WorldWideScience

Sample records for track trigger primitives

  1. Proposed FPGA based tracking for a Level-1 track trigger at CMS for the HL-LHC

    CERN Document Server

    Pozzobon, Nicola

    2014-01-01

    The High Luminosity LHC (HL-LHC) is expected to deliver a luminosity in excess of $5\\times10^{34}$ cm$^{-2}$/s. The high event rate places stringent requirements on the trigger system. A key component of the CMS upgrade for the HL-LHC is a track trigger system which will identify tracks with transverse momenta above 2 GeV already at the first-level trigger within 5 $\\mu$s. This presentation will discuss a proposed track finding and fitting based on the tracklet based approach implemented on FPGAs. Tracklets are formed from pairs of hits in nearby layers in the detector and used in a road search. Summary Fast pattern recognition in Silicon trackers for triggering has often made use of Associative Memories for the pattern recognition step. We propose an alternative approach to solving the pattern recognition and track fitting problem for the upgraded CMS tracker for the HL-LHC operation. We make use of the trigger primitives,stubs, from the tracker. The stubs are formed from pairs of hits in sensors separated r...

  2. The CMS Level-1 Trigger Barrel Track Finder

    International Nuclear Information System (INIS)

    Ero, J.; Wulz, C.; Evangelou, I.; Flouris, G.; Foudas, C.; Loukas, N.; Manthos, N.; Papadopoulos, I.; Paradas, E.; Guiducci, L.; Sotiropoulos, S.; Sphicas, P.; Triossi, A.

    2016-01-01

    The design and performance of the upgraded CMS Level-1 Trigger Barrel Muon Track Finder (BMTF) is presented. Monte Carlo simulation data as well as cosmic ray data from a CMS muon detector slice test have been used to study in detail the performance of the new track finder. The design architecture is based on twelve MP7 cards each of which uses a Xilinx Virtex-7 FPGA and can receive and transmit data at 10 Gbps from 72 input and 72 output fibers. According to the CMS Trigger Upgrade TDR the BMTF receives trigger primitive data which are computed using both RPC and DT data and transmits data from a number of muon candidates to the upgraded Global Muon Trigger. Results from detailed studies of comparisons between the BMTF algorithm results and the results of a C++ emulator are also presented. The new BMTF will be commissioned for data taking in 2016

  3. A level-1 track trigger for CMS with double stack detectors and long barrel approach

    International Nuclear Information System (INIS)

    Salvati, E

    2012-01-01

    The upgrade of the LHC machine is planned to deliver luminosities 5 to 10 times larger than the design one of 1 × 10 34 cm −2 s −1 . A novel tracking system for the CMS experiment must be designed and built. One main aspect of the current activities consists in understanding the capabilities that different designs such a tracker would have to provide for the Level 1 hardware trigger to complement the muon and calorimeter information. Data rate reduction at hardware level consists in both reducing multiple hits from a single track and rejection of low p t tracks. Pattern-based hit correlation of properly built clusters of hits would provide quality Level 1 primitives to the hardware trigger. These can be combined together in a projective geometry to perform a rough tracking to be implemented online, returning rough p t , direction, and vertex information for a candidate track. The benchmark results from simulations within the official CMS framework are presented for one particular layout based on barrel trigger layers, emphasizing the flexibility of this tool for the design and test of different tracking strategies at level 1 to be compared with the developments in trigger architectures implementation.

  4. The DOe Silicon Track Trigger

    International Nuclear Information System (INIS)

    Steinbrueck, Georg

    2003-01-01

    We describe a trigger preprocessor to be used by the DOe experiment for selecting events with tracks from the decay of long-lived particles. This Level 2 impact parameter trigger utilizes information from the Silicon Microstrip Tracker to reconstruct tracks with improved spatial and momentum resolutions compared to those obtained by the Level 1 tracking trigger. It is constructed of VME boards with much of the logic existing in programmable processors. A common motherboard provides the I/O infrastructure and three different daughter boards perform the tasks of identifying the roads from the tracking trigger data, finding the clusters in the roads in the silicon detector, and fitting tracks to the clusters. This approach provides flexibility for the design, testing and maintenance phases of the project. The track parameters are provided to the trigger framework in 25 μs. The effective impact parameter resolution for high-momentum tracks is 35 μm, dominated by the size of the Tevatron beam

  5. TRIGGER

    CERN Multimedia

    W. Smith

    2010-01-01

    Level-1 Trigger Hardware and Software The Level-1 Trigger hardware has performed well during both the recent proton-proton and heavy ion running. Efforts were made to improve the visibility and handling of alarms and warnings. The tracker ReTRI boards that prevent fixed frequencies of Level-1 Triggers are now configured through the Trigger Supervisor. The Global Calorimeter Trigger (GCT) team has introduced a buffer cleanup procedure at stops and a reset of the QPLL during configuring to ensure recalibration in case of a switch from the LHC clock to the local clock. A device to test the cables between the Regional Calorimeter Trigger and the GCT has been manufactured. A wrong charge bit was fixed in the CSC Trigger. The ECAL group is improving crystal masking and spike suppression in the trigger primitives. New firmware for the Drift Tube Track Finder (DTTF) sorters was developed to improve fake track tagging and sorting. Zero suppression was implemented in the DT Sector Collector readout. The track finder b...

  6. Trigger tracking for the LHCb upgrade

    CERN Multimedia

    Dungs, K

    2014-01-01

    This poster presents a trigger system for the upgraded LHCb detector, scheduled to begin operation in 2020. The proposed trigger system is implemented entirely in software. We show that track reconstruction of a similar quality to that available in the offline algorithms can be performed on the full inelastic pp-collision rate. A track finding efficiency of 98.8% relative to offline can be achieved for good trigger tracks. The CPU time required for this reconstruction is less than 60% of the available budget.

  7. ATLAS FTK: Fast Track Trigger

    CERN Document Server

    Volpi, Guido; The ATLAS collaboration

    2015-01-01

    An overview of the ATLAS Fast Tracker processor is presented, reporting the design of the system, its expected performance, and the integration status. The next LHC runs, with a significant increase in instantaneous luminosity, will provide a big challenge to the trigger and data acquisition systems of all the experiments. An intensive use of the tracking information at the trigger level will be important to keep high efficiency in interesting events, despite the increase in multiple p-p collisions per bunch crossing (pile-up). In order to increase the use of tracks within the High Level Trigger (HLT), the ATLAS experiment planned the installation of an hardware processor dedicated to tracking: the Fast TracKer (FTK) processor. The FTK is designed to perform full scan track reconstruction at every Level-1 accept. To achieve this goal, the FTK uses a fully parallel architecture, with algorithms designed to exploit the computing power of custom VLSI chips, the Associative Memory, as well as modern FPGAs. The FT...

  8. Development of Trigger and Readout Electronics for the ATLAS New Small Wheel Detector Upgrade

    CERN Document Server

    Zhu, Junjie; The ATLAS collaboration

    2017-01-01

    The planned Phase-I and Phase-II upgrades of the LHC accelerator drastically impacts the ATLAS trigger and trigger rates. A replacement of the ATLAS innermost endcap muon station with a new small wheel (NSW) detector is planned for the second long shutdown period of 2019 - 2020. This upgrade will allow us to maintain a low pT threshold for single muon and excellent tracking capability even after the High-Luminosity LHC upgrade. The NSW detector will feature two new detector technologies, Resistive Micromegas and small-strip Thin Gap Chambers. Both detector technologies will provide trigger and tracking primitives. The total number of trigger and readout channels is about 2.4 millions, and the overall power consumption is expected to be about 75 kW. The electronics design will be implemented in some 8000 front-end boards including the design of four custom front-end ASICs capable to drive trigger and tracking primitives with high speed sterilizers to drive trigger candidates to the backend trigger processor sy...

  9. A self seeded first level track trigger for ATLAS

    International Nuclear Information System (INIS)

    Schöning, A

    2012-01-01

    For the planned high luminosity upgrade of the Large Hadron Collider, aiming to increase the instantaneous luminosity to 5 × 10 34 cm −2 s −1 , the implementation of a first level track trigger has been proposed. This trigger could be installed in the year ∼ 2021 along with the complete renewal of the ATLAS inner detector. The fast readout of the hit information from the Inner Detector is considered as the main challenge of such a track trigger. Different concepts for the implementation of a first level trigger are currently studied within the ATLAS collaboration. The so called 'Self Seeded' track trigger concept exploits fast frontend filtering algorithms based on cluster size reconstruction and fast vector tracking to select hits associated to high momentum tracks. Simulation studies have been performed and results on efficiencies, purities and trigger rates are presented for different layouts.

  10. TRIGGER

    CERN Multimedia

    Wesley Smith

    Level-1 Trigger Hardware and Software The hardware of the trigger components has been mostly finished. The ECAL Endcap Trigger Concentrator Cards (TCC) are in production while Barrel TCC firmware has been upgraded, and the Trigger Primitives can now be stored by the Data Concentrator Card for readout by the DAQ. The Regional Calorimeter Trigger (RCT) system is complete, and the timing is being finalized. All 502 HCAL trigger links to RCT run without error. The HCAL muon trigger timing has been equalized with DT, RPC, CSC and ECAL. The hardware and firmware for the Global Calorimeter Trigger (GCT) jet triggers are being commissioned and data from these triggers is available for readout. The GCT energy sums from rings of trigger towers around the beam pipe beam have been changed to include two rings from both sides. The firmware for Drift Tube Track Finder, Barrel Sorter and Wedge Sorter has been upgraded, and the synchronization of the DT trigger is satisfactory. The CSC local trigger has operated flawlessly u...

  11. ATLAS FTK Fast Track Trigger

    CERN Document Server

    Iizawa, T; The ATLAS collaboration

    2014-01-01

    The Fast TracKer (FTK) will perform global track reconstruction after each Level-1 trigger accept signal to enable the software-based higher level trigger to have early access to tracking information. FTK is a dedicated processor based on a mixture of advanced technologies. Modern, powerful Field Programmable Gate Arrays (FPGAs) form an important part of the system architecture, and the large level of computing power required for pattern recognition is provided by incorporating standard-cell ASICs named Associative Memory (AM). Motivation and the architecture of the FTK system will be presented, and the status of hardware and simulation will be following.

  12. Upgrade of the cathode strip chamber level 1 trigger optical links at CMS

    International Nuclear Information System (INIS)

    Ecklund, K; Liu, J; Matveev, M; Padley, P; Madorsky, A

    2012-01-01

    At the Large Hadron Collider (LHC) at CERN, the CMS experiment's Level 1 Trigger system for the endcap Cathode Strip Chambers (CSC) has 180 optical links to transmit Level 1 trigger primitives from 60 peripheral crates to the CSC Track Finder (CSCTF) which reconstructs muon candidates. Currently there is a limit of 3 trigger primitives per crate serving a cluster of 9 chambers. With the anticipated LHC luminosity increase up to 10 35 cm −2 s −1 at full energy of 7 TeV/beam the Muon Port Card (MPC), which transmits the primitives, the receiver in the CSCTF (Sector Processor) and the optical transmission system itself need to be upgraded. At the same time it is very desirable to preserve all the old optical links intact for compatibility with the present Track Finder during transition period. We present here the results of our efforts in the past two years to upgrade the MPC board, including the hardware developments, data transmission tests and latency measurements.

  13. FTK: a Fast Track Trigger for ATLAS

    International Nuclear Information System (INIS)

    Anderson, J; Auerbach, B; Blair, R; Andreani, A; Andreazza, A; Citterio, M; Annovi, A; Beretta, M; Castegnaro, A; Atkinson, M; Cavaliere, V; Chang, P; Bevacqua, V; Crescioli, F; Blazey, G; Bogdan, M; Boveia, A; Canelli, F; Cheng, Y; Cervigni, F

    2012-01-01

    We describe the design and expected performance of a the Fast Tracker Trigger (FTK) system for the ATLAS detector at the Large Hadron Collider. The FTK is a highly parallel hardware system designed to operate at the Level 1 trigger output rate. It is designed to provide global tracks reconstructed in the inner detector with resolution comparable to the full offline reconstruction as input of the Level 2 trigger processing. The hardware system is based on associative memories for pattern recognition and fast FPGAs for track reconstruction. The FTK is expected to dramatically improve the performance of track based isolation and b-tagging with little to no dependencies of pile-up interactions.

  14. TRIGGER

    CERN Multimedia

    by Wesley Smith

    2010-01-01

    Level-1 Trigger Hardware and Software The overall status of the L1 trigger has been excellent and the running efficiency has been high during physics fills. The timing is good to about 1%. The fine-tuning of the time synchronization of muon triggers is ongoing and will be completed after more than 10 nb-1 of data have been recorded. The CSC trigger primitive and RPC trigger timing have been refined. A new configuration for the CSC Track Finder featured modified beam halo cuts and improved ghost cancellation logic. More direct control was provided for the DT opto-receivers. New RPC Cosmic Trigger (RBC/TTU) trigger algorithms were enabled for collision runs. There is further work planned during the next technical stop to investigate a few of the links from the ECAL to the Regional Calorimeter Trigger (RCT). New firmware and a new configuration to handle trigger rate spikes in the ECAL barrel are also being tested. A board newly developed by the tracker group (ReTRI) has been installed and activated to block re...

  15. A Time-Multiplexed Track-Trigger architecture for CMS

    CERN Document Server

    Hall, Geoffrey; Pesaresi, Mark Franco; Rose, A

    2014-01-01

    The CMS Tracker under development for the High Luminosity LHC includes an outer tracker based on ``PT-modules'' which will provide track stubs based on coincident clusters in two closely spaced sensor layers, aiming to reject low transverse momentum track hits before data transmission to the Level-1 trigger. The tracker data will be used to reconstruct track segments in dedicated processors before onward transmission to other trigger processors which will combine tracker information with data originating from the calorimeter and muon detectors, to make the final L1 trigger decision. The architecture for processing the tracker data is still an open question. One attractive option is to explore a Time Multiplexed design similar to one which is currently being implemented in the CMS calorimeter trigger as part of the Phase I trigger upgrade. The Time Multiplexed Trigger concept is explained, the potential benefits of applying it for processing future tracker data are described and a possible design based on cur...

  16. A configurable tracking algorithm to detect cosmic muon tracks for the CMS-RPC based technical trigger

    CERN Document Server

    Rajan, R T; Loddo, F; Maggi, M; Ranieri, A; Abbrescia, M; Guida, R; Iaselli, G; Nuzzo, S; Pugliese, G; Roselli, G; Trentadue, R; Tupputi, b, S; Benussi, L; Bertani, M; Bianco, S; Fabbri, F; Cavallo, N; Cimmino, e, A; Lomidze, D; Noli, P; Paolucci, P; Piccolo, D; Polese, G; Sciacca, C; Baesso, g, P; Belli, G; Necchi, M; Ratti, S P; Pagano, D; Vitulo, P; Viviani, C; Dimitrov, A; Litov, L; Pavlov, B; Petkov, P; Genchev, V; Iaydjiev, P; Bunkowski, K; Kierzkowski, K; Konecki, M; Kudla, I; Pietrusinski, M; Pozniak, K

    2009-01-01

    In the CERN CMS experiment at LHC Collider special trigger signals called Technical Triggers will be used for the purpose of test and calibration. The Resistive Plate Chambers (RPC) based Technical Trigger system is a part of the CMS muon trigger system and is designed to detect cosmic muon tracks. It is based on two boards, namely RBC (RPC Balcony Collector) and TTU (Technical Trigger Unit). The proposed tracking algorithm (TA) written in VHDL and implemented in the TTU board detects single or multiple cosmic muon tracks at every bunch crossing along with their track lengths and corresponding chamber coordinates. The TA implementation in VHDL and its preliminary simulation results are presented.

  17. Towards a Level-1 Tracking Trigger for the ATLAS Experiment

    CERN Document Server

    De Santo, A; The ATLAS collaboration

    2016-01-01

    In preparation for the high-luminosity phase of the Large Hadron Collider, ATLAS is planning a trigger upgrade that will enable the experiment to use tracking information already at the first trigger level. This will provide enhanced background rejection power at trigger level while preserving much needed flexibility for the trigger system. The status and current plans for the new ATLAS Level-1 tracking trigger are presented.

  18. FTK status and track triggers in ATLAS at HL-LHC

    CERN Document Server

    ATLAS Collaboration; The ATLAS collaboration

    2016-01-01

    The expected instantaneous luminosities delivered by the Large Hadron Collider will place continually increasing burdens on the trigger systems of the ATLAS detector. The use of tracking information is key to maintaining a manageable trigger rate while keeping a high efficiency. At the same time, however, track finding is one of the more resource-intensive tasks in the software-based processing farms of the high level trigger system. To support the trigger, ATLAS is building and currently installing the Fast TracK Finder (FTK), a hardware-based system that uses massively parallel pattern recognition in Associative Memory to reconstruct tracks above transverse momenta of 1 GeV across the entire detector at 100 kHz with a latency of ~100 microseconds. In the first-stage of track finding, FTK compares hits in ATLAS silicon detectors against ~1 billion pre-computed track pattern candidates. Track parameters for these candidates, including goodness-of-fit tests, are calculated in FPGAs using a linear approximation...

  19. CBC3: a CMS microstrip readout ASIC with logic for track-trigger modules at HL-LHC

    CERN Document Server

    Prydderch, Mark Lyndon; Bell, Stephen Jean-marc; Key-Charriere, M; Jones, Lawrence; Auzinger, Georg; Borg, Johan; Hall, Geoffrey; Pesaresi, Mark Franco; Raymond, David Mark; Uchida, Kirika; Goldstein, Joel; Seif El Nasr, Sarah

    2018-01-01

    The CBC3 is the latest version of the CMS Binary Chip ASIC for readout of the outer radial region of the upgraded CMS Tracker at HL-LHC. This 254-channel, 130nm CMOS ASIC is designed to be bump-bonded to a substrate to which sensors will be wire-bonded. It will instrument double-layer 2S-modules, consisting of two overlaid silicon microstrip sensors with aligned microstrips. On-chip logic identifies first level trigger primitives from high transverse-momentum tracks by selecting correlated hits in the two sensors. Delivered in late 2016, the CBC3 has been under test for several months, including X-ray irradiations and SEU testing. Results and performance are reported.

  20. Trigger and electronics issues for scintillating fiber tracking

    International Nuclear Information System (INIS)

    Baumbaugh, A.E.

    1994-01-01

    Scintillating Fiber technology has made great advances and has demonstrated great promise for high speed charged particle tracking and triggering. The small detector sizes and fast scintillation floors available, make them very promising for use at high luminosity experiments at today's and tomorrow's colliding and fixed target experiments where high rate capability is essential. This paper will discuss some of the system aspects which should be considered by anyone attempting to design a scintillating fiber tracking system and high speed tracking trigger. As the reader will see, seemingly simple decisions can have far reaching effects on overall system performance

  1. The CLEO-III Trigger: Calorimetry and tracking

    International Nuclear Information System (INIS)

    Bergfeld, T.J.; Gollin, G.D.; Haney, M.J.

    1996-01-01

    The CLEO-III Trigger provides a trigger decision every 42ns, with a latency of approximately 2.5μs. This paper describes the pipelined signal processing and pattern recognition schemes used by the calorimeter, and the axial and stereo portions of the drift chamber, to provide the information necessary to make these decisions. Field programmable gate arrays are used extensively to provide cluster filtering and location sorting for calorimetry, and path finding for tracking. Analog processing is also employed in the calorimetry to provide additional leverage on the problem. Timing information is extracted from both calorimetry and tracking

  2. A simplified Track Assembler I/O for the Muon Trigger Track Finder

    CERN Document Server

    Dallavalle, Gaetano-Marco; Genchev, Vladimir; Grandi, Claudio; Neumeister, Norbert; Porth, Paul; Rohringer, Herbert

    1998-01-01

    One of the architectural concerns in the present design of the Muon Trigger Track Finder ( MTTF) is the large number of inputs to the Track Assembler ( TA). In the TA block, input track segment pairs from many Extrapolation Units ( EU) are associated into tracks. The relative contribution of these inputs to the assembled tracks is studied with simulated track patterns for low and high pt muons over the entire eta, phi acceptance of the CMS barrel. A pruning of the EUs is proposed which does not alter the performance of the Track Finder and minimizes the interconnections between azimuthal wedges.

  3. Feasibility studies of a Level-1 Tracking Trigger for ATLAS

    CERN Document Server

    Warren, M; Brenner, R; Konstantinidis, N; Sutton, M

    2009-01-01

    The existing ATLAS Level-1 trigger system is seriously challenged at the SLHC's higher luminosity. A hardware tracking trigger might be needed, but requires a detailed understanding of the detector. Simulation of high pile-up events, with various data-reduction techniques applied will be described. Two scenarios are envisaged: (a) regional readout - calorimeter and muon triggers are used to identify portions of the tracker; and (b) track-stub finding using special trigger layers. A proposed hardware system, including data reduction on the front-end ASICs, readout within a super-module and integrating regional triggering into all levels of the readout system, will be discussed.

  4. A silicon track trigger for the DOe experiment

    International Nuclear Information System (INIS)

    Narain, Meenakshi

    2000-01-01

    The design of a processor to trigger on long-lived particles (e.g. b-quarks) for the DOe experiment at the Fermilab Tevatron is presented. This device reconstructs the trajectory of the charged particles in the DOe tracking system, which consists of a central fiber tracker and a silicon microstrip tracker. The r-phi impact parameter resolution of the fitted tracks is about 40 μm. This enables the identification of the long-lived b-quarks produced in the decays of various particles, e.g. the top quarks, Higgs Boson, techni-particles and other exotic particles produced in pp-bar collisions at the Tevatron. In this report we describe the design of the architecture and algorithms for the Silicon Track Trigger

  5. A silicon track trigger for the DOe experiment

    CERN Document Server

    Narain, M

    2000-01-01

    The design of a processor to trigger on long-lived particles (e.g. b-quarks) for the DOe experiment at the Fermilab Tevatron is presented. This device reconstructs the trajectory of the charged particles in the DOe tracking system, which consists of a central fiber tracker and a silicon microstrip tracker. The r-phi impact parameter resolution of the fitted tracks is about 40 mu m. This enables the identification of the long-lived b-quarks produced in the decays of various particles, e.g. the top quarks, Higgs Boson, techni-particles and other exotic particles produced in pp-bar collisions at the Tevatron. In this report we describe the design of the architecture and algorithms for the Silicon Track Trigger.

  6. Design of a Hardware Track Finder (Fast Tracker) for the ATLAS Trigger

    CERN Document Server

    AUTHOR|(INSPIRE)INSPIRE-00010976; Albicocco, P.; Alison, J.; Ancu, L.S.; Anderson, J.; Andari, N.; Andreani, A.; Andreazza, A.; Annovi, A.; Antonelli, M.; Asbah, N.; Atkinson, M.; Baines, J.; Barberio, E.; Beccherle, R.; Beretta, M.; Bertolucci, F.; Biesuz, N.V.; Blair, R.; Bogdan, M.; Boveia, A.; Britzger, D.; Bryant, P.; Burghgrave, B.; Calderini, G.; Camplani, A.; Cavasinni, V.; Chakraborty, D.; Chang, P.; Cheng, Y.; Citraro, S.; Citterio, M.; Crescioli, F.; Dawe, N.; Dell'Orso, M.; Donati, S.; Dondero, P.; Drake, G.; Gadomski, S.; Gatta, M.; Gentsos, C.; Giannetti, P.; Gkaitatzis, S.; Gramling, J.; Howarth, J.W.; Iizawa, T.; Ilic, N.; Jiang, Z.; Kaji, T.; Kasten, M.; Kawaguchi, Y.; Kim, Y.K.; Kimura, N.; Klimkovich, T.; Kolb, M.; Kordas, K.; Krizka, K.; Kubota, T.; Lanza, A.; Li, H.L.; Liberali, V.; Lisovyi, M.; Liu, L.; Love, J.; Luciano, P.; Luongo, C.; Magalotti, D.; Maznas, I.; Meroni, C.; Mitani, T.; Nasimi, H.; Negri, A.; Neroutsos, P.; Neubauer, M.; Nikolaidis, S.; Okumura, Y.; Pandini, C.; Petridou, C.; Piendibene, M.; Proudfoot, J.; Rados, P.; Roda, C.; Rossi, E.; Sakurai, Y.; Sampsonidis, D.; Saxon, J.; Schmitt, S.; Schoening, A.; Shochet, M.; Shojaii, S.; Soltveit, H.; Sotiropoulou, C.L.; Stabile, A.; Swiatlowski, M.; Tang, F.; Taylor, P.T.; Testa, M.; Tompkins, L.; Vercesi, V.; Volpi, G.; Wang, R.; Watari, R.; Webster, J.; Wu, X.; Yorita, K.; Yurkewicz, A.; Zeng, J.C.; Zhang, J.; Zou, R.

    2016-01-01

    The use of tracking information at the trigger level in the LHC Run II period is crucial for the trigger an data acquisition (TDAQ) system and will be even more so as contemporary collisions that occur at every bunch crossing will increase in Run III. The Fast TracKer (FTK) is part of the ATLAS trigger upgrade project; it is a hardware processor that will provide every Level-1 accepted event (100 kHz) and within 100$\\mu$s, full tracking information for tracks with momentum as low as 1 GeV. Providing fast, extensive access to tracking information, with resolution comparable to the offline reconstruction, FTK will help in precise detection of the primary and secondary vertices to ensure robust selections and improve the trigger performance.

  7. L1 track finding for a time multiplexed trigger

    Energy Technology Data Exchange (ETDEWEB)

    Cieri, D., E-mail: davide.cieri@bristol.ac.uk [University of Bristol, Bristol (United Kingdom); Rutherford Appleton Laboratory, Didcot (United Kingdom); Brooke, J.; Grimes, M. [University of Bristol, Bristol (United Kingdom); Newbold, D. [University of Bristol, Bristol (United Kingdom); Rutherford Appleton Laboratory, Didcot (United Kingdom); Harder, K.; Shepherd-Themistocleous, C.; Tomalin, I. [Rutherford Appleton Laboratory, Didcot (United Kingdom); Vichoudis, P. [CERN, Geneva (Switzerland); Reid, I. [Brunel University, London (United Kingdom); Iles, G.; Hall, G.; James, T.; Pesaresi, M.; Rose, A.; Tapper, A.; Uchida, K. [Imperial College, London (United Kingdom)

    2016-07-11

    At the HL-LHC, proton bunches will cross each other every 25 ns, producing an average of 140 pp-collisions per bunch crossing. To operate in such an environment, the CMS experiment will need a L1 hardware trigger able to identify interesting events within a latency of 12.5 μs. The future L1 trigger will make use also of data coming from the silicon tracker to control the trigger rate. The architecture that will be used in future to process tracker data is still under discussion. One interesting proposal makes use of the Time Multiplexed Trigger concept, already implemented in the CMS calorimeter trigger for the Phase I trigger upgrade. The proposed track finding algorithm is based on the Hough Transform method. The algorithm has been tested using simulated pp-collision data. Results show a very good tracking efficiency. The algorithm will be demonstrated in hardware in the coming months using the MP7, which is a μTCA board with a powerful FPGA capable of handling data rates approaching 1 Tb/s.

  8. L1 Track Finding for a Time Multiplexed Trigger

    CERN Document Server

    AUTHOR|(CDS)2090481; Grimes, M.; Newbold, D.; Harder, K.; Shepherd-Themistocleous, C.; Tomalin, I.; Vichoudis, P.; Reid, I.; Iles, G.; Hall, G.; James, T.; Pesaresi, M.; Rose, A.; Tapper, A.; Uchida, K.

    2016-01-01

    At the HL-LHC, proton bunches will cross each other every 25 ns, producing an average of 140 p p-collisions per bunch crossing. To operate in such an environment, the CMS experiment will need a L1 hardware trigger able to identify interesting events within a latency of 12.5 us. The future L1 trigger will make use also of data coming from the silicon tracker to control the trigger rate. The architecture that will be used in future to process tracker data is still under discussion. One interesting proposal makes use of the Time Multiplexed Trigger concept, already implemented in the CMS calorimeter trigger for the Phase I trigger upgrade. The proposed track finding algorithm is based on the Hough Transform method. The algorithm has been tested using simulated pp-collision data. Results show a very good tracking efficiency. The algorithm will be demonstrated in hardware in the coming months using the MP7, which is a uTCA board with a powerful FPGA capable of handling data rates approaching 1 Tb/s.

  9. Event-triggered cooperative target tracking in wireless sensor networks

    Directory of Open Access Journals (Sweden)

    Lu Kelin

    2016-10-01

    Full Text Available Since the issues of low communication bandwidth supply and limited battery capacity are very crucial for wireless sensor networks, this paper focuses on the problem of event-triggered cooperative target tracking based on set-membership information filtering. We study some fundamental properties of the set-membership information filter with multiple sensor measurements. First, a sufficient condition is derived for the set-membership information filter, under which the boundedness of the outer ellipsoidal approximation set of the estimation means is guaranteed. Second, the equivalence property between the parallel and sequential versions of the set-membership information filter is presented. Finally, the results are applied to a 1D event-triggered target tracking scenario in which the negative information is exploited in the sense that the measurements that do not satisfy the triggering conditions are modelled as set-membership measurements. The tracking performance of the proposed method is validated with extensive Monte Carlo simulations.

  10. A Time-Multiplexed Track-Trigger for the CMS HL-LHC upgrade

    CERN Document Server

    Hall, Geoffrey

    2016-01-01

    A new CMS Tracker is under development for operation at the High Luminosity LHC from 2025. It includes an outer tracker based on special modules of two different types which will construct track stubs using spatially coincident clusters in two closely spaced sensor layers, to reject low transverse momentum track hits and reduce the data volume before data transmission to the Level-1 trigger. The tracker data will be used to reconstruct track segments in dedicated processors before onward transmission to other trigger processors which will combine tracker information with data originating from the calorimeter and muon detectors, to make the final L1 trigger decision. The architecture for processing the tracker data outside the detector is under study, using several alternative approaches. One attractive possibility is to exploit a Time Multiplexed design similar to the one which is currently being implemented in the CMS calorimeter trigger as part of the Phase I trigger upgrade. The novel Time Multiplexed Trig...

  11. A track reconstructing low-latency trigger processor for high-energy physics

    International Nuclear Information System (INIS)

    Cuveland, Jan de

    2009-01-01

    The detection and analysis of the large number of particles emerging from high-energy collisions between atomic nuclei is a major challenge in experimental heavy-ion physics. Efficient trigger systems help to focus the analysis on relevant events. A primary objective of the Transition Radiation Detector of the ALICE experiment at the LHC is to trigger on high-momentum electrons. In this thesis, a trigger processor is presented that employs massive parallelism to perform the required online event reconstruction within 2 μs to contribute to the Level-1 trigger decision. Its three-stage hierarchical architecture comprises 109 nodes based on FPGA technology. Ninety processing nodes receive data from the detector front-end at an aggregate net bandwidth of 2.16 Tbit/s via 1080 optical links. Using specifically developed components and interconnections, the system combines high bandwidth with minimum latency. The employed tracking algorithm three-dimensionally reassembles the track segments found in the detector's drift chambers based on explicit value comparisons, calculates the momentum of the originating particles from the course of the reconstructed tracks, and finally leads to a trigger decision. The architecture is capable of processing up to 20 000 track segments in less than 2 μs with high detection efficiency and reconstruction precision for high-momentum particles. As a result, this thesis shows how a trigger processor performing complex online track reconstruction within tight real-time requirements can be realized. The presented hardware has been built and is in continuous data taking operation in the ALICE experiment. (orig.)

  12. A track reconstructing low-latency trigger processor for high-energy physics

    Energy Technology Data Exchange (ETDEWEB)

    Cuveland, Jan de

    2009-09-17

    The detection and analysis of the large number of particles emerging from high-energy collisions between atomic nuclei is a major challenge in experimental heavy-ion physics. Efficient trigger systems help to focus the analysis on relevant events. A primary objective of the Transition Radiation Detector of the ALICE experiment at the LHC is to trigger on high-momentum electrons. In this thesis, a trigger processor is presented that employs massive parallelism to perform the required online event reconstruction within 2 {mu}s to contribute to the Level-1 trigger decision. Its three-stage hierarchical architecture comprises 109 nodes based on FPGA technology. Ninety processing nodes receive data from the detector front-end at an aggregate net bandwidth of 2.16 Tbit/s via 1080 optical links. Using specifically developed components and interconnections, the system combines high bandwidth with minimum latency. The employed tracking algorithm three-dimensionally reassembles the track segments found in the detector's drift chambers based on explicit value comparisons, calculates the momentum of the originating particles from the course of the reconstructed tracks, and finally leads to a trigger decision. The architecture is capable of processing up to 20 000 track segments in less than 2 {mu}s with high detection efficiency and reconstruction precision for high-momentum particles. As a result, this thesis shows how a trigger processor performing complex online track reconstruction within tight real-time requirements can be realized. The presented hardware has been built and is in continuous data taking operation in the ALICE experiment. (orig.)

  13. L1Track: A fast Level 1 track trigger for the ATLAS high luminosity upgrade

    International Nuclear Information System (INIS)

    Cerri, Alessandro

    2016-01-01

    With the planned high-luminosity upgrade of the LHC (HL-LHC), the ATLAS detector will see its collision rate increase by approximately a factor of 5 with respect to the current LHC operation. The earliest hardware-based ATLAS trigger stage (“Level 1”) will have to provide a higher rejection factor in a more difficult environment: a new improved Level 1 trigger architecture is under study, which includes the possibility of extracting with low latency and high accuracy tracking information in time for the decision taking process. In this context, the feasibility of potential approaches aimed at providing low-latency high-quality tracking at Level 1 is discussed. - Highlights: • HL-LH requires highly performing event selection. • ATLAS is studying the implementation of tracking at the very first trigger level. • Low latency and high-quality seem to be achievable with dedicated hardware and adequate detector readout architecture.

  14. The TOTEM modular trigger system

    Energy Technology Data Exchange (ETDEWEB)

    Bagliesi, M.G., E-mail: mg.bagliesi@pi.infn.i [University of Siena and INFN Pisa (Italy); Berretti, M.; Cecchi, R.; Greco, V.; Lami, S.; Latino, G.; Oliveri, E.; Pedreschi, E.; Scribano, A.; Spinella, F.; Turini, N. [University of Siena and INFN Pisa (Italy)

    2010-05-21

    The TOTEM experiment will measure the total cross-section with the luminosity independent method and study elastic and diffractive scattering at the LHC. We are developing a modular trigger system, based on programmable logic, that will select meaningful events within 2.5{mu}s. The trigger algorithm is based on a tree structure in order to obtain information compression. The trigger primitive is generated directly on the readout chip, VFAT, that has a specific fast output that gives low resolution hits information. In two of the TOTEM detectors, Roman Pots and T2, a coincidence chip will perform track recognition directly on the detector readout boards, while for T1 the hits are transferred from the VFATs to the trigger hardware. Starting from more than 2000 bits delivered by the detector electronics, we extract, in a first step, six trigger patterns of 32 LVDS signals each; we build, then, on a dedicated board, a 1-bit (L1) trigger signal for the TOTEM experiment and 16 trigger bits to the CMS experiment global trigger system for future common data taking.

  15. The TOTEM modular trigger system

    International Nuclear Information System (INIS)

    Bagliesi, M.G.; Berretti, M.; Cecchi, R.; Greco, V.; Lami, S.; Latino, G.; Oliveri, E.; Pedreschi, E.; Scribano, A.; Spinella, F.; Turini, N.

    2010-01-01

    The TOTEM experiment will measure the total cross-section with the luminosity independent method and study elastic and diffractive scattering at the LHC. We are developing a modular trigger system, based on programmable logic, that will select meaningful events within 2.5μs. The trigger algorithm is based on a tree structure in order to obtain information compression. The trigger primitive is generated directly on the readout chip, VFAT, that has a specific fast output that gives low resolution hits information. In two of the TOTEM detectors, Roman Pots and T2, a coincidence chip will perform track recognition directly on the detector readout boards, while for T1 the hits are transferred from the VFATs to the trigger hardware. Starting from more than 2000 bits delivered by the detector electronics, we extract, in a first step, six trigger patterns of 32 LVDS signals each; we build, then, on a dedicated board, a 1-bit (L1) trigger signal for the TOTEM experiment and 16 trigger bits to the CMS experiment global trigger system for future common data taking.

  16. CBC2: A CMS microstrip readout ASIC with logic for track-trigger modules at HL-LHC

    Energy Technology Data Exchange (ETDEWEB)

    Hall, G., E-mail: g.hall@imperial.ac.uk [Blackett Laboratory, Imperial College, London SW7 2AZ (United Kingdom); Pesaresi, M.; Raymond, M. [Blackett Laboratory, Imperial College, London SW7 2AZ (United Kingdom); Braga, D.; Jones, L.; Murray, P.; Prydderch, M. [Rutherford Appleton Laboratory, Chilton, Didcot, Oxon OX11 OQX (United Kingdom); Abbaneo, D.; Blanchot, G.; Honma, A.; Kovacs, M.; Vasey, F. [CERN, CH-1211, Geneva (Switzerland)

    2014-11-21

    The CBC2 is the latest version of the CMS Binary Chip ASIC for readout of the upgraded CMS Tracker at the High Luminosity LHC. It is designed in 130 nm CMOS with 254 input channels and will be bump-bonded to a substrate to which sensors will be wire-bonded. The CBC2 is designed to instrument double layer modules, consisting of two overlaid silicon microstrip sensors with aligned microstrips, in the outer tracker. It incorporates logic to identify L1 trigger primitives in the form of “stubs”: high transverse-momentum track candidates which are identified within the low momentum background by selecting correlated hits between two closely separated microstrip sensors. The first prototype modules have been assembled. The performance of the chip in recent laboratory tests is briefly reported and the status of module construction described.

  17. A time-multiplexed track-trigger for the CMS HL-LHC upgrade

    Energy Technology Data Exchange (ETDEWEB)

    Hall, G., E-mail: g.hall@imperial.ac.uk

    2016-07-11

    A new CMS Tracker is under development for operation at the High Luminosity LHC from 2025. It includes an outer tracker based on special modules of two different types which will construct track stubs using spatially coincident clusters in two closely spaced sensor layers, to reject low transverse momentum track hits and reduce the data volume before data transmission to the Level-1 trigger. The tracker data will be used to reconstruct track segments in dedicated processors before onward transmission to other trigger processors which will combine tracker information with data originating from the calorimeter and muon detectors, to make the final L1 trigger decision. The architecture for processing the tracker data outside the detector is under study, using several alternative approaches. One attractive possibility is to exploit a Time Multiplexed design similar to the one which is currently being implemented in the CMS calorimeter trigger as part of the Phase I trigger upgrade. The novel Time Multiplexed Trigger concept is explained, the potential benefits for processing future tracker data are described and a feasible design based on currently existing hardware is outlined.

  18. Tracking and flavour tagging selection in the ATLAS High Level Trigger

    CERN Document Server

    Calvetti, Milene; The ATLAS collaboration

    2017-01-01

    In high-energy physics experiments, track based selection in the online environment is crucial for the detection of physics processes of interest for further study. This is of particular importance at the Large Hadron Collider (LHC), where the increasingly harsh collision environment is challenging participating experiments to improve the performance of their online selection. Principle among these challenges is the increasing number of interactions per bunch crossing, known as pileup. In the ATLAS experiment the challenge has been addressed with multiple strategies. Firstly, individual trigger groups focusing on specific physics objects have implemented novel algorithms which make use of the detailed tracking and vertexing performed within the trigger to improve rejection without losing efficiency. Secondly, since 2015 all trigger areas have also benefited from a new high performance inner detector software tracking system implemented in the High Level Trigger. Finally, performance will be further enhanced i...

  19. What triggers catch-up saccades during visual tracking?

    Science.gov (United States)

    de Brouwer, Sophie; Yuksel, Demet; Blohm, Gunnar; Missal, Marcus; Lefèvre, Philippe

    2002-03-01

    When tracking moving visual stimuli, primates orient their visual axis by combining two kinds of eye movements, smooth pursuit and saccades, that have very different dynamics. Yet, the mechanisms that govern the decision to switch from one type of eye movement to the other are still poorly understood, even though they could bring a significant contribution to the understanding of how the CNS combines different kinds of control strategies to achieve a common motor and sensory goal. In this study, we investigated the oculomotor responses to a large range of different combinations of position error and velocity error during visual tracking of moving stimuli in humans. We found that the oculomotor system uses a prediction of the time at which the eye trajectory will cross the target, defined as the "eye crossing time" (T(XE)). The eye crossing time, which depends on both position error and velocity error, is the criterion used to switch between smooth and saccadic pursuit, i.e., to trigger catch-up saccades. On average, for T(XE) between 40 and 180 ms, no saccade is triggered and target tracking remains purely smooth. Conversely, when T(XE) becomes smaller than 40 ms or larger than 180 ms, a saccade is triggered after a short latency (around 125 ms).

  20. Detecting critical illness outside the ICU: the role of track and trigger systems.

    Science.gov (United States)

    Jansen, Jan O; Cuthbertson, Brian H

    2010-06-01

    Critical illness is often preceded by physiological deterioration. Track and trigger systems are intended to facilitate the timely recognition of patients with potential or established critical illness outside critical care areas. The aim of this article is to review the evidence for the use of such systems. Existing track and trigger systems have low sensitivity, low positive predictive values, and high specificity. They often fail to identify patients who need additional care and have not been shown to improve outcomes. The development of such systems must be based on robust methodological and statistical principles. At present, few track and trigger systems meet these standards. Although track and trigger systems, combined with appropriate response algorithms, have the potential to improve the recognition and management of critical illness, further work is required to validate their utility.

  1. Advances in tracking and trigger concepts

    International Nuclear Information System (INIS)

    Kisel, Ivan

    2014-01-01

    Increasing beam intensities and input data rates require to rethink the traditional approaches in trigger concepts. At the same time the advanced many-core computer architectures providing new dimensions in programming require to rework the standard methods or to develop new methods of track reconstruction in order to efficiently use parallelism of the computer hardware. As a results a new tendency appears to replace the standard (usually implemented in FPGA) hardware triggers by clusters of computers running software reconstruction and selection algorithms. In addition that makes possible unification of the offline and on-line data processing and analysis in one software package running on a heterogeneous computer farm

  2. Hardware-based tracking at trigger level for ATLAS: The Fast Tracker (FTK) Project

    CERN Document Server

    Gramling, Johanna; The ATLAS collaboration

    2015-01-01

    Physics collisions at 13 TeV are expected at the LHC with an average of 40-50 proton-proton collisions per bunch crossing. Tracking at trigger level is an essential tool to control the rate in high-pileup conditions while maintaining a good efficiency for relevant physics processes. The Fast TracKer (FTK) is an integral part of the trigger upgrade for the ATLAS detector. For every event passing the Level 1 trigger (at a maximum rate of 100 kHz) the FTK receives data from the 80 million channels of the silicon detectors, providing tracking information to the High Level Trigger in order to ensure a selection robust against pile-up. The FTK performs a hardware-based track reconstruction, using associative memory (AM) that is based on the use of a custom chip, designed to perform pattern matching at very high speed. It finds track candidates at low resolution (roads) that seed a full-resolution track fitting done by FPGAs. Narrow roads permit a fast track fitting but need many patterns stored in the AM to ensure ...

  3. Track Reconstruction and b-Jet Identification for the ATLAS Trigger System

    CERN Document Server

    Coccaro, A; The ATLAS collaboration

    2011-01-01

    A sophisticated trigger system, capable of real-time track reconstruction, is in place in the ATLAS experiment, to reject most of the events containing uninteresting background collisions while preserving as much as possible the interesting physics signals. The strategy adopted for fast reconstruction of charged tracks and in particular its application to the selection of jets from the hadronization of b-quarks is reviewed. Track reconstruction is routinely used for selection based on various physics objects while b-jet triggers are actively selecting events from the beginning of the 2011 LHC data-taking campaign.

  4. Event-triggered Kalman-consensus filter for two-target tracking sensor networks.

    Science.gov (United States)

    Su, Housheng; Li, Zhenghao; Ye, Yanyan

    2017-11-01

    This paper is concerned with the problem of event-triggered Kalman-consensus filter for two-target tracking sensor networks. According to the event-triggered protocol and the mean-square analysis, a suboptimal Kalman gain matrix is derived and a suboptimal event-triggered distributed filter is obtained. Based on the Kalman-consensus filter protocol, all sensors which only depend on its neighbors' information can track their corresponding targets. Furthermore, utilizing Lyapunov method and matrix theory, some sufficient conditions are presented for ensuring the stability of the system. Finally, a simulation example is presented to verify the effectiveness of the proposed event-triggered protocol. Copyright © 2017 ISA. Published by Elsevier Ltd. All rights reserved.

  5. Fast pattern recognition with the ATLAS L1 track trigger for the HL-LHC

    CERN Document Server

    Martensson, Mikael; The ATLAS collaboration

    2016-01-01

    A fast hardware based track trigger for high luminosity upgrade of the Large Hadron Collider (HL- LHC) is being developed in ATLAS. The goal is to achieve trigger levels in high pileup collisions that are similar or even better than those achieved at low pile-up running of LHC by adding tracking information to the ATLAS hardware trigger which is currently based on information from calorimeters and muon trigger chambers only. Two methods for fast pattern recognition are investigated. The first is based on matching tracker hits to pattern banks of simulated high momentum tracks which are stored in a custom made Associative Memory (AM) ASIC. The second is based on the Hough transform where detector hits are transformed into 2D Hough space with one variable related to track pt and one to track direction. Hits found by pattern recognition will be sent to a track fitting step which calculates the track parameters . The speed and precision of the track fitting depends on the quality of the hits selected by the patte...

  6. Performance measurement of the upgraded D0 central track trigger

    International Nuclear Information System (INIS)

    Mommsen, Remigius K.; Manchester U.

    2006-01-01

    The D0 experiment was upgraded in spring 2006 to harvest the full physics potential of the Tevatron accelerator at Fermi National Accelerator Laboratory, Batavia, Illinois, USA. It is expected that the peak luminosity delivered by the accelerator will increase to over 300 x 10 30 cm -2 s -1 . One of the upgraded systems is the Central Track Trigger (CTT). The CTT uses the Central Fiber Tracker (CFT) and Preshower detectors to identify central tracks with p T > 1.5GeV at the first trigger level. Track candidates are formed by comparing fiber hits to predefined track equations. In order to minimize latency, this operation is performed in parallel using combinatorial logic implemented in FPGAs. Limited hardware resources prevented the use of the full granularity of the CFT. This leads to a high fake track rate as the occupancy increases. In order to mitigate the problem, new track-finding hardware was designed and commissioned. We report on the upgrade and the improved performance of the CTT system

  7. Level-1 pixel based tracking trigger algorithm for LHC upgrade

    CERN Document Server

    Moon, Chang-Seong

    2015-01-01

    The Pixel Detector is the innermost detector of the tracking system of the Compact Muon Solenoid (CMS) experiment at CERN Large Hadron Collider (LHC). It precisely determines the interaction point (primary vertex) of the events and the possible secondary vertexes due to heavy flavours ($b$ and $c$ quarks); it is part of the overall tracking system that allows reconstructing the tracks of the charged particles in the events and combined with the magnetic field to measure their impulsion. The pixel detector allows measuring the tracks in the region closest to the interaction point. The Level-1 (real-time) pixel based tracking trigger is a novel trigger system that is currently being studied for the LHC upgrade. An important goal is developing real-time track reconstruction algorithms able to cope with very high rates and high flux of data in a very harsh environment. The pixel detector has an especially crucial role in precisely identifying the primary vertex of the rare physics events from the large pile-up (P...

  8. Architecture of a Level 1 Track Trigger for the CMS Experiment

    CERN Document Server

    Heintz, Ulrich

    2010-01-01

    The luminosity goal for the Super-LHC is 1035/cm2/s. At this luminosity the number of proton-proton interactions in each beam crossing will be in the hundreds. This will stress many components of the CMS detector. One system that has to be upgraded is the trigger system. To keep the rate at which the level 1 trigger fires manageable, information from the tracker has to be integrated into the level 1 trigger. Current design proposals foresee tracking detectors that perform on-detector filtering to reject hits from low-momentum particles. In order to build a trigger system, the filtered hit data from different layers and sectors of the tracker will have to be transmitted off the detector and brought together in a logic processor that generates trigger tracks within the time window allowed by the level 1 trigger latency. I will describe a possible architecture for the off-detector logic that accomplishes this goal.

  9. Tracking at High Level Trigger in CMS

    CERN Document Server

    Tosi, Mia

    2016-01-01

    The trigger systems of the LHC detectors play a crucial role in determining the physics capabili- ties of the experiments. A reduction of several orders of magnitude of the event rate is needed to reach values compatible with detector readout, offline storage and analysis capability. The CMS experiment has been designed with a two-level trigger system: the Level-1 Trigger (L1T), implemented on custom-designed electronics, and the High Level Trigger (HLT), a stream- lined version of the CMS offline reconstruction software running on a computer farm. A software trigger system requires a trade-off between the complexity of the algorithms, the sustainable out- put rate, and the selection efficiency. With the computing power available during the 2012 data taking the maximum reconstruction time at HLT was about 200 ms per event, at the nominal L1T rate of 100 kHz. Track reconstruction algorithms are widely used in the HLT, for the reconstruction of the physics objects as well as in the identification of b-jets and ...

  10. The FTK: A Hardware Track Finder for the ATLAS Trigger

    CERN Document Server

    Alison, J; Anderson, J; Andreani, A; Andreazza, A; Annovi, A; Antonelli, M; Atkinson, M; Auerbach, B; Baines, J; Barberio, E; Beccherle, R; Beretta, M; Biesuz, N V; Blair, R; Blazey, G; Bogdan, M; Boveia, A; Britzger, D; Bryant, P; Burghgrave, B; Calderini, G; Cavaliere, V; Cavasinni, V; Chakraborty, D; Chang, P; Cheng, Y; Cipriani, R; Citraro, S; Citterio, M; Crescioli, F; Dell'Orso, M; Donati, S; Dondero, P; Drake, G; Gadomski, S; Gatta, M; Gentsos, C; Giannetti, P; Giulini, M; Gkaitatzis, S; Howarth, J W; Iizawa, T; Kapliy, A; Kasten, M; Kim, Y K; Kimura, N; Klimkovich, T; Kordas, K; Korikawa, T; Krizka, K; Kubota, T; Lanza, A; Lasagni, F; Liberali, V; Li, H L; Love, J; Luciano, P; Luongo, C; Magalotti, D; Melachrinos, C; Meroni, C; Mitani, T; Negri, A; Neroutsos, P; Neubauer, M; Nikolaidis, S; Okumura, Y; Pandini, C; Penning, B; Petridou, C; Piendibene, M; Proudfoot, J; Rados, P; Roda, C; Rossi, E; Sakurai, Y; Sampsonidis, D; Sampsonidou, D; Schmitt, S; Schoening, A; Shochet, M; Shojaii, S; Soltveit, H; Sotiropoulou, C L; Stabile, A; Tang, F; Testa, M; Tompkins, L; Vercesi, V; Villa, M; Volpi, G; Webster, J; Wu, X; Yorita, K; Yurkewicz, A; Zeng, J C; Zhang, J

    2014-01-01

    The ATLAS experiment trigger system is designed to reduce the event rate, at the LHC design luminosity of 1034 cm-2 s-1, from the nominal bunch crossing rate of 40 MHz to less than 1 kHz for permanent storage. During Run 1, the LHC has performed exceptionally well, routinely exceeding the design luminosity. From 2015 the LHC is due to operate with higher still luminosities. This will place a significant load on the High Level Trigger system, both due to the need for more sophisticated algorithms to reject background, and from the larger data volumes that will need to be processed. The Fast TracKer is a hardware upgrade for Run 2, consisting of a custom electronics system that will operate at the full rate for Level-1 accepted events of 100 kHz and provide high quality tracks at the beginning of processing in the High Level Trigger. This will perform track reconstruction using hardware with massive parallelism using associative memories and FPGAs. The availability of the full tracking information will enable r...

  11. Hardware-based Tracking at Trigger Level for ATLAS: The Fast TracKer (FTK) Project

    CERN Document Server

    Gramling, Johanna; The ATLAS collaboration

    2015-01-01

    Physics collisions at 13 TeV are expected at the LHC with an average of 40-50 proton-proton collisions per bunch crossing. Tracking at trigger level is an essential tool to control the rate in high-pileup conditions while maintaining a good efficiency for relevant physics processes. The Fast TracKer (FTK) is an integral part of the trigger upgrade for the ATLAS detector. For every event passing the Level 1 trigger (at a maximum rate of 100 kHz) the FTK receives data from the 80 million channels of the silicon detectors, providing tracking information to the High Level Trigger in order to ensure a selection robust against pile-up. The FTK performs a hardware- based track reconstruction, using associative memory (AM) that is based on the use of a custom chip, designed to perform pattern matching at very high speed. It finds track candidates at low resolution (roads) that seed a full-resolution track fitting done by FPGAs. Narrow roads permit a fast track fitting but need many patterns stored in the AM to ensure...

  12. Tracking and flavour tagging selection in the ATLAS High Level Trigger

    CERN Document Server

    Calvetti, Milene; The ATLAS collaboration

    2017-01-01

    In high-energy physics experiments, track based selection in the online environment is crucial for the efficient real time selection of the rare physics process of interest. This is of particular importance at the Large Hadron Collider (LHC), where the increasingly harsh collision environment is challenging the experiments to improve the performance of their online selection. Principal among these challenges is the increasing number of interactions per bunch crossing, known as pileup. In the ATLAS experiment the challenge has been addressed with multiple strategies. Firstly, specific trigger objects have been improved by building algorithms using detailed tracking and vertexing in specific detector regions to improve background rejection without loosing signal efficiency. Secondly, since 2015 all trigger areas have benefited from a new high performance Inner Detector (ID) software tracking system implemented in the High Level Trigger. Finally, performance will be further enhanced in future by the installation...

  13. A Level 1 Tracking Trigger for the CMS Experiment at the LHC Phase 2 Luminosity Upgrade

    CERN Document Server

    Pozzobon, Nicola

    2011-01-01

    The second decade of Large Hadron Collider operations, from about 2020 onwards, envisages a remarkable increase in collider instantaneous luminosity, one order of magnitude above the project one. This luminosity increase presents several challenges to the LHC experiments. The present tracker of the Compact Muon Solenoid experiment must be replaced with a system providing excellent tracking quality at higher luminosities, as well as Tracking Trigger inputs to the existing “Level 0” CMS trigger system at the full 40 MHz bunch-crossing rate. The minimal requirements for a Tracking Trigger would be the capability to confirm the presence of high-pT tracks associated with Calorimeter and/or Muon Level 0 triggers. The ability to provide eective isolation criteria may also be required, and would in any case substantially improve the Trigger performance. Maintaining the data rates generated by Tracking Trigger inputs within a manageable bandwidth requires sensor modules able to locally sparsify the data. Measuring...

  14. Tracking in the trigger from the CDF experience to CMS upgrade

    CERN Document Server

    Palla, F

    2007-01-01

    Precise tracking information in the online selection of interesting physics events is extremely beneficial at hadron colliders. The CDF experiment at the Tevatron, has shown for the first time the impact of the tracking in triggers, allowing to achieve unprecedented precision in B-physics measurements. The CMS experiment at LHC will largely make use of tracking information at high level trigger, after the Level-1 acceptance. The increased luminosity of the Super-LHC collider will impose to CMS a drastic revision of the Level-1 trigger strategy, incorporating the tracker information at the first stage of the selection. After a review of the CDF and CMS approaches we will discuss several possible Level-1 tracker based concepts for the upgraded CMS detector at Super-LHC. One approach is based on associative memories, which has already been demonstrated in CDF. It makes use of binary readout in the front end electronics, followed by transfer of the full granularity data off detector using optical links to dedicat...

  15. Fast pattern recognition with the ATLAS L1Track trigger for HL-LHC

    CERN Document Server

    AUTHOR|(INSPIRE)INSPIRE-00530554; The ATLAS collaboration

    2017-01-01

    A fast hardware based track trigger is being developed in ATLAS for the High Luminosity upgrade of the Large Hadron Collider. The goal is to achieve trigger levels in the high pile-up conditions of the High Luminosity Large Hadron Collider that are similar or better than those achieved at low pile-up conditions by adding tracking information to the ATLAS hardware trigger. A method for fast pattern recognition using the Hough transform is investigated. In this method, detector hits are mapped onto a 2D parameter space with one parameter related to the transverse momentum and one to the initial track direction. The performance of the Hough transform is studied at different pile-up values. It is also compared, using full event simulation of events with average pile-up of 200, with a method based on matching detector hits to pattern banks of simulated tracks stored in a custom made Associative Memory ASICs. The pattern recognition is followed by a track fitting step which calculates the track parameters. The spee...

  16. A simulation framework for the CMS Track Trigger electronics

    International Nuclear Information System (INIS)

    Amstutz, C.; Weber, M.; Magazzù, G.; Palla, F.

    2015-01-01

    A simulation framework has been developed to test and characterize algorithms, architectures and hardware implementations of the vastly complex CMS Track Trigger for the high luminosity upgrade of the CMS experiment at the Large Hadron Collider in Geneva. High-level SystemC models of all system components have been developed to simulate a portion of the track trigger. The simulation of the system components together with input data from physics simulations allows evaluating figures of merit, like delays or bandwidths, under realistic conditions. The use of SystemC for high-level modelling allows co-simulation with models developed in Hardware Description Languages, e.g. VHDL or Verilog. Therefore, the simulation framework can also be used as a test bench for digital modules developed for the final system

  17. A simulation framework for the CMS Track Trigger electronics

    Science.gov (United States)

    Amstutz, C.; Magazzù, G.; Weber, M.; Palla, F.

    2015-03-01

    A simulation framework has been developed to test and characterize algorithms, architectures and hardware implementations of the vastly complex CMS Track Trigger for the high luminosity upgrade of the CMS experiment at the Large Hadron Collider in Geneva. High-level SystemC models of all system components have been developed to simulate a portion of the track trigger. The simulation of the system components together with input data from physics simulations allows evaluating figures of merit, like delays or bandwidths, under realistic conditions. The use of SystemC for high-level modelling allows co-simulation with models developed in Hardware Description Languages, e.g. VHDL or Verilog. Therefore, the simulation framework can also be used as a test bench for digital modules developed for the final system.

  18. Hardware-based Tracking at Trigger Level for ATLAS the Fast TracKer (FTK) Project

    CERN Document Server

    INSPIRE-00245767

    2015-01-01

    Physics collisions at 13 TeV are expected at the LHC with an average of 40-50 proton-proton collisions per bunch crossing under nominal conditions. Tracking at trigger level is an essential tool to control the rate in high-pileup conditions while maintaining a good efficiency for relevant physics processes. The Fast TracKer is an integral part of the trigger upgrade for the ATLAS detector. For every event passing the Level-1 trigger (at a maximum rate of 100 kHz) the FTK receives data from all the channels of the silicon detectors, providing tracking information to the High Level Trigger in order to ensure a selection robust against pile-up. The FTK performs a hardware-based track reconstruction, using associative memory that is based on the use of a custom chip, designed to perform pattern matching at very high speed. It finds track candidates at low resolution (roads) that seed a full-resolution track fitting done by FPGAs. An overview of the FTK system with focus on the pattern matching procedure will be p...

  19. Smart Trigger Pre-Processor Custom Electronics for the PHENIX Experiment

    International Nuclear Information System (INIS)

    Nagle, James L.

    2003-01-01

    OAK-B135 The document provides a final technical report on activities and accomplishments of the experimental relativistic heavy ion physics group at the University of Colorado at Boulder as supported by the Outstanding Junior Investigator Program, Division of Nuclear Physics at the Department of Energy. All of the goals of the grant proposal were achieved during this last year of the Outstanding Junior Investigator funding period. The development of a Smart Trigger Pre-Processor module for fast trigger primitive calculations in the PHENIX experiment has been completed. We finalized the board design, constructed and tested two prototype modules, and with additional funding from the PHENIX project, we fabricated a full set of 15 modules for the Muon Tracking system. During Run-4 at RHIC:, we have begun the process of integrating these modules into the PHENIX data acquisition system, Additionally, we put a large Effort into developing new trigger and fast-track analysis methods for J j J data filtering and reconstruction. These algorithms make use of the trigger primitivE∼s generated via the new electronics

  20. A simulation framework for the CMS Track Trigger electronics

    CERN Document Server

    Amstutz, Christian; Weber, Marc; Palla, Fabrizio

    2014-01-01

    A simulation framework has been developed to test and characterize algorithms, architectures and hardware implementations of the vastly complex CMS Track Trigger for the high luminosity upgrade of the CMS experiment at the Large Hadron Collider in Geneva. High-level SystemC models of all system components have been developed to simulate a portion of the track trigger. The simulation of the system components together with input data from physics simulations allows evaluating figures of merit, like delays or bandwidths, under realistic conditions. The use of SystemC for high-level modelling allows \\mbox{co-simulation} with models developed in Hardware Description Languages, e.g.~VHDL or Verilog. Therefore, the simulation framework can also be used as a test bench for digital modules developed for the final system.

  1. Distributed event-triggered consensus tracking of second-order multi-agent systems with a virtual leader

    International Nuclear Information System (INIS)

    Cao Jie; Wu Zhi-Hai; Peng Li

    2016-01-01

    This paper investigates the consensus tracking problems of second-order multi-agent systems with a virtual leader via event-triggered control. A novel distributed event-triggered transmission scheme is proposed, which is intermittently examined at constant sampling instants. Only partial neighbor information and local measurements are required for event detection. Then the corresponding event-triggered consensus tracking protocol is presented to guarantee second-order multi-agent systems to achieve consensus tracking. Numerical simulations are given to illustrate the effectiveness of the proposed strategy. (paper)

  2. A Track Reconstructing Low-latency Trigger Processor for High-energy Physics

    CERN Document Server

    AUTHOR|(CDS)2067518

    2009-01-01

    The detection and analysis of the large number of particles emerging from high-energy collisions between atomic nuclei is a major challenge in experimental heavy-ion physics. Efficient trigger systems help to focus the analysis on relevant events. A primary objective of the Transition Radiation Detector of the ALICE experiment at the LHC is to trigger on high-momentum electrons. In this thesis, a trigger processor is presented that employs massive parallelism to perform the required online event reconstruction within 2 µs to contribute to the Level-1 trigger decision. Its three-stage hierarchical architecture comprises 109 nodes based on FPGA technology. Ninety processing nodes receive data from the detector front-end at an aggregate net bandwidth of 2.16 Tbps via 1080 optical links. Using specifically developed components and interconnections, the system combines high bandwidth with minimum latency. The employed tracking algorithm three-dimensionally reassembles the track segments found in the detector's dr...

  3. A New Data Concentrator for the CMS Muon Barrel Track Finder

    CERN Document Server

    Triossi, Andrea

    2014-01-01

    The CMS muon trigger will undergo considerable enhancements in preparation for the LHC \\mbox{run-2}. In order to improve rate reduction and efficiency the full muon trigger chain will be completely redesigned: the plan is to move from a redundant scheme, where the three subdetectors (CSC, DT, RPC) have a separate track finder, to three geographical track finders (barrel, endcap and overlap) that combine trigger primitives of each sub-detector. In particular, the muon barrel track finder (MBTF) will host a new algorithm, that aggregating DT and RPC trigger data, will be able to improve the fake rejection and the muon momentum measurement.This report will focus on the adaptive layer of the MBTF called TwinMux. Its primary role will be to merge, arrange and fan-out the slow optical links from the chambers in faster links (10 Gbps). It will realize a full connectivity matrix between the on-detector electronics and the MBTF allowing for different processing schemes. The TwinMux will be implemented in $\\mu$TCA for...

  4. Fast track trigger processor for the OPAL detector at LEP

    Energy Technology Data Exchange (ETDEWEB)

    Carter, A A; Carter, J R; Ward, D R; Heuer, R D; Jaroslawski, S; Wagner, A

    1986-09-20

    A fast hardware track trigger processor being built for the OPAL experiment is described. The processor will analyse data from the central drift chambers of OPAL to determine whether any tracks come from the interaction region, and thereby eliminate background events. The processor will find tracks over a large angular range, vertical strokecos thetavertical stroke < or approx. 0.95. The design of the processor is described, together with a brief account of its hardware implementation for OPAL. The results of feasibility studies are also presented.

  5. Electronics for CMS Endcap Muon Level-1 Trigger System Phase-1 and HL LHC Upgrades Summary

    CERN Document Server

    Madorsky, Alexander

    2017-01-01

    To accommodate high-luminosity LHC operation at 13 TeV collision energy, the CMS Endcap Muon Level-1 Trigger system had to be significantly modified. To provide the best track reconstruction, the trigger system must now import all available trigger primitives generated by Cathode Strip Chambers and by certain other subsystems, such as Resistive Plate Chambers (RPC). In addition to massive input bandwidth, this also required significant increase in logic and memory resources.To satisfy these requirements, a new Sector Processor unit has been designed. It consists of three modules. The Core Logic module houses the large FPGA that contains the track-finding logic and multi-gigabit serial links for data exchange. The Optical module contains optical receivers and transmitters; it communicates with the Core Logic module via a custom backplane section. The Pt Lookup Table (PTLUT) module contains 1 GB of low-latency memory that is used to assign the final Pt to reconstructed muon tracks. The µTCA architecture (ado...

  6. A level-1 pixel based track trigger for the CMS HL-LHC upgrade

    CERN Document Server

    Moon, Chang-Seong

    2016-01-01

    We present feasibility studies to investigate the performance and interest of a Level-1 trigger based on pixels. The Level-1 (real-time) pixel based tracking trigger is a novel trigger system that is based on real-time track reconstruction algorithms able to cope with very high rates and high flux of data in a very harsh environment. The pixel detector has an especially crucial role in precisely identifying the primary vertex of rare physics events from the large pile-up of events. The goal of adding the pixel information already at the real-time level of the selection is to help reducing the total Level-1 trigger rate while keeping a high selection capability. This is quite an innovative and challenging objective for the upgrade of the experiments for the High Luminosity LHC.

