WorldWideScience

Sample records for toxic protease produced

  1. Diversity of both the cultivable protease-producing bacteria and bacterial extracellular proteases in the coastal sediments of King George Island, Antarctica.

    Directory of Open Access Journals (Sweden)

    Ming-Yang Zhou

    Full Text Available Protease-producing bacteria play a vital role in degrading sedimentary organic nitrogen. However, the diversity of these bacteria and their extracellular proteases in most regions remain unknown. In this paper, the diversity of the cultivable protease-producing bacteria and of bacterial extracellular proteases in the sediments of Maxwell Bay, King George Island, Antarctica was investigated. The cultivable protease-producing bacteria reached 10(5 cells/g in all 8 sediment samples. The cultivated protease-producing bacteria were mainly affiliated with the phyla Actinobacteria, Firmicutes, Bacteroidetes, and Proteobacteria, and the predominant genera were Bacillus (22.9%, Flavobacterium (21.0% and Lacinutrix (16.2%. Among these strains, Pseudoalteromonas and Flavobacteria showed relatively high protease production. Inhibitor analysis showed that nearly all the extracellular proteases from the bacteria were serine proteases or metalloproteases. These results begin to address the diversity of protease-producing bacteria and bacterial extracellular proteases in the sediments of the Antarctic Sea.

  2. Intracellular alkaline proteases produced by thermoacidophiles: detection of protease heterogeneity by gelatin zymography and polymerase chain reaction (PCR)

    Energy Technology Data Exchange (ETDEWEB)

    Kocab, S.; Erdem, B. [Middle East Technical University, Ankara (Turkey). Dept. of Biological Sciences

    2002-08-01

    In this study 24 thermoacidophilic archeal and bacterial strains isolated from hot-springs and hot-soils were screened for their ability to produce intracellular alkaline proteases. The protease activities of the strains, based on azocasein hydrolysis, showed a variation from 0.6 to 5.1 U. The cell extracts of three most potent producers were further examined and it was found that their proteases exhibited maximum activity at 60-70{sup o}C and showed a pH optimum over a range of pH 7.0-8.5. Gelatin zymography revealed that two of the selected archeal strains produced multiple active SDS-resistant proteases. On the other hand, PCR amplification of alkaline serine protease gene sequences of total DNA from all isolates yielded four distinct amplification fragments of 650, 450, 400 and 300 bp, which might have been derived from different serine protease genes. (author)

  3. Extracellular protease produced by Bacillus subtilis isolated from ...

    African Journals Online (AJOL)

    In a study to evaluate the microbiological safety of some paracetamol oral solutions sold in some Nigerian drug stores, 40.0% of the samples examined was contaminated with protease-producing Bacillus subtilis. The production of extracellular protease was induced by casein in the minimal medium and was found to be the ...

  4. Isolation of protease producing novel Bacillus cereus and detection ...

    African Journals Online (AJOL)

    user

    2011-02-14

    Feb 14, 2011 ... The highest protease activity was determined at 30°C temperature and 6.4 pH conditions and after the 18th hour, it decreased evidently. Key words: Protease, production, optimization, Bacillus sp. INTRODUCTION. Enzymes have been produced in large industrial scale for several decades (Falch, 1991).

  5. Bacillus amyloliquefaciens SUBSP. plantarum PROBIOTIC STRAINS AS PROTEASE PRODUCERS

    Directory of Open Access Journals (Sweden)

    E. V. Маtseliukh

    2015-04-01

    Full Text Available Proteases from probiotic strains of the genus Bacillus, just like the antibiotics, bacteriocins and other hydrolytic enzymes, are one of the main factors that determine their biological activity. The aim of this work was to study the synthesis and biochemical properties of proteases from two strains Bacillus amyloliquefaciens subsp. plantarum UCM B-5139 and UCM B-5140 that included in the probiotic Endosporin. The cultivation of strains was carried out in flasks under rotating for two days. The influence of physico-chemical parameters of the reaction medium on proteolytic activity was studied on partially purified protease preparations. Lytic activity was determined by turbidimetric method. On the second day of cultivation B. amyloliquefaciens subsp. plantarum UCM В-5139 and UCM В-5140 synthesized the metal-dependent peptidase and serine protease, respectively. The optimum conditions of their action were the following: temperature 37–40 °C and pH 6.5–7.0. Isolated proteases are able to lyse the living cells of Staphylococcus aureus and Candida albicans. Thus we demonstrated that B. amyloliquefaciens subsp. plantarum UCM B-5140 and UCM B-5139, included in the probiotic veterinary preparation Endosporin, produced proteolytic enzymes that hydrolyze the native insoluble proteins (elastin, fibrin and collagen. These enzymes belong to the group of neutral metal-dependent and serine proteases. They are active under physiological conditions against gram-positive bacteria and yeasts. The application of these proteases in biotechnology is considered.

  6. Purification of a toxic metalloprotease produced by the pathogenic Photobacterium damselae subsp. piscicida isolated from cobia (Rachycentron canadum).

    Science.gov (United States)

    Liu, Ping-Chung; Chuang, Wen-Hsiao; Lee, Kuo-Kau

    2011-01-01

    The aim of the present study was to purify and characterize a toxic protease secreted by the pathogenic Photobacterium damselae subsp. piscicida strain CP1 originally isolated from diseased cobia (Rachycentron canadum). The toxin isolated by anion exchange chromatography, was a metalloprotease, inhibited by L-cysteine, ethylenediaminetetraacetic acid (EDTA), ethylene glycol-bis(beta-aminoethyl ether)N,N,N',N'-tetraacetic acid (EGTA), 1,10-phenanthroline, N-tosyl-L-phenylalanine-chloromethyl ketone (TPCK), and N-alpha-p-tosyl-L-lysine-chloromethyl ketone (TLCK), and showed maximal activity at pH 6.0-8.0 and an apparent molecular mass of about 34.3 kDa. The toxin was also completely inhibited by HgCl2, and partially by sodium dodecyl sulfate (SDS) and CuCl2. The extracellular products and the partially purified protease were lethal to cobia with LD50 values of 1.26 and 6.8 microg protein/g body weight, respectively. The addition of EDTA completely inhibited the lethal toxicity of the purified protease, indicating that this metalloprotease was a lethal toxin produced by the bacterium.

  7. Occurrence of toxicity among protease, amylase, and color mutants of a nontoxic soy sauce koji mold

    International Nuclear Information System (INIS)

    Kalayanamitr, A.; Bhumiratana, A.; Flegel, T.W.; Glinsukon, T.; Shinmyo, A.

    1987-01-01

    A soy sauce koji mold, Aspergillus flavus var. columnaris Raper and Fennel (ATCC 44310), was treated with UV irradiation to obtain mutant strains possessing high protease activities, high amylase activities, and light-colored conidia. Selected mutant strains were tested for toxicity, and some were found acutely toxic to weanling rats, although all were negative for aflatoxin production

  8. Study on the relationship of protease production and luminescence in Vibrio harveyi.

    Science.gov (United States)

    Nakayama, T; Nomura, N; Matsumura, M

    2006-07-01

    To demonstrate that Vibrio harveyi produces various types of toxins and how the production of those toxins is related with luminescence. Luminescence and toxicity of eight V. harveyi were evaluated. We demonstrated that all V. harveyi emitting luminescence were isolated from marine organisms and also showed that they were highly pathogenic when compared with culture collection V. harveyi based on cytotoxic assay test. On the contrary, V. harveyi isolated from shrimp farm showed no luminescence but showed high pathogenicity based on toxicity test. The effect of protease inhibitors on pathogenicity and luminescence was also investigated. We demonstrated that light emission of pathogenic V. harveyi remarkably decreased after addition of protease inhibitor. Furthermore, extracellular proteins from cell-free culture supernatant of luminescent and nonluminescent V. harveyi were compared using SDS-PAGE analysis. Results showed that there were differences in molecular weight and amount of proteins. Vibrio harveyi parasiting marine organisms have both luminescence and pathogenicity. Based on this study, luminescence and protease toxin activity in V. harveyi are related. Moreover, this paper clarified that V. harveyi produces various types of toxins. The current study demonstrated that V. harveyi produces two kinds of toxins, haemolysin and protease toxin. It may be clear roots of V. harveyi toxin.

