequate knowledge of the risk, a knowledge that should be based on scientific research. In Italy the experience of the Istituto Nazionale di Geofisica e Vulcanologia in the Vesuvio area, in the Aeolian Islands and around Etna shows how vital it is to make people aware of volcanic risk. Thanks to the support of the scientific community, the population can develop the best possible coexistence with volcanoes and with the risk they represent. These are extreme situations, but they are the starting point for educational and informative activities continuing to evolve and upgrade in parallel to the availability of new technologies and media and the progress of research that INGV has been conducting for years through specific projects. The scientific community and individual researchers have the ethical duty to share with the community the knowledge on risk, a responsibility that becomes especially important in those areas affected by volcanic risk. It is from this educational action that depends on the awareness of the populations with regard to the risk they are exposed to, that results in a responsible behavior in case of emergency, and that becomes the main variable for the safety of communities coexisting with active volcanoes.

  7. The effects and consequences of very large explosive volcanic eruptions.

    Science.gov (United States)

    Self, S

    2006-08-15

    Every now and again Earth experiences tremendous explosive volcanic eruptions, considerably bigger than the largest witnessed in historic times. Those yielding more than 450km3 of magma have been called super-eruptions. The record of such eruptions is incomplete; the most recent known example occurred 26000 years ago. It is more likely that the Earth will next experience a super-eruption than an impact from a large meteorite greater than 1km in diameter. Depending on where the volcano is located, the effects will be felt globally or at least by a whole hemisphere. Large areas will be devastated by pyroclastic flow deposits, and the more widely dispersed ash falls will be laid down over continent-sized areas. The most widespread effects will be derived from volcanic gases, sulphur gases being particularly important. This gas is converted into sulphuric acid aerosols in the stratosphere and layers of aerosol can cover the global atmosphere within a few weeks to months. These remain for several years and affect atmospheric circulation causing surface temperature to fall in many regions. Effects include temporary reductions in light levels and severe and unseasonable weather (including cool summers and colder-than-normal winters). Some aspects of the understanding and prediction of super-eruptions are problematic because they are well outside modern experience. Our global society is now very different to that affected by past, modest-sized volcanic activity and is highly vulnerable to catastrophic damage of infrastructure by natural disasters. Major disruption of services that society depends upon can be expected for periods of months to, perhaps, years after the next very large explosive eruption and the cost to global financial markets will be high and sustained.

  8. Effect of heterogeneities on evaluating earthquake triggering of volcanic eruptions

    Directory of Open Access Journals (Sweden)

    J. Takekawa

    2013-02-01

    Full Text Available Recent researches have indicated coupling between volcanic eruptions and earthquakes. Some of them calculated static stress transfer in subsurface induced by the occurrences of earthquakes. Most of their analyses ignored the spatial heterogeneity in subsurface, or only took into account the rigidity layering in the crust. On the other hand, a smaller scale heterogeneity of around hundreds of meters has been suggested by geophysical investigations. It is difficult to reflect that kind of heterogeneity in analysis models because accurate distributions of fluctuation are not well understood in many cases. Thus, the effect of the ignorance of the smaller scale heterogeneity on evaluating the earthquake triggering of volcanic eruptions is also not well understood. In the present study, we investigate the influence of the assumption of homogeneity on evaluating earthquake triggering of volcanic eruptions using finite element simulations. The crust is treated as a stochastic media with different heterogeneous parameters (correlation length and magnitude of velocity perturbation in our simulations. We adopt exponential and von Karman functions as spatial auto-correlation functions (ACF. In all our simulation results, the ignorance of the smaller scale heterogeneity leads to underestimation of the failure pressure around a chamber wall, which relates to dyke initiation. The magnitude of the velocity perturbation has a larger effect on the tensile failure at the chamber wall than the difference of the ACF and the correlation length. The maximum effect on the failure pressure in all our simulations is about twice larger than that in the homogeneous case. This indicates that the estimation of the earthquake triggering due to static stress transfer should take account of the heterogeneity of around hundreds of meters.

  9. QVAST: a new Quantum GIS plugin for estimating volcanic susceptibility

    Science.gov (United States)

    Bartolini, S.; Cappello, A.; Martí, J.; Del Negro, C.

    2013-11-01

    One of the most important tasks of modern volcanology is the construction of hazard maps simulating different eruptive scenarios that can be used in risk-based decision making in land-use planning and emergency management. The first step in the quantitative assessment of volcanic hazards is the development of susceptibility maps (i.e., the spatial probability of a future vent opening given the past eruptive activity of a volcano). This challenging issue is generally tackled using probabilistic methods that use the calculation of a kernel function at each data location to estimate probability density functions (PDFs). The smoothness and the modeling ability of the kernel function are controlled by the smoothing parameter, also known as the bandwidth. Here we present a new tool, QVAST, part of the open-source geographic information system Quantum GIS, which is designed to create user-friendly quantitative assessments of volcanic susceptibility. QVAST allows the selection of an appropriate method for evaluating the bandwidth for the kernel function on the basis of the input parameters and the shapefile geometry, and can also evaluate the PDF with the Gaussian kernel. When different input data sets are available for the area, the total susceptibility map is obtained by assigning different weights to each of the PDFs, which are then combined via a weighted summation and modeled in a non-homogeneous Poisson process. The potential of QVAST, developed in a free and user-friendly environment, is here shown through its application in the volcanic fields of Lanzarote (Canary Islands) and La Garrotxa (NE Spain).

  10. Intense acidic volcanism at the Cretaceous-Tertiary boundary

    International Nuclear Information System (INIS)

    Javoy, M.; Courtillot, V.

    1989-01-01

    A 87 Sr/ 86 Sr spike in seawater strontium with amplitude 2 x 10 -4 and duration of order 2 Ma is superimposed on longer-term variations at the Cretaceous-Tertiary boundary. The anomaly has been attributed to increased continental runoff due either to meteorite impact-related acid rain or sea-level regression. We speculate here that the spike could have resulted from intense, explosive acid volcanism preceding the development of the Deccan traps. A good model, both in tectonic position and geochemical characteristics, for these as yet elusive acidic products is provided by granites in the Seychelles Islands and particularly Mahe. (orig.)

  11. Observations of volcanic earthquakes and tremor at Deception Island - Antarctica

    Directory of Open Access Journals (Sweden)

    J. Morales

    1999-06-01

    Full Text Available Deception Island - South Shetlands, Antarctica is site of active volcanism. Since 1988 field surveys have been carried out with the aim of seismic monitoring, and in 1994 a seismic array was set up near the site of the Spanish summer base in order to better constrain the source location and spectral properties of the seismic events related to the volcanic activity. The array was maintained during the Antarctic summer of 1995 and the last field survey was carried out in 1996. Data show the existence of three different groups (or families of seismic events: 1 long period events, with a quasi-monochromatic spectral content (1-3 Hz peak frequency and a duration of more than 50 s, often occurring in small swarms lasting from several minutes to some day; 2 volcanic tremor, with a spectral shape similar to the long period events but with a duration of several minutes (2-10; 3 hybrid events, with a waveform characterised by the presence of a high frequency initial phase, followed by a low frequency phase with characteristics similar to those of the long period events. The high frequency phase of the hybrid events was analysed using polarisation techniques, showing the presence of P waves. This phase is presumably located at short epicentral distances and shallow source depth. All the analysed seismic events show back-azimuths between 120 and 330 degrees from north (corresponding to zones of volcanic activity showing no seismic activity in the middle of the caldera. Particle motion, Fourier spectral and spectrogram analysis show that the low frequency part of the three groups of the seismic signals have similar patterns. Moreover careful observations show that the high frequency phase which characterises the hybrid events is present in the long period and in the tremor events, even with lower signal to noise ratios. This evidence suggests that long period events are events in which the high frequency part is simply difficult to observe, due to a very

  12. Resident perception of volcanic hazards and evacuation procedures

    Directory of Open Access Journals (Sweden)

    D. K. Bird

    2009-02-01

    Full Text Available Katla volcano, located beneath the Mýrdalsjökull ice cap in southern Iceland, is capable of producing catastrophic jökulhlaup. The Icelandic Civil Protection (ICP, in conjunction with scientists, local police and emergency managers, developed mitigation strategies for possible jökulhlaup produced during future Katla eruptions. These strategies were tested during a full-scale evacuation exercise in March 2006. A positive public response during a volcanic crisis not only depends upon the public's knowledge of the evacuation plan but also their knowledge and perception of the possible hazards. To improve the effectiveness of residents' compliance with warning and evacuation messages it is important that emergency management officials understand how the public interpret their situation in relation to volcanic hazards and their potential response during a crisis and apply this information to the ongoing development of risk mitigation strategies. We adopted a mixed methods approach in order to gain a broad understanding of residents' knowledge and perception of the Katla volcano in general, jökulhlaup hazards specifically and the regional emergency evacuation plan. This entailed field observations during the major evacuation exercise, interviews with key emergency management officials and questionnaire survey interviews with local residents. Our survey shows that despite living within the hazard zone, many residents do not perceive that their homes could be affected by a jökulhlaup, and many participants who perceive that their homes are safe, stated that they would not evacuate if an evacuation warning was issued. Alarmingly, most participants did not receive an evacuation message during the exercise. However, the majority of participants who took part in the exercise were positive about its implementation. This assessment of resident knowledge and perception of volcanic hazards and the evacuation plan is the first of its kind in

  13. Volcanic Outgassing and the Rise of Atmospheric O2

    Science.gov (United States)

    Kasting, J. F.

    2012-12-01

    The release of reduced volcanic gases played a major role in determining atmospheric composition and redox state during the Earth's Archean era. Along with anerobic iron oxidation during deposition of banded iron-formations (BIFs), volcanic outgassing was one of two major sources of reductants, typically monitored as H2 equivalents, to the early atmosphere. These H2 sources were balanced by sinks of reductants, including escape of hydrogen to space and burial of organic matter and pyrite. The sinks for H2 can alternatively be thought of as sources for O2, following the stoichiometry: 2 H2 + O2 2 H2O. During the Archean, H2 sources were large enough to balance burial of organic matter and pyrite and still allow lots of hydrogen to escape. Sometime close to 2.4 Ga, the redox balance shifted: Either the H2 sources became smaller, or the H2 sinks became larger. The result was that O2 began to accumulate in the atmosphere for the first time, even though it was being produced by cyanobacteria well before this. This allowed a new O2 sink (H2 source) to become operative, namely, oxidative weathering of the land surface and seafloor. On the modern Earth, the redox budget is largely a balance between burial of organic matter and pyrite and oxidative weathering on land. What caused the system to shift to the oxidized state at 2.4 Ga remains a matter of debate. A secular decrease in volcanic outgassing rates alone cannot do this, as organic carbon burial is (loosely) tied to outgassing by the carbon isotope record. Roughly 15-20% of CO2 entering the combined atmosphere-ocean system appears to have been buried as organic carbon; hence, more volcanic outgassing implies more organic carbon burian (and, hence, more O2 production), if everything else stays the same. Other factors were not the same, however. Progressive growth of the continents may have helped O2 to rise, both by changing the ratio of submarine to subaerial outgassing and by facilitating greater recycling of carbon

  14. Geothermal surveys in the oceanic volcanic island of Mauritius

    Science.gov (United States)

    Verdoya, Massimo; Chiozzi, Paolo; Pasqua, Claudio

    2017-04-01

    Oceanic island chains are generally characterised by young volcanic systems that are predominately composed of basaltic lavas and related magmatic products. Although hot springs are occasionally present, the pervasive, massive, recent outpourings of basaltic lavas are the primary manifestation of the existence of geothermal resources. These islands may have, in principle, significant potential for the exploitation of geothermal energy. In this paper, we present results of recent investigations aimed at the evaluation of geothermal resources of the island of Mauritius, that is the emerging portion of a huge submarine, aseismic, volcanic plateau extending in the SW part of the Indian Ocean. The plateau is related to a long-lived hotspot track, whose present-day expression is the active volcano of La Réunion Island, located about 200 km SW of Mauritius. The island does not show at present any volcanic activity, but magmatism is quite recent as it dates from 7.8 to 0.03 Myr. Geochemical data from water samples collected from boreholes do not indicate the presence of mature water, i.e. circulating in high-temperature geothermal reservoirs, and argue for short-term water-rock interaction in shallow hydrogeological circuits. However, this cannot rule out that a deep magmatic heat source, hydraulically insulated from shallow aquifers, may occur. To evaluate the geothermal gradient, a 270-m-deep hole was thus drilled in the island central portion, in which the most recent volcanic activity (0.03 Myr) took place. Temperature-depth profiles, recorded after complete thermal equilibration, revealed a thermal gradient of 40 mK/m. Attempts of extracting additional thermal information were also made by measuring the temperature in a 170-m-deep deep water hole, no longer used. The results were consistent with the gradient hole, i.e. pointing to a weak or null deep-seated thermal anomaly beneath Mauritius and low geothermal potential. The deep thermal process (mantle plume) invoked

  15. The aggregation efficiency of very fine volcanic ash

    Science.gov (United States)

    Del Bello, E.; Taddeucci, J.; Scarlato, P.

