WorldWideScience

Sample records for traffic simulation model

  1. A queuing model for road traffic simulation

    International Nuclear Information System (INIS)

    Guerrouahane, N.; Aissani, D.; Bouallouche-Medjkoune, L.; Farhi, N.

    2015-01-01

    We present in this article a stochastic queuing model for the raod traffic. The model is based on the M/G/c/c state dependent queuing model, and is inspired from the deterministic Godunov scheme for the road traffic simulation. We first propose a variant of M/G/c/c state dependent model that works with density-flow fundamental diagrams rather than density-speed relationships. We then extend this model in order to consider upstream traffic demand as well as downstream traffic supply. Finally, we show how to model a whole raod by concatenating raod sections as in the deterministic Godunov scheme

  2. Traffic flow dynamics. Data, models and simulation

    Energy Technology Data Exchange (ETDEWEB)

    Treiber, Martin [Technische Univ. Dresden (Germany). Inst. fuer Wirtschaft und Verkehr; Kesting, Arne [TomTom Development Germany GmbH, Berlin (Germany)

    2013-07-01

    First comprehensive textbook of this fascinating interdisciplinary topic which explains advances in a way that it is easily accessible to engineering, physics and math students. Presents practical applications of traffic theory such as driving behavior, stability analysis, stop-and-go waves, and travel time estimation. Presents the topic in a novel and systematic way by addressing both microscopic and macroscopic models with a focus on traffic instabilities. Revised and extended edition of the German textbook ''Verkehrsdynamik und -simulation''. This textbook provides a comprehensive and instructive coverage of vehicular traffic flow dynamics and modeling. It makes this fascinating interdisciplinary topic, which to date was only documented in parts by specialized monographs, accessible to a broad readership. Numerous figures and problems with solutions help the reader to quickly understand and practice the presented concepts. This book is targeted at students of physics and traffic engineering and, more generally, also at students and professionals in computer science, mathematics, and interdisciplinary topics. It also offers material for project work in programming and simulation at college and university level. The main part, after presenting different categories of traffic data, is devoted to a mathematical description of the dynamics of traffic flow, covering macroscopic models which describe traffic in terms of density, as well as microscopic many-particle models in which each particle corresponds to a vehicle and its driver. Focus chapters on traffic instabilities and model calibration/validation present these topics in a novel and systematic way. Finally, the theoretical framework is shown at work in selected applications such as traffic-state and travel-time estimation, intelligent transportation systems, traffic operations management, and a detailed physics-based model for fuel consumption and emissions.

  3. Simulation of Road Traffic Applying Model-Driven Engineering

    Directory of Open Access Journals (Sweden)

    Alberto FERNÁNDEZ-ISABEL

    2016-05-01

    Full Text Available Road traffic is an important phenomenon in modern societies. The study of its different aspects in the multiple scenarios where it happens is relevant for a huge number of problems. At the same time, its scale and complexity make it hard to study. Traffic simulations can alleviate these difficulties, simplifying the scenarios to consider and controlling their variables. However, their development also presents difficulties. The main ones come from the need to integrate the way of working of researchers and developers from multiple fields. Model-Driven Engineering (MDE addresses these problems using Modelling Languages (MLs and semi-automatic transformations to organise and describe the development, from requirements to code. This paper presents a domain-specific MDE framework for simulations of road traffic. It comprises an extensible ML, support tools, and development guidelines. The ML adopts an agent-based approach, which is focused on the roles of individuals in road traffic and their decision-making. A case study shows the process to model a traffic theory with the ML, and how to specialise that specification for an existing target platform and its simulations. The results are the basis for comparison with related work.

  4. Construction and simulation of a novel continuous traffic flow model

    International Nuclear Information System (INIS)

    Hwang, Yao-Hsin; Yu, Jui-Ling

    2017-01-01

    In this paper, we aim to propose a novel mathematical model for traffic flow and apply a newly developed characteristic particle method to solve the associate governing equations. As compared with the existing non-equilibrium higher-order traffic flow models, the present one is put forward to satisfy the following three conditions: 1.Preserve the equilibrium state in the smooth region. 2.Yield an anisotropic propagation of traffic flow information. 3.Expressed with a conservation law form for traffic momentum. These conditions will ensure a more practical simulation in traffic flow physics: The current traffic will not be influenced by the condition in the behind and result in unambiguous condition across a traffic shock. Through analyses of characteristics, stability condition and steady-state solution adherent to the equation system, it is shown that the proposed model actually conform to these conditions. Furthermore, this model can be cast into its characteristic form which, incorporated with the Rankine-Hugoniot relation, is appropriate to be simulated by the characteristic particle method to obtain accurate computational results. - Highlights: • The traffic model expressed with the momentum conservation law. • Traffic flow information propagate anisotropically and preserve the equilibrium state in the smooth region. • Computational particles of two families are invented to mimic forward-running and backward-running characteristics. • Formation of shocks will be naturally detected by the intersection of computational particles of same family. • A newly developed characteristic particle method is used to simulate traffic flow model equations.

  5. Traffic flow dynamics data, models and simulation

    CERN Document Server

    Treiber, Martin

    2013-01-01

    This textbook provides a comprehensive and instructive coverage of vehicular traffic flow dynamics and modeling. It makes this fascinating interdisciplinary topic, which to date was only documented in parts by specialized monographs, accessible to a broad readership. Numerous figures and problems with solutions help the reader to quickly understand and practice the presented concepts. This book is targeted at students of physics and traffic engineering and, more generally, also at students and professionals in computer science, mathematics, and interdisciplinary topics. It also offers material for project work in programming and simulation at college and university level. The main part, after presenting different categories of traffic data, is devoted to a mathematical description of the dynamics of traffic flow, covering macroscopic models which describe traffic in terms of density, as well as microscopic many-particle models in which each particle corresponds to a vehicle and its driver. Focus chapters on ...

  6. Traffic simulation based ship collision probability modeling

    Energy Technology Data Exchange (ETDEWEB)

    Goerlandt, Floris, E-mail: floris.goerlandt@tkk.f [Aalto University, School of Science and Technology, Department of Applied Mechanics, Marine Technology, P.O. Box 15300, FI-00076 AALTO, Espoo (Finland); Kujala, Pentti [Aalto University, School of Science and Technology, Department of Applied Mechanics, Marine Technology, P.O. Box 15300, FI-00076 AALTO, Espoo (Finland)

    2011-01-15

    Maritime traffic poses various risks in terms of human, environmental and economic loss. In a risk analysis of ship collisions, it is important to get a reasonable estimate for the probability of such accidents and the consequences they lead to. In this paper, a method is proposed to assess the probability of vessels colliding with each other. The method is capable of determining the expected number of accidents, the locations where and the time when they are most likely to occur, while providing input for models concerned with the expected consequences. At the basis of the collision detection algorithm lays an extensive time domain micro-simulation of vessel traffic in the given area. The Monte Carlo simulation technique is applied to obtain a meaningful prediction of the relevant factors of the collision events. Data obtained through the Automatic Identification System is analyzed in detail to obtain realistic input data for the traffic simulation: traffic routes, the number of vessels on each route, the ship departure times, main dimensions and sailing speed. The results obtained by the proposed method for the studied case of the Gulf of Finland are presented, showing reasonable agreement with registered accident and near-miss data.

  7. Urban Road Traffic Simulation Techniques

    Directory of Open Access Journals (Sweden)

    Ana Maria Nicoleta Mocofan

    2011-09-01

    Full Text Available For achieving a reliable traffic control system it is necessary to first establish a network parameter evaluation system and also a simulation system for the traffic lights plan. In 40 years of history, the computer aided traffic simulation has developed from a small research group to a large scale technology for traffic systems planning and development. In the following thesis, a presentation of the main modeling and simulation road traffic applications will be provided, along with their utility, as well as the practical application of one of the models in a case study.

  8. Modeling, Identification, Estimation, and Simulation of Urban Traffic Flow in Jakarta and Bandung

    Directory of Open Access Journals (Sweden)

    Herman Y. Sutarto

    2015-06-01

    Full Text Available This paper presents an overview of urban traffic flow from the perspective of system theory and stochastic control. The topics of modeling, identification, estimation and simulation techniques are evaluated and validated using actual traffic flow data from the city of Jakarta and Bandung, Indonesia, and synthetic data generated from traffic micro-simulator VISSIM. The results on particle filter (PF based state estimation and Expectation-Maximization (EM based parameter estimation (identification confirm the proposed model gives satisfactory results that capture the variation of urban traffic flow. The combination of the technique and the simulator platform assembles possibility to develop a real-time traffic light controller.  

  9. Integration of Linear Dynamic Emission and Climate Models with Air Traffic Simulations

    Science.gov (United States)

    Sridhar, Banavar; Ng, Hok K.; Chen, Neil Y.

    2012-01-01

    Future air traffic management systems are required to balance the conflicting objectives of maximizing safety and efficiency of traffic flows while minimizing the climate impact of aviation emissions and contrails. Integrating emission and climate models together with air traffic simulations improve the understanding of the complex interaction between the physical climate system, carbon and other greenhouse gas emissions and aviation activity. This paper integrates a national-level air traffic simulation and optimization capability with simple climate models and carbon cycle models, and climate metrics to assess the impact of aviation on climate. The capability can be used to make trade-offs between extra fuel cost and reduction in global surface temperature change. The parameters in the simulation can be used to evaluate the effect of various uncertainties in emission models and contrails and the impact of different decision horizons. Alternatively, the optimization results from the simulation can be used as inputs to other tools that monetize global climate impacts like the FAA s Aviation Environmental Portfolio Management Tool for Impacts.

  10. Multi-Agent Based Microscopic Simulation Modeling for Urban Traffic Flow

    Directory of Open Access Journals (Sweden)

    Xianyan Kuang

    2014-10-01

    Full Text Available Traffic simulation plays an important role in the evaluation of traffic decisions. The movement of vehicles essentially is the operating process of drivers, in order to reproduce the urban traffic flow from the micro-aspect on computer, this paper establishes an urban traffic flow microscopic simulation system (UTFSim based on multi-agent. The system is seen as an intelligent virtual environment system (IVES, and the four-layer structure of it is built. The road agent, vehicle agent and signal agent are modeled. The concept of driving trajectory which is divided into LDT (Lane Driving Trajectory and VDDT (Vehicle Dynamic Driving Trajectory is introduced. The “Link-Node” road network model is improved. The driving behaviors including free driving, following driving, lane changing, slowing down, vehicle stop, etc. are analyzed. The results of the signal control experiments utilizing the UTFSim developed in the platform of Visual Studio. NET indicates that it plays a good performance and can be used in the evaluation of traffic management and control.

  11. Transforming GIS data into functional road models for large-scale traffic simulation.

    Science.gov (United States)

    Wilkie, David; Sewall, Jason; Lin, Ming C

    2012-06-01

    There exists a vast amount of geographic information system (GIS) data that model road networks around the world as polylines with attributes. In this form, the data are insufficient for applications such as simulation and 3D visualization-tools which will grow in power and demand as sensor data become more pervasive and as governments try to optimize their existing physical infrastructure. In this paper, we propose an efficient method for enhancing a road map from a GIS database to create a geometrically and topologically consistent 3D model to be used in real-time traffic simulation, interactive visualization of virtual worlds, and autonomous vehicle navigation. The resulting representation provides important road features for traffic simulations, including ramps, highways, overpasses, legal merge zones, and intersections with arbitrary states, and it is independent of the simulation methodologies. We test the 3D models of road networks generated by our algorithm on real-time traffic simulation using both macroscopic and microscopic techniques.

  12. Macroscopic Model and Simulation Analysis of Air Traffic Flow in Airport Terminal Area

    Directory of Open Access Journals (Sweden)

    Honghai Zhang

    2014-01-01

    Full Text Available We focus on the spatiotemporal characteristics and their evolvement law of the air traffic flow in airport terminal area to provide scientific basis for optimizing flight control processes and alleviating severe air traffic conditions. Methods in this work combine mathematical derivation and simulation analysis. Based on cell transmission model the macroscopic models of arrival and departure air traffic flow in terminal area are established. Meanwhile, the interrelationship and influential factors of the three characteristic parameters as traffic flux, density, and velocity are presented. Then according to such models, the macro emergence of traffic flow evolution is emulated with the NetLogo simulation platform, and the correlativity of basic traffic flow parameters is deduced and verified by means of sensitivity analysis. The results suggest that there are remarkable relations among the three characteristic parameters of the air traffic flow in terminal area. Moreover, such relationships evolve distinctly with the flight procedures, control separations, and ATC strategies.

  13. Dynamic Traffic Congestion Simulation and Dissipation Control Based on Traffic Flow Theory Model and Neural Network Data Calibration Algorithm

    Directory of Open Access Journals (Sweden)

    Li Wang

    2017-01-01

    Full Text Available Traffic congestion is a common problem in many countries, especially in big cities. At present, China’s urban road traffic accidents occur frequently, the occurrence frequency is high, the accident causes traffic congestion, and accidents cause traffic congestion and vice versa. The occurrence of traffic accidents usually leads to the reduction of road traffic capacity and the formation of traffic bottlenecks, causing the traffic congestion. In this paper, the formation and propagation of traffic congestion are simulated by using the improved medium traffic model, and the control strategy of congestion dissipation is studied. From the point of view of quantitative traffic congestion, the paper provides the fact that the simulation platform of urban traffic integration is constructed, and a feasible data analysis, learning, and parameter calibration method based on RBF neural network is proposed, which is used to determine the corresponding decision support system. The simulation results prove that the control strategy proposed in this paper is effective and feasible. According to the temporal and spatial evolution of the paper, we can see that the network has been improved on the whole.

  14. A Framework for Validating Traffic Simulation Models at the Vehicle Trajectory Level

    Science.gov (United States)

    2017-03-01

    Based on current practices, traffic simulation models are calibrated and validated using macroscopic measures such as 15-minute averages of traffic counts or average point-to-point travel times. For an emerging number of applications, including conne...

  15. Simulation of traffic control signal systems

    Science.gov (United States)

    Connolly, P. J.; Concannon, P. A.; Ricci, R. C.

    1974-01-01

    In recent years there has been considerable interest in the development and testing of control strategies for networks of urban traffic signal systems by simulation. Simulation is an inexpensive and timely method for evaluating the effect of these traffic control strategies since traffic phenomena are too complex to be defined by analytical models and since a controlled experiment may be hazardous, expensive, and slow in producing meaningful results. This paper describes the application of an urban traffic corridor program, to evaluate the effectiveness of different traffic control strategies for the Massachusetts Avenue TOPICS Project.

  16. Modelling Altitude Information in Two-Dimensional Traffic Networks for Electric Mobility Simulation

    Directory of Open Access Journals (Sweden)

    Diogo Santos

    2016-06-01

    Full Text Available Elevation data is important for electric vehicle simulation. However, traffic simulators are often two-dimensional and do not offer the capability of modelling urban networks taking elevation into account. Specifically, SUMO - Simulation of Urban Mobility, a popular microscopic traffic simulator, relies on networks previously modelled with elevation data as to provide this information during simulations. This work tackles the problem of adding elevation data to urban network models - particularly for the case of the Porto urban network, in Portugal. With this goal in mind, a comparison between different altitude information retrieval approaches is made and a simple tool to annotate network models with altitude data is proposed. The work starts by describing the methodological approach followed during research and development, then describing and analysing its main findings. This description includes an in-depth explanation of the proposed tool. Lastly, this work reviews some related work to the subject.

  17. Highway traffic simulation on multi-processor computers

    Energy Technology Data Exchange (ETDEWEB)

    Hanebutte, U.R.; Doss, E.; Tentner, A.M.

    1997-04-01

    A computer model has been developed to simulate highway traffic for various degrees of automation with a high level of fidelity in regard to driver control and vehicle characteristics. The model simulates vehicle maneuvering in a multi-lane highway traffic system and allows for the use of Intelligent Transportation System (ITS) technologies such as an Automated Intelligent Cruise Control (AICC). The structure of the computer model facilitates the use of parallel computers for the highway traffic simulation, since domain decomposition techniques can be applied in a straight forward fashion. In this model, the highway system (i.e. a network of road links) is divided into multiple regions; each region is controlled by a separate link manager residing on an individual processor. A graphical user interface augments the computer model kv allowing for real-time interactive simulation control and interaction with each individual vehicle and road side infrastructure element on each link. Average speed and traffic volume data is collected at user-specified loop detector locations. Further, as a measure of safety the so- called Time To Collision (TTC) parameter is being recorded.

  18. A Driver Behavior Learning Framework for Enhancing Traffic Simulation

    Directory of Open Access Journals (Sweden)

    Ramona Maria Paven

    2014-06-01

    Full Text Available Traffic simulation provides an essential support for developing intelligent transportation systems. It allows affordable validation of such systems using a large variety of scenarios that involves massive data input. However, realistic traffic models are hard to be implemented especially for microscopic traffic simulation. One of the hardest problems in this context is to model the behavior of drivers, due the complexity of human nature. The work presented in this paper proposes a framework for learning driver behavior based on a Hidden Markov Model technique. Moreover, we propose also a practical method to inject this behavior in a traffic model used by the SUMO traffic simulator. To demonstrate the effectiveness of this method we present a case study involving real traffic collected from Timisoara city area.

  19. Evaluation of Intersection Traffic Control Measures through Simulation

    Science.gov (United States)

    Asaithambi, Gowri; Sivanandan, R.

    2015-12-01

    Modeling traffic flow is stochastic in nature due to randomness in variables such as vehicle arrivals and speeds. Due to this and due to complex vehicular interactions and their manoeuvres, it is extremely difficult to model the traffic flow through analytical methods. To study this type of complex traffic system and vehicle interactions, simulation is considered as an effective tool. Application of homogeneous traffic models to heterogeneous traffic may not be able to capture the complex manoeuvres and interactions in such flows. Hence, a microscopic simulation model for heterogeneous traffic is developed using object oriented concepts. This simulation model acts as a tool for evaluating various control measures at signalized intersections. The present study focuses on the evaluation of Right Turn Lane (RTL) and Channelised Left Turn Lane (CLTL). A sensitivity analysis was performed to evaluate RTL and CLTL by varying the approach volumes, turn proportions and turn lane lengths. RTL is found to be advantageous only up to certain approach volumes and right-turn proportions, beyond which it is counter-productive. CLTL is found to be advantageous for lower approach volumes for all turn proportions, signifying the benefits of CLTL. It is counter-productive for higher approach volume and lower turn proportions. This study pinpoints the break-even points for various scenarios. The developed simulation model can be used as an appropriate intersection lane control tool for enhancing the efficiency of flow at intersections. This model can also be employed for scenario analysis and can be valuable to field traffic engineers in implementing vehicle-type based and lane-based traffic control measures.

  20. Simulation of logical traffic isolation using differentiated services

    CSIR Research Space (South Africa)

    Dlamini, I

    2009-06-01

    Full Text Available This paper extends work on a forensic model for traffic isolation based on Differentiated Services (DiffServ) and measures its performance by using a simulation. The simulated model has four basic components: traffic generators, the DiffServ network...

  1. Traffic Games: Modeling Freeway Traffic with Game Theory.

    Science.gov (United States)

    Cortés-Berrueco, Luis E; Gershenson, Carlos; Stephens, Christopher R

    2016-01-01

    We apply game theory to a vehicular traffic model to study the effect of driver strategies on traffic flow. The resulting model inherits the realistic dynamics achieved by a two-lane traffic model and aims to incorporate phenomena caused by driver-driver interactions. To achieve this goal, a game-theoretic description of driver interaction was developed. This game-theoretic formalization allows one to model different lane-changing behaviors and to keep track of mobility performance. We simulate the evolution of cooperation, traffic flow, and mobility performance for different modeled behaviors. The analysis of these results indicates a mobility optimization process achieved by drivers' interactions.

  2. Advanced Models and Algorithms for Self-Similar IP Network Traffic Simulation and Performance Analysis

    Science.gov (United States)

    Radev, Dimitar; Lokshina, Izabella

    2010-11-01

    The paper examines self-similar (or fractal) properties of real communication network traffic data over a wide range of time scales. These self-similar properties are very different from the properties of traditional models based on Poisson and Markov-modulated Poisson processes. Advanced fractal models of sequentional generators and fixed-length sequence generators, and efficient algorithms that are used to simulate self-similar behavior of IP network traffic data are developed and applied. Numerical examples are provided; and simulation results are obtained and analyzed.

  3. DECISION WITH ARTIFICIAL NEURAL NETWORKS IN DISCRETE EVENT SIMULATION MODELS ON A TRAFFIC SYSTEM

    Directory of Open Access Journals (Sweden)

    Marília Gonçalves Dutra da Silva

    2016-04-01

    Full Text Available ABSTRACT This work aims to demonstrate the use of a mechanism to be applied in the development of the discrete-event simulation models that perform decision operations through the implementation of an artificial neural network. Actions that involve complex operations performed by a human agent in a process, for example, are often modeled in simplified form with the usual mechanisms of simulation software. Therefore, it was chosen a traffic system controlled by a traffic officer with a flow of vehicles and pedestrians to demonstrate the proposed solution. From a module built in simulation software itself, it was possible to connect the algorithm for intelligent decision to the simulation model. The results showed that the model elaborated responded as expected when it was submitted to actions, which required different decisions to maintain the operation of the system with changes in the flow of people and vehicles.

  4. Traffic management simulation development.

    Science.gov (United States)

    2011-01-03

    Microscopic simulation can provide significant support to traffic management center (TMC) operations. However, traffic simulation applications require data that are expensive and time-consuming to collect. Data collected by TMCs can be used as a prim...

  5. A Network Traffic Generator Model for Fast Network-on-Chip Simulation

    DEFF Research Database (Denmark)

    Mahadevan, Shankar; Angiolini, Frederico; Storgaard, Michael

    2005-01-01

    For Systems-on-Chip (SoCs) development, a predominant part of the design time is the simulation time. Performance evaluation and design space exploration of such systems in bit- and cycle-true fashion is becoming prohibitive. We propose a traffic generation (TG) model that provides a fast...

  6. Modelling of H.264 MPEG2 TS Traffic Source

    Directory of Open Access Journals (Sweden)

    Stanislav Klucik

    2013-01-01

    Full Text Available This paper deals with IPTV traffic source modelling. Traffic sources are used for simulation, emulation and real network testing. This model is made as a derivation of known recorded traffic sources that are analysed and statistically processed. As the results show the proposed model causes in comparison to the known traffic source very similar network traffic parameters when used in a simulated network.

  7. Traffic Modelling for Moving-Block Train Control System

    International Nuclear Information System (INIS)

    Tang Tao; Li Keping

    2007-01-01

    This paper presents a new cellular automaton (CA) model for train control system simulation. In the proposed CA model, the driver reactions to train movements are captured by some updated rules. The space-time diagram of traffic flow and the trajectory of train movement is used to obtain insight into the characteristic behavior of railway traffic flow. A number of simulation results demonstrate that the proposed CA model can be successfully used for the simulations of railway traffic. Not only the characteristic behavior of railway traffic flow can be reproduced, but also the simulation values of the minimum time headway are close to the theoretical values.

  8. Research on the Method of Traffic Organization and Optimization Based on Dynamic Traffic Flow Model

    Directory of Open Access Journals (Sweden)

    Shu-bin Li

    2017-01-01

    Full Text Available The modern transportation system is becoming sluggish by traffic jams, so much so that it can harm the economic and society in our country. One of the reasons is the surging vehicles day by day. Another reason is the shortage of the traffic supply seriously. But the most important reason is that the traffic organization and optimization hardly met the conditions of modern transport development. In this paper, the practical method of the traffic organization and optimization used in regional area is explored by the dynamic traffic network analysis method. Firstly, the operational states of the regional traffic network are obtained by simulation method based on the self-developed traffic simulation software DynaCHINA, in which the improved traffic flow simulation model was proposed in order to be more suitable for actual domestic urban transport situation. Then the appropriated optimization model and algorithm were proposed according to different optimized content and organization goals, and the traffic simulation processes more suitable to regional optimization were designed exactly. Finally, a regional network in Tai’an city was selected as an example. The simulation results show that the proposed method is effective and feasible. It can provide strong scientific and technological support for the traffic management department.

  9. Traffic analysis toolbox volume XI : weather and traffic analysis, modeling and simulation.

    Science.gov (United States)

    2010-12-01

    This document presents a weather module for the traffic analysis tools program. It provides traffic engineers, transportation modelers and decisions makers with a guide that can incorporate weather impacts into transportation system analysis and mode...

  10. GCA-w Algorithms for Traffic Simulation

    International Nuclear Information System (INIS)

    Hoffmann, R.

    2011-01-01

    The GCA-w model (Global Cellular Automata with write access) is an extension of the GCA (Global Cellular Automata) model, which is based on the cellular automata model (CA). Whereas the CA model uses static links to local neighbors, the GCA model uses dynamic links to potentially global neighbors. The GCA-w model is a further extension that allows modifying the neighbors' states. Thereby, neighbors can dynamically be activated or deactivated. Algorithms can be described more concisely and may execute more efficiently because redundant computations can be avoided. Modeling traffic flow is a good example showing the usefulness of the GCA-w model. The Nagel-Schreckenberg algorithm for traffic simulation is first described as CA and GCA, and then transformed into the GCA-w model. This algorithm is '' exclusive-write '', meaning that no write conflicts have to be resolved. Furthermore, this algorithm is extended, allowing to deactivate and to activate cars stuck in a traffic jam in order to save computation time and energy. (author)

  11. A Modified Cellular Automaton Approach for Mixed Bicycle Traffic Flow Modeling

    Directory of Open Access Journals (Sweden)

    Xiaonian Shan

    2015-01-01

    Full Text Available Several previous studies have used the Cellular Automaton (CA for the modeling of bicycle traffic flow. However, previous CA models have several limitations, resulting in differences between the simulated and the observed traffic flow features. The primary objective of this study is to propose a modified CA model for simulating the characteristics of mixed bicycle traffic flow. Field data were collected on physically separated bicycle path in Shanghai, China, and were used to calibrate the CA model using the genetic algorithm. Traffic flow features between simulations of several CA models and field observations were compared. The results showed that our modified CA model produced more accurate simulation for the fundamental diagram and the passing events in mixed bicycle traffic flow. Based on our model, the bicycle traffic flow features, including the fundamental diagram, the number of passing events, and the number of lane changes, were analyzed. We also analyzed the traffic flow features with different traffic densities, traffic components on different travel lanes. Results of the study can provide important information for understanding and simulating the operations of mixed bicycle traffic flow.

  12. Discrete event simulation of Maglev transport considering traffic waves

    Directory of Open Access Journals (Sweden)

    Moo Hyun Cha

    2014-10-01

    Full Text Available A magnetically levitated vehicle (Maglev system is under commercialization as a new transportation system in Korea. The Maglev is operated by an unmanned automatic control system. Therefore, the plan of train operation should be carefully established and validated in advance. In general, when making a train operation plan, statistically predicted traffic data is used. However, a traffic wave often occurs in real train service, and demand-driven simulation technology is required to review a train operation plan and service quality considering traffic waves. We propose a method and model to simulate Maglev operation considering continuous demand changes. For this purpose, we employed a discrete event model that is suitable for modeling the behavior of railway passenger transportation. We modeled the system hierarchically using discrete event system specification (DEVS formalism. In addition, through implementation and an experiment using the DEVSim++ simulation environment, we tested the feasibility of the proposed model. Our experimental results also verified that our demand-driven simulation technology can be used for a priori review of train operation plans and strategies.

  13. An Iterative Algorithm to Determine the Dynamic User Equilibrium in a Traffic Simulation Model

    Science.gov (United States)

    Gawron, C.

    An iterative algorithm to determine the dynamic user equilibrium with respect to link costs defined by a traffic simulation model is presented. Each driver's route choice is modeled by a discrete probability distribution which is used to select a route in the simulation. After each simulation run, the probability distribution is adapted to minimize the travel costs. Although the algorithm does not depend on the simulation model, a queuing model is used for performance reasons. The stability of the algorithm is analyzed for a simple example network. As an application example, a dynamic version of Braess's paradox is studied.

  14. Microscopic modeling of multi-lane highway traffic flow

    Science.gov (United States)

    Hodas, Nathan O.; Jagota, Anand

    2003-12-01

    We discuss a microscopic model for the study of multi-lane highway traffic flow dynamics. Each car experiences a force resulting from a combination of the desire of the driver to attain a certain velocity, aerodynamic drag, and change of the force due to car-car interactions. The model also includes multi-lane simulation capability and the ability to add and remove obstructions. We implement the model via a Java applet, which is used to simulate traffic jam formation, the effect of bottlenecks on traffic flow, and the existence of light, medium, and heavy traffic flow. The simulations also provide insight into how the properties of individual cars result in macroscopic behavior. Because the investigation of emergent characteristics is so common in physics, the study of traffic in this manner sheds new light on how the micro-to-macro transition works in general.

  15. Modeling Road Traffic Using Service Center

    Directory of Open Access Journals (Sweden)

    HARAGOS, I.-M.

    2012-05-01

    Full Text Available Transport systems have an essential role in modern society because they facilitate access to natural resources and they stimulate trade. Current studies aimed at improving transport networks by developing new methods for optimization. Because of the increase in the global number of cars, one of the most common problems facing the transport network is congestion. By creating traffic models and simulate them, we can avoid this problem and find appropriate solutions. In this paper we propose a new method for modeling traffic. This method considers road intersections as being service centers. A service center represents a set consisting of a queue followed by one or multiple servers. This model was used to simulate real situations in an urban traffic area. Based on this simulation, we have successfully determined the optimal functioning and we have computed the performance measures.

  16. Traffic modelling validation of advanced driver assistance systems

    NARCIS (Netherlands)

    Tongeren, R. van; Gietelink, O.J.; Schutter, B. de; Verhaegen, M.

    2007-01-01

    This paper presents a microscopic traffic model for the validation of advanced driver assistance systems. This model describes single-lane traffic and is calibrated with data from a field operational test. To illustrate the use of the model, a Monte Carlo simulation of single-lane traffic scenarios

  17. Procedure for Marine Traffic Simulation with AIS Data

    Directory of Open Access Journals (Sweden)

    Rina Miyake

    2015-03-01

    Full Text Available It is essential to evaluate safety of marine traffic for the improvement of efficiency and safety of marine traffic. Spread of AIS makes observation of actual marine traffic more easily and faster than before. Besides, description of collision avoidance behaviours of ships are indispensable to simulate a realistic marine traffic. It is important to develop and implement an algorithm of collision avoidance corresponding to a target traffic or target area into the marine traffic simulation because actual actions for collision avoidance depend on circumstances where ships are sailing. The authors developed an automated marine traffic simulation system with AIS data. And in this paper, we proposed a series of systematic procedures for marine traffic simulation including analysing for collision avoidance behaviours using AIS data.

  18. Road traffic impact on urban water quality: a step towards integrated traffic, air and stormwater modelling.

    Science.gov (United States)

    Fallah Shorshani, Masoud; Bonhomme, Céline; Petrucci, Guido; André, Michel; Seigneur, Christian

    2014-04-01

    Methods for simulating air pollution due to road traffic and the associated effects on stormwater runoff quality in an urban environment are examined with particular emphasis on the integration of the various simulation models into a consistent modelling chain. To that end, the models for traffic, pollutant emissions, atmospheric dispersion and deposition, and stormwater contamination are reviewed. The present study focuses on the implementation of a modelling chain for an actual urban case study, which is the contamination of water runoff by cadmium (Cd), lead (Pb), and zinc (Zn) in the Grigny urban catchment near Paris, France. First, traffic emissions are calculated with traffic inputs using the COPERT4 methodology. Next, the atmospheric dispersion of pollutants is simulated with the Polyphemus line source model and pollutant deposition fluxes in different subcatchment areas are calculated. Finally, the SWMM water quantity and quality model is used to estimate the concentrations of pollutants in stormwater runoff. The simulation results are compared to mass flow rates and concentrations of Cd, Pb and Zn measured at the catchment outlet. The contribution of local traffic to stormwater contamination is estimated to be significant for Pb and, to a lesser extent, for Zn and Cd; however, Pb is most likely overestimated due to outdated emissions factors. The results demonstrate the importance of treating distributed traffic emissions from major roadways explicitly since the impact of these sources on concentrations in the catchment outlet is underestimated when those traffic emissions are spatially averaged over the catchment area.

  19. Modeling the Environmental Impact of Air Traffic Operations

    Science.gov (United States)

    Chen, Neil

    2011-01-01

    There is increased interest to understand and mitigate the impacts of air traffic on the climate, since greenhouse gases, nitrogen oxides, and contrails generated by air traffic can have adverse impacts on the climate. The models described in this presentation are useful for quantifying these impacts and for studying alternative environmentally aware operational concepts. These models have been developed by leveraging and building upon existing simulation and optimization techniques developed for the design of efficient traffic flow management strategies. Specific enhancements to the existing simulation and optimization techniques include new models that simulate aircraft fuel flow, emissions and contrails. To ensure that these new models are beneficial to the larger climate research community, the outputs of these new models are compatible with existing global climate modeling tools like the FAA's Aviation Environmental Design Tool.

  20. Modelling of road traffic for traffic flow optimization of modern regional center as an example of Odessa

    Directory of Open Access Journals (Sweden)

    S.V. Myronenko

    2016-12-01

    Full Text Available At present sharply there is a problem of traffic management especially in big cities. The increase in the number of vehicles, both personal and public, led to congestion of city roads, many hours of traffic jams, difficulty of movement of pedestrians, increase the number of accidents, etc. Aim: The aim of the study is to evaluate the possibility of using simulation models to solve problems of analysis and optimization of traffic flows. To achieve this goal in a simulation environment the data base of the transport network will be developed. Materials and Methods: The problem of analysis and optimization of traffic flow is considered by the example of the city of Odessa (Ukraine, the results and recommendations can be easily adapted for other cities of Ukraine, and for the cities of most countries of the former socialist bloc. Features of transport systems make it impossible to build an adequate analytical model to explore options for the management of the system and its characteristic in different conditions. At the same time simulation modelling as a method to study such objects is a promising for the solution to this problem. As a simulation environment an OmniTRANS package as a universal tool for modeling of discrete, continuous and hybrid systems. Results: With OmniTRANS programs the model of traffic in Odessa was derived and the intensity of the traffic flow. B first approximation the transport network of the central district of the city was considered and built; without calibration and simulation it was developed a database of elements of the transport network and shown how it can be used to solve problems of analysis and optimization of traffic flows. Models constructed from elements of created database, allows you to change the level of detail of the simulated objects and phenomena, thereby obtaining models as macro and micro level.

  1. Traffic modelling for Big Data backed telecom cloud

    OpenAIRE

    Via Baraldés, Anna

    2016-01-01

    The objective of this project is to provide traffic models based on new services characteristics. Specifically, we focus on modelling the traffic between origin-destination node pairs (also known as OD pairs) in a telecom network. Two use cases are distinguished: i) traffic generation in the context of simulation, and ii) traffic modelling for prediction in the context of big-data backed telecom cloud systems. To this aim, several machine learning and statistical models and technics are studi...

  2. Evaluation and Simulation of Common Video Conference Traffics in Communication Networks

    Directory of Open Access Journals (Sweden)

    Farhad faghani

    2014-01-01

    Full Text Available Multimedia traffics are the basic traffics in data communication networks. Especially Video conferences are the most desirable traffics in huge networks(wired, wireless, …. Traffic modeling can help us to evaluate the real networks. So, in order to have good services in data communication networks which provide multimedia services, QoS will be very important .In this research we tried to have an exact traffic model design and simulation to overcome QoS challenges. Also, we predict bandwidth by Kalman filter in Ethernet networks.

  3. Models, methods and software tools for building complex adaptive traffic systems

    International Nuclear Information System (INIS)

    Alyushin, S.A.

    2011-01-01

    The paper studies the modern methods and tools to simulate the behavior of complex adaptive systems (CAS), the existing systems of traffic modeling in simulators and their characteristics; proposes requirements for assessing the suitability of the system to simulate the CAS behavior in simulators. The author has developed a model of adaptive agent representation and its functioning environment to meet certain requirements set above, and has presented methods of agents' interactions and methods of conflict resolution in simulated traffic situations. A simulation system realizing computer modeling for simulating the behavior of CAS in traffic situations has been created [ru

  4. Switching performance of OBS network model under prefetched real traffic

    Science.gov (United States)

    Huang, Zhenhua; Xu, Du; Lei, Wen

    2005-11-01

    Optical Burst Switching (OBS) [1] is now widely considered as an efficient switching technique in building the next generation optical Internet .So it's very important to precisely evaluate the performance of the OBS network model. The performance of the OBS network model is variable in different condition, but the most important thing is that how it works under real traffic load. In the traditional simulation models, uniform traffics are usually generated by simulation software to imitate the data source of the edge node in the OBS network model, and through which the performance of the OBS network is evaluated. Unfortunately, without being simulated by real traffic, the traditional simulation models have several problems and their results are doubtable. To deal with this problem, we present a new simulation model for analysis and performance evaluation of the OBS network, which uses prefetched IP traffic to be data source of the OBS network model. The prefetched IP traffic can be considered as real IP source of the OBS edge node and the OBS network model has the same clock rate with a real OBS system. So it's easy to conclude that this model is closer to the real OBS system than the traditional ones. The simulation results also indicate that this model is more accurate to evaluate the performance of the OBS network system and the results of this model are closer to the actual situation.

  5. Traffic Multiresolution Modeling and Consistency Analysis of Urban Expressway Based on Asynchronous Integration Strategy

    Directory of Open Access Journals (Sweden)

    Liyan Zhang

    2017-01-01

    Full Text Available The paper studies multiresolution traffic flow simulation model of urban expressway. Firstly, compared with two-level hybrid model, three-level multiresolution hybrid model has been chosen. Then, multiresolution simulation framework and integration strategies are introduced. Thirdly, the paper proposes an urban expressway multiresolution traffic simulation model by asynchronous integration strategy based on Set Theory, which includes three submodels: macromodel, mesomodel, and micromodel. After that, the applicable conditions and derivation process of the three submodels are discussed in detail. In addition, in order to simulate and evaluate the multiresolution model, “simple simulation scenario” of North-South Elevated Expressway in Shanghai has been established. The simulation results showed the following. (1 Volume-density relationships of three submodels are unanimous with detector data. (2 When traffic density is high, macromodel has a high precision and smaller error and the dispersion of results is smaller. Compared with macromodel, simulation accuracies of micromodel and mesomodel are lower but errors are bigger. (3 Multiresolution model can simulate characteristics of traffic flow, capture traffic wave, and keep the consistency of traffic state transition. Finally, the results showed that the novel multiresolution model can have higher simulation accuracy and it is feasible and effective in the real traffic simulation scenario.

  6. Green supply chain: Simulating road traffic congestion

    Science.gov (United States)

    Jalal, Muhammad Zulqarnain Hakim Abd; Nawawi, Mohd Kamal Mohd; Laailatul Hanim Mat Desa, Wan; Khalid, Ruzelan; Khalid Abduljabbar, Waleed; Ramli, Razamin

    2017-09-01

    With the increasing awareness of the consumers about environmental issues, businesses, households and governments increasingly want use green products and services which lead to green supply chain. This paper discusses a simulation study of a selected road traffic system that will contribute to the air pollution if in the congestion state. Road traffic congestion (RTC) can be caused by a temporary obstruction, a permanent capacity bottleneck in the network itself, and stochastic fluctuation in demand within a particular sector of the network, leading to spillback and queue propagation. A discrete-event simulation model is developed to represent the real traffic light control (TLC) system condition during peak hours. Certain performance measures such as average waiting time and queue length were measured using the simulation model. Existing system uses pre-set cycle time to control the light changes which is fixed time cycle. In this research, we test several other combination of pre-set cycle time with the objective to find the best system. In addition, we plan to use a combination of the pre-set cycle time and a proximity sensor which have the authority to manipulate the cycle time of the lights. The sensors work in such situation when the street seems to have less occupied vehicles, obviously it may not need a normal cycle for green light, and automatically change the cycle to street where vehicle is present.

  7. A Multi-Agent Traffic Control Model Based on Distributed System

    Directory of Open Access Journals (Sweden)

    Qian WU

    2014-06-01

    Full Text Available With the development of urbanization construction, urban travel has become a quite thorny and imminent problem. Some previous researches on the large urban traffic systems easily change into NPC problems. We purpose a multi-agent inductive control model based on the distributed approach. To describe the real traffic scene, this model designs four different types of intelligent agents, i.e. we regard each lane, route, intersection and traffic region as different types of intelligent agents. Each agent can achieve the real-time traffic data from its neighbor agents, and decision-making agents establish real-time traffic signal plans through the communication between local agents and their neighbor agents. To evaluate the traffic system, this paper takes the average delay, the stopped time and the average speed as performance parameters. Finally, the distributed multi-agent is simulated on the VISSIM simulation platform, the simulation results show that the multi-agent system is more effective than the adaptive control system in solving the traffic congestion.

  8. Integration of a driving simulator and a traffic simulator case study: Exploring drivers' behavior in response to variable message signs

    Directory of Open Access Journals (Sweden)

    Mansoureh Jeihani

    2017-12-01

    Full Text Available For the first time, a driving simulator has been integrated with a traffic simulator at the network level to allow subjects to drive in a fairly realistic environment with a realistic traffic flow and density. A 10 mi2 (25 km2 network was developed in a driving simulator and then exported to a traffic simulator. About 30 subjects drove the simulator under different traffic and driving conditions and variable message sign (VMS information, both with and without integration. Route guidance was available for the subjects. The challenges of the integration process are explained and its advantages investigated. The study concluded that traffic density, VMS reliability and compliance behavior are higher when driving and traffic simulators are integrated. To find factors affecting route diversion, researchers applied a binary logistic regression model. The results indicated that the original chosen route, displayed VMS information, subjects' attitude toward VMS information helpfulness, and their level of exposure to VMS affect route diversion. In addition, a multinomial logistic regression model was employed to investigate important factors in route choice. The results revealed that there is a significant correlation with driver route choice behavior and their actual travel time, the need for GPS, VMS exposure and also the designed scenarios. It should be noted that the paper was peer-reviewed by TRB and presented at the TRB Annual Meeting, Washington, D.C., January 2016. Keywords: Integration, Variable message sign, Compliance behavior, Driving simulator, Traffic simulator, Discrete choice analysis

  9. SIMULATION MODELS OF HEAVY TRUCKS TRAFFIC CONTROL WITH ELECTRIC DC DRIVE

    Directory of Open Access Journals (Sweden)

    N. N. Hurski

    2015-01-01

    Full Text Available A model of the straight course of movement of the mobile machine with a traction electric motor DC. Traffic management controller provides a closed classical scheme with feedback. The mathematical model of the electric DC motor with the energy dissipation in the rotor bearings. Design scheme of mobile machines include speed dial controller, traction electric motor, gearbox, transmission and progressively moving mass on the elastic­dissipative wheel. The results of the simulation of the machine in the form of temporary processes of change control signals, voltage and current in the windings of the motor and traction power developed on the wheel.

  10. Suitability of Synthetic Driving Profiles from Traffic Micro-Simulation for Real-World Energy Analysis: Preprint

    Energy Technology Data Exchange (ETDEWEB)

    Hou, Yunfei; Wood, Eric; Burton, Evan; Gonder, Jeffrey

    2015-10-14

    A shift towards increased levels of driving automation is generally expected to result in improved safety and traffic congestion outcomes. However, little empirical data exists to estimate the impact that automated driving could have on energy consumption and greenhouse gas emissions. In the absence of empirical data on differences between drive cycles from present day vehicles (primarily operated by humans) and future vehicles (partially or fully operated by computers) one approach is to model both situations over identical traffic conditions. Such an exercise requires traffic micro-simulation to not only accurately model vehicle operation under high levels of automation, but also (and potentially more challenging) vehicle operation under present day human drivers. This work seeks to quantify the ability of a commercial traffic micro-simulation program to accurately model real-world drive cycles in vehicles operated primarily by humans in terms of driving speed, acceleration, and simulated fuel economy. Synthetic profiles from models of freeway and arterial facilities near Atlanta, Georgia, are compared to empirical data collected from real-world drivers on the same facilities. Empirical and synthetic drive cycles are then simulated in a powertrain efficiency model to enable comparison on the basis of fuel economy. Synthetic profiles from traffic micro-simulation were found to exhibit low levels of transient behavior relative to the empirical data. Even with these differences, the synthetic and empirical data in this study agree well in terms of driving speed and simulated fuel economy. The differences in transient behavior between simulated and empirical data suggest that larger stochastic contributions in traffic micro-simulation (relative to those present in the traffic micro-simulation tool used in this study) are required to fully capture the arbitrary elements of human driving. Interestingly, the lack of stochastic contributions from models of human drivers

  11. A comparative analysis of currently used microscopic and macroscopic traffic simulation software

    International Nuclear Information System (INIS)

    Ratrout Nedal T; Rahman Syed Masiur

    2009-01-01

    The significant advancements of information technology have contributed to increased development of traffic simulation models. These include microscopic models and broadening the areas of applications ranging from the modeling of specific components of the transportation system to a whole network having different kinds of intersections and links, even in a few cases combining travel demand models. This paper mainly reviews the features of traditionally used macroscopic and microscopic traffic simulation models along with a comparative analysis focusing on freeway operations, urban congested networks, project-level emission modeling, and variations in delay and capacity estimates. The models AIMSUN, CORSIM, and VISSIM are found to be suitable for congested arterials and freeways, and integrated networks of freeways and surface streets. The features of AIMSUN are favorable for creating large urban and regional networks. The models AIMSUN, PARAMICS, INTEGRATION, and CORSIM are potentially useful for Intelligent Transportation System (ITS). There are a few simulation models which are developed focusing on ITS such as MITSIMLab. The TRAF-family and HUTSIM models attempt a system-level simulation approach and develop open environments where several analysis models can be used interactively to solve traffic simulation problems. In Saudi Arabia, use of simulation software with the capability of analyzing an integrated system of freeways and surface streets has not been reported. Calibration and validation of simulation software either for freeways or surface streets has been reported. This paper suggests that researchers evaluate the state-of-the-art simulation tools and find out the suitable tools or approaches for the local conditions of Saudi Arabia. (author)

  12. Development of a forecast model for global air traffic emissions

    Energy Technology Data Exchange (ETDEWEB)

    Schaefer, Martin

    2012-07-01

    The thesis describes the methodology and results of a simulation model that quantifies fuel consumption and emissions of civil air traffic. Besides covering historical emissions, the model aims at forecasting emissions in the medium-term future. For this purpose, simulation models of aircraft and engine types are used in combination with a database of global flight movements and assumptions about traffic growth, fleet rollover and operational aspects. Results from an application of the model include emissions of scheduled air traffic for the years 2000 to 2010 as well as forecasted emissions until the year 2030. In a baseline scenario of the forecast, input assumptions (e.g. traffic growth rates) are in line with predictions by the aircraft industry. Considering the effects of advanced technologies of the short-term and medium-term future, the forecast focusses on fuel consumption and emissions of nitric oxides. Calculations for historical air traffic additionally cover emissions of carbon monoxide, unburned hydrocarbons and soot. Results are validated against reference data including studies by the International Civil Aviation Organization (ICAO) and simulation results from international research projects. (orig.)

  13. Research on three-phase traffic flow modeling based on interaction range

    Science.gov (United States)

    Zeng, Jun-Wei; Yang, Xu-Gang; Qian, Yong-Sheng; Wei, Xu-Ting

    2017-12-01

    On the basis of the multiple velocity difference effect (MVDE) model and under short-range interaction, a new three-phase traffic flow model (S-MVDE) is proposed through careful consideration of the influence of the relationship between the speeds of the two adjacent cars on the running state of the rear car. The random slowing rule in the MVDE model is modified in order to emphasize the influence of vehicle interaction between two vehicles on the probability of vehicles’ deceleration. A single-lane model which without bottleneck structure under periodic boundary conditions is simulated, and it is proved that the traffic flow simulated by S-MVDE model will generate the synchronous flow of three-phase traffic theory. Under the open boundary, the model is expanded by adding an on-ramp, the congestion pattern caused by the bottleneck is simulated at different main road flow rates and on-ramp flow rates, which is compared with the traffic congestion pattern observed by Kerner et al. and it is found that the results are consistent with the congestion characteristics in the three-phase traffic flow theory.

  14. Discrete events simulation of a route with traffic lights through automated control in real time

    Directory of Open Access Journals (Sweden)

    Rodrigo César Teixeira Baptista

    2013-03-01

    Full Text Available This paper presents the integration and communication in real-time of a discrete event simulation model with an automatic control system. The simulation model of an intersection with roads having traffic lights was built in the Arena environment. The integration and communication have been made via network, and the control system was operated by a programmable logic controller. Scenarios were simulated for the free, regular and congested traffic situations. The results showed the average number of vehicles that entered in the system and that were retained and also the total average time of the crossing of the vehicles on the road. In general, the model allowed evaluating the behavior of the traffic in each of the ways and the commands from the controller to activation and deactivation of the traffic lights.

  15. Lagrangian generic second order traffic flow models for node

    Directory of Open Access Journals (Sweden)

    Asma Khelifi

    2018-02-01

    Full Text Available This study sheds light on higher order macroscopic traffic flow modeling on road networks, thanks to the generic second order models (GSOM family which embeds a myriad of traffic models. It has been demonstrated that such higher order models are easily solved in Lagrangian coordinates which are compatible with both microscopic and macroscopic descriptions. The generalized GSOM model is reformulated in the Lagrangian coordinate system to develop a more efficient numerical method. The difficulty in applying this approach on networks basically resides in dealing with node dynamics. Traffic flow characteristics at node are different from that on homogeneous links. Different geometry features can lead to different critical research issues. For instance, discontinuity in traffic stream can be an important issue for traffic signal operations, while capacity drop may be crucial for lane-merges. The current paper aims to establish and analyze a new adapted node model for macroscopic traffic flow models by applying upstream and downstream boundary conditions on the Lagrangian coordinates in order to perform simulations on networks of roads, and accompanying numerical method. The internal node dynamics between upstream and downstream links are taken into account of the node model. Therefore, a numerical example is provided to underscore the efficiency of this approach. Simulations show that the discretized node model yields accurate results. Additional kinematic waves and contact discontinuities are induced by the variation of the driver attribute.

  16. Particle hopping vs. fluid-dynamical models for traffic flow

    Energy Technology Data Exchange (ETDEWEB)

    Nagel, K.

    1995-12-31

    Although particle hopping models have been introduced into traffic science in the 19509, their systematic use has only started recently. Two reasons for this are, that they are advantageous on modem computers, and that recent theoretical developments allow analytical understanding of their properties and therefore more confidence for their use. In principle, particle hopping models fit between microscopic models for driving and fluiddynamical models for traffic flow. In this sense, they also help closing the conceptual gap between these two. This paper shows connections between particle hopping models and traffic flow theory. It shows that the hydrodynamical limits of certain particle hopping models correspond to the Lighthill-Whitham theory for traffic flow, and that only slightly more complex particle hopping models produce already the correct traffic jam dynamics, consistent with recent fluid-dynamical models for traffic flow. By doing so, this paper establishes that, on the macroscopic level, particle hopping models are at least as good as fluid-dynamical models. Yet, particle hopping models have at least two advantages over fluid-dynamical models: they straightforwardly allow microscopic simulations, and they include stochasticity.

  17. Nonlinear analysis of an extended traffic flow model in ITS environment

    Energy Technology Data Exchange (ETDEWEB)

    Yu Lei [College of Automation, Northwestern Polytechnical University, Xi' an, Shaanxi 710072 (China)], E-mail: yuleijk@126.com; Shi Zhongke [College of Automation, Northwestern Polytechnical University, Xi' an, Shaanxi 710072 (China)

    2008-05-15

    An extended traffic flow model is proposed by introducing the relative velocity of arbitrary number of cars that precede and that follow into the Newell-Whitham-type car-following model. The stability condition of this model is obtained by using the linear stability theory. The results show that the stability of traffic flow is improved by taking into account the relative velocity of cars ahead and backward. By applying the nonlinear analysis the modified Korteweg-de Vries (mKdV) equation is derived to describe the traffic behavior near the critical point. The kink-antikink soliton, the solution of the mKdV equation, is obtained to describe the traffic jams. From the numerical simulation, it is shown that the traffic jams are suppressed efficiently by taking into account the relative velocity of cars ahead and backward. The analytical results are consistent with the simulation one.

  18. Nonlinear analysis of an extended traffic flow model in ITS environment

    International Nuclear Information System (INIS)

    Yu Lei; Shi Zhongke

    2008-01-01

    An extended traffic flow model is proposed by introducing the relative velocity of arbitrary number of cars that precede and that follow into the Newell-Whitham-type car-following model. The stability condition of this model is obtained by using the linear stability theory. The results show that the stability of traffic flow is improved by taking into account the relative velocity of cars ahead and backward. By applying the nonlinear analysis the modified Korteweg-de Vries (mKdV) equation is derived to describe the traffic behavior near the critical point. The kink-antikink soliton, the solution of the mKdV equation, is obtained to describe the traffic jams. From the numerical simulation, it is shown that the traffic jams are suppressed efficiently by taking into account the relative velocity of cars ahead and backward. The analytical results are consistent with the simulation one

  19. Comparison between three different traffic micro-simulations and reality in Dallas

    Energy Technology Data Exchange (ETDEWEB)

    Nagel, K.; Pieck, M.; Simon, P.M.; Rickert, M.

    1998-06-18

    It is certainly desirable that transportation forecasting models are correct in the sense that the traffic patterns they predict correspond to what would happen in reality under the circumstances assumed in the forecasting model. Unfortunately, it is notoriously difficult to transform the above common sense statement into a technical specification. Since one cannot run controlled experiments in socio-economic systems, it is usually impossible to check the forecasts. The authors describe three traffic microsimulations which operate at different levels of fidelity. They are used to iteratively generate a self-consistent route-set based upon microsimulation feedback. They compare the simulation results of all three simulations to aggregated turn count data of actual field measurements.

  20. Integrating meso- and micro-simulation models to evaluate traffic management strategies - year 1 : final report.

    Science.gov (United States)

    2016-06-01

    In this project the researchers developed a hierarchical multi-resolution traffic simulation system for metropolitan areas, referred to as MetroSim. Categorically, the focus is on integrating two types of simulation: microscopic simulation in which i...

  1. The use of a simulation model to analyze the impact of heavy transport generated by the port to the city traffic.

    Directory of Open Access Journals (Sweden)

    Stasiak Natalia

    2017-06-01

    Full Text Available The article presents an analysis of the impact of transport on heavy urban traffic on Wharf Kwiatkowski using program PTV Vissim. The data for analysis were taken from the Road and Greenery in Gdynia from program PTV Visum. Attention has been focused on vehicle traffic in the afternoon the top of its intensity. Model of Kwiatkowskiego Wharf, made entirely in the PTV VISSIM, was used for microscopic simulation of traffic. With its help, it was possible to find and analyze the behavior of each autonomous vehicle and interactions on the Web. For the analysis was used as a program of traffic lights currency at these junctions. The analysis results of simulation in the PTV VISSIM are related to the movement of the two structures. The first assumes that the route will move cars and trucks, taking into account their share in the network based on the intensity of traffic during peak hours of the afternoon, the second consisted only of cars. The results presented are based on measuring the time of travel and delays on specific relationships and the average length of queues at selected inlets. The results of analysis and simulation tests were subjected to statistical analysis.

  2. Numerical Simulation for a Three-Dimensional Air Pollution Measurement Model in a Heavy Traffic Area under the Bangkok Sky Train Platform

    Directory of Open Access Journals (Sweden)

    Kewalee Suebyat

    2018-01-01

    Full Text Available Air pollutant levels in Bangkok are generally high in street tunnels. They are particularly elevated in almost closed street tunnels such as an area under the Bangkok sky train platform with high traffic volume where dispersion is limited. There are no air quality measurement stations in the vicinity, while the human population is high. In this research, the numerical simulation is used to measure the air pollutant levels. The three-dimensional air pollution measurement model in a heavy traffic area under the Bangkok sky train platform is proposed. The finite difference techniques are employed to approximate the modelled solutions. The vehicle air pollutant emission due to the high traffic volume is mathematically assumed by the pollutant sources term. The simulation is also considered in averaged and moving pollutant sources due to manner vehicle emission. The proposed approximated air pollutant concentration indicators can be replaced by user required gaseous pollutants indices such as NOx, SO2, CO, and PM2.5.

  3. Online traffic flow model applying dynamic flow-density relation

    International Nuclear Information System (INIS)

    Kim, Y.

    2002-01-01

    This dissertation describes a new approach of the online traffic flow modelling based on the hydrodynamic traffic flow model and an online process to adapt the flow-density relation dynamically. The new modelling approach was tested based on the real traffic situations in various homogeneous motorway sections and a motorway section with ramps and gave encouraging simulation results. This work is composed of two parts: first the analysis of traffic flow characteristics and second the development of a new online traffic flow model applying these characteristics. For homogeneous motorway sections traffic flow is classified into six different traffic states with different characteristics. Delimitation criteria were developed to separate these states. The hysteresis phenomena were analysed during the transitions between these traffic states. The traffic states and the transitions are represented on a states diagram with the flow axis and the density axis. For motorway sections with ramps the complicated traffic flow is simplified and classified into three traffic states depending on the propagation of congestion. The traffic states are represented on a phase diagram with the upstream demand axis and the interaction strength axis which was defined in this research. The states diagram and the phase diagram provide a basis for the development of the dynamic flow-density relation. The first-order hydrodynamic traffic flow model was programmed according to the cell-transmission scheme extended by the modification of flow dependent sending/receiving functions, the classification of cells and the determination strategy for the flow-density relation in the cells. The unreasonable results of macroscopic traffic flow models, which may occur in the first and last cells in certain conditions are alleviated by applying buffer cells between the traffic data and the model. The sending/receiving functions of the cells are determined dynamically based on the classification of the

  4. Real-Time Corrected Traffic Correlation Model for Traffic Flow Forecasting

    Directory of Open Access Journals (Sweden)

    Hua-pu Lu

    2015-01-01

    Full Text Available This paper focuses on the problems of short-term traffic flow forecasting. The main goal is to put forward traffic correlation model and real-time correction algorithm for traffic flow forecasting. Traffic correlation model is established based on the temporal-spatial-historical correlation characteristic of traffic big data. In order to simplify the traffic correlation model, this paper presents correction coefficients optimization algorithm. Considering multistate characteristic of traffic big data, a dynamic part is added to traffic correlation model. Real-time correction algorithm based on Fuzzy Neural Network is presented to overcome the nonlinear mapping problems. A case study based on a real-world road network in Beijing, China, is implemented to test the efficiency and applicability of the proposed modeling methods.

  5. Cellular automata model for urban road traffic flow considering pedestrian crossing street

    Science.gov (United States)

    Zhao, Han-Tao; Yang, Shuo; Chen, Xiao-Xu

    2016-11-01

    In order to analyze the effect of pedestrians' crossing street on vehicle flows, we investigated traffic characteristics of vehicles and pedestrians. Based on that, rules of lane changing, acceleration, deceleration, randomization and update are modified. Then we established two urban two-lane cellular automata models of traffic flow, one of which is about sections with non-signalized crosswalk and the other is on uncontrolled sections with pedestrians crossing street at random. MATLAB is used for numerical simulation of the different traffic conditions; meanwhile space-time diagram and relational graphs of traffic flow parameters are generated and then comparatively analyzed. Simulation results indicate that when vehicle density is lower than around 25 vehs/(km lane), pedestrians have modest impact on traffic flow, whereas when vehicle density is higher than about 60 vehs/(km lane), traffic speed and volume will decrease significantly especially on sections with non-signal-controlled crosswalk. The results illustrate that the proposed models reconstruct the traffic flow's characteristic with the situation where there are pedestrians crossing and can provide some practical reference for urban traffic management.

  6. Life Times of Simulated Traffic Jams

    Science.gov (United States)

    Nagel, Kai

    We study a model for freeway traffic which includes strong noise taking into account the fluctuations of individual driving behavior. The model shows emergent traffic jams with a self-similar appearance near the throughput maximum of the traffic. The lifetime distribution of these jams shows a short scaling regime, which gets considerably longer if one reduces the fluctuations when driving at maximum speed but leaves the fluctuations for slowing down or accelerating unchanged. The outflow from a traffic jam self-organizes into this state of maximum throughput.

  7. Sequential Monte Carlo simulation of collision risk in free flight air traffic

    NARCIS (Netherlands)

    Blom, H.A.P.; Bakker, G.; Krystul, J.; Everdij, M.H.C.; Klein Obbink, B.; Klompstra, M.B.