  9. Isolation of Lactic Acid Bacteria That Produce Protease and Bacteriocin-Like Substance From Mud Crab (Scylla sp. Digestive Tract (Isolasi Bakteri Asam Laktat yang Menghasilkan Protease dan Senyawa Bacteriocin-Like dari Saluran Pencernaan Kepiting

    Directory of Open Access Journals (Sweden)

    Heru Pramono

    2015-03-01

    Kata kunci: Bakteri Asam Laktat, Bakteriosin-like substance, Protease, Scylla  sp. Digestive tract is complex environment consist of large amount of bacteria’s species. Fish intestine bacteria consist of aerobic or facultative anaerob bacteria which can produce antibacterial and enzym. The objectives of this research were to isolated lactic acid bacteria that produce bacteriocin-like and protease from mud crab digestive tract. Isolation and characterization of isolates were conducted employing media MRS.  Neutralized cell free supernatant of isolates were tested using disc diffusion agar of against pathogenic and spoilage bacteria to indicate bacteriocin-like-producing lactic acid bacteria. Protease-producing isolate was tested using disc diffusion method in casein agar. Among a hundred isolates, 96 isolates were showed clear zone in MRS+CaCO3,, catalase negative, and Gram positive bacteria. Thirty four isolates produced protease and only four isolates (i.e. IKP29, IKP30, IKP52, and IKP94 showed strong inhibition against pathogenic and spoilage bacteria. There were three patterns of inhibition among three isolates against Bacillus subtilis, Staphylococcus aureus, Eschericia coli, and Salmonella sp. All three isolates showed potential uses for produce starter culture for fishery product fermentation purpose. This is the first report of isolation lactic acid bacteria that produced protease and bacteriocin-like from digestive tract of mud crab. Keywords: Lactic acid bacteria, Bacteriocin-like substance, Protease, Scylla  sp.

  10. KAJIAN SIFAT FISIKOKIMIA DAN ORGANOLEPTIK HIDROLISAT TEMPE HASIL HIDROLISIS PROTEASE [Study on physicochemical and organoleptic properties of tempeh hydrolysate produced by protease

    Directory of Open Access Journals (Sweden)

    Bambang Herry

    2002-12-01

    Full Text Available Physicochemical and organoleptic properties of tempeh hydrolysate produced by protease were studied. The tempeh hydrolysate had different properties comparing with those of the unhydrolyzed tempeh powder. Hydrolysis of the tempeh protein could lower the antioxidant activity. Accordingly, the TBA value increased significantly when the tempeh was hydrolyzed by protease. This process also promoted Maillard reaction, resulting in a more brown color than that of the unhydrolyzed tempeh powder. Moreover, the tempeh hydrolysate had a better protein solubility, and a higher index of umami taste by organoleptic evaluation.

  11. Some physicochemical properties of acid protease produced during ...

    African Journals Online (AJOL)

    The growth of Aspergillus niger (NRRL 1785) was investigated and monitored over a five-day fermentation period. Acid protease synthesis by this fungus was also investigated during the period. The effect of growth of Aspergillus niger on acid protease synthesis was determined. Some of the physicochemical properties of ...

  12. Characterization of novel extracellular protease produced by marine bacterial isolate from the Indian Ocean

    Directory of Open Access Journals (Sweden)

    Rachana Fulzele

    2011-12-01

    Full Text Available Out of the vast pool of enzymes, proteolytic enzymes from microorganisms are the most widely used in different industries such as detergent, food, peptide production etc. Several marine microorganisms are known to produce proteases with commercially desirable characteristics. We have isolated nine different cultures from marine samples of the Indian Ocean. All of them were i motile ii rod shaped iii non spore forming iv catalase and amylase positive v able to grow in presence of 10 % NaCl. They produced acid from glucose, fructose and maltose and grew optimally at 30 0C temperature and pH 7.0-8.0. None of them could grow above 45 0C and below 15 0C. Only one of them (MBRI 7 exhibited extracellular protease activity on skim milk agar plates. Based on 16S rDNA sequencing, it belonged to the genus Marinobacter (98% sequence similarity, 1201 bp. The cell free extract was used to study effects of temperature and pH on protease activity. The optimum temperature and pH for activity were found to be 40 0C and 7.0 respectively. The crude enzyme was stable at temperature range of 30-80 0C and pH 5.0-9.0. It retained 60 % activity at 80 0C after 4 h and more than 70 % activity at 70 0C after 1 h. D value was found to be 342 minutes and 78 minutes for 40 0C and 80 0C respectively. Interestingly the enzyme remained 50 % active at pH 9.0 after 1 h. Comparison with other proteases from different microbial sources indicated that the neutral protease from the halotolerant marine isolate MBRI 7 is a novel enzyme with high thermostability.

  13. Curcumin derivatives as HIV-1 protease inhibitors

    Energy Technology Data Exchange (ETDEWEB)

    Sui, Z.; Li, J.; Craik, C.S.; Ortiz de Montellano, P.R. [Univ. of California, San Francisco, CA (United States)

    1993-12-31

    Curcumin, a non-toxic natural compound from Curcuma longa, has been found to be an HIV-1 protease inhibitor. Some of its derivatives were synthesized and their inhibitory activity against the HIV-1 protease was tested. Curcumin analogues containing boron enhanced the inhibitory activity. At least of the the synthesized compounds irreversibly inhibits the HIV-1 protease.

  14. The dimer interfaces of protease and extra-protease domains influence the activation of protease and the specificity of GagPol cleavage.

    Science.gov (United States)

    Pettit, Steven C; Gulnik, Sergei; Everitt, Lori; Kaplan, Andrew H

    2003-01-01

    Activation of the human immunodeficiency virus type 1 (HIV-1) protease is an essential step in viral replication. As is the case for all retroviral proteases, enzyme activation requires the formation of protease homodimers. However, little is known about the mechanisms by which retroviral proteases become active within their precursors. Using an in vitro expression system, we have examined the determinants of activation efficiency and the order of cleavage site processing for the protease of HIV-1 within the full-length GagPol precursor. Following activation, initial cleavage occurs between the viral p2 and nucleocapsid proteins. This is followed by cleavage of a novel site located in the transframe domain. Mutational analysis of the dimer interface of the protease produced differential effects on activation and specificity. A subset of mutations produced enhanced cleavage at the amino terminus of the protease, suggesting that, in the wild-type precursor, cleavages that liberate the protease are a relatively late event. Replacement of the proline residue at position 1 of the protease dimer interface resulted in altered cleavage of distal sites and suggests that this residue functions as a cis-directed specificity determinant. In summary, our studies indicate that interactions within the protease dimer interface help determine the order of precursor cleavage and contribute to the formation of extended-protease intermediates. Assembly domains within GagPol outside the protease domain also influence enzyme activation.