    2013-12-01

    Explosive volcanic eruptions can discharge large amounts of very small sized pyroclasts (under 0.090 mm) into the atmosphere that may cause problems to people, infrastructures and environment. The transport and deposition of fine ash are ruled by aggregation that causes premature settling of fine ash and, as consequence, significantly reduces the concentration of airborne material over long distances. Parameterizing the aggregation potential of fine ash is then needed to provide accurate modelling of ash transport and deposition from volcanic plumes. Here we present the first results of laboratory experiments investigating the aggregation efficiency of very fine volcanic particles. Previous laboratory experiments have shown that collision kinetic and relative humidity provide the strongest effect on aggregation behaviour but were only limited to particles with size > 0.125 mm. In our work, we focus on natural volcanic ash at ambient humidity with particles size aggregation potential. Two types of ash were used in our experiments: fresh ash, collected during fall-out from a recent plume-forming eruption at Sakurajima (Japan -July 2013) and old ash, collected from fall-out tephra deposits at Campi Flegrei (Italy, ca. 10 ka), to account for the different chemical composition and morphoscopic effects of altered ash on aggregation efficiency. Total samples were hand sieved to obtain three classes with unimodal grain size distributions (sieved from the top of a transparent tank where a fan, placed at the bottom, allows turbulent dispersion of particles. Collision and sticking of particles on a vertical glass slide were filmed with a high speed cameras at 6000 fps. Our lenses arrangement provide high image resolution allowing to capture particles down to 0.005 mm in diameter. Video sequences of particles motion and collision were then processed with image analysis and particle tracking tools to determine i) the particle number density and ii) the grain size distribution

  16. Thermal Mapper (TMAP) concept to study volcanism on Io

    OpenAIRE

    Maturilli, A.; Helbert, J.; Walter, Ingo; Peter, Gisbert

    2016-01-01

    Thermal Mapper (TMAP) is part of the payload of the proposed Discovery mission IVO. TMAP will provide near-global coverage at 0.1–20 km/pixel to map heat flow and monitor volcanism. It is a high spatial- resolution thermal imaging system optimized for observing Io with heritage from the ESA AIDA mission’s Minaturized Asteroid infrared Imager (MAIR) and Radiometer instrument and the Bepi-Colombo mission’s MErcury Radiometer and Thermal Infrared Spectrometer (MERTIS). Minor modifications of the...

  17. A multidisciplinary system for monitoring and forecasting Etna volcanic plumes

    Science.gov (United States)

    Coltelli, Mauro; Prestifilippo, Michele; Spata, Gaetano; Scollo, Simona; Andronico, Daniele

    2010-05-01

    One of the most active volcanoes in the world is Mt. Etna, in Italy, characterized by frequent explosive activity from the central craters and from fractures opened along the volcano flanks which, during the last years, caused several damages to aviation and forced the closure of the Catania International Airport. To give precise warning to the aviation authorities and air traffic controller and to assist the work of VAACs, a novel system for monitoring and forecasting Etna volcanic plumes, was developed at the Istituto Nazionale di Geofisica e Vulcanologia, sezione di Catania, the managing institution for the surveillance of Etna volcano. Monitoring is carried out using multispectral infrared measurements from the Spin Enhanced Visible and Infrared Imager (SEVIRI) on board the Meteosat Second Generation geosynchronous satellite able to track the volcanic plume with a high time resolution, visual and thermal cameras used to monitor the explosive activity, three continuous wave X-band disdrometers which detect ash dispersal and fallout, sounding balloons used to evaluate the atmospheric fields, and finally field data collected after the end of the eruptive event needed to extrapolate important features of explosive activity. Forecasting is carried out daily using automatic procedures which download weather forecast data obtained by meteorological mesoscale models from the Italian Air Force national Meteorological Office and from the hydrometeorological service of ARPA-SIM; run four different tephra dispersal models using input parameters obtained by the analysis of the deposits collected after few hours since the eruptive event similar to 22 July 1998, 21-24 July 2001 and 2002-03 Etna eruptions; plot hazard maps on ground and in air and finally publish them on a web-site dedicated to the Italian Civil Protection. The system has been already tested successfully during several explosive events occurring at Etna in 2006, 2007 and 2008. These events produced eruption

  18. Interaction between climate, volcanism, and isostatic rebound in Southeast Alaska during the last deglaciation

    Science.gov (United States)

    Praetorius, Summer; Mix, Alan; Jensen, Britta; Froese, Duane; Milne, Glenn A.; Wolhowe, Matthew; Addison, Jason A.; Prahl, Fred

    2016-01-01

    Observations of enhanced volcanic frequency during the last deglaciation have led to the hypothesis that ice unloading in glaciated volcanic terrains can promote volcanism through decompression melting in the shallow mantle or a reduction in crustal magma storage time. However, a direct link between regional climate change, isostatic adjustment, and the initiation of volcanism remains to be demonstrated due to the difficulty of obtaining high-resolution well-dated records that capture short-term climate and volcanic variability traced to a particular source region. Here we present an exceptionally resolved record of 19 tephra layers paired with foraminiferal oxygen isotopes and alkenone paleotemperatures from marine sediment cores along the Southeast Alaska margin spanning the last deglacial transition. Major element compositions of the tephras indicate a predominant source from the nearby Mt. Edgecumbe Volcanic Field (MEVF). We constrain the timing of this regional eruptive sequence to 14.6–13.1 ka. The sudden increase in volcanic activity from the MEVF coincides with the onset of Bølling–Allerød interstadial warmth, the disappearance of ice-rafted detritus, and rapid vertical land motion associated with modeled regional isostatic rebound in response to glacier retreat. These data support the hypothesis that regional deglaciation can rapidly trigger volcanic activity. Rapid sea surface temperature fluctuations and an increase in local salinity (i.e., δ18Osw) variability are associated with the interval of intense volcanic activity, consistent with a two-way interaction between climate and volcanism in which rapid volcanic response to ice unloading may in turn enhance short-term melting of the glaciers, plausibly via albedo effects on glacier ablation zones.

  19. SYSTHESIS OF VOLCANISM STUDIES FOR THE YUCCA MOUNTAIN SITE CHARACTERIZATION PROJECT

    International Nuclear Information System (INIS)

    FV PERRY; GA CROWE; GA VALENTINE; LM BOWKER

    1997-01-01

    This report synthesizes the results of volcanism studies conducted by scientists at the Los Alamos National Laboratory and collaborating institutions on behalf of the Department of Energy's Yucca Mountain Project. Chapter 1 introduces the volcanism issue for the Yucca Mountain site and provides the reader with an overview of the organization, content, and significant conclusions of this report. The hazard of future basaltic volcanism is the primary topic of concern including both events that intersect a potential repository and events that occur near or within the waste isolation system of a repository. Future volcanic events cannot be predicted with certainty but instead are estimated using formal methods of probabilistic volcanic hazard assessment (PVHA). Chapter 2 describes the volcanic history of the Yucca Mountain region (YMR) and emphasizes the Pliocene and Quaternary volcanic record, the interval of primary concern for volcanic risk assessment. The distribution, eruptive history, and geochronology of Plio-Quaternary basalt centers are described by individual center emphasizing the younger postcaldera basalt ( -7 events per year. Bounding probability estimates are used to assess possible implications of not drilling aeromagnetic anomalies in the Arnargosa Valley and Crater Flat. The results of simulation modeling are used to assess the sensitivity of the disruption probability for the location of northeast boundaries of volcanic zones near the Yucca Mountain site. A new section on modeling of radiological releases associated with surface and subsurface magmatic activity has been added to chapter 6. The modeling results are consistent with past total system performance assessments that show future volcanic and magmatic events are not significant components of repository performance and volcanism is not a priority issue for performance assessment studies

  20. Production of low molecular weight hydrocarbons by volcanic eruptions on early Mars.

    Science.gov (United States)

    Segura, Antígona; Navarro-González, Rafael

    2005-10-01

    Methane and other larger hydrocarbons have been proposed as possible greenhouse gases on early Mars. In this work we explore if volcanic processes may have been a source for such molecules based on theoretical and experimental considerations. Geologic evidence and numerical simulations indicate that explosive volcanism was widely distributed throughout Mars. Volcanic lightning is typically produced in such explosive volcanism. Therefore this geologic setting was studied to determine if lightning could be a source for hydrocarbons in volcanic plumes. Volcanic lightning was simulated by focusing a high-energy infrared laser beam inside of a Pyrex reactor that contained the proposed volcanic gas mixture composed of 64% CH(4), 24% H(2), 10% H(2)O and 2% N(2), according to an accretion model and the nitrogen content measured in Martian meteorites. The analysis of products was performed by gas chromatography coupled to infrared and mass spectroscopy. Eleven hydrocarbons were identified among the products, of which acetylene (C(2)H(2)) was the most abundant. A thermochemical model was used to determine which hydrocarbons could arise only from volcanic heat. In this case, acetylene and ethylene are formed at magmatic temperatures. Our results indicate that explosive volcanism may have injected into the atmosphere of early Mars approximately 6 x 10(12) g yr(-1) of acetylene, and approximately 2 x 10(12) g yr(-1) of 1,3-butadiyne, both produced by volcanic lightning, approximately 5 x 10(11) g yr(-1) of ethylene produced by volcanic heat, and 10(13) g yr(-1) of methane.

  1. Automating Hyperspectral Data for Rapid Response in Volcanic Emergencies

    Science.gov (United States)

    Davies, Ashley G.; Doubleday, Joshua R.; Chien, Steve A.

    2013-01-01

    In a volcanic emergency, time is of the essence. It is vital to quantify eruption parameters (thermal emission, effusion rate, location of activity) and distribute this information as quickly as possible to decision-makers in order to enable effective evaluation of eruption-related risk and hazard. The goal of this work was to automate and streamline processing of spacecraft hyperspectral data, automate product generation, and automate distribution of products. Visible and Short-Wave Infrared Images of volcanic eruption in Iceland in May 2010." class="caption" align="right">The software rapidly processes hyperspectral data, correcting for incident sunlight where necessary, and atmospheric transmission; detects thermally anomalous pixels; fits data with model black-body thermal emission spectra to determine radiant flux; calculates atmospheric convection thermal removal; and then calculates total heat loss. From these results, an estimation of effusion rate is made. Maps are generated of thermal emission and location (see figure). Products are posted online, and relevant parties notified. Effusion rate data are added to historical record and plotted to identify spikes in activity for persistently active eruptions. The entire process from start to end is autonomous. Future spacecraft, especially those in deep space, can react to detection of transient processes without the need to communicate with Earth, thus increasing science return. Terrestrially, this removes the need for human intervention.