  7. Trigger and readout electronics for the Phase-I upgrade of the ATLAS forward muon spectrometer

    CERN Document Server

    Moschovakos, Paris; The ATLAS collaboration

    2017-01-01

    The upgrades of the LHC accelerator and the experiments in 2019/20 and 2023/24 will increase the instantaneous and integrated luminosity, but also will drastically increase the data and trigger rates. To cope with the huge data flow while maintaining high muon detection efficiency and reducing fake muons found at Level-1, the present ATLAS small wheel muon detector will be replaced with a New Small Wheel (NSW) detector for high luminosity LHC runs. The NSW will feature two new detector technologies: resistive micromegas and small strip Thin Gap Chambers conforming a system of ~2.4 million readout channels. Both detector technologies will provide trigger and tracking primitives. A common readout path and a separate trigger path are developed for each detector technology. The electronics design of such a system will be implemented in about 8000 front-end boards, including the design of a number of custom radiation tolerant Application Specific Integrated Circuits (ASICs), capable of driving trigger and tracking...

  8. A level-1 pixel based track trigger for the CMS HL-LHC upgrade

    CERN Document Server

    CMS Collaboration

    2016-01-01

    We present feasibility studies to investigate the performances and interest of a Level-1 trigger based on pixels. The Level-1 (real-time) pixel based tracking trigger is a novel trigger system that is based on the real-time track reconstruction algorithms able to cope with very high rates and high flux of data in a very harsh environment. The pixel detector has an especially crucial role in precisely identifying the primary vertex of the rare physics events from the large pile-up (PU) of events. The goal of adding the pixel information already at the real-time level of the selection is to help reducing the total level-1 trigger rate while keeping an high selection capability. This is quite an innovative and challenging objective for the experiments upgrade for the High Luminosity LHC (HL-LHC).

  9. Upgrade of the CMS Tracker with tracking trigger

    International Nuclear Information System (INIS)

    Abbaneo, D

    2011-01-01

    The planned upgrades of the LHC and its injector chain are expected to allow operation at luminosities around or above 5 × 10 34 cm −2 s −1 sometimes after 2020, to eventually reach an integrated luminosity of 3000 fb −1 at the end of that decade. In order to fully exploit such operating conditions and the delivered luminosity, CMS needs to upgrade its tracking detectors and substantially improve its trigger capabilities. To achieve such goals, R and D activities are ongoing to explore options and develop solutions that would allow including tracking information at Level-1. Some of the options considered are reviewed, discussing their potential advantages and disadvantages.

  10. A fast track trigger processor for the OPAL detector at LEP

    International Nuclear Information System (INIS)

    Carter, A.A.; Jaroslawski, S.; Wagner, A.

    1986-01-01

    A fast hardware track trigger processor being built for the OPAL experiment is described. The processor will analyse data from the central drift chambers of OPAL to determine whether any tracks come from the interaction region, and thereby eliminate background events. The processor will find tracks over a large angular range, vertical strokecos thetavertical stroke < or approx. 0.95. The design of the processor is described, together with a brief account of its hardware implementation for OPAL. The results of feasibility studies are also presented. (orig.)

  11. Towards a Level-1 tracking trigger for the ATLAS experiment

    CERN Document Server

    Cerri, A; The ATLAS collaboration

    2014-01-01

    The future plans for the LHC accelerator allow, through a schedule of phased upgrades, an increase in the average instantaneous luminosity by a factor 5 with respect to the original design luminosity. The ATLAS experiment at the LHC will be able to maximise the physics potential from this higher luminosity only if the detector, trigger and DAQ infrastructure are adapted to handle the sustained increase in particle production rates. In this paper the changes expected to be required to the ATLAS detectors and trigger system to fulfill the requirement for working in such high luminosity scenario are described. The increased number of interactions per bunch crossing will result in higher occupancy in the detectors and increased rates at each level of the trigger system. The trigger selection will improve the selectivity partly from increased granularity for the sub detectors and the consequent higher resolution. One of the largest challenges will be the provision of tracking information at the first trigger level...

  12. Front-end Intelligence for triggering and local track recognition in Gas Pixel Detectors

    CERN Document Server

    Hessey, NP; The ATLAS collaboration; van der Graaf, H; Vermeulen, J; Jansweijer, P; Romaniouk, A

    2012-01-01

    The combination of gaseous detectors with pixel readout chips gives unprecedented hit resolution (improving from O(100 um) for wire chambers to 10 um), as well as high-rate capability, low radiation length and giving in addition angular information on the local track. These devices measure individually every electron liberated by the passage of a charged particle, leading to a large quantity of data to be read out. Typically an external trigger is used to start the read-out. We are investigating the addition of local intelligence to the pixel read-out chip. A first level of processing detects the passage of a particle through the gas volume, and accurately determines the time of passage. A second level measures in an approximate but fast way the tilt-angle of the track. This can be used to trigger a third stage in which all hits associated to the track are processed locally to give a least-squares-fit to the track. The chip can then send out just the fitted track parameters instead of the individual electron ...

  13. Instrumentation of a Level-1 Track Trigger at ATLAS with Double Buffer Front-End Architecture

    CERN Document Server

    Cooper, B; The ATLAS collaboration

    2012-01-01

    The increased collision rate and pile-up produced at the HLLHC requires a substantial upgrade of the ATLAS level-1 trigger in order to maintain a broad physics reach. We show that tracking information can be used to control trigger rates, and describe a proposal for how this information can be extracted within a two-stage level-1 trigger design that has become the baseline for the HLLHC upgrade. We demonstrate that, in terms of the communication between the external processing and the tracking detector frontends, a hardware solution is possible that fits within the latency constraints of level-1.

  14. Tracking and Level-1 triggering in the forward region of the ATLAS Muon Spectrometer at sLHC

    International Nuclear Information System (INIS)

    Bittner, B; Dubbert, J; Kroha, H; Richter, R; Schwegler, P

    2012-01-01

    In the endcap region of the ATLAS Muon Spectrometer (η > 1) precision tracking and Level-1 triggering are performed by different types of chambers. Monitored Drift Tube chambers (MDT) and Cathode Strip Chambers (CSC) are used for precision tracking, while Thin Gap Chambers (TGC) form the Level-1 muon trigger, selecting muons with high transverse momentum (p T ). When by 2018 the LHC peak luminosity of 10 34 cm −2 s −1 will be increased by a factor of ∼ 2 and by another factor of ∼ 2–2.5 in about a decade from now (''SLHC''), an improvement of both systems, precision tracking and Level-1 triggering, will become mandatory in order to cope with the high rate of uncorrelated background hits (''cavern background'') and to stay below the maximum trigger rate for the muon system, which is in the range of 10–20 % of the 100 kHz rate, allowed for ATLAS. For the Level-1 trigger of the ATLAS Muon Spectrometer this means a stronger suppression of sub-threshold muons in the high-p T trigger as well as a better rejection of tracks not coming from the primary interaction point. Both requirements, however, can only be fulfilled if spatial resolution and angular pointing accuracy of the trigger chambers, in particular of those in the Inner Station of the endcap, are improved by a large factor. This calls for a complete replacement of the currrently used TGC chambers by a new type of trigger chambers with better performance. In parallel, the precision tracking chambers must be replaced by chambers with higher rate capability to be able to cope with the intense cavern background. In this article we present concepts to decisively improve the Level-1 trigger with newly developed trigger chambers, being characterized by excellent spatial resolution, good time resolution and sufficiently short latency. We also present new types of precision chambers, designed to maintain excellent tracking efficiency and spatial resolution in the presence of high levels of uncorrelated

  15. Real-time track-less Cherenkov ring fitting trigger system based on Graphics Processing Units

    Science.gov (United States)

    Ammendola, R.; Biagioni, A.; Chiozzi, S.; Cretaro, P.; Cotta Ramusino, A.; Di Lorenzo, S.; Fantechi, R.; Fiorini, M.; Frezza, O.; Gianoli, A.; Lamanna, G.; Lo Cicero, F.; Lonardo, A.; Martinelli, M.; Neri, I.; Paolucci, P. S.; Pastorelli, E.; Piandani, R.; Piccini, M.; Pontisso, L.; Rossetti, D.; Simula, F.; Sozzi, M.; Vicini, P.

    2017-12-01

    The parallel computing power of commercial Graphics Processing Units (GPUs) is exploited to perform real-time ring fitting at the lowest trigger level using information coming from the Ring Imaging Cherenkov (RICH) detector of the NA62 experiment at CERN. To this purpose, direct GPU communication with a custom FPGA-based board has been used to reduce the data transmission latency. The GPU-based trigger system is currently integrated in the experimental setup of the RICH detector of the NA62 experiment, in order to reconstruct ring-shaped hit patterns. The ring-fitting algorithm running on GPU is fed with raw RICH data only, with no information coming from other detectors, and is able to provide more complex trigger primitives with respect to the simple photodetector hit multiplicity, resulting in a higher selection efficiency. The performance of the system for multi-ring Cherenkov online reconstruction obtained during the NA62 physics run is presented.

  16. RPC based 5D tracking concept for high multiplicity tracking trigger

    CERN Document Server

    Aielli, G; Cardarelli, R; Di Ciaccio, A; Distante, L; Liberti, B; Paolozzi, L; Pastori, E; Santonico, R

    2018-01-01

    The recently approved High Luminosity LHC project (HL-LHC) and the future col- liders proposals present a challenging experimental scenario, dominated by high pileup, radiation background and a bunch crossing time possibly shorter than 5 ns. This holds as well for muon systems, where RPCs can play a fundamental role in the design of the future experiments. The RPCs, thanks to their high space-time granularity, allows a sparse representation of the particle hits, in a very large parametric space containing, in addition to 3D spatial localization, also the pulse time and width associated to the avalanche charge. This 5D representation of the hits can be exploited to improve the performance of complex detectors such as muon systems and increase the discovery potential of a future experiment, by allowing a better track pileup rejection and sharper momentum resolution, an effective measurement of the particle velocity, to tag and trigger the non- ultrarelativistic particles, and the detection local multiple track ...

  17. Monitoring the tracking performance of the ATLAS trigger for electrons in Z->ee decays

    CERN Document Server

    Langford, Jonathon

    2016-01-01

    This project was carried out to develop an algorithm which monitors the performance of the tracking system in the ATLAS trigger. The algorithm uses tag and probe methods to measure the efficiency of the tracking for electrons by looking at Z → ee candidates. Once this method is validated, the ultimate goal is to implement the algorithm into the High-Level-Trigger (HLT) of ATLAS whilst online. The advantage of this technique over traditional offline monitoring is continuous feedback during data taking and higher available statistics. In this report the results of an offline analysis are presented, showing electron tracking efficiencies between 96% and 99% across almost all regions of the inner detector (run 306278).

  18. Instrumentation of the upgraded ATLAS tracker with a double buffer front-end architecture for track triggering

    International Nuclear Information System (INIS)

    Wardrope, D

    2012-01-01

    The Large Hadron Collider will be upgraded to provide instantaneous luminosity L = 5 × 10 34 cm −2 s −1 , leading to excessive rates from the ATLAS Level-1 trigger. A double buffer front-end architecture for the ATLAS tracker replacement is proposed, that will enable the use of track information in trigger decisions within 20 μs in order to reduce the high trigger rates. Analysis of ATLAS simulations have found that using track information will enable the use of single lepton triggers with transverse momentum thresholds of p T ∼ 25 GeV, which will be of great benefit to the future physics programme of ATLAS.

  19. A Level 1 Tracking Trigger for the CMS Experiment

    CERN Document Server

    Pozzobon, Nicola

    2011-01-01

    The LHC machine is planned to be upgraded in the next decade in order to deliver a luminosity about 5 to 10 times larger than the design one of $10^{34}$ cm$^{-2}$s$^{-1}$. In this scenario, a novel tracking system for the CMS experiment is required to be conceived and built. The main requirements on the CMS tracker are presented. Particular emphasis will be given to the challenging capability of the tracker to provide useful information for the Level 1 hardware trigger, complementary to the muon system and calorimeter ones. Different approaches based on pattern hit correlation within closely placed sensors are currently under evaluation, making use of either strips or macro-pixels. A proposal to optimize the data flow at the front-end ASIC and develop a tracking algorithm to provide tracks at Level 1 will be presented.

  20. An evaluation of the potential of GPUs to accelerate tracking algorithms for the ATLAS trigger

    CERN Document Server

    Baines, JTM; The ATLAS collaboration; Emeliyanov, D; Howard, JR; Kama, S; Washbrook, AJ; Wynne, BM

    2014-01-01

    The potential of GPUs has been evaluated as a possible way to accelerate trigger algorithms for the ATLAS experiment located at the Large Hadron Collider (LHC). During LHC Run-1 ATLAS employed a three-level trigger system to progressively reduce the LHC collision rate of 20 MHz to a storage rate of about 600 Hz for offline processing. Reconstruction of charged particles trajectories through the Inner Detector (ID) was performed at the second (L2) and third (EF) trigger levels. The ID contains pixel, silicon strip (SCT) and straw-tube technologies. Prior to tracking, data-preparation algorithms processed the ID raw data producing measurements of the track position at each detector layer. The data-preparation and tracking consumed almost three-quarters of the total L2 CPU resources during 2012 data-taking. Detailed performance studies of a CUDA™ implementation of the L2 pixel and SCT data-preparation and tracking algorithms running on a Nvidia® Tesla C2050 GPU have shown a speed-up by a factor of 12 for the ...

  1. Track Finding for the Level-1 Trigger of the CMS Experiment

    CERN Document Server

    James, Thomas Owen

    2017-01-01

    A new tracking system is under development for the CMS experiment at the High Luminosity LHC (HL-LHC), located at CERN. It includes a silicon tracker that will correlate clusters in two closely spaced sensor layers, for the rejection of hits from low transverse momentum tracks. This will allow tracker data to be read out to the Level-1 trigger at 40\\,MHz. The Level-1 track-finder must be able to identify tracks with transverse momentum above 2--3\\,$\\mathrm{GeV}/c$ within latency constraints. A concept for an FPGA-based track finder using a fully time-multiplexed architecture is presented, where track candidates are identified using a Hough Transform, and then refined with a Kalman Filter. Both steps are fully implemented in FPGA firmware. A hardware system built from MP7 MicroTCA processing cards has been assembled, which demonstrates a realistic slice of the track finder in order to help gauge the performance and requirements for a final system.

  2. Fast Tracker: A Hardware Real Time Track Finder for the ATLAS Trigger System

    CERN Document Server

    Kimura, N; The ATLAS collaboration

    2014-01-01

    The Fast Tracker (FTK) is an integral part of the trigger upgrade program for the ATLAS detector at the Large Hadron Collider (LHC). As the LHC luminosity approaches its design level of 10^34cm^−2s^−1, the combinatorial problem posed by charged particle tracking becomes increasingly difficult due to the swelling of multiple interactions per bunch crossing (pile-up). The FTK is a highly-parallel hardware system intended to provide high-quality tracks with transverse momentum above 1 GeV/c in real time for online trigger system. The FTK system’s design, based on a mixture of advanced technologies, and expected physics performance will be presented.

  3. Towards a Level-1 Tracking Trigger for the ATLAS Experiment

    CERN Document Server

    De Santo, A; The ATLAS collaboration

    2014-01-01

    Plans for a physics-driven upgrade of the LHC foresee staged increases of the accelerator's average instantaneous luminosity, of up to a factor of five compared to the original design. In order to cope with the sustained luminosity increase, and the resulting higher detector occupancy and particle interaction rates, the ATLAS experiment is planning phased upgrades of the trigger system and of the DAQ infrastructure. In the new conditions, maintaining an adequate signal acceptance for electro-weak processes will pose unprecedented challenges, as the default solution to cope with the higher rates would be to increase thresholds on the transverse momenta of physics objects (leptons, jets, etc). Therefore the possibility to apply fast processing at the first trigger level in order to use tracking information as early as possible in the trigger selection represents a most appealing opportunity, which can preserve the ATLAS trigger's selectivity without reducing its flexibility. Studies to explore the feasibility o...

  4. Scintillating fiber detector performance, detector geometries, trigger, and electronics issues for scintillating fiber tracking

    International Nuclear Information System (INIS)

    Baumbaugh, A.E.

    1994-06-01

    Scintillating Fiber tracking technology has made great advances and has demonstrated great potential for high speed charged particle tracking and triggering. The small detector sizes and fast scintillation fluors available make them very promising for use at high luminosity experiments at today's and tomorrow's colliding and fixed target experiments where high rate capability is essential. This talk will discuss the current state of Scintillating fiber performance and current Visual Light Photon Counter (VLPC) characteristics. The primary topic will be some of the system design and integration issues which should be considered by anyone attempting to design a scintillating fiber tracking system which includes a high speed tracking trigger. Design. constraints placed upon the detector system by the electronics and mechanical sub-systems will be discussed. Seemingly simple and unrelated decisions can have far reaching effects on overall system performance. SDC and DO example system designs will be discussed

  5. Development of Trigger and Readout Electronics for the ATLAS New Small Wheel Detector Upgrade

    CERN Document Server

    Antrim, Daniel Joseph; The ATLAS collaboration

    2017-01-01

    The present small wheel muon detector at ATLAS will be replaced with a New Small Wheel (NSW) detector to handle the increase in data rates and harsh radiation environment expected at the LHC. Resistive Micromegas and small-strip Thin Gap Chambers will be used to provide both trigger and tracking primitives. Muon segments found at NSW will be combined with the segments found at the Big Wheel to determine the muon transverse momentum at the first-level trigger. A new trigger and readout system is developed for the NSW detector. The new system has about 2.4 million trigger and readout channels and about 8,000 frontend boards. The large number of input channels, short time available to prepare and transmit data, harsh radiation environment, and low power consumption all impose great challenges on the design. We will discuss the overall electronics design and studies with various ASIC and board prototypes.

  6. Fast track-finding trigger processor for the SLAC/LBL Mark II Detector

    International Nuclear Information System (INIS)

    Brafman, H.; Breidenbach, M.; Hettel, R.; Himel, T.; Horelick, D.

    1977-10-01

    The SLAC/LBL Mark II Magnetic Detector consists of various particle detectors arranged in cylindrical symmetry located in and around an axial magnetic field. A versatile, programmable secondary trigger processor was designed and built to find curved tracks in the detector. The system operates at a 10 MHz clock rate with a total processing time of 34 μsec and is used to ''trigger'' the data processing computer, thereby rejecting background and greatly improving the data acquisition aspects of the detector-computer combination

  7. Associative Memory pattern matching for L1 track trigger for the HL-LHC CMS

    CERN Document Server

    Fedi, Giacomo

    2016-01-01

    The High Luminosity LHC (HL-LHC) will deliver a luminosity of up to $5 × 10^{34}cm^{−2}s^{−1}$, with an average of about 140 overlapping proton-proton collisions per bunch crossing. These extreme pileup conditions place stringent requirements on the trigger system to be able to cope with the resulting event rates. A key component of the CMS upgrade for HL-LHC is a track trigger system, able to identify tracks with transverse momenta above 2 GeV/c already at the first-level trigger. We present here the status of the implementation of a prototype system, based on the combination of Associative Memory custom ASIC and modern Field Programmable Gate Array (FPGA) devices, with the purpose to demonstrate the concept based on state-of-the-art technologies, and to direct the efforts of the necessary R&D toward a final system.

  8. TRIGGER

    CERN Multimedia

    Wesley Smith

    2011-01-01

    Level-1 Trigger Hardware and Software New Forward Scintillating Counters (FSC) for rapidity gap measurements have been installed and integrated into the Trigger recently. For the Global Muon Trigger, tuning of quality criteria has led to improvements in muon trigger efficiencies. Several subsystems have started campaigns to increase spares by recovering boards or producing new ones. The barrel muon sector collector test system has been reactivated, new η track finder boards are in production, and φ track finder boards are under revision. In the CSC track finder, an η asymmetry problem has been corrected. New pT look-up tables have also improved efficiency. RPC patterns were changed from four out of six coincident layers to three out of six in the barrel, which led to a significant increase in efficiency. A new PAC firmware to trigger on heavy stable charged particles allows looking for chamber hit coincidences in two consecutive bunch-crossings. The redesign of the L1 Trigger Emulator...

  9. The ATLAS FTK system: how to improve the physics potential with a tracking trigger

    CERN Document Server

    Iizawa, T; The ATLAS collaboration

    2014-01-01

    After a very successful data taking run, the ATLAS experiment is being upgraded to cope with the higher luminosity and higher center of mass energy that the Large Hadron Collider will provide in the next years. The Fast Tracker (FTK) trigger system, part of the ATLAS trigger upgrade program, is a highly parallel hardware device designed to operate at the level-1 trigger output rate. FTK is a dedicated processor based on a mixture of advanced technologies. Modern, powerful Field Programmable Gate Arrays (FPGAs) form an important part of the system architecture, and the large level of computing power required for pattern recognition is provided by incorporating standard-cell ASICs named Associative Memories (AM). FTK provides global track reconstruction in the full inner silicon detector, with resolution comparable to the offline algorithms, in approximately 100 microseconds, allowing a fast and precise detection of the primary and secondary vertex information. The track and vertex information is then used by t...

  10. The ATLAS FTK system: how to improve the physics potential with a tracking trigger

    CERN Document Server

    Iizawa, T; The ATLAS collaboration

    2016-01-01

    After a very successful data taking run, the ATLAS experiment [1] is being upgraded to cope with the higher luminosity and higher center of mass energy that the Large Hadron Collider (LHC) will provide in the next years. The Fast Tracker (FTK) trigger system, part of the ATLAS trigger upgrade program, is a highly parallel hardware device processor based on a mixture of advanced technologies. Modern, powerful Field Programmable Gate Arrays (FPGAs) form an important part of the system architecture, and the large level of computing power required for pattern recognition is provided by incorporating standard-cell ASICs named Associative Memory (AM). FTK provides global track reconstruction in the full inner silicon detector, with resolution comparable to the offline algorithms, in approximately 100 microseconds, allowing a fast and precise detection of the primary and secondary vertex information. The track and vertex information is then used by the high-level trigger (HLT) algorithms, allowing highly improved tr...

  11. Towards a Level-1 tracking trigger for the ATLAS experiment at the High Luminosity LHC

    CERN Document Server

    Martin, T A D; The ATLAS collaboration

    2014-01-01

    At the high luminosity HL-LHC, upwards of 160 individual proton-proton interactions (pileup) are expected per bunch-crossing at luminosities of around $5\\times10^{34}$ cm$^{-2}$s$^{-1}$. A proposal by the ATLAS collaboration to split the ATLAS first level trigger in to two stages is briefly detailed. The use of fast track finding in the new first level trigger is explored as a method to provide the discrimination required to reduce the event rate to acceptable levels for the read out system while maintaining high efficiency on the selection of the decay products of electroweak bosons at HL-LHC luminosities. It is shown that available bandwidth in the proposed new strip tracker is sufficiency for a region of interest based track trigger given certain optimisations, further methods for improving upon the proposal are discussed.

  12. Development of Trigger and Readout Electronics for the ATLAS New Small Wheel Detector Upgrade

    CERN Document Server

    Guan, Liang; The ATLAS collaboration

    2017-01-01

    The present small wheel muon detector at ATLAS will be replaced with a New Small Wheel (NSW) detector to handle the increase in data rates and harsh radiation environment expected at the LHC. Resistive Micromegas and small strip Thin Gap Chambers will be used to provide both trigger and tracking primitives. Muon segments found at NSW will be combined with the segments found at the Big Wheel to determine the muon transverse momentum at the first-level trigger. A new trigger and readout system is developed for the NSW detector. The new system has about 2.4 million trigger and readout channels and about 8,000 Front-End boards. The large number of input channels, short time available to prepare and transmit data, harsh radiation environment, and low power consumption all impose great challenges on the design. We will discuss the overall electronics design and studies with various ASICs and high-speed circuit board prototypes.

  13. TRIGGER

    CERN Multimedia

    W. Smith from contributions of C. Leonidopoulos

    2010-01-01

    Level-1 Trigger Hardware and Software Since nearly all of the Level-1 (L1) Trigger hardware at Point 5 has been commissioned, activities during the past months focused on the fine-tuning of synchronization, particularly for the ECAL and the CSC systems, on firmware upgrades and on improving trigger operation and monitoring. Periodic resynchronizations or hard resets and a shortened luminosity section interval of 23 seconds were implemented. For the DT sector collectors, an automatic power-off was installed in case of high temperatures, and the monitoring capabilities of the opto-receivers and the mini-crates were enhanced. The DTTF and the CSCTF now have improved memory lookup tables. The HCAL trigger primitive logic implemented a new algorithm providing better stability of the energy measurement in the presence of any phase misalignment. For the Global Calorimeter Trigger, additional Source Cards have been manufactured and tested. Testing of the new tau, missing ET and missing HT algorithms is underw...

  14. A proposed DT-seeded Muon Track Trigger for the HL-LHC

    CERN Document Server

    CMS Collaboration

    2015-01-01

    The LHC program after the observation of the candidate SM Higgs boson will continue with collisions at 13 and 14 TeV, which will help clarify future subjects of study and shape the tools needed to carry them on. Any upgrade of the LHC experiments for unprecedented luminosities, such as the HL-LHC ones, must then maintain the acceptance on electroweak processes that can lead to a detailed study of the properties of the candidate Higgs boson. The acceptance of the key leptonic, photonic and hadronic trigger objects should be kept such that the overall physics acceptance, in particular for low-mass scale processes, can be the same as the one the experiments featured in 2012. In such a scenario, a new approach to early trigger implementation is needed. One of the major steps to be taken is the exploitation of high-granularity tracking sub-detectors, such as the CMS Silicon Tracker, in taking the early trigger decision. Their inclusion into the trigger chain can be crucial in several tasks, including the confirmat...

  15. Trigger and Readout Electronics for the Phase-I Upgrade of the ATLAS Forward Muon Spectrometer

    CERN Document Server

    Moschovakos, Paris; The ATLAS collaboration

    2017-01-01

    The upgrades of the LHC accelerator and the experiments in 2019/20 and 2023/24 will increase the instantaneous and integrated luminosity, but also will drastically increase the data and trigger rates. To cope with the huge data flow while maintaining high muon detection efficiency and reducing fake muons found at Level-1, the present ATLAS small wheel muon detector will be replaced with a New Small Wheel (NSW) detector for high luminosity LHC runs. The NSW will feature two new detector technologies: resistive micromegas (MM) and small strip Thin Gap Chambers (sTGC) conforming a system of ~2.4 million readout channels. Both detector technologies will provide trigger and tracking primitives. A common readout path and a separate trigger path are developed for each detector technology. The electronics design of such a system will be implemented in about 8000 front-end boards, including the design of a number of custom radiation tolerant Application Specific Integrated Circuits (ASICs), capable of driving trigger ...

  16. Sub-nanosecond clock synchronization and trigger management in the nuclear physics experiment AGATA

    International Nuclear Information System (INIS)

    Bellato, M; Isocrate, R; Rampazzo, G; Bazzacco, D; Bortolato, D; Triossi, A; Chavas, J; Mengoni, D; Recchia, F

    2013-01-01

    The new-generation spectrometer AGATA, the Advanced GAmma Tracking Array, requires sub-nanosecond clock synchronization among readout and front-end electronics modules that may lie hundred meters apart. We call GTS (Global Trigger and Synchronization System) the infrastructure responsible for precise clock synchronization and for the trigger management of AGATA. It is made of a central trigger processor and nodes, connected in a tree structure by means of optical fibers operated at 2Gb/s. The GTS tree handles the synchronization and the trigger data flow, whereas the trigger processor analyses and eventually validates the trigger primitives centrally. Sub-nanosecond synchronization is achieved by measuring two different types of round-trip times and by automatically correcting for phase-shift differences. For a tree of depth two, the peak-to-peak clock jitter at each leaf is 70 ps; the mean phase difference is 180 ps, while the standard deviation over such phase difference, namely the phase equalization repeatability, is 20 ps. The GTS system has run flawlessly for the two-year long AGATA campaign, held at the INFN Legnaro National Laboratories, Italy, where five triple clusters of the AGATA sub-array were coupled with a variety of ancillary detectors

  17. Sub-nanosecond clock synchronization and trigger management in the nuclear physics experiment AGATA

    Science.gov (United States)

    Bellato, M.; Bortolato, D.; Chavas, J.; Isocrate, R.; Rampazzo, G.; Triossi, A.; Bazzacco, D.; Mengoni, D.; Recchia, F.

    2013-07-01

    The new-generation spectrometer AGATA, the Advanced GAmma Tracking Array, requires sub-nanosecond clock synchronization among readout and front-end electronics modules that may lie hundred meters apart. We call GTS (Global Trigger and Synchronization System) the infrastructure responsible for precise clock synchronization and for the trigger management of AGATA. It is made of a central trigger processor and nodes, connected in a tree structure by means of optical fibers operated at 2Gb/s. The GTS tree handles the synchronization and the trigger data flow, whereas the trigger processor analyses and eventually validates the trigger primitives centrally. Sub-nanosecond synchronization is achieved by measuring two different types of round-trip times and by automatically correcting for phase-shift differences. For a tree of depth two, the peak-to-peak clock jitter at each leaf is 70 ps; the mean phase difference is 180 ps, while the standard deviation over such phase difference, namely the phase equalization repeatability, is 20 ps. The GTS system has run flawlessly for the two-year long AGATA campaign, held at the INFN Legnaro National Laboratories, Italy, where five triple clusters of the AGATA sub-array were coupled with a variety of ancillary detectors.

  18. Development of Advanced Gaseous Detectors for Muon Tracking and Triggering in Collider Experiments

    CERN Document Server

    Guan, Liang; Zhao, Zhengguo; Zhu, Junjie

    High luminosity and high energy collider experiments impose big challenges to conventional gaseous detectors used for muon tracking and triggering. Stringent requirements, in terms of time and spatial resolutions, rate capabilities etc. are expected. In the context of ATLAS muon upgrade project, we present extensive researches and developments of advanced gas detectors for precision muon tracking and triggering in high rate environments. Particularly, this dissertation focuses on the studies of Micro-mesh Gaseous structure (Micromegas), thin gap Resistive Plate Chamber (RPC) and small strip Thin Gap multi-wire Chambers (sTGC). In this dissertation, we first present a novel method, based on thermally bonding micro-meshes to anodes, to construct Micromegas detectors. Without employing the traditional photo-lithography process, it is a convenient alternative to build Micromegas. Both experimental and simulation studies of basic performance parameters of thermo-bonded Micromegas will be reported. Development...

  19. The design of the ZEUS tracking trigger and studies of b quark fragmentation

    Energy Technology Data Exchange (ETDEWEB)

    Silvester, I M

    1989-01-01

    This thesis consists of two parts, describing two very different aspects of experimental elementary particle physics. The first part describes, in detail, the design and estimated performance of a hardware track finding trigger processor. This processor is being built as part of the trigger for the ZEUS experiment, one of the two experiments being built to take data at the HERA electron-proton collider, currently under construction at the DESY laboratories in Hamburg. By using information from the main tracking chamber, the CTD, to reject data from events taking place outside the interaction region, this processor should be able to reduce the event rate from a beam crossing rate of 10{sup 6} s{sup -1} to approximately 9500 s{sup -1}. Used in conjunction with a trigger processor processing calorimeter data it should be able to achieve the desired first level trigger rate of 1 kHz. The second part describes two measurements of the fragmentation variable z for b quarks, made using a b enriched sample of 381 jets taken from the 31000 hadronic events with a centre of mass energy of 35 GeV observed with the TASSO detector during 1986. These measurements, obtained from the mean charged multiplicity and the rapidity distribution, have largely independent systematic uncertainties. The values obtained for (z{sub b}) were combined to give a value of 0.87{+-}0.02{+-}0.04. (author).

  20. L1 track trigger for the CMS HL-LHC upgrade using AM chips and FPGAs

    CERN Document Server

    Fedi, Giacomo

    2017-01-01

    The increase of luminosity at the HL-LHC will require the introduction of tracker information in CMS's Level-1 trigger system to maintain an acceptable trigger rate when selecting interesting events, despite the order of magnitude increase in minimum bias interactions. To meet the latency requirements, dedicated hardware has to be used. This paper presents the results of tests of a prototype system (pattern recognition mezzanine) as core of pattern recognition and track fitting for the CMS experiment, combining the power of both associative memory custom ASICs and modern Field Programmable Gate Array (FPGA) devices. The mezzanine uses the latest available associative memory devices (AM06) and the most modern Xilinx Ultrascale FPGAs. The results of the test for a complete tower comprising about 0.5 million patterns is presented, using as simulated input events traversing the upgraded CMS detector. The paper shows the performance of the pattern matching, track finding and track fitting, along with the latency...

  1. Monitoring and Tracking the LHC Beam Spot within the ATLAS High Level Trigger

    CERN Document Server

    Winklmeier, F; The ATLAS collaboration

    2012-01-01

    The parameters of the beam spot produced by the LHC in the ATLAS interaction region are computed online using the ATLAS High Level Trigger (HLT) system. The high rate of triggered events is exploited to make precise measurements of the position, size and orientation of the luminous region in near real-time, as these parameters change significantly even during a single data-taking run. We present the challenges, solutions and results for the online determination, monitoring and beam spot feedback system in ATLAS. A specially designed algorithm, which uses tracks registered in the silicon detectors to reconstruct event vertices, is executed on the HLT processor farm of several thousand CPU cores. Monitoring histograms from all the cores are sampled and aggregated across the farm every 60 seconds. The reconstructed beam values are corrected for detector resolution effects, measured in situ from the separation of vertices whose tracks have been split into two collections. Furthermore, measurements for individual ...

  2. Associative Memory Pattern Matching for the L1 Track Trigger of CMS at the HL-LHC

    International Nuclear Information System (INIS)

    Fedi, Giacomo

    2016-01-01

    The High Luminosity LHC (HL-LHC) will deliver a luminosity of up to 5 × 10 34 cm −2 s −1 , with an average of about 140 overlapping proton-proton collisions per bunch crossing. These extreme pileup conditions place stringent requirements on the trigger system to be able to cope with the resulting event rates. A key component of the CMS upgrade for HL-LHC is a track trigger system, able to identify tracks with transverse momenta above 2 GeV/c already at the first-level trigger. We present here the status of the implementation of a prototype system, based on the combination of Associative Memory custom ASIC and modern Field Programmable Gate Array (FPGA) devices, with the purpose to demonstrate the concept based on state-of-the-art technologies, and to direct the efforts of the necessary R&D toward a final system

  3. A Proof-Theoretic Account of Primitive Recursion and Primitive Iteration

    DEFF Research Database (Denmark)

    Cherabini, Luca; Danvy, Olivier

    2011-01-01

    We revisit both the usual ``going-up'' induction principle and Manna and Waldinger's ``going-down'' induction principle for primitive recursion,`a la Goedel, and primitive iteration, `a la Church. We use 'Kleene's trick' to show that primitive recursion and primitive iiteration are as expressive...

  4. L1 track triggering with associative memory for the CMS HL-LHC tracker

    International Nuclear Information System (INIS)

    Sabes, D.

    2014-01-01

    One of the proposed solutions currently under study in Compact Muon Solenoid (CMS) collaboration [1] to reconstruct tracks at the first level trigger (L1) for the High Luminosity - Large Hadron Collider (HL-LHC) is based on the usage of Associative Memory [2] (AM) chips. The tracker information is first reduced to suppress low p T tracks and sent to boards equipped with AM chips. Each AM compares the tracker information with pre-calculated expectations (pattern matching) in a very short time (order of a μs), therefore providing a solution to the challenging computational problem of pattern recognition in a very busy environment. Associated to fast track fit methods, like the Hough transform, the AM approach should be able to fulfil the very demanding requirements of L1 tracking. The proposed architecture for the AM-based L1 track reconstruction system will be presented, together with the latest results obtained using a complete software emulation of this system

  5. Continuously live image processor for drift chamber track segment triggering

    International Nuclear Information System (INIS)

    Berenyi, A.; Chen, H.K.; Dao, K.

    1999-01-01

    The first portion of the BaBar experiment Level 1 Drift Chamber Trigger pipeline is the Track Segment Finder (TSF). Using a novel method incorporating both occupancy and drift-time information, the TSF system continually searches for segments in the supercells of the full 7104-wire Drift Chamber hit image at 3.7 MHz. The TSF was constructed to operate in a potentially high beam-background environment while achieving high segment-finding efficiency, deadtime-free operation, a spatial resolution of 5 simulated physics events

  6. Instrumentation of a Level-1 Track Trigger in the ATLAS detector for the High Luminosity LHC

    CERN Document Server

    Boisvert, V; The ATLAS collaboration

    2012-01-01

    The Large Hadron Collider will be upgraded in order to reach an instantaneous luminosity of $L=5 \\times 10^{34}$ cm$^{-2}$ s$^{-1}$. A challenge for the detectors will be to cope with the excessive rate of events coming into the trigger system. In order to maintain the capability of triggering on single lepton objects with momentum thresholds of $p_T 25$ GeV, the ATLAS detector is planning to use tracking information at the Level-1 (hardware) stage of the trigger system. Two options are currently being studied: a L0/L1 trigger design using a double buffer front-end architecture and a single hardware trigger level which uses trigger layers in the new tracker system. Both options are presented as well as results from simulation studies.

  7. [Track and trigger systems in Denmark - small country, great variations].

    Science.gov (United States)

    Lønnee, Mads; Bukan, Ramin Brandt; Waldau, Tina; Møller, Ann Merete; Bukan, Katrine Brandt

    2018-05-07

    A track and trigger (TAT) system and mobile emergency team (MET) can aid observation and care for admitted patients in the hospital ward. We have examined the literature and find evidence, though not strong, that the introduction of TAT and MET systems reduce hospital mortality. However, in Denmark, many different TAT systems are used, and several hospitals do not have MET. We believe, that a standardised national TAT system could encourage interregional research and the investigation of system compliance, cost-benefit and impact on intensive care unit admissions.

  8. TRIGGER

    CERN Multimedia

    W. Smith

    Level-1 Trigger Hardware and Software The trigger system has been constantly in use in cosmic and commissioning data taking periods. During CRAFT running it delivered 300 million muon and calorimeter triggers to CMS. It has performed stably and reliably. During the abort gaps it has also provided laser and other calibration triggers. Timing issues, namely synchronization and latency issues, have been solved. About half of the Trigger Concentrator Cards for the ECAL Endcap (TCC-EE) are installed, and the firmware is being worked on. The production of the other half has started. The HCAL Trigger and Readout (HTR) card firmware has been updated, and new features such as fast parallel zero-suppression have been included. Repairs of drift tube (DT) trigger mini-crates, optical links and receivers of sector collectors are under way and have been completed on YB0. New firmware for the optical receivers of the theta links to the drift tube track finder is being installed. In parallel, tests with new eta track finde...

  9. Abelian primitive words

    OpenAIRE

    Domaratzki, Michael; Rampersad, Narad

    2011-01-01

    We investigate Abelian primitive words, which are words that are not Abelian powers. We show that unlike classical primitive words, the set of Abelian primitive words is not context-free. We can determine whether a word is Abelian primitive in linear time. Also different from classical primitive words, we find that a word may have more than one Abelian root. We also consider enumeration problems and the relation to the theory of codes. Peer reviewed

  10. L1 track trigger for the CMS HL-LHC upgrade using AM chips and FPGAs

    Science.gov (United States)

    Fedi, Giacomo

    2017-08-01

    The increase of luminosity at the HL-LHC will require the introduction of tracker information in CMS's Level-1 trigger system to maintain an acceptable trigger rate when selecting interesting events, despite the order of magnitude increase in minimum bias interactions. To meet the latency requirements, dedicated hardware has to be used. This paper presents the results of tests of a prototype system (pattern recognition ezzanine) as core of pattern recognition and track fitting for the CMS experiment, combining the power of both associative memory custom ASICs and modern Field Programmable Gate Array (FPGA) devices. The mezzanine uses the latest available associative memory devices (AM06) and the most modern Xilinx Ultrascale FPGAs. The results of the test for a complete tower comprising about 0.5 million patterns is presented, using as simulated input events traversing the upgraded CMS detector. The paper shows the performance of the pattern matching, track finding and track fitting, along with the latency and processing time needed. The pT resolution over pT of the muons measured using the reconstruction algorithm is at the order of 1% in the range 3-100 GeV/c.

  11. L1 track trigger for the CMS HL-LHC upgrade using AM chips and FPGAs

    Directory of Open Access Journals (Sweden)

    Fedi Giacomo

    2017-01-01

    Full Text Available The increase of luminosity at the HL-LHC will require the introduction of tracker information in CMS’s Level-1 trigger system to maintain an acceptable trigger rate when selecting interesting events, despite the order of magnitude increase in minimum bias interactions. To meet the latency requirements, dedicated hardware has to be used. This paper presents the results of tests of a prototype system (pattern recognition ezzanine as core of pattern recognition and track fitting for the CMS experiment, combining the power of both associative memory custom ASICs and modern Field Programmable Gate Array (FPGA devices. The mezzanine uses the latest available associative memory devices (AM06 and the most modern Xilinx Ultrascale FPGAs. The results of the test for a complete tower comprising about 0.5 million patterns is presented, using as simulated input events traversing the upgraded CMS detector. The paper shows the performance of the pattern matching, track finding and track fitting, along with the latency and processing time needed. The pT resolution over pT of the muons measured using the reconstruction algorithm is at the order of 1% in the range 3-100 GeV/c.

  12. Improving the ATLAS physics potential with the Fast Track Trigger System

    CERN Document Server

    Cavaliere, Viviana; The ATLAS collaboration

    2015-01-01

    The ATLAS Fast TracKer (FTK) is a custom electronics system that will operate at the full Level-1 accept rate, 100 kHz, to provide high quality tracks as input to the High-Level Trigger. The event reconstruction is performed in hardware, thanks to the massive parallelism of associative memories (AM) and FPGAs. We present the advantages for the physics goals of the ATLAS experiment and the recent results on the design, technological advancements and testing of some of the core components used in the processor.

  13. Design Considerations for an Upgraded Track-Finding Processor in the Level-1 Endcap Muon Trigger of CMS for SLHC operations

    CERN Document Server

    Acosta, D; Furic, I; Gartner, J; Di Giovanni, G P; Hammar, A; Kotov, K; Madorsky, A; Matveev, M; Padley, P; Uvarov, L; Wang, D

    2009-01-01

    The conceptual design for a Level-1 muon track-finder trigger for the CMS endcap muon system is proposed that can accommodate the increased particle occupancy and system constraints of the proposed SLHC accelerator upgrade and the CMS detector upgrades. A brief review of the architecture of the current track-finder for LHC trigger operation is given, with potential bottlenecks indicated for SLHC operation. The upgraded track-finding processors described here would receive as many as two track segments detected from every cathode strip chamber comprising the endcap muon system, up to a total of 18 per 60° azimuthal sector. This would dramatically improve the efficiency of the track reconstruction in a high occupancy environment over the current design. However, such an improvement would require significantly higher bandwidth and logic resources. We propose to use the fastest available serial links, running asynchronously to the machine clock to use their full bandwidth. The work of creating a firmware model f...

  14. On Synchronization Primitive Systems.

    Science.gov (United States)

    The report studies the question: what synchronization primitive should be used to handle inter-process communication. A formal model is presented...between these synchronization primitives. Although only four synchronization primitives are compared, the general methods can be used to compare other... synchronization primitives. Moreover, in the definitions of these synchronization primitives, conditional branches are explicitly allowed. In addition

  15. A pattern recognition mezzanine based on associative memory and FPGA technology for L1 track triggering at HL-LHC

    International Nuclear Information System (INIS)

    Alunni, L.; Biesuz, N.; Bilei, G.M.; Citraro, S.; Crescioli, F.; Fanò, L.; Fedi, G.; Magalotti, D.; Magazzù, G.; Servoli, L.; Storchi, L.; Palla, F.; Placidi, P.; Papi, A.; Piadyk, Y.; Rossi, E.; Spiezia, A.

    2016-01-01

    The increase of luminosity at HL-LHC will require the introduction of tracker information at Level-1 trigger system for the experiments to maintain an acceptable trigger rate to select interesting events despite the one order of magnitude increase in the minimum bias interactions. To extract in the required latency the track information a dedicated hardware has to be used. We present the tests of a prototype system (Pattern Recognition Mezzanine) as core of pattern recognition and track fitting for HL-LHC ATLAS and CMS experiments, combining the power of both Associative Memory custom ASIC and modern Field Programmable Gate Array (FPGA) devices.

  16. A pattern recognition mezzanine based on associative memory and FPGA technology for L1 track triggering at HL-LHC

    Science.gov (United States)

    Alunni, L.; Biesuz, N.; Bilei, G. M.; Citraro, S.; Crescioli, F.; Fanò, L.; Fedi, G.; Magalotti, D.; Magazzù, G.; Servoli, L.; Storchi, L.; Palla, F.; Placidi, P.; Papi, A.; Piadyk, Y.; Rossi, E.; Spiezia, A.

    2016-07-01

    The increase of luminosity at HL-LHC will require the introduction of tracker information at Level-1 trigger system for the experiments to maintain an acceptable trigger rate to select interesting events despite the one order of magnitude increase in the minimum bias interactions. To extract in the required latency the track information a dedicated hardware has to be used. We present the tests of a prototype system (Pattern Recognition Mezzanine) as core of pattern recognition and track fitting for HL-LHC ATLAS and CMS experiments, combining the power of both Associative Memory custom ASIC and modern Field Programmable Gate Array (FPGA) devices.

  17. A pattern recognition mezzanine based on associative memory and FPGA technology for L1 track triggering at HL-LHC

    Energy Technology Data Exchange (ETDEWEB)

    Alunni, L. [INFN Sezione di Perugia (Italy); Biesuz, N. [INFN Sezione di Pisa (Italy); Bilei, G.M. [INFN Sezione di Perugia (Italy); Citraro, S. [Università di Pisa, Pisa (Italy); Crescioli, F. [LPNHE, Paris (France); Fanò, L. [INFN Sezione di Perugia (Italy); Fedi, G., E-mail: giacomo.fedi@pi.infn.it [INFN Sezione di Pisa (Italy); Magalotti, D. [INFN Sezione di Perugia (Italy); UNIMORE, Modena (Italy); Magazzù, G. [INFN Sezione di Pisa (Italy); Servoli, L.; Storchi, L. [INFN Sezione di Perugia (Italy); Palla, F. [INFN Sezione di Pisa (Italy); Placidi, P. [INFN Sezione di Perugia (Italy); DIEI, Perugia (Italy); Papi, A. [INFN Sezione di Perugia (Italy); Piadyk, Y. [LPNHE, Paris (France); Rossi, E. [INFN Sezione di Pisa (Italy); Spiezia, A. [IHEP (China)

    2016-07-11

    The increase of luminosity at HL-LHC will require the introduction of tracker information at Level-1 trigger system for the experiments to maintain an acceptable trigger rate to select interesting events despite the one order of magnitude increase in the minimum bias interactions. To extract in the required latency the track information a dedicated hardware has to be used. We present the tests of a prototype system (Pattern Recognition Mezzanine) as core of pattern recognition and track fitting for HL-LHC ATLAS and CMS experiments, combining the power of both Associative Memory custom ASIC and modern Field Programmable Gate Array (FPGA) devices.

  18. Studies on the Belle II L1 CDC track trigger's z-vertex resolution with neural networks

    Energy Technology Data Exchange (ETDEWEB)

    Skambraks, Sebastian; Neuhaus, Sara; Chen, Yang [Technische Universitaet Muenchen (Germany); Abudinen, Fernando; Kiesling, Christian [Max-Planck-Institut fuer Physik, Muenchen (Germany)

    2015-07-01

    We present the use of a neural network ensemble for the first level (L1) track trigger subsystem of Belle II. Our method employs hit and drift time information from the Central Drift Chamber (CDC). Estimating the z-coordinates of the vertex positions improves the signal to background ratio in the recorded data. Especially beam induced background can clearly be rejected, allowing to relax the 2D trigger conditions and thus enhancing the physics gain for low multiplicity events (e.g. tau pair production). Neural networks enable an improvement of the z-vertex resolution compared to linear least squares track fitting. As general function approximators, they are capable of learning nonlinearities solely from a training dataset. We propose a combined setup, integrating the benefits of the linear fit and enriching it with the nonlinear prediction capabilities of the neural networks. The precise z-vertices of single tracks are estimated by an ensemble of local expert neural networks, specialized to sectors in the track parameter phase space. A comparison is presented, demonstrating the differences of the linear fit and the neural network approach.

  19. NA62 Level 0 trigger: TELDES, TX mezzanine, RX mezzanine integration scenario

    CERN Multimedia

    Lupi, Matteo

    2015-01-01

    TELDES is a TEL62 daughter-board used in the generation of the Liquid Krypton Calorimeter primitive for the Level 0 Trigger of the NA62 Experiment. TX and RX mezzanines are daughter boards used in the same trigger system to communicate between different levels of the trigger.

  20. The design and simulated performance of a fast Level 1 track trigger for the ATLAS High Luminosity Upgrade

    CERN Document Server

    Martensson, Mikael; The ATLAS collaboration

    2017-01-01

    The ATLAS experiment at the High Luminosity LHC will face a fivefold increase in the number of interactions per bunch crossing relative to the ongoing Run 2. This will require a proportional improvement in rejection power at the earliest levels of the detector trigger system, while preserving good signal efficiency. One critical aspect of this improvement will be the implementation of precise track reconstruction, through which sharper trigger turn-on curves can be achieved, and b-tagging and tau-tagging techniques can in principle be implemented. The challenge of such a project comes in the development of a fast, custom electronic device integrated in the hardware based first trigger level of the experiment. This article will discuss the requirements, architecture and projected performance of the system in terms of tracking, timing and physics, based on detailed simulations. Studies are carried out using data from the strip subsystem only or both strip and pixel subsystems.

  1. The design and simulated performance of a fast Level 1 track trigger for the ATLAS High Luminosity Upgrade

    CERN Document Server

    Martensson, Mikael; The ATLAS collaboration

    2017-01-01

    The ATLAS experiment at the high-luminosity LHC will face a five-fold increase in the number of interactions per collision relative to the ongoing Run 2. This will require a proportional improvement in rejection power at the earliest levels of the detector trigger system, while preserving good signal efficiency. One critical aspect of this improvement will be the implementation of precise track reconstruction, through which sharper trigger turn-on curves can be achieved, and b-tagging and tau-tagging techniques can in principle be implemented. The challenge of such a project comes in the development of a fast, custom electronic device integrated in the hardware-based first trigger level of the experiment, with repercussions propagating as far as the detector read-out philosophy. This talk will discuss the requirements, architecture and projected performance of the system in terms of tracking, timing and physics, based on detailed simulations. Studies are carried out comparing two detector geometries and using...

  2. Design Considerations for an Upgraded Track-Finding Processor in the Level-1 Endcap Muon Trigger of CMS for SLHC Operations

    CERN Document Server

    Madorsky, Alexander

    2009-01-01

    D. Acosta, M. Fisher, I. Furic, J. Gartner, G.P. Di Giovanni, A. Hammar, K. Kotov, A. Madorsky, D. Wang University of Florida/Physics, POB 118440, Gainesville, FL, USA, 32611 L. Uvarov Petersburg Nuclear Physics Institute, Gatchina, Russia M. Matveev, P. Padley Rice University, MS 61, 6100 Main Street, Houston, TX, USA, 77005 The conceptual design for a Level-1 muon track-finder trigger for the CMS endcap muon system is proposed that can accommodate the increased particle occupancy and system constraints of the proposed SLHC accelerator upgrade and the CMS detector upgrades. A brief review of the architecture of the current track-finder for LHC trigger operation is given, with potential bottlenecks indicated for SLHC operation. The upgraded track-finding processors described here would receive as many as two track segments detected from every cathode strip chamber comprising the endcap muon system, up to a total of 18 per 60 degree azimuthal sector. This would dramatically improve the efficiency of the ...

  3. Ins-Robust Primitive Words

    OpenAIRE

    Srivastava, Amit Kumar; Kapoor, Kalpesh

    2017-01-01

    Let Q be the set of primitive words over a finite alphabet with at least two symbols. We characterize a class of primitive words, Q_I, referred to as ins-robust primitive words, which remain primitive on insertion of any letter from the alphabet and present some properties that characterizes words in the set Q_I. It is shown that the language Q_I is dense. We prove that the language of primitive words that are not ins-robust is not context-free. We also present a linear time algorithm to reco...

  4. A System for Monitoring and Tracking the LHC Beam Spot within the ATLAS High Level Trigger

    CERN Document Server

    Bartoldus, R; The ATLAS collaboration; Cogan, J; Salnikov, A; Strauss, E; Winklmeier, F

    2012-01-01

    The parameters of the beam spot produced by the LHC in the ATLAS interaction region are computed online using the ATLAS High Level Trigger (HLT) system. The high rate of triggered events is exploited to make precise measurements of the position, size and orientation of the luminous region in near real-time, as these parameters change significantly even during a single data-taking run. We present the challenges, solutions and results for the online determination, monitoring and beam spot feedback system in ATLAS. A specially designed algorithm, which uses tracks registered in the silicon detectors to reconstruct event vertices, is executed on the HLT processor farm of several thousand CPU cores. Monitoring histograms from all the cores are sampled and aggregated across the farm every 60 seconds. The reconstructed beam values are corrected for detector resolution effects, measured in situ from the separation of vertices whose tracks have been split into two collections. Furthermore, measurements for individual ...

  5. State-of-the-art Versus Time-triggered Object Tracking in Advanced Driver Assistance Systems

    Directory of Open Access Journals (Sweden)

    Moritz Koplin

    2013-04-01

    Full Text Available Most state-of-the-art driver assistance systems cannot guarantee that real-time images of object states are updated within a given time interval, because the object state observations are typically sampled by uncontrolled sensors and transmitted via an indeterministic bus system such as CAN. To overcome this shortcoming, a paradigm shift toward time-triggered advanced driver assistance systems based on a deterministic bus system, such as FlexRay, is under discussion. In order to prove the feasibility of this paradigm shift, this paper develops different models of a state-of-the-art and a time-triggered advanced driver assistance system based on multi-sensor object tracking and compares them with regard to their mean performance. The results show that while the state-of-the-art model is advantageous in scenarios with low process noise, it is outmatched by the time-triggered model in the case of high process noise, i.e., in complex situations with high dynamic.

  6. Fast Tracker (FTK): A Hardware Track Finder for the ATLAS Trigger

    CERN Document Server

    Mitani, Takashi; The ATLAS collaboration

    2015-01-01

    During the 2010-2012 run of Large Hadron Collider experiment, the ATLAS trigger system was successfully operated and it contributed to several important results such as observation of Higgs boson with a mass of about 125 GeV. From 2015, collision energy will increase to 13-14 TeV and its instantaneous luminosity will reach $1$-$2\\times10^{34}$cm$^{-2}$s$^{-1}$ with a 25 ns bunch crossing period. Due to the energy increase, the cross sections for SM processes are expected to get much larger. Additionally, the number of overlapping proton-proton interactions per bunch crossing, which is refereed to as pile-up, is expected to increase significantly up to about 80. Therefore it will be challenging to control trigger rates while keeping good efficiency for interesting physics events. This document summarizes the development of Fast Tracker and its tracking performance for the ATLAS experiment. The Fast Tracker is a custom electronics system that will operate at the full Level 1 accepted rate of 100 kHz and provide...

  7. The Level 0 Trigger Processor for the NA62 experiment

    International Nuclear Information System (INIS)

    Chiozzi, S.; Gamberini, E.; Gianoli, A.; Mila, G.; Neri, I.; Petrucci, F.; Soldi, D.

    2016-01-01

    In the NA62 experiment at CERN, the intense flux of particles requires a high-performance trigger for the data acquisition system. A Level 0 Trigger Processor (L0TP) was realized, performing the event selection based on trigger primitives coming from sub-detectors and reducing the trigger rate from 10 to 1 MHz. The L0TP is based on a commercial FPGA device and has been implemented in two different solutions. The performance of the two systems are highlighted and compared.

  8. The Level 0 Trigger Processor for the NA62 experiment

    Energy Technology Data Exchange (ETDEWEB)

    Chiozzi, S. [INFN, Ferrara (Italy); Gamberini, E. [University of Ferrara and INFN, Ferrara (Italy); Gianoli, A. [INFN, Ferrara (Italy); Mila, G. [University of Turin and INFN, Turin (Italy); Neri, I., E-mail: neri@fe.infn.it [University of Ferrara and INFN, Ferrara (Italy); Petrucci, F. [University of Ferrara and INFN, Ferrara (Italy); Soldi, D. [University of Turin and INFN, Turin (Italy)

    2016-07-11

    In the NA62 experiment at CERN, the intense flux of particles requires a high-performance trigger for the data acquisition system. A Level 0 Trigger Processor (L0TP) was realized, performing the event selection based on trigger primitives coming from sub-detectors and reducing the trigger rate from 10 to 1 MHz. The L0TP is based on a commercial FPGA device and has been implemented in two different solutions. The performance of the two systems are highlighted and compared.

  9. Instrumentation of a Level-1 Track Trigger in the ATLAS detector for the High Luminosity LHC

    CERN Document Server

    Boisvert, V; The ATLAS collaboration

    2012-01-01

    One of the main challenges in particle physics experiments at hadron colliders is to build detector systems that can take advantage of the future luminosity increase that will take place during the next decade. More than 200 simultaneous collisions will be recorded in a single event which will make the task to extract the interesting physics signatures harder than ever before. Not all events can be recorded hence a fast trigger system is required to select events that will be stored for further analysis. In the ATLAS experiment at the Large Hadron Collider (LHC) two different architectures for accommodating a level-1 track trigger are being investigated. The tracker has more readout channels than can be readout in time for the trigger decision. Both architectures aim for a data reduction of 10-100 in order to make readout of data possible in time for a level-1 trigger decision. In the first architecture the data reduction is achieved by reading out only parts of the detector seeded by a high rate pre-trigger ...

  10. TRIGGER

    CERN Multimedia

    Wesley Smith

    Level-1 Trigger Hardware and Software The trigger synchronization procedures for running with cosmic muons and operating with the LHC were reviewed during the May electronics week. Firmware maintenance issues were also reviewed. Link tests between the new ECAL endcap trigger concentrator cards (TCC48) and the Regional Calorimeter Trigger have been performed. Firmware for the energy sum triggers and an upgraded tau trigger of the Global Calorimeter Triggers has been developed and is under test. The optical fiber receiver boards for the Track-Finder trigger theta links of the DT chambers are now all installed. The RPC trigger is being made more robust by additional chamber and cable shielding and also by firmware upgrades. For the CSC’s the front-end and trigger motherboard firmware have been updated. New RPC patterns and DT/CSC lookup tables taking into account phi asymmetries in the magnetic field configuration are under study. The motherboard for the new pipeline synchronizer of the Global Trigg...

  11. Review Document: Full Software Trigger

    CERN Document Server

    Albrecht, J; Raven, G

    2014-01-01

    This document presents a trigger system for the upgraded LHCb detector, scheduled to begin operation in 2020. This document serves as input for the internal review towards the "DAQ, online and trigger TDR". The proposed trigger system is implemented entirely in software. In this document we show that track reconstruction of a similar quality to that available in the offline algorithms can be performed on the full inelastic $pp$-collision rate, without prior event selections implemented in custom hardware and without relying upon a partial event reconstruction. A track nding eciency of 98.8 % relative to oine can be achieved for tracks with $p_T >$ 500 MeV/$c$. The CPU time required for this reconstruction is about 40 % of the available budget. Proof-of-principle selections are presented which demonstrate that excellent performance is achievable using an inclusive beauty trigger, in addition to exclusive beauty and charm triggers. Finally, it is shown that exclusive beauty and charm selections that do not intr...

  12. Cosmic ray test of the Belle II z-vertex trigger

    Energy Technology Data Exchange (ETDEWEB)

    Neuhaus, Sara; Skambraks, Sebastian [Technische Universitaet Muenchen (Germany); Chen, Yang; Kiesling, Christian [Max-Planck-Institut fuer Physik, Muenchen (Germany)

    2016-07-01

    The z-vertex trigger is part of the first level track trigger in the Belle II experiment. Its task is the rejection of tracks not coming from the interaction region, suppressing a large part of the machine background. Therefore the z-vertex trigger allows to relax other track trigger conditions and thus strongly increases the efficiency for channels with low track multiplicity (e.g. tau pair production). The track trigger works in several steps, first combining hits to track segments, followed by a 2D track finding in the transverse plane and finally the 3D reconstruction. Our method employs neural networks to estimate the z-vertex without explicit track reconstruction. For the first real test with cosmic rays special neural networks have been prepared. Although the track shape in the cosmic test is different than in the Belle II experiment, the neural networks require only a retraining with an appropriate data set to adapt to the new geometry.

  13. ATLAS: triggers for B-physics

    International Nuclear Information System (INIS)

    George, Simon

    2000-01-01

    The LHC will produce bb-bar events at an unprecedented rate. The number of events recorded by ATLAS will be limited by the rate at which they can be stored offline and subsequently analysed. Despite the huge number of events, the small branching ratios mean that analysis of many of the most interesting channels for CP violation and other measurements will be limited by statistics. The challenge for the Trigger and Data Acquisition (DAQ) system is therefore to maximise the fraction of interesting B decays in the B-physics data stream. The ATLAS Trigger/DAQ system is split into three levels. The initial B-physics selection is made in the first-level trigger by an inclusive low-p T muon trigger (∼6 GeV). The second-level trigger strategy is based on identifying classes of final states by their partial reconstruction. The muon trigger is confirmed before proceeding to a track search. Electron/hadron separation is given by the transition radiation tracking detector and the Electromagnetic calorimeter. Muon identification is possible using the muon detectors and the hadronic calorimeter. From silicon strips, pixels and straw tracking, precise track reconstruction is used to make selections based on invariant mass, momentum and impact parameter. The ATLAS trigger group is currently engaged in algorithm development and performance optimisation for the B-physics trigger. This is closely coupled to the R and D programme for the higher-level triggers. Together the two programmes of work will optimise the hardware, architecture and algorithms to meet the challenging requirements. This paper describes the current status and progress of this work

  14. Triggering and measuring bent cosmic muon tracks with the Muon Spectrometer barrel for the first time

    CERN Multimedia

    Fabio Cerutti

    During the ATLAS barrel toroid stability test, bent cosmic muon tracks were seen for the first time in the ATLAS cavern by means of the ATLAS muon spectrometer. The barrel toroid has been powered at its nominal current (20.5 thousand Amperes) and kept in steady state for more than one day during the weekend of 18-19 November (see a report on this test in the Magnet section). During this test one large sector and part of a small sector of the barrel muon spectrometer were readout and used to detect the cosmic muons tracks bent by the toroidal magnetic field. Thirteen muon stations in the feet sectors (sectors 13 and 14) have been used in this test. The muon stations are formed of Resistive Plate Chambers (RPC) that were providing the muon trigger, and Monitored Drift Tubes that were used to measure with high accuracy the muon curvature hence their momentum. The Level-1 Barrel trigger chain was based on the Barrel Middle Large chambers equipped with final production modules on both the on-detector and the o...

  15. Global tracker for the ALICE high level trigger

    International Nuclear Information System (INIS)

    Vik, Thomas

    2006-01-01

    This thesis deals with two main topics. The first is the implementation and testing of a Kalman filter algorithm in the HLT (High Level Trigger) reconstruction code. This will perform the global tracking in the HLT, that is merging tracklets and hits from the different sub-detectors in the central barrel detector. The second topic is a trigger mode of the HLT which uses the global tracking of particles through the TRD (Transition Radiation Detector), TPC (Time Projection Chamber) and the ITS (Inner Tracking System): The dielectron trigger. Global tracking: The Kalman filter algorithm has been introduced to the HLT tracking scheme. (Author)

  16. An FPGA-based track finder for the L1 trigger of the CMS experiment at the HL-LHC

    CERN Document Server

    Cieri, Davide; Harder, Kristian; Manolopoulos, Konstantinos; Shepherd-Themistocleous, Claire; Tomalin, Ian; Aggleton, Robin; Ball, Fionn; Brooke, Jim; Clement, Emyr; Newbold, Dave; Paramesvaran, Sudarshan; Hobson, Peter; Morton, Alexander Davide; Reid, Ivan; Hall, Geoff; Iles, Gregory; James, Thomas Owen; Matsushita, Takashi; Pesaresi, Mark; Rose, Andrew William; Shtipliyski, Antoni; Summers, Sioni; Tapper, Alex; Uchida, Kirika; Vichoudis, Paschalis; Ardila-Perez, Luis; Balzer, Matthias; Caselle, Michele; Sander, Oliver; Schuh, Thomas; Weber, Marc

    2017-01-01

    A new tracking detector is under development for use by the CMS experiment at the High-Luminosity LHC (HL-LHC). A crucial component of this upgrade will be the ability to reconstruct within a few microseconds all charged particle tracks with transverse momentum above 3 GeV, so they can be used in the Level-1 trigger decision. A concept for an FPGA-based track finder using a fully time-multiplexed architecture is presented, where track candidates are reconstructed using a projective binning algorithm based on the Hough Transform followed by a track fitting based on the linear regression technique. A hardware demonstrator using MP7 processing boards has been assembled to prove the entire system, from the output of the tracker readout boards to the reconstruction of tracks with fitted helix parameters. It successfully operates on one eighth of the tracker solid angle at a time, processing events taken at 40 MHz, each with up to 200 superimposed proton-proton interactions, whilst satisfying latency constraints. T...