    2005-01-01

    Within HYBRIDGE a novel approach in speeding up Monte Carlo simulation of rare events has been developed. In the current report this method is extended for application to simulating collisions with a stochastic dynamical model of an air traffic operational concept. Subsequently this extended Monte

  8. A cellular automata model of traffic flow with variable probability of randomization

    International Nuclear Information System (INIS)

    Zheng Wei-Fan; Zhang Ji-Ye

    2015-01-01

    Research on the stochastic behavior of traffic flow is important to understand the intrinsic evolution rules of a traffic system. By introducing an interactional potential of vehicles into the randomization step, an improved cellular automata traffic flow model with variable probability of randomization is proposed in this paper. In the proposed model, the driver is affected by the interactional potential of vehicles before him, and his decision-making process is related to the interactional potential. Compared with the traditional cellular automata model, the modeling is more suitable for the driver’s random decision-making process based on the vehicle and traffic situations in front of him in actual traffic. From the improved model, the fundamental diagram (flow–density relationship) is obtained, and the detailed high-density traffic phenomenon is reproduced through numerical simulation. (paper)

  9. Qualitative and Quantitative Analysis of Congested Marine Traffic Environment – An Application Using Marine Traffic Simulation System

    Directory of Open Access Journals (Sweden)

    Kazuhiko Hasegawa

    2013-06-01

    Full Text Available Difficulty of sailing is quite subjective matter. It depends on various factors. Using Marine Traffic Simulation System (MTSS developed by Osaka University this challenging subject is discussed. In this system realistic traffic flow including collision avoidance manoeuvres can be reproduced in a given area. Simulation is done for southward of Tokyo Bay, Strait of Singapore and off-Shanghai area changing traffic volume from 5 or 50 to 150 or 200% of the present volume. As a result, strong proportional relation between near-miss ratio and traffic density per hour per sailed area is found, independent on traffic volume, area size and configuration. The quantitative evaluation index of the difficulty of sailing, here called risk rate of the area is defined using thus defined traffic density and near-miss ratio.

  10. Modeling Erlang's Ideal Grading with Multirate BPP Traffic

    Directory of Open Access Journals (Sweden)

    Mariusz Glabowski

    2012-01-01

    Full Text Available This paper presents a complete methodology for modeling gradings (also called non-full-availability groups servicing single-service and multi-service traffic streams. The methodology worked out by the authors makes it possible to determine traffic characteristics of various types of gradings with state-dependent call arrival processes, including a new proposed structure of the Erlang’s Ideal Grading with the multirate links. The elaborated models of the gradings can be used for modeling different systems of modern networks, for example, the radio interfaces of the UMTS system, switching networks carrying a mixture of different multirate traffic streams, and video-on-demand systems. The results of the analytical calculations are compared with the results of the simulation data for selected gradings, which confirm high accuracy of the proposed methodology.

  11. A new cellular automata model of traffic flow with negative exponential weighted look-ahead potential

    Science.gov (United States)

    Ma, Xiao; Zheng, Wei-Fan; Jiang, Bao-Shan; Zhang, Ji-Ye

    2016-10-01

    With the development of traffic systems, some issues such as traffic jams become more and more serious. Efficient traffic flow theory is needed to guide the overall controlling, organizing and management of traffic systems. On the basis of the cellular automata model and the traffic flow model with look-ahead potential, a new cellular automata traffic flow model with negative exponential weighted look-ahead potential is presented in this paper. By introducing the negative exponential weighting coefficient into the look-ahead potential and endowing the potential of vehicles closer to the driver with a greater coefficient, the modeling process is more suitable for the driver’s random decision-making process which is based on the traffic environment that the driver is facing. The fundamental diagrams for different weighting parameters are obtained by using numerical simulations which show that the negative exponential weighting coefficient has an obvious effect on high density traffic flux. The complex high density non-linear traffic behavior is also reproduced by numerical simulations. Project supported by the National Natural Science Foundation of China (Grant Nos. 11572264, 11172247, 11402214, and 61373009).

  12. Modeling Left-Turn Driving Behavior at Signalized Intersections with Mixed Traffic Conditions

    Directory of Open Access Journals (Sweden)

    Hong Li

    2016-01-01

    Full Text Available In many developing countries, mixed traffic is the most common type of urban transportation; traffic of this type faces many major problems in traffic engineering, such as conflicts, inefficiency, and security issues. This paper focuses on the traffic engineering concerns on the driving behavior of left-turning vehicles caused by different degrees of pedestrian violations. The traffic characteristics of left-turning vehicles and pedestrians in the affected region at a signalized intersection were analyzed and a cellular-automata-based “following-conflict” driving behavior model that mainly addresses four basic behavior modes was proposed to study the conflict and behavior mechanisms of left-turning vehicles by mathematic methodologies. Four basic driving behavior modes were reproduced in computer simulations, and a logit model of the behavior mode choice was also developed to analyze the relative share of each behavior mode. Finally, the microscopic characteristics of driving behaviors and the macroscopic parameters of traffic flow in the affected region were all determined. These data are important reference for geometry and capacity design for signalized intersections. The simulation results show that the proposed models are valid and can be used to represent the behavior of left-turning vehicles in the case of conflicts with illegally crossing pedestrians. These results will have potential applications on improving traffic safety and traffic capacity at signalized intersections with mixed traffic conditions.

  13. A Bayes Theory-Based Modeling Algorithm to End-to-end Network Traffic

    Directory of Open Access Journals (Sweden)

    Zhao Hong-hao

    2016-01-01

    Full Text Available Recently, network traffic has exponentially increasing due to all kind of applications, such as mobile Internet, smart cities, smart transportations, Internet of things, and so on. the end-to-end network traffic becomes more important for traffic engineering. Usually end-to-end traffic estimation is highly difficult. This paper proposes a Bayes theory-based method to model the end-to-end network traffic. Firstly, the end-to-end network traffic is described as a independent identically distributed normal process. Then the Bases theory is used to characterize the end-to-end network traffic. By calculating the parameters, the model is determined correctly. Simulation results show that our approach is feasible and effective.

  14. Traffic Congestion Evaluation and Signal Control Optimization Based on Wireless Sensor Networks: Model and Algorithms

    Directory of Open Access Journals (Sweden)

    Wei Zhang

    2012-01-01

    Full Text Available This paper presents the model and algorithms for traffic flow data monitoring and optimal traffic light control based on wireless sensor networks. Given the scenario that sensor nodes are sparsely deployed along the segments between signalized intersections, an analytical model is built using continuum traffic equation and develops the method to estimate traffic parameter with the scattered sensor data. Based on the traffic data and principle of traffic congestion formation, we introduce the congestion factor which can be used to evaluate the real-time traffic congestion status along the segment and to predict the subcritical state of traffic jams. The result is expected to support the timing phase optimization of traffic light control for the purpose of avoiding traffic congestion before its formation. We simulate the traffic monitoring based on the Mobile Century dataset and analyze the performance of traffic light control on VISSIM platform when congestion factor is introduced into the signal timing optimization model. The simulation result shows that this method can improve the spatial-temporal resolution of traffic data monitoring and evaluate traffic congestion status with high precision. It is helpful to remarkably alleviate urban traffic congestion and decrease the average traffic delays and maximum queue length.

  15. Aircraft/Air Traffic Management Functional Analysis Model: Technical Description. 2.0

    Science.gov (United States)

    Etheridge, Melvin; Plugge, Joana; Retina, Nusrat

    1998-01-01

    The Aircraft/Air Traffic Management Functional Analysis Model, Version 2.0 (FAM 2.0), is a discrete event simulation model designed to support analysis of alternative concepts in air traffic management and control. FAM 2.0 was developed by the Logistics Management Institute (LMI) under a National Aeronautics and Space Administration (NASA) contract. This document provides a technical description of FAM 2.0 and its computer files to enable the modeler and programmer to make enhancements or modifications to the model. Those interested in a guide for using the model in analysis should consult the companion document, Aircraft/Air Traffic Management Functional Analysis Model, Version 2.0 Users Manual.

  16. Modeling DNP3 Traffic Characteristics of Field Devices in SCADA Systems of the Smart Grid

    Energy Technology Data Exchange (ETDEWEB)

    Yang, Huan [Lehigh Univ., Bethlehem, PA (United States); Cheng, Liang [Lehigh Univ., Bethlehem, PA (United States); Chuah, Mooi Choo [Lehigh Univ., Bethlehem, PA (United States)

    2017-03-08

    In the generation, transmission, and distribution sectors of the smart grid, intelligence of field devices is realized by programmable logic controllers (PLCs). Many smart-grid subsystems are essentially cyber-physical energy systems (CPES): For instance, the power system process (i.e., the physical part) within a substation is monitored and controlled by a SCADA network with hosts running miscellaneous applications (i.e., the cyber part). To study the interactions between the cyber and physical components of a CPES, several co-simulation platforms have been proposed. However, the network simulators/emulators of these platforms do not include a detailed traffic model that takes into account the impacts of the execution model of PLCs on traffic characteristics. As a result, network traces generated by co-simulation only reveal the impacts of the physical process on the contents of the traffic generated by SCADA hosts, whereas the distinction between PLCs and computing nodes (e.g., a hardened computer running a process visualization application) has been overlooked. To generate realistic network traces using co-simulation for the design and evaluation of applications relying on accurate traffic profiles, it is necessary to establish a traffic model for PLCs. In this work, we propose a parameterized model for PLCs that can be incorporated into existing co-simulation platforms. We focus on the DNP3 subsystem of slave PLCs, which automates the processing of packets from the DNP3 master. To validate our approach, we extract model parameters from both the configuration and network traces of real PLCs. Simulated network traces are generated and compared against those from PLCs. Our evaluation shows that our proposed model captures the essential traffic characteristics of DNP3 slave PLCs, which can be used to extend existing co-simulation platforms and gain further insights into the behaviors of CPES.

  17. Life-Times of Simulated Traffic Jams

    OpenAIRE

    Nagel, K.

    1993-01-01

    We study a model for freeway traffic which includes strong noise taking into account the fluctuations of individual driving behavior. The model shows emergent traffic jams with a self-similar appearance near the throughput maximum of the traffic. The lifetime distribution of these jams shows a short scaling regime, which gets considerably longer if one reduces the fluctuations for driving at maximum speed but leaves the fluctuations for slowing down or accelerating unchanged. The outflow from...

  18. Comparison of Microscopic Drivers' Probabilistic Lane-changing Models With Real Traffic Microscopic Data

    Directory of Open Access Journals (Sweden)

    Seyyed Mohammad Sadat Hoseini

    2011-07-01

    Full Text Available The difficulties of microscopic-level simulation models to accurately reproduce real traffic phenomena stem not only from the complexity of calibration and validation operations, but also from the structural inadequacies of the sub-models themselves. Both of these drawbacks originate from the scant information available on real phenomena because of the difficulty in gathering accurate field data. This paper studies the traffic behaviour of individual drivers utilizing vehicle trajectory data extracted from digital images collected from freeways in Iran. These data are used to evaluate the four proposed microscopic traffic models. One of the models is based on the traffic regulations in Iran and the three others are probabilistic models that use a decision factor for calculating the probability of choosing a position on the freeway by a driver. The decision factors for three probabilistic models are increasing speed, decreasing risk of collision, and increasing speed combined with decreasing risk of collision. The models are simulated by a cellular automata simulator and compared with the real data. It is shown that the model based on driving regulations is not valid, but that other models appear useful for predicting the driver’s behaviour on freeway segments in Iran during noncongested conditions.

  19. Traffic congestion forecasting model for the INFORM System. Final report

    Energy Technology Data Exchange (ETDEWEB)

    Azarm, A.; Mughabghab, S.; Stock, D.

    1995-05-01

    This report describes a computerized traffic forecasting model, developed by Brookhaven National Laboratory (BNL) for a portion of the Long Island INFORM Traffic Corridor. The model has gone through a testing phase, and currently is able to make accurate traffic predictions up to one hour forward in time. The model will eventually take on-line traffic data from the INFORM system roadway sensors and make projections as to future traffic patterns, thus allowing operators at the New York State Department of Transportation (D.O.T.) INFORM Traffic Management Center to more optimally manage traffic. It can also form the basis of a travel information system. The BNL computer model developed for this project is called ATOP for Advanced Traffic Occupancy Prediction. The various modules of the ATOP computer code are currently written in Fortran and run on PC computers (pentium machine) faster than real time for the section of the INFORM corridor under study. The following summarizes the various routines currently contained in the ATOP code: Statistical forecasting of traffic flow and occupancy using historical data for similar days and time (long term knowledge), and the recent information from the past hour (short term knowledge). Estimation of the empirical relationships between traffic flow and occupancy using long and short term information. Mechanistic interpolation using macroscopic traffic models and based on the traffic flow and occupancy forecasted (item-1), and the empirical relationships (item-2) for the specific highway configuration at the time of simulation (construction, lane closure, etc.). Statistical routine for detection and classification of anomalies and their impact on the highway capacity which are fed back to previous items.

  20. Simple cellular automaton model for traffic breakdown, highway capacity, and synchronized flow

    Science.gov (United States)

    Kerner, Boris S.; Klenov, Sergey L.; Schreckenberg, Michael

    2011-10-01

    We present a simple cellular automaton (CA) model for two-lane roads explaining the physics of traffic breakdown, highway capacity, and synchronized flow. The model consists of the rules “acceleration,” “deceleration,” “randomization,” and “motion” of the Nagel-Schreckenberg CA model as well as “overacceleration through lane changing to the faster lane,” “comparison of vehicle gap with the synchronization gap,” and “speed adaptation within the synchronization gap” of Kerner's three-phase traffic theory. We show that these few rules of the CA model can appropriately simulate fundamental empirical features of traffic breakdown and highway capacity found in traffic data measured over years in different countries, like characteristics of synchronized flow, the existence of the spontaneous and induced breakdowns at the same bottleneck, and associated probabilistic features of traffic breakdown and highway capacity. Single-vehicle data derived in model simulations show that synchronized flow first occurs and then self-maintains due to a spatiotemporal competition between speed adaptation to a slower speed of the preceding vehicle and passing of this slower vehicle. We find that the application of simple dependences of randomization probability and synchronization gap on driving situation allows us to explain the physics of moving synchronized flow patterns and the pinch effect in synchronized flow as observed in real traffic data.

  1. Cellular automata model for traffic flow with safe driving conditions

    International Nuclear Information System (INIS)

    Lárraga María Elena; Alvarez-Icaza Luis

    2014-01-01

    In this paper, a recently introduced cellular automata (CA) model is used for a statistical analysis of the inner microscopic structure of synchronized traffic flow. The analysis focuses on the formation and dissolution of clusters or platoons of vehicles, as the mechanism that causes the presence of this synchronized traffic state with a high flow. This platoon formation is one of the most interesting phenomena observed in traffic flows and plays an important role both in manual and automated highway systems (AHS). Simulation results, obtained from a single-lane system under periodic boundary conditions indicate that in the density region where the synchronized state is observed, most vehicles travel together in platoons with approximately the same speed and small spatial distances. The examination of velocity variations and individual vehicle gaps shows that the flow corresponding to the synchronized state is stable, safe and highly correlated. Moreover, results indicate that the observed platoon formation in real traffic is reproduced in simulations by the relation between vehicle headway and velocity that is embedded in the dynamics definition of the CA model. (general)

  2. Experiments simulation and design to set traffic lights operation rules

    Energy Technology Data Exchange (ETDEWEB)

    Jimenez Garcia, J.A.

    2016-07-01

    In this paper it is used the experimental design to minimize the travel time of motor vehicles, in one of the most important avenues of Celaya City in Guanajuato, Mexico, by means of optimal synchronization of existing traffic lights. In the optimization process three factors are considered: the traffic lights’ cycle times, the synchrony defined as stepped, parallel and actual, and speed limit, each one with 3 evaluation levels. The response variables to consider are: motor vehicles’ travel time, fuel consumption and greenhouse effect gas (CO2) emissions. The different experiments are performed using the simulation model developed in the PTV-VISSIM software, which represents the vehicle traffic system. The obtained results for the different proposed scenarios allow to find proper levels at which the vehicle traffic system must be operated in order to improve mobility, to reduce contamination rates and decrease the fuel consumption for the different motor vehicles that use the avenue. (Author)

  3. Modeling Mixed Bicycle Traffic Flow: A Comparative Study on the Cellular Automata Approach

    Directory of Open Access Journals (Sweden)

    Dan Zhou

    2015-01-01

    Full Text Available Simulation, as a powerful tool for evaluating transportation systems, has been widely used in transportation planning, management, and operations. Most of the simulation models are focused on motorized vehicles, and the modeling of nonmotorized vehicles is ignored. The cellular automata (CA model is a very important simulation approach and is widely used for motorized vehicle traffic. The Nagel-Schreckenberg (NS CA model and the multivalue CA (M-CA model are two categories of CA model that have been used in previous studies on bicycle traffic flow. This paper improves on these two CA models and also compares their characteristics. It introduces a two-lane NS CA model and M-CA model for both regular bicycles (RBs and electric bicycles (EBs. In the research for this paper, many cases, featuring different values for the slowing down probability, lane-changing probability, and proportion of EBs, were simulated, while the fundamental diagrams and capacities of the proposed models were analyzed and compared between the two models. Field data were collected for the evaluation of the two models. The results show that the M-CA model exhibits more stable performance than the two-lane NS model and provides results that are closer to real bicycle traffic.

  4. Simulating and evaluating an adaptive and integrated traffic lights control system for smart city application

    Science.gov (United States)

    Djuana, E.; Rahardjo, K.; Gozali, F.; Tan, S.; Rambung, R.; Adrian, D.

    2018-01-01

    A city could be categorized as a smart city when the information technology has been developed to the point that the administration could sense, understand, and control every resource to serve its people and sustain the development of the city. One of the smart city aspects is transportation and traffic management. This paper presents a research project to design an adaptive traffic lights control system as a part of the smart system for optimizing road utilization and reducing congestion. Research problems presented include: (1) Congestion in one direction toward an intersection due to dynamic traffic condition from time to time during the day, while the timing cycles in traffic lights system are mostly static; (2) No timing synchronization among traffic lights in adjacent intersections that is causing unsteady flows; (3) Difficulties in traffic condition monitoring on the intersection and the lack of facility for remotely controlling traffic lights. In this research, a simulator has been built to model the adaptivity and integration among different traffic lights controllers in adjacent intersections, and a case study consisting of three sets of intersections along Jalan K. H. Hasyim Ashari has been simulated. It can be concluded that timing slots synchronization among traffic lights is crucial for maintaining a steady traffic flow.

  5. Modeling connected and autonomous vehicles in heterogeneous traffic flow

    Science.gov (United States)

    Ye, Lanhang; Yamamoto, Toshiyuki

    2018-01-01

    The objective of this study was to develop a heterogeneous traffic-flow model to study the possible impact of connected and autonomous vehicles (CAVs) on the traffic flow. Based on a recently proposed two-state safe-speed model (TSM), a two-lane cellular automaton (CA) model was developed, wherein both the CAVs and conventional vehicles were incorporated in the heterogeneous traffic flow. In particular, operation rules for CAVs are established considering the new characteristics of this emerging technology, including autonomous driving through the adaptive cruise control and inter-vehicle connection via short-range communication. Simulations were conducted under various CAV-penetration rates in the heterogeneous flow. The impact of CAVs on the road capacity was numerically investigated. The simulation results indicate that the road capacity increases with an increase in the CAV-penetration rate within the heterogeneous flow. Up to a CAV-penetration rate of 30%, the road capacity increases gradually; the effect of the difference in the CAV capability on the growth rate is insignificant. When the CAV-penetration rate exceeds 30%, the growth rate is largely decided by the capability of the CAV. The greater the capability, the higher the road-capacity growth rate. The relationship between the CAV-penetration rate and the road capacity is numerically analyzed, providing some insights into the possible impact of the CAVs on traffic systems.

  6. The use of a transport simulation system (AIMSUN to determine the environmental effects of pedestrianization and traffic management in the center of Thessaloniki

    Directory of Open Access Journals (Sweden)

    Evangelos Mintsis

    2016-06-01

    Full Text Available Traffic congestion in urban areas results in increased energy consumption and vehicle emissions. Traffic management that alleviates traffic congestion also mitigates the environmental effects of vehicular traffic. This study uses the transport simulation model AIMSUN to evaluate the environmental effect of a set of traffic management and pedestrianization schemes. The effects of the pedestrianization of specific sections of roads, converting two-way roads into one-way roads for traffic and changing the direction of flow of traffic along one-way roads were simulated for different areas of Thessaloniki’s city centre network. The assessment of the environmental effect was done by determining the predicted fuel consumption and emissions of greenhouse gases (GHG and air pollutants. Fuel consumption and the environmental indicators were quantified directly using the fuel consumption and emissions model in AIMSUN. A typical weekday morning peak period, between 09:00am–10:00am, was simulated and the demand data obtained using a macroscopic traffic assignment model previously developed for the wider area of Thessaloniki. The results presented in this paper are for network-wide simulation statistics (i.e. fuel consumed, carbon dioxide (CO2, nitrogen oxides (NOx and particulate matter (PM.

  7. Simulation of three lanes one-way freeway in low visibility weather by possible traffic accidents

    Science.gov (United States)

    Pang, Ming-bao; Zheng, Sha-sha; Cai, Zhang-hui

    2015-09-01

    The aim of this work is to investigate the traffic impact of low visibility weather on a freeway including the fraction of real vehicle rear-end accidents and road traffic capacity. Based on symmetric two-lane Nagel-Schreckenberg (STNS) model, a cellular automaton model of three-lane freeway mainline with the real occurrence of rear-end accidents in low visibility weather, which considers delayed reaction time and deceleration restriction, was established with access to real-time traffic information of intelligent transportation system (ITS). The characteristics of traffic flow in different visibility weather were discussed via the simulation experiments. The results indicate that incoming flow control (decreasing upstream traffic volume) and inputting variable speed limits (VSL) signal are effective in accident reducing and road actual traffic volume's enhancing. According to different visibility and traffic demand the appropriate control strategies should be adopted in order to not only decrease the probability of vehicle accidents but also avoid congestion.

  8. Evaluation of diversion strategies in the context of advanced traffic management systems (ATMS) for an urban traffic corridor with heterogeneous traffic

    Energy Technology Data Exchange (ETDEWEB)

    Korlapati, D.R.

    2007-07-01

    Due to urbanization and accelerated growth in vehicular traffic, most big cities in India face problems related to traffic management resulting in severe congestion, pollution, and a high rate of accidents during peak hours. Lane blocking incidents on arterials or urban traffic corridors cause major disruption to traffic flow. Peak hour congestion with low average speeds and high accident rates are commonly associated with traffic in major cities in India. The situation is deteriorating further as creation of new facilities are almost impossible, with resource and space constraints. In such scenarios, application of advanced technologies seems to offer hope. One such application area is Advanced Traffic Management Systems (ATMS), a component of intelligent transportation system (ITS). Due to the unique traffic characteristics prevailing in India, the application of such systems needs to first be evaluated before implementation. This paper proposed a research methodology for the evaluation of diversion strategies in the context of ATMS for an urban corridor in India. The evaluation framework combined several relevant modules related to various aspects of traffic control, surveillance and advisory. As part of this study, a simulation model and a simulation optimization model were developed. The simulation model was microscopic in nature and captured the driver behaviour and traffic characteristics realistically by modeling the complex interactions among vehicles traversing a corridor. It was concluded that the results and observations were useful indicators to gauge the potential success of diversion plans. 10 refs., 1 tab., 2 figs.

  9. Simulation Study of the Effect of Decreasing Truck Traffic Flow on Safety on Almeria-Barcelona Corridor

    Energy Technology Data Exchange (ETDEWEB)

    Dadashova, B.

    2016-07-01

    In this paper the effect of truck traffic on road safety has been analyzed through simulation study. The main objective of the study is to quantify the effect of the decreasing average annual daily traffic of heavy duty vehicles (trucks) on road safety. As the road safety indicators the frequency road accidents is considered. The data used in the study were collected from one of the most crowded routes in Spain which connects Almeria (south-east) with Barcelona (northeast). The observed data covers year 2010 and were classified into 2 road types: dual carriageways and toll roads. The estimation was carried out using negative binomial model and Markov Chain Monte Carlo simulation. Using the estimation results new traffic scenarios were proposed where the traffic flow is assumed to change its values. A total of 33 scenarios were proposed and new accidents data were generated through MCMC sampling. The comparison of the simulated and observed accident data shows that the effect of decreasing truck traffic flow could meliorate road safety in the route. The simulation tool could be applied to evaluate the effects of freight modal shift from road to rail. (Author)

  10. Research on Analysis Method of Traffic Congestion Mechanism Based on Improved Cell Transmission Model

    Directory of Open Access Journals (Sweden)

    Hongzhao Dong

    2012-01-01

    Full Text Available To analyze the spreading regularity of the initial traffic congestion, the improved cell transmission model (CTM is proposed to describe the evolution mechanism of traffic congestion in regional road grid. Ordinary cells and oriented cells are applied to render the crowd roads and their adjacent roads. Therefore the traffic flow could be simulated by these cells. Resorting to the proposed model, the duration of the initial traffic congestion could be predicted and the subsequent secondary congestion could be located. Accordingly, the spatial diffusion of traffic congestion could be estimated. At last, taking a road network region of Hangzhou city as an example, the simulation experiment is implemented to verify the proposed method by PARAMICS software. The result shows that the method could predict the duration of the initial congestion and estimate its spatial diffusion accurately.

  11. Calibration of CORSIM models under saturated traffic flow conditions.

    Science.gov (United States)

    2013-09-01

    This study proposes a methodology to calibrate microscopic traffic flow simulation models. : The proposed methodology has the capability to calibrate simultaneously all the calibration : parameters as well as demand patterns for any network topology....

  12. Nonlinear analysis and simulation of soliton in the traffic flow; Kotsu jutai soliton no hassei kiko nikansuru kenkyu

    Energy Technology Data Exchange (ETDEWEB)

    Matsumura, M. [Shizuoka University, Shizuoka (Japan); Nagatani, T. [Shizuoka University, Shizuoka (Japan). Faculty of Engineering

    1999-07-25

    Traffic jams are investigated numerically and analystically in the optimal velocity model on a single-line highway. The condition is found whether or not traffic jams occur when a car stops instantly. It is shown that traffic soliton appears at the threshold of occurrence of traffic jams. The Korteweg-de Vries (KdV) equation is derived from the optimal velocity model by the use of the nonlinear analysis. It is found that the traffic soliton appears only near the neutral stability point. The soliton obtained from the nonlinear analysis is consistent with that of the numerical simulation. (author)

  13. Air traffic simulation in chemistry-climate model EMAC 2.41: AirTraf 1.0

    Science.gov (United States)

    Yamashita, Hiroshi; Grewe, Volker; Jöckel, Patrick; Linke, Florian; Schaefer, Martin; Sasaki, Daisuke

    2016-09-01

    Mobility is becoming more and more important to society and hence air transportation is expected to grow further over the next decades. Reducing anthropogenic climate impact from aviation emissions and building a climate-friendly air transportation system are required for a sustainable development of commercial aviation. A climate optimized routing, which avoids climate-sensitive regions by re-routing horizontally and vertically, is an important measure for climate impact reduction. The idea includes a number of different routing strategies (routing options) and shows a great potential for the reduction. To evaluate this, the impact of not only CO2 but also non-CO2 emissions must be considered. CO2 is a long-lived gas, while non-CO2 emissions are short-lived and are inhomogeneously distributed. This study introduces AirTraf (version 1.0) that performs global air traffic simulations, including effects of local weather conditions on the emissions. AirTraf was developed as a new submodel of the ECHAM5/MESSy Atmospheric Chemistry (EMAC) model. Air traffic information comprises Eurocontrol's Base of Aircraft Data (BADA Revision 3.9) and International Civil Aviation Organization (ICAO) engine performance data. Fuel use and emissions are calculated by the total energy model based on the BADA methodology and Deutsches Zentrum für Luft- und Raumfahrt (DLR) fuel flow method. The flight trajectory optimization is performed by a genetic algorithm (GA) with respect to a selected routing option. In the model development phase, benchmark tests were performed for the great circle and flight time routing options. The first test showed that the great circle calculations were accurate to -0.004 %, compared to those calculated by the Movable Type script. The second test showed that the optimal solution found by the algorithm sufficiently converged to the theoretical true-optimal solution. The difference in flight time between the two solutions is less than 0.01 %. The dependence of

  14. Graph Cellular Automata with Relation-Based Neighbourhoods of Cells for Complex Systems Modelling: A Case of Traffic Simulation

    Directory of Open Access Journals (Sweden)

    Krzysztof Małecki

    2017-12-01

    Full Text Available A complex system is a set of mutually interacting elements for which it is possible to construct a mathematical model. This article focuses on the cellular automata theory and the graph theory in order to compare various types of cellular automata and to analyse applications of graph structures together with cellular automata. It proposes a graph cellular automaton with a variable configuration of cells and relation-based neighbourhoods (r–GCA. The developed mechanism enables modelling of phenomena found in complex systems (e.g., transport networks, urban logistics, social networks taking into account the interaction between the existing objects. As an implementation example, modelling of moving vehicles has been made and r–GCA was compared to the other cellular automata models simulating the road traffic and used in the computer simulation process.

  15. VBR video traffic models

    CERN Document Server

    Tanwir, Savera

    2014-01-01

    There has been a phenomenal growth in video applications over the past few years. An accurate traffic model of Variable Bit Rate (VBR) video is necessary for performance evaluation of a network design and for generating synthetic traffic that can be used for benchmarking a network. A large number of models for VBR video traffic have been proposed in the literature for different types of video in the past 20 years. Here, the authors have classified and surveyed these models and have also evaluated the models for H.264 AVC and MVC encoded video and discussed their findings.

  16. An improved multi-value cellular automata model for heterogeneous bicycle traffic flow

    Energy Technology Data Exchange (ETDEWEB)

    Jin, Sheng [College of Civil Engineering and Architecture, Zhejiang University, Hangzhou, 310058 China (China); Qu, Xiaobo [Griffith School of Engineering, Griffith University, Gold Coast, 4222 Australia (Australia); Xu, Cheng [Department of Transportation Management Engineering, Zhejiang Police College, Hangzhou, 310053 China (China); College of Transportation, Jilin University, Changchun, 130022 China (China); Ma, Dongfang, E-mail: mdf2004@zju.edu.cn [Ocean College, Zhejiang University, Hangzhou, 310058 China (China); Wang, Dianhai [College of Civil Engineering and Architecture, Zhejiang University, Hangzhou, 310058 China (China)

    2015-10-16

    This letter develops an improved multi-value cellular automata model for heterogeneous bicycle traffic flow taking the higher maximum speed of electric bicycles into consideration. The update rules of both regular and electric bicycles are improved, with maximum speeds of two and three cells per second respectively. Numerical simulation results for deterministic and stochastic cases are obtained. The fundamental diagrams and multiple states effects under different model parameters are analyzed and discussed. Field observations were made to calibrate the slowdown probabilities. The results imply that the improved extended Burgers cellular automata (IEBCA) model is more consistent with the field observations than previous models and greatly enhances the realism of the bicycle traffic model. - Highlights: • We proposed an improved multi-value CA model with higher maximum speed. • Update rules are introduced for heterogeneous bicycle traffic with maximum speed 2 and 3 cells/s. • Simulation results of the proposed model are consistent with field bicycle data. • Slowdown probabilities of both regular and electric bicycles are calibrated.

  17. An improved multi-value cellular automata model for heterogeneous bicycle traffic flow

    International Nuclear Information System (INIS)

    Jin, Sheng; Qu, Xiaobo; Xu, Cheng; Ma, Dongfang; Wang, Dianhai

    2015-01-01

    This letter develops an improved multi-value cellular automata model for heterogeneous bicycle traffic flow taking the higher maximum speed of electric bicycles into consideration. The update rules of both regular and electric bicycles are improved, with maximum speeds of two and three cells per second respectively. Numerical simulation results for deterministic and stochastic cases are obtained. The fundamental diagrams and multiple states effects under different model parameters are analyzed and discussed. Field observations were made to calibrate the slowdown probabilities. The results imply that the improved extended Burgers cellular automata (IEBCA) model is more consistent with the field observations than previous models and greatly enhances the realism of the bicycle traffic model. - Highlights: • We proposed an improved multi-value CA model with higher maximum speed. • Update rules are introduced for heterogeneous bicycle traffic with maximum speed 2 and 3 cells/s. • Simulation results of the proposed model are consistent with field bicycle data. • Slowdown probabilities of both regular and electric bicycles are calibrated

  18. Cellular automata model for traffic flow at intersections in internet of vehicles

    Science.gov (United States)

    Zhao, Han-Tao; Liu, Xin-Ru; Chen, Xiao-Xu; Lu, Jian-Cheng

    2018-03-01

    Considering the effect of the front vehicle's speed, the influence of the brake light and the conflict of the traffic flow, we established a cellular automata model called CE-NS for traffic flow at the intersection in the non-vehicle networking environment. According to the information interaction of Internet of Vehicles (IoV), introducing parameters describing the congestion and the accurate speed of the front vehicle into the CE-NS model, we improved the rules of acceleration, deceleration and conflict, and finally established a cellular automata model for traffic flow at intersections of IoV. The relationship between traffic parameters such as vehicle speed, flow and average travel time is obtained by numerical simulation of two models. Based on this, we compared the traffic situation of the non-vehicle networking environment with conditions of IoV environment, and analyzed the influence of the different degree of IoV on the traffic flow. The results show that the traffic speed is increased, the travel time is reduced, the flux of intersections is increased and the traffic flow is more smoothly under IoV environment. After the vehicle which achieves IoV reaches a certain proportion, the operation effect of the traffic flow begins to improve obviously.

  19. An Improved Macro Model of Traffic Flow with the Consideration of Ramps and Numerical Tests

    Directory of Open Access Journals (Sweden)

    Zhongke Shi

    2015-01-01

    Full Text Available We present an improved macro model for traffic flow based on the existing models. The equilibrium point equation of the model is obtained. The stop-and-go traffic phenomenon is described in phase plane and the relationship between traffic jams and system instability is clearly shown in the phase plane diagrams. Using the improved model, some traffic phenomena on a highway with ramps are found in this paper. The numerical simulation is carried out to investigate various nonlinear traffic phenomena with a single ramp generated by different initial densities and vehicle generation rates. According to the actual road sections of Xi’an-Baoji highways, the situations of morning peak with several ramps are also analyzed. All these results are consistent with real traffic, which shows that the improved model is reasonable.

  20. Optimization of traffic distribution control in software-configurable infrastructure of virtual data center based on a simulation model

    Directory of Open Access Journals (Sweden)

    I. P. Bolodurina

    2017-01-01

    Full Text Available Currently, the proportion of use of cloud computing technology in today's business processes of companies is growing steadily. Despite the fact that it allows you to reduce the cost of ownership and operation of IT infrastructure, there are a number of problems related to the control of data centers. One such problem is the efficiency of the use of available companies compute and network resources. One of the directions of optimization is the process of traffic control of cloud applications and services in data centers. Given the multi-tier architecture of modern data center, this problem does not quite trivial. The advantage of modern virtual infrastructure is the ability to use software-configurable networks and software-configurable data storages. However, existing solutions with algorithmic optimization does not take into account a number of features forming network traffic with multiple classes of applications. Within the framework of the exploration solved the problem of optimizing the distribution of traffic cloud applications and services for the software-controlled virtual data center infrastructure. A simulation model describing the traffic in data center and software-configurable network segments involved in the processing of user requests for applications and services located network environment that includes a heterogeneous cloud platform and software-configurable data storages. The developed model has allowed to implement cloud applications traffic management algorithm and optimize access to the storage system through the effective use of the channel for data transmission. In experimental studies found that the application of the developed algorithm can reduce the response time of cloud applications and services, and as a result improve the performance of processing user requests and to reduce the number of failures.

  1. Model petri net of adaptive traffic lights and its collaboration with a special event

    Directory of Open Access Journals (Sweden)

    Tristono Tomi

    2018-01-01

    Full Text Available Traffic lights have an important role as the system control of vehicles flow on the urban network. Commonly, most countries still using fixed time strategy. Our research proposes the adaptive traffic lights model to response the traffic demand. It uses basic Petri net as a general modeling framework. Foractuating method of minimum and maximum green signal time interval, the green traffic lights have three-time extension units. Next, we collaborate on a case of the existence of railways that crosses on the southern arm of an intersection. We introduce both of collaboration model design of traffic lights and the railway's gate which always closes while a train passing. Verification and validation of the model are based on the simulation result of vehicles queue. The collaboration model design of traffic lights has excellent performance, and it can resolve the congestion problem better than conventional schedule.

  2. Aviation Safety Simulation Model

    Science.gov (United States)

    Houser, Scott; Yackovetsky, Robert (Technical Monitor)

    2001-01-01

    The Aviation Safety Simulation Model is a software tool that enables users to configure a terrain, a flight path, and an aircraft and simulate the aircraft's flight along the path. The simulation monitors the aircraft's proximity to terrain obstructions, and reports when the aircraft violates accepted minimum distances from an obstruction. This model design facilitates future enhancements to address other flight safety issues, particularly air and runway traffic scenarios. This report shows the user how to build a simulation scenario and run it. It also explains the model's output.

  3. Some random models in traffic science

    Energy Technology Data Exchange (ETDEWEB)

    Hjorth, U.

    1996-06-01

    We give an overview of stochastic models for the following traffic phenomena. Models for traffic flow including gaps and capacities for lanes, crossings and roundabouts. Models for wanted and achieved speed distributions. Mode selection models including dispersed equilibrium models and traffic accident models. Also some statistical questions are discussed. 60 refs, 1 tab

  4. Memory effects in microscopic traffic models and wide scattering in flow-density data

    Science.gov (United States)

    Treiber, Martin; Helbing, Dirk

    2003-10-01

    By means of microscopic simulations we show that noninstantaneous adaptation of the driving behavior to the traffic situation together with the conventional method to measure flow-density data provides a possible explanation for the observed inverse-λ shape and the wide scattering of flow-density data in “synchronized” congested traffic. We model a memory effect in the response of drivers to the traffic situation for a wide class of car-following models by introducing an additional dynamical variable (the “subjective level of service”) describing the adaptation of drivers to the surrounding traffic situation during the past few minutes and couple this internal state to parameters of the underlying model that are related to the driving style. For illustration, we use the intelligent-driver model (IDM) as the underlying model, characterize the level of service solely by the velocity, and couple the internal variable to the IDM parameter “time gap” to model an increase of the time gap in congested traffic (“frustration effect”), which is supported by single-vehicle data. We simulate open systems with a bottleneck and obtain flow-density data by implementing “virtual detectors.” The shape, relative size, and apparent “stochasticity” of the region of the scattered data points agree nearly quantitatively with empirical data. Wide scattering is even observed for identical vehicles, although the proposed model is a time-continuous, deterministic, single-lane car-following model with a unique fundamental diagram.

  5. Analyses of Lattice Traffic Flow Model on a Gradient Highway

    International Nuclear Information System (INIS)

    Gupta Arvind Kumar; Redhu Poonam; Sharma Sapna

    2014-01-01

    The optimal current difference lattice hydrodynamic model is extended to investigate the traffic flow dynamics on a unidirectional single lane gradient highway. The effect of slope on uphill/downhill highway is examined through linear stability analysis and shown that the slope significantly affects the stability region on the phase diagram. Using nonlinear stability analysis, the Burgers, Korteweg-deVries (KdV) and modified Korteweg-deVries (mKdV) equations are derived in stable, metastable and unstable region, respectively. The effect of reaction coefficient is examined and concluded that it plays an important role in suppressing the traffic jams on a gradient highway. The theoretical findings have been verified through numerical simulation which confirm that the slope on a gradient highway significantly influence the traffic dynamics and traffic jam can be suppressed efficiently by considering the optimal current difference effect in the new lattice model. (nuclear physics)

  6. Analyzing the Influence of Mobile Phone Use of Drivers on Traffic Flow Based on an Improved Cellular Automaton Model

    Directory of Open Access Journals (Sweden)

    Yao Xiao

    2015-01-01

    Full Text Available This paper aimed to analyze the influence of drivers’ behavior of phone use while driving on traffic flow, including both traffic efficiency and traffic safety. An improved cellular automaton model was proposed to simulate traffic flow with distracted drivers based on the Nagel-Schreckenberg model. The driving characters of drivers using a phone were first discussed and a value representing the probability to use a phone while driving was put into the CA model. Simulation results showed that traffic flow rate was significantly reduced if some drivers used a phone compared to no phone use. The flow rate and velocity decreased as the proportion of drivers using a phone increased. While, under low density, the risk of traffic decreased first and then increased as the distracted drivers increased, the distracted behavior of drivers, like using a phone, could reduce the flow rate by 5 percent according to the simulation.

  7. Data-driven Travel Demand Modelling and Agent-based Traffic Simulation in Amsterdam Urban Area

    NARCIS (Netherlands)

    Melnikov, V.R.; Krzhizhanovskaya, V.V.; Lees, M.H.; Boukhanovsky, A.V.

    2016-01-01

    The goal of this project is the development of a large-scale agent-based traffic simulation system for Amsterdam urban area, validated on sensor data and adjusted for decision support in critical situations and for policy making in sustainable city development, emission control and electric car

  8. Model for Detection and Classification of DDoS Traffic Based on Artificial Neural Network

    Directory of Open Access Journals (Sweden)

    D. Peraković

    2017-06-01

    Full Text Available Detection of DDoS (Distributed Denial of Service traffic is of great importance for the availability protection of services and other information and communication resources. The research presented in this paper shows the application of artificial neural networks in the development of detection and classification model for three types of DDoS attacks and legitimate network traffic. Simulation results of developed model showed accuracy of 95.6% in classification of pre-defined classes of traffic.

  9. Study on network traffic forecast model of SVR optimized by GAFSA

    International Nuclear Information System (INIS)

    Liu, Yuan; Wang, RuiXue

    2016-01-01

    There are some problems, such as low precision, on existing network traffic forecast model. In accordance with these problems, this paper proposed the network traffic forecast model of support vector regression (SVR) algorithm optimized by global artificial fish swarm algorithm (GAFSA). GAFSA constitutes an improvement of artificial fish swarm algorithm, which is a swarm intelligence optimization algorithm with a significant effect of optimization. The optimum training parameters used for SVR could be calculated by optimizing chosen parameters, which would make the forecast more accurate. With the optimum training parameters searched by GAFSA algorithm, a model of network traffic forecast, which greatly solved problems of great errors in SVR improved by others intelligent algorithms, could be built with the forecast result approaching stability and the increased forecast precision. The simulation shows that, compared with other models (e.g. GA-SVR, CPSO-SVR), the forecast results of GAFSA-SVR network traffic forecast model is more stable with the precision improved to more than 89%, which plays an important role on instructing network control behavior and analyzing security situation.

  10. A Wavelet Neural Network Optimal Control Model for Traffic-Flow Prediction in Intelligent Transport Systems

    Science.gov (United States)

    Huang, Darong; Bai, Xing-Rong

    Based on wavelet transform and neural network theory, a traffic-flow prediction model, which was used in optimal control of Intelligent Traffic system, is constructed. First of all, we have extracted the scale coefficient and wavelet coefficient from the online measured raw data of traffic flow via wavelet transform; Secondly, an Artificial Neural Network model of Traffic-flow Prediction was constructed and trained using the coefficient sequences as inputs and raw data as outputs; Simultaneous, we have designed the running principium of the optimal control system of traffic-flow Forecasting model, the network topological structure and the data transmitted model; Finally, a simulated example has shown that the technique is effectively and exactly. The theoretical results indicated that the wavelet neural network prediction model and algorithms have a broad prospect for practical application.

  11. Modeling Network Traffic in Wavelet Domain

    Directory of Open Access Journals (Sweden)

    Sheng Ma

    2004-12-01

    Full Text Available This work discovers that although network traffic has the complicated short- and long-range temporal dependence, the corresponding wavelet coefficients are no longer long-range dependent. Therefore, a "short-range" dependent process can be used to model network traffic in the wavelet domain. Both independent and Markov models are investigated. Theoretical analysis shows that the independent wavelet model is sufficiently accurate in terms of the buffer overflow probability for Fractional Gaussian Noise traffic. Any model, which captures additional correlations in the wavelet domain, only improves the performance marginally. The independent wavelet model is then used as a unified approach to model network traffic including VBR MPEG video and Ethernet data. The computational complexity is O(N for developing such wavelet models and generating synthesized traffic of length N, which is among the lowest attained.

  12. TRAFFIC SIMULATION FOR MIXED TRAFFIC SYSTEMS

    African Journals Online (AJOL)

    EGETE

    2012-05-04

    May 4, 2012 ... Traffic problem is classified into single and mixed, especially in most developing countries, where motorbikes are ..... The traffic light control system presented by its location on ... multi-destination dynamic routing and real-time.

  13. Controlling Air Traffic (Simulated) in the Presence of Automation (CATS PAu) 1995: A Study of Measurement Techniques for Situation Awareness in Air Traffic Control

    Science.gov (United States)

    French, Jennifer R.

    1995-01-01

    As automated systems proliferate in aviation systems, human operators are taking on less and less of an active role in the jobs they once performed, often reducing what should be important jobs to tasks barely more complex than monitoring machines. When operators are forced into these roles, they risk slipping into hazardous states of awareness, which can lead to reduced skills, lack of vigilance, and the inability to react quickly and competently when there is a machine failure. Using Air Traffic Control (ATC) as a model, the present study developed tools for conducting tests focusing on levels of automation as they relate to situation awareness. Subjects participated in a two-and-a-half hour experiment that consisted of a training period followed by a simulation of air traffic control similar to the system presently used by the FAA, then an additional simulation employing automated assistance. Through an iterative design process utilizing numerous revisions and three experimental sessions, several measures for situational awareness in a simulated Air Traffic Control System were developed and are prepared for use in future experiments.

  14. Comparision by Simulation of Different Approaches to the Urban Traffic Control

    Czech Academy of Sciences Publication Activity Database

    Přikryl, Jan; Tichý, T.; Bělinová, Z.; Kapitán, J.

    2012-01-01

    Roč. 5, č. 4 (2012), s. 26-30 ISSN 1899-8208 R&D Projects: GA TA ČR TA01030603 Institutional support: RVO:67985556 Keywords : traffic * ITS * telematics * urban traffic control Subject RIV: BC - Control Systems Theory http://library.utia.cas.cz/separaty/2012/AS/prikryl-comparision by simulation of different approaches to the urban traffic control.pdf

  15. Identifying traffic accident black spots with Poisson-Tweedie models

    DEFF Research Database (Denmark)

    Debrabant, Birgit; Halekoh, Ulrich; Bonat, Wagner Hugo

    2018-01-01

    This paper aims at the identification of black spots for traffic accidents, i.e. locations with accident counts beyond what is usual for similar locations, using spatially and temporally aggregated hospital records from Funen, Denmark. Specifically, we apply an autoregressive Poisson-Tweedie model...... considered calendar years and calculated by simulations a probability of p=0.03 for these to be chance findings. Altogether, our results recommend these sites for further investigation and suggest that our simple approach could play a role in future area based traffic accident prevention planning....

  16. An extended car-following model considering the acceleration derivative in some typical traffic environments

    Science.gov (United States)

    Zhou, Tong; Chen, Dong; Liu, Weining

    2018-03-01

    Based on the full velocity difference and acceleration car-following model, an extended car-following model is proposed by considering the vehicle’s acceleration derivative. The stability condition is given by applying the control theory. Considering some typical traffic environments, the results of theoretical analysis and numerical simulation show the extended model has a more actual acceleration of string vehicles than that of the previous models in starting process, stopping process and sudden brake. Meanwhile, the traffic jams more easily occur when the coefficient of vehicle’s acceleration derivative increases, which is presented by space-time evolution. The results confirm that the vehicle’s acceleration derivative plays an important role in the traffic jamming transition and the evolution of traffic congestion.

  17. Density waves in a lattice hydrodynamic traffic flow model with the anticipation effect

    International Nuclear Information System (INIS)

    Zhao Min; Sun Di-Hua; Tian Chuan

    2012-01-01

    By introducing the traffic anticipation effect in the real world into the original lattice hydrodynamic model, we present a new anticipation effect lattice hydrodynamic (AELH) model, and obtain the linear stability condition of the model by applying the linear stability theory. Through nonlinear analysis, we derive the Burgers equation and Korteweg-de Vries (KdV) equation, to describe the propagating behaviour of traffic density waves in the stable and the metastable regions, respectively. The good agreement between simulation results and analytical results shows that the stability of traffic flow can be enhanced when the anticipation effect is considered. (interdisciplinary physics and related areas of science and technology)

  18. Heterogeneous traffic flow modelling using second-order macroscopic continuum model

    Science.gov (United States)

    Mohan, Ranju; Ramadurai, Gitakrishnan

    2017-01-01

    Modelling heterogeneous traffic flow lacking in lane discipline is one of the emerging research areas in the past few years. The two main challenges in modelling are: capturing the effect of varying size of vehicles, and the lack in lane discipline, both of which together lead to the 'gap filling' behaviour of vehicles. The same section length of the road can be occupied by different types of vehicles at the same time, and the conventional measure of traffic concentration, density (vehicles per lane per unit length), is not a good measure for heterogeneous traffic modelling. First aim of this paper is to have a parsimonious model of heterogeneous traffic that can capture the unique phenomena of gap filling. Second aim is to emphasize the suitability of higher-order models for modelling heterogeneous traffic. Third, the paper aims to suggest area occupancy as concentration measure of heterogeneous traffic lacking in lane discipline. The above mentioned two main challenges of heterogeneous traffic flow are addressed by extending an existing second-order continuum model of traffic flow, using area occupancy for traffic concentration instead of density. The extended model is calibrated and validated with field data from an arterial road in Chennai city, and the results are compared with those from few existing generalized multi-class models.

  19. Urban traffic simulated from the dual representation: Flow, crisis and congestion

    International Nuclear Information System (INIS)

    Hu Maobin; Jiang Rui; Wang Ruili; Wu Qingsong

    2009-01-01

    We propose a traffic simulation model for urban system based on the dual graph representation of a urban road network and with a random entering vehicle rate. To avoid the shortcoming of 'Space Syntax' of ignoring the road's metric distance, we consider both the motion of the vehicles along roads and the navigation of the vehicles in the network. Simulations have shown some basic properties of urban traffic system, such as flux fluctuation, crisis and dissipation, phase transition from a free flow to jams, overall capacity, the distribution of traveling time, and the fundamental diagram. The system's behavior greatly depends on the topology of the transportation network. A well-planned lattice grid can keep more vehicles travelling. The critical entering vehicle rate is much greater in lattice grid than in a self-organized network. The vehicles have to travel longer time in a self-organized urban system due to the navigation cost.

  20. Designing Scenarios for Controller-in-the-Loop Air Traffic Simulations

    Science.gov (United States)

    Kupfer, Michael; Mercer, Joey; Cabrall, Chris; Homola, Jeff; Callantine, Todd

    2013-01-01

    Within the Human Factors Division at NASA Ames Research Center the Airspace Operations Laboratory (AOL) is developing advanced automation concepts that help to transform the National Airspace System into NextGen, the Next Generation Air Transportation System. High-fidelity human-in-the-loop (HITL) simulations are used as a means to investigate and develop roles, responsibilities, support tools, and requirements for human operators and automation. This paper describes the traffic scenario design process and strategies as used by AOL researchers. Details are presented on building scenarios for specific simulation objectives using various design strategies. A focus is set on creating scenarios based on recorded real world traffic for terminal-area simulations.

  1. Analysis of mixed traffic flow with human-driving and autonomous cars based on car-following model

    Science.gov (United States)

    Zhu, Wen-Xing; Zhang, H. M.

    2018-04-01

    We investigated the mixed traffic flow with human-driving and autonomous cars. A new mathematical model with adjustable sensitivity and smooth factor was proposed to describe the autonomous car's moving behavior in which smooth factor is used to balance the front and back headway in a flow. A lemma and a theorem were proved to support the stability criteria in traffic flow. A series of simulations were carried out to analyze the mixed traffic flow. The fundamental diagrams were obtained from the numerical simulation results. The varying sensitivity and smooth factor of autonomous cars affect traffic flux, which exhibits opposite varying tendency with increasing parameters before and after the critical density. Moreover, the sensitivity of sensors and smooth factors play an important role in stabilizing the mixed traffic flow and suppressing the traffic jam.

  2. A new lattice hydrodynamic traffic flow model with a consideration of multi-anticipation effect

    International Nuclear Information System (INIS)

    Tian Chuan; Sun Di-Hua; Yang Shu-Hong

    2011-01-01

    We present a new multi-anticipation lattice hydrodynamic model based on the traffic anticipation effect in the real world. Applying the linear stability theory, we obtain the linear stability condition of the model. Through nonlinear analysis, we derive the modified Korteweg-de Vries equation to describe the propagating behaviour of a traffic density wave near the critical point. The good agreement between the simulation results and the analytical results shows that the stability of traffic flow can be enhanced when the multi-anticipation effect is considered. (interdisciplinary physics and related areas of science and technology)

  3. Accounting for anthropic energy flux of traffic in winter urban road surface temperature simulations with TEB model

    Science.gov (United States)

    Khalifa, A.; Marchetti, M.; Bouilloud, L.; Martin, E.; Bues, M.; Chancibaut, K.

    2015-06-01

    A forecast of the snowfall helps winter coordination operating services, reducing the cost of the maintenance actions, and the environmental impacts caused by an inappropriate use of de-icing. In order to determine the possible accumulation of snow on pavement, the forecast of the road surface temperature (RST) is mandatory. Physical numerical models provide such forecast, and do need an accurate description of the infrastructure along with meteorological parameters. The objective of this study was to build a reliable urban RST forecast with a detailed integration of traffic in the Town Energy Balance (TEB) numerical model for winter maintenance. The study first consisted in generating a physical and consistent description of traffic in the model with all the energy interactions, with two approaches to evaluate the traffic incidence on RST. Experiments were then conducted to measure the traffic effect on RST increase with respect to non circulated areas. These field data were then used for comparison with forecast provided by this traffic-implemented TEB version.

  4. Simulation Analysis on Driving Behavior during Traffic Sign Recognition

    Directory of Open Access Journals (Sweden)

    Lishan Sun

    2011-05-01

    Full Text Available The traffic signs transfer trip information to drivers through vectors like words, graphs and numbers. Traffic sign with excessive information often makes the drivers have no time to read and understand, leading to risky driving. It is still a problem of how to clarify the relationship between traffic sign recognition and risky driving behavior. This paper presents a study that is reflective of such an effort. Twenty volunteers participated in the dynamic visual recognition experiment in driving simulator, and the data of several key indicators are obtained, including visual cognition time, vehicle acceleration and the offset distance from middle lane, etc. Correlations between each indicator above are discussed in terms of risky driving. Research findings directly show that drivers' behavior changes a lot during their traffic sign recognition.

  5. Comparison of in situ observations of air traffic emission signatures in the North Atlantic flight corridor with simulations using a Gaussian plume model

    Energy Technology Data Exchange (ETDEWEB)

    Konopka, P; Schlager, H; Schulte, P; Schumann, U; Ziereis, H [Deutsche Forschungsanstalt fuer Luft- und Raumfahrt e.V. (DLR), Oberpfaffenhofen (Germany). Inst. fuer Physik der Atmosphaere; Hagen, D; Whitefield, P [Missouri Univ., Rolla, MO (United States). Lab. for Cloud and Aerosol Science

    1998-12-31

    Focussed aircraft measurements including NO, NO{sub 2}, O{sub 3}, and aerosols (CN) have been carried out over the Eastern North Atlantic as part of the POLINAT (Pollution from Aircraft Emissions in the North Atlantic Flight Corridor) project to search for small and large scale signals of air traffic emissions in the corridor region. Here, the experimental data measured at cruising altitudes on November, 6, 1994 close to peak traffic hours are considered. Observed peak concentrations in small scale NO{sub x} spikes exceed background level of about 50 pptv by up to two orders of magnitude. The measured NO{sub x} concentration field is compared with simulations obtained with a plume dispersion model using collected air traffic data and wind measurements. Additionally, the measured and calculated NO/NO{sub x} ratios are considered. The comparison with the model shows that the observed (multiple-)peaks can be understood as a superposition of several aircraft plumes with ages up to 3 hours. (author) 12 refs.

  6. Comparison of in situ observations of air traffic emission signatures in the North Atlantic flight corridor with simulations using a Gaussian plume model

    Energy Technology Data Exchange (ETDEWEB)

    Konopka, P.; Schlager, H.; Schulte, P.; Schumann, U.; Ziereis, H. [Deutsche Forschungsanstalt fuer Luft- und Raumfahrt e.V. (DLR), Oberpfaffenhofen (Germany). Inst. fuer Physik der Atmosphaere; Hagen, D.; Whitefield, P. [Missouri Univ., Rolla, MO (United States). Lab. for Cloud and Aerosol Science

    1997-12-31

    Focussed aircraft measurements including NO, NO{sub 2}, O{sub 3}, and aerosols (CN) have been carried out over the Eastern North Atlantic as part of the POLINAT (Pollution from Aircraft Emissions in the North Atlantic Flight Corridor) project to search for small and large scale signals of air traffic emissions in the corridor region. Here, the experimental data measured at cruising altitudes on November, 6, 1994 close to peak traffic hours are considered. Observed peak concentrations in small scale NO{sub x} spikes exceed background level of about 50 pptv by up to two orders of magnitude. The measured NO{sub x} concentration field is compared with simulations obtained with a plume dispersion model using collected air traffic data and wind measurements. Additionally, the measured and calculated NO/NO{sub x} ratios are considered. The comparison with the model shows that the observed (multiple-)peaks can be understood as a superposition of several aircraft plumes with ages up to 3 hours. (author) 12 refs.

  7. Variable speed limit strategies analysis with mesoscopic traffic flow model based on complex networks

    Science.gov (United States)

    Li, Shu-Bin; Cao, Dan-Ni; Dang, Wen-Xiu; Zhang, Lin

    As a new cross-discipline, the complexity science has penetrated into every field of economy and society. With the arrival of big data, the research of the complexity science has reached its summit again. In recent years, it offers a new perspective for traffic control by using complex networks theory. The interaction course of various kinds of information in traffic system forms a huge complex system. A new mesoscopic traffic flow model is improved with variable speed limit (VSL), and the simulation process is designed, which is based on the complex networks theory combined with the proposed model. This paper studies effect of VSL on the dynamic traffic flow, and then analyzes the optimal control strategy of VSL in different network topologies. The conclusion of this research is meaningful to put forward some reasonable transportation plan and develop effective traffic management and control measures to help the department of traffic management.

  8. Model for traffic emissions estimation

    Science.gov (United States)

    Alexopoulos, A.; Assimacopoulos, D.; Mitsoulis, E.

    A model is developed for the spatial and temporal evaluation of traffic emissions in metropolitan areas based on sparse measurements. All traffic data available are fully employed and the pollutant emissions are determined with the highest precision possible. The main roads are regarded as line sources of constant traffic parameters in the time interval considered. The method is flexible and allows for the estimation of distributed small traffic sources (non-line/area sources). The emissions from the latter are assumed to be proportional to the local population density as well as to the traffic density leading to local main arteries. The contribution of moving vehicles to air pollution in the Greater Athens Area for the period 1986-1988 is analyzed using the proposed model. Emissions and other related parameters are evaluated. Emissions from area sources were found to have a noticeable share of the overall air pollution.

  9. Finite size scaling analysis on Nagel-Schreckenberg model for traffic flow

    Science.gov (United States)

    Balouchi, Ashkan; Browne, Dana

    2015-03-01

    The traffic flow problem as a many-particle non-equilibrium system has caught the interest of physicists for decades. Understanding the traffic flow properties and though obtaining the ability to control the transition from the free-flow phase to the jammed phase plays a critical role in the future world of urging self-driven cars technology. We have studied phase transitions in one-lane traffic flow through the mean velocity, distributions of car spacing, dynamic susceptibility and jam persistence -as candidates for an order parameter- using the Nagel-Schreckenberg model to simulate traffic flow. The length dependent transition has been observed for a range of maximum velocities greater than a certain value. Finite size scaling analysis indicates power-law scaling of these quantities at the onset of the jammed phase.

  10. The realistic consideration of human factors in model based simulation tools for the air traffic control domain.

    Science.gov (United States)

    Duca, Gabriella; Attaianese, Erminia

    2012-01-01

    Advanced Air Traffic Management (ATM) concepts related to automation, airspace organization and operational procedures are driven by the overall goal to increase ATM system performance. Independently on the nature and/or impact of envisaged changes (e.g. from a short term procedure adjustment to a very long term operational concept or aid tools completion), the preliminary assessment of possible gains in airspace/airport capacity, safety and cost-effectiveness is done by running Model Based Simulations (MBSs, also known as Fast Time Simulations - FTS). Being a not human-in-the-loop technique, the reliability of a MBS results depend on the accuracy and significance of modeled human factors. Despite that, it can be observed in the practice that modeling tools commonly assume a generalized standardization of human behaviors and tasks and consider a very few range of work environment factors that, in the reality, affect the actual human-system performance. The present paper is aimed at opening a discussion about the possibility to keep task description and related weight at a high/general level, suitable for an efficient use of MBSs and, at the same time, increasing simulations reliability adopting some adjustment coming from the elaboration of further variables related to the human aspects of controllers workload.

