WorldWideScience

Sample records for tracer hydrological investigation

  1. Journal: Efficient Hydrologic Tracer-Test Design for Tracer ...

    Science.gov (United States)

    Hydrological tracer testing is the most reliable diagnostic technique available for the determination of basic hydraulic and geometric parameters necessary for establishing operative solute-transport processes. Tracer-test design can be difficult because of a lack of prior knowledge of the basic hydraulic and geometric parameters desired and the appropriate tracer mass to release. A new efficient hydrologic tracer-test design (EHTD) methodology has been developed to facilitate the design of tracer tests by root determination of the one-dimensional advection-dispersion equation (ADE) using a preset average tracer concentration which provides a theoretical basis for an estimate of necessary tracer mass. The method uses basic measured field parameters (e.g., discharge, distance, cross-sectional area) that are combined in functional relatipnships that descrive solute-transport processes related to flow velocity and time of travel. These initial estimates for time of travel and velocity are then applied to a hypothetical continuous stirred tank reactor (CSTR) as an analog for the hydrological-flow system to develop initial estimates for tracer concentration, tracer mass, and axial dispersion. Application of the predicted tracer mass with the hydraulic and geometric parameters in the ADE allows for an approximation of initial sample-collection time and subsequent sample-collection frequency where a maximum of 65 samples were determined to be necessary for descri

  2. A natural tracer investigation of the hydrological regime of Spring Creek Springs, the largest submarine spring system in Florida

    Science.gov (United States)

    Dimova, Natasha T.; Burnett, William C.; Speer, Kevin

    2011-04-01

    This work presents results from a nearly two-year monitoring of the hydrologic dynamics of the largest submarine spring system in Florida, Spring Creek Springs. During the summer of 2007 this spring system was observed to have significantly reduced flow due to persistent drought conditions. Our examination of the springs revealed that the salinity of the springs' waters had increased significantly, from 4 in 2004 to 33 in July 2007 with anomalous high radon ( 222Rn, t1/2=3.8 days) in surface water concentrations indicating substantial saltwater intrusion into the local aquifer. During our investigation from August 2007 to May 2009 we deployed on an almost monthly basis a continuous radon-in-water measurement system and monitored the salinity fluctuations in the discharge area. To evaluate the springs' freshwater flux we developed three different models: two of them are based on water velocity measurements and either salinity or 222Rn in the associated surface waters as groundwater tracers. The third approach used only salinity changes within the spring area. The three models showed good agreement and the results confirmed that the hydrologic regime of the system is strongly correlated to local precipitation and water table fluctuations with higher discharges after major rain events and very low, even reverse flow during prolong droughts. High flow spring conditions were observed twice during our study, in the early spring and mid-late summer of 2008. However the freshwater spring flux during our observation period never reached that reported from a 1970s value of 4.9×10 6 m 3/day. The maximum spring flow was estimated at about 3.0×10 6 m 3/day after heavy precipitation in February-March 2008. As a result of this storm (total of 173 mm) the salinity in the spring area dropped from about 27 to 2 in only two days. The radon-in-water concentrations dramatically increased in parallel, from about 330 Bq/m 3 to about 6600 Bq/m 3. Such a rapid response suggests a direct

  3. Use of artificial tracers in hydrology

    International Nuclear Information System (INIS)

    1991-05-01

    The IAEA has convened an Advisory Group Meeting with the following objectives: To define the role of artificial radioactive tracers for water tracing in comparison with other non-radioactive tracers. To evaluate the real needs of artificial radioactive tracers in hydrology. To identify the fields for which artificial radioactive tracers are useful as well as those in which they can be substituted by other tracers. To discuss the strategy to be adopted to overcome the difficulties derived from the restrictions on the use of radioactive tracers in hydrology. The meeting was held at IAEA Headquarters from 19 to 22 March 1990, and was attended by 30 participants from 15 Member States. The conclusions and recommendations are that the use of artificial radioactive tracers should be restricted to cases where other tracers cannot be used or do not provide the same quality of information. Tritium, iodine-131, bromine-82, chromium-51 in the form of Cr-EDTA, technetium-99m obtained from 99 Mo-generators and gold-198 as an adsorbable tracer are, practically, the only radionuclides used for water tracing. The use of other radionuclides for this purpose does not appear to be necessary, possible and/or convenient. Refs, figs and tabs

  4. Artificial radioisotopes in hydrological investigation

    International Nuclear Information System (INIS)

    Plata-Bedmar, A.

    1988-01-01

    Radioisotope techniques have an important part in hydrological investigations. Sealed radiation sources have been used for measurements of sediments transported by river water, of thickness and density of sediment layers. X-ray fluorescence analysis and well-logging are widely applied in hydrological research. Tracer techniques have been useful in flow rate and river dynamics research, sediments tracing, irrigation and ground water problems, infiltration rate evaluation etc. The IAEA is supporting several projects involving the use of radioactive tracers in hydrological investigations p.e. in Guatemala, Romania, South East Asia, Brazil, Chile and Nicaragua

  5. Isotope and chemical tracers in groundwater hydrology

    International Nuclear Information System (INIS)

    Kendall, C.; Stewart, M.K.; Morgenstern, U.; Trompetter, V.

    1999-01-01

    The course sessions cover: session 1, Fundamentals of stable and radioactive isotopes; session 2, Stable oxygen and hydrogen isotopes in hydrology: background, examples, sampling strategy; session 3, Catchment studies using oxygen and hydrogen isotopes: background - the hydrologic water balance, evapotranspiration - the lion's share, runoff generation - new water/old water fractions, groundwater recharge - the crumbs; session 4, Isotopes in catchment hydrology: survey of applications, future developments; session 5, Applications of tritium in hydrology: background and measurement, interpretation, examples; session 6, Case studies using mixing models: Hutt Valley groundwater system, an extended mixing model for simulating tracer transport in the unsaturated zone; session 7, Groundwater dating using CFC concentrations: background, sampling and measurement, use and applications; session 8, Groundwater dating with carbon-14: background, sampling and measurement, use and applications; session 9, NZ case studies: Tauranga warm springs, North Canterbury Plains groundwater; session 10, Stable carbon and nitrogen isotopes: background and examples, biological applications of C-N-S isotopes; session 11, New developments in isotope hydrology: gas isotopes, compound specific applications, age dating of sediments etc; session 12, NZ case studies: North Canterbury Plains groundwater (continued), Waimea Plains groundwater. (author). refs., figs

  6. Systems approach to tracer data in groundwater hydrology

    International Nuclear Information System (INIS)

    Saxena, R.K.

    1977-01-01

    A brief review of current mathematical methods for the analysis of tracer data in groundwater hydrology has been given. The description of the hydrological cycle as a whole or in part, by a system (compartment) or sub-system under linear and stationary conditions is discussed. Basic concepts of transit time, residence time, their distributions in time and response characteristics of a system are outlined. From the knowledge of tracer input, output and systems response function for a generalised system, reservoir capacity and storage for given period can be estimated. Use of a time series model for environmental tracer data in discreet time scale aimed at the solution of hydrological problems e.g. mean transit time and reservoir capacity is also explored. It is concluded that the combination of tracer data with systems approach can go a long way in the study of some complex hydrological problems. (author)

  7. Using tracers to understand the hydrology of an abandoned underground coal mine

    International Nuclear Information System (INIS)

    Canty, G.A.; Everett, J.W.

    1998-01-01

    Flooded underground mines pose a difficult problem for remediation efforts requiring hydrologic information. Mine environments are hydraulically complicated due to sinuous travel paths and variable hydraulic gradients. For an acidic mine remediation project, conducted by the University of Oklahoma in conjunction with the Oklahoma Conservation Commission, a tracer study was undertaken to identify basic hydrologic properties of a flooded coal mine. The study was conducted to investigate the possibility of in-situ remediation of acidic mine water with the use of alkaline coal combustion by-products. Information on the rate of flow and ''connectiveness'' of injection wells with the discharge point was needed to develop a treatment strategy. Fluorescent dyes are not typically used in mine tracer studies because of the low pH values associated with certain mines and a tendency to adsorb ferric iron precipitates. However, Rhodamine WT was used in one tracer test because it can be detected at low concentrations. Due to poor recovery, a second tracer test was undertaken using a more conservative tracer-chloride. Each tracer produced similar travel time results. Findings from this study suggest that Rhodamine WT can be used under slightly acidic conditions, with mixed results. The more conservative tracer provided somewhat better results, but recovery was still poor. Use of these tracers has provided some valuable information with regard to mine hydrology, but additional questions have been raised

  8. Contributions to hydrological tracer methods and their application

    International Nuclear Information System (INIS)

    1982-04-01

    The activities of the Institut fuer Radiohydrometrie of the GSF are mainly devoted to the field of environmental research studying the quality, use and protection from pollution of drinking water which has become scarce in many parts of the world. The knowledge and experience of a variety of scientific disciplines are combined to the common task of developing new tracer methods and selecting suitable hydrogeological methods to allow quantitative studies of the hydrological cycle, from rainfall to surface or sub-surface run-off. The tracers used in these studies are for the most part stable, natural radioisotopes occurring in the hydrological cycle, as well as fluorescent dyes or radionuclides for water labelling. The contributions collected in this volume are grouped according to the above outline of tasks and present a survey of current methods and measurements, illustrating their efficiency in solving hydrological problems. (orig./RW) [de

  9. The importance of tracer technology in combined borehole investigations

    International Nuclear Information System (INIS)

    Zojer, H.

    1998-01-01

    In an experimental field for a waste disposal site, investigations have been carried out applying methods from geology, hydrology hydrogeology, hydrochemistry, environmental isotope hydrology and tracer technology. All data obtained result to a dynamic drainage model of groundwater. The combined interpretation of borehole data guarantees a high-grade knowledge of groundwater exfiltrating to the surface drainage, which enables proper control measures of the disposal site and an effective groundwater protection. (author)

  10. Application of tracers in the fight against hydrological pollution

    International Nuclear Information System (INIS)

    Guizerix, J.; Margrita, R.

    1978-01-01

    A statement is made on the laboratory know-how in the field of the applications of tracers in the fight against hydrological pollution. In surface hydrology it concerns the determination of the self-purifying powers of watercourses and the treatment of a certain number of problems relating to the transfer of polluting substances to the hydrographical system. In hydrogeology, the various studies made and being made deal with the transfer of water, a vector of pollution, with the interaction of polluting agents with the porous environment, and thus with the general problem of the protection of underground water catchments [fr

  11. Isotope hydrology: Investigating groundwater contamination

    International Nuclear Information System (INIS)

    Dubinchuk, V.; Froehlich, K.; Gonfiantini, R.

    1989-01-01

    Groundwater quality has worsened in many regions, with sometimes serious consequences. Decontaminating groundwater is an extremely slow process, and sometimes impossible, because of the generally long residence time of the water in most geological formations. Major causes of contamination are poor groundwater management (often dictated by immediate social needs) and the lack of regulations and control over the use and disposal of contaminants. These types of problems have prompted an increasing demand for investigations directed at gaining insight into the behaviour of contaminants in the hydrological cycle. Major objectives are to prevent pollution and degradation of groundwater resources, or, if contamination already has occurred, to identify its origin so that remedies can be proposed. Environmental isotopes have proved to be a powerful tool for groundwater pollution studies. The IAEA has had a co-ordinated research programme since 1987 on the application of nuclear techniques to determine the transport of contaminants in groundwater. An isotope hydrology project is being launched within the framework of the IAEA's regional co-operative programme in Latin America (known as ARCAL). Main objectives are the application of environmental isotopes to problems of groundwater assessment and contamination in Latin America. In 1989, another co-ordinated research programme is planned under which isotopic and other tracers will be used for the validation of mathematical models in groundwater transport studies

  12. Lithogenic and cosmogenic tracers in catchment hydrology

    International Nuclear Information System (INIS)

    Nimz, G.J.

    1995-01-01

    A variety of physical processes affect solute concentrations within catchment waters. The isotopic compositions of the solutes can indicate which processes have determined the observed concentrations. These processes together constitute the physical history of the water, which is one of the primary concerns in hydrology. Many groundwater solutes are derived as a result of interaction between the water and the rock and/or soil within the system. These are termed open-quotes lithogenicclose quotes solutes. The isotopic compositions of these solutes provide information regarding rock-water interactions. Many other solutes have their isotopic compositions determined both internally and externally to the catchment system. Important members of this group include solutes that have isotopic compositions produced by atomic particle interactions with other nuclides. The source of the atomic particles can be cosmic radiation (producing open-quotes cosmogenicclose quotes nuclides in the atmosphere and land surface), anthropogenic nuclear reactions (producing open-quotes thermonuclearclose quotes nuclides), or radioactive and fission decay of naturally-occurring elements, such as U and Th (producing open-quotes in-situclose quotes lithogenic nuclides in the deep subsurface). Current language usage often combines all of the atomic particle-produced nuclides under the heading open-quotes cosmogenic nuclidesclose quotes, and for simplicity we will often follow that usage, although always clearly indicating which variety is being discussed. This paper addresses the processes that affect the lithogenic and cosmogenic solute compositions in groundwater, and how these compositions can therefore be used in integrative ways to understand the physical history of groundwater within a catchment system

  13. Lithogenic and cosmogenic tracers in catchment hydrology

    Energy Technology Data Exchange (ETDEWEB)

    Nimz, G.J.

    1995-01-01

    A variety of physical processes affect solute concentrations within catchment waters. The isotopic compositions of the solutes can indicate which processes have determined the observed concentrations. These processes together constitute the physical history of the water, which is one of the primary concerns in hydrology. Many groundwater solutes are derived as a result of interaction between the water and the rock and/or soil within the system. These are termed {open_quotes}lithogenic{close_quotes} solutes. The isotopic compositions of these solutes provide information regarding rock-water interactions. Many other solutes have their isotopic compositions determined both internally and externally to the catchment system. Important members of this group include solutes that have isotopic compositions produced by atomic particle interactions with other nuclides. The source of the atomic particles can be cosmic radiation (producing {open_quotes}cosmogenic{close_quotes} nuclides in the atmosphere and land surface), anthropogenic nuclear reactions (producing {open_quotes}thermonuclear{close_quotes} nuclides), or radioactive and fission decay of naturally-occurring elements, such as U and Th (producing {open_quotes}in-situ{close_quotes} lithogenic nuclides in the deep subsurface). Current language usage often combines all of the atomic particle-produced nuclides under the heading {open_quotes}cosmogenic nuclides{close_quotes}, and for simplicity we will often follow that usage, although always clearly indicating which variety is being discussed. This paper addresses the processes that affect the lithogenic and cosmogenic solute compositions in groundwater, and how these compositions can therefore be used in integrative ways to understand the physical history of groundwater within a catchment system.

  14. Application of oxygen-18 tracer techniques to arctic hydrological processes

    International Nuclear Information System (INIS)

    Cooper, L.W.; Solis, C.; Kane, D.L.; Hinzman, L.D.

    1993-01-01

    The δ 18 O value of streamflow at Imnavait Creek, Alaska, shifted dramatically from -30.3 per-thousand on 14 May, the first day of streamflow in 1990, to -22.5 per-thousand on 22 May, at the end of the snowmelt. Nevertheless, independent hydrological measurements of snow redistribution by wind, snow ablation, snow and soil mixture content, and snowmelt runoff indicate there cannot be significant mixing of meltwater with underlying ice-rich soils. An alternative explanation is that isotopic fractionation during the phase change from solid to liquid dominates the isotopic variation in streamflow during snowmelt and prevents a straightforward application of 18 O as a conservative hydrological tracer. By contrast, under dry antecedent conditions in late summer, 18 O appeared to be a suitable tracer following rain contributions to streamflow. Streamflow increased as a result of rainfall, but stream isotopic composition did not change until at least two hours after streamflow increased, implicating a wave, or piston-like mechanism for forcing open-quotes oldclose quotes water into the stream channel. Analyses of the stable hydrogen and oxygen isotope composition of various hydrological components within the watershed indicate the importance of evaporation as a dominant factor in the hydrological cycle; soil moisture, alteration as a result of evaporation. The analyses indicate that caution would be advised for any application of stable isotopes to hydrological studies in arctic watersheds. Proportions of snowmelt mixing with underlying soil water may be subject to overestimation because isotopic fractionation as snow melts can be similar in direction and magnitude to the isotopic mixing of snowmelt an soil waters. 40 refs., 7 figs., 1 tab

  15. Nested Tracer Studies In Catchment Hydrology: Towards A Multiscale Understanding of Runoff Generation and Catchment Funtioning

    Science.gov (United States)

    Soulsby, C.; Rodgers, P.; Malcolm, I. A.; Dunn, S.

    contribute to storm runoff as well as sustain base flows. Water from steeper hillslopes appears to primarily recharge valley bottom aquifers. Fluxes from the drift aquifers into the stream bed were investigated using hydrometric and tracer techniques. Groundwater fluxes through the stream bed appear to be relatively localized relating to geological boundaries or changes in drift characteristics. How- ever, these fluxes are also controlled by morphological features in the river channel which exert a strong control on localized groundwater U surface water interactions. 1 If catchment hydrology is to contribute to a functional understanding of freshwater ecosystems it is argued that integrated tracer studies, at different scales and incorpo- rating both observations from field work and modelling applications, have a key role to play. 2

  16. Water Vapor Tracers as Diagnostics of the Regional Hydrologic Cycle

    Science.gov (United States)

    Bosilovich, Michael G.; Schubert, Siegfried D.; Einaudi, Franco (Technical Monitor)

    2001-01-01

    Numerous studies suggest that local feedback of surface evaporation on precipitation, or recycling, is a significant source of water for precipitation. Quantitative results on the exact amount of recycling have been difficult to obtain in view of the inherent limitations of diagnostic recycling calculations. The current study describes a calculation of the amount of local and remote geographic sources of surface evaporation for precipitation, based on the implementation of three-dimensional constituent tracers of regional water vapor sources (termed water vapor tracers, WVT) in a general circulation model. The major limitation on the accuracy of the recycling estimates is the veracity of the numerically simulated hydrological cycle, though we note that this approach can also be implemented within the context of a data assimilation system. In the WVT approach, each tracer is associated with an evaporative source region for a prognostic three-dimensional variable that represents a partial amount of the total atmospheric water vapor. The physical processes that act on a WVT are determined in proportion to those that act on the model's prognostic water vapor. In this way, the local and remote sources of water for precipitation can be predicted within the model simulation, and can be validated against the model's prognostic water vapor. As a demonstration of the method, the regional hydrologic cycles for North America and India are evaluated for six summers (June, July and August) of model simulation. More than 50% of the precipitation in the Midwestern United States came from continental regional sources, and the local source was the largest of the regional tracers (14%). The Gulf of Mexico and Atlantic regions contributed 18% of the water for Midwestern precipitation, but further analysis suggests that the greater region of the Tropical Atlantic Ocean may also contribute significantly. In most North American continental regions, the local source of precipitation is

  17. The Ladstattschacht cave shaft - tracer hydrological investigation of a site of organic pollution in the Alpine karst system; Der Ladstattschacht - tracerhydrologische Untersuchung einer organischen Altlast im alpinen Karst

    Energy Technology Data Exchange (ETDEWEB)

    Goldscheider, N. [Karlsruhe Univ. (T.H.) (Germany). Lehrstuhl fuer Angewandte Geologie

    1998-12-31

    The Ladstattschacht is a 47 m deep cave shaft in the Schwarzwasser valley (state of Vorarlberg, Austrian Alps) that was completely filled up with waste from private and communal sewage plants until 1975. A multi tracing experiment using three different fluorescent tracers was carried out in order to evaluate the risk potential of this waste site. The organic shaft fill itself, a pothole nearby the Ladstattschacht and an active swallow hole served as injection points. It could be demonstrated that all karstic springs in the Schwarzwasser valley are affected by seepage water from this waste site. Comparison of breakthrough curves allowed to determine retardation processes in the shaft fill and the unsaturated zone and to characterize the karst groundwater flow system. (orig.) [Deutsch] Der Ladstattschacht im Schwarzwassertal (Vorarlberg, Oesterreich) ist ein 47 m tiefer Hoehlenschacht, der bis 1975 als wilde Deponie fuer Klaerschlaemme verwendet wurde. Um das von dieser organischen Altlast ausgehende Gefaehrdungspotential zu bewerten, wurde ein kombinierter Markierungsversuch mit 3 verschiedenen Fluoreszenztracern durchgefuehrt. Dabei dienten die Schachtfuellung, ein benachbarter Naturschacht und eine aktive Schwinde als Eingabestellen. Es konnte belegt werden, dass saemtliche Karstquellen im Schwarzwassertal von Sickerwaessern aus dem Ladstattschacht erreicht werden. Durch den Vergleich der Durchgangskurven konnten sowohl die Retardationsvorgaenge in der Schachtfuellung und in der ungesaettigten Zone, als auch die Abstromverhaeltnisse der Karstentwaesserung charakterisiert werden. (orig.)

  18. Temperature as a tracer of hydrological dynamics in an anchialine cave system with a submarine spring

    Science.gov (United States)

    Domínguez-Villar, David; Cukrov, Neven; Krklec, Kristina

    2018-01-01

    Although temperature is a nonconservative tracer, it often provides useful information to understand hydrological processes. This study explores the potential of temperature to characterize the hydrological dynamics of a submarine spring and its coastal karst aquifer in Krka Estuary (Croatia). The estuary is well stratified and its water column has a clear thermocline. A network of loggers was designed to monitor the temperature along vertical profiles in the estuary and the coastal aquifer, taking advantage of an anchialine cave that enabled access to the subterranean estuary. The location of the thermocline in the groundwater, which defines the upper boundary of the saline intrusion, depends on (1) the recharge of the aquifer via infiltration of precipitation, (2) the evolution of the thermocline in the estuary, and (3) the tidal oscillations. The sources of water flowing though the anchialine cave were identified: brackish water from the estuary above the thermocline, saline water from the estuary below the thermocline, and freshwater from infiltrated precipitation. A conceptual model is described that characterizes the hydrological dynamics of this coastal aquifer and its interactions with the estuary. Thus, at least for some hydrological settings, temperature is a valid tracer to characterize the main hydrological processes. The measurement of temperature is inexpensive compared to other (conservative) tracers. Therefore, for those hydrological settings that have water masses with distinct temperatures, the use of temperature as a tracer to establish conceptual models of the hydrological dynamics is encouraged.

  19. Development and Validation of Water Vapor Tracers as Diagnostics for the Atmospheric Hydrologic Cycle

    Science.gov (United States)

    Bosilovich, Michael G.; Schubert, Siegfried D.; Einaudi, Franco (Technical Monitor)

    2000-01-01

    Understanding of the local and remote sources of water vapor can be a valuable diagnostic in understanding the regional atmospheric hydrologic cycle. In the present study, we have implemented passive tracers as prognostic variables to follow water vapor evaporated in predetermined regions until the water tracer precipitates. The formulation of the sources and sinks of tracer water is generally proportional to the prognostic water vapor variable. Because all water has been accounted for in tracers, the water vapor variable provides the validation of the tracer water and the formulation of the sources and sinks. The tracers have been implemented in a GEOS General Circulation Model (GCM) simulation consisting of several summer periods to determine the source regions of precipitation for the United States and India. The recycling of water and interannual variability of the sources of water will be examined. Potential uses in GCM sensitivity studies, predictability studies and data assimilation will be discussed.

  20. Tracer application in hydrology and the environment, Malaysia

    International Nuclear Information System (INIS)

    Daud Mohamad; Roslan Mohamad Ali; Wan Zakaria Wan Mohamad Tahir; Zainudin Othman; Mohamad Shahid Ayub.

    1987-04-01

    A number of important applications of isotopes in hydrology and the environment undertaken in Malaysia are presented, i.e. environmental isotope (isotope hydrology study of Kelantan Basin); artificial isotope studies (detection of leakage in Pedu Dam; flowrate measurement at selected streams in Ulu Langat area; residence times and dispersion behavior of oxydation pond, Klang Hospital). (author)

  1. Application of isotope hydrology related to limnological investigations in India

    International Nuclear Information System (INIS)

    Saravana Kumar, U.; Navada, S.V.

    2007-01-01

    Among the various hydrological environments, lakes are often well suited to investigate using isotopic tracers, environmental or injected. Lakes are systems, which although complex, are generally accessible to all points for sample collection, tracer injections and in-situ measurement. The various types of isotope applications in lake studies (limnology), reported in various literatures include; i) Lake dynamics investigations, interaction between lakes and adjacent water bodies (springs, river, groundwater etc) and the related water balance computations, ii) Lake sedimentation processes, iii) Gas exchange between lake water and the atmosphere, iv) Paleo-hydrologic and paleo-climatological problems etc. In this article, a few Indian case studies covering some of the above types of isotope applications in limnology are briefly summarized. (author)

  2. Multiscale investigation of catchment functioning using environmental tracers: Insights from the mesoscale Attert basin in Luxembourg

    Science.gov (United States)

    Wrede, S.; Pfister, L.; Krein, A.; Bogaard, T. A.; Savenije, H. H. G.; Uhlenbrook, S.

    2009-04-01

    Experimental hydrology focuses traditionally on field investigations at smaller spatial and temporal scales and research is driven by small-scale, detailed and complex investigations of densely instrumented research sites. However, to improve operational water management and protection of water resources at the river basin scale, it is necessary to study the hydrological processes across a range of scales. Empirical studies investigating catchment structure and functioning across multiple scales are still rare and urgently needed. Besides geomorphologic and climatic catchment descriptors, environmental tracers have been recognized as a fundamental tool in experimental hydrology to assess the scaling gap, as they provide an independent and integrative perspective of catchment functioning and scaling. A three year tracer study is being carried out in the Attert river basin in Luxembourg to identify how major controls of runoff generation change across scales and to investigate the spatial and temporal functioning of larger basins. The mesoscale (300 km²) Attert catchment is located in the Midwestern part of Luxembourg and lies at the transition zone of contrasting bedrock lithology that is a major control for runoff generation: The Northern part is characterized by Devonian schist of the Ardennes massif, while sedimentary deposits of sandstone and marls dominate in the Southern part of the basin. Major hydrochemical tracers including stable water isotopes were grab sampled fortnightly and, where possible, also event-based at 13 nested stream locations ranging in size from 0.5 to 300 km² throughout the basin. Results using Deuterium and a range of hydrochemical tracers confirm the major role of bedrock lithology for runoff response of different geological parts of the basins: Hydrological response of schistose basins is characterized by seasonal variation and a delayed shallow groundwater component originating from a saprolitic zone, sandstone basins exhibit a

  3. Tracer theory

    International Nuclear Information System (INIS)

    Margrita, R.

    1988-09-01

    Tracers are used in many fields of science to investigate mass transfer. The scope of tracers applications in Service of Applications Radioisotopes (S.A.R.-France) is large and concerns natural and industrial systems such as Sciences of earth: hydrology - civil engineering - Sedimentology - environmental studies. Industrial field: chemical engineering - mechanical engineering. A general tracer methodology has been developed in our laboratories from these different applications fields and this paper shows these different points of view in using tracers; our wish is that the methods used in an experimental field can be employed in an another one

  4. Using stable isotope tracers to assess hydrological flow paths, residence times and landscape influences in a nested mesoscale catchment

    Directory of Open Access Journals (Sweden)

    P. Rodgers

    2005-01-01

    Full Text Available δ18O measurements in precipitation and stream waters were used to investigate hydrological flow paths and residence times at nested spatial scales in the mesoscale (233 km2 River Feugh catchment in the northeast of Scotland over the 2001-2002 hydrological year. Precipitation δ18O exhibited strong seasonal variation, which although significantly damped within the catchment, was reflected in stream water at six sampling sites. This allowed δ18O variations to be used to infer the relative influence of soil-derived storm flows with a seasonally variable isotopic signature, and groundwater of apparently more constant isotopic composition. Periodic regression analysis was then used to examine the sub-catchment difference using an exponential flow model to provide indicative estimates of mean stream water residence times, which varied between approximately 3 and 14 months. This showed that the effects of increasing scale on estimated mean stream water residence time was minimal beyond that of the smallest (ca. 1 km2 headwater catchment scale. Instead, the interaction of catchment soil cover and topography appeared to be the dominant controlling influence. Where sub-catchments had extensive peat coverage, responsive hydrological pathways produced seasonally variable δ18O signatures in runoff with short mean residence times (ca. 3 months. In contrast, areas dominated by steeper slopes, more freely draining soils and larger groundwater storage in shallow valley-bottom aquifers, deeper flow paths allow for more effective mixing and damping of δ18O indicating longer residence times (>12 months. These insights from δ18O measurements extend the hydrological understanding of the Feugh catchment gained from previous geochemical tracer studies, and demonstrate the utility of isotope tracers in investigating the interaction of hydrological processes and catchment characteristics at larger spatial scales.

  5. Using streamflow and hydrochemical tracers to conceptualise hydrological function of underground channel system in a karst catchment of southwest China

    Science.gov (United States)

    Zhang, Zhicai; Chen, Xi; Wang, Jinli

    2016-04-01

    Karst hydrodynamic behaviour is complex because of special karst geology and geomorphology. The permeable multi-media consisting of soil, epikarst fractures and conduits has a key influence on karst hydrological processes. Spatial heterogeneity is high due to special landforms of vertical shafts, caves and sinkholes, which leads to a high dynamic variability of hydrological processes in space and time, and frequent exchange of surface water and groundwater. Underground water in different reach were sampled over the 1996-2001 in a karst catchment of Houzhai, with 81km2, located in Guizhou province of southwest China. Samples were analysed for water temperature, pH, conductivity and four solute concentrations. The monitoring sought to assess the combined utility of flow discharge and natural geochemical tracers in upscaling flow structure understanding in karst area. Based on previous researches and field investigation, the catchment characteristics were explored with the use of a GIS. Both flow discharge and solute concentrations exhibited clear seasonal patterns at every groundwater sampling sites. The variations of flow and chemistry are more dramatic in upstream site with less soil cover and more sinkholes development, which affect the hydrological pathways significantly. There was clear evidence that the differences in geology and soil were the main controls on hydrology and flow chemistry, which was spatially variable in different sites of underground channel. Conceptual flow structures in main hydrological response units for different area in the catchment were developed according to the variation of discharge and flow chemistry.

  6. Molecular dynamics investigation of tracer diffusion in a simple liquid

    International Nuclear Information System (INIS)

    Ould-Kaddour, F.; Barrat, J.L.

    1991-05-01

    Extensive Molecular-Dynamics (MD) simulations have been carried out for a model trace-solvent system made up of 100 solvent molecules and 8 tracer molecules interacting through truncated Lennard-Jones potentials. The influence of the size ratio between solute and solvent, of their mass ratio and of the solvent viscosity on the diffusivity of a small tracer were investigated. Positive deviations from a Stokes-Einstein behaviour are observed, in qualitative agreement with experimental observations. It was also observed that as tracer and solvent become increasingly dissimilar, their respective dynamics becomes decoupled. We suggest that such decouplings can be interpreted by writing their mobility of the tracer as the sum of two terms, the first one arising from a coupling between tracer dynamics and hydrodynamics modes of the solvent, and the second one describing jump motion in a locally nearly frozen environment. (author). 17 refs, 4 figs, 6 tabs

  7. Photolytic transformation products and biological stability of the hydrological tracer Uranine

    International Nuclear Information System (INIS)

    Gutowski, Lukasz; Olsson, Oliver; Lange, Jens; Kümmerer, Klaus

    2015-01-01

    Among many fluorescence tracers, Uranine (sodium fluorescein, UR) has most widely been used in hydrological research. Extensive use of UR for tracing experiments or commercial use might cause a potential risk of long-term environmental contamination. As any organic substance released to the environment, also UR is subjected to chemical and physical reactions that can be chemical, biological and photolysis processes. These processes transform the parent compound (PC) and have not been extensively investigated for UR. This study applies two OECDs (301 D and 301 F) tests and a screening water sediment test (WST) to investigate the biodegradability of the PC. Photolysis in water was explored by Xe lamp irradiation. Subsequently, the biodegradability of the photolysis mixtures was examined. The primary elimination of UR was monitored and structures of its transformation products (TPs) were elucidated by HPLC–FLD–MS/MS. UR was found not readily biodegradable, although small degradation rates could be observed in the OECD 301 D and WST. HPLC–FLD analysis showed high primary elimination of the tracer during photolysis. However, the low degree of mineralization found indicates that the UR was not fully degraded, instead transformed to TPs. A total of 5 photo-TPs were identified. According to MS/MS data, chemical structures could be proposed for all identified photo-TPs. Likewise the parent compound it was demonstrated that photo-TPs were largely recalcitrant to microbial degradation. Although we did not find indications for toxicity, target-oriented studies on the environmental impact of these photo-TPs are warranted. Results obtained in this study show that deeper investigations are necessary to fully understand fate and risk connected to the use of UR. - Highlights: • Uranine (UR) was not biodegraded in water and water-sediment system (WST). • Only small degradation rate occurred in OECD 301 D and WST. • Photolysis leads to incomplete mineralization of UR.

  8. Dissipation of hydrological tracers and the herbicide S-metolachlor in batch and continuous-flow wetlands.

    Science.gov (United States)

    Maillard, Elodie; Lange, Jens; Schreiber, Steffi; Dollinger, Jeanne; Herbstritt, Barbara; Millet, Maurice; Imfeld, Gwenaël

    2016-02-01

    Pesticide dissipation in wetland systems with regard to hydrological conditions and operational modes is poorly known. Here, we investigated in artificial wetlands the impact of batch versus continuous-flow modes on the dissipation of the chiral herbicide S-metolachlor (S-MET) and hydrological tracers (bromide, uranine and sulforhodamine B). The wetlands received water contaminated with the commercial formulation Mercantor Gold(®) (960 g L(-1) of S-MET, 87% of the S-enantiomer). The tracer mass budget revealed that plant uptake, sorption, photo- and presumably biodegradation were prominent under batch mode (i.e. characterized by alternating oxic-anoxic conditions), in agreement with large dissipation of S-MET (90%) under batch mode. Degradation was the main dissipation pathway of S-MET in the wetlands. The degradate metolachlor oxanilic acid (MOXA) mainly formed under batch mode, whereas metolachlor ethanesulfonic acid (MESA) prevailed under continuous-flow mode, suggesting distinct degradation pathways in each wetland. R-enantiomer was preferentially degraded under batch mode, which indicated enantioselective biodegradation. The release of MESA and MOXA by the wetlands as well as the potential persistence of S-MET compared to R-MET under both oxic and anoxic conditions may be relevant for groundwater and ecotoxicological risk assessment. This study shows the effect of batch versus continuous modes on pollutant dissipation in wetlands, and that alternate biogeochemical conditions under batch mode enhance S-MET biodegradation. Copyright © 2015 Elsevier Ltd. All rights reserved.

  9. Identification and characterization of conservative organic tracers for use as hydrologic tracers for the Yucca Mountain site characterization project: Quality Assurance Project Plan, Revision 1

    International Nuclear Information System (INIS)

    Stetzenbach, K.J.

    1993-01-01

    The purpose of this work is to identify and characterize candidate conservative organic tracers for use as hydrologic tracers for experiments to be conducted at the Yucca Mountain C-well complex. During this quarter the main effort was directed towards rewriting the quality assurance program in preparation for a review and audit by the USGS. However, due to budget constraints the review and audit were not carried out. The tracer QA plan and standard operating procedures (SOPs) were revised and copies are included in the report. Instrumental problems were encountered and corrected with the addition of new integration and sample control software. In the sampling, there was an unexplained peak in the chromatograms of the tracers being tested in the light tuff. This was not correctable and these experiments will be repeated in the next quarter

  10. Tracer investigations of natural and polluted sea sediment movement

    International Nuclear Information System (INIS)

    Pruszak, Z.

    1994-01-01

    Results of tracer investigations and bottom sediment movement analysis (natural and polluted) performed world-wide have been shown. Polish investigations have been compared to these results. A critical estimation and analysis of particular elements of sediment movement: thickness of the drag layer and various characteristics of bottom transport evaluated in different time-space scales has been performed. 14 refs, 9 figs

  11. Nuclear radiation applications in hydrological investigations

    International Nuclear Information System (INIS)

    Rao, S.M.

    1978-01-01

    The applications of radiation sources for the determination of water and soil properties in hydrological investigations are many and varied. These include snow gauging, soil moisture and density determinations, measurement of suspended sediment concentrations in natural streams and nuclear well logging for groundwater exploitation. Besides the above, many radiation physics aspects play an important role in the development of radiotracer techniques, particularly in sediment transport studies. The article reviews the above applications with reference to their limitations and advantages. (author)

  12. Study of sensitivity and application of some tracers of use in hydrologic works

    International Nuclear Information System (INIS)

    Aguilar, M.C.

    1980-05-01

    Inside the Industrial Applications Management, particularly in the Hydrology department, in the ININ outlined diverse problems are had in the study of underground waters and surface waters that either in a particular way, or in inter institutional collaboration (SARH, CFE, UNAM) it seen the necessity to solve this problem in the interconnection aspects in aquifer, expenses and contamination. One of the medullary parts that are had in this study is the applied evaluation of the tracer one that it presents two general aspects: a) determination method and b) Applicability depending on the land type that one has in the current to be applied. This study seeks according to: the sensibility reached with each one, and the evaluation of some other parameters like used time, cost and mainly realization feasibility at field level, to present some alternative for the use of them. (Author)

  13. Environmental Tracers

    Directory of Open Access Journals (Sweden)

    Trevor Elliot

    2014-10-01

    Full Text Available Environmental tracers continue to provide an important tool for understanding the source, flow and mixing dynamics of water resource systems through their imprint on the system or their sensitivity to alteration within it. However, 60 years or so after the first isotopic tracer studies were applied to hydrology, the use of isotopes and other environmental tracers are still not routinely necessarily applied in hydrogeological and water resources investigations where appropriate. There is therefore a continuing need to promote their use for developing sustainable management policies for the protection of water resources and the aquatic environment. This Special Issue focuses on the robustness or fitness-for-purpose of the application and use of environmental tracers in addressing problems and opportunities scientifically, to promote their wider use and to address substantive issues of vulnerability, sustainability, and uncertainty in (groundwater resources systems and their management.

  14. Identification and characterization of conservative organic tracers for use as hydrologic tracers for the Yucca Mountain Site characterization study

    International Nuclear Information System (INIS)

    Dombrowski, T.; Stetzenbach, K.

    1993-01-01

    This report is in two parts one for the fluorinated benzoic acids and one for the fluorinated aliphatic acids. The assumptions made in the report regarding the amount of tracer that will be used, dilution of the tracer during the test and the length of exposure (if any) to individuals drinking the water were made by the authors. These assumptions must really come from the USGS hydrologists in charge of the c-well tracer testing program. Accurate estimates of dilution of the tracer during the test are also important because of solubility limitations of some of the tracers. Three of the difluorobenzoic acids have relatively low solubilities and may not be usable if the dilution estimates are large. The toxicologist that reviewed the document agreed with our conclusion that the fluorinated benzoic and toluic acids do not represent a health hazard if used under the conditions as outlined in the report. We are currently testing 15 of these compounds, and if even if three difluorobenzoic acids cannot be used because of solubility limitations we will still have 12 tracers. The toxicologist felt that the aliphatic fluorinated acids potentially present more of a health risk than the aromatic. This assessment was based on the fact of a known allergic response to halothane anesthetic. This risk, although minimal, is known and he felt that was enough reason to recommend against their use. The authors feel that the toxicologists interpretation of this risk was overly conservative, however, we will not go against his recommendation at this time for the following reasons. First, without the aliphatic compounds we still have 12 to 15 fluorinated aromatic acids which, should be enough for the c-well tests. Second, to get a permit to use aliphatic compounds would undoubtedly require a hearing which could be quite lengthy

  15. Assessing the elements mobility through the regolith and their potential as tracers for hydrological processes

    Science.gov (United States)

    Moragues-Quiroga, Cristina; Hissler, Christophe; Chabaux, François; Legout, Arnaud; Stille, Peter

    2017-04-01

    Regoliths encompass different materials from the fresh bedrock to the top of the organic horizons. The regolith is a major component of the critical zone where fluxes of water, energy, solutes and matter occur. Therefore, its bio-physico-chemical properties drastically impact the water that percolates and/or stores in its different parts (organic and mineral soil horizons, and weathered and fractured bedrock). In order to better understand the critical zone functioning, we propose to assess the interaction between chemical elements from the regolith matrix and water during drainage infiltration. For this, we focus firstly on the potential mobility of different groups of major and trace elements according to a leaching experiment made on 10 different layers of a 7.5 m depth slate regolith, which covers a large part of the Rhenish Massif. Secondly, we carried out Sr-Nd-Pb-U-Th isotope analyses for 5 of these samples in both the untreated and leached samples. Given the specific chemical and mineralogical composition of each sampled material, our approach enables to trace the origin of major and trace elements and eventually assess their mobility. The results deliver valuable information on exchange processes at the water-mineral interface in the different zones of the regolith, which could improve the selection of tracers for the study of hydrological processes.

  16. Peak and Tail Scaling of Breakthrough Curves in Hydrologic Tracer Tests

    Science.gov (United States)

    Aquino, T.; Aubeneau, A. F.; Bolster, D.

    2014-12-01

    Power law tails, a marked signature of anomalous transport, have been observed in solute breakthrough curves time and time again in a variety of hydrologic settings, including in streams. However, due to the low concentrations at which they occur they are notoriously difficult to measure with confidence. This leads us to ask if there are other associated signatures of anomalous transport that can be sought. We develop a general stochastic transport framework and derive an asymptotic relation between the tail scaling of a breakthrough curve for a conservative tracer at a fixed downstream position and the scaling of the peak concentration of breakthrough curves as a function of downstream position, demonstrating that they provide equivalent information. We then quantify the relevant spatiotemporal scales for the emergence of this asymptotic regime, where the relationship holds, in the context of a very simple model that represents transport in an idealized river. We validate our results using random walk simulations. The potential experimental benefits and limitations of these findings are discussed.

  17. An improved method for analysis of In-EDTA, I- and Br- used as active tracers in hydrological studies

    International Nuclear Information System (INIS)

    Stanescu, S.P.; Spiridon, S.

    1992-01-01

    Neutron activation analysis combined with chemical preconcentration of the elements in water samples can give a high sensitivity in the determination of concentrations for In-EDTA, I - and Br - used as active tracers in hydrological studies. The authors have developed an improved method of analysis which is sensitive, selective and applicable to a wide range of underground and surface water samples including those having a high concentration of manganese ions. (author) 6 refs.; 2 figs.; 1 tab

  18. Tritium and deuterium as water tracers in hydrologic systems. Completion report

    International Nuclear Information System (INIS)

    Stewart, G.L.; Stetson, J.R.

    1975-05-01

    A study was conducted to evaluate the suitability of deuterium and tritium as tracers to depict water and pollutant movement in porous media. This involved studying the interaction of these tracers with soil materials and evaluating this interaction in terms of retardation in tracer flow velocity, compared to bulk water flow. Previous work had suggested that tritium and deuterium interact with soils and are removed from tracer solution during flow. The data presented clearly show that a tracing front becomes diluted in tracer during infiltration into oven-dried soil. There appears to be very little difference between the degree of tritium and deuterium interaction. The source of interaction is demonstrated to be primarily hydroxyl associated with the clay minerals. These exchange sites are destroyed by heating soil to 70C which eliminates tracer loss during infiltration

  19. Hydrology

    International Nuclear Information System (INIS)

    Obando G, E.

    1989-01-01

    Isotopical techniques are used in hydrology area for exploration, evaluation and exploration of water investigation. These techniques have been used successfully and are often the best or only means for providing certain hydrogeological parameters

  20. A method to investigate inter-aquifer leakage using hydraulics and multiple environmental tracers

    Science.gov (United States)

    Priestley, Stacey; Love, Andrew; Wohling, Daniel; Post, Vincent; Shand, Paul; Kipfer, Rolf; Tyroller, Lina

    2016-04-01

    Informed aquifer management decisions regarding sustainable yields or potential exploitation require an understanding of the groundwater system (Alley et al. 2002, Cherry and Parker 2004). Recently, the increase in coal seam gas (CSG) or shale gas production has highlighted the need for a better understanding of inter-aquifer leakage and contaminant migration. In most groundwater systems, the quantity or location of inter-aquifer leakage is unknown. Not taking into account leakage rates in the analysis of large scale flow systems can also lead to significant errors in the estimates of groundwater flow rates in aquifers (Love et al. 1993, Toth 2009). There is an urgent need for robust methods to investigate inter-aquifer leakage at a regional scale. This study builds on previous groundwater flow and inter-aquifer leakage studies to provide a methodology to investigate inter-aquifer leakage in a regional sedimentary basin using hydraulics and a multi-tracer approach. The methodology incorporates geological, hydrogeological and hydrochemical information in the basin to determine the likelihood and location of inter-aquifer leakage. Of particular benefit is the analysis of hydraulic heads and environmental tracers at nested piezometers, or where these are unavailable bore couplets comprising bores above and below the aquitard of interest within a localised geographical area. The proposed methodology has been successful in investigating inter-aquifer leakage in the Arckaringa Basin, South Australia. The suite of environmental tracers and isotopes used to analyse inter-aquifer leakage included the stable isotopes of water, radiocarbon, chloride-36, 87Sr/86Sr and helium isotopes. There is evidence for inter-aquifer leakage in the centre of the basin ~40 km along the regional flow path. This inter-aquifer leakage has been identified by a slight draw-down in the upper aquifer during pumping in the lower aquifer, overlap in Sr isotopes, δ2H, δ18O and chloride

  1. Use of Cs-137 as tracer in lake sediment investigation

    International Nuclear Information System (INIS)

    Dinescu, L.; Vasile, E.; Timofte, L.; Cernisov, G.; Dorcioman, R.

    1997-01-01

    137 Cs vertical profile and total inventories were determined in four lakes located in Danube Delta and surroundings and in channel Dunavat. The radiocaesium total inventory of 1800 Bq/m 2 in Matita and Merhei-Middle Part, very closed to the atmospheric fallout value and a very low sedimentation rate, suggest a relative isolation of these two lakes related to the main Danube branches. The vertical profile obtained in Merhei lake (the Southern part) shows three distinct peaks corresponding to nuclear weapons tests performed in 1954 and 1963 and to Chernobyl event in 1986. Radiocaesium total inventory of 3270 Bq/m 2 was explained by an important 137 Cs contribution from the sediment transported by the channel linking lake Merhei to Dunarea Veche (Chilia branch). For the lakes Leahova and Razim, located in the immediate vicinity of the Black Sea, the total inventories of 600 Bq/m2 suggest an important transfer of sediments from the lakes to Black Sea. 137 Cs vertical profile in Dunavat channel shows two peaks, corresponding to Chernobyl event and nuclear tests. The total inventory of 2600 Bq/m 2 is due to atmospheric fallout and to the sediments transported by the river Danube and then by channel Dunavat. The sedimentation rate of 0.7 cm/year obtained from both peaks, suggests a constant sediment accumulation in the last 33 years. Other environmental tracers were used for recent lake sediment dating. The obtained results (considered as preliminary results) were compared with 137 Cs results. The results obtained from 137 Cs, 210 Pb and 241 Am measurements demonstrated that the environmental tracers are a valuable tool in sediment origin, transport and accumulation investigation. The research is in progress. (authors)

  2. Use of activable cations as tracers in groundwater hydrology. The case of DTPA-Indium

    International Nuclear Information System (INIS)

    Lumu, Badimbayi Matu.

    1978-01-01

    The possibilities of EDTA, CDTA and DTPA metallic complexes use as activable groundwater, tracers are discussed. Indium, which has good nuclear caracteristics for activation analysis and forms complexes of great stability with polyamino carboxylic acid has been for Laboratory and field studies. For corporative studies, Rhodomine B, a fluorescent tracer have been studied together with Indium complexes. In laboratory retention studies have been carried with In-EDTA, Iodine 131 and Rhodomine B, as tracers and bentonite, zeolite 13X and Dowex-1 and Dowex-50 as sorbents. As field studies, drainage evolution flow and resident time distribution of tracers substances in water, have been carried, under artificial rain conditions realized by aspersion. Results from field studies showed good characteristics of Indium Complexes especially in very absorbent medium (argilaceous limon) where their restitution balance were superior to that of Rhodomine B

  3. Use of water isotope tracers to characterize present and past hydrology of northern boreal freshwater landscapes in Canada (Invited)

    Science.gov (United States)

    Wolfe, B. B.; Brock, B. E.; Yi, Y.; Turner, K. W.; Dobson, E. M.; Farquharson, N. M.; Edwards, T. W.; Hall, R. I.

    2010-12-01

    The impact of climate change and variability on water resources is a pressing issue for northern boreal freshwater landscapes in Canada. Water in this region plays a central role in maintaining the ecological integrity of ecosystems, economic development and prosperity, and traditional use of the land and its resources by indigenous communities. In the Peace-Athabasca-Slave River Corridor in western Canada, shrinking headwater glaciers, decreasing alpine snowmelt runoff, and declining river discharges impact sustainability of hydroelectric and oil sands production and the vitality of floodplain ecosystems of the Peace-Athabasca and Slave river deltas. In the Old Crow Flats of northern Yukon Territory, declining lake and river water levels threaten wildlife populations and cultural activities of the Vuntut Gwitchin First Nation. In Wapusk National Park in northeastern Manitoba, over 10,000 lakes provide key habitat for large populations of wildlife, but their hydrological fate under conditions of continued warming is uncertain. Inadequate short- and long-term understanding of hydrological variability and its relationship to climate change hamper informed stewardship of water resources in these remote landscapes and presents a significant challenge to managers and policy-makers. Over the past decade, our research has targeted these critical water-related issues. Investigations have focused on integrating contemporary hydroecological studies with long-term (past centuries to millennia) records of hydroecological changes derived from analyses of lake sediment cores using multi-proxy techniques. Spearheaded by the use of water isotope tracers, these leading-edge approaches to water science have provided critical new knowledge to inform stewardship of these important landscapes to contemporary conditions and in light of projected future scenarios. For example, water isotope tracers were used to map the spatial extent of river flooding in the Slave River Delta over a

  4. Indian contribution to applications of artificially injected tritium in hydrological investigations

    International Nuclear Information System (INIS)

    Datta, P.S.

    1982-01-01

    The paper gives a brief description on significance of groundwater hydrology and sets it in the context of radioisotopic investigations. The topics described pertain to potential applications of artificially injected tritium in local or regional scale to determine water movement in the unsaturated zone, rate of infiltration, groundwater recharge, direction and velocity of groundwater, interconnection of groundwater bodies, dispersion of pollutants, etc. The Indian contribution on these topics is incorporated giving informations on techniques adopted and the major findings and conclusions of the experiments conducted. Merits and demerits of each technique have also been described. Some aspects deserving urgent consideration are outlined to gain maximum benefits from the applications of artificially injected tritium tracer techniques in hydrology. (author)

  5. The tracer techniques and the problems in hydrology and sedimentology. 1974 status report

    International Nuclear Information System (INIS)

    Sauzay, G.

    1974-01-01

    Two kinds of nuclear techniques are used in sedimentology. Determination of the sediment mass at a given place using radiometric gages; determination of a sediment mass in motion using nuclear tracer techniques. Some recent applications are described: studies on dredging wastes; study of sedimentation mechanisms in a estuary; study of the possible transport of coarse materials by the swell; adjustement of sedimentological models [fr

  6. In-EDTA as activable tracer in hydrogeological investigations

    International Nuclear Information System (INIS)

    Stanescu, S.P.; Gaspar, E.; Spiridon, S.; Farcasiu, O.M.; Catilina, R.

    1982-12-01

    Two experiments are presented, on the possibilities of the use of indium in the form of the In-EDTA complex, as an activable tracer for hydrogeological studies. The determination of indium concentrations in the sampled water has been carried out by using the coprecipitation of indium with bismuth hydroxide, the neutron activation at the VVR-S reactor of the Institute for Nuclear Physics and Engineering - Bucharest and the measurement on the 417.0 keV line of sup(116m)In with the Ge(Li) spectrometric device. The advantages of the utilization of In-EDTA as a tracer for marking large volumes of water and of some long transit waters (of the order of months) have resulted. (authors)

  7. Tracer investigations of macroprocesses in mineral processing. 1

    International Nuclear Information System (INIS)

    Koch, P.

    1981-01-01

    Results obtained from tracer studies in mineral processing have been evaluated with regard to the effects of hydrodynamic and design parameters of the single cell on flotation kinetics, to the residence time in single and in series-connected cells, and to the possibility of designing process control models. An algorithm is given for technological interpretation of results obtained from residence time and process kinetics studies

  8. Hydrological and hydrogeochemical investigations in boreholes

    International Nuclear Information System (INIS)

    Carlsson, L.; Olsson, T.

    1985-07-01

    Underground investigations in boreholes are presumed to be an important investigation technique for the detailed design of a final repository for nuclear waste. The siting of the repository will be based on surface investigations, but for detailed investigations when the access shafts are sunk, investigations in underground boreholes from the initial shafts and tunnels will be of importance. The hydrogeological investigations in boreholes aimed at testing and developing of hydrogeological techniques and instruments for use in an underground environment in order to reflect actual working and testing conditions. This report is the final report from the hydrogeological investigations in boreholes, and it summarizes the different activities carried out during the course of the program. Most of the included activities are reported in separate internal reports, and therefore only the most important results are included, together with the experiences and conclusions gained during the investigations. The hydrogeochemical part of the program is in a separate final report, consequently no hydrogeochemical information is in the current report. (Author)

  9. An injected gamma-tracer method for soil-moisture movement investigations in arid zones

    International Nuclear Information System (INIS)

    Nair, A.R.; Navada, S.V.; Rao, S.M.

    1980-01-01

    A method for the in-situ determination of soil-moisture transport rates using K 3 60 Co(CN) 6 is discussed. The tracer compares well with tritiated water in laboratory investigations and the results obtained in limited field studies are very encouraging. The method promises to be of specific interest in arid-zone investigations where the soil-moisture fluxes in liquid and vapour phases could cause complications for tritium tracer data interpretation. (author)

  10. Investigation of the Hydrological Quality of Ethiope River Watershed ...

    African Journals Online (AJOL)

    The surface and groundwater resources of the Ethiope river watershed have been investigated for its hydrological and quality characteristics. The results indicate that Ethiope River is perennial and fed by groundwater seepages, precipitation and surface run-off from adjacent areas. The lowest discharge rate of the river is ...

  11. Investigation by tracer method of water balance in filling the gob with slurries

    International Nuclear Information System (INIS)

    Jureczko, J.; Skowronek, E.

    1977-01-01

    Results of investigations on the establishment of conditions of water flow in filling old workings with mud, in order to determine the degree of water hazard for mine workings in one of mines are given. For the inspection of flow, the stable tracer method and the neutron activation analysis were used. Chromium as a complex compound with EDTA was used as tracer. Geological and mining conditions in the area of investigations by tracers are given and the disposal of diluted stowing slurry is characterized. The method of interpretation of results is discussed in order to determine the water flow rate in the gob and to draw up the water balance on the basis of the curve of tracer travel. (author)

  12. Radionuclide migration in fractured rock: hydrological investigations at an experimental site in the Carnmennellis granite, Cornwall

    International Nuclear Information System (INIS)

    Heath, M.J.; Durrance, E.M.

    1985-01-01

    The objectives, methods and results of hydrological investigation of the granite at an experimental site in Cornwall are described and discussed. Constant head injection tests and radioactive tracer experiments have revealed a fracture permeability in which water movement is confined to discrete fractures separated by rock of very low permeability. Data on flow path frequency, orientation and effective hydraulic aperture, required for network modelling, are presented for a 700 m borehole, with additional hydraulic data from three other boreholes. In addition to fractures of average hydraulic conductivity a small number of major hydraulic features (''main drains'') with major implications for radionuclide migration have been identified. A mean hydraulic conductivity for the granite investigated of 1.57x10 -7 ms -1 has been obtained, 2.11x10 -8 ms -1 if the major hydraulic features are excluded

  13. 99mTc-EDTA and 99mTc-DTPA complexes as hydrological tracers

    International Nuclear Information System (INIS)

    Dominguez, J.; Borroto, J.; Nazco, J.; Perez, E.; Gamboa, R.; Cruz, J.

    2002-01-01

    The [ 99m Tc-DTPA] 2- and [ 99m Tc-EDTA] 1- were evaluated as radiotracers for short time hydrological studies. Their complex stability after labelling with 9.25 GBq of 99m Tc, the behaviour against pH variations, from 5 to 9, in simulated solutions and in natural river waters and the sorption of these compounds on the river sediments, were tested in laboratory experiments. Finally field double tracing experiments were carried out for each of labelling complexes and Rhodamine WT. From recovery calculations not losses of the 99m Tc activity were observed. The shape of the RTD curves of the [ 99m Tc-DTPA] 2- and [ 99m Tc-EDTA] 1 were quite similar to the Rhodamine Wt ones. May be concluded that both complexes behaved conservatively on the studied environmental conditions. (author)

  14. Measurement of flow and direction of ground water by radioactive tracers: hydrological evaluation of a waste disposal site at 'Instituto de Pesquisas Energeticas e Nucleares (IPEN)'

    International Nuclear Information System (INIS)

    Chandra, U.; Aoki, P.E.; Ramos e Silva, J.A.; Castagnet, A.C.G.

    1981-05-01

    The method of determining flow and drection of ground water by using radioactive tracers in ground water borings is described. Various parameters controlling the measurements are discussed in detail. Application of the method in studying a variety of geohydrological problems, in view of the hydrological evaluation of the waste disposal site at IPEN, is indicated. Comparison of the method with conventional pumping tests is made. (I.C.R.) [pt

  15. Hydrologic investigations of the Los Medanos area, southeastern New Mexico, 1977

    International Nuclear Information System (INIS)

    Lambert, S.J.; Mercer, J.W.

    1977-01-01

    This is a collection of a set of documents outlining the philosophy and strategy for studying the hydrologic conditions in an area under consideration for the emplacement of radioactive wastes in geologic media. The five chapters cover respectively: program plan for hydrologic investigation, plan for hydrologic drilling and testing of area, generalized program plan for hydrologic investigation of rocks underlying the waste isolation pilot plant, and detailed plan of hydrologic testing in holes penetrating salt underlaying the pilot plant (2 parts)

  16. Hydrological processes in the subsurface investigated by water isotopes and silica

    Czech Academy of Sciences Publication Activity Database

    Šanda, M.; Kulasová, Alena; Císlerová, M.

    2009-01-01

    Roč. 4, Sp. is. 2 (2009), S83-S92 ISSN 1801-5395 R&D Projects: GA ČR GA205/06/0375 Institutional research plan: CEZ:AV0Z20600510 Keywords : rainfall to runoff response * isotopes * geochemical tracers * streamflow generation * subsurface stormflow * groundwater recharge Subject RIV: DA - Hydrology ; Limnology

  17. Identification and characterization of conservative organic tracers for use as hydrologic tracers for the Yucca Mountain site characterization study. Final report

    International Nuclear Information System (INIS)

    Stetzenbach, K.; Farnham, I.

    1996-01-01

    Extensive tracer testing is expected to take place at the C-well complex in the Nevada Test Site as part of the Yucca Mountain Site Characterization Project. The C-well complex consists of one pumping well, C3, and two injection wells, C1 and C2 into which tracer will be introduced. The goal of this research was to provide USGS with numerous tracers to completed these tests. Several classes of fluorinated organic acids have been evaluated. These include numerous isomers of fluorinated benzoic acids, cinnamic acids, and salicylic acids. Also several derivatives of 2-hydroxy nicotinic acid (pyridone) have been tested. The stability of these compounds was determined using batch and column tests. Ames testing (mutagenicity/carcinogenicity) was conducted on the fluorinated benzoic acids and a literature review of toxicity of the fluorobenzoates and three perfluoro aliphatic acids was prepared. Solubilities were measured and method development work was performed to optimize the detection of these compounds. A Quality Assurance (QA) Program was developed under existing DOE and USGS guidelines. The program includes QA procedures and technical standard operating procedures. A tracer test, using sodium iodide, was performed at the C-well complex. HRC chemists performed analyses on site, to provide real time data for the USGS hydrologists and in the laboratories at UNLV. Over 2,500 analyses were performed. This report provides the results of the laboratory experiments and literature reviews used to evaluate the potential tracers and reports on the results of the iodide C-well tracer test

  18. Identification and characterization of conservative organic tracers for use as hydrologic tracers for the Yucca Mountain site characterization study. Final report

    Energy Technology Data Exchange (ETDEWEB)

    Stetzenbach, K.; Farnham, I.

    1996-06-01

    Extensive tracer testing is expected to take place at the C-well complex in the Nevada Test Site as part of the Yucca Mountain Site Characterization Project. The C-well complex consists of one pumping well, C3, and two injection wells, C1 and C2 into which tracer will be introduced. The goal of this research was to provide USGS with numerous tracers to completed these tests. Several classes of fluorinated organic acids have been evaluated. These include numerous isomers of fluorinated benzoic acids, cinnamic acids, and salicylic acids. Also several derivatives of 2-hydroxy nicotinic acid (pyridone) have been tested. The stability of these compounds was determined using batch and column tests. Ames testing (mutagenicity/carcinogenicity) was conducted on the fluorinated benzoic acids and a literature review of toxicity of the fluorobenzoates and three perfluoro aliphatic acids was prepared. Solubilities were measured and method development work was performed to optimize the detection of these compounds. A Quality Assurance (QA) Program was developed under existing DOE and USGS guidelines. The program includes QA procedures and technical standard operating procedures. A tracer test, using sodium iodide, was performed at the C-well complex. HRC chemists performed analyses on site, to provide real time data for the USGS hydrologists and in the laboratories at UNLV. Over 2,500 analyses were performed. This report provides the results of the laboratory experiments and literature reviews used to evaluate the potential tracers and reports on the results of the iodide C-well tracer test.

  19. Combining Empirical Relationships with Data Based Mechanistic Modeling to Inform Solute Tracer Investigations across Stream Orders

    Science.gov (United States)

    Herrington, C.; Gonzalez-Pinzon, R.; Covino, T. P.; Mortensen, J.

    2015-12-01

    Solute transport studies in streams and rivers often begin with the introduction of conservative and reactive tracers into the water column. Information on the transport of these substances is then captured within tracer breakthrough curves (BTCs) and used to estimate, for instance, travel times and dissolved nutrient and carbon dynamics. Traditionally, these investigations have been limited to systems with small discharges (turbidity (e.g., nitrate signals with SUNA instruments or fluorescence measures) and/or high total dissolved solids (e.g., making prohibitively expensive the use of salt tracers such as NaCl) in larger systems. Additionally, a successful time-of-travel study is valuable for only a single discharge and river stage. We have developed a method to predict tracer BTCs to inform sampling frequencies at small and large stream orders using empirical relationships developed from multiple tracer injections spanning several orders of magnitude in discharge and reach length. This method was successfully tested in 1st to 8th order systems along the Middle Rio Grande River Basin in New Mexico, USA.

  20. Environmental and artificial tracers for investigating leakages into salt mines

    International Nuclear Information System (INIS)

    Zuber, A.; Grabczak, J.; Kolonko, M.