  17. Simulation of the ATLAS New Small Wheel trigger

    CERN Document Server

    AUTHOR|(INSPIRE)INSPIRE-00399900; The ATLAS collaboration

    2018-01-01

    The instantaneous luminosity of the LHC will increase up to a factor of seven with respect to the original design value to explore physics at higher energy scale. The inner station of the ATLAS muon end-cap system (Small Wheel) will be replaced by the New Small Wheel (NSW) to benefit from the high luminosity. The NSW will provide precise track-segment information to the Level-1 trigger system in order to suppress the trigger rate from fake muon tracks. This article summarizes the NSW trigger decision system and track-segment finding algorithm implemented in the trigger processor, and discusses results of performance studies on the trigger system. The results demonstrate that the NSW trigger system is capable of working with good performance satisfying the requirements.

  18. A Pattern Recognition Mezzanine based on Associative Memory and FPGA technology for Level 1 Track Triggers for the HL-LHC upgrade

    International Nuclear Information System (INIS)

    Magalotti, D.; Alunni, L.; Bilei, G.M.; Fanò, L.; Servoli, L.; Storchi, L.; Placidi, P.; Spiezia, A.; Biesuz, N.; Fedi, G.; Magazzù, G.; Palla, F.; Rossi, E.; Citraro, S.; Crescioli, F.

    2016-01-01

    The increment of luminosity at HL-LHC will require the introduction of tracker information at Level-1 trigger system for the experiments in order to maintain an acceptable trigger rate for selecting interesting events despite the one order of increased magnitude in the minimum bias interactions. In order to extract the track information in the required latency (∼ 5–10 μ s depending on the experiment), a dedicated hardware processor needs to be used. We here propose a prototype system (Pattern Recognition Mezzanine) as core of pattern recognition and track fitting for HL-LHC experiments, combining the power of both Associative Memory custom ASIC and modern Field Programmable Gate Array (FPGA) devices

  19. Dual-energy CT iodine maps as an alternative quantitative imaging biomarker to abdominal CT perfusion: determination of appropriate trigger delays for acquisition using bolus tracking.

    Science.gov (United States)

    Skornitzke, Stephan; Fritz, Franziska; Mayer, Philipp; Koell, Marco; Hansen, Jens; Pahn, Gregor; Hackert, Thilo; Kauczor, Hans-Ulrich; Stiller, Wolfram

    2018-05-01

    Quantitative evaluation of different bolus tracking trigger delays for acquisition of dual energy (DE) CT iodine maps as an alternative to CT perfusion. Prior to this retrospective analysis of prospectively acquired data, DECT perfusion sequences were dynamically acquired in 22 patients with pancreatic carcinoma using dual source CT at 80/140 kV p with tin filtration. After deformable motion-correction, perfusion maps of blood flow (BF) were calculated from 80 kV p image series of DECT, and iodine maps were calculated for each of the 34 DECT acquisitions per patient. BF and iodine concentrations were measured in healthy pancreatic tissue and carcinoma. To evaluate potential DECT acquisition triggered by bolus tracking, measured iodine concentrations from the 34 DECT acquisitions per patient corresponding to different trigger delays were assessed for correlation to BF and intergroup differences between tissue types depending on acquisition time. Average BF measured in healthy pancreatic tissue and carcinoma was 87.6 ± 28.4 and 38.6 ± 22.2 ml/100 ml min -1 , respectively. Correlation between iodine concentrations and BF was statistically significant for bolus tracking with trigger delay greater than 0 s (r max = 0.89; p alternative to CT perfusion measurements of BF. Advances in knowledge: After clinical validation, DECT iodine maps of pancreas acquired using bolus tracking with appropriate trigger delay as determined in this study could offer an alternative quantitative imaging biomarker providing functional information for tumor assessment at reduced patient radiation exposure compared to CT perfusion measurements of BF.

  20. Commissioning of the upgraded CSC Endcap Muon Port Cards at CMS

    International Nuclear Information System (INIS)

    Ecklund, K.; Liu, J.; Matveev, M.; Michlin, B.; Padley, P.; Rorie, J.; Madorsky, A.

    2016-01-01

    There are 180 1.6 Gbps optical links from 60 Muon Port Cards (MPC) to the Cathode Strip Chamber Track Finder (CSCTF) in the original system. Before the upgrade each MPC was able to provide up to three trigger primitives from a cluster of nine CSC chambers to the Level 1 CSCTF. With an LHC luminosity increase to 10 35 cm −2 s −1 at full energy of 7 TeV/beam, the simulation studies suggest that we can expect two or three times more trigger primitives per bunch crossing from the front-end electronics. To comply with this requirement, the MPC, CSCTF, and optical cables need to be upgraded. The upgraded MPC allows transmission of up to 18 trigger primitives from the peripheral crate. This feature would allow searches for physics signatures of muon jets that require more trigger primitives per trigger sector. At the same time, it is very desirable to preserve all the old optical links for compatibility with the older Track Finder during transition period at the beginning of Run 2. Installation of the upgraded MPC boards and the new optical cables has been completed at the CMS detector in the summer of 2014. We describe the final design of the new MPC mezzanine FPGA, its firmware, and results of tests in laboratory and in situ with the old and new CSCTF boards

  1. Instrumentation of a Level-1 Track Trigger at ATLAS with Double Buffer Front-End Architecture

    CERN Document Server

    Cooper, B; The ATLAS collaboration

    2012-01-01

    Around 2021 the Large Hadron Collider will be upgraded to provide instantaneous luminosities 5x10^34, leading to excessive rates from the ATLAS Level-1 trigger. We describe a double-buffer front-end architecture for the ATLAS tracker replacement which should enable tracking information to be used in the Level-1 decision. This will allow Level-1 rates to be controlled whilst preserving high efficiency for single lepton triggers at relatively low transverse momentum thresholds pT ~25 GeV, enabling ATLAS to remain sensitive to physics at the electroweak scale. In particular, a potential hardware solution for the communication between the upgraded silicon barrel strip detectors and the external processing within this architecture will be described, and discrete event simulations used to demonstrate that this fits within the tight latency constraints.

  2. The design of a fast Level-1 track trigger for the high luminosity upgrade of ATLAS.

    CERN Document Server

    AUTHOR|(INSPIRE)INSPIRE-00413032; The ATLAS collaboration

    2016-01-01

    The high/luminosity upgrade of the LHC will increase the rate of the proton-proton collisions by approximately a factor of 5 with respect to the initial LHC-design. The ATLAS experiment will upgrade consequently, increasing its robustness and selectivity in the expected high radiation environment. In particular, the earliest, hardware based, ATLAS trigger stage ("Level 1") will require higher rejection power, still maintaining efficient selection on many various physics signatures. The key ingredient is the possibility of extracting tracking information from the brand new full-silicon detector and use it for the process. While fascinating, this solution poses a big challenge in the choice of the architecture, due to the reduced latency available at this trigger level (few tens of micro-seconds) and the high expected working rates (order of MHz). In this paper, we review the design possibilities of such a system in a potential new trigger and readout architecture, and present the performance resulting from a d...

  3. Level Zero Trigger Processor for the NA62 experiment

    Science.gov (United States)

    Soldi, D.; Chiozzi, S.

    2018-05-01

    The NA62 experiment is designed to measure the ultra-rare decay K+ arrow π+ ν bar nu branching ratio with a precision of ~ 10% at the CERN Super Proton Synchrotron (SPS). The trigger system of NA62 consists in three different levels designed to select events of physics interest in a high beam rate environment. The L0 Trigger Processor (L0TP) is the lowest level system of the trigger chain. It is hardware implemented using programmable logic. The architecture of the NA62 L0TP system is a new approach compared to existing systems used in high-energy physics experiments. It is fully digital, based on a standard gigabit Ethernet communication between detectors and the L0TP Board. The L0TP Board is a commercial development board, mounting a programmable logic device (FPGA). The primitives generated by sub-detectors are sent asynchronously using the UDP protocol to the L0TP during the entire beam spill period. The L0TP realigns in time the primitives coming from seven different sources and performs a data selection based on the characteristics of the event such as energy, multiplicity and topology of hits in the sub-detectors. It guarantees a maximum latency of 1 ms. The maximum input rate is about 10 MHz for each sub-detector, while the design maximum output trigger rate is 1 MHz. A description of the trigger algorithm is presented here.

  4. Online track reconstruction at hadron colliders

    International Nuclear Information System (INIS)

    Amerio, Silvia; Bettini, Marco; Nicoletto, Marino; Crescioli, Francesco; Bucciantonio, Martina; DELL'ORSO, Mauro; Piendibene, Marco; VOLPI, Guido; Annovi, Alberto; Catastini, Pierluigi; Giannetti, Paola; Lucchesi, Donatella

    2010-01-01

    Real time event reconstruction plays a fundamental role in High Energy Physics experiments. Reducing the rate of data to be saved on tape from millions to hundreds per second is critical. In order to increase the purity of the collected samples, rate reduction has to be coupled with the capability to simultaneously perform a first selection of the most interesting events. A fast and efficient online track reconstruction is important to effectively trigger on leptons and/or displaced tracks from b-quark decays. This talk will be an overview of online tracking techniques in different HEP environments: we will show how H1 experiment at HERA faced the challenges of online track reconstruction implementing pattern matching and track linking algorithms on CAMs and FPGAs in the Fast Track Processor (FTT). The pattern recognition technique is also at the basis of the Silicon Vertex Trigger (SVT) at the CDF experiment at Tevatron: coupled to a very fast fitting phase, SVT allows to trigger on displaced tracks, thus greatly increasing the efficiency for the hadronic B decay modes. A recent upgrade of the SVT track fitter, the Giga-fitter, can perform more than 1 fit/ns and further improves the CDF online trigger capabilities at high luminosity. At SLHC, where luminosities will be 2 orders of magnitude greater than Tevatron, online tracking will be much more challenging: we will describe CMS future plans for a Level-1 track trigger and the Fast Tracker (FTK) processor at the ATLAS experiment, based on the Giga-fitter architecture and designed to provide high quality tracks reconstructed over the entire detector in time for a Level-2 trigger decision.luminosity. At SLHC, where luminosities will be 2 orders of magnitude greater than Tevatron, online tracking will be much more challenging: we will describe CMS future plans for a Level-1 track trigger and the Fast Tracker (FTK) processor at the Atlas experiment, based on the Giga-fitter architecture and designed to provide high

  5. TRIGGER

    CERN Multimedia

    Wesley Smith

    Level-1 Trigger Hardware and Software The final parts of the Level-1 trigger hardware are now being put in place. For the ECAL endcaps, more than half of the Trigger Concentrator Cards for the ECAL Endcap (TCC-EE) are now available at CERN, such that one complete endcap can be covered. The Global Trigger now correctly handles ECAL calibration sequences, without being influenced by backpressure. The Regional Calorimeter Trigger (RCT) hardware is complete and working in USC55. Intra-crate tests of all 18 RCT crates and the Global Calorimeter Trigger (GCT) are regularly taking place. Pattern tests have successfully captured data from HCAL through RCT to the GCT Source Cards. HB/HE trigger data are being compared with emulator results to track down the very few remaining hardware problems. The treatment of hot and dead cells, including their recording in the database, has been defined. For the GCT, excellent agreement between the emulator and data has been achieved for jets and HF ET sums. There is still som...

  6. A proposed Drift Tubes-seeded muon track trigger for the CMS experiment at the High Luminosity-LHC

    CERN Document Server

    AUTHOR|(CDS)2070813; Lazzizzera, Ignazio; Vanini, Sara; Zotto, Pierluigi

    2016-01-01

    The LHC program at 13 and 14 TeV, after the observation of the candidate SM Higgs boson, will help clarify future subjects of study and shape the needed tools. Any upgrade of the LHC experiments for unprecedented luminosities, such as the High Luminosity-LHC ones, must then maintain the acceptance on electroweak processes that can lead to a detailed study of the properties of the candidate Higgs boson. The acceptance of the key lepton, photon and hadron triggers should be kept such that the overall physics acceptance, in particular for low-mass scale processes, can be the same as the one the experiments featured in 2012.In such a scenario, a new approach to early trigger implementation is needed. One of the major steps will be the inclusion of high-granularity tracking sub-detectors, such as the CMS Silicon Tracker, in taking the early trigger decision. This contribution can be crucial in several tasks, including the confirmation of triggers in other subsystems, and the improvement of the on-line momentum mea...

  7. Software trigger for the TOPAZ detector at TRISTAN

    International Nuclear Information System (INIS)

    Tsukamoto, T.; Yamauchi, M.; Enomoto, R.

    1990-01-01

    A new software trigger system was developed and installed at the TOPAZ detector to the trigger system for the TRISTAN e + e - collider to take data efficiently in the scheduled high luminosity experiment. This software trigger requires two or more charged tracks originated at the interaction point by examining the timing of signals from the time projection chamber. To execute the vertex finding very quickly, four microprocessors are used in parallel. By this new trigger the rate of the track trigger was reduced down to 30-40% with very small inefficiency. The additional dead time by this trigger is negligible. (orig.)

  8. The CHAOS second level trigger. A fast, programmable ECL trigger for a magnetic spectrometer using multiwire proportional chambers

    International Nuclear Information System (INIS)

    Raywood, K.J.; McFarland, S.J.; Sevior, M.E.

    1994-11-01

    A versatile second level trigger has been developed for the CHAOS facility at TRIUMF using fast ECLine trigger modules augmented by some specially constructed modules. It consists of a primary stage and two optional secondary stages. The primary track finding stage is capable of making a decision based on track vertex, polarity and momentum. The next stage is able to reject events based on the correlation between track momentum scattering angle. The third stage can make a cut on the sum of tile momenta of two tracks. In addition there is an extra parallel stage that is responsible for ensuring that the beam particle has the correct incoming trajectory. All stages are programmable and, depending on experimental conditions and trigger configuration, usual rejection times are between 2 and 4 μs. (author). 6 refs., 13 figs

  9. The CHAOS second level trigger. A fast, programmable ECL trigger for a magnetic spectrometer using multiwire proportional chambers

    Energy Technology Data Exchange (ETDEWEB)

    Raywood, K J; McFarland, S J [British Columbia Univ., Vancouver, BC (Canada). Dept. of Physics; Amaudruz, P A; Smith, G R [TRIUMF, Vancouver, BC (Canada); Sevior, M E [Melbourne Univ., Parkville, VIC (Australia). School of Physics

    1994-11-01

    A versatile second level trigger has been developed for the CHAOS facility at TRIUMF using fast ECLine trigger modules augmented by some specially constructed modules. It consists of a primary stage and two optional secondary stages. The primary track finding stage is capable of making a decision based on track vertex, polarity and momentum. The next stage is able to reject events based on the correlation between track momentum scattering angle. The third stage can make a cut on the sum of tile momenta of two tracks. In addition there is an extra parallel stage that is responsible for ensuring that the beam particle has the correct incoming trajectory. All stages are programmable and, depending on experimental conditions and trigger configuration, usual rejection times are between 2 and 4 {mu}s. (author). 6 refs., 13 figs.

  10. An FPGA based track finder for the L1 trigger of the CMS experiment at the High Luminosity LHC

    CERN Document Server

    Tomalin, Ian; Ball, Fionn Amhairghen; Balzer, Matthias Norbert; Boudoul, Gaelle; Brooke, James John; Caselle, Michele; Calligaris, Luigi; Cieri, Davide; Clement, Emyr John; Dutta, Suchandra; Hall, Geoffrey; Harder, Kristian; Hobson, Peter; Iles, Gregory Michiel; James, Thomas Owen; Manolopoulos, Konstantinos; Matsushita, Takashi; Morton, Alexander; Newbold, David; Paramesvaran, Sudarshan; Pesaresi, Mark Franco; Pozzobon, Nicola; Reid, Ivan; Rose, A. W; Sander, Oliver; Shepherd-Themistocleous, Claire; Shtipliyski, Antoni; Schuh, Thomas; Skinnari, Louise; Summers, Sioni Paris; Tapper, Alexander; Thea, Alessandro; Uchida, Kirika; Vichoudis, Paschalis; Viret, Sebastien; Weber, M; Aggleton, Robin Cameron

    2017-12-14

    A new tracking detector is under development for use by the CMS experiment at the High-Luminosity LHC (HL-LHC). A crucial requirement of this upgrade is to provide the ability to reconstruct all charged particle tracks with transverse momentum above 2-3 GeV within 4$\\mu$s so they can be used in the Level-1 trigger decision. A concept for an FPGA-based track finder using a fully time-multiplexed architecture is presented, where track candidates are reconstructed using a projective binning algorithm based on the Hough Transform, followed by a combinatorial Kalman Filter. A hardware demonstrator using MP7 processing boards has been assembled to prove the entire system functionality, from the output of the tracker readout boards to the reconstruction of tracks with fitted helix parameters. It successfully operates on one eighth of the tracker solid angle acceptance at a time, processing events taken at 40 MHz, each with up to 200 superimposed proton-proton interactions, whilst satisfying the latency requirement. ...

  11. Triggering with the ALICE TRD. Results and prospects

    Energy Technology Data Exchange (ETDEWEB)

    Klein, Jochen; Pachmayer, Yvonne [Physikalisches Institut, University of Heidelberg (Germany); Westerhoff, Uwe [Institut fuer Kernphysik, Universitaet Muenster (Germany); Collaboration: ALICE-Collaboration

    2015-07-01

    The ALICE Transition Radiation Detector provides multiple level-1 trigger contributions. The signatures are based on tracks which are reconstructed in an FPGA array from chamber-wise track segments. The latter are calculated on the detector-mounted frontend electronics. The massive parallelization allows for the low latency trigger 8 us after the interaction. We show the performance of the triggers on electrons and jets during LHC Run 1. Further, we discuss improvements and prospects for Run 2. In particular, an online calculation of the distance of closest approach to the primary vertex shall be used to reject the dominant background from the conversion of photons at large radii. The combination of tracks over stack and sector boundaries will help to improve the efficiency of the jet trigger.

  12. Upgrade of the CMS muon trigger system in the barrel region

    International Nuclear Information System (INIS)

    Rabady, Dinyar; Ero, Janos; Flouris, Giannis; Fulcher, Jonathan; Loukas, Nikitas; Paradas, Evangelos; Reis, Thomas; Sakulin, Hannes; Wulz, Claudia-Elisabeth

    2017-01-01

    To maintain the excellent performance shown during the LHC's Run-1 the Level-1 Trigger of the Compact Muon Solenoid experiment underwent a significant upgrade. One part of this upgrade is the re-organization of the muon trigger path from a subsystem-centric view in which hits in the drift tubes (DT), the cathode strip chambers (CSC), and the resistive plate chambers (RPC) were treated separately in dedicated track-finding systems to one in which complementary detector systems for a given region (barrel, overlap, and endcap) are merged at the track-finding level. This fundamental restructuring of the muon trigger system required the development of a system to receive track candidates from the track-finding layer, remove potential duplicate tracks, and forward the best candidates to the global decision layer. An overview will be given of the new track-finder system for the barrel region, the Barrel Muon Track Finder (BMTF), as well as the cancel-out and sorting layer: the upgraded Global Muon Trigger (μGMT). Both the BMTF and μGMT have been implemented in a Xilinx Virtex-7 card utilizing the microTCA architecture. While the BMTF improves on the proven and well-tested algorithms used in the Drift Tube Track Finder during Run-1, the μGMT is an almost complete re-development due to the re-organization of the underlying systems from track-finders for a specific detector to regional track finders covering a given area of the whole detector. Additionally the μGMT calculates a muon's isolation using energy information received from the calorimeter trigger. This information is added to the muon objects forwarded to the global decision layer, the so-called Global Trigger. - Highlights: • Presented upgraded Global Muon Trigger and Barrel Muon Track Finder systems. • Upgraded system moves from sub-detector centric view to geometric-view. • To improve trigger performance. • Common hardware improves maintainability and increases development speed. • Use of

  13. Upgrade of the CMS muon trigger system in the barrel region

    Energy Technology Data Exchange (ETDEWEB)

    Rabady, Dinyar, E-mail: dinyar.rabady@cern.ch [Institute of High Energy Physics Vienna (HEPHY), Nikolsdorfer Gasse 18, 1050 Wien (Austria); Ero, Janos [Institute of High Energy Physics Vienna (HEPHY), Nikolsdorfer Gasse 18, 1050 Wien (Austria); Flouris, Giannis [University of Ioannina, 45110 Ioannina (Greece); Fulcher, Jonathan [CERN, 1211 Geneve 23 (Switzerland); Loukas, Nikitas; Paradas, Evangelos [University of Ioannina, 45110 Ioannina (Greece); Reis, Thomas; Sakulin, Hannes; Wulz, Claudia-Elisabeth [CERN, 1211 Geneve 23 (Switzerland)

    2017-02-11

    To maintain the excellent performance shown during the LHC's Run-1 the Level-1 Trigger of the Compact Muon Solenoid experiment underwent a significant upgrade. One part of this upgrade is the re-organization of the muon trigger path from a subsystem-centric view in which hits in the drift tubes (DT), the cathode strip chambers (CSC), and the resistive plate chambers (RPC) were treated separately in dedicated track-finding systems to one in which complementary detector systems for a given region (barrel, overlap, and endcap) are merged at the track-finding level. This fundamental restructuring of the muon trigger system required the development of a system to receive track candidates from the track-finding layer, remove potential duplicate tracks, and forward the best candidates to the global decision layer. An overview will be given of the new track-finder system for the barrel region, the Barrel Muon Track Finder (BMTF), as well as the cancel-out and sorting layer: the upgraded Global Muon Trigger (μGMT). Both the BMTF and μGMT have been implemented in a Xilinx Virtex-7 card utilizing the microTCA architecture. While the BMTF improves on the proven and well-tested algorithms used in the Drift Tube Track Finder during Run-1, the μGMT is an almost complete re-development due to the re-organization of the underlying systems from track-finders for a specific detector to regional track finders covering a given area of the whole detector. Additionally the μGMT calculates a muon's isolation using energy information received from the calorimeter trigger. This information is added to the muon objects forwarded to the global decision layer, the so-called Global Trigger. - Highlights: • Presented upgraded Global Muon Trigger and Barrel Muon Track Finder systems. • Upgraded system moves from sub-detector centric view to geometric-view. • To improve trigger performance. • Common hardware improves maintainability and increases development speed. • Use of

  14. Electronics for CMS Endcap Muon Level-1 Trigger System Phase-1 and HL LHC upgrades

    Science.gov (United States)

    Madorsky, A.

    2017-07-01

    To accommodate high-luminosity LHC operation at a 13 TeV collision energy, the CMS Endcap Muon Level-1 Trigger system had to be significantly modified. To provide robust track reconstruction, the trigger system must now import all available trigger primitives generated by the Cathode Strip Chambers and by certain other subsystems, such as Resistive Plate Chambers (RPC). In addition to massive input bandwidth, this also required significant increase in logic and memory resources. To satisfy these requirements, a new Sector Processor unit has been designed. It consists of three modules. The Core Logic module houses the large FPGA that contains the track-finding logic and multi-gigabit serial links for data exchange. The Optical module contains optical receivers and transmitters; it communicates with the Core Logic module via a custom backplane section. The Pt Lookup table (PTLUT) module contains 1 GB of low-latency memory that is used to assign the final Pt to reconstructed muon tracks. The μ TCA architecture (adopted by CMS) was used for this design. The talk presents the details of the hardware and firmware design of the production system based on Xilinx Virtex-7 FPGA family. The next round of LHC and CMS upgrades starts in 2019, followed by a major High-Luminosity (HL) LHC upgrade starting in 2024. In the course of these upgrades, new Gas Electron Multiplier (GEM) detectors and more RPC chambers will be added to the Endcap Muon system. In order to keep up with all these changes, a new Advanced Processor unit is being designed. This device will be based on Xilinx UltraScale+ FPGAs. It will be able to accommodate up to 100 serial links with bit rates of up to 25 Gb/s, and provide up to 2.5 times more logic resources than the device used currently. The amount of PTLUT memory will be significantly increased to provide more flexibility for the Pt assignment algorithm. The talk presents preliminary details of the hardware design program.

  15. An Overview of DRAM-Based Security Primitives

    Directory of Open Access Journals (Sweden)

    Nikolaos Athanasios Anagnostopoulos

    2018-03-01

    Full Text Available Recent developments have increased the demand for adequate security solutions, based on primitives that cannot be easily manipulated or altered, such as hardware-based primitives. Security primitives based on Dynamic Random Access Memory (DRAM can provide cost-efficient and practical security solutions, especially for resource-constrained devices, such as hardware used in the Internet of Things (IoT, as DRAMs are an intrinsic part of most contemporary computer systems. In this work, we present a comprehensive overview of the literature regarding DRAM-based security primitives and an extended classification of it, based on a number of different criteria. In particular, first, we demonstrate the way in which DRAMs work and present the characteristics being exploited for the implementation of security primitives. Then, we introduce the primitives that can be implemented using DRAM, namely Physical Unclonable Functions (PUFs and True Random Number Generators (TRNGs, and present the applications of each of the two types of DRAM-based security primitives. We additionally proceed to assess the security such primitives can provide, by discussing potential attacks and defences, as well as the proposed security metrics. Subsequently, we also compare these primitives to other hardware-based security primitives, noting their advantages and shortcomings, and proceed to demonstrate their potential for commercial adoption. Finally, we analyse our classification methodology, by reviewing the criteria employed in our classification and examining their significance.

  16. Motion Primitives for Action Recognition

    DEFF Research Database (Denmark)

    Fihl, Preben; Holte, Michael Boelstoft; Moeslund, Thomas B.

    2007-01-01

    the actions as a sequence of temporal isolated instances, denoted primitives. These primitives are each defined by four features extracted from motion images. The primitives are recognized in each frame based on a trained classifier resulting in a sequence of primitives. From this sequence we recognize......The number of potential applications has made automatic recognition of human actions a very active research area. Different approaches have been followed based on trajectories through some state space. In this paper we also model an action as a trajectory through a state space, but we represent...... different temporal actions using a probabilistic Edit Distance method. The method is tested on different actions with and without noise and the results show recognition rates of 88.7% and 85.5%, respectively....

  17. Action Recognition using Motion Primitives

    DEFF Research Database (Denmark)

    Moeslund, Thomas B.; Fihl, Preben; Holte, Michael Boelstoft

    the actions as a sequence of temporal isolated instances, denoted primitives. These primitives are each defined by four features extracted from motion images. The primitives are recognized in each frame based on a trained classifier resulting in a sequence of primitives. From this sequence we recognize......The number of potential applications has made automatic recognition of human actions a very active research area. Different approaches have been followed based on trajectories through some state space. In this paper we also model an action as a trajectory through a state space, but we represent...... different temporal actions using a probabilistic Edit Distance method. The method is tested on different actions with and without noise and the results show recognizing rates of 88.7% and 85.5%, respectively....

  18. The neural network z-vertex trigger for the Belle II detector

    Energy Technology Data Exchange (ETDEWEB)

    Skambraks, Sebastian; Neuhaus, Sara [Technische Universitaet Muenchen (Germany); Chen, Yang; Kiesling, Christian [Max-Planck-Institut fuer Physik, Muenchen (Germany); Collaboration: Belle II-Collaboration

    2016-07-01

    We present a neural network based first level track trigger for the upcoming Belle II detector at the high luminosity SuperKEKB flavor factory. Using hit and drift time information from the Central Drift Chamber (CDC), neural networks estimate the z-coordinates of single track vertex positions. Especially beam induced background, with vertices outside of the interaction region, can clearly be rejected. This allows to relax the track trigger conditions and thus enhances the efficiency for events with a low track multiplicity. In the CDC trigger pipeline, the preceding 2D pattern recognition enables a unique per track input representation and a sectorization of the track parameter phase space. The precise z-vertices are then estimated by an ensemble of sector-specific local expert neural networks. After an introduction to the neural trigger system, the benefits of an improved 3D pattern recognition are discussed.

  19. arXiv Level Zero Trigger Processor for the NA62 experiment

    CERN Document Server

    INSPIRE-00584493; Chiozzi, Stefano

    2018-05-02

    The NA62 experiment is designed to measure the ultra-rare decay K+ arrow π+ ν  branching ratio with a precision of ~ 10% at the CERN Super Proton Synchrotron (SPS). The trigger system of NA62 consists in three different levels designed to select events of physics interest in a high beam rate environment. The L0 Trigger Processor (L0TP) is the lowest level system of the trigger chain. It is hardware implemented using programmable logic. The architecture of the NA62 L0TP system is a new approach compared to existing systems used in high-energy physics experiments. It is fully digital, based on a standard gigabit Ethernet communication between detectors and the L0TP Board. The L0TP Board is a commercial development board, mounting a programmable logic device (FPGA). The primitives generated by sub-detectors are sent asynchronously using the UDP protocol to the L0TP during the entire beam spill period. The L0TP realigns in time the primitives coming from seven different sources and performs a data selectio...

  20. Development of a Dmt Monitor for Statistical Tracking of Gravitational-Wave Burst Triggers Generated from the Omega Pipeline

    Science.gov (United States)

    Li, Jun-Wei; Cao, Jun-Wei

    2010-04-01

    One challenge in large-scale scientific data analysis is to monitor data in real-time in a distributed environment. For the LIGO (Laser Interferometer Gravitational-wave Observatory) project, a dedicated suit of data monitoring tools (DMT) has been developed, yielding good extensibility to new data type and high flexibility to a distributed environment. Several services are provided, including visualization of data information in various forms and file output of monitoring results. In this work, a DMT monitor, OmegaMon, is developed for tracking statistics of gravitational-wave (OW) burst triggers that are generated from a specific OW burst data analysis pipeline, the Omega Pipeline. Such results can provide diagnostic information as reference of trigger post-processing and interferometer maintenance.

  1. A demonstration of a Time Multiplexed Trigger for the CMS experiment

    Energy Technology Data Exchange (ETDEWEB)

    Frazier, R; Newbold, D [University of Bristol, H.H. Wills Physics Laboratory, Tyndall Avenue, Bristol BS8 1TL (United Kingdom); Fayer, S; Hall, G; Hunt, C; Iles, G; Rose, A [Imperial College London, Blackett Laboratory, Prince Consort Road, London SW7 2BW (United Kingdom)

    2012-01-15

    A novel approach to first-level hardware triggering in the LHC experiments has been studied and a prototype system built. Calorimeter trigger primitive data ( {approx} 5 Tb/s) are re-organised and time-multiplexed so that a single processing node (FPGA) may access the data corresponding to the entire detector for a given bunch crossing. This provides maximal flexibility in the construction of new trigger algorithms, which will be an important factor in ensuring adequate trigger performance at the very high levels of background expected at the upgraded LHC. A test system that incorporates all the key technologies for a final system and demonstrates the time-multiplexing and algorithm performance is presented.

  2. The CMS Barrel Muon trigger upgrade

    International Nuclear Information System (INIS)

    Triossi, A.; Sphicas, P.; Bellato, M.; Montecassiano, F.; Ventura, S.; Ruiz, J.M. Cela; Bedoya, C. Fernandez; Tobar, A. Navarro; Fernandez, I. Redondo; Ferrero, D. Redondo; Sastre, J.; Ero, J.; Wulz, C.; Flouris, G.; Foudas, C.; Loukas, N.; Mallios, S.; Paradas, E.; Guiducci, L.; Masetti, G.

    2017-01-01

    The increase of luminosity expected by LHC during Phase1 will impose tighter constraints for rate reduction in order to maintain high efficiency in the CMS Level1 trigger system. The TwinMux system is the early layer of the muon barrel region that concentrates the information from different subdetectors: Drift Tubes, Resistive Plate Chambers and Outer Hadron Calorimeter. It arranges the slow optical trigger links from the detector chambers into faster links (10 Gbps) that are sent in multiple copies to the track finders. Results from collision runs, that confirm the satisfactory operation of the trigger system up to the output of the barrel track finder, will be shown.

  3. Using FPGA coprocessor for ATLAS level 2 trigger application

    International Nuclear Information System (INIS)

    Khomich, Andrei; Hinkelbein, Christian; Kugel, Andreas; Maenner, Reinhard; Mueller, Matthias

    2006-01-01

    Tracking has a central role in the event selection for the High-Level Triggers of ATLAS. It is particularly important to have fast tracking algorithms in the trigger system. This paper investigates the feasibility of using FPGA coprocessor for speeding up of the TRT LUT algorithm-one of the tracking algorithms for second level trigger for ATLAS experiment (CERN). Two realisations of the same algorithm have been compared: one in C++ and a hybrid C++/VHDL implementation. Using a FPGA coprocessor gives an increase of speed by a factor of two compared to a CPU-only implementation

  4. Fast processor for dilepton triggers

    International Nuclear Information System (INIS)

    Katsanevas, S.; Kostarakis, P.; Baltrusaitis, R.

    1983-01-01

    We describe a fast trigger processor, developed for and used in Fermilab experiment E-537, for selecting high-mass dimuon events produced by negative pions and anti-protons. The processor finds candidate tracks by matching hit information received from drift chambers and scintillation counters, and determines their momenta. Invariant masses are calculated for all possible pairs of tracks and an event is accepted if any invariant mass is greater than some preselectable minimum mass. The whole process, accomplished within 5 to 10 microseconds, achieves up to a ten-fold reduction in trigger rate

  5. Upgrade of the CMS muon trigger system in the barrel region

    CERN Document Server

    AUTHOR|(CDS)2080489; Flouris, Gianis; Fulcher, Jonathan; Loukas, Nikitas; Paradas, Evangelos; Reis,Thomas; Sakulin, Hannes; Wulz, Claudia-Elisabeth

    2016-01-01

    To maintain the excellent performance shown during the LHCs Run-1 the Level-1 Trigger of the Compact Muon Solenoid experiment underwent a significant upgrade. One part of this upgrade is the re-organization of the muon trigger path from a subsystem-centric view in which hits in the drift tubes (DT), the cathode strip chambers (CSC), and the resistive plate chambers (RPC) were treated separately in dedicated track-finding systems to one in which complementary detector systems for a given region (barrel, overlap, and endcap) are merged at the track-finding level. This fundamental restructuring of the muon trigger system required the development of a system to receive track candidates from the track-finding layer, remove potential duplicate tracks, and forward the best candidates to the global decision layer.An overview will be given of the new track-finder system for the barrel region, the Barrel Muon Track Finder (BMTF) as well as the cancel-out and sorting layer, the upgraded Global Muon Trigger ($\\mu$GMT). B...

  6. Microfluidic assay of the deformability of primitive erythroblasts.

    Science.gov (United States)

    Zhou, Sitong; Huang, Yu-Shan; Kingsley, Paul D; Cyr, Kathryn H; Palis, James; Wan, Jiandi

    2017-09-01

    Primitive erythroblasts (precursors of red blood cells) enter vascular circulation during the embryonic period and mature while circulating. As a result, primitive erythroblasts constantly experience significant hemodynamic shear stress. Shear-induced deformation of primitive erythroblasts however, is poorly studied. In this work, we examined the deformability of primitive erythroblasts at physiologically relevant flow conditions in microfluidic channels and identified the regulatory roles of the maturation stage of primitive erythroblasts and cytoskeletal protein 4.1 R in shear-induced cell deformation. The results showed that the maturation stage affected the deformability of primitive erythroblasts significantly and that primitive erythroblasts at later maturational stages exhibited a better deformability due to a matured cytoskeletal structure in the cell membrane.

  7. The ATLAS Tau Trigger

    CERN Document Server

    Dam, M; The ATLAS collaboration

    2009-01-01

    The ATLAS experiment at CERN’s LHC has implemented a dedicated tau trigger system to select hadronically decaying tau leptons from the enormous background of QCD jets. This promises a significant increase in the discovery potential to the Higgs boson and in searches for physics beyond the Standard Model. The three level trigger system has been optimised for effciency and good background rejection. The first level uses information from the calorimeters only, while the two higher levels include also information from the tracking detectors. Shower shape variables and the track multiplicity are important variables to distinguish taus from QCD jets. At the initial lumonosity of 10^31 cm^−2 s^−1, single tau triggers with a transverse energy threshold of 50 GeV or higher can be run standalone. Below this level, the tau signatures will be combined with other event signature

  8. Simulation of the ATLAS New Small Wheel Trigger Sysmtem

    CERN Document Server

    Saito, Tomoyuki; The ATLAS collaboration

    2017-01-01

    The instantaneous luminosity of the Large Hadron Collider (LHC) at CERN will be increased up to a factor of five with respect to the original design value to explore higher energy scale. In order to benefit from the expected high luminosity performance, the first station of the ATLAS muon end-cap Small Wheel system will be replaced by a New Small Wheel (NSW) detector. The NSW provide precise track segment information to the muon Level-1 trigger to reduce fake triggers. This contribution will summarize a detail of the NSW trigger decision system, track reconstruction algorithm implemented into the trigger processor and results of performance studies on the trigger system.

  9. Unsupervised Learning of Action Primitives

    DEFF Research Database (Denmark)

    Baby, Sanmohan; Krüger, Volker; Kragic, Danica

    2010-01-01

    and scale, the use of the object can provide a strong invariant for the detection of motion primitives. In this paper we propose an unsupervised learning approach for action primitives that makes use of the human movements as well as the object state changes. We group actions according to the changes......Action representation is a key issue in imitation learning for humanoids. With the recent finding of mirror neurons there has been a growing interest in expressing actions as a combination meaningful subparts called primitives. Primitives could be thought of as an alphabet for the human actions....... In this paper we observe that human actions and objects can be seen as being intertwined: we can interpret actions from the way the body parts are moving, but as well from how their effect on the involved object. While human movements can look vastly different even under minor changes in location, orientation...

  10. GPU-based real-time triggering in the NA62 experiment

    CERN Document Server

    Ammendola, R.; Cretaro, P.; Di Lorenzo, S.; Fantechi, R.; Fiorini, M.; Frezza, O.; Lamanna, G.; Lo Cicero, F.; Lonardo, A.; Martinelli, M.; Neri, I.; Paolucci, P.S.; Pastorelli, E.; Piandani, R.; Pontisso, L.; Rossetti, D.; Simula, F.; Sozzi, M.; Vicini, P.

    2016-01-01

    Over the last few years the GPGPU (General-Purpose computing on Graphics Processing Units) paradigm represented a remarkable development in the world of computing. Computing for High-Energy Physics is no exception: several works have demonstrated the effectiveness of the integration of GPU-based systems in high level trigger of different experiments. On the other hand the use of GPUs in the low level trigger systems, characterized by stringent real-time constraints, such as tight time budget and high throughput, poses several challenges. In this paper we focus on the low level trigger in the CERN NA62 experiment, investigating the use of real-time computing on GPUs in this synchronous system. Our approach aimed at harvesting the GPU computing power to build in real-time refined physics-related trigger primitives for the RICH detector, as the the knowledge of Cerenkov rings parameters allows to build stringent conditions for data selection at trigger level. Latencies of all components of the trigger chain have...

  11. A Fast hardware tracker for the ATLAS Trigger

    CERN Document Server

    Pandini, Carlo Enrico; The ATLAS collaboration

    2015-01-01

    The trigger system at the ATLAS experiment is designed to lower the event rate occurring from the nominal bunch crossing at 40 MHz to about 1 kHz for a designed LHC luminosity of 10$^{34}$ cm$^{-2}$ s$^{-1}$. To achieve high background rejection while maintaining good efficiency for interesting physics signals, sophisticated algorithms are needed which require extensive use of tracking information. The Fast TracKer (FTK) trigger system, part of the ATLAS trigger upgrade program, is a highly parallel hardware device designed to perform track-finding at 100 kHz and based on a mixture of advanced technologies. Modern, powerful Field Programmable Gate Arrays (FPGA) form an important part of the system architecture, and the combinatorial problem of pattern recognition is solved by ~8000 standard-cell ASICs named Associative Memories. The availability of the tracking and subsequent vertex information within a short latency ensures robust selections and allows improved trigger performance for the most difficult sign...

  12. Primitive and definitive erythropoiesis in mammals

    Directory of Open Access Journals (Sweden)

    James ePalis

    2014-01-01

    Full Text Available Red blood cells (RBCs, which constitute the most abundant cell type in the body, come in two distinct flavors- primitive and definitive. Definitive RBCs in mammals circulate as smaller, anucleate cells during fetal and postnatal life, while primitive RBCs circulate transiently in the early embryo as large, nucleated cells before ultimately enucleating. Both cell types are formed from lineage-committed progenitors that generate a series of morphologically identifiable precursors that enucleate to form mature RBCs. While definitive erythroid precursors mature extravascularly in the fetal liver and postnatal marrow in association with macrophage cells, primitive erythroid precursors mature as a semi-synchronous cohort in the embryonic bloodstream. While the cytoskeletal network is critical for the maintenance of cell shape and the deformability of definitive RBCs, little is known about the components and function of the cytoskeleton in primitive erythroblasts. Erythropoietin (EPO is a critical regulator of late-stage definitive, but not primitive, erythroid progenitor survival. However, recent studies indicate that EPO regulates multiple aspects of terminal maturation of primitive murine and human erythroid precursors, including cell survival, proliferation, and the rate of terminal maturation. Primitive and definitive erythropoiesis share central transcriptional regulators, including Gata1 and Klf1, but are also characterized by the differential expression and function of other regulators, including myb, Sox6, and Bcl11A. Flow cytometry-based methodologies, developed to purify murine and human stage-specific erythroid precursors, have enabled comparative global gene expression studies and are providing new insights into the biology of erythroid maturation.

  13. Navigation Strategies for Primitive Solar System Body Rendezvous and Proximity Operations

    Science.gov (United States)

    Getzandanner, Kenneth M.

    2011-01-01

    A wealth of scientific knowledge regarding the composition and evolution of the solar system can be gained through reconnaissance missions to primitive solar system bodies. This paper presents analysis of a baseline navigation strategy designed to address the unique challenges of primitive body navigation. Linear covariance and Monte Carlo error analysis was performed on a baseline navigation strategy using simulated data from a· design reference mission (DRM). The objective of the DRM is to approach, rendezvous, and maintain a stable orbit about the near-Earth asteroid 4660 Nereus. The outlined navigation strategy and resulting analyses, however, are not necessarily limited to this specific target asteroid as they may he applicable to a diverse range of mission scenarios. The baseline navigation strategy included simulated data from Deep Space Network (DSN) radiometric tracking and optical image processing (OpNav). Results from the linear covariance and Monte Carlo analyses suggest the DRM navigation strategy is sufficient to approach and perform proximity operations in the vicinity of the target asteroid with meter-level accuracy.

  14. Primitive Based Action Representation and recognition

    DEFF Research Database (Denmark)

    Baby, Sanmohan

    The presented work is aimed at designing a system that will model and recognize actions and its interaction with objects. Such a system is aimed at facilitating robot task learning. Activity modeling and recognition is very important for its potential applications in surveillance, human-machine i......The presented work is aimed at designing a system that will model and recognize actions and its interaction with objects. Such a system is aimed at facilitating robot task learning. Activity modeling and recognition is very important for its potential applications in surveillance, human......-machine interface, entertainment, biomechanics etc. Recent developments in neuroscience suggest that all actions are a compositions of smaller units called primitives. Current works based on primitives for action recognition uses a supervised framework for specifying the primitives. We propose a method to extract...... primitives automatically. These primitives are to be used to generate actions based on certain rules for combining. These rules are expressed as a stochastic context free grammar. A model merging approach is adopted to learn a Hidden Markov Model to t the observed data sequences. The states of the HMM...

  15. A high-resolution TDC-based board for a fully digital trigger and data acquisition system in the NA62 experiment at CERN

    CERN Document Server

    Pedreschi, Elena; Angelucci, Bruno; Avanzini, Carlo; Galeotti, Stefano; Lamanna, Gianluca; Magazzù, Guido; Pinzino, Jacopo; Piandani, Roberto; Sozzi, Marco; Spinella, Franco; Venditti, Stefano

    2015-01-01

    A Time to Digital Converter (TDC) based system, to be used for most sub-detectors in the high-flux rare-decay experiment NA62 at CERN SPS, was built as part of the NA62 fully digital Trigger and Data AcQuisition system (TDAQ), in which the TDC Board (TDCB) and a general-purpose motherboard (TEL62) will play a fundamental role. While TDCBs, housing four High Performance Time to Digital Converters (HPTDC), measure hit times from sub-detectors, the motherboard processes and stores them in a buffer, produces trigger primitives from different detectors and extracts only data related to the lowest trigger level decision, once this is taken on the basis of the trigger primitives themselves. The features of the TDCB board developed by the Pisa NA62 group are extensively discussed and performance data is presented in order to show its compliance with the experiment requirements.

  16. NOMAD Trigger Studies

    International Nuclear Information System (INIS)

    Varvell, K.

    1995-01-01

    The author reports on the status of an offline study of the NOMAD triggers, which has several motivations. Of primary importance is to demonstrate, using offline information recorded by the individual subdetectors comprising NOMAD, that the online trigger system is functioning as expected. Such an investigation serves to complement the extensive monitoring which is already carried out online. More specific to the needs of the offline software and analysis, the reconstruction of tracks and vertices in the detector requires some knowledge of the time at which the trigger has occurred, in order to locate relevant hits in the drift chambers and muon chambers in particular. The fact that the different triggers allowed by the MIOTRINO board take varying times to form complicates this task. An offline trigger algorithm may serve as a tool to shed light on situations where the online trigger status bits have not been recorded correctly, as happens in a small number of cases, or as an aid to studies with the aim of further refinement of the online triggers themselves

  17. The fast tracker processor for hadron collider triggers

    CERN Document Server

    Annovi, A; Bardi, A; Carosi, R; Dell'Orso, Mauro; D'Onofrio, M; Giannetti, P; Iannaccone, G; Morsani, E; Pietri, M; Varotto, G

    2001-01-01

    Perspectives for precise and fast track reconstruction in future hadron collider experiments are addressed. We discuss the feasibility of a pipelined highly parallel processor dedicated to the implementation of a very fast tracking algorithm. The algorithm is based on the use of a large bank of pre-stored combinations of trajectory points, called patterns, for extremely complex tracking systems. The CMS experiment at LHC is used as a benchmark. Tracking data from the events selected by the level-1 trigger are sorted and filtered by the Fast Tracker processor at an input rate of 100 kHz. This data organization allows the level-2 trigger logic to reconstruct full resolution tracks with transverse momentum above a few GeV and search for secondary vertices within typical level-2 times. (15 refs).

  18. The CMS Barrel Muon Trigger Upgrade

    CERN Document Server

    Triossi, Andrea

    2017-01-01

    ABSTRACT: The increase of luminosity expected by LHC during Phase 1 will impose several constrains for rate reduction while maintaining high efficiency in the CMS Level 1 trigger system. The TwinMux system is the early layer of the muon barrel region that concentrates the information from different subdetectors DT, RPC and HO. It arranges and fan-out the slow optical trigger links from the detector chambers into faster links (10 Gbps) that are sent to the track finders. Results, from collision runs, that confirm the satisfactory operation of the trigger system up to the output of the barrel track finder, will be shown. SUMMARY: In view of the increase of luminosity during phase 1 upgrade of LHC, the muon trigger chain of the Compact Muon Solenoid (CMS) experiment underwent considerable improvements. The muon detector was designed for preserving the complementarity and redundancy of three separate muon detection systems, Cathode Strip Chambers (CSC), Drift Tubes (DT) and Resistive Plate Chambers (RPC), until ...

  19. Design of the ATLAS Phase-II hardware-based tracking processor

    CERN Document Server

    Poggi, Riccardo; The ATLAS collaboration

    2018-01-01

    The expected increase in peak luminosity of the upgraded high-luminosity LHC will force the ATLAS experiment to increase early stage trigger selection power. The agreed strategy is to implement precise hardware track reconstruction, through which sharper trigger turn-on curves can be achieved for primary single-lepton selections, while contributing to b-tagging and tau-tagging techniques as well as multi-jet rejection. The hardware-based tracking for the trigger (HTT) will use a combination of Associative Memory ASICs and FPGAs to provide the software-based trigger system with access to tracking information. In this poster, we present the requirements, architecture and projected performance of the system in terms of tracking capability, and trigger selection, based on detailed simulations.

  20. Track recognition in 4 μs by a systolic trigger processor using a parallel Hough transform

    International Nuclear Information System (INIS)

    Klefenz, F.; Noffz, K.H.; Conen, W.; Zoz, R.; Kugel, A.; Maenner, R.; Univ. Heidelberg

    1993-01-01

    A parallel Hough transform processor has been developed that identifies circular particle tracks in a 2D projection of the OPAL jet chamber. The high-speed requirements imposed by the 8 bunch crossing mode of LEP could be fulfilled by computing the starting angle and the radius of curvature for each well defined track in less than 4 μs. The system consists of a Hough transform processor that determines well defined tracks, and a Euler processor that counts their number by applying the Euler relation to the thresholded result of the Hough transform. A prototype of a systolic processor has been built that handles one sector of the jet chamber. It consists of 35 x 32 processing elements that were loaded into 21 programmable gate arrays (XILINX). This processor runs at a clock rate of 40 MHz. It has been tested offline with about 1,000 original OPAL events. No deviations from the off-line simulation have been found. A trigger efficiency of 93% has been obtained. The prototype together with the associated drift time measurement unit has been installed at the OPAL detector at LEP and 100k events have been sampled to evaluate the system under detector conditions

  1. Cell adhesive affinity does not dictate primitive endoderm segregation and positioning during murine embryoid body formation.

    Science.gov (United States)

    Moore, Robert; Cai, Kathy Q; Escudero, Diogo O; Xu, Xiang-Xi

    2009-09-01

    The classical cell sorting experiments undertaken by Townes and Holtfreter described the intrinsic propensity of dissociated embryonic cells to self-organize and reconcile into their original embryonic germ layers with characteristic histotypic positioning. Steinberg presented the differential adhesion hypothesis to explain these patterning phenomena. Here, we have reappraised these issues by implementing embryoid bodies to model the patterning of epiblast and primitive endoderm layers. We have used combinations of embryonic stem (ES) cells and their derivatives differentiated by retinoic acid treatment to model epiblast and endoderm cells, and wild-type or E-cadherin null cells to represent strongly or weakly adherent cells, respectively. One cell type was fluorescently labeled and reconstituted with another heterotypically to generate chimeric embryoid bodies, and cell sorting was tracked by time-lapse video microscopy and confirmed by immunostaining. When undifferentiated wild-type and E-cadherin null ES cells were mixed, the resulting cell aggregates consisted of a core of wild-type cells surrounded by loosely associated E-cadherin null cells, consistent with the differential adhesion hypothesis. However, when mixed with undifferentiated ES cells, the differentiated primitive endoderm-like cells sorted to the surface to form a primitive endoderm layer irrespective of cell-adhesive strength, contradicting the differential adhesion hypothesis. We propose that the primitive endoderm cells reach the surface by random movement, and subsequently the cells generate an apical/basal polarity that prevents reentry. Thus, the ability to generate epithelial polarity, rather than adhesive affinity, determines the surface positioning of the primitive endoderm cells. (c) 2009 Wiley-Liss, Inc.

  2. The ZEUS second level calorimeter trigger

    International Nuclear Information System (INIS)

    Jong, S.J. de.

    1990-01-01

    ZEUS is a detector for the HERA ep collider, consisting of several large components. The most important being the inner tracking detectors, which are positioned nearest to the interaction point, the calorimeter surrounding the inner tracking detectors and the muon detectors on the outside of the experimental setup. Each component will deliver a vast amount of information. In order to keep this information manageable, data is preprocessed and condensed per component and then combined to obtain the final global trigger result. The main subject of this thesis is the second level calorimeter trigger processor of the ZEUS detector. In order to be able to reject the unwanted events passing the first level, the topological event signature will have to be used at the second level. The most demanding task of the second level is the recognition of local energy depositions corresponding to isolated electrons and hadron jets. Also part of the work performed by the first level will be repeated with a higher level of accuracy. Additional information not available to the first level trigger will be processed and will be made available to the global second level trigger decision module. For the second level calorimeter trigger processor a special VME module, containing two transputers, has been developed. The second level calorimeter trigger algorithm described in this thesis was tested with simulated events, that were tracked through a computer simulation of the ZEUS detector. A part of this thesis is therefore devoted to the description of the various Monte Carlo models and the justification of the way in which they were used. (author). 132 refs.; 76 figs.; 18 tabs

  3. Dynamic Primitives in the Control of Locomotion

    Directory of Open Access Journals (Sweden)

    Neville eHogan

    2013-06-01

    Full Text Available Humans achieve locomotor dexterity that far exceeds the capability of modern robots, yet this is achieved despite slower actuators, imprecise sensors and vastly slower communication. We propose that this spectacular performance arises from encoding motor commands in terms of dynamic primitives. We propose three primitives as a foundation for a comprehensive theoretical framework that can embrace a wide range of upper- and lower-limb behaviors. Building on previous work that suggested discrete and rhythmic movements as elementary dynamic behaviors, we define submovements and oscillations: As discrete movements cannot be combined with sufficient flexibility, we argue that suitably-defined submovements are primitives. As the term rhythmic may be ambiguous, we define oscillations as the corresponding class of primitives. We further propose mechanical impedances as a third class of dynamic primitives, necessary for interaction with the physical environment. Combination of these three classes of primitive requires care. One approach is through a generalized equivalent network: a virtual trajectory composed of simultaneous and/or sequential submovements and/or oscillations that interacts with mechanical impedances to produce observable forces and motions. Reliable experimental identification of these dynamic primitives presents challenges: Identification of mechanical impedances is exquisitely sensitive to assumptions about their dynamic structure; identification of submovements and oscillations is sensitive to their assumed form and to details of the algorithm used to extract them. Some methods to address these challenges are presented. Some implications of this theoretical framework for locomotor rehabilitation are considered.

  4. Dynamic primitives in the control of locomotion.

    Science.gov (United States)

    Hogan, Neville; Sternad, Dagmar

    2013-01-01

    Humans achieve locomotor dexterity that far exceeds the capability of modern robots, yet this is achieved despite slower actuators, imprecise sensors, and vastly slower communication. We propose that this spectacular performance arises from encoding motor commands in terms of dynamic primitives. We propose three primitives as a foundation for a comprehensive theoretical framework that can embrace a wide range of upper- and lower-limb behaviors. Building on previous work that suggested discrete and rhythmic movements as elementary dynamic behaviors, we define submovements and oscillations: as discrete movements cannot be combined with sufficient flexibility, we argue that suitably-defined submovements are primitives. As the term "rhythmic" may be ambiguous, we define oscillations as the corresponding class of primitives. We further propose mechanical impedances as a third class of dynamic primitives, necessary for interaction with the physical environment. Combination of these three classes of primitive requires care. One approach is through a generalized equivalent network: a virtual trajectory composed of simultaneous and/or sequential submovements and/or oscillations that interacts with mechanical impedances to produce observable forces and motions. Reliable experimental identification of these dynamic primitives presents challenges: identification of mechanical impedances is exquisitely sensitive to assumptions about their dynamic structure; identification of submovements and oscillations is sensitive to their assumed form and to details of the algorithm used to extract them. Some methods to address these challenges are presented. Some implications of this theoretical framework for locomotor rehabilitation are considered.

  5. The ARGUS vertex trigger

    International Nuclear Information System (INIS)

    Koch, N.; Kolander, M.; Kolanoski, H.; Siegmund, T.; Bergter, J.; Eckstein, P.; Schubert, K.R.; Waldi, R.; Imhof, M.; Ressing, D.; Weiss, U.; Weseler, S.

    1995-09-01

    A fast second level trigger has been developed for the ARGUS experiment which recognizes tracks originating from the interaction region. The processor compares the hits in the ARGUS Micro Vertex Drift Chamber to 245760 masks stored in random access memories. The masks which are fully defined in three dimensions are able to reject tracks originating in the wall of the narrow beampipe of 10.5 mm radius. (orig.)

  6. BTeV Trigger

    International Nuclear Information System (INIS)

    Gottschalk, Erik E.

    2006-01-01

    BTeV was designed to conduct precision studies of CP violation in BB-bar events using a forward-geometry detector in a hadron collider. The detector was optimized for high-rate detection of beauty and charm particles produced in collisions between protons and antiprotons. The trigger was designed to take advantage of the main difference between events with beauty and charm particles and more typical hadronic events-the presence of detached beauty and charm decay vertices. The first stage of the BTeV trigger was to receive data from a pixel vertex detector, reconstruct tracks and vertices for every beam crossing, reject at least 98% of beam crossings in which neither beauty nor charm particles were produced, and trigger on beauty events with high efficiency. An overview of the trigger design and its evolution to include commodity networking and computing components is presented

  7. Alignment of the ATLAS Inner Detector Tracking System

    CERN Document Server

    Lacuesta, V; The ATLAS collaboration

    2010-01-01

    ATLAS is a multipurpose experiment that records the LHC collisions. To reconstruct trajectories of charged particles produced in these collisions, ATLAS tracking system is equipped with silicon planar sensors and drift‐tube based detectors. They constitute the ATLAS Inner Detector. In order to achieve its scientific goals, the alignment of the ATLAS tracking system requires the determine accurately its almost 36000 degrees of freedom. Thus the demanded precision for the alignment of the silicon sensors is below 10 micrometers. This implies to use a large sample of high momentum and isolated charge particle tracks. The high level trigger selects those tracks online. Then the raw data with the hits information of the triggered tracks is stored in a calibration stream. Tracks from cosmic trigger during empty LHC bunches are also used as input for the alignment. The implementation of the track based alignment within the ATLAS software framework unifies different alignment approaches and allows the alignment of ...

  8. The Trigger Processor and Trigger Processor Algorithms for the ATLAS New Small Wheel Upgrade

    CERN Document Server

    Lazovich, Tomo; The ATLAS collaboration

    2015-01-01

    The ATLAS New Small Wheel (NSW) is an upgrade to the ATLAS muon endcap detectors that will be installed during the next long shutdown of the LHC. Comprising both MicroMegas (MMs) and small-strip Thin Gap Chambers (sTGCs), this system will drastically improve the performance of the muon system in a high cavern background environment. The NSW trigger, in particular, will significantly reduce the rate of fake triggers coming from track segments in the endcap not originating from the interaction point. We will present an overview of the trigger, the proposed sTGC and MM trigger algorithms, and the hardware implementation of the trigger. In particular, we will discuss both the heart of the trigger, an ATCA system with FPGA-based trigger processors (using the same hardware platform for both MM and sTGC triggers), as well as the full trigger electronics chain, including dedicated cards for transmission of data via GBT optical links. Finally, we will detail the challenges of ensuring that the trigger electronics can ...

  9. L0 Confirmation with fast, Tsa based tracking in the T-stations

    CERN Document Server

    Albrecht, J; Terrier, H

    2007-01-01

    A fast tracking algorithm to confirm the high $p_T$ L0 trigger objects with tracks from the T-stations is presented. The L0 trigger candidate is used to define a search window to a potential track. Using this, a seeded track search is performed. The track finding algorithm is based on the \\textit{TsaSeeding} algorithm~\\cite{bib:Tsa}. The efficiency to confirm a true L0 trigger signal is around 96\\%, the momentum can be measured up to $\\Delta p/p$=3\\%.

  10. Minimum Bias Trigger in ATLAS

    International Nuclear Information System (INIS)

    Kwee, Regina

    2010-01-01

    Since the restart of the LHC in November 2009, ATLAS has collected inelastic pp collisions to perform first measurements on charged particle densities. These measurements will help to constrain various models describing phenomenologically soft parton interactions. Understanding the trigger efficiencies for different event types are therefore crucial to minimize any possible bias in the event selection. ATLAS uses two main minimum bias triggers, featuring complementary detector components and trigger levels. While a hardware based first trigger level situated in the forward regions with 2.2 < |η| < 3.8 has been proven to select pp-collisions very efficiently, the Inner Detector based minimum bias trigger uses a random seed on filled bunches and central tracking detectors for the event selection. Both triggers were essential for the analysis of kinematic spectra of charged particles. Their performance and trigger efficiency measurements as well as studies on possible bias sources will be presented. We also highlight the advantage of these triggers for particle correlation analyses. (author)

  11. NA62 Level 0 trigger: TELDES and InterTEL boards testing and integration scenario

    CERN Multimedia

    Lupi, Matteo

    2015-01-01

    TELDES is a TEL62 daughter-board used in the generation of the Liquid Krypton Calorimeter primitive for the Level 0 Trigger of the NA62 Experiment. InterTEL is a daughter-board used to interconnect the TEL62s used in the CEDAR, LAV and RICH detectors.

  12. Performance and development plans for the Inner Detector trigger algorithms at ATLAS

    CERN Document Server

    Martin-haugh, Stewart; The ATLAS collaboration

    2015-01-01

    A description of the design and performance of the newly re-implemented tracking algorithms for the ATLAS trigger for LHC Run 2, to commence in spring 2015, is presented. The ATLAS High Level Trigger (HLT) has been restructured to run as a more flexible single stage process, rather than the two separate Level 2 and Event Filter stages used during Run 1. To make optimal use of this new scenario, a new tracking strategy has been implemented for Run 2. This new strategy will use a Fast Track Finder (FTF) algorithm to directly seed the subsequent Precision Tracking, and will result in improved track parameter resolution and significantly faster execution times than achieved during Run 1 and with better efficiency. The performance and timing of the algorithms for electron and tau track triggers are presented. The profiling infrastructure, constructed to provide prompt feedback from the optimisation, is described, including the methods used to monitor the relative performance improvements as the code evolves. The o...

  13. Performance and development plans for the Inner Detector trigger algorithms at ATLAS

    CERN Document Server

    Martin-haugh, Stewart; The ATLAS collaboration

    2015-01-01

    A description of the design and performance of the newly re-implemented tracking algorithms for the ATLAS trigger for LHC Run 2, to commence in spring 2015, is presented. The ATLAS High Level Trigger (HLT) has been restructured to run as a more flexible single stage process, rather than the two separate Level 2 and Event Filter stages used during Run 1. To make optimal use of this new scenario, a new tracking strategy has been implemented for Run 2. This new strategy will use a FastTrackFinder algorithm to directly seed the subsequent Precision Tracking, and will result in improved track parameter resolution and significantly faster execution times than achieved during Run 1 and with better efficiency. The timings of the algorithms for electron and tau track triggers are presented. The profiling infrastructure, constructed to provide prompt feedback from the optimisation, is described, including the methods used to monitor the relative performance improvements as the code evolves. The online deployment and co...

  14. Upgrade of the CMS muon trigger system in the barrel region

    CERN Document Server

    Rabady, Dinyar; Carlin, Roberto; Codispoti, Giuseppe; Dallavalle, Marco; Erö, Janos; Flouris, Giannis; Foudas, Costas; Fulcher, Jonathan; Guiducci, Luigi; Loukas, Nikitas; Mallios, Stavros; Manthos, Nikos; Papadopoulos, Ioannis; Paradas, Evangelos; Reis, Thomas; Sakulin, Hannes; Sphicas, Paris; Triossi, Andrea; Venturi, Andrea; Wulz, Claudia-Elisabeth

    2016-01-01

    To maintain the excellent performance of the LHC during its Run-1 also in Run-2, the Level-1 Trigger of the Compact Muon Solenoid experiment underwent a significant upgrade. One part of this upgrade was the re-organisation of the muon trigger path from a subsystem-centric view in which hits in the drift tubes, the cathode strip chambers, and the resistive plate chambers were treated separately in dedicated track-finding systems, to one in which complementary detector systems for a given region (barrel, overlap, and endcap) are merged already at the track-finding level. This also required the development of a new system to sort as well as cancel-out the muon tracks found by each system. An overview will be given of the new track-finder system for the barrel region, the Barrel Muon Track Finder (BMTF) as well as the cancel-out and sorting layer, the upgraded Global Muon Trigger (µGMT). While the BMTF improves on the proven and well-tested algorithms used in the Drift Tube Track Finder during Run-1, the µGMT i...

  15. Upgrade of the CMS muon trigger system in the barrel region

    CERN Document Server

    Battilana, Carlo; Codispoti, Giuseppe; Dallavalle, Gaetano-Marco; Ero, Janos; Flouris, Giannis; Fountas, Konstantinos; Fulcher, Jonathan Richard; Guiducci, Luigi; Loukas, Nikitas; Mallios, Stavros; Manthos, Nikolaos; Papadopoulos, Ioannis; Paradas, Evangelos; Rabady, Dinyar Sebastian; Reis, Thomas; Sakulin, Hannes; Sphicas, Paraskevas; Triossi, Andrea; Venturi, Andrea; Wulz, Claudia

    2016-01-01

    To maintain the excellent performance of the LHC during its Run-1 also in Run-2, the Level-1 Trigger of the Compact Muon Solenoid experiment underwent a significant upgrade. One part of this upgrade was the re-organisation of the muon trigger path from a subsystem-centric view in which hits in the drift tubes, the cathode strip chambers, and the resistive plate chambers were treated separately in dedicated track-finding systems, to one in which complementary detector systems for a given region (barrel, overlap, and endcap) are merged already at the track-finding level. This also required the development of a new system to sort as well as cancel-out the muon tracks found by each system. An overview will be given of the new track-finder system for the barrel region, the Barrel Muon Track Finder (BMTF) as well as the cancel-out and sorting layer, the upgraded Global Muon Trigger ($\\mu$GMT). While the BMTF improves on the proven and well-tested algorithms used in the Drift Tube Track Finder during Run-1, the $\\m...