  2. A heat pipe mechanism for volcanism and tectonics on Venus

    International Nuclear Information System (INIS)

    Turcotte, D.L.

    1989-01-01

    A heat pipe mechanism is proposed for the transport of heat through the lithosphere on Venus. This mechanism allows the crust and lithosphere on Venus to be greater than 150 km thick. A thick crust and thick lithosphere can explain the high observed topography and large associated gravity anomalies. For a 150-km-thick lithosphere the required volcanic flux on Venus is 200 km 3 /yr; this is compared with a flux of 17 km 3 /yr associated with the formation of the oceanic crust on Earth. A thick basaltic crust on Venus is expected to transform to eclogite at a depth of 60 to 80 km; the dense eclogite would contribute the lithospheric delamination that returns the crust to the interior of the planet completing the heat pipe cycle. Topography and the associated gravity anomalies can be explained by Airy compensation of the thick crust. The principal observation that is contrary to this hypothesis is the mean age of the surface that is inferred from crater statistics; the minimum mean age is about 130 Ma, and this implies an upper limit of 2 km 3 /yr for the surface volcanic flux. If the heat pipe mechanism was applicable on Earth in the Archean, it would provide the thick lithosphere implied by isotopic data from diamonds

  3. Reconsidering Volcanic Ocean Island Hydrology: Recent Geophysical and Drilling Results

    Science.gov (United States)

    Thomas, D. M.; Pierce, H. A.; Lautze, N. C.

    2017-12-01

    Recent results of geophysical surveys and exploratory drilling in Hawaii have suggested that Hawaii's hydrogeology may be more complex than has been generally recognized. Instead of a more-or-less homogeneous pile of highly permeable eruptive basalts that are intermittently punctuated by volcanic dikes confined to calderas and rift zones, we are finding that dike compartmentalization is occurring outside of recognized rift zones, leading to significantly higher volumes of stored groundwater within the island. Analysis of recent geophysical surveys have shown local water table elevations that are substantially higher than can be accounted for by the high hydraulic conductivities of Hawaiian basalts. Recent diamond wireline drilling results have also shown that sub-horizontal variations in permeability, associated with significant changes in eruptive character (e.g. explosive vs effusive activity) are acting as significant perching and confining bodies over significant aerial extents and suggest that these features also contribute to increased storage of recharge. Not only is storage much higher than previously assumed, these features appear to impact subsurface groundwater flow in ways that are not accounted for in traditional methods of computing sustainable yields for near shore aquifers: where buried confining formations extend to depths well below sea level, higher elevation recharge is being intercepted and diverted to deep submarine groundwater discharge well below depths that are typically investigated or quantified. We will provide a summary of the recent geophysical survey results along with a revised conceptual model for groundwater circulation within volcanic ocean islands.

  4. Mitigation of Volcanic Risk: The COSMO-SkyMed Contribution

    Science.gov (United States)

    Sacco, Patrizia; Daraio, Maria Girolamo; Battagliere, Maria Libera; Coletta, Alessandro

    2015-05-01

    The Italian Space Agency (ASI) promotes Earth Observation (EO) applications related to themes such as the prediction, monitoring, management and mitigation of natural and anthropogenic hazards. The approach generally followed is the development and demonstration of prototype services, using currently available data from space missions, in particular the COSMO-SkyMed (Constellation of Small Satellites for Mediterranean basin observation) mission, which represents the largest Italian investment in Space System for EO and thanks to which Italy plays a key role worldwide. Projects funded by ASI provide the convergence of various national industry expertise, research and institutional reference users. In this context a significant example is represented by the ASI Pilot Projects, recently concluded, dealing with various thematic, such as volcanoes. In this paper a special focus will be addressed to the volcanic risk management and the contribution provided in this field by COSMO-SkyMed satellite constellation during the last years. A comprehensive overview of the various national and international projects using COSMO-SkyMed data for the volcanic risk mitigation will be given, highlighting the Italian contribution provided worldwide in this operational framework.

  5. Microgravity change as a precursor to volcanic activity

    Science.gov (United States)

    Rymer, Hazel

    1994-07-01

    In recent decades, systematic microgravity studies over some 20 active volcanoes in Central America, Iceland, Italy, Japan, Papua New Guinea and the USA have provided valuable data on sub-surface mass redistribution associated with volcanic activity. Concurrent data on ground deformation are essential to the unambiguous interpretation of gravity changes. In some instances, gravity and elevation vary along the free-air or Bouguer gradients, implying that there has been no sub-surface mass or density change, respectively. Where there are residual gravity changes after correction for elevation changes, magma movements in sub-surface chambers, feeder systems, vents and fissures (dykes) or water table variations are proposed. Although detailed interpretations depend on local circumstances and the calculations depend on source geometry, in general, the smallest residual gravity changes are associated with eruptions from volatile-poor basaltic vents and at extensional rift zones, whereas the highest residual values occur at explosive, subduction-related stratocones built from volatile-rich andesitic magma. The most intriguing, yet difficult, data to interpret derive from large-volume, infrequently erupting volcanic systems where caldera unrest is now becoming well documented and the ultimate hazards are most severe. Mass increases during inflation followed by limited mass loss during subsequent deflation typify these structures.

  6. Venus - Limited extension and volcanism along zones of lithospheric weakness

    Science.gov (United States)

    Schaber, G. G.

    1982-01-01

    Three global-scale zones of possible tectonic origin are described as occurring along broad, low rises within the Equatorial Highlands on Venus (lat 50 deg N to 50 deg S, long 60 deg to 310 deg). The two longest of these tectonic zones, the Aphrodite-Beta and Themis-Atla zones, extend for 21,000 and 14,000 km, respectively. Several lines of evidence indicate that Beta and Atla Regiones, located at the only two intersections of the three major tectonic zones, are dynamically supported volcanic terranes associated with currently active volcanism. Rift valleys south of Aphrodite Terra and between Beta and Phoebe Regiones are characterized by 75- to 100-km widths, raised rims, and extensions of only a few tens of kilometers, about the same magnitudes as in continental rifts on the earth. Horizontal extension on Venus was probably restricted by an early choking-off of plate motion by high crustal and upper-mantle temperatures, and the subsequent loss of water and an asthenosphere.

  7. The HISTMAG database: combining historical, archaeomagnetic and volcanic data

    Science.gov (United States)

    Arneitz, Patrick; Leonhardt, Roman; Schnepp, Elisabeth; Heilig, Balázs; Mayrhofer, Franziska; Kovacs, Peter; Hejda, Pavel; Valach, Fridrich; Vadasz, Gergely; Hammerl, Christa; Egli, Ramon; Fabian, Karl; Kompein, Niko

    2017-09-01

    Records of the past geomagnetic field can be divided into two main categories. These are instrumental historical observations on the one hand, and field estimates based on the magnetization acquired by rocks, sediments and archaeological artefacts on the other hand. In this paper, a new database combining historical, archaeomagnetic and volcanic records is presented. HISTMAG is a relational database, implemented in MySQL, and can be accessed via a web-based interface (http://www.conrad-observatory.at/zamg/index.php/data-en/histmag-database). It combines available global historical data compilations covering the last ∼500 yr as well as archaeomagnetic and volcanic data collections from the last 50 000 yr. Furthermore, new historical and archaeomagnetic records, mainly from central Europe, have been acquired. In total, 190 427 records are currently available in the HISTMAG database, whereby the majority is related to historical declination measurements (155 525). The original database structure was complemented by new fields, which allow for a detailed description of the different data types. A user-comment function provides the possibility for a scientific discussion about individual records. Therefore, HISTMAG database supports thorough reliability and uncertainty assessments of the widely different data sets, which are an essential basis for geomagnetic field reconstructions. A database analysis revealed systematic offset for declination records derived from compass roses on historical geographical maps through comparison with other historical records, while maps created for mining activities represent a reliable source.

  8. Investigating the Deep Seismic Structure of Volcan de Colima, Mexico

    Science.gov (United States)

    Gardine, M. D.; Reyes, T. D.; West, M. E.

    2006-12-01

    We present early-stage results from a novel seismic investigation at Volcan de Colima. The project is a collaboration between the Observatorio Vulcanologico de la Universidad de Colima and the University of Alaska Fairbanks. In January 2006, twenty broadband seismometers were deployed in a wide-aperture array around the volcano as part of the IRIS/PASSCAL-supported Colima Volcano Deep Seismic Experiment (CODEX). They are scheduled to be in the field for eighteen months. Data from the first several months of the deployment have been used to characterize both the regional seismicity and the seismicity of the volcano, as recorded by the temporary array. Colima volcano has an unusually well-distributed suite of earthquakes on the local, regional and teleseismic scale. Data recorded close to the edifice provide an opportunity to explore the daily explosive activity exhibited by the volcano. The diversity of regional and teleseismic earthquake source regions make Colima an ideal place to probe the deep magmatic structure of a prodigous volcanic center. Results will be interpreted in the context of pre-existing petrologic models to address the relative role of crust and mantle in governing the evolution of an andesitic arc volcano.

  9. Volcanic tremor associated with eruptive activity at Bromo volcano

    Directory of Open Access Journals (Sweden)

    E. Gottschämmer

    1999-06-01

    Full Text Available Three broadband stations were deployed on Bromo volcano, Indonesia, from September to December 1995. The analysis of the seismograms shows that the signals produced by the volcanic sources cover the frequency range from at least 25 Hz down to periods of several minutes and underlines, therefore, the importance of broadband recordings. Frequency analysis reveals that the signal can be divided into four domains. In the traditional frequency range of volcanic tremor (1-10 Hz sharp transitions between two distinct values of the tremor amplitude can be observed. Additional tremor signal including frequencies from 10 to 20 Hz could be found during late November and early December. Throughout the whole experiment signals with periods of some hundred seconds were observed which are interpreted as ground tilts. For these long-period signals a particle motion analysis was performed in order to estimate the source location. Depth and radius can be estimated when the source is modeled as a sudden pressure change in a sphere. The fourth frequency range lies between 0.1 and 1 Hz and is dominated by two spectral peaks which are due to marine microseism. The phase velocity and the direction of wave propagation of these signals could be determined using the tripartite-method.

  10. Concentration variance decay during magma mixing: a volcanic chronometer.

    Science.gov (United States)

    Perugini, Diego; De Campos, Cristina P; Petrelli, Maurizio; Dingwell, Donald B

    2015-09-21

    The mixing of magmas is a common phenomenon in explosive eruptions. Concentration variance is a useful metric of this process and its decay (CVD) with time is an inevitable consequence during the progress of magma mixing. In order to calibrate this petrological/volcanological clock we have performed a time-series of high temperature experiments of magma mixing. The results of these experiments demonstrate that compositional variance decays exponentially with time. With this calibration the CVD rate (CVD-R) becomes a new geochronometer for the time lapse from initiation of mixing to eruption. The resultant novel technique is fully independent of the typically unknown advective history of mixing - a notorious uncertainty which plagues the application of many diffusional analyses of magmatic history. Using the calibrated CVD-R technique we have obtained mingling-to-eruption times for three explosive volcanic eruptions from Campi Flegrei (Italy) in the range of tens of minutes. These in turn imply ascent velocities of 5-8 meters per second. We anticipate the routine application of the CVD-R geochronometer to the eruptive products of active volcanoes in future in order to constrain typical "mixing to eruption" time lapses such that monitoring activities can be targeted at relevant timescales and signals during volcanic unrest.