    1979-01-01

    The paper presents the results of five years of experience in investigating the origin of waters in the Wapno mine, where salt is exploited in a Zechstein dome, in northwestern Poland. Tritium and 14 C measurements showed young infiltration waters in leakages at the third level of the mine. Stable isotope determinations showed a considerable shift of values from the precipitation line, both on activity and on concentration scales. Despite this shift, it was possible to distinguish infiltration waters from connate ones appearing at deeper mine levels. In 1976 and 1977 leakage flow-rates increased and the mineralization decreased. Tritium and 14 C contents did not then change, showing that, at the initial stages of flooding, the origin of water in the leakages was not changed. The first results of isotope investigations in the Klodawa mine, situated in another Zechstein salt dome in central Poland, showed connate waters. Observations performed in the Wieliczka salt mine, situated in Miocene formations in southern Poland, showed old waters originating from the surrounding formations. Their stable isotope composition shows that recharge took place in a cooler climate. The 14 C content of these waters is 1 to 2% of recent carbon. The experimental procedure used to determine the isotopic composition of highly mineralized brines is also described. (author)

  1. Hydrological mixing and geochemical processes characterization in an estuarine/mangrove system using environmental tracers in Babitonga Bay (Santa Catarina, Brazil)

    Science.gov (United States)

    Barros Grace, Virgínia; Mas-Pla, Josep; Oliveira Novais, Therezinha; Sacchi, Elisa; Zuppi, Gian Maria

    2008-03-01

    The hydrologic complex of Babitonga Bay (Brazil) forms a vast environmental complex where agriculture, shellfish farming, and industries coexist with a unique natural area of Atlantic rain forest and mangrove systems. The origin of different continental hydrological components, the environmental transition between saline and freshwaters, and the influence of the seasonality on Babitonga Bay waters are evaluated using isotopes and chemistry. End-member mixing analysis is used to explore hydrological processes in the bay. We show that a mixing of waters from different origins takes place in the bay modifying its chemical characteristics. Furthermore, biogeochemical processes related to well-developed mangrove systems are responsible for an efficient bromide uptake, which limit its use as a tracer as commonly used in non-biologically active environments. Seasonal behaviours are also distinguished from our datasets. The rainy season (April) provides a homogenization of the hydrological processes that is not seen after the dry season (October), when larger spatial differences appear and when the effects of biological processes on the bay hydrochemistry are more dynamic, or can be better recognized. Moreover, Cl/Br and stable isotopes of water molecule allow a neat definition of the hydrological and biogeochemical processes that control chemical composition in coastal and transition areas.

  2. Hydrology

    Science.gov (United States)

    Sharp, John M.

    1977-01-01

    Lists many recent research projects in hydrology, including flow in fractured media, improvements in remote-sensing techniques, effects of urbanization on water resources, and developments in drainage basins. (MLH)

  3. Hydrology under change: an evaluation protocol to investigate how hydrological models deal with changing catchments

    Science.gov (United States)

    G. Thirel; V. Andreassian; C. Perrin; J.-N. Audouy; L. Berthet; Pamela Edwards; N. Folton; C. Furusho; A. Kuentz; J. Lerat; G. Lindstrom; E. Martin; T. Mathevet; R. Merz; J. Parajka; D. Ruelland; J. Vaze

    2015-01-01

    Testing hydrological models under changing conditions is essential to evaluate their ability to cope with changing catchments and their suitability for impact studies. With this perspective in mind, a workshop dedicated to this issue was held at the 2013 General Assembly of the International Association of Hydrological Sciences (IAHS) in Göteborg, Sweden, in July 2013...

  4. Model investigations on the longitudinal and transversal hydrodynamic dispersion of tracer solutions on porous media

    International Nuclear Information System (INIS)

    Klotz, D.; Moser, H.

    1980-01-01

    The object of the research project is to assess the hydrodynamic dispersion of labelling material solutions in special ground water lines based on measurements of the ground water flow rate and on the sedimentological properties of the natural ground water line present. The investigations were carried out in the laboratory in a three-dimensional ground water flow model and in column systems with HTO as tracer. (orig./HP) [de

  5. Hydrology

    Science.gov (United States)

    Brutsaert, Wilfried

    2005-08-01

    Water in its different forms has always been a source of wonder, curiosity and practical concern for humans everywhere. Hydrology - An Introduction presents a coherent introduction to the fundamental principles of hydrology, based on the course that Wilfried Brutsaert has taught at Cornell University for the last thirty years. Hydrologic phenomena are dealt with at spatial and temporal scales at which they occur in nature. The physics and mathematics necessary to describe these phenomena are introduced and developed, and readers will require a working knowledge of calculus and basic fluid mechanics. The book will be invaluable as a textbook for entry-level courses in hydrology directed at advanced seniors and graduate students in physical science and engineering. In addition, the book will be more broadly of interest to professional scientists and engineers in hydrology, environmental science, meteorology, agronomy, geology, climatology, oceanology, glaciology and other earth sciences. Emphasis on fundamentals Clarification of the underlying physical processes Applications of fluid mechanics in the natural environment

  6. Fluorescence characteristics of the fuel tracers triethylamine and trimethylamine for the investigation of fuel distribution in internal combustion engines.

    Science.gov (United States)

    Lind, Susanne; Aßmann, Simon; Zigan, Lars; Will, Stefan

    2016-03-01

    Laser-induced fluorescence based on fuel tracers like amines is a suitable measurement technique for mixing studies in internal combustion (IC) engines. Triethylamine has often been used in gasoline IC engines; however, no detailed fluorescence characterization for excitation at 263 or 266 nm is available. Trimethylamine (TMA) exhibits high potential as a gaseous fuel tracer but little information about TMA fluorescence is currently available. A picosecond laser source combined with a streak camera equipped with a spectrograph was used to determine the spectral fluorescence emission and fluorescence decay time of both tracers. The tracers were investigated at various temperatures and pressures in a calibration cell with nitrogen as bath gas. The results provide an in-depth understanding of the fluorescence characteristics of both tracers and allow assessment of their application to the investigation of fuel distribution in IC engines.

  7. Hydrologi

    DEFF Research Database (Denmark)

    Burcharth, Hans F.

    Hydro1ogi er den videnskab, der omhand1er jordens vand, dets forekomst, cirku1ation og forde1ing, dets kemiske og fysiske egenskaber samt indvirkning på omgivelserne, herunder dets relation ti1 alt liv på jorden. Således lyder en b1andt mange definitioner på begrebet hydrologi, og som man kan se...

  8. Homogeneous Reactor Experiment (HRE) Pond cryogenic barrier technology demonstration: Pre-barrier subsurface hydrology and contaminant transport investigation

    International Nuclear Information System (INIS)

    Moline, G.R.

    1998-03-01

    The Homogeneous Reactor Experiment (HRE) Pond is the site of a former impoundment for radioactive wastes that has since been drained, filled with soil, and covered with an asphalt cap. The site is bordered to the east and south by a tributary that empties into Melton Branch Creek and that contains significant concentrations of radioactive contaminants, primarily 90 Sr. Because of the proximity of the tributary to the HRE disposal site and the probable flow of groundwater from the site to the tributary, it is hypothesized that the HRE Pond is a source of contamination to he creek. As a means for temporary containment of contaminants within the impoundment, a cryogenic barrier technology demonstration was initiated in FY96 with a background hydrologic investigation that continued through FY97. Cryogenic equipment installation was completed in FY97, and freezing was initiated in September of 1997. This report documents the results of a hydrologic and geologic investigation of the HRE Pond/cryogenic barrier site. The purpose of this investigation is to evaluate the hydrologic conditions within and around the impoundment in order to meet the following objectives: (1) to provide a pre-barrier subsurface hydrologic baseline for post-barrier performance assessment; (2) to confirm that the impoundment is hydraulically connected to the surrounding sediments; and (3) to determine the likely contaminant exit pathways from the impoundment. The methods of investigation included water level and temperature monitoring in a network of wells and standpipes in and surrounding the impoundment, a helium tracer test conducted under ambient flow conditions, and geologic logging during the drilling of boreholes for installation of cryogenic probes and temperature monitoring wells

  9. Investigating sources and pathways of perfluoroalkyl acids (PFAAs) in aquifers in Tokyo using multiple tracers

    International Nuclear Information System (INIS)

    Kuroda, Keisuke; Murakami, Michio; Oguma, Kumiko; Takada, Hideshige; Takizawa, Satoshi

    2014-01-01

    We employed a multi-tracer approach to investigate sources and pathways of perfluoroalkyl acids (PFAAs) in urban groundwater, based on 53 groundwater samples taken from confined aquifers and unconfined aquifers in Tokyo. While the median concentrations of groundwater PFAAs were several ng/L, the maximum concentrations of perfluorooctane sulfonate (PFOS, 990 ng/L), perfluorooctanoate (PFOA, 1800 ng/L) and perfluorononanoate (PFNA, 620 ng/L) in groundwater were several times higher than those of wastewater and street runoff reported in the literature. PFAAs were more frequently detected than sewage tracers (carbamazepine and crotamiton), presumably owing to the higher persistence of PFAAs, the multiple sources of PFAAs beyond sewage (e.g., surface runoff, point sources) and the formation of PFAAs from their precursors. Use of multiple methods of source apportionment including principal component analysis–multiple linear regression (PCA–MLR) and perfluoroalkyl carboxylic acid ratio analysis highlighted sewage and point sources as the primary sources of PFAAs in the most severely polluted groundwater samples, with street runoff being a minor source (44.6% sewage, 45.7% point sources and 9.7% street runoff, by PCA–MLR). Tritium analysis indicated that, while young groundwater (recharged during or after the 1970s, when PFAAs were already in commercial use) in shallow aquifers (< 50 m depth) was naturally highly vulnerable to PFAA pollution, PFAAs were also found in old groundwater (recharged before the 1950s, when PFAAs were not in use) in deep aquifers (50–500 m depth). This study demonstrated the utility of multiple uses of tracers (pharmaceuticals and personal care products; PPCPs, tritium) and source apportionment methods in investigating sources and pathways of PFAAs in multiple aquifer systems. - Highlights: • Aquifers in Tokyo had high levels of perfluoroalkyl acids (up to 1800 ng/L). • PFAAs were more frequently detected than sewage-tracer

  10. Investigating sources and pathways of perfluoroalkyl acids (PFAAs) in aquifers in Tokyo using multiple tracers

    Energy Technology Data Exchange (ETDEWEB)

    Kuroda, Keisuke, E-mail: keisukekr@gmail.com [Department of Urban Engineering, Graduate School of Engineering, The University of Tokyo, 7-3-1 Hongo, Bunkyo, Tokyo 113-8656 (Japan); Murakami, Michio [Institute of Industrial Science, The University of Tokyo, 4-6-1 Komaba, Meguro, Tokyo 153-8505 (Japan); Oguma, Kumiko [Department of Urban Engineering, Graduate School of Engineering, The University of Tokyo, 7-3-1 Hongo, Bunkyo, Tokyo 113-8656 (Japan); Takada, Hideshige [Laboratory of Organic Geochemistry (LOG), Institute of Symbiotic Science and Technology, Tokyo University of Agriculture and Technology, Fuchu, Tokyo 183-8509 (Japan); Takizawa, Satoshi [Department of Urban Engineering, Graduate School of Engineering, The University of Tokyo, 7-3-1 Hongo, Bunkyo, Tokyo 113-8656 (Japan)

    2014-08-01

    We employed a multi-tracer approach to investigate sources and pathways of perfluoroalkyl acids (PFAAs) in urban groundwater, based on 53 groundwater samples taken from confined aquifers and unconfined aquifers in Tokyo. While the median concentrations of groundwater PFAAs were several ng/L, the maximum concentrations of perfluorooctane sulfonate (PFOS, 990 ng/L), perfluorooctanoate (PFOA, 1800 ng/L) and perfluorononanoate (PFNA, 620 ng/L) in groundwater were several times higher than those of wastewater and street runoff reported in the literature. PFAAs were more frequently detected than sewage tracers (carbamazepine and crotamiton), presumably owing to the higher persistence of PFAAs, the multiple sources of PFAAs beyond sewage (e.g., surface runoff, point sources) and the formation of PFAAs from their precursors. Use of multiple methods of source apportionment including principal component analysis–multiple linear regression (PCA–MLR) and perfluoroalkyl carboxylic acid ratio analysis highlighted sewage and point sources as the primary sources of PFAAs in the most severely polluted groundwater samples, with street runoff being a minor source (44.6% sewage, 45.7% point sources and 9.7% street runoff, by PCA–MLR). Tritium analysis indicated that, while young groundwater (recharged during or after the 1970s, when PFAAs were already in commercial use) in shallow aquifers (< 50 m depth) was naturally highly vulnerable to PFAA pollution, PFAAs were also found in old groundwater (recharged before the 1950s, when PFAAs were not in use) in deep aquifers (50–500 m depth). This study demonstrated the utility of multiple uses of tracers (pharmaceuticals and personal care products; PPCPs, tritium) and source apportionment methods in investigating sources and pathways of PFAAs in multiple aquifer systems. - Highlights: • Aquifers in Tokyo had high levels of perfluoroalkyl acids (up to 1800 ng/L). • PFAAs were more frequently detected than sewage-tracer

  11. Comparative study of geological, hydrological, and geophysical borehole investigations

    International Nuclear Information System (INIS)

    Magnusson, K.A.; Duran, O.

    1984-09-01

    The understanding of the permeability of the bedrock can be improved by supplementing the results of the water injection tests with information from core mapping, TB-inspection and borehole geophysics. The comparison between different borehole investigations encompasses core mapping, TV-inspection and various geophysical bore hole measurements. The study includes data from two different study areas, namely Kraakemaala and Finnsjoen. In these two areas, extensive geological, hydrological and geophysical investigation have been carried out. The fractures and microfractures in crystalline rock constitute the main transport paths for both groundwater and electric currents. They will therefore govern both the permeability and the resistivity of the rock. In order to get a better understanding of the influence of fractures on permeability and resistivity, a detailed comparison has been made between the hydraulic conductivity, respectively, and the character of fractures in the core and the borehole wall. The fractures show very large variations in hydraulic conductivity. Microfractures and most of the thin fractures have no measurable hydraulic conductivity (in this case -9 m s -1 ), while test sections which contain a single isloated fracture can have no measurable, to rather high hydraulic conductivities (> 10 -7 m s -1 ). Wide fracture zones often have hydraulic conductivities which vary from very low (less than 2 x 10 -9 m s -1 ) to high values (10 -5 m s -1 ). This indicates that the hydraulic conductivity is governed by a few discrete fractures. The resistivity shows a continous variation in the range 1,000- 100,000 ohm-m and a relatively poor correlation with hydraulic conductivities. The observed difference is considered to the effect of restriction of water flow on a few channels, while electric surface condition, i.e. current transport through thin water films, makes current transport possible through fractures with very small aperatures. (Author)

  12. Field site investigation: Effect of mine seismicity on groundwater hydrology

    International Nuclear Information System (INIS)

    Ofoegbu, G.I.; Hsiung, S.; Chowdhury, A.H.

    1995-04-01

    The results of a field investigation on the groundwater-hydrologic effect of mining-induced earthquakes are presented in this report. The investigation was conducted at the Lucky Friday Mine, a silver-lead-zinc mine in the Coeur d'Alene Mining District of Idaho. The groundwater pressure in sections of three fracture zones beneath the water table was monitored over a 24-mo period. The fracture zones were accessed through a 360-m-long inclined borehole, drilled from the 5,700 level station of the mine. The magnitude, source location, and associated ground motions of mining-induced seismic events were also monitored during the same period, using an existing seismic instrumentation network for the mine, augmented with additional instruments installed specifically for the project by the center for Nuclear Waste Regulatory Analyses (CNWRA). More than 50 seismic events of Richter magnitude 1.0 or larger occurred during the monitoring period. Several of these events caused the groundwater pressure to increase, whereas a few caused it to decrease. Generally, the groundwater pressure increased as the magnitude of seismic event increased; for an event of a given magnitude, the groundwater pressure increased by a smaller amount as the distance of the observation point from the source of the event increased. The data was examined using regression analysis. Based on these results, it is suggested that the effect of earthquakes on groundwater flow may be better understood through mechanistic modeling. The mechanical processes and material behavior that would need to be incorporated in such a model are examined. They include a description of the effect of stress change on the permeability and water storage capacity of a fracture rock mass; transient fluid flow; and the generation and transmission of seismic waves through the rock mass

  13. Study of sensitivity and application of some tracers of use in hydrologic works; Estudio de sensibilidad y aplicacion de algunos trazadores de empleo en trabajos hidrologicos

    Energy Technology Data Exchange (ETDEWEB)

    Aguilar, M C [ININ, 52045 Ocoyoacac, Estado de Mexico (Mexico)

    1980-05-15

    Inside the Industrial Applications Management, particularly in the Hydrology department, in the ININ outlined diverse problems are had in the study of underground waters and surface waters that either in a particular way, or in inter institutional collaboration (SARH, CFE, UNAM) it seen the necessity to solve this problem in the interconnection aspects in aquifer, expenses and contamination. One of the medullary parts that are had in this study is the applied evaluation of the tracer one that it presents two general aspects: a) determination method and b) Applicability depending on the land type that one has in the current to be applied. This study seeks according to: the sensibility reached with each one, and the evaluation of some other parameters like used time, cost and mainly realization feasibility at field level, to present some alternative for the use of them. (Author)

  14. Measurement of open streams by using tracers

    International Nuclear Information System (INIS)

    Ramos, German F.; Tarquino, W.; Curcuy, H.; Orozco, C.

    1999-01-01

    This paper presents an intercomparison study to be carried out between flux measurements by using tracers and moulinet. This intercomparison is scheduled to be performed at the measurement station belonging to the National Service of Meteorology and Hydrology (SENAMHI). Two techniques of tracer dilution are outstanded: total evaluation with tracer punctual injection and punctual evaluation with tracer continuous injection. Total evaluation with tracer punctual injection has been used since this technique is considered to be more suitable for hydrology purposes

  15. Stable tracer investigations in humans for assessing the biokinetics of ruthenium and zirconium radionuclides

    International Nuclear Information System (INIS)

    Veronese, I.; Cantone, M.C.; Giussani, A.; Maggioni, T.; Birattari, C.; Bondardi, M.; Groppi, F.; Garlaschelli, I.; Werner, E.; Roth, P.; Hoellriegl, V.; Louvat, P.; Felgenhauer, N.; Zilker, Th.

    2003-01-01

    The interest in the biokinetics of ruthenium and zirconium in humans is justified by the potential radiological risk represented by their radionuclides. Only a few data related to the biokinetics of ruthenium and zirconium in humans are available and, accordingly, the biokinetic models currently recommended by the ICRP for these elements are mainly based on data from animal experiments. The use of stable isotopes as tracers, coupled with a proper analytical technique (nuclear activation analysis with protons) for their determination in biological samples, represents an ethically acceptable methodology for biokinetic investigations, being free from any radiation risk for the volunteer subjects. In this work, the results obtained in eight biokinetic investigations for ruthenium, conducted on a total of three healthy volunteers, and six for zirconium, performed on a total of three subjects, are presented and compared to the predictions of the ICRP models. (author)

  16. Suitability of tracers

    International Nuclear Information System (INIS)

    Klotz, D.

    1999-01-01

    Hydrological tracer techniques are a means of making statements on the direction and speed of underground water. One of the simpler tasks is to find out whether there is hydrological communication between two given points. This requires a determination of the direction of flow, which places less exacting demands on the properties of the tracer than does the task of determining the flow velocity of underground water. Tracer methods can serve to infer from flow velocity the distance (flow) velocity, which is defined as the ratio between the distance between two points located in flow direction and the actual time it takes water to flow from one to the other [de

  17. Surface hydrologic investigations of the Columbia Plateau Region, Washington

    International Nuclear Information System (INIS)

    Leonhart, L.S.

    1979-07-01

    The Washington State portion of the Columbia Plateau is divided into six hydrologic sub-basins on the basis of the principal surface drainage systems present, structural and topographic relationships, and political and other considerations. Baseline descriptions of the surface water systems and resources are presented for the Columbia Plateau with emphasis on the Pasco Sub-basin. A preliminary evaluation of the hydrologic budget for each sub-basin is derived. For each sub-basin, recharge/discharge relationships arising from precipitation/evapotranspiration/runoff, stream losses and gains, and artificial mechanisms are determined on the basis of available data. The net exchange between surface and groundwater systems is evaluated and relative estimates of the net groundwater flow into or out of the sub-basin are obtained. An evaluation is made of hydrologic risk factors arising from: (1) tributary flooding in eastern Washington; and, (2) major flooding of the Columbia River within the Pasco Sub-basin. Scenarios are presented for credible natural and man-generated catastrophic events

  18. Surface hydrologic investigations of the Columbia Plateau region, Washington

    International Nuclear Information System (INIS)

    Leonhart, L.S.

    1979-01-01

    The Washington State portion of the Columbia Plateau is divided into six hydrologic sub-basins on the basis of the principal surface drainage systems present, structural and topographic relationships, and political and other considerations. Baseline descriptions of the surface water systems and resources are presented for the Columbia Plateau with emphasis on the Pasco Sub-basin. A preliminary evaluation of the hydrologic budget for each sub-basin is derived. For each sub-basin, recharge/discharge relationships arising from precipitation/evapotranspiration/runoff, stream losses and gains, and artificial mechanisms are determined on the basis of available data. The net exchange between surface and ground-water systems is evaluated and relative estimates of the net ground-water flow into or out of the sub-basin are obtained. An evaluation is made of hydrologic risk factors arising from: (1) tributary flooding in eastern Washington; and (2) major flooding of the Columbia River within the Pasco Sub-basin. Scenarios are presented for credible natural and man-generated catastrophic events

  19. Using Water Isotope Tracers to Investigate Past and Present Water Balance Conditions in the Old Crow Flats, Yukon Territory

    Science.gov (United States)

    Turner, K.; Wolfe, B. B.; Edwards, T. W.

    2010-12-01

    The Old Crow Flats (OCF), Yukon Territory, is a wetland of international significance that comprises approximately 2700 shallow thermokarst lakes. Located near the northern limit of the boreal forest, the OCF provides vital habitat for abundant wildlife including waterfowl, moose, muskrat, and the Porcupine Caribou Herd, which support the traditional lifestyle of the Vuntut Gwitchin First Nation. Thermokarst lakes, which occupy vast northern regions, are greatly influenced by climate conditions. In the OCF and other regions there have been observations of decreasing water levels and an increase in frequency of lake drainage events over recent decades. Though there is widespread concern that thermokarst landscape changes are accelerating as a result of ongoing climate change, there are few studies that have investigated current and past variability of lake water balances and climate interactions at the landscape scale. As part of a Government of Canada International Polar Year multidisciplinary project, the present and past hydrology of lakes spanning the OCF are being investigated using water isotope tracers and paleolimnological approaches. Water samples were obtained from 57 lakes three times over three ice-free seasons (2007-09) and analyzed for oxygen and hydrogen isotope composition in order to capture seasonal and interannual changes in water balance conditions. Results highlight strong diversity in the hydrology of lakes throughout the OCF. Based on patterns of isotopic evolution and calculations of input source compositions and evaporation-to-inflow ratios, we identified snowmelt-dominated, rainfall-dominated, groundwater-influenced, evaporation-dominated and drained lake types, which represent the dominant hydrological processes influencing lake water balances. Lake physical and catchment land cover characteristics influence dominant input type (rain or snow). Snowmelt-dominated catchments are large relative to lake surface areas and typically contain

  20. Investigating hydrological regimes and processes in a set of catchments with temporary waters

    NARCIS (Netherlands)

    Gallart, F.; Amaxidis, Y.; Botti, P.; Cane, B.; Castillo, V.; Chapman, P.; Froebrich, J.; Garcia, J.; Latron, J.; Llorens, P.; Porto, Lo A.; Morais, M.; Neves, N.; Ninov, P.; Perrin, J.L.; Ribarova, I.; Skoulikidis, N.; Tournoud, M.G.

    2008-01-01

    Seven catchments of diverse size in Mediterranean Europe were investigated in order to understand the main aspects of their hydrological functioning. The methods included the analysis of daily and monthly precipitation, monthly potential evapotranspiration rates, flow duration curves,

  1. Tracer investigations of natural and polluted sea sediment movement; Badanie traserowe ruchu naturalnych i zanieczyszczonych osadow morskich

    Energy Technology Data Exchange (ETDEWEB)

    Pruszak, Z. [Polska Akademia Nauk, Gdansk (Poland). Inst. Budownictwa Wodnego; Wierzchnicki, R. [Institute of Nuclear Chemistry and Technology, Warsaw (Poland)

    1994-12-31

    Results of tracer investigations and bottom sediment movement analysis (natural and polluted) performed world-wide have been shown. Polish investigations have been compared to these results. A critical estimation and analysis of particular elements of sediment movement: thickness of the drag layer and various characteristics of bottom transport evaluated in different time-space scales has been performed. 14 refs, 9 figs.

  2. Nuclear techniques in hydrology

    International Nuclear Information System (INIS)

    Bahadur, J.; Saxena, R.K.

    1974-01-01

    Several types of sealed radioactive sources, stable isotopes and water soluble radioactive tracers, used by different investigators, have been listed for studying the dynamic behaviour of water in nature. In general, all the facets of hydrological cycle, are amenable to these isotopic techniques. It is recommended that environmental isotopes data collection should be started for studying the water balance and also the interrelationships between surface and subsurface water in various rivers catchments with changing physical, geological and climatic parameters. (author)

  3. Investigation of radionuclides and anthropic tracer migration in groundwater at the Chernobyl site

    Science.gov (United States)

    Le Gal La Salle, Corinnne; Simonucci, Caroline; Roux, Céline; Bugai, Dmitry; Aquilina, Luc; Fourré, Elise; Jean-Baptiste, Philippe; Labasque, Thierry; Michelot, Jean-Luc; Fifield, Keith; Team Aster Team; Van Meir, Nathalie; Kashparov, Valeriy; Diez, Olivier; Bassot, Sylvain; Lancelot, Joel

    2013-04-01

    Following the reactor 4 explosion of the Chernobyl Nuclear Power Plant (ChNPP), at least 1019 Bq of radionuclides (RN) were released in the environment. In order to protect workers and prevent further atmospheric RN dispersion in the area adjacent to the ChNPP, contaminated wastes including fuel particles, topsoil layer and forest remains were buried in approximately 800 shallow trenches in the sand formation in the Red Forest waste dump site [1]. No containment measures were taken, and since then RN have leaked to the unsaturated zone and to the groundwater. Since 1999, migration of RN in the vicinity of the trench 22 at Red Forest site has been investigated within the frame of the EPIC program carried out by IRSN in collaboration with UIAR and IGS [2, 3]. A plume of 90Sr was shown downgradient from the trench 22 with activites reaching 3750 Bq/L [2]. In 2008, further studies were initiated through the TRASSE research group, based on a collaboration between IRSN and CNRS. These programs aim at combining groundwater dating with RN migration monitoring studies in order to constrain RN transport models [3]. Groundwater residence time was investigated based on 3H/He and CFC. Both tracers led to ages ranging from modern (1-3 y) at 2 m depth below the groundwater table to significantly higher apparent ages of 50-60 y at 27 m below the groundwater table [3]. 36Cl/Cl ratios 2 to 4 orders of magnitude higher than the theoretical natural ratio are measured in groundwater. Similarly, SF6 shows concentrations as high as 1200 pptv while natural concentrations are in the order of 6-7 pptv. Based on apparent groundwater ages, both contaminations are linked to the Chernobyl explosion. Hence those tracers show excellent potential to constrain conservative and reactive transport, respectively. In contrast, 238U/235U ratio down gradient from trench 22 remains similar to the natural ratio. This suggests that either most of the U contained in the trench is in a non soluble form

  4. First research coordination meeting of the coordinated research project on validation of tracers and software for interwell investigations. Meeting report

    International Nuclear Information System (INIS)

    2004-01-01

    . The introduction and promotion of tracer techniques for oil producing industry have been going on through several national and regional technical cooperation projects. Presently, R and D is going on in interwell tracer technology, including development of new tracers, improvement of analytical and interpretation techniques, and other innovative techniques for multiphase flow pattern characterization. The CRP coordinates knowledge generated in this field to guarantee the continuity of technology and to transfer the best part to developing countries. For effective transfer of the technology to developing countries, the target techniques will be consolidated, developed further and validated though the CRP activities. Technical documents will also be prepared to facilitate upgradation of the capability of tracer groups in developing countries. In line with the CRP objectives, the first RCM summarized the status of tracer technology as applied to interwell tests and discussed the ways to meet the proposed goals. The proposed investigations were focused on three main fields: 1) Software and model development and interpretation, 2) development of new tracers, methods and technologies, and 3) field applications. All participants were encouraged to participate in one or more of these topics of discussion and establish networking activities

  5. Application of TOUGH to hydrologic problems related to the unsaturated zone site investigation at Yucca Mountain, Nevada

    Energy Technology Data Exchange (ETDEWEB)

    Kwicklis, E.M.; Healy, R.W. [Geological Survey, Lakewood, CO (United States); Bodvarsson, G.S. [Lawrence Berkeley Laboratory, CA (United States)] [and others

    1995-03-01

    To date, TOUGH and TOUGH2 have been the principal codes used by the U.S. Geological Survey in their investigation of the hydrology of the unsaturated zone at Yucca Mountain. Examples of some applications of the TOUGH and TOUGH2 codes to flow and transport problems related to the Yucca Mountain site investigation are presented, and the slight modifications made to the codes to implement them are discussed. These examples include: (1) The use of TOUGH in a simple fracture network model, with a discussion of an approach to calculate directional relative permeabilities at computational cells located at fracture intersections. These simulations illustrated that, under unsaturated conditions, the locations of dominant pathways for flow through fracture networks are sensitive to imposed boundary conditions; (2) The application of TOUGH to investigate the possible hydrothermal effects of waste-generated heat at Yucca Mountain using a dual-porosity, dual-permeability treatment to better characterize fracture-matrix interactions. Associated modifications to TOUGH for this application included implementation of a lookup table that can express relative permeabilities parallel and transverse to the fracture plane independently. These simulations support the continued use of an effective media approach in analyses of the hydrologic effects of waste-generated heat; and (3) An investigation of flow and tracer movement beneath a wash at Yucca Mountain in which a particle tracker was used as a post-processor. As part of this study, TOUGH2 was modified to calculate and output the x-,y- and z- sequence of tuffs overlying the potential repository site will result in the formation of capillary barriers that locally promote considerable lateral flow, thereby significantly decreasing the magnitude of fluxes form peak values at the ground surface and delaying the arrival of surface-derived moisture at the potential repository horizon.

  6. Isotope Hydrology Investigation of Zonguldak And Province Groundwater

    International Nuclear Information System (INIS)

    Erduran, B.; Toerk, K.; Oektue, G.

    2002-01-01

    The most important coal area of Turkey is situated in Zonguldak and province. The coal series occurred during Westfalien (Carboniferous) are lower-bounded by Visean aged karstic limestones and upper-bounded by Aptian-Barremian aged karstic limestones. The isotope hydrology, which consists one of the studies dealed with karst hydrogeology, was held to determine the groundwater relations between the karstic limestones adjacent to the coal layers located in the Zonguldak coal mine areas. Environmental isotope samples were collected in the basin during 1994 - 1995 period, from the surface and groundwater. Deuterium ( 2 H), Oxygen 18 ( 18 O) and Tritium ( 3 H) analysis were carried out on the samples. Recharge elevation, water origin and transit time of the groundwater system were determined with the evaluation of the analysis results. Waters encountered in the area are of marine origined rainfall, recharging at an elevation of 400-500 meters and consisting of shallow and deep circulation systems. Groundwater that intruding the coal mine galleries, have a short flow period and are recharged from recent precipitations

  7. Tracers tor the investigation of cerebral presynaptic dopaminergic function with positron emission tomography

    International Nuclear Information System (INIS)

    Firnau, G.; Chirakal, R.; Nahmias, C.; Garnett, E.S.

    1991-01-01

    Two pharmacologic concepts, open-quotes metabolic precursorsclose quotes and open-quotes enzyme inhibitorsclose quotes have been applied to the design of PET tracers for the metabolic aspects of the neurotransmitter dopamine. As the result, highly useful, positron-emitting radiotracers have been developed with which to visualize and measure the cerebral distribution and metabolism of dopaminergic neurons. Positron emitter-labeled DOPA, particularly 6-[ 18 F]fluoro-L-DOPA, is being used to obtain information about the neurochemical anatomy of the dopamine system, and potentially, the rate constant of dopamine biosynthesis. 6-[ 18 F]Fluoro-L- meta-tyrosine delineates the dopaminergic structures even better than 6-[ 18 F]fluoro-L-DOPA but cannot provide kinetic information about dopamine biosynthesis. The in vivo activity of the enzyme aromatic L-aminoacid decarboxylase and that of monoamine oxidase types A and B can be measured with a-fluoro-methyl-6-[ 18 F]fluoro-L-DOPA, [ 11 C]clorgyline and L-[ 11 C]deprenyl, respectively. Thus, neuropharmacologic investigations of human presynaptic dopamine pharmacology are now possible in vivo

  8. Investigation of the connection between surface water and underground water from mine Cacova-Ierii, using activable tracers

    International Nuclear Information System (INIS)

    Dinescu, L.; Domocos, V.; Craciun, St.

    1985-01-01

    Two tracers, indium in the form of In-EDTA complex and 82 Br were simultaneously used in mining hydrology studies. The water samples were passed through an ion exchange column retaining the other disturbing elements, such as Mn, Cl, Na, K etc. Indium was coprecipitated with bismuth hydroxide and determined by NAA. Ten samples of precipitate in plastic bags, wrapped in Al foil, and the standard were irradiated simultaneously for 20 minutes by 10 13 n/cm 2 s neutron flux in the VVR-S reactor, and measured immeadiately after irradiation. Measurements were performed with a Ge(Li) detector and ND-6620 data acquisition and processing system. Measuring time was 200 s. The desintegration correction was taken into account for concentration calculations. Bromine 82 was determined by ''in situ'' measurements with scintillation probe. The connection between surface water and underground Cacova-Ierii mine water was proved, and data regarding the velocity and circulation were obtained

  9. Proceedings of Tracer 3. International Conference on Tracers and Tracing Methods

    International Nuclear Information System (INIS)

    2004-01-01

    Tracer 3 conference is a continuation of former Tracer 1 (1998) and Tracer 2 (2001) conferences organized by CNRS - Nancy France. The objective of this 3rd conference is presentation of different aspects of tracer method applications and development of tracer methodology.The new field of activity presented at the Conference was application of stable isotopes as natural tracers for investigations of environmental processes. The conference gave the possibility for scientific information exchange between specialists from different fields of activity such as chemical engineering, chemistry, bioengineering, environmental engineering, hydrology, civil engineering, metallurgy, etc. The presentations were divided into groups covering the principal items of Conference. Section A. Fundamental development - RTD and tracer methodology, - RTD methodology and Computational Fluid Dynamics (CFD), - New tracers and detectors. Section B. Industrial applications - Environment, - Geology, hydrogeology and oil field applications, - Civil engineering, mineral engineering and metallurgy applications, - Food engineering and bioengineering, - Material engineering, - Chemical engineering. During the Conference INIS promotion materials were exposed by INIS liaison officer for Poland

  10. Proceedings of Tracer 3. International Conference on Tracers and Tracing Methods

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    2004-07-01

    Tracer 3 conference is a continuation of former Tracer 1 (1998) and Tracer 2 (2001) conferences organized by CNRS - Nancy France. The objective of this 3rd conference is presentation of different aspects of tracer method applications and development of tracer methodology.The new field of activity presented at the Conference was application of stable isotopes as natural tracers for investigations of environmental processes. The conference gave the possibility for scientific information exchange between specialists from different fields of activity such as chemical engineering, chemistry, bioengineering, environmental engineering, hydrology, civil engineering, metallurgy, etc. The presentations were divided into groups covering the principal items of Conference. Section A. Fundamental development - RTD and tracer methodology, - RTD methodology and Computational Fluid Dynamics (CFD), - New tracers and detectors. Section B. Industrial applications - Environment, - Geology, hydrogeology and oil field applications, - Civil engineering, mineral engineering and metallurgy applications, - Food engineering and bioengineering, - Material engineering, - Chemical engineering. During the Conference INIS promotion materials were exposed by INIS liaison officer for Poland.

  11. Investigating Stream Metabolism and Nutrient Dynamics in Contrasting Ecosystems: The Role of Hydrologic Compartments

    Science.gov (United States)

    Gonzalez-Pinzon, R.; Riveros-Iregui, D. A.; Covino, T. P.

    2015-12-01

    The interactions between mobile and less mobile hydrologic compartments affect the quality and quantity of water in streams and aquifers, and the cycling of dissolved carbon and nutrients. As new laboratory and field techniques become available, new questions and challenges emerge, including: What do we measure, where, and for how long to fully characterize a system? and, What is the ideal cost-maintenance-benefit relationship that we should strive for to maximize knowledge gained in different field settings? We recently performed a series of field experiments to measure aquatic metabolism and nutrient dynamics in two highly contrasting hydrologic systems, i.e., 1) a wetland-stream alpine, tropical system in Colombia (South America) and 2) a dryland river continuum (1st - 5th stream orders) in New Mexico. In this presentation we discuss how multiple lines of evidence can support the analysis of key aquatic processes and how co-interpretation provides a more complete picture of stream complexity. For this analysis, we deployed YSI EXO2 and 6920 sondes, Turner Designs C-sense and C6 sensors, and Onset HOBO water quality data loggers. Parameters measured by these instruments include conductivity, temperature, dissolved oxygen, pH, turbidity, pCO2, chlorophyll-a, phycocyanin, fluorescein, CDOM, brighteners and water depth. We also injected conservative tracers (i.e., NaCl and NaBr) and the bioreactive tracer resazurin in both experimental sites, and NO3 in the dryland river continuum. NO3 was measured in-situ with Satlantic Submersible Ultraviolet Nitrate Analyzers (SUNA) sensors and in the laboratory using Ion Chromatograph techniques using stream grab samples. Our results highlight the role of both residence times and chemical fluxes in regulating the effective processing of carbon and nutrients. Our results also demonstrate that stream stimuli from controlled experiments are ideal for maximizing the information content derived from short (hours to days) and mid

  12. Isotope hydrology: A historical overview of achievements

    International Nuclear Information System (INIS)

    1997-01-01

    The IAEA's efforts in the water sector cover all aspects of the three main categories of isotope methodologies, such as the use of radioactive isotopes as tracers for site-specific investigations related to water movement; the use of sealed radioactive sources for in-situ measurement of hydrological field parameters; and the use of naturally occurring isotopic species for the assessment and study of water occurrence, genesis and flow pathways/dynamics at regional-scale hydrological systems

  13. Investigation of hydrological and pollution problems with nuclear power plants

    International Nuclear Information System (INIS)

    Nilsen, G.

    1974-12-01

    Following a general discussion of the scope of the problems to be studied by the Norsk Instititt for Vannforskning (NIVA) on behalf of Norges Vassdrags- og Elektrisitetsvesen, the framework of the continued investigations in 1975 is presented. Theoretical work will be based on literature studies and short visits, especially to Swedish institutions. Experimental work will cover the study of processes in coastal waters and fjords, of existing thermal discharges, of fouling and antifouling and of thermal influences in natural surroundings. Field investigations of prospective sites will also be carried out. (JIW)

  14. A tracer investigation of the atmospheric dispersion in the Dyrnaes Valley, Greenland

    International Nuclear Information System (INIS)

    Gryning, S.-E.; Lyck, E.

    1983-02-01

    Mining at Kvanefjeld, Greenland, will result in releases of air pollution gases. In order to measure the dilution of these gases tracer experiments were carried out in July-August 1981. Results from these experiments are described. The Kvanefjeld constitutes the northwestern side of a valley. The tracer was released at the Kvanefjeld during the night and sampled in the valley. The measured tracer concentrations were compared with those calculated by use of a conventional model of the dispersion of plumes. The dilution of the tracer was found to correspond to the dilution at ground level of a plume from a stack of 100-200 m height in atmospheric neutral conditions (wind speed 5 m/s). General aspects of the flow-field in the valley are discussed. It was observed that the flow direction in the valley shifts between downvalley and upvalley with a period of approximately 1 hour. It is suggested that this behaviour is caused by the interplay of a drainage flow and a sea-breeze. (author)

  15. Investigation of hydrological and pollution problems with nuclear power plants

    International Nuclear Information System (INIS)

    Nilsen, G.

    1974-12-01

    The results of a number of investigations designed to form a basis for the prediction of the effects of the thermal effluents from a nuclear power plant on the marine environment, which have been carried out in the Oslofjord district in the period 1973-1974 are reported. The effects of temperature increases on the predominantly arctic fauna of the deep water zones and the increase of green algae at the expense of brown algae form the main aspects. The decomposition in sediments and deep water, with evolution of hypoxic conditions is also discussed, as is hydrochemistry. Finally a brief evaluation of the suitability of the areas investigated as recipients of thermal discharges from nuclear power plants is presented. (JIW)

  16. Role of tracer methods in hydrology as a source of physical information. Basic concepts and definitions. Time relationship in dynamic systems

    International Nuclear Information System (INIS)

    Nir, A.

    1986-01-01

    The paper provides a general review on the systems theory approach for the tracer methodology, indicating also the relations of the system theory to other available approaches such as deterministic mechanism description and stochastic approaches. Methodology and formulations of systems approach as applied to tracer use in steady-state cases are discussed. Extension of the systems approach for tracer use in non-steady-state cases and input-output relationships for time varying systems are also given. (author)

  17. Investigating the spatial scaling effect of the non-linear hydrological ...

    African Journals Online (AJOL)

    Precipitation is the most important component and critical to the study of water and energy cycle. In this study we investigated the propagation of precipitation retrieval uncertainty in the simulation of hydrological variables, such as soil moisture, temperature, runoff, and fluxes, for varying spatial resolution on different ...

  18. Investigation of hydrological and pollution problems with nuclear power plants

    International Nuclear Information System (INIS)

    Nilsen, G.

    1975-02-01

    The research programme for the Norsk Institutt for Vannforskning on behalf of Norges Vassdrags- og Elektrisitetsvesen for 1975 is presented in general terms. Studies of primary production of algae and plankton in the Droebak Sound in the Oslofjord will be continued as part of a new five-year programme. Decomposition processes and eutrofication will be studied in sediments from the inner Oslofjord in continuation of the work done in 1974. Sublethal and combined effects of local temperature variations in aquatic systems will also be studied, and a plant for the study of complex organism societies under field conditions with simulated thermal discharges is planned. The effect of discharge of large amounts of chlorinated and heated water in a limited recipient at Lista aluminium works will be studied with a view to model construction. The oxygen budget in deep water and process studies, studies of existing thermal discharges and fouling are also included. Expansion of field laboratory facilities and siting investigations are also planned. (JIW)

  19. Models for tracer flow

    International Nuclear Information System (INIS)

    Zuber, A.

    1983-01-01

    A review and discussion is given of mathematical models used for interpretation of tracer experiments in hydrology. For dispersion model, different initial and boundary conditions are related to different injection and detection modes. Examples of applications of various models are described and commented. (author)

  20. General physical fundamentals of isotope hydrology

    International Nuclear Information System (INIS)

    Moser, H.; Rauert, W.

    1976-01-01

    A description is given of the measurement and measuring units of stable isotopes, the physical properties, measurement and measuring units of radioactive isotopes, the fundamentals of the tracer technique, the environmental isotope distribution in the hydrosphere and the radiation protection in isotope hydrological investigations. (HK) [de

  1. Partitioning and interfacial tracers for differentiating NAPL entrapment configuration: column-scale investigation.

    Science.gov (United States)

    Dai, D; Barranco, F T; Illangasekare, T H

    2001-12-15

    Research on the use of partitioning and interfacial tracers has led to the development of techniques for estimating subsurface NAPL amount and NAPL-water interfacial area. Although these techniques have been utilized with some success at field sites, current application is limited largely to NAPL at residual saturation, such as for the case of post-remediation settings where mobile NAPL has been removed through product recovery. The goal of this study was to fundamentally evaluate partitioning and interfacial tracer behavior in controlled column-scale test cells for a range of entrapment configurations varying in NAPL saturation, with the results serving as a determinant of technique efficacy (and design protocol) for use with complexly distributed NAPLs, possibly at high saturation, in heterogeneous aquifers. Representative end members of the range of entrapment configurations observed under conditions of natural heterogeneity (an occurrence with residual NAPL saturation [discontinuous blobs] and an occurrence with high NAPL saturation [continuous free-phase LNAPL lens]) were evaluated. Study results indicated accurate prediction (using measured tracer retardation and equilibrium-based computational techniques) of NAPL amount and NAPL-water interfacial area for the case of residual NAPL saturation. For the high-saturation LNAPL lens, results indicated that NAPL-water interfacial area, but not NAPL amount (underpredicted by 35%), can be reasonably determined using conventional computation techniques. Underprediction of NAPL amount lead to an erroneous prediction of NAPL distribution, as indicated by the NAPL morphology index. In light of these results, careful consideration should be given to technique design and critical assumptions before applying equilibrium-based partitioning tracer methodology to settings where NAPLs are complexly entrapped, such as in naturally heterogeneous subsurface formations.

  2. Investigation of Groundwater Flow Variations near a Recharge Pond with Repeat Deliberate Tracer Experiments

    Directory of Open Access Journals (Sweden)

    Jordan F Clark

    2014-06-01

    Full Text Available Determining hydraulic connections and travel times between recharge facilities and production wells has become increasingly important for permitting and operating managed aquifer recharge (MAR sites, a water supply strategy that transfers surface water into aquifers for storage and later extraction. This knowledge is critical for examining water quality changes and assessing the potential for future contamination. Deliberate tracer experiments are the best method for determining travel times and identifying preferential flow paths between recharge sites over the time scales of weeks to a few years. This paper compares the results of two deliberate tracer experiments at Kraemer Basin, Orange County, CA, USA. Results from the first experiment, which was conducted in October 1998, showed that a region of highly transmissive sedimentary material extends down gradient from the basin for more than 3 km [1]. Mean groundwater velocities were determined to be approximately 2 km/year in this region based on the arrival time of the tracer center of mass. A second experiment was initiated in January 2008 to determine if travel times from this basin to monitoring and production wells changed during the past decade in response to new recharge conditions. Results indicate that flow near Kraemer Basin was stable, and travel times to most wells determined during both experiments agree within the experimental uncertainty.

  3. Isotope methods in hydrology

    International Nuclear Information System (INIS)

    Moser, H.; Rauert, W.

    1980-01-01

    Of the investigation methods used in hydrology, tracer methods hold a special place as they are the only ones which give direct insight into the movement and distribution processes taking place in surface and ground waters. Besides the labelling of water with salts and dyes, as in the past, in recent years the use of isotopes in hydrology, in water research and use, in ground-water protection and in hydraulic engineering has increased. This by no means replaces proven methods of hydrological investigation but tends rather to complement and expand them through inter-disciplinary cooperation. The book offers a general introduction to the application of various isotope methods to specific hydrogeological and hydrological problems. The idea is to place the hydrogeologist and the hydrologist in the position to recognize which isotope method will help him solve his particular problem or indeed, make a solution possible at all. He should also be able to recognize what the prerequisites are and what work and expenditure the use of such methods involves. May the book contribute to promoting cooperation between hydrogeologists, hydrologists, hydraulic engineers and isotope specialists, and thus supplement proven methods of investigation in hydrological research and water utilization and protection wherever the use of isotope methods proves to be of advantage. (orig./HP) [de

  4. Numerical investigations of triggering mechanisms of shallow landslides due to heterogeneous spatio-temporal hydrological patterns.

    Science.gov (United States)

    Schwarz, Massimiliano; Cohen, Denis

    2016-04-01

    regional scale rely on the infinite slope assumption for stability calculations and on continuous hydrological properties of the soil. The objective of the present study is to investigate the influence of non-continuos hydrological features (such as ephemeral springs) on the triggering mechanisms of shallow landslides using a discrete element model (SOSlope) in which the stress-strain behavior of soil is explicitly considered. The application of a stress-strain calculation allows for the simulation of local versus global loading due to hydrological processes. In particular, this study investigates the effects of different types of hydrological loading on the force redistribution on a slope associated with local displacements and following failures of soil masses. Strength and stiffness of soil are considered heterogeneous and are calculated based on the assumption of root distributions within a forested hillslope.

  5. Hydraulic characterisation of karst systems with man-made tracers

    International Nuclear Information System (INIS)

    Werner, A.

    1998-01-01

    Tracer experiments using man-made tracers are common in hydrogeological exploration of groundwater aquifers in karst systems. In the present investigation, a convection-dispersion model (multidispersion model with consideration of several flow paths) and a single-cleft model (consideration of the diffusion between the cleft and the surrounding rock matrix) were used for evaluating tracer experiments in the main hydrological system of the saturated zone of karst systems. In addition to these extended analytical solutions, a numerical transport model was developed for investigating the influence of the transient flow rate on the flow and transport parameters. Comparative evaluations of the model approaches for the evaluation of tracer experiments were made in four different karst systems: Danube-Aach, Paderborn, Slowenia and Lurbach, of which the Danube-Aach system was considered as the most important. The investigation also comprised three supplementary experiments in order to enable a complete hydraulic characterisation of the system. (orig./SR) [de

  6. Hydrological investigations on an overburden dump in the Borken brown coal district, North Hessen

    International Nuclear Information System (INIS)

    Wolff, P.; Latif, A.

    1992-01-01

    After a general hydrological investigation of the Dosenberg overburden dump in North Hessen, a climatic water balance is established for the main vegetation periods of the years 1989, 1990, and 1991. This is followed by a description of the investigations of water levels of the plateau pools and time curves of water levels of observation holes drilled into the dump plateau. In all, the findings suggest that in the period under investigation, which comprised three draught years in sequence, the dump was largely an independent hydrological system. In this period, no significant discharge of water from the 'Dosenberg ecosystem' into the surrounding area occurred, i.e. the overburden dumps had no effect on the surrounding cultivated land and bodies of water. This may be different in wet years. On the other hand, the prevailing climate conditions give cause to assume that no negative effects need be expected. The investigation will be continued. (orig.) [de

  7. Tumoral tracers

    International Nuclear Information System (INIS)

    Camargo, E.E.

    1979-01-01

    Direct tumor tracers are subdivided in the following categories:metabolite tracers, antitumoral tracers, radioactive proteins and cations. Use of 67 Ga-citrate as a clinically important tumoral tracer is emphasized and gallium-67 whole-body scintigraphy is discussed in detail. (M.A.) [pt

  8. Double tracer experiments to investigate models for the calculation of gamma doses from a radioactive cloud

    International Nuclear Information System (INIS)

    Nielsen, S.P.; Gryning, S.E.; Thykier-Nielsen, S.; Karlberg, O.; Lyck, E.

    1984-01-01

    The paper presents work from a series of atmospheric dispersion experiments in May 1981 at the Ringhals nuclear power plant in Sweden. The aim of the project was to obtain short-term observations of concentrations and gamma-ray exposures from stack effluents and to compare these results with corresponding values calculated from computer models. Two tracers, sulphurhexafluoride (SF 6 ) and radioactive noble gases, were released from a 110-m stack and detected at ground level downwind at distances of 3-4 km. Calculations were made with two Gaussian plume models: PLUCON developed at Riso National Laboratory and UNIDOSE developed at Studsvik Energiteknik AB. (orig.)

  9. Hydrology in a mediterranean mountain environment. The Vallcebre research catchment (north eastern Spain) I. 20 years of investigations of hydrological dynamics

    International Nuclear Information System (INIS)

    Latron, J.; Llorens, P.; Solar, M.; Poyatos, R.; Rubio, C.; Muzylo, A.; Martinez-Carreras, N.; Delgado, J.; Regues, D.; Catari, G.; Nord, G.; Gallart, F.

    2009-01-01

    Investigations started 20 years ago in the Vallcebre research basins with the objectives of better understanding the hydrological functioning of Mediterranean mountains basins. The Vallcebre basins (0.15-4.17 km 2 ) are located in a Mediterranean mountain area of the Pyrenean ranges (1300 m.a.s.l., North Eastern Spain) Average annual precipitations 862± 260 mm and potential evapotranspiration is 823±26mm. Climate is highly seasonal leading to periods with water deficit in summer, and eventually in winter. Hydrological investigations to periods with water deficit in summer, and eventually in winter. Hydrological investigations in the basins are related to rainfall interception, evapotranspiration, soil moisture spatio-temporal dynamics, runoff response and runoff processes, suspended sediment dynamics and model application both at the plot and basin scales. (Author) 15 refs.

  10. Tracer techniques for the investigation of wear mechanisms in coated or surface-treated machine parts

    International Nuclear Information System (INIS)

    Goedecke, T.; Grosch, J.

    1990-01-01

    Tracer techniques allow wear measurement down to rates of only some μg/h, and these measurements can be done continuously within an inspection test run, not requiring dismantling of the parts to be examined. The measurements revealed the materials pair of a chilled cast iron camshaft and a hard metal coated rocker arm to be superior in terms of wear behaviour over the materials pair of a malleable cast iron camshaft with induction hardening and a rocker arm with hard chromium plating. The total wear of a chilled cast iron camshaft was measured to be approx. 90% less than that of the malleable cast iron camshaft, under equal loading conditions. With the rocker arms, this ratio is approx. 1:3. Another disadvantage of the latter pair is the overall wear ratio of 19:1. The best wear resistance was measured with a TiN-coated rocker arm combined with a chilled cast iron camshaft. (orig./MM) [de

  11. Use of Carbon Isotopic Tracers in Investigating Soil Carbon Sequestration and Stabilization in Agroecosystems

    International Nuclear Information System (INIS)

    2017-09-01

    The global surface temperatures have been reported to increase at an average rate of 0.06 C (0.11 F) per decade. This observed climate change known as the greenhouse effect is attributed to the emission of greenhouse gases (GHGs), including carbon dioxide (CO2), methane (CH4) and nitrous oxide (N2O) to the atmosphere, resulting in trapping the heat near the earth’s surface causing global warming. World soils are the largest reservoir of terrestrial carbon and that soils are a source or sink of GHGs depending on land use management. Recognizing the urgent need to address the soil organic matter constraints for a sustainable agricultural production to ensure food security, this publication provides an integrated view on conventional and isotopic methods of measuring and modelling soil carbon dynamics, and the use nuclear and radioisotope tracer techniques in in-situ glasshouse and field labelling techniques to assess soil organic matter turnover and sequestration.

  12. Investigation of the tracers for plastic-enriched waste burning aerosols

    Science.gov (United States)

    Kumar, Sudhanshu; Aggarwal, Shankar G.; Gupta, Prabhat K.; Kawamura, Kimitaka

    2015-05-01

    To better identify the tracers for open-waste burning (OWB) aerosols, we have conducted aerosol sampling at 2 landfill sites, i.e., Okhla and Bhalswa in New Delhi. The metals such as, As, Cd, Sb and Sn, which have been observed almost negligible in remote aerosols, are found abundantly in these OWB aerosol samples (n = 26), i.e., 60 ± 65, 41 ± 53, 537 ± 847 and 1325 ± 1218 ng m-3, respectively. Samples (n = 20) collected at urban locations in New Delhi, i.e., at Employees' State Insurance (ESI) hospital and National Physical Laboratory (NPL) also show high abundances of these metals in the particles. Filter samples are also analyzed for water-soluble dicarboxylic acids (C2-C12) and related compounds (oxocarboxylic acids and α-dicarbonyls). Terephthalic acid (tPh) was found to account for more than 77% of total diacids determined in OWB aerosols. However, such a high abundance of tPh is not observed in aerosols collected at urban sites. Instead, phthalic acid (Ph) was found as the third/fourth most abundant diacid (∼3%) following C2 (>70%) and C4 (>12%) in these waste burning influenced urban aerosols. A possible secondary formation pathway of Ph by photo-degradation of phthalate ester (di-2-ethylhexyl phthalate) in plastic-waste burning aerosol is suggested. Ionic composition of OWB aerosols showed that Cl- is the most abundant ion (40 ± 8% of total ions determined). The correlation studies of the potential metals with the organic tracers of garbage burning, i.e., phthalic, isophthalic and terephthalic acids show that especially Sn can be used as marker for tracing the plastic-enriched waste burning aerosols.

  13. TREHS (Temporary Rivers Ecological and Hydrological Status): new software for investigating the degree of hydrologic alteration of temporary streams.

    Science.gov (United States)

    Gallart, Francesc; Llorens, Pilar; Cid, Núria; latron, Jérôme; Bonada, Núria; Prat, Narcís

    2017-04-01

    The evaluation of the hydrological alteration of a stream due to human activities is a first step to assess its overall quality and to design management strategies for its potential restoration. This task is currently made comparing impacted against unimpacted hydrographs, with the help of software tools, such as the IHA (Indicators of Hydrologic Alteration). Then, the environmental evaluation of the hydrological alteration is to be made in terms of its expectable menace for the original biological communities and/or its help for the spread of invasive species. However, when the regime of the target stream is not perennial, there are four main difficulties for implementing methods for assessing hydrological alteration: i) the main hydrological features relevant for biological communities in a temporary stream are not quantitative (discharges) but qualitative (temporal patterns of states such as flowing water, stagnant pools or lack of surface water), ii) stream flow records do not inform on the temporal occurrence of stagnant pools, which act as refugees for many species during the cessation of flow, iii) as most of the temporary streams are ungauged, the evaluation of their regime must be determined by using alternative methods such as remote sensing or citizen science, and iv) the biological quality assessment of the ecological status of a temporary stream must be conducted following a sampling schedule adapted to the flow regime and using adequate reference conditions. In order to overcome these challenges using an operational approach, the TREHS freely available software tool has been developed within the EU LIFE TRIVERS project (LIFE13 ENV/ES/000341). This software allows for the input of information coming from flow simulations obtained using any rainfall-runoff model (to set an unimpacted reference stream regime) and compares them with the information obtained from flow gauging records, interviews made to local citizens, instantaneous observations made by

  14. Experimental and Numerical Investigation of the Tracer Gas Methodology in the Case of a Naturally Cross-Ventilated Building

    DEFF Research Database (Denmark)

    Nikolopoulos, Nikos; Nikolopoulos, Aristeidis; Larsen, Tine Steen

    2012-01-01

    The paper presents the investigation of a naturally cross – ventilated building using both experimental and numerical methods with the parameters being the free-stream and the incidence angle of the wind to the openings of the building. The experimental methodology calculates the air change rate......, focusing on the time dependent character of the induced flow field. The numerical results are compared with corresponding experimental data for the three aforementioned experimental methodologies in the case of a full scale building inside a wind-tunnel. The numerical investigation reveals that for large...... based either on measurements of the inlet velocity profile, the outlet velocity profile or the descending rate of the tracer gas concentration using the decay method. The numerical investigation is based on the solution of the governing Navier-Stokes equations in their full three dimensional expression...

  15. Tracers and tracing methods

    International Nuclear Information System (INIS)

    Leclerc, J.P.

    2001-01-01

    The first international congress on 'Tracers and tracing methods' took place in Nancy in May 2001. The objective of this second congress was to present the current status and trends on tracing methods and their applications. It has given the opportunity to people from different fields to exchange scientific information and knowledge about tracer methodologies and applications. The target participants were the researchers, engineers and technologists of various industrial and research sectors: chemical engineering, environment, food engineering, bio-engineering, geology, hydrology, civil engineering, iron and steel production... Two sessions have been planned to cover both fundamental and industrial aspects: 1)fundamental development (tomography, tracer camera visualization and particles tracking; validation of computational fluid dynamics simulations by tracer experiments and numerical residence time distribution; new tracers and detectors or improvement and development of existing tracing methods; data treatments and modeling; reactive tracer experiments and interpretation) 2)industrial applications (geology, hydrogeology and oil field applications; civil engineering, mineral engineering and metallurgy applications; chemical engineering; environment; food engineering and bio-engineering). The program included 5 plenary lectures, 23 oral communications and around 50 posters. Only 9 presentations are interested for the INIS database

  16. Investigation of 6-[¹⁸F]-fluoromaltose as a novel PET tracer for imaging bacterial infection.

    Directory of Open Access Journals (Sweden)

    Gayatri Gowrishankar

    Full Text Available Despite advances in the field of nuclear medicine, the imaging of bacterial infections has remained a challenge. The existing reagents suffer from poor sensitivity and specificity. In this study we investigate the potential of a novel PET (positron emission tomography tracer that overcomes these limitations.6-[¹⁸F]-fluoromaltose was synthesized. Its behavior in vitro was evaluated in bacterial and mammalian cultures. Detailed pharmacokinetic and biodistribution profiles for the tracer were obtained from a murine model.6-[¹⁸F]-fluoromaltose is taken up by multiple strains of pathogenic bacteria. It is not taken up by mammalian cancer cell lines. 6-[¹⁸F]-fluoromaltose is retained in infected muscles in a murine model of bacterial myositis. It does not accumulate in inflamed tissue.We have shown that 6-[¹⁸F]-fluoromaltose can be used to image bacterial infection in vivo with high specificity. We believe that this class of agents will have a significant impact on the clinical management of patients.

  17. Environmental isotope hydrology

    International Nuclear Information System (INIS)

    1973-01-01

    Environmental isotope hydrology is a relatively new field of investigation based on isotopic variations observed in natural waters. These isotopic characteristics have been established over a broad space and time scale. They cannot be controlled by man, but can be observed and interpreted to gain valuable regional information on the origin, turnover and transit time of water in the system which often cannot be obtained by other techniques. The cost of such investigations is usually relatively small in comparison with the cost of classical hydrological studies. The main environmental isotopes of hydrological interest are the stable isotopes deuterium (hydrogen-2), carbon-13, oxygen-18, and the radioactive isotopes tritium (hydrogen-3) and carbon-14. Isotopes of hydrogen and oxygen are ideal geochemical tracers of water because their concentrations are usually not subject to change by interaction with the aquifer material. On the other hand, carbon compounds in groundwater may interact with the aquifer material, complicating the interpretation of carbon-14 data. A few other environmental isotopes such as 32 Si and 238 U/ 234 U have been proposed recently for hydrological purposes but their use has been quite limited until now and they will not be discussed here. (author)

  18. Rainfall Simulator Experiments to Investigate Macropore Impacts on Hillslope Hydrological Response

    Directory of Open Access Journals (Sweden)

    Yvonne Smit

    2016-11-01

    Full Text Available Understanding hillslope runoff response to intense rainfall is an important topic in hydrology, and is key to correct prediction of extreme stream flow, erosion and landslides. Although it is known that preferential flow processes activated by macropores are an important phenomena in understanding runoff processes inside a hillslope, hydrological models have generally not embraced the concept of an extra parameter that represents ‘macropores’ because of the complexity of the phenomenon. Therefore, it is relevant to investigate the influence of macropores on runoff processes in an experimental small artificial hillslope. Here, we report on a controlled experiment where we could isolate the influence of macropores without the need for assumptions regarding their characteristics. Two identical hillslopes were designed, of which one was filled with artificial macropores. Twelve artificial rainfall events were applied to the two hillslopes and results of drainage and soil moisture were investigated. After the experiments, it could be concluded that the influence of macropores on runoff processes was minimal. The S90 sand used for this research caused runoff to respond fast to rainfall, leading to little or no development of saturation near the macropores. In addition, soil moisture data showed a large amount of pendular water in the hillslopes, which implies that the soil has a low air entry value, and, in combination with the lack of vertical flow, could have caused the pressure difference between the matrix and the macropores to vanish sooner and result in equilibrium being reached in a relatively short time. Nevertheless, a better outline is given to determine a correct sand type for these types of experiments and, by using drainage recession analysis to investigate the influences of macropores on runoff, heterogeneity in rainfall intensity can be overcome. This study is a good point of reference to start future experiments from concerning

  19. Use of environmental isotope techniques in groundwater hydrology

    International Nuclear Information System (INIS)

    Tirumalesh, K.; Shivanna, K.

    2009-01-01

    Environmental isotopes (stable and radioactive) have been used as tracers for investigating various hydrological problems. Wide variation in isotopic distribution ( 2 H, 13 C, 18 O, 15 N, 35 S, 3 H and 14 C) in the environment help in identifying the source, origin, pathways and processes affecting the system under consideration. In this article, a few Indian case studies covering some of the very important isotope applications in groundwater hydrology are briefly summarized. (author)

  20. Hydrogeologic and hydrologic investigations in connection with the underground disposal of radioactive wastes

    International Nuclear Information System (INIS)

    Stempel, C. v.; Batsche, H.