  16. Upgrade of the CMS muon trigger system in the barrel region

    CERN Document Server

    Rabady, Dinyar; Carlin, Roberto; Codispoti, Giuseppe; Dallavalle, Marco; Erö, Janos; Flouris, Giannis; Foudas, Costas; Fulcher, Jonathan; Guiducci, Luigi; Loukas, Nikitas; Mallios, Stavros; Manthos, Nikos; Papadopoulos, Ioannis; Paradas, Evangelos; Reis, Thomas; Sakulin, Hannes; Sphicas, Paris; Triossi, Andrea; Venturi, Andrea; Wulz, Claudia-Elisabeth

    2017-01-01

    To maintain the excellent performance of the LHC during its Run-1 also in Run-2, the Level-1 Trigger of the Compact Muon Solenoid experiment underwent a significant upgrade. One part of this upgrade was the re-organisation of the muon trigger path from a subsystem-centric view in which hits in the drift tubes, the cathode strip chambers, and the resistive plate chambers were treated separately in dedicated track-finding systems, to one in which complementary detector systems for a given region (barrel, overlap, and endcap) are merged already at the track-finding level. This also required the development of a new system to sort as well as cancel-out the muon tracks found by each system. An overview will be given of the new track-finder system for the barrel region, the Barrel Muon Track Finder (BMTF) as well as the cancel-out and sorting layer, the upgraded Global Muon Trigger (µGMT). While the BMTF improves on the proven and well-tested algorithms used in the Drift Tube Track Finder during Run-1, the µGMT i...

  17. A hardware fast tracker for the ATLAS trigger

    Science.gov (United States)

    Asbah, Nedaa

    2016-09-01

    The trigger system of the ATLAS experiment is designed to reduce the event rate from the LHC nominal bunch crossing at 40 MHz to about 1 kHz, at the design luminosity of 1034 cm-2 s-1. After a successful period of data taking from 2010 to early 2013, the LHC already started with much higher instantaneous luminosity. This will increase the load on High Level Trigger system, the second stage of the selection based on software algorithms. More sophisticated algorithms will be needed to achieve higher background rejection while maintaining good efficiency for interesting physics signals. The Fast TracKer (FTK) is part of the ATLAS trigger upgrade project. It is a hardware processor that will provide, at every Level-1 accepted event (100 kHz) and within 100 microseconds, full tracking information for tracks with momentum as low as 1 GeV. Providing fast, extensive access to tracking information, with resolution comparable to the offline reconstruction, FTK will help in precise detection of the primary and secondary vertices to ensure robust selections and improve the trigger performance. FTK exploits hardware technologies with massive parallelism, combining Associative Memory ASICs, FPGAs and high-speed communication links.

  18. Discovery of Intrinsic Primitives on Triangle Meshes

    KAUST Repository

    Solomon, Justin

    2011-04-01

    The discovery of meaningful parts of a shape is required for many geometry processing applications, such as parameterization, shape correspondence, and animation. It is natural to consider primitives such as spheres, cylinders and cones as the building blocks of shapes, and thus to discover parts by fitting such primitives to a given surface. This approach, however, will break down if primitive parts have undergone almost-isometric deformations, as is the case, for example, for articulated human models. We suggest that parts can be discovered instead by finding intrinsic primitives, which we define as parts that posses an approximate intrinsic symmetry. We employ the recently-developed method of computing discrete approximate Killing vector fields (AKVFs) to discover intrinsic primitives by investigating the relationship between the AKVFs of a composite object and the AKVFs of its parts. We show how to leverage this relationship with a standard clustering method to extract k intrinsic primitives and remaining asymmetric parts of a shape for a given k. We demonstrate the value of this approach for identifying the prominent symmetry generators of the parts of a given shape. Additionally, we show how our method can be modified slightly to segment an entire surface without marking asymmetric connecting regions and compare this approach to state-of-the-art methods using the Princeton Segmentation Benchmark. © 2011 The Author(s).

  19. Operation and Monitoring of the CMS Regional Calorimeter Trigger Hardware

    CERN Document Server

    Klabbers, P

    2008-01-01

    The electronics for the Regional Calorimeter Trigger (RCT) of the Compact Muon Solenoid Experiment (CMS) have been produced, tested, and installed. The RCT hardware consists of one clock distribution crate and 18 double-sided crates containing custom boards, ASICs, and backplanes. The RCT receives 8-bit energies and a data quality bit from the HCAL and ECAL Trigger Primitive Generators (TPGs) and sends it to the CMS Global Calorimeter Trigger (GCT) after processing. Integration tests with the TPG and GCT subsystems have been successful. Installation is complete and the RCT is integrated into the Level-1 Trigger chain. Data taking has begun using detector noise, cosmic rays, proton-beam debris, and beamhalo muons. The operation and configuration of the RCT is a completely automated process. The tools to monitor, operate, and debug the RCT are mature and will be described in detail, as well as the results from data taking with the RCT.

  20. {Performance of the ATLAS Inner Detector Trigger algorithms in pp collisions at 7TeV

    CERN Document Server

    Masik, Jiri; The ATLAS collaboration

    2011-01-01

    The ATLAS trigger performs online event selection in three stages. The Inner Detector information is used in the second (Level 2) and third (Event Filter) stages. Track reconstruction in the silicon detectors and transition radiation tracker contributes significantly to the rejection of uninteresting events while retaining a high signal efficiency. To achieve an overall trigger execution time of 40 ms per event, Level 2 tracking uses fast custom algorithms. The Event Filter tracking uses modified offline algorithms, with an overall execution time of 4s per event. Performance of the trigger tracking algorithms with data collected by ATLAS in 2011 is shown. The high efficiency and track quality of the trigger tracking algorithms for identification of physics signatures is presented. We also discuss the robustness of the reconstruction software with respect to the presence of multiple interactions per bunch crossing, an increasingly important feature for optimal performance moving towards the design luminosities...

  1. Performance of the ATLAS Inner Detector Trigger algorithms in pp collisions at 7TeV

    CERN Document Server

    Masik, Jiri; The ATLAS collaboration

    2011-01-01

    The ATLAS trigger performs online event selection in three stages. The Inner Detector information is used in the second (Level 2) and third (Event Filter) stages. Track reconstruction in the silicon detectors and transition radiation tracker contributes significantly to the rejection of uninteresting events while retaining a high signal efficiency. To achieve an overall trigger execution time of 40 ms per event, Level 2 tracking uses fast custom algorithms. The Event Filter tracking uses modified offline algorithms, with an overall execution time of 4s per event. Performance of the trigger tracking algorithms with data collected by ATLAS in 2011 is shown. The high efficiency and track quality of the trigger tracking algorithms for identification of physics signatures is presented. We also discuss the robustness of the reconstruction software with respect to the presence of multiple interactions per bunch crossing, an increasingly important feature for optimal performance moving towards the design luminosities...

  2. spib is required for primitive myeloid development in Xenopus.

    Science.gov (United States)

    Costa, Ricardo M B; Soto, Ximena; Chen, Yaoyao; Zorn, Aaron M; Amaya, Enrique

    2008-09-15

    Vertebrate blood formation occurs in 2 spatially and temporally distinct waves, so-called primitive and definitive hematopoiesis. Although definitive hematopoiesis has been extensively studied, the development of primitive myeloid blood has received far less attention. In Xenopus, primitive myeloid cells originate in the anterior ventral blood islands, the equivalent of the mammalian yolk sac, and migrate out to colonize the embryo. Using fluorescence time-lapse video microscopy, we recorded the migratory behavior of primitive myeloid cells from their birth. We show that these cells are the first blood cells to differentiate in the embryo and that they are efficiently recruited to embryonic wounds, well before the establishment of a functional vasculature. Furthermore, we isolated spib, an ETS transcription factor, specifically expressed in primitive myeloid precursors. Using spib antisense morpholino knockdown experiments, we show that spib is required for myeloid specification, and, in its absence, primitive myeloid cells retain hemangioblast-like characteristics and fail to migrate. Thus, we conclude that spib sits at the top of the known genetic hierarchy that leads to the specification of primitive myeloid cells in amphibians.

  3. Hardware trigger processor for the MDT system

    CERN Document Server

    AUTHOR|(SzGeCERN)757787; The ATLAS collaboration; Hazen, Eric; Butler, John; Black, Kevin; Gastler, Daniel Edward; Ntekas, Konstantinos; Taffard, Anyes; Martinez Outschoorn, Verena; Ishino, Masaya; Okumura, Yasuyuki

    2017-01-01

    We are developing a low-latency hardware trigger processor for the Monitored Drift Tube system in the Muon spectrometer. The processor will fit candidate Muon tracks in the drift tubes in real time, improving significantly the momentum resolution provided by the dedicated trigger chambers. We present a novel pure-FPGA implementation of a Legendre transform segment finder, an associative-memory alternative implementation, an ARM (Zynq) processor-based track fitter, and compact ATCA carrier board architecture. The ATCA architecture is designed to allow a modular, staged approach to deployment of the system and exploration of alternative technologies.

  4. An event-triggered control approach for the leader-tracking problem with heterogeneous agents

    Science.gov (United States)

    Garcia, Eloy; Cao, Yongcan; Casbeer, David W.

    2018-05-01

    This paper presents an event-triggered control and communication framework for the cooperative leader-tracking problem with communication constraints. Continuous communication among agents is not assumed in this work and decentralised event-based strategies are proposed for agents with heterogeneous linear dynamics. Also, the leader dynamics are unknown and only intermittent measurements of its states are obtained by a subset of the followers. The event-based method not only represents a way to restrict communication among agents, but it also provides a decentralised scheme for scheduling information broadcasts. Notably, each agent is able to determine its own broadcasting instants independently of any other agent in the network. In an extension, the case where transmission of information is affected by time-varying communication delays is addressed. Finally, positive lower-bounds on the inter-event time intervals are obtained in order to show that Zeno behaviour does not exist and, therefore, continuous exchange of information is never needed in this framework.

  5. Nanometer-scale anatomy of entire Stardust tracks

    Science.gov (United States)

    Nakamura-Messenger, Keiko; Keller, Lindsay P.; Clemett, Simon J.; Messenger, Scott; Ito, Motoo

    2011-07-01

    We have developed new sample preparation and analytical techniques tailored for entire aerogel tracks of Wild 2 sample analyses both on "carrot" and "bulbous" tracks. We have successfully ultramicrotomed an entire track along its axis while preserving its original shape. This innovation allowed us to examine the distribution of fragments along the entire track from the entrance hole all the way to the terminal particle. The crystalline silicates we measured have Mg-rich compositions and O isotopic compositions in the range of meteoritic materials, implying that they originated in the inner solar system. The terminal particle of the carrot track is a 16O-rich forsteritic grain that may have formed in a similar environment as Ca-, Al-rich inclusions and amoeboid olivine aggregates in primitive carbonaceous chondrites. The track also contains submicron-sized diamond grains likely formed in the solar system. Complex aromatic hydrocarbons distributed along aerogel tracks and in terminal particles. These organics are likely cometary but affected by shock heating.

  6. Primitive Based Action Representation and Recognition

    DEFF Research Database (Denmark)

    Baby, Sanmohan; Krüger, Volker

    2009-01-01

    a sequential and statistical     learning algorithm for   automatic detection of the action primitives and the action grammar   based on these primitives.  We model a set of actions using a   single HMM whose structure is learned incrementally as we observe   new types.   Actions are modeled with sufficient...

  7. The Flemish Primitives

    NARCIS (Netherlands)

    Vos, De Dirk

    2003-01-01

    Intensely realistic, piercingly beautiful, the art of the Flemish Primitives inspires powerful emotional responses. Painted during the fifteenth century in the southern Netherlands, these influential and enduring works helped establish the foundations of modern European painting.Sumptuously

  8. Proceedings of the workshop on triggering and data acquisition for experiments at the Supercollider

    Energy Technology Data Exchange (ETDEWEB)

    Donaldson, R. [ed.

    1989-04-01

    This meeting covered the following subjects: triggering requirements for SSC physics; CDF level 3 trigger; D0 trigger design; AMY trigger systems; Zeus calorimeter first level trigger; data acquisition for the Zeus Central Tracking Detector; trigger and data acquisition aspects for SSC tracking; data acquisition systems for the SSC; validating triggers in CDF level 3; optical data transmission at SSC; time measurement system at SSC; SSC/BCD data acquisition system; microprocessors and other processors for triggering and filtering at the SSC; data acquisition, event building, and on-line processing; LAA real-time benchmarks; object-oriented system building at SSC; and software and project management. Selected papers are indexed separately for inclusion in the Energy Science and Technology Database.

  9. Muon Trigger for Mobile Phones

    Science.gov (United States)

    Borisyak, M.; Usvyatsov, M.; Mulhearn, M.; Shimmin, C.; Ustyuzhanin, A.

    2017-10-01

    The CRAYFIS experiment proposes to use privately owned mobile phones as a ground detector array for Ultra High Energy Cosmic Rays. Upon interacting with Earth’s atmosphere, these events produce extensive particle showers which can be detected by cameras on mobile phones. A typical shower contains minimally-ionizing particles such as muons. As these particles interact with CMOS image sensors, they may leave tracks of faintly-activated pixels that are sometimes hard to distinguish from random detector noise. Triggers that rely on the presence of very bright pixels within an image frame are not efficient in this case. We present a trigger algorithm based on Convolutional Neural Networks which selects images containing such tracks and are evaluated in a lazy manner: the response of each successive layer is computed only if activation of the current layer satisfies a continuation criterion. Usage of neural networks increases the sensitivity considerably comparable with image thresholding, while the lazy evaluation allows for execution of the trigger under the limited computational power of mobile phones.

  10. Primitive recursive realizability and basic propositional logic

    NARCIS (Netherlands)

    Plisko, Valery

    2007-01-01

    Two notions of primitive recursive realizability for arithmetic sentences are considered. The first one is strictly primitive recursive realizability introduced by Z. Damnjanovic in 1994. We prove that intuitionistic predicate logic is not sound with this kind of realizability. Namely there

  11. SiΛvio: A trigger for Λ-hyperons

    Energy Technology Data Exchange (ETDEWEB)

    Münzer, Robert; Berger, Martin; Fabbietti, Laura [Excellence Cluster Universe, Technische Universität München, Boltzmannstr. 2, D-85748 (Germany); Averbeck, R.; Andronic, A. [GSI Helmholtzzentrum für Schwerionenforschung GmbH, Darmstadt (Germany); Barret, V. [Laboratoire de Physique Corpusculaire, IN2P3/CNRS, Université Blaise Pascal, Clermont-Ferrand (France); Basrak, Z. [Ruđer Bošković Institute, Zagreb (Croatia); Bastid, N. [Laboratoire de Physique Corpusculaire, IN2P3/CNRS, Université Blaise Pascal, Clermont-Ferrand (France); Benabderrahmane, M.L. [Physikalisches Institut der Universität Heidelberg, Heidelberg (Germany); Buehler, P.; Cargnelli, M. [Stefan-Meyer-Institut für subatomare Physik, Österreichische Akademie der Wissenschaften, Wien (Austria); Čaplar, R. [Ruđer Bošković Institute, Zagreb (Croatia); Carevic, I. [University of Split, Split (Croatia); Charviakova, V. [Institute of Experimental Physics, Faculty of Physics, University of Warsaw, Warsaw (Poland); Crochet, P. [Laboratoire de Physique Corpusculaire, IN2P3/CNRS, Université Blaise Pascal, Clermont-Ferrand (France); Deppner, I. [Physikalisches Institut der Universität Heidelberg, Heidelberg (Germany); Dupieux, P. [Laboratoire de Physique Corpusculaire, IN2P3/CNRS, Université Blaise Pascal, Clermont-Ferrand (France); Dželalija, M. [University of Split, Split (Croatia); Fodor, Z. [Wigner RCP, RMKI, Budapest (Hungary); and others

    2014-05-01

    As online trigger for events containing Λ hyperons in p+p collisions at 3.1 GeV a silicon-based device has been designed and built. This system has been integrated close to the target region within the FOPI spectrometer at GSI and was also employed as a tracking device to improve the vertex reconstruction of secondary decays. The design of the detector components, read-out, the trigger capability as well as the tracking performance are presented. An enrichment factor of about 14 was achieved for events containing a Λ-hyperon candidate.

  12. Implementation of BES-III TOF trigger system in programmable logic devices

    International Nuclear Information System (INIS)

    Zheng Wei; Liu Shubin; Liu Xuzong; An Qi

    2009-01-01

    The TOF trigger sub-system on the upgrading Beijing Spectrometer is designed to receive 368 bits fast hit signals from the front end electronics module to yield 7 bits trigger information according to the physical requirement. It sends the processed real time trigger information to the Global-Trigger-Logic to generate the primal trigger signal L1, and sends processed 136 bits real time position information to the Track-Match-Logic to calculate the particle flight tracks. The sub-system also packages the valid events for the DAQ system to read out. Following the reconfigurable concept, a large number of programmable logic devices are employed to increase the flexibility and reliability of the system, and decrease the complexity and the space requirement of PCB layout. This paper describes the implementation of the kernel trigger logic in a programmable logic device. (authors)

  13. The fast tracker processor for hadronic collider triggers

    CERN Document Server

    Annovi, A; Bardi, A; Carosi, R; Dell'Orso, Mauro; D'Onofrio, M; Giannetti, P; Iannaccone, G; Morsani, F; Pietri, M; Varotto, G

    2000-01-01

    Perspective for precise and fast track reconstruction in future hadronic collider experiments are addressed. We discuss the feasibility of a pipelined highly parallelized processor dedicated to the implementation of a very fast algorithm. The algorithm is based on the use of a large bank of pre-stored combinations of trajectory points (patterns) for extremely complex tracking systems. The CMS experiment at LHC is used as a benchmark. Tracking data from the events selected by the level-1 trigger are sorted and filtered by the Fast Tracker processor at a rate of 100 kHz. This data organization allows the level-2 trigger logic to reconstruct full resolution traces with transverse momentum above few GeV and search secondary vertexes within typical level-2 times. 15 Refs.

  14. Versatile secondary trigger for a multi-detector system

    International Nuclear Information System (INIS)

    Ouimette, D.; Porat, D.; Tilghman, A.; Young, C.

    1982-10-01

    The electronics of a secondary trigger for particle physics is described. The system has several desirable features that solve track recognition problems in situations where several subsystems of various cell configurations participate in the decision making. Track curvature and multiplicity are the criteria used. Versatility is attained through the use of programmable Array Logic (PAL) and a 48-bit wide ROM-based sequencer that determines, with the resolution of a cell, the participation of each element in the decision process. Data from layers with arbitrary numbers of cells are shifted in a progammable manner through a PROM mask containing eight different track definitions. The results of any one of the eight triggering criteria are available 5.6 μs after the end of drift interval

  15. Design of a secondary-vertex trigger system

    International Nuclear Information System (INIS)

    Husby, D.; Chew, P.; Sterner, K.; Selove, W.

    1995-06-01

    For the selection of beauty and charm events with high efficiency at the Tevatron, a secondary-vertex trigger system is under design. It would operate on forward-geometry events. The system would use on-line tracking of all tracks in the vertex detector, to identify events with clearly detached secondary vertices

  16. A Hardware Fast Tracker for the ATLAS trigger

    International Nuclear Information System (INIS)

    Asbah, N.

    2016-01-01

    The trigger system of the ATLAS experiment is designed to reduce the event rate from the LHC nominal bunch crossing at 40 MHz to about 1 kHz, at the design luminosity of 10 34 cm -2 · s -1 . After a successful period of data taking from 2010 to early 2013, the LHC already started with much higher instantaneous luminosity. This will increase the load on High Level Trigger system, the second stage of the selection based on software algorithms. More sophisticated algorithms will be needed to achieve higher background rejection while maintaining good efficiency for interesting physics signals. The Fast TracKer (FTK) is part of the ATLAS trigger upgrade project. It is a hardware processor that will provide, at every Level-1 accepted event (100 kHz) and within 100 μs, full tracking information for tracks with momentum as low as 1 GeV. Providing fast, extensive access to tracking information, with resolution comparable to the offline reconstruction, FTK will help in precise detection of the primary and secondary vertices to ensure robust selections and improve the trigger performance. FTK exploits hardware technologies with massive parallelism, combining Associative Memory ASICs, FPGAs and high-speed communication links.

  17. D0 triggering and data acquisition

    International Nuclear Information System (INIS)

    Gibbard, B.

    1992-10-01

    The trigger for D0 is a multi-tier system. Within the 3.5 μsec bunch crossing interval, custom electronics select interesting event candidates based on electromagnetic and hadronic energy deposits in the calorimeter and on indications of tracks in the muon system. Subsequent hardware decisions use refined calculations of electron and muon characteristics. The highest level trigger occurs in one element of a farm of microprocessors, where fully developed algorithms for electrons, muons, jets, or missing E t are executed. This highest level trigger also provides the assembly of the event into its final data structure. Performance of this trigger and data acquisition system in collider operation is described

  18. The STAR trigger

    International Nuclear Information System (INIS)

    Bieser, F.S.; Crawford, H.J.; Engelage, J.; Eppley, G.; Greiner, L.C.; Judd, E.G.; Klein, S.R.; Meissner, F.; Minor, R.; Milosevich, Z.; Mutchler, G.; Nelson, J.M.; Schambach, J.; VanderMolen, A.S.; Ward, H.; Yepes, P.

    2003-01-01

    We describe the trigger system that we designed and implemented for the STAR detector at RHIC. This is a 10 MHz pipelined system based on fast detector output that controls the event selection for the much slower tracking detectors. Results from the first run are presented and new detectors for the 2001 run are discussed

  19. Cometary dust: the diversity of primitive refractory grains.

    Science.gov (United States)

    Wooden, D H; Ishii, H A; Zolensky, M E

    2017-07-13

    Comet dust is primitive and shows significant diversity. Our knowledge of the properties of primitive cometary particles has expanded significantly through microscale investigations of cosmic dust samples (anhydrous interplanetary dust particles (IDPs), chondritic porous (CP) IDPs and UltraCarbonaceous Antarctic micrometeorites, Stardust and Rosetta ), as well as through remote sensing ( Spitzer IR spectroscopy). Comet dust are aggregate particles of materials unequilibrated at submicrometre scales. We discuss the properties and processes experienced by primitive matter in comets. Primitive particles exhibit a diverse range of: structure and typology; distribution of constituents; concentration and form of carbonaceous and refractory organic matter; Mg- and Fe-contents of the silicate minerals; sulfides; existence/abundance of type II chondrule fragments; high-temperature calcium-aluminium inclusions and ameboid-olivine aggregates; and rarely occurring Mg-carbonates and magnetite, whose explanation requires aqueous alteration on parent bodies. The properties of refractory materials imply there were disc processes that resulted in different comets having particular selections of primitive materials. The diversity of primitive particles has implications for the diversity of materials in the protoplanetary disc present at the time and in the region where the comets formed.This article is part of the themed issue 'Cometary science after Rosetta'. © 2017 The Authors.

  20. Installation and Commissioning of the CMS Level-1 Calorimeter Trigger Upgrade

    CERN Document Server

    AUTHOR|(CDS)2071552; Aggleton, Robin Cameron; Baber, Mark David John; Barbieri, Richard Alexander; Belknap, Donald Austin; Berryhill, Jeffrey; Brooke, James John; Bundock, Aaron; Cali, Ivan Amos; Cepeda, Maria Luisa; Dasgupta, Sudeshna; da Silva, J.C; Dasu, Sridhara Rao; Durkin, Timothy John; Fobes, Robert William; Ghabrous Larrea, Carlos; Gorski, Thomas; Grimes, Mark; Guilbaud, Maxime; Guo, Z; Hall, Geoffrey; Harder, Kristian; Harper, Sam; Iles, Gregory Michiel; Innocenti, Gian Michele; Ives, Sarah Joanne; Jones, John; Kreis, Benjamin Jonah; Lee, Y; Li, W; Lucas, Christopher; Lucas, Robyn Elizabeth; Marrouche, Jad; Newbold, David; Northup, Michael; Oljavo, I; Paramesvaran, Sudarshan; Rivera, Ryan Allen; Roland, Christof; Rose, A; Sankey, D; Smith, Wesley; Svetek, Ales; Tapper, Alexander; Thea, Alessandro; Tikalsky, Jesra Lilah; Uplegger, Lorenzo; Vicente, Marcelo; Williams, Thomas Stephen; Wyslouch, Boleslaw

    2016-01-01

    The Compact Muon Solenoid (CMS) experiment is currently installing upgrades to their Calorimeter Trigger for LHC Run 2 to ensure that the trigger thresholds can stay low, and physics data collection will not be compromised. The electronics will be upgraded in two stages. Stage-1 for 2015 will upgrade some electronics and links from copper to optical in the existing calorimeter trigger so that the algorithms can be improved and we do not lose valuable data before stage-2 can be fully installed by 2016. Stage-2 will fully replace the calorimeter trigger at CMS with a micro-TCA and optical link system. It requires that the updates to the calorimeter back-ends, the source of the trigger primitives, be completed. The new systemâ??s boards will utilize Xilinx Virtex-7 FPGAs and have hundreds of high-speed links operating at up to 10 Gbps to maximize data throughput. The integration, commissioning, and installation of stage-1 in 2015 will be described, as well as the integration and parallel installation of th...

  1. A fast processor for di-lepton triggers

    CERN Document Server

    Kostarakis, P; Barsotti, E; Conetti, S; Cox, B; Enagonio, J; Haldeman, M; Haynes, W; Katsanevas, S; Kerns, C; Lebrun, P; Smith, H; Soszyniski, T; Stoffel, J; Treptow, K; Turkot, F; Wagner, R

    1981-01-01

    As a new application of the Fermilab ECL-CAMAC logic modules a fast trigger processor was developed for Fermilab experiment E-537, aiming to measure the higher mass di-muon production by antiprotons. The processor matches the hit information received from drift chambers and scintillation counters, to find candidate muon tracks and determine their directions and momenta. The tracks are then paired to compute an invariant mass: when the computed mass falls within the desired range, the event is accepted. The process is accomplished in times of 5 to 10 microseconds, while achieving a trigger rate reduction of up to a factor of ten. (5 refs).

  2. A Hardware Fast Tracker for the ATLAS trigger

    CERN Document Server

    Asbah, Nedaa; The ATLAS collaboration

    2015-01-01

    The trigger system of the ATLAS experiment is designed to reduce the event rate from the LHC nominal bunch crossing at 40 MHz to about 1 kHz, at the design luminosity of 10^{34} cm^{-2}s^{-1}. After a successful period of data taking from 2010 to early 2013, the LHC restarted with much higher instantaneous luminosity. This will increase the load on High Level Trigger system, the second stage of the selection based on software algorithms. More sophisticated algorithms will be needed to achieve higher background rejection while maintaining good efficiency for interesting physics signals. The Fast TracKer (FTK) is part of the ATLAS trigger upgrade project; it is a hardware processor that will provide, at every level-1 accepted event (100 kHz) and within 100 microseconds, full tracking information for tracks with momentum as low as 1 GeV. Providing fast extensive access to tracking information, with resolution comparable to the offline reconstruction, FTK will help in precise detection of the primary and secondar...

  3. Action Recognition in Semi-synthetic Images using Motion Primitives

    DEFF Research Database (Denmark)

    Fihl, Preben; Holte, Michael Boelstoft; Moeslund, Thomas B.

    This technical report describes an action recognition approach based on motion primitives. A few characteristic time instances are found in a sequence containing an action and the action is classified from these instances. The characteristic instances are defined solely on the human motion, hence...... motion primitives. The motion primitives are extracted by double difference images and represented by four features. In each frame the primitive, if any, that best explains the observed data is identified. This leads to a discrete recognition problem since a video sequence will be converted into a string...... containing a sequence of symbols, each representing a primitive. After pruning the string a probabilistic Edit Distance classifier is applied to identify which action best describes the pruned string. The method is evaluated on five one-arm gestures. A test is performed with semi-synthetic input data...

  4. Making tracks

    Energy Technology Data Exchange (ETDEWEB)

    Anon.

    1986-10-15

    In many modern tracking chambers, the sense wires, rather than being lined up uniformly, are grouped into clusters to facilitate the pattern recognition process. However, with higher energy machines providing collisions richer in secondary particles, event reconstruction becomes more complicated. A Caltech / Illinois / SLAC / Washington group developed an ingenious track finding and fitting approach for the Mark III detector used at the SPEAR electron-positron ring at SLAC (Stanford). This capitalizes on the detector's triggering, which uses programmable logic circuits operating in parallel, each 'knowing' the cell patterns for all tracks passing through a specific portion of the tracker (drift chamber)

  5. The ATLAS Muon and Tau Trigger

    CERN Document Server

    Dell'Asta, L; The ATLAS collaboration

    2013-01-01

    [Muon] The ATLAS experiment at CERN's Large Hadron Collider (LHC) deploys a three-levels processing scheme for the trigger system. The level-1 muon trigger system gets its input from fast muon trigger detectors. Fast sector logic boards select muon candidates, which are passed via an interface board to the central trigger processor and then to the High Level Trigger (HLT). The muon HLT is purely software based and encompasses a level-2 (L2) trigger followed by an event filter (EF) for a staged trigger approach. It has access to the data of the precision muon detectors and other detector elements to refine the muon hypothesis. Trigger-specific algorithms were developed and are used for the L2 to increase processing speed for instance by making use of look-up tables and simpler algorithms, while the EF muon triggers mostly benefit from offline reconstruction software to obtain most precise determination of the track parameters. There are two algorithms with different approaches, namely inside-out and outside-in...

  6. CAD-based Monte Carlo automatic modeling method based on primitive solid

    International Nuclear Information System (INIS)

    Wang, Dong; Song, Jing; Yu, Shengpeng; Long, Pengcheng; Wang, Yongliang

    2016-01-01

    Highlights: • We develop a method which bi-convert between CAD model and primitive solid. • This method was improved from convert method between CAD model and half space. • This method was test by ITER model and validated the correctness and efficiency. • This method was integrated in SuperMC which could model for SuperMC and Geant4. - Abstract: Monte Carlo method has been widely used in nuclear design and analysis, where geometries are described with primitive solids. However, it is time consuming and error prone to describe a primitive solid geometry, especially for a complicated model. To reuse the abundant existed CAD models and conveniently model with CAD modeling tools, an automatic modeling method for accurate prompt modeling between CAD model and primitive solid is needed. An automatic modeling method for Monte Carlo geometry described by primitive solid was developed which could bi-convert between CAD model and Monte Carlo geometry represented by primitive solids. While converting from CAD model to primitive solid model, the CAD model was decomposed into several convex solid sets, and then corresponding primitive solids were generated and exported. While converting from primitive solid model to the CAD model, the basic primitive solids were created and related operation was done. This method was integrated in the SuperMC and was benchmarked with ITER benchmark model. The correctness and efficiency of this method were demonstrated.

  7. Towards a Level-1 tracking trigger for the ATLAS experiment at the High Luminosity LHC

    CERN Document Server

    Martin, T A D; The ATLAS collaboration

    2014-01-01

    The ability to apply fast processing that can take account of the properties of the tracks that are being reconstructed will enhance the rejection, while retaining high efficiency for events with desired signatures, such as high momentum leptons or multiple jets. Studies to understand the feasibility of such a system have begun, and proceed in two directions: a fast readout for high granularity silicon detectors, and a fast pattern recognition algorithm to be applied just after the Front-End readout for specific sub detectors. Both existing, and novel technologies can offer solutions. The aim of these studies is to determine the parameter space to which this system must be adapted. The status of ongoing tests on specific hardware components crucial for this system, both to increase the ATLAS physics potential and fully satisfy the trigger requirements at very high luminosities are discussed.

  8. Multi-threaded algorithms for GPGPU in the ATLAS High Level Trigger

    CERN Document Server

    AUTHOR|(INSPIRE)INSPIRE-00212700; The ATLAS collaboration

    2017-01-01

    General purpose Graphics Processor Units (GPGPU) are being evaluated for possible future inclusion in an upgraded ATLAS High Level Trigger farm. We have developed a demonstrator including GPGPU implementations of Inner Detector and Muon tracking and Calorimeter clustering within the ATLAS software framework. ATLAS is a general purpose particle physics experiment located on the LHC collider at CERN. The ATLAS Trigger system consists of two levels, with Level-1 implemented in hardware and the High Level Trigger implemented in software running on a farm of commodity CPU. The High Level Trigger reduces the trigger rate from the 100 kHz Level-1 acceptance rate to 1.5 kHz for recording, requiring an average per-event processing time of ∼ 250 ms for this task. The selection in the high level trigger is based on reconstructing tracks in the Inner Detector and Muon Spectrometer and clusters of energy deposited in the Calorimeter. Performing this reconstruction within the available farm resources presents a significa...

  9. LHC-B trigger and data acquisition progress report

    CERN Document Server

    Dijkstra, H; Harris, Frank

    1997-01-01

    97-05 This report describes the progress since the Letter of Intent [1] in the development of the trigger and data acquisition system for LHC-B. The basic philosophy has changed significantly, with the proposal to implement tracking and vertex topology triggers in specialised hardware. This will be at an additional trigger level, giving 4 levels in total. We present details of the new proposal, together with preliminary requirements estimates, and some simulation results.

  10. AGUA TIBIA PRIMITIVE AREA, CALIFORNIA.

    Science.gov (United States)

    Irwin, William P.; Thurber, Horace K.

    1984-01-01

    The Agua Tibia Primitive Area in southwestern California is underlain by igneous and metamorphic rocks that are siilar to those widely exposed throughout much of the Peninsular Ranges. To detect the presence of any concealed mineral deposits, samples of stream sediments were collected along the various creeks that head in the mountain. As an additional aid in evaluating the mineral potential, an aeromagnetic survey was made and interpreted. A search for records of past or existing mining claims within the primitive area was made but none was found. Evidence of deposits of metallic or nonmetallic minerals was not seen during the study.

  11. Upgrade readout and trigger electronics for the ATLAS liquid argon calorimeters for future LHC running

    CERN Document Server

    Yamanaka, T; The ATLAS collaboration

    2014-01-01

    The ATLAS Liquid Argon (LAr) calorimeters produce almost 200K signals that must be digitized and processed by the front-end and back-end electronics at every triggered event. Additionally, the front-end electronics sums analog signals to provide coarse-grained energy sums to the first-level (L1) trigger system. The current design was optimized for the nominal LHC luminosity of 10^34 cm^-2s^-1. However, in future higher-luminosity phases of LHC operation, the luminosity (and associated pile-up noise) will be 3-7 times higher. An improved spatial granularity of the trigger primitives is therefore proposed, in order to improve the trigger performance at high background rejection rates. For the first upgrade phase in 2018, new LAr Trigger Digitizer Boards are being designed to receive the higher granularity signals, digitize them on-detector and send them via fast optical links to a new digital processing system (DPS). This applies digital filtering and identifies significant energy depositions in each trigger ch...

  12. Upgraded readout and trigger electronics for the ATLAS liquid argon calorimeters for future LHC running

    CERN Document Server

    Yamanaka, T; The ATLAS collaboration

    2014-01-01

    The ATLAS Liquid Argon (LAr) calorimeters produce almost 200K signals that must be digitized and processed by the front-end and back-end electronics at every triggered event. Additionally, the front-end electronics sums analog signals to provide coarse-grained energy sums to the first-level (L1) trigger system. The current design was optimized for the nominal LHC luminosity of 10^34 cm^-2s^-1. However, in future higher-luminosity phases of LHC operation, the luminosity (and associated pile-up noise) will be 3-7 times higher. An improved spatial granularity of the trigger primitives is therefore proposed, in order to improve the trigger performance at high background rejection rates. For the first upgrade phase in 2018, new LAr Trigger Digitizer Boards are being designed to receive the higher granularity signals, digitize them on-detector and send them via fast optical links to a new digital processing system (DPS). This applies digital filtering and identifies significant energy depositions in each trigger ch...

  13. Event-triggered decentralized adaptive fault-tolerant control of uncertain interconnected nonlinear systems with actuator failures.

    Science.gov (United States)

    Choi, Yun Ho; Yoo, Sung Jin

    2018-06-01

    This paper investigates the event-triggered decentralized adaptive tracking problem of a class of uncertain interconnected nonlinear systems with unexpected actuator failures. It is assumed that local control signals are transmitted to local actuators with time-varying faults whenever predefined conditions for triggering events are satisfied. Compared with the existing control-input-based event-triggering strategy for adaptive control of uncertain nonlinear systems, the aim of this paper is to propose a tracking-error-based event-triggering strategy in the decentralized adaptive fault-tolerant tracking framework. The proposed approach can relax drastic changes in control inputs caused by actuator faults in the existing triggering strategy. The stability of the proposed event-triggering control system is analyzed in the Lyapunov sense. Finally, simulation comparisons of the proposed and existing approaches are provided to show the effectiveness of the proposed theoretical result in the presence of actuator faults. Copyright © 2018 ISA. Published by Elsevier Ltd. All rights reserved.

  14. From Realistic to Primitive Models: A Primitive Model of Methanol

    Czech Academy of Sciences Publication Activity Database

    Vlček, Lukáš; Nezbeda, Ivo

    2003-01-01

    Roč. 101, č. 19 (2003), s. 2987-2996 ISSN 0026-8976 R&D Projects: GA AV ČR IAA4072303; GA AV ČR IAA4072309 Grant - others:NATO(XX) PST.CLG 978178/6343 Institutional research plan: CEZ:AV0Z4072921 Keywords : primitive model * methanol Subject RIV: CF - Physical ; Theoretical Chemistry Impact factor: 1.591, year: 2003

  15. The ALICE Dimuon Spectrometer High Level Trigger

    CERN Document Server

    Becker, B; Cicalo, Corrado; Das, Indranil; de Vaux, Gareth; Fearick, Roger; Lindenstruth, Volker; Marras, Davide; Sanyal, Abhijit; Siddhanta, Sabyasachi; Staley, Florent; Steinbeck, Timm; Szostak, Artur; Usai, Gianluca; Vilakazi, Zeblon

    2009-01-01

    The ALICE Dimuon Spectrometer High Level Trigger (dHLT) is an on-line processing stage whose primary function is to select interesting events that contain distinct physics signals from heavy resonance decays such as J/psi and Gamma particles, amidst unwanted background events. It forms part of the High Level Trigger of the ALICE experiment, whose goal is to reduce the large data rate of about 25 GB/s from the ALICE detectors by an order of magnitude, without loosing interesting physics events. The dHLT has been implemented as a software trigger within a high performance and fault tolerant data transportation framework, which is run on a large cluster of commodity compute nodes. To reach the required processing speeds, the system is built as a concurrent system with a hierarchy of processing steps. The main algorithms perform partial event reconstruction, starting with hit reconstruction on the level of the raw data received from the spectrometer. Then a tracking algorithm finds track candidates from the recon...

  16. Local Trigger Electronics for the CMS Drift Tubes Muon detector

    CERN Document Server

    Travaglini, R

    2003-01-01

    In the CMS detector in preparation for the CERN LHC collider, the Drift Tubes Muon Chambers are equipped with mini-crates hosting custom electronics for fast data processing and local trigger generation. In particular the Trigger Server of a DTC consists of Track Sorter Slave ASICs and a Track Sorter Master system. The trigger electronics boards are in production, to be ready for the muon detector installation in the CMS barrel starting at the end of 2003.In this work, the performance of the Trigger Server will be discussed, on the basis both of high-statistics tests with predefined patterns and of test beam data collected at CERN, where a DTC was exposed to a muon beam having an LHC-like bunch structure. Finally, some system performance expectations, concerning radiation tolerance and signal transmission issues during LHC running, will be also discussed.

  17. Analysis and realization of a high resolution trigger for DM2 experiment

    International Nuclear Information System (INIS)

    Bertrand, J.L.

    1984-01-01

    The construction of a high resolution trigger has been carried out from its theoretical design to building. The term trigger is applied to an almost real-time system for track filtering in particle detection. Curved tracks are detected (with a magnetic field) and the detector is of a revolution symmetry type. The concept of a ''hybrid'' trigger with features in between those of the so-called ''CELLO R0'' and ''MARK II'' types is launched. It allows a positive versatility for the optimization of the different features. Besides a specific structure, some hardware and software implements have been designed for development and tests. The ''TRIGGER LENT'' is presently in operation in the DM2 experiment [fr

  18. FPGA-based trigger system for the Fermilab SeaQuest experimentz

    Energy Technology Data Exchange (ETDEWEB)

    Shiu, Shiuan-Hal, E-mail: shshiu@phys.sinica.edu.tw [Institute of Physics, Academia Sinica,128 Sec. 2, Academia Rd., Nankang, Taipei 11529, Taiwan (China); Department of Physics, National Central University, No. 300, Jhongda Rd., Jhongli District, Taoyuan City 32001, Taiwan (China); Wu, Jinyuan [Fermi National Accelerator Laboratory, Kirk and Pine Streets, Batavia, IL 60510-5011 (United States); McClellan, Randall Evan [Department of Physics, University of Illinois at Urbana-Champaign, 1110 W. Green St., Urbana, IL 61801-3080 (United States); Chang, Ting-Hua; Chang, Wen-Chen; Chen, Yen-Chu [Institute of Physics, Academia Sinica,128 Sec. 2, Academia Rd., Nankang, Taipei 11529, Taiwan (China); Gilman, Ron [Rutgers, The State University of New Jersey, 136 Frelinghuysen Rd., Piscataway, NJ 08854 (United States); Nakano, Kenichi [Department of Physics, Tokyo Institute of Technology, 2-12-1 Ookayama, Meguro-ku, Tokyo 152-8550 (Japan); Peng, Jen-Chieh [Department of Physics, University of Illinois at Urbana-Champaign, 1110 W. Green St., Urbana, IL 61801-3080 (United States); Wang, Su-Yin [Institute of Physics, Academia Sinica,128 Sec. 2, Academia Rd., Nankang, Taipei 11529, Taiwan (China); Fermi National Accelerator Laboratory, Kirk and Pine Streets, Batavia, IL 60510-5011 (United States); Department of Physics, National Kaohsiung Normal University, No. 62, Shenjhong Rd.,Yanchao Township, Kaohsiung County 824, Taiwan (China)

    2015-12-01

    The SeaQuest experiment (Fermilab E906) detects pairs of energetic μ{sup +} and μ{sup −} produced in 120 GeV/c proton–nucleon interactions in a high rate environment. The trigger system consists of several arrays of scintillator hodoscopes and a set of field-programmable gate array (FPGA) based VMEbus modules. Signals from up to 96 channels of hodoscope are digitized by each FPGA with a 1-ns resolution using the time-to-digital convertor (TDC) firmware. The delay of the TDC output can be adjusted channel-by-channel in 1-ns step and then re-aligned with the beam RF clock. The hit pattern on the hodoscope planes is then examined against pre-determined trigger matrices to identify candidate muon tracks. Information on the candidate tracks is sent to the 2nd-level FPGA-based track correlator to find candidate di-muon events. The design and implementation of the FPGA-based trigger system for SeaQuest experiment are presented.

  19. Primitive polynomials selection method for pseudo-random number generator

    Science.gov (United States)

    Anikin, I. V.; Alnajjar, Kh

    2018-01-01

    In this paper we suggested the method for primitive polynomials selection of special type. This kind of polynomials can be efficiently used as a characteristic polynomials for linear feedback shift registers in pseudo-random number generators. The proposed method consists of two basic steps: finding minimum-cost irreducible polynomials of the desired degree and applying primitivity tests to get the primitive ones. Finally two primitive polynomials, which was found by the proposed method, used in pseudorandom number generator based on fuzzy logic (FRNG) which had been suggested before by the authors. The sequences generated by new version of FRNG have low correlation magnitude, high linear complexity, less power consumption, is more balanced and have better statistical properties.

  20. Semantic Primitives of Time and Space in Hong Kong Cantonese.

    Science.gov (United States)

    Tong, Malindy; And Others

    1997-01-01

    Semantic primitives for time and space, as proposed in Natural Semantic Metalanguage theory, are examined for lexical equivalents in Hong Kong Cantonese. Temporal primitives are all found to have clear Cantonese exponents that can be combined as predicted with other metalanguage elements, with two exceptions. Spatial primitives all appear to have…

  1. Globfit: Consistently fitting primitives by discovering global relations

    KAUST Repository

    Li, Yangyan; Wu, Xiaokun; Chrysathou, Yiorgos; Sharf, Andrei Sharf; Cohen-Or, Daniel; Mitra, Niloy J.

    2011-01-01

    Given a noisy and incomplete point set, we introduce a method that simultaneously recovers a set of locally fitted primitives along with their global mutual relations. We operate under the assumption that the data corresponds to a man-made engineering object consisting of basic primitives, possibly repeated and globally aligned under common relations. We introduce an algorithm to directly couple the local and global aspects of the problem. The local fit of the model is determined by how well the inferred model agrees to the observed data, while the global relations are iteratively learned and enforced through a constrained optimization. Starting with a set of initial RANSAC based locally fitted primitives, relations across the primitives such as orientation, placement, and equality are progressively learned and conformed to. In each stage, a set of feasible relations are extracted among the candidate relations, and then aligned to, while best fitting to the input data. The global coupling corrects the primitives obtained in the local RANSAC stage, and brings them to precise global alignment. We test the robustness of our algorithm on a range of synthesized and scanned data, with varying amounts of noise, outliers, and non-uniform sampling, and validate the results against ground truth, where available. © 2011 ACM.

  2. Globfit: Consistently fitting primitives by discovering global relations

    KAUST Repository

    Li, Yangyan

    2011-07-01

    Given a noisy and incomplete point set, we introduce a method that simultaneously recovers a set of locally fitted primitives along with their global mutual relations. We operate under the assumption that the data corresponds to a man-made engineering object consisting of basic primitives, possibly repeated and globally aligned under common relations. We introduce an algorithm to directly couple the local and global aspects of the problem. The local fit of the model is determined by how well the inferred model agrees to the observed data, while the global relations are iteratively learned and enforced through a constrained optimization. Starting with a set of initial RANSAC based locally fitted primitives, relations across the primitives such as orientation, placement, and equality are progressively learned and conformed to. In each stage, a set of feasible relations are extracted among the candidate relations, and then aligned to, while best fitting to the input data. The global coupling corrects the primitives obtained in the local RANSAC stage, and brings them to precise global alignment. We test the robustness of our algorithm on a range of synthesized and scanned data, with varying amounts of noise, outliers, and non-uniform sampling, and validate the results against ground truth, where available. © 2011 ACM.

  3. The Level-0 Muon Trigger for the LHCb experiment

    CERN Document Server

    Aslanides, E; Cogan, J; Duval, P Y; Le Gac, R; Leroy, O; Liotard, PL; Marin, F; Favard, S; Tsaregorodtsev, A

    2006-01-01

    The Level-0 Muon Trigger looks for straight tracks crossing the five muon stations of the LHCb muon detector and measures their transverse momentum. The tracking uses a road algorithm relying on the projectivity of the muon detector. The architecture of the Level-0 muon trigger is pipeline and massively parallel. Receiving 130 GBytes/s of input data, it reconstructs muon candidates for each bunch crossing (25 ns) in less than 1.2 $\\mu$S. It relies on an intensive use of high speed multigigabit serial links where high speed serializers/deserializers are embedded in Field Programmable Gate Arrays (FPGAs).

  4. Motion Primitives and Probabilistic Edit Distance for Action Recognition

    DEFF Research Database (Denmark)

    Fihl, Preben; Holte, Michael Boelstoft; Moeslund, Thomas B.

    2009-01-01

    the actions as a sequence of temporal isolated instances, denoted primitives. These primitives are each defined by four features extracted from motion images. The primitives are recognized in each frame based on a trained classifier resulting in a sequence of primitives. From this sequence we recognize......The number of potential applications has made automatic recognition of human actions a very active research area. Different approaches have been followed based on trajectories through some state space. In this paper we also model an action as a trajectory through a state space, but we represent...... different temporal actions using a probabilistic Edit Distance method. The method is tested on different actions with and without noise and the results show recognition rates of 88.7% and 85.5%, respectively....

  5. The CDF Silicon Vertex Trigger

    International Nuclear Information System (INIS)

    Dell'Orso, Mauro

    2006-01-01

    Motivations, design, performance and ongoing upgrade of the CDF Silicon Vertex Trigger are presented. The system provides CDF with a powerful tool for online tracking with offline quality in order to enhance the reach on B-physics and large P t -physics coupled to b quarks

  6. A mutli-technique search for the most primitive CO chondrites

    Science.gov (United States)

    Alexander, C. M. O'D.; Greenwood, R. C.; Bowden, R.; Gibson, J. M.; Howard, K. T.; Franchi, I. A.

    2018-01-01

    As part of a study to identify the most primitive COs and to look for weakly altered CMs amongst the COs, we have conducted a multi-technique study of 16 Antarctic meteorites that had been classified as primitive COs. For this study, we have determined: (1) the bulk H, C and N abundances and isotopes, (2) bulk O isotopic compositions, (3) bulk modal mineralogies, and (4) for some selected samples the abundances and compositions of their insoluble organic matter (IOM). Two of the 16 meteorites do appear to be CMs - BUC 10943 seems to be a fairly typical CM, while MIL 090073 has probably been heated. Of the COs, DOM 08006 appears to be the most primitive CO identified to date and is quite distinct from the other members of its pairing group. The other COs fall into two groups that are less primitive than DOM 08006 and ALH 77307, the previously most primitive CO. The first group is composed of members of the DOM 08004 pairing group, except DOM 08006. The second group is composed of meteorites belonging to the MIL 03377 and MIL 07099 pairing groups. These two pairing groups should probably be combined. There is a dichotomy in the bulk O isotopes between the primitive (all Antarctic finds) and the more metamorphosed COs (mostly falls). This dichotomy can only partly be explained by the terrestrial weathering experienced by the primitive Antarctic samples. It seems that the more equilibrated samples interacted to a greater extent with 16O-poor material, probably water, than the more primitive meteorites.

  7. The performance and development of the ATLAS Inner Detector Trigger

    International Nuclear Information System (INIS)

    Washbrook, A

    2014-01-01

    A description of the ATLAS Inner Detector (ID) software trigger algorithms and the performance of the ID trigger for LHC Run 1 are presented, as well as prospects for a redesign of the tracking algorithms in Run 2. The ID trigger HLT algorithms are essential for a large number of signatures within the ATLAS trigger. During the shutdown, modifications are being made to the LHC machine, to increase both the beam energy and luminosity. This in turn poses significant challenges for the trigger algorithms both in terms of execution time and physics performance. To meet these challenges the ATLAS HLT software is being restructured to run as a single stage rather than in the two distinct levels present during the Run 1 operation. This is allowing the tracking algorithms to be redesigned to make optimal use of the CPU resources available and to integrate new detector systems being added to ATLAS for post-shutdown running. Expected future improvements in the timing and efficiencies of the Inner Detector triggers are also discussed. In addition, potential improvements in the algorithm performance resulting from the additional spacepoint information from the new Insertable B-Layer are presented

  8. NaNet-10: a 10GbE network interface card for the GPU-based low-level trigger of the NA62 RICH detector

    International Nuclear Information System (INIS)

    Ammendola, R.; Biagioni, A.; Frezza, O.; Lonardo, A.; Cicero, F. Lo; Martinelli, M.; Paolucci, P.S.; Pastorelli, E.; Simula, F.; Tosoratto, L.; Vicini, P.; Fiorini, M.; Neri, I.; Lamanna, G.; Piandani, R.; Pontisso, L.; Sozzi, M.; Rossetti, D.

    2016-01-01

    A GPU-based low level (L0) trigger is currently integrated in the experimental setup of the RICH detector of the NA62 experiment to assess the feasibility of building more refined physics-related trigger primitives and thus improve the trigger discriminating power. To ensure the real-time operation of the system, a dedicated data transport mechanism has been implemented: an FPGA-based Network Interface Card (NaNet-10) receives data from detectors and forwards them with low, predictable latency to the memory of the GPU performing the trigger algorithms. Results of the ring-shaped hit patterns reconstruction will be reported and discussed

  9. ATLAS L1 Muon Trigger Upgrade with sTGC: Design and Performance

    CERN Document Server

    Gerbaudo, Davide

    2014-01-01

    We describe the upgrade of the ATLAS forward Level 1 (L1) muon trigger planned for the LHC run with luminosity above 2 10 34 cm. This upgrade, which aims at suppressing the fake muon triggers from non-pointing tracks, foresees the installation of a New Small Wheel (NSW) detector in the endcap region. This region of the detector will be instrumented with small-strip Thin Gap Chambers (sTGC) that will allow to keep the L1 muon trigger rate below 25 kHz. This rate suppression is realized with a two-step trigger system: first, an ultra-fast pad trigger defines the regions of interest containing potential high- p T muon candidates; second, an accurate track measurement is performed with precision readouts from the sTGC strips, providing the required 1 mrad angular resolution. The new, sTGC-based, L1 muon trigger is reviewed. A description of the sTGC detector as well as of its readout system is given. The first results from the simulation of this new trigger system are presented. These studies show that the pad-tr...

  10. Comet Dust: The Diversity of Primitive Particles and Implications

    Science.gov (United States)

    John Bradley; Zolensky, Michael E.

    2016-01-01

    Comet dust is primitive and shows significant diversity. Our knowledge of the properties of primitive particles has expanded significantly through microscale investigations of cosmic dust samples (IDPs and AMMs) and of comet dust samples (Stardust and Rosetta's COSIMA), as well as through remote sensing (spectroscopy and imaging) via Spitzer and via spacecraft encounters with 103P/Hartley 2 and 67P/Churyumov-Gerasimenko. Microscale investigations show that comet dust and cosmic dust are particles of unequilibrated materials, including aggregates of materials unequilibrated at submicron scales. We call unequilibrated materials "primitive" and we deduce they were incorporated into ice-­-rich (H2O-, CO2-, and CO-ice) parent bodies that remained cold, i.e., into comets, because of the lack of aqueous or thermal alteration since particle aggregation; yet some Stardust olivines suggest mild thermal metamorphism. Primitive particles exhibit a diverse range of: structure and typology; size and size distribution of constituents; concentration and form of carbonaceous and organic matter; D-, N-, and O- isotopic enhancements over solar; Mg-, Fe-contentsof thesilicate minerals; the compositions and concentrations of sulfides, and of less abundant mineral species such as chondrules, CAIs and carbonates. The unifomity within a group of samples points to: aerodynamic sorting of particles and/or particle constituents; the inclusion of a limited range of oxygen fugacities; the inclusion or exclusion of chondrules; a selection of organics. The properites of primitive particles imply there were disk processes that resulted in different comets having particular selections of primitive materials. The diversity of primitive particles has implications for the diversity of materials in the protoplanetary disk present at the time and in the region where the comets formed.

  11. Upgrade of the First Level Muon Trigger in the End-Cap New Small Wheel Region of the ATLAS Detector

    International Nuclear Information System (INIS)

    Munwes, Yonathan

    2013-06-01

    The luminosity levels foreseen at the LHC after the 2018 LHC upgrade will tighten the demands on the ATLAS first level muon trigger system. A finer muon selection will be required to cope with the increased background and to keep the trigger rate for 20 GeV/c pTmuons as before. The introduction of new detectors in the small wheel region of the end-cap muon spectrometer will allow to refine the current trigger selection, allowing to increase the rejection power for tracks not coming from the interaction point, thus to find candidate muon tracks within 1 mrad angular resolution and within the 500 ns available latency. The on-detector trigger logic will require a coincidence of eight layers of small thin gap chambers detector pads to determine the trigger regions-of-interest. The charge information from the detector strips of the selected regions-of-interest will be sent to the off-detector trigger logic, which will calculate the strip centroids and extrapolate the muon tracks. The muon tracks information will be finally sent to the end-cap sector logic, which will combine the big wheel and the new small wheel trigger data, and provide the trigger muon candidates to the ATLAS central trigger. (author)

  12. Retinoic acid signaling plays a restrictive role in zebrafish primitive myelopoiesis.

    Directory of Open Access Journals (Sweden)

    Dong Liang

    Full Text Available Retinoic acid (RA is known to regulate definitive myelopoiesis but its role in vertebrate primitive myelopoiesis remains unclear. Here we report that zebrafish primitive myelopoiesis is restricted by RA in a dose dependent manner mainly before 11 hpf (hours post fertilization when anterior hemangioblasts are initiated to form. RA treatment significantly reduces expressions of anterior hemangioblast markers scl, lmo2, gata2 and etsrp in the rostral end of ALPM (anterior lateral plate mesoderm of the embryos. The result indicates that RA restricts primitive myelopoiesis by suppressing formation of anterior hemangioblasts. Analyses of ALPM formation suggest that the defective primitive myelopoiesis resulting from RA treatment before late gastrulation may be secondary to global loss of cells for ALPM fate whereas the developmental defect resulting from RA treatment during 10-11 hpf should be due to ALPM patterning shift. Overexpressions of scl and lmo2 partially rescue the block of primitive myelopoiesis in the embryos treated with 250 nM RA during 10-11 hpf, suggesting RA acts upstream of scl to control primitive myelopoiesis. However, the RA treatment blocks the increased primitive myelopoiesis caused by overexpressing gata4/6 whereas the abolished primitive myelopoiesis in gata4/5/6 depleted embryos is well rescued by 4-diethylamino-benzaldehyde, a retinal dehydrogenase inhibitor, or partially rescued by knocking down aldh1a2, the major retinal dehydrogenase gene that is responsible for RA synthesis during early development. Consistently, overexpressing gata4/6 inhibits aldh1a2 expression whereas depleting gata4/5/6 increases aldh1a2 expression. The results reveal that RA signaling acts downstream of gata4/5/6 to control primitive myelopoiesis. But, 4-diethylamino-benzaldehyde fails to rescue the defective primitive myelopoiesis in either cloche embryos or lycat morphants. Taken together, our results demonstrate that RA signaling restricts

  13. Survival of the primitive mantle reservoir?

    Science.gov (United States)

    Huang, S.; Jacobsen, S. B.; Mukhopadhyay, S.

    2010-12-01

    The high-3He lavas are thought to originate from a deep primitive mantle source that has not been much modified since the formation of Earth’s core. Comparison of 4He/3He in MORBs and plume lavas indicate that the plume sources must be a lower mantle feature, in agreement with most geophysical inferences. However, the lithophile element isotope systems of plume lavas are not primitive. The idea that the high-3He source is significantly less processed and more primitive than MORB source is clearly supported by mixing trends in plots of 4He/3He versus Sr, Nd and Pb isotope ratios, which have been extrapolated to an inferred 4He/3He of ~17,000 (~43x the atmospheric ratio), a mantle reservoir named PHEM (Primitive HElium Mantle). Slightly lower 4He/3He, ~15,000, were reported for Baffin Island picrites. Recently, Jackson et al. (2010) claimed that some Baffin Island and Greenland picrites with single-stage Pb model ages of ~4.5 Ga have low 4He/3He, and argued that “their source is the most ancient accessible reservoir in the Earth’s mantle, and it may be parental to all mantle reservoirs”. However, the available data are insufficient to make such a claim, and we suggest an alternative interpretation. Specially: 1. Four out of ten Baffin Island and Greenland picrites used by Jackson et al. (2010) have 4He/3He higher than average MORB value and all are far removed from the lowest measured value of 15,000. 2. Five Greenland picrites which cluster around the 4.50 Gyr geochron (Jackson et al., 2010) form a curved 207Pb*/206Pb*-4He/3He trend. This trend is best explained as a mixing line, implying that the single-stage Pb ages of these lavas are meaningless. 3. In a 207Pb*/206Pb*-4He/3He plot, Koolau lavas from Hawaii overlap with Baffin Island and Greenland picrites. If Baffin Island and Greenland picrites represent melts from the primitive mantle based on their Pb and He isotopes (Jackson et al., 2010), a similar argument can be applied to Koolau lavas. However, it

  14. A requirement for FGF signalling in the formation of primitive streak-like intermediates from primitive ectoderm in culture.

    Directory of Open Access Journals (Sweden)

    Zhiqiang Zheng

    Full Text Available BACKGROUND: Embryonic stem (ES cells hold considerable promise as a source of cells with therapeutic potential, including cells that can be used for drug screening and in cell replacement therapies. Differentiation of ES cells into the somatic lineages is a regulated process; before the promise of these cells can be realised robust and rational methods for directing differentiation into normal, functional and safe cells need to be developed. Previous in vivo studies have implicated fibroblast growth factor (FGF signalling in lineage specification from pluripotent cells. Although FGF signalling has been suggested as essential for specification of mesoderm and endoderm in vivo and in culture, the exact role of this pathway remains unclear. METHODOLOGY/PRINCIPAL FINDINGS: Using a culture model based on early primitive ectoderm-like (EPL cells we have investigated the role of FGF signalling in the specification of mesoderm. We were unable to demonstrate any mesoderm inductive capability associated with FGF1, 4 or 8 signalling, even when the factors were present at high concentrations, nor any enhancement in mesoderm formation induced by exogenous BMP4. Furthermore, there was no evidence of alteration of mesoderm sub-type formed with addition of FGF1, 4 or 8. Inhibition of endogenous FGF signalling, however, prevented mesoderm and favoured neural differentiation, suggesting FGF signalling was required but not sufficient for the differentiation of primitive ectoderm into primitive streak-like intermediates. The maintenance of ES cell/early epiblast pluripotent marker expression was also observed in cultures when FGF signalling was inhibited. CONCLUSIONS/SIGNIFICANCE: FGF signalling has been shown to be required for the differentiation of primitive ectoderm to neurectoderm. This, coupled with our observations, suggest FGF signalling is required for differentiation of the primitive ectoderm into the germ lineages at gastrulation.

  15. Development of the ZEUS central tracking detector

    Science.gov (United States)

    Brooks, C. B.; Bullock, F. W.; Cashmore, R. J.; Devenish, R. C.; Foster, B.; Fraser, T. J.; Gibson, M. D.; Gilmore, R. S.; Gingrich, D.; Harnew, N.; Hart, J. C.; Heath, G. P.; Hiddleston, J.; Holmes, A. R.; Jamdagni, A. K.; Jones, T. W.; Llewellyn, T. J.; Long, K. R.; Lush, G. J.; Malos, J.; Martin, N. C.; McArthur, I.; McCubbin, N. A.; McQuillan, D.; Miller, D. B.; Mobayyen, M. M.; Morgado, C.; Nash, J.; Nixon, G.; Parham, A. G.; Payne, B. T.; Roberts, J. H. C.; Salmon, G.; Saxon, D. H.; Sephton, A. J.; Shaw, D.; Shaw, T. B.; Shield, P. D.; Shulman, J.; Silvester, I.; Smith, S.; Strachan, D. E.; Tapper, R. J.; Tkaczyk, S. M.; Toudup, L. W.; Wallis, E. W.; Wastie, R.; Wells, J.; White, D. J.; Wilson, F. F.; Yeo, K. L.; ZEUS-UK Collaboration

    1989-11-01

    The design concept and development of the ZEUS central tracking detector is described. This is a cylindrical drift chamber designed for track reconstruction, electron identification and event triggering in a high-crossing-rate, high-magnetic-field environment.

  16. Performance and development for the Inner Detector Trigger Algorithms at ATLAS

    CERN Document Server

    Penc, Ondrej; The ATLAS collaboration

    2015-01-01

    A redesign of the tracking algorithms for the ATLAS trigger for Run 2 starting in spring 2015 is in progress. The ATLAS HLT software has been restructured to run as a more flexible single stage HLT, instead of two separate stages (Level 2 and Event Filter) as in Run 1. The new tracking strategy employed for Run 2 will use a Fast Track Finder (FTF) algorithm to seed subsequent Precision Tracking, and will result in improved track parameter resolution and faster execution times than achieved during Run 1. The performance of the new algorithms has been evaluated to identify those aspects where code optimisation would be most beneficial. The performance and timing of the algorithms for electron and muon reconstruction in the trigger are presented. The profiling infrastructure, constructed to provide prompt feedback from the optimisation, is described, including the methods used to monitor the relative performance improvements as the code evolves.

  17. A Fast Hardware Tracker for the ATLAS Trigger System

    CERN Document Server

    Neubauer, M; The ATLAS collaboration

    2009-01-01

    As the LHC luminosity is ramped up to the design level of 10^{34} cm^{-2} s^{-1} and beyond, the high rates, multiplicities, and energies of particles seen by the detectors will pose a unique challenge. Only a tiny fraction of the produced collisions can be stored on tape and immense real-time data reduction is needed. An effective trigger system must maintain high trigger efficiencies for the physics we are most interested in, and at the same time suppress the enormous QCD backgrounds. This requires massive computing power to minimize the online execution time of complex algorithms. A multi-level trigger is an effective solution for an otherwise impossible problem. The Fast Tracker (FTK) is a proposed upgrade to the ATLAS trigger system that will operate at full Level-1 output rates and provide high quality tracks reconstructed over the entire detector by the start of processing in Level-2. FTK solves the combinatorial challenge inherent to tracking by exploiting the massive parallelism of Associative Memori...

  18. A Fast hardware Tracker for the ATLAS Trigger system

    CERN Document Server

    Pandini, Carlo Enrico; The ATLAS collaboration

    2015-01-01

    The trigger system at the ATLAS experiment is designed to lower the event rate occurring from the nominal bunch crossing at 40 MHz to about 1 kHz for a designed LHC luminosity of 10$^{34}$ cm$^{-2}$ s$^{-1}$. After a very successful data taking run the LHC is expected to run starting in 2015 with much higher instantaneous luminosities and this will increase the load on the High Level Trigger system. More sophisticated algorithms will be needed to achieve higher background rejection while maintaining good efficiency for interesting physics signals, which requires a more extensive use of tracking information. The Fast Tracker (FTK) trigger system, part of the ATLAS trigger upgrade program, is a highly parallel hardware device designed to perform full-scan track-finding at the event rate of 100 kHz. FTK is a dedicated processor based on a mixture of advanced technologies. Modern, powerful, Field Programmable Gate Arrays form an important part of the system architecture, and the combinatorial problem of pattern r...