  11. Efficient graph-based dynamic load-balancing for parallel large-scale agent-based traffic simulation

    NARCIS (Netherlands)

    Xu, Y.; Cai, W.; Aydt, H.; Lees, M.; Tolk, A.; Diallo, S.Y.; Ryzhov, I.O.; Yilmaz, L.; Buckley, S.; Miller, J.A.

    2014-01-01

    One of the issues of parallelizing large-scale agent-based traffic simulations is partitioning and load-balancing. Traffic simulations are dynamic applications where the distribution of workload in the spatial domain constantly changes. Dynamic load-balancing at run-time has shown better efficiency

  12. End-to-End Traffic Flow Modeling of the Integrated SCaN Network

    Science.gov (United States)

    Cheung, K.-M.; Abraham, D. S.

    2012-05-01

    In this article, we describe the analysis and simulation effort of the end-to-end traffic flow for the Integrated Space Communications and Navigation (SCaN) Network. Using the network traffic derived for the 30-day period of July 2018 from the Space Communications Mission Model (SCMM), we generate the wide-area network (WAN) bandwidths of the ground links for different architecture options of the Integrated SCaN Network. We also develop a new analytical scheme to model the traffic flow and buffering mechanism of a store-and-forward network. It is found that the WAN bandwidth of the Integrated SCaN Network is an important differentiator of different architecture options, as the recurring circuit costs of certain architecture options can be prohibitively high.

  13. Simulation and linear stability of traffic jams; Kotsu jutai no senkei anteisei to simulation

    Energy Technology Data Exchange (ETDEWEB)

    Muramatsu, M. [Shizuoka University, Shizuoka (Japan); Nagatani, T. [Shizuoka University, Shizuoka (Japan). Faculty of Engineering

    1999-05-25

    A traffic jam induced by slowing down is investigated using simulation techniques of molecular dynamics. When cars are decelerated by the presence of hindrance, two typical traffic jams occur behind the hindrance: one is an oscillating jam and the other is a homogeneous jam. When the slowing down is small, the oscillating jam occurs. If the slowing down is large, the jam is homogeneous over space and time. Also, a backward propagating soliton-like jam is observed. The linear stability theory is applied to the traffic flow. The phase boundary between the oscillating and homogeneous jams is compared with the neutral stability line obtained by the linear stability theory. (author)

  14. Particle-based model for skiing traffic.

    Science.gov (United States)

    Holleczek, Thomas; Tröster, Gerhard

    2012-05-01

    We develop and investigate a particle-based model for ski slope traffic. Skiers are modeled as particles with a mass that are exposed to social and physical forces, which define the riding behavior of skiers during their descents on ski slopes. We also report position and speed data of 21 skiers recorded with GPS-equipped cell phones on two ski slopes. A comparison of these data with the trajectories resulting from computer simulations of our model shows a good correspondence. A study of the relationship among the density, speed, and flow of skiers reveals that congestion does not occur even with arrival rates of skiers exceeding the maximum ski lift capacity. In a sensitivity analysis, we identify the kinetic friction coefficient of skis on snow, the skier mass, the range of repelling social forces, and the arrival rate of skiers as the crucial parameters influencing the simulation results. Our model allows for the prediction of speed zones and skier densities on ski slopes, which is important in the prevention of skiing accidents.

  15. Developing a stochastic traffic volume prediction model for public-private partnership projects

    Science.gov (United States)

    Phong, Nguyen Thanh; Likhitruangsilp, Veerasak; Onishi, Masamitsu

    2017-11-01

    Transportation projects require an enormous amount of capital investment resulting from their tremendous size, complexity, and risk. Due to the limitation of public finances, the private sector is invited to participate in transportation project development. The private sector can entirely or partially invest in transportation projects in the form of Public-Private Partnership (PPP) scheme, which has been an attractive option for several developing countries, including Vietnam. There are many factors affecting the success of PPP projects. The accurate prediction of traffic volume is considered one of the key success factors of PPP transportation projects. However, only few research works investigated how to predict traffic volume over a long period of time. Moreover, conventional traffic volume forecasting methods are usually based on deterministic models which predict a single value of traffic volume but do not consider risk and uncertainty. This knowledge gap makes it difficult for concessionaires to estimate PPP transportation project revenues accurately. The objective of this paper is to develop a probabilistic traffic volume prediction model. First, traffic volumes were estimated following the Geometric Brownian Motion (GBM) process. Monte Carlo technique is then applied to simulate different scenarios. The results show that this stochastic approach can systematically analyze variations in the traffic volume and yield more reliable estimates for PPP projects.

  16. Traffic management simulation development : summary.

    Science.gov (United States)

    2011-01-01

    Increasingly, Florida traffic is monitored electronically by components of the Intelligent Traffic System (ITS), which send data to regional traffic management centers and assist management of traffic flows and incident response using software called...

  17. ATC-lab(Advanced): an air traffic control simulator with realism and control.

    Science.gov (United States)

    Fothergill, Selina; Loft, Shayne; Neal, Andrew

    2009-02-01

    ATC-lab(Advanced) is a new, publicly available air traffic control (ATC) simulation package that provides both realism and experimental control. ATC-lab(Advanced) simulations are realistic to the extent that the display features (including aircraft performance) and the manner in which participants interact with the system are similar to those used in an operational environment. Experimental control allows researchers to standardize air traffic scenarios, control levels of realism, and isolate specific ATC tasks. Importantly, ATC-lab(Advanced) also provides the programming control required to cost effectively adapt simulations to serve different research purposes without the need for technical support. In addition, ATC-lab(Advanced) includes a package for training participants and mathematical spreadsheets for designing air traffic events. Preliminary studies have demonstrated that ATC-lab(Advanced) is a flexible tool for applied and basic research.

  18. Exploiting Spatial Abstraction in Predictive Analytics of Vehicle Traffic

    Directory of Open Access Journals (Sweden)

    Natalia Andrienko

    2015-04-01

    Full Text Available By applying visual analytics techniques to vehicle traffic data, we found a way to visualize and study the relationships between the traffic intensity and movement speed on links of a spatially abstracted transportation network. We observed that the traffic intensities and speeds in an abstracted network are interrelated in the same way as they are in a detailed street network at the level of street segments. We developed interactive visual interfaces that support representing these interdependencies by mathematical models. To test the possibility of utilizing them for performing traffic simulations on the basis of abstracted transportation networks, we devised a prototypical simulation algorithm employing these dependency models. The algorithm is embedded in an interactive visual environment for defining traffic scenarios, running simulations, and exploring their results. Our research demonstrates a principal possibility of performing traffic simulations on the basis of spatially abstracted transportation networks using dependency models derived from real traffic data. This possibility needs to be comprehensively investigated and tested in collaboration with transportation domain specialists.

  19. A cellular automata model for traffic flow based on kinetics theory, vehicles capabilities and driver reactions

    Science.gov (United States)

    Guzmán, H. A.; Lárraga, M. E.; Alvarez-Icaza, L.; Carvajal, J.

    2018-02-01

    In this paper, a reliable cellular automata model oriented to faithfully reproduce deceleration and acceleration according to realistic reactions of drivers, when vehicles with different deceleration capabilities are considered is presented. The model focuses on describing complex traffic phenomena by coding in its rules the basic mechanisms of drivers behavior, vehicles capabilities and kinetics, while preserving simplicity. In particular, vehiclés kinetics is based on uniform accelerated motion, rather than in impulsive accelerated motion as in most existing CA models. Thus, the proposed model calculates in an analytic way three safe preserving distances to determine the best action a follower vehicle can take under a worst case scenario. Besides, the prediction analysis guarantees that under the proper assumptions, collision between vehicles may not happen at any future time. Simulations results indicate that all interactions of heterogeneous vehicles (i.e., car-truck, truck-car, car-car and truck-truck) are properly reproduced by the model. In addition, the model overcomes one of the major limitations of CA models for traffic modeling: the inability to perform smooth approach to slower or stopped vehicles. Moreover, the model is also capable of reproducing most empirical findings including the backward speed of the downstream front of the traffic jam, and different congested traffic patterns induced by a system with open boundary conditions with an on-ramp. Like most CA models, integer values are used to make the model run faster, which makes the proposed model suitable for real time traffic simulation of large networks.

  20. Stochastic Modeling of Traffic Air Pollution

    DEFF Research Database (Denmark)

    Thoft-Christensen, Palle

    2014-01-01

    In this paper, modeling of traffic air pollution is discussed with special reference to infrastructures. A number of subjects related to health effects of air pollution and the different types of pollutants are briefly presented. A simple model for estimating the social cost of traffic related air...... and using simple Monte Carlo techniques to obtain a stochastic estimate of the costs of traffic air pollution for infrastructures....... pollution is derived. Several authors have published papers on this very complicated subject, but no stochastic modelling procedure have obtained general acceptance. The subject is discussed basis of a deterministic model. However, it is straightforward to modify this model to include uncertain parameters...

  1. A new lattice model of traffic flow with the consideration of the driver's forecast effects

    Energy Technology Data Exchange (ETDEWEB)

    Peng, G.H., E-mail: pengguanghan@yahoo.com.cn [College of Physics and Electronic Science, Hunan University of Arts and Science, Changde 415000 (China); Cai, X.H.; Liu, C.Q.; Cao, B.F. [College of Physics and Electronic Science, Hunan University of Arts and Science, Changde 415000 (China)

    2011-05-30

    In this Letter, a new lattice model is presented with the consideration of the driver's forecast effects (DFE). The linear stability condition of the extended model is obtained by using the linear stability theory. The analytical results show that the new model can improve the stability of traffic flow by considering DFE. The modified KdV equation near the critical point is derived to describe the traffic jam by nonlinear analysis. Numerical simulation also shows that the new model can improve the stability of traffic flow by adjusting the driver's forecast intensity parameter, which is consistent with the theoretical analysis. -- Highlights: → A new driver's forecast lattice model of traffic flow has been presented. → The driver's forecast effects on the stability of traffic flow have been explored. → The modified KdV equation near the critical point is derived to describe the traffic jam by nonlinear analysis. → The analytical and numerical results show that the driver's forecast effect can improve the stability of traffic flow.

  2. Development and Validation in Air Traffic Control by Means of Real-Time Simulations

    Directory of Open Access Journals (Sweden)

    Stephan Herr

    2009-02-01

    Full Text Available The airspace in Central Europe is already one of the busiest airspaces in the world and the forecasts predict further traffic increases. The current air transport system is reaching its capacity limits, not only at airports but also in parts of the en-route area. This is mainly due to the workload constraints of air traffic controllers. In the past, many technical system functionalities were developed with the aim of reducing controller workload and thus enabling the safe handling of the predicted traffic growth. But these new functionalities alone will not provide adequate relief to air traffic controllers. Their working procedures and the airspace structure will have to be adapted accordingly. In order to obtain real operational benefits, these technical innovations must be integrated into an overall concept which – in addition to the above-mentioned factors – also takes account of ergonomic aspects and human-machine interfaces. When developing such an overall concept, additional evaluation and validation measures are indispensable to ensure that the desired operational benefits are achieved. This is why DFS has for many years used fast- and real-time simulations to assess and optimise any changes to be made to the air traffic control system. The working methods of DFS in this context are in keeping with the European Operational Concept Validation Methodology of 2007, in short E-OCVM. This paper outlines the development and validation activities of DFS using the MSP D/L project as an example. The project deals with the introduction of the new role of air traffic controllers as multi-sector planners (MSP and new system functionalities, such as air/ground data link (D/L. The project included the development of an operational concept for using the new functionalities as well as for defining working procedures and the airspace structure. This concept was subsequently evaluated by means of a fast-time simulation and two real-time simulations

  3. Modeling the heterogeneous traffic correlations in urban road systems using traffic-enhanced community detection approach

    Science.gov (United States)

    Lu, Feng; Liu, Kang; Duan, Yingying; Cheng, Shifen; Du, Fei

    2018-07-01

    A better characterization of the traffic influence among urban roads is crucial for traffic control and traffic forecasting. The existence of spatial heterogeneity imposes great influence on modeling the extent and degree of road traffic correlation, which is usually neglected by the traditional distance based method. In this paper, we propose a traffic-enhanced community detection approach to spatially reveal the traffic correlation in city road networks. First, the road network is modeled as a traffic-enhanced dual graph with the closeness between two road segments determined not only by their topological connection, but also by the traffic correlation between them. Then a flow-based community detection algorithm called Infomap is utilized to identify the road segment clusters. Evaluated by Moran's I, Calinski-Harabaz Index and the traffic interpolation application, we find that compared to the distance based method and the community based method, our proposed traffic-enhanced community based method behaves better in capturing the extent of traffic relevance as both the topological structure of the road network and the traffic correlations among urban roads are considered. It can be used in more traffic-related applications, such as traffic forecasting, traffic control and guidance.

  4. Improving Precision and Reducing Runtime of Microscopic Traffic Simulators through Stratified Sampling

    Directory of Open Access Journals (Sweden)

    Khewal Bhupendra Kesur

    2013-01-01

    Full Text Available This paper examines the application of Latin Hypercube Sampling (LHS and Antithetic Variables (AVs to reduce the variance of estimated performance measures from microscopic traffic simulators. LHS and AV allow for a more representative coverage of input probability distributions through stratification, reducing the standard error of simulation outputs. Two methods of implementation are examined, one where stratification is applied to headways and routing decisions of individual vehicles and another where vehicle counts and entry times are more evenly sampled. The proposed methods have wider applicability in general queuing systems. LHS is found to outperform AV, and reductions of up to 71% in the standard error of estimates of traffic network performance relative to independent sampling are obtained. LHS allows for a reduction in the execution time of computationally expensive microscopic traffic simulators as fewer simulations are required to achieve a fixed level of precision with reductions of up to 84% in computing time noted on the test cases considered. The benefits of LHS are amplified for more congested networks and as the required level of precision increases.

  5. Simulating the impacts of on-street vehicle parking on traffic operations on urban streets using cellular automation

    Science.gov (United States)

    Chen, Jingxu; Li, Zhibin; Jiang, Hang; Zhu, Senlai; Wang, Wei

    2017-02-01

    In recent years, many bicycle lanes on urban streets are replaced with vehicle parking places. Spaces for bicycle riding are reduced, resulting in changes in bicycle and vehicle operational features. The objective of this study is to estimate the impacts of on-street parking on heterogeneous traffic operation on urban streets. A cellular automaton (CA) model is developed and calibrated to simulate bicycle lane-changing on streets with on-street parking. Two types of street segments with different bicycle lane width are considered. From the simulation, two types of conflicts between bicycles and vehicles are identified which are frictional conflicts and blocking conflicts. Factors affecting the frequency of conflicts are also identified. Based on the results, vehicle delay is estimated for various traffic situations considering the range of occupancy levels for on-street parking. Later, a numerical network example is analyzed to estimate the network impact of on-street parking on traffic assignment and operation. Findings of the study are helpful to policies and design regarding on-street vehicle parking to improve the efficiency of traffic operations.

  6. TRACC_PB SOSS Integrated Traffic Simulation for CLT Ramp Operation

    Science.gov (United States)

    Okuniek, Nikolai; Zhu, Zhifan

    2017-01-01

    This presentation provides the current task under the NASA-DLR research collaboration for airport surface. It presents the effort done to adapt TRACC and SOSS software components to simulate airport (CLT) ramp area traffic management using TRACC's conflict free taxi trajectory optimization and SOSS's fast time simulation platform.

  7. Accounting for anthropic energy flux of traffic in winter urban road surface temperature simulations with the TEB model

    Science.gov (United States)

    Khalifa, A.; Marchetti, M.; Bouilloud, L.; Martin, E.; Bues, M.; Chancibaut, K.

    2016-02-01

    Snowfall forecasts help winter maintenance of road networks, ensure better coordination between services, cost control, and a reduction in environmental impacts caused by an inappropriate use of de-icers. In order to determine the possible accumulation of snow on pavements, forecasting the road surface temperature (RST) is mandatory. Weather outstations are used along these networks to identify changes in pavement status, and to make forecasts by analyzing the data they provide. Physical numerical models provide such forecasts, and require an accurate description of the infrastructure along with meteorological parameters. The objective of this study was to build a reliable urban RST forecast with a detailed integration of traffic in the Town Energy Balance (TEB) numerical model for winter maintenance. The study first consisted in generating a physical and consistent description of traffic in the model with two approaches to evaluate traffic incidence on RST. Experiments were then conducted to measure the effect of traffic on RST increase with respect to non-circulated areas. These field data were then used for comparison with the forecast provided by this traffic-implemented TEB version.

  8. Monitoring road traffic congestion using a macroscopic traffic model and a statistical monitoring scheme

    KAUST Repository

    Zeroual, Abdelhafid; Harrou, Fouzi; Sun, Ying; Messai, Nadhir

    2017-01-01

    Monitoring vehicle traffic flow plays a central role in enhancing traffic management, transportation safety and cost savings. In this paper, we propose an innovative approach for detection of traffic congestion. Specifically, we combine the flexibility and simplicity of a piecewise switched linear (PWSL) macroscopic traffic model and the greater capacity of the exponentially-weighted moving average (EWMA) monitoring chart. Macroscopic models, which have few, easily calibrated parameters, are employed to describe a free traffic flow at the macroscopic level. Then, we apply the EWMA monitoring chart to the uncorrelated residuals obtained from the constructed PWSL model to detect congested situations. In this strategy, wavelet-based multiscale filtering of data has been used before the application of the EWMA scheme to improve further the robustness of this method to measurement noise and reduce the false alarms due to modeling errors. The performance of the PWSL-EWMA approach is successfully tested on traffic data from the three lane highway portion of the Interstate 210 (I-210) highway of the west of California and the four lane highway portion of the State Route 60 (SR60) highway from the east of California, provided by the Caltrans Performance Measurement System (PeMS). Results show the ability of the PWSL-EWMA approach to monitor vehicle traffic, confirming the promising application of this statistical tool to the supervision of traffic flow congestion.

  9. Monitoring road traffic congestion using a macroscopic traffic model and a statistical monitoring scheme

    KAUST Repository

    Zeroual, Abdelhafid

    2017-08-19

    Monitoring vehicle traffic flow plays a central role in enhancing traffic management, transportation safety and cost savings. In this paper, we propose an innovative approach for detection of traffic congestion. Specifically, we combine the flexibility and simplicity of a piecewise switched linear (PWSL) macroscopic traffic model and the greater capacity of the exponentially-weighted moving average (EWMA) monitoring chart. Macroscopic models, which have few, easily calibrated parameters, are employed to describe a free traffic flow at the macroscopic level. Then, we apply the EWMA monitoring chart to the uncorrelated residuals obtained from the constructed PWSL model to detect congested situations. In this strategy, wavelet-based multiscale filtering of data has been used before the application of the EWMA scheme to improve further the robustness of this method to measurement noise and reduce the false alarms due to modeling errors. The performance of the PWSL-EWMA approach is successfully tested on traffic data from the three lane highway portion of the Interstate 210 (I-210) highway of the west of California and the four lane highway portion of the State Route 60 (SR60) highway from the east of California, provided by the Caltrans Performance Measurement System (PeMS). Results show the ability of the PWSL-EWMA approach to monitor vehicle traffic, confirming the promising application of this statistical tool to the supervision of traffic flow congestion.

  10. Indirect Damage of Urban Flooding: Investigation of Flood-Induced Traffic Congestion Using Dynamic Modeling

    Directory of Open Access Journals (Sweden)

    Jingxuan Zhu

    2018-05-01

    Full Text Available In many countries, industrialization has led to rapid urbanization. Increased frequency of urban flooding is one consequence of the expansion of urban areas which can seriously affect the productivity and livelihoods of urban residents. Therefore, it is of vital importance to study the effects of rainfall and urban flooding on traffic congestion and driver behavior. In this study, a comprehensive method to analyze the influence of urban flooding on traffic congestion was developed. First, a flood simulation was conducted to predict the spatiotemporal distribution of flooding based on Storm Water Management Model (SWMM and TELAMAC-2D. Second, an agent-based model (ABM was used to simulate driver behavior during a period of urban flooding, and a car-following model was established. Finally, in order to study the mechanisms behind how urban flooding affects traffic congestion, the impact of flooding on urban traffic was investigated based on a case study of the urban area of Lishui, China, covering an area of 4.4 km2. It was found that for most events, two-hour rainfall has a certain impact on traffic congestion over a five-hour period, with the greatest impact during the hour following the cessation of the rain. Furthermore, the effects of rainfall with 10- and 20-year return periods were found to be similar and small, whereas the effects with a 50-year return period were obvious. Based on a combined analysis of hydrology and transportation, the proposed methods and conclusions could help to reduce traffic congestion during flood seasons, to facilitate early warning and risk management of urban flooding, and to assist users in making informed decisions regarding travel.

  11. Characterization and Modeling of Network Traffic

    DEFF Research Database (Denmark)

    Shawky, Ahmed; Bergheim, Hans; Ragnarsson, Olafur

    2011-01-01

    -arrival time, IP addresses, port numbers and transport protocol are the only necessary parameters to model network traffic behaviour. In order to recreate this behaviour, a complex model is needed which is able to recreate traffic behaviour based on a set of statistics calculated from the parameters values...

  12. Use of agent based simulation for traffic safety assessment

    CSIR Research Space (South Africa)

    Conradie, Dirk CU

    2008-07-01

    Full Text Available This paper describes the development of an agent based Computational Building Simulation (CBS) tool, termed KRONOS that is being used to work on advanced research questions such as traffic safety assessment and user behaviour in buildings...

  13. Air Traffic Management Research at NASA Ames

    Science.gov (United States)

    Davis, Thomas J.

    2012-01-01

    The Aviation Systems Division at the NASA Ames Research Center conducts leading edge research in air traffic management concepts and technologies. This overview will present concepts and simulation results for research in traffic flow management, safe and efficient airport surface operations, super density terminal area operations, separation assurance and system wide modeling and simulation. A brief review of the ongoing air traffic management technology demonstration (ATD-1) will also be presented. A panel discussion, with Mr. Davis serving as a panelist, on air traffic research will follow the briefing.

  14. Forecasting Multivariate Road Traffic Flows Using Bayesian Dynamic Graphical Models, Splines and Other Traffic Variables

    NARCIS (Netherlands)

    Anacleto, Osvaldo; Queen, Catriona; Albers, Casper J.

    Traffic flow data are routinely collected for many networks worldwide. These invariably large data sets can be used as part of a traffic management system, for which good traffic flow forecasting models are crucial. The linear multiregression dynamic model (LMDM) has been shown to be promising for

  15. Optimal Re-Routes and Ground Delays Using a Route-Based Aggregate Air Traffic Flow Model

    Science.gov (United States)

    Soler, Lluis

    The National Airspace System (NAS) is very complex and with a high level of uncertainty. For this reason, developing an automated conflict resolution tool at NAS level is presented as a big challenge. One way to address the problem is by using aggregate models, which can significantly reduce its dimension and complexity. Significant effort has been made to develop an air traffic aggregate model capable to effectively state and solve the problem. In this study, a Route-Based Aggregate Model is developed and tested. It consists in a modification of several existing models and overcomes some issues identified in previous aggregate models. It allows the implementation of Traffic Flow Management conventional controls, such as ground delay and rerouting. These control strategies can be used to avoid congestion conflicts based on sectors and airports capacity as well as regions affected by convective weather. The optimization problem is posed as a Linear Programming routine, which guarantees an optimal solution that minimizes the total accumulated delay required to avoid such capacity conflicts. The solutions can be directly translated into specific instructions at aircraft level, via modification of the times of departure and flight plans. The model is integrated with Future Air Traffic Management Concepts Evaluation Tool (FACET), a state of the art air traffic simulation tool, and uses its files as both input and output. This allows simulating in FACET the solution obtained from the aggregate domain. The approach is validated by applying it in three realistic scenarios at different scales. Results show that, for time horizons larger than 2 hours, the accuracy of the aggregate model is similar to other simulation tools. Also, the modified flight plans, the product of the disaggregated solution, reduce the number of capacity conflicts in the FACET simulation. Future research will study the robustness of these solutions and determine the most appropriate scenarios where to

  16. A spring-mass-damper system dynamics-based driver-vehicle integrated model for representing heterogeneous traffic

    Science.gov (United States)

    Munigety, Caleb Ronald

    2018-04-01

    The traditional traffic microscopic simulation models consider driver and vehicle as a single unit to represent the movements of drivers in a traffic stream. Due to this very fact, the traditional car-following models have the driver behavior related parameters, but ignore the vehicle related aspects. This approach is appropriate for homogeneous traffic conditions where car is the major vehicle type. However, in heterogeneous traffic conditions where multiple vehicle types are present, it becomes important to incorporate the vehicle related parameters exclusively to account for the varying dynamic and static characteristics. Thus, this paper presents a driver-vehicle integrated model hinged on the principles involved in physics-based spring-mass-damper mechanical system. While the spring constant represents the driver’s aggressiveness, the damping constant and the mass component take care of the stability and size/weight related aspects, respectively. The proposed model when tested, behaved pragmatically in representing the vehicle-type dependent longitudinal movements of vehicles.

  17. A prototype system for real time computer animation of slow traffic in a driving simulator

    NARCIS (Netherlands)

    Roerdink, JBTM; van Delden, MJB; Hin, AJS; van Wolffelaar, PC; Thalmann, NM; Skala,

    1997-01-01

    The Traffic Research Centre (TRC) of the University of Groningen in the Netherlands has developed a driving simulator with 'intelligent' computer-controlled traffic, consisting at the moment only of saloon cars. The range of possible applications would be greatly enhanced if other traffic

  18. Traffic and Granular Flow ’07

    CERN Document Server

    Chevoir, François; Gondret, Philippe; Lassarre, Sylvain; Lebacque, Jean-Patrick; Schreckenberg, Michael

    2009-01-01

    This book covers several research fields, all of which deal with transport. Three main topics are treated: road traffic, granular matter, and biological transport. Different points of view, i.e. modelling, simulations, experiments, and phenomenological observations, are considered. Sub-topics include: highway or urban vehicular traffic (dynamics of traffic, macro/micro modelling, measurements, data analysis, security issues, psychological issues), pedestrian traffic, animal traffic (e.g. social insects), collective motion in biological systems (molecular motors...), granular flow (dense flows, intermittent flows, solid/liquid transition, jamming, force networks, fluid and solid friction), networks (biological networks, urban traffic, the internet, vulnerability of networks, optimal transport networks) and cellular automata applied to the various aforementioned fields.

  19. Risk assessment on an Argentinean road with a dynamic traffic simulator

    Science.gov (United States)

    Voumard, Jérémie; Baumann, Valérie; Jaboyedoff, Michel; Derron, Marc-Henri; Penna, Ivanna

    2014-05-01

    The National Route 7 in Argentina is one of the most important corridors crossing the Andean Cordillera. It concentrates most of the traffic related to the Southern Common Market (MERCOSUR), it also connects Mendoza city (the fourth most populated in Argentina) with Santiago de Chile (the Chile capital city), and is used by tourists to access to the Aconcagua National park, Puente del Inca natural monument, skiing resorts, and to local displacements for the villages along the Mendoza valley. The road crosses the Andes through the Mendoza river valley at an elevation between 2'000 and 3'000 m. The traffic (2500 vehicles/day) is composed of motorcycles, cars and pickup trucks, trucks without trailer, buses, and semi-trailer trucks. Debris flows developed along tributaries of the Mendoza River, and due to remobilization of talus materials, impact frequently the road, causing traffic disruptions, bridges damages, etc. Rock falls detached from highly fractured outcrops also impact frequently the road, causing sometimes casualties. The aim of this study is to evaluate risk along sections of the National Road 7 develop along the Mendoza river, using a dynamic traffic simulator based on MATLAB© routine. The dynamic traffic simulator developed for natural hazards events on roads consider different scenarios based on traffic speeds, vehicle types, interactions types, road properties and natural processes. Here we show that vehicle types and traffic variations may influence the risk estimation. The analyzed risk on several critical sections of the National Route 7 demonstrates that risk may significantly increase: 1) on sinuous sections, steep sections and because of road conditions changes (exit of tunnel, bridges, road width, etc.) because of decreasing vehicle speed, particularly with semi-trailer trucks; 2) when an event, such a debris flow, occurs and generates a vehicle tailback increasing their duration presence in the risk area.

  20. Resilience of traffic networks: From perturbation to recovery via a dynamic restricted equilibrium model

    International Nuclear Information System (INIS)

    Nogal, Maria; O'Connor, Alan; Caulfield, Brian; Martinez-Pastor, Beatriz

    2016-01-01

    When a disruptive event takes place in a traffic network some important questions arise, such as how stressed the traffic network is, whether the system is able to respond to this stressful situation, or how long the system needs to recover a new equilibrium position after suffering this perturbation. Quantifying these aspects allows the comparison of different systems, to scale the degree of damage, to identify traffic network weaknesses, and to analyse the effect of user knowledge about the traffic network state. The indicator that accounts for performance and recovery pattern under disruptive events is known as resilience. This paper presents a methodology to assess the resilience of a traffic network when a given perturbation occurs, from the beginning of the perturbation to the total system recovery. To consider the dynamic nature of the problem, a new dynamic equilibrium-restricted assignment model is presented to simulate the network performance evolution, which takes into consideration important aspects, such as the cost increment due to the perturbation, the system impedance to alter its previous state and the user stress level. Finally, this methodology is used to evaluate the resilience indices of a real network. - Highlights: • Method to assess the resilience of a traffic network suffering progressive impacts. • It simulates the dynamic response during the perturbation and system recovery. • The resilience index is based on the travel costs and the stress level of users. • It considers the capacity of adaptation of the system to the new situations. • The model evaluates redundancy, adaptability, ability to recover, etc.

  1. A Prototype System for Real Time Computer Animation of Slow Traffic in a Driving Simulator

    NARCIS (Netherlands)

    Roerdink, Jos B.T.M.; Delden, Mattijs J.B. van; Hin, Andrea J.S.; Wolffelaar, Peter C. van

    1997-01-01

    The Traffic Research Centre (TRC) of the University of Groningen in the Netherlands has developed a driving simulator with ‘intelligent’ computer-controlled traffic, consisting at the moment only of saloon cars. The range of possible applications would be greatly enhanced if other traffic

  2. Simulation of Random Events for Air Traffic Applications

    Directory of Open Access Journals (Sweden)

    Stéphane Puechmorel

    2018-05-01

    Full Text Available Resilience to uncertainties must be ensured in air traffic management. Unexpected events can either be disruptive, like thunderstorms or the famous volcano ash cloud resulting from the Eyjafjallajökull eruption in Iceland, or simply due to imprecise measurements or incomplete knowledge of the environment. While human operators are able to cope with such situations, it is generally not the case for automated decision support tools. Important examples originate from the numerous attempts made to design algorithms able to solve conflicts between aircraft occurring during flights. The STARGATE (STochastic AppRoach for naviGATion functions in uncertain Environment project was initiated in order to study the feasibility of inherently robust automated planning algorithms that will not fail when submitted to random perturbations. A mandatory first step is the ability to simulate the usual stochastic phenomenons impairing the system: delays due to airport platforms or air traffic control (ATC and uncertainties on the wind velocity. The work presented here will detail algorithms suitable for the simulation task.

  3. A Simulation-Based Dynamic Stochastic Route Choice Model for Evacuation

    Directory of Open Access Journals (Sweden)

    Xing Zhao

    2012-01-01

    Full Text Available This paper establishes a dynamic stochastic route choice model for evacuation to simulate the propagation process of traffic flow and estimate the stochastic route choice under evacuation situations. The model contains a lane-group-based cell transmission model (CTM which sets different traffic capacities for links with different turning movements to flow out in an evacuation situation, an actual impedance model which is to obtain the impedance of each route in time units at each time interval and a stochastic route choice model according to the probit-based stochastic user equilibrium. In this model, vehicles loading at each origin at each time interval are assumed to choose an evacuation route under determinate road network, signal design, and OD demand. As a case study, the proposed model is validated on the network nearby Nanjing Olympic Center after the opening ceremony of the 10th National Games of the People's Republic of China. The traffic volumes and clearing time at five exit points of the evacuation zone are calculated by the model to compare with survey data. The results show that this model can appropriately simulate the dynamic route choice and evolution process of the traffic flow on the network in an evacuation situation.

  4. Validating the passenger traffic model for Copenhagen

    DEFF Research Database (Denmark)

    Overgård, Christian Hansen; VUK, Goran

    2006-01-01

    The paper presents a comprehensive validation procedure for the passenger traffic model for Copenhagen based on external data from the Danish national travel survey and traffic counts. The model was validated for the years 2000 to 2004, with 2004 being of particular interest because the Copenhagen...... matched the observed traffic better than those of the transit assignment model. With respect to the metro forecasts, the model over-predicts metro passenger flows by 10% to 50%. The wide range of findings from the project resulted in two actions. First, a project was started in January 2005 to upgrade...

  5. On traffic modelling in GPRS networks

    DEFF Research Database (Denmark)

    Madsen, Tatiana Kozlova; Schwefel, Hans-Peter; Prasad, Ramjee

    2005-01-01

    Optimal design and dimensioning of wireless data networks, such as GPRS, requires the knowledge of traffic characteristics of different data services. This paper presents an in-detail analysis of an IP-level traffic measurements taken in an operational GPRS network. The data measurements reported...... here are done at the Gi interface. The aim of this paper is to reveal some key statistics of GPRS data applications and to validate if the existing traffic models can adequately describe traffic volume and inter-arrival time distribution for different services. Additionally, we present a method of user...

  6. Impact of Minimum Driveway Spacing Policies on Safety Performance: An Integrated Traffic Micro-Simulation and Automated Conflict Analysis

    Directory of Open Access Journals (Sweden)

    Chu C. Minh

    2014-09-01

    Full Text Available A key strategy for successful access management is the adoption of driveway spacing guidelines that consider both safety and operations. The goal is to provide sufficient distance from one driveway to the next so that drivers can perceive and react to the conditions at each potential conflict point in succession. State DOTs across the country have adopted different driveway spacing standards that vary according to the access class and characteristics of the adjacent roadway, such as type of roadway, posted speed limit, and traffic volume. Utilizing the VISSIM microscopic traffic simulation tool and FHWA's Surrogate Safety Assessment Model (SSAM, this research examined safety implications of four different driveway spacing policies representing 13 states. The analysis involved calibrating the VISSIM model for an arterial roadway corridor in West Columbia, SC, and then using the calibrated model to simulate various operational changes to the corridor, including speed limits, traffic volumes, and the associated minimum driveway spacing criteria for the four different policies. SSAM was used to analyze vehicle trajectories derived from VISSIM to determine the number of conflict points. Experimental results indicate that posted speed limit and traffic volume are the primary impact factors for driveway safety, and thus, these parameters should be considered in establishing minimum driveway spacing. Findings from this study indicate that there are significant differences in safety impacts between the different driveway spacing policies adopted by various state DOTs.

  7. Phase II, improved work zone design guidelines and enhanced model of traffic delays in work zones : executive summary report.

    Science.gov (United States)

    2009-03-01

    This project contains three major parts. In the first part a digital computer simulation model was developed with the aim to model the traffic through a freeway work zone situation. The model was based on the Arena simulation software and used cumula...

  8. Road traffic noise: self-reported noise annoyance versus GIS modelled road traffic noise exposure.

    Science.gov (United States)

    Birk, Matthias; Ivina, Olga; von Klot, Stephanie; Babisch, Wolfgang; Heinrich, Joachim

    2011-11-01

    self-reported road traffic noise annoyance is commonly used in epidemiological studies for assessment of potential health effects. Alternatively, some studies have used geographic information system (GIS) modelled exposure to road traffic noise as an objective parameter. The aim of this study was to analyse the association between noise exposure due to neighbouring road traffic and the noise annoyance of adults, taking other determinants into consideration. parents of 951 Munich children from the two German birth cohorts GINIplus and LISAplus reported their annoyance due to road traffic noise at home. GIS modelled road traffic noise exposure (L(den), maximum within a 50 m buffer) from the noise map of the city of Munich was available for all families. GIS-based calculated distance to the closest major road (≥10,000 vehicles per day) and questionnaire based-information about family income, parental education and the type of the street of residence were explored for their potential influence. An ordered logit regression model was applied. The noise levels (L(den)) and the reported noise annoyance were compared with an established exposure-response function. the correlation between noise annoyance and noise exposure (L(den)) was fair (Spearman correlation r(s) = 0.37). The distance to a major road and the type of street were strong predictors for the noise annoyance. The annoyance modelled by the established exposure-response function and that estimated by the ordered logit model were moderately associated (Pearson's correlation r(p) = 0.50). road traffic noise annoyance was associated with GIS modelled neighbouring road traffic noise exposure (L(den)). The distance to a major road and the type of street were additional explanatory factors of the noise annoyance appraisal.

  9. Modelling traffic pollution in streets

    Energy Technology Data Exchange (ETDEWEB)

    Berkowicz, R.; Hertel, O. [National Environmental Research Inst., Dept. of Atmospheric Environment, Roskilde (Denmark); Larsen, S.E.; Soerensen, N.N.; Nielsen, M. [Risoe National Lab., Dept. of Meteorology and Wind Energy, Roskilde (Denmark)

    1997-01-01

    This report concerns mainly the subject related to modelling air pollution from traffic in urban streets. A short overview is presented over the theoretical aspects and examples of most commonly used methods and models are given. Flow and dispersion conditions in street canyons are discussed and the presentation is substantiated with the analysis of the experimental data. The main emphasis is on the modelling methods that are suitable for routine applications and a more detailed presentation is given of the Operational Street Pollution Model (OSPM), which was developed by the National Environmental Research Institute. The model is used for surveillance of air pollution from traffic in Danish cities and also for special air pollution studies. (au) 76 refs.

  10. A Novel Through Capacity Model for One-way Channel Based on Characteristics of the Vessel Traffic Flow

    Directory of Open Access Journals (Sweden)

    Yuanyuan Nie

    2017-09-01

    Full Text Available Vessel traffic flow is a key parameter for channel-through capacity and is of great significance to vessel traffic management, channel and port design and navigational risk evaluation. Based on the study of parameters of characteristics of vessel traffic flow related to channel-through capacity, this paper puts forward a brand-new mathematical model for one-way channel-through capacity in which parameters of channel length, vessel arrival rate and velocity difference in different vessels are involved and a theoretical calculating mechanism for the channel-through capacity is provided. In order to verify availability and reliability of the model, extensive simulation studies have been carried out and based on the historical AIS data, an analytical case study on the Xiazhimen Channel validating the proposed model is presented. Both simulation studies and the case study show that the proposed model is valid and all relative parameters can be readjusted and optimized to further improve the channel-through capacity. Thus, all studies demonstrate that the model is valuable for channel design and vessel management.

  11. Bayesian Data Assimilation for Improved Modeling of Road Traffic

    NARCIS (Netherlands)

    Van Hinsbergen, C.P.Y.

    2010-01-01

    This thesis deals with the optimal use of existing models that predict certain phenomena of the road traffic system. Such models are extensively used in Advanced Traffic Information Systems (ATIS), Dynamic Traffic Management (DTM) or Model Predictive Control (MPC) approaches in order to improve the

  12. Marine traffic model based on cellular automaton: Considering the change of the ship's velocity under the influence of the weather and sea

    Science.gov (United States)

    Qi, Le; Zheng, Zhongyi; Gang, Longhui

    2017-10-01

    It was found that the ships' velocity change, which is impacted by the weather and sea, e.g., wind, sea wave, sea current, tide, etc., is significant and must be considered in the marine traffic model. Therefore, a new marine traffic model based on cellular automaton (CA) was proposed in this paper. The characteristics of the ship's velocity change are taken into account in the model. First, the acceleration of a ship was divided into two components: regular component and random component. Second, the mathematical functions and statistical distribution parameters of the two components were confirmed by spectral analysis, curve fitting and auto-correlation analysis methods. Third, by combining the two components, the acceleration was regenerated in the update rules for ships' movement. To test the performance of the model, the ship traffic flows in the Dover Strait, the Changshan Channel and the Qiongzhou Strait were studied and simulated. The results show that the characteristics of ships' velocities in the simulations are consistent with the measured data by Automatic Identification System (AIS). Although the characteristics of the traffic flow in different areas are different, the velocities of ships can be simulated correctly. It proves that the velocities of ships under the influence of weather and sea can be simulated successfully using the proposed model.

  13. In-Trail Procedure Air Traffic Control Procedures Validation Simulation Study

    Science.gov (United States)

    Chartrand, Ryan C.; Hewitt, Katrin P.; Sweeney, Peter B.; Graff, Thomas J.; Jones, Kenneth M.

    2012-01-01

    In August 2007, Airservices Australia (Airservices) and the United States National Aeronautics and Space Administration (NASA) conducted a validation experiment of the air traffic control (ATC) procedures associated with the Automatic Dependant Surveillance-Broadcast (ADS-B) In-Trail Procedure (ITP). ITP is an Airborne Traffic Situation Awareness (ATSA) application designed for near-term use in procedural airspace in which ADS-B data are used to facilitate climb and descent maneuvers. NASA and Airservices conducted the experiment in Airservices simulator in Melbourne, Australia. Twelve current operational air traffic controllers participated in the experiment, which identified aspects of the ITP that could be improved (mainly in the communication and controller approval process). Results showed that controllers viewed the ITP as valid and acceptable. This paper describes the experiment design and results.

  14. The Stability of Multi-modal Traffic Network

    International Nuclear Information System (INIS)

    Han Linghui; Sun Huijun; Zhu Chengjuan; Jia Bin; Wu Jianjun

    2013-01-01

    There is an explicit and implicit assumption in multimodal traffic equilibrium models, that is, if the equilibrium exists, then it will also occur. The assumption is very idealized; in fact, it may be shown that the quite contrary could happen, because in multimodal traffic network, especially in mixed traffic conditions the interaction among traffic modes is asymmetric and the asymmetric interaction may result in the instability of traffic system. In this paper, to study the stability of multimodal traffic system, we respectively present the travel cost function in mixed traffic conditions and in traffic network with dedicated bus lanes. Based on a day-to-day dynamical model, we study the evolution of daily route choice of travelers in multimodal traffic network using 10000 random initial values for different cases. From the results of simulation, it can be concluded that the asymmetric interaction between the cars and buses in mixed traffic conditions can lead the traffic system to instability when traffic demand is larger. We also study the effect of travelers' perception error on the stability of multimodal traffic network. Although the larger perception error can alleviate the effect of interaction between cars and buses and improve the stability of traffic system in mixed traffic conditions, the traffic system also become instable when the traffic demand is larger than a number. For all cases simulated in this study, with the same parameters, traffic system with dedicated bus lane has better stability for traffic demand than that in mixed traffic conditions. We also find that the network with dedicated bus lane has higher portion of travelers by bus than it of mixed traffic network. So it can be concluded that building dedicated bus lane can improve the stability of traffic system and attract more travelers to choose bus reducing the traffic congestion. (general)

  15. Integration of Weather Avoidance and Traffic Separation

    Science.gov (United States)

    Consiglio, Maria C.; Chamberlain, James P.; Wilson, Sara R.

    2011-01-01

    This paper describes a dynamic convective weather avoidance concept that compensates for weather motion uncertainties; the integration of this weather avoidance concept into a prototype 4-D trajectory-based Airborne Separation Assurance System (ASAS) application; and test results from a batch (non-piloted) simulation of the integrated application with high traffic densities and a dynamic convective weather model. The weather model can simulate a number of pseudo-random hazardous weather patterns, such as slow- or fast-moving cells and opening or closing weather gaps, and also allows for modeling of onboard weather radar limitations in range and azimuth. The weather avoidance concept employs nested "core" and "avoid" polygons around convective weather cells, and the simulations assess the effectiveness of various avoid polygon sizes in the presence of different weather patterns, using traffic scenarios representing approximately two times the current traffic density in en-route airspace. Results from the simulation experiment show that the weather avoidance concept is effective over a wide range of weather patterns and cell speeds. Avoid polygons that are only 2-3 miles larger than their core polygons are sufficient to account for weather uncertainties in almost all cases, and traffic separation performance does not appear to degrade with the addition of weather polygon avoidance. Additional "lessons learned" from the batch simulation study are discussed in the paper, along with insights for improving the weather avoidance concept. Introduction

  16. Modelling NOX concentrations through CFD-RANS in an urban hot-spot using high resolution traffic emissions and meteorology from a mesoscale model

    Science.gov (United States)

    Sanchez, Beatriz; Santiago, Jose Luis; Martilli, Alberto; Martin, Fernando; Borge, Rafael; Quaassdorff, Christina; de la Paz, David

    2017-08-01

    Air quality management requires more detailed studies about air pollution at urban and local scale over long periods of time. This work focuses on obtaining the spatial distribution of NOx concentration averaged over several days in a heavily trafficked urban area in Madrid (Spain) using a computational fluid dynamics (CFD) model. A methodology based on weighted average of CFD simulations is applied computing the time evolution of NOx dispersion as a sequence of steady-state scenarios taking into account the actual atmospheric conditions. The inputs of emissions are estimated from the traffic emission model and the meteorological information used is derived from a mesoscale model. Finally, the computed concentration map correlates well with 72 passive samplers deployed in the research area. This work reveals the potential of using urban mesoscale simulations together with detailed traffic emissions so as to provide accurate maps of pollutant concentration at microscale using CFD simulations.

  17. Cellular Automata Models of Traffic Behavior in Presence of Speed Breaking Structures

    International Nuclear Information System (INIS)

    Ramachandran, Parthasarathy

    2009-01-01

    In this article, we study traffic flow in the presence of speed breaking structures. The speed breakers are typically used to reduce the local speed of vehicles near certain institutions such as schools and hospitals. Through a cellular automata model we study the impact of such structures on global traffic characteristics. The simulation results indicate that the presence of speed breakers could reduce the global flow under moderate global densities. However, under low and high global density traffic regime the presence of speed breakers does not have an impact on the global flow. Further the speed limit enforced by the speed breaker creates a phase distinction. For a given global density and slowdown probability, as the speed limit enforced by the speed breaker increases, the traffic moves from the reduced flow phase to maximum flow phase. This underlines the importance of proper design of these structures to avoid undesired flow restrictions. (general)

  18. An extended car-following model to describe connected traffic dynamics under cyberattacks

    Science.gov (United States)

    Wang, Pengcheng; Yu, Guizhen; Wu, Xinkai; Qin, Hongmao; Wang, Yunpeng

    2018-04-01

    In this paper, the impacts of the potential cyberattacks on vehicles are modeled through an extended car-following model. To better understand the mechanism of traffic disturbance under cyberattacks, the linear and nonlinear stability analysis are conducted respectively. Particularly, linear stability analysis is performed to obtain different neutral stability conditions with various parameters; and nonlinear stability analysis is carried out by using reductive perturbation method to derive the soliton solution of the modified Korteweg de Vries equation (mKdV) near the critical point, which is used to draw coexisting stability lines. Furthermore, by applying linear and nonlinear stability analysis, traffic flow state can be divided into three states, i.e., stable, metastable and unstable states which are useful to describe shockwave dynamics and driving behaviors under cyberattacks. The theoretical results show that the proposed car-following model is capable of successfully describing the car-following behavior of connected vehicles with cyberattacks. Finally, numerical simulation using real values has confirmed the validity of theoretical analysis. The results further demonstrate our model can be used to help avoid collisions and relieve traffic congestion with cybersecurity threats.

  19. Phase II, improved work zone design guidelines and enhanced model of traffic delays in work zones : final report, March 2009.

    Science.gov (United States)

    2009-03-01

    This project contains three major parts. In the first part a digital computer simulation model was developed with the aim to model the traffic through a freeway work zone situation. The model was based on the Arena simulation software and used cumula...

  20. Urban scale air quality modelling using detailed traffic emissions estimates

    Science.gov (United States)

    Borrego, C.; Amorim, J. H.; Tchepel, O.; Dias, D.; Rafael, S.; Sá, E.; Pimentel, C.; Fontes, T.; Fernandes, P.; Pereira, S. R.; Bandeira, J. M.; Coelho, M. C.

    2016-04-01

    The atmospheric dispersion of NOx and PM10 was simulated with a second generation Gaussian model over a medium-size south-European city. Microscopic traffic models calibrated with GPS data were used to derive typical driving cycles for each road link, while instantaneous emissions were estimated applying a combined Vehicle Specific Power/Co-operative Programme for Monitoring and Evaluation of the Long-range Transmission of Air Pollutants in Europe (VSP/EMEP) methodology. Site-specific background concentrations were estimated using time series analysis and a low-pass filter applied to local observations. Air quality modelling results are compared against measurements at two locations for a 1 week period. 78% of the results are within a factor of two of the observations for 1-h average concentrations, increasing to 94% for daily averages. Correlation significantly improves when background is added, with an average of 0.89 for the 24 h record. The results highlight the potential of detailed traffic and instantaneous exhaust emissions estimates, together with filtered urban background, to provide accurate input data to Gaussian models applied at the urban scale.

  1. Genetics of traffic assignment models for strategic transport planning

    NARCIS (Netherlands)

    Bliemer, M.C.J.; Raadsen, M.P.H.; Brederode, L.J.N.; Bell, M.G.H.; Wismans, Luc Johannes Josephus; Smith, M.J.

    2016-01-01

    This paper presents a review and classification of traffic assignment models for strategic transport planning purposes by using concepts analogous to genetics in biology. Traffic assignment models share the same theoretical framework (DNA), but differ in capability (genes). We argue that all traffic

  2. iCrowd: agent-based behavior modeling and crowd simulator

    Science.gov (United States)

    Kountouriotis, Vassilios I.; Paterakis, Manolis; Thomopoulos, Stelios C. A.

    2016-05-01

    Initially designed in the context of the TASS (Total Airport Security System) FP-7 project, the Crowd Simulation platform developed by the Integrated Systems Lab of the Institute of Informatics and Telecommunications at N.C.S.R. Demokritos, has evolved into a complete domain-independent agent-based behavior simulator with an emphasis on crowd behavior and building evacuation simulation. Under continuous development, it reflects an effort to implement a modern, multithreaded, data-oriented simulation engine employing latest state-of-the-art programming technologies and paradigms. It is based on an extensible architecture that separates core services from the individual layers of agent behavior, offering a concrete simulation kernel designed for high-performance and stability. Its primary goal is to deliver an abstract platform to facilitate implementation of several Agent-Based Simulation solutions with applicability in several domains of knowledge, such as: (i) Crowd behavior simulation during [in/out] door evacuation. (ii) Non-Player Character AI for Game-oriented applications and Gamification activities. (iii) Vessel traffic modeling and simulation for Maritime Security and Surveillance applications. (iv) Urban and Highway Traffic and Transportation Simulations. (v) Social Behavior Simulation and Modeling.

  3. Upgrades to the Probabilistic NAS Platform Air Traffic Simulation Software

    Science.gov (United States)

    Hunter, George; Boisvert, Benjamin

    2013-01-01

    This document is the final report for the project entitled "Upgrades to the Probabilistic NAS Platform Air Traffic Simulation Software." This report consists of 17 sections which document the results of the several subtasks of this effort. The Probabilistic NAS Platform (PNP) is an air operations simulation platform developed and maintained by the Saab Sensis Corporation. The improvements made to the PNP simulation include the following: an airborne distributed separation assurance capability, a required time of arrival assignment and conformance capability, and a tactical and strategic weather avoidance capability.

  4. Development of Road Traffic Assignment and Assessment Sub-Model Applied in the Traffic Study ...

    Directory of Open Access Journals (Sweden)

    Dražen Topolnik

    2012-10-01

    Full Text Available The described sub-model is just one small segment of theTraffic Study of the City of Zagreb, in the development of whichnumerous foreign and national experts and institutions tookpart. After comprehensive collection and processing of inputdata, the traffic experts, using the software package "MVATRIPS" for the analysis and search for optimal solutions to theproblem of traffic system, provided the models of public urbantransit for the future.This paper describes the analysis and assessment of sub-models in road traffic assignment for the morning peak, afternoonpeak and average off-peak hours. The principles of assignmentprocedure have been described as well as the convergencetests. The following has been specified: the users categories,the public transit pre-load, and the passenger car unit(PC U. The key guideline in selecting the route is a generalisedformulation of costs presented in the paper. The procedures ofcalibration and the assessment of the finite model have alsobeen defined according to the screenline flows, link flows, andtravelling times. In the end, the summary is given of the basiccharacteristics of the finite travelling matrices.

  5. Physics of traffic gridlock in a city

    OpenAIRE

    Kerner, Boris S.

    2011-01-01

    Based of simulations of a stochastic three-phase traffic flow model, we reveal that at a signalized city intersection under small link inflow rates at which a vehicle queue developed during the red phase of light signal dissolves fully during the green phase, i.e., no traffic gridlock should be expected, nevertheless, traffic breakdown with the subsequent city gridlock occurs with some probability after a random time delay. This traffic breakdown is initiated by a first-order phase transition...

  6. Noise emission corrections at intersections based on microscopic traffic simulation

    NARCIS (Netherlands)

    Coensel, B.de; Vanhove, F.; Logghe, S.; Wilmink, I.; Botteldooren, D.

    2006-01-01

    One of the goals of the European IMAGINE project, is to formulate strategies to improve traffic modelling for application in noise mapping. It is well known that the specific deceleration and acceleration dynamics of traffic at junctions can influence local noise emission. However, macroscopic

  7. Hierarchical and coupling model of factors influencing vessel traffic flow.

    Science.gov (United States)

    Liu, Zhao; Liu, Jingxian; Li, Huanhuan; Li, Zongzhi; Tan, Zhirong; Liu, Ryan Wen; Liu, Yi

    2017-01-01

    Understanding the characteristics of vessel traffic flow is crucial in maintaining navigation safety, efficiency, and overall waterway transportation management. Factors influencing vessel traffic flow possess diverse features such as hierarchy, uncertainty, nonlinearity, complexity, and interdependency. To reveal the impact mechanism of the factors influencing vessel traffic flow, a hierarchical model and a coupling model are proposed in this study based on the interpretative structural modeling method. The hierarchical model explains the hierarchies and relationships of the factors using a graph. The coupling model provides a quantitative method that explores interaction effects of factors using a coupling coefficient. The coupling coefficient is obtained by determining the quantitative indicators of the factors and their weights. Thereafter, the data obtained from Port of Tianjin is used to verify the proposed coupling model. The results show that the hierarchical model of the factors influencing vessel traffic flow can explain the level, structure, and interaction effect of the factors; the coupling model is efficient in analyzing factors influencing traffic volumes. The proposed method can be used for analyzing increases in vessel traffic flow in waterway transportation system.

  8. An empirically grounded agent based model for modeling directs, conflict detection and resolution operations in air traffic management.

    Science.gov (United States)

    Bongiorno, Christian; Miccichè, Salvatore; Mantegna, Rosario N

    2017-01-01

    We present an agent based model of the Air Traffic Management socio-technical complex system aiming at modeling the interactions between aircraft and air traffic controllers at a tactical level. The core of the model is given by the conflict detection and resolution module and by the directs module. Directs are flight shortcuts that are given by air controllers to speed up the passage of an aircraft within a certain airspace and therefore to facilitate airline operations. Conflicts between flight trajectories can occur for two main reasons: either the planning of the flight trajectory was not sufficiently detailed to rule out all potential conflicts or unforeseen events during the flight require modifications of the flight plan that can conflict with other flight trajectories. Our model performs a local conflict detection and resolution procedure. Once a flight trajectory has been made conflict-free, the model searches for possible improvements of the system efficiency by issuing directs. We give an example of model calibration based on real data. We then provide an illustration of the capability of our model in generating scenario simulations able to give insights about the air traffic management system. We show that the calibrated model is able to reproduce the existence of a geographical localization of air traffic controllers' operations. Finally, we use the model to investigate the relationship between directs and conflict resolutions (i) in the presence of perfect forecast ability of controllers, and (ii) in the presence of some degree of uncertainty in flight trajectory forecast.

  9. An empirically grounded agent based model for modeling directs, conflict detection and resolution operations in air traffic management.

    Directory of Open Access Journals (Sweden)

    Christian Bongiorno

    Full Text Available We present an agent based model of the Air Traffic Management socio-technical complex system aiming at modeling the interactions between aircraft and air traffic controllers at a tactical level. The core of the model is given by the conflict detection and resolution module and by the directs module. Directs are flight shortcuts that are given by air controllers to speed up the passage of an aircraft within a certain airspace and therefore to facilitate airline operations. Conflicts between flight trajectories can occur for two main reasons: either the planning of the flight trajectory was not sufficiently detailed to rule out all potential conflicts or unforeseen events during the flight require modifications of the flight plan that can conflict with other flight trajectories. Our model performs a local conflict detection and resolution procedure. Once a flight trajectory has been made conflict-free, the model searches for possible improvements of the system efficiency by issuing directs. We give an example of model calibration based on real data. We then provide an illustration of the capability of our model in generating scenario simulations able to give insights about the air traffic management system. We show that the calibrated model is able to reproduce the existence of a geographical localization of air traffic controllers' operations. Finally, we use the model to investigate the relationship between directs and conflict resolutions (i in the presence of perfect forecast ability of controllers, and (ii in the presence of some degree of uncertainty in flight trajectory forecast.

  10. Road traffic noise prediction model for heterogeneous traffic based on ASJ-RTN Model 2008 with consideration of horn

    Science.gov (United States)

    Hustim, M.; Arifin, Z.; Aly, S. H.; Ramli, M. I.; Zakaria, R.; Liputo, A.

    2018-04-01

    This research aimed to predict the noise produced by the traffic in the road network in Makassar City using ASJ-RTN Model 2008 by calculating the horn sound. Observations were taken at 37 survey points on road side. The observations were conducted at 06.00 - 18.00 and 06.00 - 21.00 which research objects were motorcycle (MC), light vehicle (LV) and heavy vehicle (HV). The observed data were traffic volume, vehicle speed, number of horn and traffic noise using Sound Level Meter Tenmars TM-103. The research result indicates that prediction noise model by calculating the horn sound produces the average noise level value of 78.5 dB having the Pearson’s correlation and RMSE of 0.95 and 0.87. Therefore, ASJ-RTN Model 2008 prediction model by calculating the horn sound is said to be sufficiently good for predicting noise level.

  11. Traffic Flow Management Wrap-Up

    Science.gov (United States)

    Grabbe, Shon

    2011-01-01

    Traffic Flow Management involves the scheduling and routing of air traffic subject to airport and airspace capacity constraints, and the efficient use of available airspace. Significant challenges in this area include: (1) weather integration and forecasting, (2) accounting for user preferences in the Traffic Flow Management decision making process, and (3) understanding and mitigating the environmental impacts of air traffic on the environment. To address these challenges, researchers in the Traffic Flow Management area are developing modeling, simulation and optimization techniques to route and schedule air traffic flights and flows while accommodating user preferences, accounting for system uncertainties and considering the environmental impacts of aviation. This presentation will highlight some of the major challenges facing researchers in this domain, while also showcasing recent innovations designed to address these challenges.

  12. Perception and eye movements in simulated traffic situations.

    Science.gov (United States)

    Luoma, J

    1984-01-01

    In an experiment to simulate the perception task of a driver, subjects were shown uninterrupted series of colour slides of different kinds of highway scenes. The dependent variables were eye fixations, fixation times and conscious perceptions for the part of the traffic signs and roadside advertisements. Perceptions were achieved mostly as a result of fixation, but partly also by using peripheral vision. On the other hand fixation did not always cause perception. The lengthening of fixation time increased the number of correct perceptions. When the traffic sign and the roadside advertisement were in the same slide, the advertisement disturbed the perception of the sign, but in the daylight conditions this effect was not noticed as an alteration of the fixation of the sign, but as prevention of further information processing. The disturbing influence of the advertisement was increased by its bad information ergonomics which caused a long fixation time.

  13. A Wavelet Analysis-Based Dynamic Prediction Algorithm to Network Traffic

    Directory of Open Access Journals (Sweden)

    Meng Fan-Bo

    2016-01-01

    Full Text Available Network traffic is a significantly important parameter for network traffic engineering, while it holds highly dynamic nature in the network. Accordingly, it is difficult and impossible to directly predict traffic amount of end-to-end flows. This paper proposes a new prediction algorithm to network traffic using the wavelet analysis. Firstly, network traffic is converted into the time-frequency domain to capture time-frequency feature of network traffic. Secondly, in different frequency components, we model network traffic in the time-frequency domain. Finally, we build the prediction model about network traffic. At the same time, the corresponding prediction algorithm is presented to attain network traffic prediction. Simulation results indicates that our approach is promising.

  14. Statistical modeling of the Internet traffic dynamics: To which extent do we need long-term correlations?

    Science.gov (United States)

    Markelov, Oleg; Nguyen Duc, Viet; Bogachev, Mikhail

    2017-11-01

    Recently we have suggested a universal superstatistical model of user access patterns and aggregated network traffic. The model takes into account the irregular character of end user access patterns on the web via the non-exponential distributions of the local access rates, but neglects the long-term correlations between these rates. While the model is accurate for quasi-stationary traffic records, its performance under highly variable and especially non-stationary access dynamics remains questionable. In this paper, using an example of the traffic patterns from a highly loaded network cluster hosting the website of the 1998 FIFA World Cup, we suggest a generalization of the previously suggested superstatistical model by introducing long-term correlations between access rates. Using queueing system simulations, we show explicitly that this generalization is essential for modeling network nodes with highly non-stationary access patterns, where neglecting long-term correlations leads to the underestimation of the empirical average sojourn time by several decades under high throughput utilization.