  11. Volcanic gas impacts on vegetation at Turrialba Volcano, Costa Rica

    Science.gov (United States)

    Teasdale, R.; Jenkins, M.; Pushnik, J.; Houpis, J. L.; Brown, D. L.

    2010-12-01

    Turrialba volcano is an active composite stratovolcano that is located approximately 40 km east of San Jose, Costa Rica. Seismic activity and degassing have increased since 2005, and gas compositions reflect further increased activity since 2007 peaking in January 2010 with a phreatic eruption. Gas fumes dispersed by trade winds toward the west, northwest, and southwest flanks of Turrialba volcano have caused significant vegetation kill zones, in areas important to local agriculture, including dairy pastures and potato fields, wildlife and human populations. In addition to extensive vegetative degradation is the potential for soil and water contamination and soil erosion. Summit fumarole temperatures have been measured over 200 degrees C and gas emissions are dominated by SO2; gas and vapor plumes reach up to 2 km (fumaroles and gases are measured regularly by OVSICORI-UNA). A recent network of passive air sampling, monitoring of water temperatures of hydrothermal systems, and soil pH measurements coupled with measurement of the physiological status of surrounding plants using gas exchange and fluorescence measurements to: (1) identify physiological correlations between leaf-level gas exchange and chlorophyll fluorescence measurements of plants under long term stress induced by the volcanic gas emissions, and (2) use measurements in tandem with remotely sensed reflectance-derived fluorescence ratio indices to track natural photo inhibition caused by volcanic gas emissions, for use in monitoring plant stress and photosynthetic function. Results may prove helpful in developing potential land management strategies to maintain the biological health of the area.

  12. NO2 column changes induced by volcanic eruptions

    Science.gov (United States)

    Johnston, Paul V.; Keys, J. Gordon; Mckenzie, Richard L.

    1994-01-01

    Nitrogen dioxide slant column amounts measured by ground-based remote sensing from Lauder, New Zealand (45 deg S) and Campbell Island (53 deg S) during the second half of 1991 and early 1992 show anomalously low values that are attributed to the effects of volcanic eruptions. It is believed that the eruptions of Mount Pinatubo in the Philippines in June 1991 and possibly Mount Hudson in Chile in August 1991 are responsible for the stratospheric changes, which first became apparent in July 1991. The effects in the spring of 1991 are manifested as a reduction in the retrieved NO2 column amounts from normal levels by 35 to 45 percent, and an accompanying increase in the overnight decay of NO2. The existence of an accurate long-term record of column NO2 from the Lauder site enables us to quantify departures from the normal seasonal behavior with some confidence. Simultaneous retrievals of column ozone agree well with Dobson measurements, confirming that only part of the NO2 changes can be attributed to a modification of the scattering geometry by volcanic aerosols. Other reasons for the observed behavior are explored, including the effects of stratospheric temperature increases resulting from the aerosol loading and the possible involvement of heterogeneous chemical processes.

  13. PROPERTIES OF DENIZLI VOLCANICS AND POTENTIAL USING FOR CONCRETE PRODUCTION

    Directory of Open Access Journals (Sweden)

    Barış SEMİZ

    2005-01-01

    Full Text Available In this study, mineralogical, petrographical and chemical properties of volcanic rocks (Denizli Volcanics with basaltic trachyandesite composition which are located in southern of Denizli province have been investigated. Their physical and mechanical tests have been carried out on the samples to find out their performance both as an aggregate in concrete and as building stone in the construction sector. Unit weights, water absorption, porosity and uniaxial compressive strength of the tested samples are between 2250-2960 kg/m3, % 0.06-0.4, % 0.15-10.22 and 52.4-170.2 MPa, respectively. Average 28-day compressive strengths of the concrete are 94.44 MPa and the results fit the mineralogical and petrographical characteristics. There is a total of 2750 million ton probable reserve and it is an alternative aggregate to limestone which has already been produced in the region. High strength concrete production is vital for high quality construction especially in earthquake zones.

  14. Low permeability volcanics in the Canary Islands (Spain)

    International Nuclear Information System (INIS)

    Custodio, E.

    1985-01-01

    The Canary Islands, about 2000 km to the SW of continental Spain, are fully volcanic, from mid Miocene to recent. The permeability of the formations depends very much on the age and lithology. In most instances young, pervious basalts are devoid of water due to their altitude and most water abstraction works must go into the underlaying, much less pervious, older formations. Long water galleries or large diameter wells fitted with a crown of horizontal bores are able to catch significant quantities of water from formations which permeability is less than 0.1 m/day. The anisotropic behavior of the formations, specially due to the injection of subvertical dykes parallel to the coast, explains the high hydraulic gradient found, up to 0.15, and the relative high yield of the wells and galleries. The specific yield of the volcanics is fairly high, about 0.02 to 0.05, thus allowing the use of reserves to supply the demand. Conventional finite-difference models give a sound picture of the groundwater behavior but preliminary adjustments of the hydraulic parameters need the study of simplified cross-sections. The study of the chemical characteristics of groundwater is a key factor in the understanding of groundwater flow. The discussion refers mainly to Lanzarote, Tenerife and Gran Canaria Islands, but some comment will use information from other islands. 23 references, 10 figures, 2 tables

  15. Aberrant thermoluminescence dates obtained from primary volcanic quartz

    International Nuclear Information System (INIS)

    Guerin, Gilles; Samper, Agnes

    2007-01-01

    This study deals with the dating by thermoluminescence (TL) of quartz from six volcanic formations of the Saint Lucia Island (Lesser Antilles Arc). Quartz microcrystals up to one millimetre in size were extracted from dacites and pumice flows and prepared in a way similar to the well-known inclusion technique. The TL properties of these quartz were used to estimate apparent palaeodoses using the multi-aliquot protocol. The quartz TL was studied in three different spectral domains: red, green and ultraviolet/blue. The calculated annual dose-rates yielded a set of 18 age-estimates. For some samples complementary dates were obtained using high temperature TL (HTTL) of plagioclase feldspars. These latter dates combined with previously determined radiocarbon and unspiked K-Ar dates were used to explore the validity of ages computed from the TL of quartz. Individual values for quartz appear to be scattered and do not match ages deduced from 14 C, unspiked K-Ar or HTTL on plagioclase dates. These results indicate that when conventional TL methodologies derived from the inclusion method are applied to volcanic quartz major dating problems are to be expected

  16. Aberrant thermoluminescence dates obtained from primary volcanic quartz

    Energy Technology Data Exchange (ETDEWEB)

    Guerin, Gilles [Laboratoire des Sciences du Climat et de l' Environnement, CEA-CNRS, avenue de la Terrasse, 91191 Gif-sur-Yvette (France)], E-mail: gilles.guerin@u-psud.fr; Samper, Agnes [Laboratoire de geochronologie multitechnique (UPS-IPGP), Universite de Paris-Sud Orsay, 91405 Orsay Cedex (France)

    2007-10-15

    This study deals with the dating by thermoluminescence (TL) of quartz from six volcanic formations of the Saint Lucia Island (Lesser Antilles Arc). Quartz microcrystals up to one millimetre in size were extracted from dacites and pumice flows and prepared in a way similar to the well-known inclusion technique. The TL properties of these quartz were used to estimate apparent palaeodoses using the multi-aliquot protocol. The quartz TL was studied in three different spectral domains: red, green and ultraviolet/blue. The calculated annual dose-rates yielded a set of 18 age-estimates. For some samples complementary dates were obtained using high temperature TL (HTTL) of plagioclase feldspars. These latter dates combined with previously determined radiocarbon and unspiked K-Ar dates were used to explore the validity of ages computed from the TL of quartz. Individual values for quartz appear to be scattered and do not match ages deduced from {sup 14}C, unspiked K-Ar or HTTL on plagioclase dates. These results indicate that when conventional TL methodologies derived from the inclusion method are applied to volcanic quartz major dating problems are to be expected.

  17. Alteration of submarine volcanic rocks in oxygenated Archean oceans

    Science.gov (United States)

    Ohmoto, H.; Bevacqua, D.; Watanabe, Y.

    2009-12-01

    Most submarine volcanic rocks, including basalts in diverging plate boundaries and andesites/dacites in converging plate boundaries, have been altered by low-temperature seawater and/or hydrothermal fluids (up to ~400°C) under deep oceans; the hydrothermal fluids evolved from shallow/deep circulations of seawater through the underlying hot igneous rocks. Volcanogenic massive sulfide deposits (VMSDs) and banded iron formations (BIFs) were formed by mixing of submarine hydrothermal fluids with local seawater. Therefore, the behaviors of various elements, especially of redox-sensitive elements, in altered submarine volcanic rocks, VMSDs and BIFs can be used to decipher the chemical evolution of the oceans and atmosphere. We have investigated the mineralogy and geochemistry of >500 samples of basalts from a 260m-long drill core section of Hole #1 of the Archean Biosphere Drilling Project (ABDP #1) in the Pilbara Craton, Western Australia. The core section is comprised of ~160 m thick Marble Bar Chert/Jasper Unit (3.46 Ga) and underlying, inter-bedded, and overlying submarine basalts. Losses/gains of 65 elements were quantitatively evaluated on the basis of their concentration ratios against the least mobile elements (Ti, Zr and Nb). We have recognized that mineralogical and geochemical characteristics of many of these samples are essentially the same as those of hydrothermally-altered modern submarine basalts and also those of altered volcanic rocks that underlie Phanerozoic VMSDs. The similarities include, but are not restricted to: (1) the alteration mineralogy (chlorite ± sericite ± pyrophyllite ± carbonates ± hematite ± pyrite ± rutile); (2) the characteristics of whole-rock δ18O and δ34S values; (3) the ranges of depletion and enrichment of Si, Al, Mg, Ca, K, Na, Fe, Mn, and P; (4) the enrichment of Ba (as sulfate); (5) the increases in Fe3+/Fe2+ ratios; (6) the enrichment of U; (7) the depletion of Cr; and (8) the negative Ce anomalies. Literature data

  18. Central San Juan caldera cluster: Regional volcanic framework

    Science.gov (United States)

    Lipman, Peter W.