    1982-01-01

    In order to permit an assessment of the sometimes very long storage periods occurring in connection with final disposals and of the consequences resulting in the case of an eventual failure, the migration behaviour of selected radionuclides was investigated in the strata of the surface rock masses sourrounding the respective salt stocks. Our Institute performed the corresponding activities in three districts: In the area of the former salt mine Asse II a hydrogeologic research programme is realized in close cooperation with the GSF Institut fuer Tieflagerung, Braunschweig. Within the scope of the ''Projekt Sicherheitsstudien Entsorgung (PSE)'' the required investigations are carried out in the district of the salt stock Gorleben. Within the scope of a NAGRA project, isotope-hydrological measurements were taken up in connection with investigations on the storage of radioactive waste materials in crystalline rocks of Switzerland. (orig./RW) [de

  1. Chemical Tracer Methods: Chapter 7

    Science.gov (United States)

    Healy, Richard W.

    2017-01-01

    Tracers have a wide variety of uses in hydrologic studies: providing quantitative or qualitative estimates of recharge, identifying sources of recharge, providing information on velocities and travel times of water movement, assessing the importance of preferential flow paths, providing information on hydrodynamic dispersion, and providing data for calibration of water flow and solute-transport models (Walker, 1998; Cook and Herczeg, 2000; Scanlon et al., 2002b). Tracers generally are ions, isotopes, or gases that move with water and that can be detected in the atmosphere, in surface waters, and in the subsurface. Heat also is transported by water; therefore, temperatures can be used to trace water movement. This chapter focuses on the use of chemical and isotopic tracers in the subsurface to estimate recharge. Tracer use in surface-water studies to determine groundwater discharge to streams is addressed in Chapter 4; the use of temperature as a tracer is described in Chapter 8.Following the nomenclature of Scanlon et al. (2002b), tracers are grouped into three categories: natural environmental tracers, historical tracers, and applied tracers. Natural environmental tracers are those that are transported to or created within the atmosphere under natural processes; these tracers are carried to the Earth’s surface as wet or dry atmospheric deposition. The most commonly used natural environmental tracer is chloride (Cl) (Allison and Hughes, 1978). Ocean water, through the process of evaporation, is the primary source of atmospheric Cl. Other tracers in this category include chlorine-36 (36Cl) and tritium (3H); these two isotopes are produced naturally in the Earth’s atmosphere; however, there are additional anthropogenic sources of them.

  2. An investigation of the mechanical and hydrologic behavior of tuff fractures under saturated conditions

    International Nuclear Information System (INIS)

    Voss, C.F.; Shotwell, L.R.

    1990-04-01

    The mechanical and hydrologic behavior of natural fractures in a partially welded tuff rock were investigated. Tuff cores, each containing part of the same natural fracture oriented subparallel to the core axis, were subjected a range of stress and hydraulic gradients while simultaneously monitoring changes in the fracture aperture and volumetric flow rate. The fractures were tested in three configurations: intact, mated, and offset. Fracture deformation was nonlinear over the stress range tested with permanent deformation and hysteresis occurring with each loading cycle. The offset samples had larger permanent deformation and significantly reduced normal stiffness at lower stress levels. The cubic flow law appears to be valid for the relatively undisturbed tuff fractures at the scale tested. The cubic law did not explain the observed hydraulic behavior of the offset fractures. 6 refs., 10 figs., 2 tabs

  3. Deuterium used as artificial tracer in column studies under saturated water flow conditions

    Science.gov (United States)

    Koeniger, P.; Geiges, M.; Leibundgut, Ch.

    2003-04-01

    In contrast to numerous investigations using deuterium as an environmental tracer, hydrological investigations with deuterium-labelled water are rather rare. Currently applications in groundwater studies are restricted due to increasing costs of spiking large water quantities but an application as intelligent tracer might be of advantage especially in combination with other tracers and under distinct environmental conditions. Therefore deuterium was applied as artificial tracer in column experiments that are well proved as a tool to characterise tracer behaviour in recent studies. Deuterium was tested in comparison to the more familiar conservative tracer fluorescein. Varying experimental conditions, e.g. column length (0.5, 1.0, 1.5 m), initial tracer concentration (0.01, 0.02, 0.2 mg) and flow velocity (1.5 to 6.0 m/d) were used to investigate tracer behaviour under saturated water flow conditions. Deuterium was analysed using an H/Device with chrome reduction connected to an isotope ratio mass spectrometer and expressed in relative concentrations [per mill V-SMOW]. Theoretical tracer breakthrough curves were calculated using a one dimensional dispersion model. The results indicate higher mean transport velocities and smaller dispersion for deuterium in all experiments. Due to different molecule properties that also determine the interaction of soil substrate and tracer, deuterium indicates a more conservative transport behaviour. Deuterium is non-toxic, completely soluble, chemically and biologically stable and not subject to light-influenced decay. Furthermore, it shows promise for investigations of water flow in the unsaturated zone, and of interactions of water in soil-plant-atmosphere systems. A further discussion of problems, together with possibilities for applying deuterium as an artificial tracer, will be presented.

  4. Hydrologic investigations to evaluate a potential site for a nuclear-waste repository, Yucca Mountain, Nevada Test Site

    International Nuclear Information System (INIS)

    Wilson, W.E.

    1985-01-01

    Yucca Mountain, Nevada Test Site, is being evaluated by the U.S. Department of Energy for its suitability as a site for a mined geologic respository for high-level nuclear wastes. The repository facility would be constructed in densely welded tuffs in the unsaturated zone. In support of the evaluation, the U.S. Geological Survey is conducting hydrologic investigations of both the saturated and unsaturated zones, as well as paleohydrologic studies. Investigation in saturated-zone hydrology will help define one component of ground-water flow paths and travel times to the accessible environment. A two-dimensional, steady-state, finite-element model was developed to describe the regional hydrogeologic framework. The unsaturated zone is 450 to 700 meters thick at Yucca Mountain; precipitation averages about 150 millimeters per year. A conceptual hydrologic model of the unsaturated zone incorporates the following features: minimal net infiltration, variable distribution of flux, lateral flow, potential for perched-water zones, fracture and matrix flow, and flow along faults. The conceptual model is being tested primarily by specialized test drilling; plans also are being developed for in-situ testing in a proposed exploratory shaft. Quaternary climatic and hydrologic conditions are being evaluated to develop estimates of the hydrologic effects of potential climatic changes during the next 10,000 years. Evaluation approaches include analysis of plant macrofossils in packrat middens, evaluation of lake and playa sediments, infiltration tests, and modeling effects of potential increased recharge on the potentiometric surface

  5. Industrial tracer application in people's republic of china

    International Nuclear Information System (INIS)

    Sun Maoyi

    1987-01-01

    A number of important applications of radioisotopes and their compounds used as tracers in petroleum industry, metallurgical industry, mechanical industry, chemical industry, electronic industry, hydrology and water conservancy in China are introduced in this paper. And the tracer technique applied to entomology is also mentioned. The industrial tracer applications are successful and beneficial in People's Republic of China from the examples given. (author)

  6. Hydrological investigations of forest disturbance and land cover impacts in South-East Asia: a review.

    Science.gov (United States)

    Douglas, I

    1999-11-29

    Investigations of land management impacts on hydrology are well developed in South-East Asia, having been greatly extended by national organizations in the last two decades. Regional collaborative efforts, such as the ASEAN-US watershed programme, have helped develop skills and long-running monitoring programmes. Work in different countries is significant for particular aspects: the powerful effects of both cyclones and landsliding in Taiwan, the significance of lahars in Java, of small-scale agriculture in Thailand and plantation establishment in Malaysia. Different aid programmes have contributed specialist knowledge such as British work on reservoir sedimentation, Dutch, Swedish and British work on softwood plantations and US work in hill-tribe agriculture. Much has been achieved through individual university research projects, including PhD and MSc theses. The net result is that for most countries there is now good information on changes in the rainfall-run-off relationship due to forest disturbance or conversion, some information on the impacts on sediment delivery and erosion of hillslopes, but relatively little about the dynamics and magnitude of nutrient losses. Improvements have been made in the ability to model the consequences of forest conversion and of selective logging and exciting prospects exist for the development of better predictions of transfer of water from the hillslopes to the stream channels using techniques such as multilevel modelling. Understanding of the processes involved has advanced through the detailed monitoring made possible at permanent field stations such as that at Danum Valley, Sabah.

  7. Multi-tracer investigation of river and groundwater interactions: a case study in Nalenggele River basin, northwest China

    Science.gov (United States)

    Xu, Wei; Su, Xiaosi; Dai, Zhenxue; Yang, Fengtian; Zhu, Pucheng; Huang, Yong

    2017-11-01

    Environmental tracers (such as major ions, stable and radiogenic isotopes, and heat) monitored in natural waters provide valuable information for understanding the processes of river-groundwater interactions in arid areas. An integrated framework is presented for interpreting multi-tracer data (major ions, stable isotopes (2H, 18O), the radioactive isotope 222Rn, and heat) for delineating the river-groundwater interactions in Nalenggele River basin, northwest China. Qualitative and quantitative analyses were undertaken to estimate the bidirectional water exchange associated with small-scale interactions between groundwater and surface water. Along the river stretch, groundwater and river water exchange readily. From the high mountain zone to the alluvial fan, groundwater discharge to the river is detected by tracer methods and end-member mixing models, but the river has also been identified as a losing river using discharge measurements, i.e. discharge is bidirectional. On the delta-front of the alluvial fan and in the alluvial plain, in the downstream area, the characteristics of total dissolved solids values, 222Rn concentrations and δ18O values in the surface water, and patterns derived from a heat-tracing method, indicate that groundwater discharges into the river. With the environmental tracers, the processes of river-groundwater interaction have been identified in detail for better understanding of overall hydrogeological processes and of the impacts on water allocation policies.

  8. Laboratory and numerical investigations of kinetic interface sensitive tracers transport for immiscible two-phase flow porous media systems

    Science.gov (United States)

    Tatomir, Alexandru Bogdan A. C.; Sauter, Martin

    2017-04-01

    A number of theoretical approaches estimating the interfacial area between two fluid phases are available (Schaffer et al.,2013). Kinetic interface sensitive (KIS) tracers are used to describe the evolution of fluid-fluid interfaces advancing in two phase porous media systems (Tatomir et al., 2015). Initially developed to offer answers about the supercritical (sc)CO2 plume movement and the efficiency of trapping in geological carbon storage reservoirs, KIS tracers are tested in dynamic controlled laboratory conditions. N-octane and water, analogue to a scCO2 - brine system, are used. The KIS tracer is dissolved in n-octane, which is injected as the non-wetting phase in a fully water saturated porous media column. The porous system is made up of spherical glass beads with sizes of 100-250 μm. Subsequently, the KIS tracer follows a hydrolysis reaction over the n-octane - water interface resulting in an acid and phenol which are both water soluble. The fluid-fluid interfacial area is described numerically with the help of constitutive-relationships derived from the Brooks-Corey model. The specific interfacial area is determined numerically from pore scale calculations, or from different literature sources making use of pore network model calculations (Joekar-Niasar et al., 2008). This research describes the design of the laboratory setup and compares the break-through curves obtained with the forward model and in the laboratory experiment. Furthermore, first results are shown in the attempt to validate the immiscible two phase flow reactive transport numerical model with dynamic laboratory column experiments. Keywords: Fluid-fluid interfacial area, KIS tracers, model validation, CCS, geological storage of CO2

  9. Investigation by multivariate analysis of groundwater composition in a multilayer aquifer system from North Africa: A multi-tracer approach

    Energy Technology Data Exchange (ETDEWEB)

    Dassi, Lassaad, E-mail: lassaad@geologist.com [Faculte des Sciences, Departement des Sciences de la Terre, Zrig, Gabes 6072 (Tunisia)

    2011-08-15

    Highlights: > We investigate the hydrodynamics and hydrochemistry of a multilayer aquifer system. > We examine the geochemical evolution, the origins and the circulation patterns of groundwater. > The mineralization is controlled by water-rock interaction and return flow process. > Groundwater derives from palaeoclimatic and modern end-members. > Mixing by upward and downward leakage occurs between these two end-members. - Abstract: A multi-tracer approach has been carried out in the Sbeitla multilayer aquifer system, central Tunisia, to investigate the geochemical evolution, the origin of groundwaters and their circulation patterns. It involves statistical data analysis coupled with the definition of the hydrochemical and isotopic features of the different groundwaters. Principal Components Analysis (PCA) of geochemical data used in conjunction with bivariate diagrams of major and trace elements indicate that groundwater mineralization is mainly controlled by water-rock interaction and anthropogenic processes in relation to return flow of irrigation waters. The PCA of isotopic data and bivariate conventional diagrams of stable and radiogenic isotopes i.e. {delta}{sup 18}O vs. {delta}{sup 2}H and {delta}{sup 18}O vs. {sup 14}C provide valuable information about the origin and the circulation patterns of the different groundwater groups. They permit classifying groundwaters into three groups. The first group is characterized by low {sup 3}H concentrations, low {sup 14}C activities and depleted stable isotope contents. It corresponds to an old end-member in relation with palaeoclimatic recharge which occurred during the Late Pleistocene and the Early Holocene humid periods. The second group is distinguished by high to moderate {sup 3}H concentrations, high {sup 14}C activities and enriched heavy isotope signatures. It corresponds to a modern end-member originating from a mixture of post-nuclear and present-day recharge in relation to return flow of irrigation waters

  10. Isotope-hydrological models and calculational methods for investigation of groundwater flow

    International Nuclear Information System (INIS)

    Marton, L.

    1982-01-01

    Recharge of groundwater through a semi-confining bed is a typical hydrogeological phenomenon in quaternary deposits which are elevated to a lesser or greater degree above the surroundings. A simple hydrological model has been introduced in which the aquifer is recharged only by precipitation through a semi-permeable layer. For applying the model, it is necessary to know the age of the water or the radioisotope concentrations in some sections of the ground-water flow system. On the basis of the age, the hydraulic conductivity of the aquifer and of the semiconfining bed and the steady rate of infiltration can be calculated. Other hydraulic parameters can be determined with the help of a mathemathical model worked out by Freeze and Witherspoon. The hydrological and mathemathical models are inversely used and are complementary. The reliability and applicability of the hydrological model has been proved in practice and good results were gained in hydrogeological research carried out in Hungary. (author)

  11. HYDROLOGIC AND FEATURE-BASED SURFACE ANALYSIS FOR TOOL MARK INVESTIGATION ON ARCHAEOLOGICAL FINDS

    Directory of Open Access Journals (Sweden)

    K. Kovács

    2012-07-01

    Full Text Available The improvement of detailed surface documentation methods provides unique tool mark-study opportunities in the field of archaeological researches. One of these data collection techniques is short-range laser scanning, which creates a digital copy of the object’s morphological characteristics from high-resolution datasets. The aim of our work was the accurate documentation of a Bronze Age sluice box from Mitterberg, Austria with a spatial resolution of 0.2 mm. Furthermore, the investigation of the entirely preserved tool marks on the surface of this archaeological find was also accomplished by these datasets. The methodology of this tool mark-study can be summarized in the following way: At first, a local hydrologic analysis has been applied to separate the various patterns of tools on the finds’ surface. As a result, the XYZ coordinates of the special points, which represent the edge lines of the sliding tool marks, were calculated by buffer operations in a GIS environment. During the second part of the workflow, these edge points were utilized to manually clip the triangle meshes of these patterns in reverse engineering software. Finally, circle features were generated and analysed to determine the different sections along these sliding tool marks. In conclusion, the movement of the hand tool could be reproduced by the spatial analysis of the created features, since the horizontal and vertical position of the defined circle centre points indicated the various phases of the movements. This research shows an exact workflow to determine the fine morphological structures on the surface of the archaeological find.

  12. Nuclear techniques in hydrology

    International Nuclear Information System (INIS)

    Moser, H.

    1976-01-01

    The nuclear techniques used in hydrology are usually tracer techniques based on the use of nuclides either intentionally introduced into, or naturally present in the water. The low concentrations of these nuclides, which must be detected in groundwater and surface water, require special measurement techniques for the concentrations of radioactive or of stable nuclides. The nuclear techniques can be used most fruitfully in conjunction with conventional methods for the solution of problems in the areas of hydrology, hydrogeology and glacier hydrology. Nuclear techniques are used in practice in the areas of prospecting for water, environment protection and engineering hydrogeology. (orig.) [de

  13. Investigation of the transferability of hydrological models and a method to improve model calibration

    Directory of Open Access Journals (Sweden)

    G. Hartmann

    2005-01-01

    Full Text Available In order to find a model parameterization such that the hydrological model performs well even under different conditions, appropriate model performance measures have to be determined. A common performance measure is the Nash Sutcliffe efficiency. Usually it is calculated comparing observed and modelled daily values. In this paper a modified version is suggested in order to calibrate a model on different time scales simultaneously (days up to years. A spatially distributed hydrological model based on HBV concept was used. The modelling was applied on the Upper Neckar catchment, a mesoscale river in south western Germany with a basin size of about 4000 km2. The observation period 1961-1990 was divided into four different climatic periods, referred to as "warm", "cold", "wet" and "dry". These sub periods were used to assess the transferability of the model calibration and of the measure of performance. In a first step, the hydrological model was calibrated on a certain period and afterwards applied on the same period. Then, a validation was performed on the climatologically opposite period than the calibration, e.g. the model calibrated on the cold period was applied on the warm period. Optimal parameter sets were identified by an automatic calibration procedure based on Simulated Annealing. The results show, that calibrating a hydrological model that is supposed to handle short as well as long term signals becomes an important task. Especially the objective function has to be chosen very carefully.

  14. Rainfall Simulator Experiments to Investigate Macropore Impacts on Hillslope Hydrological Response

    NARCIS (Netherlands)

    Smit, Y.; Teuling, Adriaan J.; van der Ploeg, Martine J.

    2016-01-01

    Understanding hillslope runoff response to intense rainfall is an important topic in hydrology, and is key to correct prediction of extreme stream flow, erosion and landslides. Although it is known that preferential flow processes activated by macropores are an important phenomena in understanding

  15. Investigation of mercury-containing proteins by enriched stable isotopic tracer and size-exclusion chromatography hyphenated to inductively coupled plasma-isotope dilution mass spectrometry

    International Nuclear Information System (INIS)

    Shi Junwen; Feng Weiyue; Wang Meng; Zhang Fang; Li Bai; Wang Bing; Zhu Motao; Chai Zhifang

    2007-01-01

    In order to investigate trace mercury-containing proteins in maternal rat and their offspring, a method of enriched stable isotopic tracer ( 196 Hg and 198 Hg) combined with size-exclusion chromatography (SEC) coupled to inductively coupled plasma-isotope dilution mass spectrometry (ICP-IDMS) was developed. Prior to the analysis, 196 Hg- and 198 Hg-enriched methylmercury was administrated to the pregnant rats. Then the mercury-containing proteins in serum and brain cytosol of the dam and pup rats were separated by size-exclusion columns and the mercury was detected by ICP-MS. The ICP-MS spectrogram of the tracing samples showed significantly elevated 196 Hg and 198 Hg isotopic signals compared with the natural ones, indicating that the detection sensitivity could be increased by the tracer method. The contents of mercury in chromatographic fractions of the dam and pup rat brain cytosol were quantitatively estimated by post-column reverse ID-ICP-MS. The quantitative speciation differences of mercury in brain cytosol between the dam and pup rats were observed, indicating that such studies could be useful for toxicological estimation. Additionally, the isotopic ratio measurement of 198 Hg/ 202 Hg in the tracing samples could be used to identify the artifact mercury species caused in the analytical procedure. The study demonstrates that the tracer method combined with high-performance liquid chromatography (HPLC)-ICP-IDMS could provide reliably qualitative and quantitative information on mercury-containing proteins in organisms

  16. Use of tracer tests to investigate changes in flow and transport properties due to bioclogging of porous media

    DEFF Research Database (Denmark)

    Seifert, Dorte; Engesgaard, Peter Knudegaard

    2007-01-01

    by up to three orders of magnitude. The hydraulic conductivity and dispersivity parameters were almost recovered after disinfection of the columns. Different models relating the changes of the hydraulic conductivity to the changes in the mobile porosity due to bioclogging were reviewed......Tracer tests were conducted in three laboratory columns to study changes in the hydraulic properties of a porous medium due to bioclogging. About 30 breakthrough curves (BTCs) for each column were obtained. The BTCs were analyzed using analytical equilibrium and dual-porosity models, and estimates...

  17. Field tracer investigation of unsaturated zone flow paths and mechanisms in agricultural soils of northwestern Mississippi, USA

    Science.gov (United States)

    Perkins, K.S.; Nimmo, J.R.; Rose, C.E.; Coupe, R.H.

    2011-01-01

    In many farmed areas, intensive application of agricultural chemicals and withdrawal of groundwater for irrigation have led to water quality and supply issues. Unsaturated-zone processes, including preferential flow, play a major role in these effects but are not well understood. In the Bogue Phalia basin, an intensely agricultural area in the Delta region of northwestern Mississippi, the fine-textured soils often exhibit surface ponding and runoff after irrigation and rainfall as well as extensive surface cracking during prolonged dry periods. Fields are typically land-formed to promote surface flow into drainage ditches and streams that feed into larger river ecosystems. Downward flow of water below the root zone is considered minimal; regional groundwater models predict only 5% or less of precipitation recharges the heavily used alluvial aquifer. In this study transport mechanisms within and below the root zone of a fallow soybean field were assessed by performing a 2-m ring infiltration test with tracers and subsurface monitoring instruments. Seven months after tracer application, 48 continuous cores were collected for tracer extraction to define the extent of water movement and quantify preferential flow using a mass-balance approach. Vertical water movement was rapid below the pond indicating the importance of vertical preferential flow paths in the shallow unsaturated zone, especially to depths where agricultural disturbance occurs. Lateral flow of water at shallow depths was extensive and spatially non-uniform, reaching up to 10. m from the pond within 2. months. Within 1. month, the wetting front reached a textural boundary at 4-5. m between the fine-textured soil and sandy alluvium, now a potential capillary barrier which, prior to extensive irrigation withdrawals, was below the water table. Within 10. weeks, tracer was detectable at the water table which is presently about 12. m below land surface. Results indicate that 43% of percolation may be through

  18. Investigating Snow Cover and Hydrometeorological Trends in Contrasting Hydrological Regimes of the Upper Indus Basin

    Directory of Open Access Journals (Sweden)

    Iqra Atif

    2018-04-01

    Full Text Available The Upper Indus basin (UIB is characterized by contrasting hydrometeorological behaviors; therefore, it has become pertinent to understand hydrometeorological trends at the sub-watershed level. Many studies have investigated the snow cover and hydrometeorological modeling at basin level but none have reported the spatial variability of trends and their magnitude at a sub-basin level. This study was conducted to analyze the trends in the contrasting hydrological regimes of the snow and glacier-fed river catchments of the Hunza and Astore sub-basins of the UIB. Mann-Kendall and Sen’s slope methods were used to study the main trends and their magnitude using MODIS snow cover information (2001–2015 and hydrometeorological data. The results showed that in the Hunza basin, the river discharge and temperature were significantly (p ≤ 0.05 decreased with a Sen’s slope value of −2.541 m3·s−1·year−1 and −0.034 °C·year−1, respectively, while precipitation data showed a non-significant (p ≥ 0.05 increasing trend with a Sen’s slope value of 0.023 mm·year−1. In the Astore basin, the river discharge and precipitation are increasing significantly (p ≤ 0.05 with a Sen’s slope value of 1.039 m3·s−1·year−1 and 0.192 mm·year−1, respectively. The snow cover analysis results suggest that the Western Himalayas (the Astore basin had a stable trend with a Sen’s slope of 0.07% year−1 and the Central Karakoram region (the Hunza River basin shows a slightly increasing trend with a Sen’s slope of 0.394% year−1. Based on the results of this study it can be concluded that since both sub-basins are influenced by different climatological systems (monsoon and westerly, the results of those studies that treat the Upper Indus basin as one unit in hydrometeorological modeling should be used with caution. Furthermore, it is suggested that similar studies at the sub-basin level of the UIB will help in a better understanding of the

  19. Sensitivity study on the parameters of the regional hydrology model for the Nevada nuclear waste storage investigations

    International Nuclear Information System (INIS)

    Iman, R.L.; Davenport, J.M.; Waddell, R.K.; Stephens, H.P.; Leap, D.I.

    1979-01-01

    Statistical methodology has been applied to the investigation of the regional hydrologic systems of a large area encompassing the Nevada Test Site (NTS) as a part of the overall evaluation of the NTS for deep geologic disposal of nuclear waste. Statistical techniques including Latin hypercube sampling were used to perform a sensitivity analysis on a two-dimensional finite-element code of 16 geohydrologic zones used to model the regional ground-water flow system. The Latin hypercube sample has been modified to include correlations between corresponding variables from zone to zone. From the results of sensitivity analysis it was found that: (1) the ranking of the relative importance of input variables between locations within the same geohydrologic zone were similar, but not identical; and (2) inclusion of a correlation structure for input variables had a significant effect on the ranking of their relative importance. The significance of these results is discussed with respect to the hydrology of the region

  20. Isotope hydrological investigations in the region of the Schirmacher Oasis (East Antarctica)

    International Nuclear Information System (INIS)

    Kowski, P.; Richter, W.

    1986-01-01

    A first complete view is given about the isotope hydrological situation of the Schirmacher Oasis and surroundings by means of studies of delta Deuterium and delta Oxygen 18 variations. The precipitation is assumed to be condensed in a distance of about 100 km and in a hight of the surface of the inland ice between 1,000 m and 1,500 m a.s.l. in the mean wind direction South East. The deltaD value studies of the shelf and inland ice have shown that both the basal zone of the inland ice and the ice shelf represent relics of an assumed thicker late Pleistocene ice cap of Dronning Maud Land. The main part of the glacier ice is composed of recent local precipitation. The isotope hydrological studies are also a contribution to the characterisation of the high polar fresh-water lakes, ponds and pools under different limnological conditions. (author)

  1. Investigation of hydrological variability in the Korean Peninsula with the ENSO teleconnections

    Directory of Open Access Journals (Sweden)

    S. Yoon

    2016-10-01

    Full Text Available This study analyzes nonlinear behavior links with atmospheric teleconnections between hydrologic variables and climate indices using statistical models during warm season (June to September over the Korean Peninsula (KP. The ocean-related major climate factor, which is the El Niño-Southern Oscillation (ENSO was used to analyze the atmospheric teleconnections by principal component analysis (PCA and a singular spectrum analysis (SSA. The nonlinear lag time correlations between climate indices and hydrologic variables are calculated by Mutual Information (MI technique. The nonlinear correlation coefficients (CCs by MI were higher than linear CCs, and ENSO shows a few months of lag time correlation. The warm season hydrologic variables in KP shows a significant increasing tendency during the warm pool (WP, and the cold tongue (CT El Niño decaying years shows a significant decreasing tendency, while the La Niña year shows slightly above normal conditions, respectively. A better understanding of the relationship between climate indices and streamflow, and their local impacts can help to prepare for the river discharge management by water managers and scientists. Furthermore, these results provide useful data for policy makers and end-users to support long-range water resources prediction and water-related policy.

  2. Hydrology of marginal evaporitic basins during the Messinian Salinity Crisis: isotopic investigation of gypsum deposits

    Science.gov (United States)

    El Kilany, Aida; Caruso, Antonio; Dela Pierre, Francesco; Natalicchio, Marcello; Rouchy, Jean-Marie; Pierre, Catherine; Balter, Vincent; Aloisi, Giovanni

    2016-04-01

    The deposition of gypsum in Messinian Mediterranean marginal basins is controlled by basin restriction and the local hydrological cycle (evaporation/precipitation rates and relative importance of continental vs marine water inputs). We are using the stable isotopic composition of gypsum as a proxy of the hydrological cycle that dominated at the moment of gypsum precipitation. We studied the Messinian Caltanissetta (Sicily) and Tertiary Piedmont (north western Italy) basins where we carried out a high-resolution isotopic study of gypsum layers composing gypsum-marl cycles. These cycles are thought to be the sedimentary expression of astronomical precession cycles, lasting approximately 20 kyr, during which the marginal basins experienced a succession of arid and a wet conditions. We determined the isotopic composition of gypsum hydration water (18O and D), of the sulphate ion (34S, 18O) and of Strontium (87/86Sr), all of which are potentially affected by the hydrological cycle. In our samples, the mother water from which gypsum precipitated is considerably lighter (-4.0 micro-scale. This is an essential step in interpreting the isotopic signals of gypsum because we can expect the 18O and D composition of Messinian continental input to be not too dissimilar from that of modern meteoric waters involved in diagenetic processes.

  3. Heat tracer methods

    Science.gov (United States)

    Healy, Richard W.; Scanlon, Bridget R.

    2010-01-01

    The flow of heat in the subsurface is closely linked to the movement of water (Ingebritsen et al., 2006). As such, heat has been used as a tracer in groundwater studies for more than 100 years (Anderson, 2005). As with chemical and isotopic tracers (Chapter 7), spatial or temporal trends in surface and subsurface temperatures can be used to infer rates of water movement. Temperature can be measured accurately, economically, at high frequencies, and without the need to obtain water samples, facts that make heat an attractive tracer. Temperature measurements made over space and time can be used to infer rates of recharge from a stream or other surface water body (Lapham, 1989; Stonestrom and Constantz, 2003); measurements can also be used to estimate rates of steady drainage through depth intervals within thick unsaturated zones (Constantz et al., 2003; Shan and Bodvarsson, 2004). Several thorough reviews of heat as a tracer in hydrologic studies have recently been published (Constantz et al., 2003; Stonestrom and Constantz, 2003; Anderson, 2005; Blasch et al., 2007; Constantz et al., 2008). This chapter summarizes heat-tracer approaches that have been used to estimate recharge.Some clarification in terminology is presented here to avoid confusion in descriptions of the various approaches that follow. Diffuse recharge is that which occurs more or less uniformly across large areas in response to precipitation, infiltration, and drainage through the unsaturated zone. Estimates of diffuse recharge determined using measured temperatures in the unsaturated zone are referred to as potential recharge because it is possible that not all of the water moving through the unsaturated zone will recharge the aquifer; some may be lost to the atmosphere by evaporation or plant transpiration. Estimated fluxes across confining units in the saturated zone are referred to as interaquifer flow (Chapter 1). Focused recharge is that which occurs directly from a point or line source, such

  4. Hydrological and biogeochemical investigation of an agricultural watershed, southeast New Hampshire, USA

    Science.gov (United States)

    Davis, J. M.; McDowell, W. H.; Campbell, J. E.; Hristov, A. N.

    2010-12-01

    Developing sustainable agricultural practices and policies requires an understanding of the hydrological and biological processes that control nutrient fluxes and how those processes are manifested in nutrient loading of surface water bodies. Groundwater and surface water from the UNH Organic Research Dairy, located in southeast New Hampshire, flow into the Lamprey River and then into the Great Bay, New Hampshire; both are experiencing increasing nutrient loads. The farm hosts approximately 80 Jersey cows (40 milking) and is located on relatively thin (pastures has been underway since June 2009. A three-dimensional transient unsaturated-saturated groundwater flow model was developed using LIDAR topography and detailed field mapping. The transient model was calibrated to observed water level and streamflow observations. Model results suggest that summer recharge rates vary considerably across the site and depth to the water table is the dominant control on the recharge flux. Areas having depth to water of 1-2 m experience the greatest recharge (up to 60% of precipitation). Areas with deeper water tables experience greater evapotranspiration from the vadose zone, and shallower water tables experience greater runoff. Water budget calculations suggest that the hydrologic fluxes occur predominately in the shallow groundwater, wetlands, and small surface streams draining the watershed. High dissolved nitrogen (N) concentrations (up to an average concentration of 35 mg N/L) are observed in groundwater immediately downgradient from the main farm operation and decrease more than an order of magnitude along the flowpaths. However, Nitrogen-15 concentrations do not change appreciably along flowpaths, suggesting that reductions in N concentrations are primarily due to dilution rather than denitrification. Our overall objective is to understand how farm hydrology and biogeochemistry are linked to farm management. Our understanding of biophysical feedbacks and functional links

  5. Hydrology in a mediterranean mountain environment. The Vallcebre research catchment (north eastern Spain) I. 20 years of investigations of hydrological dynamics; Hidrologia de un ambiente Mediterraneo de montana. Las cuencas de Vallcebre (Pirineo Oriental) I. 20 anos de investigaciones hidrologicas

    Energy Technology Data Exchange (ETDEWEB)

    Latron, J.; Llorens, P.; Solar, M.; Poyatos, R.; Rubio, C.; Muzylo, A.; Martinez-Carreras, N.; Delgado, J.; Regues, D.; Catari, G.; Nord, G.; Gallart, F.

    2009-07-01

    Investigations started 20 years ago in the Vallcebre research basins with the objectives of better understanding the hydrological functioning of Mediterranean mountains basins. The Vallcebre basins (0.15-4.17 km{sup 2}) are located in a Mediterranean mountain area of the Pyrenean ranges (1300 m.a.s.l., North Eastern Spain) Average annual precipitations 862{+-} 260 mm and potential evapotranspiration is 823{+-}26mm. Climate is highly seasonal leading to periods with water deficit in summer, and eventually in winter. Hydrological investigations to periods with water deficit in summer, and eventually in winter. Hydrological investigations in the basins are related to rainfall interception, evapotranspiration, soil moisture spatio-temporal dynamics, runoff response and runoff processes, suspended sediment dynamics and model application both at the plot and basin scales. (Author) 15 refs.

  6. Investigation of mercury-containing proteins by enriched stable isotopic tracer and size-exclusion chromatography hyphenated to inductively coupled plasma-isotope dilution mass spectrometry

    Energy Technology Data Exchange (ETDEWEB)

    Shi Junwen [Laboratory for Bio-Environmental Health Sciences of Nanoscale Materials and Key Laboratory of Nuclear Analytical Techniques, Institute of High Energy Physics, Chinese Academy of Sciences, Beijing 100049 (China)]|[Graduate School of the Chinese Academy of Sciences, Beijing 100049 (China); Feng Weiyue [Laboratory for Bio-Environmental Health Sciences of Nanoscale Materials and Key Laboratory of Nuclear Analytical Techniques, Institute of High Energy Physics, Chinese Academy of Sciences, Beijing 100049 (China)]. E-mail: fengwy@mail.ihep.ac.cn; Wang Meng [Laboratory for Bio-Environmental Health Sciences of Nanoscale Materials and Key Laboratory of Nuclear Analytical Techniques, Institute of High Energy Physics, Chinese Academy of Sciences, Beijing 100049 (China)]|[Graduate School of the Chinese Academy of Sciences, Beijing 100049 (China); Zhang Fang [Graduate School of the Chinese Academy of Sciences, Beijing 100049 (China); Li Bai [Laboratory for Bio-Environmental Health Sciences of Nanoscale Materials and Key Laboratory of Nuclear Analytical Techniques, Institute of High Energy Physics, Chinese Academy of Sciences, Beijing 100049 (China); Wang Bing; Zhu Motao [Laboratory for Bio-Environmental Health Sciences of Nanoscale Materials and Key Laboratory of Nuclear Analytical Techniques, Institute of High Energy Physics, Chinese Academy of Sciences, Beijing 100049 (China)]|[Graduate School of the Chinese Academy of Sciences, Beijing 100049 (China); Chai Zhifang [Laboratory for Bio-Environmental Health Sciences of Nanoscale Materials and Key Laboratory of Nuclear Analytical Techniques, Institute of High Energy Physics, Chinese Academy of Sciences, Beijing 100049 (China)]|[Institute of Nuclear Technology, Shenzhen University, Shenzhen 518060 (China)]|[Institute of Nanochemistry and Nanosafety, Shanghai University, Shanghai (China)

    2007-01-30

    In order to investigate trace mercury-containing proteins in maternal rat and their offspring, a method of enriched stable isotopic tracer ({sup 196}Hg and {sup 198}Hg) combined with size-exclusion chromatography (SEC) coupled to inductively coupled plasma-isotope dilution mass spectrometry (ICP-IDMS) was developed. Prior to the analysis, {sup 196}Hg- and {sup 198}Hg-enriched methylmercury was administrated to the pregnant rats. Then the mercury-containing proteins in serum and brain cytosol of the dam and pup rats were separated by size-exclusion columns and the mercury was detected by ICP-MS. The ICP-MS spectrogram of the tracing samples showed significantly elevated {sup 196}Hg and {sup 198}Hg isotopic signals compared with the natural ones, indicating that the detection sensitivity could be increased by the tracer method. The contents of mercury in chromatographic fractions of the dam and pup rat brain cytosol were quantitatively estimated by post-column reverse ID-ICP-MS. The quantitative speciation differences of mercury in brain cytosol between the dam and pup rats were observed, indicating that such studies could be useful for toxicological estimation. Additionally, the isotopic ratio measurement of {sup 198}Hg/{sup 202}Hg in the tracing samples could be used to identify the artifact mercury species caused in the analytical procedure. The study demonstrates that the tracer method combined with high-performance liquid chromatography (HPLC)-ICP-IDMS could provide reliably qualitative and quantitative information on mercury-containing proteins in organisms.

  7. Water diffusion in fluoropolymer-based fuel-cell electrolyte membranes investigated by radioactivated-tracer permeation technique

    International Nuclear Information System (INIS)

    Sawada, S.; Yamaki, T.; Asano, M.; Maekawa, Y.; Suzuki, A.; Terai, T.

    2011-01-01

    The self-diffusion coefficient of water, D, in proton exchange membranes (PEMs) based on crosslinkedpolytetrafluoroethylene (cPTFE) films was measured by a radioactivated-tracer permeation technique using tritium labeled water (HTO). The D value was found to increase with the water volume fraction of the PEM, φ, probably because the water-filled regions were more effectively interconnected with each other at high φ, allowing water permeation to be faster through a PEM. Interestingly, the grafted PEMs showed the lower D compared to that of Nafion in spite of their high φ. This would be caused by tortuous structures of transport pathways and a strong coulombic interaction between water and the negatively-charged sulfonate (SO 3 - ) groups. Heavyoxygen water (H 2 18 O) was also used in the similar permeation experiment to obtain the D. Since the HTO diffusion actually occurred not only by translational motion of water but also by intermolecular hydrogen-atom hopping, comparing the D of HTO with that of H 2 18 O was likely to give the information about the state of water in the PEMs. (orig.)

  8. Keeping the secret: Insights from repeated catchment-scale tracer experiments under transient conditions

    Science.gov (United States)

    Bogner, Christina; Hauhs, Michael; Lange, Holger

    2016-04-01

    Catchment-level tracer experiments are generally performed to identify site-specific hydrological response functions of the catchment. The existence and uniqueness of these response functions are hardly ever questioned. Here, we report on a series of replicated tracer experiments in two small first-order catchments, G1 (0.6 ha, roofed) and F4 (2.3 ha, without roof) at Gårdsjön in SW Sweden. The soils in both catchments are shallow (500 m2) the experiments were done without a roof mostly at transient conditions. The catchment F4 was equipped with a sprinkler system with a watering capacity of around 38-45 m3 day-1. Natural rainfall comes in addition. A bromide tracer solution was injected to groundwater at a single location about 40 m upstream the weir over a period of less than an hour, and was monitored using a set of groundwater tubes and the weir at the outlet over the following 4 days. In addition, discharge was measured. The experiments were repeated each summer from 2007 to 2015. While steady state conditions were guaranteed in G1, steady runoff has been achieved only four times in F4. We investigated tracer recovery rates against cumulated runoff since tracer application. Substantially different transit times and qualitatively different behaviour of the breakthrough curves were observed, even under steady state conditions. In G1, no single system response function could be identified in 5 replicates. Similarly, the catchment response functions in F4 under steady state differed between experiments. However, they remained in a similar range as in G1. Based on these results, we question the identifiability of flow paths and system properties, such as saturated water content or hydrologic transmissivity, at the catchment scale using tracer experiments. Rather, the series demonstrate the utter importance of the initial and boundary conditions which largely determine the response of the system to inert tracer pulses.

  9. Investigating the Capacity of Hydrological Models to Project Impacts of Climate Change in the Context of Water Allocation

    Science.gov (United States)

    Velez, Carlos; Maroy, Edith; Rocabado, Ivan; Pereira, Fernando

    2017-04-01

    . 40 years of records. This paper investigates the capacity of the three hydrological models to project the impacts of climate change scenarios. It is proposed a general testing framework which combine the use of the existing information through an adapted form of DSST with the approach proposed by Van Steenbergen and Willems, (2012) adapted to assess statistical properties of flows useful in the context of water allocation. To assess the model we use robustness criteria based on a Log Nash-Sutcliffe, BIAS on cummulative volumes and relative changes based on Q50/Q90 estimated from the duration curve. The three conceptual rainfall-runoff models yielded different results per sub-catchments. A relation was found between robustness criteria and changes in mean rainfall and changes in mean potential evapotranspiration. Biases are greatly affected by changes in precipitation, especially when the climate scenarios involve changes in precipitation volume beyond the range used for calibration. Using the combine approach we were able to classify the modelling tools per sub-catchments and create an ensemble of best models to project the impacts of climate variability for the catchments of 10 main rivers in Flanders. Thus, managers could understand better the usability of the modelling tools and the credibility of its outputs for water allocation applications. References Refsgaard, J.C., Madsen, H., Andréassian, V., Arnbjerg-Nielsen, K., Davidson, T.A., Drews, M., Hamilton, D.P., Jeppesen, E., Kjellström, E., Olesen, J.E., Sonnenborg, T.O., Trolle, D., Willems, P., Christensen, J.H., 2014. A framework for testing the ability of models to project climate change and its impacts. Clim. Change. Van Steenbergen, N., Willems, P., 2012. Method for testing the accuracy of rainfall - runoff models in predicting peak flow changes due to rainfall changes , in a climate changing context. J. Hydrol. 415, 425-434.

  10. Experimental investigation of the predictive capabilities of data driven modeling techniques in hydrology - Part 2: Application

    Directory of Open Access Journals (Sweden)

    A. Elshorbagy

    2010-10-01

    Full Text Available In this second part of the two-part paper, the data driven modeling (DDM experiment, presented and explained in the first part, is implemented. Inputs for the five case studies (half-hourly actual evapotranspiration, daily peat soil moisture, daily till soil moisture, and two daily rainfall-runoff datasets are identified, either based on previous studies or using the mutual information content. Twelve groups (realizations were randomly generated from each dataset by randomly sampling without replacement from the original dataset. Neural networks (ANNs, genetic programming (GP, evolutionary polynomial regression (EPR, Support vector machines (SVM, M5 model trees (M5, K-nearest neighbors (K-nn, and multiple linear regression (MLR techniques are implemented and applied to each of the 12 realizations of each case study. The predictive accuracy and uncertainties of the various techniques are assessed using multiple average overall error measures, scatter plots, frequency distribution of model residuals, and the deterioration rate of prediction performance during the testing phase. Gamma test is used as a guide to assist in selecting the appropriate modeling technique. Unlike two nonlinear soil moisture case studies, the results of the experiment conducted in this research study show that ANNs were a sub-optimal choice for the actual evapotranspiration and the two rainfall-runoff case studies. GP is the most successful technique due to its ability to adapt the model complexity to the modeled data. EPR performance could be close to GP with datasets that are more linear than nonlinear. SVM is sensitive to the kernel choice and if appropriately selected, the performance of SVM can improve. M5 performs very well with linear and semi linear data, which cover wide range of hydrological situations. In highly nonlinear case studies, ANNs, K-nn, and GP could be more successful than other modeling techniques. K-nn is also successful in linear situations, and it

  11. Experimental investigation of the predictive capabilities of data driven modeling techniques in hydrology - Part 2: Application

    Science.gov (United States)

    Elshorbagy, A.; Corzo, G.; Srinivasulu, S.; Solomatine, D. P.

    2010-10-01

    In this second part of the two-part paper, the data driven modeling (DDM) experiment, presented and explained in the first part, is implemented. Inputs for the five case studies (half-hourly actual evapotranspiration, daily peat soil moisture, daily till soil moisture, and two daily rainfall-runoff datasets) are identified, either based on previous studies or using the mutual information content. Twelve groups (realizations) were randomly generated from each dataset by randomly sampling without replacement from the original dataset. Neural networks (ANNs), genetic programming (GP), evolutionary polynomial regression (EPR), Support vector machines (SVM), M5 model trees (M5), K-nearest neighbors (K-nn), and multiple linear regression (MLR) techniques are implemented and applied to each of the 12 realizations of each case study. The predictive accuracy and uncertainties of the various techniques are assessed using multiple average overall error measures, scatter plots, frequency distribution of model residuals, and the deterioration rate of prediction performance during the testing phase. Gamma test is used as a guide to assist in selecting the appropriate modeling technique. Unlike two nonlinear soil moisture case studies, the results of the experiment conducted in this research study show that ANNs were a sub-optimal choice for the actual evapotranspiration and the two rainfall-runoff case studies. GP is the most successful technique due to its ability to adapt the model complexity to the modeled data. EPR performance could be close to GP with datasets that are more linear than nonlinear. SVM is sensitive to the kernel choice and if appropriately selected, the performance of SVM can improve. M5 performs very well with linear and semi linear data, which cover wide range of hydrological situations. In highly nonlinear case studies, ANNs, K-nn, and GP could be more successful than other modeling techniques. K-nn is also successful in linear situations, and it should

  12. Investigation of dissolved organic substances in the Northern Dvina under different hydrological seasons

    Science.gov (United States)

    Shorina, Natalia; Spencer, Robert; Klimov, Sergey; Bulygina, Ekaterina; Ladesov, Anton; Shestakov, Semen; Vorobieva, Taisia

    2017-04-01

    The rivers of the Russian Arctic, which include the Northern Dvina, are important sources of organic matter of terrestrial origin to the seas of the Arctic Ocean. The Northern Dvina River accounts for 50% of the entire flow of the river system to the White Sea. The spring freshet period accounts for 60% of the annual hydrological flow, and 80% of the annual flow of riverine suspended sediment. Despite the importance of the study of organic matter in dissolved form for global carbon cycling, this topic has received little attention in this region of Russia. This paper presents results from a study examining dissolved organic matter (DOM) in the Northern Dvina River encompassing different hydrological seasons, utilizing a range of methods for isolation and concentration. The goal of this study was to characterize the molecular features of DOM in the Northern Dvina River across the seasonal hydrograph. IR spectra of the samples were recorded on a FTIR spectrometer Vertex 70 (Bruker, Germany), with a resolution of 4 cm-1, measuring the range 4000-400 cm-1 and 128 recorded parallel determinations. The absorption band at 3200cm-1 and 1600 cm-1 are due to OH group. In the range of 2800-3000 cm-1 we observed bands due to methyl, methylene groups, and possibly the presence of nitrogen-containing C = NH groups. In the area of 1710 cm-1 there is a strong band of carbonyl groups characteristic of aldehydes, ketones and carboxylic acids. The mild band at 1450 cm-1 is noted and can be attributed to the C-C vibrations of the aromatic ring. In the range of 1100-1000 cm-1 is observed a band related to C-O groups. The absorption bands at 1030 cm-1 correspond to C-O-C symmetric stretching vibrations, and at the 1150 cm-1 belongs to the aromatic C-H-planar deformation fluctuations. Based on data from the infrared spectrometry, it should be noted that along with the strongly expressed aliphatic component, studied samples are characterized by the presence of aromatic ring groups. An

  13. Socio-hydrological modelling of floods: investigating community resilience, adaptation capacity and risk

    Science.gov (United States)

    Ciullo, Alessio; Viglione, Alberto; Castellarin, Attilio

    2016-04-01

    Changes in flood risk occur because of changes in climate and hydrology, and in societal exposure and vulnerability. Research on change in flood risk has demonstrated that the mutual interactions and continuous feedbacks between floods and societies has to be taken into account in flood risk management. The present work builds on an existing conceptual model of an hypothetical city located in the proximity of a river, along whose floodplains the community evolves over time. The model reproduces the dynamic co-evolution of four variables: flooding, population density of the flooplain, amount of structural protection measures and memory of floods. These variables are then combined in a way to mimic the temporal change of community resilience, defined as the (inverse of the) amount of time for the community to recover from a shock, and adaptation capacity, defined as ratio between damages due to subsequent events. Also, temporal changing exposure, vulnerability and probability of flooding are also modelled, which results in a dynamically varying flood-risk. Examples are provided that show how factors such as collective memory and risk taking attitude influence the dynamics of community resilience, adaptation capacity and risk.

  14. Investigating the Effects of Land Cover Change on the Hydrology of the Mississippi River Basin

    Science.gov (United States)

    Twine, T. E.; Coe, M. T.; Lenters, J. D.; Kucharik, C. J.; Donner, S.; Foley, J. A.

    2001-12-01

    Humans have greatly altered the Earth's landscape since the beginning of sedentary agriculture. Through the conversion of forests and grasslands to croplands and pasture, human land use activities have changed biogeochemical cycles including the water cycle. Using IBIS, a global land surface model with 0.5-degree resolution (Foley et al., 1996; Kucharik et al., 2000), and HYDRA, a runoff-routing algorithm with 5-minute resolution (Coe, 2000), we have studied how land cover change may affect the hydrology of the Mississippi River Basin. The IBIS model describes physical, physiological, and ecological processes occurring in vegetative canopies and soils. Through forcing from climate data and vegetation and soil properties, IBIS simulates energy, water, and biogeochemical cycles at small time-steps (30-60 minutes). Lenters et al. (2000) have validated the IBIS-modeled water budget over the Mississippi River Basin at several scales and HYDRA-modeled discharge has been compared favorably to United States Geological Survey stream gauge data (Donner et al., 2001). This work extends those studies through use of an improved version of IBIS. The IBIS model has been calibrated for use over the continental United States through an improved phenology routine and the inclusion of corn and soybeans as land cover types. Results from a comparison of a control run of natural vegetation with experimental runs of corn and soybean cover will be shown.

  15. High-speed limnology: using advanced sensors to investigate spatial variability in biogeochemistry and hydrology.

    Science.gov (United States)

    Crawford, John T; Loken, Luke C; Casson, Nora J; Smith, Colin; Stone, Amanda G; Winslow, Luke A

    2015-01-06

    Advanced sensor technology is widely used in aquatic monitoring and research. Most applications focus on temporal variability, whereas spatial variability has been challenging to document. We assess the capability of water chemistry sensors embedded in a high-speed water intake system to document spatial variability. This new sensor platform continuously samples surface water at a range of speeds (0 to >45 km h(-1)) resulting in high-density, mesoscale spatial data. These novel observations reveal previously unknown variability in physical, chemical, and biological factors in streams, rivers, and lakes. By combining multiple sensors into one platform, we were able to detect terrestrial-aquatic hydrologic connections in a small dystrophic lake, to infer the role of main-channel vs backwater nutrient processing in a large river and to detect sharp chemical changes across aquatic ecosystem boundaries in a stream/lake complex. Spatial sensor data were verified in our examples by comparing with standard lab-based measurements of selected variables. Spatial fDOM data showed strong correlation with wet chemistry measurements of DOC, and optical NO3 concentrations were highly correlated with lab-based measurements. High-frequency spatial data similar to our examples could be used to further understand aquatic biogeochemical fluxes, ecological patterns, and ecosystem processes, and will both inform and benefit from fixed-site data.

  16. Use of stable isotopes method in hydrological investigations with special reference to studies in Lower Maner Basin, Andhra Pradesh

    International Nuclear Information System (INIS)

    Kumar, B.; Athavale, R.N.; Sahay, K.S.N.

    1982-01-01

    The study of variations of stable isotope ratios in water is becoming increasingly important in hydrological investigations and is being widely used for: (i) characterizing water masses and indicating their origin, (ii) finding interconnection of water bodies, (iii) estimating leakages for reservoirs, (iv) water balances studies of lakes, (v) glaciological studies, etc. This paper briefly describes the principle of the method and details of isotope ratio measurement techniques used at the National Geophysical Research Institute, Hyderabad. Integrated geohydrological investigations comprising photogeological, hydrogeochemical, geophysical, nuclear and modelling studies have been carried out in the Lower Maner Basin, A.P., under an Indo-German collaboration project. As a part of this programme,, precipitation, surface and sub-surface water samples from the basin were analysed for their D:H and O 18 :O 16 ratios. The results of these measurements are presented and discussed. (author)

  17. GC23G-1310: Investigation Into the Effects of Climate Variability and Land Cover Change on the Hydrologic System of the Lower Mekong Basin

    Science.gov (United States)

    Markert, Kel N.; Griffin, Robert; Limaye, Ashutosh S.; McNider, Richard T.; Anderson, Eric R.

    2016-01-01

    The Lower Mekong Basin (LMB) is an economically and ecologically important region that experiences hydrologic hazards such as floods and droughts, which can directly affect human well-being and limit economic growth and development. To effectively develop long-term plans for addressing hydrologic hazards, the regional hydrological response to climate variability and land cover change needs to be evaluated. This research aims to investigate how climate variability, specifically variations in the precipitation regime, and land cover change will affect hydrologic parameters both spatially and temporally within the LMB. The research goal is achieved by (1) modeling land cover change for a baseline land cover change scenario as well as changes in land cover with increases in forest or agriculture and (2) using projected climate variables and modeled land cover data as inputs into the Variable Infiltration Capacity (VIC) hydrologic model to simulate the changes to the hydrologic system. The VIC model outputs were analyzed against historic values to understand the relative contribution of climate variability and land cover to change, where these changes occur, and to what degree these changes affect the hydrology. This study found that the LMB hydrologic system is more sensitive to climate variability than land cover change. On average, climate variability was found to increase discharge and evapotranspiration (ET) while decreasing water storage. The change in land cover show that increasing forest area will slightly decrease discharge and increase ET while increasing agriculture area increases discharge and decreases ET. These findings will help the LMB by supporting individual country policy to plan for future hydrologic changes as well as policy for the basin as a whole.

  18. Ca2+ influx and efflux in animal cells in the presence of panax notoginseng extracts: investigated by using 45Ca as a radioactive tracer

    International Nuclear Information System (INIS)

    Yang Yuanyou; Liu Ning; Mo Shangwu; Liao Jiali; Xu Falun

    2010-01-01

    In this paper, the influence of extracts of Panax notoginseng on Ca 2+ influx and efflux in isolated rat visceral organs was investigated by using 45 Ca as a radioactive tracer. The results indicated that both extracts, the total flavonoids and total saponins of Panax notoginseng had significant influence on Ca 2+ influx and efflux in the isolated rat aorta, heart, and kidney, in those organs it could markedly block 45 Ca entering into cell and could facilitate efflux of intracellular Ca 2+ . Compared with the total flavonoids, total saponins had stronger role in the regulation of Ca 2+ influx and efflux. Also, regulation effects of Ca 2+ influx and efflux of the total saponins were compared with positive drug Verapamil, or even better. This implies that the total flavonoids and total saponins of Panax notoginseng have calcium antagonistic effect, and both may be the active ingredients in Panax notoginseng for coronary heart disease treatment. (authors)

  19. Hydrological and geophysical investigation of streamflow losses and restoration strategies in an abandoned mine lands setting

    Science.gov (United States)

    Cravotta, Charles A.; Sherrod, Laura; Galeone, Daniel G.; Lehman, Wayne G.; Ackman, Terry E.; Kramer, Alexa

    2017-01-01

    Longitudinal discharge and water-quality campaigns (seepage runs) were combined with surface-geophysical surveys, hyporheic-temperature profiling, and watershed-scale hydrological monitoring to evaluate the locations, magnitude, and impact of streamwater losses from the West Creek subbasin of the West West Branch Schuylkill River into the underground Oak Hill Mine complex that extends beneath the watershed divide. Abandoned mine drainage (AMD), containing iron and other contaminants, from the Oak Hill Boreholes to the West Branch Schuylkill River was sustained during low-flow conditions and correlated to streamflow lost through the West Creek streambed. During high-flow conditions, streamflow was transmitted throughout West Creek; however, during low-flow conditions, all streamflow from the perennial headwaters was lost within the 300-to-600-m "upper reach" where an 1889 mine map indicated steeply dipping coalbeds underlie the channel. During low-flow conditions, the channel within the "intermediate reach" 700-to-1650-m downstream gained groundwater seepage with higher pH and specific conductance than upstream; however, all streamflow 1650-to-2050-m downstream was lost to underlying mines. Electrical resistivity and electromagnetic conductivity surveys indicated conductive zones beneath the upper reach, where flow loss occurred, and through the intermediate reach, where gains and losses occurred. Temperature probes at 0.06-to-0.10-m depth within the hyporheic zone of the intermediate reach indicated potential downward fluxes as high as 2.1x10-5 m/s. Cumulative streamflow lost from West Creek during seepage runs averaged 53.4 L/s, which equates to 19.3 percent of the daily average discharge of AMD from the Oak Hill Boreholes and a downward flux of 1.70x10-5 m/s across the 2.1-km-by-1.5-m West Creek stream-channel area.

  20. Novel S-35 Intrinsic Tracer Method for Determining Groundwater Travel Time near Managed Aquifer Recharge Facilities

    Science.gov (United States)

    Urióstegui, S. H.; Bibby, R. K.; Esser, B. K.; Clark, J. F.

    2013-12-01

    Identifying groundwater travel times near managed aquifer recharge (MAR) facilities is a high priority for protecting public and environmental health. For MAR facilities in California that incorporate tertiary wastewater into their surface-spreading recharge practices, the target subsurface residence time is >9 months to allow for the natural inactivation and degradation of potential contaminants (less time is needed for full advanced treated water). Established intrinsic groundwater tracer techniques such as tritium/helium-3 dating are unable to resolve timescales of method using a naturally occurring radioisotope of sulfur, sulfur-35 (S-35). After its production in the atmosphere by cosmic ray interaction with argon, S-35 enters the hydrologic cycle as dissolved sulfate through precipitation The short half-life of S-35 (3 months) is ideal for investigating recharge and transport of MAR groundwater on the method, however, has not been applied to MAR operations because of the difficulty in measuring S-35 with sufficient sensitivity in high-sulfate waters. We have developed a new method and have applied it at two southern California MAR facilities where groundwater travel times have previously been characterized using deliberate tracers: 1) Rio Hondo Spreading Grounds in Los Angeles County, and 2) Orange County Groundwater Recharge Facilities in Orange County. Reasonable S-35 travel times of method also identified seasonal patterns in subsurface travel times, which may not be revealed by a deliberate tracer study that is dependent on the hydrologic conditions during the tracer injection period.

  1. Investigation on the root distributions of Sivas 111/33 and Gerek A-79 wheat varieties grown under Central Anatolian conditions, using tracer techniques

    International Nuclear Information System (INIS)

    Ozbek, N.; Halitligil, M.B.; Ozdemir, E.

    1988-01-01

    In order to determine the vertical root distributions of Sivas 111/33 and Gerek-79 wheat varieties in the soil profile, two field experiments were conducted at Haymana in 1986, and at Lodumlu in 1987 using tracer techniques and 32 p as a tracer. Randomized complete blocks design as four replications was used. The plot size was 12 m 2 (240 m by 5.00 m) in which 32 p isotope plots were established with dimensions of 0.07 mxl. 25 m=0.875 m 2 . They included 4 rows of wheat and in the middle of these rows, 15 holes (25 cam apart) were opened with a portable drill. The holes either had depths of 30, 60 or 90 cm depending on the treatment selected. 4 ml carrier-free 32 p solutions were injected into the holes with the help of plastic tubes at two times, one after seedling emergence and the other at early spring. Plant samples for radioactivity measurements were taken at four different growth stages, namely tillering, shooting, heading and full maturity. The results obtained from these investigations clearly showed that: 1. The root growth of plants showed differences depending on growth stage and variety. 2. At tillering stage the roots of both wheat varieties were not able to reach to the 90 cm soil depth, however, Sivas 111/33 had relatively shallow rotting system and Gerek-79 had deep rooting system at this stage. 3. At shooting, heading and full maturity stages Sivas 111/33 had more roots than Gerek-79, while at 30 and especially 60 cm soil depths Gerek-79 had more roots. Nearly 26%, 32% and 42% of the total roots of Sivas 111/33, and 15%, 42% and 43% of the total roots of Gerek-79 were found at 90, 60 and 30 cm soil depths, respectively. 4. When compared with Gerek-79, Sivas 111/33 was found to be more suitable for drought conditions

  2. Investigation of isotopes and hydrological processes in Indus river system, Pakistan

    International Nuclear Information System (INIS)

    Manzoor Ahmad, M; Latif, Z.; Tariq, J.A.; Akram, W.; Rafique, M.