  15. Indicators of residential traffic exposure: Modelled NOX, traffic proximity, and self-reported exposure in RHINE III

    Science.gov (United States)

    Carlsen, Hanne Krage; Bäck, Erik; Eneroth, Kristina; Gislason, Thorarinn; Holm, Mathias; Janson, Christer; Jensen, Steen Solvang; Johannessen, Ane; Kaasik, Marko; Modig, Lars; Segersson, David; Sigsgaard, Torben; Forsberg, Bertil; Olsson, David; Orru, Hans

    2017-10-01

    Few studies have investigated associations between self-reported and modelled exposure to traffic pollution. The objective of this study was to examine correlations between self-reported traffic exposure and modelled (a) NOX and (b) traffic proximity in seven different northern European cities; Aarhus (Denmark), Bergen (Norway), Gothenburg, Umeå, and Uppsala (Sweden), Reykjavik (Iceland), and Tartu (Estonia). We analysed data from the RHINE III (Respiratory Health in Northern Europe, http://www.rhine.nu)

  16. Simulation of load traffic and steeped speed control of conveyor

    Science.gov (United States)

    Reutov, A. A.

    2017-10-01

    The article examines the possibilities of the step control simulation of conveyor speed within Mathcad, Simulink, Stateflow software. To check the efficiency of the control algorithms and to more accurately determine the characteristics of the control system, it is necessary to simulate the process of speed control with real values of traffic for a work shift or for a day. For evaluating the belt workload and absence of spillage it is necessary to use empirical values of load flow in a shorter period of time. The analytical formulas for optimal speed step values were received using empirical values of load. The simulation checks acceptability of an algorithm, determines optimal parameters of regulation corresponding to load flow characteristics. The average speed and the number of speed switching during simulation are admitted as criteria of regulation efficiency. The simulation example within Mathcad software is implemented. The average conveyor speed decreases essentially by two-step and three-step control. A further increase in the number of regulatory steps decreases average speed insignificantly but considerably increases the intensity of the speed switching. Incremental algorithm of speed regulation uses different number of stages for growing and reducing load traffic. This algorithm allows smooth control of the conveyor speed changes with monotonic variation of the load flow. The load flow oscillation leads to an unjustified increase or decrease of speed. Work results can be applied at the design of belt conveyors with adjustable drives.

  17. Consensus-Based Cooperative Control Based on Pollution Sensing and Traffic Information for Urban Traffic Networks.

    Science.gov (United States)

    Artuñedo, Antonio; Del Toro, Raúl M; Haber, Rodolfo E

    2017-04-26

    Nowadays many studies are being conducted to develop solutions for improving the performance of urban traffic networks. One of the main challenges is the necessary cooperation among different entities such as vehicles or infrastructure systems and how to exploit the information available through networks of sensors deployed as infrastructures for smart cities. In this work an algorithm for cooperative control of urban subsystems is proposed to provide a solution for mobility problems in cities. The interconnected traffic lights controller ( TLC ) network adapts traffic lights cycles, based on traffic and air pollution sensory information, in order to improve the performance of urban traffic networks. The presence of air pollution in cities is not only caused by road traffic but there are other pollution sources that contribute to increase or decrease the pollution level. Due to the distributed and heterogeneous nature of the different components involved, a system of systems engineering approach is applied to design a consensus-based control algorithm. The designed control strategy contains a consensus-based component that uses the information shared in the network for reaching a consensus in the state of TLC network components. Discrete event systems specification is applied for modelling and simulation. The proposed solution is assessed by simulation studies with very promising results to deal with simultaneous responses to both pollution levels and traffic flows in urban traffic networks.

  18. Consensus-Based Cooperative Control Based on Pollution Sensing and Traffic Information for Urban Traffic Networks

    Directory of Open Access Journals (Sweden)

    Antonio Artuñedo

    2017-04-01

    Full Text Available Nowadays many studies are being conducted to develop solutions for improving the performance of urban traffic networks. One of the main challenges is the necessary cooperation among different entities such as vehicles or infrastructure systems and how to exploit the information available through networks of sensors deployed as infrastructures for smart cities. In this work an algorithm for cooperative control of urban subsystems is proposed to provide a solution for mobility problems in cities. The interconnected traffic lights controller (TLC network adapts traffic lights cycles, based on traffic and air pollution sensory information, in order to improve the performance of urban traffic networks. The presence of air pollution in cities is not only caused by road traffic but there are other pollution sources that contribute to increase or decrease the pollution level. Due to the distributed and heterogeneous nature of the different components involved, a system of systems engineering approach is applied to design a consensus-based control algorithm. The designed control strategy contains a consensus-based component that uses the information shared in the network for reaching a consensus in the state of TLC network components. Discrete event systems specification is applied for modelling and simulation. The proposed solution is assessed by simulation studies with very promising results to deal with simultaneous responses to both pollution levels and traffic flows in urban traffic networks.

  19. A General Microscopic Traffic Model Yielding Dissipative Shocks

    DEFF Research Database (Denmark)

    Gaididei, Yuri Borisovich; Caputo, Jean Guy; Christiansen, Peter Leth

    2018-01-01

    We consider a general microscopic traffic model with a delay. An algebraic traffic function reduces the equation to the Aw-Rascle microscopic model while a sigmoid function gives the standard “follow the leader”. For zero delay we prove that the homogeneous solution is globally stable...

  20. Hierarchical and coupling model of factors influencing vessel traffic flow.

    Directory of Open Access Journals (Sweden)

    Zhao Liu

    Full Text Available Understanding the characteristics of vessel traffic flow is crucial in maintaining navigation safety, efficiency, and overall waterway transportation management. Factors influencing vessel traffic flow possess diverse features such as hierarchy, uncertainty, nonlinearity, complexity, and interdependency. To reveal the impact mechanism of the factors influencing vessel traffic flow, a hierarchical model and a coupling model are proposed in this study based on the interpretative structural modeling method. The hierarchical model explains the hierarchies and relationships of the factors using a graph. The coupling model provides a quantitative method that explores interaction effects of factors using a coupling coefficient. The coupling coefficient is obtained by determining the quantitative indicators of the factors and their weights. Thereafter, the data obtained from Port of Tianjin is used to verify the proposed coupling model. The results show that the hierarchical model of the factors influencing vessel traffic flow can explain the level, structure, and interaction effect of the factors; the coupling model is efficient in analyzing factors influencing traffic volumes. The proposed method can be used for analyzing increases in vessel traffic flow in waterway transportation system.

  1. Modeling self-consistent multi-class dynamic traffic flow

    Science.gov (United States)

    Cho, Hsun-Jung; Lo, Shih-Ching

    2002-09-01

    In this study, we present a systematic self-consistent multiclass multilane traffic model derived from the vehicular Boltzmann equation and the traffic dispersion model. The multilane domain is considered as a two-dimensional space and the interaction among vehicles in the domain is described by a dispersion model. The reason we consider a multilane domain as a two-dimensional space is that the driving behavior of road users may not be restricted by lanes, especially motorcyclists. The dispersion model, which is a nonlinear Poisson equation, is derived from the car-following theory and the equilibrium assumption. Under the concept that all kinds of users share the finite section, the density is distributed on a road by the dispersion model. In addition, the dynamic evolution of the traffic flow is determined by the systematic gas-kinetic model derived from the Boltzmann equation. Multiplying Boltzmann equation by the zeroth, first- and second-order moment functions, integrating both side of the equation and using chain rules, we can derive continuity, motion and variance equation, respectively. However, the second-order moment function, which is the square of the individual velocity, is employed by previous researches does not have physical meaning in traffic flow. Although the second-order expansion results in the velocity variance equation, additional terms may be generated. The velocity variance equation we propose is derived from multiplying Boltzmann equation by the individual velocity variance. It modifies the previous model and presents a new gas-kinetic traffic flow model. By coupling the gas-kinetic model and the dispersion model, a self-consistent system is presented.

  2. On vehicular traffic data analysis

    Energy Technology Data Exchange (ETDEWEB)

    Brics, Martins; Mahnke, Reinhard [Institute of Physics, Rostock University (Germany)

    2011-07-01

    This contribution consists of analysis of empirical vehicular traffic flow data. The main focus lies on the Next Generation Simulation (NGSIM) data. The first findings show that there are artificial structures within the data due to errors of monitoring as well as smoothing position measurement data. As a result speed data show discretisation in 5 feet per second. The aim of this investigation is to construct microscopic traffic flow models which are in agreement to the analysed empirical data. The ongoing work follows the subject of research summarized by Christof Liebe in his PhD thesis entitled ''Physics of traffic flow: Empirical data and dynamical models'' (Rostock, 2010).

  3. Outer Synchronization between Two Coupled Complex Networks and Its Application in Public Traffic Supernetwork

    Directory of Open Access Journals (Sweden)

    Wen-ju Du

    2016-01-01

    Full Text Available The paper presents a new urban public traffic supernetwork model by using the existing bus network modeling method, consisting of the conventional bus traffic network and the urban rail traffic network. We investigate the synchronization problem of urban public traffic supernetwork model by using the coupled complex network’s outer synchronization theory. Analytical and numerical simulations are given to illustrate the impact of traffic dispatching frequency and traffic lines optimization to the urban public traffic supernetwork balance.

  4. Synchronized flow in oversaturated city traffic.

    Science.gov (United States)

    Kerner, Boris S; Klenov, Sergey L; Hermanns, Gerhard; Hemmerle, Peter; Rehborn, Hubert; Schreckenberg, Michael

    2013-11-01

    Based on numerical simulations with a stochastic three-phase traffic flow model, we reveal that moving queues (moving jams) in oversaturated city traffic dissolve at some distance upstream of the traffic signal while transforming into synchronized flow. It is found that, as in highway traffic [Kerner, Phys. Rev. E 85, 036110 (2012)], such a jam-absorption effect in city traffic is explained by a strong driver's speed adaptation: Time headways (space gaps) between vehicles increase upstream of a moving queue (moving jam), resulting in moving queue dissolution. It turns out that at given traffic signal parameters, the stronger the speed adaptation effect, the shorter the mean distance between the signal location and the road location at which moving queues dissolve fully and oversaturated traffic consists of synchronized flow only. A comparison of the synchronized flow in city traffic found in this Brief Report with synchronized flow in highway traffic is made.

  5. Phase-plane analysis to an “anisotropic” higher-order traffic flow model

    Science.gov (United States)

    Wu, Chun-Xiu

    2018-04-01

    The qualitative theory of differential equations is applied to investigate the traveling wave solution to an “anisotropic” higher-order viscous traffic flow model under the Lagrange coordinate system. The types and stabilities of the equilibrium points are discussed in the phase plane. Through the numerical simulation, the overall distribution structures of trajectories are drawn to analyze the relation between the phase diagram and the selected conservative solution variables, and the influences of the parameters on the system are studied. The limit-circle, limit circle-spiral point, saddle-spiral point and saddle-nodal point solutions are obtained. These steady-state solutions provide good explanation for the phenomena of the oscillatory and homogeneous congestions in real-world traffic.

  6. Simulation of intersection of complicated information signals in air traffic control systems

    Directory of Open Access Journals (Sweden)

    Е. В. Коба

    2000-12-01

    Full Text Available Considered is the problem of complicated system simulation with customers incoming flows. Developed is an algorithm accelerated of finding probability of the superposition of complicated customers. Derived are the top and bottom estimates of damage-factor which are connected with complical customers superposition. Noticed is connection with simulation problem of air traffic control system

  7. A Simplified Approach to Estimate the Urban Expressway Capacity after Traffic Accidents Using a Micro-Simulation Model

    Directory of Open Access Journals (Sweden)

    Hong Chen

    2013-01-01

    Full Text Available Based on the decomposition of the evolution processes of the urban expressway capacity after traffic accidents and the influence factors analysis, an approach for estimating the capacity has been proposed. Firstly, the approach introduces the Decision Tree ID algorithm, solves the accident delay time of different accident types by the Information Gain Value, and determines congestion dissipation time by the Traffic Flow Wave Theory. Secondly, taking the accident delay time as the observation cycle, the maximum number of the vehicles through the accident road per unit time was considered as its capacity. Finally, the attenuation simulation of the capacity for different accident types was calculated by the VISSIM software. The simulation results suggest that capacity attenuation of vehicle anchor is minimal and the rate is 30.074%; the next is vehicles fire, rear-end, and roll-over, and the rate is 38.389%, 40.204%, and 43.130%, respectively; the capacity attenuation of vehicle collision is the largest, and the rate is 50.037%. Moreover, the further research shows that the accident delay time is proportional to congestion dissipation time, time difference, and the ratio between them, but it is an inverse relationship with the residual capacity of urban expressway.

  8. CATS-based Air Traffic Controller Agents

    Science.gov (United States)

    Callantine, Todd J.

    2002-01-01

    This report describes intelligent agents that function as air traffic controllers. Each agent controls traffic in a single sector in real time; agents controlling traffic in adjoining sectors can coordinate to manage an arrival flow across a given meter fix. The purpose of this research is threefold. First, it seeks to study the design of agents for controlling complex systems. In particular, it investigates agent planning and reactive control functionality in a dynamic environment in which a variety perceptual and decision making skills play a central role. It examines how heuristic rules can be applied to model planning and decision making skills, rather than attempting to apply optimization methods. Thus, the research attempts to develop intelligent agents that provide an approximation of human air traffic controller behavior that, while not based on an explicit cognitive model, does produce task performance consistent with the way human air traffic controllers operate. Second, this research sought to extend previous research on using the Crew Activity Tracking System (CATS) as the basis for intelligent agents. The agents use a high-level model of air traffic controller activities to structure the control task. To execute an activity in the CATS model, according to the current task context, the agents reference a 'skill library' and 'control rules' that in turn execute the pattern recognition, planning, and decision-making required to perform the activity. Applying the skills enables the agents to modify their representation of the current control situation (i.e., the 'flick' or 'picture'). The updated representation supports the next activity in a cycle of action that, taken as a whole, simulates air traffic controller behavior. A third, practical motivation for this research is to use intelligent agents to support evaluation of new air traffic control (ATC) methods to support new Air Traffic Management (ATM) concepts. Current approaches that use large, human

  9. Calculation of vehicle delay at signal-controlled intersections with adaptive traffic control algorithm

    Directory of Open Access Journals (Sweden)

    Andronov Roman

    2018-01-01

    Full Text Available By widely introducing information technology tools in the field of traffic control, it is possible to increase the capacity of hubs and reduce vehicle delays. Adaptive traffic light control is one of such tools. Its effectiveness can be assessed through traffic flow simulation. The aim of this study is to create a simulation model of a signal-controlled intersection that can be used to assess the effectiveness of adaptive control in various traffic situations, including the presence or absence of pedestrian traffic through an intersection. The model is based on a numerical experiment conducted using the Monte Carlo method. As a result of the study, vehicle delays, queue length and duration of traffic light cycles are calculated subject to different intensities of incoming traffic flows, and the presence or absence of pedestrian traffic.

  10. Modelling the effects of road traffic safety measures.

    Science.gov (United States)

    Lu, Meng

    2006-05-01

    A model is presented for assessing the effects of traffic safety measures, based on a breakdown of the process in underlying components of traffic safety (risk and consequence), and five (speed and conflict related) variables that influence these components, and are influenced by traffic safety measures. The relationships between measures, variables and components are modelled as coefficients. The focus is on probabilities rather than historical statistics, although in practice statistics may be needed to find values for the coefficients. The model may in general contribute to improve insight in the mechanisms between traffic safety measures and their safety effects. More specifically it allows comparative analysis of different types of measures by defining an effectiveness index, based on the coefficients. This index can be used to estimate absolute effects of advanced driver assistance systems (ADAS) related measures from absolute effects of substitutional (in terms of safety effects) infrastructure measures.

  11. A Sarsa(λ)-based control model for real-time traffic light coordination.

    Science.gov (United States)

    Zhou, Xiaoke; Zhu, Fei; Liu, Quan; Fu, Yuchen; Huang, Wei

    2014-01-01

    Traffic problems often occur due to the traffic demands by the outnumbered vehicles on road. Maximizing traffic flow and minimizing the average waiting time are the goals of intelligent traffic control. Each junction wants to get larger traffic flow. During the course, junctions form a policy of coordination as well as constraints for adjacent junctions to maximize their own interests. A good traffic signal timing policy is helpful to solve the problem. However, as there are so many factors that can affect the traffic control model, it is difficult to find the optimal solution. The disability of traffic light controllers to learn from past experiences caused them to be unable to adaptively fit dynamic changes of traffic flow. Considering dynamic characteristics of the actual traffic environment, reinforcement learning algorithm based traffic control approach can be applied to get optimal scheduling policy. The proposed Sarsa(λ)-based real-time traffic control optimization model can maintain the traffic signal timing policy more effectively. The Sarsa(λ)-based model gains traffic cost of the vehicle, which considers delay time, the number of waiting vehicles, and the integrated saturation from its experiences to learn and determine the optimal actions. The experiment results show an inspiring improvement in traffic control, indicating the proposed model is capable of facilitating real-time dynamic traffic control.

  12. A Sarsa(λ-Based Control Model for Real-Time Traffic Light Coordination

    Directory of Open Access Journals (Sweden)

    Xiaoke Zhou

    2014-01-01

    Full Text Available Traffic problems often occur due to the traffic demands by the outnumbered vehicles on road. Maximizing traffic flow and minimizing the average waiting time are the goals of intelligent traffic control. Each junction wants to get larger traffic flow. During the course, junctions form a policy of coordination as well as constraints for adjacent junctions to maximize their own interests. A good traffic signal timing policy is helpful to solve the problem. However, as there are so many factors that can affect the traffic control model, it is difficult to find the optimal solution. The disability of traffic light controllers to learn from past experiences caused them to be unable to adaptively fit dynamic changes of traffic flow. Considering dynamic characteristics of the actual traffic environment, reinforcement learning algorithm based traffic control approach can be applied to get optimal scheduling policy. The proposed Sarsa(λ-based real-time traffic control optimization model can maintain the traffic signal timing policy more effectively. The Sarsa(λ-based model gains traffic cost of the vehicle, which considers delay time, the number of waiting vehicles, and the integrated saturation from its experiences to learn and determine the optimal actions. The experiment results show an inspiring improvement in traffic control, indicating the proposed model is capable of facilitating real-time dynamic traffic control.

  13. Modeling Spatially Unrestricted Pedestrian Traffic on Footbridges

    DEFF Research Database (Denmark)

    Zivanovic, Stana; Pavic, Aleksandar; Ingólfsson, Einar Thór

    2010-01-01

    restricted movement of pedestrians, has kept attracting attention of researchers. However, it is the normal spatially unrestricted pedestrian traffic, and its vertical dynamic loading component, that are most relevant for vibration serviceability checks for most footbridges. Despite the existence of numerous...... design procedures concerned with this loading, the current confidence in its modelling is low due to lack of verification of the models on as-built structures. This is the motivation behind reviewing the existing design procedures for modelling normal pedestrian traffic in this paper and evaluating...

  14. Cool-Season Turfgrass Species and Cultivars: Response to Simulated Traffic in Central Italy

    Directory of Open Access Journals (Sweden)

    Carlo F. Cereti

    2010-03-01

    Full Text Available Turfgrass species differ greatly in their ability to withstand the abrasion and compaction of traffic. Wear tolerance of turfgrass species and cultivars has been evaluated abroad by many researchers, while only few and partial studies have been conducted in Italy. Field experiment was carried out in Viterbo in 2001, 2002 and 2003 to evaluate the effect of the simulated traffic on 110 varieties belonging to four turfgrass cool-season species: tall fescue (Festuca arundinacea Schreb., fine fescues (Festuca rubra L. ssp. rubra Gaud., ssp. commutata Gaud., ssp. tricophylla Gaud., perennial ryegrass (Lolium perenne L. and Kentucky bluegrass (Poa pratensis L.. Shoot density, visual turfgrass quality and thatch thickness were the major characters recorded to estimate wear tolerance. Traffic was simulated using a device containing three rollers pulled by a small tractor. The traffic simulator weighed 564 kg and applied a pressure of about 3 MPa. Results indicated that perennial ryegrass and tall fescue had high wear tolerance and low statistical variation among cultivars. Kentucky bluegrass showed an average wear tolerance owing to its shoot density and good recovery potential. In spite of their high shoot density, fine fescues exhibited poor wear tolerance because of their scarce resistance to high temperatures which are typical of the Mediterranean climate in late spring and summer. This study enabled a preliminary selection of the most suitable cool-season grasses and cultivars for trafficked and non-trafficked areas in Central Italy and highlighted that different turfgrass species have different wear tolerance mechanisms.

  15. High-resolution simulation of link-level vehicle emissions and concentrations for air pollutants in a traffic-populated eastern Asian city

    Directory of Open Access Journals (Sweden)

    S. Zhang

    2016-08-01

    Full Text Available Vehicle emissions containing air pollutants created substantial environmental impacts on air quality for many traffic-populated cities in eastern Asia. A high-resolution emission inventory is a useful tool compared with traditional tools (e.g. registration data-based approach to accurately evaluate real-world traffic dynamics and their environmental burden. In this study, Macau, one of the most populated cities in the world, is selected to demonstrate a high-resolution simulation of vehicular emissions and their contribution to air pollutant concentrations by coupling multimodels. First, traffic volumes by vehicle category on 47 typical roads were investigated during weekdays in 2010 and further applied in a networking demand simulation with the TransCAD model to establish hourly profiles of link-level vehicle counts. Local vehicle driving speed and vehicle age distribution data were also collected in Macau. Second, based on a localized vehicle emission model (e.g. the emission factor model for the Beijing vehicle fleet – Macau, EMBEV–Macau, this study established a link-based vehicle emission inventory in Macau with high resolution meshed in a temporal and spatial framework. Furthermore, we employed the AERMOD (AMS/EPA Regulatory Model model to map concentrations of CO and primary PM2.5 contributed by local vehicle emissions during weekdays in November 2010. This study has discerned the strong impact of traffic flow dynamics on the temporal and spatial patterns of vehicle emissions, such as a geographic discrepancy of spatial allocation up to 26 % between THC and PM2.5 emissions owing to spatially heterogeneous vehicle-use intensity between motorcycles and diesel fleets. We also identified that the estimated CO2 emissions from gasoline vehicles agreed well with the statistical fuel consumption in Macau. Therefore, this paper provides a case study and a solid framework for developing high-resolution environment assessment tools for other

  16. Calibration of a microscopic simulation model for emission calculation

    NARCIS (Netherlands)

    Jie, L.; Zuylen, H. van; Chen, Y.; Viti, F.; Wilmink, I.

    2013-01-01

    Emissions by road traffic can be reduced by optimising traffic control. The impact of this optimisation on emission can be analysed ex ante by simulation. The simulation programs used for this analysis should be valid with respect to the traffic characteristics that determine the emissions. Thus

  17. Applicability of models to estimate traffic noise for urban roads.

    Science.gov (United States)

    Melo, Ricardo A; Pimentel, Roberto L; Lacerda, Diego M; Silva, Wekisley M

    2015-01-01

    Traffic noise is a highly relevant environmental impact in cities. Models to estimate traffic noise, in turn, can be useful tools to guide mitigation measures. In this paper, the applicability of models to estimate noise levels produced by a continuous flow of vehicles on urban roads is investigated. The aim is to identify which models are more appropriate to estimate traffic noise in urban areas since several models available were conceived to estimate noise from highway traffic. First, measurements of traffic noise, vehicle count and speed were carried out in five arterial urban roads of a brazilian city. Together with geometric measurements of width of lanes and distance from noise meter to lanes, these data were input in several models to estimate traffic noise. The predicted noise levels were then compared to the respective measured counterparts for each road investigated. In addition, a chart showing mean differences in noise between estimations and measurements is presented, to evaluate the overall performance of the models. Measured Leq values varied from 69 to 79 dB(A) for traffic flows varying from 1618 to 5220 vehicles/h. Mean noise level differences between estimations and measurements for all urban roads investigated ranged from -3.5 to 5.5 dB(A). According to the results, deficiencies of some models are discussed while other models are identified as applicable to noise estimations on urban roads in a condition of continuous flow. Key issues to apply such models to urban roads are highlighted.

  18. Development of a High-Fidelity Simulation Environment for Shadow-Mode Assessments of Air Traffic Concepts

    Science.gov (United States)

    Robinson, John E., III; Lee, Alan; Lai, Chok Fung

    2017-01-01

    This paper describes the Shadow-Mode Assessment Using Realistic Technologies for the National Airspace System (SMART-NAS) Test Bed. The SMART-NAS Test Bed is an air traffic simulation platform being developed by the National Aeronautics and Space Administration (NASA). The SMART-NAS Test Bed's core purpose is to conduct high-fidelity, real-time, human-in-the-loop and automation-in-the-loop simulations of current and proposed future air traffic concepts for the United States' Next Generation Air Transportation System called NextGen. The setup, configuration, coordination, and execution of realtime, human-in-the-loop air traffic management simulations are complex, tedious, time intensive, and expensive. The SMART-NAS Test Bed framework is an alternative to the current approach and will provide services throughout the simulation workflow pipeline to help alleviate these shortcomings. The principle concepts to be simulated include advanced gate-to-gate, trajectory-based operations, widespread integration of novel aircraft such as unmanned vehicles, and real-time safety assurance technologies to enable autonomous operations. To make this possible, SNTB will utilize Web-based technologies, cloud resources, and real-time, scalable, communication middleware. This paper describes the SMART-NAS Test Bed's vision, purpose, its concept of use, and the potential benefits, key capabilities, high-level requirements, architecture, software design, and usage.

  19. Simulation-Based Dynamic Passenger Flow Assignment Modelling for a Schedule-Based Transit Network

    Directory of Open Access Journals (Sweden)

    Xiangming Yao

    2017-01-01

    Full Text Available The online operation management and the offline policy evaluation in complex transit networks require an effective dynamic traffic assignment (DTA method that can capture the temporal-spatial nature of traffic flows. The objective of this work is to propose a simulation-based dynamic passenger assignment framework and models for such applications in the context of schedule-based rail transit systems. In the simulation framework, travellers are regarded as individual agents who are able to obtain complete information on the current traffic conditions. A combined route selection model integrated with pretrip route selection and entrip route switch is established for achieving the dynamic network flow equilibrium status. The train agent is operated strictly with the timetable and its capacity limitation is considered. A continuous time-driven simulator based on the proposed framework and models is developed, whose performance is illustrated through a large-scale network of Beijing subway. The results indicate that more than 0.8 million individual passengers and thousands of trains can be simulated simultaneously at a speed ten times faster than real time. This study provides an efficient approach to analyze the dynamic demand-supply relationship for large schedule-based transit networks.

  20. Traffic simulation for mixed traffic systems | Mbam | Global Journal of ...

    African Journals Online (AJOL)

    Traffic problem is classified into single and mixed, especially in most developing countries, where motorbikes are used as the most popular transportation system. The aim of this paper is to introduce the motorbike symbol into the traffic light control system to separate cars/lorries indicator from that of motorbike. This is likely ...

  1. Spatial variations in estimated chronic exposure to traffic-related air pollution in working populations: A simulation

    Directory of Open Access Journals (Sweden)

    Cloutier-Fisher Denise

    2008-07-01

    Full Text Available Abstract Background Chronic exposure to traffic-related air pollution is associated with a variety of health impacts in adults and recent studies show that exposure varies spatially, with some residents in a community more exposed than others. A spatial exposure simulation model (SESM which incorporates six microenvironments (home indoor, work indoor, other indoor, outdoor, in-vehicle to work and in-vehicle other is described and used to explore spatial variability in estimates of exposure to traffic-related nitrogen dioxide (not including indoor sources for working people. The study models spatial variability in estimated exposure aggregated at the census tracts level for 382 census tracts in the Greater Vancouver Regional District of British Columbia, Canada. Summary statistics relating to the distributions of the estimated exposures are compared visually through mapping. Observed variations are explored through analyses of model inputs. Results Two sources of spatial variability in exposure to traffic-related nitrogen dioxide were identified. Median estimates of total exposure ranged from 8 μg/m3 to 35 μg/m3 of annual average hourly NO2 for workers in different census tracts in the study area. Exposure estimates are highest where ambient pollution levels are highest. This reflects the regional gradient of pollution in the study area and the relatively high percentage of time spent at home locations. However, for workers within the same census tract, variations were observed in the partial exposure estimates associated with time spent outside the residential census tract. Simulation modeling shows that some workers may have exposures 1.3 times higher than other workers residing in the same census tract because of time spent away from the residential census tract, and that time spent in work census tracts contributes most to the differences in exposure. Exposure estimates associated with the activity of commuting by vehicle to work were

  2. MODELING AND SIMULATION OF TRAFFIC FLOWS ON INCLINED ROAD DURING EVACUATION PROCESS OF THE VOLCANO DISASTER WITH FINITE DIFFERENCE METHOD

    Directory of Open Access Journals (Sweden)

    Richasanty Septima S

    2017-03-01

    Full Text Available The research in this thesis was done to examine the model of traffic flow of volcanic disaster evacuation path for uphill and downhill roads. The assessment was focused on the area of disaster evacuation path from the Pante Raya Bener Meriah intersection to Takengon. This model is assessed for two different types of time when which a disaster occurs; the disaster occurred at night and the disaster occurred during the day, especially during peak hours (working hours. The model was developed with attention to the exixtence of inflow and outflow along the evacuation route. Furthermore, the model obtained is solved numerically by using finite difference method. The chosen approach of this method is upwind scheme with time and space steps using forward difference and backward difference. The solution of this model in the form of simulated vehicle density along evacuation pathways. The research conducted is in the form of a model of traffic flow on evacuation paths and restricted to the inflow and outflow without alternative path as well as the conditions of the road which are uphill and downhill, showed a high density of vehicles either at night or during the day. Uphill road conditions resulted in decreased vehicle speed and vehicle density will increase, while downhill road conditions resulted in increased vehicle speed and vehicle density will decrease, meaning that the road conditions which are uphill and downhill will greatly affect the process of evacuation. Degree vehicles of evacuation efficiency occuring at night without an alternative pathway produces a high efficiency so that it can be interpreted that the evacuation process in the evening was successful and runs better than the evacuation process during the day, and this is caused by the existence of vehicles on the road evacuation process started thus affecting the efficiency levels.

  3. Time series modeling in traffic safety research.

    Science.gov (United States)

    Lavrenz, Steven M; Vlahogianni, Eleni I; Gkritza, Konstantina; Ke, Yue

    2018-08-01

    The use of statistical models for analyzing traffic safety (crash) data has been well-established. However, time series techniques have traditionally been underrepresented in the corresponding literature, due to challenges in data collection, along with a limited knowledge of proper methodology. In recent years, new types of high-resolution traffic safety data, especially in measuring driver behavior, have made time series modeling techniques an increasingly salient topic of study. Yet there remains a dearth of information to guide analysts in their use. This paper provides an overview of the state of the art in using time series models in traffic safety research, and discusses some of the fundamental techniques and considerations in classic time series modeling. It also presents ongoing and future opportunities for expanding the use of time series models, and explores newer modeling techniques, including computational intelligence models, which hold promise in effectively handling ever-larger data sets. The information contained herein is meant to guide safety researchers in understanding this broad area of transportation data analysis, and provide a framework for understanding safety trends that can influence policy-making. Copyright © 2017 Elsevier Ltd. All rights reserved.

  4. Criterion for traffic phases in single vehicle data and empirical test of a microscopic three-phase traffic theory

    International Nuclear Information System (INIS)

    Kerner, Boris S; Klenov, Sergey L; Hiller, Andreas

    2006-01-01

    Based on empirical and numerical microscopic analyses, the physical nature of a qualitatively different behaviour of the wide moving jam phase in comparison with the synchronized flow phase-microscopic traffic flow interruption within the wide moving jam phase-is found. A microscopic criterion for distinguishing the synchronized flow and wide moving jam phases in single vehicle data measured at a single freeway location is presented. Based on this criterion, empirical microscopic classification of different local congested traffic states is performed. Simulations made show that the microscopic criterion and macroscopic spatiotemporal objective criteria lead to the same identification of the synchronized flow and wide moving jam phases in congested traffic. Microscopic models in the context of three-phase traffic theory have been tested based on the microscopic criterion for the phases in congested traffic. It is found that microscopic three-phase traffic models can explain both microscopic and macroscopic empirical congested pattern features. It is obtained that microscopic frequency distributions for vehicle speed difference as well as fundamental diagrams and speed correlation functions can depend on the spatial co-ordinate considerably. It turns out that microscopic optimal velocity (OV) functions and time headway distributions are not necessarily qualitatively different, even if local congested traffic states are qualitatively different. The reason for this is that important spatiotemporal features of congested traffic patterns are lost in these as well as in many other macroscopic and microscopic traffic characteristics, which are widely used as the empirical basis for a test of traffic flow models, specifically, cellular automata traffic flow models

  5. 4K Video Traffic Prediction using Seasonal Autoregressive Modeling

    Directory of Open Access Journals (Sweden)

    D. R. Marković

    2017-06-01

    Full Text Available From the perspective of average viewer, high definition video streams such as HD (High Definition and UHD (Ultra HD are increasing their internet presence year over year. This is not surprising, having in mind expansion of HD streaming services, such as YouTube, Netflix etc. Therefore, high definition video streams are starting to challenge network resource allocation with their bandwidth requirements and statistical characteristics. Need for analysis and modeling of this demanding video traffic has essential importance for better quality of service and experience support. In this paper we use an easy-to-apply statistical model for prediction of 4K video traffic. Namely, seasonal autoregressive modeling is applied in prediction of 4K video traffic, encoded with HEVC (High Efficiency Video Coding. Analysis and modeling were performed within R programming environment using over 17.000 high definition video frames. It is shown that the proposed methodology provides good accuracy in high definition video traffic modeling.

  6. Evaluating Performances of Traffic Noise Models | Oyedepo ...

    African Journals Online (AJOL)

    Traffic noise in decibel dB(A) were measured at six locations using 407780A Integrating Sound Level Meter, while spot speed and traffic volume were collected with cine-camera. The predicted sound exposure level (SEL) was evaluated using Burgess, British and FWHA model. The average noise level obtained are 77.64 ...

  7. Analysis of vehicular traffic flow in the major areas of Kuala Lumpur utilizing open-traffic

    Science.gov (United States)

    Manogaran, Saargunawathy; Ali, Muhammad; Yusof, Kamaludin Mohamad; Suhaili, Ramdhan

    2017-09-01

    Vehicular traffic congestion occurs when a large number of drivers are overcrowded on the road and the traffic flow does not run smoothly. Traffic congestion causes chaos on the road and interruption to daily activities of users. Time consumed on road give lots of negative effects on productivity, social behavior, environmental and cost to economy. Congestion is worsens and leads to havoc during the emergency such as flood, accidents, road maintenance and etc., where behavior of traffic flow is always unpredictable and uncontrollable. Real-time and historical traffic data are critical inputs for most traffic flow analysis applications. Researcher attempt to predict traffic using simulations as there is no exact model of traffic flow exists due to its high complexity. Open Traffic is an open source platform available for traffic data analysis linked to Open Street Map (OSM). This research is aimed to study and understand the Open Traffic platform. The real-time traffic flow pattern in Kuala Lumpur area was successfully been extracted and analyzed using Open Traffic. It was observed that the congestion occurs on every major road in Kuala Lumpur and most of it owes to the offices and the economic and commercial centers during rush hours. At some roads the congestion occurs at night due to the tourism activities.

  8. Cool-Season Turfgrass Species and Cultivars: Response to Simulated Traffic in Central Italy

    OpenAIRE

    Carlo F. Cereti; Roberto Ruggeri; Francesco Rossini

    2010-01-01

    Turfgrass species differ greatly in their ability to withstand the abrasion and compaction of traffic. Wear tolerance of turfgrass species and cultivars has been evaluated abroad by many researchers, while only few and partial studies have been conducted in Italy. Field experiment was carried out in Viterbo in 2001, 2002 and 2003 to evaluate the effect of the simulated traffic on 110 varieties belonging to four turfgrass cool-season species: tall fescue (Festuca arundinacea Schreb.), fine fes...

  9. Learning Behavior Models for Interpreting and Predicting Traffic Situations

    OpenAIRE

    Gindele, Tobias

    2014-01-01

    In this thesis, we present Bayesian state estimation and machine learning methods for predicting traffic situations. The cognitive ability to assess situations and behaviors of traffic participants, and to anticipate possible developments is an essential requirement for several applications in the traffic domain, especially for self-driving cars. We present a method for learning behavior models from unlabeled traffic observations and develop improved learning methods for decision trees.

  10. Towards reducing traffic congestion using cooperative adaptive cruise control on a freeway with a ramp

    Directory of Open Access Journals (Sweden)

    Georges Arnaout

    2011-12-01

    Full Text Available Purpose: In this paper, the impact of Cooperative Adaptive Cruise Control (CACC systems on traffic performance is examined using microscopic agent-based simulation. Using a developed traffic simulation model of a freeway with an on-ramp - created to induce perturbations and to trigger stop-and-go traffic, the CACC system’s effect on the traffic performance is studied. The previously proposed traffic simulation model is extended and validated. By embedding CACC vehicles in different penetration levels, the results show significance and indicate the potential of CACC systems to improve traffic characteristics and therefore can be used to reduce traffic congestion. The study shows that the impact of CACC is positive but is highly dependent on the CACC market penetration. The flow rate of the traffic using CACC is proportional to the market penetration rate of CACC equipped vehicles and the density of the traffic.Design/methodology/approach: This paper uses microscopic simulation experiments followed by a quantitative statistical analysis. Simulation enables researchers manipulating the system variables to straightforwardly predict the outcome on the overall system, giving researchers the unique opportunity to interfere and make improvements to performance. Thus with simulation, changes to variables that might require excessive time, or be unfeasible to carry on real systems, are often completed within seconds.Findings: The findings of this paper are summarized as follow:•\tProvide and validate a platform (agent-based microscopic traffic simulator in which any CACC algorithm (current or future may be evaluated.•\tProvide detailed analysis associated with implementation of CACC vehicles on freeways.•\tInvestigate whether embedding CACC vehicles on freeways has a significant positive impact or not.Research limitations/implications: The main limitation of this research is that it has been conducted solely in a computer laboratory. Laboratory

  11. A Numerical Simulation of Traffic-Related Air Pollution Exposures in Urban Street Canyons

    Science.gov (United States)

    Liu, J.; Fu, X.; Tao, S.

    2016-12-01

    Urban street canyons are usually associated with intensive vehicle emissions. However, the high buildings successively along both sides of a street block the dispersion of traffic-generated air pollutants, which enhances human exposure and adversely affects human health. In this study, an urban scale traffic pollution dispersion model is developed with the consideration of street distribution, canyon geometry, background meteorology, traffic assignment, traffic emissions and air pollutant dispersion. Vehicle exhausts generated from traffic flows will first disperse inside a street canyon along the micro-scale wind field (generated by computational fluid dynamics (CFD) model) and then leave the street canyon and further disperse over the urban area. On the basis of this model, the effects of canyon geometry on the distribution of NOx and CO from traffic emissions were studied over the center of Beijing, China. We found that an increase of building height along the streets leads to higher pollution levels inside streets and lower pollution levels outside, resulting in higher domain-averaged concentrations over the area. In addition, street canyons with equal (or highly uneven) building heights on two sides of a street tend to lower the urban-scale air pollution concentrations at pedestrian level. Our results indicate that canyon geometry strongly influences human exposure to traffic pollutants in the populated urban area. Carefully planning street layout and canyon geometry in consideration of traffic demand as well as local weather pattern may significantly reduce the chances of unhealthy air being inhaled by urban residents.

  12. Multiple Depots Vehicle Routing Problem in the Context of Total Urban Traffic Equilibrium

    Directory of Open Access Journals (Sweden)

    Dongxu Chen

    2017-01-01

    Full Text Available A multidepot VRP is solved in the context of total urban traffic equilibrium. Under the total traffic equilibrium, the multidepot VRP is changed to GDAP (the problem of Grouping Customers + Estimating OD Traffic + Assigning traffic and bilevel programming is used to model the problem, where the upper model determines the customers that each truck visits and adds the trucks’ trips to the initial OD (Origin/Destination trips, and the lower model assigns the OD trips to road network. Feedback between upper model and lower model is iterated through OD trips; thus total traffic equilibrium can be simulated.

  13. A comprehensive model for the prediction of vibrations due to underground railway traffic: formulation and validation

    International Nuclear Information System (INIS)

    Costa, Pedro Alvares; Cardoso Silva, Antonio; Calçada, Rui; Lopes, Patricia; Fernandez, Jesus

    2016-01-01

    n this communication, a numerical approach for the prediction of vibrations induced in buildings due to railway traffic in tunnels is presented. The numerical model is based on the concept of dynamic sub structuring, being composed by three autonomous models to simulate the following main parts of the problem: i) generation of vibrations (train-track interaction); ii) propagation of vibrations (track - tunnel-ground system); iii) reception of vibrations (building coupled to the ground). The methodology proposed allows dealing with the three-dimensional characteristics of the problem with a reasonable computational effort [ 1 , 2 ] . After the brief description of the model, its experimental validation is performed. For that, a case study about vibrations inside of a building close to a shallow railway tunnel in Madrid are simulated and the experimental data [ 3 ] is compared with the predicted results [ 4 ]. Finally, the communication finishes with some insights about the potentialities and challenges of this numerical modelling approach on the prediction of the behavior of ancient structures subjected to vibrations induced by human sources (railway and road traffic, pile driving, etc)

  14. Models of Weather Impact on Air Traffic

    Science.gov (United States)

    Kulkarni, Deepak; Wang, Yao

    2017-01-01

    Flight delays have been a serious problem in the national airspace system costing about $30B per year. About 70 of the delays are attributed to weather and upto two thirds of these are avoidable. Better decision support tools would reduce these delays and improve air traffic management tools. Such tools would benefit from models of weather impacts on the airspace operations. This presentation discusses use of machine learning methods to mine various types of weather and traffic data to develop such models.

  15. Improvement of driving safety in road traffic system

    Science.gov (United States)

    Li, Ke-Ping; Gao, Zi-You

    2005-05-01

    A road traffic system is a complex system in which humans participate directly. In this system, human factors play a very important role. In this paper, a kind of control signal is designated at a given site (i.e., signal point) of the road. Under the effect of the control signal, the drivers will decrease their velocities when their vehicles pass the signal point. Our aim is to transit the traffic flow states from disorder to order and then improve the traffic safety. We have tested this technique for the two-lane traffic model that is based on the deterministic Nagel-Schreckenberg (NaSch) traffic model. The simulation results indicate that the traffic flow states can be transited from disorder to order. Different order states can be observed in the system and these states are safer.

  16. Motor Vehicle Emission Modeling and Software Simulation Computing for Roundabout in Urban City

    Directory of Open Access Journals (Sweden)

    Haiwei Wang

    2013-01-01

    Full Text Available In urban road traffic systems, roundabout is considered as one of the core traffic bottlenecks, which are also a core impact of vehicle emission and city environment. In this paper, we proposed a transport control and management method for solving traffic jam and reducing emission in roundabout. The platform of motor vehicle testing system and VSP-based emission model was established firstly. By using the topology chart of the roundabout and microsimulation software, we calculated the instantaneous emission rates of different vehicle and total vehicle emissions. We argued that Integration-Model, combing traffic simulation and vehicle emission, can be performed to calculate the instantaneous emission rates of different vehicle and total vehicle emissions at the roundabout. By contrasting the exhaust emissions result between no signal control and signal control in this area at the rush hour, it draws a conclusion that setting the optimizing signal control can effectively reduce the regional vehicle emission. The proposed approach has been submitted to a simulation and experiment that involved an environmental assessment in Satellite Square, a roundabout in medium city located in China. It has been verified that setting signal control with knowledge engineering and Integration-Model is a practical way for solving the traffic jams and environmental pollution.

  17. Capacity of Freeway Merge Areas with Different On-Ramp Traffic Flow

    Directory of Open Access Journals (Sweden)

    Jinxing Shen

    2015-06-01

    Full Text Available This paper is aimed at investigating the influence of different types of traffic flows on the capacity of freeway merge areas. Based on the classical gap-acceptance model, two calculating models were established specifically considering randomly arriving vehicles and individual difference in driving behaviours. Monte-Carlo simulation was implemented to reproduce the maximum traffic volume on the designed freeway merge area under different situations. The results demonstrated that the proposed calculating models have better performance than the conventional gap-acceptance theory on accurately predicting the capacity of freeway merge areas. The findings of research could be helpful to improve the microscopic traffic flow simulation model from a more practical perspective and support the designing of freeway merge areas as well.

  18. A new cellular automaton for signal controlled traffic flow based on driving behaviors

    Science.gov (United States)

    Wang, Yang; Chen, Yan-Yan

    2015-03-01

    The complexity of signal controlled traffic largely stems from the various driving behaviors developed in response to the traffic signal. However, the existing models take a few driving behaviors into account and consequently the traffic dynamics has not been completely explored. Therefore, a new cellular automaton model, which incorporates the driving behaviors typically manifesting during the different stages when the vehicles are moving toward a traffic light, is proposed in this paper. Numerical simulations have demonstrated that the proposed model can produce the spontaneous traffic breakdown and the dissolution of the over-saturated traffic phenomena. Furthermore, the simulation results indicate that the slow-to-start behavior and the inch-forward behavior can foster the traffic breakdown. Particularly, it has been discovered that the over-saturated traffic can be revised to be an under-saturated state when the slow-down behavior is activated after the spontaneous breakdown. Finally, the contributions of the driving behaviors on the traffic breakdown have been examined. Project supported by the National Basic Research Program of China (Grand No. 2012CB723303) and the Beijing Committee of Science and Technology, China (Grand No. Z1211000003120100).

  19. Quantitative health impact assessment of transport policies: two simulations related to speed limit reduction and traffic re-allocation in the Netherlands.

    Science.gov (United States)

    Schram-Bijkerk, D; van Kempen, E; Knol, A B; Kruize, H; Staatsen, B; van Kamp, I

    2009-10-01

    Few quantitative health impact assessments (HIAs) of transport policies have been published so far and there is a lack of a common methodology for such assessments. To evaluate the usability of existing HIA methodology to quantify health effects of transport policies at the local level. Health impact of two simulated but realistic transport interventions - speed limit reduction and traffic re-allocation - was quantified by selecting traffic-related exposures and health endpoints, modelling of population exposure, selecting exposure-effect relations and estimating the number of local traffic-related cases and disease burden, expressed in disability-adjusted life-years (DALYs), before and after the intervention. Exposure information was difficult to retrieve because of the local scale of the interventions, and exposure-effect relations for subgroups and combined effects were missing. Given uncertainty in the outcomes originating from this kind of missing information, simulated changes in population health by two local traffic interventions were estimated to be small (<5%), except for the estimated reduction in DALYs by less traffic accidents (60%) due to speed limit reduction. Quantitative HIA of transport policies at a local scale is possible, provided that data on exposures, the exposed population and their baseline health status are available. The interpretation of the HIA information should be carried out in the context of the quality of input data and assumptions and uncertainties of the analysis.

  20. Hyper-Spectral Networking Concept of Operations and Future Air Traffic Management Simulations

    Science.gov (United States)

    Davis, Paul; Boisvert, Benjamin

    2017-01-01

    The NASA sponsored Hyper-Spectral Communications and Networking for Air Traffic Management (ATM) (HSCNA) project is conducting research to improve the operational efficiency of the future National Airspace System (NAS) through diverse and secure multi-band, multi-mode, and millimeter-wave (mmWave) wireless links. Worldwide growth of air transportation and the coming of unmanned aircraft systems (UAS) will increase air traffic density and complexity. Safe coordination of aircraft will require more capable technologies for communications, navigation, and surveillance (CNS). The HSCNA project will provide a foundation for technology and operational concepts to accommodate a significantly greater number of networked aircraft. This paper describes two of the HSCNA projects technical challenges. The first technical challenge is to develop a multi-band networking concept of operations (ConOps) for use in multiple phases of flight and all communication link types. This ConOps will integrate the advanced technologies explored by the HSCNA project and future operational concepts into a harmonized vision of future NAS communications and networking. The second technical challenge discussed is to conduct simulations of future ATM operations using multi-bandmulti-mode networking and technologies. Large-scale simulations will assess the impact, compared to todays system, of the new and integrated networks and technologies under future air traffic demand.

  1. Validation of a multi-objective, predictive urban traffic model

    NARCIS (Netherlands)

    Wilmink, I.R.; Haak, P. van den; Woldeab, Z.; Vreeswijk, J.

    2013-01-01

    This paper describes the results of the verification and validation of the ecoStrategic Model, which was developed, implemented and tested in the eCoMove project. The model uses real-time and historical traffic information to determine the current, predicted and desired state of traffic in a

  2. Traffic Accident Propagation Properties and Control Measures for Urban Links Based on Cellular Automata

    Directory of Open Access Journals (Sweden)

    Xian-sheng Li

    2013-01-01

    Full Text Available With the rapid development of urban transport and the sharp increase in vehicle population, traffic accidents form one of the most important causes of urban traffic congestion other than the imbalance between traffic supply and demand. Traffic congestion causes severe problems, such as environment contamination and energy dissipation. Therefore, it would be useful to analyze the congestion propagation characteristics after traffic accidents. Numerical analysis and computer simulation were two of the typical methods used at present to study the traffic congestion propagation properties. The latter was more widespread as it is more consistent with the actual traffic flow and more visual than the former. In this paper, an improved cellular automata (CA model was presented to analyze traffic congestion propagation properties and to evaluate control strategies. In order to apply them to urban traffic flow simulation, the CA models have been improved and expanded on. Computer simulations were built for congestion not only extending to the upstream intersection, but also the upstream intersection and the entire road network, respectively. Congestion propagation characteristics after road traffic accidents were obtained, and controls of different severities and durations were analyzed. The results provide the theoretical foundation and practical means for the control of congestion.

  3. [Dynamic road vehicle emission inventory simulation study based on real time traffic information].

    Science.gov (United States)

    Huang, Cheng; Liu, Juan; Chen, Chang-Hong; Zhang, Jian; Liu, Deng-Guo; Zhu, Jing-Yu; Huang, Wei-Ming; Chao, Yuan

    2012-11-01

    The vehicle activity survey, including traffic flow distribution, driving condition, and vehicle technologies, were conducted in Shanghai. The databases of vehicle flow, VSP distribution and vehicle categories were established according to the surveyed data. Based on this, a dynamic vehicle emission inventory simulation method was designed by using the real time traffic information data, such as traffic flow and average speed. Some roads in Shanghai city were selected to conduct the hourly vehicle emission simulation as a case study. The survey results show that light duty passenger car and taxi are major vehicles on the roads of Shanghai city, accounting for 48% - 72% and 15% - 43% of the total flow in each hour, respectively. VSP distribution has a good relationship with the average speed. The peak of VSP distribution tends to move to high load section and become lower with the increase of average speed. Vehicles achieved Euro 2 and Euro 3 standards are majorities of current vehicle population in Shanghai. Based on the calibration of vehicle travel mileage data, the proportions of Euro 2 and Euro 3 standard vehicles take up 11% - 70% and 17% - 51% in the real-world situation, respectively. The emission simulation results indicate that the ratios of emission peak and valley for the pollutants of CO, VOC, NO(x) and PM are 3.7, 4.6, 9.6 and 19.8, respectively. CO and VOC emissions mainly come from light-duty passenger car and taxi, which has a good relationship with the traffic flow. NO(x) and PM emissions are mainly from heavy-duty bus and public buses and mainly concentrate in the morning and evening peak hours. The established dynamic vehicle emission simulation method can reflect the change of actual road emission and output high emission road sectors and hours in real time. The method can provide an important technical means and decision-making basis for transportation environment management.

  4. Multiagent Systems: Introduction and Application in Traffic Control and Simulation and Emergency Situations Simulation

    Directory of Open Access Journals (Sweden)

    BAZZAN, A. L. C.

    2010-12-01

    Full Text Available The area of multiagent systems is new and challenging. From the moment a system includes more than one agent, artificial intelligence techniques become inadequate for they do not consider interactions with other agent, need for coordination and other factors. In this text those aspects are discussed, and an introduction to the area of autonomous agents and multiagent systems is offered. Afterwards, two application of this kind of systems are described, both in the area of transportation and emergency sistuations. In the former we discuss traffic control and simulation and in the latter, we focus on the simulation tool RoboCup Rescue

  5. Effects of tire inclination (turning traffic and dynamic loading on the pavement stress–strain responses using 3-D finite element modeling

    Directory of Open Access Journals (Sweden)

    Xiaodi Hu

    2017-07-01

    Full Text Available In this study, ABAQUS finite element (FE modeling in three-dimensional (3-D loading mode was utilized to analytically investigate and quantify the effects of tire inclination and dynamic loading on the stress–strain responses of a pavement structure under varying loading and environmental conditions. The input variables for modeling consisted of actual laboratory and field data obtained from an in-service highway US 59 and included the in-situ pavement structure, material properties (i.e., modulus and shear strength, traffic, and climatic (i.e., temperature data. Computational modeling and sensitivity analyses were conducted through variation of the following two input variables with a focus on the top surfacing hot-mix asphalt (HMA layer: a tire inclination angle to simulate turning traffic, and, b dynamic loading to simulate accelerating, steady rolling, and decelerating (braking traffic. The generated maximum shear stress and vertical strain responses were then analyzed and correlated to the HMA material strength and the actual measured/observed field rutting performance data. The corresponding results indicated that inclined tires (simulating turning traffic and decelerating (braking vehicles induced the most severe shear stresses and vertical strains on the pavement structure in terms of magnitude (i.e., increased; exceeding the HMA material strength in some cases. Thus, for pavement design and structural analysis purposes, the following critical highway areas that may be subjected to extreme stresses and strains due to turning and stopping (braking traffic, particularly in high temperature environments, should be given more attention with respect to material strength characterization to mitigate potential shear/rutting failures: intersections, junctions; urban stop–go sections, and curves. Keywords: 3-D FE stress–strain modeling, Rutting, Shear deformation, Shear stress, Vertical strains

  6. Modelling traffic congestion using queuing networks

    Indian Academy of Sciences (India)

    Flow-density curves; uninterrupted traffic; Jackson networks. ... ness - also suffer from a big handicap vis-a-vis the Indian scenario: most of these models do .... more well-known queuing network models and onsite data, a more exact Road Cell ...

  7. GIS-based methods for establishing the datafoundation for traffic models

    DEFF Research Database (Denmark)

    Nielsen, Otto Anker

    1997-01-01

    Traffic models demand large amounts of data - some of which are: Traffic network topology, traffic network data, zone-data and trip matrices. GIS is a natural tool for handling most of these data as it can ease the work process and improve the quality control. However, traffic models demand a com......-plex topology not very well covered by the traditional GIS-topology. The paper describes a number of applications where ARC/INFO and ArcView have been used to automate the process of building a traffic network topology. The methodology has been used on a number of full-scale models, from medium sized urban...... areas to metropolitan areas (Copenhagen, Denmark and Bandung, Indonesia). The paper covers key subjects in the work process which has been eased considerably by using AML and Avenue scripts or by using the information from ARC/INFO in external applications:· Semi-automatic procedures for attaching zones...

  8. Parameter Estimation for Traffic Noise Models Using a Harmony Search Algorithm

    Directory of Open Access Journals (Sweden)

    Deok-Soon An

    2013-01-01

    Full Text Available A technique has been developed for predicting road traffic noise for environmental assessment, taking into account traffic volume as well as road surface conditions. The ASJ model (ASJ Prediction Model for Road Traffic Noise, 1999, which is based on the sound power level of the noise emitted by the interaction between the road surface and tires, employs regression models for two road surface types: dense-graded asphalt (DGA and permeable asphalt (PA. However, these models are not applicable to other types of road surfaces. Accordingly, this paper introduces a parameter estimation procedure for ASJ-based noise prediction models, utilizing a harmony search (HS algorithm. Traffic noise measurement data for four different vehicle types were used in the algorithm to determine the regression parameters for several road surface types. The parameters of the traffic noise prediction models were evaluated using another measurement set, and good agreement was observed between the predicted and measured sound power levels.

  9. A Wavelet Analysis Approach for Categorizing Air Traffic Behavior

    Science.gov (United States)

    Drew, Michael; Sheth, Kapil

    2015-01-01

    In this paper two frequency domain techniques are applied to air traffic analysis. The Continuous Wavelet Transform (CWT), like the Fourier Transform, is shown to identify changes in historical traffic patterns caused by Traffic Management Initiatives (TMIs) and weather with the added benefit of detecting when in time those changes take place. Next, with the expectation that it could detect anomalies in the network and indicate the extent to which they affect traffic flows, the Spectral Graph Wavelet Transform (SGWT) is applied to a center based graph model of air traffic. When applied to simulations based on historical flight plans, it identified the traffic flows between centers that have the greatest impact on either neighboring flows, or flows between centers many centers away. Like the CWT, however, it can be difficult to interpret SGWT results and relate them to simulations where major TMIs are implemented, and more research may be warranted in this area. These frequency analysis techniques can detect off-nominal air traffic behavior, but due to the nature of air traffic time series data, so far they prove difficult to apply in a way that provides significant insight or specific identification of traffic patterns.

  10. Effects of Car Accidents on Three-Lane Traffic Flow

    Directory of Open Access Journals (Sweden)

    Jianzhong Chen

    2014-01-01

    Full Text Available A three-lane traffic flow model is proposed to investigate the effect of car accidents on the traffic flow. The model is an extension of the full velocity difference (FVD model by taking into account the lane changing. The extended lane-changing rules are presented to model the lane-changing behaviour. The cases that the car accidents occupy the exterior or interior lane, the medium lane, and two lanes are studied by numerical simulations. The time-space diagrams and the current diagrams are presented, and the traffic jams are investigated. The results show that the car accident has a different effect on the traffic flow when it occupies different lanes. The car accidents have a more serious effect on the whole road when they occupy two lanes. The larger the density is, the greater the influence on the traffic flow becomes.

  11. Vehicle Modeling for Future Generation Transportation Simulation

    Science.gov (United States)

    2009-05-10

    Recent development of inter-vehicular wireless communication technologies have motivated many innovative applications aiming at significantly increasing traffic throughput and improving highway safety. Powerful traffic simulation is an indispensable ...

  12. Particle reduction strategies - PAREST. Evaluation of emission reduction scenarios using chemical transport calculations. Traffic model TREMOD and traffic model TREMOVE. Sub-report

    International Nuclear Information System (INIS)

    Stern, Rainer

    2013-01-01

    The calculation of transport emissions in PAREST project is made with traffic model TREMOD 4.17 (Transport Emission Model) used by the Federal Environment Agency based on the emission factors of HBEFA 2.1 (Handbook on Emission Factors for Road Traffic). For the PAREST reference scenario 2010-2020 (CLE scenario, ''current legislation'') TREMOD 4.17 was changed (TREMOD 4.17M) in such way that measures ''Introduction of Euro 5 and 6 limit levels for passenger cars and light commercial vehicles'', ''Introduction of a limit value stage Euro VI for heavy commercial vehicles'' and ''Existing truck tolls including promoting the purchase of low-emission heavy duty vehicles'' are integrated in the reference scenario and are no longer treated as an additional measure (Joerss et al., 2010). As an alternative to TREMOD 4.17M emission data sets were created for the project, in which the traffic emissions were calculated with the TREMOVE, version 2.7 (Kugler et al., 2010). TREMOVE is the traffic model used by the European Commission for the development of traffic scenarios. This report documents the differences between the immission distributions of PM10 and NO 2 , resulting from the application of the European transport model. Considered are the reference 2005, which describes the current state for the year 2005 and the 2020 reference that describes the emission state in 2020 to be achieved. [de

  13. Congestion transition in air traffic networks.

    Directory of Open Access Journals (Sweden)

    Bernardo Monechi

    Full Text Available Air Transportation represents a very interesting example of a complex techno-social system whose importance has considerably grown in time and whose management requires a careful understanding of the subtle interplay between technological infrastructure and human behavior. Despite the competition with other transportation systems, a growth of air traffic is still foreseen in Europe for the next years. The increase of traffic load could bring the current Air Traffic Network above its capacity limits so that safety standards and performances might not be guaranteed anymore. Lacking the possibility of a direct investigation of this scenario, we resort to computer simulations in order to quantify the disruptive potential of an increase in traffic load. To this end we model the Air Transportation system as a complex dynamical network of flights controlled by humans who have to solve potentially dangerous conflicts by redirecting aircraft trajectories. The model is driven and validated through historical data of flight schedules in a European national airspace. While correctly reproducing actual statistics of the Air Transportation system, e.g., the distribution of delays, the model allows for theoretical predictions. Upon an increase of the traffic load injected in the system, the model predicts a transition from a phase in which all conflicts can be successfully resolved, to a phase in which many conflicts cannot be resolved anymore. We highlight how the current flight density of the Air Transportation system is well below the transition, provided that controllers make use of a special re-routing procedure. While the congestion transition displays a universal scaling behavior, its threshold depends on the conflict solving strategy adopted. Finally, the generality of the modeling scheme introduced makes it a flexible general tool to simulate and control Air Transportation systems in realistic and synthetic scenarios.