    2000-01-01

    Eruption of at least 8800 km3 of dacitic-rhyolitic magma as 9 major ash-slow sheets (individually 150-5000 km3) was accompanied by recurrent caldera subsidence between 28.3 and about 26.5 Ma in the central San Juan Mountains, Colorado. Voluminous andesitic-decitic lavas and breccias were erupted from central volcanoes prior to the ash-flow eruptions, and similar lava eruptions continued within and adjacent to the calderas during the period of explosive volcanism, making the central San Juan caldera cluster an exceptional site for study of caldera-related volcanic processes. Exposed calderas vary in size from 10 to 75 km in maximum diameter, the largest calderas being associated with the most voluminous eruptions. After collapse of the giant La Garita caldera during eruption if the Fish Canyon Tuff at 17.6 Ma, seven additional explosive eruptions and calderas formed inside the La Garita depression within about 1 m.y. Because of the nested geometry, maximum loci of recurrently overlapping collapse events are inferred to have subsided as much as 10-17 km, far deeper than the roof of the composite subvolcanic batholith defined by gravity data, which represents solidified caldera-related magma bodies. Erosional dissection to depths of as much as 1.5 km, although insufficient to reach the subvolcanic batholith, has exposed diverse features of intracaldera ash-flow tuff and interleaved caldera-collapse landslide deposits that accumulated to multikilometer thickness within concurrently subsiding caldera structures. The calderas display a variety of postcollapse resurgent uplift structures, and caldera-forming events produced complex fault geometries that localized late mineralization, including the epithermal base- and precious-metal veins of the well-known Creede mining district. Most of the central San Juan calderas have been deeply eroded, and their identification is dependent on detailed geologic mapping. In contrast, the primary volcanic morphology of the

  19. Genesis of petroduric and petrocalcic horizons in Latinamerica volcanic soils

    Science.gov (United States)

    Quantin, Paul

    2010-05-01

    Introduction. In Latinamerica, from Mexico to Chile, there are indurated volcanic soils horizons, named 'tepetate' in Mexico or cangahua in the Andes Mountains. Apart from original volcanic tuffs, these horizons were produced by pedogenesis: either through a former weathering of volcanic ash layers into fragic and later to petrocalcic horizons; or after a former soil formation through a second process of transformation from clayey volcanic soils to silicified petroduric horizons. This oral presentation will briefly deal with the formation of petroduric horizons in Mexico and petrocalcic horizon in Ecuador. Petroduric horizon genesis in Mexico. A soil climato-toposequence, near to Veracruz (Rossignol & Quantin, 1997), shows downwards an evolution from a ferralic Nitisol to a petroduric Durisol. A Durisol profile comports these successive horizons: at the top A and Eg, then columnar Btg-sim, laminar Bt-sim , prismatic Bsim, plinthite Cg, over andesite lava flow. Among its main features are especially recorded: clay mineralogy, microscopy and HRTEM. These data show: an increase in cristobalite at the expenses of 0.7 nm halloysite in Egsiltans, laminar Bt-sim, around or inside the columns or prisms of Btg-sim and Bsimhorizons. HRTEM (Elsass & al 2000) on ultra thin sections reveals an 'epigenesis' of clay sheets by amorphous silica, to form successively A-opal, Ct-opal and microcrystalline cristobalite. From these data and some groundwater chemical analyses, a scenario of duripan formation from a past clayey Nitisol is inferred: clay eluviation-illuviation process? alternate redoximorphy? clay degradation, Al leaching and Si accumulation, to form successively A-opal, Ct-opal and cristobalite. Petrocalcic horizon genesis in Ecuador. A soil climato-toposequence on pyroclastic flows, near to Bolivar in Ecuador (Quantin & Zebrowski, 1997), shows downwards the evolution from fragic-eutric-vitric Cambisols to petrocalcic-vitric Phaeozems, at the piedmont under semi

  20. Miocene volcanism in the Oaş-Gutâi Volcanic Zone, Eastern Carpathians, Romania: Relationship to geodynamic processes in the Transcarpathian Basin

    Science.gov (United States)

    Kovacs, Marinel; Seghedi, Ioan; Yamamoto, Masatsugu; Fülöp, Alexandrina; Pécskay, Zoltán; Jurje, Maria

    2017-12-01

    We present the first comprehensive study of Miocene volcanic rocks of the Oaş-Gutâi Volcanic Zone (OGVZ), Romania, which are exposed in the eastern Transcarpathian Basin (TB), within the Eastern Alpine-Western Carpathian-Northern Pannonian (ALCAPA) block. Collision between the ALCAPA block and Europe at 18-16 Ma produced the Carpathian fold-and-thrust belt. This was followed by clockwise rotation and an extensional regime forming core complexes of the separated TB fragment. Based on petrographic and geochemical data, including Srsbnd Nd isotopic compositions and Ksbnd Ar ages, we distinguish three types of volcanic activity in the OGVZ: (1) early Miocene felsic volcanism that produced caldera-related ignimbrites in the Gutâi Mountains (15.4-14.8 Ma); (2) widespread middle-late Miocene intermediate/andesitic volcanism (13.4-7.0 Ma); and (3) minor late Miocene andesitic/rhyolitic volcanism comprising the Oraşu Nou rhyolitic volcano and several andesitic-dacitic domes in the Oaş Mountains (11.3-9.5 Ma). We show that magma evolution in the OGVZ was controlled by assimilation-fractional crystallization and magma-mixing processes within an interconnected multi-level crustal magmatic reservoir. The evolution of volcanic activity within the OGVZ was controlled by the geodynamics of the Transcarpathian Basin. The early felsic and late intermediate Miocene magmas were emplaced in a post-collisional setting and were derived from a mantle source region that was modified by subduction components (dominantly sediment melts) and lower crust. The style of volcanism within the eastern TB system exhibits spatial variations, with andesitic composite volcanoes (Gutâi Mountains) observed at the margins, and isolated andesitic-rhyolitic monogenetic volcanoes (Oaş Mountains) in the center of the basin.

  1. Field-trip guide to mafic volcanism of the Cascade Range in Central Oregon—A volcanic, tectonic, hydrologic, and geomorphic journey

    Science.gov (United States)

    Deligne, Natalia I.; Mckay, Daniele; Conrey, Richard M.; Grant, Gordon E.; Johnson, Emily R.; O'Connor, Jim; Sweeney, Kristin

    2017-08-16

    The Cascade Range in central Oregon has been shaped by tectonics, volcanism, and hydrology, as well as geomorphic forces that include glaciations. As a result of the rich interplay between these forces, mafic volcanism here can have surprising manifestations, which include relatively large tephra footprints and extensive lava flows, as well as water shortages, transportation and agricultural disruption, and forest fires. Although the focus of this multidisciplinary field trip will be on mafic volcanism, we will also look at the hydrology, geomorphology, and ecology of the area, and we will examine how these elements both influence and are influenced by mafic volcanism. We will see mafic volcanic rocks at the Sand Mountain volcanic field and in the Santiam Pass area, at McKenzie Pass, and in the southern Bend region. In addition, this field trip will occur during a total solar eclipse, the first one visible in the United States in more than 25 years (and the first seen in the conterminous United States in more than 37 years).The Cascade Range is the result of subduction of the Juan de Fuca plate underneath the North American plate. This north-south-trending volcanic mountain range is immediately downwind of the Pacific Ocean, a huge source of moisture. As moisture is blown eastward from the Pacific on prevailing winds, it encounters the Cascade Range in Oregon, and the resulting orographic lift and corresponding rain shadow is one of the strongest precipitation gradients in the conterminous United States. We will see how the products of the volcanoes in the central Oregon Cascades have had a profound influence on groundwater flow and, thus, on the distribution of Pacific moisture. We will also see the influence that mafic volcanism has had on landscape evolution, vegetation development, and general hydrology.

  2. Petrology and geochronology of metamorphosed volcanic rocks and a middle Cretaceous volcanic neck in the east-central Sierra Nevada, California.

    Science.gov (United States)

    Kistler, R.W.; Swanson, S.E.

    1981-01-01

    Metamorphosed Mesozoic volcanic rocks from the E-central Sierra Nevada range in composition from basalt to rhyolite and have ages, based on whole rock Rb-Sr and U-Pb zircon dating, of about 237- 224, 185, 163, 134, and 100Ma. The major plutons of the batholith in this area are of Triassic (215-200Ma) and Cretaceous (94-80Ma) ages. Initial 87Sr/86Sr values for the metamorphosed volcanic rocks of the area are in the range from 0.7042 to 0.7058 and are generally different from the values for the surrounding batholithic rocks (0.7056-0.7066). A circular, zoned granitic pluton, with an outcrop area of 2.5km2, similar in appearance to a ring dike complex, was apparently a conduit for some or possibly all of the middle-Cretaceous metamorphosed volcanic rocks exposed about 5km to the S in the western part of the Ritter Range. Samples from the metamorphosed volcanic rocks and the pluton yield a Rb/Sr whole rock isochron age of 99.9+ or -2.2Ma with an intitial 87Sr/86Sr of 0.7048+ or -0.00001. Major element variation diagrams of the pluton and volcanic rocks define coincident compositional trends. The ages of volcanic events relative to the ages of the major intrusive epochs and the major element and isotopic compositions of the volcanic rocks relative to the major plutons indicate that the volcanic rocks are not simply or directly related to the major plutons in the Sierra Nevada. -from Authors

  3. Pucarilla-Cerro Tipillas volcanic complex: the oldest recognized caldera in the southeastern portion of central volcanic zone of Central Andes?

    Energy Technology Data Exchange (ETDEWEB)

    Guzman, Silvina; Petrinovic, Ivan [CONICET -IBIGEO. Museo de Cs. Naturales, Universidad de Salta, Mendoza 2 (4400), Salta (Argentina)], E-mail: guzmansilvina@gmail.com

    2008-10-01

    We recognize the most eastern and oldest collapse caldera structure in the southern portion of the Central Volcanic Zone of the Andes. A description of Middle-Upper Miocene successions related to explosive- effusive events is presented. The location of this centre close to Cerro Galn Caldera attests a recurrence in the volcanism between 12 and 2 Ma in this portion of the Altiplano - Puna Plateau.

  4. Thermal effects of massive CO2 emissions associated with subduction volcanism

    NARCIS (Netherlands)

    Schuiling, R.D.

    2004-01-01

    Large volumes of CO₂ are emitted during volcanic activity at convergent plate boundaries, not only from volcanic centers. Their C isotopic signature indicates that this CO₂ is mainly derived from the decarbonation of subducted limestones or carbonated metabasalts, not as often admitted from magma

  5. Landscape formation and soil genesis in volcanic parent materials in humid tropical lowlands of Costa Rica

    NARCIS (Netherlands)

    Nieuwenhuyse, A.

    1996-01-01


    The influence of volcanism on landscape genesis, and formation of soils on volcanic parent material was studied in the Atlantic lowland of Costs Rica. This lowland is a subduction basin of tectonic origin, in which thick alluvial and marine sediments are accumulated. At its southwestern

  6. Primary volcanic structures from a type section of Deccan Trap flows ...

    Indian Academy of Sciences (India)

    Swanson 1967; Macdonald 1967; Long and Wood. Keywords. Deccan Traps; lava flows; volcanism; isotherm; cooling history. J. Earth Syst. Sci. 115, No. ...... Kilauea Volcanic island of Hawaii; J. Geophys. Res. 103. 27,303–27,323. Lightfoot ...

  7. The volcanic and geochemical development of São Nicolau, Cape Verde Islands

    DEFF Research Database (Denmark)

    Duprat, Helene Inga; Holm, Paul Martin; Sherson, Jacob Friis

    2007-01-01

    We present 34 new age results from 40 Ar/39 Ar incremental heating analyses of groundmass separates from volcanic rocks from São Nicolau, Cape Verde. Combining the age results with field observations, we show that the volcanic activity that formed the island occurred in four separate stages: 1: >6...

  8. Study of Volcanic Activity at Different Time Scales Using Hypertemporal Land Surface Temperature Data

    NARCIS (Netherlands)

    Pavlidou, Efthymia; Hecker, Chris; van der Werff, Harald; van der Meijder, Mark

    2017-01-01

    We apply a method for detecting subtle spatiotemporal signal fluctuations to monitor volcanic activity. Whereas midwave infrared data are commonly used for volcanic hot spot detection, our approach utilizes hypertemporal longwave infrared-based land surface temperature (LST) data. Using LST data of

  9. Some aspects of volcanic ash layers in the Central Indian Basin.

    Digital Repository Service at National Institute of Oceanography (India)

    Sukumaran, N.P.; Banerjee, R.; Borole, D.V.; Gupta, S.M.

    Intercalated volcanic ash layers in two deep-sea sediment cores from the Central Indian Basin (CIB) are examined for the possibility of an in situ source of suboceanic volcanism. An in situ source has been predicated based on the bottom...

  10. Selective extraction methods for aluminium, iron and organic carbon from montane volcanic ash soils

    NARCIS (Netherlands)

    Jansen, B.; Tonneijck, F.H.; Verstraten, J.M.

    2011-01-01

    Montane volcanic ash soils contain disproportionate amounts of soil organic carbon and thereby play an often underestimated role in the global carbon cycle. Given the central role of Al and Fe in stabilizing organic matter in volcanic ash soils, we assessed various extraction methods of Al, Fe, and

  11. Intraplate volcanism influenced by distal subduction tectonics at Jeju Island, Republic of Korea

    NARCIS (Netherlands)

    Brenna, M.; Cronin, S.J.; Kereszturi, G.; Sohn, Y.K.; Smith, I.E.M.; Wijbrans, J.R.