  15. Acute toxicity of second generation HIV protease-inhibitors in combination with radiotherapy: a retrospective case series

    International Nuclear Information System (INIS)

    See, Alfred P; Zeng, Jing; Tran, Phuoc T; Lim, Michael

    2011-01-01

    There is little data on the safety of combining radiation therapy and human immunodeficiency virus (HIV) protease inhibitors to treat cancers in HIV-positive patients. We describe acute toxicities observed in a series of HIV-positive patients receiving modern radiation treatments, and compare patients receiving HIV protease inhibitors (PI) with patients not receiving HIV PIs. By reviewing the clinical records beginning January 1, 2009 from the radiation oncology department, we identified 29 HIV-positive patients who received radiation therapy to 34 body sites. Baseline information, treatment regimen, and toxicities were documented by review of medical records: patient age, histology and source of the primary tumor, HIV medication regimen, pre-radiation CD4 count, systemic chemotherapy, radiation therapy dose and fractionation, irradiated body region, toxicities, and duration of follow-up. Patients were grouped according to whether they received concurrent HIV PIs and compared using Pearson's chi-square test. At baseline, the patients in the two groups were similar with the exception of HIV medication regimens, CD4 count and presence of AIDS-defining malignancy. Patients taking concurrent PIs were more likely to be taking other HIV medications (p = 0.001) and have CD4 count >500 (p = 0.006). Patients taking PIs were borderline less likely to have an AIDS-defining malignancy (p = 0.06). After radiation treatment, 100 acute toxicities were observed and were equally common in both groups (64 [median 3 per patient, IQR 1-7] with PIs; 36 [median 3 per patient, IQR 2-3] without PIs). The observed toxicities were also equally severe in the two groups (Grades I, II, III respectively: 30, 30, 4 with PIs; 23, 13, 0 without PIs: p = 0.38). There were two cases that were stopped early, one in each group; these were not attributable to toxicity. In this study of recent radiotherapy in HIV-positive patients taking second generation PIs, no difference in toxicities was

  16. Foot-and-Mouth Disease (FMD) Virus 3C Protease Mutant L127P: Implications for FMD Vaccine Development.

    Science.gov (United States)

    Puckette, Michael; Clark, Benjamin A; Smith, Justin D; Turecek, Traci; Martel, Erica; Gabbert, Lindsay; Pisano, Melia; Hurtle, William; Pacheco, Juan M; Barrera, José; Neilan, John G; Rasmussen, Max

    2017-11-15

    The foot-and-mouth disease virus (FMDV) afflicts livestock in more than 80 countries, limiting food production and global trade. Production of foot-and-mouth disease (FMD) vaccines requires cytosolic expression of the FMDV 3C protease to cleave the P1 polyprotein into mature capsid proteins, but the FMDV 3C protease is toxic to host cells. To identify less-toxic isoforms of the FMDV 3C protease, we screened 3C mutants for increased transgene output in comparison to wild-type 3C using a Gaussia luciferase reporter system. The novel point mutation 3C(L127P) increased yields of recombinant FMDV subunit proteins in mammalian and bacterial cells expressing P1-3C transgenes and retained the ability to process P1 polyproteins from multiple FMDV serotypes. The 3C(L127P) mutant produced crystalline arrays of FMDV-like particles in mammalian and bacterial cells, potentially providing a practical method of rapid, inexpensive FMD vaccine production in bacteria. IMPORTANCE The mutant FMDV 3C protease L127P significantly increased yields of recombinant FMDV subunit antigens and produced virus-like particles in mammalian and bacterial cells. The L127P mutation represents a novel advancement for economical FMD vaccine production. Copyright © 2017 Puckette et al.

  17. Characterization of a protease produced by a Trichoderma harzianum isolate which controls cocoa plant witches' broom disease

    Directory of Open Access Journals (Sweden)

    Felix Carlos

    2002-01-01

    Full Text Available Abstract Background Several Trichoderma strains have been reported to be effective in controlling plant diseases, and the action of fungal hydrolytic enzymes has been considered as the main mechanism involved in the antagonistic process. However, although Trichoderma strains were found to impair development of Crinipellis perniciosa, the causal agent of cocoa plant witches' broom disease, no fungal strain is available for effective control of this disease. We have then undertaken a program of construction of hydrolytic enzyme-overproducing Trichoderma strains aiming improvement of the fungal antagonistic capacity. The protease of an indian Trichoderma isolate showing antagonistic activity against C. perniciosa was purified to homogeneity and characterized for its kinetic properties and action on the phytopathogen cell wall. Results A protease produced by the Trichoderma harzianum isolate 1051 was purified to homogeneity by precipitation with ammonium sulfate followed by hydrophobic chromatography. The molecular mass of this protease as determined by SDS-polyacrylamide gel electrophoresis was about 18.8 kDa. Its N-terminal amino acid sequence shares no homology with any other protease. The purified enzyme substantially affected the cell wall of the phytopathogen C. perniciosa. Western-blotting analysis showed that the enzyme was present in the culture supernatant 24 h after the Trichoderma started to grow in casein-containing liquid medium. Conclusions The capacity of the Trichoderma harzianum protease to hydrolyze the cell wall of C. perniciosa indicates that this enzyme may be actually involved in the antagonistic process between the two fungi. This fact strongly suggest that hydrolytic enzyme over-producing transgenic fungi may show superior biocontrol capacity.

  18. Study on enhancement protease-producing of Bacillus subtilis by combining ribosome engineering and gamma irradiation

    International Nuclear Information System (INIS)

    Tran Bang Diep; Nguyen Thi Thom; Hoang Dang Sang; Nguyen Van Binh; Tran Xuan An; Hoang Phuong Thao; Pham Duy Duong; Tran Minh Quynh; Ta Bich Thuan; Vo Thi Thuong Lan

    2017-01-01

    Bacillus subtilis B5, Bacillus subtilis H12 and Bacillus subtilis VI are high protease-producing bacteria selected from various domestic laboratories. The suspensions in logarithmic growth phase and nutrient agar plates inoculated these bacteria were irradiated at dose ranging 0-3000 Gy under gamma Cobalt-60 source at Hanoi Irradiation Center. In both cases of irradiation treatment, the viability of Bacillus subtilis strains was much affected by gamma radiation and the survival rate of bacteria decreases with the increasing dose. The rate of high protease-producing mutation in three kinds of Bacillus strains seems to be greater at the dose range of 700-1500 Gy, at which the survival cells of bacteria was reduced by 3-4 log unit. In this study, the effect of gamma irradiation at different doses to mutation frequency of antibiotic resistance (rifampicin 0.2 µg/ml and streptomycin 20 µg/ml) of Bacillus subtilis strains is also investigated. The results show that the mutation frequency of antibiotic resistance was improved significantly by radiation treatment. The frequency of rifampicin-resistance reached the highest value at dose of 2000 Gy, 0.93-5.46x10 3 times higher than the frequency of spontaneous mutation. On the other hand, the highest streptomycin mutation frequency was obtained by irradiation at 1000 Gy. After the first screening, 82 potential 0.2 µg/ml rifampicin-resistant and 25 potential 20 µg/ml streptomycin-resistant colonies with higher production of protease than original strain were selected from the irradiated Bacillus subtilis B5 and H12. In the subsequent screening, some mutants having 2-2.5 times higher of protease activity than that of parent strain were obtained by using the culture medium containing incrementally higher antibiotic concentrations. The results of PCR, cloning and sequencing techniques proved that the antibiotic-resistance of Bacillus subtilis due to mutate in rpoB gene involved in these bacteria’s protease synthesis

  19. Optimization and characterization of alkaline protease and carboxymethyl-cellulase produced by Bacillus pumillus grown on Ficus nitida wastes

    Directory of Open Access Journals (Sweden)

    Eman Zakaria Gomaa

    2013-01-01

    Full Text Available The potentiality of 23 bacterial isolates to produce alkaline protease and carboxymethyl-cellulase (CMCase on Ficus nitida wastes was investigated. Bacillus pumillus ATCC7061 was selected as the most potent bacterial strain for the production of both enzymes. It was found that the optimum production of protease and CMCase were recorded at 30 °C, 5% Ficus nitida leaves and incubation period of 72 h. The best nitrogen sources for protease and CMCase production were yeast extract and casein, respectively. Also maximum protease and CMCase production were reported at pH 9 and pH 10, respectively. The enzymes possessed a good stability over a pH range of 8-10, expressed their maximum activities at pH10 and temperature range of 30-50 °C, expressed their maximum activities at 50 °C. Ions of Hg2+, Fe2+ and Ag+ showed a stimulatory effect on protease activity and ions of Fe2+, Mg2+, Ca2+, Cu2+ and Ag+ caused enhancement of CMCase activity. The enzymes were stable not only towards the nonionic surfactants like Triton X-100 and Tween 80 but also the strong anionic surfactant, SDS. Moreover, the enzymes were not significantly inhibited by EDTA or cystein. Concerning biotechnological applications, the enzymes retained (51-97% of their initial activities upon incubation in the presence of commercials detergents for 1 h. The potential use of the produced enzymes in the degradation of human hair and cotton fabric samples were also assessed.

  20. Enzymes produced by halotolerant spore-forming gram-positive bacterial strains isolated from a resting habitat (Restinga de Jurubatiba) in Rio de Janeiro, Brazil: focus on proteases.