  14. Congestion transition in air traffic networks.

    Science.gov (United States)

    Monechi, Bernardo; Servedio, Vito D P; Loreto, Vittorio

    2015-01-01

    Air Transportation represents a very interesting example of a complex techno-social system whose importance has considerably grown in time and whose management requires a careful understanding of the subtle interplay between technological infrastructure and human behavior. Despite the competition with other transportation systems, a growth of air traffic is still foreseen in Europe for the next years. The increase of traffic load could bring the current Air Traffic Network above its capacity limits so that safety standards and performances might not be guaranteed anymore. Lacking the possibility of a direct investigation of this scenario, we resort to computer simulations in order to quantify the disruptive potential of an increase in traffic load. To this end we model the Air Transportation system as a complex dynamical network of flights controlled by humans who have to solve potentially dangerous conflicts by redirecting aircraft trajectories. The model is driven and validated through historical data of flight schedules in a European national airspace. While correctly reproducing actual statistics of the Air Transportation system, e.g., the distribution of delays, the model allows for theoretical predictions. Upon an increase of the traffic load injected in the system, the model predicts a transition from a phase in which all conflicts can be successfully resolved, to a phase in which many conflicts cannot be resolved anymore. We highlight how the current flight density of the Air Transportation system is well below the transition, provided that controllers make use of a special re-routing procedure. While the congestion transition displays a universal scaling behavior, its threshold depends on the conflict solving strategy adopted. Finally, the generality of the modeling scheme introduced makes it a flexible general tool to simulate and control Air Transportation systems in realistic and synthetic scenarios.

  15. Mechanisms of jamming in the Nagel-Schreckenberg model for traffic flow

    Science.gov (United States)

    Bette, Henrik M.; Habel, Lars; Emig, Thorsten; Schreckenberg, Michael

    2017-01-01

    We study the Nagel-Schreckenberg cellular automata model for traffic flow by both simulations and analytical techniques. To better understand the nature of the jamming transition, we analyze the fraction of stopped cars P (v =0 ) as a function of the mean car density. We present a simple argument that yields an estimate for the free density where jamming occurs, and show satisfying agreement with simulation results. We demonstrate that the fraction of jammed cars P (v ∈{0 ,1 }) can be decomposed into the three factors (jamming rate, jam lifetime, and jam size) for which we derive, from random walk arguments, exponents that control their scaling close to the critical density.

  16. Modeling of speed distribution for mixed bicycle traffic flow

    Directory of Open Access Journals (Sweden)

    Cheng Xu

    2015-11-01

    Full Text Available Speed is a fundamental measure of traffic performance for highway systems. There were lots of results for the speed characteristics of motorized vehicles. In this article, we studied the speed distribution for mixed bicycle traffic which was ignored in the past. Field speed data were collected from Hangzhou, China, under different survey sites, traffic conditions, and percentages of electric bicycle. The statistics results of field data show that the total mean speed of electric bicycles is 17.09 km/h, 3.63 km/h faster and 27.0% higher than that of regular bicycles. Normal, log-normal, gamma, and Weibull distribution models were used for testing speed data. The results of goodness-of-fit hypothesis tests imply that the log-normal and Weibull model can fit the field data very well. Then, the relationships between mean speed and electric bicycle proportions were proposed using linear regression models, and the mean speed for purely electric bicycles or regular bicycles can be obtained. The findings of this article will provide effective help for the safety and traffic management of mixed bicycle traffic.

  17. User guide for the Air Force Base Automotive Transportation Simulation Model - BATS. Volume 2. Documentation. Final report Jun 78-Sep 79

    Energy Technology Data Exchange (ETDEWEB)

    Sandys, R.

    1979-09-01

    The Base Automotive Transportation Simulation (BATS) Model is a transportation planning and traffic flow model designed to simulate traffic volumes and flows on an air base. The principal model inputs are a road network, land use zones, demographic varibles, and gate counts. The land use zones and demographic variables are used to assign volumes to the road network, and these volumes are calibrated using the gate counts. The flow characteristics on each road in the network are simulated using the volumes assigned. Average speed and volumes are the results of the model and these may be directly input to the Air Quality Assessment Model (AQAM) to estimate pollutant emissions and dispersion from traffic sources. A volume flow plot of the network is an optional output of the model.

  18. Lane Changing and Lane Utilization Behavior for Three Lane Normal Section in Iraq Traffic Sites

    Directory of Open Access Journals (Sweden)

    Hamid Athab Eedan Al-Jameel

    2017-05-01

    Full Text Available Recently, different programs or methods have been produced to solve the traffic problem everywhere in the world. Iraq is one of the countries which suffer from high problems in traffic operation, design and planning. Therefore, to use the sophisticated traffic programs or models such as simulation models there is an urgent need to investigate specified field parameters which correspond to calibrated parameters used in the model under study. This study has focused on studying driver behavior which represents the core stone in a traffic simulation. This behavior represents lane changing (LC and lane utilization (LU in normal sections. Three normal sections with three lanes have been selected in different sites in Iraq: two sites in Al-Najaf city and one site in Al-Muthna city. The results of data analysis show that the driver behavior in both LC and LU is similar to the behavior in the UK. The current observed data could be used for the calibration process for any traffic simulation model in order to mimic the reality of Iraqi drivers.

  19. Modeling the weather impact on aviation in a global air traffic model

    Science.gov (United States)

    Himmelsbach, S.; Hauf, T.; Rokitansky, C. H.

    2009-09-01

    Weather has a strong impact on aviation safety and efficiency. For a better understanding of that impact, especially of thunderstorms and similar other severe hazards, we pursued a modeling approach. We used the detailed simulation software (NAVSIM) of worldwide air traffic, developed by Rokitansky [Eurocontrol, 2005] and implemented a specific weather module. NAVSIM models each aircraft with its specific performance characteristics separately along preplanned and prescribed routes. The specific weather module in its current version simulates a thunderstorm as an impenetrable 3D object, which forces an aircraft to circumvent the latter. We refer to that object in general terms as a weather object. The Cb-weather object, as a specific weather object, is a heuristic model of a real thunderstorm, with its characteristics based on actually observed satellite and precipitation radar data. It is comprised of an upper volume, mostly the anvil, and a bottom volume, the up- and downdrafts and the lower outflow area [Tafferner and Forster, 2009; Kober and Tafferner 2009; Zinner et al, 2008]. The Cb-weather object is already implemented in NAVSIM, other weather objects like icing and turbulence will follow. This combination of NAVSIM with a weather object allows a detailed investigation of situations where conflicts exist between planned flight routes and adverse weather. The first objective is to simulate the observed circum-navigation in NAVSIM. Real occurring routes will be compared with simulated ones. Once this has successfully completed, NAVSIM offers a platform to assess existing rules and develop more efficient strategies to cope with adverse weather. An overview will be given over the implementation status of weather objects within NAVSIM and first results will be presented. Cb-object data provision by A. Tafferner, C. Forster, T. Zinner, K. Kober, M. Hagen (DLR Oberpfaffenhofen) is greatly acknowledged. References: Eurocontrol, VDL Mode 2 Capacity Analysis through

  20. Physics of traffic gridlock in a city.

    Science.gov (United States)

    Kerner, Boris S

    2011-10-01

    Based on simulations of stochastic three-phase and two-phase traffic flow models, we reveal that at a signalized city intersection under small link inflow rates at which a vehicle queue developed during the red phase of the light signal dissolves fully during the green phase, i.e., no traffic gridlock should be expected, nevertheless, spontaneous traffic breakdown with subsequent city gridlock occurs with some probability after a random time delay. In most cases, this traffic breakdown is initiated by a phase transition from free flow to a synchronized flow occurring upstream of the queue at the light signal. The probability of traffic breakdown at the light signal is an increasing function of the link inflow rate and duration of the red phase of the light signal.

  1. Big Data-Driven Based Real-Time Traffic Flow State Identification and Prediction

    Directory of Open Access Journals (Sweden)

    Hua-pu Lu

    2015-01-01

    Full Text Available With the rapid development of urban informatization, the era of big data is coming. To satisfy the demand of traffic congestion early warning, this paper studies the method of real-time traffic flow state identification and prediction based on big data-driven theory. Traffic big data holds several characteristics, such as temporal correlation, spatial correlation, historical correlation, and multistate. Traffic flow state quantification, the basis of traffic flow state identification, is achieved by a SAGA-FCM (simulated annealing genetic algorithm based fuzzy c-means based traffic clustering model. Considering simple calculation and predictive accuracy, a bilevel optimization model for regional traffic flow correlation analysis is established to predict traffic flow parameters based on temporal-spatial-historical correlation. A two-stage model for correction coefficients optimization is put forward to simplify the bilevel optimization model. The first stage model is built to calculate the number of temporal-spatial-historical correlation variables. The second stage model is present to calculate basic model formulation of regional traffic flow correlation. A case study based on a real-world road network in Beijing, China, is implemented to test the efficiency and applicability of the proposed modeling and computing methods.

  2. Using spatial context to support prospective memory in simulated air traffic control.

    Science.gov (United States)

    Loft, Shayne; Finnerty, Dannielle; Remington, Roger W

    2011-12-01

    The aim was to examine whether prospective memory error and response costs to ongoing tasks in an air traffic control simulation could be reduced by providing spatial context. Prospective memory refers to remembering to perform an intended action at an appropriate point in the future. Failures of prospective memory can occur in air traffic control. For this study, three conditions of participants performed an air traffic control task that required them to accept and hand off aircraft and to prevent conflicts. The prospective memory task required participants to remember to press an alternative key rather than the routine key when accepting target aircraft. A red line separated the display into upper and lower regions. Participants in the context condition were told that the prospective memory instruction would apply only to aircraft approaching from one region (upper or lower). Those in the standard condition were not provided this information. In the control condition, participants did not have to perform the prospective memory task. In the context condition, participants made fewer prospective memory errors than did those in the standard condition and made faster acceptance decisions for aircraft approaching from irrelevant compared with relevant regions. Costs to hand-off decision time were also reduced in the context condition. Spatial context provided no benefit to conflict detection. Participants could partially localize their allocation of attentional resources to the prospective memory task to relevant display regions. The findings are potentially applicable to air traffic control, whereby regularities in airspace structure and standard traffic flows allow controllers to anticipate the location of specific air traffic events.

  3. 11th Traffic and Granular Flow Conference

    CERN Document Server

    Daamen, Winnie

    2016-01-01

    The Conference on Traffic and Granular Flow brings together international researchers from different fields ranging from physics to computer science and engineering to discuss the latest developments in traffic-related systems. Originally conceived to facilitate new ideas by considering the similarities of traffic and granular flow, TGF'15, organised by Delft University of Technology, now covers a broad range of topics related to driven particle and transport systems. Besides the classical topics of granular flow and highway traffic, its scope includes data transport (Internet traffic), pedestrian and evacuation dynamics, intercellular transport, swarm behaviour and the collective dynamics of other biological systems. Recent advances in modelling, computer simulation and phenomenology are presented, and prospects for applications, for example to traffic control, are discussed. The conference explores the interrelations between the above-mentioned fields and offers the opportunity to stimulate interdisciplinar...

  4. Wave dynamics in an extended macroscopic traffic flow model with periodic boundaries

    Science.gov (United States)

    Wang, Yu-Qing; Chu, Xing-Jian; Zhou, Chao-Fan; Yan, Bo-Wen; Jia, Bin; Fang, Chen-Hao

    2018-06-01

    Motivated by the previous traffic flow model considering the real-time traffic state, a modified macroscopic traffic flow model is established. The periodic boundary condition is applied to the car-following model. Besides, the traffic state factor R is defined in order to correct the real traffic conditions in a more reasonable way. It is a key step that we introduce the relaxation time as a density-dependent function and provide corresponding evolvement of traffic flow. Three different typical initial densities, namely the high density, the medium one and the low one, are intensively investigated. It can be found that the hysteresis loop exists in the proposed periodic-boundary system. Furthermore, the linear and nonlinear stability analyses are performed in order to test the robustness of the system.

  5. Delay-feedback control strategy for reducing CO2 emission of traffic flow system

    Science.gov (United States)

    Zhang, Li-Dong; Zhu, Wen-Xing

    2015-06-01

    To study the signal control strategy for reducing traffic emission theoretically, we first presented a kind of discrete traffic flow model with relative speed term based on traditional coupled map car-following model. In the model, the relative speed difference between two successive running cars is incorporated into following vehicle's acceleration running equation. Then we analyzed its stability condition with discrete control system stability theory. Third, we designed a delay-feedback controller to suppress traffic jam and decrease traffic emission based on modern controller theory. Last, numerical simulations are made to support our theoretical results, including the comparison of models' stability analysis, the influence of model type and signal control on CO2 emissions. The results show that the temporal behavior of our model is superior to other models, and the traffic signal controller has good effect on traffic jam suppression and traffic CO2 emission, which fully supports the theoretical conclusions.

  6. Fine-Tuning ADAS Algorithm Parameters for Optimizing Traffic ...

    Science.gov (United States)

    With the development of the Connected Vehicle technology that facilitates wirelessly communication among vehicles and road-side infrastructure, the Advanced Driver Assistance Systems (ADAS) can be adopted as an effective tool for accelerating traffic safety and mobility optimization at various highway facilities. To this end, the traffic management centers identify the optimal ADAS algorithm parameter set that enables the maximum improvement of the traffic safety and mobility performance, and broadcast the optimal parameter set wirelessly to individual ADAS-equipped vehicles. After adopting the optimal parameter set, the ADAS-equipped drivers become active agents in the traffic stream that work collectively and consistently to prevent traffic conflicts, lower the intensity of traffic disturbances, and suppress the development of traffic oscillations into heavy traffic jams. Successful implementation of this objective requires the analysis capability of capturing the impact of the ADAS on driving behaviors, and measuring traffic safety and mobility performance under the influence of the ADAS. To address this challenge, this research proposes a synthetic methodology that incorporates the ADAS-affected driving behavior modeling and state-of-the-art microscopic traffic flow modeling into a virtually simulated environment. Building on such an environment, the optimal ADAS algorithm parameter set is identified through an optimization programming framework to enable th

  7. The effect of diffusion in a new viscous continuum traffic model

    International Nuclear Information System (INIS)

    Yu Lei; Li Tong; Shi Zhongke

    2010-01-01

    In this Letter, we propose a new continuum traffic model with a viscous term. The linear stability condition for viscous shock waves is derived. We derive the Korteweg-de Vries (KdV) equation near the neutral stability line. Then we investigate the effect of the viscous term by numerical simulations. The results show that viscosity may induce oscillations and the amplitude of the oscillation increases as the viscosity coefficient increases. This agrees with the linear stability condition. The local clusters are compressed by increasing the viscosity coefficient in the cluster study.

  8. The effect of diffusion in a new viscous continuum traffic model

    Energy Technology Data Exchange (ETDEWEB)

    Yu Lei, E-mail: yuleijk@126.co [College of Automation, Northwestern Polytechnical University, Xi' an, ShaanXi (China); Li Tong [Department of Mathematics, University of Iowa, Iowa City, IA (United States); Shi Zhongke [College of Automation, Northwestern Polytechnical University, Xi' an, ShaanXi (China)

    2010-05-10

    In this Letter, we propose a new continuum traffic model with a viscous term. The linear stability condition for viscous shock waves is derived. We derive the Korteweg-de Vries (KdV) equation near the neutral stability line. Then we investigate the effect of the viscous term by numerical simulations. The results show that viscosity may induce oscillations and the amplitude of the oscillation increases as the viscosity coefficient increases. This agrees with the linear stability condition. The local clusters are compressed by increasing the viscosity coefficient in the cluster study.

  9. MODELS OF AIR TRAFFIC CONTROLLERS ERRORS PREVENTION IN TERMINAL CONTROL AREAS UNDER UNCERTAINTY CONDITIONS

    Directory of Open Access Journals (Sweden)

    Volodymyr Kharchenko

    2017-03-01

    Full Text Available Purpose: the aim of this study is to research applied models of air traffic controllers’ errors prevention in terminal control areas (TMA under uncertainty conditions. In this work the theoretical framework descripting safety events and errors of air traffic controllers connected with the operations in TMA is proposed. Methods: optimisation of terminal control area formal description based on the Threat and Error management model and the TMA network model of air traffic flows. Results: the human factors variables associated with safety events in work of air traffic controllers under uncertainty conditions were obtained. The Threat and Error management model application principles to air traffic controller operations and the TMA network model of air traffic flows were proposed. Discussion: Information processing context for preventing air traffic controller errors, examples of threats in work of air traffic controllers, which are relevant for TMA operations under uncertainty conditions.

  10. Macroscopic models for traffic safety.

    NARCIS (Netherlands)

    Oppe, S.

    1988-01-01

    Recently there has been an increased interest in the application of macroscopic models for the description of developments in traffic safety. A discussion was started on the causes of the sudden decrease in the number of fatal and injury accidents after 1974. Before that time these numbers had

  11. A critical review of principal traffic noise models: Strategies and implications

    Energy Technology Data Exchange (ETDEWEB)

    Garg, Naveen, E-mail: ngarg@mail.nplindia.ernet.in [Apex Level Standards and Industrial Metrology Division, CSIR-National Physical Laboratory, New Delhi 110012 (India); Department of Mechanical, Production and Industrial Engineering, Delhi Technological University, Delhi 110042 (India); Maji, Sagar [Department of Mechanical, Production and Industrial Engineering, Delhi Technological University, Delhi 110042 (India)

    2014-04-01

    The paper presents an exhaustive comparison of principal traffic noise models adopted in recent years in developed nations. The comparison is drawn on the basis of technical attributes including source modelling and sound propagation algorithms. Although the characterization of source in terms of rolling and propulsion noise in conjunction with advanced numerical methods for sound propagation has significantly reduced the uncertainty in traffic noise predictions, the approach followed is quite complex and requires specialized mathematical skills for predictions which is sometimes quite cumbersome for town planners. Also, it is sometimes difficult to follow the best approach when a variety of solutions have been proposed. This paper critically reviews all these aspects pertaining to the recent models developed and adapted in some countries and also discusses the strategies followed and implications of these models. - Highlights: • Principal traffic noise models developed are reviewed. • Sound propagation algorithms used in traffic noise models are compared. • Implications of models are discussed.

  12. Evolutionary Agent-Based Simulation of the Introduction of New Technologies in Air Traffic Management

    Science.gov (United States)

    Yliniemi, Logan; Agogino, Adrian K.; Tumer, Kagan

    2014-01-01

    Accurate simulation of the effects of integrating new technologies into a complex system is critical to the modernization of our antiquated air traffic system, where there exist many layers of interacting procedures, controls, and automation all designed to cooperate with human operators. Additions of even simple new technologies may result in unexpected emergent behavior due to complex human/ machine interactions. One approach is to create high-fidelity human models coming from the field of human factors that can simulate a rich set of behaviors. However, such models are difficult to produce, especially to show unexpected emergent behavior coming from many human operators interacting simultaneously within a complex system. Instead of engineering complex human models, we directly model the emergent behavior by evolving goal directed agents, representing human users. Using evolution we can predict how the agent representing the human user reacts given his/her goals. In this paradigm, each autonomous agent in a system pursues individual goals, and the behavior of the system emerges from the interactions, foreseen or unforeseen, between the agents/actors. We show that this method reflects the integration of new technologies in a historical case, and apply the same methodology for a possible future technology.

  13. Optimized Sensor Network and Multi-Agent Decision Support for Smart Traffic Light Management.

    Science.gov (United States)

    Cruz-Piris, Luis; Rivera, Diego; Fernandez, Susel; Marsa-Maestre, Ivan

    2018-02-02

    One of the biggest challenges in modern societies is to solve vehicular traffic problems. Sensor networks in traffic environments have contributed to improving the decision-making process of Intelligent Transportation Systems. However, one of the limiting factors for the effectiveness of these systems is in the deployment of sensors to provide accurate information about the traffic. Our proposal is using the centrality measurement of a graph as a base to locate the best locations for sensor installation in a traffic network. After integrating these sensors in a simulation scenario, we define a Multi-Agent Systems composed of three types of agents: traffic light management agents, traffic jam detection agents, and agents that control the traffic lights at an intersection. The ultimate goal of these Multi-Agent Systems is to improve the trip duration for vehicles in the network. To validate our solution, we have developed the needed elements for modelling the sensors and agents in the simulation environment. We have carried out experiments using the Simulation of Urban MObility (SUMO) traffic simulator and the Travel and Activity PAtterns Simulation (TAPAS) Cologne traffic scenario. The obtained results show that our proposal allows to reduce the sensor network while still obtaining relevant information to have a global view of the environment. Finally, regarding the Multi-Agent Systems, we have carried out experiments that show that our proposal is able to improve other existing solutions such as conventional traffic light management systems (static or dynamic) in terms of reduction of vehicle trip duration and reduction of the message exchange overhead in the sensor network.

  14. Work Practice Simulation of Complex Human-Automation Systems in Safety Critical Situations: The Brahms Generalized berlingen Model

    Science.gov (United States)

    Clancey, William J.; Linde, Charlotte; Seah, Chin; Shafto, Michael

    2013-01-01

    The transition from the current air traffic system to the next generation air traffic system will require the introduction of new automated systems, including transferring some functions from air traffic controllers to on­-board automation. This report describes a new design verification and validation (V&V) methodology for assessing aviation safety. The approach involves a detailed computer simulation of work practices that includes people interacting with flight-critical systems. The research is part of an effort to develop new modeling and verification methodologies that can assess the safety of flight-critical systems, system configurations, and operational concepts. The 2002 Ueberlingen mid-air collision was chosen for analysis and modeling because one of the main causes of the accident was one crew's response to a conflict between the instructions of the air traffic controller and the instructions of TCAS, an automated Traffic Alert and Collision Avoidance System on-board warning system. It thus furnishes an example of the problem of authority versus autonomy. It provides a starting point for exploring authority/autonomy conflict in the larger system of organization, tools, and practices in which the participants' moment-by-moment actions take place. We have developed a general air traffic system model (not a specific simulation of Überlingen events), called the Brahms Generalized Ueberlingen Model (Brahms-GUeM). Brahms is a multi-agent simulation system that models people, tools, facilities/vehicles, and geography to simulate the current air transportation system as a collection of distributed, interactive subsystems (e.g., airports, air-traffic control towers and personnel, aircraft, automated flight systems and air-traffic tools, instruments, crew). Brahms-GUeM can be configured in different ways, called scenarios, such that anomalous events that contributed to the Überlingen accident can be modeled as functioning according to requirements or in an

  15. Engineering modeling of traffic noise in shielded areas in cities.

    Science.gov (United States)

    Salomons, Erik M; Polinder, Henk; Lohman, Walter J A; Zhou, Han; Borst, Hieronymous C; Miedema, Henk M E

    2009-11-01

    A computational study of road traffic noise in cities is presented. Based on numerical boundary-element calculations of canyon-to-canyon propagation, an efficient engineering algorithm is developed to calculate the effect of multiple reflections in street canyons. The algorithm is supported by a room-acoustical analysis of the reverberant sound fields in the source and receiver canyons. Using the algorithm, a simple model for traffic noise in cities is developed. Noise maps and exposure distributions of the city of Amsterdam are calculated with the model, and for comparison also with an engineering model that is currently used for traffic noise impact assessments in cities. Considerable differences between the two model predictions are found for shielded buildings with day-evening-night levels of 40-60 dB at the facades. Further, an analysis is presented of level differences between the most and the least exposed facades of buildings. Large level differences are found for buildings directly exposed to traffic noise from nearby roads. It is shown that by a redistribution of traffic flow around these buildings, one can achieve low sound levels at quiet sides and a corresponding reduction in the percentage of highly annoyed inhabitants from typically 23% to 18%.

  16. PASSENGER TRAFFIC MOVEMENT MODELLING BY THE CELLULAR-AUTOMAT APPROACH

    Directory of Open Access Journals (Sweden)

    T. Mikhaylovskaya

    2009-01-01

    Full Text Available The mathematical model of passenger traffic movement developed on the basis of the cellular-automat approach is considered. The program realization of the cellular-automat model of pedastrians streams movement in pedestrian subways at presence of obstacles, at subway structure narrowing is presented. The optimum distances between the obstacles and the angle of subway structure narrowing providing pedastrians stream safe movement and traffic congestion occurance are determined.

  17. Nonlinear stability of traffic models and the use of Lyapunov vectors for estimating the traffic state

    Science.gov (United States)

    Palatella, Luigi; Trevisan, Anna; Rambaldi, Sandro

    2013-08-01

    Valuable information for estimating the traffic flow is obtained with current GPS technology by monitoring position and velocity of vehicles. In this paper, we present a proof of concept study that shows how the traffic state can be estimated using only partial and noisy data by assimilating them in a dynamical model. Our approach is based on a data assimilation algorithm, developed by the authors for chaotic geophysical models, designed to be equivalent but computationally much less demanding than the traditional extended Kalman filter. Here we show that the algorithm is even more efficient if the system is not chaotic and demonstrate by numerical experiments that an accurate reconstruction of the complete traffic state can be obtained at a very low computational cost by monitoring only a small percentage of vehicles.

  18. Film traffic queueing model for the DUMC radiology department

    International Nuclear Information System (INIS)

    Humphrey, L.M.; Ravin, C.E.

    1988-01-01

    This paper discusses the radiology department traffic model for Duke University Medical Center (DUMC) which simulates the flow of film through the department, and then incorporates the effect of introducing a PACS-type system into present operations. Each Radiology Section is considered separately for queuing of two types of film: old film (from previous exams) and new film (from the present exam). The amount of film in each queue at any time is controlled by controlling hours of operation, service times, delay, and arrival rates. The model also takes into account the use of film in each major radiology area. This gives some idea of the load on a device in that area as well as the amount of storage needed to adequately handle its daily load is local storage at the display device is desired

  19. Enhanced Contact Graph Routing (ECGR) MACHETE Simulation Model

    Science.gov (United States)

    Segui, John S.; Jennings, Esther H.; Clare, Loren P.

    2013-01-01

    Contact Graph Routing (CGR) for Delay/Disruption Tolerant Networking (DTN) space-based networks makes use of the predictable nature of node contacts to make real-time routing decisions given unpredictable traffic patterns. The contact graph will have been disseminated to all nodes before the start of route computation. CGR was designed for space-based networking environments where future contact plans are known or are independently computable (e.g., using known orbital dynamics). For each data item (known as a bundle in DTN), a node independently performs route selection by examining possible paths to the destination. Route computation could conceivably run thousands of times a second, so computational load is important. This work refers to the simulation software model of Enhanced Contact Graph Routing (ECGR) for DTN Bundle Protocol in JPL's MACHETE simulation tool. The simulation model was used for performance analysis of CGR and led to several performance enhancements. The simulation model was used to demonstrate the improvements of ECGR over CGR as well as other routing methods in space network scenarios. ECGR moved to using earliest arrival time because it is a global monotonically increasing metric that guarantees the safety properties needed for the solution's correctness since route re-computation occurs at each node to accommodate unpredicted changes (e.g., traffic pattern, link quality). Furthermore, using earliest arrival time enabled the use of the standard Dijkstra algorithm for path selection. The Dijkstra algorithm for path selection has a well-known inexpensive computational cost. These enhancements have been integrated into the open source CGR implementation. The ECGR model is also useful for route metric experimentation and comparisons with other DTN routing protocols particularly when combined with MACHETE's space networking models and Delay Tolerant Link State Routing (DTLSR) model.

  20. A new modelling approach for road traffic emissions: VERSIT+

    NARCIS (Netherlands)

    Smit, R.; Smokers, R.T.M.; Rabé, E.L.M.

    2007-01-01

    The objective of VERSIT+ LD is to predict traffic stream emissions for light-duty vehicles in any particular traffic situation. With respect to hot running emissions, VERSIT+ LD consists of a set of statistical models for detailed vehicle categories that have been constructed using multiple linear

  1. A Hidden Markov Model for Urban-Scale Traffic Estimation Using Floating Car Data.

    Science.gov (United States)

    Wang, Xiaomeng; Peng, Ling; Chi, Tianhe; Li, Mengzhu; Yao, Xiaojing; Shao, Jing

    2015-01-01

    Urban-scale traffic monitoring plays a vital role in reducing traffic congestion. Owing to its low cost and wide coverage, floating car data (FCD) serves as a novel approach to collecting traffic data. However, sparse probe data represents the vast majority of the data available on arterial roads in most urban environments. In order to overcome the problem of data sparseness, this paper proposes a hidden Markov model (HMM)-based traffic estimation model, in which the traffic condition on a road segment is considered as a hidden state that can be estimated according to the conditions of road segments having similar traffic characteristics. An algorithm based on clustering and pattern mining rather than on adjacency relationships is proposed to find clusters with road segments having similar traffic characteristics. A multi-clustering strategy is adopted to achieve a trade-off between clustering accuracy and coverage. Finally, the proposed model is designed and implemented on the basis of a real-time algorithm. Results of experiments based on real FCD confirm the applicability, accuracy, and efficiency of the model. In addition, the results indicate that the model is practicable for traffic estimation on urban arterials and works well even when more than 70% of the probe data are missing.

  2. Traffic experiment reveals the nature of car-following.

    Science.gov (United States)

    Jiang, Rui; Hu, Mao-Bin; Zhang, H M; Gao, Zi-You; Jia, Bin; Wu, Qing-Song; Wang, Bing; Yang, Ming

    2014-01-01

    As a typical self-driven many-particle system far from equilibrium, traffic flow exhibits diverse fascinating non-equilibrium phenomena, most of which are closely related to traffic flow stability and specifically the growth/dissipation pattern of disturbances. However, the traffic theories have been controversial due to a lack of precise traffic data. We have studied traffic flow from a new perspective by carrying out large-scale car-following experiment on an open road section, which overcomes the intrinsic deficiency of empirical observations. The experiment has shown clearly the nature of car-following, which runs against the traditional traffic flow theory. Simulations show that by removing the fundamental notion in the traditional car-following models and allowing the traffic state to span a two-dimensional region in velocity-spacing plane, the growth pattern of disturbances has changed qualitatively and becomes qualitatively or even quantitatively in consistent with that observed in the experiment.

  3. Modeling no-jam traffic in ant trails: a pheromone-controlled approach

    Science.gov (United States)

    Guo, Ning; Hu, Mao-Bin; Jiang, Rui; Ding, Jianxun; Ling, Xiang

    2018-05-01

    The experiment in John et al (2009 Phys. Rev. Lett. 102 108001) shows that when ants move in a single-file trail, no jam emerges even at very high densities. We propose a self-propelled model of ant traffic to reproduce the fundamental diagram without a jammed branch. In this model, ants can adjust their desired velocities actively by perceiving pheromone concentration near the front of the trail. Moreover, ants will bear the repulsive force when they have physical contact with neighbors. The velocity in the simulation decreases slightly with increasing density, which captures the main feature observed in the experiment. Distributions of velocity and distance headway basically also conform to the experimental ones.

  4. Obtaining traffic information by urban air quality inspection

    International Nuclear Information System (INIS)

    Federico, G; Simone, A.; Simone, A.; Traverso, M.; Nicolosi, S.

    2006-01-01

    Transportation and its environmental impacts are a major component of urban environmental management. At the same time, transportation and mobility are an important part of urban economics and quality of life. To analyze urban transportation and its environmental impacts, a comprehensive, interdisciplinary approach is needed. Unfortunately, theoretical works about traffic flow and pollutant dynamic have independently evolved, rarely meeting contact points. Our works aims to provide a contribution in linking traffic flow and pollutant dynamic by proponing a new traffic model, able to calculate the number of running vehicles, once the ground level of an arbitrary pollutant concentration is know. The validation and simulation of this model is made possible by the training of an adaptive.(Author)

  5. A Bayes Theory-Based Modeling Algorithm to End-to-end Network Traffic

    OpenAIRE

    Zhao Hong-hao; Meng Fan-bo; Zhao Si-wen; Zhao Si-hang; Lu Yi

    2016-01-01

    Recently, network traffic has exponentially increasing due to all kind of applications, such as mobile Internet, smart cities, smart transportations, Internet of things, and so on. the end-to-end network traffic becomes more important for traffic engineering. Usually end-to-end traffic estimation is highly difficult. This paper proposes a Bayes theory-based method to model the end-to-end network traffic. Firstly, the end-to-end network traffic is described as a independent identically distrib...

  6. AN AUTOMATED RAILWAY STATION TRAFFIC CONTROL SYSTEM

    African Journals Online (AJOL)

    user

    2017-01-01

    Jan 1, 2017 ... Software simulation was carried out using the Proteus virtual system modeling ... system which helps in track switching and level crossing gate traffic control is capable of improving reliability, speed, .... Lane Switching Network.

  7. Bi-directional approach for logical traffic isolation forensic model

    CSIR Research Space (South Africa)

    Dlamini, I

    2009-08-01

    Full Text Available -it-as-you-can" system, which seizes all packets passing through a certain traffic point, captures and writes them to the storage. The main aim of this paper is to address some of the challenges faced by the Logical Traffic Isolation (LTI) model, more specifically...

  8. Strategic Air Traffic Planning Using Eulerian Route Based Modeling and Optimization

    Science.gov (United States)

    Bombelli, Alessandro

    Due to a soaring air travel growth in the last decades, air traffic management has become increasingly challenging. As a consequence, planning tools are being devised to help human decision-makers achieve a better management of air traffic. Planning tools are divided into two categories, strategic and tactical. Strategic planning generally addresses a larger planning domain and is performed days to hours in advance. Tactical planning is more localized and is performed hours to minutes in advance. An aggregate route model for strategic air traffic flow management is presented. It is an Eulerian model, describing the flow between cells of unidirectional point-to-point routes. Aggregate routes are created from flight trajectory data based on similarity measures. Spatial similarity is determined using the Frechet distance. The aggregate routes approximate actual well-traveled traffic patterns. By specifying the model resolution, an appropriate balance between model accuracy and model dimension can be achieved. For a particular planning horizon, during which weather is expected to restrict the flow, a procedure for designing airborne reroutes and augmenting the traffic flow model is developed. The dynamics of the traffic flow on the resulting network take the form of a discrete-time, linear time-invariant system. The traffic flow controls are ground holding, pre-departure rerouting and airborne rerouting. Strategic planning--determining how the controls should be used to modify the future traffic flow when local capacity violations are anticipated--is posed as an integer programming problem of minimizing a weighted sum of flight delays subject to control and capacity constraints. Several tests indicate the effectiveness of the modeling and strategic planning approach. In the final, most challenging, test, strategic planning is demonstrated for the six western-most Centers of the 22-Center national airspace. The planning time horizon is four hours long, and there is

  9. Longitudinal hopping in intervehicle communication: Theory and simulations on modeled and empirical trajectory data

    Science.gov (United States)

    Thiemann, Christian; Treiber, Martin; Kesting, Arne

    2008-09-01

    Intervehicle communication enables vehicles to exchange messages within a limited broadcast range and thus self-organize into dynamical and geographically embedded wireless ad hoc networks. We study the longitudinal hopping mode in which messages are transported using equipped vehicles driving in the same direction as a relay. Given a finite communication range, we investigate the conditions where messages can percolate through the network, i.e., a linked chain of relay vehicles exists between the sender and receiver. We simulate message propagation in different traffic scenarios and for different fractions of equipped vehicles. Simulations are done with both, modeled and empirical traffic data. These results are used to test the limits of applicability of an analytical model assuming a Poissonian distance distribution between the relays. We found a good agreement for homogeneous traffic scenarios and sufficiently low percentages of equipped vehicles. For higher percentages, the observed connectivity was higher than that of the model while in stop-and-go traffic situations it was lower. We explain these results in terms of correlations of the distances between the relay vehicles. Finally, we introduce variable transmission ranges and found that this additional stochastic component generally increased connectivity compared to a deterministic transmission with the same mean.

  10. MoTiV - Mobility and transport in intermodal traffic. Mobility in urban areas. 'SIM-simulation models'. Final report; Mobilitaet und Transport im intermodalen Verkehr (MoTiV). Mobilitaet im Ballungsraum. 'SIM-Simulationsmodell'. Abschlussbericht

    Energy Technology Data Exchange (ETDEWEB)

    Konhaeuser, P.

    2000-11-23

    Today, modelling and simulation of traffic flow is used for the design and investigation of new systems, in particular for driver assistance and especially for on-line applications for the reconstruction of traffic state. In the project existing software tools were improved, refined and adapted for special applications in the joined project MoTiV. An emphasis was the development, provision and application of robust techniques for the traffic state estimation at existing line control equipment, where measured traffic data have been used as input. A further emphasis was the development of a model for the traffic in urban areas and the application of this model for the design and optimisation of co-ordinated control of light signal units. In this application modern control techniques and also agent-based techniques were used. Significant results are the design of controllers for ACC systems, the sensor simulations for the project ASA (turning and lane changing assistance) and the methods of the model coupling for applications of the incident detection. A highlight was the on-line application of different methods and techniques for the reconstruction of speed and density profiles and the tools for the incident detection in the context of the COMPANION system which was installed at the German highway A92. For the final demonstration in Goettingen, single vehicle data were collected with help of induction loops at the test site A92. These data were transmitted to the demonstration site, where the processing and visualisation was conducted. To get a good visual impression about the traffic states and to compare the results, a transmission of video images was transmitted parallel to the traffic data. (orig.) [German] Die Modellierung und Simulation von Verkehrsablaeufen wird heute zur Auslegung und Untersuchung von neuen Systemen, insbesondere auch Fahrerassistenzsystemen und speziell fuer On-Line-Anwendungen zur Rekonstruktion von Verkehrszustaenden (Verkehrslagen

  11. Optimized Sensor Network and Multi-Agent Decision Support for Smart Traffic Light Management

    Directory of Open Access Journals (Sweden)

    Luis Cruz-Piris

    2018-02-01

    Full Text Available One of the biggest challenges in modern societies is to solve vehicular traffic problems. Sensor networks in traffic environments have contributed to improving the decision-making process of Intelligent Transportation Systems. However, one of the limiting factors for the effectiveness of these systems is in the deployment of sensors to provide accurate information about the traffic. Our proposal is using the centrality measurement of a graph as a base to locate the best locations for sensor installation in a traffic network. After integrating these sensors in a simulation scenario, we define a Multi-Agent Systems composed of three types of agents: traffic light management agents, traffic jam detection agents, and agents that control the traffic lights at an intersection. The ultimate goal of these Multi-Agent Systems is to improve the trip duration for vehicles in the network. To validate our solution, we have developed the needed elements for modelling the sensors and agents in the simulation environment. We have carried out experiments using the Simulation of Urban MObility (SUMO traffic simulator and the Travel and Activity PAtterns Simulation (TAPAS Cologne traffic scenario. The obtained results show that our proposal allows to reduce the sensor network while still obtaining relevant information to have a global view of the environment. Finally, regarding the Multi-Agent Systems, we have carried out experiments that show that our proposal is able to improve other existing solutions such as conventional traffic light management systems (static or dynamic in terms of reduction of vehicle trip duration and reduction of the message exchange overhead in the sensor network.

  12. Automated Air Traffic Control Operations with Weather and Time-Constraints: A First Look at (Simulated) Far-Term Control Room Operations

    Science.gov (United States)

    Prevot, Thomas; Homola, Jeffrey R.; Martin, Lynne H.; Mercer, Joey S.; Cabrall, Christopher C.

    2011-01-01

    In this paper we discuss results from a recent high fidelity simulation of air traffic control operations with automated separation assurance in the presence of weather and time-constraints. We report findings from a human-in-the-loop study conducted in the Airspace Operations Laboratory (AOL) at the NASA Ames Research Center. During four afternoons in early 2010, fifteen active and recently retired air traffic controllers and supervisors controlled high levels of traffic in a highly automated environment during three-hour long scenarios, For each scenario, twelve air traffic controllers operated eight sector positions in two air traffic control areas and were supervised by three front line managers, Controllers worked one-hour shifts, were relieved by other controllers, took a 3D-minute break, and worked another one-hour shift. On average, twice today's traffic density was simulated with more than 2200 aircraft per traffic scenario. The scenarios were designed to create peaks and valleys in traffic density, growing and decaying convective weather areas, and expose controllers to heavy and light metering conditions. This design enabled an initial look at a broad spectrum of workload, challenge, boredom, and fatigue in an otherwise uncharted territory of future operations. In this paper we report human/system integration aspects, safety and efficiency results as well as airspace throughput, workload, and operational acceptability. We conclude that, with further refinements. air traffic control operations with ground-based automated separation assurance can be an effective and acceptable means to routinely provide very high traffic throughput in the en route airspace.

  13. Real time traffic models, decision support for traffic management

    NARCIS (Netherlands)

    Wismans, Luc Johannes Josephus; de Romph, E.; Friso, K.; Zantema, K.

    2014-01-01

    Reliable and accurate short-term traffic state prediction can improve the performance of real-time traffic management systems significantly. Using this short-time prediction based on current measurements delivered by advanced surveillance systems will support decision-making processes on various

  14. Real Time Traffic Models, Decision Support for Traffic Management

    NARCIS (Netherlands)

    Wismans, L.; De Romph, E.; Friso, K.; Zantema, K.

    2014-01-01

    Reliable and accurate short-term traffic state prediction can improve the performance of real-time traffic management systems significantly. Using this short-time prediction based on current measurements delivered by advanced surveillance systems will support decision-making processes on various

  15. Traffic and Granular Flow '11

    CERN Document Server

    Buslaev, Alexander; Bugaev, Alexander; Yashina, Marina; Schadschneider, Andreas; Schreckenberg, Michael; TGF11

    2013-01-01

    This book continues the biannual series of conference proceedings, which has become a classical reference resource in traffic and granular research alike. It addresses new developments at the interface between physics, engineering and computational science. Complex systems, where many simple agents, be they vehicles or particles, give rise to surprising and fascinating phenomena.   The contributions collected in these proceedings cover several research fields, all of which deal with transport. Topics include highway, pedestrian and internet traffic, granular matter, biological transport, transport networks, data acquisition, data analysis and technological applications. Different perspectives, i.e. modeling, simulations, experiments and phenomenological observations, are considered.

  16. Modeling pedestrian gap crossing index under mixed traffic condition.

    Science.gov (United States)

    Naser, Mohamed M; Zulkiple, Adnan; Al Bargi, Walid A; Khalifa, Nasradeen A; Daniel, Basil David

    2017-12-01

    There are a variety of challenges faced by pedestrians when they walk along and attempt to cross a road, as the most recorded accidents occur during this time. Pedestrians of all types, including both sexes with numerous aging groups, are always subjected to risk and are characterized as the most exposed road users. The increased demand for better traffic management strategies to reduce the risks at intersections, improve quality traffic management, traffic volume, and longer cycle time has further increased concerns over the past decade. This paper aims to develop a sustainable pedestrian gap crossing index model based on traffic flow density. It focusses on the gaps accepted by pedestrians and their decision for street crossing, where (Log-Gap) logarithm of accepted gaps was used to optimize the result of a model for gap crossing behavior. Through a review of extant literature, 15 influential variables were extracted for further empirical analysis. Subsequently, data from the observation at an uncontrolled mid-block in Jalan Ampang in Kuala Lumpur, Malaysia was gathered and Multiple Linear Regression (MLR) and Binary Logit Model (BLM) techniques were employed to analyze the results. From the results, different pedestrian behavioral characteristics were considered for a minimum gap size model, out of which only a few (four) variables could explain the pedestrian road crossing behavior while the remaining variables have an insignificant effect. Among the different variables, age, rolling gap, vehicle type, and crossing were the most influential variables. The study concludes that pedestrians' decision to cross the street depends on the pedestrian age, rolling gap, vehicle type, and size of traffic gap before crossing. The inferences from these models will be useful to increase pedestrian safety and performance evaluation of uncontrolled midblock road crossings in developing countries. Copyright © 2017 National Safety Council and Elsevier Ltd. All rights reserved.

  17. Optimized Structure of the Traffic Flow Forecasting Model With a Deep Learning Approach.

    Science.gov (United States)

    Yang, Hao-Fan; Dillon, Tharam S; Chen, Yi-Ping Phoebe

    2017-10-01

    Forecasting accuracy is an important issue for successful intelligent traffic management, especially in the domain of traffic efficiency and congestion reduction. The dawning of the big data era brings opportunities to greatly improve prediction accuracy. In this paper, we propose a novel model, stacked autoencoder Levenberg-Marquardt model, which is a type of deep architecture of neural network approach aiming to improve forecasting accuracy. The proposed model is designed using the Taguchi method to develop an optimized structure and to learn traffic flow features through layer-by-layer feature granulation with a greedy layerwise unsupervised learning algorithm. It is applied to real-world data collected from the M6 freeway in the U.K. and is compared with three existing traffic predictors. To the best of our knowledge, this is the first time that an optimized structure of the traffic flow forecasting model with a deep learning approach is presented. The evaluation results demonstrate that the proposed model with an optimized structure has superior performance in traffic flow forecasting.

  18. Dynamic Modeling of Internet Traffic for Intrusion Detection

    Directory of Open Access Journals (Sweden)

    Stephan Bohacek

    2007-01-01

    Full Text Available Computer network traffic is analyzed via mutual information techniques, implemented using linear and nonlinear canonical correlation analyses, with the specific objective of detecting UDP flooding attacks. NS simulation of HTTP, FTP, and CBR traffic shows that flooding attacks are accompanied by a change of mutual information, either at the link being flooded or at another upstream or downstream link. This observation appears to be topology independent, as the technique is demonstrated on the so-called parking-lot topology, random 50-node topology, and 100-node transit-stub topology. This technique is also employed to detect UDP flooding with low false alarm rate on a backbone link. These results indicate that a change in mutual information provides a useful detection criterion when no other signature of the attack is available.

  19. Traffic signal synchronization in the saturated high-density grid road network.

    Science.gov (United States)

    Hu, Xiaojian; Lu, Jian; Wang, Wei; Zhirui, Ye

    2015-01-01

    Most existing traffic signal synchronization strategies do not perform well in the saturated high-density grid road network (HGRN). Traffic congestion often occurs in the saturated HGRN, and the mobility of the network is difficult to restore. In order to alleviate traffic congestion and to improve traffic efficiency in the network, the study proposes a regional traffic signal synchronization strategy, named the long green and long red (LGLR) traffic signal synchronization strategy. The essence of the strategy is to control the formation and dissipation of queues and to maximize the efficiency of traffic flows at signalized intersections in the saturated HGRN. With this strategy, the same signal control timing plan is used at all signalized intersections in the HGRN, and the straight phase of the control timing plan has a long green time and a long red time. Therefore, continuous traffic flows can be maintained when vehicles travel, and traffic congestion can be alleviated when vehicles stop. Using the strategy, the LGLR traffic signal synchronization model is developed, with the objective of minimizing the number of stops. Finally, the simulation is executed to analyze the performance of the model by comparing it to other models, and the superiority of the LGLR model is evident in terms of delay, number of stops, queue length, and overall performance in the saturated HGRN.

  20. Urban traffic information system prototype: Use for Rome downtown area traffic control; 200 S.I.T.U. prototipo del sistema informativo per il traffico urbano: La sua applicazione allo studio della regolamentazione dell`accesso ai centri storici

    Energy Technology Data Exchange (ETDEWEB)

    Lombardi, L; Mattucci, A; Frondaroli, A

    1993-12-31

    This paper describes the characteristics, in terms of type of information and systems approaches utilized, of a prototype urban traffic simulator developed by ENEA (the Italian Agency for New Technology, Energy and the Environment). With reference to the development of the functional and architectural elements of this simulator, a preliminary review is made of problematics relevant to transportation system design, urban planning, and traffic control. The data base incorporated by the simulator is described and a comparison is made of different traffic modelling codes and man-machine interface methods. The paper concludes with an assessment of the results obtained with the first experimental application of the simulator in the control of the flow of traffic in Rome`s heavily congested downtown area.

  1. Facebook's personal page modelling and simulation

    Science.gov (United States)

    Sarlis, Apostolos S.; Sakas, Damianos P.; Vlachos, D. S.

    2015-02-01

    In this paper we will try to define the utility of Facebook's Personal Page marketing method. This tool that Facebook provides, is modelled and simulated using iThink in the context of a Facebook marketing agency. The paper has leveraged the system's dynamic paradigm to conduct Facebook marketing tools and methods modelling, using iThink™ system to implement them. It uses the design science research methodology for the proof of concept of the models and modelling processes. The following model has been developed for a social media marketing agent/company, Facebook platform oriented and tested in real circumstances. This model is finalized through a number of revisions and iterators of the design, development, simulation, testing and evaluation processes. The validity and usefulness of this Facebook marketing model for the day-to-day decision making are authenticated by the management of the company organization. Facebook's Personal Page method can be adjusted, depending on the situation, in order to maximize the total profit of the company which is to bring new customers, keep the interest of the old customers and deliver traffic to its website.

  2. An EMD–SARIMA-Based Modeling Approach for Air Traffic Forecasting

    Directory of Open Access Journals (Sweden)

    Wei Nai

    2017-12-01

    Full Text Available The ever-increasing air traffic demand in China has brought huge pressure on the planning and management of, and investment in, air terminals as well as airline companies. In this context, accurate and adequate short-term air traffic forecasting is essential for the operations of those entities. In consideration of such a problem, a hybrid air traffic forecasting model based on empirical mode decomposition (EMD and seasonal auto regressive integrated moving average (SARIMA has been proposed in this paper. The model proposed decomposes the original time series into components at first, and models each component with the SARIMA forecasting model, then integrates all the models together to form the final combined forecast result. By using the monthly air cargo and passenger flow data from the years 2006 to 2014 available at the official website of the Civil Aviation Administration of China (CAAC, the effectiveness in forecasting of the model proposed has been demonstrated, and by a horizontal performance comparison between several other widely used forecasting models, the advantage of the proposed model has also been proved.

  3. CONTROLLING TRAFFIC FLOW IN MULTILANE-ISOLATED INTERSECTION USING ANFIS APPROACH TECHNIQUES

    Directory of Open Access Journals (Sweden)

    G. R. LAI

    2015-08-01

    Full Text Available Many controllers have applied the Adaptive Neural-Fuzzy Inference System (ANFIS concept for optimizing the controller performance. However, there are less traffic signal controllers developed using the ANFIS concept. ANFIS traffic signal controller with its fuzzy rule base and its ability to learn from a set of sample data could improve the performance of Existing traffic signal controlling system to reduce traffic congestions at most of the busy traffic intersections in city such as Kuala Lumpur, Malaysia. The aim of this research is to develop an ANFIS traffic signals controller for multilane-isolated four approaches intersections in order to ease traffic congestions at traffic intersections. The new concept to generate sample data for ANFIS training is introduced in this research. The sample data is generated based on fuzzy rules and can be analysed using tree diagram. This controller is simulated on multilane-isolated traffic intersection model developed using M/M/1 queuing theory and its performance in terms of average waiting time, queue length and delay time are compared with traditional controllers and fuzzy controller. Simulation result shows that the average waiting time, queue length, and delay time of ANFIS traffic signal controller are the lowest as compared to the other three controllers. In conclusion, the efficiency and performance of ANFIS controller are much better than that of fuzzy and traditional controllers in different traffic volumes.

  4. Modeling secondary accidents identified by traffic shock waves.

    Science.gov (United States)

    Junhua, Wang; Boya, Liu; Lanfang, Zhang; Ragland, David R

    2016-02-01

    The high potential for occurrence and the negative consequences of secondary accidents make them an issue of great concern affecting freeway safety. Using accident records from a three-year period together with California interstate freeway loop data, a dynamic method for more accurate classification based on the traffic shock wave detecting method was used to identify secondary accidents. Spatio-temporal gaps between the primary and secondary accident were proven be fit via a mixture of Weibull and normal distribution. A logistic regression model was developed to investigate major factors contributing to secondary accident occurrence. Traffic shock wave speed and volume at the occurrence of a primary accident were explicitly considered in the model, as a secondary accident is defined as an accident that occurs within the spatio-temporal impact scope of the primary accident. Results show that the shock waves originating in the wake of a primary accident have a more significant impact on the likelihood of a secondary accident occurrence than the effects of traffic volume. Primary accidents with long durations can significantly increase the possibility of secondary accidents. Unsafe speed and weather are other factors contributing to secondary crash occurrence. It is strongly suggested that when police or rescue personnel arrive at the scene of an accident, they should not suddenly block, decrease, or unblock the traffic flow, but instead endeavor to control traffic in a smooth and controlled manner. Also it is important to reduce accident processing time to reduce the risk of secondary accident. Copyright © 2015 Elsevier Ltd. All rights reserved.

  5. Classification and unification of the microscopic deterministic traffic models.

    Science.gov (United States)

    Yang, Bo; Monterola, Christopher

    2015-10-01

    We identify a universal mathematical structure in microscopic deterministic traffic models (with identical drivers), and thus we show that all such existing models in the literature, including both the two-phase and three-phase models, can be understood as special cases of a master model by expansion around a set of well-defined ground states. This allows any two traffic models to be properly compared and identified. The three-phase models are characterized by the vanishing of leading orders of expansion within a certain density range, and as an example the popular intelligent driver model is shown to be equivalent to a generalized optimal velocity (OV) model. We also explore the diverse solutions of the generalized OV model that can be important both for understanding human driving behaviors and algorithms for autonomous driverless vehicles.

  6. Minimizing the disruptive effects of prospective memory in simulated air traffic control.

    Science.gov (United States)

    Loft, Shayne; Smith, Rebekah E; Remington, Roger W

    2013-09-01

    Prospective memory refers to remembering to perform an intended action in the future. Failures of prospective memory can occur in air traffic control. In two experiments, we examined the utility of external aids for facilitating air traffic management in a simulated air traffic control task with prospective memory requirements. Participants accepted and handed-off aircraft and detected aircraft conflicts. The prospective memory task involved remembering to deviate from a routine operating procedure when accepting target aircraft. External aids that contained details of the prospective memory task appeared and flashed when target aircraft needed acceptance. In Experiment 1, external aids presented either adjacent or nonadjacent to each of the 20 target aircraft presented over the 40-min test phase reduced prospective memory error by 11% compared with a condition without external aids. In Experiment 2, only a single target aircraft was presented a significant time (39-42 min) after presentation of the prospective memory instruction, and the external aids reduced prospective memory error by 34%. In both experiments, costs to the efficiency of nonprospective memory air traffic management (nontarget aircraft acceptance response time, conflict detection response time) were reduced by nonadjacent aids compared with no aids or adjacent aids. In contrast, in both experiments, the efficiency of the prospective memory air traffic management (target aircraft acceptance response time) was facilitated by adjacent aids compared with nonadjacent aids. Together, these findings have potential implications for the design of automated alerting systems to maximize multitask performance in work settings where operators monitor and control demanding perceptual displays. PsycINFO Database Record (c) 2013 APA, all rights reserved.

  7. Oslo traffic study - part 2: quantifying effects of traffic measures using individual exposure modeling

    International Nuclear Information System (INIS)

    Clench-Aas, J.; Bartonova, A.; Klaeboe, R.; Kolbenstvedt, M.

    2000-01-01

    In quantifying the benefits of air pollution reduction measures, it is desirable to compare the size of the benefits with the effects of other individual confounding factors such as smoking or passive smoking. The effect of pollution is rarely very large and in order to quantify it, exposure estimating procedures must be as accurate as possible. Dispersion models, run for hourly time intervals and controlled by measurements, are therefore used to provide estimates for specific receptor points. Results of three consecutive cross-sectional investigations in an area of Oslo characterized by heavy traffic are presented. The study was designed to provide repeated information on the effects of traffic diversion measures on the self-reporting of symptoms of reduced health of 1100 adults living in Oslo. The principal source of air pollution in Oslo is vehicular traffic. The primary pollutants of interest are nitrogen dioxide (NO 2 ) and respirable particles (PM 2.5 and PM 10 ). The mean hourly concentration of exposure was estimated at each participant's home by means of a time-dependent finite dispersion model combined with subgrid models to describe the source contribution to the grid concentrations. The study controlled the confounding factors. Using the symptom fatigue, the study illustrates that by controlling the changes in population composition, estimated exposure-effect relationships for health symptoms allow the effect of the studied traffic measures on the population to be evaluated. Since the method is based on individual estimates of exposure to different pollutants, it allows standardizing the exposure to compare effects of different pollutants. The study offers a methodology that is useful in evaluating the benefits of measures by both being able to quantify and compare the effects of different compounds and effects on different population sub-groups. (author)

  8. Many particle approximation of the Aw-Rascle-Zhang second order model for vehicular traffic.

    Science.gov (United States)

    Francesco, Marco Di; Fagioli, Simone; Rosini, Massimiliano D

    2017-02-01

    We consider the follow-the-leader approximation of the Aw-Rascle-Zhang (ARZ) model for traffic flow in a multi population formulation. We prove rigorous convergence to weak solutions of the ARZ system in the many particle limit in presence of vacuum. The result is based on uniform BV estimates on the discrete particle velocity. We complement our result with numerical simulations of the particle method compared with some exact solutions to the Riemann problem of the ARZ system.

  9. A New Macro Model for Traffic Flow on a Highway with Ramps and Numerical Tests

    International Nuclear Information System (INIS)

    Tang Tieqiao; Huang Haijun; Zhang Ying; Wong, S.C.; Gao Ziyou

    2009-01-01

    In this paper, we present a new macro model for traffic flow on a highway with ramps based on the existing models. We use the new model to study the effects of on-off-ramp on the main road traffic during the morning rush period and the evening rush period. Numerical tests show that, during the two rush periods, these effects are often different and related to the status of the main road traffic. If the main road traffic flow is uniform, then ramps always produce stop-and-go traffic when the main road density is between two critical values, and ramps have little effect on the main road traffic when the main road density is less than the smaller critical value or greater than the larger critical value. If a small perturbation appears on the main road, ramp may lead to stop-and-go traffic, or relieve or even eliminate the stop-and-go traffic, under different circumstances. These results are consistent with real traffic, which shows that the new model is reasonable.

  10. Traffic characterization and modeling of wavelet-based VBR encoded video

    Energy Technology Data Exchange (ETDEWEB)

    Yu Kuo; Jabbari, B. [George Mason Univ., Fairfax, VA (United States); Zafar, S. [Argonne National Lab., IL (United States). Mathematics and Computer Science Div.

    1997-07-01

    Wavelet-based video codecs provide a hierarchical structure for the encoded data, which can cater to a wide variety of applications such as multimedia systems. The characteristics of such an encoder and its output, however, have not been well examined. In this paper, the authors investigate the output characteristics of a wavelet-based video codec and develop a composite model to capture the traffic behavior of its output video data. Wavelet decomposition transforms the input video in a hierarchical structure with a number of subimages at different resolutions and scales. the top-level wavelet in this structure contains most of the signal energy. They first describe the characteristics of traffic generated by each subimage and the effect of dropping various subimages at the encoder on the signal-to-noise ratio at the receiver. They then develop an N-state Markov model to describe the traffic behavior of the top wavelet. The behavior of the remaining wavelets are then obtained through estimation, based on the correlations between these subimages at the same level of resolution and those wavelets located at an immediate higher level. In this paper, a three-state Markov model is developed. The resulting traffic behavior described by various statistical properties, such as moments and correlations, etc., is then utilized to validate their model.

  11. Traffic Congestion Detection System through Connected Vehicles and Big Data

    Directory of Open Access Journals (Sweden)

    Néstor Cárdenas-Benítez

    2016-04-01

    Full Text Available This article discusses the simulation and evaluation of a traffic congestion detection system which combines inter-vehicular communications, fixed roadside infrastructure and infrastructure-to-infrastructure connectivity and big data. The system discussed in this article permits drivers to identify traffic congestion and change their routes accordingly, thus reducing the total emissions of CO2 and decreasing travel time. This system monitors, processes and stores large amounts of data, which can detect traffic congestion in a precise way by means of a series of algorithms that reduces localized vehicular emission by rerouting vehicles. To simulate and evaluate the proposed system, a big data cluster was developed based on Cassandra, which was used in tandem with the OMNeT++ discreet event network simulator, coupled with the SUMO (Simulation of Urban MObility traffic simulator and the Veins vehicular network framework. The results validate the efficiency of the traffic detection system and its positive impact in detecting, reporting and rerouting traffic when traffic events occur.

  12. Traffic Congestion Detection System through Connected Vehicles and Big Data.

    Science.gov (United States)

    Cárdenas-Benítez, Néstor; Aquino-Santos, Raúl; Magaña-Espinoza, Pedro; Aguilar-Velazco, José; Edwards-Block, Arthur; Medina Cass, Aldo

    2016-04-28

    This article discusses the simulation and evaluation of a traffic congestion detection system which combines inter-vehicular communications, fixed roadside infrastructure and infrastructure-to-infrastructure connectivity and big data. The system discussed in this article permits drivers to identify traffic congestion and change their routes accordingly, thus reducing the total emissions of CO₂ and decreasing travel time. This system monitors, processes and stores large amounts of data, which can detect traffic congestion in a precise way by means of a series of algorithms that reduces localized vehicular emission by rerouting vehicles. To simulate and evaluate the proposed system, a big data cluster was developed based on Cassandra, which was used in tandem with the OMNeT++ discreet event network simulator, coupled with the SUMO (Simulation of Urban MObility) traffic simulator and the Veins vehicular network framework. The results validate the efficiency of the traffic detection system and its positive impact in detecting, reporting and rerouting traffic when traffic events occur.