  19. Evaluating structural pattern recognition for handwritten math via primitive label graphs

    Science.gov (United States)

    Zanibbi, Richard; Mouchère, Harold; Viard-Gaudin, Christian

    2013-01-01

    Currently, structural pattern recognizer evaluations compare graphs of detected structure to target structures (i.e. ground truth) using recognition rates, recall and precision for object segmentation, classification and relationships. In document recognition, these target objects (e.g. symbols) are frequently comprised of multiple primitives (e.g. connected components, or strokes for online handwritten data), but current metrics do not characterize errors at the primitive level, from which object-level structure is obtained. Primitive label graphs are directed graphs defined over primitives and primitive pairs. We define new metrics obtained by Hamming distances over label graphs, which allow classification, segmentation and parsing errors to be characterized separately, or using a single measure. Recall and precision for detected objects may also be computed directly from label graphs. We illustrate the new metrics by comparing a new primitive-level evaluation to the symbol-level evaluation performed for the CROHME 2012 handwritten math recognition competition. A Python-based set of utilities for evaluating, visualizing and translating label graphs is publicly available.

  20. Development of the ZEUS central tracking detector

    International Nuclear Information System (INIS)

    Brooks, C.B.; Cashmore, R.J.; Gingrich, D.; Harnew, N.; Heath, G.P.; Holmes, A.R.; Martin, N.C.; McArthur, I.; Nash, J.; Salmon, G.; Shield, P.D.; Silvester, I.; Smith, S.; Wastie, R.; Wells, J.; Jamdagni, A.K.; McQuillan, D.; Miller, D.B.; Mobayyen, M.M.; Shulman, J.; Toudup, L.W.

    1989-01-01

    The design concept and development of the ZEUS central tracking detector is described. This is a cylindrical drift chamber designed for track reconstruction, electron identification and event triggering in a high-crossing-rate, high-magnetic-field environment. (orig.)

  1. Comet Dust: The Diversity of "Primitive" Particles and Implications

    Science.gov (United States)

    Wooden, Diane H.; Ishii, Hope A.; Bradley, John P.; Zolensky, Michael E.

    2016-01-01

    Comet dust is primitive and shows significant diversity. Our knowledge of the properties of primitive particles has expanded significantly through microscale investigations of cosmic dust samples ( IDP's(Interplanetary Dust Particles) and AMM's (Antarctic Micrometeorites)) and of comet dust samples (Stardust and Rosetta's COSIMA), as well as through remote sensing (spectroscopy and imaging) via Spitzer and via spacecraft encounters with 103P/Hartley 2 and 67P/Churyumov-Gerasimenko. Microscale investigations show that comet dust and cosmic dust are particles of unequilibrated materials, including aggregates of materials unequilibrated at submicron scales. We call unequilibrated materials "primitive" and we deduce they were incorporated into ice-rich (H2O-, CO2-, and CO-ice) parent bodies that remained cold, i.e., into comets, because of the lack of aqueous or thermal alteration since particle aggregation; yet some Stardust olivines suggest mild thermal metamorphism. Primitive particles exhibit a diverse range of: structure and typology; size and size distribution of constituents; concentration and form of carbonaceous and organic matter; D-, N-, and O- isotopic enhancements over solar; Mg-, Fe-contents of the silicate minerals; the compositions and concentrations of sulfides, and of less abundant mineral species such as chondrules, CAIs and carbonates. The uniformity within a group of samples points to: aerodynamic sorting of particles and/or particle constituents; the inclusion of a limited range of oxygen fugacities; the inclusion or exclusion of chondrules; a selection of organics. The properties of primitive particles imply there were disk processes that resulted in different comets having particular selections of primitive materials. The diversity of primitive particles has implications for the diversity of materials in the protoplanetary disk present at the time and in the region where the comets formed.

  2. Using MaxCompiler for High Level Synthesis of Trigger Algorithms

    CERN Document Server

    Summers, Sioni Paris; Sanders, P.

    2017-01-01

    Firmware for FPGA trigger applications at the CMS experiment is conventionally written using hardware description languages such as Verilog and VHDL. MaxCompiler is an alternative, Java based, tool for developing FPGA applications which uses a higher level of abstraction from the hardware than a hardware description language. An implementation of the jet and energy sum algorithms for the CMS Level-1 calorimeter trigger has been written using MaxCompiler to benchmark against the VHDL implementation in terms of accuracy, latency, resource usage, and code size. A Kalman Filter track fitting algorithm has been developed using MaxCompiler for a proposed CMS Level-1 track trigger for the High-Luminosity LHC upgrade. The design achieves a low resource usage, and has a latency of 187.5 ns per iteration.

  3. Context of culture: Critique of the primitive mind

    Directory of Open Access Journals (Sweden)

    Božilović Nikola

    2010-01-01

    Full Text Available The author of this paper has the intention to reach the new meaning and sense of the primitive mentality by analyzing it in early social communities. He also wants to point out the possible reflections of the spirit and consciousness of our ancestors on us, here and now. The first part of the paper is dedicated to a critical deliberation on anthropological conflicts which have arisen concerning the reasoning power of the so-called primitives. The crucial question lies in the following: Is the difference between the “primitive” and the “civilized” mentality fundamental or is it possible only to a certain degree. The author takes the notion of primitive mentality through time and points to the medieval understandings, which are occupied by teratological themes, then to the renaissance comprehension, which relies on the first experiential observations, and, finally, to the enlightenment ideas of exotic peoples out of which the myth of “the good savage” is born. The nineteenth and twentieth centuries introduce the notions of “people’s character” and “national spirit”. The opinions are polarized, on the one hand of ethnocentrism, carried by the prejudice of people and ethnic groups and, on the other hand, of cultural relativism, based on the understanding and appreciation of cultural differences. In the end, the author also recognizes the modern primitive man, one who is not ready to deal with the challenges of his age. The modern primitive recalls the spirits of the past, the surviving and anachronic models of behavior, unaware of the fact that these are the same models that he has ascribed to “savages”. However, while such thinking and acting was justified by the cultural level at which our ancestors had lived, the mental frame of the contemporary primitives is significantly in contrast with the high level of civilization development.

  4. Test of special resolution and trigger efficiency

    CERN Document Server

    Benhammou, Y

    2015-01-01

    The forthcoming luminosity upgrade of LHC to super-LHC (sLHC) will increase the expected background rate in the forward region of the ATLAS Muon Spectrometer by approximately the factor of five. Some of the present Muon Spectrometer components will fail to cope with these high rates and will have to be replaced. The results of a test of a device consisting of Thin Gap Chambers (TGC) and a fast small-diameter Muon Drift Tube Chamber (sMDT) using the 180 GeV/c muons at the SPS-H8 muon beam at CERN are presented. The goal of the test was to study the combined TGC-sMDT system as tracking and triggering device in the ATLAS muon spectrometer after high-luminosity upgrades of the LHC. The analysis of the recorded data shows a very good correlation between the TGC and sMDT track position and inclination. This technology offers the combination of trigger and tracking and has good angular and spatial resolutions. The angular resolution is 0.4 mrad for each system individually. For the spatial resolution, the width of t...

  5. Action Recognition Using Motion Primitives and Probabilistic Edit Distance

    DEFF Research Database (Denmark)

    Fihl, Preben; Holte, Michael Boelstoft; Moeslund, Thomas B.

    2006-01-01

    In this paper we describe a recognition approach based on the notion of primitives. As opposed to recognizing actions based on temporal trajectories or temporal volumes, primitive-based recognition is based on representing a temporal sequence containing an action by only a few characteristic time...... into a string containing a sequence of symbols, each representing a primitives. After pruning the string a probabilistic Edit Distance classifier is applied to identify which action best describes the pruned string. The approach is evaluated on five one-arm gestures and the recognition rate is 91...

  6. BTeV detached vertex trigger

    International Nuclear Information System (INIS)

    Gottschalk, E.E.

    2001-01-01

    BTeV is a collider experiment that has been approved to run in the Tevatron at Fermilab. The experiment will conduct precision studies of CP violation using a forward-geometry detector. The detector will be optimized for high-rate detection of beauty and charm particles produced in collisions between protons and anti-protons. BTeV will trigger on beauty and charm events by taking advantage of the main difference between these heavy quark events and more typical hadronic events - the presence of detached beauty and charm decay vertices. The first stage of the BTeV trigger will receive data from a pixel vertex detector at a rate of 100 gb s -1 , reconstruct tracks and vertices for every beam crossing, reject 99% of beam crossings that do not produce beauty or charm particles, and trigger on beauty events with high efficiency. An overview of the trigger design and its influence on the design of the pixel vertex detector is presented

  7. Real time data analysis with the ATLAS Trigger at the LHC in Run-2

    CERN Document Server

    Beauchemin, Pierre-Hugues; The ATLAS collaboration

    2018-01-01

    The trigger selection capabilities of the ATLAS detector have been significantly enhanced for the LHC Run- 2 in order to cope with the higher event rates and with the large number of simultaneous interactions (pile-up) per protonproton bunch crossing. A new hardware system, designed to analyse real time event-topologies at Level-1 came to full use in 2017. A hardware-based track reconstruction system, expected to be used real-time in 2018, is designed to provide track information to the high-level software trigger at its full input rate. The high-level trigger selections are largely relying on offline-like reconstruction techniques, and in some cases multivariate analysis methods. Despite the sudden change in LHC operations during the second half of 2017, which caused an increase in pile-up and therefore also in CPU usage of the trigger algorithms, the set of triggers (so called trigger menu) running online has undergone only minor modifications thanks to the robustness and redundancy of the trigger system, a...

  8. FTK: A Hardware Track Finder for the ATLAS Trigger System

    CERN Document Server

    Tompkins, L; The ATLAS collaboration

    2013-01-01

    The LHC experiments are preparing for instantaneous luminosities above $1 imes 10^{34} cm^{-2}s^{-1}$ as early as 2015. In order to select the rare events of interest in such dense environments, detailed event information is necessary. In particular, the highly granular single particle information of tracking detectors is crucial for the selection of isolated leptons, taus and b-jets in the face of large vertex multiplicities. We report on the developement of the ATLAS FastTracker (FTK), a hardware based track finder which will reconstruct all tracks with a momentum greater than 1 GeV/c up to luminosties of $3 imes 10^{34} cm^{-2}s^{-1}$ at an event input rate of 100 kHz and a latency of a few hundred microseconds. The track information will be available to the Level 2 processors at the beginning of event processing. Significant progress towards a phased installation beginning in 2015 has been achieved. A pre-prototype of the pattern recognition board is taking data in the fall of 2012 and prototypes for all ...

  9. Drift chamber tracking with neural networks

    International Nuclear Information System (INIS)

    Lindsey, C.S.; Denby, B.; Haggerty, H.

    1992-10-01

    We discuss drift chamber tracking with a commercial log VLSI neural network chip. Voltages proportional to the drift times in a 4-layer drift chamber were presented to the Intel ETANN chip. The network was trained to provide the intercept and slope of straight tracks traversing the chamber. The outputs were recorded and later compared off line to conventional track fits. Two types of network architectures were studied. Applications of neural network tracking to high energy physics detector triggers is discussed

  10. Level-1 muon trigger performance with the full 2017 dataset

    CERN Document Server

    CMS Collaboration

    2018-01-01

    This document describes the performance of the CMS Level-1 Muon Trigger with the full dataset of 2017. Efficiency plots are included for each track finder (TF) individually and for the system as a whole. The efficiency is measured to be greater than 90% for all track finders.

  11. The Performance and Development of the Inner Detector Trigger Algorithms at ATLAS for LHC Run 2

    CERN Document Server

    Sowden, Benjamin Charles; The ATLAS collaboration

    2015-01-01

    A description of the design and performance of the newly reimplemented tracking algorithms for the ATLAS trigger for LHC Run 2, to commence in spring 2015, is provided. The ATLAS High Level Trigger (HLT) has been restructured to run as a more flexible single stage process, rather than the two separate Level 2 and Event Filter stages used during Run 1. To make optimal use of this new scenario, a new tracking strategy has been implemented for Run 2 for the HLT. This new strategy will use a Fast Track Finder (FTF) algorithm to directly seed the subsequent Precision Tracking, and will result in improved track parameter resolution and significantly faster execution times than achieved during Run 1 but with no significant reduction in efficiency. The performance and timing of the algorithms for numerous physics signatures in the trigger are presented. The profiling infrastructure, constructed to provide prompt feedback from the optimisation, is described, including the methods used to monitor the relative performan...

  12. ATLAS Fast Tracker Status and Tracking at High luminosity LHC

    CERN Document Server

    Ilic, Nikolina; The ATLAS collaboration

    2018-01-01

    The LHC’s increase in centre of mass energy and luminosity in 2015 makes controlling trigger rates with high efficiency challenging. The ATLAS Fast TracKer (FTK) is a hardware processor built to reconstruct tracks at a rate of up to 100 kHz and provide them to the high level trigger. The FTK reconstructs tracks by matching incoming detector hits with pre-defined track patterns stored in associative memory on custom ASICs. Inner detector hits are fit to these track patterns using modern FPGAs. This talk describes the electronics system used for the FTK’s massive parallelization. The installation, commissioning and running of the system is happening in 2016, and is detailed in this talk. Tracking at High luminosity LHC is also presented.

  13. Standardisation of liver MDCT by tracking liver parenchyma enhancement to trigger imaging

    International Nuclear Information System (INIS)

    Brodoefel, H.; Tognolini, A.; Zamboni, G.A.; Gourtsoyianni, S.; Raptopoulos, V.; Claussen, C.D.

    2012-01-01

    To assess parenchymal bolus-triggering in terms of liver enhancement, lesion-to-liver conspicuity and inter-image variability across serial follow-up MDCTs. We reviewed MDCTs of 50 patients with hepatic metastases who had a baseline CT and two follow-up examinations. In 25 consecutive patients CT data acquisition was initiated by liver parenchyma triggering at a 50-HU enhancement threshold. In a matched control group, imaging was performed with an empirical delay of 65 s. CT attenuation values were assessed in vessels, liver parenchyma and metastasis. Target lesions were classified according to five enhancement patterns. Compared with the control group, liver enhancement was significantly higher with parenchyma triggering (59.8 ± 7.6 HU vs. 48.8 ± 11.2 HU, P = 0.0002). The same was true for conspicuity (liver parenchyma - lesion attenuation) of hypo-enhancing lesions (72.2 ± 15.9 HU vs. 52.7 ± 19.4 HU, P = 0.0006). Liver triggering was associated with reduced variability for liver enhancement among different patients (P = 0.035) and across serial follow-up examinations in individual patients (P < 0.0001). The number of patients presenting with uniform lesion enhancement pattern across serial examinations was significantly higher in the triggered group (20 vs. 11; P = 0.018). Liver parenchyma triggering provides superior lesion conspicuity and improves standardisation of image quality across follow-up examinations with greater uniformity of enhancement patterns. (orig.)

  14. Final Technical Report for ``Paths to Discovery at the LHC : Dark Matter and Track Triggering"

    Energy Technology Data Exchange (ETDEWEB)

    Hahn, Kristian [Northwestern Univ., Evanston, IL (United States)

    2016-10-24

    Particle Dark Matter (DM) is perhaps the most compelling and experimentally well-motivated new physics scenario anticipated at the Large Hadron Collider (LHC). The DE-SC0014073 award allowed the PI to define and pursue a path to the discovery of Dark Matter in Run-2 of the LHC with the Compact Muon Solenoid (CMS) experiment. CMS can probe regions of Dark Matter phase-space that direct and indirect detection experiments are unable to constrain. The PI’s team initiated the exploration of these regions, searching specifically for the associated production of Dark Matter with top quarks. The effort focuses on the high-yield, hadronic decays of W bosons produced in top decay, which provides the highest sensitivity to DM produced via through low-mass spin-0 mediators. The group developed identification algorithms that achieve high efficiency and purity in the selection of hadronic top decays, and analysis techniques that provide powerful signal discrimination in Run-2. The ultimate reach of new physics searches with CMS will be established at the high-luminosity LHC (HL-LHC). To fully realize the sensitivity the HL-LHC promises, CMS must minimize the impact of soft, inelastic (“pileup”) interactions on the real-time “trigger” system the experiment uses for data refinement. Charged particle trajectory information (“tracking”) will be essential for pileup mitigation at the HL-LHC. The award allowed the PI’s team to develop firmware-based data delivery and track fitting algorithms for an unprecedented, real-time tracking trigger to sustain the experiment’s sensitivity to new physics in the next decade.

  15. The ATLAS b-jet Trigger

    CERN Document Server

    Ferreira de Lima, D E; The ATLAS collaboration

    2011-01-01

    The ATLAS detector, at the LHC, has a three-level trigger, which selects events relevant for the physics goals of the experiment. The identification of jets arising from bottom quark production is important in many analyses. The b-tagging at the ATLAS Trigger relies on the fragmentation of the b quark, which generates a B hadron, that retains most of the parent quark’s momentum (∼ 70%). Furthermore, the high b quark mass results in decay products with high momenta with respect to the jet axis. The lifetime tagger relies on the the relatively long lifetime of the B hadrons (∼ 1.6 ps in their rest frame), which allows them to have a long decay length. Due to the large mass of the B hadron, the tracks reconstructed from this decay often have large impact parameters, compared to prompt jets. The algorithms exploit this by identifying tracks from the B hadron decay which are displaced from the primary interaction vertex and thus, indicate that a long-lived particle was present. The latest performance results...

  16. The Neuro-Z-Vertex Trigger of the Belle II Experiment

    Directory of Open Access Journals (Sweden)

    Skambraks Sebastian

    2016-01-01

    This contribution presents the foreseen neural network trigger setup and the preceding 2D track finder. Special focus is put on the proposal and evaluation of a possible 3D upgrade of the 2D track finder. Additionally, details are given on a dedicated setup for the upcoming cosmic ray test.

  17. Trigger Algorithms and Electronics for the ATLAS Muon NSW Upgrade

    CERN Document Server

    Guan, Liang; The ATLAS collaboration

    2015-01-01

    The ATLAS New Small Wheel (NSW), comprising MicroMegas (MMs) and small-strip Thin Gap Chambers (sTGCs), will upgrade the ATLAS muon system for a high background environment. Particularly, the NSW trigger will reduce the rate of fake triggers coming from background tracks in the endcap. We will present an overview of the FPGA-based trigger processor for NSW and trigger algorithms for sTGC and Micromegas detector sub systems. In additional, we will present development of NSW trigger electronics, in particular, the sTGC Trigger Data Serializer (TDS) ASIC, sTGC Pad Trigger board, the sTGC data packet router and L1 Data Driver Card. Finally, we will detail the challenges of meeting the low latency requirements of the trigger system and coping with the high background rates of the HL-LHC.

  18. Online track detection in triggerless mode for INO

    Science.gov (United States)

    Jain, A.; Padmini, S.; Joseph, A. N.; Mahesh, P.; Preetha, N.; Behere, A.; Sikder, S. S.; Majumder, G.; Behera, S. P.

    2018-03-01

    The India based Neutrino Observatory (INO) is a proposed particle physics research project to study the atmospheric neutrinos. INO-Iron Calorimeter (ICAL) will consist of 28,800 detectors having 3.6 million electronic channels expected to activate with 100 Hz single rate, producing data at a rate of 3 GBps. Data collected contains a few real hits generated by muon tracks and the remaining noise-induced spurious hits. Estimated reduction factor after filtering out data of interest from generated data is of the order of 103. This makes trigger generation critical for efficient data collection and storage. Trigger is generated by detecting coincidence across multiple channels satisfying trigger criteria, within a small window of 200 ns in the trigger region. As the probability of neutrino interaction is very low, track detection algorithm has to be efficient and fast enough to process 5 × 106 events-candidates/s without introducing significant dead time, so that not even a single neutrino event is missed out. A hardware based trigger system is presently proposed for on-line track detection considering stringent timing requirements. Though the trigger system can be designed with scalability, a lot of hardware devices and interconnections make it a complex and expensive solution with limited flexibility. A software based track detection approach working on the hit information offers an elegant solution with possibility of varying trigger criteria for selecting various potentially interesting physics events. An event selection approach for an alternative triggerless readout scheme has been developed. The algorithm is mathematically simple, robust and parallelizable. It has been validated by detecting simulated muon events for energies of the range of 1 GeV-10 GeV with 100% efficiency at a processing rate of 60 μs/event on a 16 core machine. The algorithm and result of a proof-of-concept for its faster implementation over multiple cores is presented. The paper also

  19. The performance and development for the Inner Detector Trigger algorithms at ATLAS

    International Nuclear Information System (INIS)

    Penc, Ondrej

    2015-01-01

    A redesign of the tracking algorithms for the ATLAS trigger for LHC's Run 2 starting in 2015 is in progress. The ATLAS HLT software has been restructured to run as a more flexible single stage HLT, instead of two separate stages (Level 2 and Event Filter) as in Run 1. The new tracking strategy employed for Run 2 will use a Fast Track Finder (FTF) algorithm to seed subsequent Precision Tracking, and will result in improved track parameter resolution and faster execution times than achieved during Run 1. The performance of the new algorithms has been evaluated to identify those aspects where code optimisation would be most beneficial. The performance and timing of the algorithms for electron and muon reconstruction in the trigger are presented. The profiling infrastructure, constructed to provide prompt feedback from the optimisation, is described, including the methods used to monitor the relative performance improvements as the code evolves. (paper)

  20. The performance and development for the Inner Detector Trigger algorithms at ATLAS

    CERN Document Server

    Penc, O; The ATLAS collaboration

    2015-01-01

    A redesign of the tracking algorithms for the ATLAS trigger for LHC's Run 2 starting in 2015 is in progress. The ATLAS HLT software has been restructured to run as a more flexible single stage HLT, instead of two separate stages (Level 2 and Event Filter) as in Run 1. The new tracking strategy employed for Run 2 will use a Fast Track Finder (FTF) algorithm to seed subsequent Precision Tracking, and will result in improved track parameter resolution and faster execution times than achieved during Run 1. The performance of the new algorithms has been evaluated to identify those aspects where code optimisation would be most beneficial. The performance and timing of the algorithms for electron and muon reconstruction in the trigger are presented. The profiling infrastructure, constructed to provide prompt feedback from the optimisation, is described, including the methods used to monitor the relative performance improvements as the code evolves.

  1. On the Reduced Testing of a Primitive Element in ${\\\\mathbb Z}_n^\\\\times$

    OpenAIRE

    Suzuki, Hideo; スズキ, ヒデオ; Hideo, Suzuki

    2015-01-01

    The primitive roots in ${\\mathbb Z}_n^\\times$ are defined and exist iff $n = 2, 4, p^{\\alpha}, 2p^{\\alpha}$. Knuth gave the definition of the primitive roots in ${\\mathbb Z}_{p^\\alpha}^\\times$, and showed the necessary and sufficient condition for testing a primitive root in ${\\mathbb Z}_{p^\\alpha}^\\times$. In this paper we define the primitive elements in ${\\mathbb Z}_n^\\times$, which is a generalization of primitive roots, as elements that take the maximum multiplicative order.And we give t...

  2. Use of a track and vertex processor in a fixed-target charm experiment

    International Nuclear Information System (INIS)

    Schub, M.H.; Carey, T.A.; Hsiung, Y.B.; Kaplan, D.M.; Lee, C.; Miller, G.; Sa, J.; Teng, P.K.

    1996-01-01

    We have constructed and operated a high-speed parallel-pipelined track and vertex processor and used it to trigger data acquisition in a high-rate charm and beauty experiment at Fermilab. The processor uses information from hodoscopes and wire chambers to reconstruct tracks in the bend view of a magnetic spectrometer, and uses these tracks to find the corresponding tracks in a set of silicon-strip detectors. The processor then forms vertices and triggers the experiment if at least one vertex is downstream of the target. Under typical charm running conditions, with an interaction rate of ∼5 MHz, the processor rejects 80-90% of lower-level triggers while maintaining efficiency of ∼70% for two-prong D-meson decays. (orig.)

  3. MR imaging of persistent primitive trigeminal artery

    International Nuclear Information System (INIS)

    Ashikaga, Ryuichiro; Araki, Yutaka; Ono, Yukihiko; Ishida, Osamu; Mabuchi, Nobuhisa.

    1997-01-01

    The persistent trigeminal artery is the most common anomaly of the primitive carotid-vertebrobasilar anastomoses. We reviewed MR images and MR angiographies of 11 patients with primitive trigeminal artery. In 8 of the 11 cases, PTA were identified with conventional long TR spin-echo images. In 8 of 11 cases, a hypoplastic basilar trunk associated with PTA was seen on both MR images and MR angiographies. In 7 of 11 cases, a hypoplasia or agenesis of the ipsilateral posterior communicating artery was seen on MR angiographies. (author)

  4. Using MaxCompiler for the high level synthesis of trigger algorithms

    International Nuclear Information System (INIS)

    Summers, S.; Rose, A.; Sanders, P.

    2017-01-01

    Firmware for FPGA trigger applications at the CMS experiment is conventionally written using hardware description languages such as Verilog and VHDL. MaxCompiler is an alternative, Java based, tool for developing FPGA applications which uses a higher level of abstraction from the hardware than a hardware description language. An implementation of the jet and energy sum algorithms for the CMS Level-1 calorimeter trigger has been written using MaxCompiler to benchmark against the VHDL implementation in terms of accuracy, latency, resource usage, and code size. A Kalman Filter track fitting algorithm has been developed using MaxCompiler for a proposed CMS Level-1 track trigger for the High-Luminosity LHC upgrade. The design achieves a low resource usage, and has a latency of 187.5 ns per iteration.

  5. Using MaxCompiler for the high level synthesis of trigger algorithms

    Science.gov (United States)

    Summers, S.; Rose, A.; Sanders, P.

    2017-02-01

    Firmware for FPGA trigger applications at the CMS experiment is conventionally written using hardware description languages such as Verilog and VHDL. MaxCompiler is an alternative, Java based, tool for developing FPGA applications which uses a higher level of abstraction from the hardware than a hardware description language. An implementation of the jet and energy sum algorithms for the CMS Level-1 calorimeter trigger has been written using MaxCompiler to benchmark against the VHDL implementation in terms of accuracy, latency, resource usage, and code size. A Kalman Filter track fitting algorithm has been developed using MaxCompiler for a proposed CMS Level-1 track trigger for the High-Luminosity LHC upgrade. The design achieves a low resource usage, and has a latency of 187.5 ns per iteration.

  6. Live imaging of primitive endoderm precursors in the mouse blastocyst.

    Science.gov (United States)

    Grabarek, Joanna B; Plusa, Berenika

    2012-01-01

    The separation of two populations of cells-primitive endoderm and epiblast-within the inner cell mass (ICM) of the mammalian blastocyst is a crucial event during preimplantation development. However, many aspects of this process are still not very well understood. Recently, the identification of platelet derived growth factor receptor alpha (Pdgfrα) as an early-expressed protein that is also a marker of the later primitive endoderm lineage, together with the availability of the Pdgfra(H2B-GFP) mouse strain (Hamilton et al. Mol Cell Biol 23:4013-4025, 2003), has made in vivo imaging of primitive endoderm formation possible. In this chapter we present two different approaches that can be used to follow the behavior of primitive endoderm cells within the mouse blastocyst in real time.

  7. Indoor objects and outdoor urban scenes recognition by 3D visual primitives

    DEFF Research Database (Denmark)

    Fu, Junsheng; Kämäräinen, Joni-Kristian; Buch, Anders Glent

    2014-01-01

    , we propose an alternative appearance-driven approach which rst extracts 2D primitives justi ed by Marr's primal sketch, which are \\accumulated" over multiple views and the most stable ones are \\promoted" to 3D visual primitives. The 3D promoted primitives represent both structure and appearance...

  8. Two-Step System Identification and Primitive-Based Motion Planning for Control of Small Unmanned Aerial Vehicles

    Science.gov (United States)

    Grymin, David J.

    This dissertation addresses motion planning, modeling, and feedback control for autonomous vehicle systems. A hierarchical approach for motion planning and control of nonlinear systems operating in obstacle environments is presented. To reduce computation time during the motion planning process, dynamically feasible trajectories are generated in real-time through concatenation of pre-specified motion primitives. The motion planning task is posed as a search over a directed graph, and the applicability of informed graph search techniques is investigated. Specifically, a locally greedy algorithm with effective backtracking ability is developed and compared to weighted A* search. The greedy algorithm shows an advantage with respect to solution cost and computation time when larger motion primitive libraries that do not operate on a regular state lattice are utilized. Linearization of the nonlinear system equations about the motion primitive library results in a hybrid linear time-varying model, and an optimal control algorithm using the l 2-induced norm as the performance measure is applied to ensure that the system tracks the desired trajectory. The ability of the resulting controller to closely track the trajectory obtained from the motion planner, despite various disturbances and uncertainties, is demonstrated through simulation. Additionally, an approach for obtaining dynamically feasible reference trajectories and feedback controllers for a small unmanned aerial vehicle (UAV) based on an aerodynamic model derived from flight tests is presented. The modeling approach utilizes the two step method (TSM) with stepwise multiple regression to determine relevant explanatory terms for the aerodynamic models. Dynamically feasible trajectories are then obtained through the solution of an optimal control problem using pseudospectral optimal control software. Discretetime feedback controllers are then obtained to regulate the vehicle along the desired reference trajectory

  9. Upgraded Readout and Trigger Electronics for the ATLAS Liquid Argon Calorimeter at the LHC at the Horizons 2018-2022

    CERN Document Server

    Oliveira Damazio, Denis; The ATLAS collaboration

    2013-01-01

    The ATLAS Liquid Argon (LAr) calorimeters produce a total of 182,486 signals which are digitized and processed by the front-end and back-end electronics at every triggered event. In addition, the front-end electronics is summing analog signals to provide coarsely grained energy sums, called trigger towers, to the first-level trigger system, which is optimized for nominal LHC luminosities. However, the pile-up noise expected during the High Luminosity phases of LHC will be increased by factors of 3 to 7. An improved spatial granularity of the trigger primitives is therefore proposed in order to improve the identification performance for trigger signatures, like electrons, photons, tau leptons, jets, total and missing energy, at high background rejection rates. For the first upgrade phase in 2018, new LAr Trigger Digitizer Board (LTDB) are being designed to receive higher granularity signals, digitize them on detector and send them via fast optical links to a new digital processing system (DPS). The DPS applies...

  10. Upgraded Readout and Trigger Electronics for the ATLAS Liquid-Argon Calorimeters at the LHC at the Horizons 2018-2022

    CERN Document Server

    Damazio, D O; The ATLAS collaboration

    2013-01-01

    The ATLAS Liquid Argon (LAr) calorimeters produce a total of 182,486 signals which are digitized and processed by the front-end and back-end electronics at every triggered event. In addition, the front-end electronics is summing analog signals to provide coarsely grained energy sums, called trigger towers, to the first-level trigger system, which is optimized for nominal LHC luminosities. However, the pile-up noise expected during the High Luminosity phases of LHC will be increased by factors of 3 to 7. An improved spatial granularity of the trigger primitives is therefore proposed in order to improve the identification performance for trigger signatures, like electrons, photons, tau leptons, jets, total and missing energy, at high background rejection rates. For the first upgrade phase in 2018, new LAr Trigger Digitizer Board (LTDB) are being designed to receive higher granularity signals, digitize them on detector and send them via fast optical links to a new digital processing system (DPS). The DPS applies...

  11. Real time data analysis with the ATLAS trigger at the LHC in Run-2

    CERN Document Server

    Beauchemin, Pierre-Hugues; The ATLAS collaboration

    2018-01-01

    The trigger selection capabilities of the ATLAS detector have been significantly enhanced for the LHC Run-2 in order to cope with the higher event rates and with the large number of simultaneous interactions (pile-up) per proton-proton bunch crossing. A new hardware system, designed to analyse real time event-topologies at Level-1 came to full use in 2017. A hardware-based track reconstruction system, expected to be used real-time in 2018, is designed to provide track information to the high-level software trigger at its full input rate. The high-level trigger selections are largely relying on offline-like reconstruction techniques, and in some cases multi-variate analysis methods. Despite the sudden change in LHC operations during the second half of 2017, which caused an increase in pile-up and therefore also in CPU usage of the trigger algorithms, the set of triggers (so called trigger menu) running online has undergone only minor modifications thanks to the robustness and redundancy of the trigger system, ...

  12. On a possible second-level trigger for the experiment DISTO

    International Nuclear Information System (INIS)

    Bussa, M.P.; Fava, L.; Ferrero, L.; Grasso, A.; Ivanov, V.V.; Kisel', I.V.; Konotopskaya, E.V.; Pontecorvo, G.B.; Joint Inst. for Nuclear Research, Dubna

    1995-01-01

    A two-level trigger is to be applied for suppression of the background and for effective selection of events involving short-lived Λ-, Σ- and φ-particles in the experiment DISTO. The first-level trigger is applied for track recognition, in searching for a secondary vertex, and for identifying the detected particles. 10 refs., 14 figs., 1 tab

  13. A Hardware Fast Tracker for the ATLAS Trigger: The Fast TracKer (FTK) Project.

    CERN Document Server

    Asbah, Nedaa; The ATLAS collaboration

    2015-01-01

    The trigger system of the ATLAS experiment is designed to reduce the event rate from the LHC nominal bunch crossing at 40 MHz to about 1 kHz, at the design luminosity of 10^{34} cm^{-2} s{-1}. After a successful period of data taking from 2010 to early 2013, the LHC is restarting in 2015 with much higher instantaneous luminosity and this will increase the load on High Level Trigger system, the second stage of the selection based on software algorithms. More sophisticated algorithms will be needed to achieve higher background rejection while maintaining good efficiency for interesting physics signals. The Fast TracKer is part of the ATLAS trigger upgrade project; it is a hardware processor that will provide, at every level-1 accept (100 kHz) and within 100 microseconds, full tracking information for tracks with momentum as low as 1 GeV. Providing fast extensive access to tracking information, with resolution comparable to the offline reconstruction, the Fast Tracker will for example help the High Level Trigger...

  14. The D-Zero Run II Trigger

    International Nuclear Information System (INIS)

    Blazey, G. C.

    1997-01-01

    The general purpose D0 collider detector, located at Fermi National Accelerator Laboratory, requires significantly enhanced data acquisition and triggering to operate in the high luminosity (L = 2 x 10 32 cm -2 s -1 ), high rate environment (7 MHz or 132 ns beam crossings) of the upgraded TeVatron proton anti-proton accelerator. This article describes the three major levels and frameworks of the new trigger. Information from the first trigger stage (L1) which includes scintillating, tracking and calorimeter detectors will provide a deadtimeless, 4.2 (micro)s trigger decision with an accept rate of 10 kHz. The second stage (L2), comprised of hardware engines associated with specific detectors and a single global processor will test for correlations between L1 triggers. L2 will have an accept rate of 1 kHz at a maximum deadtime of 5% and require a 100 (micro)s decision time. The third and final stage (L3) will reconstruct events in a farm of processors for a final instantaneous accept rate of 50 Hz

  15. Online software trigger at PANDA/FAIR

    Energy Technology Data Exchange (ETDEWEB)

    Kang, Donghee; Kliemt, Ralf; Nerling, Frank [Helmholtz-Institut Mainz (Germany); Denig, Achim [Institut fuer Kernphysik, Universitaet Mainz (Germany); Goetzen, Klaus; Peters, Klaus [GSI Helmholtzzentrum fuer Schwerionenforschung GmbH (Germany); Collaboration: PANDA-Collaboration

    2014-07-01

    The PANDA experiment at FAIR will employ a novel trigger-less read-out system. Since a conventional hardware trigger concept is not suitable for PANDA, a high level online event filter will be applied to perform fast event selection based on physics properties of the reconstructed events. A trigger-less data stream implies an event selection with track reconstruction and pattern recognition to be performed online, and thus analysing data under real time conditions at event rates of up to 40 MHz.The projected data rate reduction of about three orders of magnitude requires an effective background rejection, while retaining interesting signal events. Real time event selection in the environment of hadronic reactions is rather challenging and relies on sophisticated algorithms for the software trigger. The implementation and the performance of physics trigger algorithms presently studied with realistic Monte Carlo simulations is discussed. The impact of parameters such as momentum or mass resolution, PID probability, vertex reconstruction and a multivariate analysis using the TMVA package for event filtering is presented.

  16. The Design and Performance of the ATLAS Inner Detector Trigger for Run 2 LHC Collisions at 13 TeV

    CERN Document Server

    Kilby, Callum; The ATLAS collaboration

    2016-01-01

    The design and performance of the ATLAS Inner Detector (ID) trigger algorithms running online on the high level trigger (HLT) processor farm with the LHC Run 2 data with collisions at both 50 ns and 25 ns are discussed. The HLT ID tracking algorithms are essential for the identification of nearly all physics signatures in the ATLAS trigger. In order to deal with the expected higher rates for LHC Run 2, the ID trigger was redesigned during the 2013-15 long shutdown to satisfy the demands of the higher energy LHC operation. The detailed performance of the tracking algorithms with the Run 2 data taken so far for the different trigger signatures in terms of both efficiency, and resolution is presented. The online processing times for running trigger tracking for the different trigger signatures are discussed in detail. Where appropriate, comparison of the new strategy for Run 2, with that adopted in Run 1 are made to demonstrate successful application and superior performance of the strategy adopted for Run 2.

  17. The ATLAS Fast Tracker and Tracking at the High-Luminosity LHC

    CERN Document Server

    AUTHOR|(INSPIRE)INSPIRE-00236423; The ATLAS collaboration

    2016-01-01

    The LHC’s increase in centre of mass energy and luminosity in 2015 makes controlling trigger rates with high efficiency challenging. The ATLAS Fast TracKer (FTK) is a hardware processor built to reconstruct tracks at a rate of up to 100 kHz and provide them to the high level trigger. The FTK reconstructs tracks by matching incoming detector hits with pre-defined track patterns stored in associative memory on custom ASICs. Inner detector hits are fit to these track patterns using modern FPGAs. These procedings describe the electronics system used for the FTK’s massive parallelization. An overview of the installation, commissioning and running of the system is given. The ATLAS upgrades planned to enable tracking at the High Luminosity LHC are also discussed.

  18. VeloTT tracking for LHCb Run II

    CERN Document Server

    Bowen, Espen Eie; Tresch, Marco

    2016-01-01

    This note describes track reconstruction in the LHCb tracking system upstream of the magnet, combining VELO tracks with hits in the TT sub-detector. The implementation of the VeloTT algorithm and its performance in terms of track reconstruction efficiency, ghost rate and execution time are presented. The algorithm has been rewritten for use in the first software trigger level for LHCb Run II. The momentum and charge information obtained for the VeloTT tracks (due to a fringe magnetic field between the VELO and TT sub-detectors) can reduce the total execution time for the full tracking sequence.

  19. GPU Enhancement of the Trigger to Extend Physics Reach at the LHC

    CERN Document Server

    Lujan, P.; Hunt, A.; Jindal, P.; LeGresley, P.

    2014-01-01

    At the Large Hadron Collider (LHC), the trigger systems for the detectors must be able to process a very large amount of data in a very limited amount of time, so that the nominal collision rate of 40 MHz can be reduced to a data rate that can be stored and processed in a reasonable amount of time. This need for high performance places very stringent requirements on the complexity of the algorithms that can be used for identifying events of interest in the trigger system, which potentially limits the ability to trigger on signatures of various new physics models. In this paper, we present an alternative tracking algorithm, based on the Hough transform, which avoids many of the problems associated with the standard combinatorial track finding currently used. The Hough transform is also well-adapted for Graphics Processing Unit (GPU)-based computing, and such GPU-based systems could be easily integrated into the existing High-Level Trigger (HLT). This algorithm offers the ability to trigger on topological signa...

  20. Nucleation and condensation in the primitive solar nebula

    International Nuclear Information System (INIS)

    Cameron, A.G.W.; Fegley, M.B.

    1982-01-01

    It is pointed out that the primitive solar nebula may be modeled using the frictionally induced transport theory of Lynden-Bell and Pringle (1974) if the principal frictional mechanism within the nebula is turbulent viscosity. The present investigation is concerned with the construction of a model of a section of the primitive solar nebula as a basis for the study of nucleation and condensation processes within this section. The construction involves a relatively simple application of the Lynden-Bell and Pringle theory subject to steady mass flow conditions. The calculations which are conducted in connection with the investigation indicate that by the time the gas in the primitive solar nebula has become sufficiently supercooled to nucleate condensation centers, several different compounds, including the magnesium silicates forsterite and enstatite (MgSiO 3 ), will probably be able to condense on the growing condensation center

  1. Conceptual design of the first level trigger for the SDC experiment

    International Nuclear Information System (INIS)

    Drinkard, J.; Griffin, G.; Lankford, A.J.; Schmid, B.; Stoker, D.; Tarazi, J.; Lipniacka, A.; Brisson, J.C.; Hubbard, R.; Le Du, P.; Thooris, B.; Yashioka, H.; Hamatsu, R.; Nickerson, R.B.; Chapman, J.; Dunn, A.; Mann, J.; Miao, C.; Vejcik, S.; Dasu, S.; Gorski, T.; Lackey, J.; Smith, W.H.; Temple, W.; Coupal, D.

    1994-07-01

    We report on a conceptual design of the First Level Trigger for the SDC Experiment at the SSC. Level 1 algorithms employ barrel and intermediate trackers, and electromagnetic and hadronic calorimeters. Results of simulations of background rates and efficiencies are presented together with a discussion of the simulation method. Tracking and calorimetric triggers are discussed in detail. Some hardware implementation ideas for the trigger algorithms are mentioned. (authors). 8 refs., 4 figs., 2 tabs

  2. Accounting for primitive terms in mathematics

    Directory of Open Access Journals (Sweden)

    D.F.M. Strauss

    2005-07-01

    Full Text Available The philosophical problem of unity and diversity entails a challenge to the rationalist aim to define everything. Definitions of this kind surface in various academic disciplines in formulations like uniqueness, irreducibility, and what has acquired the designation “primitive terms”. Not even the most “exact” disciplines, such as mathematics, can avoid the implications entailed in giving an account of such primitive terms. A mere look at the historical development of mathematics highlights the fact that alternative perspectives prevailed – from the arithmeticism of Pythagoreanism, the eventual geometrisation of mathematics after the discovery of incommensurability up to the revival of arithmeticism in the mathematics of Cauchy, Weierstrass, Dedekind and Cantor (with the later orientation of Frege, who completed the circle by returning to the view that mathematics essentially is geometry. An assessment of logicism and axiomatic formalism is followed by looking at the primitive meaning of wholeness (and the whole-parts relation. With reference to the views of Hilbert, Weyl and Bernays the article concludes by suggesting that in opposition to arithmeticism and geometricism an alternative option ought to be pursued – one in which both the uniqueness and mutual coherence between the aspects of number and space are acknowledged.

  3. Compact Muon Solenoid Experimental Discovery Potential for Supersymmetry is Same-Charge Di-Lepton Events

    CERN Document Server

    Pakhotin, Yuriy Aleksandrovich

    2010-01-01

    Same-charge di-lepton events provide a very clean experimental signature for Supersymmetry (SUSY) search. This work studies the Compact Muon Solenoid (CMS) experiment search potential for new physics with same-charge, isolated di-leptons accompanied by jets and large missing transverse energy. The results show that CMS sensitivity for new physics at 7 TeV with integrated luminosity 100 pb$^{−1}$ will exceed current Tevatron limits. Muon detection for SUSY discovery in the forward direction is accomplished using cathode strip chambers (CSC). These detectors identify muons, provide a fast muon trigger, and give a precise measurement of the muon trajectory. There are 468 six-plane CSCs in the system. The efficiency of finding muon trigger primitives (muon track segments) was studied using 36 CMS CSCs and cosmic ray muons during the Magnet Test and Cosmic Challenge (MTCC) exercise conducted by the CMS experiment in 2006. The efficiency of finding 2-dimensional trigger primitives within 6-layer chambers was foun...

  4. Novel Trigger-Capable Modules for the Future CMS Tracking Detector and Inclusive Top Quark Pair Production Cross Section at $\\sqrt{s} = 13$ TeV

    CERN Document Server

    Harb, Ali; Mussgiller, Andreas

    2017-01-01

    This work covers two important aspects in the field of high-energy physics; detector development and physics data analysis. The first part of this thesis is devoted to the detector development activities for the Phase-II upgrade of the Compact Muon Solenoid (CMS) experiment’s outer tracking detector. To cope with the increased luminosity during the high-luminosity era of the Large Hadron Collider (LHC), it is foreseen to replace the existing tracking system of CMS with an entirely new system. Owing to a novel module concept called the $p_T$–module, the upgraded tracking system will be able to provide first level trigger information by means of an on-board momentum discrimination logic. This will be achieved using a new readout chip, the so-called CMS Binary Chip (CBC). The very first test beam measurement using $p_T$ –module prototypes, equipped with the CBC chip is presented and discussed. The obtained results serve as a proof-of-concept for such modules and shows that the CBC performs as expected. In...

  5. A Highly Selective First-Level Muon Trigger With MDT Chamber Data for ATLAS at HL-LHC

    CERN Document Server

    INSPIRE-00390105

    2016-07-11

    Highly selective triggers are essential for the physics programme of the ATLAS experiment at HL-LHC where the instantaneous luminosity will be about an order of magnitude larger than the LHC instantaneous luminosity in Run 1. The first level muon trigger rate is dominated by low momentum muons below the nominal trigger threshold due to the moderate momentum resolution of the Resistive Plate and Thin Gap trigger chambers. The resulting high trigger rates at HL-LHC can be su?ciently reduced by using the data of the precision Muon Drift Tube chambers for the trigger decision. This requires the implementation of a fast MDT read-out chain and of a fast MDT track reconstruction algorithm with a latency of at most 6 microseconds. A hardware demonstrator of the fast read-out chain has been successfully tested at the HL-LHC operating conditions at the CERN Gamma Irradiation Facility. The fast track reconstruction algorithm has been implemented on a fast trigger processor.

  6. A Highly Selective First-Level Muon Trigger With MDT Chamber Data for ATLAS at HL-LHC

    CERN Document Server

    Nowak, Sebastian; The ATLAS collaboration

    2015-01-01

    Highly selective triggers are essential for the physics programme of the ATLAS experiment at HL-LHC where the instantaneous luminosity will be about an order of magnitude larger than the LHC design luminosity. The Level-1 muon trigger rate is dominated by low momentum muons below the nominal trigger threshold due to the limited momentum resolution of the Resistive Plate and Thin Gap trigger chambers. The resulting high trigger rates at HL-LHC can be sufficient reduced by using the data of the precision Muon Drift Tube chambers for the trigger decision. This requires the implementation of a fast MDT read-out chain and of a fast MDT track reconstruction algorithm with a latency of at most 6~$\\mu$s. A hardware demonstrator of the fast read-out chain has been successfully tested at the high HL-LHC background rates at the CERN Gamma Irradiation Facility. The fast track reconstruction algorithm has been implemented on a fas trigger processor.

  7. Design of the ATLAS phase-II hardware-based tracking processor

    CERN Document Server

    Poggi, Riccardo; The ATLAS collaboration

    2018-01-01

    The expected factor four increase in peak luminosity of the high-luminosity LHC (HL-LHC) compared to the current system will force the ATLAS experiment to increase early stage trigger selection power. The agreed strategy is to implement precise hardware track reconstruction, through which sharper trigger turn-on curves can be achieved for primary single-lepton selections, while contributing to b-tagging and tau-tagging techniques as well as pileup mitigation for hadronic signatures, such as multijet and missing transverse momentum. This work discusses the requirements, architecture and projected performance of the system in terms of tracking capability, and trigger selection, based on detailed simulations.

  8. Upgrade of the Global Muon Trigger for the Compact Muon Solenoid experiment at CERN

    CERN Document Server

    AUTHOR|(INSPIRE)INSPIRE-00356020; Widmann, Eberhard

    The Large Hadron Collider is a large particle accelerator at the CERN research laboratory, designed to provide particle physics experiments with collisions at unprecedented centre-of-mass energies. For its second running period both the number of colliding particles and their collision energy were increased. To cope with these more challenging conditions and maintain the excellent performance seen during the first running period, the Level-1 trigger of the Compact Muon Solenoid experiment --- a sophisticated electronics system designed to filter events in real-time --- was upgraded. This upgrade consisted of the complete replacement of the trigger electronics and a full redesign of the system's architecture. While the calorimeter trigger path now follows a time-multiplexed processing model where the entire trigger data for a collision are received by a single processing board, the muon trigger path was split into regional track finding systems where each newly introduced track finder receives data from all th...

  9. Performance and development plans for the Inner Detector trigger algorithms at ATLAS

    International Nuclear Information System (INIS)

    Martin-Haugh, Stewart

    2014-01-01

    A description of the algorithms and the performance of the ATLAS Inner Detector trigger for LHC Run 1 are presented, as well as prospects for a redesign of the tracking algorithms in Run 2. The Inner Detector trigger algorithms are vital for many trigger signatures at ATLAS. The performance of the algorithms for electrons is presented. The ATLAS trigger software will be restructured from two software levels into a single stage which poses a big challenge for the trigger algorithms in terms of execution time and maintaining the physics performance. Expected future improvements in the timing and efficiencies of the Inner Detector triggers are discussed, utilising the planned merging of the current two stages of the ATLAS trigger.

  10. In search of a primitive ontology for relativistic quantum field theory

    Energy Technology Data Exchange (ETDEWEB)

    Lam, Vincent [University of Lausanne, CH-1015 Lausanne (Switzerland)

    2014-07-01

    There is a recently much discussed approach to the ontology of quantum mechanics according to which the theory is ultimately about entities in 3-dimensional space and their temporal evolution. Such an ontology postulating from the start matter localized in usual physical space or spacetime, by contrast to an abstract high-dimensional space such as the configuration space of wave function realism, is called primitive ontology in the recent literature on the topic and finds its roots in Bell's notion of local beables. The main motivation for a primitive ontology lies in its explanatory power: the primitive ontology allows for a direct account of the behaviour and properties of familiar macroscopic objects. In this context, it is natural to look for a primitive ontology for relativistic quantum field theory (RQFT). The aim of this talk is to critically discuss this interpretative move within RQFT, in particular with respect to the foundational issue of the existence of unitarily inequivalent representations. Indeed the proposed primitive ontologies for RQFT rely either on a Fock space representation or a wave functional representation, which are strictly speaking only unambiguously available for free systems in flat spacetime. As a consequence, it is argued that these primitive ontologies constitute only effective ontologies and are hardly satisfying as a fundamental ontology for RQFT.

  11. From primitive identity to the non-individuality of quantum objects

    Science.gov (United States)

    Arenhart, Jonas Becker; Krause, Décio

    2014-05-01

    We consider the claim by Dorato and Morganti (Grades of individuality. A pluralistic view of identity in quantum mechanics and in the sciences. Philosophical Studies, 163 (2013) 591-610) that primitive individuality should be attributed to the entities dealt with by non-relativistic quantum mechanics. There are two central ingredients in the proposal: (i) in the case of non-relativistic quantum mechanics, individuality should be taken as a primitive notion and (ii) primitive individuality is naturalistically acceptable. We argue that, strictly understood, naturalism faces difficulties in helping to provide a theory with a unique principle of individuation. We also hold that even when taken in a loose sense, naturalism does not provide any sense in which one could hold that quantum mechanics endorses primitive individuality over non-individuality. Rather, we argue that non-individuality should be preferred based on the grounds that such a view fits better the claims of the theory.

  12. VeloUT tracking for the LHCb Upgrade

    CERN Document Server

    Bowen, E

    2014-01-01

    This note describes track reconstruction in the LHCb tracking system upstream of the magnet, namely the VELO and UT sub-detectors. The implementation of the VeloUT algorithm and its performance in terms of track reconstruction efficiency, ghost rate and execution time per event are presented. The algorithm has been optimised for use in the Upgrade software trigger of LHCb. The momentum information obtained for the VeloUT tracks (due to a fringe magnetic field between the VELO and UT sub-detectors) can reduce the total execution time per event for the full tracking sequence. The performance of the tracking sequence with and without the use of VeloUT tracks is also presented.

  13. Mid-infrared study of the molecular structure variability of insoluble organic matter from primitive chondrites

    Science.gov (United States)

    Orthous-Daunay, F.-R.; Quirico, E.; Beck, P.; Brissaud, O.; Dartois, E.; Pino, T.; Schmitt, B.

    2013-03-01

    Insoluble Organic Matter (IOM) found in primitive meteorites was formed in the Early Solar System and subsequently processed on the parent asteroids. The location, temporal sequence and processes of formation of this IOM are still a matter of debate. In particular, there is no consensus on the actual effect of post-accretional aqueous alteration processes on the chemical composition and structure of IOM. In the most primitive chondrites (types 1 and 2), these alterations have so far been either neglected or generically assigned to oxidation processes induced by fluid circulation. A series of IOM samples extracted from 14 chondrites with extensively documented post-accretional histories have been studied by infrared spectroscopy. Aqueous alteration shows no detectable effect on the chemical composition and structure of IOM within or across chondrite classes. Indeed, the most effective post-accretional process appears to be a high-temperature short-duration heating event and concerns essentially type 2 chondrites. In any case, post-accretional processes cannot account for all the chemical and structural variations of IOM. Chondrites from the CI, CR and CM classes accreted IOM precursors with moderately variable compositions, suggesting a chemical heterogeneity of the protosolar disk. The 3.4 μm band, and possibly its overtones and combinations in the near-infrared range, appear to be tracer(s) of the chemical class and possibly of surface heating processes triggered by impacts.

  14. The first trimester human placenta is a site for terminal maturation of primitive erythroid cells

    OpenAIRE

    Van Handel, Ben; Prashad, Sacha L.; Hassanzadeh-Kiabi, Nargess; Huang, Andy; Magnusson, Mattias; Atanassova, Boriana; Chen, Angela; Hamalainen, Eija I.; Mikkola, Hanna K. A.

    2010-01-01

    Embryonic hematopoiesis starts via the generation of primitive red blood cells (RBCs) that satisfy the embryo's immediate oxygen needs. Although primitive RBCs were thought to retain their nuclei, recent studies have shown that primitive RBCs in mice enucleate in the fetal liver. It has been unknown whether human primitive RBCs enucleate, and what hematopoietic site might support this process. Our data indicate that the terminal maturation and enucleation of human primitive RBCs occurs in fir...

  15. Charge asymmetry and track multiplicity associated with high transverse momentum direct γ and π0 produced in pBe collisions

    International Nuclear Information System (INIS)

    Gamarnik, K.

    1986-01-01

    Away and Trigger Hemisphere charge asymmetry and Away and Trigger Regions track multiplicity in direct γ and π 0 events produced in pBe collisions have been studied. No significant difference in charge asymmetry was found between direct γ and π 0 events. In both direct γ and π 0 , the charge asymmetries showed a trend towards higher values with increasing trigger particle P/sub t/ for the Away Hemisphere, and towards lower values for the Trigger Hemisphere. No significant difference was observed in the direct γ and π 0 events particle multiplicity, except for the Away Region tracks with P/sub t/ above 0.5 GeV/c. In the latter case, π 0 events showed higher track multiplicity for trigger P/sub t/ above 4.5 GeV/c. In general, the Away Region had higher track multiplicity than the Trigger Region

  16. Deep Interior: Probing the Structure of Primitive Bodies

    Science.gov (United States)

    Asphaug, Erik; Scheeres, Daniel; Safaeinili, Ali

    Deep Interior is a mature Discovery-class mission concept focused on probing the geophysical behavior of primitive bodies, from the mechanics of their exterior materials to the structures of their interiors. Its theme is to discover how small bodies work - to learn the natural origin and evolution of asteroids, comets and other primitive bodies through radar reflection tomography and through detailed observations of the local and global effects of cratering. Learning the structure and mechanical response of asteroids and comets is also a precursor to resource utilization and hazardous asteroid mitigation. Overall the mission is aligned with NASA strategic sub-goal 3C, to advance scientific knowledge of the origin and history of the solar system ... and the hazards and resources present as humans explore space. Deep Interior deploys no complex landers or sub-spacecraft; the scientific instruments are a radar and a camera. A blast cratering experiments triggered by grenades leads to a low cost seismological investigation which complements the radar investigation. A desired addition is an imaging spectrometer. The science instruments are high heritage, as are the navigation techniques for orbiting and station-keeping. The mission conducts the following investigations at one or more asteroids: Radar Reflection Tomography (RRT). The first science phase is to operate a penetrating radar during each several-month rendezvous, deployed in reflection mode in the manner of ongoing radar investigations underway by Mars Express, Mars Reconnaissance Orbiter, and Kaguya. The RRT technique (Safaeinili et al., MAPS 2002) is analogous to performing a "CAT scan" from orbit: closely sampled radar echoes are processed to yield volumetric maps of mechanical and compositional boundaries, and to measure interior dielectric properties. Deep Interior utilizes a polar orbit (or station keeping) while the asteroid spins underneath; the result is to "peel the apple" with thousands of unique

  17. A new Highly Selective First Level ATLAS Muon Trigger With MDT Chamber Data for HL-LHC

    CERN Document Server

    Nowak, Sebastian; The ATLAS collaboration

    2015-01-01

    Highly selective first level triggers are essential for the physics programme of the ATLAS experiment at the HL-LHC where the instantaneous luminosity will exceed the LHC's instantaneous luminosity by almost an order of magnitude. The ATLAS first level muon trigger rate is dominated by low momentum sub-trigger threshold muons due to the poor momentum resolution at trigger level caused by the moderate spatial resolution of the resistive plate and thin gap trigger chambers. This limitation can be overcome by including the data of the precision muon drift tube chambers in the first level trigger decision. This requires the implementation of a fast MDT read-out chain and a fast MDT track reconstruction. A hardware demonstrator of the fast read-out chain was successfully tested under HL-LHC operating conditions at CERN's Gamma Irradiation Facility. It could be shown that the data provided by the demonstrator can be processed with a fast track reconstruction algorithm on an ARM CPU within the 6 microseconds latency...

  18. Multi­-Threaded Algorithms for General purpose Graphics Processor Units in the ATLAS High Level Trigger

    CERN Document Server

    Conde Mui\\~no, Patricia; The ATLAS collaboration

    2016-01-01

    General purpose Graphics Processor Units (GPGPU) are being evaluated for possible future inclusion in an upgraded ATLAS High Level Trigger farm. We have developed a demonstrator including GPGPU implementations of Inner Detector and Muon tracking and Calorimeter clustering within the ATLAS software framework. ATLAS is a general purpose particle physics experiment located on the LHC collider at CERN. The ATLAS Trigger system consists of two levels, with level 1 implemented in hardware and the High Level Trigger implemented in software running on a farm of commodity CPU. The High Level Trigger reduces the trigger rate from the 100 kHz level 1 acceptance rate to 1 kHz for recording, requiring an average per­-event processing time of ~250 ms for this task. The selection in the high level trigger is based on reconstructing tracks in the Inner Detector and Muon Spectrometer and clusters of energy deposited in the Calorimeter. Performing this reconstruction within the available farm resources presents a significant ...

  19. Primitive neuroectodermal tumor of the cervix: a case report

    Directory of Open Access Journals (Sweden)

    Boroujeni Parisa

    2011-09-01

    Full Text Available Abstract Introduction Peripheral primitive neuroectodermal tumor of the cervix uteri is extremely rare. Between 1987 and 2010, there were only nine cases reported in the English literature, with considerably different management policies. Case presentation A 45-year-old Iranian woman presented to our facility with a primitive neuroectodermal tumor of the cervix uteri. Her clinical stage IB2 tumor was treated successfully with chemotherapy. Our patient underwent radical hysterectomy. There was no trace of the tumor after four years of follow-up. Conclusions According to current knowledge, primitive neuroectodermal tumors belong to the Ewing's sarcoma family, and the improvement of treatment outcome in our patient was due to dose-intensive neoadjuvant chemotherapy, surgery and consolidation chemotherapy in accordance with the protocol for bony Ewing's sarcoma.

  20. Hard Spheres on the Primitive Surface

    Science.gov (United States)

    Dotera, Tomonari; Takahashi, Yusuke

    2015-03-01

    Recently hierarchical structures associated with the gyroid in several soft-matter systems have been reported. One of fundamental questions is regular arrangement or tiling on minimal surfaces. We have found certain numbers of hard spheres per unit cell on the gyroid surface are entropically self-organized. Here, new results for the primitive surface are presented. 56/64/72 per unit cell on the primitive minimal surface are entropically self-organized. Numerical evidences for the fluid-solid transition as a function of hard sphere radius are obtained in terms of the acceptance ratio of Monte Carlo moves and order parameters. These arrangements, which are the extensions of the hexagonal arrangement on a flat surface, can be viewed as hyperbolic tiling on the Poincaré disk with a negative Gaussian curvature.

  1. The CDF silicon vertex trigger for B-mesons physics study

    International Nuclear Information System (INIS)

    Belforte, S.; Donati, S.; Ristori, L.; Spinella, F.; Budagov, Yu.; Chlachidze, G.; Glagolev, V.; Semenov, A.; Sisakyan, A.; Punzi, G.

    2001-01-01

    The CDF scientific program includes particularly the study of some key topics of the Standard Model: 1) constraint of the CKM matrix: CP violation in B sector (B 0 → π + π - ) and B s mixing (B s 0 → D s - π + , B s 0 → D s - π + π - π + ); 2) t-quark physics (t → Wb); and processes beyond the Standard Model - e.g., Higgs searching (MSSM) in the H → b bar b mode. All the above processes have the common feature - the presence of b-quarks (B-mesons). B hadrons of sufficiently high transverse momentum are characterized by a large mean value of distribution of the impact parameter with respect to the beam axis. That means events containing this kind of particles can be recognized and separated from non-long-lived background simply by cutting on the track's impact parameter. The upgraded CDF is equipped by the so-called Silicon Vertex Tracker (SVT), a unique electronic device for real time track reconstruction using the data from two CDF track detectors: the silicon strip vertex detector and drift chamber. The SVT is a level-2 trigger which within 10 μs reconstructs the tracks and obtains the transverse momentum (p t ), azimuthal angle (φ) and impact parameter (d) with 30 μm precision. The simulation studies show the background reduction by factor 1000 for B 0 π + π - by demand d > 100 μm for at least two tracks. This trigger is the first one of this sort ever used for hadron collider experiments: it enables to trigger on the secondary vertex, which opens the unique new opportunities in the heavy quark physics study. The basic logic, architecture and perspectives of SVT application are briefly described

  2. Topological trigger device using scintillating fibers and position-sensitive photomultipliers

    Energy Technology Data Exchange (ETDEWEB)

    Kuroda, Keiichi; Dufournaud, J; Sillou, D [Laboratoire d' Annecy-le-Vieux de Physique des Particules (LAPP), 74 (France); Agoritsas, V [European Organization for Nuclear Research, Geneva (Switzerland); Bystricky, G; Lehar, F; Lesquen, A de [CEN-Saclay, 91 - Gif-sur-Yvette (France); Giacomich, R; Pauletta, G; Penzo, A; Salvato, G; Schiavon, P; Villari, A [INFN, Messina (Italy) INFN, Trieste (Italy) INFN, Udine (Italy); Gorin, A M; Meschanin, A P; Nurushev, S B; Rakhmatov, V E; Rykalin, V L; Solovyanov, V L; Vasiliev, A N; Vasil' chencko, V G [Institute for High Energy Physics, Serpukhov (USSR); Oshima, N; Yamada, R [Fermi National Accelerator Lab., Batavia, IL (USA); Takeutchi, F [Kyoto-Sanyo Univ., Kyoto (Japan); Yoshida, T [Osaka City Univ. (Japan); Akchurin, N; Onel, Y; Newsom, C

    1991-07-01

    An approach to a high quality of the Level-1 Trigger is investigated on the basis of a topological trigger device. It will be realized by using scintillating fibers and position-sensitive photomultipliers, both considered as potential candidates of new detector-components thanks to their excellent time characteristics and high radiation resistances. The device is characterized in particular by its simple concept and reliable operation supported by the mature technologies emploied. The major interests of such a scheme under LHC environments reside in its capability of selcting high pperpendicular to tracks in real time, its optional immunity against low pperpendicular to tracks and loopers, as well as its effective links to other associated devices in the complex of a vertex detector. (orig.).

  3. The ATLAS Fast Tracker Processing Units - track finding and fitting

    CERN Document Server

    AUTHOR|(INSPIRE)INSPIRE-00384270; The ATLAS collaboration; Alison, John; Ancu, Lucian Stefan; Andreani, Alessandro; Annovi, Alberto; Beccherle, Roberto; Beretta, Matteo; Biesuz, Nicolo Vladi; Bogdan, Mircea Arghir; Bryant, Patrick; Calabro, Domenico; Citraro, Saverio; Crescioli, Francesco; Dell'Orso, Mauro; Donati, Simone; Gentsos, Christos; Giannetti, Paola; Gkaitatzis, Stamatios; Gramling, Johanna; Greco, Virginia; Horyn, Lesya Anna; Iovene, Alessandro; Kalaitzidis, Panagiotis; Kim, Young-Kee; Kimura, Naoki; Kordas, Kostantinos; Kubota, Takashi; Lanza, Agostino; Liberali, Valentino; Luciano, Pierluigi; Magnin, Betty; Sakellariou, Andreas; Sampsonidis, Dimitrios; Saxon, James; Shojaii, Seyed Ruhollah; Sotiropoulou, Calliope Louisa; Stabile, Alberto; Swiatlowski, Maximilian; Volpi, Guido; Zou, Rui; Shochet, Mel

    2016-01-01

    The Fast Tracker is a hardware upgrade to the ATLAS trigger and data-acquisition system, with the goal of providing global track reconstruction by the start of the High Level Trigger starts. The Fast Tracker can process incoming data from the whole inner detector at full first level trigger rate, up to 100 kHz, using custom electronic boards. At the core of the system is a Processing Unit installed in a VMEbus crate, formed by two sets of boards: the Associative Memory Board and a powerful rear transition module called the Auxiliary card, while the second set is the Second Stage board. The associative memories perform the pattern matching looking for correlations within the incoming data, compatible with track candidates at coarse resolution. The pattern matching task is performed using custom application specific integrated circuits, called associative memory chips. The auxiliary card prepares the input and reject bad track candidates obtained from from the Associative Memory Board using the full precision a...