    2015-01-01

    The drivers behind the inception of, and the variable, pulsatory eruption rates at distributed intraplate volcanic fields are not well understood. Such broad areas of monogenetic volcanism cover vast areas of the world and are often heavily populated. Reliable models to unravel their behaviour

  12. Geochemical evidence for waning magmatism and polycyclic volcanism at Crater Flat, Nevada

    International Nuclear Information System (INIS)

    Perry, F.V.; Crowe, B.M.

    1992-01-01

    This paper reports that petrologic and geochemical studies of basaltic rocks in the Yucca Mountain region are currently focused on understanding the evolution of volcanism in the Crater Flat volcanic field and the mechanisms of polycyclic volcanic field and the mechanisms of polycyclic volcanism at the Lathrop Wells volcanic center, the youngest center in the Crater Flat volcanic field. Geochemical and petrologic data indicate that the magma chambers which supplied the volcanic centers at Crater Flat became situated at greater crustal depths as the field evolved. Deep magma chambers may be related to a waning magma flux that was unable to sustain upper crustal magma conduits and chambers. Geochemical data from the Lathrop Wells volcanic center indicate that eruptive units identified from field and geomorphic relationships are geochemically distinct. The geochemical variations cannot be explained by fractional crystallization of a single magma batch, indicating that several magma batches were involved in the formation of the Lathrop Wells center. Considering the low magma flux in the Yucca Mountain region in the Quaternary, the probability of several magma batches erupting essentially simultaneously at Lathrop Wells is considered remote

  13. Improving global detection of volcanic eruptions using the Ozone Monitoring Instrument (OMI

    Directory of Open Access Journals (Sweden)

    V. J. B. Flower

    2016-11-01

    Full Text Available Volcanic eruptions pose an ever-present threat to human populations around the globe, but many active volcanoes remain poorly monitored. In regions where ground-based monitoring is present the effects of volcanic eruptions can be moderated through observational alerts to both local populations and service providers, such as air traffic control. However, in regions where volcano monitoring is limited satellite-based remote sensing provides a global data source that can be utilised to provide near-real-time identification of volcanic activity. This paper details a volcanic plume detection method capable of identifying smaller eruptions than is currently feasible, which could potentially be incorporated into automated volcanic alert systems. This method utilises daily, global observations of sulfur dioxide (SO2 by the Ozone Monitoring Instrument (OMI on NASA's Aura satellite. Following identification and classification of known volcanic eruptions in 2005–2009, the OMI SO2 data, analysed using a logistic regression analysis, permitted the correct classification of volcanic events with an overall accuracy of over 80 %. Accurate volcanic plume identification was possible when lower-tropospheric SO2 loading exceeded ∼ 400 t. The accuracy and minimal user input requirements of the developed procedure provide a basis for incorporation into automated SO2 alert systems.

  14. Juvenile tree growth on some volcanic ash soils disturbed by prior forest harvest.

    Science.gov (United States)

    J. Michael Geist; John W. Hazard; Kenneth W. Seidel

    2008-01-01

    The effects of mechanical disturbance from traditional ground-based logging and site preparation on volcanic ash soil and associated tree growth were investigated by using two study approaches in a retrospective study. This research was conducted on volcanic ash soils within previously harvested units in the Blue Mountains of northeast Oregon and southwest Washington....

  15. Records of climatic changes and volcanic events in an ice core from ...

    Indian Academy of Sciences (India)

    R. Narasimhan (Krishtel eMaging) 1461 1996 Oct 15 13:05:22

    the volcanic event that occurred in 1815 AD, has been identified based on electrical conductance ... tions and accumulation rates of ice, climatic and ..... The peak saturated values of currents (µ amp) at about 5 and 30m depths identify the past volcanic episodes Augung ..... in promoting the scientific activities by allowing us.

  16. The InVEST Volcanic Concept Survey: Exploring Student Understanding about Volcanoes

    Science.gov (United States)

    Parham, Thomas L., Jr.; Cervato, Cinzia; Gallus, William A., Jr.; Larsen, Michael; Hobbs, Jon; Stelling, Pete; Greenbowe, Thomas; Gupta, Tanya; Knox, John A.; Gill, Thomas E.

    2010-01-01

    Results from the Volcanic Concept Survey (VCS) indicated that many undergraduates do not fully understand volcanic systems and plate tectonics. During the 2006 academic year, a ten-item conceptual survey was distributed to undergraduate students enrolled in Earth science courses at five U.S. colleges and universities. A trained team of graders…

  17. Exploring Geology on the World-Wide Web--Volcanoes and Volcanism.

    Science.gov (United States)

    Schimmrich, Steven Henry; Gore, Pamela J. W.

    1996-01-01

    Focuses on sites on the World Wide Web that offer information about volcanoes. Web sites are classified into areas of Global Volcano Information, Volcanoes in Hawaii, Volcanoes in Alaska, Volcanoes in the Cascades, European and Icelandic Volcanoes, Extraterrestrial Volcanism, Volcanic Ash and Weather, and Volcano Resource Directories. Suggestions…

  18. Estimation of volcanic ash emissions using trajectory-based 4D-Var data assimilation

    NARCIS (Netherlands)

    Lu, S.; Lin, X.; Heemink, A.W.; Fu, G.; Segers, A.J.

    2015-01-01

    Volcanic ash forecasting is a crucial tool in hazard assessment and operational volcano monitoring. Emission parameters such as plume height, total emission mass, and vertical distribution of the emission plume rate are essential and important in the implementation of volcanic ash models. Therefore,

  19. Northern hemispheric response to large volcanic eruptions in relation to El Nino - winter case studies

    International Nuclear Information System (INIS)

    Kirchner, I.

    1994-01-01

    A large part of the global climate variability is attributed to variations of the Indian Monsoon and of El Nino/Southern Oscillation. Facing the recent violent volcanic eruption of Mount Pinatubo in June 1991, and searching for the climate signal of the increased greenhouse effect, the climate impact of volcanic aerosols becomes more and more interesting

  20. Scattering matrices of volcanic ash particles of Mount St. Helens, Redoubt, and Mount Spurr Volcanoes

    NARCIS (Netherlands)

    Munoz, O.; Volten, H.; Hovenier, J.W.; Veihelmann, B.; Zande, W.J. van der; Waters, L.; Rose, W.I.

    2004-01-01

    [1] We present measurements of the whole scattering matrix as a function of the scattering angle at a wavelength of 632.8 nm in the scattering angle range 3degrees - 174degrees of randomly oriented particles taken from seven samples of volcanic ashes corresponding to four different volcanic

  1. Scattering matrices of volcanic ash particles of Mount St. Helens, Redoubt, and Mount Spurr Volcanoes

    NARCIS (Netherlands)

    Muñoz, O.; Volten, H.; Hovenier, J.W.; Veihelmann, B.; van der Zande, W.J.; Waters, L.B.F.M.; Rose, W.I.

    2004-01-01

    We present measurements of the whole scattering matrix as a function of the scattering angle at a wavelength of 632.8 nm in the scattering angle range 3°-174° of randomly oriented particles taken from seven samples of volcanic ashes corresponding to four different volcanic eruptions: the 18 May 1980

  2. Geophysical imaging of buried volcanic structures within a continental back-arc basin

    DEFF Research Database (Denmark)

    Stratford, Wanda Rose; Stern, T.A.

    2008-01-01

    Hidden beneath the ~2 km thick low-velocity volcaniclastics on the western margin of the Central Volcanic Region, North Island, New Zealand, are two structures that represent the early history of volcanic activity in a continental back-arc. These ~20×20 km structures, at Tokoroa and Mangakino, fo...

  3. Environmental and anthropogenic factors affecting the respiratory toxicity of volcanic ash in vitro

    Science.gov (United States)

    Tomašek, Ines; Horwell, Claire J.; Damby, David E.; Ayris, Paul M.; Barošová, Hana; Geers, Christoph; Petri-Fink, Alke; Rothen-Rutishauser, Barbara; Clift, Martin J. D.

    2016-04-01

    Human exposure to inhalable volcanic ash particles following an eruption is a health concern, as respirable-sized particles can potentially contribute towards adverse respiratory health effects, such as the onset or exacerbation of respiratory and cardiovascular diseases. Although there is substantial information on the mineralogical properties of volcanic ash that may influence its biological reactivity, knowledge as to how external factors, such as air pollution, contribute to and augment the potential reactivity is limited. To determine the respiratory effects of volcanic particle interactions with anthropogenic pollution and volcanic gases we will experimentally assess: (i) physicochemical characteristics of volcanic ash relevant to respiratory toxicity; (ii) the effects of simultaneously inhaling anthropogenic pollution (i.e. diesel exhaust particles (DEP)) and volcanic ash (of different origins); (iii) alteration of volcanic ash toxicity following interaction with volcanic gases. In order to gain a first understanding of the biological impact of the respirable fraction of volcanic ash when inhaled with DEP in vitro, we used a sophisticated 3D triple cell co-culture model of the human alveolar epithelial tissue barrier. The multi-cellular system was exposed to DEP [0.02 mg/mL] and then exposed to either a single or repeated dose of well-characterised respirable volcanic ash (0.26 ± 0.09 or 0.89 ± 0.29 μg/cm2, respectively) from the Soufrière Hills volcano, Montserrat for a period of 24 hours using a pseudo-air liquid interface approach. Cultures were subsequently assessed for adverse biological endpoints including cytotoxicity, oxidative stress and (pro)-inflammatory responses. Results indicated that the combination of DEP and respirable volcanic ash at sub-lethal concentrations incited a significant release of pro-inflammatory markers that was greater than the response for either DEP or volcanic ash, independently. Further work is planned, to determine if

  4. The volcanism of the western part of the Los Frailes Meseta (Bolivia): a representative example of the Andean volcanism since the Upper Oligocene

    International Nuclear Information System (INIS)

    Leroy, L.; Jimenez, N.

    1996-01-01

    The Los Frailes Meseta (Bolivia) is one of the large tertiary ignimbritic fields of the inner volcanic arc from Central Andes (Central Volcanic Zone. CVZ), in contact zone between the Altiplano to the west and the Eastern Cordillera to the east. Field observations and mineralogical and geochemical studies (major and trace elements) lead to distinguish two types of volcanism in the western border to the Meseta. During the Middle Miocene and Pliocene, the volcanic activity can be subdivided into three pyroclastic emission cycles, the Larco, Coroma and Pliocene ignimbrites, the first two being separated by the Quechua 2 orogeny. All these ignimbrites are very similar and correspond to peraluminous rhyolites to rhyodacites. In the studies area, the Coroma cycle is the only one where an ignimbrite-less evolved resurgent dome association can be observed. Beside these ignimbrites, isolated small lava flows and domes overlay and/or intrude all the other formations. They are meta-aluminous lavas with a shoshonitic affinity. A quaternary age can be attributed to his second volcanism. These two volcanic types are well-known in the CVZ and are related to the different deformation stages, either compressional or extensional, which occur alternately in the Cordillera since 26 Ma. (authors). 61 refs., 12 figs., 3 tabs

  5. Volcanic Flooding Experiments in Impact Basins and Heavily Cratered Terrain Using LOLA Data: Patterns of Resurfacing and Crater Loss

    Science.gov (United States)

    Whitten, Jennifer L.; Head, James W.; Neumann, Gregory A.; Zuber, Maria T.; Smith, David E.

    2012-01-01

    Terrestrial planetary bodies are characterized by extensive, largely volcanic deposits covering their surfaces. On Earth large igneous provinces (LIPs) abound, maria cover the nearside of the Moon, and volcanic plains cover large portions of Venus, Mars and Mercury.