    2009-11-01

    Indus River, one of the longest rivers in the World, has five major eastern tributaries viz. Bias, Sutlej, Ravi, Chenab and Jhelum) while many small rivers join it from the right side among which Kabul River is the biggest with its main tributaries, the Swat, Panjkora and Kunar. All these main rivers are perennial and originate from the mountains. Basic sources of these rivers are snow melt, rainfall and under certain conditions seepage from the formations. Different water sources are labeled with different isotope signatures which are used as fingerprints for identifying source and movement of water, geochemical and/or hydrological processes, and dynamics (age of water). Monitoring of isotopes in rivers can also enhance understanding of the water cycle of large river basins and to assess impacts of environmental and climatic changes on the water cycle. Therefore, a national network of suitable stations was established for isotopic monitoring of river waters in Indus Basin with specific objectives to study temporal variations of isotopes (/sup 2/H, /sup 18/O and /sup 3/H), understand water cycles and hydrological processes in the catchments of these rivers, and to develop comprehensive database to support future isotope-based groundwater studies in the basin on recharge mechanism, water balance and monitoring of ongoing environmental changes. Water samples were collected during 2002-2006 on monthly basis from more than 20 stations at the major rivers and analyzed for /sup 18/O, /sup 2/H and /sup 3/H isotopes. Headwaters of main Indus River (Hunza, Gilgit and Kachura tributaries), which are generally snow melt, have the most depleted values of delta /sup 18/O (-14.5 to -11.0%) and delta /sup 2/H ( 106.1 to -72.6%) due to precipitation at very high altitude and very low temperatures. Generally these waters have low d-excess showing that the moisture source is from Indian Ocean. High d-excess of some winter (November-February) samples from Hunza and Gilgit indicates

  3. Estimation of Fracture Porosity in an Unsaturated Fractured Welded Tuff Using Gas Tracer Testing

    Energy Technology Data Exchange (ETDEWEB)

    B.M. Freifeild

    2001-10-18

    Kinematic fracture porosity is an important hydrologic transport parameter for predicting the potential of rapid contaminant migration through fractured rock. The transport velocity of a solute moving within a fracture network is inversely related to the fracture porosity. Since fracture porosity is often one or two orders of magnitude smaller than matrix porosity, and fracture permeability is often orders of magnitude greater than matrix permeability, solutes may travel significantly faster in the fracture network than in the surrounding matrix. This dissertation introduces a new methodology for conducting gas tracer tests using a field portable mass spectrometer along with analytical tools for estimating fracture porosity using the measured tracer concentration breakthrough curves. Field experiments were conducted at Yucca Mountain, Nevada, consisting of air-permeability transient testing and gas-tracer-transport tests. The experiments were conducted from boreholes drilled within an underground tunnel as part of an investigation of rock mass hydrological behavior. Air-permeability pressure transients, recorded during constant mass flux injections, have been analyzed using a numerical inversion procedure to identify fracture permeability and porosity. Dipole gas tracer tests have also been conducted from the same boreholes used for air-permeability testing. Mass breakthrough data has been analyzed using a random walk particle-tracking model, with a dispersivity that is a function of the advective velocity. The estimated fracture porosity using the tracer test and air-injection test data ranges from .001 to .015. These values are an order of magnitude greater than the values estimated by others using hydraulically estimated fracture apertures. The estimates of porosity made using air-permeability test data are shown to be highly sensitive to formation heterogeneity. Uncertainty analyses performed on the gas tracer test results show high confidence in the parameter

  4. Estimation of fracture porosity in an unsaturated fractured welded tuff using gas tracer testing

    Energy Technology Data Exchange (ETDEWEB)

    Freifeld, Barry Mark [Univ. of California, Berkeley, CA (United States)

    2001-12-01

    Kinematic fracture porosity is an important hydrologic transport parameter for predicting the potential of rapid contaminant migration through fractured rock. The transport velocity of a solute moving within a fracture network is inversely related to the fracture porosity. Since fracture porosity is often one or two orders of magnitude smaller than matrix porosity, and fracture permeability is often orders of magnitude greater than matrix permeability, solutes may travel significantly faster in the fracture network than in the surrounding matrix. This dissertation introduces a new methodology for conducting gas tracer tests using a field portable mass spectrometer along with analytical tools for estimating fracture porosity using the measured tracer concentration breakthrough curves. Field experiments were conducted at Yucca Mountain, Nevada, consisting of air-permeability transient testing and gas-tracer-transport tests. The experiments were conducted from boreholes drilled within an underground tunnel as part of an investigation of rock mass hydrological behavior. Air-permeability pressure transients, recorded during constant mass flux injections, have been analyzed using a numerical inversion procedure to identify fracture permeability and porosity. Dipole gas tracer tests have also been conducted from the same boreholes used for air-permeability testing. Mass breakthrough data has been analyzed using a random walk particle-tracking model, with a dispersivity that is a function of the advective velocity. The estimated fracture porosity using the tracer test and air-injection test data ranges from .001 to .015. These values are an order of magnitude greater than the values estimated by others using hydraulically estimated fracture apertures. The estimates of porosity made using air-permeability test data are shown to be highly sensitive to formation heterogeneity. Uncertainty analyses performed on the gas tracer test results show high confidence in the parameter

  5. Estimation of Fracture Porosity in an Unsaturated Fractured Welded Tuff Using Gas Tracer Testing

    International Nuclear Information System (INIS)

    B.M. Freifeild

    2001-01-01

    Kinematic fracture porosity is an important hydrologic transport parameter for predicting the potential of rapid contaminant migration through fractured rock. The transport velocity of a solute moving within a fracture network is inversely related to the fracture porosity. Since fracture porosity is often one or two orders of magnitude smaller than matrix porosity, and fracture permeability is often orders of magnitude greater than matrix permeability, solutes may travel significantly faster in the fracture network than in the surrounding matrix. This dissertation introduces a new methodology for conducting gas tracer tests using a field portable mass spectrometer along with analytical tools for estimating fracture porosity using the measured tracer concentration breakthrough curves. Field experiments were conducted at Yucca Mountain, Nevada, consisting of air-permeability transient testing and gas-tracer-transport tests. The experiments were conducted from boreholes drilled within an underground tunnel as part of an investigation of rock mass hydrological behavior. Air-permeability pressure transients, recorded during constant mass flux injections, have been analyzed using a numerical inversion procedure to identify fracture permeability and porosity. Dipole gas tracer tests have also been conducted from the same boreholes used for air-permeability testing. Mass breakthrough data has been analyzed using a random walk particle-tracking model, with a dispersivity that is a function of the advective velocity. The estimated fracture porosity using the tracer test and air-injection test data ranges from .001 to .015. These values are an order of magnitude greater than the values estimated by others using hydraulically estimated fracture apertures. The estimates of porosity made using air-permeability test data are shown to be highly sensitive to formation heterogeneity. Uncertainty analyses performed on the gas tracer test results show high confidence in the parameter

  6. Development of isotope hydrology technology in China

    International Nuclear Information System (INIS)

    Li Zhangsu

    1988-01-01

    The development of isotope hydrology technology in China is described. The isotope technology provides an independent approach for solving hydrological problems. Isotope hydrology is applied in three ways: the use of change in environmental isotopic composition of water (especially used in water resources exploitation), the use of artificial radioactive tracers and the use of redioisotope instruments. Many important achievements have been obtained in application of isotopic hydrology technology. For the sake of promoting rapid development of isotope hydrology the topics on management, technology and others are commented

  7. Numerical modeling and experimental investigation of the local hydrology of a porous concrete site.

    Science.gov (United States)

    2011-10-01

    Although porous pavement use has been accepted as a successful stormwater management practice in warm climates, application in regions with colder climates, like New England, is still under investigation. The Randolph Park and Ride Site, which is the...

  8. Applications of AMS to hydrology

    International Nuclear Information System (INIS)

    Bentley, H.W.; Davis, S.N.

    1981-01-01

    The evaluation and management of water as a resource requires an understanding of the chemical, and geological interactions that water effects or undergoes in the hydrologic cycle. Delivery of water to the land surface by precipitation, subsequent streamflow, circulation in surface waters and evapotranspiration, infiltration, recharge, movement of waters in the subsurface, and discharge are of interest. Also important are the quality of water, water's role in mineral dissolution, transport, and deposition, and the various water-related geotechnical problems of subsidence, tectonics, slope instability, and earth structures. Mathematical modeling techniques are available and are being improved which describe these phenomena and predict future system behavior. Typically, however, models suffer from substantial uncertainties due to insufficient data. Refinement, calibration,and verification of hydrologic models require expansion of the data base. Examination of chemical constituents of water which act as tracers can often supply the needed information. Unfortunately, few tracers are available which are both mobile and chemically stable. Several long-lived radioisotopic hydrologic tracers exist, however, which have received little attention in hydrologic studies to date because of low concentration, low specific activity, or sample size limitations. Recent development of ultra-sensitive accelerator mass spectrometry techniques (AMS) by Purser and others (1977), Nelson and others (1977), Bennett and others (1978), Muller and others (1978), Raisbeck and others (1978) is now expected to provide access to many of these tracers

  9. Investigations on extraction separation of noble metals from secondary raw materials by means of tracer technique application

    International Nuclear Information System (INIS)

    Urban'ski, T.S.; Migdal, V.; Lada, V.

    1979-01-01

    In laboratory scale equilibrium and kinetics of the liquid extraction of gold, platinum and palladium from chloride and nitrate-chloride solutions were investigated. Experiments were done using model solutions and solutions, obtained in processing of secondary raw materials, for example: solutions in aqua regia of anode slurries after electrical refining of silver and jewelry wastes, as well as solutions after extraction of silver from nitrate mwdia. In investigations for determination of the extraction factor, the radioisotope indicators method have been used. Gold-198, platinum-197, palladium-109, silver-110 m and copper-64 were used. Radioisotope platinum-197 was refined from gold-199 on the ionite Dauex 50VX2 in the medium of hydrobromic acid. Gold was extracted by neutral extraction agents such as tributilphosphate; methylizobutylketone; amylacetate; amil alcohol; 2-ethylhexanol and dibutylcarbitol. In details extraction of palladium and platinum by tri-n-actylamine in different diluents with additions of modifiers, as well as their extraction by aliquat 336 in benzene and by some petroleum products. Influence was determined of the time of phases contact, of application of diluents, influence of extracting agents concentrations on the magnitude of extraction factor and on the separation factor for investigated metals [ru

  10. Investigations of processes of mixing in fabrication of carbonaceous materials and materials of silicon carbide by means of tracer technique

    International Nuclear Information System (INIS)

    Vagner, K.; Bruchin, F.; Ritter, I.; Grech, T.; Tsimmermann, V.; Ebert, G.

    1979-01-01

    A necessary condition for production of carbonic and SiC materials is providing for good mixing of liquid and solid components. Some experiments have been done by application of the method of radioactive marking of one of the components to be mixed for the purpose of investigation of the mixing process in an installation with capacity up to 2000 kg. Marking by the bromine-82 - naphthalene has been found to be suitable. The state of mixture is characterized by the homogeneity of radioactivity distribution which can be determined by measurement of gamma-radiation of series of samples. The mass of sample is from 1 to 100 g, depending on the volume of mixer. Besides it, fine distribution of components was determined by the contact autoradiography of flat surfaces of samples. The results of investigations give possibility to establish technological time of mixing, to compare different mixers and technologies of mixing as well as to determine behaviour of the mixed components. Recommendations have been developed on standardization of this method. Necessary means of radiation protection have been described [ru

  11. The constant rate injection tracer method - principle and application of a useful system for the investigation of single- and two-phase flows in thermal power plants

    International Nuclear Information System (INIS)

    Ederhof, A.; Lindberg, G.

    1985-01-01

    The ''tracer technique'', developed by Brown, Boveri and Company, permits measurement of water (liquid) mass flows, as part of the requested steam wetness, in steam turbine cycles. The additionally required steam mass flows can be calculated from mass flow balances (e.g. after condensation in a heater and subsequent measuring of the condensate flow) or energy balances. This measuring method is basically a dilution measurement using a radioactive or inactive tracer. If the radionuclide 24 Na is used, the measuring uncertainties will be typically 0.5-1.0%. The tracer technique was developed for largely automated parallel measurements on up to 30 lines of large capacity steam turbines. The example of the Ringhals 3 nuclear power plant illustrates that the tracer measuring method, applied during an acceptance test, yields better information on the functioning of the turbine cycle. (orig./GL) [de

  12. Forest hydrology

    Science.gov (United States)

    Ge Sun; Devendra Amatya; Steve McNulty

    2016-01-01

    Forest hydrology studies the distribution, storage, movement, and quality of water and the hydrological processes in forest-dominated ecosystems. Forest hydrological science is regarded as the foundation of modern integrated water¬shed management. This chapter provides an overview of the history of forest hydrology and basic principles of this unique branch of...

  13. Multi-property characterization chamber for geophysical-hydrological investigations of hydrate bearing sediments

    Energy Technology Data Exchange (ETDEWEB)

    Seol, Yongkoo, E-mail: Yongkoo.Seol@netl.doe.gov; Choi, Jeong-Hoon; Dai, Sheng [National Energy Technology Laboratory, U.S. Department of Energy, Morgantown, West Virginia 26507 (United States)

    2014-08-01

    With the increase in the interest of producing natural gas from methane hydrates as well as potential risks of massive hydrate dissociation in the context of global warming, studies have recently shifted from pure hydrate crystals to hydrates in sediments. Such a research focus shift requires a series of innovative laboratory devices that are capable of investigating various properties of hydrate-bearing sediments (HBS). This study introduces a newly developed high pressure testing chamber, i.e., multi-property characterization chamber (MPCC), that allows simultaneous investigation of a series of fundamental properties of HBS, including small-strain stiffness (i.e., P- and S-waves), shear strength, large-strain deformation, stress-volume responses, and permeability. The peripheral coolant circulation system of the MPCC permits stable and accurate temperature control, while the core holder body, made of aluminum, enables X-ray computer tomography scanning to be easily employed for structural and morphological characterization of specimens. Samples of hydrate-bearing sediments are held within a rubber sleeve inside the chamber. The thick sleeve is more durable and versatile than thin membranes while also being much softer than oedometer-type chambers that are incapable of enabling flow tests. Bias introduced by the rubber sleeve during large deformation tests are also calibrated both theoretically and experimentally. This system provides insight into full characterization of hydrate-bearing sediments in the laboratory, as well as pressure core technology in the field.

  14. Multi-property characterization chamber for geophysical-hydrological investigations of hydrate bearing sediments

    International Nuclear Information System (INIS)

    Seol, Yongkoo; Choi, Jeong-Hoon; Dai, Sheng

    2014-01-01

    With the increase in the interest of producing natural gas from methane hydrates as well as potential risks of massive hydrate dissociation in the context of global warming, studies have recently shifted from pure hydrate crystals to hydrates in sediments. Such a research focus shift requires a series of innovative laboratory devices that are capable of investigating various properties of hydrate-bearing sediments (HBS). This study introduces a newly developed high pressure testing chamber, i.e., multi-property characterization chamber (MPCC), that allows simultaneous investigation of a series of fundamental properties of HBS, including small-strain stiffness (i.e., P- and S-waves), shear strength, large-strain deformation, stress-volume responses, and permeability. The peripheral coolant circulation system of the MPCC permits stable and accurate temperature control, while the core holder body, made of aluminum, enables X-ray computer tomography scanning to be easily employed for structural and morphological characterization of specimens. Samples of hydrate-bearing sediments are held within a rubber sleeve inside the chamber. The thick sleeve is more durable and versatile than thin membranes while also being much softer than oedometer-type chambers that are incapable of enabling flow tests. Bias introduced by the rubber sleeve during large deformation tests are also calibrated both theoretically and experimentally. This system provides insight into full characterization of hydrate-bearing sediments in the laboratory, as well as pressure core technology in the field

  15. Evolution of microbial activity in a mediterranean ecosystem submitted to chronic gamma irradiation. Investigation of nitrogen transfer with isotopic tracers

    International Nuclear Information System (INIS)

    Castet, R.

    1987-07-01

    A mediterranean ecosystem located on the site of Cadarache (France) has been experimentally by irradiated over the past fifteen years. The potential effects of ionizing radiations for different doses of its ecological system has been studied. The objective of the work was to demonstrate the level of soil microbial population and its activity. Chronic exposures reduced the biomass and the dehydrogenase activity by a factor of 50% and increased the amount of nitrate in the soil. To measure the direct impact of irradiations on soil microorganisms, we have irradiated soil sample in laboratory at 0.1; 0.5; 1 kGy, and observed its evolution during a period of six weeks thereafter. We have a reduction of the dehydrogenase activity and an increase of nitrate being proportionaly to the dose delivered. Using nitrogen labelled, we state that this high rate of nitrate production is due to an inhibition of the organization of this form of nitrogen. Conversely, the ammonification and the nitrification are not affected. Also, for anaerobic conditions created by glucose, the nitrate labelled (15N) permitted us to show that in untreated soil, 45% of nitrate was reduced to nitrogen gas by denitrification and 24% of nitrate was reduced to ammonium by dissimilation in the irradiated soil. These experiments show that gamma irradiations are of great interest for studying soil microorganisms. As of now, very little is known on the effects of this kind of stress for attention and need to be pursued on such ecosystems. Further investigations call [fr

  16. Assessing the hydrological impacts of Tropical Cyclones on the Carolinas: An observational and modeling based investigation

    Science.gov (United States)

    Leeper, R. D.; Prat, O. P.; Blanton, B. O.

    2012-12-01

    During the warm season, the Carolinas are particularly prone to tropical cyclone (TC) activity and can be impacted in many different ways depending on storm track. The coasts of the Carolinas are the most vulnerable areas, but particular situations (Frances and Ivan 2004) affected communities far from the coasts (Prat and Nelson 2012). Regardless of where landfall occurs, TCs are often associated with intense precipitation and strong winds triggering a variety of natural hazards (storm surge, flooding, landslides). The assessment of societal and environmental impacts of TCs requires a suite of observations. The scarcity of station coverage, sensor limitations, and rainfall retrieval uncertainties are issues limiting the ability to assess accurately the impact of extreme precipitation events. Therefore, numerical models, such as the Weather Research and Forecasting model (WRF), can be valuable tools to investigate those impacts at regional and local scales and bridge the gap between observations. The goal of this study is to investigate the impact of TCs across the Carolinas using both observational and modeling technologies, and explore the usefulness of numerical methods in data-scarce regions. To fully assess TC impacts on the Carolinas inhabitants, storms impacting both coastal and inner communities will be selected and high-resolution WRF ensemble simulations generated from a suite of physic schemes for each TC to investigate their impact at finer scales. The ensemble member performance will be evaluated with respect to ground-based and satellite observations. Furthermore, results from the high-resolution WRF simulations, including the average wind-speed and the sea level pressure, will be used with the ADCIRC storm-surge and wave-model (Westerink et al, 2008) to simulate storm surge and waves along the Carolinas coast for TCs travelling along the coast or making landfall. This work aims to provide an assessment of the various types of impacts TCs can have

  17. Selection of tracers for oil and gas evaluation

    International Nuclear Information System (INIS)

    Bjoernstad, T.

    1991-08-01

    The importance of tracer tests in reservoir descriptions is increasingly acknowledged by reservoir engineers as a method to obtain valuable dynamic information from the reservoir. The report describes the ''state-of-the art'' on tracer technology for interwell investigations. Experiences gained from a number of reported field tracer tests are reviewed, and results from detailed laboratory investigations on the static and dynamic behavior of various tracer molecules are discussed. A critical evaluation of the applicability of the various identified tracers is provided. Present and future trends in the development of tracer technology for reservoir description are sketched. 64 refs., 12 figs., 2 tabs

  18. Tracer a application in marine outfall studies

    International Nuclear Information System (INIS)

    Genders, S.

    1979-01-01

    The applicability of radioactive and fluorescent tracers for field studies to predict or investigate waste water transport and dispersion from marine outfalls is evaluated. The application of either instantaneous or continuous tracer release, 'in situ' detection of tracers and data processing are considered. The necessity of a combined use of tracer techniques and conventional hydrographic methods for a statistical prediction of transport and dillution of waste water are pointed out. A procedure to determine an outlet distance from the coast, which satisfy bathing water criteria is outlined. (M.A.) [pt

  19. Geological and hydrological investigations at Sidi Kreir Site, west of Alexandria, Egypt

    International Nuclear Information System (INIS)

    El-Shazly, E.M.; Shehata, W.M.; Somaida, M.A.

    1978-01-01

    Sidi-Kreir site lies along the Mediterranean Sea coast at km 30 to km 33 westwards from the center of the city of Alexandria. The studied site covers approximately 10 km 2 from the Mediterranean Sea northward to Mallehet (Lake) Maryut southward. This study includes the results of geological investigation of the site both structurally and stratigraphically, and the groundwater conditions, in relation to the erection of a nuclear power station in the site. The surface geology has been mapped using aerial photographs on scale of 1:20,000. Twenty-five drillholes were core-drilled in order to outline the subsurface geology and to observe the groundwater fluctuations. Selected core samples and soil samples were tested geologically in thin sections, physically and mechanically. Water samples were also collected and tested for total dissolved solids and specific weight. Groundwater level fluctuations were observed for a period of one year in 75 wells and drillholes. Furthermore three pumping tests were conducted to estimate the hydraulic properties of the freshwater aquifer. These properties were also calculated using the core samples data

  20. Hydrology and water resources overview for the Nevada Nuclear Waste Storage Investigations, Nevada Test Site, Nye County, Nevada: annotated bibliography

    International Nuclear Information System (INIS)

    French, R.H.; Elzeftawy, A.; Elliot, B.

    1984-06-01

    The literature available regarding hydrology and utilization of water resources in the southwestern Nevada Test Site area is reviewed. In the context of this annotated bibliography, hydrology is defined to include hydrometeorology, surface water resources, and groundwater resources. Water utilization includes water supply, demand and use; future supply, demand and use; and wastewater treatment and disposal. The bibliography is arranged in alphabetical order and indexed with both technical key words and geographical key words

  1. Methods for conduct of atmospheric tracer studies at ANSTO

    Energy Technology Data Exchange (ETDEWEB)

    Clark, G H; Stone, D J.M.; Pascoe, J H [Australian Nuclear Science and Technology Organisation (ANSTO), Lucas Heights, NSW (Australia). Environment Division

    2000-07-01

    A perfluorocarbon atmospheric tracer system has been developed to investigate atmospheric dispersion processes in the region surrounding the Lucas Heights Science and Technology Centre. This report discusses the tracer release, sampling and analysis methods.

  2. How important is the spatiotemporal structure of a rainfall field when generating a streamflow hydrograph? An investigation using Reverse Hydrology

    Science.gov (United States)

    Kretzschmar, Ann; Tych, Wlodek; Beven, Keith; Chappell, Nick

    2017-04-01

    the UK of a similar size would only have data available for 1 to 3 raingauges. The high density of the Brue raingauge network allows a good estimate of the 'True' catchment rainfall to be made and compared with data from an individual raingauge as if that was the only data available. In addition the rainfall from each raingauge is compared with rainfall inferred from streamflow using data from the selected individual raingauge, and also inferred from the full catchment network. The stochastic structure of the rainfall from all of these datasets is compared using a combination of traditional statistical measures, i.e., the first 4 moments of rainfall totals and its residuals; plus the number, length and distribution of wet and dry periods; rainfall intensity characteristics; and their ability to generate the observed stream hydrograph. Reverse Hydrology, which utilises information present in both the input rainfall and the output hydrograph, has provided a method of investigating the quality of the information each gauge adds to the catchment-average (Kretzschmar et al 2016 Procedia Eng.). Further, it has been used to ascertain how important reproducing the detailed rainfall structure really is, when used for flow prediction.

  3. The Mica Creek Experimental Watershed: An Outdoor Laboratory for the Investigation of Hydrologic Processes in a Continental/Maritime Mountainous Environment

    Science.gov (United States)

    Link, T. E.; Gravelle, J.; Hubbart, J.; Warnsing, A.; Du, E.; Boll, J.; Brooks, E.; Cundy, T.

    2004-12-01

    Experimental catchments have proven to be extremely useful for investigations focused on fundamental hydrologic processes and on the impacts of land cover change on hydrologic regimes and water quality. Recent studies have illustrated how watershed responses to experimental treatments vary greatly between watersheds with differing physical, ecological and hydroclimatic characteristics. Meteorological and hydrological data within catchments are needed to help identify how hydrologic mechanisms may be altered by land cover alterations, and to both constrain and develop spatially-distributed physically based models. Existing instrumentation at the Mica Creek Experimental Watershed (MCEW) in northern Idaho is a fourth-order catchment that is undergoing expansion to produce a comprehensive dataset for model development and testing. The experimental catchments encompass a 28 km2 area spanning elevations from 975 to 1725 m msl. Snow processes dominate the hydrology of the catchment and climate conditions in the winter alternate between cold, dry continental and warm, moist maritime weather systems. Landcover is dominated by 80 year old second growth conifer forests, with partially cut (thinned) and clear-cut sub-catchments. Climate and precipitation data are collected at a SNOTEL site, three primary, and seven supplemental meteorological stations stratified by elevation and canopy cover. Manual snow depth measurements are recorded every 1-2 weeks during snowmelt, stratified by aspect, elevation and canopy cover. An air temperature transect spans three second-order sub-catchments to track air temperature lapse rate dynamics. Precipitation gauge arrays are installed within thinned and closed-canopy stands to track throughfall and interception loss. Nine paired and nested sub-catchments are monitored for flow, temperature, sediment, and nutrients. Hydroclimatic data are augmented by LiDAR and hyperspectral imagery for determination of canopy and topographic structure

  4. Suitability of tracers; Eignung von Tracern

    Energy Technology Data Exchange (ETDEWEB)

    Klotz, D. [GSF - Forschungszentrum fuer Umwelt und Gesundheit GmbH, Neuherberg (Germany). Inst. fuer Hydrologie

    1999-02-01

    Hydrological tracer techniques are a means of making statements on the direction and speed of underground water. One of the simpler tasks is to find out whether there is hydrological communication between two given points. This requires a determination of the direction of flow, which places less exacting demands on the properties of the tracer than does the task of determining the flow velocity of underground water. Tracer methods can serve to infer from flow velocity the distance (flow) velocity, which is defined as the ratio between the distance between two points located in flow direction and the actual time it takes water to flow from one to the other. [Deutsch] Mit Hilfe der hydrologischen Markierungstechniken koennen Aussagen ueber die Richtung und die Geschwindigkeit von Bewegungen des unterirdischen Wassers gemacht werden. Der einfachere Fall liegt vor, wenn festgestellt werden soll, ob zwischen zwei Punkten eine hydrologische Verbindung besteht. Bei dieser Fliessrichtungsbestimmung sind die Forderungen an die Eigenschaften der einzusetzenden Tracer geringer als bei der Bestimmung der Geschwindigkeit des unterirdischen Wassers. Von den Geschwindigkeiten des unterirdischen Wassers ist die Abstands-(Fliess)geschwindigkeit, die definiert ist durch das Verhaeltnis aus dem Abstand und der wahren Fliesszeit zwischen zwei in Bewegungsrichtung gelegenen Punkten, durch Tracermethoden zu bestimmen. (orig.)

  5. Coupled Monitoring and Inverse Modeling to Investigate Surface - Subsurface Hydrological and Thermal Dynamics in the Arctic Tundra

    Science.gov (United States)

    Tran, A. P.; Dafflon, B.; Hubbard, S. S.; Bisht, G.; Peterson, J.; Ulrich, C.; Romanovsky, V. E.; Kneafsey, T. J.; Wu, Y.

    2015-12-01

    Quantitative characterization of the soil surface-subsurface hydrological and thermal processes is essential as they are primary factors that control the biogeochemical processes, ecological landscapes and greenhouse gas fluxes. In the Artic region, the surface-subsurface hydrological and thermal regimes co-interact and are both largely influenced by soil texture and soil organic content. In this study, we present a coupled inversion scheme that jointly inverts hydrological, thermal and geophysical data to estimate the vertical profiles of clay, sand and organic contents. Within this inversion scheme, the Community Land Model (CLM4.5) serves as a forward model to simulate the land-surface energy balance and subsurface hydrological-thermal processes. Soil electrical conductivity (from electrical resistivity tomography), temperature and water content are linked together via petrophysical and geophysical models. Particularly, the inversion scheme accounts for the influences of the soil organic and mineral content on both of the hydrological-thermal dynamics and the petrophysical relationship. We applied the inversion scheme to the Next Generation Ecosystem Experiments (NGEE) intensive site in Barrow, AK, which is characterized by polygonal-shaped arctic tundra. The monitoring system autonomously provides a suite of above-ground measurements (e.g., precipitation, air temperature, wind speed, short-long wave radiation, canopy greenness and eddy covariance) as well as below-ground measurements (soil moisture, soil temperature, thaw layer thickness, snow thickness and soil electrical conductivity), which complement other periodic, manually collected measurements. The preliminary results indicate that the model can well reproduce the spatiotemporal dynamics of the soil temperature, and therefore, accurately predict the active layer thickness. The hydrological and thermal dynamics are closely linked to the polygon types and polygon features. The results also enable the

  6. Nuclear well logging in hydrology

    International Nuclear Information System (INIS)

    1971-01-01

    they are described in detail elsewhere. The tracer techniques which have been included involve the use of well-logging methods to locate isotopic tracers inserted either in an adjacent borehole or in the same borehole as that in which the logs are made. Throughout the report, sufficient references have been selected to ensure that proven methods are adequately represented, but a comprehensive bibliography is not included. The International Atomic Energy Agency, at the request of the Coordinating Council of the International Hydrological Decade, is providing the Secretariat for the Working Group on Nuclear Techniques in Hydrology of the International Hydrological Decade (IHD). The Working Group and Secretariat have contributed to and coordinated the preparation of this report as well as an earlier more general report, Guidebook on Nuclear Techniques in Hydrology, IAEA Technical Reports Series No.91. Nuclear logging, along with other borehole geophysical methods, was adopted and developed primarily by the petroleum industry for use in exploration and developmental work. The information in this report shows that nuclear logging may also be useful in hydrology. Qualitative and under proper conditions quantitative interpretations about the physical, chemical, petrographic and hydraulic properties of formations and their contained fluids can be made from nuclear logs. The IHD Working Group on Nuclear Techniques in Hydrology, during its fourth meeting (in 1969), considered in detail the present status of nuclear logging with respect to hydrological investigations. Particularly it considered: (1) whether suitable equipment is at present available; (2) whether it could fulfil the need of hydrologists today; and (3) whether it was yet economic for use in hydrological investigations. The Working Group noted that the two main deficiencies in nuclear logging for hydrological purposes are: (1) the general lack of information in a coordinated form, and (2) the scarcity of

  7. Results of repeat tracer tests at Ohaaki, NZ

    International Nuclear Information System (INIS)

    McCabe, W.J.; Morris, C.

    1995-01-01

    During 20 years of tracer testing at Ohaaki a number of wells have been used more than once as tracer injection sites. In studying the various responses obtained it has been necessary to consider variations in the experimental test conditions before making comparisons which relate to field conditions. Some very significant changes have occurred in the field hydrology in recent years and water flow speeds as high as those encountered at Wairakei have been demonstrated. (author). 4 refs., 2 tabs., 10 figs

  8. Tracer techniques in food industry

    International Nuclear Information System (INIS)

    Pertsovskij, E.S.; Sakharov, Eh.V.; Dolinin, V.A.

    1980-01-01

    The appicability of radioactive tracer techniques to process control in food industry are considered. Investigations in the field of food industry carried out using the above method are classified. The 1 class included investigations with preliminary preparation of a radioactive indicator and its following introduction in the system studied. The 2 class includes investigations based on the introduction in the system studied of a non-active indicator which is activated in a neutron flux being in samples selected in or after the process investigated. The 3 class includes studies based on investigations of natural radioactivity of certain nuclides in food stuff. The application of tracer techniques to the above classes of investigations in various fields of food industry and the equipment applied are considered in detail [ru

  9. An integrated approach to investigate the hydrological behavior of the Santa Fe River Basin, north central Florida

    Science.gov (United States)

    Vibhava, F.; Graham, W. D.; De Rooij, R.; Maxwell, R. M.; Martin, J. B.; Cohen, M. J.

    2011-12-01

    The Santa Fe River Basin (SFRB) consists of three linked hydrologic units: the upper confined region (UCR), semi-confined transitional region (Cody Escarpment, CE) and lower unconfined region (LUR). Contrasting geological characteristics among these units affect streamflow generation processes. In the UCR, surface runoff and surficial stores dominate whereas in the LCR minimal surface runoff occurs and flow is dominated by groundwater sources and sinks. In the CE region the Santa Fe River (SFR) is captured entirely by a sinkhole into the Floridan aquifer, emerging as a first magnitude spring 6 km to the south. In light of these contrasting hydrological settings, developing a predictive, basin scale, physically-based hydrologic simulation model remains a research challenge. This ongoing study aims to assess the ability of a fully-coupled, physically-based three-dimensional hydrologic model (PARFLOW-CLM), to predict hydrologic conditions in the SFRB. The assessment will include testing the model's ability to adequately represent surface and subsurface flow sources, flow paths, and travel times within the basin as well as the surface-groundwater exchanges throughout the basin. In addition to simulating water fluxes, we also are collecting high resolution specific conductivity data at 10 locations throughout the river. Our objective is to exploit hypothesized strong end-member separation between riverine source water geochemistry to further refine the PARFLOW-CLM representation of riverine mixing and delivery dynamics.

  10. Hydrology Project

    International Nuclear Information System (INIS)

    Anon.

    Research carried out in the 'Hydrology Project' of the Centro de Energia Nuclear na Agricultura', Piracicaba, Sao Paulo State, Brazil, are described. Such research comprises: Amazon hydrology and Northeast hydrology. Techniques for the measurement of isotope ratios are used. (M.A.) [pt

  11. Exploring Hydrofluorocarbons as Groundwater Age Tracers (Invited)

    Science.gov (United States)

    Haase, K. B.; Busenberg, E.; Plummer, L. N.; Casile, G.; Sanford, W. E.

    2013-12-01

    Groundwater dating tracers are an essential tool for analyzing hydrologic conditions in groundwater systems. Commonly used tracers for dating post-1940's groundwater include sulfur hexafluoride (SF6), chlorofluorocarbons (CFCs), 3H-3He, and other isotopic tracers (85Kr, δ2H and δ18O isotopes, etc.). Each tracer carries a corresponding set of advantages and limitations imposed by field, analytical, and interpretive methods. Increasing the number available tracers is appealing, particularly if they possess inert chemical properties and unique temporal emission histories from other tracers. Atmospherically derived halogenated trace gases continue to hold untapped potential for new tracers, as they are generally inert and their emission histories are well documented. SF5CF3, and CFC-13 were previously shown to have application as dating tracers, though their low mixing ratios and low solubility require large amounts of water to be degassed for their quantification. Two related groups of compounds, hydrochlorofluorocarbons (HCFCs) and hydrofluorocarbons (HFCs) are hypothesized to be potential age tracers, having similar mixing ratios to the CFCs and relatively high solubility. However, these compounds yield gas chromatography electron capture detector (GC-ECD) responses that are 10-2 -10-5 less than CFC-12, making purge and trap or field stripping GC-ECD approaches impractical. Therefore, in order to use dissolved HCFCs and HFCs as age tracers, different approaches are needed. To solve this problem, we developed an analytical method that uses an atomic emission detector (GC-AED) in place of an ECD to detect fluorinated compounds. In contrast to the ECD, the AED is a universally sensitive, highly linear, elementally specific detector. The new GC-AED system is being used to measure chlorodifluoromethane (HCFC-22), 1,1,1,2-tetrafluoroethane (HFC-134a), and other fluorinated compounds in one liter water samples to study their potential as age dating tracers. HCFC-22 is a

  12. New radioactive tracers can help find cause of jaundice

    International Nuclear Information System (INIS)

    Carrard, G.

    1987-01-01

    Radioactive tracers for the investigation of a condition known as persistent jaundice of the newborn, have been designed, prepared and tested at ANSTO. The tracers are chemical compounds of the radioactive elements gallium-67 and indium-111. They given lower radiation doses than the conventional radioactive tracer, iodine-131, used in these studies

  13. Annual report 1992 of the GSF Institute of Hydrology

    International Nuclear Information System (INIS)

    1993-08-01

    The main areas of activities in the period under review are the material cycles, the geochemistry of heavy metals and of radio-nuclides, and the transport of substances in the aquatic environment and the atmospheric environment. With particular emphasis on the ground water and the substances dissolved therein. Site-specific hydro-geological studies and studies into the isotope hydrology, also at the sites of repositories, are presented. Within the framework of investigations of the poleo-climate, the Institute carried out studies on the isotope stratigraphy in the Antarctica. Novel developments in tracer techniques are reported. (orig.) [de

  14. Annual report 1990 of the GSF Institute of Hydrology

    International Nuclear Information System (INIS)

    1991-10-01

    The main areas of activities in the period under review are the material cycles, the geochemistry of heavy metals and of radio-nuclides, and the transport of substances in the aquatic environment and the atmospheric environment, with particular emphasis on the ground water and the substances dissolved therein. Site-specific hydro-geological studies and studies into the isotope hydrology, also at the sites of repositories, are presented. Within the framework of investigations of the poleo-climate, the Institute carried out studies on the isotope stratigraphy in the Antarctica. Novel developments in tracer techniques are reported. (DG) [de

  15. Packet Tracer network simulator

    CERN Document Server

    Jesin, A

    2014-01-01

    A practical, fast-paced guide that gives you all the information you need to successfully create networks and simulate them using Packet Tracer.Packet Tracer Network Simulator is aimed at students, instructors, and network administrators who wish to use this simulator to learn how to perform networking instead of investing in expensive, specialized hardware. This book assumes that you have a good amount of Cisco networking knowledge, and it will focus more on Packet Tracer rather than networking.

  16. Using targeted short-term field investigations to calibrate and evaluate the structure of a hydrological model

    CSIR Research Space (South Africa)

    Hughes, DA

    2013-02-01

    Full Text Available catchments and are applied in a daily version of the model. The results demonstrate the importance of ensuring that field observations are measuring the same hydrological variables as the model simulations. At one study site, there was a mismatch in the soil...

  17. Records of pan (floodplain wetland) sedimentation as an approach for post-hoc investigation of the hydrological impacts of dam impoundment: The Pongolo river, KwaZulu-Natal.

    Science.gov (United States)

    Heath, S K; Plater, A J

    2010-07-01

    River impoundment by dams has far-reaching consequences for downstream floodplains in terms of hydrology, water quality, geomorphology, ecology and ecosystem services. With the imperative of economic development, there is the danger that potential environmental impacts are not assessed adequately or monitored appropriately. Here, an investigation of sediment composition of two pans (floodplain wetlands) in the Pongolo River floodplain, KwaZulu-Natal, downstream of the Pongolapoort dam constructed in 1974, is considered as a method for post-hoc assessment of the impacts on river hydrology, sediment supply and water quality. Bumbe and Sokhunti pans have contrasting hydrological regimes in terms of their connection to the main Pongolo channel - Bumbe is a shallow ephemeral pan and Sokhunti is a deep, perennial water body. The results of X-ray fluorescence (XRF) geochemical analysis of their sediment records over a depth of >1 m show that whilst the two pans exhibit similar sediment composition and variability in their lower part, Bumbe pan exhibits a shift toward increased fine-grained mineral supply and associated nutrient influx at a depth of c. 45 cm whilst Sokhunti pan is characterised by increased biogenic productivity at a depth of c. 26 cm due to enhanced nutrient status. The underlying cause is interpreted as a shift in hydrology to a 'post-dam' flow regime of reduced flood frequencies with more regular baseline flows which reduce the average flow velocity. In addition, Sokhunti shows a greater sensitivity to soil influx during flood events due to the nature of its 'background' of autochthonous biogenic sedimentation. The timing of the overall shift in sediment composition and the dates of the mineral inwash events are not well defined, but the potential for these wetlands as sensitive recorders of dam-induced changes in floodplain hydrology, especially those with a similar setting to Sokhunti pan, is clearly demonstrated. Copyright 2010 Elsevier Ltd. All

  18. The surface interactions of a near-neutral carbon nanoparticle tracer with calcite

    KAUST Repository

    Li, Yan Vivian; Cathles, Lawrence M.

    2016-01-01

    A new class of nearly charge-neutral carbon-cored nanoparticle tracers are remarkably non-interactive with solid surfaces and could provide a valuable baseline for diverse hydrological and environmental studies of subsurface flow and particle

  19. Nonpolar organic compounds as PM2.5 source tracers: Investigation of their sources and degradation in the Pearl River Delta, China

    Science.gov (United States)

    Wang, Qiongqiong; Feng, Yongming; Huang, X. H. Hilda; Griffith, Stephen M.; Zhang, Ting; Zhang, Qingyan; Wu, Dui; Yu, Jian Zhen

    2016-10-01

    A group of nonpolar organic compounds (NPOCs) in five compound classes including alkanes, polycyclic aromatic hydrocarbons (PAHs), hopanes, steranes, and 1,3,5-triphenylbenzene were quantified in samples of particulate matter of aerodynamic diameter less than 2.5 μm collected at four sites in the Pearl River Delta (PRD) region, China, over a 2 year period from 2011 to 2012. The four sites include industrial (Nanhai), urban (Guangzhou), urban outskirt (Dongguan), and suburban (Nansha) locations. Some NPOCs are uniquely emitted from particular combustion sources and thereby serving as markers in source apportionment. Based on this multiyear and multisite NPOC data set, spatial and seasonal variations, correlation analysis, and ratio-ratio plots were used to investigate the source information and degradation of NPOC tracers. In summer, NPOCs showed distinct local emission characteristics, with urban sites having much higher concentrations than suburban sites. In winter, regional transport was an important influence on NPOC levels, driving up concentrations at all sampling sites and diminishing an urban-suburban spatial gradient. The lighter NPOCs exhibited more prominent seasonal variations. Such spatiotemporal features suggest that their particle-phase abundance is more influenced by temperature, which is a critical factor in controlling the extent of semivolatile organics partitioned into the aerosol phase. The heavier NPOCs, especially PAHs, showed negligible correlation among the four sites, suggesting more influence from local emissions. Ratio-ratio plots indicate photodegradation and mixing of various sources for the NPOCs in the PRD. A positive matrix factorization (PMF) analysis of this large NPOC data set suggests that heavier NPOCs are more suitable source indicators than lighter NPOCs. Incorporating particle-phase light NPOC concentrations in PMF produces a separate factor, which primarily contains those light NPOCs and likely is not a source factor. Total

  20. Non-polar organic compounds as PM2.5 source tracers: Investigation of their sources and degradation in the Pearl River Delta, China

    Science.gov (United States)

    Wang, Q.; Feng, Y.; Huang, X. H. H.; Griffith, S.; Zhang, T.; Zhang, Q.; Wu, D.; Yu, J.

    2016-12-01

    Nonpolar organic compounds (NPOCs) including alkanes, polycyclic aromatic hydrocarbons (PAHs), hopanes, steranes, and 1,3,5-triphenylbenzene, were quantified in PM2.5 samples at four sites in the Pearl River Delta (PRD) region, China over a two-year period from 2011 to 2012. The four sites include one industrial zone (Nanhai), one urban (Guangzhou), one urban outskirt (Dongguan) and one suburban (Nansha) locations. Some NPOCs are uniquely emitted from particular combustion sources, and thereby serving as convenient markers in source apportionment. Based on this multi-year and multi-site data set, spatial and seasonal variations, correlation analysis and ratio-ratio plots were used to investigate the source information and degradation of NPOC tracers. In summer, NPOCs showed distinct local emission characteristics, with urban sites having much higher concentrations than suburban site. In winter, regional transport was an important influence on NPOC levels, driving up concentrations at all sampling sites and diminishing an urban-suburban spatial gradient. The lighter NPOCs exhibited more prominent seasonal variations, suggesting their particle-phase abundance is more influenced by temperature, a critical factor in controlling the extent of semi-volatile organics partitioned into the aerosol phase. The heavier NPOCs, especially PAHs, showed negligible correlation among the four sites, suggesting more influence from local emissions. Ratio-ratio plots indicate photo-degradation and mixing of various sources for the NPOCs in the PRD. A positive matrix factorization (PMF) analysis of this large NPOC data set suggests that heavier NPOCs are more suitable source indicators than lighter NPOCs. Incorporating particle-phase light NPOC concentrations in PMF produces a separate factor, which primarily contains those light NPOCs and likely is not a source factor. Total NPOC concentrations predicted using Pankow partitioning theory were explored as PMF inputs, however, the PMF

  1. Environment tracers application to groundwater circulation assessment in an alluvial aquifer in Central Italy

    Science.gov (United States)

    Sappa, Giuseppe; Barbieri, Maurizio; Vitale, Stefania

    2017-04-01

    Groundwater vulnerability assessment is an important tool in order to plan any groundwater protection strategy. The aim of this study is to experiment a specific approach to give a conceptual model about groundwater circulation characterization. This approach has been applied to a suspected contaminated site in a large alluvial plan, made of sediments coming from weathered volcanic rocks, laying on marine sediments, where more than thirty years ago had been built a very important urban waste solid landfill. In referring to this case history it has been pointed out the importance of natural chemical interaction between ground water and rock mass, especially when pyroclastic origin sediments are involved. The landfill had been isolated from the surrounding environment, especially to protect aquifers, by a waterproof diaphragm This land is characterised by intensive agricultural and industrial activities (oil refineries, medical waste incinerators, concrete production, tar factory). The study will highlight the importance of environmental tracers which provide information about the flow and mixing processes of water coming from different sources. They are also useful to point out directions of groundwater flow and to determine origin Environmental tracers are natural chemical and isotopic substances that can be measured in groundwater and used to understand hydrologic properties of aquifers. They may be input into the hydrological system from the atmosphere at recharge and/or are added/lost/exchanged inherently as waters flow over and through materials. Variations in their chemical abundances and isotopic compositions can be used as tracers to determine sources (provenance), pathways (of reaction or interaction) and also timescales (dating) of environmental processes. In combination with these, the basic idea is to use. In this case enviromental tracers have been integrated by temperature and electric conductivity logs, to better investigate different levels of faster

  2. Flow variability and hillslope hydrology

    Energy Technology Data Exchange (ETDEWEB)

    Huff, D D; O' Neill, R V; Emanuel, W R; Elwood, J W; Newbold, J D

    1982-01-01

    Examination of spatial variability of streamflow in headwater areas can provide important insight about factors that influence hillslope hydrology. Detailed observations of variations in stream channel input, based on a tracer experiment, indicate that topography alone cannot explain flow variability. However, determination of changes in channel input on a small spatial scale can provide valuable clues to factors, such as structural geology that control subsurface flows.

  3. Contribution to investigations on trace elements transport in the Channel: spatial distribution of industrial tracers in mytilus edulis and fucus serratus

    International Nuclear Information System (INIS)

    Germain, P.; Masson, M.; Baron, Y.

    1990-01-01

    The distribution of artificial tracers - gamma emitters - has been studied in biological indicator species, mussels and fucus, along the french and english Channel shores in order to gain a better knowledge of trace elements transports in the Channel coastal areas. The main conclusions are supplied by 106 Ru-Rh and 60 Co. Extension of species labelling is larger eastwards than westwards, and the differences recorded between french and english shores show weak exchanges between south and north Channel; in the norman-breton gulf and in the Seine river bay, the distribution of radioactive tracers demonstrates complex current processes. The results are compared to the hydrodynamical studies carried out through models and follow-up of radioactive tracers in sea-water. Particular processes have been observed, corresponding to areas where the decay gradient from the source term is not respected (western Cotentin shore, western Seine Bay, Caux aerea). They are discussed in relation with fresh - sea water mixing, current and physico-chemical problems [fr

  4. Investigation of Relationship Between Hydrologic Processes of Precipitation, Evaporation and Stream Flow Using Linear Time Series Models (Case study: Western Basins of Lake Urmia

    Directory of Open Access Journals (Sweden)

    M. Moravej

    2016-02-01

    Full Text Available Introduction: Studying the hydrological cycle, especially in large scales such as water catchments, is difficult and complicated despite the fact that the numbers of hydrological components are limited. This complexity rises from complex interactions between hydrological components and environment. Recognition, determination and modeling of all interactive processes are needed to address this issue, but it's not feasible for dealing with practical engineering problems. So, it is more convenient to consider hydrological components as stochastic phenomenon, and use stochastic models for modeling them. Stochastic simulation of time series models related to water resources, particularly hydrologic time series, have been widely used in recent decades in order to solve issues pertaining planning and management of water resource systems. In this study time series models fitted to the precipitation, evaporation and stream flow series separately and the relationships between stream flow and precipitation processes are investigated. In fact, the three mentioned processes should be modeled in parallel to each other in order to acquire a comprehensive vision of hydrological conditions in the region. Moreover, the relationship between the hydrologic processes has been mostly studied with respect to their trends. It is desirable to investigate the relationship between trends of hydrological processes and climate change, while the relationship of the models has not been taken into consideration. The main objective of this study is to investigate the relationship between hydrological processes and their effects on each other and the selected models. Material and Method: In the current study, the four sub-basins of Lake Urmia Basin namely Zolachay (A, Nazloochay (B, Shahrchay (C and Barandoozchay (D were considered. Precipitation, evaporation and stream flow time series were modeled by linear time series. Fundamental assumptions of time series analysis namely

  5. Retrieval Assimilation and Modeling of Atmospheric Water Vapor from Ground- and Space-Based GPS Networks: Investigation of the Global and Regional Hydrological Cycles

    Science.gov (United States)

    Dickey, Jean O.

    1999-01-01

    Uncertainty over the response of the atmospheric hydrological cycle (particularly the distribution of water vapor and cloudiness) to anthropogenic forcing is a primary source of doubt in current estimates of global climate sensitivity, which raises severe difficulties in evaluating its likely societal impact. Fortunately, a variety of advanced techniques and sensors are beginning to shed new light on the atmospheric hydrological cycle. One of the most promising makes use of the sensitivity of the Global Positioning System (GPS) to the thermodynamic state, and in particular the water vapor content, of the atmosphere through which the radio signals propagate. Our strategy to derive the maximum benefit for hydrological studies from the rapidly increasing GPS data stream will proceed in three stages: (1) systematically analyze and archive quality-controlled retrievals using state-of-the-art techniques; (2) employ both currently available and innovative assimilation procedures to incorporate these determinations into advanced regional and global atmospheric models and assess their effects; and (3) apply the results to investigate selected scientific issues of relevance to regional and global hydrological studies. An archive of GPS-based estimation of total zenith delay (TZD) data and water vapor where applicable has been established with expanded automated quality control. The accuracy of the GPS estimates is being monitored; the investigation of systematic errors is ongoing using comparisons with water vapor radiometers. Meteorological packages have been implemented. The accuracy and utilization of the TZD estimates has been improved by implementing a troposphere gradient model. GPS-based gradients have been validated as real atmospheric moisture gradients, establishing a link between the estimated gradients and the passage of weather fronts. We have developed a generalized ray tracing inversion scheme that can be used to analyze occultation data acquired from space

  6. In-situ testing methods using radioactive tracers

    International Nuclear Information System (INIS)

    Sauzay, G.

    1976-01-01

    Some typical applications of tracer techniques in hydrology are presented: study of the extraction of sands and gravels in a estuary; in-situ study of the transport of sediments by the swell at a depth ranging from 8 to 22m; study of the transport of sands on the site Bonne Anse - Saint Palais [fr

  7. Water and Solute Mass Transport in Soils Developed on glacial Drift: A Br Tracer Investigation Using Instrumented Soil Monoliths at an Agricultural Long Term Ecological Research Site (Kellogg Biological Station, Hickory Corners, Southern Michigan)

    Science.gov (United States)

    Jin, L.; Hamilton, S. K.; Walter, L. M.

    2004-12-01

    Hydrologic processes control the residence time of water in the soil column. This is of central importance in understanding mineral weathering rates in terms of reaction kinetics and solute transport. In order to better quantify the coupling between water and solute mass transport and to better define controls on carbonate and aluminosilicates weathering rates, we have conducted bromide-tracer introduction experiments at four replicate soil monoliths (4 m3 volume) instrumented and managed by the KBS-LTER. Monolith soils are developed on the pitted outwash plain of the morainic system left by the last retreat of the Wisconsin glaciation, around 12,000 years ago. Soil profiles from the monolith sections extend to 200 cm and they were sampled and characterized texturally and mineralogically. Quartz and feldspar are dominant throughout the soil profile, while carbonates and hornblende occur only in deeper soil horizons. The four replicate monoliths are instrumented with gas and soil water sampling devices (Prenart tension lysimeters) at various depths. The monoliths also have a large capacity tray at the bottom, which permits collection of water for weight and chemical determinations. A bromide tracer solution (as lithium bromide) was applied to coincide as closely as possible with a major snowmelt event (2/27/04). The saturated and unsaturated transport of bromide through the four monoliths was followed as a function of time and soil profile depth for the duration of the snowmelt as well as intermittent rain events. Because the soil was saturated at the time of bromide application, the bromide solution is expected to move rapidly through macropores, followed by slower movement into micropores. The unsaturated transport of bromide is largely controlled by the intensity and duration of the rains if it is dominated by piston flow as opposed to preferential channel flow. In general, the tracer moved through the shallow soils very quickly, which is shown by early sharp

  8. Tracer attenuation in groundwater

    Science.gov (United States)

    Cvetkovic, Vladimir

    2011-12-01

    The self-purifying capacity of aquifers strongly depends on the attenuation of waterborne contaminants, i.e., irreversible loss of contaminant mass on a given scale as a result of coupled transport and transformation processes. A general formulation of tracer attenuation in groundwater is presented. Basic sensitivities of attenuation to macrodispersion and retention are illustrated for a few typical retention mechanisms. Tracer recovery is suggested as an experimental proxy for attenuation. Unique experimental data of tracer recovery in crystalline rock compare favorably with the theoretical model that is based on diffusion-controlled retention. Non-Fickian hydrodynamic transport has potentially a large impact on field-scale attenuation of dissolved contaminants.

  9. Isotopic marking and tracers

    International Nuclear Information System (INIS)

    Morel, F.

    1997-01-01

    The use of radioactive isotopes as tracers in biology has been developed thanks to the economic generation of the required isotopes in accelerators and nuclear reactors, and to the multiple applications of tracers in the life domain; the most usual isotopes employed in biology are carbon, hydrogen, phosphorus and sulfur isotopes, because these elements are present in most of organic molecules. Most of the life science knowledge appears to be dependent to the extensive use of nuclear tools and radioactive tracers; the example of the utilization of radioactive phosphorus marked ATP to study the multiple reactions with proteins, nucleic acids, etc., is given

  10. Wetland Hydrology

    Science.gov (United States)

    This chapter discusses the state of the science in wetland hydrology by touching upon the major hydraulic and hydrologic processes in these complex ecosystems, their measurement/estimation techniques, and modeling methods. It starts with the definition of wetlands, their benefit...

  11. Radiotracer techniques in hydrological studies

    International Nuclear Information System (INIS)

    Oladipo, M.O.A.; Funtua, I.I.

    2000-07-01

    The use of radioactive tracers particularly short-lived radioisotopes frequently offers advantages over conventional methods of analyses. Applications of nuclear techniques in the field of hydrology constitute important and sometimes unique tools for obtaining critical information needed for water resources management. Essentially, radiotracer techniques offer a safe, cost effective and powerful tool in the assessment, management and protection of water resources. The Centre for Energy Research and Training, Ahmadu Bello University, Zaria of late has been offering consultancy services to some industries in the area of radiotracer technique. The first nuclear reactor in Nigeria, the MNSR, is expected to be commissioned in the Centre very soon. Many short-lived radioisotopes such as Cu-64, Ga-72, Br-82, Hg-197 etc which are very important in hydrological studies can be produced by the MNSR facility. This article reports on the basic principles of the technique and its roles in hydrology

  12. Tracers Detect Aquifer Contamination

    National Research Council Canada - National Science Library

    Enfield, Carl

    1995-01-01

    The EPA's National Laboratory (NRMRL) at Ada, OK, along with the University of Florida and the University of Texas, have developed a tracer procedure to detect the amount of contamination in aquifer formations...

  13. Radio-isotopic tracers

    International Nuclear Information System (INIS)

    Wolfangel, R.G.

    1976-01-01

    The invention concerns the dispersions that may be used for preparing radio-isotopic tracers, technetium labelled dispersions, processes for preparing these dispersions and their use as tracers. Technetium 99m sulphur colloids are utilized as scintillation tracers to give a picture of the reticulo-endothelial system, particularly the liver and spleen. A dispersion is provided which only requires the addition of a radioactive nuclide to form a radioactively labelled dispersion that can be injected as a tracer. It is formed of a colloid of tin sulphur dispersed in an aqueous buffer solution. Such a reagent has the advantage of being safe and reliable and is easier to use. The colloid can be prepared more quickly since additions of several different reagents are avoided. There is no need to heat up and no sulphuretted hydrogen, which is a toxic gas, is used [fr

  14. A coupled mechanical-hydrological investigation of crystalline rocks: Annual technical progress report, proposed test matrix, and preliminary results

    International Nuclear Information System (INIS)

    Bastian, R.J.; Voss, C.F.; Apted, M.J.; Shotwell, L.R.

    1988-02-01

    This report reviews the Fracture Flow Behavior in Rock Study being performed at the Pacific Northwest Laboratory. The study's objective is to determine the feasibility of predicting mechanical-hydrological behavior of natural rock fractures by accurately characterizing fracture surface topography and mineralization. A laboratory-scale facility is currently being used to ensure optimum control of variables. Devising a technique to study small-scale samples is the first step to understanding the complex coupled processes encountered in geomechanics and hydrology. The major accomplishments during fiscal year 1987 were initial development of the innovative testing method, identification of appropriate specimens, substantial renovation to the facility, completion of several sets of experiments, and procurement of hardware components for a laser-imaging device used to characterize fracture surfaces. A complete set of preliminary results and findings is presented in this report. These results, gathered from a basalt core with a natural fracture, have demonstrated that the methodology is valid, and definite trends in the data are readily apparent. 10 refs., 14 figs., 1 tab

  15. Hydrological study of La Paz river basin

    International Nuclear Information System (INIS)

    Ramos, German F.; Garcia Agudo, Edmundo; Quiroga, F.; Tarquino, W.; Diaz, J.; Suxo, Cl.; Mansilla, A.; Rojas, M.

    1998-01-01

    This work aims to determine the hydrological parameters for the La Paz river, by using tracer techniques and also the determination of the water quality parameters for the study of the behavior along the stream. This study intends the prediction and control of the water contamination by using mathematical modelling

  16. Tracer techniques in microelectronics

    International Nuclear Information System (INIS)

    Flachowsky, J.; Freyer, K.

    1981-01-01

    Tracer technique and neutron activation analysis are capable of measuring impurities in semiconductor material or on the semiconductor surface in a very low concentration range. The methods, combined with autoradiography, are also suitable to determine dopant distributions in silicon. However, both techniques suffer from certain inherent experimental difficulties and/or limitations which are discussed. Methods of tracer technique practicable in the semiconductor field are described. (author)

  17. Stream-groundwater exchange and hydrologic turnover at the network scale

    Science.gov (United States)

    Covino, Tim; McGlynn, Brian; Mallard, John

    2011-12-01

    The exchange of water between streams and groundwater can influence stream water quality, hydrologic mass balances, and attenuate solute export from watersheds. We used conservative tracer injections (chloride, Cl-) across 10 stream reaches to investigate stream water gains and losses from and to groundwater at larger spatial and temporal scales than typically associated with hyporheic exchanges. We found strong relationships between reach discharge, median tracer velocity, and gross hydrologic loss across a range of stream morphologies and sizes in the 11.4 km2 Bull Trout Watershed of central ID. We implemented these empirical relationships in a numerical network model and simulated stream water gains and losses and subsequent fractional hydrologic turnover across the stream network. We found that stream gains and losses from and to groundwater can influence source water contributions and stream water compositions across stream networks. Quantifying proportional influences of source water contributions from runoff generation locations across the network on stream water composition can provide insight into the internal mechanisms that partially control the hydrologic and biogeochemical signatures observed along networks and at watershed outlets.

  18. Transport of pesticides and artificial tracers in vertical-flow lab-scale wetlands

    Science.gov (United States)

    Durst, Romy; Imfeld, Gwenaël.; Lange, Jens

    2013-01-01

    Wetland systems can be hydrologically connected to a shallow aquifer and intercept upward flow of pesticide-contaminated water during groundwater discharge. However, pesticide transport and attenuation through wetland sediments (WSs) intercepting contaminated water is rarely evaluated quantitatively. The use of artificial tracers to evaluate pesticide transport and associated risks is a fairly new approach that requires evaluation and validation. Here we evaluate during 84 days the transport of two pesticides (i.e., isoproturon (IPU) and metalaxyl (MTX)) and three tracers (i.e., bromide (Br), uranine (UR), and sulforhodamine B (SRB)) in upward vertical-flow vegetated and nonvegetated lab-scale wetlands. The lab-scale wetlands were filled with outdoor WSs and were continuously supplied with tracers and the pesticide-contaminated water. The transport of IPU and UR was characterized by high solute recovery (approximately 80%) and low retardation compared to Br. The detection of desmethylisoproturon in the wetlands indicated IPU degradation. SRB showed larger retardation (>3) and lower recovery (approximately 60%) compared to Br, indicating that sorption controlled SRB transport. MTX was moderately retarded (approximately 1.5), and its load attenuation in the wetland reached 40%. In the vegetated wetland, preferential flow along the roots decreased interactions between solutes and sediments, resulting in larger pesticide and tracer recovery. Our results show that UR and IPU have similar transport characteristics under the tested subsurface-flow conditions, whereas SRB may serve as a proxy for less mobile and more persistent pesticides. Since UR and SRB are not significantly affected by degradation, their use as proxies for fast degrading pollutants may be limited. We anticipate our results to be a starting point for considering artificial tracers for investigating pesticide transport in environments at groundwater/surface-water interfaces.

  19. Investigation on the loss of trace elements in biological materials in different drying and ashing procedures by using radioactive tracers: Pt. 1

    International Nuclear Information System (INIS)

    Wang Yongxian; Qin Junfa; Ji Qianmei; Wu Shimin; Wang Xuepeng; Zhang Yuanxun

    1985-01-01

    By using radioactive tracers it is found that freezing dry is safe for Zn, Mo, Cd and Se in all matrices studied. Oven dry is also safe except for Se in hair. The oxygen plasma ashing does not cause any loss of Zn, Mo and Cd. Different degrees of loss were observed in oven ashing with exception of Zn and Mo in hair and shallot. It is obvious that the loss rate of the trace elements depends on their chemical forms present in the matrices. The retention of the four elements studied on the wall of quartz container can be neglected after oxygen plasma ashing. But Zn, Cd and Mo were retended in various degrees after oven ashing

  20. Hydrological Bulletin

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — Historical report (December 1937-April 1948) containing hydrologic information for the United States, divided into ten regions. While hourly precipitation tables...

  1. Landfilling: Hydrology

    DEFF Research Database (Denmark)

    Kjeldsen, Peter; Beaven, R.

    2011-01-01

    Landfill hydrology deals with the presence and movement of water through a landfill. The main objective in landfill hydrology is usually to predict leachate generation, but the presence and movement of water in a landfill also affect the degradation of the waste, the leaching of pollutants...... and the geotechnical stability of the fill. Understanding landfill hydrology is thus important for many aspects of landfill, in particular siting, design and operation. The objective of this chapter is to give a basic understanding of the hydrology of landfills, and to present ways to estimate leachate quantities...... under specific circumstances. Initially a general water balance equation is defined for a typical landfill, and the different parts of the water balance are discussed. A separate section discusses water flow and the hydrogeology of landfilled wastes and considers the impact of water short...

  2. Possible Utilization of Nitronitrosylruthenium Complexes as Tracers in Hydrology; Note sur l'utilisation eventuelle des complexes de nitronitrosylruthenium comme traceurs en hydrologie; O vozmozhnom ispol'zovanii kompleksa nitronitrozilruteniya v kachestve indikatorov v gidrologii; Nota sobre el posible empleo de los complejos de nitronitrosilrutenio como indicadores en hidrologia

    Energy Technology Data Exchange (ETDEWEB)

    Gailledreau, C. [Commissariat a l' Energie Atomique (France)

    1963-08-15

    Ru{sup 106} might be a useful tracer in hydrology. Its half-life of about one year is in a range in which there are few radioisotopes which can be used as tracers. There are a great variety of complexes of Ru{sup 106}, the nitro-complexes of nitrosylruthenium being amongst the most stable. Percolation tests have been made with nitronitrosylruthenium diluted in water from the mains, on columns of aquilerous sand and a very argillaceous soil. (author) [French] Le {sup 106}Ru pourrait etre un traceur interessant en hydrologie. Sa vie moyenne, environ un an, se situe dans une gamme ou il existe peu d'autres radioisotopes susceptibles d'etre utilises comme traceurs. Il existe une grande variete de complexes du les complexes nitro de nitrosylruthenium etant parmi les plus stables. Des essais de percolation ont ete effectues avec du nitronitrosylruthenium dilue dans de l'eau de ville, sur des colonnes de sable aquifere et d'un sol tres argileux. (author) [Spanish] El ''1''0''6Ru podria emplearse en calidad de indicador en hidrologia. Tiene un periodo del orden de un ano que le situa en una gama en la que existen muy pocos radioisotopos utilisable: como indicadores. El {sup 106}Ru puede formar una gran variedad de complejos, siendo los mas estables los nitrocomplejos de nitrosilrutenio. El autor ha realizado ensayos de percolacion con nitronitrosilrutenio diluido en agua de grifo, en columnas de arena acuifera y de suelo muy arcilloso. (author) [Russian] Ru{sup 106} mozhet byt' ispol'zovan v kachestve indikatora, predstavlyayushchego opredelennyj interes dlya gidrologii. Ego period poluraspada (priblizitel'n o 1'god) raspolagaetsj v gamme, gde sushchestvuet malo drugikh radioizotopov, kotorye mogut byt' ispol'zovany v kachestve indikatorov. Sushchestvuet bol'shoe mnogoobrazie kompleksov Ru{sup 106}, prichem kompleksy nitronitrozilruteniya otnosyatsya k naibolee stabil'nym. Provodilis ' opyty po perkolyatsii s nitronitrozilruteniem, rastvorennym v vodoprovodnoj vode, na

  3. Wairakei tracer tests 1983

    International Nuclear Information System (INIS)

    McCabe, W.J.; Barry, B.J.