  4. ATLAS Tau Trigger

    CERN Document Server

    Belanger-Champagne, C; Bosman, M; Brenner, R; Casado, MP; Czyczula, Z; Dam, M; Demers, S; Farrington, S; Igonkina, O; Kalinowski, A; Kanaya, N; Osuna, C; Pérez, E; Ptacek, E; Reinsch, A; Saavedra, A; Sopczak, A; Strom, D; Torrence, E; Tsuno, S; Vorwerk, V; Watson, A; Xella, S

    2008-01-01

    Moving to the high energy scale of the LHC, the identification of tau leptons will become a necessary and very powerful tool, allowing a discovery of physics beyond Standard Model. Many models, among them light SM Higgs and various SUSY models, predict an abundant production of taus with respect to other leptons. The reconstruction of hadronic tau decays, although a very challenging task in hadronic enviroments, allows to increase a signal efficiency by at least of factor 2, and provides an independent control sample to disantangle lepton tau decays from prompt electrons and muons. Thanks to the advanced calorimetry and tracking, the ATLAS experiment has developed tools to efficiently identify hadronic taus at the trigger level. In this presentation we will review the characteristics of taus and the methods to suppress low-multiplicity, low-energy jets contributions as well as we will address the tau trigger chain which provide a rejection rate of 10^5. We will further present plans for commissioning the ATLA...

  5. Gamma ray energy tracking in GRETINA

    Science.gov (United States)

    Lee, I. Y.

    2011-10-01

    The next generation of stable and exotic beam accelerators will provide physics opportunities to study nuclei farther away from the line of stability. However, these experiments will be more demanding on instrumentation performance. These come from the lower production rate for more exotic beams, worse beam impurities, and large beam velocity from the fragmentation and inverse reactions. Gamma-ray spectroscopy will be one of the most effective tools to study exotic nuclei. However, to fully exploit the physics reach provided by these new facilities, better gamma-ray detector will be needed. In the last 10 years, a new concept, gamma-ray energy tracking array, was developed. Tracking arrays will increase the detection sensitivity by factors of several hundred compared to current arrays used in nuclear physics research. Particularly, the capability of reconstructing the position of the interaction with millimeters resolution is needed to correct the Doppler broadening of gamma rays emitted from high velocity nuclei. GRETINA is a gamma-ray tracking array which uses 28 Ge crystals, each with 36 segments, to cover ¼ of the 4 π of the 4 π solid angle. The gamma ray tracking technique requires detailed pulse shape information from each of the segments. These pulses are digitized using 14-bit 100 MHz flash ADCs, and digital signal analysis algorithms implemented in the on-board FPGAs provides energy, time and selection of pulse traces. A digital trigger system, provided flexible trigger functions including a fast trigger output, and also allows complicated trigger decisions to be made up to 20 microseconds. Further analyzed, carried out in a computer cluster, determine the energy, time, and three-dimensional positions of all gamma-ray interactions in the array. This information is then utilized, together with the characteristics of Compton scattering and pair-production processes, to track the scattering sequences of the gamma rays. GRETINA construction is completed in

  6. Dedicated Trigger for Highly Ionising Particles at ATLAS

    CERN Document Server

    Katre, Akshay; The ATLAS collaboration

    2015-01-01

    In 2012, a novel strategy was designed to detect signatures of Highly Ionising Particles (HIPs) such as magnetic monopoles, dyons or Qballs with the ATLAS trigger system. With proton-proton collisions at a centre of mass enegy of 8 TeV, the trigger was designed to have unique properties as a tracker for HIPs. It uses only the Transition Radiation Tracker (TRT) system, applying an algorithm distinct from standard tracking ones. The unique high threshold readout capability of the TRT is used at the location where HIPs in the detector are looked for. In particular the number and the fraction of TRT high threshold hits is used to distinguish HIPs from background processes. The trigger requires significantly lower energy depositions in the electro-magnetic calorimeters as a seed unlike previously used trigger algorithms for such searches. Thus the new trigger is capable of probing a large range of HIP masses and charges. We will give a description of the algorithms for this newly developed trigger for HIP searches...

  7. Silicon Tracking Upgrade at CDF

    International Nuclear Information System (INIS)

    Kruse, M.C.

    1998-04-01

    The Collider Detector at Fermilab (CDF) is scheduled to begin recording data from Run II of the Fermilab Tevatron in early 2000. The silicon tracking upgrade constitutes both the upgrade to the CDF silicon vertex detector (SVX II) and the new Intermediate Silicon Layers (ISL) located at radii just beyond the SVX II. Here we review the design and prototyping of all aspects of these detectors including mechanical design, data acquisition, and a trigger based on silicon tracking

  8. The ATLAS Trigger Algorithms for General Purpose Graphics Processor Units

    CERN Document Server

    Tavares Delgado, Ademar; The ATLAS collaboration

    2016-01-01

    The ATLAS Trigger Algorithms for General Purpose Graphics Processor Units Type: Talk Abstract: We present the ATLAS Trigger algorithms developed to exploit General­ Purpose Graphics Processor Units. ATLAS is a particle physics experiment located on the LHC collider at CERN. The ATLAS Trigger system has two levels, hardware-­based Level 1 and the High Level Trigger implemented in software running on a farm of commodity CPU. Performing the trigger event selection within the available farm resources presents a significant challenge that will increase future LHC upgrades. are being evaluated as a potential solution for trigger algorithms acceleration. Key factors determining the potential benefit of this new technology are the relative execution speedup, the number of GPUs required and the relative financial cost of the selected GPU. We have developed a trigger demonstrator which includes algorithms for reconstructing tracks in the Inner Detector and Muon Spectrometer and clusters of energy deposited in the Cal...

  9. Compositional studies of primitive asteroids

    International Nuclear Information System (INIS)

    Vilas, F.

    1988-01-01

    The composition of primitive asteroids and their relationship to satellites in the solar system will be studied by analyzing existing narrowband charge coupled device (CCD) reflectance spectra, acquiring additional spectra of asteroids and small satellites in the 0.5 to 1.0 micrometer spectral range, and exploring possibilities for obtaining compositional information in the blue-UV spectral region. Comparison with laboratory spectra of terrestrial chlorites and serpentines (phyllosilicates) and the clay minerals found in carbonaceous chondrite meteorites will continue. During 1987, narrowband CCD reflectance spectra of 17 additional asteroids were acquired. These spectra and spectra of 34 other asteroids have been used primarily for two studies: weak absorption features similar to those due to Fe2(+) and Fe2(+) - Fe3(+) transitions in iron oxides f ound in terrestrial chlorites and serpentines and carbonaceous chondrites have been identified in some primitive asteroid spectra. There is a first indication that asteroids grouped by heliocentric distance show similar weak absorption features. Nonparametric statistics are being applied to test the hypothesis of discrete remnants of a gradation in composition of outer-belt asteroids

  10. [Cranial trepanation in primitive cultures].

    Science.gov (United States)

    González-Darder, José Manuel

    A review is presented on cranial trepanations performed by primitive cultures. The scientific interest in this topic began after the discovery in 1965 by Ephraim G. Squier of a pre-Columbian trepanated skull, and studied by Paul Broca in Paris. Pseudotrepanation and other types of cranial manipulation are reviewed. The techniques, technology, and instruments for every type of trepanation are well known. There are a surprisingly high percentage of cases showing signs of post-trepanation survival. Indications for trepanation are speculative, perhaps magic. Although trepanation in primitive cultures is widespread around the world, and throughout time, the main fields of interest are the Neolithic Period in Europe, the pre-Columbian Period in Andean South America, and some contemporaneous Pacific and African tribes. This particular trepanation procedure has no relationship with modern Neurosurgery, or with trepanations with therapeutic purposes performed since the Greco-Roman period in Europe, and afterwards around the world. Copyright © 2016 Sociedad Española de Neurocirugía. Publicado por Elsevier España, S.L.U. All rights reserved.

  11. Breast metastases primitive extra mammary

    International Nuclear Information System (INIS)

    Terzieff, V.; Vázquez, A.; Alonso, I.; Sabini, G.

    2004-01-01

    Less than 3% of all breast cancers originate from a primitive extra mammary. In 40% of cases it is the first manifestation of the primitive properly studied but 80% are associated with widely disseminated disease. It typically presents as a nodule on external quadrant s painful in half the cases. The majority (60%) of metastases derived from breast contralateral breast tumors are believed to via the lymphatic system. of the ; extra mammary the most common tumors are melanoma; hematologic and neuroendocrine. Although some imaging characteristics can guide diagnosis is histological. Cytology has good performance in experienced hands; but up to 25% of cases there may be difficulty in establishing diagnosis. Treatment depends on the type of tumor. Mastectomy should not be practiced or axillary clearance routine as is generally the context of disease disseminated. Radiation therapy may be useful for local control. It has been proposed laser ablation but no experience with it. The overall prognosis is bad. For a man of 45 with a breast metastasis occurs only a clear cell carcinoma of the kidney

  12. Evolution of Computational Toxicology-from Primitive ...

    Science.gov (United States)

    Presentation at the Health Canada seminar in Ottawa, ON, Canada on Nov. 15. 2016 Presentation at the Health Canada seminar in Ottawa, ON, Canada on Nov. 15. 2016 on the Evolution of Computational Toxicology-from Primitive Beginnings to Sophisticated Application

  13. Level-1 track trigger for the upgrade of the CMS detector at HL-LHC

    CERN Document Server

    Ahuja, Sudha

    2016-01-01

    The Compact Muon Solenoid (CMS) experiment at the Large Hadron Collider (LHC) studies proton-proton collisions at a centre-of-mass energy of 13 TeV. With the LHC colliding proton bunches every 25 nanoseconds, the volume and rate of raw data produced by the detector are much larger than what can be read out, recorded, and reconstructed. Therefore, an efficient trigger system is required to identify events of interest in real time and to reduce the rate of events to a manageable level for later software reconstruction. The CMS trigger system consists of two processing stages, a level-1 (L1) hardware trigger and a high level software trigger. The current L1 trigger decision relies solely on calorimetric and muon system information. During the High Luminosity LHC (HL-LHC) era, the instantaneous luminosity of the collider is expected to increase by approximately an order of magnitude, resulting in a significantly larger number of collisions per bunch crossing than observed in the current run. In order to preserve ...

  14. A trigger card for event rejection in the RMC experiment at TRIUMF

    International Nuclear Information System (INIS)

    Bennett, P.; Chan, R.; Daviel, S.; Ko, S.; Blecher, M.; Hasinoff, M.; Sample, D.; Wright, D.; Poutissou, R.

    1990-01-01

    A trigger card has been designed and constructed to improve the trigger efficiency of a large solid angle pair spectrometer to be used for the measurement of radiative muon capture at TRIUMF. A number of these trigger cards are connected to FASTBUS pipeline TDCs via the FASTBUS auxiliary connector, to provide coarse information on the tracks of charged particles in a drift chamber. The trigger cards produce a majority OR of groups of six signals from the chamber, allowing very fast on-line event rejection. The performance of the cards and other relevant technical issues will be discussed in this article

  15. Chemistry of primitive solar material

    International Nuclear Information System (INIS)

    Barshay, S.S.; Lewis, J.S.

    1976-01-01

    The chemical processes that occurred in the cooler, outer regions of the primitive solar nebula at the time of intimate chemical contact between preplanetary condensate and nebular gas constitute the subject matter of this review. Condensation models are described and tested against the observed properties of the planets, their satellites, and the asteroids. 6 figs., 2 tables, 48 refs

  16. Frontend and Backend Electronics for the ATLAS New Small Wheel Upgrade

    CERN Document Server

    Martinez Outschoorn, Verena; The ATLAS collaboration

    2016-01-01

    The Phase-I and Phase-II upgrades of the LHC accelerator will increase the LHC instantaneous luminosity to 2×1034 cm-2s-1 and 7.5×1034 cm-2s-1, respectively. The luminosity increase drastically impacts the ATLAS trigger and readout data rates. The present ATLAS small wheel muon detector will be replaced with a New Small Wheel (NSW) detector in 2019. The NSW will feature two new detector technologies, Resistive Micromegas (MM) and small strip Thin Gap Chambers (sTGC) conforming a system of ~2.4 million readout channels. Both detectors will be used for muon triggering and precision tracking. A common readout path and two separate trigger paths are developed for these two detector technologies. The frontend electronics will be implemented in about 8000 boards including the design of 4 custom ASICs capable of driving trigger and tracking primitives to the backend trigger processor and readout system. The readout data flow is designed through a high-throughput network approach. The large number of readout channe...

  17. BTeV trigger/DAQ innovations

    International Nuclear Information System (INIS)

    Votava, Margaret

    2005-01-01

    The BTeV experiment was a collider based high energy physics (HEP) B-physics experiment proposed at Fermilab. It included a large-scale, high speed trigger/data acquisition (DAQ) system, reading data off the detector at 500 Gbytes/sec and writing to mass storage at 200 Mbytes/sec. The online design was considered to be highly credible in terms of technical feasibility, schedule and cost. This paper will give an overview of the overall trigger/DAQ architecture, highlight some of the challenges, and describe the BTeV approach to solving some of the technical challenges. At the time of termination in early 2005, the experiment had just passed its baseline review. Although not fully implemented, many of the architecture choices, design, and prototype work for the online system (both trigger and DAQ) were well on their way to completion. Other large, high-speed online systems may have interest in the some of the design choices and directions of BTeV, including (a) a commodity-based tracking trigger running asynchronously at full rate, (b) the hierarchical control and fault tolerance in a large real time environment, (c) a partitioning model that supports offline processing on the online farms during idle periods with plans for dynamic load balancing, and (d) an independent parallel highway architecture

  18. The first trimester human placenta is a site for terminal maturation of primitive erythroid cells.

    Science.gov (United States)

    Van Handel, Ben; Prashad, Sacha L; Hassanzadeh-Kiabi, Nargess; Huang, Andy; Magnusson, Mattias; Atanassova, Boriana; Chen, Angela; Hamalainen, Eija I; Mikkola, Hanna K A

    2010-10-28

    Embryonic hematopoiesis starts via the generation of primitive red blood cells (RBCs) that satisfy the embryo's immediate oxygen needs. Although primitive RBCs were thought to retain their nuclei, recent studies have shown that primitive RBCs in mice enucleate in the fetal liver. It has been unknown whether human primitive RBCs enucleate, and what hematopoietic site might support this process. Our data indicate that the terminal maturation and enucleation of human primitive RBCs occurs in first trimester placental villi. Extravascular ζ-globin(+) primitive erythroid cells were found in placental villi between 5-7 weeks of development, at which time the frequency of enucleated RBCs was higher in the villous stroma than in circulation. RBC enucleation was further evidenced by the presence of primitive reticulocytes and pyrenocytes (ejected RBC nuclei) in the placenta. Extravascular RBCs were found to associate with placental macrophages, which contained ingested nuclei. Clonogenic macrophage progenitors of fetal origin were present in the chorionic plate of the placenta before the onset of fetoplacental circulation, after which macrophages had migrated to the villi. These findings indicate that placental macrophages may assist the enucleation process of primitive RBCs in placental villi, implying an unexpectedly broad role for the placenta in embryonic hematopoiesis.

  19. Online Measurement of LHC Beam Parameters with the ATLAS High Level Trigger

    CERN Document Server

    Strauss, E; The ATLAS collaboration

    2011-01-01

    We present an online measurement of the LHC beam parameters in ATLAS using the High Level Trigger (HLT). When a significant change is detected in the measured beamspot, it is distributed to the HLT. There, trigger algorithms like b-tagging which calculate impact parameters or decay lengths benefit from a precise, up-to-date set of beamspot parameters. Additionally, online feedback is sent to the LHC operators in real time. The measurement is performed by an algorithm running on the Level 2 trigger farm, leveraging the high rate of usable events. Dedicated algorithms perform a full scan of the silicon detector to reconstruct event vertices from registered tracks. The distribution of these vertices is aggregated across the farm and their shape is extracted through fits every 60 seconds to determine the beamspot position, size, and tilt. The reconstructed beam values are corrected for detector resolution effects, measured in situ using the separation of vertices whose tracks have been split into two collections....

  20. Online measurement of LHC beam parameters with the ATLAS High Level Trigger

    CERN Document Server

    Strauss, E; The ATLAS collaboration

    2011-01-01

    We present an online measurement of the LHC beam parameters in ATLAS using the High Level Trigger (HLT). When a significant change is detected in the measured beamspot, it is distributed to the HLT. There, trigger algorithms like b-tagging which calculate impact parameters or decay lengths benefit from a precise,up-to-date set of beamspot parameters. Additionally, online feedback is sent to the LHC operators in real time. The measurement is performed by an algorithm running on the Level 2 trigger farm, leveraging the high rate of usable events. Dedicated algorithms perform a full scan of the silicon detector to reconstruct event vertices from registered tracks. The distribution of these vertices is aggregated across the farm and their shape is extracted through fits every 60 seconds to determine the beamspot position, size, and tilt. The reconstructed beam values are corrected for detector resolution effects, measured in situ using the separation of vertices whose tracks have been split into two collections. ...

  1. Spatiotemporal mechanical variation reveals critical role for rho kinase during primitive streak morphogenesis.

    Science.gov (United States)

    Henkels, Julia; Oh, Jaeho; Xu, Wenwei; Owen, Drew; Sulchek, Todd; Zamir, Evan

    2013-02-01

    Large-scale morphogenetic movements during early embryo development are driven by complex changes in biochemical and biophysical factors. Current models for amniote primitive streak morphogenesis and gastrulation take into account numerous genetic pathways but largely ignore the role of mechanical forces. Here, we used atomic force microscopy (AFM) to obtain for the first time precise biomechanical properties of the early avian embryo. Our data reveal that the primitive streak is significantly stiffer than neighboring regions of the epiblast, and that it is stiffer than the pre-primitive streak epiblast. To test our hypothesis that these changes in mechanical properties are due to a localized increase of actomyosin contractility, we inhibited actomyosin contractility via the Rho kinase (ROCK) pathway using the small-molecule inhibitor Y-27632. Our results using several different assays show the following: (1) primitive streak formation was blocked; (2) the time-dependent increase in primitive streak stiffness was abolished; and (3) convergence of epiblast cells to the midline was inhibited. Taken together, our data suggest that actomyosin contractility is necessary for primitive streak morphogenesis, and specifically, ROCK plays a critical role. To better understand the underlying mechanisms of this fundamental process, future models should account for the findings presented in this study.

  2. A binary link tracker for the BaBar level 1 trigger system

    International Nuclear Information System (INIS)

    Berenyi, A.; Chen, H.K.; Dao, K.

    1999-01-01

    The BaBar detector at PEP-II will operate in a high-luminosity e + e - collider environment near the Υ(4S) resonance with the primary goal of studying CP violation in the B meson system. In this environment, typical physics events of interest involve multiple charged particles. These events are identified by counting these tracks in a fast first level (Level 1) trigger system, by reconstructing the tracks in real time. For this purpose, a Binary Link Tracker Module (BLTM) was designed and fabricated for the BaBar Level 1 Drift Chamber trigger system. The BLTM is responsible for linking track segments, constructed by the Track Segment Finder Modules (TSFM), into complete tracks. A single BLTM module processes a 360 MBytes/s stream of segment hit data, corresponding to information from the entire Drift Chamber, and implements a fast and robust algorithm that tolerates high hit occupancies as well as local inefficiencies of the Drift Chamber. The algorithms and the necessary control logic of the BLTM were implemented in Field Programmable Gate Arrays (FPGAs), using the VHDL hardware description language. The finished 9U x 400 mm Euro-format board contains roughly 75,000 gates of programmable logic or about 10,000 lines of VHDL code synthesized into five FPGAs

  3. Peripheral Primitive Neuroectodermal Tumor of the Stomach: A Case Report

    International Nuclear Information System (INIS)

    Park, Woon Ju; Cho, June Sik; Shin, Kyung Sook; Jeong, Hyung Yong; Noh; Seung Moo; Song, Kyu Sang

    2010-01-01

    Peripheral primitive neuroectodermal tumors (peripheral PNETs) are very rare and highly aggressive soft tissue malignancies originating from the neural crest. To the best of our knowledge, only a few cases of peripheral PNETs of the stomach have been reported in the literature. We report a case of large peripheral primitive neuroectodermal tumor of the stomach with MDCT findings in a 22-year-old man presenting epigastric pain and vomiting

  4. The design and performance of the ATLAS Inner Detector trigger for Run 2

    CERN Document Server

    Penc, Ondrej; The ATLAS collaboration

    2016-01-01

    The design and performance of the ATLAS Inner Detector (ID) trigger algorithms running online on the high level trigger (HLT) processor farm with the early LHC Run 2 data are discussed. The redesign of the ID trigger, which took place during the 2013-15 long shutdown, in order to satisfy the demands of the higher energy LHC Run 2 operation is described. The ID trigger HLT algorithms are essential for nearly all trigger signatures within the ATLAS trigger. The detailed performance of the tracking algorithms with the early Run 2 data for the different trigger signatures is presented, including the detailed timing performance for the algorithms running on the redesigned single stage ATLAS HLT Farm. Comparison with the Run 1 strategy are made and demonstrate the superior performance of the strategy adopted for Run 2.

  5. Heavy Stable Charged Particles at LHC with the CMS detector: search and results for a trigger implementation

    CERN Document Server

    Mocellin, Giovanni

    2017-01-01

    The work done during Summer Student programme dealt with the study and the implementation of a new 2BX algorithm for the L1 Muon Barrel Trigger to extend the acceptance for slow-moving particles. Initially, a study was done to understand the possible improvements in the trigger efficiency for an algorithm considering two consecutive bunch crossings (BX) at a time instead of one. The algorithm was then defined and tested for the final hardware implementation with a new concept of testbench. Finally it was implemented in the TwinMux, a data concentrator which combines the Drift Tubes and Resistive Plate Chambers primitives giving as output the so-called superprimitives, to take advantage of the different performances of the two CMS muon subdetectors.

  6. Di-J/ψ Studies, Level 3 Tracking and the D0 Run IIb Upgrade

    International Nuclear Information System (INIS)

    Vint, Philip John

    2009-01-01

    The D0 detector underwent an upgrade to its silicon vertex detector and triggering systems during the transition from Run IIa to Run IIb to maximize its ability to fully exploit Run II at the Fermilab Tevatron. This thesis describes improvements made to the tracking and vertexing algorithms used by the high level trigger in both Run IIa and Run IIb, as well as a search for resonant di-J/ψ states using both Run IIa and Run IIb data. Improvements made to the tracking and vertexing algorithms during Run IIa included the optimization of the existing tracking software to reduce overall processing time and the certification and testing of a new software release. Upgrades made to the high level trigger for Run IIb included the development of a new tracking algorithm and the inclusion of the new Layer 0 silicon detector into the existing software. The integration of Layer 0 into the high level trigger has led to an improvement in the overall impact parameter resolution for tracks of ∼50%. The development of a new parameterization method for finding the error associated to the impact parameter of tracks returned by the high level tracking algorithm, in association with the inclusion of Layer 0, has led to improvements in vertex resolution of ∼4.5 (micro)m. A previous search in the di-J/ψ channel revealed a unpredicted resonance at ∼13.7 GeV/c 2 . A confirmation analysis is presented using 2.8 fb -1 of data and two different approaches to cuts. No significant excess is seen in the di-J/ψ mass spectrum.

  7. Di-J/Ψ Studies, Level 3 Tracking and the D0 Run IIb Upgrade

    Energy Technology Data Exchange (ETDEWEB)

    Vint, Philip John [Imperial College, London (United Kingdom)

    2010-02-01

    The D0 detector underwent an upgrade to its silicon vertex detector and triggering systems during the transition from Run IIa to Run IIb to maximize its ability to fully exploit Run II at the Fermilab Tevatron. This thesis describes improvements made to the tracking and vertexing algorithms used by the high level trigger in both Run IIa and Run IIb, as well as a search for resonant di-J/Ψ states using both Run IIa and Run IIb data. Improvements made to the tracking and vertexing algorithms during Run IIa included the optimization of the existing tracking software to reduce overall processing time and the certification and testing of a new software release. Upgrades made to the high level trigger for Run IIb included the development of a new tracking algorithm and the inclusion of the new Layer 0 silicon detector into the existing software. The integration of Layer 0 into the high level trigger has led to an improvement in the overall impact parameter resolution for tracks of ~50%. The development of a new parameterization method for finding the error associated to the impact parameter of tracks returned by the high level tracking algorithm, in association with the inclusion of Layer 0, has led to improvements in vertex resolution of ~4.5 μm. A previous search in the di-J/Ψ channel revealed a unpredicted resonance at ~13.7 GeV/c2. A confirmation analysis is presented using 2.8 fb-1 of data and two different approaches to cuts. No significant excess is seen in the di-J/Ψ mass spectrum.

  8. Discovery of Intrinsic Primitives on Triangle Meshes

    KAUST Repository

    Solomon, Justin; Ben-Chen, Mirela; Butscher, Adrian; Guibas, Leonidas

    2011-01-01

    The discovery of meaningful parts of a shape is required for many geometry processing applications, such as parameterization, shape correspondence, and animation. It is natural to consider primitives such as spheres, cylinders and cones

  9. COMPARATIVE STUDY OF RTOS AND PRIMITIVE INTERRUPT IN EMBEDDED SYSTEM

    Directory of Open Access Journals (Sweden)

    Dwi Purnomo

    2015-03-01

    Full Text Available Multitasking is one of the most challenging issues in the automation industry which is highly depended on the embedded system. There are two methods to perform multitasking in embedded system: RTOS and primitive interrupt. The main purpose of this research is to compare the performance of R¬TOS with primitive method while concurrently undertaking multiple tasks. The system, which is able to perform various tasks, has been built to evaluate the performance of both methods. There are four tasks introduced in the system: servo task, sensor task, LED task, and LCD task. The performance of each method is indicated by the success rate of the sensor task detection. Sensor task detection will be compared with the true value which is calculated and measured manually during observation time. Observation time was varied after several iterations and the data of the iteration are recorded for both RTOS and primitive interrupt methods. The results of the conducted experiments have shown that, RTOS is more accurate than interrupt method. However, the data variance of the primitive interrupt method is narrower than RTOS. Therefore, to choose a better method, an optimization is needed to be done and each product has its own standard.

  10. Une tumeur neuroectodermique primitive périphérique à localisation ...

    African Journals Online (AJOL)

    Les tumeurs neuro-ectodermiques primitives ou sarcome d'Ewing sont classiquement des néoplasmes se développant aux dépends des tissus mous et des os. Les tumeurs neuro-ectodermiques primitives gastriques (pPNETs) sont extrêmement rares. Nous nous proposons, à travers le cas d'un patient, opéré pour une ...

  11. Cryptographic Primitives with Quasigroup Transformations

    OpenAIRE

    Mileva, Aleksandra

    2010-01-01

    Cryptology is the science of secret communication, which consists of two complementary disciplines: cryptography and cryptanalysis. Cryptography is dealing with design and development of new primitives, algorithms and schemas for data enciphering and deciphering. For many centuries cryptographic technics have been applied in protection of secrecy and authentication in diplomatic, political and military correspondences and communications. Cryptanalysis is dealing with different attacks on c...

  12. Intrapartum synthetic oxytocin reduce the expression of primitive reflexes associated with breastfeeding.

    Science.gov (United States)

    Marín Gabriel, Miguel A; Olza Fernández, Ibone; Malalana Martínez, Ana M; González Armengod, Carmen; Costarelli, Valeria; Millán Santos, Isabel; Fernández-Cañadas Morillo, Aurora; Pérez Riveiro, Pilar; López Sánchez, Francisco; García Murillo, Lourdes

    2015-05-01

    Several synthetic peptide manipulations during the time surrounding birth can alter the specific neurohormonal status in the newborn brain. This study is aimed at assessing whether intrapartum oxytocin administration has any effect on primitive neonatal reflexes and determining whether such an effect is dose-dependent. A cohort prospective study was conducted at a tertiary hospital. Mother-infant dyads who received intrapartum oxytocin (n=53) were compared with mother-infant dyads who did not receive intrapartum oxytocin (n=45). Primitive neonatal reflexes (endogenous, antigravity, motor, and rhythmic reflexes) were quantified by analyzing videotaped breastfeeding sessions in a biological nurturing position. Two observers blind to the group assignment and the oxytocin dose analyzed the videotapes and assesed the newborn's state of consciousness according to the Brazelton scale. The release of all rhythmic reflexes (p=0.01), the antigravity reflex (p=0.04), and total primitive neonatal reflexes (p=0.02) in the group exposed to oxytocin was lower than in the group not exposed to oxytocin. No correlations were observed between the dose of oxytocin administered and the percentage of primitive neonatal reflexes released (r=0.03; p=0.82). Intrapartum oxytocin administration might inhibit the expression of several primitive neonatal reflexes associated with breastfeeding. This correlation does not seem to be dose-dependent.

  13. Test of a demonstrator of an MDT-based first-level muon Trigger for HL-LHC under realistic operating conditions

    CERN Document Server

    Kroha, Hubert; The ATLAS collaboration

    2015-01-01

    Highly selective first level triggers are essential for the physics programme of the ATLAS Experiment at the HL-LHC where the instantaneous luminosity will exceed the LHC’s instantaneous luminosity by almost an order of magnitude. The ATLAS first level muon trigger rate is dominated by low momentum sub-trigger threshold muons due to the limited momentum resolution at trigger level caused by the moderate spatial resolution of the resistive plate and thin gap trigger chambers. This limitation can be overcome by including the data of the precision muon drift tube chambers in the first level Trigger decision. This requires the implementation of a fast MDT read-out chain and a fast MDT track reconstruction. A hardware demonstrator of the fast read-out chain was successfully tested under HL-LHC operating conditions at CERN’s Gamma Irradiation Facility. It could be shown that the data provided by the demonstrator can be processed with a fast track reconstruction algorithm on an ARM CPU within the 6 microseconds ...

  14. A content addressable memory for use in CEBAF's CLAS detector level 2 triggering system

    International Nuclear Information System (INIS)

    Hodson, R.F.; Doughty, D.C. Jr.; Allgood, D.C.; Campbell, S.A.; Wilson, W.C.; Bickley, M.H.

    1996-01-01

    A collaboration of researchers from CEBAF, CNU and NASA is designing a 256-32 specialized Content Addressable Memory (CAM) for the level 2 triggering system in CEBAF's CLAS detector. These integrated circuits will find tracks and the momentum and angle of each track within 2 microseconds of an event. The custom CAM can operate as conventional memory, performing read and write operations, and can additionally perform independent byte compare operations across all words simultaneously. It is this compare feature which makes these CAMs attractive for identifying tracks passing through drift chambers by linking together segment number triplets within the CAM. Simulations have indicated that less than 16 k triplets need to be stored for each sector of the detector. This implies the level 2 triggering can be performed with 64 CAM chips per sector, or 384 total. Each data channel into a sector CAM array is buffered in a FIFO and is designed to handle aggregate data rates up to 750 Mbs for three channels (one channel/superlayer). The architecture of the level 2 trigger and details of the CAM chip design are discussed along with a performance report on our prototype CAMs

  15. Radial transfer of tracking data with wireless links

    CERN Document Server

    Pelikan, Daniel; Brenner, Richard; Dancila, Dragos; Gustafsson, Leif

    2014-01-01

    Wireless data transfer has revolutionized the consumer mar ket for the last decade giving products equipped with transmitters and receiver for wireless data t ransfer. Wireless technology has fea- tures attractive for data transfer in future tracking detec tors. The removal of wires and connectors for data links is certainly beneficial both for the material b udget and the reliability of the system. One other advantage is the freedom of routing signals which t oday is particularly complicated when bringing the data the first 50 cm outside the tracker. Wit h wireless links intelligence can be built into a tracker by introducing communication betwee n tracking layers within a Region Of Interest which would allow the construction of track primit ives in real time. The wireless signal is transmitted by a passive antenna structure which is a radiat ion hard and much less complex object than an optical link. Due to the requirement of high data rate s in detectors a high bandwidth is required. The frequency band aro...

  16. High water content in primitive continental flood basalts.

    Science.gov (United States)

    Xia, Qun-Ke; Bi, Yao; Li, Pei; Tian, Wei; Wei, Xun; Chen, Han-Lin

    2016-05-04

    As the main constituent of large igneous provinces, the generation of continental flood basalts (CFB) that are characterized by huge eruption volume (>10(5) km(3)) within short time span (primitive CFB in the early Permian Tarim large igneous province (NW China), using the H2O content of ten early-formed clinopyroxene (cpx) crystals that recorded the composition of the primitive Tarim basaltic melts and the partition coefficient of H2O between cpx and basaltic melt. The arc-like H2O content (4.82 ± 1.00 wt.%) provides the first clear evidence that H2O plays an important role in the generation of CFB.

  17. Primitive myxoid mesenchymal tumor of infancy in a preterm infant.

    Science.gov (United States)

    Lam, Joseph; Lara-Corrales, Irene; Cammisuli, Salvatore; Somers, Gino R; Pope, Elena

    2010-01-01

    Primitive myxoid mesenchymal tumor of infancy is a recently recognized entity that has been added to the differential diagnosis of myxoid tumors of the soft tissue. Few cases have been reported of this entity in the literature, but none presenting in a preterm infant. We present the case and clinical course of a preterm boy with a primitive myxoid mesenchymal tumor of infancy that occurred following excision of a congenital juvenile xanthogranuloma. © 2010 Wiley Periodicals, Inc.

  18. LHCb detector and trigger performance in Run II

    Science.gov (United States)

    Francesca, Dordei

    2017-12-01

    The LHCb detector is a forward spectrometer at the LHC, designed to perform high precision studies of b- and c- hadrons. In Run II of the LHC, a new scheme for the software trigger at LHCb allows splitting the triggering of events into two stages, giving room to perform the alignment and calibration in real time. In the novel detector alignment and calibration strategy for Run II, data collected at the start of the fill are processed in a few minutes and used to update the alignment, while the calibration constants are evaluated for each run. This allows identical constants to be used in the online and offline reconstruction, thus improving the correlation between triggered and offline selected events. The required computing time constraints are met thanks to a new dedicated framework using the multi-core farm infrastructure for the trigger. The larger timing budget, available in the trigger, allows to perform the same track reconstruction online and offline. This enables LHCb to achieve the best reconstruction performance already in the trigger, and allows physics analyses to be performed directly on the data produced by the trigger reconstruction. The novel real-time processing strategy at LHCb is discussed from both the technical and operational point of view. The overall performance of the LHCb detector on the data of Run II is presented as well.

  19. The design and construction of the ZEUS central tracking detector

    Energy Technology Data Exchange (ETDEWEB)

    Foster, B.; Malos, J.; Saxon, D.H.; Clark, D.E.; Jamdagni, A.K.; Markou, C.; Miller, D.B.; Miller, D.G.; Toudup, L.W.; Auty, C.G.; Blair, G.A.; Brooks, C.B.; Cashmore, R.J.; Hanford, A.T.; Harnew, N.; Holmes, A.R.; Linford, W.; Martin, N.C.; McArthur, I.C.; Nash, J.; Nobbs, K.N.; Wastie, R.L.; Williams, M.T.; Wilson, F.F.; Wilson, R.D.; Hart, J.C.; Hatley, R.W.; Hiddleston, J.W.; Gibson, M.D.; McCubbin, N.A.; Middleton, A.; Morrissey, M.C.; Morrow, D.; O' Brien, P.; Payne, B.T.; Roberts, J.C.H.; Shaw, T.B.; Sinclair, C.K.; Wallis, E.W.G.; White, D.J.; Yeo, K.L.; Bullock, F.W.; Dumper, J.; Fraser, T.J.; Hayes, D.; Jones, T.W.; Strachan, D.E.; Vine, I.A. (H.H. Wills Physics Lab., Univ. of Bristol (United Kingdom) Dept. of Physics and Astronomy, Univ. of Glasgow (United Kingdom) Blackett Lab., Physics Dept., Imperial Coll., London (United Kingdom) Dept. of Physics, Nuclear Physics Lab., Univ. of Oxford (United Kingdom) Rutherford Appleton Lab., Chilton (United Kingdom) Dept. of Physics an

    1994-01-15

    The mechanical, electrical and electronic design and construction of the ZEUS central tracking detector are described, together with the chamber monitoring and environmental control. This cylindrical drift chamber is designed for track reconstruction, electron identification and fast event triggering in a high beam-crossing rate, high magnetic field application. (orig.)

  20. Dedicated Trigger for Highly Ionising Particles at ATLAS

    CERN Document Server

    Katre, Akshay; The ATLAS collaboration

    2015-01-01

    In 2012, a novel strategy was designed to detect signatures of Highly Ionising Particles (HIPs) such as magnetic monopoles, dyons or Q-balls with ATLAS. A dedicated trigger was developed and deployed for proton-proton collisions at a centre of mass energy of 8 TeV. It uses the Transition Radiation Tracker (TRT) system, applying an algorithm distinct from standard tracking ones. The high threshold (HT) readout capability of the TRT is used to distinguish HIPs from other background processes. The trigger requires significantly lower energy depositions in the electromagnetic calorimeters and is thereby capable of probing a larger range of HIP masses and charges. A description of the algorithm for this newly developed trigger is presented, along with a comparitive study of its performance during the 2012 data-taking period with respect to previous efforts.

  1. A Fast Hardware Tracker for the ATLAS Trigger System

    CERN Document Server

    Kimura, N; The ATLAS collaboration

    2012-01-01

    Selecting interesting events with triggering is very challenging at the LHC due to the busy hadronic environment. Starting in 2014 the LHC will run with an energy of 14TeV and instantaneous luminosities which could exceed 10^34 interactions per cm^2 and per second. The triggering in the ATLAS detector is realized using a three level trigger approach, in which the first level (L1) is hardware based and the second (L2) and third (EF) stag are realized using large computing farms. It is a crucial and non-trivial task for triggering to maintain a high efficiency for events of interest while suppressing effectively the very high rates of inclusive QCD process, which constitute mainly background. At the same time the trigger system has to be robust and provide sufficient operational margins to adapt to changes in the running environment. In the current design track reconstruction can be performed only in limited regions of interest at L2 and the CPU requirements may limit this even further at the highest instantane...

  2. A Fast Hardware Tracker for the ATLAS Trigger System

    CERN Document Server

    Kimura, N; The ATLAS collaboration

    2012-01-01

    Selecting interesting events with triggering is very challenging at the LHC due to the busy hadronic environment. Starting in 2014 the LHC will run with an energy of 13 or 14 TeV and instantaneous luminosities which could exceed 1034 interactions per cm2 and per second. The triggering in the ATLAS detector is realized using a three level trigger approach, in which the first level (Level-1) is hardware based and the second (Level-2) and third (EF) stag are realized using large computing farms. It is a crucial and non-trivial task for triggering to maintain a high efficiency for events of interest while suppressing effectively the very high rates of inclusive QCD process, which constitute mainly background. At the same time the trigger system has to be robust and provide sufficient operational margins to adapt to changes in the running environment. In the current design track reconstruction can be performed only in limited regions of interest at L2 and the CPU requirements may limit this even further at the hig...

  3. The new Global Muon Trigger of the CMS experiment

    CERN Document Server

    Fulcher, Jonathan Richard; Rabady, Dinyar Sebastian; Reis, Thomas; Sakulin, Hannes

    2016-01-01

    For the 2016 physics data runs the L1 trigger system of the Compact Muon Solenoid (CMS) experiment underwent a major upgrade to cope with the increasing instantaneous luminosity of the CERN LHC whilst maintaining a high event selection efficiency for the CMS physics program. Most subsystem specific trigger processor boards were replaced with powerful general purpose processor boards, conforming to the MicroTCA standard, whose tasks are performed by firmware on an FPGA of the Xilinx Virtex 7 family. Furthermore, the muon trigger system moved from a subsystem centered approach, where each of the three muon detector systems provides muon candidates to the Global Muon Trigger (GMT), to a region based system, where muon track finders (TFs) combine information from the subsystems to generate muon candidates in three detector regions, that are then sent to the upgraded GMT. The upgraded GMT receives up to 108 muons from the processors of the muon TFs in the barrel, overlap, and endcap detector regions. The muons are...

  4. A Fast Hardware Tracker for the ATLAS Trigger System

    CERN Document Server

    Neubauer, Mark S

    2011-01-01

    In hadron collider experiments, triggering the detector to store interesting events for offline analysis is a challenge due to the high rates and multiplicities of particles produced. Maintaining high trigger efficiency for the physics we are most interested in while at the same time suppressing high rate physics from inclusive QCD processes is a difficult but important problem. It is essential that the trigger system be flexible and robust, with sufficient redundancy and operating margin. Providing high quality track reconstruction over the full ATLAS detector by the start of processing at LVL2 is an important element to achieve these needs. As the instantaneous luminosity increases, the computational load on the LVL2 system will significantly increase due to the need for more sophisticated algorithms to suppress backgrounds. The Fast Tracker (FTK) is a proposed upgrade to the ATLAS trigger system. It is designed to enable early rejection of background events and thus leave more LVL2 execution time by moving...

  5. Primitive neuroectodermal tumor of the orbit in a 5-year-old girl with microphthalmia

    DEFF Research Database (Denmark)

    Alyahya, Ghassan Ayish Jabur; Heegaard, Steffen; Fledelius, Hans C.

    2000-01-01

    ophthalmology, primitive neuroectodermal tumor (PNET), Ewing's sarcoma, small round-cell tumors, retinoblastoma, medulloepithelioma, microphthalmia, orbitotomy......ophthalmology, primitive neuroectodermal tumor (PNET), Ewing's sarcoma, small round-cell tumors, retinoblastoma, medulloepithelioma, microphthalmia, orbitotomy...

  6. Production and Electrical Characterization Tests of the ISL Detector and a Trigger Design for Higgs Boson Searches at CDF

    Energy Technology Data Exchange (ETDEWEB)

    Munar Ara, Antoni [Valencia U.

    2002-01-01

    This thesis is structured as follows: Chapter 1. gives a brief review of the Higgs mechanism in the Standard Model and the electroweak symmetry breaking. The Standard Model Higgs boson phenomenology at Tevatron energies is reviewed. Chapter 2. describes the upgraded Fermilab laboratory accelerator complex, and the upgraded CDF detector. Chapter 3. gives a brief overview of the more relevant aspects of the silicon detectors, and the ISL is described in detail. Chapter 4. describes the construction of the ISL ladders, the full custom testing setup (functionality tests, laser test, burn-in test and $\\beta$-source measurements), and the problems encountered during the ISL ladders construction. The procedures for ladder grading are also discussed. Chapter 5. describes the multilevel trigger system of the CDF detector, and the trigger primitives available at each level. The most relevant offine event observables are briefly discussed. In Chapter 6 the procedures to estimate the trigger rate and trigger effciency calculation are described. The particularities of triggering in $p\\bar{p}$ collisions at high luminosities are discussed. Chapter 7. and Chapter 8. are dedicated to study an effcient trigger strategy for the $H + W/Z \\to b\\bar{b}jj$ channel and the $H + Z \\to b\\bar{b} \

  7. Driving Style Analysis Using Primitive Driving Patterns With Bayesian Nonparametric Approaches

    OpenAIRE

    Wang, Wenshuo; Xi, Junqiang; Zhao, Ding

    2017-01-01

    Analysis and recognition of driving styles are profoundly important to intelligent transportation and vehicle calibration. This paper presents a novel driving style analysis framework using the primitive driving patterns learned from naturalistic driving data. In order to achieve this, first, a Bayesian nonparametric learning method based on a hidden semi-Markov model (HSMM) is introduced to extract primitive driving patterns from time series driving data without prior knowledge of the number...

  8. Slice Test Results of the ATLAS Barrel Muon Level-1 Trigger

    CERN Document Server

    Aielli, G; Alviggi, M G; Bocci, V; Brambilla, Elena; Canale, V; Caprio, M A; Cardarelli, R; Cataldi, G; De Asmundis, R; Della Volpe, D; Di Ciaccio, A; Di Simone, A; Distante, L; Gorini, E; Grancagnolo, F; Iengo, P; Nisati, A; Pastore, F; Patricelli, S; Perrino, R; Petrolo, E; Primavera, M; Salamon, A; Santonico, R; Sekhniaidze, G; Severi, M; Spagnolo, S; Vari, R; Veneziano, Stefano; 9th Workshop On Electronics For LHC Experiments - LECC 2003

    2003-01-01

    The muon spectrometer of the ATLAS experiment makes use of the Resistive Plate Chambers detectors for particle tracking in the barrel region. The level-1 muon trigger system has to measure and discriminate muon transverse momentum, perform a fast and coarse tracking of the muon candidates, associate them to the bunch crossing corresponding to the event of interest, measure the second coordinate in the non-bending projection. The on-detector electronics first collects front-end signals coming from the two inner RPC stations on the low-pT PAD boards, each one covering a region of DetaxDphi=0.2x0.2, and hosting four Coincidence Matrix ASICs. Each CMA performs the low-pT trigger algorithm and data readout on a region of DetaxDphi=0.2x0.1. Data coming from the four CMAs are assembled by the low-pT PAD logic. Each low-pT PAD board sends data to the corresponding high-pT PAD boards, located on the outer RPC station. Four CMA on each board make use of the low-pT trigger result and of the front-end signals coming from...

  9. A novel standalone track reconstruction algorithm for the LHCb upgrade

    CERN Multimedia

    Quagliani, Renato

    2018-01-01

    During the LHC Run III, starting in 2020, the instantaneous luminosity of LHCb will be increased up to 2×1033 cm−2 s−1, five times larger than in Run II. The LHCb detector will then have to be upgraded in 2019. In fact, a full software event reconstruction will be performed at the full bunch crossing rate by the trigger, in order to profit of the higher instantaneous luminosity provided by the accelerator. In addition, all the tracking devices will be replaced and, in particular, a scintillating fiber tracker (SciFi) will be installed after the magnet, allowing to cope with the higher occupancy. The new running conditions, and the tighter timing constraints in the software trigger, represent a big challenge for the track reconstruction. This talk presents the design and performance of a novel algorithm that has been developed to reconstruct track segments using solely hits from the SciFi. This algorithm is crucial for the reconstruction of tracks originating from long-lived particles such as KS and Λ. ...

  10. A mutli-technique search for the most primitive CO chondrites

    OpenAIRE

    Alexander, C.M.O'D.; Greenwood, R.C.; Bowden, R.; Gibson, J.M.; Howard, K.T.; Franchi, I.A.

    2018-01-01

    As part of a study to identify the most primitive COs and to look for weakly altered CMs amongst the COs, we have conducted a multi-technique study of 16 Antarctic meteorites that had been classified as primitive COs. For this study, we have determined: (1) the bulk H, C and N abundances and isotopes, (2) bulk O isotopic compositions, (3) bulk modal mineralogies, and (4) for some selected samples the abundances and compositions of their insoluble organic matter (IOM). Two of the 16 meteorites...

  11. The charged particle trigger of the CELLO-detector

    International Nuclear Information System (INIS)

    Schroeder, V.

    1981-01-01

    The fast charged particle trigger of the CELLO-detector at the PETRA e + e - storage ring (DESY) is a fast software programmable hardware processor. It is using multiwire chamber signals as inputs and takes a decision on charged tracks coming from the interaction region in less than 1 μsec. The input signals are addressing Random Access Memory devices in which the mask schemes of all meaningful physical tracks are stored. The RAM output signals give information about the numbers and shapes of the valid masks found. This information is used for fast event acquisition and online data analysis done by a PDP 11 computer. (orig.)

  12. Fast simulation of the trigger system of the ATLAS detector at LHC

    International Nuclear Information System (INIS)

    Epp, B.; Ghete, V.M.; Kuhn, D.; Zhang, Y.J.

    2004-01-01

    The trigger system of the ATLAS detector aims to maximize the physics coverage and to be open to new and possibly unforeseen physics signatures. It is a multi-level system, composed from a hardware trigger at level-1, followed by the high-level-trigger (level-2 and event-filter). In order to understand its performance, to optimize it and to reduce its total cost, the trigger system requires a detailed simulation which is time- and resource-consuming. An alternative to the full detector simulation is a so-called 'fast simulation' which starts the analysis from particle level and replaces the full detector simulation and the detailed particle tracking with parametrized distributions obtained from the full simulation and/or a simplified detector geometry. The fast simulation offers a less precise description of trigger performance, but it is faster and less resource-consuming. (author)

  13. Growth and sedimentation of dust grains in the primitive solar nebular

    International Nuclear Information System (INIS)

    Battaglia, A.

    1987-01-01

    Formation of the planets in the solar system is envisioned to occur via a gravitational instability in a thin layer of dust located at the midplane of the primitive solar nebula. The break-up of the dust layer gives rise to seed plants (planetesimals) that, through successive collisions, eventually form the present-day planets. This thesis addresses the problem of the formation of the dust layer, beginning with a configuration in which the dust particles are uniformly mixed with the nebula's turbulent gas. To describe the properties of turbulence in the primitive solar nebula, models by Canuto et al. (1987) and by Cabot et al. (1987) are used. The available results concerning calculation of the velocity of particles embedded in a turbulent fluid were found to be unsatisfactory; therefore, a new formalism was developed to express the latter quantity in terms of the properties of the turbulence in the fluid. Following the space-time evolution of the grains, formalism was developed that simulates the simultaneous processes of collisions and sedimentation of the dust grains in the primitive solar nebula. It is concluded that, for the model of the primitive solar nebula considered, the formation of a dust layer at midplane is very unlikely

  14. Three-dimensional triplet tracking for LHC and future high rate experiments

    International Nuclear Information System (INIS)

    Schöning, A

    2014-01-01

    The hit combinatorial problem is a main challenge for track reconstruction and triggering at high rate experiments. At hadron colliders the dominant fraction of hits is due to low momentum tracks for which multiple scattering (MS) effects dominate the hit resolution. MS is also the dominating source for hit confusion and track uncertainties in low energy precision experiments. In all such environments, where MS dominates, track reconstruction and fitting can be largely simplified by using three-dimensional (3D) hit-triplets as provided by pixel detectors. This simplification is possible since track uncertainties are solely determined by MS if high precision spatial information is provided. Fitting of hit-triplets is especially simple for tracking detectors in solenoidal magnetic fields. The over-constrained 3D-triplet method provides a complete set of track parameters and is robust against fake hit combinations. Full tracks can be reconstructed step-wise by connecting hit triplet combinations from different layers, thus heavily reducing the combinatorial problem and accelerating track linking. The triplet method is ideally suited for pixel detectors where hits can be treated as 3D-space points. With the advent of relatively cheap and industrially available CMOS-sensors the construction of highly granular full scale pixel tracking detectors seems to be possible also for experiments at LHC or future high energy (hadron) colliders. In this paper tracking performance studies for full-scale pixel detectors, including their optimisation for 3D-triplet tracking, are presented. The results obtained for different types of tracker geometries and different reconstruction methods are compared. The potential of reducing the number of tracking layers and - along with that - the material budget using this new tracking concept is discussed. The possibility of using 3D-triplet tracking for triggering and fast online reconstruction is highlighted

  15. Pattern Recognition in the TRT for the ATLAS B-Physics Trigger

    CERN Document Server

    Baines, J T M; Hinkelbein, C; Kugel, A; Männer, R; Müller, M; Sessler, M; Simmler, H; Singpiel, H; Smizanska, M

    1999-01-01

    The current B-physics trigger strategy in LVL2 starts with a scan of the full volume of the TRT to reconstruct all tracks with pT > 0.5 GeV. Since the detector volume to be analysed is 100 times larger than a typical RoI, and the pT range of the track search extends down to 0.5 GeV, an additional factor of 10 in processing power is required in comparison with the high-pT TRT feature extraction algorithm which has a 5 GeV threshold. At low luminosity, the full scan will be performed as part of the B-physics trigger with a frequency of 9 kHz. Taking into account all these factors, the full scan at low luminosity will require 100 times more computing power than the RoI-guided scan at design luminosity. It is the most challenging of all LVL2 algorithms in terms of computing power and bandwidth requirements. A very fast and therefore simple algorithm is thus essential, independent of the hardware realisation. This paper presents a TRT track reconstruction algorithm which is based on a Hough Transform using a look-...

  16. SPANISH PEAKS PRIMITIVE AREA, MONTANA.

    Science.gov (United States)

    Calkins, James A.; Pattee, Eldon C.

    1984-01-01

    A mineral survey of the Spanish Peaks Primitive Area, Montana, disclosed a small low-grade deposit of demonstrated chromite and asbestos resources. The chances for discovery of additional chrome resources are uncertain and the area has little promise for the occurrence of other mineral or energy resources. A reevaluation, sampling at depth, and testing for possible extensions of the Table Mountain asbestos and chromium deposit should be undertaken in the light of recent interpretations regarding its geologic setting.

  17. FPGA helix tracking algorithm for PANDA

    Energy Technology Data Exchange (ETDEWEB)

    Liang, Yutie; Galuska, Martin; Gessler, Thomas; Kuehn, Wolfgang; Lange, Jens Soeren; Muenchow, David [II. Physikalisches Institut, University of Giessen (Germany); Ye, Hua [Institute of High Energy Physics, CAS (China); Collaboration: PANDA-Collaboration

    2016-07-01

    The PANDA detector is a general-purpose detector for physics with high luminosity cooled antiproton beams, planed to operate at the FAIR facility in Darmstadt, Germany. The central detector includes a silicon Micro Vertex Detector (MVD) and a Straw Tube Tracker (STT). Without any hardware trigger, large amounts of raw data are streaming into the data acquisition system. The data reduction task is performed in the online system by reconstruction algorithms programmed on FPGAs (Field Programmable Gate Arrays) as first level and on a farm of GPUs or PCs as a second level. One important part in the system is the online track reconstruction. In this presentation, an online tracking algorithm for helix tracking reconstruction in the solenoidal field is shown. The VHDL-based algorithm is tested with different types of events, at different event rate. Furthermore, a study of T0 extraction from the tracking algorithm is performed. A concept of simultaneous tracking and T0 determination is presented.

  18. Real-time TPC analysis with the ALICE High-Level Trigger

    International Nuclear Information System (INIS)

    Lindenstruth, V.; Loizides, C.; Roehrich, D.; Skaali, B.; Steinbeck, T.; Stock, R.; Tilsner, H.; Ullaland, K.; Vestboe, A.; Vik, T.

    2004-01-01

    The ALICE High-Level Trigger processes data online, to either select interesting (sub-) events, or to compress data efficiently by modeling techniques. Focusing on the main data source, the Time Projection Chamber, the architecture of the system and the current state of the tracking and compression methods are outlined

  19. Track reconstruction in CMS high luminosity environment

    CERN Document Server

    AUTHOR|(CDS)2067159

    2016-01-01

    The CMS tracker is the largest silicon detector ever built, covering 200 square meters and providing an average of 14 high-precision measurements per track. Tracking is essential for the reconstruction of objects like jets, muons, electrons and tau leptons starting from the raw data from the silicon pixel and strip detectors. Track reconstruction is widely used also at trigger level as it improves objects tagging and resolution.The CMS tracking code is organized in several levels, known as iterative steps, each optimized to reconstruct a class of particle trajectories, as the ones of particles originating from the primary vertex or displaced tracks from particles resulting from secondary vertices. Each iterative step consists of seeding, pattern recognition and fitting by a kalman filter, and a final filtering and cleaning. Each subsequent step works on hits not yet associated to a reconstructed particle trajectory.The CMS tracking code is continuously evolving to make the reconstruction computing load compat...

  20. Track reconstruction in CMS high luminosity environment

    CERN Document Server

    Goetzmann, Christophe

    2014-01-01

    The CMS tracker is the largest silicon detector ever built, covering 200 square meters and providing an average of 14 high-precision measurements per track. Tracking is essential for the reconstruction of objects like jets, muons, electrons and tau leptons starting from the raw data from the silicon pixel and strip detectors. Track reconstruction is widely used also at trigger level as it improves objects tagging and resolution.The CMS tracking code is organized in several levels, known as iterative steps, each optimized to reconstruct a class of particle trajectories, as the ones of particles originating from the primary vertex or displaced tracks from particles resulting from secondary vertices. Each iterative step consists of seeding, pattern recognition and fitting by a kalman filter, and a final filtering and cleaning. Each subsequent step works on hits not yet associated to a reconstructed particle trajectory.The CMS tracking code is continuously evolving to make the reconstruction computing load compat...

  1. Multi-Threaded Algorithms for GPGPU in the ATLAS High Level Trigger

    Science.gov (United States)

    Conde Muíño, P.; ATLAS Collaboration

    2017-10-01

    General purpose Graphics Processor Units (GPGPU) are being evaluated for possible future inclusion in an upgraded ATLAS High Level Trigger farm. We have developed a demonstrator including GPGPU implementations of Inner Detector and Muon tracking and Calorimeter clustering within the ATLAS software framework. ATLAS is a general purpose particle physics experiment located on the LHC collider at CERN. The ATLAS Trigger system consists of two levels, with Level-1 implemented in hardware and the High Level Trigger implemented in software running on a farm of commodity CPU. The High Level Trigger reduces the trigger rate from the 100 kHz Level-1 acceptance rate to 1.5 kHz for recording, requiring an average per-event processing time of ∼ 250 ms for this task. The selection in the high level trigger is based on reconstructing tracks in the Inner Detector and Muon Spectrometer and clusters of energy deposited in the Calorimeter. Performing this reconstruction within the available farm resources presents a significant challenge that will increase significantly with future LHC upgrades. During the LHC data taking period starting in 2021, luminosity will reach up to three times the original design value. Luminosity will increase further to 7.5 times the design value in 2026 following LHC and ATLAS upgrades. Corresponding improvements in the speed of the reconstruction code will be needed to provide the required trigger selection power within affordable computing resources. Key factors determining the potential benefit of including GPGPU as part of the HLT processor farm are: the relative speed of the CPU and GPGPU algorithm implementations; the relative execution times of the GPGPU algorithms and serial code remaining on the CPU; the number of GPGPU required, and the relative financial cost of the selected GPGPU. We give a brief overview of the algorithms implemented and present new measurements that compare the performance of various configurations exploiting GPGPU cards.

  2. Interaction à deux joueurs en informatique quantique : primitives cryptographiques et complexité en requêtes

    OpenAIRE

    Magnin , Loïck

    2011-01-01

    This dissertation studies two different aspects of two-player interaction in the model of quantum communication and quantum computation.First, we study two cryptographic primitives, that are used as basic blocks to construct sophisticated cryptographic protocols between two players, e.g. identification protocols.The first primitive is ``quantum bit commitment''. This primitive cannot be done in an unconditionally secure way. However, security can be obtained by restraining the power of the tw...

  3. Performance Analysis of a Bunch and Track Identifier Prototype (BTI) for the CMS Barrel Muon Drift Chambers; Estudio de las Prestaciones de un Prototipo de Bunch and Track Identifier (BTI) para las Camaras de Deriva de CMS

    Energy Technology Data Exchange (ETDEWEB)

    Puerta Pelayo, J.

    2001-07-01

    This note contains a short description of the first step in the first level trigger applied to the barrel muon drift chambers of CMS: the Bunch and Track Identifier (BTI). The test beam results obtained with a BTI prototype have been also analysed BTI performance for different incidence angles and in presence of external magnetic field has been tested, as well as BTI capability as trigger device and track reconstructor. (Author) 30 refs.

  4. Upgrade of the CSC Endcap Muon Port Card at CMS

    International Nuclear Information System (INIS)

    Matveev, M; Padley, P

    2010-01-01

    The Muon Port Card (MPC) provides optical transmission of Level 1 Trigger primitives from 60 Endcap peripheral crates to the Track Finder (TF) crate within the CMS Cathode Strip Chamber (CSC) sub-detector at the CMS experiment at CERN. The system has been in operation since 2008 and comprises 180 1.6 Gbps optical links. The proposed Super-LHC (SLHC) upgrade implies higher data volumes to be transmitted through the trigger chain and more sophisticated trigger algorithms. We expect to upgrade the MPC boards within the next few years to accommodate these requirements. The paper presents the first results of simulation and prototyping with the goal of improving the sorting algorithms and using parallel 12-channel optical links and a more powerful Virtex-5 FPGA.

  5. The ALICE Dimuon Trigger Overview and Electronics Prototypes

    CERN Document Server

    Arnaldi, R; Barret, V; Bastid, N; Blanchard, G; Chiavassa, E; Cortese, P; Crochet, Philippe; Dellacasa, G; De Marco, N; Drancourt, C; Dupieux, P; Espagnon, B; Fargeix, J; Ferretti, A; Gallio, M; Genoux-Lubain, A; Lamoine, L; Lefèvre, F; Luquin, Lionel; Manso, F; Métivier, V; Musso, A; Oppedisano, C; Piccotti, A; Royer, L; Roig, O; Rosnet, P; Scalas, E; Scomparin, E; Vercellin, Ermanno

    2000-01-01

    Presentation made at RPC99 and submitted to NIM ALICE is the LHC experiment (2005) dedicated to the study of heavy ion collisions. Amongst the ALICE sub-detectors, the muon spectrometer will investigate the dimuon production from heavy resonance (J/psi, Gamma) decays, which is believed to be a promising signature of the QGP (Quark Gluon Plasma) formation.For maximum efficiency of the spectrometer, a dedicated dimuon trigger is presently built. The detector partis itself based on RPCs operated in streamer mode and is the topic of another contribution to this conference. This paper gives the principle and the simulated performances of the trigger and is also focussed on the description of the electronics prototypes and future developments. The RPCs are read-out by X and Y orthogonal strips: the front-end chips are presently developed. The signals are sent to the trigger electronics which basically performs a pt cut on the tracks to reduce the background. A prototype of fast (decision time 200 ns) programmable e...

  6. ATLAS Trigger and Data Acquisition Upgrades for High Luminosity LHC

    CERN Document Server

    AUTHOR|(INSPIRE)INSPIRE-00439268; The ATLAS collaboration

    2016-01-01

    The ATLAS experiment at CERN is planning a second phase of upgrades to prepare for the "High Luminosity LHC", a 4th major run due to start in 2026. In order to deliver an order of magnitude more data than previous runs, 14 TeV protons will collide with an instantaneous luminosity of 7.5 × 1034 cm−2s−1, resulting in much higher pileup and data rates than the current experiment was designed to handle. While this extreme scenario is essential to realise the physics programme, it is a huge challenge for the detector, trigger, data acquisition and computing. The detector upgrades themselves also present new requirements and opportunities for the trigger and data acquisition system. Initial upgrade designs for the trigger and data acquisition system are shown, including the real time low latency hardware trigger, hardware-based tracking, the high throughput data acquisition system and the commodity hardware and software-based data handling and event filtering. The motivation, overall architecture and expected ...

  7. ATLAS Trigger and Data Acquisition Upgrades for High Luminosity LHC

    CERN Document Server

    AUTHOR|(INSPIRE)INSPIRE-00421104; The ATLAS collaboration

    2016-01-01

    The ATLAS experiment at CERN is planning a second phase of upgrades to prepare for the "High Luminosity LHC", a 4th major run due to start in 2026. In order to deliver an order of magnitude more data than previous runs, 14 TeV protons will collide with an instantaneous luminosity of $7.5 \\times 10^{34} cm^{-2}s^{-1}$, resulting in much higher pileup and data rates than the current experiment was designed to handle. While this extreme scenario is essential to realise the physics programme, it is a huge challenge for the detector, trigger, data acquisition and computing. The detector upgrades themselves also present new requirements and opportunities for the trigger and data acquisition system. Initial upgrade designs for the trigger and data acquisition system are shown, including the real time low latency hardware trigger, hardware-based tracking, the high throughput data acquisition system and the commodity hardware and software-based data handling and event filtering. The motivation, overall architecture an...

  8. ATLAS Trigger and Data Acquisition Upgrades for High Luminosity LHC

    CERN Document Server

    George, Simon; The ATLAS collaboration

    2016-01-01

    The ATLAS experiment at CERN is planning a second phase of upgrades to prepare for the "High Luminosity LHC", a 4th major run due to start in 2026. In order to deliver an order of magnitude more data than previous runs, 14 TeV protons will collide with an instantaneous luminosity of 7.5 × 10^{34} cm^{−2}s^{−1}, resulting in much higher pileup and data rates than the current experiment was designed to handle. While this extreme scenario is essential to realise the physics programme, it is a huge challenge for the detector, trigger, data acquisition and computing. The detector upgrades themselves also present new requirements and opportunities for the trigger and data acquisition system. Initial upgrade designs for the trigger and data acquisition system are shown, including the real time low latency hardware trigger, hardware-based tracking, the high throughput data acquisition system and the commodity hardware and software-based data handling and event filtering. The motivation, overall architecture and ...

  9. ATLAS Trigger and Data Acquisition Upgrades for High Luminosity LHC

    CERN Document Server

    Balunas, William Keaton; The ATLAS collaboration

    2016-01-01

    The ATLAS experiment at CERN is planning a second phase of upgrades to prepare for the "High Luminosity LHC", a 4th major run due to start in 2026. In order to deliver an order of magnitude more data than previous runs, 14 TeV protons will collide with an instantaneous luminosity of $7.5 × 10^{34}$ cm$^{−2}$s$^{−1}$, resulting in much higher pileup and data rates than the current experiment was designed to handle. While this extreme scenario is essential to realise the physics programme, it is a huge challenge for the detector, trigger, data acquisition and computing. The detector upgrades themselves also present new requirements and opportunities for the trigger and data acquisition system. Initial upgrade designs for the trigger and data acquisition system are shown, including the real time low latency hardware trigger, hardware-based tracking, the high throughput data acquisition system and the commodity hardware and software-based data handling and event filtering. The motivation, overall architectur...