  13. Traffic signal design and simulation for vulnerable road users safety and bus preemption

    International Nuclear Information System (INIS)

    Lo, Shih-Ching; Huang, Hsieh-Chu

    2015-01-01

    Mostly, pedestrian car accidents occurred at a signalized interaction is because pedestrians cannot across the intersection safely within the green light. From the viewpoint of pedestrian, there might have two reasons. The first one is pedestrians cannot speed up to across the intersection, such as the elders. The other reason is pedestrians do not sense that the signal phase is going to change and their right-of-way is going to be lost. Developing signal logic to protect pedestrian, who is crossing an intersection is the first purpose of this study. In addition, to improve the reliability and reduce delay of public transportation service is the second purpose. Therefore, bus preemption is also considered in the designed signal logic. In this study, the traffic data of the intersection of Chong-Qing North Road and Min-Zu West Road, Taipei, Taiwan, is employed to calibrate and validate the signal logic by simulation. VISSIM 5.20, which is a microscopic traffic simulation software, is employed to simulate the signal logic. From the simulated results, the signal logic presented in this study can protect pedestrians crossing the intersection successfully. The design of bus preemption can reduce the average delay. However, the pedestrian safety and bus preemption signal will influence the average delay of cars largely. Thus, whether applying the pedestrian safety and bus preemption signal logic to an intersection or not should be evaluated carefully

  14. Traffic signal design and simulation for vulnerable road users safety and bus preemption

    Energy Technology Data Exchange (ETDEWEB)

    Lo, Shih-Ching; Huang, Hsieh-Chu [Department of Transportation Technology and Logistics Management, Chung Hua University, No. 707, Sec. 2, WuFu Rd., Hsinchu, 300, Taiwan (China)

    2015-01-22

    Mostly, pedestrian car accidents occurred at a signalized interaction is because pedestrians cannot across the intersection safely within the green light. From the viewpoint of pedestrian, there might have two reasons. The first one is pedestrians cannot speed up to across the intersection, such as the elders. The other reason is pedestrians do not sense that the signal phase is going to change and their right-of-way is going to be lost. Developing signal logic to protect pedestrian, who is crossing an intersection is the first purpose of this study. In addition, to improve the reliability and reduce delay of public transportation service is the second purpose. Therefore, bus preemption is also considered in the designed signal logic. In this study, the traffic data of the intersection of Chong-Qing North Road and Min-Zu West Road, Taipei, Taiwan, is employed to calibrate and validate the signal logic by simulation. VISSIM 5.20, which is a microscopic traffic simulation software, is employed to simulate the signal logic. From the simulated results, the signal logic presented in this study can protect pedestrians crossing the intersection successfully. The design of bus preemption can reduce the average delay. However, the pedestrian safety and bus preemption signal will influence the average delay of cars largely. Thus, whether applying the pedestrian safety and bus preemption signal logic to an intersection or not should be evaluated carefully.

  15. TIRE MODELS USED IN VEHICLE DYNAMIC APPLICATIONS AND THEIR USING IN VEHICLE ACCIDENT SIMULATIONS

    Directory of Open Access Journals (Sweden)

    Osman ELDOĞAN

    1995-01-01

    Full Text Available Wheel model is very important in vehicle modelling, it is because the contact between vehicle and road is achieved by wheel. Vehicle models can be dynamic models which are used in vehicle design, they can also be models used in accident simulations. Because of the importance of subject, many studies including theoretical, experimental and mixed type have been carried out. In this study, information is given about development of wheel modelling and research studies and also use of these modellings in traffic accident simulations.

  16. Dynamic route guidance strategy in a two-route pedestrian-vehicle mixed traffic flow system

    Science.gov (United States)

    Liu, Mianfang; Xiong, Shengwu; Li, Bixiang

    2016-05-01

    With the rapid development of transportation, traffic questions have become the major issue for social, economic and environmental aspects. Especially, during serious emergencies, it is very important to alleviate road traffic congestion and improve the efficiency of evacuation to reduce casualties, and addressing these problems has been a major task for the agencies responsible in recent decades. Advanced road guidance strategies have been developed for homogeneous traffic flows, or to reduce traffic congestion and enhance the road capacity in a symmetric two-route scenario. However, feedback strategies have rarely been considered for pedestrian-vehicle mixed traffic flows with variable velocities and sizes in an asymmetric multi-route traffic system, which is a common phenomenon in many developing countries. In this study, we propose a weighted road occupancy feedback strategy (WROFS) for pedestrian-vehicle mixed traffic flows, which considers the system equilibrium to ease traffic congestion. In order to more realistic simulating the behavior of mixed traffic objects, the paper adopted a refined and dynamic cellular automaton model (RDPV_CA model) as the update mechanism for pedestrian-vehicle mixed traffic flow. Moreover, a bounded rational threshold control was introduced into the feedback strategy to avoid some negative effect of delayed information and reduce. Based on comparisons with the two previously proposed strategies, the simulation results obtained in a pedestrian-vehicle traffic flow scenario demonstrated that the proposed strategy with a bounded rational threshold was more effective and system equilibrium, system stability were reached.

  17. Modeling the Short-Term Effect of Traffic and Meteorology on Air Pollution in Turin with Generalized Additive Models

    Directory of Open Access Journals (Sweden)

    Pancrazio Bertaccini

    2012-01-01

    Full Text Available Vehicular traffic plays an important role in atmospheric pollution and can be used as one of the key predictors in air-quality forecasting models. The models that can account for the role of traffic are especially valuable in urban areas, where high pollutant concentrations are often observed during particular times of day (rush hour and year (winter. In this paper, we develop a generalized additive models approach to analyze the behavior of concentrations of nitrogen dioxide (NO2, and particulate matter (PM10, collected at the environmental monitoring stations distributed throughout the city of Turin, Italy, from December 2003 to April 2005. We describe nonlinear relationships between predictors and pollutants, that are adjusted for unobserved time-varying confounders. We examine several functional forms for the traffic variable and find that a simple form can often provide adequate modeling power. Our analysis shows that there is a saturation effect of traffic on NO2, while such saturation is less evident in models linking traffic to PM10 behavior, having adjusted for meteorological covariates. Moreover, we consider the proposed models separately by seasons and highlight similarities and differences in the predictors’ partial effects. Finally, we show how forecasting can help in evaluating traffic regulation policies.

  18. Linking spatial and dynamic models for traffic maneuvers

    DEFF Research Database (Denmark)

    Olderog, Ernst-Rüdiger; Ravn, Anders Peter; Wisniewski, Rafal

    2015-01-01

    For traffic maneuvers of multiple vehicles on highways we build an abstract spatial and a concrete dynamic model. In the spatial model we show the safety (collision freedom) of lane-change maneuvers. By linking the spatial and dynamic model via suitable refinements of the spatial atoms to distance...

  19. Automated mixed traffic vehicle control and scheduling study

    Science.gov (United States)

    Peng, T. K. C.; Chon, K.

    1976-01-01

    The operation and the expected performance of a proposed automatic guideway transit system which uses low speed automated mixed traffic vehicles (AMTVs) were analyzed. Vehicle scheduling and headway control policies were evaluated with a transit system simulation model. The effect of mixed traffic interference on the average vehicle speed was examined with a vehicle pedestrian interface model. Control parameters regulating vehicle speed were evaluated for safe stopping and passenger comfort. Some preliminary data on the cost and operation of an experimental AMTV system are included. These data were the result of a separate task conducted at JPL, and were included as background information.

  20. Early Model of Traffic Sign Reminder Based on Neural Network

    Directory of Open Access Journals (Sweden)

    Budi Rahmani

    2012-12-01

    Full Text Available Recognizing the traffic signs installed on the streets is one of the requirements of driving on the road. Laxity in driving may result in traffic accident. This paper describes a real-time reminder model, by utilizing a camera that can be installed in a car to capture image of traffic signs, and is processed and later to inform the driver. The extracting feature harnessing the morphological elements (strel is used in this paper. Artificial Neural Networks is used to train the system and to produce a final decision. The result shows that the accuracy in detecting and recognizing the ten types of traffic signs in real-time is 80%.

  1. Modelling the impact of cyber attacks on the traffic control centre of an urban automobile transport system by means of enhanced cybersecurity

    Directory of Open Access Journals (Sweden)

    Ivanova Yoana

    2017-01-01

    Full Text Available This paper aims to show the major role means of protection play for strengthening the cybersecurity of critical transport infrastructure by using the advanced method of simulation modelling. The simulation model of a Traffic Control Centre (TTC of an urban Automobile Transport System (ATS is created by the author in the Riverbed Modeler Academic Edition 17.5 computer networks simulation system and is exposed to the impact of a Denial-of-Service attack. In addition, logical conclusions have been made on the basis of the experimental results obtained and evaluated by comparative analysis with results from analogous previous studies.

  2. Driver behavior analysis during ACC activation and deactivation in a real traffic environment

    NARCIS (Netherlands)

    Pauwelussen, J.; Feenstra, P.J.

    2010-01-01

    For the development of a traffic-simulation model to estimate the effect of adaptive cruise control (ACC) systems on traffic safety, throughput, and environment, data of a field operational test (FOT) were analyzed, in which vehicles were equipped with ACC and lane-departure warning (LDW) systems.

  3. Will Automated Vehicles Negatively Impact Traffic Flow?

    Directory of Open Access Journals (Sweden)

    S. C. Calvert

    2017-01-01

    Full Text Available With low-level vehicle automation already available, there is a necessity to estimate its effects on traffic flow, especially if these could be negative. A long gradual transition will occur from manual driving to automated driving, in which many yet unknown traffic flow dynamics will be present. These effects have the potential to increasingly aid or cripple current road networks. In this contribution, we investigate these effects using an empirically calibrated and validated simulation experiment, backed up with findings from literature. We found that low-level automated vehicles in mixed traffic will initially have a small negative effect on traffic flow and road capacities. The experiment further showed that any improvement in traffic flow will only be seen at penetration rates above 70%. Also, the capacity drop appeared to be slightly higher with the presence of low-level automated vehicles. The experiment further investigated the effect of bottleneck severity and truck shares on traffic flow. Improvements to current traffic models are recommended and should include a greater detail and understanding of driver-vehicle interaction, both in conventional and in mixed traffic flow. Further research into behavioural shifts in driving is also recommended due to limited data and knowledge of these dynamics.

  4. Design of a logical traffic isolation forensic model

    CSIR Research Space (South Africa)

    Dlamini, I

    2009-07-01

    Full Text Available the network, further delaying the transmitted data. This paper extends the work on a forensic model for traffic isolation based on Differentiated Services (DiffServ). This model intends to solve the packet loss problem that can result to insufficient evidence...

  5. Distributed Dynamic Traffic Modeling and Implementation Oriented Different Levels of Induced Travelers

    Directory of Open Access Journals (Sweden)

    Yan Liu

    2015-01-01

    Full Text Available In order to respond to the variable state of traffic network in time, a distributed dynamic traffic assignment strategy is proposed which can improve the intelligent traffic management. The proposed dynamic assignment method is based on utility theory and is oriented to different levels of induced users. A distributed model based on the marginal utility is developed which combines the advantages of both decentralized paradigm and traveler preference, so as to provide efficient and robust dynamic traffic assignment solutions under uncertain network conditions. Then, the solution algorithm including subroute update and subroute calculation is proposed. To testify the effectiveness of the proposed model in optimizing traffic network operation and minimizing traveler’s cost on different induced levels, a sequence numerical experiment is conducted. In the experiment, there are two test environments: one is in different network load conditions and the other is in different deployment coverage of local agents. The numerical results show that the proposed model not only can improve the running efficiency of road network but also can significantly decrease the average travel time.

  6. Integrated traffic conflict model for estimating crash modification factors.

    Science.gov (United States)

    Shahdah, Usama; Saccomanno, Frank; Persaud, Bhagwant

    2014-10-01

    Crash modification factors (CMFs) for road safety treatments are usually obtained through observational models based on reported crashes. Observational Bayesian before-and-after methods have been applied to obtain more precise estimates of CMFs by accounting for the regression-to-the-mean bias inherent in naive methods. However, sufficient crash data reported over an extended period of time are needed to provide reliable estimates of treatment effects, a requirement that can be a challenge for certain types of treatment. In addition, these studies require that sites analyzed actually receive the treatment to which the CMF pertains. Another key issue with observational approaches is that they are not causal in nature, and as such, cannot provide a sound "behavioral" rationale for the treatment effect. Surrogate safety measures based on high risk vehicle interactions and traffic conflicts have been proposed to address this issue by providing a more "causal perspective" on lack of safety for different road and traffic conditions. The traffic conflict approach has been criticized, however, for lacking a formal link to observed and verified crashes, a difficulty that this paper attempts to resolve by presenting and investigating an alternative approach for estimating CMFs using simulated conflicts that are linked formally to observed crashes. The integrated CMF estimates are compared to estimates from an empirical Bayes (EB) crash-based before-and-after analysis for the same sample of treatment sites. The treatment considered involves changing left turn signal priority at Toronto signalized intersections from permissive to protected-permissive. The results are promising in that the proposed integrated method yields CMFs that closely match those obtained from the crash-based EB before-and-after analysis. Copyright © 2014 Elsevier Ltd. All rights reserved.

  7. Towards Scalable Distributed Framework for Urban Congestion Traffic Patterns Warehousing

    Directory of Open Access Journals (Sweden)

    A. Boulmakoul

    2015-01-01

    Full Text Available We put forward architecture of a framework for integration of data from moving objects related to urban transportation network. Most of this research refers to the GPS outdoor geolocation technology and uses distributed cloud infrastructure with big data NoSQL database. A network of intelligent mobile sensors, distributed on urban network, produces congestion traffic patterns. Congestion predictions are based on extended simulation model. This model provides traffic indicators calculations, which fuse with the GPS data for allowing estimation of traffic states across the whole network. The discovery process of congestion patterns uses semantic trajectories metamodel given in our previous works. The challenge of the proposed solution is to store patterns of traffic, which aims to ensure the surveillance and intelligent real-time control network to reduce congestion and avoid its consequences. The fusion of real-time data from GPS-enabled smartphones integrated with those provided by existing traffic systems improves traffic congestion knowledge, as well as generating new information for a soft operational control and providing intelligent added value for transportation systems deployment.

  8. UAS Air Traffic Controller Acceptability Study-2: Effects of Communications Delays and Winds in Simulation

    Science.gov (United States)

    Comstock, James R., Jr.; Ghatas, Rania W.; Consiglio, Maria C.; Chamberlain, James P.; Hoffler, Keith D.

    2016-01-01

    This study evaluated the effects of Communications Delays and Winds on Air Traffic Controller ratings of acceptability of horizontal miss distances (HMDs) for encounters between UAS and manned aircraft in a simulation of the Dallas-Ft. Worth East-side airspace. Fourteen encounters per hour were staged in the presence of moderate background traffic. Seven recently retired controllers with experience at DFW served as subjects. Guidance provided to the UAS pilots for maintaining a given HMD was provided by information from self-separation algorithms displayed on the Multi-Aircraft Simulation System. Winds tested did not affect the acceptability ratings. Communications delays tested included 0, 400, 1200, and 1800 msec. For longer communications delays, there were changes in strategy and communications flow that were observed and reported by the controllers. The aim of this work is to provide useful information for guiding future rules and regulations applicable to flying UAS in the NAS.

  9. A safety assessment methodology applied to CNS/ATM-based air traffic control system

    Energy Technology Data Exchange (ETDEWEB)

    Vismari, Lucio Flavio, E-mail: lucio.vismari@usp.b [Safety Analysis Group (GAS), School of Engineering at University of Sao Paulo (Poli-USP), Av. Prof. Luciano Gualberto, Trav.3, n.158, Predio da Engenharia de Eletricidade, Sala C2-32, CEP 05508-900, Sao Paulo (Brazil); Batista Camargo Junior, Joao, E-mail: joaocamargo@usp.b [Safety Analysis Group (GAS), School of Engineering at University of Sao Paulo (Poli-USP), Av. Prof. Luciano Gualberto, Trav.3, n.158, Predio da Engenharia de Eletricidade, Sala C2-32, CEP 05508-900, Sao Paulo (Brazil)

    2011-07-15

    In the last decades, the air traffic system has been changing to adapt itself to new social demands, mainly the safe growth of worldwide traffic capacity. Those changes are ruled by the Communication, Navigation, Surveillance/Air Traffic Management (CNS/ATM) paradigm , based on digital communication technologies (mainly satellites) as a way of improving communication, surveillance, navigation and air traffic management services. However, CNS/ATM poses new challenges and needs, mainly related to the safety assessment process. In face of these new challenges, and considering the main characteristics of the CNS/ATM, a methodology is proposed at this work by combining 'absolute' and 'relative' safety assessment methods adopted by the International Civil Aviation Organization (ICAO) in ICAO Doc.9689 , using Fluid Stochastic Petri Nets (FSPN) as the modeling formalism, and compares the safety metrics estimated from the simulation of both the proposed (in analysis) and the legacy system models. To demonstrate its usefulness, the proposed methodology was applied to the 'Automatic Dependent Surveillance-Broadcasting' (ADS-B) based air traffic control system. As conclusions, the proposed methodology assured to assess CNS/ATM system safety properties, in which FSPN formalism provides important modeling capabilities, and discrete event simulation allowing the estimation of the desired safety metric.

  10. A safety assessment methodology applied to CNS/ATM-based air traffic control system

    International Nuclear Information System (INIS)

    Vismari, Lucio Flavio; Batista Camargo Junior, Joao

    2011-01-01

    In the last decades, the air traffic system has been changing to adapt itself to new social demands, mainly the safe growth of worldwide traffic capacity. Those changes are ruled by the Communication, Navigation, Surveillance/Air Traffic Management (CNS/ATM) paradigm , based on digital communication technologies (mainly satellites) as a way of improving communication, surveillance, navigation and air traffic management services. However, CNS/ATM poses new challenges and needs, mainly related to the safety assessment process. In face of these new challenges, and considering the main characteristics of the CNS/ATM, a methodology is proposed at this work by combining 'absolute' and 'relative' safety assessment methods adopted by the International Civil Aviation Organization (ICAO) in ICAO Doc.9689 , using Fluid Stochastic Petri Nets (FSPN) as the modeling formalism, and compares the safety metrics estimated from the simulation of both the proposed (in analysis) and the legacy system models. To demonstrate its usefulness, the proposed methodology was applied to the 'Automatic Dependent Surveillance-Broadcasting' (ADS-B) based air traffic control system. As conclusions, the proposed methodology assured to assess CNS/ATM system safety properties, in which FSPN formalism provides important modeling capabilities, and discrete event simulation allowing the estimation of the desired safety metric.

  11. Information Presentation and Control in a Modern Air Traffic Control Tower Simulator

    Science.gov (United States)

    Haines, Richard F.; Doubek, Sharon; Rabin, Boris; Harke, Stanton

    1996-01-01

    The proper presentation and management of information in America's largest and busiest (Level V) air traffic control towers calls for an in-depth understanding of many different human-computer considerations: user interface design for graphical, radar, and text; manual and automated data input hardware; information/display output technology; reconfigurable workstations; workload assessment; and many other related subjects. This paper discusses these subjects in the context of the Surface Development and Test Facility (SDTF) currently under construction at NASA's Ames Research Center, a full scale, multi-manned, air traffic control simulator which will provide the "look and feel" of an actual airport tower cab. Special emphasis will be given to the human-computer interfaces required for the different kinds of information displayed at the various controller and supervisory positions and to the computer-aided design (CAD) and other analytic, computer-based tools used to develop the facility.

  12. An Agent-Based Model for Analyzing Control Policies and the Dynamic Service-Time Performance of a Capacity-Constrained Air Traffic Management Facility

    Science.gov (United States)

    Conway, Sheila R.

    2006-01-01

    Simple agent-based models may be useful for investigating air traffic control strategies as a precursory screening for more costly, higher fidelity simulation. Of concern is the ability of the models to capture the essence of the system and provide insight into system behavior in a timely manner and without breaking the bank. The method is put to the test with the development of a model to address situations where capacity is overburdened and potential for propagation of the resultant delay though later flights is possible via flight dependencies. The resultant model includes primitive representations of principal air traffic system attributes, namely system capacity, demand, airline schedules and strategy, and aircraft capability. It affords a venue to explore their interdependence in a time-dependent, dynamic system simulation. The scope of the research question and the carefully-chosen modeling fidelity did allow for the development of an agent-based model in short order. The model predicted non-linear behavior given certain initial conditions and system control strategies. Additionally, a combination of the model and dimensionless techniques borrowed from fluid systems was demonstrated that can predict the system s dynamic behavior across a wide range of parametric settings.

  13. A Study on the Model of Traffic Flow and Vehicle Exhaust Emission

    Directory of Open Access Journals (Sweden)

    Han Xue

    2013-01-01

    Full Text Available The increase of traffic flow in cities causes traffic congestion and accidents as well as air pollution. Traffic problems have attracted the interest of many researchers from the perspective of theory and engineering. In order to provide a simple and practical method for measuring the exhaust emission and assessing the effect of pollution control, a model is based on the relationship between traffic flow and vehicle exhaust emission under a certain level of road capacity constraints. In the proposed model, the hydrocarbons (HC, carbon monoxide (CO, and nitrogen oxides (NOx are considered as the indexes of total exhaust emission, and the speed is used as an intermediate variable. To verify the rationality and practicality of the model, a case study for Beijing, China, is provided in which the effects of taxi fare regulation and the specific vehicle emission reduction policy are analyzed.

  14. Predictive control strategies for energy saving of hybrid electric vehicles based on traffic light information

    Directory of Open Access Journals (Sweden)

    Kaijiang YU

    2015-10-01

    Full Text Available As the conventional control method for hybrid electric vehicle doesn’t consider the effect of known traffic light information on the vehicle energy management, this paper proposes a model predictive control intelligent optimization strategies based on traffic light information for hybrid electric vehicles. By building the simplified model of the hybrid electric vehicle and adopting the continuation/generalized minimum residual method, the model prediction problem is solved. The simulation is conducted by using MATLAB/Simulink platform. The simulation results show the effectiveness of the proposed model of the traffic light information, and that the proposed model predictive control method can improve fuel economy and the real-time control performance significantly. The research conclusions show that the proposed control strategy can achieve optimal control of the vehicle trajectory, significantly improving fuel economy of the vehicle, and meet the system requirements for the real-time optimal control.

  15. Simulation Model of Civil-Military Joint Use of Zadar Airport Manoeuvring Area

    Directory of Open Access Journals (Sweden)

    Nikola Mostarac

    2008-09-01

    Full Text Available This paper deals with the take-off and landing procedure ofvarious aircraft types from the same nmway. There are four-type queues, three different holding positions and one approach.The simulation model for these conditions has been created.The simulation analysis of the use of manoeuvring areaby commercial and training aircraft indicates the necessity ofthe optimisation of the air traffic management and harmonisationof the participants' operational procedures.

  16. Performance of an Automated-Mixed-Traffic-Vehicle /AMTV/ System. [urban people mover

    Science.gov (United States)

    Peng, T. K. C.; Chon, K.

    1978-01-01

    This study analyzes the operation and evaluates the expected performance of a proposed automatic guideway transit system which uses low-speed Automated Mixed Traffic Vehicles (AMTV's). Vehicle scheduling and headway control policies are evaluated with a transit system simulation model. The effect of mixed-traffic interference on the average vehicle speed is examined with a vehicle-pedestrian interface model. Control parameters regulating vehicle speed are evaluated for safe stopping and passenger comfort.

  17. Development of Seasonal ARIMA Models for Traffic Noise Forecasting

    Directory of Open Access Journals (Sweden)

    Guarnaccia Claudio

    2017-01-01

    Full Text Available In this paper, a time series analysis approach is adopted to monitor and predict a traffic noise levels dataset, measured in a site of Messina, Italy. In general, acoustical noise shows a high prediction complexity, since its slope is strongly related to the variability of the sources and to intrinsic randomness. In the analysed site the predominant source is road traffic, that has a periodic and non-stationary behaviour. The study of the time evolution of this hazardous agent is very useful to assess the impact to human health and activities. The time series models adopted in this paper are of the stochastic seasonal ARIMA class; these types of model are based on the strong periodicity registered in the acoustical equivalent levels. The observed periodicity is related to the highly variability of urban traffic in the different days of the week. Three different seasonal ARIMA models are proposed and calibrated on a rich dataset of 800 sound level measurements. The predictive capabilities of these techniques are encouraging. The implemented models show a good forecasting performances in terms of low residuals, i.e. difference between observed and estimated noise values. The residuals are analysed by means of statistical indexes, plots and tests.

  18. Research on Influence and Prediction Model of Urban Traffic Link Tunnel curvature on Fire Temperature Based on Pyrosim--SPSS Multiple Regression Analysis

    Science.gov (United States)

    Li, Xiao Ju; Yao, Kun; Dai, Jun Yu; Song, Yun Long

    2018-05-01

    The underground space, also known as the “fourth dimension” of the city, reflects the efficient use of urban development intensive. Urban traffic link tunnel is a typical underground limited-length space. Due to the geographical location, the special structure of space and the curvature of the tunnel, high-temperature smoke can easily form the phenomenon of “smoke turning” and the fire risk is extremely high. This paper takes an urban traffic link tunnel as an example to focus on the relationship between curvature and the temperature near the fire source, and use the pyrosim built different curvature fire model to analyze the influence of curvature on the temperature of the fire, then using SPSS Multivariate regression analysis simulate curvature of the tunnel and fire temperature data. Finally, a prediction model of urban traffic link tunnel curvature on fire temperature was proposed. The regression model analysis and test show that the curvature is negatively correlated with the tunnel temperature. This model is feasible and can provide a theoretical reference for the urban traffic link tunnel fire protection design and the preparation of the evacuation plan. And also, it provides some reference for other related curved tunnel curvature design and smoke control measures.

  19. Multiobjective Traffic Signal Control Model for Intersection Based on Dynamic Turning Movements Estimation

    Directory of Open Access Journals (Sweden)

    Pengpeng Jiao

    2014-01-01

    Full Text Available The real-time traffic signal control for intersection requires dynamic turning movements as the basic input data. It is impossible to detect dynamic turning movements directly through current traffic surveillance systems, but dynamic origin-destination (O-D estimation can obtain it. However, the combined models of dynamic O-D estimation and real-time traffic signal control are rare in the literature. A framework for the multiobjective traffic signal control model for intersection based on dynamic O-D estimation (MSC-DODE is presented. A state-space model using Kalman filtering is first formulated to estimate the dynamic turning movements; then a revised sequential Kalman filtering algorithm is designed to solve the model, and the root mean square error and mean percentage error are used to evaluate the accuracy of estimated dynamic turning proportions. Furthermore, a multiobjective traffic signal control model is put forward to achieve real-time signal control parameters and evaluation indices. Finally, based on practical survey data, the evaluation indices from MSC-DODE are compared with those from Webster method. The actual and estimated turning movements are further input into MSC-DODE, respectively, and results are also compared. Case studies show that results of MSC-DODE are better than those of Webster method and are very close to unavailable actual values.

  20. Emergency evacuation/transportation plan update: Traffic model development and evaluation of early closure procedures. Final report

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1993-10-28

    Prolonged delays in traffic experienced by Laboratory personnel during a recent early dismissal in inclement weather, coupled with reconstruction efforts along NM 502 east of the White Rock Wye for the next 1 to 2 years, has prompted Los Alamos National Laboratory (LANL) to re-evaluate and improve the present transportation plan and its integration with contingency plans maintained in other organizations. Facilities planners and emergency operations staff need to evaluate the transportation system`s capability to inefficiently and safely evacuate LANL under different low-level emergency conditions. A variety of potential procedures governing the release of employees from the different technical areas (TAs) requires evaluation, perhaps with regard to multiple emergency-condition scenarios, with one or more optimal procedures ultimately presented for adoption by Lab Management. The work undertaken in this project will hopefully lay a foundation for an on-going, progressive transportation system analysis capability. It utilizes microscale simulation techniques to affirm, reassess and validate the Laboratory`s Early Dismissal/Closure/Delayed Opening Plan. The Laboratory is required by Federal guidelines, and compelled by prudent practice and conscientious regard for the welfare of employees and nearby residents, to maintain plans and operating procedures for evacuation if the need arises. The tools developed during this process can be used outside of contingency planning. It is anticipated that the traffic models developed will allow site planners to evaluate changes to the traffic network which could better serve the normal traffic levels. Changes in roadway configuration, control strategies (signalization and signing), response strategies to traffic accidents, and patterns of demand can be modelled using the analysis tools developed during this project. Such scenarios typically are important considerations in master planning and facilities programming.

  1. Properties of Traffic Risk Coefficient

    Science.gov (United States)

    Tang, Tie-Qiao; Huang, Hai-Jun; Shang, Hua-Yan; Xue, Yu

    2009-10-01

    We use the model with the consideration of the traffic interruption probability (Physica A 387(2008)6845) to study the relationship between the traffic risk coefficient and the traffic interruption probability. The analytical and numerical results show that the traffic interruption probability will reduce the traffic risk coefficient and that the reduction is related to the density, which shows that this model can improve traffic security.

  2. Initial Study of An Effective Fast-Time Simulation Platform for Unmanned Aircraft System Traffic Management

    Science.gov (United States)

    Xue, Min; Rios, Joseph

    2017-01-01

    Small Unmanned Aerial Vehicles (sUAVs), typically 55 lbs and below, are envisioned to play a major role in surveilling critical assets, collecting important information, and delivering goods. Large scale small UAV operations are expected to happen in low altitude airspace in the near future. Many static and dynamic constraints exist in low altitude airspace because of manned aircraft or helicopter activities, various wind conditions, restricted airspace, terrain and man-made buildings, and conflict-avoidance among sUAVs. High sensitivity and high maneuverability are unique characteristics of sUAVs that bring challenges to effective system evaluations and mandate such a simulation platform different from existing simulations that were built for manned air traffic system and large unmanned fixed aircraft. NASA's Unmanned aircraft system Traffic Management (UTM) research initiative focuses on enabling safe and efficient sUAV operations in the future. In order to help define requirements and policies for a safe and efficient UTM system to accommodate a large amount of sUAV operations, it is necessary to develop a fast-time simulation platform that can effectively evaluate requirements, policies, and concepts in a close-to-reality environment. This work analyzed the impacts of some key factors including aforementioned sUAV's characteristics and demonstrated the importance of these factors in a successful UTM fast-time simulation platform.

  3. Models and mechanisms of IPTV VоD traffic balancing

    OpenAIRE

    Klymash, Mykhailo; Hayali, Yasser; Lavriv, Orest

    2012-01-01

    Models for traffic balancing that enable to evaluate the current IPTV traffic balancing mechanisms are suggested in this paper. Also, an analysis of each of these mechanisms is performed using the IPTV traffic model. Запропоновано моделі балансування трафіку IPTV VoD для оцінки існуючих механізмів балансування. Проведено аналіз кожного з цих механізмів за допомогою моделі IPTV трафіку....

  4. Basic Investigations of Dynamic Travel Time Estimation Model for Traffic Signals Control Using Information from Optical Beacons

    Science.gov (United States)

    Okutani, Iwao; Mitsui, Tatsuro; Nakada, Yusuke

    In this paper put forward are neuron-type models, i.e., neural network model, wavelet neuron model and three layered wavelet neuron model(WV3), for estimating traveling time between signalized intersections in order to facilitate adaptive setting of traffic signal parameters such as green time and offset. Model validation tests using simulated data reveal that compared to other models, WV3 model works very fast in learning process and can produce more accurate estimates of travel time. Also, it is exhibited that up-link information obtainable from optical beacons, i.e., travel time observed during the former cycle time in this case, makes a crucial input variable to the models in that there isn't any substantial difference between the change of estimated and simulated travel time with the change of green time or offset when up-link information is employed as input while there appears big discrepancy between them when not employed.

  5. Traffic flow model at fixed control signals with discrete service time distribution

    Directory of Open Access Journals (Sweden)

    Lucky I. Igbinosun

    2016-04-01

    Full Text Available Most of the models of road traffic flow at fixed-cycle controlled intersection assume stationary distributions and provide steady state results. The assumption that a constant number of vehicles can leave the system during the green phase is unrealistic in real life situations. A discrete time queuing model was developed to describe the operation of traffic flow at a road intersection with fixed-cycle signalized control and to account for the randomness in the number of vehicles that can leave the system. The results show the expected queue size in the system when the traffic is light and for a busy period, respectively. For the light period, when the traffic intensity is less than one, it takes a shorter green cycle time for vehicles to clear up than during high traffic intensity (the road junction is saturated. Increasing the number of cars that can leave the junction at the turn of the green phase reduces the number of cycle times before the queue is cleared.

  6. Sensitivity Analysis of Wavelet Neural Network Model for Short-Term Traffic Volume Prediction

    Directory of Open Access Journals (Sweden)

    Jinxing Shen

    2013-01-01

    Full Text Available In order to achieve a more accurate and robust traffic volume prediction model, the sensitivity of wavelet neural network model (WNNM is analyzed in this study. Based on real loop detector data which is provided by traffic police detachment of Maanshan, WNNM is discussed with different numbers of input neurons, different number of hidden neurons, and traffic volume for different time intervals. The test results show that the performance of WNNM depends heavily on network parameters and time interval of traffic volume. In addition, the WNNM with 4 input neurons and 6 hidden neurons is the optimal predictor with more accuracy, stability, and adaptability. At the same time, a much better prediction record will be achieved with the time interval of traffic volume are 15 minutes. In addition, the optimized WNNM is compared with the widely used back-propagation neural network (BPNN. The comparison results indicated that WNNM produce much lower values of MAE, MAPE, and VAPE than BPNN, which proves that WNNM performs better on short-term traffic volume prediction.

  7. Modeling effects of traffic and landscape characteristics on ambient nitrogen dioxide levels in Connecticut

    Science.gov (United States)

    Skene, Katherine J.; Gent, Janneane F.; McKay, Lisa A.; Belanger, Kathleen; Leaderer, Brian P.; Holford, Theodore R.

    2010-12-01

    An integrated exposure model was developed that estimates nitrogen dioxide (NO 2) concentration at residences using geographic information systems (GIS) and variables derived within residential buffers representing traffic volume and landscape characteristics including land use, population density and elevation. Multiple measurements of NO 2 taken outside of 985 residences in Connecticut were used to develop the model. A second set of 120 outdoor NO 2 measurements as well as cross-validation were used to validate the model. The model suggests that approximately 67% of the variation in NO 2 levels can be explained by: traffic and land use primarily within 2 km of a residence; population density; elevation; and time of year. Potential benefits of this model for health effects research include improved spatial estimations of traffic-related pollutant exposure and reduced need for extensive pollutant measurements. The model, which could be calibrated and applied in areas other than Connecticut, has importance as a tool for exposure estimation in epidemiological studies of traffic-related air pollution.

  8. Simulation of queue length and vehicle delays on signal-controlled intersection

    Directory of Open Access Journals (Sweden)

    Leverents Evgeny

    2018-01-01

    Full Text Available The extensive use of information technology in the field of traffic control will increase the traffic capacity of intersection points and transports. To assess the efficacy of changing options for the road traffic organization or the reorganization of intersection points, you need to know the average delay in vehicles and the length of the queue. The adaptive traffic light control is one of such tools. Simulation modeling of traffic flows use for the definition of its work. The aim of this work is to create a simulation model of controlled intersection, which can evaluate the efficiency of the application the adaptive regulation in various traffic situations, including the availability or deficiency of pedestrian traffic through the intersection. The numerical experiment in in the model pass with using of the Monte Carlo method, which can to draw a conclusion about the calculated parameter on the basis of the result of the reproduction of the calculation model.

  9. A Global System for Transportation Simulation and Visualization in Emergency Evacuation Scenarios

    Energy Technology Data Exchange (ETDEWEB)

    Lu, Wei [ORNL; Liu, Cheng [ORNL; Thomas, Neil [ORNL; Bhaduri, Budhendra L [ORNL; Han, Lee [University of Tennessee, Knoxville (UTK)

    2015-01-01

    Simulation-based studies are frequently used for evacuation planning and decision making processes. Given the transportation systems complexity and data availability, most evacuation simulation models focus on certain geographic areas. With routine improvement of OpenStreetMap road networks and LandScanTM global population distribution data, we present WWEE, a uniform system for world-wide emergency evacuation simulations. WWEE uses unified data structure for simulation inputs. It also integrates a super-node trip distribution model as the default simulation parameter to improve the system computational performance. Two levels of visualization tools are implemented for evacuation performance analysis, including link-based macroscopic visualization and vehicle-based microscopic visualization. For left-hand and right-hand traffic patterns in different countries, the authors propose a mirror technique to experiment with both scenarios without significantly changing traffic simulation models. Ten cities in US, Europe, Middle East, and Asia are modeled for demonstration. With default traffic simulation models for fast and easy-to-use evacuation estimation and visualization, WWEE also retains the capability of interactive operation for users to adopt customized traffic simulation models. For the first time, WWEE provides a unified platform for global evacuation researchers to estimate and visualize their strategies performance of transportation systems under evacuation scenarios.

  10. Optimum principle for a vehicular traffic network: minimum probability of congestion

    International Nuclear Information System (INIS)

    Kerner, Boris S

    2011-01-01

    We introduce an optimum principle for a vehicular traffic network with road bottlenecks. This network breakdown minimization (BM) principle states that the network optimum is reached when link flow rates are assigned in the network in such a way that the probability for spontaneous occurrence of traffic breakdown in at least one of the network bottlenecks during a given observation time reaches the minimum possible value. Based on numerical simulations with a stochastic three-phase traffic flow model, we show that in comparison to the well-known Wardrop's principles, the application of the BM principle permits considerably greater network inflow rates at which no traffic breakdown occurs and, therefore, free flow remains in the whole network. (fast track communication)

  11. Modelling the Magnetic Disturbances Due to Road-Traffic

    Directory of Open Access Journals (Sweden)

    J -J Schott

    2011-07-01

    Full Text Available Magnetic disturbances due to the traffic are tentatively modelled assuming that the sources are moving dipoles. The influencing section of the road ("useful" portion should be modelled in 3D. The parameters of the model (time of closest position to the magnetometer, velocity, including its sign, dipole moment are fairly accurately estimated. The fit is improved with the incorporation of a small induction effect.

  12. Modelling traffic flows with intelligent cars and intelligent roads

    NARCIS (Netherlands)

    van Arem, Bart; Tampere, Chris M.J.; Malone, Kerry

    2003-01-01

    This paper addresses the modeling of traffic flows with intelligent cars and intelligent roads. It will describe the modeling approach MIXIC and review the results for different ADA systems: Adaptive Cruise Control, a special lane for Intelligent Vehicles, cooperative following and external speed

  13. Pattern-based approach for logical traffic isolation forensic modelling

    CSIR Research Space (South Africa)

    Dlamini, I

    2009-08-01

    Full Text Available reusability and flexibility of the LTI model. This model is viewed as a three-tier architecture, which for experimental purposes is composed of the following components: traffic generator, DiffServ network and the sink server. The Mediator pattern is used...

  14. Impact of distracted driving on safety and traffic flow.

    Science.gov (United States)

    Stavrinos, Despina; Jones, Jennifer L; Garner, Annie A; Griffin, Russell; Franklin, Crystal A; Ball, David; Welburn, Sharon C; Ball, Karlene K; Sisiopiku, Virginia P; Fine, Philip R

    2013-12-01

    Studies have documented a link between distracted driving and diminished safety; however, an association between distracted driving and traffic congestion has not been investigated in depth. The present study examined the behavior of teens and young adults operating a driving simulator while engaged in various distractions (i.e., cell phone, texting, and undistracted) and driving conditions (i.e., free flow, stable flow, and oversaturation). Seventy five participants 16-25 years of age (split into 2 groups: novice drivers and young adults) drove a STISIM simulator three times, each time with one of three randomly presented distractions. Each drive was designed to represent daytime scenery on a 4 lane divided roadway and included three equal roadway portions representing Levels of Service (LOS) A, C, and E as defined in the 2000 Highway Capacity Manual. Participants also completed questionnaires documenting demographics and driving history. Both safety and traffic flow related driving outcomes were considered. A Repeated Measures Multivariate Analysis of Variance was employed to analyze continuous outcome variables and a Generalized Estimate Equation (GEE) Poisson model was used to analyze count variables. Results revealed that, in general more lane deviations and crashes occurred during texting. Distraction (in most cases, text messaging) had a significantly negative impact on traffic flow, such that participants exhibited greater fluctuation in speed, changed lanes significantly fewer times, and took longer to complete the scenario. In turn, more simulated vehicles passed the participant drivers while they were texting or talking on a cell phone than while undistracted. The results indicate that distracted driving, particularly texting, may lead to reduced safety and traffic flow, thus having a negative impact on traffic operations. No significant differences were detected between age groups, suggesting that all drivers, regardless of age, may drive in a manner

  15. Driver's Behavior and Decision-Making Optimization Model in Mixed Traffic Environment

    Directory of Open Access Journals (Sweden)

    Xiaoyuan Wang

    2015-02-01

    Full Text Available Driving process is an information treating procedure going on unceasingly. It is very important for the research of traffic flow theory, to study on drivers' information processing pattern in mixed traffic environment. In this paper, bicycle is regarded as a kind of information source to vehicle drivers; the “conflict point method” is brought forward to analyze the influence of bicycles on driving behavior. The “conflict” is studied to be translated into a special kind of car-following or lane-changing process. Furthermore, the computer clocked scan step length is dropped to 0.1 s, in order to scan and analyze the dynamic (static information which influences driving behavior in a more exact way. The driver's decision-making process is described through information fusion based on duality contrast and fuzzy optimization theory. The model test and verification show that the simulation results with the “conflict point method” and the field data are consistent basically. It is feasible to imitate driving behavior and the driver information fusion process with the proposed methods. Decision-making optimized process can be described more accurately through computer precision clocked scan strategy. The study in this paper can provide the foundation for further research of multiresource information fusion process of driving behavior.

  16. Multi-agent simulation of the von Thunen model formation mechanism

    Science.gov (United States)

    Tao, Haiyan; Li, Xia; Chen, Xiaoxiang; Deng, Chengbin

    2008-10-01

    This research tries to explain the internal driving forces of circular structure formation in urban geography via the simulation of interaction between individual behavior and market. On the premise of single city center, unchanged scale merit and complete competition, enterprise migration theory as well, an R-D algorithm, that has agents searched the best behavior rules in some given locations, is introduced with agent-based modeling technique. The experiment conducts a simulation on Swarm platform, whose result reflects and replays the formation process of Von Thünen circular structure. Introducing and considering some heterogeneous factors, such as traffic roads, the research verifies several landuse models and discusses the self-adjustment function of price mechanism.

  17. Traffic Flow Prediction Model for Large-Scale Road Network Based on Cloud Computing

    Directory of Open Access Journals (Sweden)

    Zhaosheng Yang

    2014-01-01

    Full Text Available To increase the efficiency and precision of large-scale road network traffic flow prediction, a genetic algorithm-support vector machine (GA-SVM model based on cloud computing is proposed in this paper, which is based on the analysis of the characteristics and defects of genetic algorithm and support vector machine. In cloud computing environment, firstly, SVM parameters are optimized by the parallel genetic algorithm, and then this optimized parallel SVM model is used to predict traffic flow. On the basis of the traffic flow data of Haizhu District in Guangzhou City, the proposed model was verified and compared with the serial GA-SVM model and parallel GA-SVM model based on MPI (message passing interface. The results demonstrate that the parallel GA-SVM model based on cloud computing has higher prediction accuracy, shorter running time, and higher speedup.

  18. A Continuous Dynamic Traffic Assignment Model From Plate Scanning Technique

    Energy Technology Data Exchange (ETDEWEB)

    Rivas, A.; Gallego, I.; Sanchez-Cambronero, S.; Ruiz-Ripoll, L.; Barba, R.M.

    2016-07-01

    This paper presents a methodology for the dynamic estimation of traffic flows on all links of a network from observable field data assuming the first-in-first-out (FIFO) hypothesis. The traffic flow intensities recorded at the exit of the scanned links are propagated to obtain the flow waves on unscanned links. For that, the model calculates the flow-cost functions through information registered with the plate scanning technique. The model also responds to the concern about the parameter quality of flow-cost functions to replicate the real traffic flow behaviour. It includes a new algorithm for the adjustment of the parameter values to link characteristics when its quality is questionable. For that, it is necessary the a priori study of the location of the scanning devices to identify all path flows and to measure travel times in all links. A synthetic network is used to illustrate the proposed method and to prove its usefulness and feasibility. (Author)

  19. A digital simulation of message traffic for natural disaster warning communications satellite

    Science.gov (United States)

    Hein, G. F.; Stevenson, S. M.

    1972-01-01

    Various types of weather communications are required to alert industries and the general public about the impending occurrence of tornados, hurricanes, snowstorms, floods, etc. A natural disaster warning satellite system has been proposed for meeting the communications requirements of the National Oceanic and Atmospheric Administration. Message traffic for a communications satellite was simulated with a digital computer in order to determine the number of communications channels to meet system requirements. Poisson inputs are used for arrivals and an exponential distribution is used for service.

  20. Real-time traffic signal optimization model based on average delay time per person

    Directory of Open Access Journals (Sweden)

    Pengpeng Jiao

    2015-10-01

    Full Text Available Real-time traffic signal control is very important for relieving urban traffic congestion. Many existing traffic control models were formulated using optimization approach, with the objective functions of minimizing vehicle delay time. To improve people’s trip efficiency, this article aims to minimize delay time per person. Based on the time-varying traffic flow data at intersections, the article first fits curves of accumulative arrival and departure vehicles, as well as the corresponding functions. Moreover, this article transfers vehicle delay time to personal delay time using average passenger load of cars and buses, employs such time as the objective function, and proposes a signal timing optimization model for intersections to achieve real-time signal parameters, including cycle length and green time. This research further implements a case study based on practical data collected at an intersection in Beijing, China. The average delay time per person and queue length are employed as evaluation indices to show the performances of the model. The results show that the proposed methodology is capable of improving traffic efficiency and is very effective for real-world applications.

  1. Fuzzy Logic Based Autonomous Traffic Control System

    Directory of Open Access Journals (Sweden)

    Muhammad ABBAS

    2012-01-01

    Full Text Available The aim of this paper is to design and implement fuzzy logic based traffic light Control system to solve the traffic congestion issues. In this system four input parameters: Arrival, Queue, Pedestrian and Emergency Vehicle and two output parameters: Extension in Green and Pedestrian Signals are used. Using Fuzzy Rule Base, the system extends or terminates the Green Signal according to the Traffic situation at the junction. On the presence of emergency vehicle, the system decides which signal(s should be red and how much an extension should be given to Green Signal for Emergency Vehicle. The system also monitors the density of people and makes decisions accordingly. In order to verify the proposed design algorithm MATLAB simulation is adopted and results obtained show concurrency to the calculated values according to the Mamdani Model of the Fuzzy Control System.

  2. Spatial Analysis of Traffic and Routing Path Methods for Tsunami Evacuation

    Science.gov (United States)

    Fakhrurrozi, A.; Sari, A. M.

    2018-02-01

    Tsunami disaster occurred relatively very fast. Thus, it has a very large-scale impact on both non-material and material aspects. Community evacuation caused mass panic, crowds, and traffic congestion. A further research in spatial based modelling, traffic engineering and splitting zone evacuation simulation is very crucial as an effort to reduce higher losses. This topic covers some information from the previous research. Complex parameters include route selection, destination selection, the spontaneous timing of both the departure of the source and the arrival time to destination and other aspects of the result parameter in various methods. The simulation process and its results, traffic modelling, and routing analysis emphasized discussion which is the closest to real conditions in the tsunami evacuation process. The method that we should highlight is Clearance Time Estimate based on Location Priority in which the computation result is superior to others despite many drawbacks. The study is expected to have input to improve and invent a new method that will be a part of decision support systems for disaster risk reduction of tsunamis disaster.

  3. Particle Reduction Strategies - PAREST. Traffic emission modelling. Model comparision and alternative scenarios. Sub-report

    International Nuclear Information System (INIS)

    Kugler, Ulrike; Theloke, Jochen; Joerss, Wolfram

    2013-01-01

    The modeling of the reference scenario and the various reduction scenarios in PAREST was based on the Central System of Emissions (CSE) (CSE, 2007). Emissions from road traffic were calculated by using the traffic emission model TREMOD (Knoerr et al., 2005) and fed into the CSE. The version TREMOD 4.17 has been used. The resulting emission levels in PAREST reference scenario were supplemented by the emission-reducing effect of the implementation of the future Euro 5 and 6 emission standards for cars and light commercial vehicles and Euro VI for heavy commercial vehicles in combination with the truck toll extension. [de

  4. Systemic Approach to Traffic Evaluation of Mostar Airport

    Directory of Open Access Journals (Sweden)

    Eldo Raguž

    2005-11-01

    Full Text Available The attempt of this work is to systematically find solutionsfor Mostar Airport development through technical and technologicalharmonization of traffic processes undertaken in twoseparate organizations - airport and air traffic control and coordinationbetween other traffic branches. The work uses theindicators of traffic flows and tourist trends in the region, andtogether with the mentioned simulations it attempts to evaluatethe traffic potentials in the region by affecting the change in thecurrent negative traffic flows at Mostar Airport.

  5. The impact of a congestion assistant on traffic flow efficiency and safety in congested traffic caused by a lane drop

    NARCIS (Netherlands)

    van Driel, Cornelie; van Arem, Bart

    2010-01-01

    This article presents the results of a microscopic traffic simulation study conducted to investigate the impact of a Congestion Assistant on traffic efficiency and traffic safety. The Congestion Assistant is an in-vehicle system in which an active pedal supports the driver when approaching

  6. Three-dimensional computer simulation at vehicle collision using dynamic model. Application to various collision types; Rikigaku model ni yoru jidosha shototsuji no sanjigen kyodo simulation. Shushu no shototsu keitai eno tekiyo

    Energy Technology Data Exchange (ETDEWEB)

    Abe, M; Morisawa, M [Musashi Institute of Technology, Tokyo (Japan); Sato, T [Keio University, Tokyo (Japan); Kobayashi, K [Molex-Japan Co. Ltd., Tokyo (Japan)

    1997-10-01

    The past study of safety at vehicle collision pays attention to phenomena within the short time from starting collision, and the behavior of rollover is studied separating from that at collision. Most simulations of traffic accident are two-dimensional simulations. Therefore, it is indispensable for vehicle design to the analyze three-dimensional and continuous behavior from crash till stopping. Accordingly, in this study, the three-dimensional behavior of two vehicles at collision was simulated by computer using dynamic models. Then, by comparison of the calculated results with real vehicles` collision test data, it was confirmed that dynamic model of this study was reliable. 10 refs., 6 figs., 3 tabs.

  7. Traveling waves in an optimal velocity model of freeway traffic

    Science.gov (United States)

    Berg, Peter; Woods, Andrew

    2001-03-01

    Car-following models provide both a tool to describe traffic flow and algorithms for autonomous cruise control systems. Recently developed optimal velocity models contain a relaxation term that assigns a desirable speed to each headway and a response time over which drivers adjust to optimal velocity conditions. These models predict traffic breakdown phenomena analogous to real traffic instabilities. In order to deepen our understanding of these models, in this paper, we examine the transition from a linear stable stream of cars of one headway into a linear stable stream of a second headway. Numerical results of the governing equations identify a range of transition phenomena, including monotonic and oscillating travelling waves and a time- dependent dispersive adjustment wave. However, for certain conditions, we find that the adjustment takes the form of a nonlinear traveling wave from the upstream headway to a third, intermediate headway, followed by either another traveling wave or a dispersive wave further downstream matching the downstream headway. This intermediate value of the headway is selected such that the nonlinear traveling wave is the fastest stable traveling wave which is observed to develop in the numerical calculations. The development of these nonlinear waves, connecting linear stable flows of two different headways, is somewhat reminiscent of stop-start waves in congested flow on freeways. The different types of adjustments are classified in a phase diagram depending on the upstream and downstream headway and the response time of the model. The results have profound consequences for autonomous cruise control systems. For an autocade of both identical and different vehicles, the control system itself may trigger formations of nonlinear, steep wave transitions. Further information is available [Y. Sugiyama, Traffic and Granular Flow (World Scientific, Singapore, 1995), p. 137].

  8. The Effect of Queueing Strategy on Network Traffic

    International Nuclear Information System (INIS)

    Zhang Xue-Jun; Guan Xiang-Min; Sun Deng-Feng; Tang Shao-Ting

    2013-01-01

    In recent years, the transportation system has been faced by increasing challenge in congestion and inefficiency, and research in traffic network has become a significant area of interest. In this paper, we introduce a dynamic-information-based (DIB) queueing strategy into network traffic model under the efficient routing strategy. DIB makes a packet with higher priority to be delivered if there are less packets travelling along its path from the current node to the destination. It is found that, compared with the traditional first-in-first-out (FIFO) queueing strategy, DIB can effectively balance the traffic load of the system via delaying packets to be delivered to congested nodes. Although the network capacity has no obvious changes, some other indexes which reflect transportation efficiency are efficiently improved in the congestion state. Besides, extensive simulation results and discussions are provided to explain the phenomena. The results may provide novel insights for research on traffic systems. (condensed matter: structural, mechanical, and thermal properties)

  9. A biologically inspired two-species exclusion model: effects of RNA polymerase motor traffic on simultaneous DNA replication

    Science.gov (United States)

    Ghosh, Soumendu; Mishra, Bhavya; Patra, Shubhadeep; Schadschneider, Andreas; Chowdhury, Debashish

    2018-04-01

    We introduce a two-species exclusion model to describe the key features of the conflict between the RNA polymerase (RNAP) motor traffic, engaged in the transcription of a segment of DNA, concomitant with the progress of two DNA replication forks on the same DNA segment. One of the species of particles (P) represents RNAP motors while the other (R) represents the replication forks. Motivated by the biological phenomena that this model is intended to capture, a maximum of two R particles only are allowed to enter the lattice from two opposite ends whereas the unrestricted number of P particles constitutes a totally asymmetric simple exclusion process (TASEP) in a segment in the middle of the lattice. The model captures three distinct pathways for resolving the co-directional as well as head-on collision between the P and R particles. Using Monte Carlo simulations and heuristic analytical arguments that combine exact results for the TASEP with mean-field approximations, we predict the possible outcomes of the conflict between the traffic of RNAP motors (P particles engaged in transcription) and the replication forks (R particles). In principle, the model can be adapted to experimental conditions to account for the data quantitatively.

  10. Analysis and comparison of safety models using average daily, average hourly, and microscopic traffic.

    Science.gov (United States)

    Wang, Ling; Abdel-Aty, Mohamed; Wang, Xuesong; Yu, Rongjie

    2018-02-01

    There have been plenty of traffic safety studies based on average daily traffic (ADT), average hourly traffic (AHT), or microscopic traffic at 5 min intervals. Nevertheless, not enough research has compared the performance of these three types of safety studies, and seldom of previous studies have intended to find whether the results of one type of study is transferable to the other two studies. First, this study built three models: a Bayesian Poisson-lognormal model to estimate the daily crash frequency using ADT, a Bayesian Poisson-lognormal model to estimate the hourly crash frequency using AHT, and a Bayesian logistic regression model for the real-time safety analysis using microscopic traffic. The model results showed that the crash contributing factors found by different models were comparable but not the same. Four variables, i.e., the logarithm of volume, the standard deviation of speed, the logarithm of segment length, and the existence of diverge segment, were positively significant in the three models. Additionally, weaving segments experienced higher daily and hourly crash frequencies than merge and basic segments. Then, each of the ADT-based, AHT-based, and real-time models was used to estimate safety conditions at different levels: daily and hourly, meanwhile, the real-time model was also used in 5 min intervals. The results uncovered that the ADT- and AHT-based safety models performed similar in predicting daily and hourly crash frequencies, and the real-time safety model was able to provide hourly crash frequency. Copyright © 2017 Elsevier Ltd. All rights reserved.

  11. Optimum principle for a vehicular traffic network: minimum probability of congestion

    Energy Technology Data Exchange (ETDEWEB)

    Kerner, Boris S, E-mail: boris.kerner@daimler.com [Daimler AG, GR/PTF, HPC: G021, 71059 Sindelfingen (Germany)

    2011-03-04

    We introduce an optimum principle for a vehicular traffic network with road bottlenecks. This network breakdown minimization (BM) principle states that the network optimum is reached when link flow rates are assigned in the network in such a way that the probability for spontaneous occurrence of traffic breakdown in at least one of the network bottlenecks during a given observation time reaches the minimum possible value. Based on numerical simulations with a stochastic three-phase traffic flow model, we show that in comparison to the well-known Wardrop's principles, the application of the BM principle permits considerably greater network inflow rates at which no traffic breakdown occurs and, therefore, free flow remains in the whole network. (fast track communication)

  12. Model for Predicting Traffic Signs Functional Service Life – The Republic of Croatia Case Study

    Directory of Open Access Journals (Sweden)

    Dario Babić

    2017-06-01

    Full Text Available Traffic signs are the basic elements of communication between the relevant road authorities and road users. They manage, regulate, inform and warn road users to ensure their safe movement throughout transport networks. Traffic signs must be timely visible to all traffic participants in all weather and traffic conditions in order to fulfil their function, which means they must have satisfactory retroreflection properties. This paper presents a research of the deterioration of traffic signs retroreflection. The aim of this article is to develop models that will effectively enable predicting the retroreflection of traffic signs and thus optimize the maintenance activities and replacement of road signs to increase road safety. The research included measurements of retroreflection of retroreflective material Classes I and II (white, red and blue colour and Class III (red and yellow colour. Based on the collected data from the City of Zagreb (Republic of Croatia, the authors developed the models to estimate the functional service life of certain colours and materials used to make traffic signs. Considering that the average coefficient of determination for all the models is between 0.55-0.60, they present an effective tool in the traffic sign maintenance system.

  13. Trends in aircraft emissions. Simulation of two air traffic scenarios in Sweden

    Energy Technology Data Exchange (ETDEWEB)

    Larson, L.G.; Palsson, A. [The Aeronautical Research Inst. of Sweden, Bromma (Sweden). The Swedish Civil Aviation Administration

    1997-12-31

    The developing trends of emissions from aviation in Sweden have been studied by means of flight and emissions simulation. The objective was to investigate whether technical improvements will allow Swedish air traffic to increase, without exceeding national regulations for pollution in the future. It was found that, due to development of aircraft engines and, to some extent, improvement of aerodynamic designs, the fuel consumption and thus the emissions of carbon dioxide will decrease in the future. The decrease of nitrous oxides is predicted to be significant due to advances in engine technology. (author) 4 refs.

  14. Trends in aircraft emissions. Simulation of two air traffic scenarios in Sweden

    Energy Technology Data Exchange (ETDEWEB)

    Larson, L G; Palsson, A [The Aeronautical Research Inst. of Sweden, Bromma (Sweden). The Swedish Civil Aviation Administration

    1998-12-31

    The developing trends of emissions from aviation in Sweden have been studied by means of flight and emissions simulation. The objective was to investigate whether technical improvements will allow Swedish air traffic to increase, without exceeding national regulations for pollution in the future. It was found that, due to development of aircraft engines and, to some extent, improvement of aerodynamic designs, the fuel consumption and thus the emissions of carbon dioxide will decrease in the future. The decrease of nitrous oxides is predicted to be significant due to advances in engine technology. (author) 4 refs.

  15. Traffic State Estimation Using Connected Vehicles and Stationary Detectors

    Directory of Open Access Journals (Sweden)

    Ellen F. Grumert

    2018-01-01

    Full Text Available Real-time traffic state estimation is of importance for efficient traffic management. This is especially the case for traffic management systems that require fast detection of changes in the traffic conditions in order to apply an effective control measure. In this paper, we propose a method for estimating the traffic state and speed and density, by using connected vehicles combined with stationary detectors. The aim is to allow fast and accurate estimation of changes in the traffic conditions. The proposed method does only require information about the speed and the position of connected vehicles and can make use of sparsely located stationary detectors to limit the dependence on the infrastructure equipment. An evaluation of the proposed method is carried out by microscopic traffic simulation. The traffic state estimated using the proposed method is compared to the true simulated traffic state. Further, the density estimates are compared to density estimates from one detector-based method, one combined method, and one connected-vehicle-based method. The results of the study show that the proposed method is a promising alternative for estimating the traffic state in traffic management applications.

  16. Improving traffic signal management and operations : a basic service model.

    Science.gov (United States)

    2009-12-01

    This report provides a guide for achieving a basic service model for traffic signal management and : operations. The basic service model is based on simply stated and defensible operational objectives : that consider the staffing level, expertise and...