    Science.gov (United States)

    D Santos, Anderson Fragoso; Pacheco, Clarissa Almeida; Valle, Roberta D Santos; Seldin, Lucy; D Santos, André Luis Souza

    2014-12-01

    The screening for hydrolases-producing, halotolerant, and spore-forming gram-positive bacteria from the root, rhizosphere, and non-rhizosphere soil of Blutaparon portulacoides, a plant found in the Restinga de Jurubatiba located at the northern region of Rio de Janeiro State, Brazil, resulted in the isolation of 22 strains. These strains were identified as Halobacillus blutaparonensis (n = 2), Oceanobacillus picturae (n = 5), and Oceanobacillus iheyensis (n = 15), and all showed the ability to produce different extracellular enzymes. A total of 20 isolates (90.9 %) showed activity for protease, 5 (22.7 %) for phytase, 3 (13.6 %) for cellulase, and 2 (9.1 %) for amylase. Some bacterial strains were capable of producing three (13.6 %) or two (9.1 %) distinct hydrolytic enzymes. However, no bacterial strain with ability to produce esterase and DNase was observed. The isolate designated M9, belonging to the species H. blutaparonensis, was the best producer of protease and also yielded amylase and phytase. This strain was chosen for further studies regarding its protease activity. The M9 strain produced similar amounts of protease when grown either without or with different NaCl concentrations (from 0.5 to 10 %). A simple inspection of the cell-free culture supernatant by gelatin-sodium dodecyl sulfate-polyacrylamide gel electrophoresis (SDS-PAGE) revealed the presence of three major alkaline proteases of 40, 50, and 70 kDa, which were fully inhibited by phenylmethylsulfonyl fluoride (PMSF) and tosyl-L-phenylalanine chloromethyl ketone (TPCK) (two classical serine protease inhibitors). The secreted proteases were detected in a wide range of temperature (from 4 to 45 °C) and their hydrolytic activities were stimulated by NaCl (up to 10 %). The serine proteases produced by the M9 strain cleaved gelatin, casein, albumin, and hemoglobin, however, in different extensions. Collectively, these results suggest the potential use of the M9 strain in biotechnological

  1. A New Bacillus licheniformis Mutant Strain Producing Serine Protease Efficient for Hvdrolvqis of Sov Meal Proteins.

    Science.gov (United States)

    Kostyleva, E V; Sereda, A S; Velikoretskaya, I A; Nefedova, L I; Sharikov, A Yu; Tsurikova, N V; Lobanov, N S; Semenova, M V; Sinitsyn, A P

    2016-07-01

    Induced mutagenesis with y-irradiation of the industrial strain Bacillus licheniformis-60 VKM B-2366,D was used to obtain a new highly active producer of an extracellular serine protease, Bacillus licheni- formis7 145. Samples of dry.concentrated preparations of serine protease produced by the original and mutant strains were obtained, and identity of their protein composition was'established. Alkaline serine protease sub- tilisin DY was the main component of the preparations. The biochemical and physicochemical properties of the Protolkheterm-145 enzyme preparation obtained from the mutant strain were studied. It exhibited pro- teolytic activity (1.5 times higher than the preparation from the initial strain) within broad ranges of pH (5- 11) and temperature (30-70'C).-Efficient hydrolysis of extruded soy meal protein at high concentrations (2 to 50%) in-the reaction mixture was.the main advantage of the Protolikheterm 145 preparation. Compared to,. the preparation obtained using the initial strain, the new preparation with increased proteolytic-activity pro- vided for more complete hydrolysis of the main non-nutritious soy,proteins.(glycinin and 0-conglycinin) with the yield of soluble protein increased by 19-28%, which decreased the cost of bioconversion of the protein- aceous material and indicated promise of the new preparation in resource-saving technologies for processing soy meals and cakes.

  2. Improving the performance of industrial ethanol-producing yeast by expressing the aspartyl protease on the cell surface.

    Science.gov (United States)

    Guo, Zhong-peng; Zhang, Liang; Ding, Zhong-yang; Wang, Zheng-Xiang; Shi, Gui-Yang

    2010-12-01

    The yeasts used in fuel ethanol manufacture are unable to metabolize soluble proteins. The PEP4 gene, encoding a vacuolar aspartyl protease in Saccharomyces cerevisiae, was either secretively or cell-surface anchored expressed in industrial ethanol-producing S. cerevisiae. The obtained recombinant strains APA (expressing the protease secretively) and APB (expressing the protease on the cell wall) were studied under ethanol fermentation conditions in feed barley cultures. The effects of expression of the protease on product formation, growth and cell protein content were measured. The biomass yield of the wild-type was clearly lower than that of the recombinant strains (0.578 ± 0.12 g biomass/g glucose for APA and 0.582 ± 0.08 g biomass/g glucose for APB). In addition, nearly 98-99% of the theoretical maximum level of ethanol yield was achieved (relative to the amount of substrate consumed) for the recombinant strains, while limiting the nitrogen source resulted in dissatisfactory fermentation for the wild-type and more than 30 g/l residual sugar was detected at the end of fermentation. In addition, higher growth rate, viability and lower yields of byproducts such as glycerol and pyruvic acid for recombinant strains were observed. Expressing acid protease can be expected to lead to a significant increase in ethanol productivity. Copyright © 2010 John Wiley & Sons, Ltd.

  3. Isolation and Identification of Bacteria That Has Potential as Producer of Protease Enzyme in the Tannery Industry, PT. Adi Satria Abadi (ASA), YOGYAKARTA

    OpenAIRE

    Said, M. I; Likadja, J. C

    2012-01-01

    Bacteria are one of the microorganisms that have the potential as a producer of protease enzyme. Tannery industrial waste is one of the media predicted to contain a number of proteolytic bacteria because of the waste generated is composed largely of protein and fat which are good as growing medium for bacteria. This study aimed to isolate and identify bacteria that have the potential as a producer of protease enzyme. Research conducted at the waste water processing installation (WWPI), tanner...

  4. A biotechnology perspective of fungal proteases

    Directory of Open Access Journals (Sweden)

    Paula Monteiro de Souza

    2015-06-01

    Full Text Available Proteases hydrolyze the peptide bonds of proteins into peptides and amino acids, being found in all living organisms, and are essential for cell growth and differentiation. Proteolytic enzymes have potential application in a wide number of industrial processes such as food, laundry detergent and pharmaceutical. Proteases from microbial sources have dominated applications in industrial sectors. Fungal proteases are used for hydrolyzing protein and other components of soy beans and wheat in soy sauce production. Proteases can be produced in large quantities in a short time by established methods of fermentation. The parameters such as variation in C/N ratio, presence of some sugars, besides several other physical factors are important in the development of fermentation process. Proteases of fungal origin can be produced cost effectively, have an advantage faster production, the ease with which the enzymes can be modified and mycelium can be easily removed by filtration. The production of proteases has been carried out using submerged fermentation, but conditions in solid state fermentation lead to several potential advantages for the production of fungal enzymes. This review focuses on the production of fungal proteases, their distribution, structural-functional aspects, physical and chemical parameters, and the use of these enzymes in industrial applications.

  5. Toxicity identification evaluations of produced-water effluents

    International Nuclear Information System (INIS)

    Sauer, T.C.; Costa, H.J.; Brown, J.S.; Ward, T.J.