    1984-05-01

    Tracer tests, with and without, hot water reinjection into WK213 showed returns of tracer iodine-131; in wells in both the Waiora Valley and the eastern end of the field. The effect of reinjection at a rate of 200 cu. m/h was to reduce the arrived time from 15 to 7 days. Increasing the rate of reinjection into WK62 from 30 cu. m/h to 200 cu. m/h seemed to increase the initial velocity of the tracer wave and the distance it moved. However, returns were recorded only in the adjacent wells WK61 and WK63 with a very small, and three days delayed, response in WK43

  4. Isotope hydrology

    International Nuclear Information System (INIS)

    Drost, W.

    1978-01-01

    The International Symposium on Isotope Hydrology was jointly organized by the IAEA and UNESCO, in co-operation with the National Committee of the Federal Republic of Germany for the International Hydrological Programme (IHP) and the Gesellschaft fuer Strahlen- und Umweltforschung mbH (GSF). Upon the invitation of the Federal Republic of Germany the Symposium was held from 19-23 June 1978 in Neuherberg on the GSF campus. The Symposium was officially opened by Mr. S. Eklund, Director General of the IAEA. The symposium - the fifth meeting held on isotope hydrology - was attended by over 160 participants from 44 countries and four international organizations and by about 30 observers from the Federal Republic of Germany. Due to the absence of scientists from the USSR five papers were cancelled and therefore only 46 papers of the original programme were presented in ten sessions

  5. Sensitivity analysis of tracer transport in variably saturated soils at USDA-ARS OPE3 field site

    Science.gov (United States)

    The objective of this study was to assess the effects of uncertainties in hydrologic and geochemical parameters on the results of simulations of the tracer transport in variably saturated soils at the USDA-ARS OPE3 field site. A tracer experiment with a pulse of KCL solution applied to an irrigatio...

  6. Isotope hydrology investigations in Latin America 1994. Investigations on hydrology and hydrogeology in Latin America on water resources and groundwater pollution. Results achieved during the implementation of the project RLA/8/014 - ARCAL XIII: Application of isotope techniques in hydrology

    International Nuclear Information System (INIS)

    1995-10-01

    This IAEA Technical Document contains 17 articles about the results achieved during the implementation of the project RLA/8/014, ARCAL XIII, aimed at the application of isotope techniques in hydrology in the Caribbean and Latin America. Also included is the list of 19 participants in the project. Refs, figs and tabs

  7. The application of radiation logs to groundwater hydrology

    Energy Technology Data Exchange (ETDEWEB)

    Scott Keys, W [United States Geological Survey, Denver, CO (United States)

    1967-05-15

    The drilling of exploratory holes to determine the availability of groundwater and to plan the most economical methods of water development is expensive. The only technique available at present for obtaining geological and hydrological information through the casing of pre-existing water wells and other boreholes is by radiation logging. Up to now these logging techniques have been little used in groundwater hydrology. This report describes inexpensive portable radiation logging equipment that is available or has been developed for groundwater studies in connection with a general research project on the application of borehole geophysics in groundwater hydrology. It is possible to obtain data on the following: the source, velocity, and chemical quality of groundwater; the location, extent, geometry, bulk density, porosity, permeability, and specific yield of aquifers and associated strata; and the position of casings, casing collars, leaks, perforations, and cement. The radiation logs employed include natural gamma, gamma-gamma, neutron-gamma. neutron epithermal-neutron. and radioactive tracer. The following radioisotopes are utilized: cobalt-60, plutonium-239, americium-241, and iodine-131. Typical radiation logs obtained by the various techniques are described and examples are given of practical applications of radiation logging to groundwater investigations. The applications cited are studies of perched water in basaltic rocks and associated sedimentary strata; the porosity, moisture content, and position of zones into which water was injected in volcanic tuff; the position of the interface between brine and fresh water in fine-grained carbonate rocks and associated fine clastic rocks; the interpretation of porosity from a neutron log; and the location by means of a radioactive tracer of the more permeable fracture zones in a well penetrating crystalline rock. (author)

  8. Xanthine tracers and their preparation

    International Nuclear Information System (INIS)

    Groman, E.V.; Cabelli, M.D.

    1980-01-01

    Compounds useful as tracers in the radioimmunoassay of xanthine derivatives such as theophylline and pharmacologically related drugs are described. They are substituted xanthines in which at least one substituted radical contains radioiodine. The tracers are made by linking radioiodinatable or preradioiodinated radicals to the xanthine derivative which is to be assayed. The tracers may be employed in known radioimmunoassay techniques. (author)

  9. Investigation of Relationship Between Hydrologic Processes of Precipitation, Evaporation and Stream Flow Using Linear Time Series Models (Case study: Western Basins of Lake Urmia)

    OpenAIRE

    M. Moravej; K. Khalili; J. Behmanesh

    2016-01-01

    Introduction: Studying the hydrological cycle, especially in large scales such as water catchments, is difficult and complicated despite the fact that the numbers of hydrological components are limited. This complexity rises from complex interactions between hydrological components and environment. Recognition, determination and modeling of all interactive processes are needed to address this issue, but it's not feasible for dealing with practical engineering problems. So, it is more convenie...

  10. Effect of Chemical Reactions on the Hydrologic Properties of Fractured and Rubbelized Glass Media

    International Nuclear Information System (INIS)

    Saripalli, Prasad; Meyer, P D.; Parker, Kent E.; Lindberg, Michael J.

    2005-01-01

    Understanding the effect of chemical reactions on the hydrologic properties of geological media, such as porosity, permeability and dispersivity, is critical to many natural and engineered sub-surface systems. Influence of glass corrosion (precipitation and dissolution) reactions on fractured and rubbelized (crushed) forms HAN28 and LAWBP1, two candidate waste glass forms for a proposed immobilized low-activity waste (ILAW) disposal facility at the Hanford, WA site, was investigated. Flow and tracer transport experiments were conducted using fractured and rubbelized forms, before and after subjecting them to corrosion using Vapor Hydration Testing (VHT) at 200 C temperature and 200 psig pressure, causing the precipitation of alteration products. Data were analyzed using analytical expressions and CXTFIT, a transport parameter optimization code, for the estimation of the hydrologic characteristics before and after VHT. It was found that glass reactions significantly influence the hydrologic properties of ILAW glass media. Hydrologic properties of rubbelized glass decreased due to precipitation reactions, whereas those of fractured glass media increased due to reaction which led to unconfined expansion of fracture aperture. The results are unique and useful to better understand the effect of chemical reactions on the hydrologic properties of fractured and rubbelized stony media in general and glass media in particular

  11. Investigation of hydrologic and biogeochemical controls on arsenic mobilization using distributed sensing at a field site in Munshiganj, Bangladesh

    Science.gov (United States)

    Ramanathan, N.; Estrin, D.; Harmon, T.; Harvey, C.; Jay, J.; Kohler, E.; Rothenberg, S.

    2006-12-01

    The presence of arsenic in the groundwater has led to the largest environmental poisoning in history; tens of millions of people in the Ganges Delta continue to drink groundwater that is dangerously contaminated with arsenic. A current working hypothesis is that arsenic is mobilized in the near surface environment where sediments are weathered by seasonal changes in the redox state that drive a cycle of pyrite oxidation and iron oxide reduction. In order to test the supporting hypothesis that subsurface geochemical changes may be induced by agricultural activity, we deployed 42 wirelessly networked ion-selective electrodes, including calcium, ammonium, nitrate, ORP, chloride, carbonate, and pH in a rice paddy in the Munshiganj district of Bangladesh in January of 2006. Each sensor was connected to an MDA300 sensor board and Mica2 wireless transceiver and computational device. Over a period of 11 days, we observed clear diel, and diurnal trends in 4 of the electrodes (calcium, ammonium, chloride and carbonate). The trends may be due to hydrological changes, or geochemical changes induced either by photosynthesis in the overlying water (which then infiltrated to the depth of the sensors) or in the root zone of rice plants. While the spatiotemporally dense measurements from wireless sensor networks enable scientists to ask new questions and elucidate complex relationships in heterogeneous physical environments such as soil, there are many practical issues to address in order to collect data usable for scientific purposes. For example, in response to a stream of faults in one of our sensor network deployments, we designed Sympathy to enable users to find and fix problems impacting the quantity of data collected in the field. Sympathy detects packet loss experienced at the base station and systematically assigns blame to faulty components in the network for remediation, replacing the prior policy of ad-hoc node rebooting and battery replacements. Sympathy has been

  12. Investigating impacts of natural and human-induced environmental changes on hydrological processes and flood hazards using a GIS-based hydrological/hydraulic model and remote sensing data

    Science.gov (United States)

    Wang, Lei

    Natural and human-induced environmental changes have been altering the earth's surface and hydrological processes, and thus directly contribute to the severity of flood hazards. To understand these changes and their impacts, this research developed a GIS-based hydrological and hydraulic modeling system, which incorporates state-of-the-art remote sensing data to simulate flood under various scenarios. The conceptual framework and technical issues of incorporating multi-scale remote sensing data have been addressed. This research develops an object-oriented hydrological modeling framework. Compared with traditional lumped or cell-based distributed hydrological modeling frameworks, the object-oriented framework allows basic spatial hydrologic units to have various size and irregular shape. This framework is capable of assimilating various GIS and remotely-sensed data with different spatial resolutions. It ensures the computational efficiency, while preserving sufficient spatial details of input data and model outputs. Sensitivity analysis and comparison of high resolution LIDAR DEM with traditional USGS 30m resolution DEM suggests that the use of LIDAR DEMs can greatly reduce uncertainty in calibration of flow parameters in the hydrologic model and hence increase the reliability of modeling results. In addition, subtle topographic features and hydrologic objects like surface depressions and detention basins can be extracted from the high resolution LiDAR DEMs. An innovative algorithm has been developed to efficiently delineate surface depressions and detention basins from LiDAR DEMs. Using a time series of Landsat images, a retrospective analysis of surface imperviousness has been conducted to assess the hydrologic impact of urbanization. The analysis reveals that with rapid urbanization the impervious surface has been increased from 10.1% to 38.4% for the case study area during 1974--2002. As a result, the peak flow for a 100-year flood event has increased by 20% and

  13. Tracer tests Wairakei

    International Nuclear Information System (INIS)

    McCabe, W.J.; Manning, M.R.; Barry, B.J.

    1980-07-01

    The report summarises the radioactive tracer tests, using iodine-131 and bromine-82, made in the Wairakei geothermal field over the period 1978-80. Injection of tracer into three wells with strong cool water downflows at about 300-400m below ground level, produced strong rapid responses from the only deep wells feeding from about 800-1000m and lying in the south-westerly direction from the injection wells, i.e. parallel to the fault planes. Shallower wells, even though in some cases much closer to the injection well, reacted much more slowly. Velocities, as measured by peak arrival times, as high as 22m/h over 200m and 11m/h over 650m, were found. The flow patterns for the cool water feeds to the production area are discussed

  14. Journal: A Review of Some Tracer-Test Design Equations for ...

    Science.gov (United States)

    Determination of necessary tracer mass, initial sample-collection time, and subsequent sample-collection frequency are the three most difficult aspects to estimate for a proposed tracer test prior to conducting the tracer test. To facilitate tracer-mass estimation, 33 mass-estimation equations are reviewed here, 32 of which were evaluated using previously published tracer-test design examination parameters. Comparison of the results produced a wide range of estimated tracer mass, but no means is available by which one equation may be reasonably selected over the others. Each equation produces a simple approximation for tracer mass. Most of the equations are based primarily on estimates or measurements of discharge, transport distance, and suspected transport times. Although the basic field parameters commonly employed are appropriate for estimating tracer mass, the 33 equations are problematic in that they were all probably based on the original developers' experience in a particular field area and not necessarily on measured hydraulic parameters or solute-transport theory. Suggested sampling frequencies are typically based primarily on probable transport distance, but with little regard to expected travel times. This too is problematic in that tends to result in false negatives or data aliasing. Simulations from the recently developed efficient hydrologic tracer-test design methodology (EHTD) were compared with those obtained from 32 of the 33 published tracer-

  15. Radioactive tracers in Sedimentology

    International Nuclear Information System (INIS)

    Rodrigues, H.T.

    1973-01-01

    First is given a broad description of the uses of radioactive tracers in Sedimentology. The general method is established, including determinations of probability and standard deviation. Following are determined: the response law of the detector, the minimum mass for statistical detection, and the minimum mass for dynamic detection. The granularity is an important variable in these calculations. Final conclusions are given, and results are compared with existing theories

  16. Isotope hydrology 1983. Proceedings of a symposium

    International Nuclear Information System (INIS)

    1984-01-01

    These proceedings contain the papers and poster presentations from the Symposium on Isotope Hydrology held 12-16 September 1983 in Vienna, Austria. The topics of the sessions were as follows: Thermal water studies, groundwater dating, hydrology of arid and semi-arid areas, field studies with environmental isotopes, precipitation-surface-groundwater relationships, pollution, artificial tracers and sediment transport. Twenty poster presentations in English have been indexed here separately. All other articles from this Proceedings Series are available under ISBN 92-0-040087-6

  17. Tracers and Tracer Testing: Design, Implementation, Tracer Selection, and Interpretation Methods

    Energy Technology Data Exchange (ETDEWEB)

    G. Michael Shook; Shannon L.; Allan Wylie

    2004-01-01

    Conducting a successful tracer test requires adhering to a set of steps. The steps include identifying appropriate and achievable test goals, identifying tracers with the appropriate properties, and implementing the test as designed. When these steps are taken correctly, a host of tracer test analysis methods are available to the practitioner. This report discusses the individual steps required for a successful tracer test and presents methods for analysis. The report is an overview of tracer technology; the Suggested Reading section offers references to the specifics of test design and interpretation.

  18. Hydrogeological, hydrochemical and isotope-hydrological investigations of surface and crevice waters in the Grimsel area (Switzerland)

    International Nuclear Information System (INIS)

    Keppler, A.

    1995-12-01

    The Grimsel rock laboratory (Hasli valley, Berner Oberland, Switzerland) has been used since 1984 by NAGRA (Nationale Genossenschaft fuer die Lagerung radioaktiver Abfaelle, Wettingen, Switzerland). It is about 450 metres deep under the Juchli ridge in the crystalline rock basement of the Aar massif. Within the framework of an international cooperation, a great many research topics in connection with the underground storage of radioactive waste are being studied at this location. Their focus is, inter alia, on the following: hydrogeological investigations of crevice water movement, investigations of geophysical structures and rock tension measurements, migration of radionuclides in an individual crevice. So far, hydrogeological and hydrogeochemical conditions have only been studied as far as they related to the needs of individual investigations, and systematic information on global waterways in the Juchli basement was scarce. By contrast, this work aimed at the chemical characterization of surface and spring waters in the catchment area of the rock laboratory as well as the crevice waters in the day-drift system, the description of the chemical development of the waters during their passage through the crevice system, and the assessment of the mean underground retention time of crevice waters by means of different stable and radioactive isotopes. In addition, hydrogeological mapping of the system of waters above ground and crevice water accesses underground was carried out. (orig./SR) [de

  19. Benefits of important industrial tracer applications in the GDR

    International Nuclear Information System (INIS)

    Leonhardt, J.W.; Goeldner, R.; Koennecke, H.G.; Kupsch, H.; Luther, D.; Otto, R.; Reinhardt, R.; Ulrich, H.

    1990-01-01

    Tracers can be used to label substances or objects in order to discriminate between them, to follow their movement, to record changes of concentration and distribution between phases, etc. The main advantages of tracer investigations are the contactless recording of signals without influencing the observed process (also under rigorous operation conditions), the high detection sensitivity, the large number of available tracer nuclides (problems of all branches of industry can be solved) and the fact that tracer investigation can be carried out on operating production units, so that they provide valuable checks of the validity of design and process data. The cost-to-benefit ratio can be as low as 1:50. In the following some selected examples of tracer applications and their benefits will be presented. (orig./BBR) [de

  20. Development of radioisotope tracer technology

    International Nuclear Information System (INIS)

    Jin, Joon Ha; Lee, Myun Joo; Jung, Sung Hee; Park, Soon Chul; Lim, Dong Soon; Kim, Jae Ho; Lee, Jae Choon; Lee, Doo Sung; Cho, Yong Suk; Shin, Sung Kuan

    2000-04-01

    The purpose of this study is to develop the radioisotope tracer technology, which can be used in solving industrial and environmental problems and to build a strong tracer group to support the local industries. In relation to the tracer technology in 1999, experiments to estimate the efficiencies of a sludge digester of a waste water treatment plant and a submerged biological reactor of a dye industry were conducted. As a result, the tracer technology for optimization of facilities related to wastewater treatment has been developed and is believed to contribute to improve their operation efficiency. The quantification of the experimental result was attempted to improve the confidence of tracer technology by ECRIN program which basically uses the MCNP simulation principle. Using thin layer activation technique, wear of tappet shim was estimated. Thin layer surface of a tappet shim was irradiated by proton beam and the correlation between the measured activity loss and the amount of wear was established. The equipment was developed to adjust the energy of proton which collides with the surface of tappet. The tracer project team has participated into the tracer test for estimating the efficiency of RFCC system in SK cooperation. From the experiment the tracer team has obtained the primary elements to be considered for judging the efficiency of RFCC unit. By developing the tracer techniques to test huge industrial units like RFCC, the tracer team will be able to support the local industries that require technical services to solve any urgent trouble. (author)

  1. Comparison of Forced ENSO-Like Hydrological Expressions in Simulations of the Preindustrial and Mid-Holocene

    Science.gov (United States)

    Lewis, Sophie C.; LeGrande, Allegra N.; Schmidt, Gavin A.; Kelley, Maxwell

    2014-01-01

    Using the water isotope- and vapor source distribution (VSD) tracer-enabled Goddard Institute for Space Studies ModelE-R, we examine changing El Nino-Southern Oscillation (ENSO)-like expressions in the hydrological cycle in a suite of model experiments. We apply strong surface temperature anomalies associated with composite observed El Nino and La Nina events as surface boundary conditions to preindustrial and mid-Holocene model experiments in order to investigate ENSO-like expressions in the hydrological cycle under varying boundary conditions. We find distinct simulated hydrological anomalies associated with El Nino-like ("ENSOWARM") and La Nina-like ("ENSOCOOL") conditions, and the region-specific VSD tracers show hydrological differences across the Pacific basin between El Nino-like and La Nina-like events. The application of ENSOCOOL forcings does not produce climatological anomalies that represent the equal but opposite impacts of the ENSOWARM experiment, as the isotopic anomalies associated with ENSOWARM conditions are generally stronger than with ENSOCOOL and the spatial patterns of change distinct. Also, when the same ENSO-like surface temperature anomalies are imposed on the mid-Holocene, the hydrological response is muted, relative to the preindustrial. Mid-Holocene changes in moisture sources to the analyzed regions across the Pacific reveal potentially complex relationships between ENSO-like conditions and boundary conditions. Given the complex impacts of ENSO-like conditions on various aspects of the hydrological cycle, we suggest that proxy record insights into paleo-ENSO variability are most likely to be robust when synthesized from a network of many spatially diverse archives, which can account for the potential nonstationarity of ENSO teleconnections under different boundary conditions.

  2. Investigations of Near-Field Thermal-Hydrologic-Mechanical-Chemical Models for Radioactive Waste Disposal in Clay/Shale Rock

    International Nuclear Information System (INIS)

    Liu, H.H.; Li, L.; Zheng, L.; Houseworth, J.E.; Rutqvist, J.

    2011-01-01

    Clay/shale has been considered as potential host rock for geological disposal of high-level radioactive waste throughout the world, because of its low permeability, low diffusion coefficient, high retention capacity for radionuclides, and capability to self-seal fractures. For example, Callovo-Oxfordian argillites at the Bure site, France (Fouche et al., 2004), Toarcian argillites at the Tournemire site, France (Patriarche et al., 2004), Opalinus Clay at the Mont Terri site, Switzerland (Meier et al., 2000), and Boom clay at the Mol site, Belgium (Barnichon and Volckaert, 2003) have all been under intensive scientific investigation (at both field and laboratory scales) for understanding a variety of rock properties and their relationships to flow and transport processes associated with geological disposal of radioactive waste. Figure 1-1 presents the distribution of clay/shale formations within the USA.

  3. Investigations of Near-Field Thermal-Hydrologic-Mechanical-Chemical Models for Radioactive Waste Disposal in Clay/Shale Rock

    Energy Technology Data Exchange (ETDEWEB)

    Liu, H.H.; Li, L.; Zheng, L.; Houseworth, J.E.; Rutqvist, J.

    2011-06-20

    Clay/shale has been considered as potential host rock for geological disposal of high-level radioactive waste throughout the world, because of its low permeability, low diffusion coefficient, high retention capacity for radionuclides, and capability to self-seal fractures. For example, Callovo-Oxfordian argillites at the Bure site, France (Fouche et al., 2004), Toarcian argillites at the Tournemire site, France (Patriarche et al., 2004), Opalinus Clay at the Mont Terri site, Switzerland (Meier et al., 2000), and Boom clay at the Mol site, Belgium (Barnichon and Volckaert, 2003) have all been under intensive scientific investigation (at both field and laboratory scales) for understanding a variety of rock properties and their relationships to flow and transport processes associated with geological disposal of radioactive waste. Figure 1-1 presents the distribution of clay/shale formations within the USA.

  4. Use of radioactive tracers in dynamic sedimentology

    International Nuclear Information System (INIS)

    Tola, Francois.

    1982-01-01

    In the first part, developments in the use of radioactive tracers in sedimentology are recalled together with the corresponding fields of application and the identities of the main users. The state-of-the-art in France is also discussed; The main characteristics of the method are then described and compared with those of more classical methods. The results that can be obtained with tracer methods are then outlined. The criteria employed to establish the granulometry characteristics of the tracer, the particular radioisotope to be used, and the masses and activities involved, are treated. A list is then given of the main isotopes available in France and their characteristics. The various different labelling techniques employed are studied together with their respective advantages and disadvantages. The special case of pelitic sediments is mentioned. The use of reduced model isotope generators, double labelling and applications to studies of the mud plug in the Gironde Estuary are also discussed. The methods and materials used for injecting and detecting tracers are described, emphasis being given to the economic factors associated with the use of radioactive tracers in sedimentology. The second part of the report contains two chapters: - studies of transport by driftage: presentation and analysis of results and the application of the Count Rate Balance method to obtain quantitative information on transport; - studies of in-suspension transport of fine sediments in the sea: the procedures adopted from the moment when the tracer is introduced up to the time when the results are analyzed and interpreted, enables the trajectories and mean velocities of the transported sediments to be determined together with their degree of dilution and their settling speeds and rates; it is also possible to investigate the evolution and horizontal dispersion of the sediments in this way. Results from recent experiments are presented in both parts of the report

  5. Dam-Breach hydrology of the Johnstown flood of 1889-challenging the findings of the 1891 investigation report.

    Science.gov (United States)

    Coleman, Neil M; Kaktins, Uldis; Wojno, Stephanie

    2016-06-01

    In 1891 a report was published by an ASCE committee to investigate the cause of the Johnstown flood of 1889. They concluded that changes made to the dam by the South Fork Fishing and Hunting Club did not cause the disaster because the embankment would have been overflowed and breached if the changes were not made. We dispute that conclusion based on hydraulic analyses of the dam as originally built, estimates of the time of concentration and time to peak for the South Fork drainage basin, and reported conditions at the dam and in the watershed. We present a LiDAR-based volume of Lake Conemaugh at the time of dam failure (1.455 × 10(7) m(3)) and hydrographs of flood discharge and lake stage decline. Our analytical approach incorporates the complex shape of this dam breach. More than 65 min would have been needed to drain most of the lake, not the 45 min cited by most sources. Peak flood discharges were likely in the range 7200 to 8970 m(3) s(-1). The original dam design, with a crest ∼0.9 m higher and the added capacity of an auxiliary spillway and five discharge pipes, had a discharge capacity at overtopping more than twice that of the reconstructed dam. A properly rebuilt dam would not have overtopped and would likely have survived the runoff event, thereby saving thousands of lives. We believe the ASCE report represented state-of-the-art for 1891. However, the report contains discrepancies and lapses in key observations, and relied on excessive reservoir inflow estimates. The confidence they expressed that dam failure was inevitable was inconsistent with information available to the committee. Hydrodynamic erosion was a likely culprit in the 1862 dam failure that seriously damaged the embankment. The Club's substandard repair of this earlier breach sowed the seeds of its eventual destruction.

  6. Estimation of block conductivities from hydrologically calibrated fracture networks. Description of methodology and application to Romuvaara investigation area

    International Nuclear Information System (INIS)

    Niemi, A.; Kontio, K.; Kuusela-Lahtinen, A.; Vaittinen, T.

    1999-03-01

    imposed gradient (K g ), determined based on flow in and out of the opposite ends of the simulation cube, differed significantly in most realisations. This means that the Darcy flux in the direction of question differs with location inside the cube. In such a case the behaviour of the cube cannot be well presented with a continuum tensor. A finer rotation angle could be used to see whether the discontinuity in K g values is due to the sparse rotation density. The fact that the non-continuity was observed in most realisations indicates, however, that the result reflects the behaviour of the rock in question rather than an 'unfortunate' selection of simulation flow direction. Due to the spatially varying Darcy flux components inside the cube, the least square approximation used for determining the continuum conductivity tensors is not the best estimate for the present data. Alternative averaging methods were, however, not investigated as it appears at the continuum approximation may not be a good representation for the data and scale anyway. Regardless of the validity of the continuum approximation, the results of the 30 m fracture network blocks give us valuable information on the flow distribution at this scale. Firstly, the results can be used to evaluate possible anisotropy, which cannot be seen from borehole well test data alone. Inspection of the simulated results showed that there appear to be no anisotropic effects. Secondly, the surface area conductivities can be compared to well test conductivities of the same scale. This comparison indicates that the conductivities determined from the well tests are clearly lower. The result is preliminary in nature, and may be case- and data-specific, but it, may also be more general and related to e.g. differences in flow and observation geometry between the two situations. (orig.)

  7. Estimation of block conductivities from hydrologically calibrated fracture networks. Description of methodology and application to Romuvaara investigation area

    Energy Technology Data Exchange (ETDEWEB)

    Niemi, A [Royal Institute of Technology, Stockholm (Sweden); Kontio, K; Kuusela-Lahtinen, A; Vaittinen, T [VTT Communities and Infrastructure, Espoo (Finland)

    1999-03-01

    imposed gradient (K{sub g}), determined based on flow in and out of the opposite ends of the simulation cube, differed significantly in most realisations. This means that the Darcy flux in the direction of question differs with location inside the cube. In such a case the behaviour of the cube cannot be well presented with a continuum tensor. A finer rotation angle could be used to see whether the discontinuity in K{sub g} values is due to the sparse rotation density. The fact that the non-continuity was observed in most realisations indicates, however, that the result reflects the behaviour of the rock in question rather than an `unfortunate` selection of simulation flow direction. Due to the spatially varying Darcy flux components inside the cube, the least square approximation used for determining the continuum conductivity tensors is not the best estimate for the present data. Alternative averaging methods were, however, not investigated as it appears at the continuum approximation may not be a good representation for the data and scale anyway. Regardless of the validity of the continuum approximation, the results of the 30 m fracture network blocks give us valuable information on the flow distribution at this scale. Firstly, the results can be used to evaluate possible anisotropy, which cannot be seen from borehole well test data alone. Inspection of the simulated results showed that there appear to be no anisotropic effects. Secondly, the surface area conductivities can be compared to well test conductivities of the same scale. This comparison indicates that the conductivities determined from the well tests are clearly lower. The result is preliminary in nature, and may be case- and data-specific, but it, may also be more general and related to e.g. differences in flow and observation geometry between the two situations. (orig.) 30 refs.

  8. Radionuclides as tracers

    International Nuclear Information System (INIS)

    Ganatra, R.D.

    1992-01-01

    Importance of radioisotopes in medicine is because of their two characteristics: their biological behaviour is identical to their stable counterparts, and because they are radioactive their emissions can be detected by a suitable instrument. All isotopes of iodine will behave in the same way and will concentrate in the thyroid gland. There is no way of detecting the stable, natural iodine in the thyroid gland, but the presence of radioactive iodine can be detected externally in vivo by a detector. Thus, the radioactive iodine becomes a tracer, a sport of a spy, which mimics the behaviour of natural iodine and relays information to a detector. The radioactive tracers are popular because of the ease with which they can be detected in vivo and the fact that the measurement of their presence in the body can be in quantitative terms. The measurement can be very accurate and sensitive. Whenever the measurements can be done in vivo, the information is obtained in dynamic terms, as it is happening, as if the physiological events become transparent

  9. Seepage determinations through auxiliary dike in Chingaza reservoir using radioactive tracers

    International Nuclear Information System (INIS)

    Sanches, L.; Obando, E.; Jimenez, G.; Torrez, E.

    1986-01-01

    Isotope techniques used in hydrology and developed during the last ten years in Colombia are usually tracer techniques based on the use of nuclides either introduced or naturally present in water. A problem of current content importance in hydraulics structures is seepage and the problems connected with it, such as impermeability of dams docks and their foundations. Many approaches are used to investigate these questions, but the simplest and most successful is the radiometric method. Radiometric observation of the flow of water through the earth dock involves introducing at a fixed point in the flow of water a radioactive solution and then following its movement downstream of the dock, and finding the place where it goes using appropriate detectors arranged at fixed control points. This paper describes the mean of choosing the injection points, the techniques for introducing radioactive solution and the conditions that must be borne in mind when selecting the radioisotope and determining its optimum activity. (author)

  10. Rate equations for tracer studies in recirculating reactors

    Energy Technology Data Exchange (ETDEWEB)

    Happel, J [Columbia Univ., New York (USA). Dept. of Chemical Engineering

    1974-10-01

    The employment of isotopic tracers is a useful technique for gaining insight into the rate controlling steps of a complex chemical reaction such as is frequently encountered in heterogeneous catalysis. An effective procedure has been to superpose tracer transfer on a reaction which is occurring under steady state conditions. If tracer transfer is employed in this fashion it is often possible to assess the individual step velocities in an assumed reaction mechanism. If transient transfer of tracer is now introduced it is possible in addition to estimate surface concentrations of chemisorbed species. The purpose of the present paper is to present the mathematical relationships involved when transfer of the tracer is not differential in the investigation. For this purpose a simple example is chosen to illustrate the various possibilities involved.

  11. Rate equations for tracer studies in recirculatinng reactors

    International Nuclear Information System (INIS)

    Happel, J.

    1974-01-01

    The employment of isotopic tracers is a useful technique for gaining insight into the rate controlling steps of a complex chemical reaction such as is frequently encountered in heterogeneous catalysis. An effective procedure has been to superpose tracer transfer on a reaction which is occurring under steady state conditions. If tracer transfer is employed in this fashion it is often possible to assess the individual step velocities in an assumed reaction mechanism. If transient transfer of tracer is now introduced it is possible in addition to estimate surface concentrations of chemisorbed species. The purpose of the present paper is to present the mathematical relationships involved when transfer of the tracer is not differential in the investigation. For this purpose a simple example is chosen to illustrate the various possibilities involved. (auth.)

  12. Tracer kinetic investigations on isomerization and synthesis of /sup 8/C-aromates. II. Isomerization of ethylbenzene by means of heterogeneous catalysts

    Energy Technology Data Exchange (ETDEWEB)

    Dermietzel, J; Roesseler, M; Jockisch, W; Wienhold, C [Akademie der Wissenschaften der DDR, Leipzig. Zentralinstitut fuer Isotopen- und Strahlenforschung; Franke, H; Klempin, J; Barz, H J [VEB Petrolchemisches Kombinat Schwedt (German Democratic Republic)

    1978-01-01

    The mechanism of ethylbenzene isomerization on Pt/Al/sub 2/O/sub 3/ catalysts by means of /sup 14/C labelled compounds has been investigated, measuring the isotope distribution between ring and alkyl carbon atoms. The results suggest that ethylbenzene isomerizes via structure rearrangement involving ring carbon atoms. A similar mechanism takes place in xylene isomerization under increased hydrogen partial pressure, while under normal pressure 1,2-methyl group shifting is dominating. All three xylenes are formed from ethylbenzene by parallel reactions.

  13. Significant uncertainty in global scale hydrological modeling from precipitation data erros

    NARCIS (Netherlands)

    Sperna Weiland, F.; Vrugt, J.A.; Beek, van P.H.; Weerts, A.H.; Bierkens, M.F.P.

    2015-01-01

    In the past decades significant progress has been made in the fitting of hydrologic models to data. Most of this work has focused on simple, CPU-efficient, lumped hydrologic models using discharge, water table depth, soil moisture, or tracer data from relatively small river basins. In this paper, we

  14. Significant uncertainty in global scale hydrological modeling from precipitation data errors

    NARCIS (Netherlands)

    Weiland, Frederiek C. Sperna; Vrugt, Jasper A.; van Beek, Rens (L. ) P. H.; Weerts, Albrecht H.; Bierkens, Marc F. P.

    2015-01-01

    In the past decades significant progress has been made in the fitting of hydrologic models to data. Most of this work has focused on simple, CPU-efficient, lumped hydrologic models using discharge, water table depth, soil moisture, or tracer data from relatively small river basins. In this paper, we

  15. Tracer migration experiments in the Stripa mine 1980-1991

    International Nuclear Information System (INIS)

    Birgersson, L.; Widen, H.; Aagren, T.; Neretnieks, I.

    1992-05-01

    During more than 10 years, tracer experiments have been performed in the Stripa mine as part of the Stripa project to investigate the properties of both 'average' fractured rock and fracture zones. Experiments have been performed that have ranged from a few decimeters, to examine the diffusion into the rock matrix, up to tracer migration to a drift more than 50 meters from the injection point. This report compiles the results and experience that have been gained from all these tracer experiments. The experiments that are described in this report are: * The in-situ diffusion experiment where simultaneous flow and diffusion of tracers in undisturbed rock were studied over more than 3 years to validate diffusivities obtained under laboratory conditions. * Migration in a single fracture where water flow distribution and tracer transport were studied using both conservative and sorbing tracers over migration distances up to 10 meters. * The 3-D migration experiment where water inflow and tracer transport to a drift covered with 350 plastic sheet were investigated to get information on flow porosity, dispersion and channeling. The transport distances were between 10 and 56 meters from the injection points to the drift. * The channeling experiments in which the aim was to examine the channeling properties of single fractures in detail. Pressure pulse tests and tracer experiments were performed over a distances of 2 meters. * The tracer migration experiment in the validation drift where the tracer were injected mainly in a fracture zone and the collection was inside both a drift covered with plastic sheets similar to in the 3-D experiment as well as in a borehole. The distances between injection and sampling location were between 10 and 25 meters. (57 refs.) (au)

  16. Hydraulic characterisation of karst systems with man-made tracers; Hydraulische Charakterisierung von Karstsystemen mit kuenstlichen Tracern

    Energy Technology Data Exchange (ETDEWEB)

    Werner, A.

    1998-07-01

    Tracer experiments using man-made tracers are common in hydrogeological exploration of groundwater aquifers in karst systems. In the present investigation, a convection-dispersion model (multidispersion model with consideration of several flow paths) and a single-cleft model (consideration of the diffusion between the cleft and the surrounding rock matrix) were used for evaluating tracer experiments in the main hydrological system of the saturated zone of karst systems. In addition to these extended analytical solutions, a numerical transport model was developed for investigating the influence of the transient flow rate on the flow and transport parameters. Comparative evaluations of the model approaches for the evaluation of tracer experiments were made in four different karst systems: Danube-Aach, Paderborn, Slowenia and Lurbach, of which the Danube-Aach system was considered as the most important. The investigation also comprised three supplementary experiments in order to enable a complete hydraulic characterisation of the system. (orig./SR) [Deutsch] Tracerversuche mit kuenstlichen Tracern sind eine haeufig eingesetzte Methode zur hydrogeologischen Erkundung von Karstgrundwasserleitern. In der vorliegenden Arbeit werden fuer die Auswertung von Tracerversuchen im Hauptfliesssystem der gesaettigten Zone von Karstsystemen ein Konvektion-Dispersions-Modell (Multi-Dispersions-Modell: Beruecksichtigung mehrerer Fliesswege) und vergleichend ein Einzelkluftmodell (Beruecksichtigung der Diffusion zwischen Kluft und umgebender Gesteinsmatrix) eingesetzt. Zusaetzlich zu diesen erweiterten analytischen Loesungen wurde ein numerisches Transportmodell entwickelt, welches ermoeglicht, den Einfluss der instationaeren Fliessrate auf die Stroemungs- und Transportparameter zu ueberpruefen. Die vergleichende Anwendung der Modellansaetze fuer die Auswertung von Tracerversuchen erfolgte in den vier verschiedenen Karstsystemen Donau-Aach, Paderborn, Slowenien und Lurbachsystem. Der

  17. Tracer gas diffusion sampling test plan

    International Nuclear Information System (INIS)

    Rohay, V.J.

    1993-01-01

    Efforts are under way to employ active and passive vapor extraction to remove carbon tetrachloride from the soil in the 200 West Area an the Hanford Site as part of the 200 West Area Carbon Tetrachloride Expedited Response Action. In the active approach, a vacuum is applied to a well, which causes soil gas surrounding the well to be drawn up to the surface. The contaminated air is cleaned by passage through a granular activated carbon bed. There are questions concerning the radius of influence associated with application of the vacuum system and related uncertainties about the soil-gas diffusion rates with and without the vacuum system present. To address these questions, a series of tracer gas diffusion sampling tests is proposed in which an inert, nontoxic tracer gas, sulfur hexafluoride (SF 6 ), will be injected into a well, and the rates of SF 6 diffusion through the surrounding soil horizon will be measured by sampling in nearby wells. Tracer gas tests will be conducted at sites very near the active vacuum extraction system and also at sites beyond the radius of influence of the active vacuum system. In the passive vapor extraction approach, barometric pressure fluctuations cause soil gas to be drawn to the surface through the well. At the passive sites, the effects of barometric ''pumping'' due to changes in atmospheric pressure will be investigated. Application of tracer gas testing to both the active and passive vapor extraction methods is described in the wellfield enhancement work plan (Rohay and Cameron 1993)

  18. Investigation of 3′-debenzoyl-3′-(3-([124I]-iodobenzoyl))paclitaxel analog as a radio-tracer to study multidrug resistance in vivo

    International Nuclear Information System (INIS)

    Sajjad, M.; Riaz, U.; Yao, R.; Bernacki, R.J.; Abouzied, M.; Erb, D.A.; Chaudhary, N.D.; Veith, J.M.; Georg, G.I.; Nabi, H.A.

    2012-01-01

    A study was carried out to identify a suitable radioactive paclitaxel analog and to use it to investigate tumor multidrug resistance in vivo. 3′-Debenzoyl-3′-(3-([ 124 I]-iodobenzoyl))paclitaxel was prepared by aromatic iodination of 3′-debenzoyl-3′-(3-trimethylstannylbenzoyl)paclitaxel. Uptake of the labeled paclitaxel analog in nude mice bearing tumor with the paclitaxel sensitive cancer cell lines MCF7 and MDA-435/LCC6(WT), and multidrug resistant cell lines NCI/ADR-RES and MDA-435/LCC6(MDR), was studied. There was no difference in drug level between the sensitive and resistant MDA-435/LCC6 tumors at 6 h post-injection. However, at 6 h, there was a significant increase in drug level for the MCF7 tumor as compared with the NCI/ADR-RES tumor, presumably due to increased drug retention. At 24 h, drug uptake/retention was significantly higher in both sensitive tumor cell lines as compared to their drug resistant counterparts. Pretreatment of mice with MDR transport modulators, Cyclosporine or tRA 96029, did not increase the level of labeled paclitaxel analog in the drug resistant MDA-435/LCC6(MDR) tumor. On the other hand, at 24 h Cyclosporine apparently increased analog level in the drug sensitive MDA-435/LCC6(WT) tumor, aiding drug imaging studies. - Highlights: ► 3′-Debenzoyl-3′-(3-iodobenzoyl)paclitaxel cytotoxicity was comparable to paclitaxel. ► 3′-Debenzoyl-3′-(3-([ 124 I]-iodobenzoyl)paclitaxel was synthesized. ► Uptake of the drug was higher in sensitive tumor compared to the resistant tumor. ► The Pgp-modulators had a positive effect on drug-sensitive tumor. ► The sensitive tumor was visible in images obtained using micoPET.

  19. HOBE – a hydrological observatory

    DEFF Research Database (Denmark)

    Jensen, Karsten Høgh; Illangasekare, Tissa

    2011-01-01

    In this paper a short introducO on is given to the Danish hydrological observatory—HOBE. We describe characteristics of the catchment, which is subject to experimental and modeling investigations. An overview is given of the research reported in this special section of the journal, which includes...... 11 papers of original research covering precipitation, evapotranspiration, emission of greenhouse gasses, unsaturated flow, groundwater–surface water interaction, and climate change impacts on hydrology....

  20. Hydrology team

    Science.gov (United States)

    Ragan, R.

    1982-01-01

    General problems faced by hydrologists when using historical records, real time data, statistical analysis, and system simulation in providing quantitative information on the temporal and spatial distribution of water are related to the limitations of these data. Major problem areas requiring multispectral imaging-based research to improve hydrology models involve: evapotranspiration rates and soil moisture dynamics for large areas; the three dimensional characteristics of bodies of water; flooding in wetlands; snow water equivalents; runoff and sediment yield from ungaged watersheds; storm rainfall; fluorescence and polarization of water and its contained substances; discriminating between sediment and chlorophyll in water; role of barrier island dynamics in coastal zone processes; the relationship between remotely measured surface roughness and hydraulic roughness of land surfaces and stream networks; and modeling the runoff process.

  1. Isotope techniques in hydrology and sedimentology

    International Nuclear Information System (INIS)

    Bomtempo, Virgilio Lopardi

    1999-01-01

    Water is the foundation of all life on Earth. Although two thirds of the terrestrial surface are covered by water (estimated volume is 1.5 billion cubic meters), just 2% of this total are fresh water, most of it locked in glaciers, ice caps and in deep groundwater reservoirs. Only 2,000 cubic kilometers are estimated to be available for consumption. Water resources have become more and more scarce, and the utilization becomes increasingly costly, due to the impact caused by over-exploitation and by diversified fronts of pollution. Specialists have been working in the development and in the application of several techniques to face this problem and to produce sustainable solutions. Isotope techniques represent a group of widespread tools that have been used along many years, and have become outstanding in hydrological investigation. This paper introduces a comprehensive review of the isotope techniques, taking into account environmental isotopes (stable and radioactive), artificial tracers and the use of radioactive sealed sources. Potentialities and limitations, future perspectives, as well as risks and benefits are also discussed. (author)

  2. Radon as geological tracer

    Energy Technology Data Exchange (ETDEWEB)

    Lacerda, T.; Anjos, R.M. [Universidade Federal Fluminense (UFF), Niteroi, RJ (Brazil). Inst. de Fisica; Valladares, D.L.; Rizzotto, M.; Velasco, H.; Ayub, J. Juri [Universidad Nacional de San Luis (Argentina). Inst. de Matematica Aplicada San Luis (IMASL); Silva, A.A.R. da; Yoshimura, E.M. [Universidade de Sao Paulo (IF/USP), SP (Brazil). Inst. de Fisica

    2012-07-01

    Full text: This work presents measurements of {sup 222}Rn levels performed in La Carolina gold mine and Los Condores tungsten mine at the province of San Luis, Argentina, today used for tourist visitation, and can evaluate the potential use of such radioactive noble gas as tracer or marker for geological processes in underground environments. By concentrations of {sup 40}K, {sup 232}Th and {sup 23}'8U were also measured in the walls of tunnels were determined the rocks mineral composition, what indicated that the mines have the same composition. In this sense, we used nuclear trace plastic detectors CR-39, gamma spectrometry of rock samples and Geiger-Muller (GM) monitors The patterns of radon gas transportation processes revealed that La Carolina could be interpreted through a model based on a radioactive gas confined into a single entrance tube, with constant cross section and air velocity. Los Condores, which has a second main entrance, could be interpreted through a model based on a radioactive gas confined into a two entrance tube, allowing a chimney effect for air circulation. The results showed the high potential of using {sup 222}Rn as a geological tracer. In what concerns the occupational hazard, in summer (time of more intense tourist activity in the mine) La Carolina presented a mean concentration of the radioactive noble gas that exceeds in four times the action level of 1,5 kBq m{sup -3} recommended by the International Commission of Radiological Protection (ICRP). The chimney effect shows the low mean concentration of radon in Los Condores. (author)

  3. Radon as geological tracer

    International Nuclear Information System (INIS)

    Lacerda, T.; Anjos, R.M.; Silva, A.A.R. da; Yoshimura, E.M.

    2012-01-01

    Full text: This work presents measurements of 222 Rn levels performed in La Carolina gold mine and Los Condores tungsten mine at the province of San Luis, Argentina, today used for tourist visitation, and can evaluate the potential use of such radioactive noble gas as tracer or marker for geological processes in underground environments. By concentrations of 40 K, 232 Th and 23 '8U were also measured in the walls of tunnels were determined the rocks mineral composition, what indicated that the mines have the same composition. In this sense, we used nuclear trace plastic detectors CR-39, gamma spectrometry of rock samples and Geiger-Muller (GM) monitors The patterns of radon gas transportation processes revealed that La Carolina could be interpreted through a model based on a radioactive gas confined into a single entrance tube, with constant cross section and air velocity. Los Condores, which has a second main entrance, could be interpreted through a model based on a radioactive gas confined into a two entrance tube, allowing a chimney effect for air circulation. The results showed the high potential of using 222 Rn as a geological tracer. In what concerns the occupational hazard, in summer (time of more intense tourist activity in the mine) La Carolina presented a mean concentration of the radioactive noble gas that exceeds in four times the action level of 1,5 kBq m -3 recommended by the International Commission of Radiological Protection (ICRP). The chimney effect shows the low mean concentration of radon in Los Condores. (author)

  4. Isotope instrument FD-138 for the hydrologic parameter

    Energy Technology Data Exchange (ETDEWEB)

    Rukuan, Zheng; Zengxin, Wu [Instituts of Enviromental Protection, Beijing, BJ (China); Heyi, Huang [Beijing Nuclear Instrument Factory, BJ (China)

    1988-07-01

    In order to determine the hydrologic parameters, such as filtration velocity, flow direction and dispersity, {sup 131}I isotope is used as tracer in the groundwater aquifer. This method has advantages over traditional methods in respect of power saving, and is simple, quick and economical.

  5. Isotope instrument FD-138 for the hydrologic parameter

    International Nuclear Information System (INIS)

    Zheng Rukuan; Wu Zengxin; Huang Heyi

    1988-01-01

    In order to determine the hydrologic paraemters, such as filtration velocity, flow direction and dispersity, 131 I isotope is used as tracer in the groundwater aquifer. This method has advantages over traditional methods in respect of power saving, and is simple, quick and economical

  6. Hydrology and Radionuclide Migration Program, 1985--1986 progress report

    International Nuclear Information System (INIS)

    Buddemeier, R.W.

    1988-09-01

    This report presents results from the Lawrence Livermore National Laboratory's participation in the Hydrology and Radionuclide Migration Program (formerly the Radionuclide Migration Project) at the Nevada Test Site (NTS) during fiscal years 1985 and 1986. The report discusses studies of the partitioning and movement of dissolved and colloidal radionuclides at the Cheshire (U20n) site; tracer studies of shallow recharge and of plant-water uptake at the Cambric-site ditch carrying the effluent water pumped from well RNM-2; development of a rapid and sensitive assay for 99 Tc in groundwater and its application to a survey of technetium activities at a variety of test wells; and a series of methodological studies directed toward calibration, understanding, and improving our low-level radionuclide determinations. Groundwater sampled from the Cheshire cavity and from adjacent aquifers contains substantial concentrations (mg/L) of colloids that appear to consist primarily of natural minerals. These colloids were found to contain detectable amounts of strongly sorbed radionuclides, leading to the hypothesis that radionuclides are being transported by the groundwater in colloidal form. The RNM ditch at the Cambric site has provided a unique tritium-labeled, irrigated test plot in the desert. One study at this site continued earlier investigations of water and tritium migration in the shallow vadose (unsaturated-soil) zone adjacent to the ditch and extended that study to include using a tracer to determine the velocity of vertical water flow in the recharge zone directly below the ditch. 57 refs., 15 figs., 23 tabs

  7. Investigation of geology and hydrology of the upper and middle Verde River watershed of central Arizona: a project of the Arizona Rural Watershed Initiative

    Science.gov (United States)

    Woodhouse, Betsy; Flynn, Marilyn E.; Parker, John T.C.; Hoffmann, John P.

    2002-01-01

    The upper and middle Verde River watershed in west-central Arizona is an area rich in natural beauty and cultural history and is an increasingly popular destination for tourists, recreationists, and permanent residents seeking its temperate climate. The diverse terrain of the region includes broad desert valleys, upland plains, forested mountain ranges, narrow canyons, and riparian areas along perennial stream reaches. The area is predominantly in Yavapai County, which in 1999 was the fastest-growing rural county in the United States (Woods and Poole Economics, Inc., 1999); by 2050, the population is projected to more than double. Such growth will increase demands on water resources. The domestic, industrial, and recreational interests of the population will need to be balanced against protection of riparian, woodland, and other natural areas and their associated wildlife and aquatic habitats. Sound management decisions will be required that are based on an understanding of the interactions between local and regional aquifers, surface-water bodies, and recharge and discharge areas. This understanding must include the influence of climate, geology, topography, and cultural development on those components of the hydrologic system. In 1999, the U.S. Geological Survey (USGS), in cooperation with the Arizona Department of Water Resources (ADWR), initiated a regional investigation of the hydrogeology of the upper and middle Verde River watershed. The project is part of the Rural Watershed Initiative (RWI), a program established by the State of Arizona and managed by the ADWR that addresses water supply issues in rural areas while encouraging participation from stakeholder groups in affected communities. The USGS is performing similar RWI investigations on the Colorado Plateau to the north and in the Mogollon Highlands to the east of the Verde River study area (Parker and Flynn, 2000). The objectives of the RWI investigations are to develop: (1) a single database

  8. Guidebook on radioisotope tracers in industry

    International Nuclear Information System (INIS)

    1990-01-01

    The idea of using tracers (chemical, dyes, etc.) in the investigation of complex physical phenomena has always attracted the attention of scientists and engineers. When radioactive isotopes became available it was immediately recognized that they offered an almost ideal solution to tracer selection. This book is devoted to reviewing the present status of the tracer method as such and to its applications to those branches of industry which have derived large benefits from the use of this modern technology. The main objectives of the IAEA's Industrial Applications and Chemistry Section is to help Member States in introducing to their own industries the different isotope and radiation techniques which have become available as a result of developments in the nuclear sciences. This section proposed the preparation of this guidebook, putting together various radiotracer methods and the experience obtained so far in their industrial use. Chapters 2 to 4 cover the general concept of tracers, technology and safety aspects, as well as data evaluation and interpretation. In chapter 5, therefore, general applications are discussed. In chapter 6, specialists in selected fields discuss their experience in radiotracer applications in various types of industrial activity. Most case studies are illustrated by at least one detailed example of an experiment carried out at an industrial installation. Current trends in the development of radiotracer methods are discussed in chapter 7, from both a theoretical and a practical viewpoint. Some possible new RTT applications in the future are also discussed here. Sealed radioactive sources are used almost as often as radioisotope tracers in industrial measurements. Annex I gives a short review of these techniques. Readers who are interested in the basic principles of radioisotope production will find the necessary information in Annex II. Annexes III, V and VI provide a demonstration of fundamental relations and properties; useful

  9. Hydrological land surface modelling

    DEFF Research Database (Denmark)

    Ridler, Marc-Etienne Francois

    Recent advances in integrated hydrological and soil-vegetation-atmosphere transfer (SVAT) modelling have led to improved water resource management practices, greater crop production, and better flood forecasting systems. However, uncertainty is inherent in all numerical models ultimately leading...... temperature are explored in a multi-objective calibration experiment to optimize the parameters in a SVAT model in the Sahel. The two satellite derived variables were effective at constraining most land-surface and soil parameters. A data assimilation framework is developed and implemented with an integrated...... and disaster management. The objective of this study is to develop and investigate methods to reduce hydrological model uncertainty by using supplementary data sources. The data is used either for model calibration or for model updating using data assimilation. Satellite estimates of soil moisture and surface...

  10. Groundwater Flow Computed with Modflow and Isotopic Age Tracer Data in the Continental Intercalaire (Sahara)

    Energy Technology Data Exchange (ETDEWEB)

    Petersen, J. O.; Goncalves, J.; Deschamps, P.; Hamelin, B. [Centre Europeen de Recherche et d' Enseignement de Geosciences de l' Environnement, Aix-en-Provence (France); Zouari, K. [Laboratoire de Radio-Analyses et Environnement, Sfax (Tunisia); Guendouz, A. [University of Blida, Science Engineering Faculty, Soummaa Blida (Algeria); Michelot, J. -L. [Interactions et Dynamique des Environnements de Surface, Universite Paris-Sud, Orsay (France)

    2013-07-15

    In one of the largest confined aquifers of the world, the Continental Intercalaire (Sahara), which is located in an arid region (57 mm/y of mean of precipitation), groundwater flow patterns are rather complex. Coupling measurements of isotopic composition of water and age mass calculations obtained by numerical simulations can allow, to a greater extent than a simple comparison, to constrain and validate the recharge scenario, transport and age of groundwater. First, the multiple tracers {sup 14}C, {sup 36}Cl, or {sup 234}U/{sup 238}U used in this study including noble gases such as {sup 4}He, allow investigation of a large range of groundwater ages. Then a MODFLOW simulation is built using (i) the distribution of hydrological parameters, (ii) geometrical limits and iii) the concept of age mass of water, accounting for the tracers data. This approach improves the understanding of the hydrodynamics of this system. In particular, the mixing of old and young waters should be better constrained and the interpretation of paleohydrological conditions is permitted. (author)

  11. Investigating the Role of Hydrologic Residence Time in Nitrogen Transformations at the Sediment-Water Interface using Controlled Variable Head Experiments

    Science.gov (United States)

    Hampton, T. B.; Zarnetske, J. P.; Briggs, M. A.; Singha, K.; Day-Lewis, F. D.

    2017-12-01

    Many important biogeochemical processes governing both carbon and nitrogen dynamics in streams take place at the sediment-water interface (SWI). This interface is highly variable in biogeochemical function, with stream stage often influencing the magnitude and direction of water and solute exchange through the SWI. It is well known that the SWI can be an important location for carbon and nitrogen transformations, including denitrification and greenhouse gas production. The degree of mixing of carbon and nitrate, along with oxygen from surface waters, is strongly influenced by hydrologic exchange at the SWI. We hypothesize that hydrologic residence time, which is also determined by the magnitude of exchange, is a key control on the fate of nitrate at the SWI and on the end products of denitrification. Previous studies in the headwaters of the Ipswich River in MA as part of the Lotic Intersite Nitrogen Experiments (LINX II) and other long-term monitoring suggest that the Ipswich River SWI represents an important source of nitrous oxide, a potent greenhouse gas. Using a novel constant-head infiltrometer ring embedded in the stream sediments, we created four unique controlled down-welling (i.e., recharge) conditions, and tested how varying this hydrologic flux and thus the residence time distribution influenced biogeochemical function of the Ipswich River SWI. Specifically, we added isotopically-labelled 15N-nitrate to stream water during each controlled hydrologic flux experiment to quantify nitrate transformation rates, including denitrification end products, under the different hydrologic conditions. We also measured a suite of carbon and nitrogen solutes, along with dissolved oxygen conditions throughout each experiment to characterize the broader residence timescale and biogeochemical responses to the hydrologic manipulations. Initial results show that the oxic conditions of the SWI were strongly responsive to changes in hydrologic flux rates, thereby changing the

  12. Contamination Tracer Testing With Seabed Rock Drills: IODP Expedition 357

    Science.gov (United States)

    Orcutt, B.; Bergenthal, M.; Freudenthal, T.; Smith, D. J.; Lilley, M. D.; Schneiders, L.; Fruh-Green, G. L.

    2016-12-01

    IODP Expedition 357 utilized seabed rock drills for the first time in the history of the ocean drilling program, with the aim of collecting intact core of shallow mantle sequences from the Atlantis Massif to examine serpentinization processes and the deep biosphere. This new drilling approach required the development of a new system for delivering synthetic tracers during drilling to assess for possible sample contamination. Here, we describe this new tracer delivery system, assess the performance of the system during the expedition, provide an overview of the quality of the core samples collected for deep biosphere investigations based on tracer concentrations, and make recommendations for future applications of the system.

  13. Contamination tracer testing with seabed drills: IODP Expedition 357

    Science.gov (United States)

    Orcutt, Beth N.; Bergenthal, Markus; Freudenthal, Tim; Smith, David; Lilley, Marvin D.; Schnieders, Luzie; Green, Sophie; Früh-Green, Gretchen L.

    2017-11-01

    IODP Expedition 357 utilized seabed drills for the first time in the history of the ocean drilling program, with the aim of collecting intact sequences of shallow mantle core from the Atlantis Massif to examine serpentinization processes and the deep biosphere. This novel drilling approach required the development of a new remote seafloor system for delivering synthetic tracers during drilling to assess for possible sample contamination. Here, we describe this new tracer delivery system, assess the performance of the system during the expedition, provide an overview of the quality of the core samples collected for deep biosphere investigations based on tracer concentrations, and make recommendations for future applications of the system.

  14. Uncertainty in hydrological change modelling

    DEFF Research Database (Denmark)

    Seaby, Lauren Paige

    applied at the grid scale. Flux and state hydrological outputs which integrate responses over time and space showed more sensitivity to precipitation mean spatial biases and less so on extremes. In the investigated catchments, the projected change of groundwater levels and basin discharge between current......Hydrological change modelling methodologies generally use climate models outputs to force hydrological simulations under changed conditions. There are nested sources of uncertainty throughout this methodology, including choice of climate model and subsequent bias correction methods. This Ph.......D. study evaluates the uncertainty of the impact of climate change in hydrological simulations given multiple climate models and bias correction methods of varying complexity. Three distribution based scaling methods (DBS) were developed and benchmarked against a more simplistic and commonly used delta...

  15. Tracer dating and ocean ventilation

    International Nuclear Information System (INIS)

    Thiele, G.; Sarmiento, J.L.

    1990-01-01

    The interpretation of transient tracer observations depends on difficult to obtain information on the evolution in time of the tracer boundary conditions and interior distributions. Recent studies have attempted to circumvent this problem by making use of a derived quantity, age, based on the simultaneous distribution of two complementary tracers, such as tritium and its daughter, helium 3. The age is defined with reference to the surface such that the boundary condition takes on a constant value of zero. The authors use a two-dimensional model to explore the circumstances under which such a combination of conservation equations for two complementary tracers can lead to a cancellation of the time derivative terms. An interesting aspect of this approach is that mixing can serve as a source or sink of tracer based age. The authors define an idealized ventilation age tracer that is conservative with respect to mixing, and they explore how its behavior compares with that of the tracer-based ages over a range of advective and diffusive parameters

  16. Guidebook on nuclear techniques in hydrology. 1983 ed.

    International Nuclear Information System (INIS)

    1983-01-01

    This guidebook serves as an introduction to the range of isotope techniques that are applicable in hydrology. The basic principles of each application are described followed by examples of case studies. This method of treatment should enable hydrologists to identify and assess the possible use of isotope techniques to their particular problems, although hydrologists having no prior experience in the use of isotope techniques will need to collaborate with isotope hydrologists. Isotope techniques may provide an independent approach for solving a hydrological problem. However, it should be realised that these techniques are only one of a number of tools now available to the hydrologist and their use in conjunction with other hydrological methods is likely to be most productive. Isotope hydrology may be considered under three headings: (1) the use of variations in the environmental isotopic composition of water; (2) the use of artificial radioactive tracers; (3) the use of radioisotope instruments. The following sections summarise the elements of radioactivity and interaction of radiation with matter considered necessary for an understanding of the use of isotope techniques in hydrology. Other sections in this introduction deal with the reasons for the variations in the environmental isotopic composition of water, the precautions in sampling of water, the use and choice of artificial radioactive tracers and precautions in their use, and the principles of tracer techniques

  17. Dynamics and mechanics of bed-load tracer particles

    Directory of Open Access Journals (Sweden)

    C. B. Phillips

    2014-12-01

    Full Text Available Understanding the mechanics of bed load at the flood scale is necessary to link hydrology to landscape evolution. Here we report on observations of the transport of coarse sediment tracer particles in a cobble-bedded alluvial river and a step-pool bedrock tributary, at the individual flood and multi-annual timescales. Tracer particle data for each survey are composed of measured displacement lengths for individual particles, and the number of tagged particles mobilized. For single floods we find that measured tracer particle displacement lengths are exponentially distributed; the number of mobile particles increases linearly with peak flood Shields stress, indicating partial bed load transport for all observed floods; and modal displacement distances scale linearly with excess shear velocity. These findings provide quantitative field support for a recently proposed modeling framework based on momentum conservation at the grain scale. Tracer displacement is weakly negatively correlated with particle size at the individual flood scale; however cumulative travel distance begins to show a stronger inverse relation to grain size when measured over many transport events. The observed spatial sorting of tracers approaches that of the river bed, and is consistent with size-selective deposition models and laboratory experiments. Tracer displacement data for the bedrock and alluvial channels collapse onto a single curve – despite more than an order of magnitude difference in channel slope – when variations of critical Shields stress and flow resistance between the two are accounted for. Results show how bed load dynamics may be predicted from a record of river stage, providing a direct link between climate and sediment transport.

  18. Radioactive tracers and the cracking modelings

    International Nuclear Information System (INIS)

    Bettens, B.

    1982-01-01

    The use of tracers (3H and 14 C) labelled in specific positions is an intensive contribution to the understanding and the revealing of the very often complex cracking modeling. The pyrolytic decay of the phenol and the cresols, of the aniline, of the phenantrene and its hydrogenated derived products were investigated and are presented as examples. The decay mechanisms give a theoretical knowledge of the thermal cracking and allow to handle the results on an industrial scale. (AF)

  19. Tracer research in process engineering

    International Nuclear Information System (INIS)

    Iller, E.

    1992-01-01

    The book is a review of modern applications of tracer techniques in chemical and process engineering studies. The next topics have been extensively presented: 1) media flow through apparatus; 2) the tracers in the study of media flow dynamics through apparatus; 3) mathematical interpretation of experimental data from impulse-response method; 4) the models of media flow through chemical reactors and apparatus; 5) radiotracers in mass transport study; 6) examples of practical applications of tracer methods in industrial objects. 84 refs, 96 figs, 31 tabs

  20. Tracer dispersion - experiment and CFD

    International Nuclear Information System (INIS)

    Zitny, R.

    2004-01-01

    Description of tracer distribution by means of dispersion models is a method successfully used in process engineering for fifty years. Application of dispersion models in reactor engineering for characterization of flows in column apparatus, heat exchangers, etc. is summarized and experimental tracer techniques as well as CFD methods for dispersion coefficients evaluation are discussed. Possible extensions of thermal axial dispersion model (ADM) and a core-wall ADM model suitable for description of tracer dispersion in laminar flows are suggested as well as CFD implementation as 1D finite elements. (author)

  1. Meteorological tracers in regional planning

    International Nuclear Information System (INIS)

    Mueller, K.H.

    1974-11-01

    Atmospheric tracers can be used as indicators to study both the ventilation of an urban region and its dispersion meteorology for air pollutants. A correlation analysis applied to the space-time dependent tracer concentrations is able to give transfer functions, the structure and characteristic parameters of which describe the meteorological and topographical situation of the urban region and its surroundings in an integral manner. To reduce the number of persons usually involved in a tracer experiment an automatic air sampling system had to be developed

  2. Proceedings of the atmospheric tracers and tracer application workshop

    International Nuclear Information System (INIS)

    Barr, S.; Gedayloo, T.