  17. The Fusion Model of Intelligent Transportation Systems Based on the Urban Traffic Ontology

    Science.gov (United States)

    Yang, Wang-Dong; Wang, Tao

    On these issues unified representation of urban transport information using urban transport ontology, it defines the statute and the algebraic operations of semantic fusion in ontology level in order to achieve the fusion of urban traffic information in the semantic completeness and consistency. Thus this paper takes advantage of the semantic completeness of the ontology to build urban traffic ontology model with which we resolve the problems as ontology mergence and equivalence verification in semantic fusion of traffic information integration. Information integration in urban transport can increase the function of semantic fusion, and reduce the amount of data integration of urban traffic information as well enhance the efficiency and integrity of traffic information query for the help, through the practical application of intelligent traffic information integration platform of Changde city, the paper has practically proved that the semantic fusion based on ontology increases the effect and efficiency of the urban traffic information integration, reduces the storage quantity, and improve query efficiency and information completeness.

  18. Best response game of traffic on road network of non-signalized intersections

    Science.gov (United States)

    Yao, Wang; Jia, Ning; Zhong, Shiquan; Li, Liying

    2018-01-01

    This paper studies the traffic flow in a grid road network with non-signalized intersections. The nature of the drivers in the network is simulated such that they play an iterative snowdrift game with other drivers. A cellular automata model is applied to study the characteristics of the traffic flow and the evolution of the behaviour of the drivers during the game. The drivers use best-response as their strategy to update rules. Three major findings are revealed. First, the cooperation rate in simulation experiences staircase-shaped drop as cost to benefit ratio r increases, and cooperation rate can be derived analytically as a function of cost to benefit ratio r. Second, we find that higher cooperation rate corresponds to higher average speed, lower density and higher flow. This reveals that defectors deteriorate the efficiency of traffic on non-signalized intersections. Third, the system experiences more randomness when the density is low because the drivers will not have much opportunity to update strategy when the density is low. These findings help to show how the strategy of drivers in a traffic network evolves and how their interactions influence the overall performance of the traffic system.

  19. Exact solutions to traffic density estimation problems involving the Lighthill-Whitham-Richards traffic flow model using mixed integer programming

    KAUST Repository

    Canepa, Edward S.; Claudel, Christian G.

    2012-01-01

    This article presents a new mixed integer programming formulation of the traffic density estimation problem in highways modeled by the Lighthill Whitham Richards equation. We first present an equivalent formulation of the problem using an Hamilton-Jacobi equation. Then, using a semi-analytic formula, we show that the model constraints resulting from the Hamilton-Jacobi equation result in linear constraints, albeit with unknown integers. We then pose the problem of estimating the density at the initial time given incomplete and inaccurate traffic data as a Mixed Integer Program. We then present a numerical implementation of the method using experimental flow and probe data obtained during Mobile Century experiment. © 2012 IEEE.

  20. Exact solutions to traffic density estimation problems involving the Lighthill-Whitham-Richards traffic flow model using mixed integer programming

    KAUST Repository

    Canepa, Edward S.

    2012-09-01

    This article presents a new mixed integer programming formulation of the traffic density estimation problem in highways modeled by the Lighthill Whitham Richards equation. We first present an equivalent formulation of the problem using an Hamilton-Jacobi equation. Then, using a semi-analytic formula, we show that the model constraints resulting from the Hamilton-Jacobi equation result in linear constraints, albeit with unknown integers. We then pose the problem of estimating the density at the initial time given incomplete and inaccurate traffic data as a Mixed Integer Program. We then present a numerical implementation of the method using experimental flow and probe data obtained during Mobile Century experiment. © 2012 IEEE.

  1. Integrated Traffic Flow Management Decision Making

    Science.gov (United States)

    Grabbe, Shon R.; Sridhar, Banavar; Mukherjee, Avijit

    2009-01-01

    A generalized approach is proposed to support integrated traffic flow management decision making studies at both the U.S. national and regional levels. It can consider tradeoffs between alternative optimization and heuristic based models, strategic versus tactical flight controls, and system versus fleet preferences. Preliminary testing was accomplished by implementing thirteen unique traffic flow management models, which included all of the key components of the system and conducting 85, six-hour fast-time simulation experiments. These experiments considered variations in the strategic planning look-ahead times, the replanning intervals, and the types of traffic flow management control strategies. Initial testing indicates that longer strategic planning look-ahead times and re-planning intervals result in steadily decreasing levels of sector congestion for a fixed delay level. This applies when accurate estimates of the air traffic demand, airport capacities and airspace capacities are available. In general, the distribution of the delays amongst the users was found to be most equitable when scheduling flights using a heuristic scheduling algorithm, such as ration-by-distance. On the other hand, equity was the worst when using scheduling algorithms that took into account the number of seats aboard each flight. Though the scheduling algorithms were effective at alleviating sector congestion, the tactical rerouting algorithm was the primary control for avoiding en route weather hazards. Finally, the modeled levels of sector congestion, the number of weather incursions, and the total system delays, were found to be in fair agreement with the values that were operationally observed on both good and bad weather days.

  2. Traffic conflict assessment for non-lane-based movements of motorcycles under congested conditions

    Directory of Open Access Journals (Sweden)

    Long Xuan Nguyen

    2014-03-01

    Full Text Available Traffic conflict under congested conditions is one of the main safety issues of motorcycle traffic in developing countries. Unlike cars, motorcycles often display non-lane-based movements such as swerving or oblique following of a lead vehicle when traffic becomes congested. Very few studies have quantitatively evaluated the effects of such non-lane-based movements on traffic conflict. Therefore, in this study we aim to develop an integrated model to assess the traffic conflict of motorcycles under congested conditions. The proposed model includes a concept of safety space to describe the non-lane-based movements unique to motorcycles, new features developed for traffic conflict assessment such as parameters of acceleration and deceleration, and the conditions for choosing a lead vehicle. Calibration data were extracted from video clips taken at two road segments in Ho Chi Minh City. A simulation based on the model was developed to verify the dynamic non-lane-based movements of motorcycles. Subsequently, the assessment of traffic conflict was validated by calculating the probability of sudden braking at each time interval according to the change in the density of motorcycle flow. Our findings underscore the fact that higher flow density may lead to conflicts associated with a greater probability of sudden breaking. Three types of motorcycle traffic conflicts were confirmed, and the proportions of each type were calculated and discussed.

  3. Cognitive process modelling of controllers in en route air traffic control.

    Science.gov (United States)

    Inoue, Satoru; Furuta, Kazuo; Nakata, Keiichi; Kanno, Taro; Aoyama, Hisae; Brown, Mark

    2012-01-01

    In recent years, various efforts have been made in air traffic control (ATC) to maintain traffic safety and efficiency in the face of increasing air traffic demands. ATC is a complex process that depends to a large degree on human capabilities, and so understanding how controllers carry out their tasks is an important issue in the design and development of ATC systems. In particular, the human factor is considered to be a serious problem in ATC safety and has been identified as a causal factor in both major and minor incidents. There is, therefore, a need to analyse the mechanisms by which errors occur due to complex factors and to develop systems that can deal with these errors. From the cognitive process perspective, it is essential that system developers have an understanding of the more complex working processes that involve the cooperative work of multiple controllers. Distributed cognition is a methodological framework for analysing cognitive processes that span multiple actors mediated by technology. In this research, we attempt to analyse and model interactions that take place in en route ATC systems based on distributed cognition. We examine the functional problems in an ATC system from a human factors perspective, and conclude by identifying certain measures by which to address these problems. This research focuses on the analysis of air traffic controllers' tasks for en route ATC and modelling controllers' cognitive processes. This research focuses on an experimental study to gain a better understanding of controllers' cognitive processes in air traffic control. We conducted ethnographic observations and then analysed the data to develop a model of controllers' cognitive process. This analysis revealed that strategic routines are applicable to decision making.

  4. Game Theory Model of Traffic Participants within Amber Time at Signalized Intersection

    Directory of Open Access Journals (Sweden)

    Weiwei Qi

    2014-01-01

    Full Text Available The traffic light scheme is composed of red, green, and amber lights, and it has been defined clearly for the traffic access of red and green lights; however, the definition of that for the amber light is indistinct, which leads to the appearance of uncertainty factors and serious traffic conflicts during the amber light. At present, the traffic administrations are faced with the decision of whether to forbid passing or not during the amber light in the cities of China. On one hand, it will go against the purpose of setting amber lights if forbidding passing; on the other hand, it may lead to a mess of traffic flow running if not. And meanwhile the drivers are faced with the decision of passing the intersection or stopping during the amber light as well. So the decision-making behavior of traffic administrations and drivers can be converted into a double game model. And through quantification of their earnings in different choice conditions, the optimum decision-making plan under specific conditions could be solved via the Nash equilibrium solution concept. Thus the results will provide a basis for the formulation of the traffic management strategy.

  5. Game Theory Model of Traffic Participants within Amber Time at Signalized Intersection

    Science.gov (United States)

    Qi, Weiwei; Wen, Huiying; Fu, Chuanyun; Song, Mo

    2014-01-01

    The traffic light scheme is composed of red, green, and amber lights, and it has been defined clearly for the traffic access of red and green lights; however, the definition of that for the amber light is indistinct, which leads to the appearance of uncertainty factors and serious traffic conflicts during the amber light. At present, the traffic administrations are faced with the decision of whether to forbid passing or not during the amber light in the cities of China. On one hand, it will go against the purpose of setting amber lights if forbidding passing; on the other hand, it may lead to a mess of traffic flow running if not. And meanwhile the drivers are faced with the decision of passing the intersection or stopping during the amber light as well. So the decision-making behavior of traffic administrations and drivers can be converted into a double game model. And through quantification of their earnings in different choice conditions, the optimum decision-making plan under specific conditions could be solved via the Nash equilibrium solution concept. Thus the results will provide a basis for the formulation of the traffic management strategy. PMID:25580108

  6. Traffic forecasts ignoring induced demand

    DEFF Research Database (Denmark)

    Næss, Petter; Nicolaisen, Morten Skou; Strand, Arvid

    2012-01-01

    the model calculations included only a part of the induced traffic, the difference in cost-benefit results compared to the model excluding all induced traffic was substantial. The results show lower travel time savings, more adverse environmental impacts and a considerably lower benefitcost ratio when...... induced traffic is partly accounted for than when it is ignored. By exaggerating the economic benefits of road capacity increase and underestimating its negative effects, omission of induced traffic can result in over-allocation of public money on road construction and correspondingly less focus on other...... performance of a proposed road project in Copenhagen with and without short-term induced traffic included in the transport model. The available transport model was not able to include long-term induced traffic resulting from changes in land use and in the level of service of public transport. Even though...

  7. Studies of vehicle lane-changing dynamics and its effect on traffic efficiency, safety and environmental impact

    Science.gov (United States)

    Li, Xiang; Sun, Jian-Qiao

    2017-02-01

    Drivers often change lanes on the road to maintain desired speed and to avoid slow vehicles, pedestrians, obstacles and lane closure. Understanding the effect of lane-changing on the traffic is an important topic in designing optimal traffic control systems. This paper presents a comprehensive study of this topic. We review the theory of microscopic dynamic car-following models and the lane-changing models, propose additional lane-changing rules to deal with moving bottleneck and lane reduction, and investigate the effects of lane-changing on the traffic efficiency, traffic safety and fuel consumption as a function of different variables including the distance of the emergency sign ahead of the lane closure, speed limit, traffic density, etc. Extensive simulations of the traffic system have been carried out in different scenarios. A number of important findings of the effect of various factors on the traffic are reported. These findings provide guidance on the traffic management and are important to the designers and engineers of modern highway or inner city roads to achieve high traffic efficiency and safety with minimum environmental impact.

  8. Data Mining Meets Performance Evaluation: Fast Algorithms for Modeling Bursty Traffic

    National Research Council Canada - National Science Library

    Wang, Mengzhi; Madhyastha, Tara; Chan, Ngai H; Paradimitriou, Spiros; Faloutsos, Christos

    2001-01-01

    ...]. However, we do want to model these types of traffic and to generate realistic traces, because of obvious applications for disk scheduling, network management, web server design. Previous models...

  9. Web application and database modeling of traffic impact analysis using Google Maps

    Science.gov (United States)

    Yulianto, Budi; Setiono

    2017-06-01

    Traffic impact analysis (TIA) is a traffic study that aims at identifying the impact of traffic generated by development or change in land use. In addition to identifying the traffic impact, TIA is also equipped with mitigation measurement to minimize the arising traffic impact. TIA has been increasingly important since it was defined in the act as one of the requirements in the proposal of Building Permit. The act encourages a number of TIA studies in various cities in Indonesia, including Surakarta. For that reason, it is necessary to study the development of TIA by adopting the concept Transportation Impact Control (TIC) in the implementation of the TIA standard document and multimodal modeling. It includes TIA's standardization for technical guidelines, database and inspection by providing TIA checklists, monitoring and evaluation. The research was undertaken by collecting the historical data of junctions, modeling of the data in the form of relational database, building a user interface for CRUD (Create, Read, Update and Delete) the TIA data in the form of web programming with Google Maps libraries. The result research is a system that provides information that helps the improvement and repairment of TIA documents that exist today which is more transparent, reliable and credible.

  10. Modeling mechanical restriction differences between car and heavy truck in two-lane cellular automata traffic flow model

    Science.gov (United States)

    Li, Xin; Li, Xingang; Xiao, Yao; Jia, Bin

    2016-06-01

    Real traffic is heterogeneous with car and truck. Due to mechanical restrictions, the car and the truck have different limited deceleration capabilities, which are important factors in safety driving. This paper extends the single lane safety driving (SD) model with limited deceleration capability to two-lane SD model, in which car-truck heterogeneous traffic is considered. A car has a larger limited deceleration capability while a heavy truck has a smaller limited deceleration capability as a result of loaded goods. Then the safety driving conditions are different as the types of the following and the leading vehicles vary. In order to eliminate the well-known plug in heterogeneous two-lane traffic, it is assumed that heavy truck has active deceleration behavior when the heavy truck perceives the forming plug. The lane-changing decisions are also determined by the safety driving conditions. The fundamental diagram, spatiotemporal diagram, and lane-changing frequency were investigated to show the effect of mechanical restriction on heterogeneous traffic flow. It was shown that there would be still three traffic phases in heterogeneous traffic condition; the active deceleration of the heavy truck could well eliminate the plug; the lane-changing frequency was low in synchronized flow; the flow and velocity would decrease as the proportion of heavy truck grows or the limited deceleration capability of heavy truck drops; and the flow could be improved with lane control measures.

  11. Synchronization between Different Networks with Time-Varying Delay and Its Application in Bilayer Coupled Public Traffic Network

    Directory of Open Access Journals (Sweden)

    Wenju Du

    2016-01-01

    Full Text Available In order to study the dynamic characteristics of urban public traffic network, this paper establishes the conventional bus traffic network and the urban rail traffic network based on the space R modeling method. Then regarding these two networks as the subnetwork, the paper presents a new bilayer coupled public traffic network through the transfer relationship between subway and bus, and this model well reflects the connection between the passengers and bus operating vehicles. Based on the synchronization theory of coupling network with time-varying delay and taking “Lorenz system” as the network node, the paper studies the synchronization of bilayer coupled public traffic network. Finally, numerical results are given to show the impact of public traffic dispatching, delayed departure, the number of public bus stops between bus lines, and the number of transfer stations between two traffic modes on the bilayer coupled public traffic network balance through Matlab simulation.

  12. Travelers ability to observe changes in traffic intensities and traffic light settings

    NARCIS (Netherlands)

    Vreeswijk, Jacob Dirk; Do, Michael; Middag, Wilco; Martens, Marieke Hendrikje; van Berkum, Eric C.; van Arem, Bart; ITSC,

    2011-01-01

    Travel choice behavior is an important determinant in traffic and subject to human imperfection and bounded rationality. In decision-making processes travelers seldom act perfectly rational. Traffic models and traffic network management measure could become more realistic and effective, if

  13. International scale implementation of the CNOSSOS-EU road traffic noise prediction model for epidemiological studies

    International Nuclear Information System (INIS)

    Morley, D.W.; Hoogh, K. de; Fecht, D.; Fabbri, F.; Bell, M.; Goodman, P.S.; Elliott, P.; Hodgson, S.; Hansell, A.L.; Gulliver, J.

    2015-01-01

    The EU-FP7-funded BioSHaRE project is using individual-level data pooled from several national cohort studies in Europe to investigate the relationship of road traffic noise and health. The detailed input data (land cover and traffic characteristics) required for noise exposure modelling are not always available over whole countries while data that are comparable in spatial resolution between different countries is needed for harmonised exposure assessment. Here, we assess the feasibility using the CNOSSOS-EU road traffic noise prediction model with coarser input data in terms of model performance. Starting with a model using the highest resolution datasets, we progressively introduced lower resolution data over five further model runs and compared noise level estimates to measurements. We conclude that a low resolution noise model should provide adequate performance for exposure ranking (Spearman's rank = 0.75; p < 0.001), but with relatively large errors in predicted noise levels (RMSE = 4.46 dB(A)). - Highlights: • The first implementation of CNOSSOS-EU for national scale noise exposure assessment. • Road traffic noise model performance with varying resolution of inputs is assessed. • Model performance is good with low resolution inputs (r_s = 0.75). • This model will be applied in epidemiological studies of European cohorts. - The CNOSSOS-EU road traffic noise model estimates can be used for international scale exposure assessment when parameterised with freely available low resolution covering a large geographic area.

  14. Urban Traffic Signal System Control Structural Optimization Based on Network Analysis

    Directory of Open Access Journals (Sweden)

    Li Wang

    2013-01-01

    Full Text Available Advanced urban traffic signal control systems such as SCOOT and SCATS normally coordinate traffic network using multilevel hierarchical control mechanism. In this mechanism, several key intersections will be selected from traffic signal network and the network will be divided into different control subareas. Traditionally, key intersection selection and control subareas division are executed according to dynamic traffic counts and link length between intersections, which largely rely on traffic engineers’ experience. However, it omits important inherent characteristics of traffic network topology. In this paper, we will apply network analysis approach into these two aspects for traffic system control structure optimization. Firstly, the modified C-means clustering algorithm will be proposed to assess the importance of intersections in traffic network and furthermore determine the key intersections based on three indexes instead of merely on traffic counts in traditional methods. Secondly, the improved network community discovery method will be used to give more reasonable evidence in traffic control subarea division. Finally, to test the effectiveness of network analysis approach, a hardware-in-loop simulation environment composed of regional traffic control system, microsimulation software and signal controller hardware, will be built. Both traditional method and proposed approach will be implemented on simulation test bed to evaluate traffic operation performance indexes, for example, travel time, stop times, delay and average vehicle speed. Simulation results show that the proposed network analysis approach can improve the traffic control system operation performance effectively.

  15. A multiclass vehicular dynamic traffic flow model for main roads and dedicated lanes/roads of multimodal transport network

    Energy Technology Data Exchange (ETDEWEB)

    Sossoe, K.S., E-mail: kwami.sossoe@irt-systemx.fr [TECHNOLOGICAL RESEARCH INSTITUTE SYSTEMX (France); Lebacque, J-P., E-mail: jean-patrick.lebacque@ifsttar.fr [UPE/IFSTTAR-COSYS-GRETTIA (France)

    2015-03-10

    We present in this paper a model of vehicular traffic flow for a multimodal transportation road network. We introduce the notion of class of vehicles to refer to vehicles of different transport modes. Our model describes the traffic on highways (which may contain several lanes) and network transit for pubic transportation. The model is drafted with Eulerian and Lagrangian coordinates and uses a Logit model to describe the traffic assignment of our multiclass vehicular flow description on shared roads. The paper also discusses traffic streams on dedicated lanes for specific class of vehicles with event-based traffic laws. An Euler-Lagrangian-remap scheme is introduced to numerically approximate the model’s flow equations.

  16. Day-to-day evolution of the traffic network with Advanced Traveler Information System

    International Nuclear Information System (INIS)

    Han Linghui; Sun Huijun; Wu Jianjun; Zhu Chengjuan

    2011-01-01

    Highlights: → We develop a dynamical system with Advanced Travelers Information System (ATIS). → We use the dynamical system to study stability of the traffic network with ATIS. → It is found that some periodic attractors appear in some cases. → A road pricing is implemented to alleviate the instability of the traffic network with ATIS. - Abstract: Since the notion of user equilibrium (UE) was proposed by Wardrop , it has become a cornerstone for traffic assignment analysis. But, it is not sufficient to only ask whether equilibrium exists or not; it is equally important to ask whether and how the system can achieve equilibrium. Meanwhile, stability is an important performance in the sense that if equilibrium is unsustainable, both the equilibrium and the trajectory are sensitive to disturbances, even a small perturbation will result in the system evolution away from the equilibrium point. These incentive a growing interest in day-to-day dynamics. In this paper, we develop a dynamical system with Advanced Traveler Information System (ATIS) and study the stability of the network with ATIS. A simple network is used to simulate the model, and the results show that there exist periodic attractors in the traffic network in some cases (for example, the market penetration level of ATIS is 0.25 and traffic demand is 2 unit). It is found that the logit parameter of the dynamical model and the traffic demand can also affect the stability of the traffic network. More periodic attractors appear in the system when the traffic demand is large and the low logit parameter can delay the appearance of periodic attractors. By simulation, it can be concluded that if the range of the periodic attractors' domain of the simple network is known, the road pricing based on the range of the attraction domain is effective to alleviate the instability of the system.

  17. Analysis Of Traffic Conditions Based On The Percentage Of Drivers Using The Instructions Displayed On VMS Boards

    Directory of Open Access Journals (Sweden)

    Leszek Smolarek

    2015-09-01

    Full Text Available The theme of the publication is to show the influence of human factor on traffic conditions during the traffic incident. The publication also depicts the functionality of the model at which the simulation was performed. The model was constructed in the VISSIM and VISUM software also using Visual Basic for Applications – Excel, [8,9]. By coordinating programs VBA and VISSIM was automated turned on or off the incident as well as turned on or off the VMS with information about the proposed of the alternative route. The additional differentiation of the percentage of drivers using the information displayed enabled to compare the data with identical external conditions influencing at traffic. For statistical analysis of data was used statistical program Statgraphics Centurion which made possible to build a model describing the impact of the behavior of drivers on traffic conditions. It is an innovative approach to modeling the impact on traffic conditions accepted by drivers information transmitted on the boards.

  18. A Dynamic Traffic Signal Timing Model and its Algorithm for Junction of Urban Road

    DEFF Research Database (Denmark)

    Cai, Yanguang; Cai, Hao

    2012-01-01

    As an important part of Intelligent Transportation System, the scientific traffic signal timing of junction can improve the efficiency of urban transport. This paper presents a novel dynamic traffic signal timing model. According to the characteristics of the model, hybrid chaotic quantum...... evolutionary algorithm is employed to solve it. The proposed model has simple structure, and only requires traffic inflow speed and outflow speed are bounded functions with at most finite number of discontinuity points. The condition is very loose and better meets the requirements of the practical real......-time and dynamic signal control of junction. To obtain the optimal solution of the model by hybrid chaotic quantum evolutionary algorithm, the model is converted to an easily solvable form. To simplify calculation, we give the expression of the partial derivative and change rate of the objective function...

  19. Traffic seismicity loaded historical building frequency parameters identification due to most commonly used truck in Slovakia

    Directory of Open Access Journals (Sweden)

    Papán Daniel

    2016-01-01

    Full Text Available Experimental investigation and combination with numerical modelling is one of the progressive method in many scientific areas. The structural dynamics including traffic seismicity effects are also becoming an increasing topic. The aim of this paper was to realize the numerical analysis of heritage Upper Gate in Modra - Slovakia and FEM simulation of the lorry T-815 natural vibration. These subsystems are dominant processes in traffic seismicity vibration effects in buildings. For this purpose the variants of FE model by computing program Scia engineering has been created for building and software ADINA for lorry. These models are important for the assessment of the dynamic vibration transmissibility due to mechanical impact load properties. The results of this simulation was evaluated in frequency area. Next part of the investigation was the realisation of the experimental measurement. The results obtained from the experiment were compared with FE analysis. Using of the theoretical analysis, experimental procedures results and FEM simulation of the natural vibration it seem to be the practical application for engineering practice in prediction and assessment buildings vibration due to seismicity induced by traffic.

  20. A video-based approach to calibrating car-following parameters in VISSIM for urban traffic

    Directory of Open Access Journals (Sweden)

    Zhengyang Lu

    2016-08-01

    Full Text Available Microscopic simulation models need to be calibrated to represent realistic local traffic conditions. Traditional calibration methods are conducted by searching for the model parameter set that minimizes the discrepancies of certain macroscopic metrics between simulation results and field observations. However, this process could easily lead to inappropriate selection of calibration parameters and thus erroneous simulation results. This paper proposes a video-based approach to incorporate direct measurements of car-following parameters into the process of VISSIM model calibration. The proposed method applies automated video processing techniques to extract vehicle trajectory data and utilizes the trajectory data to determine values of certain car-following parameters in VISSIM. This paper first describes the calibration procedure step by step, and then applies the method to a case study of simulating traffic at a signalized intersection in VISSIM. From the field-collected video footage, trajectories of 1229 through-movement vehicles were extracted and analyzed to calibrate three car-following parameters regarding desired speed, desired acceleration, and safe following distance, respectively. The case study demonstrates the advantages and feasibility of the proposed approach.

  1. Vehicular traffic flow at an intersection with the possibility of turning

    International Nuclear Information System (INIS)

    Foulaadvand, M Ebrahim; Belbasi, Somayyeh

    2011-01-01

    We have developed a Nagel-Schreckenberg cellular automata model for describing a vehicular traffic flow at a single intersection. A set of traffic lights operating in a fixed-time scheme controls the traffic flow. An open boundary condition is applied to the streets each of which conducts a unidirectional flow. Streets are single lane and cars can turn upon reaching to the intersection with prescribed probabilities. Extensive Monte Carlo simulations are carried out to find the model flow characteristics. In particular, we investigate the flow dependence on signalization parameters, turning probabilities and input rates. It is shown that for each set of parameters, there exists a plateau region inside which the total outflow from the intersection remains almost constant. We also compute total waiting time of vehicles per cycle behind red lights for various control parameters.

  2. High-level traffic-violation detection for embedded traffic analysis

    NARCIS (Netherlands)

    Vijverberg, J.A.; de Koning, A.H.M.; Han, Jungong; de With, P.H.N.; Cornelissen, D.

    2007-01-01

    This paper presents the design of a robust and real-time traffic-violation detection system for cameras on intersections. We use background segmentation and a novel road-model to obtain the candidate traffic participants. A region-based tracking system, equipped with static occlusion-reasoning,

  3. Modeling carbon emissions from urban traffic system using mobile monitoring.

    Science.gov (United States)

    Sun, Daniel Jian; Zhang, Ying; Xue, Rui; Zhang, Yi

    2017-12-01

    Comprehensive analyses of urban traffic carbon emissions are critical in achieving low-carbon transportation. This paper started from the architecture design of a carbon emission mobile monitoring system using multiple sets of equipment and collected the corresponding data about traffic flow, meteorological conditions, vehicular carbon emissions and driving characteristics on typical roads in Shanghai and Wuxi, Jiangsu province. Based on these data, the emission model MOVES was calibrated and used with various sensitivity and correlation evaluation indices to analyze the traffic carbon emissions at microscopic, mesoscopic and macroscopic levels, respectively. The major factors that influence urban traffic carbon emissions were investigated, so that emission factors of CO, CO 2 and HC were calculated by taking representative passenger cars as a case study. As a result, the urban traffic carbon emissions were assessed quantitatively, and the total amounts of CO, CO 2 and HC emission from passenger cars in Shanghai were estimated as 76.95kt, 8271.91kt, and 2.13kt, respectively. Arterial roads were found as the primary line source, accounting for 50.49% carbon emissions. In additional to the overall major factors identified, the mobile monitoring system and carbon emission quantification method proposed in this study are of rather guiding significance for the further urban low-carbon transportation development. Copyright © 2017 Elsevier B.V. All rights reserved.

  4. A geographic approach to modelling human exposure to traffic air pollution using GIS

    Energy Technology Data Exchange (ETDEWEB)

    Solvang Jensen, S.

    1998-10-01

    A new exposure model has been developed that is based on a physical, single media (air) and single source (traffic) micro environmental approach that estimates traffic related exposures geographically with the postal address as exposure indicator. The micro environments: residence, workplace and street (road user exposure) may be considered. The model estimates outdoor levels for selected ambient air pollutants (benzene, CO, NO{sub 2} and O{sub 3}). The influence of outdoor air pollution on indoor levels can be estimated using average (I/O-ratios. The model has a very high spatial resolution (the address), a high temporal resolution (one hour) and may be used to predict past, present and future exposures. The model may be used for impact assessment of control measures provided that the changes to the model inputs are obtained. The exposure model takes advantage of a standard Geographic Information System (GIS) (ArcView and Avenue) for generation of inputs, for visualisation of input and output, and uses available digital maps, national administrative registers and a local traffic database, and the Danish Operational Street Pollution Model (OSPM). The exposure model presents a new approach to exposure determination by integration of digital maps, administrative registers, a street pollution model and GIS. New methods have been developed to generate the required input parameters for the OSPM model: to geocode buildings using cadastral maps and address points, to automatically generate street configuration data based on digital maps, the BBR and GIS; to predict the temporal variation in traffic and related parameters; and to provide hourly background levels for the OSPM model. (EG) 109 refs.

  5. Expanding Regional Airport Usage to Accommodate Increased Air Traffic Demand

    Science.gov (United States)

    Russell, Carl R.

    2009-01-01

    Small regional airports present an underutilized source of capacity in the national air transportation system. This study sought to determine whether a 50 percent increase in national operations could be achieved by limiting demand growth at large hub airports and instead growing traffic levels at the surrounding regional airports. This demand scenario for future air traffic in the United States was generated and used as input to a 24-hour simulation of the national airspace system. Results of the demand generation process and metrics predicting the simulation results are presented, in addition to the actual simulation results. The demand generation process showed that sufficient runway capacity exists at regional airports to offload a significant portion of traffic from hub airports. Predictive metrics forecast a large reduction of delays at most major airports when demand is shifted. The simulation results then show that offloading hub traffic can significantly reduce nationwide delays.

  6. Testing advanced driver assistance systems with the interactive driving simulator; Erprobung von Fahrerassistenzsystemen mit dem Interactive Driving Simulator

    Energy Technology Data Exchange (ETDEWEB)

    Friedrichs, A.; Grosse-Kappenberg, S.; Happe, J. [Zentrum fuer Lern- und Wissensmanagement und Lehrstuhl Informatik im Maschinenbau ZLW/IMA der RWTH Aachen (Germany)

    2005-07-01

    The Centre for Learning and Knowledge Management and Department of Computer Science in Engineering of the Technical University Aachen has developed a truck driving simulator which combines a driving simulation as well as traffic flow calculations to the interactive Driving Simulator (InDriveS). In real-time the effects of the driver's behaviour on the surrounding traffic are considered and vice versa. The integrative part of InDriveS is a software-in-the-loop and hardware-in-the-loop development environment. By means of this tool, all phases of development (Analysis, Design, Modelling, Simulation, Implementation as well as Testing and Evaluation) of new vehicle technologies, e.g. Information and Assistance Systems, can be realised in consideration of the road traffic and the driver's behaviour. (orig.)

  7. Traffic Management as a Service: The Traffic Flow Pattern Classification Problem

    Directory of Open Access Journals (Sweden)

    Carlos T. Calafate

    2015-01-01

    Full Text Available Intelligent Transportation System (ITS technologies can be implemented to reduce both fuel consumption and the associated emission of greenhouse gases. However, such systems require intelligent and effective route planning solutions to reduce travel time and promote stable traveling speeds. To achieve such goal these systems should account for both estimated and real-time traffic congestion states, but obtaining reliable traffic congestion estimations for all the streets/avenues in a city for the different times of the day, for every day in a year, is a complex task. Modeling such a tremendous amount of data can be time-consuming and, additionally, centralized computation of optimal routes based on such time-dependencies has very high data processing requirements. In this paper we approach this problem through a heuristic to considerably reduce the modeling effort while maintaining the benefits of time-dependent traffic congestion modeling. In particular, we propose grouping streets by taking into account real traces describing the daily traffic pattern. The effectiveness of this heuristic is assessed for the city of Valencia, Spain, and the results obtained show that it is possible to reduce the required number of daily traffic flow patterns by a factor of 4210 while maintaining the essence of time-dependent modeling requirements.

  8. Complex traffic flow that allows as well as hampers lane-changing intrinsically contains social-dilemma structures

    Science.gov (United States)

    Iwamura, Yoshiro; Tanimoto, Jun

    2018-02-01

    To investigate an interesting question as to whether or not social dilemma structures can be found in a realistic traffic flow reproduced by a model, we built a new microscopic model in which an intentional driver may try lane-changing to go in front of other vehicles and may hamper others’ lane-changes. Our model consists of twofold parts; cellular automaton emulating a real traffic flow and evolutionary game theory to implement a driver’s decision making-process. Numerical results reveal that a social dilemma like the multi-player chicken game or prisoner’s dilemma game emerges depending on the traffic phase. This finding implies that a social dilemma, which has been investigated by applied mathematics so far, hides behind a traffic flow, which has been explored by fluid dynamics. Highlight - Complex system of traffic flow with consideration of driver’s decision making process is concerned. - A new model dovetailing cellular automaton with game theory is established. - Statistical result from numerical simulations reveals a social dilemma structure underlying traffic flow. - The social dilemma is triggered by a driver’s egocentric actions of lane-changing and hampering other’s lane-change.

  9. An LTE implementation based on a road traffic density model

    OpenAIRE

    Attaullah, Muhammad

    2013-01-01

    The increase in vehicular traffic has created new challenges in determining the behavior of performance of data and safety measures in traffic. Hence, traffic signals on intersection used as cost effective and time saving tools for traffic management in urban areas. But on the other hand the signalized intersections in congested urban areas are the key source of high traffic density and slow traffic. High traffic density causes the slow network traffic data rate between vehicle to vehicle and...

  10. Station Model for Rail Transit System Using Cellular Automata

    International Nuclear Information System (INIS)

    Xun Jing; Ning Bin; Li Keping

    2009-01-01

    In this paper, we propose a new cellular automata model to simulate the railway traffic at station. Based on NaSch model, the proposed station model is composed of the main track and the siding track. Two different schemes for trains passing through station are considered. One is the scheme of 'pass by the main track, start and stop by the siding track'. The other is the scheme of 'two tracks play the same role'. We simulate the train movement using the proposed model and analyze the traffic flow at station. The simulation results demonstrate that the proposed cellular automata model can be successfully used for the simulations of railway traffic. Some characteristic behaviors of railway traffic flow can be reproduced. Moreover, the simulation values of the minimum headway are close to the theoretical values. This result demonstrates the dependability and availability of the proposed model. (general)

  11. Discrete event model-based simulation for train movement on a single-line railway

    International Nuclear Information System (INIS)

    Xu Xiao-Ming; Li Ke-Ping; Yang Li-Xing

    2014-01-01

    The aim of this paper is to present a discrete event model-based approach to simulate train movement with the considered energy-saving factor. We conduct extensive case studies to show the dynamic characteristics of the traffic flow and demonstrate the effectiveness of the proposed approach. The simulation results indicate that the proposed discrete event model-based simulation approach is suitable for characterizing the movements of a group of trains on a single railway line with less iterations and CPU time. Additionally, some other qualitative and quantitative characteristics are investigated. In particular, because of the cumulative influence from the previous trains, the following trains should be accelerated or braked frequently to control the headway distance, leading to more energy consumption. (general)

  12. Spatiotemporal Context Awareness for Urban Traffic Modeling and Prediction: Sparse Representation Based Variable Selection.

    Directory of Open Access Journals (Sweden)

    Su Yang

    Full Text Available Spatial-temporal correlations among the data play an important role in traffic flow prediction. Correspondingly, traffic modeling and prediction based on big data analytics emerges due to the city-scale interactions among traffic flows. A new methodology based on sparse representation is proposed to reveal the spatial-temporal dependencies among traffic flows so as to simplify the correlations among traffic data for the prediction task at a given sensor. Three important findings are observed in the experiments: (1 Only traffic flows immediately prior to the present time affect the formation of current traffic flows, which implies the possibility to reduce the traditional high-order predictors into an 1-order model. (2 The spatial context relevant to a given prediction task is more complex than what is assumed to exist locally and can spread out to the whole city. (3 The spatial context varies with the target sensor undergoing prediction and enlarges with the increment of time lag for prediction. Because the scope of human mobility is subject to travel time, identifying the varying spatial context against time lag is crucial for prediction. Since sparse representation can capture the varying spatial context to adapt to the prediction task, it outperforms the traditional methods the inputs of which are confined as the data from a fixed number of nearby sensors. As the spatial-temporal context for any prediction task is fully detected from the traffic data in an automated manner, where no additional information regarding network topology is needed, it has good scalability to be applicable to large-scale networks.

  13. Spatiotemporal Context Awareness for Urban Traffic Modeling and Prediction: Sparse Representation Based Variable Selection.

    Science.gov (United States)

    Yang, Su; Shi, Shixiong; Hu, Xiaobing; Wang, Minjie

    2015-01-01

    Spatial-temporal correlations among the data play an important role in traffic flow prediction. Correspondingly, traffic modeling and prediction based on big data analytics emerges due to the city-scale interactions among traffic flows. A new methodology based on sparse representation is proposed to reveal the spatial-temporal dependencies among traffic flows so as to simplify the correlations among traffic data for the prediction task at a given sensor. Three important findings are observed in the experiments: (1) Only traffic flows immediately prior to the present time affect the formation of current traffic flows, which implies the possibility to reduce the traditional high-order predictors into an 1-order model. (2) The spatial context relevant to a given prediction task is more complex than what is assumed to exist locally and can spread out to the whole city. (3) The spatial context varies with the target sensor undergoing prediction and enlarges with the increment of time lag for prediction. Because the scope of human mobility is subject to travel time, identifying the varying spatial context against time lag is crucial for prediction. Since sparse representation can capture the varying spatial context to adapt to the prediction task, it outperforms the traditional methods the inputs of which are confined as the data from a fixed number of nearby sensors. As the spatial-temporal context for any prediction task is fully detected from the traffic data in an automated manner, where no additional information regarding network topology is needed, it has good scalability to be applicable to large-scale networks.

  14. Heavy traffic analysis of polling models by mean value analysis

    NARCIS (Netherlands)

    Mei, van der R.D.; Winands, E.M.M.

    2008-01-01

    In this paper we present a new approach to derive heavy-traffic asymptotics for polling models. We consider the classical cyclic polling model with exhaustive or gated service at each queue, and with general service-time and switch-over time distributions, and study its behavior when the load tends

  15. Urban traffic noise assessment by combining measurement and model results

    NARCIS (Netherlands)

    Eerden, F.J.M. van der; Graafland, F.; Wessels, P.W.; Basten, T.G.H.

    2013-01-01

    A model based monitoring system is applied on a local scale in an urban area to obtain a better understanding of the traffic noise situation. The system consists of a scalable sensor network and an engineering model. A better understanding is needed to take appropriate and cost efficient measures,

  16. A Simulation Tool for Hurricane Evacuation Planning

    Directory of Open Access Journals (Sweden)

    Daniel J. Fonseca

    2009-01-01

    Full Text Available Atlantic hurricanes and severe tropical storms are a serious threat for the communities in the Gulf of Mexico region. Such storms are violent and destructive. In response to these dangers, coastal evacuation may be ordered. This paper describes the development of a simulation model to analyze the movement of vehicles through I-65, a major US Interstate highway that runs north off the coastal City of Mobile, Alabama, towards the State of Tennessee, during a massive evacuation originated by a disastrous event such a hurricane. The constructed simulation platform consists of a primary and two secondary models. The primary model is based on the entry of vehicles from the 20 on-ramps to I-65. The two secondary models assist the primary model with related traffic events such as car breakdowns and accidents, traffic control measures, interarrival signaling, and unforeseen emergency incidents, among others. Statistical testing was performed on the data generated by the simulation model to indentify variation in relevant traffic variables affecting the timely flow of vehicles travelling north. The performed statistical analysis focused on the closing of alternative on-ramps throughout the Interstate.

  17. Efficiency of Roundabouts as Compared to Traffic Light Controlled ...

    African Journals Online (AJOL)

    Comparison is made between roundabouts with traffic light and without traffic light and signalized intersections on the basis of their performance to simplify traffic congestion. Computer simulations are used to propose critical arrival rates to separate between the three mentioned modes to decrease congestion at intersection ...

  18. Control de tráfico vehicular usando ANFIS Vehicular traffic control using ANFIS

    Directory of Open Access Journals (Sweden)

    Luis Fernando Pedraza

    2012-04-01

    Full Text Available Diferentes estrategias para el control del tráfico urbano se han presentado a lo largo del tiempo. Este artículo presenta el diseño de un modelo de tráfico vehicular, el cual examina el tráfico existente en una vía a través de una serie de semáforos. A partir de este modelo se sincronizan los tiempos de duración y de desfase de los semáforos, utilizando para ello el Sistema de Inferencia Difusa Basado en Redes Adaptativas (ANFIS. El modelo es simulado y los resultados se evalúan a nivel macroscópico con el modelo de tiempos fijos, que funciona actualmente en Bogotá-Colombia.Different strategies for urban traffic control have been presented over time. This paper presents the design of a vehicular traffic model, examining the existing traffic through a serie of traffic lights on a road. From this model the times of duration and phase of the traffic lights are synchronized, using the Adaptive Network Based Fuzzy Inference Systems (ANFIS. The model is simulated and the results are evaluated at macroscopic level with the fixed time model, currently operating in Bogota-Colombia.

  19. Excel simulations

    CERN Document Server

    Verschuuren, Gerard M

    2013-01-01

    Covering a variety of Excel simulations, from gambling to genetics, this introduction is for people interested in modeling future events, without the cost of an expensive textbook. The simulations covered offer a fun alternative to the usual Excel topics and include situations such as roulette, password cracking, sex determination, population growth, and traffic patterns, among many others.

  20. A latency analysis for M2M and OG-like traffic patterns in different HSPA core network configurations

    Directory of Open Access Journals (Sweden)

    M. V. Popović

    2014-11-01

    Full Text Available In this paper we present an analysis intended to reveal possible impacts of core network features on latency for modelled M2M and Online Gaming traffic. Simulations were performed in a live 3G/HSPA network. Test traffic simulating multiplayer real-time games and M2M applications was generated on 10 mobile phones in parallel, sending data to a remote server. APNs with different combinations of hardware and features (proxy server, different GGSNs and firewalls, usage of Service Awareness feature were chosen. The traffic was recorded on the Gn interface in the mobile core. The goal of experiments was to evaluate any eventually significant variation of average recorded RTTs in the core part of mobile network that would clearly indicate either the impact of used APN on delay for a specific traffic pattern, or selectivity of the APN towards different traffic patterns.

  1. Model Predictive Control for Integrating Traffic Control Measures

    NARCIS (Netherlands)

    Hegyi, A.

    2004-01-01

    Dynamic traffic control measures, such as ramp metering and dynamic speed limits, can be used to better utilize the available road capacity. Due to the increasing traffic volumes and the increasing number of traffic jams the interaction between the control measures has increased such that local

  2. Is vehicle automation enough to prevent crashes? Role of traffic operations in automated driving environments for traffic safety.

    Science.gov (United States)

    Jeong, Eunbi; Oh, Cheol; Lee, Seolyoung

    2017-07-01

    Automated driving systems (ADSs) are expected to prevent traffic accidents caused by driver carelessness on freeways. There is no doubt regarding this safety benefit if all vehicles in the transportation system were equipped with ADSs; however, it is implausible to expect that ADSs will reach 100% market penetration rate (MPR) in the near future. Therefore, the following question arises: 'Can ADSs, which consider only situations in the vicinity of an equipped vehicle, really contribute to a significant reduction in traffic accidents?' To address this issue, the interactions between equipped and unequipped vehicles must be investigated, which is the purpose of this study. This study evaluated traffic safety at different MPRs based on a proposed index to represent the overall rear-end crash risk of the traffic stream. Two approaches were evaluated for adjusting longitudinal vehicle maneuvers: vehicle safety-based maneuvering (VSM), which considers the crash risk of an equipped vehicle and its neighboring vehicles, and traffic safety-based maneuvering (TSM), which considers the overall crash risk in the traffic stream. TSM assumes that traffic operational agencies are able to monitor all the vehicles and to intervene in vehicle maneuvering. An optimization process, which attempts to obtain vehicle maneuvering control parameters to minimize the overall crash risk, is integrated into the proposed evaluation framework. The main purpose of employing the optimization process for vehicle maneuvering in this study is to identify opportunities to improve traffic safety through effective traffic management rather than developing a vehicle control algorithm that can be implemented in practice. The microscopic traffic simulator VISSIM was used to simulate the freeway traffic stream and to conduct systematic evaluations based on the proposed methodology. Both TSM and VSM achieved significant reductions in the potential for rear-end crashes. However, TSM obtained much greater

  3. Cubesat Constellation Design for Air Traffic Monitoring

    Science.gov (United States)

    Nag, Sreeja; Rios, Joseph Lucio; Gerhardt, David; Pham, Camvu

    2015-01-01

    Suitably equipped global and local air traffic can be tracked. The tracking information may then be used for control from ground-based stations by receiving the Automatic Dependent Surveillance-Broadcast (ADS-B) signal. The ADS-B signal, emitted from the aircraft's Mode-S transponder, is currently tracked by terrestrial based receivers but not over remote oceans or sparsely populated regions such as Alaska or the Pacific Ocean. Lack of real-time aircraft time/location information in remote areas significantly hinders optimal planning and control because bigger "safety bubbles" (lateral and vertical separation) are required around the aircraft until they reach radar-controlled airspace. Moreover, it presents a search-and-rescue bottleneck. Aircraft in distress, e.g. Air France AF449 that crashed in 2009, take days to be located or cannot be located at all, e.g. Malaysia Airlines MH370 in 2014. In this paper, we describe a tool for designing a constellation of small satellites which demonstrates, through high-fidelity modeling based on simulated air traffic data, the value of space-based ADS-B monitoring and provides recommendations for cost-efficient deployment of a constellation of small satellites to increase safety and situational awareness in the currently poorly-served surveillance area of Alaska. Air traffic data has been obtained from the Future ATM Concepts Evaluation Tool (FACET), developed at NASA Ames Research Center, simulated over the Alaskan airspace over a period of one day. The simulation is driven by MATLAB with satellites propagated and coverage calculated using AGI's Satellite ToolKit(STK10).

  4. Managing Traffic Flows for Cleaner Cities: The Role of Green Navigation Systems

    Directory of Open Access Journals (Sweden)

    Fiamma Perez-Prada

    2017-06-01

    Full Text Available Cities worldwide suffer from serious air pollution problems and are main contributors to climate change. Green Navigation systems have a great potential to reduce fuel consumption and exhaust emissions from traffic. This research evaluates the impacts of different percentages of green drivers on traffic, CO2, and NOx over the entire Madrid Region. A macroscopic traffic model was combined with an enhanced macroscopic emissions model and a GIS (Geographic Information Systems to simulate emissions on the basis of average vehicle speeds and traffic intensity at the link level. NOx emissions are evaluated, taking into account not only the exhaust emissions produced by transport activity, but also the amount of the population exposed to these air pollutants. Results show up to 10.4% CO2 and 13.8% NOx reductions in congested traffic conditions for a 90% penetration of green drivers; however, the population’s exposure to NOx increases up to 20.2%. Moreover, while traffic volumes decrease by 13.5% for the entire region, they increase by up to 16.4% downtown. Travel times also increase by 28.7%. Since green drivers tend to choose shorter routes through downtown areas, eco-routing systems are an effective tool for fighting climate change, but are ineffective to reduce air pollution in dense urban areas.

  5. Traffic Flow Condition Classification for Short Sections Using Single Microwave Sensor

    Directory of Open Access Journals (Sweden)

    Memiş Kemal

    2010-01-01

    Full Text Available Daily observed traffic flow can show different characteristics varying with the times of the day. They are caused by traffic incidents such as accidents, disabled cars, construction activities and other unusual events. Three different major traffic conditions can be occurred: "Flow," "Dense" and "Congested". Objective of this research is to identify the current traffic condition by examining the traffic measurement parameters. The earlier researches have dealt only with speed and volume by ignoring occupancy. In our study, the occupancy is another important parameter of classification. The previous works have used multiple sensors to classify traffic condition whereas our work uses only single microwave sensor. We have extended Multiple Linear Regression classification with our new approach of Estimating with Error Prediction. We present novel algorithms of Multiclassification with One-Against-All Method and Multiclassification with Binary Comparison for multiple SVM architecture. Finaly, a non-linear model of backpropagation neural network is introduced for classification. This combination has not been reported on previous studies. Training data are obtained from the Corsim based microscopic traffic simulator TSIS 5.1. All performances are compared using this data set. Our methods are currently installed and running at traffic management center of 2.Ring Road in Istanbul.

  6. Modeling and simulation of driver's anticipation effect in a two lane system on curved road with slope

    Science.gov (United States)

    Kaur, Ramanpreet; Sharma, Sapna

    2018-06-01

    The complexity of traffic flow phenomena on curved road with slope is investigated and a new lattice model is presented with the addition of driver's anticipation effect for two lane system. The condition under which the free flow turns into the jammed one, is obtained theoretically by using stability analysis. The results obtained through linear analysis indicates that the stable region increases (decreases) corresponding to uphill (downhill) case due to increasing slope angle for fixed anticipation parameter. It is found that when the vehicular density becomes higher than a critical value, traffic jam appears in the form of kink antikink density waves. Analytically, the kink antikink density waves are described by the solution of mKdV equation obtained from non linear analysis. In addition, the theoretical results has been verified through numerical simulation, which confirm that the slope on a curved highway significantly influence the traffic dynamics and traffic jam can be suppressed efficiently by considering the anticipation parameter in a two lane lattice model when lane changing is allowed.

  7. A Hybrid Short-Term Traffic Flow Prediction Model Based on Singular Spectrum Analysis and Kernel Extreme Learning Machine.

    Directory of Open Access Journals (Sweden)

    Qiang Shang

    Full Text Available Short-term traffic flow prediction is one of the most important issues in the field of intelligent transport system (ITS. Because of the uncertainty and nonlinearity, short-term traffic flow prediction is a challenging task. In order to improve the accuracy of short-time traffic flow prediction, a hybrid model (SSA-KELM is proposed based on singular spectrum analysis (SSA and kernel extreme learning machine (KELM. SSA is used to filter out the noise of traffic flow time series. Then, the filtered traffic flow data is used to train KELM model, the optimal input form of the proposed model is determined by phase space reconstruction, and parameters of the model are optimized by gravitational search algorithm (GSA. Finally, case validation is carried out using the measured data of an expressway in Xiamen, China. And the SSA-KELM model is compared with several well-known prediction models, including support vector machine, extreme learning machine, and single KLEM model. The experimental results demonstrate that performance of the proposed model is superior to that of the comparison models. Apart from accuracy improvement, the proposed model is more robust.

  8. 10th International Conference “Traffic and Granular Flow”

    CERN Document Server

    Boltes, Maik; Schadschneider, Andreas; Seyfried, Armin

    2015-01-01

    This book continues the biannual series of conference proceedings, which has become a classical reference resource in traffic and granular research alike, and addresses the latest developments at the intersection of physics, engineering and computational science. These involve complex systems, in which multiple simple agents, be they vehicles or particles, give rise to surprising and fascinating phenomena. The contributions collected in these proceedings cover several research fields, all of which deal with transport. Topics include highway, pedestrian and internet traffic; granular matter; biological transport; transport networks; data acquisition; data analysis and technological applications. Different perspectives, i.e., modeling, simulations, experiments, and phenomenological observations are considered.    

  9. Models of Social Exploitation with Special Emphasis on Slovenc Traffic Economics

    Directory of Open Access Journals (Sweden)

    Iztok Ostan

    2005-01-01

    Full Text Available In order to decipher the organisational behaviour operatingin the transport sector of the economy it is necessary to discoverthe prevalent patterns of social exploitation at work. PreliminaJyresults of a study of experienced irregular traffic studentsshow that, according to them there is no significant differencein Slovenia between exploitation in traffic and other sectors.Thus, general models of exploitation could be used to explainthe behaviour in the traffic sector. Empirical research amongSlovene students showed that according to their statements inthe 90s the managerial and capitalistic types of exploitation prevailedin Slovenia over non-exploitative types of economic behaviour.It also showed that statements of students do not differmuch from those of the general public regarding this question,nor from the statements of irregular students with extensivework experience. It was also found that there were no substantialdifferences between the statements of Italian and Slovenestudents regarding the type of exploitation operative in theircountries. Students of traffic are basically of the same opinionregarding this topic as students in general, though slightly morecritical, especially towards business managers and politicians.

  10. Modeling annual benzene, toluene, NO2, and soot concentrations on the basis of road traffic characteristics

    International Nuclear Information System (INIS)

    Carr, David; Ehrenstein, Ondine von; Weiland, Stephan; Wagner, Claudia; Wellie, Oliver; Nicolai, Thomas; Mutius, Erika von

    2002-01-01

    The investigation of potential adverse health effects of urban traffic-related air pollution is hampered by difficulties encountered with exposure assessment. Usually public measuring sites are few and thereby do not adequately describe spatial variation of pollutant levels over an urban area. In turn, individual monitoring of pollution exposure among study subjects is laborious and expensive. We therefore investigated whether traffic characteristics can be used to adequately predict benzene, NO 2 , and soot concentrations at individual addresses of study subjects in the city area of Munich, Germany. For all road segments with expected traffic volumes of at least 4000 vehicles a day (n=1840), all vehicles were counted manually or a single weekday in 1995. The proportion of vehicles in 'stop-go' mode, n estimate of traffic jam, was determined. Furthermore, annual concentrations of benzene, NO 2 , and soot from 18 high-concentration sites means: 8.7, 65.8, and 12.9 μg/m 3 , respectively) and from 16 school sites with moderate concentrations (means: 2.6, 32.2, and 5.7 μg/m 3 , respectively) were measured from 1996 to 1998. Statistical analysis of the data was performed using components of two different statistical models recently used to predict air pollution levels in comparable settings. Two traffic characteristics, traffic volume and traffic jam percentage, adequately described air pollutant concentrations (R 2 : 0.76-0.80, P=0.0001). This study shows that air pollutant concentrations can be accurately predicted by two traffic characteristics and that these models compare favorably with other more complex models in the literature

  11. The relative efficiency of Iranian's rural traffic police: a three-stage DEA model.

    Science.gov (United States)

    Rahimi, Habibollah; Soori, Hamid; Nazari, Seyed Saeed Hashemi; Motevalian, Seyed Abbas; Azar, Adel; Momeni, Eskandar; Javartani, Mehdi

    2017-10-13

    Road traffic Injuries (RTIs) as a health problem imposes governments to implement different interventions. Target achievement in this issue required effective and efficient measures. Efficiency evaluation of traffic police as one of the responsible administrators is necessary for resource management. Therefore, this study conducted to measure Iran's rural traffic police efficiency. This was an ecological study. To obtain pure efficiency score, three-stage DEA model was conducted with seven inputs and three output variables. At the first stage, crude efficiency score was measured with BCC-O model. Next, to extract the effects of socioeconomic, demographic, traffic count and road infrastructure as the environmental variables and statistical noise, the Stochastic Frontier Analysis (SFA) model was applied and the output values were modified according to similar environment and statistical noise conditions. Then, the pure efficiency score was measured using modified outputs and BCC-O model. In total, the efficiency score of 198 police stations from 24 provinces of 31 provinces were measured. The annual means (standard deviation) of damage, injury and fatal accidents were 247.7 (258.4), 184.9 (176.9), and 28.7 (19.5), respectively. Input averages were 5.9 (3.0) patrol teams, 0.5% (0.2) manpower proportions, 7.5 (2.9) patrol cars, 0.5 (1.3) motorcycles, 77,279.1 (46,794.7) penalties, 90.9 (2.8) cultural and educational activity score, 0.7 (2.4) speed cameras. The SFA model showed non-significant differences between police station performances and the most differences attributed to the environmental and random error. One-way main road, by road, traffic count and the number of household owning motorcycle had significant positive relations with inefficiency score. The length of freeway/highway and literacy rate variables had negative relations, significantly. Pure efficiency score was with mean of 0.95 and SD of 0.09. Iran's traffic police has potential opportunity to reduce

  12. Jam Formation of Traffic Flow in Harbor Tunnel

    International Nuclear Information System (INIS)

    He Hongdi; Lu Weizhen; Dong Liyun

    2011-01-01

    This paper reports a study concerning occurrence and growth of traffic jam in a harbor tunnel. The single-lane with three sections (downgrade, flat, and upgrade) is taken into account and they are characterized with different velocity limit. At the low density, the traffic current increases linearly with density and saturates at some values of immediately density. As the density increases, the traffic jam appears firstly before the upgrade section and then extends to the downgrade section. Additionally, the relationships of the velocity and headway against position in different densities are obtained from simulation. These results clearly clarify where and when the traffic jam appears. Finally, the critical densities are derived via the theoretical analysis before and after the discontinuous fronts and the theoretical results are consistent with the critical values of simulation results. (interdisciplinary physics and related areas of science and technology)

  13. A new stochastic cellular automaton model on traffic flow and its jamming phase transition

    International Nuclear Information System (INIS)

    Sakai, Satoshi; Nishinari, Katsuhiro; Iida, Shinji

    2006-01-01

    A general stochastic traffic cellular automaton (CA) model, which includes the slow-to-start effect and driver's perspective, is proposed in this paper. It is shown that this model includes well-known traffic CA models such as the Nagel-Schreckenberg model, the quick-start model and the slow-to-start model as specific cases. Fundamental diagrams of this new model clearly show metastable states around the critical density even when the stochastic effect is present. We also obtain analytic expressions of the phase transition curve in phase diagrams by using approximate flow-density relations at boundaries. These phase transition curves are in excellent agreement with numerical results

  14. Multiobjective Reinforcement Learning for Traffic Signal Control Using Vehicular Ad Hoc Network

    Directory of Open Access Journals (Sweden)

    Houli Duan

    2010-01-01

    Full Text Available We propose a new multiobjective control algorithm based on reinforcement learning for urban traffic signal control, named multi-RL. A multiagent structure is used to describe the traffic system. A vehicular ad hoc network is used for the data exchange among agents. A reinforcement learning algorithm is applied to predict the overall value of the optimization objective given vehicles' states. The policy which minimizes the cumulative value of the optimization objective is regarded as the optimal one. In order to make the method adaptive to various traffic conditions, we also introduce a multiobjective control scheme in which the optimization objective is selected adaptively to real-time traffic states. The optimization objectives include the vehicle stops, the average waiting time, and the maximum queue length of the next intersection. In addition, we also accommodate a priority control to the buses and the emergency vehicles through our model. The simulation results indicated that our algorithm could perform more efficiently than traditional traffic light control methods.

  15. Modelling Vessel Traffic Service to understand resilience in everyday operations

    International Nuclear Information System (INIS)

    Praetorius, Gesa; Hollnagel, Erik; Dahlman, Joakim

    2015-01-01

    Vessel Traffic Service (VTS) is a service to promote traffic fluency and safety in the entrance to ports. This article's purpose has been to explore everyday operations of the VTS system to gain insights in how it contributes to safe and efficient traffic movements. Interviews, focus groups and an observation have been conducted to collect data about everyday operations, as well as to grasp how the VTS system adapts to changing operational conditions. The results show that work within the VTS domain is highly complex and that the two systems modelled realise their services vastly differently, which in turn affects the systems' ability to monitor, respond and anticipate. This is of great importance to consider whenever changes are planned and implemented within the VTS domain. Only if everyday operations are properly analysed and understood, it can be estimated how alterations to technology and organisation will affect the overall system performance

  16. Trafficability Analysis at Traffic Crossing and Parameters Optimization Based on Particle Swarm Optimization Method

    Directory of Open Access Journals (Sweden)

    Bin He

    2014-01-01

    Full Text Available In city traffic, it is important to improve transportation efficiency and the spacing of platoon should be shortened when crossing the street. The best method to deal with this problem is automatic control of vehicles. In this paper, a mathematical model is established for the platoon’s longitudinal movement. A systematic analysis of longitudinal control law is presented for the platoon of vehicles. However, the parameter calibration for the platoon model is relatively difficult because the platoon model is complex and the parameters are coupled with each other. In this paper, the particle swarm optimization method is introduced to effectively optimize the parameters of platoon. The proposed method effectively finds the optimal parameters based on simulations and makes the spacing of platoon shorter.