    1997-01-01

    Toxicity identification evaluations (TIEs) were performed on 14 produced-water (PW) samples of various salinities from inland and offshore oil- and gas-production facilities operated by different companies in Wyoming, Texas, California, and Louisiana (USA) to evaluate the efficacy of TIE procedures in determining potential toxicants in PW effluents. The research involved acute (24- and 48-h) freshwater and marine toxicity tests on whole PW and PW fractions generated by standard US Environmental Protection Agency and PW-specific fractionation schemes. Factors influencing PW TIEs were investigated, such as the effect of salinity in selecting fractionation manipulations, the effect of toxicity test replication (i.e., reproducibility) in distinguishing changes in toxicities between whole PW and its fractions, and the suitability of different test species in PW TIEs. The results obtained and lessons learned from conducting these PW TIEs are presented in this article. Components, or fractions, contributing to toxicity differed for each PW with no specific fraction being consistently toxic. For most PW samples, toxicity attributed to any one fraction represented only part of the toxicity of the whole sample. However, no more than two fraction types were identified as potential toxicants in any sample. Potential toxicants identified during this study, besides salinity, included acidic and basic organic compound class fractions, particulates removed by filtration at pH 11, ammonia, hydrocarbons, hydrogen sulfide, material removed by pH change, and volatile compounds

  6. Isolasi, Seleksi Dan Opttmasi Produksi Protease Daribeberapaisolat Bakteri*(isolation, Selection and Optimalization of Protease Production of Some Bacterial Isolates)

    OpenAIRE

    Naiola, Elidar; Widhyastuti, Nunuk

    2002-01-01

    Thirty-seven out of sixty-one bacterial isolates from various sources of samples were screened for protease production. The isolate of ISO PL3 could produce the highest enzyme activity, and it was used as a standard bacterial strain in this observation. For any reason,we implemented ISO PL2 to study the optimum condition for producing bacterial protease. Result shows that the maximum protease activity was obtained in a medium containing 100 gram of rice brand in a liter tofu liquid waste. The...

  7. Pathophysiological significance and therapeutic applications of snake venom protease inhibitors.

    Science.gov (United States)

    Thakur, Rupamoni; Mukherjee, Ashis K

    2017-06-01

    Protease inhibitors are important constituents of snake venom and play important roles in the pathophysiology of snakebite. Recently, research on snake venom protease inhibitors has provided valuable information to decipher the molecular details of various biological processes and offer insight for the development of some therapeutically important molecules from snake venom. The process of blood coagulation and fibrinolysis, in addition to affecting platelet function, are well known as the major targets of several snake venom protease inhibitors. This review summarizes the structure-functional aspects of snake venom protease inhibitors that have been described to date. Because diverse biological functions have been demonstrated by protease inhibitors, a comparative overview of their pharmacological and pathophysiological properties is also highlighted. In addition, since most snake venom protease inhibitors are non-toxic on their own, this review evaluates the different roles of individual protease inhibitors that could lead to the identification of drug candidates and diagnostic molecules. Copyright © 2017 Elsevier Ltd. All rights reserved.

  8. Isolation of protease producing novel Bacillus cereus and detection ...

    African Journals Online (AJOL)

    user

    2011-02-14

    Feb 14, 2011 ... Key words: Protease, production, optimization, Bacillus sp. INTRODUCTION ... Nutrient broth (5 g peptone and 3 g meat extract, pH 7.0, Merck) was used as the common growth ... nitrate through nitrite. It was determined that ...

  9. Transcriptional and proteomic analysis of the Aspergillus fumigatus ΔprtT protease-deficient mutant.

    Science.gov (United States)

    Hagag, Shelly; Kubitschek-Barreira, Paula; Neves, Gabriela W P; Amar, David; Nierman, William; Shalit, Itamar; Shamir, Ron; Lopes-Bezerra, Leila; Osherov, Nir

    2012-01-01

    Aspergillus fumigatus is the most common opportunistic mold pathogen of humans, infecting immunocompromised patients. The fungus invades the lungs and other organs, causing severe damage. Penetration of the pulmonary epithelium is a key step in the infectious process. A. fumigatus produces extracellular proteases to degrade the host structural barriers. The A. fumigatus transcription factor PrtT controls the expression of multiple secreted proteases. PrtT shows similarity to the fungal Gal4-type Zn(2)-Cys(6) DNA-binding domain of several transcription factors. In this work, we further investigate the function of this transcription factor by performing a transcriptional and a proteomic analysis of the ΔprtT mutant. Unexpectedly, microarray analysis revealed that in addition to the expected decrease in protease expression, expression of genes involved in iron uptake and ergosterol synthesis was dramatically decreased in the ΔprtT mutant. A second finding of interest is that deletion of prtT resulted in the upregulation of four secondary metabolite clusters, including genes for the biosynthesis of toxic pseurotin A. Proteomic analysis identified reduced levels of three secreted proteases (ALP1 protease, TppA, AFUA_2G01250) and increased levels of three secreted polysaccharide-degrading enzymes in the ΔprtT mutant possibly in response to its inability to derive sufficient nourishment from protein breakdown. This report highlights the complexity of gene regulation by PrtT, and suggests a potential novel link between the regulation of protease secretion and the control of iron uptake, ergosterol biosynthesis and secondary metabolite production in A. fumigatus.

  10. Purification and characterization of a protease produced by Bacillus megaterium RRM2: application in detergent and dehairing industries.

    Science.gov (United States)

    Rajkumar, Renganathan; Jayappriyan, Kothilmozhian Ranishree; Rengasamy, Ramasamy

    2011-12-01

    An alkaline serine protease produced by Bacillus megaterium RRM2 isolated from the red alga, Kappaphycus alvarezii (Doty) Doty ex Silva was studied for the first time and the same analyzed for the production of protease in the present study. Identification of the bacterium was done on the basis of both biochemical analysis and by 16S rDNA sequence analysis. The extracellular protease obtained from B. megaterium RRM2 was purified by a three-step process involving ammonium sulphate precipitation, gel filtration (Sephadex G100) and Q-Sepharose column chromatography. The purity was found to be 30.6-fold with a specific activity of 3591.5 U/mg protein with a molecular weight of 27 kDa. The metal ions Ca(2+), Mg(2+), K(+) and Na(+) marginally enhanced the activity of the purified enzyme while Hg(2+), Cu(2+), Fe(2+), CO(2+) and Zn(2+), had reduced the activity. The enzyme was found to be active in the pH range of 9.0-10.0 and remained active up to 60 °C. Phenyl Methyl Sulfonyl Fluoride (PMSF) inhibited the enzyme activity, thus, confirming that this enzyme is an alkaline serine protease. Likewise, DTT also inhibited the enzyme thus confirming the disulfide nature of the enzyme. The enzyme exhibited a high degree of tolerance to Sodium Dodecyl Sulphate (SDS). The partially purified protease when used as an additive in the commercial detergents was found to be a suitable source for washing clothes especially those stained with blood. Further, it showed good dehairing activity within a short duration in goat skin without affecting its collagen component. Copyright © 2011 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  11. Survival of Anaerobic Fe2+ Stress Requires the ClpXP Protease.

    Science.gov (United States)

    Bennett, Brittany D; Redford, Kaitlyn E; Gralnick, Jeffrey A

    2018-04-15

    Shewanella oneidensis strain MR-1 is a versatile bacterium capable of respiring extracellular, insoluble ferric oxide minerals under anaerobic conditions. The respiration of iron minerals results in the production of soluble ferrous ions, which at high concentrations are toxic to living organisms. It is not fully understood how Fe 2+ is toxic to cells anaerobically, nor is it fully understood how S. oneidensis is able to resist high levels of Fe 2+ Here we describe the results of a transposon mutant screen and subsequent deletion of the genes clpX and clpP in S. oneidensis , which demonstrate that the protease ClpXP is required for anaerobic Fe 2+ resistance. Many cellular processes are known to be regulated by ClpXP, including entry into stationary phase, envelope stress response, and turnover of stalled ribosomes. However, none of these processes appears to be responsible for mediating anaerobic Fe 2+ resistance in S. oneidensis Protein trapping studies were performed to identify ClpXP targets in S. oneidensis under Fe 2+ stress, implicating a wide variety of protein targets. Escherichia coli strains lacking clpX or clpP also display increased sensitivity to Fe 2+ anaerobically, indicating Fe 2+ resistance may be a conserved role for the ClpXP protease system. Hypotheses regarding the potential role(s) of ClpXP during periods of high Fe 2+ are discussed. We speculate that metal-containing proteins are misfolded under conditions of high Fe 2+ and that the ClpXP protease system is necessary for their turnover. IMPORTANCE Prior to the evolution of cyanobacteria and oxygenic photosynthesis, life arose and flourished in iron-rich oceans. Today, aqueous iron-rich environments are less common, constrained to low-pH conditions and anaerobic systems such as stratified lakes and seas, digestive tracts, subsurface environments, and sediments. The latter two ecosystems often favor dissimilatory metal reduction, a process that produces soluble Fe 2+ from iron oxide minerals

  12. Precipitation of metals in produced water : influence on contaminant transport and toxicity

    International Nuclear Information System (INIS)

    Azetsu-Scott, K.; Wohlgeschaffen, G.; Yeats, P.; Dalziel, J.; Niven, S.; Lee, K.