    1979-12-01

    In addition to presentations by participating members a general discussion was held in order to summarize and outline the goals and objectives of the workshop. A number of new low level background tracers such as heavy methanes, perfluorocarbons, multiply labeled isotopes such as 13 C 18 O 2 , helium 3, in addition to sample collection techniques and analytical methods for various tracers were discussed. This report is a summary of discussions and papers presented at this workshop

  3. The use of earth observation data in hydrological investigations – a case study in a Semi-Arid Catchment (Western Cape, South Africa)

    CSIR Research Space (South Africa)

    Bugan, Richard DH

    2014-01-01

    Full Text Available The availability of hydrological data is a critical component in water resources management. It allows for scientifically based decisions to be made, e.g. concerning the availability and allocation of water resources, the water use of vegetation...

  4. Radiogenic Isotopes in Weathering and Hydrology

    Science.gov (United States)

    Blum, J. D.; Erel, Y.

    2003-12-01

    as on the observation that radiogenic isotopes are sometimes preferentially released compared to nonradiogenic isotopes of the same element during acid leaching of rocks ( Hart and Tilton, 1966; Silver et al., 1984; Erel et al., 1991). A major finding of these investigations was that weathering often results in anomalously young Rb-Sr isochron ages, and discordant Pb-Pb ages. Rubidium is generally retained relative to strontium in whole-rock samples, and in some cases radiogenic strontium and lead are lost preferentially to common strontium and lead from weathered minerals.The most widely utilized of these isotopic systems is Rb-Sr, followed by U-Pb. The K-Ar system is not directly applicable to most studies of rock-water interaction, because argon is a noble gas, and upon release during mineral weathering mixes with atmospheric argon, limiting its usefulness as a tracer in most weathering applications. Argon and other noble gas isotopes have, however, found important applications in hydrology (see Chapter 5.15). Three other isotopic systems commonly used in geochronology and petrology include Sm-Nd, Lu-Hf, and Re-Os. These parent and daughter elements are in very low abundance and concentrated in trace mineral phases. Sm-Nd, Lu-Hf, and Re-Os have been used in a few weathering studies but have not been utilized extensively in investigations of weathering and hydrology.The decay of 87Rb to 87Sr has a half-life of 48.8 Gyr, and this radioactive decay results in natural variability in the 87Sr/86Sr ratio in rubidium-bearing minerals (e.g., Blum, 1995). The trace elements rubidium and strontium are geochemically similar to the major elements potassium and calcium, respectively. Therefore, minerals with high K/Ca ratios develop high 87Sr/86Sr ratios over geologic timescales. Once released into the hydrosphere, strontium retains its isotopic composition without significant fractionation by geochemical or biological processes, and is therefore a good tracer for sources and

  5. Tracer studies with aortic infusion result in improper tracer distribution

    International Nuclear Information System (INIS)

    Wisneski, J.A.; Brooks, G.A.; Neese, R.A.; Stanley, W.C.; Morris, D.L.; Gertz, E.W.

    1986-01-01

    It has been suggested that lactate turnover can be accurately assessed by infusing radioactive lactate tracer into the aorta and sampling blood in the vena cava. However, there may be streaming of newly infused tracer in the aorta, resulting in a nonuniform arterial specific activity (SA). Furthermore vena caval blood may not be representative of mixed venous blood. The authors examined this problem in 7 anesthetized dogs with sampling catheters in the pulmonary (PA), carotid (CA), and femoral (FA) arteries, and the superior (SVC) and inferior (IVC) vena cavi. [1- 14 C]lactate was continuously infused into the left ventricle through a catheter introduced through the femoral artery. The same SA (dpm/μmol) was found in the CA and FA, indicating adequate mixing of newly infused tracer with trace. Three dogs showed differences between SVC, IVC and PA, suggesting a mixed venous sample can not be obtained from the VC. When the catheter was moved into the aorta, wide differences in SA appeared between the CA and FA, clearly reflecting streaming of tracer. These differences also appeared in the SVC and IVC. In conclusion, adequate mixing does not occur between tracer and trace in arterial blood with aortic infusion. Further, VC sampling will not give a consistent mixed venous SA. Therefore, for practical reasons, aortic tracer infusion with vena caval sampling will lead to erroneous turnover values

  6. The use of isotopes in hydrology: Proceedings of a symposium, held in Beirut -Lebanon, December 1970

    International Nuclear Information System (INIS)

    1972-01-01

    The papers presented at the symposium had covered three general areas in which isotopes could have been beneficially used. these areas are: -Water use and water use efficiency studies. -Ground water investigations -Water problems in the arab countries. The individual papers had dealt with these subjects: -Hydrological research in the arab countries by use of radioisotopes. -The perspectives of use of radioisotopes in hydrological studies in Syria. -Water use efficiency and sub-soil water studies. -Sea water inclusion in a coast el aquifers in Lebanon. -Irrigation requirements of crops in Lebanon as determined by a Neutron probe with reference to other methods. -The use of the neutron moisture meter and other methods of the determination of the evapotranspiration of maize. -Ground water investigations, dating and nuclear methods applied to hydrology. -Ground water investigation in Wa di El-Nat run, U.A.R. -Velocity distribution along the pumped well using radioactive tracers. -Problems and costs of water use studies by neutron probe and lysimeter. Figs

  7. Isotope hydrology in Latin America

    Energy Technology Data Exchange (ETDEWEB)

    Payne, B R [International Atomic Energy Agency, Division of Research and Laboratories, Isotope Hydrology Section, Vienna (Austria)

    1972-07-01

    A wide variety of problems in hydrology have proved susceptible to the use of nuclear techniques. Conclusions may be drawn from the relative abundances of certain 'environmental isotopes', such as heavy stable isotopes of hydrogen and oxygen in water molecules, tritium, carbon-14 and silicon-32, in atmospheric, surface or ground water; origin and rate of flow, for example, may be deduced. Artificial radioisotopes may be used similarly as a logical extension to well-known tracer techniques using dyes and salts. Inherent in the use of such radiotracers are the advantages of very high detection sensitivity (and thus very low required concentrations and the elimination of density effects), and a choice of a variety of nuclides alien to the geohydrological system (and hence unique identification and low background). (author)

  8. Use of tracers for locating and designing sea outfalls

    International Nuclear Information System (INIS)

    Gauthier, M.; Quetin, B.

    1976-01-01

    Various tracers are used for investigating the propagation of substances in solution or suspension (radioactive, biological, chemical substances and floats). Floats and dyes are the most employed. The main problems associated with the use of such tracers and data interpretation are discussed and it is shown how effective quantitative data can be obtained, especially as regards estimation of turbulent diffusion parameters and identification of suitable dispersion methods for purposes of determining pollutant concentration and areas affected thereby [fr

  9. Fluorinated tracers for imaging cancer with positron emission tomography

    International Nuclear Information System (INIS)

    Couturier, Olivier; Chatal, Jean-Francois; Luxen, Andre; Vuillez, Jean-Philippe; Rigo, Pierre; Hustinx, Roland

    2004-01-01

    2-[ 18 F]fluoro-2-deoxy-d-glucose (FDG) is currently the only fluorinated tracer used in routine clinical positron emission tomography (PET). Fluorine-18 is considered the ideal radioisotope for PET imaging owing to the low positron energy (0.64 MeV), which not only limits the dose rate to the patient but also results in a relatively short range of emission in tissue, thereby providing high-resolution images. Further, the 110-min physical half-life allows for high-yield radiosynthesis, transport from the production site to the imaging site and imaging protocols that may span hours, which permits dynamic studies and assessment of potentially fairly slow metabolic processes. The synthesis of fluorinated tracers as an alternative to FDG was initially tested using nucleophilic fluorination of the molecule, as performed when radiolabelling with iodine-124 or bromide-76. However, in addition to being long, with multiple steps, this procedure is not recommended for bioactive molecules containing reactive groups such as amine or thiol groups. Radiochemical yields are also often low. More recently, radiosynthesis from prosthetic group precursors, which allows easier radiolabelling of biomolecules, has led to the development of numerous fluorinated tracers. Given the wide availability of 18 F, such tracers may well develop into important routine tracers. This article is a review of the literature concerning fluorinated radiotracers recently developed and under investigation for possible PET imaging in cancer patients. Two groups can be distinguished. The first includes ''generalist'' tracers, i.e. tracers amenable to use in a wide variety of tumours and indications, very similar in this respect to FDG. These are tracers for non-specific cell metabolism, such as protein synthesis, amino acid transport, nucleic acid synthesis or membrane component synthesis. The second group consists of ''specific'' tracers for receptor expression (i.e. oestrogens or somatostatin), cell

  10. 15N tracer techniques in pediatric research

    International Nuclear Information System (INIS)

    Heine, W.; Richter, I.; Plath, C.; Wutzke, K.; Stolpe, H.J.; Tiess, M.; Toewe, J.

    1983-01-01

    The main topics of the review comprise mathematical fundamentals of the determination of N metabolism parameters using the 3-pool method, the value of different 15 N tracer substances for the determination of whole-body protein parameters, the utilization of parenterally applied D-amino acids, studies on the influence of different diets on the N metabolism of premature infants with the 15 N tracer technique, the application of the 15 N-glycine-STH-test for the evaluation of the therapeutic effect of STH in children suffering from hypothalamico-hypophyseal dwarfism, in vivo studies on urea utilization by the infant intestinal flora under various dietary regimens as well as in vitro investigations on the utilization of 15 N-labelled urea and NH 4 Cl, resp., by the intestinal flora

  11. Tracer transport in fractured rocks

    International Nuclear Information System (INIS)

    Tsang, C.F.; Tsang, Y.W.; Hale, F.V.

    1988-07-01

    Recent interest in the safety of toxic waste underground disposal and nuclear waste geologic repositories has motivated many studies of tracer transport in fractured media. Fractures occur in most geologic formations and introduce a high degree of heterogeneity. Within each fracture, the aperture is not constant in value but strongly varying. Thus for such media, tracer tends to flow through preferred flowpaths or channels within the fractures. Along each of these channels, the aperture is also strongly varying. A detailed analysis is carried out on a 2D single fracture with variable apertures and the flow through channels is demonstrated. The channels defined this way are not rigidly set pathways for tracer transport, but are the preferred flow paths in the sense of stream-tubes in the potential theory. It is shown that such variable-aperture channels can be characterized by an aperture probability distribution function, and not by the exact deterministic geometric locations. We also demonstrate that the 2D tracer transport in a fracture can be calculated by a model of a system of 1D channels characterized by this distribution function only. Due to the channeling character of tracer transport in fractured rock, random point measurements of tracer breakthrough curves may give results with a wide spread in value due to statistical fluctuations. The present paper suggests that such a wide spread can probably be greatly reduced by making line/areal (or multiple) measurements covering a few spatial correlation lengths. 13 refs., 11 figs., 1 tab

  12. Tracer water transport and subgrid precipitation variation within atmospheric general circulation models

    Science.gov (United States)

    Koster, Randal D.; Eagleson, Peter S.; Broecker, Wallace S.

    1988-03-01

    A capability is developed for monitoring tracer water movement in the three-dimensional Goddard Institute for Space Science Atmospheric General Circulation Model (GCM). A typical experiment with the tracer water model follows water evaporating from selected grid squares and determines where this water first returns to the Earth's surface as precipitation or condensate, thereby providing information on the lateral scales of hydrological transport in the GCM. Through a comparison of model results with observations in nature, inferences can be drawn concerning real world water transport. Tests of the tracer water model include a comparison of simulated and observed vertically-integrated vapor flux fields and simulations of atomic tritium transport from the stratosphere to the oceans. The inter-annual variability of the tracer water model results is also examined.

  13. Tracer water transport and subgrid precipitation variation within atmospheric general circulation models

    Science.gov (United States)

    Koster, Randal D.; Eagleson, Peter S.; Broecker, Wallace S.

    1988-01-01

    A capability is developed for monitoring tracer water movement in the three-dimensional Goddard Institute for Space Science Atmospheric General Circulation Model (GCM). A typical experiment with the tracer water model follows water evaporating from selected grid squares and determines where this water first returns to the Earth's surface as precipitation or condensate, thereby providing information on the lateral scales of hydrological transport in the GCM. Through a comparison of model results with observations in nature, inferences can be drawn concerning real world water transport. Tests of the tracer water model include a comparison of simulated and observed vertically-integrated vapor flux fields and simulations of atomic tritium transport from the stratosphere to the oceans. The inter-annual variability of the tracer water model results is also examined.

  14. Compartmental modeling and tracer kinetics

    CERN Document Server

    Anderson, David H

    1983-01-01

    This monograph is concerned with mathematical aspects of compartmental an­ alysis. In particular, linear models are closely analyzed since they are fully justifiable as an investigative tool in tracer experiments. The objective of the monograph is to bring the reader up to date on some of the current mathematical prob­ lems of interest in compartmental analysis. This is accomplished by reviewing mathematical developments in the literature, especially over the last 10-15 years, and by presenting some new thoughts and directions for future mathematical research. These notes started as a series of lectures that I gave while visiting with the Division of Applied ~1athematics, Brown University, 1979, and have developed in­ to this collection of articles aimed at the reader with a beginning graduate level background in mathematics. The text can be used as a self-paced reading course. With this in mind, exercises have been appropriately placed throughout the notes. As an aid in reading the material, the e~d of a ...

  15. Nuclear hydrology and sedimentology

    International Nuclear Information System (INIS)

    Airey, P.L.

    1982-01-01

    The applications of isotope techniques to groundwater hydrology, sedimentation and surface water and heavy metal transport are discussed. Reference is made to several Australian studies. These include: a tritium study of the Burdekin Delta, North Queensland; a carbon-14 study of the Mereenie Sandstone aquifer, Alice Springs; groundwater studies in the Great Artesion Basin; uranium daughter product disequilibrium studies; the use of environmental cesium-137 to investigate sediment transport; and a study on the dispersion of water and zinc through the Magela system in the uranium mining areas of the Northern Territory

  16. Form and function in hillslope hydrology: in situ imaging and characterization of flow-relevant structures

    Directory of Open Access Journals (Sweden)

    C. Jackisch

    2017-07-01

    Full Text Available The study deals with the identification and characterization of rapid subsurface flow structures through pedo- and geo-physical measurements and irrigation experiments at the point, plot and hillslope scale. Our investigation of flow-relevant structures and hydrological responses refers to the general interplay of form and function, respectively. To obtain a holistic picture of the subsurface, a large set of different laboratory, exploratory and experimental methods was used at the different scales. For exploration these methods included drilled soil core profiles, in situ measurements of infiltration capacity and saturated hydraulic conductivity, and laboratory analyses of soil water retention and saturated hydraulic conductivity. The irrigation experiments at the plot scale were monitored through a combination of dye tracer, salt tracer, soil moisture dynamics, and 3-D time-lapse ground penetrating radar (GPR methods. At the hillslope scale the subsurface was explored by a 3-D GPR survey. A natural storm event and an irrigation experiment were monitored by a dense network of soil moisture observations and a cascade of 2-D time-lapse GPR trenches. We show that the shift between activated and non-activated state of the flow paths is needed to distinguish structures from overall heterogeneity. Pedo-physical analyses of point-scale samples are the basis for sub-scale structure inference. At the plot and hillslope scale 3-D and 2-D time-lapse GPR applications are successfully employed as non-invasive means to image subsurface response patterns and to identify flow-relevant paths. Tracer recovery and soil water responses from irrigation experiments deliver a consistent estimate of response velocities. The combined observation of form and function under active conditions provides the means to localize and characterize the structures (this study and the hydrological processes (companion study Angermann et al., 2017, this issue.

  17. Form and function in hillslope hydrology: in situ imaging and characterization of flow-relevant structures

    Science.gov (United States)

    Jackisch, Conrad; Angermann, Lisa; Allroggen, Niklas; Sprenger, Matthias; Blume, Theresa; Tronicke, Jens; Zehe, Erwin

    2017-07-01

    The study deals with the identification and characterization of rapid subsurface flow structures through pedo- and geo-physical measurements and irrigation experiments at the point, plot and hillslope scale. Our investigation of flow-relevant structures and hydrological responses refers to the general interplay of form and function, respectively. To obtain a holistic picture of the subsurface, a large set of different laboratory, exploratory and experimental methods was used at the different scales. For exploration these methods included drilled soil core profiles, in situ measurements of infiltration capacity and saturated hydraulic conductivity, and laboratory analyses of soil water retention and saturated hydraulic conductivity. The irrigation experiments at the plot scale were monitored through a combination of dye tracer, salt tracer, soil moisture dynamics, and 3-D time-lapse ground penetrating radar (GPR) methods. At the hillslope scale the subsurface was explored by a 3-D GPR survey. A natural storm event and an irrigation experiment were monitored by a dense network of soil moisture observations and a cascade of 2-D time-lapse GPR trenches. We show that the shift between activated and non-activated state of the flow paths is needed to distinguish structures from overall heterogeneity. Pedo-physical analyses of point-scale samples are the basis for sub-scale structure inference. At the plot and hillslope scale 3-D and 2-D time-lapse GPR applications are successfully employed as non-invasive means to image subsurface response patterns and to identify flow-relevant paths. Tracer recovery and soil water responses from irrigation experiments deliver a consistent estimate of response velocities. The combined observation of form and function under active conditions provides the means to localize and characterize the structures (this study) and the hydrological processes (companion study Angermann et al., 2017, this issue).

  18. The ATLAS DDM Tracer monitoring framework

    International Nuclear Information System (INIS)

    Zang Dongsong; Garonne, Vincent; Barisits, Martin; Lassnig, Mario; Andrew Stewart, Graeme; Molfetas, Angelos; Beermann, Thomas

    2012-01-01

    The DDM Tracer monitoring framework is aimed to trace and monitor the ATLAS file operations on the Worldwide LHC Computing Grid. The volume of traces has increased significantly since the framework was put in production in 2009. Now there are about 5 million trace messages every day and peaks can be near 250Hz, with peak rates continuing to climb, which gives the current structure a big challenge. Analysis of large datasets based on on-demand queries to the relational database management system (RDBMS), i.e. Oracle, can be problematic, and have a significant effect on the database's performance. Consequently, We have investigated some new high availability technologies like messaging infrastructure, specifically ActiveMQ, and key-value stores. The advantages of key value store technology are that they are distributed and have high scalability; also their write performances are usually much better than RDBMS, all of which are very useful for the Tracer monitoring framework. Indexes and distributed counters have been also tested to improve query performance and provided almost real time results. In this paper, the design principles, architecture and main characteristics of Tracer monitoring framework will be described and examples of its usage will be presented.

  19. Compilation and analyses of results from cross-hole tracer tests with conservative tracers

    Energy Technology Data Exchange (ETDEWEB)

    Hjerne, Calle; Nordqvist, Rune; Harrstroem, Johan (Geosigma AB (Sweden))

    2010-09-15

    Radionuclide transport in hydrogeological formations is one of the key factors for the safety analysis of a future repository of nuclear waste. Tracer tests have therefore been an important field method within the SKB investigation programmes at several sites since the late 1970's. This report presents a compilation and analyses of results from cross-hole tracer tests with conservative tracers performed within various SKB investigations. The objectives of the study are to facilitate, improve and reduce uncertainties in predictive tracer modelling and to provide supporting information for SKB's safety assessment of a final repository of nuclear waste. More specifically, the focus of the report is the relationship between the tracer mean residence time and fracture hydraulic parameters, i.e. the relationship between mass balance aperture and fracture transmissivity, hydraulic diffusivity and apparent storativity. For 74 different combinations of pumping and injection section at six different test sites (Studsvik, Stripa, Finnsjoen, Aespoe, Forsmark, Laxemar), estimates of mass balance aperture from cross-hole tracer tests as well as transmissivity were extracted from reports or in the SKB database Sicada. For 28 of these combinations of pumping and injection section, estimates of hydraulic diffusivity and apparent storativity from hydraulic interference tests were also found. An empirical relationship between mass balance aperture and transmissivity was estimated, although some uncertainties for individual data exist. The empirical relationship between mass balance aperture and transmissivity presented in this study deviates considerably from other previously suggested relationships, such as the cubic law and transport aperture as suggested by /Dershowitz and Klise 2002/, /Dershowitz et al. 2002/ and /Dershowitz et al. 2003/, which also is discussed in this report. No clear and direct empirical relationship between mass balance aperture and hydraulic

  20. Artificial radionuclide tracer supply to the Denmark strait overflow between 1972 and 1981

    International Nuclear Information System (INIS)

    Livingston, H.D.; Swift, J.H.; Ostlund, H.G.

    1985-01-01

    Measurements of the concentrations of the artificial radionuclides 3 H, 137 Cs, and 90 Sr in the northern Irminger Sea in 1972 and 1981 are reported. In both years, tracer measurements from this area included data from samples of the dense overflow water from the north through Denmark Strait. All three tracers were strongly correlated inversely with salinity in the dense outflows-the tracer maxima being related directly to the salinity minimum. When the tracer characteristics in the outflows in 1972 and 1981 were compared, concentrations of all in 1981 were observed to be about double the 1972 values. The individual tracer concentrations-on a decay-corrected, density-normalized basis-were higher in increasing order: 90 Sr(+93%) 3 H(+115%) 137 Cs(+150%). The relatively greater increases for 3 H and 137 Cs were attributed to contributions of new sources of these tracers in northern surface waters: the 3 H source is argued to derive from atmospheric hydrological recycling, whereas the 137 Cs source is identified as the input to the Greenland and Iceland seas of advected European nuclear fuel reprocessing wastes. Both the tracer and hydrographic data are used to identify northern locations of intermediate water formation capable of supplying the observed dense overflow water characteristics. It is argued, from the time taken for the overflow water to reflect the new surface 137 Cs source, that transport from the source to the overflow can be quite rapid (about 2 years)

  1. A Community Data Model for Hydrologic Observations

    Science.gov (United States)

    Tarboton, D. G.; Horsburgh, J. S.; Zaslavsky, I.; Maidment, D. R.; Valentine, D.; Jennings, B.

    2006-12-01

    The CUAHSI Hydrologic Information System project is developing information technology infrastructure to support hydrologic science. Hydrologic information science involves the description of hydrologic environments in a consistent way, using data models for information integration. This includes a hydrologic observations data model for the storage and retrieval of hydrologic observations in a relational database designed to facilitate data retrieval for integrated analysis of information collected by multiple investigators. It is intended to provide a standard format to facilitate the effective sharing of information between investigators and to facilitate analysis of information within a single study area or hydrologic observatory, or across hydrologic observatories and regions. The observations data model is designed to store hydrologic observations and sufficient ancillary information (metadata) about the observations to allow them to be unambiguously interpreted and used and provide traceable heritage from raw measurements to usable information. The design is based on the premise that a relational database at the single observation level is most effective for providing querying capability and cross dimension data retrieval and analysis. This premise is being tested through the implementation of a prototype hydrologic observations database, and the development of web services for the retrieval of data from and ingestion of data into the database. These web services hosted by the San Diego Supercomputer center make data in the database accessible both through a Hydrologic Data Access System portal and directly from applications software such as Excel, Matlab and ArcGIS that have Standard Object Access Protocol (SOAP) capability. This paper will (1) describe the data model; (2) demonstrate the capability for representing diverse data in the same database; (3) demonstrate the use of the database from applications software for the performance of hydrologic analysis

  2. Radioactive tracers in the sea

    International Nuclear Information System (INIS)

    Jenkins, W.J.; Livingston, H.D.

    1980-01-01

    Artificial radionuclides introduced to the oceans during the last four decades have proved invaluable tools for study of many processes in marine water columns and sediments. Both global and close-in fallout of radioactivity from atmospheric nuclear weapons testing have distributed these radionuclides widely, and in amounts sufficient to be useful as tracers. An additional source of considerable significance and tracer potential comes from coastal discharges of European nuclear fuel reprocessing wastes. The nature of these sources, types and amounts of radionuclides introduced and the time histories of their introduction generate a variety of tracer distributions which illuminate a broad spectrum of physical and chemical processes active over a wide range of timescales. Depending on their respective chemistries, artificial radionuclides have been demonstrated to exhibit both conservative and non-conservative properties in the oceans. Some examples are given of the uses made of soluble, conservative tracers for the study of oceanic transport processes and of non-conservative tracers for studies of processes which move them to, and mix them within, marine sediments. Sampling and measurement techniques which have been used in these studies are described

  3. HYDROLOGY, NESHOBA COUNTY, MISSISSIPPI

    Data.gov (United States)

    Federal Emergency Management Agency, Department of Homeland Security — Hydrology data include spatial datasets and data tables necessary for documenting the hydrologic procedures for estimating flood discharges for a flood insurance...

  4. HYDROLOGY, MONTGOMERY COUNTY, MISSISSIPPI

    Data.gov (United States)

    Federal Emergency Management Agency, Department of Homeland Security — Hydrology data include spatial datasets and data tables necessary for documenting the hydrologic procedures for estimating flood discharges for a flood insurance...

  5. HYDROLOGY, DOUGLAS COUNTY, MINNESOTA

    Data.gov (United States)

    Federal Emergency Management Agency, Department of Homeland Security — Hydrology data include spatial datasets and data tables necessary for documenting the hydrologic procedures for estimating flood discharges for a flood insurance...

  6. HYDROLOGY, OSCEOLA COUNTY, FL

    Data.gov (United States)

    Federal Emergency Management Agency, Department of Homeland Security — Hydrology data include spatial datasets and data tables necessary for documenting the hydrologic procedures for estimating flood discharges for a flood insurance...

  7. HYDROLOGY, STEARNS COUNTY, MN

    Data.gov (United States)

    Federal Emergency Management Agency, Department of Homeland Security — Hydrology data include spatial datasets and data tables necessary for documenting the hydrologic procedures for estimating flood discharges for a flood insurance...

  8. HYDROLOGY, CALHOUN COUNTY, MISSISSIPPI

    Data.gov (United States)

    Federal Emergency Management Agency, Department of Homeland Security — Hydrology data include spatial datasets and data tables necessary for documenting the hydrologic procedures for estimating flood discharges for a flood insurance...

  9. HYDROLOGY, LEFLORE COUNTY, MISSISSIPPI

    Data.gov (United States)

    Federal Emergency Management Agency, Department of Homeland Security — Hydrology data include spatial datasets and data tables necessary for documenting the hydrologic procedures for estimating flood discharges for a flood insurance...

  10. HYDROLOGY, WAYNE COUNTY, MISSISSIPPI

    Data.gov (United States)

    Federal Emergency Management Agency, Department of Homeland Security — Hydrology data include spatial datasets and data tables necessary for documenting the hydrologic procedures for estimating flood discharges for a flood insurance...

  11. Hydrology, OCONEE COUNTY, SC

    Data.gov (United States)

    Federal Emergency Management Agency, Department of Homeland Security — Hydrology data include spatial datasets and data tables necessary for documenting the hydrologic procedures for estimating flood discharges for a flood insurance...

  12. HYDROLOGY, NEWTON COUNTY, MISSISSIPPI

    Data.gov (United States)

    Federal Emergency Management Agency, Department of Homeland Security — Hydrology data include spatial datasets and data tables necessary for documenting the hydrologic procedures for estimating flood discharges for a flood insurance...

  13. HYDROLOGY, TIPPAH COUNTY, MISSISSIPPI

    Data.gov (United States)

    Federal Emergency Management Agency, Department of Homeland Security — Hydrology data include spatial datasets and data tables necessary for documenting the hydrologic procedures for estimating flood discharges for a flood insurance...

  14. HYDROLOGY, CALHOUN COUNTY, MICHIGAN

    Data.gov (United States)

    Federal Emergency Management Agency, Department of Homeland Security — Hydrology data include spatial datasets and data tables necessary for documenting the hydrologic procedures for estimating flood discharges for a flood insurance...

  15. HYDROLOGY, SUNFLOWER COUNTY, MISSISSIPPI

    Data.gov (United States)

    Federal Emergency Management Agency, Department of Homeland Security — Hydrology data include spatial datasets and data tables necessary for documenting the hydrologic procedures for estimating flood discharges for a flood insurance...

  16. HYDROLOGY, HOUSTON COUNTY, ALABAMA

    Data.gov (United States)

    Federal Emergency Management Agency, Department of Homeland Security — Hydrology data include spatial datasets and data tables necessary for documenting the hydrologic procedures for estimating ALood discharges for a ALood Insurance...

  17. Weber County Hydrology Report

    Data.gov (United States)

    Federal Emergency Management Agency, Department of Homeland Security — Hydrology data include spatial datasets and data tables necessary for documenting the hydrologic procedures for estimating flood discharges for a flood insurance...

  18. HYDROLOGY, LEAKE COUNTY, MISSISSIPPI

    Data.gov (United States)

    Federal Emergency Management Agency, Department of Homeland Security — Hydrology data include spatial datasets and data tables necessary for documenting the hydrologic procedures for estimating flood discharges for a flood insurance...

  19. HYDROLOGY, CHISAGO COUNTY, MN

    Data.gov (United States)

    Federal Emergency Management Agency, Department of Homeland Security — Hydrology data include spatial datasets and data tables necessary for documenting the hydrologic procedures for estimating flood discharges for a flood insurance...

  20. HYDROLOGY, CLAIBORNE COUNTY, MS

    Data.gov (United States)

    Federal Emergency Management Agency, Department of Homeland Security — Hydrology data include spatial datasets and data tables necessary for documenting the hydrologic procedures for estimating flood discharges for a flood insurance...

  1. HYDROLOGY, LAFAYETTE COUNTY, MS

    Data.gov (United States)

    Federal Emergency Management Agency, Department of Homeland Security — Hydrology data include spatial datasets and data tables necessary for documenting the hydrologic procedures for estimating flood discharges for a flood insurance...

  2. HYDROLOGY, Yazoo COUNTY, MS

    Data.gov (United States)

    Federal Emergency Management Agency, Department of Homeland Security — Hydrology data include spatial datasets and data tables necessary for documenting the hydrologic procedures for estimating flood discharges for a flood insurance...

  3. HYDROLOGY, Lawrence County, ARKANSAS

    Data.gov (United States)

    Federal Emergency Management Agency, Department of Homeland Security — Hydrology data include spatial datasets and data tables necessary for documenting the hydrologic procedures for estimating flood discharges for a Flood Insurance...

  4. HYDROLOGY, Allegheny County, PA

    Data.gov (United States)

    Federal Emergency Management Agency, Department of Homeland Security — Hydrology data include spatial datasets and data tables necessary for documenting the hydrologic procedures for estimating flood discharges for a Flood Insurance...

  5. HYDROLOGY, SIMPSON COUNTY, MS

    Data.gov (United States)

    Federal Emergency Management Agency, Department of Homeland Security — Hydrology data include spatial datasets and data tables necessary for documenting the hydrologic procedures for estimating flood discharges for a flood insurance...

  6. HYDROLOGY, GILCHRIST COUNTY, FL

    Data.gov (United States)

    Federal Emergency Management Agency, Department of Homeland Security — Hydrology data include spatial datasets and data tables necessary for documenting the hydrologic procedures for estimating flood discharges for a flood insurance...

  7. HYDROLOGY, GLADES COUNTY, FLORIDA

    Data.gov (United States)

    Federal Emergency Management Agency, Department of Homeland Security — Hydrology data include spatial datasets and data tables necessary for documenting the hydrologic procedures for estimating flood discharges for a Flood Insurance...

  8. HYDROLOGY, LEE COUNTY, TEXAS

    Data.gov (United States)

    Federal Emergency Management Agency, Department of Homeland Security — Hydrology data include spatial datasets and data tables necessary for documenting the hydrologic procedures for estimating flood discharges for a Flood Insurance...

  9. HYDROLOGY, GREENE County, ARKANSAS

    Data.gov (United States)

    Federal Emergency Management Agency, Department of Homeland Security — Hydrology data include spatial datasets and data tables necessary for documenting the hydrologic procedures for estimating flood discharges for a Flood Insurance...

  10. Quantifying solute transport processes: are chemically "conservative" tracers electrically conservative?

    Science.gov (United States)

    Singha, Kamini; Li, Li; Day-Lewis, Frederick D.; Regberg, Aaron B.

    2012-01-01

    The concept of a nonreactive or conservative tracer, commonly invoked in investigations of solute transport, requires additional study in the context of electrical geophysical monitoring. Tracers that are commonly considered conservative may undergo reactive processes, such as ion exchange, thus changing the aqueous composition of the system. As a result, the measured electrical conductivity may reflect not only solute transport but also reactive processes. We have evaluated the impacts of ion exchange reactions, rate-limited mass transfer, and surface conduction on quantifying tracer mass, mean arrival time, and temporal variance in laboratory-scale column experiments. Numerical examples showed that (1) ion exchange can lead to resistivity-estimated tracer mass, velocity, and dispersivity that may be inaccurate; (2) mass transfer leads to an overestimate in the mobile tracer mass and an underestimate in velocity when using electrical methods; and (3) surface conductance does not notably affect estimated moments when high-concentration tracers are used, although this phenomenon may be important at low concentrations or in sediments with high and/or spatially variable cation-exchange capacity. In all cases, colocated groundwater concentration measurements are of high importance for interpreting geophysical data with respect to the controlling transport processes of interest.

  11. The progress of hydrology

    Energy Technology Data Exchange (ETDEWEB)

    Chow, V T [University of Illinois, Urbana, IL (United States)

    1967-05-15

    This paper discusses mainly the challenge of hydrology, recent activities, events, and major problems in hydrology, and advances in hydrological techniques. New scientific knowledge and techniques developed in many modern scientific disciplines, and the recognition of the importance of hydrology in water-resources development enable and encourage the hydrologist to advance scientific hydrology. Many programmes to promote hydrology and to expand its attendant activities have been developed in recent years. Therefore, the activities in the United States of America, such as the Universities Council on Water Resources and the President's Water for Peace Programme, and the programmes in the International Hydrological Decade are mentioned. The most important advance in theoretical hydrology is the development of a new concept of dynamic sequential systems for the hydrological cycle, thus creating new fields of systems, parametric, and stochastic hydrology. Modern scientific instrumentation provide the hydrologist with better tools for solving his problems. The most important of these, such as electronic computers, remote sensing, and nuclear techniques are discussed. Today various major problems, both theoretical and practical, face the hydrologist. Theoretical problems concern the basic understanding of hydrological systems and the mathematical simulation and physical interpretation of hydrological phenomena. Major practical problems are numerous and diversified, but they are mostly related to the multiple-purpose development of water resources. Four central problematical subjects are discussed; namely, the effects of man on his environment, the dynamics of aqueous flow systems, hydrological transport mechanism, and groundwater hydrology. Also, the use of nuclear techniques in solving various hydrological problems is discussed. It is believed that the application of nuclear techniques would prove extremely valuable in helping solve problems, but their ultimate use in

  12. The progress of hydrology

    International Nuclear Information System (INIS)

    Chow, V.T.

    1967-01-01

    This paper discusses mainly the challenge of hydrology, recent activities, events, and major problems in hydrology, and advances in hydrological techniques. New scientific knowledge and techniques developed in many modern scientific disciplines, and the recognition of the importance of hydrology in water-resources development enable and encourage the hydrologist to advance scientific hydrology. Many programmes to promote hydrology and to expand its attendant activities have been developed in recent years. Therefore, the activities in the United States of America, such as the Universities Council on Water Resources and the President's Water for Peace Programme, and the programmes in the International Hydrological Decade are mentioned. The most important advance in theoretical hydrology is the development of a new concept of dynamic sequential systems for the hydrological cycle, thus creating new fields of systems, parametric, and stochastic hydrology. Modern scientific instrumentation provide the hydrologist with better tools for solving his problems. The most important of these, such as electronic computers, remote sensing, and nuclear techniques are discussed. Today various major problems, both theoretical and practical, face the hydrologist. Theoretical problems concern the basic understanding of hydrological systems and the mathematical simulation and physical interpretation of hydrological phenomena. Major practical problems are numerous and diversified, but they are mostly related to the multiple-purpose development of water resources. Four central problematical subjects are discussed; namely, the effects of man on his environment, the dynamics of aqueous flow systems, hydrological transport mechanism, and groundwater hydrology. Also, the use of nuclear techniques in solving various hydrological problems is discussed. It is believed that the application of nuclear techniques would prove extremely valuable in helping solve problems, but their ultimate use in

  13. Radiochemical tracers in marine biology

    International Nuclear Information System (INIS)

    Petrocelli, S.R.; Anderson, J.W.; Neff, J.M.

    1977-01-01

    Tracers have been used in a great variety of experimentation. More recently, labeled materials have been applied in marine biological research. Some of the existing tracer techniques have been utilized directly, while others have been modified to suit the specific needs of marine biologists. This chapter describes some of the uses of tracers in marine biological research. It also mentions the problems encountered as well as offering possible solutions and discusses further applications of these techniques. Only pertinent references are cited and additional information may be obtained by consulting these references. Due to their relative ease of maintenance, freshwater species are also utilized in studies which involve radiotracer techniques. Since most of these techniques e directly applicable to marine species, some of these studies will also be included

  14. Radioisotope tracer applications in industry

    International Nuclear Information System (INIS)

    Rao, S.M.

    1987-01-01

    Radioisotope tracers have many advantages in industrial trouble-shooting and studies on process kinetics. The applications are mainly of two types: one leading to qualitative (Yes or No type) information and the other to quantitative characterisation of flow processes through mass balance considerations and flow models. ''Yes or No'' type methods are mainly used for leakage and blockage locations in pipelines and in other industrial systems and also for location of water seepage zones in oil wells. Flow measurements in pipelines and mercury inventory in electrolytic cells are good examples of tracer methods using the mass balance approach. Axial dispersion model and Tanks-in-Series model are the two basic flow models commonly used with tracer methods for the characterisation of kinetic processes. Examples include studies on flow processes in sugar crystallisers as well as in a precalcinator in a cement plant. (author). 18 figs

  15. Thirty years of interpreting stream tracer data: A look back, a look sideways, and a look forward

    Science.gov (United States)

    Runkel, R. L.

    2012-12-01

    The pioneering work of Bencala and Walters (Water Resources Research, 1983) spawned numerous studies in which stream tracer data have been used to characterize the hydrologic processes that govern solute transport. The primary focus of these studies is the quantification of "transient storage", the delay in mass transport attributable to slow-moving waters within the stream channel and hyporheic zone. Characterization of transient storage is often achieved through analysis of tracer breakthrough curves using a simulation model that quantifies the size of the storage zone and the rate of exchange between the storage zone and the advective channel. This approach has led to significant advancements in our understanding of groundwater-surface water interactions, nutrient spiraling, and contaminant transport. Despite this progress, several deficiencies in the overall approach have been identified and are the subject of recent investigations. These deficiencies include the use of a single storage zone to quantify both surface storage and hyporheic exchange, the use of an exponential residence time distribution, and the inability to characterize long hyporheic flowpaths. Although research related to these deficiencies is still ongoing, there is a need to develop and maintain standard methods that allow investigators to compare research results. Future research efforts should therefore focus on methods that can objectively quantify transient storage in a consistent manner.

  16. The stream flow rate measurement using tracer techniques at the Kemubu Agricultural Development Authority (KADA), Kelantan

    International Nuclear Information System (INIS)

    Daud Mohammad; Abd Razak Hamzah; Wan Abd Aziz Wan Mohamad; Juhari Yusoff; Wan Zakaria Wan Mohd Tahir

    1985-01-01

    Measuring the flow rate of a water course is one of the basic operations in hydrology, being of general relevance to water problems and of particular importance in the planning of water control schemes. The techniques commonly used in streamflow gauging are either by a current meter of tracer dilution method. This paper describes the latter technique in which radioisotope Tc-99m was used as a tracer in streamflow measurements performed in 1983 in a few selected irrigation canals and pump house under the Kemubu Agriculture Development Authority (KADA), Kelantan. Total count technique and peak-to-peak method were adopted in this study. (author)

  17. Tracer techniques in karst hydrogeology. Application to the location of karst aquifers

    International Nuclear Information System (INIS)

    Mangin, A.; Molinari, J.

    1976-01-01

    From the recent progress in karst aquifer simulation techniques and the improved knowledge of tracers, the old-established tracer technique has become an invaluable instrument for hydrogeological survey work. Typical information obtainable includes karst system boundaries features and location of hydrodynamic discontinuities, flow variation in both space and time. Tracer methods are a basic requirement for investigation of karst groundwater supplies and determining protection zones for water supply points [fr

  18. Concentration dynamics in lakes and reservoirs. Studies using radioactive tracers

    International Nuclear Information System (INIS)

    Gilath, Ch.

    1983-01-01

    The use of radioactive tracers for the investigation of concentration dynamics of inert soluble matter in lakes and reservoirs is reviewed. Shallow and deep stratified lakes are considered. The mechanism of mixing in lakes, flow pattern and input - output response are discussed. The methodology of the use of radioactive tracers for concentration dynamic studies is described. Examples of various investigations are reviewed. The dynamics of shallow lakes can be found and expressed in terms of transfer functions, axial dispersion models, residence time distributions and sometimes only semiquantitative information about the flow pattern. The dynamics of deep, stratified lakes is more complex and difficult to investigate with tracers. Flow pattern, horizontal and vertical eddy diffusivities, mass transfer between the hypolimnion and epilimnion are tools used for describing this dynamics. (author)

  19. Tracer preparate and method for its production

    International Nuclear Information System (INIS)

    Pratt, F.P.; Gagnon, D.

    1978-01-01

    The injectable tracer preparate for investigations to determine the blood flow in organs or the effect of drugs on the blood flow consists of a core of ion exchanger resin coated with polyfuran or a polymer which is the reaction product of a monomer catalysable by acid or base. The nuclei have a diameter of 10 to 200 micron, the coating thickness is between 1 and 3 micron. Ions of Ce 141, Cr 51, Sr 85, Sr 46 or Co 57 of strength 0.1-100 millicurie are adsorbed on the nucleus. (DG) [de

  20. Radon as tracer to identify discharge sections at Juatuba basin

    International Nuclear Information System (INIS)

    Chagas, Claudio Jose; Ferreira, Vinicius Verna Magalhaes; Fonseca, Raquel Luisa Mageste; Rocha, Zildete; Moreira, Rubens Martins; Lemos, Nayron Cosme; Menezes, Angela de Barros Correia; Santos, Talita Oliveira

    2015-01-01

    The use of natural tracers in hydrological studies is a very useful tool, being applied in several studies. One of these tracers is the radon, 222 Rn, noble gas derived from natural sources, been found in all underground waters, as a product of radioactive decay of the 226 Ra. This gas can be found in the air, water, rocks or soil. In this paper, the 222 Rn detection in surface water was used as tracer in order to identify aquifer discharge sections in surface water at the Fundao stream, which belongs to the Juatuba river basin, through the second semester of 2014 and the first semester of 2015, in three sampling campaigns. The 222 Rn measurements at Fundao stream were carried out using the equipment RAD 7. The results showed that 222 Rn is present in some sections of the water course suggesting that there is a connection between groundwater and surface water. It also justifies the variation in the water level in the stream, recorded by a fluviometric station. (author)

  1. Radon as tracer to identify discharge sections at Juatuba basin

    Energy Technology Data Exchange (ETDEWEB)

    Chagas, Claudio Jose; Ferreira, Vinicius Verna Magalhaes; Fonseca, Raquel Luisa Mageste; Rocha, Zildete; Moreira, Rubens Martins; Lemos, Nayron Cosme; Menezes, Angela de Barros Correia, E-mail: vvmf@cdtn.br, E-mail: rlmf@cdtn.br, E-mail: cjc@cdtn.br, E-mail: rochaz@cdtn.br, E-mail: rubens@cdtn.br, E-mail: menezes@cdtn.br, E-mail: lemosnc@cdtn.br [Centro de Desenvolvimento da Tecnologia Nuclear (CDTN/CNEN-MG), Belo Horizonte, MG (Brazil); Santos, Talita Oliveira, E-mail: talitaolsantos@yahoo.com.br [Universidade Federal de Minas Gerais (UFMG), Belo Horizonte, MG (Brazil). Escola de Engenharia. Departamento de Engenharia Nuclear. Programa de Pos-Graduacao em Ciencias e Tecnicas Nucleares

    2015-07-01

    The use of natural tracers in hydrological studies is a very useful tool, being applied in several studies. One of these tracers is the radon, {sup 222}Rn, noble gas derived from natural sources, been found in all underground waters, as a product of radioactive decay of the {sup 226}Ra. This gas can be found in the air, water, rocks or soil. In this paper, the {sup 222}Rn detection in surface water was used as tracer in order to identify aquifer discharge sections in surface water at the Fundao stream, which belongs to the Juatuba river basin, through the second semester of 2014 and the first semester of 2015, in three sampling campaigns. The {sup 222}Rn measurements at Fundao stream were carried out using the equipment RAD 7. The results showed that {sup 222}Rn is present in some sections of the water course suggesting that there is a connection between groundwater and surface water. It also justifies the variation in the water level in the stream, recorded by a fluviometric station. (author)

  2. Discrete fracture modelling for the Stripa tracer validation experiment predictions

    International Nuclear Information System (INIS)

    Dershowitz, W.; Wallmann, P.

    1992-02-01

    Groundwater flow and transport through three-dimensional networks of discrete fractures was modeled to predict the recovery of tracer from tracer injection experiments conducted during phase 3 of the Stripa site characterization and validation protect. Predictions were made on the basis of an updated version of the site scale discrete fracture conceptual model used for flow predictions and preliminary transport modelling. In this model, individual fractures were treated as stochastic features described by probability distributions of geometric and hydrologic properties. Fractures were divided into three populations: Fractures in fracture zones near the drift, non-fracture zone fractures within 31 m of the drift, and fractures in fracture zones over 31 meters from the drift axis. Fractures outside fracture zones are not modelled beyond 31 meters from the drift axis. Transport predictions were produced using the FracMan discrete fracture modelling package for each of five tracer experiments. Output was produced in the seven formats specified by the Stripa task force on fracture flow modelling. (au)

  3. Investigating the hydrological significance of stalagmite geochemistry (Mg, Sr) using Sr isotope and particulate element records across the Late Glacial-to-Holocene transition

    Science.gov (United States)

    Belli, R.; Borsato, A.; Frisia, S.; Drysdale, R.; Maas, R.; Greig, A.

    2017-02-01

    The trace element and Sr isotope records in two coeval stalagmites characterized by different growth rates and flow regimes at Savi cave (Grotta Savi, NE Italy) reveal different sources and incorporation mechanisms for Mg and Sr. Mg is sourced primarily from dissolved cave host rock while particulate Mg derived from soil plays a subordinate role. The presence of particulate-borne Mg is inferred from the co-variation of Mg and particle-associated elements (Th, Al and Mn) which are preferentially concentrated in open columnar calcite layers. Variation in Mg concentrations corrected for particle-influenced components, the Mgc parameter, is controlled by water-rock interaction, with higher and lower Mgc during dry and wet phases, respectively. This is thought to reflect incongruent dissolution of Mg-rich phases. Correction of Sr concentrations for contributions from airborne exogenic Sr, based on 87Sr/86Sr ratios, yields the bedrock-only contribution (Src). Src variation in stalagmite calcite is influenced by speleothem growth rate and by variation of the calcite-water Sr partitioning in wet and dry phases, and only to a minor extent by incongruent dissolution of Mg-rich phases. Concentration profiles for Mgc and Srcg (corrected for growth rate effects) show inverse correlations and are inferred to show hydrological significance which is captured in a hydrological index, HI. We suggest HI provides robust information on water-rock interaction related to hydrological changes and can be utilized in both wet and semi-arid environments, provided the corrections for soil Mg and exogenic Sr can be applied with confidence. Application of the HI index allows correction of Grotta Savi oxygen isotope data, to yield a δ18Oc time series that shows when changes in moisture sources and atmospheric reorganization, or changes in moisture amount, were significant. This is especially evident during the Younger Dryas (YD). The Savi record supports the concept of a two-phase YD, marked by

  4. Tracers of cancer cells in nuclear oncology

    International Nuclear Information System (INIS)

    Tamgac, F.; Baillet, G.; Moretti, J.L.; Safi, N.; Weinmann, P.; Beco, V. de

    1997-01-01

    Evaluating the extent of disease is important in planning cancer treatment. Different types of tracers are used in vivo to diagnose tumors and these tracers can give supplementary information on the differentiation degree of tumors and response to therapy. (authors)

  5. Use of natural and applied tracers to guide targeted remediation efforts in an acid mine drainage system, Colorado Rockies, USA

    Science.gov (United States)

    Cowie, Rory; Williams, Mark W.; Wireman, Mike; Runkel, Robert L.

    2014-01-01

    Stream water quality in areas of the western United States continues to be degraded by acid mine drainage (AMD), a legacy of hard-rock mining. The Rico-Argentine Mine in southwestern Colorado consists of complex multiple-level mine workings connected to a drainage tunnel discharging AMD to passive treatment ponds that discharge to the Dolores River. The mine workings are excavated into the hillslope on either side of a tributary stream with workings passing directly under the stream channel. There is a need to define hydrologic connections between surface water, groundwater, and mine workings to understand the source of both water and contaminants in the drainage tunnel discharge. Source identification will allow targeted remediation strategies to be developed. To identify hydrologic connections we employed a combination of natural and applied tracers including isotopes, ionic tracers, and fluorescent dyes. Stable water isotopes (δ18O/δD) show a well-mixed hydrological system, while tritium levels in mine waters indicate a fast flow-through system with mean residence times of years not decades or longer. Addition of multiple independent tracers indicated that water is traveling through mine workings with minimal obstructions. The results from a simultaneous salt and dye tracer application demonstrated that both tracer types can be successfully used in acidic mine water conditions.

  6. Fluorescent bioaerosol particle, molecular tracer, and fungal spore concentrations during dry and rainy periods in a semi-arid forest

    Directory of Open Access Journals (Sweden)

    M. I. Gosselin

    2016-12-01

    Full Text Available Bioaerosols pose risks to human health and agriculture and may influence the evolution of mixed-phase clouds and the hydrological cycle on local and regional scales. The availability and reliability of methods and data on the abundance and properties of atmospheric bioaerosols, however, are rather limited. Here we analyze and compare data from different real-time ultraviolet laser/light-induced fluorescence (UV-LIF instruments with results from a culture-based spore sampler and offline molecular tracers for airborne fungal spores in a semi-arid forest in the southern Rocky Mountains of Colorado. Commercial UV-APS (ultraviolet aerodynamic particle sizer and WIBS-3 (wideband integrated bioaerosol sensor, version 3 instruments with different excitation and emission wavelengths were utilized to measure fluorescent aerosol particles (FAPs during both dry weather conditions and periods heavily influenced by rain. Seven molecular tracers of bioaerosols were quantified by analysis of total suspended particle (TSP high-volume filter samples using a high-performance anion-exchange chromatography system with pulsed amperometric detection (HPAEC-PAD. From the same measurement campaign, Huffman et al. (2013 previously reported dramatic increases in total and fluorescent particle concentrations during and immediately after rainfall and also showed a strong relationship between the concentrations of FAPs and ice nuclei (Huffman et al., 2013; Prenni et al., 2013. Here we investigate molecular tracers and show that during rainy periods the atmospheric concentrations of arabitol (35.2 ± 10.5 ng m−3 and mannitol (44.9 ± 13.8 ng m−3 were 3–4 times higher than during dry periods. During and after rain, the correlations between FAP and tracer mass concentrations were also significantly improved. Fungal spore number concentrations on the order of 104 m−3, accounting for 2–5 % of TSP mass during dry periods and 17–23 % during rainy

  7. Tracer-tracer relations as a tool for research on polar ozone loss

    Energy Technology Data Exchange (ETDEWEB)

    Mueller, Rolf

    2010-07-01

    The report includes the following chapters: (1) Introduction: ozone in the atmosphere, anthropogenic influence on the ozone layer, polar stratospheric ozone loss; (2) Tracer-tracer relations in the stratosphere: tracer-tracer relations as a tool in atmospheric research; impact of cosmic-ray-induced heterogeneous chemistry on polar ozone; (3) quantifying polar ozone loss from ozone-tracer relations: principles of tracer-tracer correlation techniques; reference ozone-tracer relations in the early polar vortex; impact of mixing on ozone-tracer relations in the polar vortex; impact of mesospheric intrusions on ozone-tracer relations in the stratospheric polar vortex calculation of chemical ozone loss in the arctic in March 2003 based on ILAS-II measurements; (4) epilogue.

  8. New SPECT tracers: Example of tracers of proteoglycans and melanin

    International Nuclear Information System (INIS)

    Cachin, F.; Mestas, D.; Kelly, A.; Merlin, C.; Veyre, A.; Maublant, J.; Cachin, F.; Chezal, J.M.; Miot-Noirault, E.; Moins, N.; Auzeloux, P.; Vidal, A.; Bonnet-Duquennoy, M.; Boisgard, S.; D'Incan, M.; Madelmont, J.C.; Maublant, J.; Boisgard, S.; D'Incan, M.; Redini, F.; Filaire, M.

    2009-01-01

    The majority of research program on new radiopharmaceuticals turn to tracers used for positron emission tomography (PET). Only a few teams work on new non fluorine labeled tracers. However, the coming of SPECT/CT gamma cameras, the arrival of semi-conductors gamma cameras should boost the development of non-PET tracers. We exhibit in this article the experience acquired by our laboratory in the conception and design of two new non fluorine labelled compounds. The 99m Tc-N.T.P. 15-5 (N.T.P. 15-5 for N-[tri-ethyl-ammonium]-3-propyl-[15]ane-N5) which binds to proteoglycans could be used for the diagnosis and staging of osteoarthritis and chondrosarcoma. The iodo benzamides, specific to the melanin, are nowadays compared to 18 F-fluorodeoxyglucose in a phase III clinical trial for the diagnosis and detection of melanoma metastasis. Our last development focus on N-[2-(diethyl-amino)ethyl]-4 and 2-iodo benzamides respectively B.Z.A. and B.Z.A.2 hetero-aromatic analogues usable for melanoma treatment. (authors)

  9. Field and Laboratory Tests of Chromium-51-EDTA and Tritium Water as a Double Tracer for Groundwater Flow

    International Nuclear Information System (INIS)

    Knutsson, G.; Uunggren, K.; Forsberg, H. G.

    1963-01-01

    Since 1958 field experiments and laboratory tests have been made in a study of groundwater flow in different geological and mineralogical environments by the use of gamma-emitting tracers ana tritium water. The velocity of groundwater flow in soil is rather low, and tracers with medium or long half-life must be chosen to trace the movement. A stable EDTA-complex of Cr 51 (half-life 28 d) was developed for this purpose and used together with tritium water. With this double tracer it was possible to follow the groundwater flow by measurement of the gamma radiation from Cr 51 directly in the field and thereby to reduce the number of water samples for precise laboratory assessment. By comparison of the measured activities of Cr 51 and tritium it was possible to determine whether there was any retardation or loss of the chromium complex as a result of adsorption. Six field investigations, each of about two months' duration, have been made in glacifluvial sand and gravel. The results from these show that the chromium complex is transported as rapidly as the tritium water is, even at low concentrations (0. 01 ppm) of the complex. 17 field investigations of one to three months' duration with this double tracer have been carried out in various till (moraine) soils for a study of certain hydrological problems. Laboratory tests with soil and water from the various areas of field investigations have shown that the chromium complex does not hydrolyse at concentrations above 0.01 ppm. Further laboratory tests of the reliability of the chromium complex in different mineralogical environments are in progress. A number of investigations of groundwater flow through fissures and channels have abo been made. When the velocity of flow was assumed to be very high, Br 82 as bromide ion or Rhodamine-B, a fluorescent organic dye, were used. EDTA-Cr 51 and tritium water were, however, used when the velocity was considered low or when, as in karst, a great number of channels or large

  10. CityFlux perfluorocarbon tracer experiments

    Directory of Open Access Journals (Sweden)

    F. K. Petersson

    2010-07-01

    Full Text Available In June 2006, two perfluorocarbon tracer experiments were conducted in central Manchester UK as part of the CityFlux campaign. The main aim was to investigate vertical dispersion in an urban area during convective conditions, but dispersion mechanisms within the street network were also studied. Paired receptors were used in most cases where one receptor was located at ground level and one at roof level. One receptor was located on the roof of Portland Tower which is an 80 m high building in central Manchester. Source receptor distances in the two experiments varied between 120 and 600 m.

    The results reveal that maximum concentration was sometimes found at roof level rather than at ground level implying the effectiveness of convective forces on dispersion. The degree of vertical dispersion was found to be dependent on source receptor distance as well as on building height in proximity to the release site.

    Evidence of flow channelling in a street canyon was also found. Both a Gaussian profile and a street network model were applied and the results show that the urban topography may lead to highly effective flow channelling which therefore may be a very important dispersion mechanism should the right meteorological conditions prevail.

    The experimental results from this campaign have also been compared with a simple urban dispersion model that was developed during the DAPPLE framework and show good agreement with this.

    The results presented here are some of the first published regarding vertical dispersion. More tracer experiments are needed in order to further characterise vertical concentration profiles and their dependence on, for instance, atmospheric stability. The impact of urban topography on pollutant dispersion is important to focus on in future tracer experiments in order to improve performance of models as well as for our understanding of the relationship between air quality and public health.

  11. CityFlux perfluorocarbon tracer experiments

    Science.gov (United States)

    Petersson, F. K.; Martin, D.; White, I. R.; Henshaw, S. J.; Nickless, G.; Longley, I.; Percival, C. J.; Gallagher, M.; Shallcross, D. E.

    2010-07-01

    In June 2006, two perfluorocarbon tracer experiments were conducted in central Manchester UK as part of the CityFlux campaign. The main aim was to investigate vertical dispersion in an urban area during convective conditions, but dispersion mechanisms within the street network were also studied. Paired receptors were used in most cases where one receptor was located at ground level and one at roof level. One receptor was located on the roof of Portland Tower which is an 80 m high building in central Manchester. Source receptor distances in the two experiments varied between 120 and 600 m. The results reveal that maximum concentration was sometimes found at roof level rather than at ground level implying the effectiveness of convective forces on dispersion. The degree of vertical dispersion was found to be dependent on source receptor distance as well as on building height in proximity to the release site. Evidence of flow channelling in a street canyon was also found. Both a Gaussian profile and a street network model were applied and the results show that the urban topography may lead to highly effective flow channelling which therefore may be a very important dispersion mechanism should the right meteorological conditions prevail. The experimental results from this campaign have also been compared with a simple urban dispersion model that was developed during the DAPPLE framework and show good agreement with this. The results presented here are some of the first published regarding vertical dispersion. More tracer experiments are needed in order to further characterise vertical concentration profiles and their dependence on, for instance, atmospheric stability. The impact of urban topography on pollutant dispersion is important to focus on in future tracer experiments in order to improve performance of models as well as for our understanding of the relationship between air quality and public health.

  12. Combined interpretation of radar, hydraulic, and tracer data from a fractured-rock aquifer near Mirror Lake, New Hampshire, USA

    Science.gov (United States)

    Day-Lewis, F. D.; Lane, J.W.; Gorelick, S.M.

    2006-01-01

    An integrated interpretation of field experimental cross-hole radar, tracer, and hydraulic data demonstrates the value of combining time-lapse geophysical monitoring with conventional hydrologic measurements for improved characterization of a fractured-rock aquifer. Time-lapse difference-attenuation radar tomography was conducted during saline tracer experiments at the US Geological Survey Fractured Rock Hydrology Research Site near Mirror Lake, Grafton County, New Hampshire, USA. The presence of electrically conductive saline tracer effectively illuminates permeable fractures or pathways for geophysical imaging. The geophysical results guide the construction of three-dimensional numerical models of ground-water flow and solute transport. In an effort to explore alternative explanations for the tracer and tomographic data, a suite of conceptual models involving heterogeneous hydraulic conductivity fields and rate-limited mass transfer are considered. Calibration data include tracer concentrations, the arrival time of peak concentration at the outlet, and steady-state hydraulic head. Results from the coupled inversion procedure suggest that much of the tracer mass migrated outside the three tomographic image planes, and that solute is likely transported by two pathways through the system. This work provides basic and site-specific insights into the control of permeability heterogeneity on ground-water flow and solute transport in fractured rock. ?? Springer-Verlag 2004.

  13. Novel wireless sensors for in situ measurement of sub-ice hydrologic systems

    OpenAIRE

    Bagshaw, E; Lishman, B; Wadham, J; Bowden, J; Burrow, S; Clare, L; Chandler, D

    2014-01-01

    Wireless sensors have the potential to provide significant insight into in situ physical and biogeochemical processes in sub-ice hydrologic systems. However, the nature of the glacial environment means that sensor deployment and data return is challenging. We describe two bespoke sensor platforms, electronic tracers or ‘ETracers’, and ‘cryoegg’, for untethered, wireless data collection from glacial hydrologic systems, including subglacial channels. Both employ radio frequencies for data trans...

  14. A Hydrologic-geophysical Method for Characterizing Flow and Transport Processes Within The Vadose Zone

    International Nuclear Information System (INIS)

    Alumbaugh, David; LaBrecque, Douglas; Brainard, James; Yeh, T.C.-Jim

    2004-01-01

    The primary purpose of this project was to employ two geophysical imaging techniques, electrical resistivity tomography and cross-borehole ground penetrating radar, to image a controlled infiltration of a saline tracer under unsaturated flow conditions. The geophysical techniques have been correlated to other more traditional hydrologic measurements including neutron moisture measurements and induction conductivity logs. Images that resulted during two successive infiltrations indicate the development of what appear to be preferential pathways through the finer grained materials, although the results could also be produced by cationic capture of free ions in clays. In addition the site as well as the developing solute plume exhibits electrical anisotropy which is likely related to flow properties. However the geologic significance of this phenomenon is still under investigation

  15. A Hydrologic-geophysical Method for Characterizing Flow and Transport Processes Within The Vadose Zone

    Energy Technology Data Exchange (ETDEWEB)

    David Alumbaugh; Douglas LaBrecque; James Brainard; T.C. (Jim) Yeh

    2004-01-22

    The primary purpose of this project was to employ two geophysical imaging techniques, electrical resistivity tomography and cross-borehole ground penetrating radar, to image a controlled infiltration of a saline tracer under unsaturated flow conditions. The geophysical techniques have been correlated to other more traditional hydrologic measurements including neutron moisture measurements and induction conductivity logs. Images that resulted during two successive infiltrations indicate the development of what appear to be preferential pathways through the finer grained materials, although the results could also be produced by cationic capture of free ions in clays. In addition the site as well as the developing solute plume exhibits electrical anisotropy which is likely related to flow properties. However the geologic significance of this phenomenon is still under investigation.

  16. Hydrology and Radionuclide Migration Program: 1989 progress report

    International Nuclear Information System (INIS)

    Marsh, K.V.

    1992-08-01

    This report presents results from the Lawrence Livermore National Laboratory's participation in the Hydrology and Radionuclide Migration Program (HRMP) at the Nevada Test Site (NTS) during fiscal year 1989. The report compares and summarizes studies of radionuclide and stable element transport atf radionuclide and stable the Cheshire and Cambric sites; progress toward the understanding of colloidal particle transport in porous and fractured media; further calibration of Marinelli beaker containers for gamma-ray spectroscopy; and an appendix listing all announced tests fired near the water table through October 1989. Four such tests were fired in FY89. Laboratory and model investigations of colloid transport in porous and fractured media have supported ongoing field investigations at the NTS. Aqueous chemistry has been shown to control colloid attachment and release from clean mineral surfaces. For colloidal deposits on fracture walls, the current experimental program will determine how this material responds to hydrodynamic forcing and if the porous colloidal deposit causes the more rapid transport of colloids than non-sorbing tracers. Fifteen radionuclides are either frequently found or likely to be found in HRMP and other environmental samples. For 3 of these 15 we have calibrated 4 gamma-ray detectors for use with samples contained in Marinelli beakers. Our calibrations for these three nuclides indicate that the technique is accurate and applicable to the types of environmental samples that we analyze

  17. Fifty years of radiochemical tracers

    International Nuclear Information System (INIS)

    Evans, E.A.