  17. Decentralized State-Observer-Based Traffic Density Estimation of Large-Scale Urban Freeway Network by Dynamic Model

    Directory of Open Access Journals (Sweden)

    Yuqi Guo

    2017-08-01

    Full Text Available In order to estimate traffic densities in a large-scale urban freeway network in an accurate and timely fashion when traffic sensors do not cover the freeway network completely and thus only local measurement data can be utilized, this paper proposes a decentralized state observer approach based on a macroscopic traffic flow model. Firstly, by using the well-known cell transmission model (CTM, the urban freeway network is modeled in the way of distributed systems. Secondly, based on the model, a decentralized observer is designed. With the help of the Lyapunov function and S-procedure theory, the observer gains are computed by using linear matrix inequality (LMI technique. So, the traffic densities of the whole road network can be estimated by the designed observer. Finally, this method is applied to the outer ring of the Beijing’s second ring road and experimental results demonstrate the effectiveness and applicability of the proposed approach.

  18. Using Tensor Completion Method to Achieving Better Coverage of Traffic State Estimation from Sparse Floating Car Data.

    Science.gov (United States)

    Ran, Bin; Song, Li; Zhang, Jian; Cheng, Yang; Tan, Huachun

    2016-01-01

    Traffic state estimation from the floating car system is a challenging problem. The low penetration rate and random distribution make available floating car samples usually cover part space and time points of the road networks. To obtain a wide range of traffic state from the floating car system, many methods have been proposed to estimate the traffic state for the uncovered links. However, these methods cannot provide traffic state of the entire road networks. In this paper, the traffic state estimation is transformed to solve a missing data imputation problem, and the tensor completion framework is proposed to estimate missing traffic state. A tensor is constructed to model traffic state in which observed entries are directly derived from floating car system and unobserved traffic states are modeled as missing entries of constructed tensor. The constructed traffic state tensor can represent spatial and temporal correlations of traffic data and encode the multi-way properties of traffic state. The advantage of the proposed approach is that it can fully mine and utilize the multi-dimensional inherent correlations of traffic state. We tested the proposed approach on a well calibrated simulation network. Experimental results demonstrated that the proposed approach yield reliable traffic state estimation from very sparse floating car data, particularly when dealing with the floating car penetration rate is below 1%.

  19. Using Tensor Completion Method to Achieving Better Coverage of Traffic State Estimation from Sparse Floating Car Data.

    Directory of Open Access Journals (Sweden)

    Bin Ran

    Full Text Available Traffic state estimation from the floating car system is a challenging problem. The low penetration rate and random distribution make available floating car samples usually cover part space and time points of the road networks. To obtain a wide range of traffic state from the floating car system, many methods have been proposed to estimate the traffic state for the uncovered links. However, these methods cannot provide traffic state of the entire road networks. In this paper, the traffic state estimation is transformed to solve a missing data imputation problem, and the tensor completion framework is proposed to estimate missing traffic state. A tensor is constructed to model traffic state in which observed entries are directly derived from floating car system and unobserved traffic states are modeled as missing entries of constructed tensor. The constructed traffic state tensor can represent spatial and temporal correlations of traffic data and encode the multi-way properties of traffic state. The advantage of the proposed approach is that it can fully mine and utilize the multi-dimensional inherent correlations of traffic state. We tested the proposed approach on a well calibrated simulation network. Experimental results demonstrated that the proposed approach yield reliable traffic state estimation from very sparse floating car data, particularly when dealing with the floating car penetration rate is below 1%.

  20. Development of Fast-Time Stochastic Airport Ground and Runway Simulation Model and Its Traffic Analysis

    Directory of Open Access Journals (Sweden)

    Ryota Mori

    2015-01-01

    Full Text Available Airport congestion, in particular congestion of departure aircraft, has already been discussed by other researches. Most solutions, though, fail to account for uncertainties. Since it is difficult to remove uncertainties of the operations in the real world, a strategy should be developed assuming such uncertainties exist. Therefore, this research develops a fast-time stochastic simulation model used to validate various methods in order to decrease airport congestion level under existing uncertainties. The surface movement data is analyzed first, and the uncertainty level is obtained. Next, based on the result of data analysis, the stochastic simulation model is developed. The model is validated statistically and the characteristics of airport operation under existing uncertainties are investigated.

  1. POLARIS: Agent-based modeling framework development and implementation for integrated travel demand and network and operations simulations

    Energy Technology Data Exchange (ETDEWEB)

    Auld, Joshua; Hope, Michael; Ley, Hubert; Sokolov, Vadim; Xu, Bo; Zhang, Kuilin

    2016-03-01

    This paper discusses the development of an agent-based modelling software development kit, and the implementation and validation of a model using it that integrates dynamic simulation of travel demand, network supply and network operations. A description is given of the core utilities in the kit: a parallel discrete event engine, interprocess exchange engine, and memory allocator, as well as a number of ancillary utilities: visualization library, database IO library, and scenario manager. The overall framework emphasizes the design goals of: generality, code agility, and high performance. This framework allows the modeling of several aspects of transportation system that are typically done with separate stand-alone software applications, in a high-performance and extensible manner. The issue of integrating such models as dynamic traffic assignment and disaggregate demand models has been a long standing issue for transportation modelers. The integrated approach shows a possible way to resolve this difficulty. The simulation model built from the POLARIS framework is a single, shared-memory process for handling all aspects of the integrated urban simulation. The resulting gains in computational efficiency and performance allow planning models to be extended to include previously separate aspects of the urban system, enhancing the utility of such models from the planning perspective. Initial tests with case studies involving traffic management center impacts on various network events such as accidents, congestion and weather events, show the potential of the system.

  2. Real-time monitoring of emissions with traffic data, simulation and air quality measurements

    NARCIS (Netherlands)

    Klunder, G.A.; Wilmink, I.R.

    2009-01-01

    This paper investigates the possibility to decide when to apply a (dynamic) traffic management measure to improve the air quality or reduce CO2 emissions, based on a limited set of (measured) data. It is expected that a combination of monitoring and modeling is needed for reliable air quality

  3. An application to model traffic intensity of agricultural machinery at field scale

    Science.gov (United States)

    Augustin, Katja; Kuhwald, Michael; Duttmann, Rainer

    2017-04-01

    Several soil-pressure-models deal with the impact of agricultural machines on soils. In many cases, these models were used for single spots and consider a static machine configuration. Therefore, a statement about the spatial distribution of soil compaction risk for entire working processes is limited. The aim of the study is the development of an application for the spatial modelling of traffic lanes from agricultural vehicles including wheel load, ground pressure and wheel passages at the field scale. The application is based on Open Source software, application and data formats, using python programming language. Minimum input parameters are GPS-positions, vehicles and tires (producer and model) and the tire inflation pressure. Five working processes were distinguished: soil tillage, manuring, plant protection, sowing and harvest. Currently, two different models (Diserens 2009, Rücknagel et al. 2015) were implemented to calculate the soil pressure. The application was tested at a study site in Lower Saxony, Germany. Since 2015, field traffic were recorded by RTK-GPS and used machine set ups were noted. Using these input information the traffic lanes, wheel load and soil pressure were calculated for all working processes. For instance, the maize harvest in 2016 with a crop chopper and one transport vehicle crossed about 55 % of the total field area. At some places the machines rolled over up to 46 times. Approximately 35 % of the total area was affected by wheel loads over 7 tons and soil pressures between 163 and 193 kPa. With the information about the spatial distribution of wheel passages, wheel load and soil pressure it is possible to identify hot spots of intensive field traffic. Additionally, the use of the application enables the analysis of soil compaction risk induced by agricultural machines for long- and short-term periods.

  4. Measurements and modelling of base station power consumption under real traffic loads.

    Science.gov (United States)

    Lorincz, Josip; Garma, Tonko; Petrovic, Goran

    2012-01-01

    Base stations represent the main contributor to the energy consumption of a mobile cellular network. Since traffic load in mobile networks significantly varies during a working or weekend day, it is important to quantify the influence of these variations on the base station power consumption. Therefore, this paper investigates changes in the instantaneous power consumption of GSM (Global System for Mobile Communications) and UMTS (Universal Mobile Telecommunications System) base stations according to their respective traffic load. The real data in terms of the power consumption and traffic load have been obtained from continuous measurements performed on a fully operated base station site. Measurements show the existence of a direct relationship between base station traffic load and power consumption. According to this relationship, we develop a linear power consumption model for base stations of both technologies. This paper also gives an overview of the most important concepts which are being proposed to make cellular networks more energy-efficient.

  5. Measurements and Modelling of Base Station Power Consumption under Real Traffic Loads

    Directory of Open Access Journals (Sweden)

    Goran Petrovic

    2012-03-01

    Full Text Available Base stations represent the main contributor to the energy consumption of a mobile cellular network. Since traffic load in mobile networks significantly varies during a working or weekend day, it is important to quantify the influence of these variations on the base station power consumption. Therefore, this paper investigates changes in the instantaneous power consumption of GSM (Global System for Mobile Communications and UMTS (Universal Mobile Telecommunications System base stations according to their respective traffic load. The real data in terms of the power consumption and traffic load have been obtained from continuous measurements performed on a fully operated base station site. Measurements show the existence of a direct relationship between base station traffic load and power consumption. According to this relationship, we develop a linear power consumption model for base stations of both technologies. This paper also gives an overview of the most important concepts which are being proposed to make cellular networks more energy-efficient.

  6. A theory of traffic congestion at heavy bottlenecks

    Energy Technology Data Exchange (ETDEWEB)

    Kerner, Boris S [Daimler AG, GR/ETI, HPC: G021, 71059 Sindelfingen (Germany)

    2008-05-30

    Spatiotemporal features and physics of vehicular traffic congestion occurring due to heavy highway bottlenecks caused for example by bad weather conditions or accidents are found based on simulations in the framework of three-phase traffic theory. A model of a heavy bottleneck is presented. Under a continuous non-limited increase in bottleneck strength, i.e., when the average flow rate within a congested pattern allowed by the heavy bottleneck decreases continuously up to zero, the evolution of the traffic phases in congested traffic, synchronized flow and wide moving jams, is studied. It is found that at a small enough flow rate within the congested pattern, the pattern exhibits a non-regular structure: a pinch region of synchronized flow within the pattern disappears and appears randomly over time; wide moving jams upstream of the pinch region exhibit a complex non-regular dynamics in which the jams appear and disappear randomly. At greater bottleneck strengths, wide moving jams merge onto a mega-wide moving jam (mega-jam) within which low-speed patterns with a complex non-regular spatiotemporal dynamics occur. We show that when the bottleneck strength is great enough, only the mega-jam survives and synchronized flow remains only within its downstream front separating free flow and congested traffic. Theoretical results presented can explain why no sequence of wide moving jams can often be distinguished in non-homogeneous traffic congestion measured at very heavy bottlenecks caused by bad weather conditions or accidents.

  7. A theory of traffic congestion at heavy bottlenecks

    International Nuclear Information System (INIS)

    Kerner, Boris S

    2008-01-01

    Spatiotemporal features and physics of vehicular traffic congestion occurring due to heavy highway bottlenecks caused for example by bad weather conditions or accidents are found based on simulations in the framework of three-phase traffic theory. A model of a heavy bottleneck is presented. Under a continuous non-limited increase in bottleneck strength, i.e., when the average flow rate within a congested pattern allowed by the heavy bottleneck decreases continuously up to zero, the evolution of the traffic phases in congested traffic, synchronized flow and wide moving jams, is studied. It is found that at a small enough flow rate within the congested pattern, the pattern exhibits a non-regular structure: a pinch region of synchronized flow within the pattern disappears and appears randomly over time; wide moving jams upstream of the pinch region exhibit a complex non-regular dynamics in which the jams appear and disappear randomly. At greater bottleneck strengths, wide moving jams merge onto a mega-wide moving jam (mega-jam) within which low-speed patterns with a complex non-regular spatiotemporal dynamics occur. We show that when the bottleneck strength is great enough, only the mega-jam survives and synchronized flow remains only within its downstream front separating free flow and congested traffic. Theoretical results presented can explain why no sequence of wide moving jams can often be distinguished in non-homogeneous traffic congestion measured at very heavy bottlenecks caused by bad weather conditions or accidents

  8. Traffic Infrastructure in the Development of the Croatian Traffic System

    Directory of Open Access Journals (Sweden)

    Damir Šimulčik

    2012-10-01

    Full Text Available The absence of a long-term traffic policy and of the policyof financing the constntction and maintenance of traffic infrastructurefacilities, represents a synthesis of numerous unresolvedrelations whose negative effects are felt in the overalleconomic and traffic development and consequently theevaluation of national potentials in the field. Adverse aspectcaused by the lack of a clear and feasible policy of financing thetraffic infrastructure facilities, is also a result of not having definedan adequate traffic policy, programme and strategiccourses of development, nor financing models that would be inaccordance with the market and economy system.This indicates that it is necessary to determine a policy forfinancing the constntction and maintenance of traffic infrastntcture,which has to be based on scientific development,team work, availability of plans and programmes to scientistsand experts, determined methodology based on marketing andeconomic logic in defining the programme and strategic tasksand assignments so as to make them feasible.In the near future, intensive preparations for investments inthe overall traffic sysiem are necessary, especially regarding thetraffic infrastntcture facilities - the pivotal points in the processof evaluating the traffic in our national tenitory. Croatia needsto define clearly its strategy in constructing and maintaining thegeneral traffic infrastructure, appointing at the same time thosewho will carry out the given tasks.

  9. Global Simulation of Aviation Operations

    Science.gov (United States)

    Sridhar, Banavar; Sheth, Kapil; Ng, Hok Kwan; Morando, Alex; Li, Jinhua

    2016-01-01

    The simulation and analysis of global air traffic is limited due to a lack of simulation tools and the difficulty in accessing data sources. This paper provides a global simulation of aviation operations combining flight plans and real air traffic data with historical commercial city-pair aircraft type and schedule data and global atmospheric data. The resulting capability extends the simulation and optimization functions of NASA's Future Air Traffic Management Concept Evaluation Tool (FACET) to global scale. This new capability is used to present results on the evolution of global air traffic patterns from a concentration of traffic inside US, Europe and across the Atlantic Ocean to a more diverse traffic pattern across the globe with accelerated growth in Asia, Australia, Africa and South America. The simulation analyzes seasonal variation in the long-haul wind-optimal traffic patterns in six major regions of the world and provides potential time-savings of wind-optimal routes compared with either great circle routes or current flight-plans if available.

  10. Toolbox for Urban Mobility Simulation: High Resolution Population Dynamics for Global Cities

    Science.gov (United States)

    Bhaduri, B. L.; Lu, W.; Liu, C.; Thakur, G.; Karthik, R.

    2015-12-01

    In this rapidly urbanizing world, unprecedented rate of population growth is not only mirrored by increasing demand for energy, food, water, and other natural resources, but has detrimental impacts on environmental and human security. Transportation simulations are frequently used for mobility assessment in urban planning, traffic operation, and emergency management. Previous research, involving purely analytical techniques to simulations capturing behavior, has investigated questions and scenarios regarding the relationships among energy, emissions, air quality, and transportation. Primary limitations of past attempts have been availability of input data, useful "energy and behavior focused" models, validation data, and adequate computational capability that allows adequate understanding of the interdependencies of our transportation system. With increasing availability and quality of traditional and crowdsourced data, we have utilized the OpenStreetMap roads network, and has integrated high resolution population data with traffic simulation to create a Toolbox for Urban Mobility Simulations (TUMS) at global scale. TUMS consists of three major components: data processing, traffic simulation models, and Internet-based visualizations. It integrates OpenStreetMap, LandScanTM population, and other open data (Census Transportation Planning Products, National household Travel Survey, etc.) to generate both normal traffic operation and emergency evacuation scenarios. TUMS integrates TRANSIMS and MITSIM as traffic simulation engines, which are open-source and widely-accepted for scalable traffic simulations. Consistent data and simulation platform allows quick adaption to various geographic areas that has been demonstrated for multiple cities across the world. We are combining the strengths of geospatial data sciences, high performance simulations, transportation planning, and emissions, vehicle and energy technology development to design and develop a simulation

  11. Symmetry breaking in optimal timing of traffic signals on an idealized two-way street.

    Science.gov (United States)

    Panaggio, Mark J; Ottino-Löffler, Bertand J; Hu, Peiguang; Abrams, Daniel M

    2013-09-01

    Simple physical models based on fluid mechanics have long been used to understand the flow of vehicular traffic on freeways; analytically tractable models of flow on an urban grid, however, have not been as extensively explored. In an ideal world, traffic signals would be timed such that consecutive lights turned green just as vehicles arrived, eliminating the need to stop at each block. Unfortunately, this "green-wave" scenario is generally unworkable due to frustration imposed by competing demands of traffic moving in different directions. Until now this has typically been resolved by numerical simulation and optimization. Here, we develop a theory for the flow in an idealized system consisting of a long two-way road with periodic intersections. We show that optimal signal timing can be understood analytically and that there are counterintuitive asymmetric solutions to this signal coordination problem. We further explore how these theoretical solutions degrade as traffic conditions vary and automotive density increases.

  12. Symmetry breaking in optimal timing of traffic signals on an idealized two-way street

    Science.gov (United States)

    Panaggio, Mark J.; Ottino-Löffler, Bertand J.; Hu, Peiguang; Abrams, Daniel M.

    2013-09-01

    Simple physical models based on fluid mechanics have long been used to understand the flow of vehicular traffic on freeways; analytically tractable models of flow on an urban grid, however, have not been as extensively explored. In an ideal world, traffic signals would be timed such that consecutive lights turned green just as vehicles arrived, eliminating the need to stop at each block. Unfortunately, this “green-wave” scenario is generally unworkable due to frustration imposed by competing demands of traffic moving in different directions. Until now this has typically been resolved by numerical simulation and optimization. Here, we develop a theory for the flow in an idealized system consisting of a long two-way road with periodic intersections. We show that optimal signal timing can be understood analytically and that there are counterintuitive asymmetric solutions to this signal coordination problem. We further explore how these theoretical solutions degrade as traffic conditions vary and automotive density increases.

  13. Models for discrete-time self-similar vector processes with application to network traffic

    Science.gov (United States)

    Lee, Seungsin; Rao, Raghuveer M.; Narasimha, Rajesh

    2003-07-01

    The paper defines self-similarity for vector processes by employing the discrete-time continuous-dilation operation which has successfully been used previously by the authors to define 1-D discrete-time stochastic self-similar processes. To define self-similarity of vector processes, it is required to consider the cross-correlation functions between different 1-D processes as well as the autocorrelation function of each constituent 1-D process in it. System models to synthesize self-similar vector processes are constructed based on the definition. With these systems, it is possible to generate self-similar vector processes from white noise inputs. An important aspect of the proposed models is that they can be used to synthesize various types of self-similar vector processes by choosing proper parameters. Additionally, the paper presents evidence of vector self-similarity in two-channel wireless LAN data and applies the aforementioned systems to simulate the corresponding network traffic traces.

  14. International Conference on Social Modeling and Simulation, plus Econophysics Colloquium 2014

    CERN Document Server

    Ito, Nobuyasu; Noda, Itsuki; Takayasu, Misako

    2015-01-01

    The proceedings of the international conference “SMSEC2014”, a joint conference of the first “Social Modeling and Simulations” and the 10th “Econophysics Colloquium”, held in Kobe in November 2014 with 174 participants, are gathered herein. Cutting edge scientific researches on various social phenomena are reviewed. New methods for analysis of big data such as financial markets, automobile traffics, epidemic spreading, world-trades and social media communications are provided to clarify complex interaction and distributions underlying in these social phenomena. Robustness and fragility of social systems are discussed based on agent models and complex network models. Techniques about high performance computers are introduced for simulation of complicated social phenomena. Readers will feel the researchers minds that deep and quantitative understanding will make it possible to realize comprehensive simulations of our whole society in the near future, which will contribute to wide fields of industry ...

  15. Network Traffic Monitoring Using Poisson Dynamic Linear Models

    Energy Technology Data Exchange (ETDEWEB)

    Merl, D. M. [Lawrence Livermore National Lab. (LLNL), Livermore, CA (United States)

    2011-05-09

    In this article, we discuss an approach for network forensics using a class of nonstationary Poisson processes with embedded dynamic linear models. As a modeling strategy, the Poisson DLM (PoDLM) provides a very flexible framework for specifying structured effects that may influence the evolution of the underlying Poisson rate parameter, including diurnal and weekly usage patterns. We develop a novel particle learning algorithm for online smoothing and prediction for the PoDLM, and demonstrate the suitability of the approach to real-time deployment settings via a new application to computer network traffic monitoring.

  16. Fixed Point Learning Based Intelligent Traffic Control System

    Science.gov (United States)

    Zongyao, Wang; Cong, Sui; Cheng, Shao

    2017-10-01

    Fixed point learning has become an important tool to analyse large scale distributed system such as urban traffic network. This paper presents a fixed point learning based intelligence traffic network control system. The system applies convergence property of fixed point theorem to optimize the traffic flow density. The intelligence traffic control system achieves maximum road resources usage by averaging traffic flow density among the traffic network. The intelligence traffic network control system is built based on decentralized structure and intelligence cooperation. No central control is needed to manage the system. The proposed system is simple, effective and feasible for practical use. The performance of the system is tested via theoretical proof and simulations. The results demonstrate that the system can effectively solve the traffic congestion problem and increase the vehicles average speed. It also proves that the system is flexible, reliable and feasible for practical use.

  17. Agent-based Simulation of the Maritime Domain

    Directory of Open Access Journals (Sweden)

    O. Vaněk

    2010-01-01

    Full Text Available In this paper, a multi-agent based simulation platform is introduced that focuses on legitimate and illegitimate aspects of maritime traffic, mainly on intercontinental transport through piracy afflicted areas. The extensible architecture presented here comprises several modules controlling the simulation and the life-cycle of the agents, analyzing the simulation output and visualizing the entire simulated domain. The simulation control module is initialized by various configuration scenarios to simulate various real-world situations, such as a pirate ambush, coordinated transit through a transport corridor, or coastal fishing and local traffic. The environmental model provides a rich set of inputs for agents that use the geo-spatial data and the vessel operational characteristics for their reasoning. The agent behavior model based on finite state machines together with planning algorithms allows complex expression of agent behavior, so the resulting simulation output can serve as a substitution for real world data from the maritime domain.

  18. Rail-induced Traffic in China

    Directory of Open Access Journals (Sweden)

    Nan He

    2017-11-01

    Full Text Available The rapid development of China’s railway has exerted an enormous influence on the intercity passenger transport structure in recent years. However, it has not satisfied the passengers’ travel demand due to induced traffic. This paper is committed to solving such issue, with the aim of satisfying the current travel demand, and of anticipating the demand of the predicted traffic growth over the next 20 to 30 years. The paper has considered the increase in rail passenger kilometres caused by the growth of rail kilometres as rail-induced traffic. Based on the concept and former research of induced traffic, the panel data of 26 provinces and 3 municipalities of China between the year 2000 and 2014 were collected, and the elasticity models (including elasticity-based model, distributed lag model, high-speed rail (HSR elasticity model and rail efficiency model have been constructed. The results show the importance of model formation incorporation of rail-induced traffic. It is better to get the correct value in divided zones with different train frequencies or incorporation rail efficiency in cities or provinces. The lag time and rail types also need to be considered. In summary, the results analysis not only confirms the existence of rail-induced traffic, but also provides substantial recommendations to train operation planning.

  19. Capacity Analysis of Ro-Ro Terminals by Using Simulation Modeling Method

    Directory of Open Access Journals (Sweden)

    Emin Deniz Özkan

    2016-09-01

    Full Text Available In Ro-Ro terminals, terminal capacity is more needed than other types of marine terminals since Ro-Ro cargoes cannot be stacked. In this sense, the variables affecting capacity of a Ro-Ro terminal can be listed as follows; number of vehicles arrived to a terminal, distance between terminals, ship capacity, terminal gates, customs control units, terminal traffic and local traffic, security check, bunkering services etc. In this study, a model generated intended for making capacity analysis in Ro-Ro terminals by using simulation modeling method. Effect of three variables to terminal capacity was investigated while generating the scenarios; ‘number of trucks arriving to terminals’, ‘distance between terminals’ and ‘Ro-Ro ship capacity’. The results show that the variable which affect terminal capacity mostly is ‘number of trucks arriving to terminals’. As a consequence of this situation, it is thought that a Ro-Ro terminal operator must prioritize the demand factor and make an effective demand forecasting in determination of the terminal area.

  20. Linking network usage patterns to traffic Gaussianity fit

    NARCIS (Netherlands)

    de Oliveira Schmidt, R.; Sadre, R.; Melnikov, Nikolay; Schönwälder, Jürgen; Pras, Aiko

    Gaussian traffic models are widely used in the domain of network traffic modeling. The central assumption is that traffic aggregates are Gaussian distributed. Due to its importance, the Gaussian character of network traffic has been extensively assessed by researchers in the past years. In 2001,

  1. Energy Savings in Cellular Networks Based on Space-Time Structure of Traffic Loads

    Science.gov (United States)

    Sun, Jingbo; Wang, Yue; Yuan, Jian; Shan, Xiuming

    Since most of energy consumed by the telecommunication infrastructure is due to the Base Transceiver Station (BTS), switching off BTSs when traffic load is low has been recognized as an effective way of saving energy. In this letter, an energy saving scheme is proposed to minimize the number of active BTSs based on the space-time structure of traffic loads as determined by principal component analysis. Compared to existing methods, our approach models traffic loads more accurately, and has a much smaller input size. As it is implemented in an off-line manner, our scheme also avoids excessive communications and computing overheads. Simulation results show that the proposed method has a comparable performance in energy savings.

  2. The impact of traffic emissions on air quality in the Berlin-Brandenburg region - a case study on cycling scenarios

    Science.gov (United States)

    Kuik, F.; Lauer, A.; von Schneidemesser, E.; Butler, T. M.

    2016-12-01

    Many European cities continue to struggle with exceedances of NO2 limit values at measurement sites near roads, of which a large contribution is attributed to emissions from traffic. In this study, we explore how urban air quality can be improved with different traffic measures using the example of the Berlin-Brandenburg region. In order to simulate urban background air quality we use the Weather Research and Forecasting model with chemistry (WRF-Chem) at a horizontal resolution of 1km. We use emission input data at a horizontal resolution of 1km obtained by downscaling TNO-MACC III emissions based on local proxy data including population and traffic densities. In addition we use a statistical approach combining the simulated urban background concentrations with information on traffic densities to estimate NO2 at street level. This helps assessing whether the emission scenarios studied here can lead to significant reductions in NO2 concentrations at street level. The emission scenarios in this study represent a range of scenarios in which car traffic is replaced with bicycle traffic. Part of this study was an initial discussion phase with stakeholders, including policy makers and NGOs. The discussions have shown that the different stakeholders are interested in a scientific assessment of the impact of replacing car traffic with bicycle traffic in the Berlin-Brandenburg urban area. Local policy makers responsible for city planning and implementing traffic measures can make best use of scientific modeling results if input data and scenarios are as realistic as possible. For these reasons, the scenarios cover very idealized optimistic ("all passenger cars are replaced by bicycles") and pessimistic ("all cyclists are replaced by cars") scenarios to explore the sensitivity of simulated urban background air quality to these changes, as well as additional scenarios based on city-specific data to analyze more realistic situations. Of particular interest is how these impact

  3. 4D Trajectory Estimation for Air Traffic Control Automation System Based on Hybrid System Theory

    Directory of Open Access Journals (Sweden)

    Xin-Min Tang

    2012-03-01

    Full Text Available To resolve the problem of future airspace management under great traffic flow and high density condition, 4D trajectory estimation has become one of the core technologies of the next new generation air traffic control automation system. According to the flight profile and the dynamics models of different aircraft types under different flight conditions, a hybrid system model that switches the aircraft from one flight stage to another with aircraft state changing continuously in one state is constructed. Additionally, air temperature and wind speed are used to modify aircraft true airspeed as well as ground speed, and the hybrid system evolution simulation is used to estimate aircraft 4D trajectory. The case study proves that 4D trajectory estimated through hybrid system model can image the flight dynamic states of aircraft and satisfy the needs of the planned flight altitude profile.KEY WORDSair traffic management, 4D trajectory estimation, hybrid system model, aircraft dynamic model

  4. Indicators for traffic safety assessment and prediction and their application in micro-simulation modelling : a study of urban and suburban intersections

    OpenAIRE

    Archer, Jeffery

    2005-01-01

    In order to achieve sustainable long-term transport infrastructure development, there is a growing need for fast, reliable and effective methods to evaluate and predict the impact of traffic safety measures. Recognising this need, and the need for an active traffic safety approach, this thesis focuses on traffic safety assessment and prediction based on the use of safety indicators that measure the spatial and/or temporal proximity of safety critical events. The main advantage of such measure...

  5. Influence of Intra-cell Traffic on the Output Power of Base Station in GSM

    Directory of Open Access Journals (Sweden)

    M. Mileusnic

    2014-06-01

    Full Text Available In this paper we analyze the influence of intracell traffic in a GSM cell on the base station output power. It is proved that intracell traffic increases this power. If offered traffic is small, the increase of output power is equal to the part of intracell traffic. When the offered traffic and, as the result, call loss increase, the increase of output power becomes less. The results of calculation are verified by the computer simulation of traffic process in the GSM cell. The calculation and the simulation consider the uniform distribution of mobile users in the cell, but the conclusions are of a general nature.

  6. The design of traffic signal coordinated control

    Science.gov (United States)

    Guo, Xueting; Sun, Hongsheng; Wang, Xifu

    2017-05-01

    Traffic as the tertiary industry is an important pillar industry to support the normal development of the economy. But now China's road traffic development and economic development has shown a great imbalance and fault phenomenon, which greatly inhibited the normal development of China's economy. Now in many large and medium-sized cities in China are implementing green belt construction. The so-called green band is when the road conditions to meet the conditions for the establishment of the green band, the sections of the intersection of several planning to a traffic coordination control system, so that when the driver at a specific speed can be achieved without stopping the continuous Through the intersection. Green belt can effectively reduce the delay and queuing length of vehicle driving, the normal function of urban roads and reduce the economic losses caused by traffic congestion is a great help. In this paper, the theoretical basis of the design of the coordinated control system is described. Secondly, the green time offset is calculated by the analytic method and the green band is established. And then the VISSIM software is used to simulate the traffic system before and after the improvement. Finally, the results of the two simulations are compared.

  7. Discrete event simulation model for external yard choice of import container terminal in a port buffer area

    Science.gov (United States)

    Rusgiyarto, Ferry; Sjafruddin, Ade; Frazila, Russ Bona; Suprayogi

    2017-06-01

    Increasing container traffic and land acquisition problem for terminal expansion leads to usage of external yard in a port buffer area. This condition influenced the terminal performance because a road which connects the terminal and the external yard was also used by non-container traffic. Location choice problem considered to solve this condition, but the previous research has not taken account a stochastic condition of container arrival rate and service time yet. Bi-level programming framework was used to find optimum location configuration. In the lower-level, there was a problem to construct the equation, which correlated the terminal operation and the road due to different time cycle equilibrium. Container moves from the quay to a terminal gate in a daily unit of time, meanwhile, it moves from the terminal gate to the external yard through the road in a minute unit of time. If the equation formulated in hourly unit equilibrium, it cannot catch up the container movement characteristics in the terminal. Meanwhile, if the equation formulated in daily unit equilibrium, it cannot catch up the road traffic movement characteristics in the road. This problem can be addressed using simulation model. Discrete Event Simulation Model was used to simulate import container flow processes in the container terminal and external yard. Optimum location configuration in the upper-level was the combinatorial problem, which was solved by Full Enumeration approach. The objective function of the external yard location model was to minimize user transport cost (or time) and to maximize operator benefit. Numerical experiment was run for the scenario assumption of two container handling ways, three external yards, and thirty-day simulation periods. Jakarta International Container Terminal (JICT) container characteristics data was referred for the simulation. Based on five runs which were 5, 10, 15, 20, and 30 repetitions, operation one of three available external yards (external yard

  8. Simulation of air pollution with nested models in North Rhine-Westphalia

    International Nuclear Information System (INIS)

    Kessler, Ch.; Bruecher, W.; Memmesheimer, M.; Kerschgens, M.; Ebel, A.

    2001-01-01

    High resolution modeling of air pollution events requires nested models. CARLOS is a combination of two comprehensive air quality simulation models that calculate chemistry and transport on regional and local scales. Both models apply nesting techniques to describe the influx of tracers into the inner highly resolved modeling domain. High resolution emission inventories are available for the innermost nest on the large scale, which allow the separate treatment of traffic and point sources. Results of a simulation for North Rhine-Westphalia in August 1997 are presented for two nesting levels, increasing the resolution from 27km in Central Europe to 3km in the domain of the second nest. One result is also presented for the local scale employing two nesting levels with a resolution of 1km and 333m, respectively. Statistical indices are used to indicate the quality of the predictions of ozone. Comparison of observations at the stations Koeln-Chorweiler and Wuppertal with modeled concentrations shows good agreement of ozone and reasonable reproduction of NO 2 concentrations. (Author)

  9. Abstract Description of Internet Traffic of Generalized Cauchy Type

    Directory of Open Access Journals (Sweden)

    Ming Li

    2012-01-01

    . Therefore, there is a limitation for fGn to accurately model traffic. Recently, the generalized Cauchy (GC process was introduced to model traffic with the flexibility to separately measure the fractal dimension DGC and the Hurst parameter HGC of traffic. However, there is a fundamental problem whether or not there exists the generality that the GC model is more conformable with real traffic than single parameter models, such as fGn, irrelevant of traffic traces used in experimental verification. The solution to that problem remains unknown but is desired for model evaluation in traffic theory or for model selection against specific issues, such as queuing analysis relating to the autocorrelation function (ACF of arrival traffic. The key contribution of this paper is our solution to that fundamental problem (see Theorem 3.17 with the following features in analysis. (i Set-valued analysis of the traffic of the fGn type. (ii Set-valued analysis of the traffic of the GC type. (iii Revealing the generality previously mentioned by comparing metrics of the traffic of the fGn type to that of the GC type.

  10. Cellular automata model for use with real freeway data

    Science.gov (United States)

    2002-01-01

    The exponential rate of increase in freeway traffic is expanding the need for accurate and : realistic methods to model and predict traffic flow. Traffic modeling and simulation facilitates an : examination of both microscopic and macroscopic views o...

  11. Validating an Air Traffic Management Concept of Operation Using Statistical Modeling

    Science.gov (United States)

    He, Yuning; Davies, Misty Dawn

    2013-01-01

    Validating a concept of operation for a complex, safety-critical system (like the National Airspace System) is challenging because of the high dimensionality of the controllable parameters and the infinite number of states of the system. In this paper, we use statistical modeling techniques to explore the behavior of a conflict detection and resolution algorithm designed for the terminal airspace. These techniques predict the robustness of the system simulation to both nominal and off-nominal behaviors within the overall airspace. They also can be used to evaluate the output of the simulation against recorded airspace data. Additionally, the techniques carry with them a mathematical value of the worth of each prediction-a statistical uncertainty for any robustness estimate. Uncertainty Quantification (UQ) is the process of quantitative characterization and ultimately a reduction of uncertainties in complex systems. UQ is important for understanding the influence of uncertainties on the behavior of a system and therefore is valuable for design, analysis, and verification and validation. In this paper, we apply advanced statistical modeling methodologies and techniques on an advanced air traffic management system, namely the Terminal Tactical Separation Assured Flight Environment (T-TSAFE). We show initial results for a parameter analysis and safety boundary (envelope) detection in the high-dimensional parameter space. For our boundary analysis, we developed a new sequential approach based upon the design of computer experiments, allowing us to incorporate knowledge from domain experts into our modeling and to determine the most likely boundary shapes and its parameters. We carried out the analysis on system parameters and describe an initial approach that will allow us to include time-series inputs, such as the radar track data, into the analysis

  12. Statewide mesoscopic simulation for Wyoming.

    Science.gov (United States)

    2013-10-01

    This study developed a mesoscopic simulator which is capable of representing both city-level and statewide roadway : networks. The key feature of such models are the integration of (i) a traffic flow model which is efficient enough to : scale to larg...

  13. A Machine Learning Approach to Air Traffic Route Choice Modelling

    OpenAIRE

    Marcos, Rodrigo; García-Cantú, Oliva; Herranz, Ricardo

    2018-01-01

    Air Traffic Flow and Capacity Management (ATFCM) is one of the constituent parts of Air Traffic Management (ATM). The goal of ATFCM is to make airport and airspace capacity meet traffic demand and, when capacity opportunities are exhausted, optimise traffic flows to meet the available capacity. One of the key enablers of ATFCM is the accurate estimation of future traffic demand. The available information (schedules, flight plans, etc.) and its associated level of uncertainty differ across the...

  14. Framework for Traffic Congestion Prediction

    NARCIS (Netherlands)

    Zaki, J.F.W.; Ali-Eldin, A.M.T.; Hussein, S.E.; Saraya, S.F.; Areed, F.F.

    2016-01-01

    Traffic Congestion is a complex dilemma facing most major cities. It has undergone a lot of research since the early 80s in an attempt to predict traffic in the short-term. Recently, Intelligent Transportation Systems (ITS) became an integral part of traffic research which helped in modeling and

  15. Continuous traffic flow modeling of driver support systems in multiclass traffic with intervehicle communication and drivers in the loop

    NARCIS (Netherlands)

    Tampere, C.; Hoogendoorn, S.P.; van Arem, Bart

    2009-01-01

    This paper presents a continuous traffic-flow model for the explorative analysis of advanced driver-assistance systems (ADASs). Such systems use technology (sensors and intervehicle communication) to support the task of the driver, who retains full control over the vehicle. Based on a review of

  16. Variable speed limit strategies analysis with link transmission model on urban expressway

    Science.gov (United States)

    Li, Shubin; Cao, Danni

    2018-02-01

    The variable speed limit (VSL) is a kind of active traffic management method. Most of the strategies are used in the expressway traffic flow control in order to ensure traffic safety. However, the urban expressway system is the main artery, carrying most traffic pressure. It has similar traffic characteristics with the expressways between cities. In this paper, the improved link transmission model (LTM) combined with VSL strategies is proposed, based on the urban expressway network. The model can simulate the movement of the vehicles and the shock wave, and well balance the relationship between the amount of calculation and accuracy. Furthermore, the optimal VSL strategy can be proposed based on the simulation method. It can provide management strategies for managers. Finally, a simple example is given to illustrate the model and method. The selected indexes are the average density, the average speed and the average flow on the traffic network in the simulation. The simulation results show that the proposed model and method are feasible. The VSL strategy can effectively alleviate traffic congestion in some cases, and greatly promote the efficiency of the transportation system.

  17. Modelling of road traffic fatalities in India.

    Science.gov (United States)

    Goel, Rahul

    2018-03-01

    Passenger modes in India include walking, cycling, buses, trains, intermediate public transport modes (IPT) such as three-wheeled auto rickshaws or tuk-tuks, motorised two-wheelers (2W) as well as cars. However, epidemiological studies of traffic crashes in India have been limited in their approach to account for the exposure of these road users. In 2011, for the first time, census in India reported travel distance and mode of travel for workers. A Poisson-lognormal mixture regression model is developed at the state level to explore the relationship of road deaths of all the road users with commute travel distance by different on-road modes. The model controlled for diesel consumption (proxy for freight traffic), length of national highways, proportion of population in urban areas, and built-up population density. The results show that walking, cycling and, interestingly, IPT are associated with lower risk of road deaths, while 2W, car and bus are associated with higher risk. Promotion of IPT has twofold benefits of increasing safety as well as providing a sustainable mode of transport. The mode shift scenarios show that, for similar mode shift across the states, the resulting trends in road deaths are highly dependent on the baseline mode shares. The most worrying trend is the steep growth of death burden resulting from mode shift of walking and cycling to 2W. While the paper illustrates a limited set of mode shift scenarios involving two modes at a time, the model can be applied to assess safety impacts resulting from a more complex set of scenarios. Copyright © 2018 The Author. Published by Elsevier Ltd.. All rights reserved.

  18. Minimal-delay traffic grooming for WDM star networks

    Science.gov (United States)

    Choi, Hongsik; Garg, Nikhil; Choi, Hyeong-Ah

    2003-10-01

    All-optical networks face the challenge of reducing slower opto-electronic conversions by managing assignment of traffic streams to wavelengths in an intelligent manner, while at the same time utilizing bandwidth resources to the maximum. This challenge becomes harder in networks closer to the end users that have insufficient data to saturate single wavelengths as well as traffic streams outnumbering the usable wavelengths, resulting in traffic grooming which requires costly traffic analysis at access nodes. We study the problem of traffic grooming that reduces the need to analyze traffic, for a class of network architecture most used by Metropolitan Area Networks; the star network. The problem being NP-complete, we provide an efficient twice-optimal-bound greedy heuristic for the same, that can be used to intelligently groom traffic at the LANs to reduce latency at the access nodes. Simulation results show that our greedy heuristic achieves a near-optimal solution.

  19. Analysis of Intelligent Transportation Systems Using Model-Driven Simulations

    Directory of Open Access Journals (Sweden)

    Alberto Fernández-Isabel

    2015-06-01

    Full Text Available Intelligent Transportation Systems (ITSs integrate information, sensor, control, and communication technologies to provide transport related services. Their users range from everyday commuters to policy makers and urban planners. Given the complexity of these systems and their environment, their study in real settings is frequently unfeasible. Simulations help to address this problem, but present their own issues: there can be unintended mistakes in the transition from models to code; their platforms frequently bias modeling; and it is difficult to compare works that use different models and tools. In order to overcome these problems, this paper proposes a framework for a model-driven development of these simulations. It is based on a specific modeling language that supports the integrated specification of the multiple facets of an ITS: people, their vehicles, and the external environment; and a network of sensors and actuators conveniently arranged and distributed that operates over them. The framework works with a model editor to generate specifications compliant with that language, and a code generator to produce code from them using platform specifications. There are also guidelines to help researchers in the application of this infrastructure. A case study on advanced management of traffic lights with cameras illustrates its use.

  20. Calculating the Contribution Rate of Intelligent Transportation System in Improving Urban Traffic Smooth Based on Advanced DID Model

    Directory of Open Access Journals (Sweden)

    Ming-wei Li

    2015-01-01

    Full Text Available Recent years have witnessed the rapid development of intelligent transportation system around the world, which helps to relieve urban traffic congestion problems. For instance, many mega-cities in China have devoted a large amount of money and resources to the development of intelligent transportation system. This poses an intriguing and important issue: how to measure and quantify the contribution of intelligent transportation system to the urban city, which is still a puzzle. This paper proposes a matching difference-in-difference model to calculate the contribution rate of intelligent transportation system on traffic smoothness. Within the model, the main effect indicators of traffic smoothness are first identified, and then the evaluation index system is built, and finally the ideas of the matching pool are introduced. The proposed model is illustrated in Guangzhou, China (capital city of Guangdong province. The results show that introduction of ITS contributes 9.25% to the improvement of traffic smooth in Guangzhou. Also, the research explains the working mechanism of how ITS improves urban traffic smooth. Eventually, some strategy recommendations are put forward to improve urban traffic smooth.

  1. Bilevel Traffic Evacuation Model and Algorithm Design for Large-Scale Activities

    Directory of Open Access Journals (Sweden)

    Danwen Bao

    2017-01-01

    Full Text Available This paper establishes a bilevel planning model with one master and multiple slaves to solve traffic evacuation problems. The minimum evacuation network saturation and shortest evacuation time are used as the objective functions for the upper- and lower-level models, respectively. The optimizing conditions of this model are also analyzed. An improved particle swarm optimization (PSO method is proposed by introducing an electromagnetism-like mechanism to solve the bilevel model and enhance its convergence efficiency. A case study is carried out using the Nanjing Olympic Sports Center. The results indicate that, for large-scale activities, the average evacuation time of the classic model is shorter but the road saturation distribution is more uneven. Thus, the overall evacuation efficiency of the network is not high. For induced emergencies, the evacuation time of the bilevel planning model is shortened. When the audience arrival rate is increased from 50% to 100%, the evacuation time is shortened from 22% to 35%, indicating that the optimization effect of the bilevel planning model is more effective compared to the classic model. Therefore, the model and algorithm presented in this paper can provide a theoretical basis for the traffic-induced evacuation decision making of large-scale activities.

  2. Traffic

    International Nuclear Information System (INIS)

    Lichtblau, G.

    2001-01-01

    This chapter deals with passenger and freight traffic, public and private transportation, traffic related environmental impacts, future developments, traffic indicators, regional traffic planning, health costs due to road traffic related air pollution, noise pollution, measures and regulations for traffic control and fuels for traffic. In particular energy consumption, energy efficiency, pollutant emissions ( CO 2 , SO 2 , NO x , HC, CO, N 2 O, NH 3 and particulates) and environmental effects of the different types of traffic and different types of fuels are compared and studied. Legal regulations and measures for an effective traffic control are discussed. (a.n.)

  3. Accurate Multisteps Traffic Flow Prediction Based on SVM

    Directory of Open Access Journals (Sweden)

    Zhang Mingheng

    2013-01-01

    Full Text Available Accurate traffic flow prediction is prerequisite and important for realizing intelligent traffic control and guidance, and it is also the objective requirement for intelligent traffic management. Due to the strong nonlinear, stochastic, time-varying characteristics of urban transport system, artificial intelligence methods such as support vector machine (SVM are now receiving more and more attentions in this research field. Compared with the traditional single-step prediction method, the multisteps prediction has the ability that can predict the traffic state trends over a certain period in the future. From the perspective of dynamic decision, it is far important than the current traffic condition obtained. Thus, in this paper, an accurate multi-steps traffic flow prediction model based on SVM was proposed. In which, the input vectors were comprised of actual traffic volume and four different types of input vectors were compared to verify their prediction performance with each other. Finally, the model was verified with actual data in the empirical analysis phase and the test results showed that the proposed SVM model had a good ability for traffic flow prediction and the SVM-HPT model outperformed the other three models for prediction.

  4. Estimating Urban Traffic Patterns through Probabilistic Interconnectivity of Road Network Junctions.

    Directory of Open Access Journals (Sweden)

    Ed Manley

    Full Text Available The emergence of large, fine-grained mobility datasets offers significant opportunities for the development and application of new methodologies for transportation analysis. In this paper, the link between routing behaviour and traffic patterns in urban areas is examined, introducing a method to derive estimates of traffic patterns from a large collection of fine-grained routing data. Using this dataset, the interconnectivity between road network junctions is extracted in the form of a Markov chain. This representation encodes the probability of the successive usage of adjacent road junctions, encoding routes as flows between decision points rather than flows along road segments. This network of functional interactions is then integrated within a modified Markov chain Monte Carlo (MCMC framework, adapted for the estimation of urban traffic patterns. As part of this approach, the data-derived links between major junctions influence the movement of directed random walks executed across the network to model origin-destination journeys. The simulation process yields estimates of traffic distribution across the road network. The paper presents an implementation of the modified MCMC approach for London, United Kingdom, building an MCMC model based on a dataset of nearly 700000 minicab routes. Validation of the approach clarifies how each element of the MCMC framework contributes to junction prediction performance, and finds promising results in relation to the estimation of junction choice and minicab traffic distribution. The paper concludes by summarising the potential for the development and extension of this approach to the wider urban modelling domain.

  5. Field Scale Spatial Modelling of Surface Soil Quality Attributes in Controlled Traffic Farming

    Science.gov (United States)

    Guenette, Kris; Hernandez-Ramirez, Guillermo

    2017-04-01

    The employment of controlled traffic farming (CTF) can yield improvements to soil quality attributes through the confinement of equipment traffic to tramlines with the field. There is a need to quantify and explain the spatial heterogeneity of soil quality attributes affected by CTF to further improve our understanding and modelling ability of field scale soil dynamics. Soil properties such as available nitrogen (AN), pH, soil total nitrogen (STN), soil organic carbon (SOC), bulk density, macroporosity, soil quality S-Index, plant available water capacity (PAWC) and unsaturated hydraulic conductivity (Km) were analysed and compared among trafficked and un-trafficked areas. We contrasted standard geostatistical methods such as ordinary kriging (OK) and covariate kriging (COK) as well as the hybrid method of regression kriging (ROK) to predict the spatial distribution of soil properties across two annual cropland sites actively employing CTF in Alberta, Canada. Field scale variability was quantified more accurately through the inclusion of covariates; however, the use of ROK was shown to improve model accuracy despite the regression model composition limiting the robustness of the ROK method. The exclusion of traffic from the un-trafficked areas displayed significant improvements to bulk density, macroporosity and Km while subsequently enhancing AN, STN and SOC. The ability of the regression models and the ROK method to account for spatial trends led to the highest goodness-of-fit and lowest error achieved for the soil physical properties, as the rigid traffic regime of CTF altered their spatial distribution at the field scale. Conversely, the COK method produced the most optimal predictions for the soil nutrient properties and Km. The use of terrain covariates derived from light ranging and detection (LiDAR), such as of elevation and topographic position index (TPI), yielded the best models in the COK method at the field scale.

  6. Modelling computer networks

    International Nuclear Information System (INIS)

    Max, G

    2011-01-01

    Traffic models in computer networks can be described as a complicated system. These systems show non-linear features and to simulate behaviours of these systems are also difficult. Before implementing network equipments users wants to know capability of their computer network. They do not want the servers to be overloaded during temporary traffic peaks when more requests arrive than the server is designed for. As a starting point for our study a non-linear system model of network traffic is established to exam behaviour of the network planned. The paper presents setting up a non-linear simulation model that helps us to observe dataflow problems of the networks. This simple model captures the relationship between the competing traffic and the input and output dataflow. In this paper, we also focus on measuring the bottleneck of the network, which was defined as the difference between the link capacity and the competing traffic volume on the link that limits end-to-end throughput. We validate the model using measurements on a working network. The results show that the initial model estimates well main behaviours and critical parameters of the network. Based on this study, we propose to develop a new algorithm, which experimentally determines and predict the available parameters of the network modelled.

  7. Using Automated Planning for Traffic Signals Control

    Directory of Open Access Journals (Sweden)

    Matija Gulić

    2016-08-01

    Full Text Available Solving traffic congestions represents a high priority issue in many big cities. Traditional traffic control systems are mainly based on pre-programmed, reactive and local techniques. This paper presents an autonomic system that uses automated planning techniques instead. These techniques are easily configurable and modified, and can reason about the future implications of actions that change the default traffic lights behaviour. The proposed implemented system includes some autonomic properties, since it monitors the current traffic state, detects if the system is degrading its performance, sets up new sets of goals to be achieved by the planner, triggers the planner that generates plans with control actions, and executes the selected courses of actions. The obtained results in several artificial and real world data-based simulation scenarios show that the proposed system can efficiently solve traffic congestion.

  8. Distributed traffic signal control using fuzzy logic

    Science.gov (United States)

    Chiu, Stephen

    1992-01-01

    We present a distributed approach to traffic signal control, where the signal timing parameters at a given intersection are adjusted as functions of the local traffic condition and of the signal timing parameters at adjacent intersections. Thus, the signal timing parameters evolve dynamically using only local information to improve traffic flow. This distributed approach provides for a fault-tolerant, highly responsive traffic management system. The signal timing at an intersection is defined by three parameters: cycle time, phase split, and offset. We use fuzzy decision rules to adjust these three parameters based only on local information. The amount of change in the timing parameters during each cycle is limited to a small fraction of the current parameters to ensure smooth transition. We show the effectiveness of this method through simulation of the traffic flow in a network of controlled intersections.

  9. Toward Designing a Quantum Key Distribution Network Simulation Model

    Directory of Open Access Journals (Sweden)

    Miralem Mehic

    2016-01-01

    Full Text Available As research in quantum key distribution network technologies grows larger and more complex, the need for highly accurate and scalable simulation technologies becomes important to assess the practical feasibility and foresee difficulties in the practical implementation of theoretical achievements. In this paper, we described the design of simplified simulation environment of the quantum key distribution network with multiple links and nodes. In such simulation environment, we analyzed several routing protocols in terms of the number of sent routing packets, goodput and Packet Delivery Ratio of data traffic flow using NS-3 simulator.

  10. 3D Modelling, Animation and Simulation of Mammal’s Migration Across Roads

    Directory of Open Access Journals (Sweden)

    Talapka Jozef

    2016-05-01

    Full Text Available The presented article is dealing with the new methods which are designated for data collection of mammals migrating across traffic networks. Nowadays, road construction and securing of older roads is usually accompanied by finding new solutions. Because of lack of collected data we have new opportunities how we can collect this input. The article below describes the most efficient method which is suitable for the model creation, process of creation and issues which are connected with the creation of simulations.

  11. Simulation of traffic capacity of inland waterway network

    NARCIS (Netherlands)

    Chen, L.; Mou, J.; Ligteringen, H.

    2013-01-01

    The inland waterborne transportation is viewed as an economic, safe and environmentally friendly alternative to the congested road network. The traffic capacity are the critical indicator of the inland shipping performance. Actually, interacted under the complicated factors, it is challenging to

  12. Two-vehicle injury severity models based on integration of pavement management and traffic engineering factors.

    Science.gov (United States)

    Jiang, Ximiao; Huang, Baoshan; Yan, Xuedong; Zaretzki, Russell L; Richards, Stephen

    2013-01-01

    The severity of traffic-related injuries has been studied by many researchers in recent decades. However, the evaluation of many factors is still in dispute and, until this point, few studies have taken into account pavement management factors as points of interest. The objective of this article is to evaluate the combined influences of pavement management factors and traditional traffic engineering factors on the injury severity of 2-vehicle crashes. This study examines 2-vehicle rear-end, sideswipe, and angle collisions that occurred on Tennessee state routes from 2004 to 2008. Both the traditional ordered probit (OP) model and Bayesian ordered probit (BOP) model with weak informative prior were fitted for each collision type. The performances of these models were evaluated based on the parameter estimates and deviances. The results indicated that pavement management factors played identical roles in all 3 collision types. Pavement serviceability produces significant positive effects on the severity of injuries. The pavement distress index (PDI), rutting depth (RD), and rutting depth difference between right and left wheels (RD_df) were not significant in any of these 3 collision types. The effects of traffic engineering factors varied across collision types, except that a few were consistently significant in all 3 collision types, such as annual average daily traffic (AADT), rural-urban location, speed limit, peaking hour, and light condition. The findings of this study indicated that improved pavement quality does not necessarily lessen the severity of injuries when a 2-vehicle crash occurs. The effects of traffic engineering factors are not universal but vary by the type of crash. The study also found that the BOP model with a weak informative prior can be used as an alternative but was not superior to the traditional OP model in terms of overall performance.

  13. A geographic approach to modelling human exposure to traffic air pollution using GIS. Separate appendix report

    Energy Technology Data Exchange (ETDEWEB)

    Solvang Jensen, S.

    1998-10-01

    A new exposure model has been developed that is based on a physical, single media (air) and single source (traffic) micro environmental approach that estimates traffic related exposures geographically with the postal address as exposure indicator. The micro environments: residence, workplace and street (road user exposure) may be considered. The model estimates outdoor levels for selected ambient air pollutants (benzene, CO, NO{sub 2} and O{sub 3}). The influence of outdoor air pollution on indoor levels can be estimated using average (I/O-ratios. The model has a very high spatial resolution (the address), a high temporal resolution (one hour) and may be used to predict past, present and future exposures. The model may be used for impact assessment of control measures provided that the changes to the model inputs are obtained. The exposure model takes advantage of a standard Geographic Information System (GIS) (ArcView and Avenue) for generation of inputs, for visualisation of input and output, and uses available digital maps, national administrative registers and a local traffic database, and the Danish Operational Street Pollution Model (OSPM). The exposure model presents a new approach to exposure determination by integration of digital maps, administrative registers, a street pollution model and GIS. New methods have been developed to generate the required input parameters for the OSPM model: to geocode buildings using cadastral maps and address points, to automatically generate street configuration data based on digital maps, the BBR and GIS; to predict the temporal variation in traffic and related parameters; and to provide hourly background levels for the OSPM model. (EG)

  14. Approaches for Intelligent Traffic System: A Survey

    OpenAIRE

    Pratishtha Gupta; G.N Purohit; Amrita Dadhich

    2012-01-01

    This survey presents various approaches for intelligent traffic systems. The potential research fields in which Intelligent Traffic System emerges as an important application area are highlighted andvarious issues have been identified which need to be handled while developing such a system for an urban area, where an efficient traffic management has become the need of hour.A model is also proposed capable of managing intelligent traffic system using CCTV cameras and WAN. The proposed model wi...

  15. Development of a Gridded Maritime Traffic DB for e-Navigation

    Directory of Open Access Journals (Sweden)

    Kwang-Il Kim

    2014-12-01

    Full Text Available In the era of e-Navigation, it is important to deliver maritime traffic information from a shore based station to all navigating vessels. However, in a vessel boarding system, there is a limit to the amount of raw traffic data that can be processed. In this paper, we used the Automatic Identification System (AIS data as metadata to build up the maritime traffic gridded database by projecting traffic data on a geographic coordinate system. In order to apply this database to the image layer for transferring to the ship efficiently, we have developed a maritime traffic display layer and route traffic information layer. All simulated data was collected and analyzed with the AIS in a Vessel Traffic Service(VTS center.

  16. Assessment of Traffic Noise Impacts

    DEFF Research Database (Denmark)

    Rich, Jeppe Husted; Nielsen, Otto Anker

    2004-01-01

    A steady growth in traffic intensities in most urban areas throughout the world has forced planners and politicians to seriously consider the resulting environmental impact, such as traffic noise, accidents and air pollution. The assessment of such negative factors is needed in order to reveal...... the true social benefit of infrastructure plans. The paper presents a noise assessment model for the Copenhagen region, which brings together GIS technology and non-linear hedonic regression models to reveal the implicit costs of traffic noise measured as the marginal percentage loss in property values...

  17. Continuous traffic flow modeling of driver support systems in multiclass traffic with inter-vehicle communication and drivers in the loop

    NARCIS (Netherlands)

    Tampere, C.M.J.; Hoogendoorn, S.P.; Arem, B. van

    2009-01-01

    This paper presents a continuous traffic-flow model for the explorative analysis of advanced driver-assistance systems (ADASs). Such systems use technology (sensors and intervehicle communication) to support the task of the driver, who retains full control over the vehicle. Based on a review of

  18. Costs of traffic injuries

    DEFF Research Database (Denmark)

    Kruse, Marie

    2015-01-01

    assessed using Danish national healthcare registers. Productivity costs were computed using duration analysis (Cox regression models). In a subanalysis, cost per severe traffic injury was computed for the 12 995 individuals that experienced a severe injury. RESULTS: The socioeconomic cost of a traffic...... injury was €1406 (2009 price level) in the first year, and €8950 over a 10-year period. Per 100 000 population, the 10-year cost was €6 565 668. A severe traffic injury costs €4969 per person in the first year, and €4 006 685 per 100 000 population over a 10-year period. Victims of traffic injuries...

  19. The Application of Data Mining Technology to Build a Forecasting Model for Classification of Road Traffic Accidents

    Directory of Open Access Journals (Sweden)

    Yau-Ren Shiau

    2015-01-01

    Full Text Available With the ever-increasing number of vehicles on the road, traffic accidents have also increased, resulting in the loss of lives and properties, as well as immeasurable social costs. The environment, time, and region influence the occurrence of traffic accidents. The life and property loss is expected to be reduced by improving traffic engineering, education, and administration of law and advocacy. This study observed 2,471 traffic accidents which occurred in central Taiwan from January to December 2011 and used the Recursive Feature Elimination (RFE of Feature Selection to screen the important factors affecting traffic accidents. It then established models to analyze traffic accidents with various methods, such as Fuzzy Robust Principal Component Analysis (FRPCA, Backpropagation Neural Network (BPNN, and Logistic Regression (LR. The proposed model aims to probe into the environments of traffic accidents, as well as the relationships between the variables of road designs, rule-violation items, and accident types. The results showed that the accuracy rate of classifiers FRPCA-BPNN (85.89% and FRPCA-LR (85.14% combined with FRPCA is higher than that of BPNN (84.37% and LR (85.06% by 1.52% and 0.08%, respectively. Moreover, the performance of FRPCA-BPNN and FRPCA-LR combined with FRPCA in classification prediction is better than that of BPNN and LR.

  20. STUDY ON SUPPORTING FOR DRAWING UP THE BCP FOR URBAN EXPRESSWAY NETWORK USING BY TRAFFIC SIMULATION SYSTEM

    Science.gov (United States)

    Yamawaki, Masashi; Shiraki, Wataru; Inomo, Hitoshi; Yasuda, Keiichi

    The urban expressway network is an important infrastructure to execute a disaster restoration. Therefore, it is necessary to draw up the BCP (Business Continuity Plan) to enable securing of road user's safety and restoration of facilities, etc. It is important that each urban expressway manager execute decision and improvement of effective BCP countermeasures when disaster occurs by assuming various disaster situations. Then, in this study, we develop the traffic simulation system that can reproduce various disaster situations and traffic actions, and examine some methods supporting for drawing up the BCP for an urban expressway network. For disaster outside assumption such as tsunami generated by a huge earthquake, we examine some approaches securing safety of users and cars on the Hanshin Expressway Network as well as on general roads. And, we aim to propose a tsunami countermeasure not considered in the current urban expressway BCP.