    2006-01-01

    Produced water contains a number of compounds of environmental concern and is the largest volume waste stream from oil and gas production activities. Recent studies have shown that chemicals dissolved in waste water from oil platforms stunted the growth of North Sea cod and affected their breeding patterns. Scientific research is needed to identify the impact of produced water discharges on the environment as well as to identify acceptable disposal limits for produced water. This presentation provided details of a study to characterize produced water discharged within the Atlantic regions of Canada. The study included dose response biological effect studies; research on processes controlling the transport and transformation of contaminants associated with produced water discharges and the development of risk assessment models. The sample location for the study was a site near Sable Island off the coast of Nova Scotia. Chemical analysis of the produced water was conducted as well as toxicity tests. Other tests included a time-series particulate matter sedimentation test; time-series metal and toxicity analysis; time-series change in metal precipitates tests and a produced water/seawater layering experiment. Dissolved and particulate fractions were presented, and the relationship between toxicity and particulate concentrations was examined. Results of the study suggested that produced water contaminants are variable over spatial and temporal scales due to source variations and changes in discharge rates. Chemical changes occur within 24 hours of produced water being mixed with seawater and facilitate contaminant partitioning between the surface micro layer, water column and sediments. Changes in the toxicity of the produced water are correlated with the partitioning of chemical components. The impact zone may be influenced by chemical kinetics that control the distribution of potential toxic metals. Further research is needed to investigate the effects of low level

  13. Production of alkaline proteases by alkalophilic Bacillus subtilis ...

    African Journals Online (AJOL)

    Tuoyo Aghomotsegin

    2016-11-23

    Nov 23, 2016 ... Key words: Production, alkaline protease, Bacillus subtilis, animal wastes, enzyme activity. ... Generally, alkaline proteases are produced using submerged fermentation .... biopolymer concentrations were reported to have an influence ... adding nitrogenous compounds stimulate microorganism growth and ...

  14. Optimizing PHB and Protease Production by Box Behnken Design

    Directory of Open Access Journals (Sweden)

    Amro Abd al fattah Amara

    2013-04-01

    Full Text Available Mixed culture is more suitable to adapt more flexible fermentation process and produce different product simultaneously. In this study a mixed Bacillus culture was investigated for their ability to produce the bioplastic "Polyhydroxybutyrate" and both of the mesophilic and the thermophilic proteases in one flask. Box-Behnken experimental design was used. The produced amount of PHB has been increased significantly. Meanwhile there is a competition between PHB and proteases. The maximum produced amount of PHB using Box-Behnken design was 2.82 g/l/48 h with protease activity equal to 41.9 Units/ml/48 h for thermophilic proteases and 99.65 Units/ml/48 h for mesophilic proteases. Excel solver was used for extra-optimization for the optimum conditions obtained from Box-Behnken experiments and its model. The maximum PHB obtained after using Excel solver was 2.88 g/l/48 h. The maximum mesophilic and thermophilic activities obtained at the same PHB production conditions were 175.68 and 243.38 Units/ml respectively. The model accuracy as obtained from Excel solver was 118.8%, which prove the power of the experimental design in optimizing such complicated process. The strategies used in this study are recommended for the production of PHB and different proteases simultaneously using Bacillus mixed culture. ABSTRAK: Kultur campuran adalah lebih sesuai bagi proses penapaian yang fleksibel dan ia boleh menghasilkan produk yang berbeza secara serentak. Dalam kajian ini keupayaan  menghasilkan "Polyhydroxybutyrate" bioplastik serta mesofilik dan termofilik protease dalam satu flask oleh  kultur Bacillus campuran telah disiasat. Eksperimen rekabentuk Box-Behnken telah digunakan. Jumlah PHB yang dikeluarkan meningkat dengan ketara dan terdapat persaingan antara PHB dan protease. Jumlah keluaran PHB maksima menggunakan rekabentuk Box-Behnken adalah 2.82 g/l/48 jam dengan aktiviti protease sama dengan 41.9 Unit/ml/48 jam untuk protease termofilik dan 99.65 Unit

  15. Use of a Packed-Column Bioreactor for Isolation of Diverse Protease-Producing Bacteria from Antarctic Soil

    Science.gov (United States)

    Wery, Nathalie; Gerike, Ursula; Sharman, Ajay; Chaudhuri, Julian B.; Hough, David W.; Danson, Michael J.

    2003-01-01

    Seventy-five aerobic heterotrophs have been isolated from a packed-column bioreactor inoculated with soil from Antarctica. The column was maintained at 10°C and continuously fed with a casein-containing medium to enrich protease producers. Twenty-eight isolates were selected for further characterization on the basis of morphology and production of clearing zones on skim milk plates. Phenotypic tests indicated that the strains were mainly psychrotrophs and presented a high morphological and metabolical diversity. The extracellular protease activities tested were optimal at neutral pH and between 30 and 45°C. 16S ribosomal DNA sequence analyses showed that the bioreactor was colonized by a wide variety of taxons, belonging to various bacterial divisions: α-, β-, and γ-Proteobacteria; the Flexibacter-Cytophaga-Bacteroides group; and high G+C gram-positive bacteria and low G+C gram-positive bacteria. Some strains represent candidates for new species of the genera Chryseobacterium and Massilia. This diversity demonstrates that the bioreactor is an efficient enrichment tool compared to traditional isolation strategies. PMID:12620829

  16. Transthyretin protects against A-beta peptide toxicity by proteolytic cleavage of the peptide: a mechanism sensitive to the Kunitz protease inhibitor.

    Directory of Open Access Journals (Sweden)

    Rita Costa

    Full Text Available Alzheimer's disease (AD is a neurodegenerative disorder characterized by the deposition of amyloid beta-peptide (A-Beta in the brain. Transthyretin (TTR is a tetrameric protein of about 55 kDa mainly produced in the liver and choroid plexus of the brain. The known physiological functions of TTR are the transport of thyroid hormone T(4 and retinol, through binding to the retinol binding protein. TTR has also been established as a cryptic protease able to cleave ApoA-I in vitro. It has been described that TTR is involved in preventing A-Beta fibrilization, both by inhibiting and disrupting A-Beta fibrils, with consequent abrogation of toxicity. We further characterized the nature of the TTR/A-Beta interaction and found that TTR, both recombinant or isolated from human sera, was able to proteolytically process A-Beta, cleaving the peptide after aminoacid residues 1, 2, 3, 10, 13, 14,16, 19 and 27, as determined by mass spectrometry, and reversed phase chromatography followed by N-terminal sequencing. A-Beta peptides (1-14 and (15-42 showed lower amyloidogenic potential than the full length counterpart, as assessed by thioflavin binding assay and ultrastructural analysis by transmission electron microscopy. A-Beta cleavage by TTR was inhibited in the presence of an alphaAPP peptide containing the Kunitz Protease Inhibitor (KPI domain but not in the presence of the secreted alphaAPP derived from the APP isoform 695 without the KPI domain. TTR was also able to degrade aggregated forms of A-Beta peptide. Our results confirmed TTR as a protective molecule in AD, and prompted A-Beta proteolysis by TTR as a protective mechanism in this disease. TTR may prove to be a useful therapeutic agent for preventing or retarding the cerebral amyloid plaque formation implicated in AD pathology.