  6. Enhanced ice sheet melting driven by volcanic eruptions during the last deglaciation.

    Science.gov (United States)

    Muschitiello, Francesco; Pausata, Francesco S R; Lea, James M; Mair, Douglas W F; Wohlfarth, Barbara

    2017-10-24

    Volcanic eruptions can impact the mass balance of ice sheets through changes in climate and the radiative properties of the ice. Yet, empirical evidence highlighting the sensitivity of ancient ice sheets to volcanism is scarce. Here we present an exceptionally well-dated annual glacial varve chronology recording the melting history of the Fennoscandian Ice Sheet at the end of the last deglaciation (∼13,200-12,000 years ago). Our data indicate that abrupt ice melting events coincide with volcanogenic aerosol emissions recorded in Greenland ice cores. We suggest that enhanced ice sheet runoff is primarily associated with albedo effects due to deposition of ash sourced from high-latitude volcanic eruptions. Climate and snowpack mass-balance simulations show evidence for enhanced ice sheet runoff under volcanically forced conditions despite atmospheric cooling. The sensitivity of past ice sheets to volcanic ashfall highlights the need for an accurate coupling between atmosphere and ice sheet components in climate models.

  7. Communicating Uncertainty in Volcanic Ash Forecasts: Decision-Making and Information Preferences

    Science.gov (United States)

    Mulder, Kelsey; Black, Alison; Charlton-Perez, Andrew; McCloy, Rachel; Lickiss, Matthew

    2016-04-01

    The Robust Assessment and Communication of Environmental Risk (RACER) consortium, an interdisciplinary research team focusing on communication of uncertainty with respect to natural hazards, hosted a Volcanic Ash Workshop to discuss issues related to volcanic ash forecasting, especially forecast uncertainty. Part of the workshop was a decision game in which participants including forecasters, academics, and members of the Aviation Industry were given hypothetical volcanic ash concentration forecasts and asked whether they would approve a given flight path. The uncertainty information was presented in different formats including hazard maps, line graphs, and percent probabilities. Results from the decision game will be presented with a focus on information preferences, understanding of the forecasts, and whether different formats of the same volcanic ash forecast resulted in different flight decisions. Implications of this research will help the design and presentation of volcanic ash plume decision tools and can also help advise design of other natural hazard information.

  8. Petrographic and geochemical data for Cenozoic volcanic rocks of the Bodie Hills, California and Nevada

    Science.gov (United States)

    du Bray, Edward A.; John, David A.; Box, Stephen E.; Vikre, Peter G.; Fleck, Robert J.; Cousens, Brian L.

    2013-04-23

    Petrographic and geochemical data for Cenozoic volcanic rocks of the Bodie Hills, California and Nevada // // This report presents petrographic and geochemical data for samples collected during investigations of Tertiary volcanism in the Bodie Hills of California and Nevada. Igneous rocks in the area are principally 15–6 Ma subduction-related volcanic rocks of the Bodie Hills volcanic field but also include 3.9–0.1 Ma rocks of the bimodal, post-subduction Aurora volcanic field. Limited petrographic results for local basement rocks, including Mesozoic granitoid rocks and their metamorphic host rocks, are also included in the compilation. The petrographic data include visual estimates of phenocryst abundances as well as other diagnostic petrographic criteria. The geochemical data include whole-rock major oxide and trace element data, as well as limited whole-rock isotopic data.

  9. Petrography, Geochemistry and Petrogenesis of Volcanic Rocks, NW Ghonabad, Iran

    Directory of Open Access Journals (Sweden)

    Sedigheh Zirjanizadeh

    2016-07-01

    Full Text Available Introduction The study area is located in NW Gonabad, Razavi Khorasan Province, northern Lut block and eastern Iran north of the Lut Block. Magmatism in NW Gonabad produced plutonic and volcanic rock associations with varying geochemical compositions. These rocks are related to the Cenozoic magmatic rocks in Iran and belong to the Lut Block volcanic–plutonic belt. In this study, petrogenesis of volcanic units in northwest Gonabad was investigated. The volcanic rocks are andesites/trachyandesites, rhyolites, dacites/ rhyodacites and pyroclastics.These rocks show porphyritic, trachytic and embayed textures in phenocrysts with plagioclase, sanidine and quartz (most notably in dacite and rhyolite, hornblende and rare biotite. The most important alteration zones are propylitic, silicification and argillic.Four kaolinite- bearing clay deposits have been located in areas affectedby hydrothermal alteration of Eocene rhyolite, dacite and rhyodacite. Analytical techniques Five samples were analyzed for major elements by wavelength dispersive X-ray fluorescence (XRF and six samples were analyzed for trace elements using inductively coupled plasma-mass spectrometry (ICP-MS in the Acme Laboratories, Vancouver (Canada.Sr and Nd isotopic compositions were determined for four whole-rock samples at the Laboratório de GeologiaIsotópica da Universidade de Aveiro, Portugal. Results Petrography. The rocks in this area are consist of trachyte, andesite/ trachyandesite, dacite/ rhyodacite, principally as ignimbrites and soft tuff. The textures of phenocrysts are mainly porphyritic, glomerophyric, trachytic and embayed textures in plagioclase, hornblende and biotite. The groundmasses consist of plagioclase and fine-grainedcrystals of hornblende. Plagioclase phenocrysts and microlitesare by far the most abundant textures in andesite - trachyandesites (>25% and in size from 0.01 to 0.1mm. Euhedral to subhedral hornblende phenocrysts areabundant (3-5%and 0.1 to 0

  10. Progress in Near Real-Time Volcanic Cloud Observations Using Satellite UV Instruments

    Science.gov (United States)

    Krotkov, N. A.; Yang, K.; Vicente, G.; Hughes, E. J.; Carn, S. A.; Krueger, A. J.

    2011-12-01

    Volcanic clouds from explosive eruptions can wreak havoc in many parts of the world, as exemplified by the 2010 eruption at the Eyjafjöll volcano in Iceland, which caused widespread disruption to air traffic and resulted in economic impacts across the globe. A suite of satellite-based systems offer the most effective means to monitor active volcanoes and to track the movement of volcanic clouds globally, providing critical information for aviation hazard mitigation. Satellite UV sensors, as part of this suite, have a long history of making unique near-real time (NRT) measurements of sulfur dioxide (SO2) and ash (aerosol Index) in volcanic clouds to supplement operational volcanic ash monitoring. Recently a NASA application project has shown that the use of near real-time (NRT,i.e., not older than 3 h) Aura/OMI satellite data produces a marked improvement in volcanic cloud detection using SO2 combined with Aerosol Index (AI) as a marker for ash. An operational online NRT OMI AI and SO2 image and data product distribution system was developed in collaboration with the NOAA Office of Satellite Data Processing and Distribution. Automated volcanic eruption alarms, and the production of volcanic cloud subsets for multiple regions are provided through the NOAA website. The data provide valuable information in support of the U.S. Federal Aviation Administration goal of a safe and efficient National Air Space. In this presentation, we will highlight the advantages of UV techniques and describe the advances in volcanic SO2 plume height estimation and enhanced volcanic ash detection using hyper-spectral UV measurements, illustrated with Aura/OMI observations of recent eruptions. We will share our plan to provide near-real-time volcanic cloud monitoring service using the Ozone Mapping and Profiler Suite (OMPS) on the Joint Polar Satellite System (JPSS).

  11. Quantitative physical models of volcanic phenomena for hazards assessment of critical infrastructures

    Science.gov (United States)

    Costa, Antonio

    2016-04-01

    Volcanic hazards may have destructive effects on economy, transport, and natural environments at both local and regional scale. Hazardous phenomena include pyroclastic density currents, tephra fall, gas emissions, lava flows, debris flows and avalanches, and lahars. Volcanic hazards assessment is based on available information to characterize potential volcanic sources in the region of interest and to determine whether specific volcanic phenomena might reach a given site. Volcanic hazards assessment is focussed on estimating the distances that volcanic phenomena could travel from potential sources and their intensity at the considered site. Epistemic and aleatory uncertainties strongly affect the resulting hazards assessment. Within the context of critical infrastructures, volcanic eruptions are rare natural events that can create severe hazards. In addition to being rare events, evidence of many past volcanic eruptions is poorly preserved in the geologic record. The models used for describing the impact of volcanic phenomena generally represent a range of model complexities, from simplified physics based conceptual models to highly coupled thermo fluid dynamical approaches. Modelling approaches represent a hierarchy of complexity, which reflects increasing requirements for well characterized data in order to produce a broader range of output information. In selecting models for the hazard analysis related to a specific phenomenon, questions that need to be answered by the models must be carefully considered. Independently of the model, the final hazards assessment strongly depends on input derived from detailed volcanological investigations, such as mapping and stratigraphic correlations. For each phenomenon, an overview of currently available approaches for the evaluation of future hazards will be presented with the aim to provide a foundation for future work in developing an international consensus on volcanic hazards assessment methods.

  12. K-Ar age of the Tertiary volcanic rocks in the Tohoku area, Japan

    International Nuclear Information System (INIS)

    Konda, Tadashi; Ueda, Yoshio.

    1980-01-01

    The absolute age of the Tertiary volcanic rocks in Tohoku area has been estimated by K-Ar method. The results are: (1) in case of the volcanic rocks of Monzen-Aikawa stage, 32.8 - 38.5 m.y.B.P., (2) in case of the volcanic rocks of Nozaki-Daijima stage, 22.0 - 25.1 m.y.B.P., (3) in case of the volcanic rocks of Nishikurosawa stage, 15.5 - 16.5 m.y.B.P., (4) in case of the volcanic rocks of Onnagawa stage, 12.6 - 14.8 m.y.B.P., (5) in case of the volcanic rocks of Funakawa stage, 9.6 - 11.3 m.y.B.P., and (6) in case of the volcanic rocks of Kitaura stage, 6.9 - 9.0 m.y.B.P. The samples used are such as biotite and whole rocks. The eruption periods in Tertiary volcanic activities presumed by K-Ar method are geologically significant. In the measurements made on the same system of samples under same conditions, there was difference in the K-Ar ages between the Monzen-Aikawa and the Nozaki-Daijima stages, and it was significantly noteworthy. It is indicated that the volcanic rock activities in the former stage had took place before those in the latter stage. In the Tohoku arc of northern Japan, the simultaneity in initial volcanic activities is not seen in the direction across the arc. (J.P.N.)

  13. Status of volcanic hazard studies for the Nevada Nuclear Waste Storage Investigations. Volume II

    International Nuclear Information System (INIS)

    Crowe, B.M.; Wohletz, K.H.; Vaniman, D.T.; Gladney, E.; Bower, N.

    1986-01-01

    Volcanic hazard investigations during FY 1984 focused on five topics: the emplacement mechanism of shallow basalt intrusions, geochemical trends through time for volcanic fields of the Death Valley-Pancake Range volcanic zone, the possibility of bimodal basalt-rhyolite volcanism, the age and process of enrichment for incompatible elements in young basalts of the Nevada Test Site (NTS) region, and the possibility of hydrovolcanic activity. The stress regime of Yucca Mountain may favor formation of shallow basalt intrusions. However, combined field and drill-hole studies suggest shallow basalt intrusions are rare in the geologic record of the southern Great Basin. The geochemical patterns of basaltic volcanism through time in the NTS region provide no evidence for evolution toward a large-volume volcanic field or increases in future rates of volcanism. Existing data are consistent with a declining volcanic system comparable to the late stages of the southern Death Valley volcanic field. The hazards of bimodal volcanism in this area are judged to be low. The source of a 6-Myr pumice discovered in alluvial deposits of Crater Flat has not been found. Geochemical studies show that the enrichment of trace elements in the younger rift basalts must be related to an enrichment of their mantle source rocks. This geochemical enrichment event, which may have been metasomatic alteration, predates the basalts of the silicic episode and is, therefore, not a young event. Studies of crater dimensions of hydrovolcanic landforms indicate that the worst case scenario (exhumation of a repository at Yucca Mountain by hydrovolcanic explosions) is unlikely. Theoretical models of melt-water vapor explosions, particularly the thermal detonation model, suggest hydrovolcanic explosion are possible at Yucca Mountain. 80 refs., 21 figs., 5 tabs

  14. Hydrothermal Solute Flux from Ebeko Volcanic Center, Paramushir, Kuril Islands

    Science.gov (United States)

    Taran, Y.; Kalacheva, E.; Kotenko, T.; Chaplygin, I.