    1992-01-01

    During the past 50 years radiochemical tracers, usually in the form of isotopically labelled organic compounds, have been essential tools to further advance our knowledge at the frontiers of a great variety of scientific developments in the life sciences. This plenary lecture reviews necessarily selected highlights in the synthesis and applications of such radiochemical tracers. Included are examples where important advances, made possible by using radiochemicals, have contributed to improving the quality of life on this planet. The principal radioisotopes involved, 14 C, 3 H, 35 S, 32 P, 125 I, are all relatively safe to handle and are commercially available at maximum theoretical specific activity (carrier free). The compounds labeled with these radioisotopes are used in many fields of research which include biosynthesis and biotechnology studies, cell biology, drug metabolism, clinical research and environmental applications, and are briefly reviewed. (author). 55 refs

  18. Aligning Higher Education to Workforce Needs in Liberia: A Tracer Study of University Graduates in Liberia

    Science.gov (United States)

    Flomo, John S., Jr.

    2013-01-01

    This study investigated the congruence between higher education and the labor market from the perspectives of college graduates in Liberia. It specifically examined the alignment of the skills college students acquire in college to Liberia's labor market. The study employed a Tracer Study quantitative research methodology. Tracer study as a…

  19. Isotopic tracers of sources, wells and of CO2 reactivity in geological reservoirs

    International Nuclear Information System (INIS)

    Assayag, N.

    2006-12-01

    The aim of this research works consisted in studying the behaviour of the carbonate system (dissolved inorganic carbon: DIC) following a CO 2 injection (artificial or natural), in geological reservoirs. One part of the study consisted in improving an analytical protocol for the measurement of δ 13 C DIC and DIC, using a continuous flow mass spectrometer. As a first study, we have focused our attention on the Pavin Lake (Massif Central, France). Owing to its limnologic characteristics (meromictic lake) and a deep volcanic CO 2 contribution, it can be viewed as a natural analogue of reservoir storing important quantities of CO 2 in the bottom part. Isotopic measurements (δ 18 O, δ 13 C DIC) allowed to better constrain the dynamics of the lake (stratification, seasonal variations), the magnitudes of biological activities (photosynthesis, organic matter decay, methane oxidation, methano-genesis), carbon sources (magmatic, methano-genetic), and the hydrological budgets (sub-lacustrine inputs). The second study was conducted on the Lamont-Doherty test well site (NY, USA). It includes an instrumental borehole which cuts through most of the section of the Palisades sill and into the Newark Basin sediments. Single well push-pull tests were performed: a test solution containing conservative tracers and a reactive tracer (CO 2 ) was injected at a permeable depth interval located in basaltic and meta sedimentary rocks. After an incubation period, the test solution/groundwater mixture was extracted from the hydraulically isolated zone. Isotopic measurements (δ 18 O, δ 13 C DIC) confronted to chemical data (major elements) allowed to investigate the extent of in-situ CO 2 -water-rock interactions: essentially calcite dissolution and at a lesser extend silicate dissolution...and for one of the test, CO 2 degassing. (author)

  20. The Accurate Particle Tracer Code

    OpenAIRE

    Wang, Yulei; Liu, Jian; Qin, Hong; Yu, Zhi

    2016-01-01

    The Accurate Particle Tracer (APT) code is designed for large-scale particle simulations on dynamical systems. Based on a large variety of advanced geometric algorithms, APT possesses long-term numerical accuracy and stability, which are critical for solving multi-scale and non-linear problems. Under the well-designed integrated and modularized framework, APT serves as a universal platform for researchers from different fields, such as plasma physics, accelerator physics, space science, fusio...

  1. Analysis of infiltration through mill tailings using a bromide tracer

    International Nuclear Information System (INIS)

    Lewis, G.J.; Stephens, D.B.

    1985-01-01

    Infiltration of precipitation into tailings impoundments as a means of recharge to underlying materials is often considered insignificant, particularly in arid and semi-arid environments. A series of experiments was performed to investigate the behavior of infiltrated precipitation into tailing soils, by the use of a bromide tracer. A bromide tracer was applied to the surface of columns driven into the tailings to monitor downward advancement of tracer-laden water. Controlled laboratory experiments on the behavior of the bromide tracer under varying precipitation events and initial soil moisture contents were also conducted. Results indicate that a definite downward migration of infiltrated precipitation occurs, particularly with large magnitude precipitation events, and that, eventually, some fraction of the infiltrated precipitation may continue downward below the zone affected by evaporation. The use of an artificially applied bromide tracer to monitor depth of infiltration of precipitation is a simple, safe technique that can provide valuable information for long-term tailings management strategies at low cost

  2. New developments in the use of stable activable tracers in environmental science

    International Nuclear Information System (INIS)

    Loveland, W.; Keasler, K.; Ghannam, L.; Borovik, A.

    1980-01-01

    Recent developments in the use of stable activable tracers (SATs) in environmental science are reported. (A stable activable tracer is a stable material injected into a system under study and whose concentration is measured by post-sampling activation analysis.) The activable nuclear parts of the tracers studied have been rare earth nuclides with short-lived activation products or Cu. To trace the fate of fluid-bound pollutants (and/or water masses) in marine waters, we have used anionic DTPA complexes of the rare earths. These tracers were shown to be stable (80 to 90% nondissociated) in extensive laboratory tests involving solutions of the tracer in estuarine water including large amounts of marine sediments. Results of a field study in which the flushing time and other hydrological characteristics of an estuarine marina were measured by simultaneously using a fluorescent dye and a SAT are presented. To trace the path of potentially toxic organic molecules, three stable activable tracers, dysprosium(III)-trisacetylacetonate DY(acac) 3 3H 2 O), dysprosium(III)-trisdibenzoylmethane (DY(dbm) 3 H 2 O and copper oxinate Cu (C 9 H 6 ON) 2 were synthesized. Their octanol/water partition coefficients and their solubility in water were measured and used to correlate the tracer species and its biological activity with that of known toxic materials. In a project to demonstrate the simple use of SATs to trace the origin of common insecticides and herbicides, seven common insecticides and herbicides were marked with anionic rare earth DTPA complexes and shown to be detectable at dilutions of 1 part in 10 12 . Two arsenical herbicides were chosen for further study and the tracer/herbicide ratio was shown to remain constant in samples of herbicide material collected on plant surfaces and runoff waters in the environment for long periods

  3. Radioactivity in the hydrologic environment

    International Nuclear Information System (INIS)

    Werner, L.B.

    1969-01-01

    Certain proposed uses of nuclear explosives for peaceful purposes will introduce radioactive debris into the natural hydrologic environment. Consideration must therefore be given in each situation to the extent and significance to man of resulting radioactively contaminated water. For contained underground detonations, space-time - concentration predictions of radioactive materials in ground water are dependent on several factors: radionuclide production and initial distribution, radioactive decay, sorption on geologic materials, and dispersion during hydrologic transport. For uncontained (cratering) detonations, other aspects of the hydrologic cycle, particularly rainfall, and watershed characteristics must be considered. Programs sponsored principally by the U.S. Atomic Energy Commission have investigated these factors. Examination of their net effects on radioactivity concentration in water shows that areas if any, underlain by water exceeding permissible concentrations tend first to increase in size, then decrease, and finally disappear. Hydrologic processes at the surface remove or redistribute radioactive debris deposited on a watershed to other locations. Where sufficient information is available, predictions of location and concentration of radionuclides in natural waters can be made. Any potentially hazardous conditions arising from a particular detonation can then be evaluated. (author)

  4. Radioactivity in the hydrologic environment

    Energy Technology Data Exchange (ETDEWEB)

    Werner, L B [Isotopes, Inc., Palo Alto, CA (United States)

    1969-07-01

    Certain proposed uses of nuclear explosives for peaceful purposes will introduce radioactive debris into the natural hydrologic environment. Consideration must therefore be given in each situation to the extent and significance to man of resulting radioactively contaminated water. For contained underground detonations, space-time - concentration predictions of radioactive materials in ground water are dependent on several factors: radionuclide production and initial distribution, radioactive decay, sorption on geologic materials, and dispersion during hydrologic transport. For uncontained (cratering) detonations, other aspects of the hydrologic cycle, particularly rainfall, and watershed characteristics must be considered. Programs sponsored principally by the U.S. Atomic Energy Commission have investigated these factors. Examination of their net effects on radioactivity concentration in water shows that areas if any, underlain by water exceeding permissible concentrations tend first to increase in size, then decrease, and finally disappear. Hydrologic processes at the surface remove or redistribute radioactive debris deposited on a watershed to other locations. Where sufficient information is available, predictions of location and concentration of radionuclides in natural waters can be made. Any potentially hazardous conditions arising from a particular detonation can then be evaluated. (author)

  5. Holdup time measurement by radioactive tracers in pulp production

    International Nuclear Information System (INIS)

    Roetzer, H.; Donhoffer, D.

    1988-12-01

    A batch of pulp was to be labelled before passing two bleaching towers of a pulp plant. Activated glass fibres were used as a tracer, which contained 24-Na with a half-life of 15 hours. It was shown in laboratory tests, that the glass fibres were suitable for transport studies of wood pulp. For use in the tests the fibres were activated and suspended in water. Due to the small diameter of the fibres (2-5 micrometers) this suspension shows physical properties very similar to the pulp. For detection six scintillation probes were mounted at different positions outside the bleaching tower. Radiation protection during the test was very easy due to the low total activity of the tracer material. Residence time distributions for both towers were measured. The successful tracer experiments show, that the method of labelling is suited for investigations of material transport in the pulp and paper industry. 3 figs., 11 refs., 2 tabs. (Author)

  6. Contamination tracer testing with seabed drills: IODP Expedition 357

    Directory of Open Access Journals (Sweden)

    B. N. Orcutt

    2017-11-01

    Full Text Available IODP Expedition 357 utilized seabed drills for the first time in the history of the ocean drilling program, with the aim of collecting intact sequences of shallow mantle core from the Atlantis Massif to examine serpentinization processes and the deep biosphere. This novel drilling approach required the development of a new remote seafloor system for delivering synthetic tracers during drilling to assess for possible sample contamination. Here, we describe this new tracer delivery system, assess the performance of the system during the expedition, provide an overview of the quality of the core samples collected for deep biosphere investigations based on tracer concentrations, and make recommendations for future applications of the system.

  7. Molecules as tracers of galaxy evolution: an EMIR survey

    DEFF Research Database (Denmark)

    Costagliola, F.; Aalto, S.; I. Rodriguez, M.

    2011-01-01

    We investigate the molecular gas properties of a sample of 23 galaxies in order to find and test chemical signatures of galaxy evolution and to compare them to IR evolutionary tracers. Observation at 3 mm wavelengths were obtained with the EMIR broadband receiver, mounted on the IRAM 30 m telesco...

  8. The use of radioisotope tracers in the metallurgical industries

    International Nuclear Information System (INIS)

    Easey, J.F.

    1987-01-01

    Radioisotope techniques have been widely used in the metallurgical industries for many years. They have been shown to be very suitable for studying large scale plant and, in many cases, they are the most suitable techniques for such investigations. Applications of radioisotope tracers to some specific metallurgical problems are discussed. (author)

  9. The ATLAS DDM Tracer monitoring framework

    CERN Document Server

    ZANG, D; The ATLAS collaboration; BARISITS, M; LASSNIG, M; Andrew STEWART, G; MOLFETAS, A; BEERMANN, T

    2012-01-01

    The DDM Tracer Service is aimed to trace and monitor the atlas file operations on the Worldwide LHC Computing Grid. The volume of traces has increased significantly since the service started in 2009. Now there are about ~5 million trace messages every day and peaks of greater than 250Hz, with peak rates continuing to climb, which gives the current service structure a big challenge. Analysis of large datasets based on on-demand queries to the relational database management system (RDBMS), i.e. Oracle, can be problematic, and have a significant effect on the database's performance. Consequently, We have investigated some new high availability technologies like messaging infrastructure, specifically ActiveMQ, and key-value stores. The advantages of key value store technology are that they are distributed and have high scalability; also their write performances are usually much better than RDBMS, all of which are very useful for the Tracer service. Indexes and distributed counters have been also tested to improve...

  10. Advection and dispersion of bed load tracers

    Science.gov (United States)

    Lajeunesse, Eric; Devauchelle, Olivier; James, François

    2018-05-01

    We use the erosion-deposition model introduced by Charru et al. (2004) to numerically simulate the evolution of a plume of bed load tracers entrained by a steady flow. In this model, the propagation of the plume results from the stochastic exchange of particles between the bed and the bed load layer. We find a transition between two asymptotic regimes. The tracers, initially at rest, are gradually set into motion by the flow. During this entrainment regime, the plume is strongly skewed in the direction of propagation and continuously accelerates while spreading nonlinearly. With time, the skewness of the plume eventually reaches a maximum value before decreasing. This marks the transition to an advection-diffusion regime in which the plume becomes increasingly symmetrical, spreads linearly, and advances at constant velocity. We analytically derive the expressions of the position, the variance, and the skewness of the plume and investigate their asymptotic regimes. Our model assumes steady state. In the field, however, bed load transport is intermittent. We show that the asymptotic regimes become insensitive to this intermittency when expressed in terms of the distance traveled by the plume. If this finding applies to the field, it might provide an estimate for the average bed load transport rate.

  11. Meteorological, hydrological and oceanographical information and data for the site investigation program in the communities of Oesthammar and Tierp in the northern part of Uppland

    Energy Technology Data Exchange (ETDEWEB)

    Larsson-McCann, Sonja; Karlsson, Anna; Nord, Margitta; Sjoegren, Jonas; Johansson, Lasse; Ivarsson, Mats; Kindell, Sven [Swedish Meteorological and Hydrological Inst., Norrkoeping (Sweden)

    2002-06-01

    been included in any easily accessed database. However, data was stored on magnetic tapes, of which some years have been located, but not evaluated. Together with this report one reference year with data was selected. At first, the years possible from a hydrological point of view were selected since hydrological data are scarcer than meteorological. The selected year should be as normal as possible, monthly averages and sums should approximately be according to corresponding values for the standard normal period 1961 - 1990. All meteorological parameters should refer to the same station if possible. The parameters, temperature and precipitation, are considered most important when the year is selected. On these conditions meteorological data for 1988 from Oerskaer was selected, except for air pressure and snow depth which was not measured at Oerskaer Data on air pressure are taken from Uppsala Airport which is regarded representative for Oerskaer. Data on snow cover are from Films kyrkby further inland. For discharge and water level the station Vattholma has been chosen. As oceanographic data over the year is incoherent we can not provide time series for an actual year for these parameters.

  12. Fundamentals of watershed hydrology

    Science.gov (United States)

    Pamela J. Edwards; Karl W.J. Williard; Jon E. Schoonover

    2015-01-01

    This is a primer about hydrology, the science of water. Watersheds are the basic land unit for water resource management and their delineation, importance, and variation are explained and illustrated. The hydrologic cycle and its components (precipitation, evaporation, transpiration, soil water, groundwater, and streamflow) which collectively provide a foundation for...

  13. Hands-On Hydrology

    Science.gov (United States)

    Mathews, Catherine E.; Monroe, Louise Nelson

    2004-01-01

    A professional school and university collaboration enables elementary students and their teachers to explore hydrology concepts and realize the beneficial functions of wetlands. Hands-on experiences involve young students in determining water quality at field sites after laying the groundwork with activities related to the hydrologic cycle,…

  14. Hydrologic Services Course.

    Science.gov (United States)

    National Oceanic and Atmospheric Administration (DOC), Rockville, MD. National Weather Service.

    A course to develop an understanding of the scope of water resource activities, of the need for forecasting, of the National Weather Service's role in hydrology, and of the proper procedures to follow in fulfilling this role is presented. The course is one of self-help, guided by correspondence. Nine lessons are included: (1) Hydrology in the…

  15. Arid Zone Hydrology

    Science.gov (United States)

    Arid zone hydrology encompasses a wide range of topics and hydro-meteorological and ecological characteristics. Although arid and semi-arid watersheds perform the same functions as those in humid environments, their hydrology and sediment transport characteristics cannot be readily predicted by inf...

  16. Applications of 129I and 36Cl in hydrology

    International Nuclear Information System (INIS)

    Fabryka-Martin, J.; Davis, S.N.; Elmore, D.

    1987-01-01

    Since the first AMS measurements of 36 Cl in 1978, this cosmogenic radionuclide has proved to be a versatile tracer of hydrologic processes in over 20 field studies. Natural 129 I also appears to be useful for studying hydrologic processes although incomplete understanding of its production in nature and geochemical behavior largely limits interpretation to qualitative discussions. The range of hydrologic applications demonstrated for these radionuclides covers: estimation of residence time of water in the subsurface and net infiltration in arid soils; evaluation of ion filtration, leaching of connate water, and salt dissolution as sources of ground-water salinity; estimation of lithospheric thermal-neutron fluxes; and emanation and migration characteristics of fission-product 129 I in different geochemical environments. (orig.)

  17. Mountaintop Removal Mining and Catchment Hydrology

    Directory of Open Access Journals (Sweden)

    Andrew J. Miller

    2014-03-01

    Full Text Available Mountaintop mining and valley fill (MTM/VF coal extraction, practiced in the Central Appalachian region, represents a dramatic landscape-scale disturbance. MTM operations remove as much as 300 m of rock, soil, and vegetation from ridge tops to access deep coal seams and much of this material is placed in adjacent headwater streams altering landcover, drainage network, and topography. In spite of its scale, extent, and potential for continued use, the effects MTM/VF on catchment hydrology is poorly understood. Previous reviews focus on water quality and ecosystem health impacts, but little is known about how MTM/VF affects hydrology, particularly the movement and storage of water, hence the hydrologic processes that ultimately control flood generation, water chemistry, and biology. This paper aggregates the existing knowledge about the hydrologic impacts of MTM/VF to identify areas where further scientific investigation is needed. While contemporary surface mining generally increases peak and total runoff, the limited MTM/VF studies reveal significant variability in hydrologic response. Significant knowledge gaps relate to limited understanding of hydrologic processes in these systems. Until the hydrologic impact of this practice is better understood, efforts to reduce water quantity and quality problems and ecosystem degradation will be difficult to achieve.

  18. New Hydrological Age-Dating Techniques Using Cosmogenic Radionuclides Beryllium-7 and Sodium-22

    Energy Technology Data Exchange (ETDEWEB)

    Frey, S.; Kuells, C. [Institute of Hydrology, Albert-Ludwigs-University of Freiburg (Germany); Schlosser, C. [Bundesamt fuer Strahlenschutz, Freiburg (Germany)

    2013-07-15

    Since atmospheric tritium levels have nearly reached the natural background, there is a need for further development of existing or additional methods for the age dating of young water. Non-gaseous age dating tracers are especially needed for hydrological applications in lakes, rivers and springs and for surface-groundwater interaction studies. Cosmogenically produced isotopes of sodium and beryllium ({sup 22}Na, {sup 7}Be, half-lives of 2.602 years and 53.29 days respectively) have been investigated as potential environmental tracers for residence time analysis of surface water. A simple chemical separation scheme for both radionuclides was established and {sup 7}Be was detected in both surface and groundwater samples. The ions were extracted from 500 L water using an ion exchange resin. The water samples were dated to ages of about 165 and 323 days for riverine samples and 475 days for a groundwater sample. Measurement was performed using a lead covered HPGe detector. These ages match ages previously reported using stable isotopes and tritium. (author)

  19. Understanding and seasonal forecasting of hydrological drought in the Anthropocene

    Directory of Open Access Journals (Sweden)

    X. Yuan

    2017-11-01

    Full Text Available Hydrological drought is not only caused by natural hydroclimate variability but can also be directly altered by human interventions including reservoir operation, irrigation, groundwater exploitation, etc. Understanding and forecasting of hydrological drought in the Anthropocene are grand challenges due to complicated interactions among climate, hydrology and humans. In this paper, five decades (1961–2010 of naturalized and observed streamflow datasets are used to investigate hydrological drought characteristics in a heavily managed river basin, the Yellow River basin in north China. Human interventions decrease the correlation between hydrological and meteorological droughts, and make the hydrological drought respond to longer timescales of meteorological drought. Due to large water consumptions in the middle and lower reaches, there are 118–262 % increases in the hydrological drought frequency, up to 8-fold increases in the drought severity, 21–99 % increases in the drought duration and the drought onset is earlier. The non-stationarity due to anthropogenic climate change and human water use basically decreases the correlation between meteorological and hydrological droughts and reduces the effect of human interventions on hydrological drought frequency while increasing the effect on drought duration and severity. A set of 29-year (1982–2010 hindcasts from an established seasonal hydrological forecasting system are used to assess the forecast skill of hydrological drought. In the naturalized condition, the climate-model-based approach outperforms the climatology method in predicting the 2001 severe hydrological drought event. Based on the 29-year hindcasts, the former method has a Brier skill score of 11–26 % against the latter for the probabilistic hydrological drought forecasting. In the Anthropocene, the skill for both approaches increases due to the dominant influence of human interventions that have been implicitly

  20. Combination of geochemical and hydrobiological tracers for the analysis of runoff generating processes in a lowland catchment

    Science.gov (United States)

    Faber, Claas; Wu, Naicheng; Ulrich, Uta; Fohrer, Nicola

    2015-04-01

    Since lowlands are characterised by flat topography and low hydraulic gradients, groundwater inflow has a large influence to streamflow generation in such catchments. In catchments with intense agricultural land use, artificial drainages are often another major contributor to streamflow. They shorten the soil passage and thus change the matter retention potential as well as runoff dynamics of a catchment. Contribution of surface runoff to streamflow is usually less important in volume. However, due to high concentrations of agrochemicals, surface runoff can constitute an important entry pathway into water bodies, especially if strong precipitation events coincide with fertilizer or pesticide application. The DFG funded project "Separating surface runoff from tile drainage flow in agricultural lowland catchments based on diatoms to improve modelled runoff components and phosphorous transport" investigates prevalent processes in this context in a 50 km² lowland catchment (Kielstau, Schleswig-Holstein, Germany) with the goal of improving existing models. End Member Mixing Analysis (EMMA) is used in the project to determine the relative importance of groundwater, tile drainage and surface runoff to streamflow at daily time steps. It became apparent that geochemical tracers are suitable for distinguishing surface runoff, but are weak for the separation of tile drainage and groundwater influence. We attribute this to the strong and complex interaction between soil water and shallow groundwater tables in the catchment. Recent studies (e.g. Pfister et al. 2011, Tauro et al. 2013) show the potential of diatoms as indicators for hydrological processes. Since we found diatoms to be suitable for the separation of tile drainage and stream samples (Wu et al., unpublished data) in our catchment, we are able to include diatom derived indices (e.g. density, species moisture indices, diversity indices) as traces in EMMA. Our results show that the inclusion of diatom data in the

  1. Observation of the movement of the precipitation by using tritium tracer

    International Nuclear Information System (INIS)

    Jiao, Yurong; Ishida, Sayuri; Takada, Kayoko; Imaizumi, Hiroshi; Kano, Naoki; Saito, Masaaki

    2011-01-01

    Tracer techniques have proven to be one of the most powerful tools to characterize the movement of air mass and pollutant transport in hydrological systems. In order to clarify the behavior of low-level tritium in the rain water, we have employed the measuring method of tritium applying a distillation process and an electrolytic enrichment process. The activity of tritium (T specific activity) in the obtained water was measured by liquid scintillation counter. This procedure was applied to bulk precipitation, imitative ground infiltrated precipitation and short term precipitation collected in Niigata City. Moreover, we investigated the concentrations of cations (Na + , K + , Ca 2+ , and Mg 2+ ) in the precipitation to associate with air mass transport patterns arriving at the place. From the above mentioned, next matters have been clarified: (1) T specific activity in precipitation was found to have a strong dependence on location and season. (2) The chemical components in precipitation during typhoon have notable character of marine air mass. (3) Associated ions in monthly precipitation showed seasonal variation, in fact, the seasonal variation of Ca 2+ and tritium were very similar. (4) Backward trajectory analysis method is useful for the analysis of the behavior of T specific activity and several ions in short-term precipitation. (author)

  2. Circulation of cerebrospinal fluid. Comparative study of various tracers

    International Nuclear Information System (INIS)

    Bok, B.; Thebault, B.; Cavailloles, F.; Aboulker, J.

    1977-01-01

    The dynamics of cerebrospinal fluid in the spinal subarachnoid space is studied by gammamyelography. There are still controversies about the ideal properties of the tracer to be used. The influence of the tracer's molecular weight on the kinetic of ascent in the medullar cerebrospinal fluid with a view to rating the criterias for choice of an available radiopharmaceutical was evaluated. Three compounds injected simultaneously through a lombar puncture were compared: indium 111 labelled transferrin, iodine 131 labelled human serum albumin and technetium 99m labelled diethylenetriaminepentaacetic acid. The individual stability of the compounds and a possible interference between them was investigated especially by electrophoretic technics. A spectrometric study showed that it is possible to simultaneously identify and count each of the isotopes included in the mixture on the detector device: an hybrid scanner. The comparison of linear activity profils collected on phantoms and on ten patients showed a similar fate of the three compounds during the first hours of the investigation studying the ascent of tracers into basal cisterns either in normal or pathological patients. It is therefore concluded that molecular weight does not influence in a detectable manner the spinal C.S.F. kinetics of the radiopharmaceuticals. This allows the use of the most convenient and best tolerated tracer from the dosimetric and toxicological stand point [fr

  3. Doublet Tracer Testing in Klamath Falls, Oregon

    Energy Technology Data Exchange (ETDEWEB)

    Gudmundsson, J.S.; Johnson, S.E.; Horne, R.N.; Jackson, P. B. [Pet. Eng. Dept., Stanford University; Culver, G.G. [Geo-Heat Center, Oregon Institute of Technology, Klamath Falls, OR

    0001-01-01

    A tracer test was carried out in a geothermal doublet system to study the injection behavior of a developed reservoir known to be fractured. The doublet produces about 320 gpm of 160 degrees Fahrenheit water that is used for space heating and then injected; the wells are spaced 250 ft apart. Tracer breakthrough was observed in 2 hours and 45 minutes in the production well, indicating fracture flow. However, the tracer concentrations were low and indicated porous media flow; the tracers mixed with a reservoir volume much larger than a fracture.

  4. Doublet Tracer Testing in Klamath Falls, Oregon

    Energy Technology Data Exchange (ETDEWEB)

    Gudmundsson, J S; Johnson, S E; Horne, R N; Jackson, P B [Pet. Eng. Dept., Stanford University; Culver, G G [Geo-Heat Center, Oregon Institute of Technology, Klamath Falls, OR

    0000-12-30

    A tracer test was carried out in a geothermal doublet system to study the injection behavior of a developed reservoir known to be fractured. The doublet produces about 320 gpm of 160 degrees Fahrenheit water that is used for space heating and then injected; the wells are spaced 250 ft apart. Tracer breakthrough was observed in 2 hours and 45 minutes in the production well, indicating fracture flow. However, the tracer concentrations were low and indicated porous media flow; the tracers mixed with a reservoir volume much larger than a fracture.

  5. Principles and techniques of gamma ray tracers

    International Nuclear Information System (INIS)

    Claxton, K.T.

    1978-01-01

    Radioactive tracer techniques provide a very sensitive means of studying physical and chemical processes in a whole variety of different media. Some of the techniques and principles of radioactive tracers and their application to practical engineering systems are discussed. Information which has been found useful in the design of high temperature liquid sodium facilities employing radio-tracers, is presented. The report deals solely with the use of gamma-emitting species as the tracer. These find particular application for in-situ studies on engineering systems where the highly penetrating properties of gamma rays are needed for detection through strongly absorbent media such as stainless steel pepe walls. (author)

  6. Quadratic tracer dynamical models tobacco growth

    International Nuclear Information System (INIS)

    Qiang Jiyi; Hua Cuncai; Wang Shaohua

    2011-01-01

    In order to study the non-uniformly transferring process of some tracer dosages, we assume that the absorption of some tracer by tobacco is a quadratic function of the tracer quantity of the tracer in the case of fast absorption, whereas the exclusion of the tracer from tobacco is a linear function of the tracer quantity in the case of slow exclusion, after the tracer is introduced into tobacco once at zero time. A single-compartment quadratic dynamical model of Logistic type is established for the leaves of tobacco. Then, a two-compartment quadratic dynamical model is established for leaves and calms of the tobacco. Qualitative analysis of the models shows that the tracer applied to the leaves of the tobacco is excluded finally; however, the tracer stays at the tobacco for finite time. Two methods are also given for computing the parameters in the models. Finally, the results of the models are verified by the 32 P experiment for the absorption of tobacco. (authors)

  7. Use of radioactive tracers in chemical reactions

    International Nuclear Information System (INIS)

    Paci, B.; Saiki, M.

    1979-01-01

    A method for the determination of small quantities of nickel by using radioactive tracers is presented. An analytical application of the displacement reaction between and zinc-ethylenediaminetetraacetate, (Zn-EDTA), labelled with 65 Zn is investigated. This method is based on the extraction of radioactive zinc, displaced by nickel from the zinc chelate, into a dithizone-carbon tetrachloride solution and the subsequent measurement of the activity of an aliquot of the extract. It is shown that the method is very sentitive and nickel can be measured in concentrations as small as 0,1μg/ml or even less, depending on the specific activity of the radioreagent used. The precision and accuracy of the method are determined. An attempt to eliminate the problem of interference by using masking agents or by means of a previous separation of nickel and other interfereing metals, is also made. (Author) [pt

  8. Use of radioactive tracers in chemical reactions

    International Nuclear Information System (INIS)

    Paci, B.

    1979-01-01

    A method for the determination of small quantities of nickel using radioactive tracers is presented. An analytical application of the displacement reaction between nickel and zinc ethylenediaminetetraacetate labeled with zinc-65 is pursued. This method is based on the extraction of radioactive zinc displaced by nickel from the zinc chelate into a dithizone-carbon tetracloride solution and the subsequent measurement of the activity of an aliquot of the extract. The method is very sensitive and nickel can be measured in concentrations as small as 0.1μg/ml or even less, depending on the specific activity of the radioreagent used. The precision and the accuracy of the method are determined. The problem of interferences, trying to eliminate them by using masking agents or by means of a previous separation between nickel and other interfering metals, is also investigated [pt

  9. Tracer tests - possibilities and limitations. Experience from SKB fieldwork: 1977-2007

    Energy Technology Data Exchange (ETDEWEB)

    Loefgren, Martin; Crawford, James; Elert, Mark (Kemakta Konsult AB, Stockholm (SE))

    2007-09-15

    Tracer tests have played, and still play, a central role in investigations relating to the understanding of radionuclide retention processes in the field. At present there is a debate within the scientific community concerning how, and to what extent, tracer tests can be used to evaluate large-scale and long-term transport and retardation of radionuclides and other solutes of interest for Safety Assessment of repositories for spent nuclear fuel. In this report the SKB fieldwork on tracer tests performed at Swedish sites from 1977 to 2007 is described and discussed. Furthermore, the knowledge and process understanding evolved during the decades of radionuclide transport experiments and modelling within the SKB programme is summarised. One of the main objectives of this report is to discuss what data and knowledge can be extracted from different in situ tests in a robust fashion. Given the level of complexity associated with transport processes that may occur over the timescale of a tracer test, the utility of tracer tests is considered in the context of evidence-based interpretations of data which we characterise in the form of a sequence of questions of increasing complexity. The complexity of this sequence ranges from whether connection can be confirmed between injection and withdrawal points to whether quantitative data can be extrapolated from a tracer test to be subsequently used in Safety Assessment. The main findings of this report are that: Field scale tracer tests can confirm flow connectivity. Field scale tracer tests confirm the existence of retention. Field scale tracer tests alone can only broadly substantiate our process understanding. However, if performing extensive Site Characterisation and integrating the tracer test results with the full range of geoscientific information available, much support can be given to our process understanding. Field scale tracer tests can deliver the product of the material property group MPG and the F-factor, valid

  10. Use of sulfur hexafluoride and perfluorocarbon tracers in plutonium storage containers for leak detection

    International Nuclear Information System (INIS)

    Kung, J.K.

    1998-05-01

    This study involves an investigation of the feasibility of a tracer-based leak detection system for long-term interim plutonium storage. In particular, a protocol has been developed based on the use of inert tracers with varying concentrations in order to open-quotes fingerprintclose quotes or open-quotes tagclose quotes specific containers. A particular combination of tracers at specific ratios could be injected into the free volume of each container, allowing for the detection of leaks as well as determination of the location of leaking containers. Based on plutonium storage considerations, sulfur hexafluoride and four perfluorocarbon tracers were selected and should allow a wide range of viable fingerprinting combinations. A open-quotes high-lowclose quotes protocol which uses two distinct chromatographic peak areas or concentration levels, is recommended. Combinations of air exchange rates, detection durations, and detectability limits are examined in order to predict minimum tracer concentrations required for injection in storage containers

  11. Water tracers in the general circulation model ECHAM

    International Nuclear Information System (INIS)

    Hoffmann, G.; Heimann, M.

    1993-01-01

    We have installed a water tracer model into the ECHAM General Circulation Model (GCM) parameterizing all fractionation processes of the stable water isotopes ( 1 H 2 18 O and 1 H 2 H 16 O). A five year simulation was performed under present day conditions. We focus on the applicability of such a water tracer model to obtain information about the quality of the hydrological cycle of the GCM. The analysis of the simulated 1 H 2 18 O composition of the precipitation indicates too weak fractionated precipitation over the Antarctic and Greenland ice sheets and too strong fractionated precipitation over large areas of the tropical and subtropical land masses. We can show that these deficiencies are connected with problems of model quantities such as the precipitation and the resolution of the orography. The linear relationship between temperature and the δ 18 O value, i.e. the Dansgaard slope, is reproduced quite well in the model. The slope is slightly too flat and the strong correlation between temperature and δ 18 O vanishes at very low temperatures compared to the observations. (orig.)

  12. Soil homogeneity evaluation by radionuclide tracer breakthrough curve interpretation

    International Nuclear Information System (INIS)

    Brenizer, J.S. Jr.; Jarrett, A.R.; Jester, W.A.

    1980-01-01

    Increasing concern about the environmental impact of hazardous waste disposal has made site evaluation and site selection difficult and expensive. Pollutants, assumed to be absorbed by the soil immediately surrounding the burial trench, have been detected far from sites. Discrepancies between predicted migration distances based on indirect methods such as laboratory and computer modeling and those observed at the field site are often significant. The homogeneity of subsurface media, often assumed in laboratory and modeling studies, is seldom found in the field. The use of tracers to determine the flow characteristics of a potential disposal site involves time and expense, but offers a direct evaluation of solute transport and eliminates the assumptions inherent in indirect methods. Current modeling of solute transport in nonhomogeneous porous media is limited by the quantification of input parameters. Several general models can predict solute transport in saturated-unsaturated media from low-level disposal sites if the hydraulic characteristics and chemical reactions expected in each unique water-solute-media system can be defined. The objective of this research was to develop a method of evaluating potential shallow-land burial waste disposal sites by interpreting tracer breakthrough curve structure with respect to the hydrologic properties of the media at the potential disposal site. This methodology will be helpful in evaluating the potential performance of many types of shallow-land waste burial sites such as low-level radioactive waste disposal, surface disposal of flyash, chemical waste disposal, waste sedimentation ponds, and sanitary landfills

  13. The Thames Science Plan: Suggested Hydrologic Investigations to Support Nutrient-Related Water-Quality Improvements in the Thames River Basin, Connecticut

    National Research Council Canada - National Science Library

    Todd Trench, Elaine C

    2005-01-01

    ... (CTDEP). The Science Plan outlines water-quality investigations that could provide information necessary for the CTDEP to develop water-quality management and restoration strategies for nutrient-related...

  14. Allegheny County Hydrology Areas

    Data.gov (United States)

    Allegheny County / City of Pittsburgh / Western PA Regional Data Center — The Hydrology Feature Dataset contains photogrammetrically compiled water drainage features and structures including rivers, streams, drainage canals, locks, dams,...

  15. PNW Hydrologic Landscape Class

    Data.gov (United States)

    U.S. Environmental Protection Agency — Work has been done to expand the hydrologic landscapes (HLs) concept and to develop an approach for using it to address streamflow vulnerability from climate change....

  16. Hydrologic Engineering Center

    Data.gov (United States)

    Federal Laboratory Consortium — The Hydrologic Engineering Center (HEC), an organization within the Institute for Water Resources, is the designated Center of Expertise for the U.S. Army Corps of...

  17. Allegheny County Hydrology Lines

    Data.gov (United States)

    Allegheny County / City of Pittsburgh / Western PA Regional Data Center — The Hydrology Feature Dataset contains photogrammetrically compiled water drainage features and structures including rivers, streams, drainage canals, locks, dams,...

  18. Hydrologic Areas of Concern

    Data.gov (United States)

    University of New Hampshire — A Hydrologic Area of Concern (HAC) is a land area surrounding a water source, which is intended to include the portion of the watershed in which land uses are likely...

  19. Baseline hydrologic studies in the lower Elwha River prior to dam removal

    Science.gov (United States)

    Magirl, Christopher S.; Curran, Christopher A.; Sheibley, Rich W.; Warrick, Jonathan A.; Czuba, Jonathan A.; Czuba, Christiana R.; Gendaszek, Andrew S.; Shafroth, Patrick B.; Duda, Jeffrey J.; Foreman, James R.

    2011-01-01

    After the removal of two large, long‑standing dams on the Elwha River, Washington, the additional load of sediment and wood is expected to affect the hydrology of the lower river, its estuary, and the alluvial aquifer underlying the surrounding flood plain. To better understand the surface-water and groundwater characteristics of the river and estuary before dam removal, several hydrologic data sets were collected and analyzed. An experiment using a dye tracer characterized transient storage, and it was determined that the low‑flow channel of the lower Elwha River was relatively simple; 1–6 percent of the median travel time of dye was attributed to transient‑storage processes. Water data from monitoring wells adjacent to the main‑stem river indicated a strong hydraulic connectivity between stage in the river and groundwater levels in the flood plain. Analysis of temperature data from the monitoring wells showed that changes in the groundwater temperature responded weeks or months after water temperature changed in the river. A seepage investigation indicated that water from the river was moving into the aquifer (losing

  20. Hydrology under difficulties

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1964-08-15

    An unusual hydrological investigation is being carried out in Kenya by IAEA, at Lake Chala, a volcanic crater with no visible inlet or outlet. The problem is to determine whether the lake has any connection with a number of springs near Taveta, some six miles distant: this relationship is important in assessing the possibility of expanding the Taveta irrigation scheme. Questions of water rights and utilization are involved, since the lake is situated on the Tanganyikan border. The method adopted is that of labelling the waters of the lake with small quantities of water containing radioactive hydrogen (tritium). There are some special features in this instance, one being the difficulty of access. The lake is entirely surrounded by steep cliffs. A track was cut by British Army engineers, and the boat and all supplies were taken down by this route. Another problem was presented by the depth of the lake, which amounts to 300 feet. It is necessary to ensure the regular mixing of the tritium throughout. This has been done by means of hundreds of plastic bottles, which were dropped from the boat at regular intervals as it made a series of carefully-plotted traverses. Each bottle had a weight attached, and was perforated by two small holes. By this means, as the bottle sank the contents were progressively released until it reached the bottom, thus ensuring an even diffusion of tritium throughout the lake.

  1. INTRAVAL Finnsjoen Test - modelling results for some tracer experiments

    International Nuclear Information System (INIS)

    Jakob, A.; Hadermann, J.

    1994-09-01

    This report presents the results within Phase II of the INTRAVAL study. Migration experiments performed at the Finnsjoen test site were investigated. The study was done to gain an improved understanding of not only the mechanisms of tracer transport, but also the accuracy and limitations of the model used. The model is based on the concept of a dual porosity medium, taking into account one dimensional advection, longitudinal dispersion, sorption onto the fracture surfaces, diffusion into connected pores of the matrix rock, and sorption onto matrix surfaces. The number of independent water carrying zones, represented either as planar fractures or tubelike veins, may be greater than one, and the sorption processes are described either by linear or non-linear Freundlich isotherms assuming instantaneous sorption equilibrium. The diffusion of the tracer out of the water-carrying zones into connected pore space of the adjacent rock is calculated perpendicular to the direction of the advective/dispersive flow. In the analysis, the fluid flow parameters are calibrated by the measured breakthrough curves for the conservative tracer (iodide). Subsequent fits to the experimental data for the two sorbing tracers strontium and cesium then involve element dependent parameters providing information on the sorption processes and on its representation in the model. The methodology of fixing all parameters except those for sorption with breakthrough curves for non-sorbing tracers generally worked well. The investigation clearly demonstrates the necessity of taking into account pump flow rate variations at both boundaries. If this is not done, reliable conclusions on transport mechanisms or geometrical factors can not be achieved. A two flow path model reproduces the measured data much better than a single flow path concept. (author) figs., tabs., 26 refs

  2. Scale effect challenges in urban hydrology highlighted with a distributed hydrological model

    Science.gov (United States)

    Ichiba, Abdellah; Gires, Auguste; Tchiguirinskaia, Ioulia; Schertzer, Daniel; Bompard, Philippe; Ten Veldhuis, Marie-Claire

    2018-01-01

    Hydrological models are extensively used in urban water management, development and evaluation of future scenarios and research activities. There is a growing interest in the development of fully distributed and grid-based models. However, some complex questions related to scale effects are not yet fully understood and still remain open issues in urban hydrology. In this paper we propose a two-step investigation framework to illustrate the extent of scale effects in urban hydrology. First, fractal tools are used to highlight the scale dependence observed within distributed data input into urban hydrological models. Then an intensive multi-scale modelling work is carried out to understand scale effects on hydrological model performance. Investigations are conducted using a fully distributed and physically based model, Multi-Hydro, developed at Ecole des Ponts ParisTech. The model is implemented at 17 spatial resolutions ranging from 100 to 5 m. Results clearly exhibit scale effect challenges in urban hydrology modelling. The applicability of fractal concepts highlights the scale dependence observed within distributed data. Patterns of geophysical data change when the size of the observation pixel changes. The multi-scale modelling investigation confirms scale effects on hydrological model performance. Results are analysed over three ranges of scales identified in the fractal analysis and confirmed through modelling. This work also discusses some remaining issues in urban hydrology modelling related to the availability of high-quality data at high resolutions, and model numerical instabilities as well as the computation time requirements. The main findings of this paper enable a replacement of traditional methods of model calibration by innovative methods of model resolution alteration based on the spatial data variability and scaling of flows in urban hydrology.

  3. Diagnostic Implications of the Reactivity of Fluorescence Tracers

    Energy Technology Data Exchange (ETDEWEB)

    Sick, V; Westbrook, C

    2008-07-14

    Measurements of fuel concentration distributions with planar laser induced fluorescence of tracer molecules that are added to a base fuel are commonly used in combustion research and development. It usually is assumed that the tracer concentration follows the parent fuel concentration if physical properties such as those determining evaporation are matched. As an example to address this general issue a computational study of combustion of biacetyl/iso-octane mixtures was performed to investigate how well the concentration of biacetyl represents the concentration of iso-octane. For premixed mixture conditions with flame propagation the spatial concentration profiles of the two species in the flame front are separated by 110 {micro}m at 1 bar and by 11 {micro}m at 10 bar. For practical applications this spatial separation is insignificantly small. However, for conditions that mimic ignition and combustion in diesel and HCCI-like operation the differences in tracer and fuel concentration can be significant, exceeding hundreds of percent. At low initial temperature biacetyl was found to be more stable whereas at higher temperature (>1000K) iso-octane is more stable. Similar findings were obtained for a multi-component fuel comprised of iso-octane, n-heptane, methylcyclohexane, and toluene. It may be assumed that similar differences can exist for other tracer/fuel combinations. Caution has therefore to be applied when interpreting PLIF measurements in homogeneous reaction conditions such as in HCCI engine studies.

  4. Nanoparticle tracers in calcium carbonate porous media

    KAUST Repository

    Li, Yan Vivian; Cathles, Lawrence M.; Archer, Lynden A.

    2014-01-01

    the fractures or channels where flow occurs and thus take much less time to travel between two points. In combination with a chemical tracer they can measure the degree of flow concentration. A prerequisite for tracer applications is that the particles

  5. Tracer filamentation at an unstable ocean front

    Science.gov (United States)

    Feng, Yen Chia; Mahadevan, Amala; Thiffeault, Jean-Luc; Yecko, Philip

    2017-11-01

    A front, where two bodies of ocean water with different physical properties meet, can become unstable and lead to a flow with high strain rate and vorticity. Phytoplankton and other oceanic tracers are stirred into filaments by such flow fields, as can often be seen in satellite imagery. The stretching and folding of a tracer by a two-dimensional flow field has been well studied. In the ocean, however, the vertical shear of horizontal velocity is typically two orders of magnitude larger than the horizontal velocity gradient. Theoretical calculations show that vertical shear alters the way in which horizontal strain affects the tracer, resulting in thin, sloping structures in the tracer field. Using a non-hydrostatic ocean model of an unstable ocean front, we simulate tracer filamentation to identify the effect of vertical shear on the deformation of the tracer. In a complementary laboratory experiment, we generate a simple, vertically sheared strain flow and use dye and particle image velocimetry to quantify the filamentary structures in terms of the strain and shear. We identify how vertical shear alters the tracer filaments and infer how the evolution of tracers in the ocean will differ from the idealized two-dimensional paradigm. Support of NSF DMS-1418956 is acknowledged.

  6. Dynamic dual-tracer PET reconstruction.

    Science.gov (United States)

    Gao, Fei; Liu, Huafeng; Jian, Yiqiang; Shi, Pengcheng

    2009-01-01

    Although of important medical implications, simultaneous dual-tracer positron emission tomography reconstruction remains a challenging problem, primarily because the photon measurements from dual tracers are overlapped. In this paper, we propose a simultaneous dynamic dual-tracer reconstruction of tissue activity maps based on guidance from tracer kinetics. The dual-tracer reconstruction problem is formulated in a state-space representation, where parallel compartment models serve as continuous-time system equation describing the tracer kinetic processes of dual tracers, and the imaging data is expressed as discrete sampling of the system states in measurement equation. The image reconstruction problem has therefore become a state estimation problem in a continuous-discrete hybrid paradigm, and H infinity filtering is adopted as the estimation strategy. As H infinity filtering makes no assumptions on the system and measurement statistics, robust reconstruction results can be obtained for the dual-tracer PET imaging system where the statistical properties of measurement data and system uncertainty are not available a priori, even when there are disturbances in the kinetic parameters. Experimental results on digital phantoms, Monte Carlo simulations and physical phantoms have demonstrated the superior performance.

  7. Hydrogeological and hydrochemical investigation of groundwater using environmental isotopes (18O, 2H, 3H, 14C) and chemical tracers: a case study of the intermediate aquifer, Sfax, southeastern Tunisia

    Science.gov (United States)

    Ayadi, Rahma; Trabelsi, Rim; Zouari, Kamel; Saibi, Hakim; Itoi, Ryuichi; Khanfir, Hafedh

    2017-12-01

    Major element concentrations and stable (δ18O and δ2H) and radiogenic (3H and 14C) isotopes in groundwater have proved useful tracers for understanding the geochemical processes that control groundwater mineralization and for identifying recharge sources in the semi-arid region of Sfax (southeastern Tunisia). Major-ion chemical data indicate that the origins of the salinity in the groundwater are the water-rock interactions, mainly the dissolution of evaporitic minerals, as well as the cation exchange with clay minerals. The δ18O and δ2H relationships suggest variations in groundwater recharge mechanisms. Strong evaporation during recharge with limited rapid water infiltration is evident in the groundwater of the intermediate aquifer. The mixing with old groundwater in some areas explains the low stable isotope values of some groundwater samples. Groundwaters from the intermediate aquifer are classified into two main water types: Ca-Na-SO4 and Ca-Na-Cl-SO4. The high nitrate concentrations suggest an anthropogenic source of nitrogen contamination caused by intensive agricultural activities in the area. The stable isotopic signatures reveal three water groups: non-evaporated waters that indicate recharge by recent infiltrated water; evaporated waters that are characterized by relatively enriched δ18O and δ2H contents; and mixed groundwater (old/recent) or ancient groundwater, characterized by their depleted isotopic composition. Tritium data support the existence of recent limited recharge; however, other low tritium values are indicative of pre-nuclear recharge and/or mixing between pre-nuclear and contemporaneous recharge. The carbon-14 activities indicate that the groundwaters were mostly recharged under different climatic conditions during the cooler periods of the late Pleistocene and Holocene.

  8. Recharge processes and vertical transfer investigated through long-term monitoring of dissolved gases in shallow groundwater

    Science.gov (United States)

    de Montety, V.; Aquilina, L.; Labasque, T.; Chatton, E.; Fovet, O.; Ruiz, L.; Fourré, E.; de Dreuzy, J. R.

    2018-05-01

    We investigated temporal variations and vertical evolution of dissolved gaseous tracers (CFC-11, CFC-12, SF6, and noble gases), as well as 3H/3He ratio to determine groundwater recharge processes of a shallow unconfined, hard-rock aquifer in an agricultural catchment. We sampled dissolved gas concentration at 4 locations along the hillslope of a small experimental watershed, over 6 hydrological years, between 2 and 6 times per years, for a total of 20 field campaigns. We collected groundwater samples in the fluctuation zone and the permanently saturated zone using piezometers from 5 to 20 m deep. The purpose of this work is i) to assess the benefits of using gaseous tracers like CFCs and SF6 to study very young groundwater with flows suspected to be heterogeneous and variable in time, ii) to characterize the processes that control dissolved gas concentrations in groundwater during the recharge of the aquifer, and iii) to understand the evolution of recharge flow processes by repeated measurement campaigns, taking advantage of a long monitoring in a site devoted to recharge processes investigation. Gas tracer profiles are compared at different location of the catchment and for different hydrologic conditions. In addition, we compare results from CFCs and 3H/3He analysis to define the flow model that best explains tracer concentrations. Then we discuss the influence of recharge events on tracer concentrations and residence time and propose a temporal evolution of residence times for the unsaturated zone and the permanently saturated zone. These results are used to gain a better understanding of the conceptual model of the catchment and flow processes especially during recharge events.

  9. Tracer diffusion in ternary alloys

    International Nuclear Information System (INIS)

    Tahir-Kheli, R.A.

    1985-07-01

    An intuitive extension of the theory for diffusion in dynamic binary alloys given in the preceding paper is presented. This theory has also received an independent derivation, based on more formal procedures, by Holdsworth and Elliott. We present Monte Carlo estimates for diffusion correlation factors, fsup(A), fsup(B), and fsup(C) and compare them with the theory. The agreement between the theoretical results and the Monte Carlo estimates for the correlation factors of the slow particles, i.e., fsup(C) and fsup(B), is found to be generally good. In contrast, for the correlation factor, fsup(A), referring to the diffusion coefficient of fast particles in the system, the theoretical results are found to be systematically lower by a small but resolvable margin. It is suggested that this is occasioned by the neglect of spatial constraints on the scattering of coupled tracer-background particle field pairs. (author)

  10. Estimation of time-variable fast flow path chemical concentrations for application in tracer-based hydrograph separation analyses

    Science.gov (United States)

    Kronholm, Scott C.; Capel, Paul D.

    2016-01-01

    Mixing models are a commonly used method for hydrograph separation, but can be hindered by the subjective choice of the end-member tracer concentrations. This work tests a new variant of mixing model that uses high-frequency measures of two tracers and streamflow to separate total streamflow into water from slowflow and fastflow sources. The ratio between the concentrations of the two tracers is used to create a time-variable estimate of the concentration of each tracer in the fastflow end-member. Multiple synthetic data sets, and data from two hydrologically diverse streams, are used to test the performance and limitations of the new model (two-tracer ratio-based mixing model: TRaMM). When applied to the synthetic streams under many different scenarios, the TRaMM produces results that were reasonable approximations of the actual values of fastflow discharge (±0.1% of maximum fastflow) and fastflow tracer concentrations (±9.5% and ±16% of maximum fastflow nitrate concentration and specific conductance, respectively). With real stream data, the TRaMM produces high-frequency estimates of slowflow and fastflow discharge that align with expectations for each stream based on their respective hydrologic settings. The use of two tracers with the TRaMM provides an innovative and objective approach for estimating high-frequency fastflow concentrations and contributions of fastflow water to the stream. This provides useful information for tracking chemical movement to streams and allows for better selection and implementation of water quality management strategies.

  11. Transuranic and tracer simulant resuspension

    International Nuclear Information System (INIS)

    Sehmel, G.A.

    1977-07-01

    Plutonium resuspension results are summarized for experiments conducted at Rocky Flats, onsite on the Hanford reservation, and for winds blowing from offsite onto the Hanford reservation near the Prosser barricade boundary. In each case, plutonium resuspension was shown by increased airborne plutonium concentrations as a function of either wind speed or as compared to fallout levels. All measured airborne concentrations were below maximum permissible concentrations (MPC). Both plutonium and cesium concentrations on airborne soil were normalized by the quantity of airborne soil sampled. Airborne radionuclide concentrations in μCi/g were related to published values for radionuclide concentrations on surface soils. For this ratio of radionuclide concentration per gram on airborne soil divided by that for ground surface soil, there are eight orders of magnitude uncertainty from 10 -4 to 10 4 . Horizontal plutonium fluxes on airborne nonrespirable soils at all three sites were bracketed within the same three to four orders of magnitude from 10 -7 to 10 -3 μCi/(m 2 day) for plutonium-239 and 10 -8 to 10 -5 μCi/(m 2 day) for plutonium-238. These are the entire experimental base for nonrespirable airborne plutonium transport. Airborne respirable plutonium-239 concentrations increased with wind speed for a southeast wind direction coming from offsite near the Hanford reservation Prosser barricade. Airborne plutonium fluxes on nonrespirable particles had isotopic ratios, 240 Pu/ 239+240 Pu, similar to weapons grade plutonium rather than fallout plutonium. Resuspension rates were summarized for controlled inert particle tracer simulant experiments. Wind resuspension rates for tracers increased with wind speed to about the fifth power

  12. Embedding complex hydrology in the climate system - towards fully coupled climate-hydrology models

    DEFF Research Database (Denmark)

    Butts, M.; Rasmussen, S.H.; Ridler, M.

    2013-01-01

    Motivated by the need to develop better tools to understand the impact of future management and climate change on water resources, we present a set of studies with the overall aim of developing a fully dynamic coupling between a comprehensive hydrological model, MIKE SHE, and a regional climate...... distributed parameters using satellite remote sensing. Secondly, field data are used to investigate the effects of model resolution and parameter scales for use in a coupled model. Finally, the development of the fully coupled climate-hydrology model is described and some of the challenges associated...... with coupling models for hydrological processes on sub-grid scales of the regional climate model are presented....

  13. Mapping (dis)agreement in hydrologic projections

    Science.gov (United States)

    Melsen, Lieke A.; Addor, Nans; Mizukami, Naoki; Newman, Andrew J.; Torfs, Paul J. J. F.; Clark, Martyn P.; Uijlenhoet, Remko; Teuling, Adriaan J.

    2018-03-01

    Hydrologic projections are of vital socio-economic importance. However, they are also prone to uncertainty. In order to establish a meaningful range of storylines to support water managers in decision making, we need to reveal the relevant sources of uncertainty. Here, we systematically and extensively investigate uncertainty in hydrologic projections for 605 basins throughout the contiguous US. We show that in the majority of the basins, the sign of change in average annual runoff and discharge timing for the period 2070-2100 compared to 1985-2008 differs among combinations of climate models, hydrologic models, and parameters. Mapping the results revealed that different sources of uncertainty dominate in different regions. Hydrologic model induced uncertainty in the sign of change in mean runoff was related to snow processes and aridity, whereas uncertainty in both mean runoff and discharge timing induced by the climate models was related to disagreement among the models regarding the change in precipitation. Overall, disagreement on the sign of change was more widespread for the mean runoff than for the discharge timing. The results demonstrate the need to define a wide range of quantitative hydrologic storylines, including parameter, hydrologic model, and climate model forcing uncertainty, to support water resource planning.

  14. Effects of crude oil on water and tracer movement in the unsaturated and saturated zones.

    Science.gov (United States)

    Delin, Geoffrey N; Herkelrath, William N

    2017-05-01

    A tracer test was conducted to aid in the investigation of water movement and solute transport at a crude-oil spill site near Bemidji, Minnesota. Time of travel was measured using breakthrough curves for rhodamine WT and bromide tracers moving from the soil surface through oil-contaminated and oil-free unsaturated zones to the saturated zone. Results indicate that the rates of tracer movement were similar in the oil-free unsaturated and saturated zones compared to the oily zones. These results are somewhat surprising given the oil contamination in the unsaturated and saturated zones. Rhodamine tracer breakthrough in the unsaturated and saturated zones in general was delayed in comparison to bromide tracer breakthrough. Peak tracer concentrations for the lysimeters and wells in the oily zone were much greater than at the corresponding depths in the oil-free zone. Water and tracer movement in the oily zone was complicated by soil hydrophobicity and decreased oil saturations toward the periphery of the oil. Preferential flow resulted in reduced tracer interaction with the soil, adsorption, and dispersion and faster tracer movement in the oily zone than expected. Tracers were freely transported through the oily zone to the water table. Recharge calculations support the idea that the oil does not substantially affect recharge in the oily zone. This is an important result indicating that previous model-based assumptions of decreased recharge beneath the oil were incorrect. Results have important implications for modeling the fate and transport of dissolved contaminants at hydrocarbon spill sites. Published by Elsevier B.V.

  15. On parameterization of the inverse problem for estimating aquifer properties using tracer data

    International Nuclear Information System (INIS)

    Kowalsky, M. B.; Finsterle, Stefan A.; Williams, Kenneth H.; Murray, Christopher J.; Commer, Michael; Newcomer, Darrell R.; Englert, Andreas L.; Steefel, Carl I.; Hubbard, Susan

    2012-01-01

    We consider a field-scale tracer experiment conducted in 2007 in a shallow uranium-contaminated aquifer at Rifle, Colorado. In developing a reliable approach for inferring hydrological properties at the site through inverse modeling of the tracer data, decisions made on how to parameterize heterogeneity (i.e., how to represent a heterogeneous distribution using a limited number of parameters that are amenable to estimation) are of paramount importance. We present an approach for hydrological inversion of the tracer data and explore, using a 2D synthetic example at first, how parameterization affects the solution, and how additional characterization data could be incorporated to reduce uncertainty. Specifically, we examine sensitivity of the results to the configuration of pilot points used in a geostatistical parameterization, and to the sampling frequency and measurement error of the concentration data. A reliable solution of the inverse problem is found when the pilot point configuration is carefully implemented. In addition, we examine the use of a zonation parameterization, in which the geometry of the geological facies is known (e.g., from geophysical data or core data), to reduce the non-uniqueness of the solution and the number of unknown parameters to be estimated. When zonation information is only available for a limited region, special treatment in the remainder of the model is necessary, such as using a geostatistical parameterization. Finally, inversion of the actual field data is performed using 2D and 3D models, and results are compared with slug test data.

  16. Natural radium and radon tracers to quantify water exchange and movement in reservoirs

    Science.gov (United States)

    Smith, Christopher G.; Baskaran, Mark

    2011-01-01

    Radon and radium isotopes are routinely used to quantify exchange rates between different hydrologic reservoirs. Since their recognition as oceanic tracers in the 1960s, both radon and radium have been used to examine processes such as air-sea exchange, deep oceanic mixing, benthic inputs, and many others. Recently, the application of radon-222 and the radium-quartet (223,224,226,228Ra) as coastal tracers has seen a revelation with the growing interest in coastal groundwater dynamics. The enrichment of these isotopes in benthic fluids including groundwater makes both radium and radon ideal tracers of coastal benthic processes (e.g. submarine groundwater discharge). In this chapter we review traditional and recent advances in the application of radon and radium isotopes to understand mixing and exchange between various hydrologic reservoirs, specifically: (1) atmosphere and ocean, (2) deep and shallow oceanic water masses, (3) coastal groundwater/benthic pore waters and surface ocean, and (4) aquifer-lakes. While the isotopes themselves and their distribution in the environment provide qualitative information about the exchange processes, it is mixing/exchange and transport models for these isotopes that provide specific quantitative information about these processes. Brief introductions of these models and mixing parameters are provided for both historical and more recent studies.

  17. Leak detection and localization in natural and artificial dams using tracer techniques

    International Nuclear Information System (INIS)

    Molinari, J.

    1975-01-01

    Leak detection and localization procedures using often-unknown techniques of identification by natural or artificial tracers are reported. From the analysis of data supplied by natural tracers, or by artificial tracer methods which involve the direct observation of warning phenomena, it is possible to estimate the extent of the infiltrations, define their origin and under certain circumstances determine the main hydrodynamic flow parameters so that their development may be followed. The examples of application and interpretation were taken from the numerous studies carried out in this field by the CEA, where many original investigation methods have been employed [fr

  18. Studies on groundwater transport in fractured crystalline rock under controlled conditions using nonradioactive tracers

    International Nuclear Information System (INIS)

    Gustafsson, E.; Klockars, C.-E.

    1981-04-01

    The purpose of the investigation has been study the following parameters along existing fractures between two boreholes: hydraulic properties of rock mass and fractures; adsorptive properties of some selected tracers during transport along fractures; dispersivity and dilution of tracers during transport in fractures; kinematic porosity of fractured bedrock. The procedure has been to determine the hydraulic properties of a rock mass by means of conventional hydraulic testing methods in 100 m deep boreholes, and to study transport mechanisms and properties of selected tracers in a selected fracture zone between two boreholes. (Auth.)

  19. Assimilation of remote sensing observations into a continuous distributed hydrological model: impacts on the hydrologic cycle

    Science.gov (United States)

    Laiolo, Paola; Gabellani, Simone; Campo, Lorenzo; Cenci, Luca; Silvestro, Francesco; Delogu, Fabio; Boni, Giorgio; Rudari, Roberto

    2015-04-01

    The reliable estimation of hydrological variables (e.g. soil moisture, evapotranspiration, surface temperature) in space and time is of fundamental importance in operational hydrology to improve the forecast of the rainfall-runoff response of catchments and, consequently, flood predictions. Nowadays remote sensing can offer a chance to provide good space-time estimates of several hydrological variables and then improve hydrological model performances especially in environments with scarce in-situ data. This work investigates the impact of the assimilation of different remote sensing products on the hydrological cycle by using a continuous physically based distributed hydrological model. Three soil moisture products derived by ASCAT (Advanced SCATterometer) are used to update the model state variables. The satellite-derived products are assimilated into the hydrological model using different assimilation techniques: a simple nudging and the Ensemble Kalman Filter. Moreover two assimilation strategies are evaluated to assess the impact of assimilating the satellite products at model spatial resolution or at the satellite scale. The experiments are carried out for three Italian catchments on multi year period. The benefits on the model predictions of discharge, LST, evapotranspiration and soil moisture dynamics are tested and discussed.

  20. Hydrologic investigations on construction and operation of small-scale hydropower stations in the southern Black Forest; Gewaesseroekologische Untersuchungen zum Bau und Betrieb einer Kleinwasserkraftanlage im Suedschwarzwald

    Energy Technology Data Exchange (ETDEWEB)

    Kerle, F.; Giesecke, J. [Stuttgart Univ. (Germany). Inst. fuer Wasserbau

    2003-07-01

    How far do ecologically optimized small hydropower systems (diversion type) still alter a river ecosystem? How can negative impacts be mitigated and compensated? To get more insight into these strategic important questions, a long-term case study (10 years) at the river Elz, Black Forest, has been implemented in 1999. The pre- and post-project analysis of the new 320-kW hydropower station (Wasserkraft Volk AG) uses methods of hydromorphological and biological monitoring in combination with ecological modeling (CASIMIR). After two years of hydropower operation, preliminary results show that the ecological sustainability of the directly affected river stretch (2 km) is still in good order. It can be shown that especially small fish species and earlier fish life stages profit from the water withdrawal while the habitat of adult brown trout is reduced even so an extraordinary environmental flow is released in the river bed. Restoration of riparian cover structures and foru new fishpasses help to compensate this unavoidable loss. Even if it is yet to early to audit all negative and positive aspects, the hydropower plant under investigation is an excellent example how a fair compromise between nature conservation, renewable energy supply and economics can be achieved. (orig.)