  10. Run-2 ATLAS Trigger and Detector Performance

    CERN Document Server

    Winklmeier, Frank; The ATLAS collaboration

    2016-01-01

    The 2nd LHC run has started in June 2015 with a pp centre-of-mass collision energy of 13 TeV, and ATLAS has taken first data at this new energy. In this talk the improvements made to the ATLAS experiment during the 2-year shutdown 2013/2014 will be discussed, and first detector and trigger performance results from the Run-2 will be shown. In general, reconstruction algorithms of tracks, e/gamma, muons, taus, jets and flavour tag- ging have been improved for Run-2. The new reconstruction algorithms and their performance measured using the data taken in 2015 at sqrt(s)=13 TeV will be discussed. Reconstruction efficiency, isolation performance, transverse momentum resolution and momentum scales are measured in various regions of the detector and in momentum intervals enlarged with respect to those measured in the Run-1. This presentation will also give an overview of the upgrades to the ATLAS trigger system that have been implemented during the LHC shutdown in order to deal with the increased trigger rates (fact...

  11. State-of-the-Art Materials for Ultrasound-Triggered Drug Delivery

    Science.gov (United States)

    Sirsi, Shashank; Borden, Mark

    2014-01-01

    Ultrasound is a unique and exciting theranostic modality that can be used to track drug carriers, trigger drug release and improve drug deposition with high spatial precision. In this review, we briefly describe the mechanisms of interaction between drug carriers and ultrasound waves, including cavitation, streaming and hyperthermia, and how those interactions can promote drug release and tissue uptake. We then discuss the rational design of some state-of-the-art materials for ultrasound-triggered drug delivery and review recent progress for each drug carrier, focusing on the delivery of chemotherapeutic agents such as doxorubicin. These materials include nanocarrier formulations, such as liposomes and micelles, designed specifically for ultrasound-triggered drug release, as well as microbubbles, microbubble-nanocarrier hybrids, microbubble-seeded hydrogels and phase-change agents. PMID:24389162

  12. A TRD Trigger for the tevatron collider experiment at D0

    Energy Technology Data Exchange (ETDEWEB)

    Utes, M.; Johnson, M.; Martin, M.

    1991-11-01

    A VME-based module for use as an input to the D0 Detector Level 1.5 Trigger is described. Its main function will be the confirmation of electron candidates flagged by the First Level Calorimeter Trigger using digitized data from the Transition Radiation Detector. Features of the board include the use of fast FIFOs to store incoming track coordinates, dual ported SRAM lookup tables for addressing integrated charge data and forming scalars, multiplier/accumulators for speed of calculation, and a single synchronous finite state machine to control all board operations. 4 refs., 3 figs.

  13. A TRD Trigger for the tevatron collider experiment at D0

    International Nuclear Information System (INIS)

    Utes, M.; Johnson, M.; Martin, M.

    1991-11-01

    A VME-based module for use as an input to the D0 Detector Level 1.5 Trigger is described. Its main function will be the confirmation of electron candidates flagged by the First Level Calorimeter Trigger using digitized data from the Transition Radiation Detector. Features of the board include the use of fast FIFOs to store incoming track coordinates, dual ported SRAM lookup tables for addressing integrated charge data and forming scalars, multiplier/accumulators for speed of calculation, and a single synchronous finite state machine to control all board operations. 4 refs., 3 figs

  14. Search for Primitive Matter in the Solar System

    Science.gov (United States)

    Libourel, G.; Michel, P.; Delbo, M.; Ganino, C.; Recio-Blanco, A.; de Laverny, P.; Zolensky, M. E.; Krot, A. N.

    2017-01-01

    Recent astronomical observations and theoretical modeling led to a consensus regarding the global scenario of the formation of young stellar objects (YSO) from a cold molecular cloud of interstellar dust (organics and minerals) and gas that, in some cases, leads to the formation of a planetary system. In the case of our Solar System, which has already evolved for approximately 4567 Ma, the quest is to access, through the investigation of planets, moons, cometary and asteroidal bodies, meteorites, micrometeorites, and interplanetary dust particles, the primitive material that contains the key information about the early Solar System processes and its evolution. However, laboratory analyses of extraterrestrial samples, astronomical observations and dynamical models of the Solar System evolution have not brought yet any conclusive evidence on the nature and location of primitive matter in the Solar System, preventing a clear understanding of its early stages.

  15. A Fast Hardware Tracker for the ATLAS Trigger System

    CERN Document Server

    Neubauer, M; The ATLAS collaboration

    2011-01-01

    In hadron collider experiments, triggering the detector to store interesting events for offline analysis is a challenge due to the high rates and multiplicities of particles produced. The LHC will soon operate at a center-of-mass energy of 14 TeV and at high instantaneous luminosities of the order of $10^{34}$ to $10^{35}$ cm$^{-2}$ s$^{-1}$. A multi-level trigger strategy is used in ATLAS, with the first level (LVL1) implemented in hardware and the second and third levels (LVL2 and EF) implemented in a large computer farm. Maintaining high trigger efficiency for the physics we are most interested in while at the same time suppressing high rate physics from inclusive QCD processes is a difficult but important problem. It is essential that the trigger system be flexible and robust, with sufficient redundancy and operating margin. Providing high quality track reconstruction over the full ATLAS detector by the start of processing at LVL2 is an important element to achieve these needs. As the instantaneous lumino...

  16. An extensive air shower trigger station for the Muon Portal detector

    International Nuclear Information System (INIS)

    Riggi, F.; Blancato, A.A.; La Rocca, P.; Riggi, S.; Santagati, G.

    2014-01-01

    The Muon Portal project (〈 (http://muoni.oact.inaf.it:8080/)〉 [1]; Riggi et al., 2013 [2,5,7]; Lo Presti et al., 2012 [3]; La Rocca et al., 2014 [4]; Bandieramonte et al., 2013 [6]; Pugliatti et al., 2014 [8]) aims at the construction of a large area detector to reconstruct cosmic muon tracks above and below a container, to search for hidden high-Z materials inside its volume by the muon tomography technique. Due to its sensitive area (about 18 m 2 ), with four XY detection planes, and its good tracking capabilities, the prototype under construction, which should be operational around mid-2015, also allows different studies in cosmic ray physics, including the detection of muon bundles. For such purpose, a trigger station based on three scintillation detectors operating in coincidence close to the main muon tracker has been built. This paper describes the design and preliminary results of the trigger station, together with the physics capabilities of the overall setup

  17. An extensive air shower trigger station for the Muon Portal detector

    Energy Technology Data Exchange (ETDEWEB)

    Riggi, F., E-mail: francesco.riggi@ct.infn.it [Dipartimento di Fisica e Astronomia, Università di Catania, Catania (Italy); INFN Sezione di Catania, Catania (Italy); Blancato, A.A. [Dipartimento di Fisica e Astronomia, Università di Catania, Catania (Italy); La Rocca, P. [Dipartimento di Fisica e Astronomia, Università di Catania, Catania (Italy); INFN Sezione di Catania, Catania (Italy); Riggi, S. [INAF, Osservatorio Astrofisico di Catania, Catania (Italy); Santagati, G. [Dipartimento di Fisica e Astronomia, Università di Catania, Catania (Italy); INFN Sezione di Catania, Catania (Italy)

    2014-11-11

    The Muon Portal project (〈 (http://muoni.oact.inaf.it:8080/)〉 [1]; Riggi et al., 2013 [2,5,7]; Lo Presti et al., 2012 [3]; La Rocca et al., 2014 [4]; Bandieramonte et al., 2013 [6]; Pugliatti et al., 2014 [8]) aims at the construction of a large area detector to reconstruct cosmic muon tracks above and below a container, to search for hidden high-Z materials inside its volume by the muon tomography technique. Due to its sensitive area (about 18 m{sup 2}), with four XY detection planes, and its good tracking capabilities, the prototype under construction, which should be operational around mid-2015, also allows different studies in cosmic ray physics, including the detection of muon bundles. For such purpose, a trigger station based on three scintillation detectors operating in coincidence close to the main muon tracker has been built. This paper describes the design and preliminary results of the trigger station, together with the physics capabilities of the overall setup.

  18. An extensive air shower trigger station for the Muon Portal detector

    Science.gov (United States)

    Riggi, F.; Blancato, A. A.; La Rocca, P.; Riggi, S.; Santagati, G.

    2014-11-01

    The Muon Portal project ( [1]; Riggi et al., 2013 [2,5,7]; Lo Presti et al., 2012 [3]; La Rocca et al., 2014 [4]; Bandieramonte et al., 2013 [6]; Pugliatti et al., 2014 [8]) aims at the construction of a large area detector to reconstruct cosmic muon tracks above and below a container, to search for hidden high-Z materials inside its volume by the muon tomography technique. Due to its sensitive area (about 18 m2), with four XY detection planes, and its good tracking capabilities, the prototype under construction, which should be operational around mid-2015, also allows different studies in cosmic ray physics, including the detection of muon bundles. For such purpose, a trigger station based on three scintillation detectors operating in coincidence close to the main muon tracker has been built. This paper describes the design and preliminary results of the trigger station, together with the physics capabilities of the overall setup.

  19. Melville and the Tradition of Primitive Utopia.

    Science.gov (United States)

    Beauchamp, Gorman

    1981-01-01

    Discusses the relationships among the myth of the Golden Age, the concept of the Noble Savage, and the dream of Utopia. Uses Lewis Mumford's division of utopias into two basic types, i.e., reconstruction and escape utopias, to examine Herman Melville's "Typee" as an example of the primitive escapist utopia. (Editor/DMM)

  20. Efficient Synchronization Primitives for GPUs

    OpenAIRE

    Stuart, Jeff A.; Owens, John D.

    2011-01-01

    In this paper, we revisit the design of synchronization primitives---specifically barriers, mutexes, and semaphores---and how they apply to the GPU. Previous implementations are insufficient due to the discrepancies in hardware and programming model of the GPU and CPU. We create new implementations in CUDA and analyze the performance of spinning on the GPU, as well as a method of sleeping on the GPU, by running a set of memory-system benchmarks on two of the most common GPUs in use, the Tesla...

  1. A novel approach to Hough Transform for implementation in fast triggers

    Energy Technology Data Exchange (ETDEWEB)

    Pozzobon, Nicola, E-mail: nicola.pozzobon@pd.infn.it [Istituto Nazionale di Fisica Nucleare, Sezione di Padova, via F. Marzolo 8, 35131 Padova (Italy); Dipartimento di Fisica ed Astronomia “G. Galilei”, Università degli Studi di Padova, via F. Marzolo 8, 35131 Padova (Italy); Montecassiano, Fabio [Istituto Nazionale di Fisica Nucleare, Sezione di Padova, via F. Marzolo 8, 35131 Padova (Italy); Zotto, Pierluigi [Istituto Nazionale di Fisica Nucleare, Sezione di Padova, via F. Marzolo 8, 35131 Padova (Italy); Dipartimento di Fisica ed Astronomia “G. Galilei”, Università degli Studi di Padova, via F. Marzolo 8, 35131 Padova (Italy)

    2016-10-21

    Telescopes of position sensitive detectors are common layouts in charged particles tracking, and programmable logic devices, such as FPGAs, represent a viable choice for the real-time reconstruction of track segments in such detector arrays. A compact implementation of the Hough Transform for fast triggers in High Energy Physics, exploiting a parameter reduction method, is proposed, targeting the reduction of the needed storage or computing resources in current, or next future, state-of-the-art FPGA devices, while retaining high resolution over a wide range of track parameters. The proposed approach is compared to a Standard Hough Transform with particular emphasis on their application to muon detectors. In both cases, an original readout implementation is modeled.

  2. A novel approach to Hough Transform for implementation in fast triggers

    International Nuclear Information System (INIS)

    Pozzobon, Nicola; Montecassiano, Fabio; Zotto, Pierluigi

    2016-01-01

    Telescopes of position sensitive detectors are common layouts in charged particles tracking, and programmable logic devices, such as FPGAs, represent a viable choice for the real-time reconstruction of track segments in such detector arrays. A compact implementation of the Hough Transform for fast triggers in High Energy Physics, exploiting a parameter reduction method, is proposed, targeting the reduction of the needed storage or computing resources in current, or next future, state-of-the-art FPGA devices, while retaining high resolution over a wide range of track parameters. The proposed approach is compared to a Standard Hough Transform with particular emphasis on their application to muon detectors. In both cases, an original readout implementation is modeled.

  3. A parallel non-neural trigger tracker for the SSC

    International Nuclear Information System (INIS)

    Farber, R.M.; Kennison, W.; Lapedes, A.S.

    1991-01-01

    The Superconducting Super Collider (SSC) is a major project promising to open the vistas of very high particle physics. When the SSC is in operation, data will be produced at a staggering rate. Current estimates place the raw data coming our of the proposed silicon detector system at 2.5 x 10 16 bits/second. Clearly, storing all events for later off-line processing is totally impracticable. A hierarchy of triggers, firing only on events meeting increasingly specific criteria, are planned to cull interesting events from the flood of information. Each event consists of a sequence of isolated ''hits'', caused by particles hitting various parts of the detector. Collating these hits into the tracks of the approximately 500 particles/event, and then quickly deciding which events meet the criteria for later processing, is essential if the SSC is to produce usable information. This paper addresses the need for real-time triggering and track reconstruction. A benchmarked and buildable algorithm, operable at the required data rates, is described. The use of neural nets, suggested by other researchers, is specifically avoided as unnecessary and impractical. Instead, a parallel algorithm, and associated hardware architecture using only conventional technology, is presented. The algorithm has been tested on fully scaled up, extensively detailed, simulated SSC events, with extremely encouraging results. Preliminary hardware analysis indicate that the trigger/tracker may be built within proposed SSC budget guidelines. 7 refs., 4 figs

  4. Hardware Demonstrator of a Level-1 Track Finding Algorithm with FPGAs for the Phase II CMS Experiment

    CERN Document Server

    AUTHOR|(CDS)2090481

    2016-01-01

    At the HL-LHC, proton bunches collide every 25\\,ns, producing an average of 140 pp interactions per bunch crossing. To operate in such an environment, the CMS experiment will need a Level-1 (L1) hardware trigger, able to identify interesting events within a latency of 12.5\\,$\\mu$s. This novel L1 trigger will make use of data coming from the silicon tracker to constrain the trigger rate. Goal of this new \\textit{track trigger} will be to build L1 tracks from the tracker information. The architecture that will be implemented in future to process tracker data is still under discussion. One possibility is to adopt a system entirely based on FPGA electronic. The proposed track finding algorithm is based on the Hough transform method. The algorithm has been tested using simulated pp collision data and it is currently being demonstrated in hardware, using the ``MP7'', which is a $\\mu$TCA board with a powerful FPGA capable of handling data rates approaching 1 Tb/s. Two different implementations of the Hough tran...

  5. Test beam demonstration of silicon microstrip modules with transverse momentum discrimination for the future CMS tracking detector

    Science.gov (United States)

    Adam, W.; Bergauer, T.; Brondolin, E.; Dragicevic, M.; Friedl, M.; Frühwirth, R.; Hoch, M.; Hrubec, J.; König, A.; Steininger, H.; Treberspurg, W.; Waltenberger, W.; Alderweireldt, S.; Beaumont, W.; Janssen, X.; Lauwers, J.; Van Mechelen, P.; Van Remortel, N.; Van Spilbeeck, A.; Beghin, D.; Brun, H.; Clerbaux, B.; De Lentdecker, G.; Delannoy, H.; Fasanella, G.; Favart, L.; Goldouzian, R.; Grebenyuk, A.; Karapostoli, G.; Lenzi, T.; Léonard, A.; Luetic, J.; Maerschalk, T.; Marinov, A.; Postiau, N.; Randle-Conde, A.; Seva, T.; Vanlaer, P.; Vannerom, D.; Yonamine, R.; Wang, Q.; Yang, Y.; Zenoni, F.; Zhang, F.; Abu Zeid, S.; Blekman, F.; De Bruyn, I.; De Clercq, J.; D'Hondt, J.; Deroover, K.; Lowette, S.; Moortgat, S.; Moreels, L.; Python, Q.; Skovpen, K.; Van Mulders, P.; Van Parijs, I.; Bakhshiansohi, H.; Bondu, O.; Brochet, S.; Bruno, G.; Caudron, A.; Delaere, C.; Delcourt, M.; De Visscher, S.; Francois, B.; Giammanco, A.; Jafari, A.; Cabrera Jamoulle, J.; De Favereau De Jeneret, J.; Komm, M.; Krintiras, G.; Lemaitre, V.; Magitteri, A.; Mertens, A.; Michotte, D.; Musich, M.; Piotrzkowski, K.; Quertenmont, L.; Szilasi, N.; Vidal Marono, M.; Wertz, S.; Beliy, N.; Caebergs, T.; Daubie, E.; Hammad, G. H.; Härkönen, J.; Lampén, T.; Luukka, P.; Peltola, T.; Tuominen, E.; Tuovinen, E.; Eerola, P.; Baulieu, G.; Boudoul, G.; Caponetto, L.; Combaret, C.; Contardo, D.; Dupasquier, T.; Gallbit, G.; Lumb, N.; Mirabito, L.; Perries, S.; Vander Donckt, M.; Viret, S.; Agram, J.-L.; Andrea, J.; Bloch, D.; Bonnin, C.; Brom, J.-M.; Chabert, E.; Chanon, N.; Charles, L.; Conte, E.; Fontaine, J.-Ch.; Gross, L.; Hosselet, J.; Jansova, M.; Tromson, D.; Autermann, C.; Feld, L.; Karpinski, W.; Kiesel, K. M.; Klein, K.; Lipinski, M.; Ostapchuk, A.; Pierschel, G.; Preuten, M.; Rauch, M.; Schael, S.; Schomakers, C.; Schulz, J.; Schwering, G.; Wlochal, M.; Zhukov, V.; Pistone, C.; Fluegge, G.; Kuensken, A.; Pooth, O.; Stahl, A.; Aldaya, M.; Asawatangtrakuldee, C.; Beernaert, K.; Bertsche, D.; Contreras-Campana, C.; Eckerlin, G.; Eckstein, D.; Eichhorn, T.; Gallo, E.; Garay Garcia, J.; Hansen, K.; Haranko, M.; Harb, A.; Hauk, J.; Keaveney, J.; Kalogeropoulos, A.; Kleinwort, C.; Lohmann, W.; Mankel, R.; Maser, H.; Mittag, G.; Muhl, C.; Mussgiller, A.; Pitzl, D.; Reichelt, O.; Savitskyi, M.; Schuetze, P.; Walsh, R.; Zuber, A.; Biskop, H.; Buhmann, P.; Centis-Vignali, M.; Garutti, E.; Haller, J.; Hoffmann, M.; Klanner, R.; Matysek, M.; Perieanu, A.; Scharf, Ch.; Schleper, P.; Schmidt, A.; Schwandt, J.; Sonneveld, J.; Steinbrück, G.; Vormwald, B.; Wellhausen, J.; Abbas, M.; Amstutz, C.; Barvich, T.; Barth, Ch.; Boegelspacher, F.; De Boer, W.; Butz, E.; Casele, M.; Colombo, F.; Dierlamm, A.; Freund, B.; Hartmann, F.; Heindl, S.; Husemann, U.; Kornmeyer, A.; Kudella, S.; Muller, Th.; Printz, M.; Simonis, H. J.; Steck, P.; Weber, M.; Weiler, Th.; Anagnostou, G.; Asenov, P.; Assiouras, P.; Daskalakis, G.; Kyriakis, A.; Loukas, D.; Paspalaki, L.; Siklér, F.; Veszprémi, V.; Bhardwaj, A.; Dalal, R.; Jain, G.; Ranjan, K.; Dutta, S.; Chowdhury, S. Roy; Bakhshiansohl, H.; Behnamian, H.; Khakzad, M.; Naseri, M.; Cariola, P.; Creanza, D.; De Palma, M.; De Robertis, G.; Fiore, L.; Franco, M.; Loddo, F.; Sala, G.; Silvestris, L.; Maggi, G.; My, S.; Selvaggi, G.; Albergo, S.; Costa, S.; Di Mattia, A.; Giordano, F.; Potenza, R.; Saizu, M. A.; Tricomi, A.; Tuve, C.; Barbagli, G.; Brianzi, M.; Ciaranfi, R.; Ciulli, V.; Civinini, C.; D'Alessandro, R.; Focardi, E.; Latino, G.; Lenzi, P.; Meschini, M.; Paoletti, S.; Russo, L.; Scarlini, E.; Sguazzoni, G.; Strom, D.; Viliani, L.; Ferro, F.; Lo Vetere, M.; Robutti, E.; Dinardo, M. E.; Fiorendi, S.; Gennai, S.; Malvezzi, S.; Manzoni, R. A.; Menasce, D.; Moroni, L.; Pedrini, D.; Azzi, P.; Bacchetta, N.; Bisello, D.; Dall'Osso, M.; Pozzobon, N.; Tosi, M.; De Canio, F.; Gaioni, L.; Manghisoni, M.; Nodari, B.; Riceputi, E.; Re, V.; Traversi, G.; Comotti, D.; Ratti, L.; Alunni Solestizi, L.; Biasini, M.; Bilei, G. M.; Cecchi, C.; Checcucci, B.; Ciangottini, D.; Fanò, L.; Gentsos, C.; Ionica, M.; Leonardi, R.; Manoni, E.; Mantovani, G.; Marconi, S.; Mariani, V.; Menichelli, M.; Modak, A.; Morozzi, A.; Moscatelli, F.; Passeri, D.; Placidi, P.; Postolache, V.; Rossi, A.; Saha, A.; Santocchia, A.; Storchi, L.; Spiga, D.; Androsov, K.; Azzurri, P.; Arezzini, S.; Bagliesi, G.; Basti, A.; Boccali, T.; Borrello, L.; Bosi, F.; Castaldi, R.; Ciampa, A.; Ciocci, M. A.; Dell'Orso, R.; Donato, S.; Fedi, G.; Giassi, A.; Grippo, M. T.; Ligabue, F.; Lomtadze, T.; Magazzu, G.; Martini, L.; Mazzoni, E.; Messineo, A.; Moggi, A.; Morsani, F.; Palla, F.; Palmonari, F.; Raffaelli, F.; Rizzi, A.; Savoy-Navarro, A.; Spagnolo, P.; Tenchini, R.; Tonelli, G.; Venturi, A.; Verdini, P. G.; Bellan, R.; Costa, M.; Covarelli, R.; Da Rocha Rolo, M.; Demaria, N.; Rivetti, A.; Dellacasa, G.; Mazza, G.; Migliore, E.; Monteil, E.; Pacher, L.; Ravera, F.; Solano, A.; Fernandez, M.; Gomez, G.; Jaramillo Echeverria, R.; Moya, D.; Gonzalez Sanchez, F. J.; Vila, I.; Virto, A. L.; Abbaneo, D.; Ahmed, I.; Albert, E.; Auzinger, G.; Berruti, G.; Bianchi, G.; Blanchot, G.; Bonnaud, J.; Caratelli, A.; Ceresa, D.; Christiansen, J.; Cichy, K.; Daguin, J.; D'Auria, A.; Detraz, S.; Deyrail, D.; Dondelewski, O.; Faccio, F.; Frank, N.; Gadek, T.; Gill, K.; Honma, A.; Hugo, G.; Jara Casas, L. M.; Kaplon, J.; Kornmayer, A.; Kottelat, L.; Kovacs, M.; Krammer, M.; Lenoir, P.; Mannelli, M.; Marchioro, A.; Marconi, S.; Mersi, S.; Martina, S.; Michelis, S.; Moll, M.; Onnela, A.; Orfanelli, S.; Pavis, S.; Peisert, A.; Pernot, J.-F.; Petagna, P.; Petrucciani, G.; Postema, H.; Rose, P.; Tropea, P.; Troska, J.; Tsirou, A.; Vasey, F.; Vichoudis, P.; Verlaat, B.; Zwalinski, L.; Bachmair, F.; Becker, R.; di Calafiori, D.; Casal, B.; Berger, P.; Djambazov, L.; Donega, M.; Grab, C.; Hits, D.; Hoss, J.; Kasieczka, G.; Lustermann, W.; Mangano, B.; Marionneau, M.; Martinez Ruiz del Arbol, P.; Masciovecchio, M.; Meinhard, M.; Perozzi, L.; Roeser, U.; Starodumov, A.; Tavolaro, V.; Wallny, R.; Zhu, D.; Amsler, C.; Bösiger, K.; Caminada, L.; Canelli, F.; Chiochia, V.; de Cosa, A.; Galloni, C.; Hreus, T.; Kilminster, B.; Lange, C.; Maier, R.; Ngadiuba, J.; Pinna, D.; Robmann, P.; Taroni, S.; Yang, Y.; Bertl, W.; Deiters, K.; Erdmann, W.; Horisberger, R.; Kaestli, H.-C.; Kotlinski, D.; Langenegger, U.; Meier, B.; Rohe, T.; Streuli, S.; Chen, P.-H.; Dietz, C.; Grundler, U.; Hou, W.-S.; Lu, R.-S.; Moya, M.; Cussans, D.; Flacher, H.; Goldstein, J.; Grimes, M.; Jacob, J.; Seif El Nasr-Storey, S.; Cole, J.; Hoad, C.; Hobson, P.; Morton, A.; Reid, I. D.; Auzinger, G.; Bainbridge, R.; Dauncey, P.; Fulcher, J.; Hall, G.; James, T.; Magnan, A.-M.; Pesaresi, M.; Raymond, D. M.; Uchida, K.; Braga, D.; Coughlan, J. A.; Harder, K.; Jones, L.; Ilic, J.; Murray, P.; Prydderch, M.; Tomalin, I. R.; Garabedian, A.; Heintz, U.; Narain, M.; Nelson, J.; Sagir, S.; Speer, T.; Swanson, J.; Tersegno, D.; Watson-Daniels, J.; Chertok, M.; Conway, J.; Conway, R.; Flores, C.; Lander, R.; Pellett, D.; Ricci-Tam, F.; Squires, M.; Thomson, J.; Yohay, R.; Burt, K.; Ellison, J.; Hanson, G.; Olmedo, M.; Si, W.; Yates, B. R.; Gerosa, R.; Sharma, V.; Vartak, A.; Yagil, A.; Zevi Della Porta, G.; Dutta, V.; Gouskos, L.; Incandela, J.; Kyre, S.; Mullin, S.; Qu, H.; White, D.; Dominguez, A.; Bartek, R.; Cumalat, J. P.; Ford, W. T.; Jensen, F.; Johnson, A.; Krohn, M.; Leontsinis, S.; Mulholland, T.; Stenson, K.; Wagner, S. R.; Apresyan, A.; Bolla, G.; Burkett, K.; Butler, J. N.; Cheung, H. W. K.; Chramowicz, J.; Christian, D.; Cooper, W. E.; Deptuch, G.; Derylo, G.; Gingu, C.; Grünendahl, S.; Hasegawa, S.; Hoff, J.; Howell, J.; Hrycyk, M.; Jindariani, S.; Johnson, M.; Kahlid, F.; Lei, C. M.; Lipton, R.; Lopes De Sá, R.; Liu, T.; Los, S.; Matulik, M.; Merkel, P.; Nahn, S.; Prosser, A.; Rivera, R.; Schneider, B.; Sellberg, G.; Shenai, A.; Spiegel, L.; Tran, N.; Uplegger, L.; Voirin, E.; Berry, D. R.; Chen, X.; Ennesser, L.; Evdokimov, A.; Evdokimov, O.; Gerber, C. E.; Hofman, D. J.; Makauda, S.; Mills, C.; Sandoval Gonzalez, I. D.; Alimena, J.; Antonelli, L. J.; Francis, B.; Hart, A.; Hill, C. S.; Parashar, N.; Stupak, J.; Bortoletto, D.; Bubna, M.; Hinton, N.; Jones, M.; Miller, D. H.; Shi, X.; Tan, P.; Baringer, P.; Bean, A.; Khalil, S.; Kropivnitskaya, A.; Majumder, D.; Wilson, G.; Ivanov, A.; Mendis, R.; Mitchell, T.; Skhirtladze, N.; Taylor, R.; Anderson, I.; Fehling, D.; Gritsan, A.; Maksimovic, P.; Martin, C.; Nash, K.; Osherson, M.; Swartz, M.; Xiao, M.; Acosta, J. G.; Cremaldi, L. M.; Oliveros, S.; Perera, L.; Summers, D.; Bloom, K.; Claes, D. R.; Fangmeier, C.; Gonzalez Suarez, R.; Monroy, J.; Siado, J.; Hahn, K.; Sevova, S.; Sung, K.; Trovato, M.; Bartz, E.; Gershtein, Y.; Halkiadakis, E.; Kyriacou, S.; Lath, A.; Nash, K.; Osherson, M.; Schnetzer, S.; Stone, R.; Walker, M.; Malik, S.; Norberg, S.; Ramirez Vargas, J. E.; Alyari, M.; Dolen, J.; Godshalk, A.; Harrington, C.; Iashvili, I.; Kharchilava, A.; Nguyen, D.; Parker, A.; Rappoccio, S.; Roozbahani, B.; Alexander, J.; Chaves, J.; Chu, J.; Dittmer, S.; McDermott, K.; Mirman, N.; Rinkevicius, A.; Ryd, A.; Salvati, E.; Skinnari, L.; Soffi, L.; Tao, Z.; Thom, J.; Tucker, J.; Zientek, M.; Akgün, B.; Ecklund, K. M.; Kilpatrick, M.; Nussbaum, T.; Zabel, J.; Betchart, B.; Covarelli, R.; Demina, R.; Hindrichs, O.; Petrillo, G.; Eusebi, R.; Patel, R.; Perloff, A.; Ulmer, K. A.; Delannoy, A. G.; D'Angelo, P.; Johns, W.

    2018-03-01

    A new CMS Tracker is under development for operation at the High Luminosity LHC from 2026 onwards. It includes an outer tracker based on dedicated modules that will reconstruct short track segments, called stubs, using spatially coincident clusters in two closely spaced silicon sensor layers. These modules allow the rejection of low transverse momentum track hits and reduce the data volume before transmission to the first level trigger. The inclusion of tracking information in the trigger decision is essential to limit the first level trigger accept rate. A customized front-end readout chip, the CMS Binary Chip (CBC), containing stub finding logic has been designed for this purpose. A prototype module, equipped with the CBC chip, has been constructed and operated for the first time in a 4 GeemVem/emc positron beam at DESY. The behaviour of the stub finding was studied for different angles of beam incidence on a module, which allows an estimate of the sensitivity to transverse momentum within the future CMS detector. A sharp transverse momentum threshold around 2 emVem/emc was demonstrated, which meets the requirement to reject a large fraction of low momentum tracks present in the LHC environment on-detector. This is the first realistic demonstration of a silicon tracking module that is able to select data, based on the particle's transverse momentum, for use in a first level trigger at the LHC . The results from this test are described here.

  6. Performance Analysis of a Bunch and Track Identifier Prototype (BTI) for the CMS Barrel Muon Drift Chambers

    International Nuclear Information System (INIS)

    Puerta Pelayo, J.

    2001-01-01

    This note contains a short description of the first step in the first level trigger applied to the barrel muon drift chambers of CMS: the Bunch and Track Identifier (BTI). The test beam results obtained with a BTI prototype have been also analysed BTI performance for different incidence angles and in presence of external magnetic field has been tested, as well as BTI capability as trigger device and track reconstructor. (Author) 30 refs

  7. A multiplicity jump trigger using silicon planes

    International Nuclear Information System (INIS)

    Alexopoulos, T.; Erwin, A.R.

    1993-01-01

    Since silicon tracking planes are already present in a B decay experiment, it is an attractive idea to use these as part of a multiplicity jump detector. Two average B decays would produce a multiplicity jump of around 10 in the final state. Such a trigger has been tried for a fixed target Charm experiment with disappointing success. The failure was attributed to the difficulty in adequately controlling the gains of a large number of microstrip amplifies

  8. New hybrid voxelized/analytical primitive in Monte Carlo simulations for medical applications

    International Nuclear Information System (INIS)

    Bert, Julien; Lemaréchal, Yannick; Visvikis, Dimitris

    2016-01-01

    Monte Carlo simulations (MCS) applied in particle physics play a key role in medical imaging and particle therapy. In such simulations, particles are transported through voxelized phantoms derived from predominantly patient CT images. However, such voxelized object representation limits the incorporation of fine elements, such as artificial implants from CAD modeling or anatomical and functional details extracted from other imaging modalities. In this work we propose a new hYbrid Voxelized/ANalytical primitive (YVAN) that combines both voxelized and analytical object descriptions within the same MCS, without the need to simultaneously run two parallel simulations, which is the current gold standard methodology. Given that YVAN is simply a new primitive object, it does not require any modifications on the underlying MC navigation code. The new proposed primitive was assessed through a first simple MCS. Results from the YVAN primitive were compared against an MCS using a pure analytical geometry and the layer mass geometry concept. A perfect agreement was found between these simulations, leading to the conclusion that the new hybrid primitive is able to accurately and efficiently handle phantoms defined by a mixture of voxelized and analytical objects. In addition, two application-based evaluation studies in coronary angiography and intra-operative radiotherapy showed that the use of YVAN was 6.5% and 12.2% faster than the layered mass geometry method, respectively, without any associated loss of accuracy. However, the simplification advantages and differences in computational time improvements obtained with YVAN depend on the relative proportion of the analytical and voxelized structures used in the simulation as well as the size and number of triangles used in the description of the analytical object meshes. (paper)

  9. New hybrid voxelized/analytical primitive in Monte Carlo simulations for medical applications.

    Science.gov (United States)

    Bert, Julien; Lemaréchal, Yannick; Visvikis, Dimitris

    2016-05-07

    Monte Carlo simulations (MCS) applied in particle physics play a key role in medical imaging and particle therapy. In such simulations, particles are transported through voxelized phantoms derived from predominantly patient CT images. However, such voxelized object representation limits the incorporation of fine elements, such as artificial implants from CAD modeling or anatomical and functional details extracted from other imaging modalities. In this work we propose a new hYbrid Voxelized/ANalytical primitive (YVAN) that combines both voxelized and analytical object descriptions within the same MCS, without the need to simultaneously run two parallel simulations, which is the current gold standard methodology. Given that YVAN is simply a new primitive object, it does not require any modifications on the underlying MC navigation code. The new proposed primitive was assessed through a first simple MCS. Results from the YVAN primitive were compared against an MCS using a pure analytical geometry and the layer mass geometry concept. A perfect agreement was found between these simulations, leading to the conclusion that the new hybrid primitive is able to accurately and efficiently handle phantoms defined by a mixture of voxelized and analytical objects. In addition, two application-based evaluation studies in coronary angiography and intra-operative radiotherapy showed that the use of YVAN was 6.5% and 12.2% faster than the layered mass geometry method, respectively, without any associated loss of accuracy. However, the simplification advantages and differences in computational time improvements obtained with YVAN depend on the relative proportion of the analytical and voxelized structures used in the simulation as well as the size and number of triangles used in the description of the analytical object meshes.

  10. Target Tracking of a Linear Time Invariant System under Irregular Sampling

    Directory of Open Access Journals (Sweden)

    Jin Xue-Bo

    2012-11-01

    Full Text Available Due to event-triggered sampling in a system, or maybe with the aim of reducing data storage, tracking many applications will encounter irregular sampling time. By calculating the matrix exponential using an inverse Laplace transform, this paper transforms the irregular sampling tracking problem to the problem of tracking with time-varying parameters of a system. Using the common Kalman filter, the developed method is used to track a target for the simulated trajectory and video tracking. The results of simulation experiments have shown that it can obtain good estimation performance even at a very high irregular rate of measurement sampling time.

  11. Physically Unclonable Cryptographic Primitives by Chemical Vapor Deposition of Layered MoS2.

    Science.gov (United States)

    Alharbi, Abdullah; Armstrong, Darren; Alharbi, Somayah; Shahrjerdi, Davood

    2017-12-26

    Physically unclonable cryptographic primitives are promising for securing the rapidly growing number of electronic devices. Here, we introduce physically unclonable primitives from layered molybdenum disulfide (MoS 2 ) by leveraging the natural randomness of their island growth during chemical vapor deposition (CVD). We synthesize a MoS 2 monolayer film covered with speckles of multilayer islands, where the growth process is engineered for an optimal speckle density. Using the Clark-Evans test, we confirm that the distribution of islands on the film exhibits complete spatial randomness, hence indicating the growth of multilayer speckles is a spatial Poisson process. Such a property is highly desirable for constructing unpredictable cryptographic primitives. The security primitive is an array of 2048 pixels fabricated from this film. The complex structure of the pixels makes the physical duplication of the array impossible (i.e., physically unclonable). A unique optical response is generated by applying an optical stimulus to the structure. The basis for this unique response is the dependence of the photoemission on the number of MoS 2 layers, which by design is random throughout the film. Using a threshold value for the photoemission, we convert the optical response into binary cryptographic keys. We show that the proper selection of this threshold is crucial for maximizing combination randomness and that the optimal value of the threshold is linked directly to the growth process. This study reveals an opportunity for generating robust and versatile security primitives from layered transition metal dichalcogenides.

  12. Track recognition with an associative pattern memory

    International Nuclear Information System (INIS)

    Bok, H.W. den; Visschers, J.L.; Borgers, A.J.; Lourens, W.

    1991-01-01

    Using Programmable Gate Arrays (PGAs), a prototype for a fast Associative Pattern Memory module has been realized. The associative memory performs the recognition of tracks within the hadron detector data acquisition system at NIKHEF-K. The memory matches the detector state with a set of 24 predefined tracks to identify the particle tracks that occur during an event. This information enables the trigger hardware to classify and select or discriminate the event. Mounted on a standard size (6U) VME board, several PGAs together form an associative memory. The internal logic architecture of the Gate Array is used in such a way as to minimize signal propagation delay. The memory cells, containing a binary representation of the particle tracks, are dynamically loadable through a VME bus interface, providing a high level of flexibility. The hadron detector and its readout system are briefly described and our track representation method is presented. Results from measurements under experimental conditions are discussed. (orig.)

  13. A Muon Trigger with high pT-resolution for Phase-II of the LHC Upgrade, based on the ATLAS Muon Drift Tube Chambers

    CERN Document Server

    Nowak, S; The ATLAS collaboration

    2014-01-01

    The ATLAS Muon Trigger in the ATLAS end-cap region is based on Thin Gap Chambers (TGC) which have an excellent time resolution but a moderate spatial resolution. The Muon Trigger efficiency curves show that for a transverse momentum ($p_{t}$) threshold of 20 GeVc$^{-1}$ the trigger rate is mainly dominated by muons with a $p_{t}$ between 10 GeVc$^{-1}$ and 20 GeVc$^{-1}$. To cope with the expected Muon Trigger rate at HL-LHC luminosities, we propose to include the precision tracking chambers (MDT) in the Muon Trigger. According to a potential study based on ATLAS data and assuming the HL-LHC scenario, this leads to a dramatical reduction of the Muon Trigger rate below the nominal threshold. As the already existing MDT chamber read-out chain is not capable of reading out the MDT fast enough to be used for the Muon Trigger, an additional fast read-out (FRO) chain with moderate spatial resolution but low latency is necessary. To conduct fast track reconstruction and muon $p_{t}$ determination with the data acqui...

  14. Primitive Accumulation and Temporalities of Capitalism

    Directory of Open Access Journals (Sweden)

    Joanna Bednarek

    2015-04-01

    Full Text Available The main thesis of the article is the statement that capitalism is composed of many different, incoherent temporalities, as well as that apprehension of capitalism from the angle of primitive accumulation enables the more accurate grasp of the modes of its functioning, including the complexity created by the interactions of the temporalities mentionned. The problem of primitive accumulation is, as Sandro Mezzadra proves, a good starting point for analysing this issue. It allows us to pose two questions: first, the question of the relation between the historical dimension and the structural logic of capitalism; second, the question of hierarchical relation between the center and the periphery of the capitalist system.Dipesh Chakrabarty’s project of ‘provincializing Europe’ proves helpful here, as it’s goal is deconstruction of the categories of progress, modernization and the capital with its abstract structure. The aim is not to negate the fact that capitalist abstraction is a real force, but to show that this force develops by means of constant assimiliation of the other – redefined as ‘backward’ or archaic. The linear scheme is in force, because it is the main mechanism of imposing the power of capital; as such, it is not politically neutral.

  15. Tracking and vertexing for B physics at hadron accelerators

    International Nuclear Information System (INIS)

    Johnson, R.; Purohit, M.; Weidemann, A.W.

    1993-01-01

    In this note, the authors report on some of the activities of the Tracking and Vertexing Working Group of this Workshop. Track and vertex finding is essential to exploit the high production rate of B-mesons at hadron accelerators, both for triggering and analysis. Here, they review the tracking and vertex-finding systems of some of the major existing and proposed collider and fixed-target experiments at existing and future hadron accelerators, with a view towards their usefulness for B-physics. The capabilities of both general-purpose detectors and those of dedicated B-physics experiments are considered

  16. Cave men: stone tools, Victorian science, and the 'primitive mind' of deep time.

    Science.gov (United States)

    Pettitt, Paul B; White, Mark J

    2011-03-20

    Palaeoanthropology, the study of the evolution of humanity, arose in the nineteenth century. Excavations in Europe uncovered a series of archaeological sediments which provided proof that the antiquity of human life on Earth was far longer than the biblical six thousand years, and by the 1880s authors had constructed a basic paradigm of what 'primitive' human life was like. Here we examine the development of Victorian palaeoanthropology for what it reveals of the development of notions of cognitive evolution. It seems that Victorian specialists rarely addressed cognitive evolution explicitly, although several assumptions were generally made that arose from preconceptions derived from contemporary 'primitive' peoples. We identify three main phases of development of notions of the primitive mind in the period.

  17. Global and exponential attractors of the three dimensional viscous primitive equations of large-scale moist atmosphere

    OpenAIRE

    You, Bo; Li, Fang

    2016-01-01

    This paper is concerned with the long-time behavior of solutions for the three dimensional viscous primitive equations of large-scale moist atmosphere. We prove the existence of a global attractor for the three dimensional viscous primitive equations of large-scale moist atmosphere by asymptotic a priori estimate and construct an exponential attractor by using the smoothing property of the semigroup generated by the three dimensional viscous primitive equations of large-scale moist atmosphere...

  18. A case of the persistence of the primitive hypoglossal artery with an enlarged hypoglossal canal

    International Nuclear Information System (INIS)

    Tomura, Noriaki; Inugami, Atsushi; Uemura, Kazuo; Asakura, Ken

    1987-01-01

    A case of the persistence of the primitive hypoglossal artery is reported, with a roentgenographic demonstration of the enlarged hypoglossal canal. A 63-year-old man was admitted to this hospital as a result of a malfunction of the ventriculo-peritoneal shunt. At the age of 51, the patient had been operated on in this hospital for an aneurysm of the right middle cerebral artery; at that time, the right primitive hypoglossal artery was observed on right carotid angiograms. On the day following admission, bilateral retrograde vertebral angiography was performed and the right persistent primitive hypoglossal artery was recognized again. Stenvers views of the skull demonstrated an enlargement of the hypoglossal canal, with a smooth sclerotic rim. High-resolution computed tomography with a contrast infusion delineated the right primitive hypoglossal artery through the enlarged hypoglossal canal. The diameter of the enlarged right hypoglossal canal and that of the left one were found to be 8 mm and 4 mm respectively on the CT. When an enlargement of the hypoglossal canal with a sclerotic rim is observed, the persistence of the primitive hypoglossal artery should be considered in the differential diagnosis. (author)

  19. FPGA helix tracking algorithm for PANDA

    Energy Technology Data Exchange (ETDEWEB)

    Liang, Yutie; Galuska, Martin; Gessler, Thomas; Kuehn, Wolfgang; Lange, Jens Soeren; Muenchow, David; Spruck, Bjoern [II. Physikalisches Institut, Giessen University (Germany); Ye, Hua [Institute of High Energy Physics, Beijing (China); Collaboration: PANDA-Collaboration

    2015-07-01

    The PANDA detector is a general-purpose detector for physics with high luminosity cooled antiproton beams, planed to operate at the FAIR facility in Darmstadt, Germany. The central detector includes a silicon Micro Vertex Detector (MVD) and a Straw Tube Tracker (STT). Without any hardware trigger, large amounts of raw data are streaming into the data acquisition system. The data reduction task is performed in the online system by reconstruction algorithms programmed on FPGAs (Field Programmable Gate Arrays) as first level and on a farm of GPUs or PCs as a second level. One important part in the system is the online track reconstruction. In this presentation, an online tracking algorithm for helix tracking reconstruction in the solenoidal field is shown. The tracking algorithm is composed by two parts, a road finding module followed by an iterative helix parameter calculation module. A performance study using C++ and the status of the VHDL implementation are presented.

  20. Cohesion between two clay lamellae: From Primitive Model to Full Molecular Simulation

    International Nuclear Information System (INIS)

    Carrier, Benoit; Vandamme, Matthieu; Pellenq, Roland; Van Damme, Henri

    2012-01-01

    Document available in extended abstract form only. The objective of this work is to investigate the range of validity of various models to describe accurately the cohesion between two charged clay lamellae. These models, in order of increasing complexity, are the Derjaguin-Landau-Verwey-Overbeek (DLVO) theory, the primitive model, the explicit solvent primitive model and the full molecular model. We aim at providing a clear picture of which physical mechanisms play a significant role for various interlayer spacings, surface charges and cationic charges. The up-scaling of the mechanical properties starting from the lamellar microstructure of a smectite is usually performed within the framework of the DLVO theory. In this case, the interaction between two charged lamellae with cations between them is the sum of the repulsive double layer electrostatic interaction and of the attractive Van der Waals interaction. However, the Primitive Model shows that concentration fluctuations of counter-ions can generate a strongly attractive ionic correlation force. The Primitive Model is a Monte-Carlo simulation of hydrated counter-ions between two infinite charges surfaces and the water is implicitly modeled by scaling all electrostatic interactions by the dielectric permittivity of bulk water. Nevertheless, for very small inter-layer spacings (1 nm), molecular simulations and experiments show that water is organized in a layered structure and does not behave like bulk water. Therefore, we investigate the role of the solvent in the cohesion of clay lamellae. For this purpose, we use a modified version of the original Primitive Model in which the solvent is modeled by point-dipoles: This model is called the Explicit Solvent Primitive Model. We consider four different systems: A Na + -montmorillonite, a Ca 2+ -montmorillonite, a Na + -vermiculite, a Ca 2+ -vermiculite. The vermiculite layers are twice as charged as the montmorillonite layers. We use a full molecular model as a

  1. Online measurement of LHC beam parameters with the ATLAS High Level Trigger

    International Nuclear Information System (INIS)

    Strauss, E

    2012-01-01

    We present an online measurement of the LHC beamspot parameters in ATLAS using the High Level Trigger (HLT). When a significant change is detected in the measured beamspot, it is distributed to the HLT. There, trigger algorithms like b-tagging which calculate impact parameters or decay lengths benefit from a precise, up-to-date set of beamspot parameters. Additionally, online feedback is sent to the LHC operators in real time. The measurement is performed by an algorithm running on the Level 2 trigger farm, leveraging the high rate of usable events. Dedicated algorithms perform a full scan of the silicon detector to reconstruct event vertices from registered tracks. The distribution of these vertices is aggregated across the farm and their shape is extracted through fits every 60 seconds to determine the beamspot position, size, and tilt. The reconstructed beamspot values are corrected for detector resolution effects, measured in situ using the separation of vertices whose tracks have been split into two collections. Furthermore, measurements for individual bunch crossings have allowed for studies of single-bunch distributions as well as the behavior of bunch trains. This talk will cover the constraints imposed by the online environment and describe how these measurements are accomplished with the given resources. The algorithm tasks must be completed within the time constraints of the Level 2 trigger, with limited CPU and bandwidth allocations. This places an emphasis on efficient algorithm design and the minimization of data requests.

  2. Towards a Level-1 tracking trigger for the ATLAS experiment

    CERN Document Server

    AUTHOR|(CDS)2070911; The ATLAS collaboration

    2015-01-01

    Among the upgrades for the High-Luminosity LHC era, the ATLAS collaboration is studying and developing the availability of inner detector tracking information at the first level of its three- tiered event selection chain. This will provide additional flexibility and rejection power: essential ingredients in order to cope with the demanding conditions of the upgraded LHC, as well as with unforeseen bandwidth constraints. The current state of the feasibility and performances studies is discussed.

  3. Novel trigger-capable modules for the future CMS tracking detector and inclusive top quark pair production cross section at √(s)=13 TeV

    International Nuclear Information System (INIS)

    Harb, Ali

    2017-07-01

    This work covers two important aspects in the field of high-energy physics; detector development and physics data analysis. The first part of this thesis is devoted to the detector development activities for the Phase-II upgrade of the Compact Muon Solenoid (CMS) experiment's outer tracking detector. To cope with the increased luminosity during the high-luminosity era of the Large Hadron Collider (LHC), it is foreseen to replace the existing tracking system of CMS with an entirely new system. Owing to a novel module concept called the p_T-module, the upgraded tracking system will be able to provide first level trigger information by means of an on-board momentum discrimination logic. This will be achieved using a new readout chip, the so-called CMS Binary Chip (CBC). The very first test beam measurement using p_T-module prototypes, equipped with the CBC chip is presented and discussed. The obtained results serve as a proof-of-concept for such modules and shows that the CBC performs as expected. In the second part of this thesis, the measurement of the top quark pair production cross section is addressed. The measurement is performed using 2.2 fb"-"1 of data collected by the CMS detector at a center-of-mass energy of 13 TeV. Results are shown in the eμ di-lepton channel, and for the first time at such energy, in the ee and μμ channels. With an improved treatment of systematic uncertainties, the results in all three channels are found to be in agreement with the theoretical predictions.

  4. History dependence in insect flight decisions during odor tracking.

    Science.gov (United States)

    Pang, Rich; van Breugel, Floris; Dickinson, Michael; Riffell, Jeffrey A; Fairhall, Adrienne

    2018-02-01

    Natural decision-making often involves extended decision sequences in response to variable stimuli with complex structure. As an example, many animals follow odor plumes to locate food sources or mates, but turbulence breaks up the advected odor signal into intermittent filaments and puffs. This scenario provides an opportunity to ask how animals use sparse, instantaneous, and stochastic signal encounters to generate goal-oriented behavioral sequences. Here we examined the trajectories of flying fruit flies (Drosophila melanogaster) and mosquitoes (Aedes aegypti) navigating in controlled plumes of attractive odorants. While it is known that mean odor-triggered flight responses are dominated by upwind turns, individual responses are highly variable. We asked whether deviations from mean responses depended on specific features of odor encounters, and found that odor-triggered turns were slightly but significantly modulated by two features of odor encounters. First, encounters with higher concentrations triggered stronger upwind turns. Second, encounters occurring later in a sequence triggered weaker upwind turns. To contextualize the latter history dependence theoretically, we examined trajectories simulated from three normative tracking strategies. We found that neither a purely reactive strategy nor a strategy in which the tracker learned the plume centerline over time captured the observed history dependence. In contrast, "infotaxis", in which flight decisions maximized expected information gain about source location, exhibited a history dependence aligned in sign with the data, though much larger in magnitude. These findings suggest that while true plume tracking is dominated by a reactive odor response it might also involve a history-dependent modulation of responses consistent with the accumulation of information about a source over multi-encounter timescales. This suggests that short-term memory processes modulating decision sequences may play a role in

  5. A close look at the mammalian blastocyst: epiblast and primitive endoderm formation.

    Science.gov (United States)

    Artus, Jérôme; Chazaud, Claire

    2014-09-01

    During early development, the mammalian embryo undergoes a series of profound changes that lead to the formation of two extraembryonic tissues--the trophectoderm and the primitive endoderm. These tissues encapsulate the pluripotent epiblast at the time of implantation. The current model proposes that the formation of these lineages results from two consecutive binary cell fate decisions. The first controls the formation of the trophectoderm and the inner cell mass, and the second controls the formation of the primitive endoderm and the epiblast within the inner cell mass. While early mammalian embryos develop with extensive plasticity, the embryonic pattern prior to implantation is remarkably reproducible. Here, we review the molecular mechanisms driving the cell fate decision between primitive endoderm and epiblast in the mouse embryo and integrate data from recent studies into the current model of the molecular network regulating the segregation between these lineages and their subsequent differentiation.

  6. Morphological Study of Insoluble Organic Matter Residues from Primitive

    Science.gov (United States)

    Changela, H. G.; Stroud, R. M.; Peeters, Z.; Nittler, L. R.; Alexander, C. M. O'D.; DeGregorio, B. T.; Cody, G. D.

    2012-01-01

    Insoluble organic matter (IOM) constitutes a major proportion, 70-99%, of the total organic carbon found in primitive chondrites [1, 2]. One characteristic morphological component of IOM is nanoglobules [3, 4]. Some nanoglobules exhibit large N-15 and D enrichments relative to solar values, indicating that they likely originated in the ISM or the outskirts of the protoplanetary disk [3]. A recent study of samples from the Tagish Lake meteorite with varying levels of hydrothermal alteration suggest that nanoglobule abundance decreases with increasing hydrothermal alteration [5]. The aim of this study is to further document the morphologies of IOM from a range of primitive chondrites in order to determine any correlation of morphology with petrographic grade and chondrite class that could constrain the formation and/or alteration mechanisms.

  7. TRIGGER

    CERN Multimedia

    W. Smith

    2012-01-01

      Level-1 Trigger The Level-1 Trigger group is ready to deploy improvements to the L1 Trigger algorithms for 2012. These include new high-PT patterns for the RPC endcap, an improved CSC PT assignment, a new PT-matching algorithm for the Global Muon Trigger, and new calibrations for ECAL, HCAL, and the Regional Calorimeter Trigger. These should improve the efficiency, rate, and stability of the L1 Trigger. The L1 Trigger group also is migrating the online systems to SLC5. To make the data transfer from the Global Calorimeter Trigger to the Global Trigger more reliable and also to allow checking the data integrity online, a new optical link system has been developed by the GCT and GT groups and successfully tested at the CMS electronics integration facility in building 904. This new system is now undergoing further tests at Point 5 before being deployed for data-taking this year. New L1 trigger menus have recently been studied and proposed by Emmanuelle Perez and the L1 Detector Performance Group...

  8. Comparison On Matching Methods Used In Pose Tracking For 3D Shape Representation

    Directory of Open Access Journals (Sweden)

    Khin Kyu Kyu Win

    2017-01-01

    Full Text Available In this work three different algorithms such as Brute Force Delaunay Triangulation and k-d Tree are analyzed on matching comparison for 3D shape representation. It is intended for developing the pose tracking of moving objects in video surveillance. To determine 3D pose of moving objects some tracking system may require full 3D pose estimation of arbitrarily shaped objects in real time. In order to perform 3D pose estimation in real time each step in the tracking algorithm must be computationally efficient. This paper presents method comparison for the computationally efficient registration of 3D shapes including free-form surfaces. Matching of free-form surfaces are carried out by using geometric point matching algorithm ICP. Several aspects of the ICP algorithm are investigated and analyzed by using specified surface setup. The surface setup processed in this system is represented by simple geometric primitive dealing with objects of free-from shape. Considered representations are a cloud of points.

  9. CT and MR findings of primitive neuroectodermal tumor

    International Nuclear Information System (INIS)

    Kook, Shin Ho; Kim, In One; Chang, Kee Hyun; Han, Moon Hee; Cho, Byung Kyu

    1991-01-01

    Cerebral primitive neuroectodermal tumor (PNET), consisting of undifferentiated primitive cells, is a neoplasm of children and young adults that occurs predominantly in the supratentorial compartment. In this report, we retrospectively reviewed and analyzed 18 CT and 6 MR findings in 18 patients with pathologically-proven PNET to discover the characteristic findings, if may. The most characteristic feature of the PNETs was a well-defined multilobular oval or round large mass with components of peripheral cystic change or calcification in the cerebral hemisphere, especially in the parietal lobe. Usually there was only minimal surrounding edema. The CT density of the tumor was iso - or slightly high density with homogeneous contrast enhancement in the solid portion and low density in the cystic area. MR findings demonstrated iso - signal intensity on both T1 - weighted (T1WI) and T2-weighted (T2WI) images and dense enhancement in the solid element. The cystic portion revealed low intensity on T1WI and high intensity on T2WI

  10. Transitions between discrete and rhythmic primitives in a unimanual task

    Science.gov (United States)

    Sternad, Dagmar; Marino, Hamal; Charles, Steven K.; Duarte, Marcos; Dipietro, Laura; Hogan, Neville

    2013-01-01

    Given the vast complexity of human actions and interactions with objects, we proposed that control of sensorimotor behavior may utilize dynamic primitives. However, greater computational simplicity may come at the cost of reduced versatility. Evidence for primitives may be garnered by revealing such limitations. This study tested subjects performing a sequence of progressively faster discrete movements in order to “stress” the system. We hypothesized that the increasing pace would elicit a transition to rhythmic movements, assumed to be computationally and neurally more efficient. Abrupt transitions between the two types of movements would support the hypothesis that rhythmic and discrete movements are distinct primitives. Ten subjects performed planar point-to-point arm movements paced by a metronome: starting at 2 s, the metronome intervals decreased by 36 ms per cycle to 200 ms, stayed at 200 ms for several cycles, then increased by similar increments. Instructions emphasized to insert explicit stops between each movement with a duration that equaled the movement time. The experiment was performed with eyes open and closed, and with short and long metronome sounds, the latter explicitly specifying the dwell duration. Results showed that subjects matched instructed movement times but did not preserve the dwell times. Rather, they progressively reduced dwell time to zero, transitioning to continuous rhythmic movements before movement times reached their minimum. The acceleration profiles showed an abrupt change between discrete and rhythmic profiles. The loss of dwell time occurred earlier with long auditory specification, when subjects also showed evidence of predictive control. While evidence for hysteresis was weak, taken together, the results clearly indicated a transition between discrete and rhythmic movements, supporting the proposal that representation is based on primitives rather than on veridical internal models. PMID:23888139

  11. Transitions between Discrete and Rhythmic Primitives in a Unimanual Task

    Directory of Open Access Journals (Sweden)

    Dagmar eSternad

    2013-07-01

    Full Text Available Given the vast complexity of human actions and interactions with objects, we proposed that control of sensorimotor behavior may utilize dynamic primitives. However, greater computational simplicity may come at the cost of reduced versatility. Evidence for primitives may be garnered by revealing such limitations. This study tested subjects performing a sequence of progressively faster discrete movements, in order to stress the system. We hypothesized that the increasing pace would elicit a transition to rhythmic movements, assumed to be computationally and neurally more efficient. Abrupt transitions between the two types of movements would support the hypothesis that rhythmic and discrete movements are distinct primitives. Ten subjects performed planar point-to-point arm movements paced by a metronome: Starting at 2s the metronome intervals decreased by 36ms per cycle to 200ms, stayed at 200ms for several cycles, then increased by similar increments. Instructions emphasized to insert explicit stops between each movement with a duration that equaled the movement time. The experiment was performed with eyes open and closed, and with short and long metronome sounds, the latter explicitly specifying the dwell duration. Results showed that subjects matched instructed movement times but did not preserve the dwell times. Rather, they progressively reduced dwell time to zero, transitioning to continuous rhythmic movements before movement times reached their minimum. The acceleration profiles showed an abrupt change between discrete and rhythmic profiles. The loss of dwell time occurred earlier with long auditory specification, when subjects also showed evidence of predictive control. While evidence for hysteresis was weak, taken together, the results clearly indicated a transition between discrete and rhythmic movements, supporting the proposal that representation is based on primitives rather than on veridical internal models.

  12. TRIGGER

    CERN Multimedia

    Wesley Smith

    Level-1 Trigger Hardware and Software The production of the trigger hardware is now basically finished, and in time for the turn-on of the LHC. The last boards produced are the Trigger Concentrator Cards for the ECAL Endcaps (TCC-EE). After the recent installation of the four EE Dees, the TCC-EE prototypes were used for their commissioning. Production boards are arriving and are being tested continuously, with the last ones expected in November. The Regional Calorimeter Trigger hardware is fully integrated after installation of the last EE cables. Pattern tests from the HCAL up to the GCT have been performed successfully. The HCAL triggers are fully operational, including the connection of the HCAL-outer and forward-HCAL (HO/HF) technical triggers to the Global Trigger. The HCAL Trigger and Readout (HTR) board firmware has been updated to permit recording of the tower “feature bit” in the data. The Global Calorimeter Trigger hardware is installed, but some firmware developments are still n...

  13. Development of a novel scintillation-trigger detector for the MTV experiment using aluminum-metallized film tapes

    Science.gov (United States)

    Tanaka, S.; Ozaki, S.; Sakamoto, Y.; Tanuma, R.; Yoshida, T.; Murata, J.

    2014-07-01

    A new type of a trigger-scintillation counter array designed for the MTV experiment at TRIUMF-ISAC has been developed, which uses aluminum-metallized film tape for wrapping to achieve the required assembling precision of ±0.5 mm. The MTV experiment uses a cylindrical drift chamber (CDC) as the main electron-tracking detector. The barrel-type trigger counter is placed inside the CDC to generate a trigger signal using 1 mm thick, 300 mm long thin plastic scintillation counters. Detection efficiency and light attenuation compared with conventional wrapping materials are studied.

  14. Development of a novel scintillation-trigger detector for the MTV experiment using aluminum-metallized film tapes

    International Nuclear Information System (INIS)

    Tanaka, S.; Ozaki, S.; Sakamoto, Y.; Tanuma, R.; Yoshida, T.; Murata, J.

    2014-01-01

    A new type of a trigger-scintillation counter array designed for the MTV experiment at TRIUMF-ISAC has been developed, which uses aluminum-metallized film tape for wrapping to achieve the required assembling precision of ±0.5 mm. The MTV experiment uses a cylindrical drift chamber (CDC) as the main electron-tracking detector. The barrel-type trigger counter is placed inside the CDC to generate a trigger signal using 1 mm thick, 300 mm long thin plastic scintillation counters. Detection efficiency and light attenuation compared with conventional wrapping materials are studied

  15. The Alice dimuon trigger: overview and electronics prototypes

    International Nuclear Information System (INIS)

    Arnaldi, R.; Baldit, A.; Barret, V.; Bastid, N.

    2000-01-01

    ALICE is the LHC experiment (2005) dedicated to the study of heavy ion collisions. Amongst the ALICE sub-detectors, the muon spectrometer will investigate the dimuon production from heavy resonance (J/ψ,γ) decays, which is believed to be a promising signature of the QGP (quark Gluon Plasma) formation. For maximum efficiency of the spectrometer, a dedicated dimuon trigger is presently built. The detector part itself is based on RPCs operated in streamer mode and is the topic of another contribution to this conference. This paper gives the principle and the simulated performances of the trigger and is also focussed on the description of the electronics prototypes and future developments. The RPCs are read-out by X and Y orthogonal strips: the front-end chips are presently developed. The signals are sent to the trigger electronics which basically performs a pt cut on the tracks to reduce the background. A prototype of fast (decision time 200 ns) programmable electronics working in a pipelined mode at 40 MHz has been built and tested. This prototype handles simultaneously 160 digital information from the strips. The tests of the trigger card have required the construction of a pattern generator (160 bits at 40 MHz). (author)

  16. Missing relationship of moyamoya and persistent primitive artery in Europeans. Another distinctive feature or artifact?

    Science.gov (United States)

    Wenz, Holger; Wenz, Ralf; Förster, Alex; Fontana, Johann; Kerl, Hans Ulrich; Groden, Christoph; Scharf, Johann

    2015-11-01

    Previous studies found higher incidence of persistent primitive arteries in Asian moyamoya (MM) patients than in the general population, which was thought to be a characteristic trait of the MM entity in general. We analyzed incidence of persistent primitive arteries and demographics of patients with European MM treated in one single center. First, we compared our large dataset to existing literature and second, we raised the question whether European MM demonstrates similar high prevalence of persistent primitive arteries as it was previously presented within Asian MM. All European MM on whom revascularization surgery was performed from 1999 to 2013 were included. Demographics and associated diseases were obtained by retrospective chart review. Two independent readers evaluated 122 MM angiograms to determine the occurrence of persistent primitive arteries as well as the Suzuki score. We identified 112 cases with MM disease, 10 with MM syndrome. Mean age at time of diagnosis was 38.2 (range 6-64 years); a peak incidence in early childhood was not observed. Ninety (73.8%) were women, associated systemic diseases were found in four patients. Seven cases (5.7%) presented with unilaterally affected vessels. The majority of patients (71; 58.2%) were graded Suzuki Score 3. One 14-year-old boy with moyamoya presented with a primitive trigeminal artery (0.89%). We did not find a bimodal age distribution, but only a second peak during adulthood. Unlike previous studies on Asian moyamoya patients, our collective does not exhibit a higher prevalence of persistent primitive arteries than the normal population.

  17. Transgression, Nostalgia, Order: Representation of the Primitive in Émile Zola's La Terre and Knut Hamsun's Markens grøde

    Directory of Open Access Journals (Sweden)

    Riikka Rossi

    2012-03-01

    Full Text Available This article examines the representation of the primitive in two peasant novels, Émile Zola's La Terre (1887, trans. as The Earth and Knut Hamsun's Markens grøde (1917, trans. as Growth of the Soil. The concept of the primitive crosses a wide range of issues that were central to naturalist and decadent literature at the turn of the twentieth century, from unconscious instincts to the fascination with exotic cultures. It thus offers a fruitful medium for the comparative reading of French and Nordic fiction of the era. I especially focus on analysing the diverse, representative practices of Zola's and Hamsun's works, which betray stylistic differences in their portrayal of the primitive. I suggest that by describing the primitive as a vital, transgressive force that even turns against itself - against nature - Zola's La Terre creates a decadent version of the primitive, which, instead of a "serious", naturalistic portrayal of everyday life, is drawn to the brutal, instinctive primitive and uses the primitive to create vital forces of transgression. Hamsun's neo-naturalist novel, in turn, reconfigures the naturalist themes in a new form and envisions a fusion of the Darwinian, naturalistic primitive and the Romantic cult of innocent primordiality, suggesting the primitive lifestyle as a nostalgic return to a pre-modern lifestyle and a turn away from the degeneration of modernity.