  17. Field Validation of Toxicity Tests to Evaluate the Potential for Beneficial Use of Produced Water

    Energy Technology Data Exchange (ETDEWEB)

    Joseph Bidwell; Jonathan Fisher; Naomi Cooper

    2008-03-31

    This study investigated potential biological effects of produced water contamination derived from occasional surface overflow and possible subsurface intrusion at an oil production site along the shore of Skiatook Lake, Oklahoma. We monitored basic chemistry and acute toxicity to a suite of standard aquatic test species (fathead minnow-Pimephales promelas, Daphnia pulex, Daphnia magna, and Ceriodaphnia dubia) in produced water and in samples taken from shallow groundwater wells on the site. Toxicity identification evaluations and ion toxicity modeling were used to identify toxic constituents in the samples. Lake sediment at the oil production site and at a reference site were also analyzed for brine intrusion chemically and by testing sediment toxicity using the benthic invertebrates, Chironomus dilutus, and Hyallela azteca. Sediment quality was also assessed with in situ survival and growth studies with H. azteca and the Asian clam, Corbicula fluminea, and by benthic macroinvertebrate community sampling. The produced water was acutely toxic to the aquatic test organisms at concentrations ranging from 1% to 10% of the whole produced water sample. Toxicity identification evaluation and ion toxicity modeling indicated major ion salts and hydrocarbons were the primary mixture toxicants. The standardized test species used in the laboratory bioassays exhibited differences in sensitivity to these two general classes of contaminants, which underscores the importance of using multiple species when evaluating produced water toxicity. Toxicity of groundwater was greater in samples from wells near a produced water injection well and an evaporation pond. Principle component analyses (PCA) of chemical data derived from the groundwater wells indicated dilution by lake water and possible biogeochemical reactions as factors that ameliorated groundwater toxicity. Elevated concentrations of major ions were found in pore water from lake sediments, but toxicity from these ions was

  18. Investigation of the potential influence of production treatment chemicals on produced water toxicity

    International Nuclear Information System (INIS)

    Stine, E.R.; Gala, W.R.; Henry, L.R.

    1993-01-01

    Production treatment chemicals represent a diverse collection of chemical classes, added at various points from the wellhead to the final flotation cell, to prevent operational upsets and enhance the separation of oil from water. Information in the literature indicates that while many treatment chemicals are thought to partition into oil and not into the produced water, there are cases where a sufficiently water soluble treatment chemical is added at high enough concentrations to suggest that the treatment chemical may add to the aquatic toxicity of the produced water. A study was conducted to evaluate the potential effect of production treatment chemicals on the toxicity of produced waters using the US EPA Seven-day Mysidopsis bahia Survival, Growth and Fecundity Test. Samples of produced water were collected and tested for toxicity from three platforms under normal operating conditions, followed by repeated sampling and testing after a 72-hour period in which treatment chemical usage was discontinued, to the degree possible. Significant reductions in produced water toxicity were observed for two of the three platforms tested following either cessation of treatment chemical usage, or by comparing the toxicity of samples collected upstream and downstream of the point of treatment chemical addition

  19. Kinetics Study of Extracellular Detergent Stable Alkaline Protease from Rhizopus oryzae

    Directory of Open Access Journals (Sweden)

    Zareena Mushtaq

    2015-04-01

    Full Text Available In this study, extracellular alkaline protease was produced from Rhizopus oryzae in submerged fermentation using dairy waste (whey as a substrate. Fermentation kinetics was studied and various parameters were optimized. The strain produced maximum protease at initial medium pH of 6.0 medium depth of 26 mm, inoculum size of 2% at incubation temperature of 35ºC for 168 h of fermentation. Alkaline protease was purified to homogeneity by ammonium sulphate fractionation followed by sephadex G-100 chromatography. The molecular mass of alkaline protease was 69 kDa determined by 10% SDS-PAGE. The optimum pH and temperature of alkaline protease was 9.0 and 40ºC, respectively. Metal profile of the enzyme showed that the enzyme was non-metallic in nature. The Km , Kcat , Vmax and Kcat/Km values of purified protease were 7.0 mg/mL, 3.8 x102S-1, 54.30 µmol/min and 54.28 s-1mg -1.mL respectively, using casein as substrate. The purified alkaline protease had stability with commercial detergents.

  20. Draft genome sequence of a thermostable, alkaliphilic α-amylase and protease producing Bacillus amyloliquefaciens strain KCP2.

    Science.gov (United States)

    Prajapati, Vimalkumar S; Ray, Sanket; Narayan, Jitendra; Joshi, Chaitanya C; Patel, Kamlesh C; Trivedi, Ujjval B; Patel, R M

    2017-12-01

    Bacillus amyloliquefaciens strain KCP2 was isolated from municipal food waste samples collected in Vallabh Vidyanagar, Gujarat, India. Strain KCP2 is noteworthy due to its ability to produce a thermostable, alkaliphilic α-amylase and a protease. These enzymes have importance in several industrial processes including bread making, brewing, starch processing, pharmacy, and textile industries. Whole genome sequencing of strain KCP2 showed that the estimated genome size was 3.9 Mb, the G + C content was 46%, and it coded for 4113 genes.

  1. PARTIAL PURIFICATION AND CHARACTERIZATION OF ALKALOPHILIC PROTEASE FROM PSEUDOMONAS AERUGINOSA

    Directory of Open Access Journals (Sweden)

    R. Satheeskumar

    2013-10-01

    Full Text Available Partial purification and characterization of alkalophilic protease production from Pseudomonas aeruginosa was isolated from the gut of marine and coastal waters shrimp Penaeus monodon. The protease production was assayed in submerged fermentation to produce maximum protease activity (423 ± 0.09 U/ml. The enzyme was precipitated with ammonium sulphate and partially purified by ion exchange chromatography through DEAE Sephadex A-50 column. In 10th fraction showed maximum protease activity (734 ± 0.18 U/ml with increase in purification fold. The molecular weight of protease from Pseudomonas aeruginosa was recorded as 60 kDa. The stability of protease was tested at various pH and temperature; it showed maximum protease activity at pH-9 and temperature 50ºC. Among the various surfactants tested for enzyme stability, maximum activity was retained in poly ethylene glycol. The compatibility of protease enzyme with various commercial detergents; the enzyme retained maximum protease activity in tide. The results are indicated that all these properties make the bacterial proteases are most suitable for wide industrial applications.

  2. Extracellular proteases of Trichoderma species. A review.

    Science.gov (United States)

    Kredics, L; Antal, Zsuzsanna; Szekeres, A; Hatvani, L; Manczinger, L; Vágvölgyi, Cs; Nagy, Erzsébet

    2005-01-01

    Cellulolytic, xylanolytic, chitinolytic and beta-1,3-glucanolytic enzyme systems of species belonging to the filamentous fungal genus Trichoderma have been investigated in details and are well characterised. The ability of Trichoderma strains to produce extracellular proteases has also been known for a long time, however, the proteolytic enzyme system is relatively unknown in this genus. Fortunately, in the recent years more and more attention is focused on the research in this field. The role of Trichoderma proteases in the biological control of plant pathogenic fungi and nematodes has been demonstrated, and it is also suspected that they may be important for the competitive saprophytic ability of green mould isolates and may represent potential virulence factors of Trichoderma strains as emerging fungal pathogens of clinical importance. The aim of this review is to summarize the information available about the extracellular proteases of Trichoderma. Numerous studies are available about the extracellular proteolytic enzyme profiles of Trichoderma strains and about the effect of abiotic environmental factors on protease activities. A number of protease enzymes have been purified to homogeneity and some protease encoding genes have been cloned and characterized. These results will be reviewed and the role of Trichoderma proteases in biological control as well as their advantages and disadvantages in biotechnology will be discussed.

  3. Oxidant and solvent stable alkaline protease from Aspergillus flavus ...

    African Journals Online (AJOL)

    The increase in agricultural practices has necessitated the judicious use of agricultural wastes into value added products. In this study, an extracellular, organic solvent and oxidant stable, serine protease was produced by Aspergillus flavus MTCC 9952 under solid state fermentation. Maximum protease yield was obtained ...

  4. Complexity of cancer protease biology: Cathepsin K expression and function in cancer progression

    NARCIS (Netherlands)

    Verbovšek, Urška; van Noorden, Cornelis J. F.; Lah, Tamara T.