  1. Using Tracer Technology to Characterize Contaminated Pipelines

    Energy Technology Data Exchange (ETDEWEB)

    Maresca, Joseph, W., Jr., Ph.D.; Bratton, Wesley, L., Ph.D., P.E.; Dickerson, Wilhelmina; Hales, Rochelle

    2005-12-30

    The Pipeline Characterization Using Tracers (PCUT) technique uses conservative and partitioning, reactive or other interactive tracers to remotely determine the amount of contaminant within a run of piping or ductwork. The PCUT system was motivated by a method that has been successfully used to characterize subsurface soil contaminants and is similar in operation to that of a gas chromatography column. By injecting a ?slug? of both conservative and partitioning tracers at one end (or section) of the piping and measuring the time history of the concentration of the tracers at the other end (or another section) of the pipe, the presence, location, and amount of contaminant within the pipe or duct can be determined. The tracers are transported along the pipe or duct by a gas flow field, typically air or nitrogen, which has a velocity that is slow enough so that the partitioning tracer has time to interact with the contaminant before the tracer slug completely passes over the contaminate region. PCUT not only identifies the presence of contamination, it also can locate the contamination along the pipeline and quantify the amount of residual. PCUT can be used in support of deactivation and decommissioning (D&D) of piping and ducts that may have been contaminated with hazardous chemicals such as chlorinated solvents, petroleum products, radioactive materials, or heavy metals, such as mercury.

  2. Radioisotope tracer study in an aniline production reactor

    International Nuclear Information System (INIS)

    Pant, H.J.; Yelgoankar, V.N.; Mendhekar, G.N.

    1995-01-01

    A radioisotope tracer study was carried out in an aniline production reactor to investigate the cause of poor heat transfer from tube side to shell side in an aniline production (ANPO) reactor. The results of the study indicated that more than 50% of the shell volume was reduced due to deposition of the process material (i.e. fouling) on the shell walls and may be the cause of poor heat transfer in the reactor. (author). 2 refs., 2 figs

  3. Physical models for classroom teaching in hydrology

    Directory of Open Access Journals (Sweden)

    A. Rodhe

    2012-09-01

    Full Text Available Hydrology teaching benefits from the fact that many important processes can be illustrated and explained with simple physical models. A set of mobile physical models has been developed and used during many years of lecturing at basic university level teaching in hydrology. One model, with which many phenomena can be demonstrated, consists of a 1.0-m-long plexiglass container containing an about 0.25-m-deep open sand aquifer through which water is circulated. The model can be used for showing the groundwater table and its influence on the water content in the unsaturated zone and for quantitative determination of hydraulic properties such as the storage coefficient and the saturated hydraulic conductivity. It is also well suited for discussions on the runoff process and the significance of recharge and discharge areas for groundwater. The flow paths of water and contaminant dispersion can be illustrated in tracer experiments using fluorescent or colour dye. This and a few other physical models, with suggested demonstrations and experiments, are described in this article. The finding from using models in classroom teaching is that it creates curiosity among the students, promotes discussions and most likely deepens the understanding of the basic processes.

  4. Tracers vs. trajectories in a coastal region

    Science.gov (United States)

    Engqvist, A.; Döös, K.

    2008-12-01

    Two different methods of estimating the water exchange through a Baltic coastal region have been used, consisting of particle trajectories and passive tracers. Water is traced from and to a small discharge region near the coast. The discharge material in this region is treated as zero dimensional particles or tracers with neutral buoyancy. The real discharge material could be a leakage of radio-nuclides through the sea floor from an underground repository of nuclear waste. Water exchange rates between the discharge region and the model domain are estimated using both forward and backward trajectories as well as passive tracers. The Lagrangian trajectories can account for the time evolution of the water exchange while the tracers give one average age per model grid box. Water exchange times such as residence time, age and transient times have been calculated with trajectories but only the average age (AvA) for tracers. The trajectory calculations provide a more detailed time evolution than the tracers. On the other hand the tracers are integrated "on-line" simultaneously in the sea circulation model with the same time step while the Lagrangian trajectories are integrated "off-line" from the stored model velocities with its inherent temporal resolution, presently one hour. The sub-grid turbulence is parameterised as a Laplacian diffusion for the passive tracers and with an extra stochastic velocity for trajectories. The importance of the parameterised sub-grid turbulence for the trajectories is estimated to give an extra diffusion of the same order as the Laplacian diffusion by comparing the Lagrangian dispersions with and without parameterisation. The results of the different methods are similar but depend on the chosen diffusivity coefficient with a slightly higher correlation between trajectories and tracers when integrated with a lower diffusivity coefficient.

  5. Hydrologic control of nitrogen removal, storage, and export in a mountain stream

    Science.gov (United States)

    Hall, R.O.; Baker, M.A.; Arp, C.D.; Kocha, B.J.

    2009-01-01

    Nutrient cycling and export in streams and rivers should vary with flow regime, yet most studies of stream nutrient transformation do not include hydrologic variability. We used a stable isotope tracer of nitrogen (15N) to measure nitrate (NO3) uptake, storage, and export in a mountain stream, Spring Creek, Idaho, U.S.A. We conducted two tracer tests of 2-week duration during snowmelt and baseflow. Dissolved and particulate forms of 15N were monitored over three seasons to test the hypothesis that stream N cycling would be dominated by export during floods, and storage during low flow. Floods exported more N than during baseflow conditions; however, snowmelt floods had higher than expected demand for NO{3 because of hyporheic exchange. Residence times of benthic N during both tracer tests were longer than 100 d for ephemeral pools such as benthic algae and wood biofilms. Residence times were much longer in fine detritus, insects, and the particulate N from the hyporheic zone, showing that assimilation and hydrologic storage can be important mechanisms for retaining particulate N. Of the tracer N stored in the stream, the primary form of export was via seston during periods of high flows, produced by summer rainstorms or spring snowmelt the following year. Spring Creek is not necessarily a conduit for nutrients during high flow; hydrologic exchange between the stream and its valley represents an important storage mechanism.

  6. Hillslope hydrology and stability

    Science.gov (United States)

    Lu, Ning; Godt, Jonathan

    2012-01-01

    Landslides are caused by a failure of the mechanical balance within hillslopes. This balance is governed by two coupled physical processes: hydrological or subsurface flow and stress. The stabilizing strength of hillslope materials depends on effective stress, which is diminished by rainfall. This book presents a cutting-edge quantitative approach to understanding hydro-mechanical processes across variably saturated hillslope environments and to the study and prediction of rainfall-induced landslides. Topics covered include historic synthesis of hillslope geomorphology and hydrology, total and effective stress distributions, critical reviews of shear strength of hillslope materials and different bases for stability analysis. Exercises and homework problems are provided for students to engage with the theory in practice. This is an invaluable resource for graduate students and researchers in hydrology, geomorphology, engineering geology, geotechnical engineering and geomechanics and for professionals in the fields of civil and environmental engineering and natural hazard analysis.

  7. How well suited are maar lakes of Madagascar for palaeoenvironmental multi-proxy reconstructions? - First results from shallow seismic, sedimentological and hydrological investigations in Central and Northwest Madagascar.

    Science.gov (United States)

    Daut, Gerhard; Jasmin Krahn, Kim; Rabhobisoa, Jean-Jacques; Ornella Moanazafy, Sergénie; Haberzettl, Torsten; Kasper, Thomas; Mäusbacher, Roland; Schwalb, Antje

    2017-04-01

    Madagascar is well known for its unique flora and fauna which are frequently in the focus of scientific investigations. However, studies on environmental changes in Madagascar linked to Quaternary climatic and/or anthropogenic impact are scarce. The aim of this initial study is to evaluate the potential of maar lakes, situated in different climatic zones of Madagascar, for paleoenvironmental studies and to identify promising coring sites with continuous sediment sequences reaching far back in time. Therefore, in November 2016, a shallow seismic profiling campaign, combined with surface sediment, short gravity core (max. 1.8 m), water and plankton sampling was performed on three target sites. These were two deep maar lakes, i.e., Andraikiba (Central Madagascar, 50m waterdepth) as well as Amparahibe (46,5m waterdepth) and Andampy Ambatoloaka, a shallow (5m waterdepth during low tide) former maar lake now connected to the Ocean (both NW-Madagascar. Vertical water parameter measurements in Lake Amparahibe confirm anoxic bottom conditions, while dissolved oxygen values at the water surface are about 7.9 mg/L (103%). Temperature decreases with depth from 29.3 °C to 27.2 °C, and the lake is slightly alkaline with an electrical conductivity of around 245 µS/cm. Since Andampy Ambatoloaka is connected to the ocean, it shows slightly alkaline conditions as well, electrical conductivity is high ( 57.8 mS/cm) and dissolved oxygen and temperature values are relatively stable at about 8.2 mg/L (104%) and 28.1 °C, respectively. The shallow seismic survey shows an infill with layered sediments of >50 m thickness in Lake Andraikiba. In Lake Amparahibe natural gas in the sediment prevented deeper penetration, however the record shows 10 m of undisturbed, layered sediments in the uppermost part. Sediment cores obtained from both lakes consist of dark brownish to blackish, clayey to silty and partly laminated sediments. High values of magnetic susceptibilities (>1800*10-6 SI) and

  8. Statistically Based Morphodynamic Modeling of Tracer Slowdown

    Science.gov (United States)

    Borhani, S.; Ghasemi, A.; Hill, K. M.; Viparelli, E.

    2017-12-01

    Tracer particles are used to study bedload transport in gravel-bed rivers. One of the advantages associated with using of tracer particles is that they allow for direct measures of the entrainment rates and their size distributions. The main issue in large scale studies with tracer particles is the difference between tracer stone short term and long term behavior. This difference is due to the fact that particles undergo vertical mixing or move to less active locations such as bars or even floodplains. For these reasons the average virtual velocity of tracer particle decreases in time, i.e. the tracer slowdown. In summary, tracer slowdown can have a significant impact on the estimation of bedload transport rate or long term dispersal of contaminated sediment. The vast majority of the morphodynamic models that account for the non-uniformity of the bed material (tracer and not tracer, in this case) are based on a discrete description of the alluvial deposit. The deposit is divided in two different regions; the active layer and the substrate. The active layer is a thin layer in the topmost part of the deposit whose particles can interact with the bed material transport. The substrate is the part of the deposit below the active layer. Due to the discrete representation of the alluvial deposit, active layer models are not able to reproduce tracer slowdown. In this study we try to model the slowdown of tracer particles with the continuous Parker-Paola-Leclair morphodynamic framework. This continuous, i.e. not layer-based, framework is based on a stochastic description of the temporal variation of bed surface elevation, and of the elevation specific particle entrainment and deposition. Particle entrainment rates are computed as a function of the flow and sediment characteristics, while particle deposition is estimated with a step length formulation. Here we present one of the first implementation of the continuum framework at laboratory scale, its validation against

  9. Isotopes in hydrology of ground water

    International Nuclear Information System (INIS)

    Rodriguez, N.; C, O.

    1996-01-01

    Fundamental concepts on Radioactivity, Isotopes, Radioisotopes, Law of Nuclear Decay (Middle Life concept), Radioactivity units, Types of radiation, Absorption and dispersion of both Alfa and Beta particles and both gamma and X-rays attenuation are presented. A description on Environmental Isotopes (those that are presented in natural form in the environment and those that can't be controlled by the humans), both stables and unstable (radioisotopes) isotopes is made. Isotope hydrology applications in surface water investigations as: Stream flow measurements and Atmosphere - surface waters interrelationship is described. With relation to the groundwater investigations, different applications of the isotope hydrology, its theoretical base and its methodology are presented to each one of the substrates as: Unsaturated zone (soil cape), Saturated zone (aquifer cape), Surface waters - ground waters interrelationship (infiltration and recharge) and to hydrologic balance

  10. Modeling Subsurface Hydrology in Floodplains

    Science.gov (United States)

    Evans, Cristina M.; Dritschel, David G.; Singer, Michael B.

    2018-03-01

    Soil-moisture patterns in floodplains are highly dynamic, owing to the complex relationships between soil properties, climatic conditions at the surface, and the position of the water table. Given this complexity, along with climate change scenarios in many regions, there is a need for a model to investigate the implications of different conditions on water availability to riparian vegetation. We present a model, HaughFlow, which is able to predict coupled water movement in the vadose and phreatic zones of hydraulically connected floodplains. Model output was calibrated and evaluated at six sites in Australia to identify key patterns in subsurface hydrology. This study identifies the importance of the capillary fringe in vadose zone hydrology due to its water storage capacity and creation of conductive pathways. Following peaks in water table elevation, water can be stored in the capillary fringe for up to months (depending on the soil properties). This water can provide a critical resource for vegetation that is unable to access the water table. When water table peaks coincide with heavy rainfall events, the capillary fringe can support saturation of the entire soil profile. HaughFlow is used to investigate the water availability to riparian vegetation, producing daily output of water content in the soil over decadal time periods within different depth ranges. These outputs can be summarized to support scientific investigations of plant-water relations, as well as in management applications.

  11. The accurate particle tracer code

    Science.gov (United States)

    Wang, Yulei; Liu, Jian; Qin, Hong; Yu, Zhi; Yao, Yicun

    2017-11-01

    The Accurate Particle Tracer (APT) code is designed for systematic large-scale applications of geometric algorithms for particle dynamical simulations. Based on a large variety of advanced geometric algorithms, APT possesses long-term numerical accuracy and stability, which are critical for solving multi-scale and nonlinear problems. To provide a flexible and convenient I/O interface, the libraries of Lua and Hdf5 are used. Following a three-step procedure, users can efficiently extend the libraries of electromagnetic configurations, external non-electromagnetic forces, particle pushers, and initialization approaches by use of the extendible module. APT has been used in simulations of key physical problems, such as runaway electrons in tokamaks and energetic particles in Van Allen belt. As an important realization, the APT-SW version has been successfully distributed on the world's fastest computer, the Sunway TaihuLight supercomputer, by supporting master-slave architecture of Sunway many-core processors. Based on large-scale simulations of a runaway beam under parameters of the ITER tokamak, it is revealed that the magnetic ripple field can disperse the pitch-angle distribution significantly and improve the confinement of energetic runaway beam on the same time.

  12. Development of Radioisotope Tracer Technology

    International Nuclear Information System (INIS)

    Jung, Sung Hee; Jin, Joon Ha; Kim, Jong Bum; Kim, Jin Seop; Kim, Jae Jo; Park, Soon Chul; Lim, Don Soon; Choi, Byung Jong; Jang, Dong Soon; Kim, Hye Sook

    2007-06-01

    The project is aimed to develop the radiotracer technology for process optimization and trouble-shooting to establish the environmental and industrial application of radiation and radioisotopes. The advanced equipment and software such as high speed data acquisition system, RTD model and high pressure injection tool have developed. Based on the various field application to the refinery/petrochemical industries, the developed technology was transfer to NDT company for commercial service. For the environmental application of radiotracer technology, injector, detector sled, core sampler, RI and GPS data logging system are developed and field tests were implemented successfully at Wolsung and Haeundae beach. Additionally tracer technology were also used for the performance test of the clarifier in a wastewater treatment plant and for the leak detection in reservoirs. From the experience of case studies on radiotracer experiment in waste water treatment facilities, 'The New Excellent Technology' is granted from the ministry of environment. For future technology, preliminary research for industrial gamma transmission and emission tomography which are new technology combined with radioisotope and image reconstruction are carried out

  13. Numerical flow models and their calibration using tracer based ages: Chapter 10

    Science.gov (United States)

    Sanford, W.

    2013-01-01

    Any estimate of ‘age’ of a groundwater sample based on environmental tracers requires some form of geochemical model to interpret the tracer chemistry (chapter 3) and is, therefore, referred to in this chapter as a tracer model age. the tracer model age of a groundwater sample can be useful for obtaining information on the residence time and replenishment rate of an aquifer system, but that type of data is most useful when it can be incorporated with all other information that is known about the groundwater system under study. groundwater fl ow models are constructed of aquifer systems because they are usually the best way of incorporating all of the known information about the system in the context of a mathematical framework that constrains the model to follow the known laws of physics and chemistry as they apply to groundwater flow and transport. It is important that the purpose or objective of the study be identified first before choosing the type and complexity of the model to be constructed, and to make sure such a model is necessary. The purpose of a modelling study is most often to characterize the system within a numerical framework, such that the hydrological responses of the system can be tested under potential stresses that might be imposed given future development scenarios. As this manual discusses dating as it applies to old groundwater, most readers are likely to be interested in studying regional groundwater flow systems and their water resource potential.

  14. Development of a PET tracer for imaging EGFR tyrosine kinase: evaluation of the suitability of PKI166

    International Nuclear Information System (INIS)

    Kernchen, R.; Brust, P.; Krause, M.; Baumann, M.

    2002-01-01

    The suitability of PKI166 for the development of a PET tracer for imaging EGFR tyrosine kinase was investigated. Binding studies using EGFR positive tumour tissue and tritiated PKI166 as the radioligand indicated a low binding affinity of PKI166 to the target tissue. PKI166 is therefore not recommended for PET tracer development. (orig.)

  15. Some atmospheric tracer experiments in complex terrain at LASL: experimental design and data

    International Nuclear Information System (INIS)

    Archuleta, J.; Barr, S.; Clements, W.E.; Gedayloo, T.; Wilson, S.K.

    1978-03-01

    Two series of atmospheric tracer experiments were conducted in complex terrain situations in and around the Los Alamos Scientific Laboratory. Fluorescent particle tracers were used to investigate nighttime drainage flow in Los Alamos Canyon and daytime flow across the local canyon-mesa complex. This report describes the details of these experiments and presents a summary of the data collected. A subsequent report will discuss the analysis of these data

  16. Development of an activatable nanospheres tracer for use in industry and the environment

    International Nuclear Information System (INIS)

    Fonseca, Raquel Luiza M.; Moreira, Rubens M.; Moura, Igor Felipe S.

    2015-01-01

    Nanoparticles (NP's) can act as tracers for the study of several transport phenomena in industrial practice and environmental processes provided their physical and chemical properties meet specific requirements dictated by the application. Silica-coated gold nanoparticles in the size interval from 20 to 200 nm can be produced by gamma-ray irradiation. Submitted to neutron bombardment in a nuclear reactor, they will convert gold nuclides into 198 Au (E γ = 412 keV). These NP's can used as a tracer in oil fields, in petrochemical and refinery industrial processes in which conventional organic radioactive labeled compounds would not withstand, as well as in some hydrology and hydrogeology studies. (author)

  17. Methodology for the determination of underground water velocity, direction and flow, by using radioactive tracers

    International Nuclear Information System (INIS)

    Aoki, P.E.

    1983-01-01

    A basic route determining velocity and direction of ground water flow by using radioactive tracers is presented. Emphasis has been given to hydrology and nuclear energy concepts, to the construction of some specific equipment, to the calibration of radiation detectors and to the practical applications in borehole. 82 Br and 51 Cr have been chosen as tracers for the Darcy's velocity and direction determinations, respectively. From the obtained value of Darcy's velocity, the laminar flow was confirmed according to the admitted hypothesis. Comparisons of the Darcy's velocity values and flow direction have been made with values obtained using pumping tests and survey of the equipotential curves, where it can be concluded that they are of the same largeness and then, from a practical view, approximate. (Author) [pt

  18. Development of an activatable nanospheres tracer for use in industry and the environment

    Energy Technology Data Exchange (ETDEWEB)

    Fonseca, Raquel Luiza M.; Moreira, Rubens M., E-mail: rlmf@cdtn.br, E-mail: rubens@cdtn.br [Centro de Desenvolvimento da Tecnologia Nuclear (SEMAM/CDTN/CNEN-MG), Belo Horizonte, MG (Brazil). Departamento de Servico ao Meio Ambiente; Moura, Igor Felipe S., E-mail: igorfelipedx@yahoo.com.br [Universidade Federal de Minas Gerais (DEN/PCTN/UFMG), Belo Horizonte, MG (Brazil). Departamento de Engenharia Nuclear. Programa de Pos-Graduacao em Ciencias e Tecnicas Nucleares

    2015-07-01

    Nanoparticles (NP's) can act as tracers for the study of several transport phenomena in industrial practice and environmental processes provided their physical and chemical properties meet specific requirements dictated by the application. Silica-coated gold nanoparticles in the size interval from 20 to 200 nm can be produced by gamma-ray irradiation. Submitted to neutron bombardment in a nuclear reactor, they will convert gold nuclides into {sup 198}Au (E{sub γ} = 412 keV). These NP's can used as a tracer in oil fields, in petrochemical and refinery industrial processes in which conventional organic radioactive labeled compounds would not withstand, as well as in some hydrology and hydrogeology studies. (author)

  19. Comparison of thermal, salt and dye tracing to estimate shallow flow velocities: Novel triple-tracer approach

    Science.gov (United States)

    Abrantes, João R. C. B.; Moruzzi, Rodrigo B.; Silveira, Alexandre; de Lima, João L. M. P.

    2018-02-01

    The accurate measurement of shallow flow velocities is crucial to understand and model the dynamics of sediment and pollutant transport by overland flow. In this study, a novel triple-tracer approach was used to re-evaluate and compare the traditional and well established dye and salt tracer techniques with the more recent thermal tracer technique in estimating shallow flow velocities. For this purpose a triple tracer (i.e. dyed-salted-heated water) was used. Optical and infrared video cameras and an electrical conductivity sensor were used to detect the tracers in the flow. Leading edge and centroid velocities of the tracers were measured and the correction factors used to determine the actual mean flow velocities from tracer measured velocities were compared and investigated. Experiments were carried out for different flow discharges (32-1813 ml s-1) on smooth acrylic, sand, stones and synthetic grass bed surfaces with 0.8, 4.4 and 13.2% slopes. The results showed that thermal tracers can be used to estimate shallow flow velocities, since the three techniques yielded very similar results without significant differences between them. The main advantages of the thermal tracer were that the movement of the tracer along the measuring section was more easily visible than it was in the real image videos and that it was possible to measure space-averaged flow velocities instead of only one velocity value, with the salt tracer. The correction factors used to determine the actual mean velocity of overland flow varied directly with Reynolds and Froude numbers, flow velocity and slope and inversely with flow depth and bed roughness. In shallow flows, velocity estimation using tracers entails considerable uncertainty and caution must be taken with these measurements, especially in field studies where these variables vary appreciably in space and time.

  20. Measurement of Effect of Chemical Reactions on the Hydrologic Properties of Fractured Glass Media Using a Tri-axial Flow and Transport Apparatus

    International Nuclear Information System (INIS)

    Saripalli, Prasad; Lindberg, Michael J.; Meyer, P. D.

    2006-01-01

    Understanding the effect of chemical reactions on the hydrologic properties of sub-surface media is critical to many natural and engineered sub-surface systems. Methods and information for such characterization of fractured media are severely lacking. Influence of glass corrosion (precipitation and dissolution) reactions on fractured glass blocks HAN28 and LAWBP1, two candidate waste glass forms for a proposed immobilized low-activity waste (ILAW) disposal facility at the Hanford, WA site, was investigated. Flow and tracer transport experiments were conducted in such randomly and multiply fractured ILAW glass blocks, before and after subjecting them to corrosion using Vapor Hydration Testing (VHT) at 200 C temperature and 200 psig (1379 KPa) pressure, causing the precipitation of alteration products. A tri-axial fractured media flow and transport experimental apparatus, which allows the simultaneous measurement of flow and transport properties and their anisotropy, has been designed and built for this purpose. Such apparatus for fractured media characterization are being reported in the literature only recently. Hydraulic properties of fractured blocks were measured in different orientations and along different cardinal directions, before and after glass corrosion reactions. Miscible displacement experiments using a non-reactive dye were also conducted, before and after glass corrosion reactions, to study the tracer transport behavior through such media. Initial efforts to analyze breakthrough curve (BTC) data using a 1D Advection Dispersion Equation (ADE) solution revealed that a different fractured media transport model may be necessary for such interpretation. It was found that glass reactions can have a significant influence on the hydrologic properties of fractured ILAW glass media. The methods and results are unique and useful to better understand the effect of chemical reactions on the hydrologic properties of fractured geomedia in general and glass media in

  1. Tracer surface diffusion on UO2

    International Nuclear Information System (INIS)

    Zhou, S.Y.; Olander, D.R.

    1983-06-01

    Surface diffusion on UO 2 was measured by the spreading of U-234 tracer on the surface of a duplex diffusion couple consisting of wafers of depleted and enriched UO 2 joined by a bond of uranium metal

  2. HYDROLOGY, JEFFERSON COUNTY, WI, USA

    Data.gov (United States)

    Federal Emergency Management Agency, Department of Homeland Security — Hydrology data include spatial datasets and data tables necessary for documenting the hydrologic procedures for estimating flood discharges for a flood insurance...

  3. HYDROLOGY, DODGE COUNTY, WI, USA

    Data.gov (United States)

    Federal Emergency Management Agency, Department of Homeland Security — Hydrology data include spatial datasets and data tables necessary for documenting the hydrologic procedures for estimating flood discharges for a flood insurance...

  4. HYDROLOGY, WASHINGTON COUNTY, WI, USA

    Data.gov (United States)

    Federal Emergency Management Agency, Department of Homeland Security — Hydrology data include spatial datasets and data tables necessary for documenting the hydrologic procedures for estimating flood discharges for a flood insurance...

  5. HYDROLOGY, DUNN COUNTY, WI, USA

    Data.gov (United States)

    Federal Emergency Management Agency, Department of Homeland Security — Hydrology data include spatial datasets and data tables necessary for documenting the hydrologic procedures for estimating flood discharges for a flood insurance...

  6. HYDROLOGY, yakima County, WA, USA

    Data.gov (United States)

    Federal Emergency Management Agency, Department of Homeland Security — Hydrology data include spatial datasets and data tables necessary for documenting the hydrologic procedures for estimating flood discharges for a flood insurance...

  7. HYDROLOGY, GEORGETOWN COUNTY, SC, USA

    Data.gov (United States)

    Federal Emergency Management Agency, Department of Homeland Security — Hydrology data include spatial datasets and data tables necessary for documenting the hydrologic procedures for estimating flood discharges for a flood insurance...

  8. HYDROLOGY, LAUREL COUNTY, KENTUCKY USA

    Data.gov (United States)

    Federal Emergency Management Agency, Department of Homeland Security — Hydrology data include spatial datasets and data tables necessary for documenting the hydrologic procedures for estimating flood discharges for a flood insurance...

  9. HYDROLOGY, LAMAR COUNTY, GEORGIA, USA

    Data.gov (United States)

    Federal Emergency Management Agency, Department of Homeland Security — Hydrology data include spatial datasets and data tables necessary for documenting the hydrologic procedures for estimating flood discharges for a flood insurance...

  10. HYDROLOGY, IONIA COUNTY, MI, USA

    Data.gov (United States)

    Federal Emergency Management Agency, Department of Homeland Security — Hydrology data include spatial datasets and data tables necessary for documenting the hydrologic procedures for estimating flood discharges for a flood insurance...

  11. HYDROLOGY, Bourbon COUNTY, KENTUCKY USA

    Data.gov (United States)

    Federal Emergency Management Agency, Department of Homeland Security — Hydrology data include spatial datasets and data tables necessary for documenting the hydrologic procedures for estimating flood discharges for a flood insurance...

  12. HYDROLOGY, MADISON COUNTY, FL, USA

    Data.gov (United States)

    Federal Emergency Management Agency, Department of Homeland Security — Hydrology data include spatial datasets and data tables necessary for documenting the hydrologic procedures for estimating flood discharges for a flood insurance...

  13. HYDROLOGY, MONITEAU COUNTY, MISSOURI USA

    Data.gov (United States)

    Federal Emergency Management Agency, Department of Homeland Security — Hydrology data include spatial datasets and data tables necessary for documenting the hydrologic procedures for estimating flood discharges for a flood insurance...

  14. HYDROLOGY, IRON COUNTY, UTAH, USA

    Data.gov (United States)

    Federal Emergency Management Agency, Department of Homeland Security — Hydrology data include spatial datasets and data tables necessary for documenting the hydrologic procedures for estimating flood discharges for a flood insurance...

  15. HYDROLOGY, WHITLEY COUNTY, KENTUCKY USA

    Data.gov (United States)

    Federal Emergency Management Agency, Department of Homeland Security — Hydrology data include spatial datasets and data tables necessary for documenting the hydrologic procedures for estimating flood discharges for a flood insurance...

  16. HYDROLOGY, TUSCOLA COUNTY, MI, USA

    Data.gov (United States)

    Federal Emergency Management Agency, Department of Homeland Security — Hydrology data include spatial datasets and data tables necessary for documenting the hydrologic procedures for estimating flood discharges for a flood insurance...

  17. HYDROLOGIC ANALYSIS, HONOLULU COUNTY, HI

    Data.gov (United States)

    Federal Emergency Management Agency, Department of Homeland Security — Hydrology data include spatial datasets and data tables necessary for documenting the hydrologic procedures for estimating flood discharges for a flood insurance...

  18. HYDROLOGY, Richland County, ND, USA

    Data.gov (United States)

    Federal Emergency Management Agency, Department of Homeland Security — Hydrology data include spatial datasets and data tables necessary for documenting the hydrologic procedures for estimating flood discharges for a flood insurance...

  19. HYDROLOGY, Grant County, SD, USA

    Data.gov (United States)

    Federal Emergency Management Agency, Department of Homeland Security — Hydrology data include spatial datasets and data tables necessary for documenting the hydrologic procedures for estimating flood discharges for a flood insurance...

  20. HYDROLOGY, LEVY COUNTY, FL, USA

    Data.gov (United States)

    Federal Emergency Management Agency, Department of Homeland Security — Hydrology data include spatial datasets and data tables necessary for documenting the hydrologic procedures for estimating flood discharges for a flood insurance...

  1. HYDROLOGY, WASHINGTON COUNTY, FL, USA

    Data.gov (United States)

    Federal Emergency Management Agency, Department of Homeland Security — Hydrology data include spatial datasets and data tables necessary for documenting the hydrologic procedures for estimating flood discharges for a flood insurance...

  2. HYDROLOGY, HAMILTON COUNTY, FL, USA

    Data.gov (United States)

    Federal Emergency Management Agency, Department of Homeland Security — Hydrology data include spatial datasets and data tables necessary for documenting the hydrologic procedures for estimating flood discharges for a flood insurance...

  3. HYDROLOGY, LIBERTY COUNTY, FL, USA

    Data.gov (United States)

    Federal Emergency Management Agency, Department of Homeland Security — Hydrology data include spatial datasets and data tables necessary for documenting the hydrologic procedures for estimating flood discharges for a flood insurance...

  4. HYDROLOGY, RICE COUNTY, MN, USA

    Data.gov (United States)

    Federal Emergency Management Agency, Department of Homeland Security — Hydrology data include spatial datasets and data tables necessary for documenting the hydrologic procedures for estimating flood discharges for a flood insurance...

  5. HYDROLOGY, MADISON COUNTY, ALABAMA USA

    Data.gov (United States)

    Federal Emergency Management Agency, Department of Homeland Security — Hydrology data include spatial datasets and data tables necessary for documenting the hydrologic procedures for estimating flood discharges for a flood insurance...

  6. HYDROLOGY, BALLARD COUNTY, KENTUCKY USA

    Data.gov (United States)

    Federal Emergency Management Agency, Department of Homeland Security — Hydrology data include spatial datasets and data tables necessary for documenting the hydrologic procedures for estimating flood discharges for a flood insurance...

  7. HYDROLOGY, STORY COUNTY, IOWA USA

    Data.gov (United States)

    Federal Emergency Management Agency, Department of Homeland Security — Hydrology data include spatial datasets and data tables necessary for documenting the hydrologic procedures for estimating flood discharges for a flood insurance...

  8. HYDROLOGIC ANALYSIS, MONO COUNTY, CA

    Data.gov (United States)

    Federal Emergency Management Agency, Department of Homeland Security — Hydrology data include spatial datasets and data tables necessary for documenting the hydrologic procedures for estimating flood discharges for a flood insurance...

  9. HYDROLOGIC ANALYSIS, EDGEFIELD COUNTY, SC

    Data.gov (United States)

    Federal Emergency Management Agency, Department of Homeland Security — Hydrology data include spatial datasets and data tables necessary for documenting the hydrologic procedures for estimating flood discharges for a flood insurance...

  10. HYDROLOGY, SIMPSON COUNTY, KENTUCKY USA

    Data.gov (United States)

    Federal Emergency Management Agency, Department of Homeland Security — Hydrology data include spatial datasets and data tables necessary for documenting the hydrologic procedures for estimating flood discharges for a flood insurance...

  11. Radioisotope tracers in industrial flow studies

    International Nuclear Information System (INIS)

    Easey, J.F.

    1987-01-01

    The scope of radioisotope tracer work carried out by ANSTO has involved most sectors of Australian industry including iron and steel coal, chemical, petrochemical, natural gas, metallurgical, mineral, power generation, liquified air plant, as well as port authorities, water and sewerage instrumentalities, and environmental agencies. A major class of such studies concerns itself with flow and wear studies involving industrial equipment. Some examples are discussed which illustrate the utility of radioisotope tracer techniques in these applications

  12. Thiocyanate use as radioactive tracer in a petroleum field

    International Nuclear Information System (INIS)

    Pereira, Elaine Henriques Teixeira; Souza, Fabiane Ferreira de; Pinto, Amenonia Maria Ferreira; Moreira, Rubens Martins

    2002-01-01

    Currently, most of the oil exploration in reservoirs is made out if the assistance of the injection of different fluids, waters in particular, to increase production. For this reason it has been largely spread the application of chemical and/or radioactive tracers in the study of the characteristics of transport of the injected fluid between injection and production wells. K 35 SCN is considered a good tracer due to its higher solubility in water and low adsorption. This work presents a brief review of the methods described in literature for obtain S-35. It was found out to be the most appropriate method the synthesis of thiocyanate starting from the reaction of KCN and S-35. It was also investigated the efficiency of the reaction for the obtention of KSCN. (author)

  13. Hydrology and soil erosion

    Science.gov (United States)

    Leonard J. Lane; Mary R. Kidwell

    2003-01-01

    We review research on surface water hydrology and soil erosion at the Santa Rita Experimental Range (SRER). Almost all of the research was associated with eight small experimental watersheds established from 1974 to 1975 and operated until the present. Analysis of climatic features of the SRER supports extending research findings from the SRER to broad areas of the...

  14. Hydrology and flow forecasting

    NARCIS (Netherlands)

    Vrijling, J.K.; Kwadijk, J.; Van Duivendijk, J.; Van Gelder, P.; Pang, H.; Rao, S.Q.; Wang, G.Q.; Huang, X.Q.

    2002-01-01

    We have studied and applied the statistic model (i.e. MMC) and hydrological models to Upper Yellow River. This report introduces the results and some conclusions from the model. The three models, MMC, MWBM and NAM, have be applied in the research area. The forecasted discharge by the three models

  15. Watershed hydrology. Chapter 7.

    Science.gov (United States)

    Elons S. Verry; Kenneth N. Brooks; Dale S. Nichols; Dawn R. Ferris; Stephen D. Sebestyen

    2011-01-01

    Watershed hydrology is determined by the local climate, land use, and pathways of water flow. At the Marcell Experimental Forest (MEF), streamflow is dominated by spring runoff events driven by snowmelt and spring rains common to the strongly continental climate of northern Minnesota. Snowmelt and rainfall in early spring saturate both mineral and organic soils and...

  16. Quantitative measurement of maritime sediment movement using radioactive tracers

    International Nuclear Information System (INIS)

    Makovski, E.; Grissener, G.

    1967-01-01

    The quantitative method described in the paper involves burying appropriate detectors over a given area of the sea bottom, the detectors being connected to recording equipment which is itself buried in the sediment or situated on the shore. Detectors arranged in this way are covered by a certain layer of radioactive sediment whose activity is proportional to its mass. Before the labelled sediments are removed, their initial activity is measured, and then, as the covering is removed, measurements are made of the gradual decrease in activity corresponding to loss of the surface layer of the bottom deposit area under investigation, expressed in g/cm 2 . The tracers used in the investigations discussed were natural ones such as sea with 31 Si and artificial ones such as activated fragments of sodium glass (with a 6.5% admixture of Fe 2 O 3 ) with 24 Na . The proportional dependence of activity on mass has been confirmed for both tracers; this is an essential point for a tracer intended for quantitative measurements. This proportionality is very well maintained if a sample of highly active sediment is introduced into a large mass of inactive sediments (10 -2 - 10 -3 ). The concluding section describes the advantages of this method as a possible way of using radioisotopes with a short half-life and a low total activity of the order of a few millicuries. (author)

  17. Chemical and Isotopic Tracers of Groundwater Sustainability: an Overview of New Science Directions

    Science.gov (United States)

    Bullen, T.

    2002-12-01

    Groundwater sustainability is an emerging concept that is rapidly gaining attention from both scientists and water resource managers, particularly with regard to contamination and degradation of water quality in strategic aquifers. The sustainability of a groundwater resource is a complex function of its susceptibility to factors such as intrusion of poor-quality water from diverse sources, lack of sufficient recharge and reorganization of groundwater flowpaths in response to excessive abstraction. In theory the critical limit occurs when degradation becomes irreversible, such that remediative efforts may be fruitless on a reasonable human time scale. Chemical and isotopic tracers are proving to be especially useful tools for assessment of groundwater sustainability issues such as characterization of recharge, identification of potential sources, pathways and impacts of contaminants and prediction of how hydrology will change in response to excessive abstraction. A variety of relatively cost-efficient tracers are now available with which to assess the susceptibility of groundwater reserves to contamination from both natural and anthropogenic sources, and may provide valuable monitoring and regulatory tools for water resource managers. In this overview, the results of several ongoing groundwater studies by the U.S. Geological Survey will be discussed from the perspective of implications for new science directions for groundwater sustainability research that can benefit water policy development. A fundamental concept is that chemical and isotopic tracers used individually often provide ambiguous information, and are most effective when used in a rigorous "multi-tracer" context that considers the complex linkages between the hydrology, geology and biology of groundwater systems.

  18. netherland hydrological modeling instrument

    Science.gov (United States)

    Hoogewoud, J. C.; de Lange, W. J.; Veldhuizen, A.; Prinsen, G.

    2012-04-01

    Netherlands Hydrological Modeling Instrument A decision support system for water basin management. J.C. Hoogewoud , W.J. de Lange ,A. Veldhuizen , G. Prinsen , The Netherlands Hydrological modeling Instrument (NHI) is the center point of a framework of models, to coherently model the hydrological system and the multitude of functions it supports. Dutch hydrological institutes Deltares, Alterra, Netherlands Environmental Assessment Agency, RWS Waterdienst, STOWA and Vewin are cooperating in enhancing the NHI for adequate decision support. The instrument is used by three different ministries involved in national water policy matters, for instance the WFD, drought management, manure policy and climate change issues. The basis of the modeling instrument is a state-of-the-art on-line coupling of the groundwater system (MODFLOW), the unsaturated zone (metaSWAP) and the surface water system (MOZART-DM). It brings together hydro(geo)logical processes from the column to the basin scale, ranging from 250x250m plots to the river Rhine and includes salt water flow. The NHI is validated with an eight year run (1998-2006) with dry and wet periods. For this run different parts of the hydrology have been compared with measurements. For instance, water demands in dry periods (e.g. for irrigation), discharges at outlets, groundwater levels and evaporation. A validation alone is not enough to get support from stakeholders. Involvement from stakeholders in the modeling process is needed. There fore to gain sufficient support and trust in the instrument on different (policy) levels a couple of actions have been taken: 1. a transparent evaluation of modeling-results has been set up 2. an extensive program is running to cooperate with regional waterboards and suppliers of drinking water in improving the NHI 3. sharing (hydrological) data via newly setup Modeling Database for local and national models 4. Enhancing the NHI with "local" information. The NHI is and has been used for many

  19. Investigation of hydrological drought using Cumulative Standardized ...

    Indian Academy of Sciences (India)

    The objective of the present paper is to study the precipitation regime of the Damascus (Mazzeh) ... opposite of crisis management, where a proactive approach is taken ...... A case study of Figeh and Al-sin Springs; Environ. Earth. Sci. 63 1–10.

  20. Results of Detailed Hydrologic Characterization Tests - Fiscal Year 2000

    International Nuclear Information System (INIS)

    Spane, Frank A; Thorne, Paul D; Newcomer, Darrell R

    2001-01-01

    This report provides the results of detailed hydrologic characterization tests conducted within eleven Hanford Site wells during fiscal year 2000. Detailed characterization tests performed included groundwater-flow characterization; barometric response evaluation; slug tests; single-well tracer tests; constant-rate pumping tests; and in-well, vertical flow tests. Hydraulic property estimates obtained from the detailed hydrologic tests include transmissivity; hydraulic conductivity; specific yield; effective porosity; in-well, lateral flow velocity; aquifer-flow velocity; vertical distribution of hydraulic conductivity (within the well-screen section); and in-well, vertical flow velocity. In addition, local groundwater-flow characteristics (i.e., hydraulic gradient and flow direction) were determined for four sites where detailed well testing was performed

  1. Responses of diatom communities to hydrological processes during rainfall events

    Science.gov (United States)

    Wu, Naicheng; Faber, Claas; Ulrich, Uta; Fohrer, Nicola

    2015-04-01

    The importance of diatoms as a tracer of hydrological processes has been recently recognized (Pfister et al. 2009, Pfister et al. 2011, Tauro et al. 2013). However, diatom variations in a short-term scale (e.g., sub-daily) during rainfall events have not been well documented yet. In this study, rainfall event-based diatom samples were taken at the outlet of the Kielstau catchment (50 km2), a lowland catchment in northern Germany. A total of nine rainfall events were caught from May 2013 to April 2014. Non-metric multidimensional scaling (NMDS) revealed that diatom communities of different events were well separated along NMDS axis I and II, indicating a remarkable temporal variation. By correlating water level (a proxy of discharge) and different diatom indices, close relationships were found. For example, species richness, biovolume (μm3), Shannon diversity and moisture index01 (%, classified according to van Dam et al. 1994) were positively related with water level at the beginning phase of the rainfall (i.e. increasing limb of discharge peak). However, in contrast, during the recession limb of the discharge peak, diatom indices showed distinct responses to water level declines in different rainfall events. These preliminary results indicate that diatom indices are highly related to hydrological processes. The next steps will include finding out the possible mechanisms of the above phenomena, and exploring the contributions of abiotic variables (e.g., hydrologic indices, nutrients) to diatom community patterns. Based on this and ongoing studies (Wu et al. unpublished data), we will incorporate diatom data into End Member Mixing Analysis (EMMA) and select the tracer set that is best suited for separation of different runoff components in our study catchment. Keywords: Diatoms, Rainfall event, Non-metric multidimensional scaling, Hydrological process, Indices References: Pfister L, McDonnell JJ, Wrede S, Hlúbiková D, Matgen P, Fenicia F, Ector L, Hoffmann L

  2. Improving Marine Ecosystem Models with Biochemical Tracers

    Science.gov (United States)

    Pethybridge, Heidi R.; Choy, C. Anela; Polovina, Jeffrey J.; Fulton, Elizabeth A.

    2018-01-01

    Empirical data on food web dynamics and predator-prey interactions underpin ecosystem models, which are increasingly used to support strategic management of marine resources. These data have traditionally derived from stomach content analysis, but new and complementary forms of ecological data are increasingly available from biochemical tracer techniques. Extensive opportunities exist to improve the empirical robustness of ecosystem models through the incorporation of biochemical tracer data and derived indices, an area that is rapidly expanding because of advances in analytical developments and sophisticated statistical techniques. Here, we explore the trophic information required by ecosystem model frameworks (species, individual, and size based) and match them to the most commonly used biochemical tracers (bulk tissue and compound-specific stable isotopes, fatty acids, and trace elements). Key quantitative parameters derived from biochemical tracers include estimates of diet composition, niche width, and trophic position. Biochemical tracers also provide powerful insight into the spatial and temporal variability of food web structure and the characterization of dominant basal and microbial food web groups. A major challenge in incorporating biochemical tracer data into ecosystem models is scale and data type mismatches, which can be overcome with greater knowledge exchange and numerical approaches that transform, integrate, and visualize data.

  3. Tracer monitoring of enhanced oil recovery projects

    Directory of Open Access Journals (Sweden)

    Kleven R.

    2013-05-01

    Full Text Available In enhanced oil recovery (EOR, chemicals are injected into the oil reservoir, either to increase macroscopic sweep efficiency, or to reduce remaining oil saturation in swept zones. Tracers can be used to identify reservoirs that are specifically suited for EOR operations. Injection of a selection of partitioning tracers, combined with frequent sample analysis of produced fluids, provides information suited for estimation of residual oil saturation. Tracers can also be used to evaluate and optimize the application of EOR chemicals in the reservoir. Suitable tracers will follow the EOR chemicals and assist in evaluation of retention, degradation or trapping. In addition to field applications, tracers also have a large potential as a tool to perform mechanistic studies of EOR chemicals in laboratory experiments. By labelling EOR chemicals with radioactive isotopes of elements such as H, C and S, detailed studies of transport mechanisms can be carried out. Co-injection of labelled compounds in dynamic flooding experiments in porous media will give information about retention or separation of the unique compounds constituting the chemical formulation. Separation of such compounds may be detrimental to obtaining the EOR effect expected. The paper gives new information of specific methods, and discusses current status for use of tracers in EOR operations.

  4. Curricula and Syllabi in Hydrology.

    Science.gov (United States)

    United Nations Educational, Scientific, and Cultural Organization, Paris (France).

    This collection of papers is intended to provide a means for the exchange of information on hydrological techniques and for the coordination of research and data collection. The objectives and trends in hydrological education are presented. The International Hydrological Decade (IHD) Working Group on Education recommends a series of topics that…

  5. Application of artificial radioisotopes in hydrological studies

    International Nuclear Information System (INIS)

    Jacob, Noble; Shivanna, K.

    2009-01-01

    In this article, various applications of the artificial radioisotopes in surface water and groundwater investigations are briefly reviewed with a few recent case studies. They are found to be extremely useful in understanding the hydrological processes and obtaining pertinent parameters such as dilution factors, dispersion coefficients, rate of sediment transport in surface waters and recharge rate, velocity and flow direction in groundwater systems. (author)

  6. Data volume of atmospheric tracer studies at Lucas Heights, NSW, Australia -1996-1997

    International Nuclear Information System (INIS)

    Clark, G.H.; Stone, D.J.M.; Pascoe, J.H.

    2000-01-01

    A perfluorocarbon atmospheric tracer system has been used to investigate atmospheric dispersion processes in the region surrounding the Lucas Heights Science and Technology Centre. Tracers have been released from two locations: a laboratory vent near the ridge of the Woronora river valley and from the HIFAR research reactor ventilation system. Most studies have been conducted during the early to late morning periods when valley influences might be expected on dispersion of the tracer plume. This report summarises the meteorological and tracer air concentration data and makes comparisons with estimates from a simple gaussian dispersion model. It is intended that the data will also be used for evaluation of more elaborate wind field and atmospheric models

  7. Case study: evaluation of the performance of water treatment units by the use of tracer techniques

    International Nuclear Information System (INIS)

    Sebastian, C.; Maghella, G.; Mamani, E.

    2000-12-01

    Very often, water treatment systems do not reach the expected performance due to disturbances of hydraulic order, which cause malfunctioning in the flow through such systems. Tracer techniques have proved to be very useful to obtain information on the system or a part of it, by means of observation of the released tracer or observation of the released tracer during its progress into the system or at the output of the same. This paper is a report of the behavior of a set of both sand settlement unit and hydraulic flocculators in a potable water plant, through the analysis of radiotracers response curves or residence time distribution curves. The tracers released into the system consists in an aqueous solution of Iodine-131 with very low activity, in order to get a dynamic behave similar to the one of the fluid under investigation

  8. Tracer techniques for urine volume determination and urine collection and sampling back-up system

    Science.gov (United States)

    Ramirez, R. V.

    1971-01-01

    The feasibility, functionality, and overall accuracy of the use of lithium were investigated as a chemical tracer in urine for providing a means of indirect determination of total urine volume by the atomic absorption spectrophotometry method. Experiments were conducted to investigate the parameters of instrumentation, tracer concentration, mixing times, and methods for incorporating the tracer material in the urine collection bag, and to refine and optimize the urine tracer technique to comply with the Skylab scheme and operational parameters of + or - 2% of volume error and + or - 1% accuracy of amount of tracer added to each container. In addition, a back-up method for urine collection and sampling system was developed and evaluated. This back-up method incorporates the tracer technique for volume determination in event of failure of the primary urine collection and preservation system. One chemical preservative was selected and evaluated as a contingency chemical preservative for the storage of urine in event of failure of the urine cooling system.

  9. Doublet tracer tests to determine the contaminant flushing properties of a municipal solid waste landfill.

    Science.gov (United States)

    Woodman, N D; Rees-White, T C; Beaven, R P; Stringfellow, A M; Barker, J A

    2017-08-01

    This paper describes a programme of research investigating horizontal fluid flow and solute transport through saturated municipal solid waste (MSW) landfill. The purpose is to inform engineering strategies for future contaminant flushing. Solute transport between injection/abstraction well pairs (doublets) is investigated using three tracers over five separate tests at well separations between 5m and 20m. Two inorganic tracers (lithium and bromide) were used, plus the fluorescent dye tracer, rhodamine-WT. There was no evidence for persistent preferential horizons or pathways at the inter-well scale. The time for tracer movement to the abstraction wells varied with well spacing as predicted for a homogeneous isotropic continuum. The time for tracer movement to remote observation wells was also as expected. Mobile porosity was estimated as ~0.02 (~4% of total porosity). Good fits to the tracer breakthrough data were achieved using a dual-porosity model, with immobile regions characterised by block diffusion timescales in the range of about one to ten years. This implies that diffusional exchanges are likely to be very significant for engineering of whole-site contaminant flushing and possibly rate-limiting. Copyright © 2017. Published by Elsevier B.V.

  10. Hydrology and Conservation Ecology

    Science.gov (United States)

    Narayanan, M.

    2006-12-01

    Responses to change in the behavior of ecological systems are largely governed by interactions at different levels. Research is essential and is to be necessarily designed to gain insights into various interactions at the community level. Sustainable resource management is only possible if conservation of biodiversity can be accomplished by properly using the knowledge discovered. It is well known that the United States Department of Agriculture provides technical information, resources, and data necessary to assist the researchers in addressing their conservation needs. Conservation aims to protect, preserve and conserve the earth's natural resources. These include, but not limited to the conservation of soil, water, minerals, air, plants and all living beings. The United States Department of Agriculture also encourages farmers and ranchers to voluntarily address threats to soil and water. Protection of wetlands and wildlife habitat has been on the radar screen of conservation experts for a very long time. The main objective has always been to help farmers and landowners conform and comply with federal and state environmental laws. During the implementation phase, farmers should be encouraged to make beneficial, cost-effective changes to methods of irrigation systems. In some cases, the hydrologic regime of the project area can be thought of as principally an issue of river flow regimes for floodplain forests. In this presentation, the author tries to focus on the impact of hydrology and conservation ecology on global warming. He also discusses the impact of hydrology and conservation ecology global air concerns such as greenhouse gas concentrations in the atmosphere. References: Chow, V. T, D. R. Maidment, and L. W. Mays. 1988. Applied Hydrology. McGraw-Hill, Inc. U.S. Soil Conservation Service. Technical Release 55: Urban Hydrology for Small Watersheds. USDA (U.S. Department of Agriculture). June 1986. Lehner, B. and P. Döll (2004). Development and validation

  11. [Socio-hydrology: A review].

    Science.gov (United States)

    Ding, Jing-yi; Zhao, Wen-wu; Fang, Xue-ning

    2015-04-01

    Socio-hydrology is an interdiscipline of hydrology, nature, society and humanity. It mainly explores the two-way feedbacks of coupled human-water system and its dynamic mechanism of co-evolution, and makes efforts to solve the issues that human faces today such as sustainable utilization of water resources. Starting from the background, formation process, and fundamental concept of socio-hydrology, this paper summarized the features of socio-hydrology. The main research content of socio-hydrology was reduced to three aspects: The tradeoff in coupled human-water system, interests in water resources management and virtual water research in coupled human-water system. And its differences as well as relations with traditional hydrology, eco-hydrology and hydro-sociology were dwelled on. Finally, with hope to promote the development of socio-hydrology researches in China, the paper made prospects for the development of the subject from following aspects: Completing academic content and deepening quantitative research, focusing on scale studies of socio-hydrology, fusing socio-hydrology and eco-hydrology.

  12. Hydrological performance assessment on siting the high level radioactive waste repository

    International Nuclear Information System (INIS)

    Guo Yonghai; Liu Shufen; Wang Ju; Wang Zhiming; Su Rui; Lv Chuanhe; Zong Zihua

    2007-01-01

    Based on the research experiences in China and some developed countries in the world, the processes and methods on hydrological performance assessment for the siting of high radioactive repository are discussed in this paper. The methods and contents of hydrological performance assessment are discussed respectively for region, area and site hydrological investigation stages. At the same time, the hydrological performance assessment of the potential site for high level radioactive waste in China is introduced. (authors)

  13. Long residence times - bad tracer tests?

    Science.gov (United States)

    Ghergut, Julia; Behrens, Horst; Sauter, Martin

    2015-04-01

    Tracer tests conducted at geothermal well doublets or triplets in the Upper Rhine Rift Valley [1] all face, with very few exceptions so far, one common issue: lack of conclusive tracer test results, or tracer signals still undetectable for longer than one or two years after tracer injection. While the reasons for this surely differ from site to site (Riehen, Landau, Insheim, Bruchsal, ...), its effects on how the usefulness of tracer tests is perceived by the non-tracer community are pretty much the same. The 'poor-signal' frustration keeps nourishing two major 'alternative' endeavours : (I) design and execute tracer tests in single-well injection-withdrawal (push-pull), 'instead of' inter-well flow-path tracing configurations; (II) use 'novel' tracer substances instead of the 'old' ones which have 'obviously failed'. Frustration experienced with most inter-well tracer tests in the Upper Rhine Rift Valley has also made them be regarded as 'maybe useful for EGS' ('enhanced', or 'engineered' geothermal systems, whose fluid RTD typically include a major share of values below one year), but 'no longer worthwhile a follow-up sampling' in natural, large-scale hydrothermal reservoirs. We illustrate some of these arguments with the ongoing Bruchsal case [2]. The inter-well tracer test conducted at Bruchsal was (and still is!) aimed at assessing inter-well connectivity, fluid residence times, and characterizing the reservoir structure [3]. Fluid samples taken at the geothermal production well after reaching a fluid turnover of about 700,000 m3 showed tracer concentrations in the range of 10-8 Minj per m3, in the liquid phase of each sample (Minj being the total quantity of tracer injected as a short pulse at the geothermal re-injection well). Tracer signals might actually be higher, owing to tracer amounts co-precipitated and/or adsorbed onto the solid phase whose accumulation in the samples was unavoidable (due to pressure relief and degassing during the very sampling

  14. Quantifying postfire aeolian sediment transport using rare earth element tracers

    Science.gov (United States)

    Dukes, David; Gonzales, Howell B.; Ravi, Sujith; Grandstaff, David E.; Van Pelt, R. Scott; Li, Junran; Wang, Guan; Sankey, Joel B.

    2018-01-01

    Grasslands, which provide fundamental ecosystem services in many arid and semiarid regions of the world, are undergoing rapid increases in fire activity and are highly susceptible to postfire-accelerated soil erosion by wind. A quantitative assessment of physical processes that integrates fire-wind erosion feedbacks is therefore needed relative to vegetation change, soil biogeochemical cycling, air quality, and landscape evolution. We investigated the applicability of a novel tracer technique—the use of multiple rare earth elements (REE)—to quantify soil transport by wind and to identify sources and sinks of wind-blown sediments in both burned and unburned shrub-grass transition zone in the Chihuahuan Desert, NM, USA. Results indicate that the horizontal mass flux of wind-borne sediment increased approximately threefold following the fire. The REE tracer analysis of wind-borne sediments shows that the source of the horizontal mass flux in the unburned site was derived from bare microsites (88.5%), while in the burned site it was primarily sourced from shrub (42.3%) and bare (39.1%) microsites. Vegetated microsites which were predominantly sinks of aeolian sediments in the unburned areas became sediment sources following the fire. The burned areas showed a spatial homogenization of sediment tracers, highlighting a potential negative feedback on landscape heterogeneity induced by shrub encroachment into grasslands. Though fires are known to increase aeolian sediment transport, accompanying changes in the sources and sinks of wind-borne sediments may influence biogeochemical cycling and land degradation dynamics. Furthermore, our experiment demonstrated that REEs can be used as reliable tracers for field-scale aeolian studies.

  15. Heat as a tracer to determine streambed water exchanges

    Science.gov (United States)

    Constantz, J.

    2010-01-01

    This work reviews the use of heat as a tracer of shallow groundwater movement and describes current temperature-based approaches for estimating streambed water exchanges. Four common hydrologic conditions in stream channels are graphically depicted with the expected underlying streambed thermal responses, and techniques are discussed for installing and monitoring temperature and stage equipment for a range of hydrological environments. These techniques are divided into direct-measurement techniques in streams and streambeds, groundwater techniques relying on traditional observation wells, and remote sensing and other large-scale advanced temperatureacquisition techniques. A review of relevant literature suggests researchers often graphically visualize temperature data to enhance conceptual models of heat and water flow in the near-stream environment and to determine site-specific approaches of data analysis. Common visualizations of stream and streambed temperature patterns include thermographs, temperature envelopes, and one-, two-, and three-dimensional temperature contour plots. Heat and water transport governing equations are presented for the case of transport in streambeds, followed by methods of streambed data analysis, including simple heat-pulse arrival time and heat-loss procedures, analytical and time series solutions, and heat and water transport simulation models. A series of applications of these methods are presented for a variety of stream settings ranging from arid to continental climates. Progressive successes to quantify both streambed fluxes and the spatial extent of streambeds indicate heat-tracing tools help define the streambed as a spatially distinct field (analogous to soil science), rather than simply the lower boundary in stream research or an amorphous zone beneath the stream channel.

  16. AGU hydrology publication outlets

    Science.gov (United States)

    Freeze, R. Allan

    In recent months I have been approached on several occasions by members of the hydrology community who asked me which of the various AGU journals and publishing outlets would be most suitable for a particular paper or article that they have prepared.Water Resources Research (WRR) is the primary AGU outlet for research papers in hydrology. It is an interdisciplinary journal that integrates research in the social and natural sciences of water. The editors of WRR invite original contributions in the physical, chemical and biological sciences and also in the social and policy sciences, including economics, systems analysis, sociology, and law. The editor for the physical sciences side of the journal is Donald R. Nielson, LAWR Veihmeyer Hall, University of California Davis, Davis, CA 95616. The editor for the policy sciences side of the journal is Ronald G. Cummings, Department of Economics, University of New Mexico, Albuquerque, NM 87131

  17. Deforestation Hydrological Effects

    International Nuclear Information System (INIS)

    Poveda J, G.; Mesa S, O.J.

    1995-01-01

    Deforestation causes strong disturbances in ecosystems and in hydrological cycle, increasing or reducing wealths. Particularly in this work, effects of feed back between interface processes land - atmosphere are discussed and is demonstrated that losses of water by evaporation-transpiration are thoroughly indispensable to maintain the balance of hydrological regime. It's concluded that as a rule the effect of deforestation is to reduce wealth middle and to increase extreme wealth with consequent stronger and more frequent droughts or flood effects. Other deforestation effects as increase in superficial temperature, increase in atmospherical pressure, decrease in soil moisture, decrease in evaporation-transpiration, decrease of soil ruggedness, decrease of thickness of atmospherical cap limit, decrease of clouds, decrease of rain in both medium and long term and the consequent decrease of rivers wealth middle are explained. Of other side, the basins with greater deforestation affectation in Colombia are indicated. Finally, it's demonstrated the need of implementing reforestation programs

  18. Virtual hydrology observatory: an immersive visualization of hydrology modeling

    Science.gov (United States)

    Su, Simon; Cruz-Neira, Carolina; Habib, Emad; Gerndt, Andreas

    2009-02-01

    The Virtual Hydrology Observatory will provide students with the ability to observe the integrated hydrology simulation with an instructional interface by using a desktop based or immersive virtual reality setup. It is the goal of the virtual hydrology observatory application to facilitate the introduction of field experience and observational skills into hydrology courses through innovative virtual techniques that mimic activities during actual field visits. The simulation part of the application is developed from the integrated atmospheric forecast model: Weather Research and Forecasting (WRF), and the hydrology model: Gridded Surface/Subsurface Hydrologic Analysis (GSSHA). Both the output from WRF and GSSHA models are then used to generate the final visualization components of the Virtual Hydrology Observatory. The various visualization data processing techniques provided by VTK are 2D Delaunay triangulation and data optimization. Once all the visualization components are generated, they are integrated into the simulation data using VRFlowVis and VR Juggler software toolkit. VR Juggler is used primarily to provide the Virtual Hydrology Observatory application with fully immersive and real time 3D interaction experience; while VRFlowVis provides the integration framework for the hydrologic simulation data, graphical objects and user interaction. A six-sided CAVETM like system is used to run the Virtual Hydrology Observatory to provide the students with a fully immersive experience.

  19. Thermal-hydrological models

    Energy Technology Data Exchange (ETDEWEB)

    Buscheck, T., LLNL

    1998-04-29

    This chapter describes the physical processes and natural and engineered system conditions that affect thermal-hydrological (T-H) behavior in the unsaturated zone (UZ) at Yucca Mountain and how these effects are represented in mathematical and numerical models that are used to predict T-H conditions in the near field, altered zone, and engineered barrier system (EBS), and on waste package (WP) surfaces.

  20. TRACER - TRACING AND CONTROL OF ENGINEERING REQUIREMENTS

    Science.gov (United States)

    Turner, P. R.

    1994-01-01

    TRACER (Tracing and Control of Engineering Requirements) is a database/word processing system created to document and maintain the order of both requirements and descriptive material associated with an engineering project. A set of hierarchical documents are normally generated for a project whereby the requirements of the higher level documents levy requirements on the same level or lower level documents. Traditionally, the requirements are handled almost entirely by manual paper methods. The problem with a typical paper system, however, is that requirements written and changed continuously in different areas lead to misunderstandings and noncompliance. The purpose of TRACER is to automate the capture, tracing, reviewing, and managing of requirements for an engineering project. The engineering project still requires communications, negotiations, interactions, and iterations among people and organizations, but TRACER promotes succinct and precise identification and treatment of real requirements separate from the descriptive prose in a document. TRACER permits the documentation of an engineering project's requirements and progress in a logical, controllable, traceable manner. TRACER's attributes include the presentation of current requirements and status from any linked computer terminal and the ability to differentiate headers and descriptive material from the requirements. Related requirements can be linked and traced. The program also enables portions of documents to be printed, individual approval and release of requirements, and the tracing of requirements down into the equipment specification. Requirement "links" can be made "pending" and invisible to others until the pending link is made "binding". Individuals affected by linked requirements can be notified of significant changes with acknowledgement of the changes required. An unlimited number of documents can be created for a project and an ASCII import feature permits existing documents to be incorporated