  18. Development of a digital trigger system to identify recoil protons at COMPASS-II

    Energy Technology Data Exchange (ETDEWEB)

    Buechele, Maximilian; Fischer, Horst; Gorzellik, Matthias; Grussenmeyer, Tobias; Herrmann, Florian; Joerg, Philipp; Koenigsmann, Kay; Kremser, Paul; Schopferer, Sebastian [Albert-Ludwigs-Universitaet Freiburg (Germany)

    2014-07-01

    The GANDALF framework has been developed to deliver a high precision, high performance detector readout and trigger system for particle physics experiments such as the COMPASS-II experiment at CERN. Combining the high performance pulse digitization and feature extraction capabilities of twelve GANDALF modules, each comprising a Virtex-5 SX95T, with the strong computation power of a Virtex-6 SX315T FGPA operated on the TIGER module, we present a digital trigger system for a recoil proton detector. The trigger system was setup and commissioned successfully during a data taking period in 2012. It was mainly used for the calibration of the recoil proton detector and in tagging mode to identify proton tracks online.

  19. PRIMITIVE MATRICES AND GENERATORS OF PSEUDO RANDOM SEQUENCES OF GALOIS

    Directory of Open Access Journals (Sweden)

    A. Beletsky

    2014-04-01

    Full Text Available In theory and practice of information cryptographic protection one of the key problems is the forming a binary pseudo-random sequences (PRS with a maximum length with acceptable statistical characteristics. PRS generators are usually implemented by linear shift register (LSR of maximum period with linear feedback [1]. In this paper we extend the concept of LSR, assuming that each of its rank (memory cell can be in one of the following condition. Let’s call such registers “generalized linear shift register.” The research goal is to develop algorithms for constructing Galois and Fibonacci generalized matrix of n-order over the field , which uniquely determined both the structure of corresponding generalized of n-order LSR maximal period, and formed on their basis Galois PRS generators of maximum length. Thus the article presents the questions of formation the primitive generalized Fibonacci and Galois arbitrary order matrix over the prime field . The synthesis of matrices is based on the use of irreducible polynomials of degree and primitive elements of the extended field generated by polynomial. The constructing methods of Galois and Fibonacci conjugated primitive matrices are suggested. The using possibilities of such matrices in solving the problem of constructing generalized generators of Galois pseudo-random sequences are discussed.

  20. Caspase-9 has a nonapoptotic function in Xenopus embryonic primitive blood formation.

    Science.gov (United States)

    Tran, Hong Thi; Fransen, Mathias; Dimitrakopoulou, Dionysia; Van Imschoot, Griet; Willemarck, Nicolas; Vleminckx, Kris

    2017-07-15

    Caspases constitute a family of cysteine proteases centrally involved in programmed cell death, which is an integral part of normal embryonic and fetal development. However, it has become clear that specific caspases also have functions independent of cell death. In order to identify novel apoptotic and nonapoptotic developmental caspase functions, we designed and transgenically integrated novel fluorescent caspase reporter constructs in developing Xenopus embryos and tadpoles. This model organism has an external development, allowing direct and continuous monitoring. These studies uncovered a nonapoptotic role for the initiator caspase-9 in primitive blood formation. Functional experiments further corroborated that caspase-9, but possibly not the executioners caspase-3 and caspase-7, are required for primitive erythropoiesis in the early embryo. These data reveal a novel nonapoptotic function for the initiator caspase-9 and, for the first time, implicate nonapoptotic caspase activity in primitive blood formation. © 2017. Published by The Company of Biologists Ltd.

  1. Fast neural-net based fake track rejection in the LHCb reconstruction

    CERN Document Server

    De Cian, Michel; Seyfert, Paul; Stahl, Sascha

    2017-01-01

    A neural-network based algorithm to identify fake tracks in the LHCb pattern recognition is presented. This algorithm, called ghost probability, retains more than 99 % of well reconstructed tracks while reducing the number of fake tracks by 60 %. It is fast enough to fit into the CPU time budget of the software trigger farm and thus reduces the combinatorics of the decay reconstructions, as well as the number of tracks that need to be processed by the particle identification algorithms. As a result, it strongly contributes to the achievement of having the same reconstruction online and offline in the LHCb experiment in Run II of the LHC.

  2. TRIGGER

    CERN Multimedia

    Roberta Arcidiacono

    2013-01-01

    Trigger Studies Group (TSG) The Trigger Studies Group has just concluded its third 2013 workshop, where all POGs presented the improvements to the physics object reconstruction, and all PAGs have shown their plans for Trigger development aimed at the 2015 High Level Trigger (HLT) menu. The Strategy for Trigger Evolution And Monitoring (STEAM) group is responsible for Trigger menu development, path timing, Trigger performance studies coordination, HLT offline DQM as well as HLT release, menu and conditions validation – this last task in collaboration with PdmV (Physics Data and Monte Carlo Validation group). In the last months the group has delivered several HLT rate estimates and comparisons, using the available data and Monte Carlo samples. The studies were presented at the Trigger workshops in September and December, and STEAM has contacted POGs and PAGs to understand the origin of the discrepancies observed between 8 TeV data and Monte Carlo simulations. The most recent results show what the...

  3. Novel trigger-capable modules for the future CMS tracking detector and inclusive top quark pair production cross section at √(s)=13 TeV

    Energy Technology Data Exchange (ETDEWEB)

    Harb, Ali

    2017-07-15

    This work covers two important aspects in the field of high-energy physics; detector development and physics data analysis. The first part of this thesis is devoted to the detector development activities for the Phase-II upgrade of the Compact Muon Solenoid (CMS) experiment's outer tracking detector. To cope with the increased luminosity during the high-luminosity era of the Large Hadron Collider (LHC), it is foreseen to replace the existing tracking system of CMS with an entirely new system. Owing to a novel module concept called the p{sub T}-module, the upgraded tracking system will be able to provide first level trigger information by means of an on-board momentum discrimination logic. This will be achieved using a new readout chip, the so-called CMS Binary Chip (CBC). The very first test beam measurement using p{sub T}-module prototypes, equipped with the CBC chip is presented and discussed. The obtained results serve as a proof-of-concept for such modules and shows that the CBC performs as expected. In the second part of this thesis, the measurement of the top quark pair production cross section is addressed. The measurement is performed using 2.2 fb{sup -1} of data collected by the CMS detector at a center-of-mass energy of 13 TeV. Results are shown in the eμ di-lepton channel, and for the first time at such energy, in the ee and μμ channels. With an improved treatment of systematic uncertainties, the results in all three channels are found to be in agreement with the theoretical predictions.

  4. Addressing Nature Deficit Disorder through Primitive Camping Experiences

    Science.gov (United States)

    Allen, Kevin; Varner, Keegan; Sallee, Jeff

    2011-01-01

    Today's youth suffer from Nature Deficit Disorder, a condition that has been connected to ADHD, shortage of creativity, and general lack of knowledge about the outdoors. A team of educators and specialists are addressing this issue with primitive camping. County educators were trained using experiential learning and train-the-trainer techniques.…

  5. Study of the RPC Level-1 trigger efficiency in the compact muon solenoid at LHC with cosmic ray data

    Energy Technology Data Exchange (ETDEWEB)

    Iorio, A.O.M., E-mail: oiorio@cern.ch

    2012-01-01

    We report a study of the Resistive Plate Chambers (RPC) Level-1 (L1) trigger system efficiency in the Barrel of the Compact Muon Solenoid (CMS) detector of LHC in the same region covered also by the DT trigger system. The method used to study the efficiency exploits the independency of the CMS Drift Tube (DT) and RPC trigger systems. Muon tracks in the event are triggered and reconstructed using the Drift Tube subsystem only, and for each of them we search for a compatible RPC L1 trigger object. We discuss in detail the method and the results of the performance obtained with cosmic ray data taken in 2008-2009.

  6. The challenge of building large area, high precision small-strip Thin Gap Trigger Chambers for the upgrade of the ATLAS experiment

    CERN Document Server

    Maleev, Victor; The ATLAS collaboration

    2015-01-01

    The current innermost stations of the ATLAS muon endcap system must be upgraded in 2018 and 2019 to retain the good precision tracking and trigger capabilities in the high background environment expected with the upcoming luminosity increase of the LHC. Large area small-strip Thin Gap Chambers (sTGC) up to 2 m2 in size and totaling an active area of 1200 m2 will be employed for fast and precise triggering. The precision reconstruction of tracks requires a spatial resolution of about 100 μm to allow the Level-1 trigger track segments to be reconstructed with an angular resolution of 1mrad. The upgraded detector will consist of eight layers each of Micromegas and sTGC’s detectors together forming the ATLAS New Small Wheels. The position of each strip must be known with an accuracy of 30 µm along the precision coordinate and 80 µm along the beam. On such large area detectors, the mechanical precision is a key point and then must be controlled and monitored all along the process of construction and integrati...

  7. The Challenge of Building Large Area, High Precision Small-Strip Thin Gap Trigger Chambers for the Upgrade of the ATLAS Experiment

    CERN Document Server

    Maleev, Victor; The ATLAS collaboration

    2015-01-01

    The current innermost stations of the ATLAS muon end-cap system must be upgraded in 2018 and 2019 to retain the good precision tracking and trigger capabilities in the high background environment expected with the upcoming luminosity increase of the LHC. Large area small-strip Thin Gap Chambers (sTGC) up to 2 $m^2$ in size and totaling an active area of 1200 $m^2$ will be employed for fast and precise triggering. The precision reconstruction of tracks requires a spatial resolution of about 100 $\\mu m$ while the Level-1 trigger track segments need to be reconstructed with an angular resolution of 1 mrad. The upgraded detector will consist of eight layers each of Micromegas and sTGC’s detectors together forming the ATLAS New Small Wheels. The position of each strip must be known with an accuracy of 40 $\\mu m$ along the precision coordinate and 80 $\\mu m$ along the beam. On such large area detectors, the mechanical precision is a key point and then must be controlled and monitored all along the process of cons...

  8. The logical primitives of thought: Empirical foundations for compositional cognitive models.

    Science.gov (United States)

    Piantadosi, Steven T; Tenenbaum, Joshua B; Goodman, Noah D

    2016-07-01

    The notion of a compositional language of thought (LOT) has been central in computational accounts of cognition from earliest attempts (Boole, 1854; Fodor, 1975) to the present day (Feldman, 2000; Penn, Holyoak, & Povinelli, 2008; Fodor, 2008; Kemp, 2012; Goodman, Tenenbaum, & Gerstenberg, 2015). Recent modeling work shows how statistical inferences over compositionally structured hypothesis spaces might explain learning and development across a variety of domains. However, the primitive components of such representations are typically assumed a priori by modelers and theoreticians rather than determined empirically. We show how different sets of LOT primitives, embedded in a psychologically realistic approximate Bayesian inference framework, systematically predict distinct learning curves in rule-based concept learning experiments. We use this feature of LOT models to design a set of large-scale concept learning experiments that can determine the most likely primitives for psychological concepts involving Boolean connectives and quantification. Subjects' inferences are most consistent with a rich (nonminimal) set of Boolean operations, including first-order, but not second-order, quantification. Our results more generally show how specific LOT theories can be distinguished empirically. (PsycINFO Database Record (c) 2016 APA, all rights reserved).

  9. Implementation and Performance of FPGA based track fitting for the Atlas Fast TracKer

    CERN Document Server

    Zou, Rui; The ATLAS collaboration

    2018-01-01

    The Fast TracKer (FTK) within the ATLAS trigger system provides global track reconstruction for all events passing the ATLAS Level 1 trigger by dividing the detector into parallel processing pipelines that implement pattern matching in custom integrated circuits and data routing, reduction, and parameter extraction in FPGAs. In this presentation we will describe the implementation of a critical component of the system which does partial track fitting using a method based on a principal component analysis at a rate of greater than 1 fit per 10 ps, system-wide, to reduce the output of the pattern matching. Firmware design, timing performance and preliminary results will be discussed.

  10. TRIGGER

    CERN Multimedia

    Wesley Smith

    Trigger Hardware The status of the trigger components was presented during the September CMS Week and Annual Review and at the monthly trigger meetings in October and November. Procedures for cold and warm starts (e.g. refreshing of trigger parameters stored in registers) of the trigger subsystems have been studied. Reviews of parts of the Global Calorimeter Trigger (GCT) and the Global Trigger (GT) have taken place in October and November. The CERN group summarized the status of the Trigger Timing and Control (TTC) system. All TTC crates and boards are installed in the underground counting room, USC55. The central clock system will be upgraded in December (after the Global Run at the end of November GREN) to the new RF2TTC LHC machine interface timing module. Migration of subsystem's TTC PCs to SLC4/ XDAQ 3.12 is being prepared. Work is on going to unify the access to Local Timing Control (LTC) and TTC CMS interface module (TTCci) via SOAP (Simple Object Access Protocol, a lightweight XML-based messaging ...

  11. VIPRAM_L1CMS: a 2-Tier 3D Architecture for Pattern Recognition for Track Finding

    Energy Technology Data Exchange (ETDEWEB)

    Hoff, J. R. [Fermilab; Joshi, Joshi,S. [Northwestern U.; Liu, Liu, [Fermilab; Olsen, J. [Fermilab; Shenai, A. [Fermilab

    2017-06-15

    In HEP tracking trigger applications, flagging an individual detector hit is not important. Rather, the path of a charged particle through many detector layers is what must be found. Moreover, given the increased luminosity projected for future LHC experiments, this type of track finding will be required within the Level 1 Trigger system. This means that future LHC experiments require not just a chip capable of high-speed track finding but also one with a high-speed readout architecture. VIPRAM_L1CMS is 2-Tier Vertically Integrated chip designed to fulfill these requirements. It is a complete pipelined Pattern Recognition Associative Memory (PRAM) architecture including pattern recognition, result sparsification, and readout for Level 1 trigger applications in CMS with 15-bit wide detector addresses and eight detector layers included in the track finding. Pattern recognition is based on classic Content Addressable Memories with a Current Race Scheme to reduce timing complexity and a 4-bit Selective Precharge to minimize power consumption. VIPRAM_L1CMS uses a pipelined set of priority-encoded binary readout structures to sparsify and readout active road flags at frequencies of at least 100MHz. VIPRAM_L1CMS is designed to work directly with the Pulsar2b Architecture.

  12. The Syntax of Time and Space Primitives in French.

    Science.gov (United States)

    Peeters, Bert

    1997-01-01

    Explores the combinatorial possibilities of semantic primitives of time and space in French, as defined in the theory of Natural Semantic Metalanguage. Highlights the need for new ways to express the allolexical relationship in some combinations, particularly those expressing "when/time." (Author/MSE)

  13. Fast track segment finding in the Monitored Drift Tubes (MDT) of the ATLAS Muon Spectrometer using a Legendre transform algorithm

    CERN Document Server

    Ntekas, Konstantinos; The ATLAS collaboration

    2018-01-01

    Many of the physics goals of ATLAS in the High Luminosity LHC era, including precision studies of the Higgs boson, require an unprescaled single muon trigger with a 20 GeV threshold. The selectivity of the current ATLAS first-level muon trigger is limited by the moderate spatial resolution of the muon trigger chambers. By incorporating the precise tracking of the MDT, the muon transverse momentum can be measured with an accuracy close to that of the offline reconstruction at the trigger level, sharpening the trigger turn-on curves and reducing the single muon trigger rate. A novel algorithm is proposed which reconstructs segments from MDT hits in an FPGA and find tracks within the tight latency constraints of the ATLAS first-level muon trigger. The algorithm represents MDT drift circles as curves in the Legendre space and returns one or more segment lines tangent to the maximum possible number of drift circles.  This algorithm is implemented without the need of resource and time consuming hit position calcul...

  14. Primary primitive neuroectodermal tumor of the orbit

    Directory of Open Access Journals (Sweden)

    Das Dipankar

    2009-01-01

    Full Text Available Primitive neuroectodermal tumor (PNET is a small round cell malignant tumor of neuroectodermal origin. Most of the PNETs occur in the central nervous system (CNS. PNETs recognized outside of CNS are diagnosed as peripheral PNET (pPNET. This tumor which expresses MIC-2 gene (CD99 seems to be least aggressive after complete tumor resection. We describe a rare case of PNET in a young girl.

  15. FPGA helix tracking algorithm for PANDA

    Energy Technology Data Exchange (ETDEWEB)

    Liang, Yutie; Galuska, Martin; Gessler, Thomas; Hu, Jifeng; Kuehn, Wolfgang; Lange, Jens Soeren; Muenchow, David; Spruck, Bjoern [II. Physikalisches, Giessen University (Germany); Ye, Hua [II. Physikalisches, Giessen University (Germany); Institute of High Energy Physics, Beijing (China); Collaboration: PANDA-Collaboration

    2014-07-01

    The PANDA detector is a general-purpose detector for physics with high luminosity cooled antiproton beams, planed to operate at the FAIR facility in Darmstadt, Germany. The central detector includes a silicon Micro Vertex Detector (MVD) and a Straw Tube Tracker (STT). Without any hardware trigger, large amounts of raw data are streaming into the data acquisition system. The data reduction task is performed in the online system by reconstruction algorithms programmed in VHDL (Very High Speed Integrated Circuit Hardware Description Language) on FPGAs (Field Programmable Gate Arrays) as first level and on a farm of GPUs or PCs as a second level. One important part in the system is the online track reconstruction. In this presentation, an online tracking finding algorithm for helix track reconstruction in the solenoidal field is shown. A performance study using C++ and the status of the VHDL implementation are presented.

  16. Proposal for a semiconductor high resolution tracking detector

    International Nuclear Information System (INIS)

    Rehak, P.

    1983-01-01

    A 'new' concept for detection and tracking of charged particles in high energy physics experiments is proposed. It combines a well known high purity semiconductor diode detector (HPSDD) with a heterojunction structure (HJ) and a negative electron affinity (NEA) surface. The detector should be capable of providing a two dimensional view (few cm 2 ) of multi-track events with the following properties: a) position resolution down to a few μm (10 8 position elements); b) high density of information (10 2 -10 3 dots per mm of minimum ionizing track); c) high rate capabilities (few MHz); d) live operation with options to be triggered and/or the information from the detector can be used as an input for the decision to record an event. (orig.)

  17. Cancer of unknown primitive metastatic. About two clinical cases

    International Nuclear Information System (INIS)

    Cawen, L; Cordoba, A.

    2010-01-01

    This work is about the two clinical cases about the unknown primitive metastatic cancer. The main techniques used for the diagnosis, treatment and monitoring of different s carcinomas are: Electronic microscope, molecular biology and genetics, especially histopathological study, topographic survey, ultrasound, radiography, chemotherapy, radiotherapy

  18. De novo appearance of primitive neuroectodermal tumor in a patient with systemic lupus erythematosus and moyamoya disease.

    Science.gov (United States)

    Park, D J; Kim, T J; Lee, H J; Lee, K E; Lee, S J; Seo, S R; Yoon, W; Moon, K S; Lee, K W; Lee, S S; Park, Y W

    2010-07-01

    Primitive neuroectodermal tumor is a rare brain tumor composed of undifferentiated or poorly differentiated neuroepithelial cells with a high malignant potential that usually occurs in children, and which is only occasionally encountered in adults. A 19-year-old female with systemic lupus erythematosus presented with right hemiparesis and a headache of 10 days duration. Brain magnetic resonance imaging showed a large solid mass with necrotic portions in the left frontoparietal lobe. Primitive neuroectodermal tumor was confirmed by a neuronavigator-guided brain biopsy. This is the first case report of primitive neuroectodermal tumor associated with systemic lupus erythematosus and moyamoya disease. This case demonstrates that brain tumors, such as primitive neuroectodermal tumor, should be included in the differential diagnosis of neurological manifestations in children and adolescent patients with systemic lupus erythematosus.

  19. A fast filter processor as a part of the trigger logic in an elastic scattering experiment

    International Nuclear Information System (INIS)

    Kenyon Gjerpe, I.

    1981-01-01

    A fast special purpose processor as a part of the trigger logic in an elastic scattering experiment is described. The decision to incorporate such a processor was taken because the trigger rate was estimated to be an order of magnitude higher than the date taking capability of the on-line minicomputer, a NORD 10. The processor is capable of checking the coplanarity and the opening angle of the two outgoing tracks within about 100 μs. This is done with a spatial resolution of 1 mm by using two points each track given by 3 MWPCs. For comparison this is two orders of magnitude faster than the same algorithm coded in assembly language on a PDP 11/40. The main contribution to this increased speed is due to extensive use of pipelining and parallelism. When running with the processor in the trigger, 75% more elastic events per incoming beam particle were collected, and 3 times as many elastic events per trigger were recorded on to tape for further in-depth analysis, than previously. Due to major improvements in the primary trigger logic this was less than the gain initially anticipated. A first version of the processor was designed and constructed in the CERN DD division by J. Joosten, M. Letheren and B. Martin under the supervision of C. Verkerk. The author was involved in the final design, construction and testing, and subsequently was responsible for the intergration, programming and running of the processor in the experiment. (orig.)

  20. Hardware Demonstrator of a Level-1 Track Finding Algorithm with FPGAs for the Phase II CMS Experiment

    International Nuclear Information System (INIS)

    Cieri, D.

    2016-01-01

    At the HL-LHC, proton bunches collide every 25 ns, producing an average of 140 pp interactions per bunch crossing. To operate in such an environment, the CMS experiment will need a Level-1 (L1) hardware trigger, able to identify interesting events within a latency of 12.5 μs. This novel L1 trigger will make use of data coming from the silicon tracker to constrain the trigger rate . Goal of this new track trigger will be to build L1 tracks from the tracker information. The architecture that will be implemented in future to process tracker data is still under discussion. One possibility is to adopt a system entirely based on FPGA electronic. The proposed track finding algorithm is based on the Hough transform method. The algorithm has been tested using simulated pp collision data and it is currently being demonstrated in hardware, using the “MP7”, which is a μTCA board with a powerful FPGA capable of handling data rates approaching 1 Tb/s. Two different implementations of the Hough transform technique are currently under investigation: one utilizes a systolic array to represent the Hough space, while the other exploits a pipelined approach. (paper)

  1. Muon tracking system with Silicon Photomultipliers

    International Nuclear Information System (INIS)

    Arneodo, F.; Benabderrahmane, M.L.; Dahal, S.; Di Giovanni, A.; Pazos Clemens, L.; Candela, A.; D'Incecco, M.; Sablone, D.; Franchi, G.

    2015-01-01

    We report the characterisation and performance of a low cost muon tracking system consisting of plastic scintillator bars and Silicon Photomultipliers equipped with a customised front-end electronics based on a fast preamplifier network. This system can be used as a detector test bench for astroparticle physics and for educational and outreach purposes. We investigated the device behaviour in self-trigger and coincidence mode, without using LED and pulse generators, showing that with a relatively simple set up a complete characterisation work can be carried out. A high definition oscilloscope, which can easily be found in many university physics or engineering departments, has been used for triggering and data acquisition. Its capabilities have been exploited to discriminate real particles from the background

  2. Muon tracking system with Silicon Photomultipliers

    Energy Technology Data Exchange (ETDEWEB)

    Arneodo, F.; Benabderrahmane, M.L.; Dahal, S. [New York University Abu Dhabi, Abu Dhabi (United Arab Emirates); Di Giovanni, A., E-mail: adriano.digiovanni@nyu.edu [New York University Abu Dhabi, Abu Dhabi (United Arab Emirates); Pazos Clemens, L. [New York University Abu Dhabi, Abu Dhabi (United Arab Emirates); Candela, A.; D' Incecco, M.; Sablone, D. [Gran Sasso National Laboratory of INFN, Assergi (Italy); Franchi, G. [AGE Scientific Srl, Capezzano Pianore (Italy)

    2015-11-01

    We report the characterisation and performance of a low cost muon tracking system consisting of plastic scintillator bars and Silicon Photomultipliers equipped with a customised front-end electronics based on a fast preamplifier network. This system can be used as a detector test bench for astroparticle physics and for educational and outreach purposes. We investigated the device behaviour in self-trigger and coincidence mode, without using LED and pulse generators, showing that with a relatively simple set up a complete characterisation work can be carried out. A high definition oscilloscope, which can easily be found in many university physics or engineering departments, has been used for triggering and data acquisition. Its capabilities have been exploited to discriminate real particles from the background.

  3. Formalizing the Relationship Between Commitment and Basic Cryptographic Primitives

    Directory of Open Access Journals (Sweden)

    S. Sree Vivek

    2016-11-01

    Full Text Available Signcryption is a cryptographic primitive which offers the functionality of both digital signature and encryption with lower combined computational cost. On the other hand, commitment scheme allows an entity to commit to a value, where the entity reveals the committed value later during a decommit phase. In this paper, we explore the connection between commitment schemes, public key encryption, digital signatures and signcryption. We establish formal relationship between commitment and the other primitives. Our main result is that we show signcryption can be used as a commitment scheme with appropriate security notions. We show that if the underlying signcryption scheme is IND-CCA2 secure, then the hiding property of the commitment scheme is satisfied. Similarly, we show that if the underlying signcryption scheme is unforgeable, then the relaxed biding property of the commitment scheme is satisfied. Moreover, we prove that if the underlying signcryption scheme is NM-CCA2, then the commitment scheme is non-malleable.

  4. Efficient conservative ADER schemes based on WENO reconstruction and space-time predictor in primitive variables

    Science.gov (United States)

    Zanotti, Olindo; Dumbser, Michael

    2016-01-01

    We present a new version of conservative ADER-WENO finite volume schemes, in which both the high order spatial reconstruction as well as the time evolution of the reconstruction polynomials in the local space-time predictor stage are performed in primitive variables, rather than in conserved ones. To obtain a conservative method, the underlying finite volume scheme is still written in terms of the cell averages of the conserved quantities. Therefore, our new approach performs the spatial WENO reconstruction twice: the first WENO reconstruction is carried out on the known cell averages of the conservative variables. The WENO polynomials are then used at the cell centers to compute point values of the conserved variables, which are subsequently converted into point values of the primitive variables. This is the only place where the conversion from conservative to primitive variables is needed in the new scheme. Then, a second WENO reconstruction is performed on the point values of the primitive variables to obtain piecewise high order reconstruction polynomials of the primitive variables. The reconstruction polynomials are subsequently evolved in time with a novel space-time finite element predictor that is directly applied to the governing PDE written in primitive form. The resulting space-time polynomials of the primitive variables can then be directly used as input for the numerical fluxes at the cell boundaries in the underlying conservative finite volume scheme. Hence, the number of necessary conversions from the conserved to the primitive variables is reduced to just one single conversion at each cell center. We have verified the validity of the new approach over a wide range of hyperbolic systems, including the classical Euler equations of gas dynamics, the special relativistic hydrodynamics (RHD) and ideal magnetohydrodynamics (RMHD) equations, as well as the Baer-Nunziato model for compressible two-phase flows. In all cases we have noticed that the new ADER

  5. TRIGGER

    CERN Multimedia

    R. Carlin with contributions from D. Acosta

    2012-01-01

    Level-1 Trigger Data-taking continues at cruising speed, with high availability of all components of the Level-1 trigger. We have operated the trigger up to a luminosity of 7.6E33, where we approached 100 kHz using the 7E33 prescale column.  Recently, the pause without triggers in case of an automatic "RESYNC" signal (the "settle" and "recover" time) was reduced in order to minimise the overall dead-time. This may become very important when the LHC comes back with higher energy and luminosity after LS1. We are also preparing for data-taking in the proton-lead run in early 2013. The CASTOR detector will make its comeback into CMS and triggering capabilities are being prepared for this. Steps to be taken include improved cooperation with the TOTEM trigger system and using the LHC clock during the injection and ramp phases of LHC. Studies are being finalised that will have a bearing on the Trigger Technical Design Report (TDR), which is to be rea...

  6. FPGA based compute nodes for high level triggering in PANDA

    International Nuclear Information System (INIS)

    Kuehn, W; Gilardi, C; Kirschner, D; Lang, J; Lange, S; Liu, M; Perez, T; Yang, S; Schmitt, L; Jin, D; Li, L; Liu, Z; Lu, Y; Wang, Q; Wei, S; Xu, H; Zhao, D; Korcyl, K; Otwinowski, J T; Salabura, P

    2008-01-01

    PANDA is a new universal detector for antiproton physics at the HESR facility at FAIR/GSI. The PANDA data acquisition system has to handle interaction rates of the order of 10 7 /s and data rates of several 100 Gb/s. FPGA based compute nodes with multi-Gb/s bandwidth capability using the ATCA architecture are designed to handle tasks such as event building, feature extraction and high level trigger processing. Data connectivity is provided via optical links as well as multiple Gb Ethernet ports. The boards will support trigger algorithms such us pattern recognition for RICH detectors, EM shower analysis, fast tracking algorithms and global event characterization. Besides VHDL, high level C-like hardware description languages will be considered to implement the firmware

  7. Image-guided automatic triggering of a fractional CO2 laser in aesthetic procedures.

    Science.gov (United States)

    Wilczyński, Sławomir; Koprowski, Robert; Wiernek, Barbara K; Błońska-Fajfrowska, Barbara

    2016-09-01

    Laser procedures in dermatology and aesthetic medicine are associated with the need for manual laser triggering. This leads to pulse overlapping and side effects. Automatic laser triggering based on image analysis can provide a secure fit to each successive doses of radiation. A fractional CO2 laser was used in the study. 500 images of the human skin of healthy subjects were acquired. Automatic triggering was initiated by an application together with a camera which tracks and analyses the skin in visible light. The tracking algorithm uses the methods of image analysis to overlap images. After locating the characteristic points in analysed adjacent areas, the correspondence of graphs is found. The point coordinates derived from the images are the vertices of graphs with respect to which isomorphism is sought. When the correspondence of graphs is found, it is possible to overlap the neighbouring parts of the image. The proposed method of laser triggering owing to the automatic image fitting method allows for 100% repeatability. To meet this requirement, there must be at least 13 graph vertices obtained from the image. For this number of vertices, the time of analysis of a single image is less than 0.5s. The proposed method, applied in practice, may help reduce the number of side effects during dermatological laser procedures resulting from laser pulse overlapping. In addition, it reduces treatment time and enables to propose new techniques of treatment through controlled, precise laser pulse overlapping. Copyright © 2016 Elsevier Ltd. All rights reserved.

  8. Real-time markerless tracking for augmented reality: the virtual visual servoing framework.

    Science.gov (United States)

    Comport, Andrew I; Marchand, Eric; Pressigout, Muriel; Chaumette, François

    2006-01-01

    Tracking is a very important research subject in a real-time augmented reality context. The main requirements for trackers are high accuracy and little latency at a reasonable cost. In order to address these issues, a real-time, robust, and efficient 3D model-based tracking algorithm is proposed for a "video see through" monocular vision system. The tracking of objects in the scene amounts to calculating the pose between the camera and the objects. Virtual objects can then be projected into the scene using the pose. Here, nonlinear pose estimation is formulated by means of a virtual visual servoing approach. In this context, the derivation of point-to-curves interaction matrices are given for different 3D geometrical primitives including straight lines, circles, cylinders, and spheres. A local moving edges tracker is used in order to provide real-time tracking of points normal to the object contours. Robustness is obtained by integrating an M-estimator into the visual control law via an iteratively reweighted least squares implementation. This approach is then extended to address the 3D model-free augmented reality problem. The method presented in this paper has been validated on several complex image sequences including outdoor environments. Results show the method to be robust to occlusion, changes in illumination, and mistracking.

  9. Kalman Filter Tracking on Parallel Architectures

    International Nuclear Information System (INIS)

    Cerati, Giuseppe; Elmer, Peter; Krutelyov, Slava; Lantz, Steven; Lefebvre, Matthieu; McDermott, Kevin; Riley, Daniel; Tadel, Matevž; Wittich, Peter; Würthwein, Frank; Yagil, Avi

    2016-01-01

    Power density constraints are limiting the performance improvements of modern CPUs. To address this we have seen the introduction of lower-power, multi-core processors such as GPGPU, ARM and Intel MIC. In order to achieve the theoretical performance gains of these processors, it will be necessary to parallelize algorithms to exploit larger numbers of lightweight cores and specialized functions like large vector units. Track finding and fitting is one of the most computationally challenging problems for event reconstruction in particle physics. At the High-Luminosity Large Hadron Collider (HL-LHC), for example, this will be by far the dominant problem. The need for greater parallelism has driven investigations of very different track finding techniques such as Cellular Automata or Hough Transforms. The most common track finding techniques in use today, however, are those based on a Kalman filter approach. Significant experience has been accumulated with these techniques on real tracking detector systems, both in the trigger and offline. They are known to provide high physics performance, are robust, and are in use today at the LHC. Given the utility of the Kalman filter in track finding, we have begun to port these algorithms to parallel architectures, namely Intel Xeon and Xeon Phi. We report here on our progress towards an end-to-end track reconstruction algorithm fully exploiting vectorization and parallelization techniques in a simplified experimental environment

  10. Three-Dimensional Triplet Tracking for LHC and Future High Rate Experiments

    CERN Document Server

    Schöning, Andre

    2014-10-20

    The hit combinatorial problem is a main challenge for track reconstruction and triggering at high rate experiments. At hadron colliders the dominant fraction of hits is due to low momentum tracks for which multiple scattering (MS) effects dominate the hit resolution. MS is also the dominating source for hit confusion and track uncertainties in low energy precision experiments. In all such environments, where MS dominates, track reconstruction and fitting can be largely simplified by using three-dimensional (3D) hit-triplets as provided by pixel detectors. This simplification is possible since track uncertainties are solely determined by MS if high precision spatial information is provided. Fitting of hit-triplets is especially simple for tracking detectors in solenoidal magnetic fields. The over-constrained 3D-triplet method provides a complete set of track parameters and is robust against fake hit combinations. The triplet method is ideally suited for pixel detectors where hits can be treated as 3D-space poi...

  11. Post-Quantum Cryptography: Riemann Primitives and Chrysalis

    OpenAIRE

    Malloy, Ian; Hollenbeck, Dennis

    2018-01-01

    The Chrysalis project is a proposed method for post-quantum cryptography using the Riemann sphere. To this end, Riemann primitives are introduced in addition to a novel implementation of this new method. Chrysalis itself is the first cryptographic scheme to rely on Holomorphic Learning with Errors, which is a complex form of Learning with Errors relying on the Gauss Circle Problem within the Riemann sphere. The principle security reduction proposed by this novel cryptographic scheme applies c...

  12. Capture, learning, and classification of upper extremity movement primitives in healthy controls and stroke patients.

    Science.gov (United States)

    Guerra, Jorge; Uddin, Jasim; Nilsen, Dawn; Mclnerney, James; Fadoo, Ammarah; Omofuma, Isirame B; Hughes, Shatif; Agrawal, Sunil; Allen, Peter; Schambra, Heidi M

    2017-07-01

    There currently exist no practical tools to identify functional movements in the upper extremities (UEs). This absence has limited the precise therapeutic dosing of patients recovering from stroke. In this proof-of-principle study, we aimed to develop an accurate approach for classifying UE functional movement primitives, which comprise functional movements. Data were generated from inertial measurement units (IMUs) placed on upper body segments of older healthy individuals and chronic stroke patients. Subjects performed activities commonly trained during rehabilitation after stroke. Data processing involved the use of a sliding window to obtain statistical descriptors, and resulting features were processed by a Hidden Markov Model (HMM). The likelihoods of the states, resulting from the HMM, were segmented by a second sliding window and their averages were calculated. The final predictions were mapped to human functional movement primitives using a Logistic Regression algorithm. Algorithm performance was assessed with a leave-one-out analysis, which determined its sensitivity, specificity, and positive and negative predictive values for all classified primitives. In healthy control and stroke participants, our approach identified functional movement primitives embedded in training activities with, on average, 80% precision. This approach may support functional movement dosing in stroke rehabilitation.

  13. TRIGGER

    CERN Multimedia

    W. Smith

    At the March meeting, the CMS trigger group reported on progress in production, tests in the Electronics Integration Center (EIC) in Prevessin 904, progress on trigger installation in the underground counting room at point 5, USC55, the program of trigger pattern tests and vertical slice tests and planning for the Global Runs starting this summer. The trigger group is engaged in the final stages of production testing, systems integration, and software and firmware development. Most systems are delivering final tested electronics to CERN. The installation in USC55 is underway and integration testing is in full swing. A program of orderly connection and checkout with subsystems and central systems has been developed. This program includes a series of vertical subsystem slice tests providing validation of a portion of each subsystem from front-end electronics through the trigger and DAQ to data captured and stored. After full checkout, trigger subsystems will be then operated in the CMS Global Runs. Continuous...

  14. TRIGGER

    CERN Multimedia

    W. Smith from contributions of C. Leonidopoulos, I. Mikulec, J. Varela and C. Wulz.

    Level-1 Trigger Hardware and Software Over the past few months, the Level-1 trigger has successfully recorded data with cosmic rays over long continuous stretches as well as LHC splash events, beam halo, and collision events. The L1 trigger hardware, firmware, synchronization, performance and readiness for beam operation were reviewed in October. All L1 trigger hardware is now installed at Point 5, and most of it is completely commissioned. While the barrel ECAL Trigger Concentrator Cards are fully operational, the recently delivered endcap ECAL TCC system is still being commissioned. For most systems there is a sufficient number of spares available, but for a few systems additional reserve modules are needed. It was decided to increase the overall L1 latency by three bunch crossings to increase the safety margin for trigger timing adjustments. In order for CMS to continue data taking during LHC frequency ramps, the clock distribution tree needs to be reset. The procedures for this have been tested. A repl...

  15. Status and future prospects of the Muon Drift Tubes system of CMS

    CERN Document Server

    Masetti, Gianni

    2016-01-01

    A key component of the CMS (Compact Muon Solenoid) experiment is its muon system. The tracking and triggering of muons in the central part relies on Drift Tube (DT) chambers. During the first Long Shutdown of LHC (LS1) a number of improvements and upgrades were implemented, in particular concerning the readout and trigger electronics. The increase of luminosity expected by LHC during phase 1 will impose several constraints for rate reduction while maintaining high efficiency in the CMS Level 1 trigger system.In order to exploit the muon detector redundancy, a new trigger system has been designed. The TwinMux system is the early layer of the muon barrel region that combines the primitives information from different subdetectors DT, Resistive Plate Chambers (RPC) and Outer Hadron Calorimeter (HO).Regarding the long term operation of the DT system, in order to cope with up to a factor 2 nominal LHC luminosity, several improvements will be implemented. The in-chamber local electronics will be modified to cope wi...

  16. Letters of Gold: Enabling Primitive Accumulation through Neoliberal Conservation

    NARCIS (Netherlands)

    B.E. Büscher (Bram)

    2009-01-01

    textabstractAbstract: In Capital I, Marx wrote that the history of the separation of the producers from the means of production “is written in the annals of mankind in letters of blood and fire” (Marx, 1976: 875). This ‘so-called primitive accumulation’, or ‘accumulation by dispossession’ in David

  17. Flexible trigger menu implementation on the Global Trigger for the CMS Level-1 trigger upgrade

    Science.gov (United States)

    MATSUSHITA, Takashi; CMS Collaboration

    2017-10-01

    The CMS experiment at the Large Hadron Collider (LHC) has continued to explore physics at the high-energy frontier in 2016. The integrated luminosity delivered by the LHC in 2016 was 41 fb-1 with a peak luminosity of 1.5 × 1034 cm-2s-1 and peak mean pile-up of about 50, all exceeding the initial estimations for 2016. The CMS experiment has upgraded its hardware-based Level-1 trigger system to maintain its performance for new physics searches and precision measurements at high luminosities. The Global Trigger is the final step of the CMS Level-1 trigger and implements a trigger menu, a set of selection requirements applied to the final list of objects from calorimeter and muon triggers, for reducing the 40 MHz collision rate to 100 kHz. The Global Trigger has been upgraded with state-of-the-art FPGA processors on Advanced Mezzanine Cards with optical links running at 10 GHz in a MicroTCA crate. The powerful processing resources of the upgraded system enable implementation of more algorithms at a time than previously possible, allowing CMS to be more flexible in how it handles the available trigger bandwidth. Algorithms for a trigger menu, including topological requirements on multi-objects, can be realised in the Global Trigger using the newly developed trigger menu specification grammar. Analysis-like trigger algorithms can be represented in an intuitive manner and the algorithms are translated to corresponding VHDL code blocks to build a firmware. The grammar can be extended in future as the needs arise. The experience of implementing trigger menus on the upgraded Global Trigger system will be presented.

  18. Topological trigger device using scintillating fibres and position-sensitive photomultipliers

    CERN Document Server

    Agoritsas, V; Dufournaud, J; Giacomich, R; Gorin, A M; Kuroda, K; Meshchanin, A P; Newsom, C R; Nurushev, S B; Önel, Y M; Oshima, N; Pauletta, G; Penzo, Aldo L; Rakhmatov, V E; Rykalin, V I; Salvato, G; Schiavon, R P; Sillou, D; Solovyanov, V L; Takeutchi, F; Vasilev, V; Vasilchenko, V G; Villari, A C C; Yamada, R; Toshida, T; CERN. Geneva. Detector Research and Development Committee

    1990-01-01

    An approach to a high-quality level-1 trigger is proposed on the basis of a topological device that will be realized by using scintillating fibres and position-sensitive photomultipliers, both of which are considered as potential candidates for new detector components, thanks to their excellent time characteristics and high radiation resistance. The device is characterized, in particular, by its simple concept and reliable functioning, which are a result of the mature technologies employed. In the LHC environment, the major interests of such a scheme reside in its capability to select high ptransv. tracks in real time, in its optional immunity against low ptransv. tracks and loopers, as well as in its effective links to other associated devices within the complex of a vertex detector.

  19. Studies of scintillator-based muon triggers in CMS

    Energy Technology Data Exchange (ETDEWEB)

    Scheuch, Florian

    2017-03-16

    The CMS experiment at the LHC will face challenges due to upgrades and improvements of the LHC in future. Especially, the upgrade towards the high luminosity LHC in 2025 with a foreseen center of mass energy of 14 TeV, an instantaneous luminosity of O(10{sup 35} cm{sup -2} s{sup -1}) and the concurrent aging of and radiation damage to the detectors will have an impact on the fast CMS trigger system and the CMS sub-detectors. Especially, the impact on the CMS muon system - and more particular on the drift tube (DT) system - is of vital interest. In order to respond to these challenges the performance of the DT system as part of the L1 muon trigger and the use of a scintillator-based muon trigger as supportive detector are analyzed in this thesis. First, the concept of such a scintillator-based muon trigger, the Muon Track fast Tag (MTT), as support for the DT trigger system, is presented. The conducted related R and D is described. Exploiting the similarity of the MTT concept and the existing hadron outer calorimeter (HO), studies are presented that evaluate the impact of the challenges on the L1 Trigger as well as the potential of the HO detector as a possible response to these challenges. It is shown that the HO detector can be of help in case of DT detector failures and it is able to improve the muon recognition of the DT detector in the L1 Trigger. The reduction of L1 muon ambiguities with the HO detector is found to be not feasible. The results, that were obtained using HO, are extrapolated towards the MTT concept. The MTT concept is rated as valuable backup solution that, however, will not increase the benefit above the HO detector in the presented application scenarios. After a summary of the performed analyses, the conclusion is drawn, that the HO detector should be included into the L1 Trigger decision. The initiated upgrade process of the HO integration into the L1 muon trigger, that was motivated by these studies, is presented. The preceding upgrade of HO

  20. A stand-alone track reconstruction algorithm for the scintillating fibre tracker at the LHCb upgrade

    CERN Multimedia

    Quagliani, Renato

    2017-01-01

    The LHCb upgrade detector project foresees the presence of a scintillating fiber tracker (SciFi) to be used during the LHC Run III, starting in 2020. The instantaneous luminosity will be increased up to $2\\times10^{33}$, five times larger than in Run II and a full software event reconstruction will be performed at the full bunch crossing rate by the trigger. The new running conditions, and the tighter timing constraints in the software trigger, represent a big challenge for track reconstruction. This poster presents the design and performance of a novel algorithm that has been developed to reconstruct track segments using solely hits from the SciFi. This algorithm is crucial for the reconstruction of tracks originating from long-lived particles such as $K_{S}^{0}$ and $\\Lambda$ and allows to greatly enhance the physics potential and capabilities of the LHCb upgrade when compared to its previous implementation.

  1. Boosted decision trees in the CMS Level-1 endcap muon trigger

    CERN Document Server

    Low, Jia Fu; Busch, Elena Laura; Carnes, Andrew Mathew; Furic, Ivan-Kresimir; Gleyzer, Sergei; Kotov, Khristian; Madorsky, Alexander; Rorie, Jamal Tildon; Scurlock, Bobby; Shi, Wei; Acosta, Darin Edward

    2017-01-01

    The first implementation of Boosted Decision Trees (BDTs) inside a Level-1 trigger system at the LHC is presented. The Endcap Muon Track Finder (EMTF) at CMS uses BDTs to infer the momentum of muons in the forward region of the detector, based on 25 different variables. Combinations of these variables are evaluated offline using regression BDTs, whose output is stored in 1.2 GB look-up tables (LUTs) in the EMTF hardware. These BDTs take advantage of complex correlations between variables, the inhomogeneous magnetic field, and non-linear effects such as inelastic scattering to distinguish high-momentum signal muons from the overwhelming low-momentum background. The LUTs are used to turn the complex BDT evaluation into a simple look-up operation in fixed low latency. The new momentum assignment algorithm has reduced the trigger rate by a factor of 3 at the 25 GeV trigger threshold with respect to the legacy system, with further improvements foreseen in the coming year.

  2. Electronics Design and Layout Complexity of the ATLAS New Small Wheels

    CERN Document Server

    AUTHOR|(INSPIRE)INSPIRE-00529702; The ATLAS collaboration

    2016-01-01

    The upgrades of the LHC accelerator and the experiments in 2019/20 and 2023/24 will allow to increase the luminosity to 2×1034 cm−2s−1 and 5×1034 cm−2s−1, respectively. For the ultimate HL-LHC phase the expected mean number of interactions per bunch crossing will increase from 55 at 2×1034 cm−2s−1 to ∼140 at 5×1034 cm−2s−1. This increase, drastically impacts the ATLAS trigger and trigger rates. For the ATLAS Muon Spectrometer, a replacement of the innermost endcap stations, the so called “Small Wheels” operating in a magnetic field, is therefore planned for 2019/20 to be able to maintain a low pT threshold for single muon and excellent tracking capability in the HL-LHC regime. The New Small Wheels will feature two new detector technologies, Resistive Micromegas and small strip Thin Gap Chambers conforming a system of ~2.4 million readout channels. Both detector technologies will provide trigger and tracking primitives fully compliant with the post-2024 HL-LHC operation. To allow for ...

  3. Electronics Design and System Integration of the ATLAS New Small Wheels

    CERN Document Server

    Gkountoumis, Panagiotis; The ATLAS collaboration

    2016-01-01

    The upgrades of the LHC accelerator and the experiments in 2019/20 and 2023/24 will allow to in-crease the luminosity to 2×1034 cm−2s−1 and 5-7×1034 cm−2s−1, respectively. For the HL-LHC phase, the expected mean number of interactions per bunch crossing will be 55 at 2×1034 cm−2s−1 and ~140 at 5×1034 cm−2s−1. This increase drastically impacts the ATLAS trigger and trigger rates. For the ATLAS Muon Spectrometer, a replacement of the innermost endcap stations, the so-called “Small Wheels” operating in a magnetic field, is therefore planned for 2019/20 to be able to maintain a low pT threshold for single muon and excellent tracking capability in the HL-LHC regime. The New Small Wheels will feature two new detector technologies: Resistive Micromegas and small strip Thin Gap Chambers comprising a system of ~2.4 million readout channels. Both detector technologies will provide trigger and tracking primitives fully compliant with the post-2024 HL-LHC operation. To al-low for some safety margi...

  4. Modelling 3D spatial objects in a geo-DBMS using a 3D primitive

    Science.gov (United States)

    Arens, Călin; Stoter, Jantien; van Oosterom, Peter

    2005-03-01

    There is a growing interest in modelling the world in three dimensions, both in applications and in science. At the same time, geographical information systems are changing into integrated architecture in which administrative and spatial data are maintained in one environment. It is for this reason that mainstream Data Base Management Systems (DBMSs) have implemented spatial data types according to the 'Simple Feature Specifications for SQL', described by the OpenGeospatial Consortium. However, these specifications are 2D, as indeed are the implementations in DBMSs. At the Section GIS Technology of TU Delft, research has been carried out in which a 3D primitive was implemented in a DBMS (Oracle Spatial). To explore the possibilities and complications, a fairly simple 3D primitive was chosen to start with: a polyhedron. In the future the study will be extended with more complex primitives, the ultimate aim being to build 3D models with features closer to the real world. Besides the data structure, a validation function was developed to check the geometric accuracy of the data. Rules for validation were established and translated into prototype implementations with the aid of literature. In order to manipulate the data, a list of useful 3D functions was specified. Most of these were translated into algorithms, which were implemented in the DBMS. The algorithms for these functions were obtained from the relevant literature. The research also comprised a comparative performance test on spatial indexing in 2D and 3D, using an R-tree. Finally, existing software was used to visualize 3D objects structured with the implemented 3D primitive. This research is a first attempt to implement a true 3D primitive in a DBMS. Future research will focus on extending and improving the implementations and on optimizing maintenance and query of 3D objects in DBMSs.

  5. Learned parametrized dynamic movement primitives with shared synergies for controlling robotic and musculoskeletal systems

    Directory of Open Access Journals (Sweden)

    Elmar eRückert

    2013-10-01

    Full Text Available A salient feature of human motor skill learning is the ability to exploitsimilarities across related tasks.In biological motor control, it has been hypothesized that muscle synergies,coherent activations of groups of muscles, allow for exploiting shared knowledge.Recent studies have shown that a rich set of complex motor skills can be generated bya combination of a small number of muscle synergies.In robotics, dynamic movement primitives are commonlyused for motor skill learning. This machine learning approach implements a stable attractor systemthat facilitates learning and it can be used in high-dimensional continuous spaces. However, it does not allow for reusing shared knowledge, i.e. for each task an individual set of parameters has to be learned.We propose a novel movement primitive representationthat employs parametrized basis functions, which combines the benefits of muscle synergiesand dynamic movement primitives. For each task asuperposition of synergies modulates a stable attractor system.This approach leads to a compact representation of multiple motor skills andat the same time enables efficient learning in high-dimensional continuous systems.The movement representation supports discrete and rhythmic movements andin particular includes the dynamic movement primitive approach as a special case.We demonstrate the feasibility of the movement representation in three multi-task learning simulated scenarios.First, the characteristics of the proposed representation are illustrated in a point-mass task.Second, in complex humanoid walking experiments,multiple walking patterns with different step heights are learned robustly and efficiently.Finally, in a multi-directional reaching task simulated with a musculoskeletal modelof the human arm, we show how the proposed movement primitives can be used tolearn appropriate muscle excitation patterns and to generalize effectively to new reaching skills.

  6. Online track processor for the CDF upgrade

    International Nuclear Information System (INIS)

    Thomson, E. J.

    2002-01-01

    A trigger track processor, called the eXtremely Fast Tracker (XFT), has been designed for the CDF upgrade. This processor identifies high transverse momentum (> 1.5 GeV/c) charged particles in the new central outer tracking chamber for CDF II. The XFT design is highly parallel to handle the input rate of 183 Gbits/s and output rate of 44 Gbits/s. The processor is pipelined and reports the result for a new event every 132 ns. The processor uses three stages: hit classification, segment finding, and segment linking. The pattern recognition algorithms for the three stages are implemented in programmable logic devices (PLDs) which allow in-situ modification of the algorithm at any time. The PLDs reside on three different types of modules. The complete system has been installed and commissioned at CDF II. An overview of the track processor and performance in CDF Run II are presented

  7. An on-line non-leptonic neural trigger applied to an experiment looking for beauty

    CERN Document Server

    Baldanza, C; Cotta-Ramusino, A; D'Antone, I; Malferrari, L; Mazzanti, P; Odorici, F; Odorico, R; Zuffa, M; Bruschini, C; Musico, P; Novelli, P; Passaseo, M

    1994-01-01

    Results from a non-leptonic neural-network trigger hosted by experiment WA92, looking for beauty particle production from 350 GeV 1t- on a Cu target, are presented. The neural trigger has been used to send on a special data stream (the Fast Stream) events to be analyzed with high priority. The non-leptonic signature uses microvertex detector data and was devised so as to enrich the fraction of events containing C3 secondary vertices (i.e, vertices having three tracks whith sum of electric charges equal to +1 or -1). The neural trigger module consists of a VME crate hosting two ET ANN analog neural chips from Intel. The neural trigger operated for two continuous weeks during the WA92 1 993 run. For an acceptance of 15% for C3 events, the neural trigger yields a C3 enrichment factor of 6.6-7.l (depending on the event sample considered), which multiplied by that already provided by the standard non-leptonic trigger leads to a global C3 enrichment factor of -1 50. In the event sample selected by the neural trigge...

  8. THE SUPERNOVA TRIGGERED FORMATION AND ENRICHMENT OF OUR SOLAR SYSTEM

    Energy Technology Data Exchange (ETDEWEB)

    Gritschneder, M.; Lin, D. N. C. [Kavli Institute for Astronomy and Astrophysics, Peking University, Yi He Yuan Lu 5, Hai Dian, 100871 Beijing (China); Murray, S. D. [Lawrence Livermore National Laboratory, University of California, Livermore, CA 94550 (United States); Yin, Q.-Z. [Department of Geology, University of California, Davis, CA 95616 (United States); Gong, M.-N., E-mail: gritschneder@pku.edu.cn [Department of Physics, Tsinghua University, Hai Dian, 100084 Beijing (China)

    2012-01-20

    We investigate the enrichment of the pre-solar cloud core with short-lived radionuclides, especially {sup 26}Al. The homogeneity and the surprisingly small spread in the ratio {sup 26}Al/{sup 27}Al observed in the overwhelming majority of calcium-aluminium-rich inclusions in a vast variety of primitive chondritic meteorites places strong constraints on the formation of the solar system. Freshly synthesized radioactive {sup 26}Al has to be included and well mixed within 20 kyr. After discussing various scenarios including X-winds, asymptotic giant branch stars, and Wolf-Rayet stars, we come to the conclusion that triggering the collapse of a cold cloud core by a nearby supernova (SN) is the most promising scenario. We then narrow down the vast parameter space by considering the pre-explosion survivability of such a clump as well as the cross-section necessary for sufficient enrichment. We employ numerical simulations to address the mixing of the radioactively enriched SN gas with the pre-existing gas and the forced collapse within 20 kyr. We show that a cold clump of 10 M{sub Sun} at a distance of 5 pc can be sufficiently enriched in {sup 26}Al and triggered into collapse fast enough-within 18 kyr after encountering the SN shock-for a range of different metallicities and progenitor masses, even if the enriched material is assumed to be distributed homogeneously in the entire SN bubble. In summary, we envision an environment for the birthplace of the solar system 4.567 Gyr ago similar to the situation of the pillars in M16 nowadays, where molecular cloud cores adjacent to an H II region will be hit by an SN explosion in the future. We show that the triggered collapse and formation of the solar system as well as the required enrichment with radioactive {sup 26}Al are possible in this scenario.

  9. Implementation of FPGA-based Level-1 Tracking at CMS for the HL-LHC

    CERN Document Server

    Chaves, Jorge Enrique

    2014-01-01

    A new approach for track reconstruction is presented to be used in the all-hardware first level of the CMS trigger. The application of the approach is intended for the upgraded all-silicon tracker, which is to be installed for the High Luminosity era of the LHC (HL-LHC). The upgraded LHC machine is expected to deliver a luminosity on the order of $5\\times10^{34} $cm$^{-2}$s$^{-1}$. This expected luminosity means there would be about 125 pileup events in each bunch crossing at a frequency of 40 MHz. To keep the CMS trigger rate at a manageable level under these conditions, it is necessary to make quick decisions on the events that will be processed. The timing estimates for the algorithm are expected to be below 5 $\\mu$s, well within the requirements of the L1 trigger at CMS for track identification. The algorithm is integer-based, allowing it to be implemented on an FPGA. Currently we are working on a demonstrator hardware implementation using a Xilinx Virtex 6 FPGA. Results from simulations in C++ and Verilo...

  10. Understanding and determining the variability of the primitive stress environment.

    CSIR Research Space (South Africa)

    Sellers, EJ

    2002-10-01

    Full Text Available The primitive stress state is an important input into the design of underground excavations. However, it is well known that the stress state varies considerably from place to place. The aim of this project was to determine the main causes...

  11. A primitive Late Pliocene cheetah, and evolution of the cheetah lineage

    Science.gov (United States)

    Christiansen, Per; Mazák, Ji H.

    2009-01-01

    The cheetah lineage is a group of large, slender, and long-limbed cats with a distinctive skull and dental morphology, of which only the extant cheetah (Acinonyx jubatus) is present today. The lineage is characterized by having abbreviated, tall, and domed crania, and a trenchant dentition with a much reduced, posteriorly placed protocone on the upper carnassial. In this article, we report on a new discovery of a Late Pliocene specimen from China with an estimated age of ≈2.2–2.5 million years, making it one of the oldest specimens known to date. A cladistic analysis confirmed that it is the most primitive cheetah known, and it shares a number of unambiguous derived cranial traits with the Acinonyx lineage, but has more primitive dentition than previously known cheetahs, demonstrating that the many unusual skull and dental characters hitherto considered characteristic of cheetahs evolved in a gradual fashion. Isolated teeth of primitive cheetahs may not be recognizable as such, but can be confused with, for instance, those of leopards or other similar-sized pantherine cats or pumas. The age and morphology of the new specimen supports an Old World origin of the cheetah lineage, not a New World one, as has been suggested. We name the new species Acinonyx kurteni in honor of the late Björn Kurtén. PMID:19114651

  12. A primitive Late Pliocene cheetah, and evolution of the cheetah lineage.

    Science.gov (United States)

    Christiansen, Per; Mazák, Ji H

    2009-01-13

    The cheetah lineage is a group of large, slender, and long-limbed cats with a distinctive skull and dental morphology, of which only the extant cheetah (Acinonyx jubatus) is present today. The lineage is characterized by having abbreviated, tall, and domed crania, and a trenchant dentition with a much reduced, posteriorly placed protocone on the upper carnassial. In this article, we report on a new discovery of a Late Pliocene specimen from China with an estimated age of approximately 2.2-2.5 million years, making it one of the oldest specimens known to date. A cladistic analysis confirmed that it is the most primitive cheetah known, and it shares a number of unambiguous derived cranial traits with the Acinonyx lineage, but has more primitive dentition than previously known cheetahs, demonstrating that the many unusual skull and dental characters hitherto considered characteristic of cheetahs evolved in a gradual fashion. Isolated teeth of primitive cheetahs may not be recognizable as such, but can be confused with, for instance, those of leopards or other similar-sized pantherine cats or pumas. The age and morphology of the new specimen supports an Old World origin of the cheetah lineage, not a New World one, as has been suggested. We name the new species Acinonyx kurteni in honor of the late Björn Kurtén.

  13. From the physical model to the electronic system - OMTF Trigger for CMS

    CERN Document Server

    Bluj, Michael; Byszuk, Adrian; Doroba, Krzysztof; Drabik, Pawel; Górski, Maciej; Kalinowski, A; Kierzkowski, Krzysztof; Konecki, Marcin; Miętki, Pawel; Okliński, Wojciech; Olszewski, Michal; Poźniak, Krzysztof; Zabołotny, Wojiech M; Zawistowski, Krystian; Żarnecki, Grzegorz

    2016-01-01

    The paper presents the development of the Overlap Muon Track Finder (OMTF) trigger for the CMS experiment at CERN. The transition from the data produced by the physical model to the algorithm suitable for practical implementation is shown. The paper also concentrates on the problems related to the necessity of continuous adaptation of the algorithm to the changing operating conditions of the detector

  14. Analog neural networks in an upgraded muon trigger for the DZero detector

    International Nuclear Information System (INIS)

    Fortner, M.R.

    1992-04-01

    The use of analog neural networks as part of the DZero muon detector is considered. A study was made of tracking through a single muon chamber using neural network techniques. A hardware application based on Intel's ETANN ship was designed and used in a test beam at Fermi National Accelerator Laboratory. Plans to implement a neural network trigger in DZero are also discussed

  15. TRIGGER

    CERN Multimedia

    W. Smith, from contributions of D. Acosta

    2012-01-01

      The L1 Trigger group deployed several major improvements this year. Compared to 2011, the single-muon trigger rate has been reduced by a factor of 2 and the η coverage has been restored to 2.4, with high efficiency. During the current technical stop, a higher jet seed threshold will be applied in the Global Calorimeter Trigger in order to significantly reduce the strong pile-up dependence of the HT and multi-jet triggers. The currently deployed L1 menu, with the “6E33” prescales, has a total rate of less than 100 kHz and operates with detector readout dead time of less than 3% for luminosities up to 6.5 × 1033 cm–2s–1. Further prescale sets have been created for 7 and 8 × 1033 cm–2s–1 luminosities. The L1 DPG is evaluating the performance of the Trigger for upcoming conferences and publication. Progress on the Trigger upgrade was reviewed during the May Upgrade Week. We are investigating scenarios for stagin...

  16. TRIGGER

    CERN Multimedia

    R. Arcidiacono

    2013-01-01

      In 2013 the Trigger Studies Group (TSG) has been restructured in three sub-groups: STEAM, for the development of new HLT menus and monitoring their performance; STORM, for the development of HLT tools, code and actual configurations; and FOG, responsible for the online operations of the High Level Trigger. The Strategy for Trigger Evolution And Monitoring (STEAM) group is responsible for Trigger Menu development, path timing, trigger performance studies coordination, HLT offline DQM as well as HLT release, menu and conditions validation – in collaboration and with the technical support of the PdmV group. Since the end of proton-proton data taking, the group has started preparing for 2015 data taking, with collisions at 13 TeV and 25 ns bunch spacing. The reliability of the extrapolation to higher energy is being evaluated comparing the trigger rates on 7 and 8 TeV Monte Carlo samples with the data taken in the past two years. The effect of 25 ns bunch spacing is being studied on the d...

  17. TRIGGER

    CERN Multimedia

    W. Smith

    Level-1 Trigger Hardware and Software The road map for the final commissioning of the level-1 trigger system has been set. The software for the trigger subsystems is being upgraded to run under CERN Scientific Linux 4 (SLC4). There is also a new release for the Trigger Supervisor (TS 1.4), which implies upgrade work by the subsystems. As reported by the CERN group, a campaign to tidy the Trigger Timing and Control (TTC) racks has begun. The machine interface was upgraded by installing the new RF2TTC module, which receives RF signals from LHC Point 4. Two Beam Synchronous Timing (BST) signals, one for each beam, can now be received in CMS. The machine group will define the exact format of the information content shortly. The margin on the locking range of the CMS QPLL is planned for study for different subsystems in the next Global Runs, using a function generator. The TTC software has been successfully tested on SLC4. Some TTC subsystems have already been upgraded to SLC4. The TTCci Trigger Supervisor ...

  18. Primary extraskeletal Ewing's sarcoma/primitive neuroectodermal tumor of breast

    Directory of Open Access Journals (Sweden)

    Smita Srivastava

    2016-01-01

    Full Text Available Extraskeletal Ewing's sarcoma (EES is a rare soft tissue tumor that is morphologically indistinguishable from skeletal ES. We report a case of a 25-year-old female with recurrent EES/primitive neuroectodermal tumor of right breast with imaging findings on mammogram, ultrasound, magnetic resonance imaging breast, and positron emission tomography–computed tomography.

  19. The ALICE High Level Trigger: status and plans

    CERN Document Server

    Krzewicki, Mikolaj; Gorbunov, Sergey; Breitner, Timo; Lehrbach, Johannes; Lindenstruth, Volker; Berzano, Dario

    2015-01-01

    The ALICE High Level Trigger (HLT) is an online reconstruction, triggering and data compression system used in the ALICE experiment at CERN. Unique among the LHC experiments, it extensively uses modern coprocessor technologies like general purpose graphic processing units (GPGPU) and field programmable gate arrays (FPGA) in the data flow. Realtime data compression is performed using a cluster finder algorithm implemented on FPGA boards. These data, instead of raw clusters, are used in the subsequent processing and storage, resulting in a compression factor of around 4. Track finding is performed using a cellular automaton and a Kalman filter algorithm on GPGPU hardware, where both CUDA and OpenCL technologies can be used interchangeably. The ALICE upgrade requires further development of online concepts to include detector calibration and stronger data compression. The current HLT farm will be used as a test bed for online calibration and both synchronous and asynchronous processing frameworks already before t...

  20. A compact solid-state detector for small angle particle tracking

    International Nuclear Information System (INIS)

    Altieri, S.; Barnaba, O.; Braghieri, A.; Cambiaghi, M.; Lanza, A.; Locatelli, T.; Panzeri, A.; Pedroni, P.; Pinelli, T.; Jennewein, P.; Lang, M.; Preobrazhensky, I.; Annand, J.R.M.; Sadiq, F.

    2000-01-01

    MIcrostrip Detector Array System (MIDAS) is a compact silicon-tracking telescope for charged particles emitted at small angles in intermediate energy photonuclear reactions. It was realized to increase the angular acceptance of the DAPHNE detector and used in an experimental program to check the Gerasimov-Drell-Hearn sum rule at the Mainz electron microtron (MAMI). MIDAS provides a trigger for charged hadrons, p/π ± identification and particle tracking in the region 7 deg. <θ<16 deg.. In this paper we present the main characteristics of MIDAS and its measured performances