    2014-12-01

    Ebeko volcano on the northern part of Paramushir Island, Northern Kurils, is characterized by frequent phreatic eruptions, a strong low-temperature fumarolic activity at the summit and was the object of comprehensive volcanological and geochemical studies during the last half a century. The volcanic center is composed of several Pleistocene volcanic structures aadjacent to Ebeko and hosts a hydrothermal system with a high outflow rate of hot SO4-Cl acidic water (Upper Yurieva springs) with the current maximum temperature of ~85oC, pH 1.3 and TDS ~ 10 g/L. All discharging thermal waters are drained by the Yurieva River to the Sea of Okhotsk. The hot springs have been changing in time, generally decreasing their activity from near boiling in 1960s, with TDS ~ 20 g/L and the presence of a small steaming field at the upper part of the ~ 700 m long discharging area, to a much lower discharge rate of main vents, lower temperature and the absence of the steaming ground. The spring chemistry did not react to the Ebeko volcanic activity (14 strong phreato-magmatic events during the last 60 years).The total measured outputs of chloride and sulfur from the system last time (2006-2010) were estimated on average as 730 g/s and 980 g/s, respectively, which corresponds to the equivalent fluxes of 64 t/d of HCl and 169 t/d of SO2. These values are higher than the fumarolic volatile output from Ebeko. The estimated discharge rate of hot (85oC) water from the system with ~ 3500 ppm of chloride is about 0.3 m3/s which is much higher than the thermal water discharge from El Chichon or Copahue volcano-hydrothermal systems and among the highest hot water natural outputs ever measured for a volcano-hydrothermal system. We also report the chemical composition (major and ~ 60 trace elements including REE) of water from the main hot spring vents and the Yurieva river mouth.

  15. Volcanic CO2 Emissions and Glacial Cycles: Coupled Oscillations

    Science.gov (United States)

    Burley, J. M.; Huybers, P. J.; Katz, R. F.

    2016-12-01

    Following the mid-Pleistocene transition, the dominant period of glacial cycles changed from 40 ka to 100 ka. It is broadly accepted that the 40 ka glacial cycles were driven by cyclical changes in obliquity. However, this forcing does not explain the 100 ka glacial cycles. Mechanisms proposed for 100 ka cycles include isostatic bed depression and proglacial lakes destabilising the Laurentide ice sheet, non-linear responses to orbital eccentricity, and Antarctic ice sheets influencing deep-ocean stratification. None of these are universally accepted. Here we investigate the hypothesis that variations in volcanic CO2 emissions can cause 100 ka glacial cycles. Any proposed mechanism for 100 ka glacial cycles must give the Earth's climate system a memory of 10^4 - 10^5years. This timescale is difficult to achieve for surface processes, however it is possible for the solid Earth. Recent work suggests volcanic CO2 emissions change in response to glacial cycles [1] and that there could be a 50 ka delay in that response [2]. Such a lagged response could drive glacial cycles from 40 ka cycles to an integer multiple of the forcing period. Under what conditions could the climate system admit such a response? To address this, we use a simplified climate model modified from Huybers and Tziperman [3]. Our version comprises three component models for energy balance, ice sheet growth and atmospheric CO2 concentration. The model is driven by insolation alone with other components varying according to a system of coupled, differential equations. The model is run for 500 ka to produce several glacial cycles and the resulting changes in global ice volume and atmospheric CO2 concentration.We obtain a switch from 40 ka to 100 ka cycles as the volcanic CO2 response to glacial cycles is increased. These 100 ka cycles are phase-locked to obliquity, lasting 80 or 120 ka. Whilst the MOR response required (in this model) is larger than plausible estimates based on [2], it illustrates the

  16. Hafnium Isotopic Variations in Central Atlantic Intraplate Volcanism

    Science.gov (United States)

    Geldmacher, J.; Hanan, B. B.; Hoernle, K.; Blichert-Toft, J.

    2008-12-01

    Although one of the geochemically best investigated volcanic regions on Earth, almost no Hf isotopic data have been published from the broad belt of intraplate seamounts and islands in the East Atlantic between 25° and 36° N. This study presents 176Hf/177Hf ratios from 61 representative samples from the Canary, Selvagen and Madeira Islands and nearby large seamounts, encompassing the full range of different evolutionary stages and geochemical endmembers. The majority of samples have mafic, mainly basaltic compositions with Mg-numbers within or near the range of magmas in equilibrium with mantle olivine (68-75). No correlation was found between Mg-number and 176Hf/177Hf ratios in the data set. In comparison to observed Nd isotope variations published for this volcanic province (6 ɛNd units), 176Hf/177Hf ratios span a larger range (14 ɛHf units). Samples from the Madeira archipelago have the most radiogenic compositions (176Hf/177Hfm= 0.283132-0.283335), widely overlapping the field for central Atlantic N-MORB. They form a relatively narrow, elongated trend (stretching over >6 ɛHf units) between a radiogenic MORB-like endmember and a composition located on the Nd-Hf mantle array. In contrast, all Canary Islands samples plot below the mantle array (176Hf/177Hfm = 0.282943-0.283067) and, despite being from an archipelago that stretches over a much larger geographic area, form a much denser cluster with less compositional variation (~4 ɛHf units). All samples from the seamounts NE of the Canaries, proposed to belong to the same Canary hotspot track (e.g. Geldmacher et al., 2001, JVGR 111; Geldmacher et al., 2005, EPSL 237), fall within the Hf isotopic range of this cluster. The cluster largely overlaps the composition of the proposed common mantle endmember 'C' (Hanan and Graham, 1996, Science 272) but spans a space between a more radiogenic (depleted) composition and a HIMU-type endmember. Although samples of Seine and Unicorn seamounts, attributed to the Madeira

  17. Molecular Analysis of Endolithic Microbial Communities in Volcanic Glasses

    Science.gov (United States)

    di Meo, C. A.; Giovannoni, S.; Fisk, M.

    2002-12-01

    Terrestrial and marine volcanic glasses become mineralogically and chemically altered, and in many cases this alteration has been attributed to microbial activity. We have used molecular techniques to study the resident microbial communities from three different volcanic environments that may be responsible for this crustal alteration. Total microbial DNA was extracted from rhyolite glass of the 7 million year old Rattlesnake Tuff in eastern Oregon. The DNA was amplified using the polymerase chain reaction (PCR) with bacterial primers targeting the 16S rRNA gene. This 16S rDNA was cloned and screened with restriction fragment length polymorphism (RFLP). Out of 89 total clones screened, 46 belonged to 13 different clone families containing two or more members, while 43 clones were unique. Sequences of eight clones representing the most dominant clone families in the library were 92 to 97% similar to soil bacterial species. In a separate study, young pillow basalts (rock- and seawater-associated archaea. The six rock community profiles were quite similar to each other, and the background water communities were also similar, respectively. Both the rock and water communities shared the same dominant peak. To identify the T-RFLP peaks corresponding to the individual members of the rock and seawater communities, clone libraries of the archaeal 16S rDNA for one basalt sample (Dive 3718) and its corresponding background water sample were constructed. The most abundant archaeal genes were closely related to uncultured Group I marine Crenarchaeota that have been previously identified from similar deep-sea habitats. These archaeal genes collectively correspond to the dominant T-RFLP peak present in both the rock and water samples. In a third study, we investigated the microbial community residing in a Hawaiian Scientific Drilling Program core collected near Hilo, Hawaii. Total microbial DNA was extracted from a depth of 1351 m in the drill core (ambient temperature in the

  18. Morphology, volcanism, and mass wasting in Crater Lake, Oregon

    Science.gov (United States)

    Bacon, C.R.; Gardner, J.V.; Mayer, L.A.; Buktenica, M.W.; Dartnell, P.; Ramsey, D.W.; Robinson, J.E.

    2002-01-01

    Crater Lake was surveyed nearly to its shoreline by high-resolution multibeam echo sounding in order to define its geologic history and provide an accurate base map for research and monitoring surveys. The bathymetry and acoustic backscatter reveal the character of landforms and lead to a chronology for the concurrent filling of the lake and volcanism within the ca. 7700 calibrated yr B.P. caldera. The andesitic Wizard Island and central-plattform volcanoes are composed of sequences of lava deltas that record former lake levels and demonstrate simultaneous activity at the two vents. Wizard Island eruptions ceased when the lake was ~80 m lower than at present. Lava streams from prominent channels on the surface of the central platform descended to feed extensive subaqueous flow fields on the caldera floor. The Wizard Island and central-platform volcanoes, andesitic Merriam Cone, and a newly discovered probable lava flow on the eastern floor of the lake apparently date from within a few hundred years of caldera collapse, whereas a small rhydacite dome was emplaced on the flank of Wizard Island at ca. 4800 cal. yr B.P. Bedrock outcrops on the submerged caldera walls are shown in detail and, in some cases, can be correlated with exposed geologic units of Mount Mazama. Fragmental debris making up the walls elsewhere consists of narrow talus cones forming a dendritic pattern that leads to fewer, wider ridges downslope. Hummocky topography and scattered blocks up to ~280 m long below many of the embayments in the caldera wall mark debris-avalanche deposits that probably formed in single events and commonly are affected by secondary failures. The flat-floored, deep basins contain relatively fine-grained sediment transported from the debris aprons by sheet-flow turbidity currents. Crater Lake apparently filled rapidly (ca. 400-750 yr) until reaching a permeable layer above glaciated lava identified by the new survey in the northeast caldera wall at ~1845 m elevation

  19. Geomorphic consequences of volcanic eruptions in Alaska: A review

    Science.gov (United States)

    Waythomas, Christopher F.

    2015-01-01

    Eruptions of Alaska volcanoes have significant and sometimes profound geomorphic consequences on surrounding landscapes and ecosystems. The effects of eruptions on the landscape can range from complete burial of surface vegetation and preexisting topography to subtle, short-term perturbations of geomorphic and ecological systems. In some cases, an eruption will allow for new landscapes to form in response to the accumulation and erosion of recently deposited volcaniclastic material. In other cases, the geomorphic response to a major eruptive event may set in motion a series of landscape changes that could take centuries to millennia to be realized. The effects of volcanic eruptions on the landscape and how these effects influence surface processes has not been a specific focus of most studies concerned with the physical volcanology of Alaska volcanoes. Thus, what is needed is a review of eruptive activity in Alaska in the context of how this activity influences the geomorphology of affected areas. To illustrate the relationship between geomorphology and volcanic activity in Alaska, several eruptions and their geomorphic impacts will be reviewed. These eruptions include the 1912 Novarupta–Katmai eruption, the 1989–1990 and 2009 eruptions of Redoubt volcano, the 2008 eruption of Kasatochi volcano, and the recent historical eruptions of Pavlof volcano. The geomorphic consequences of eruptive activity associated with these eruptions are described, and where possible, information about surface processes, rates of landscape change, and the temporal and spatial scale of impacts are discussed.A common feature of volcanoes in Alaska is their extensive cover of glacier ice, seasonal snow, or both. As a re