    2015-01-01

    Proteases, including lysosomal cathepsins, are functionally involved in many processes in cancer progression from its initiation to invasion and metastatic spread. Only recently, cathepsin K (CatK), the cysteine protease originally reported as a collagenolytic protease produced by osteoclasts,

  5. Characterization of toxic waste produced in PYMES manufacturing detergents

    International Nuclear Information System (INIS)

    Campuzano, Silvia; Camacho, Judith Elena; Alvarez, Alicia

    2006-01-01

    From the protection of the environment, the problem of the residuals squatter a main place in the environmental administration; presently study a test pilot was standardized, to characterize the toxic waste generated in the production of detergents, to standardize methods of chemical valuation and microbiological of polluted waters that allow later on to apply methods of biological purification and processes of bio-treatment of residuals, the project macro of handling of toxic waste it was addressed this way in small and medium companies producers of detergents. The presence settled down of toxic in the studied waste, represented in surfactants significant amounts, phenols, hydrocarbons, fat and phosphates and the decrease of its quantity in front of the action of bacteria, situation that allowed concluding that the approach to the biotransformation process could be carried out

  6. An antibiotic, heavy metal resistant and halotolerant Bacillus cereus SIU1 and its thermoalkaline protease

    Directory of Open Access Journals (Sweden)

    Vikram Surendra

    2010-07-01

    Full Text Available Abstract Background Many workers have reported halotolerant bacteria from saline conditions capable of protease production. However, antibiotic resistance and heavy metal tolerance pattern of such organisms is not documented very well. Similarly, only a few researchers have reported the pattern of pH change of fermentation medium during the course of protease production. In this study, we have isolated a halotolerant Bacillus cereus SIU1 strain from a non-saline environment and studied its antibiotic and heavy metal resistance pattern. The isolate produces a thermoalkaline protease and changes the medium pH during the course of fermentation. Thermostability of protease was also studied for 30 min. Results Seventy bacterial strains isolated from the soils of Eastern Uttar Pradesh, India were screened for protease production. All of them exhibited protease activity. However, 40% bacterial isolates were found good protease producers as observed by caseinolytic zones on milk agar plates. Among them, culture S-4 was adjudged as the best protease producer, and was identified as Bacillus cereus by morphological, biochemical and 16 S rDNA sequence analyses. The isolate was resistant to heavy metals (As2+, Pb2+, Cs1+ and antibiotics (penicillin, lincomycin, cloxacillin, pefloxacin. Its growth behavior and protease production was studied at 45°C and pH 9.0. The protease units of 88 ml-1 were noted in unoptimized modified glucose yeast extract (GYE medium during early stationary phase at 20 h incubation period. The enzyme was stable in the temperature range of 35°-55°C. Conclusions An antibiotic and heavy metal resistant, halotolerant Bacillus cereus isolate is capable of producing thermoalkaline protease, which is active and stable at pH 9.0 and 35°-55°C. This isolate may be useful in several industrial applications owing to its halotolerance and antibiotic and heavy metal resistance characteristics.

  7. Evidence for possible involvement of an elastolytic serine protease in aspergillosis.

    OpenAIRE

    Kolattukudy, P E; Lee, J D; Rogers, L M; Zimmerman, P; Ceselski, S; Fox, B; Stein, B; Copelan, E A

    1993-01-01

    A number of isolates of Aspergillus fumigatus obtained from the hospital environment produced extracellular elastolytic activity. This activity was found to be catalyzed by a single 33-kDa protein which was purified and characterized to be a serine protease. A. fumigatus, when grown on the insoluble structural material obtained from murine and bovine lung, produced the same extracellular 33-kDa elastolytic protease, indicating that this enzyme is likely to be produced when the organism infect...

  8. Microbial alkaline proteases: Optimization of production parameters and their properties

    Directory of Open Access Journals (Sweden)

    Kanupriya Miglani Sharma

    2017-06-01

    Full Text Available Proteases are hydrolytic enzymes capable of degrading proteins into small peptides and amino acids. They account for nearly 60% of the total industrial enzyme market. Proteases are extensively exploited commercially, in food, pharmaceutical, leather and detergent industry. Given their potential use, there has been renewed interest in the discovery of proteases with novel properties and a constant thrust to optimize the enzyme production. This review summarizes a fraction of the enormous reports available on various aspects of alkaline proteases. Diverse sources for isolation of alkaline protease producing microorganisms are reported. The various nutritional and environmental parameters affecting the production of alkaline proteases in submerged and solid state fermentation are described. The enzymatic and physicochemical properties of alkaline proteases from several microorganisms are discussed which can help to identify enzymes with high activity and stability over extreme pH and temperature, so that they can be developed for industrial applications.

  9. A Pseudomonas aeruginosa strain isolated from a contact lens-induced acute red eye (CLARE) is protease-deficient.

    Science.gov (United States)

    Estrellas, P S; Alionte, L G; Hobden, J A

    2000-03-01

    Pseudomonas aeruginosa proteases are thought to be important virulence factors in the pathogenesis of corneal disease. This study examined protease production from two strains of P. aeruginosa responsible for two very distinct clinical diseases: strain Paer1, isolated from a Contact Lens-induced Acute Red Eye (CLARE), and strain KEI 1025, isolated from a corneal ulcer. Strains were compared to a laboratory strain (ATCC 19660) known to produce severe keratitis in experimentally infected mice for protease production and for ocular virulence. Protease production was examined with colorimetric assays, gelatin zymography and western blots. Elastase A activity was quantitated with a staphylolytic assay. Ocular virulence was examined using a mouse scratch model of keratitis. In contrast to strains KEI 1025 or ATCC 19660, Paer1 was unable to produce enzymatically active elastase A, elastase, and protease IV. All three strains produced active alkaline protease. Strains KEI 1025 and ATCC 19660 produced a fulminant keratitis in mice whereas Paer1 produced a mild transient infection. Restoration of elastase activity in Paer1 via genetic complementation did not result in a virulent phenotype. Co-infection of mouse eyes with strains Paer1 and ATCC 19660 resulted in the eventual loss of Paer1 from corneal tissue. These studies suggest that P. aeruginosa elastase A and/or protease IV, but not alkaline protease or elastase, contribute to the ocular virulence of this organism.

  10. ISOLASI DAN KARAKTERISASI PROTEASE ALKALIN DARI ISOLAT BAKTERI LIMBAH TERNAK DI EXFARM FAKULTAS PETERNAKAN UNSOED

    Directory of Open Access Journals (Sweden)

    Zusfahair

    2011-05-01

    Full Text Available Protease is one of the widely used enzymes for the industry. The potential resource of microorganism that produced protease is milk cow waste. In this research, isolation and characterization has been done toward isolated protease from milk cow waste of the Exfarm’s Animal Husbandry Faculty at University of Jenderal Soedirman, Purwokerto. The research used experiment method and the parameters observed were the genus of bacteria which produce protease and the activity of protease. The characterizations of protease were determination of optimum pH and temperature, the influence of metal ions, EDTA, surfactant, and commercial detergent toward enzyme activity, and also the study of enzyme stability. The results from the research showed that the isolated bacteria from the Exfarm’s of Animal Husbandry Faculty of UNSOED, which produced protease was Salmonella sp. Characterization of isolated Salmonella sp. from 45% ammonium sulphate fraction indicated that the optimum temperature was 50 ºC, optimum pH was 8, the enzyme was activated by Ca2+ dan Mg2+ ion, whereas it was inhibited by Zn2+, Cu2+ ions and EDTA. The addition of Tween-80 with the concentration of 0.2% and 0.4% increased protease activity, however the addition of Tween-80 with concentration higher than 0.6% decreased the protease activity. Enzyme protease from isolated Salmonella sp. was relatively stable with the addition of commercial detergent such as Attack, Surf, and Bukrim.

  11. Immobilization of bromelain protease on PVA gels for the oligopeptides synthesis

    International Nuclear Information System (INIS)

    Fagundes, Fabio P.; Madruga, Liszt Y.C.; Balaban, Rosangela de C.; Costa, Marta

    2015-01-01

    Enzymatic synthesis of peptides using proteases has attracted a great deal of attention in recent years. One key challenge in peptide synthesis is to find supports for protease immobilization capable of working in aqueous medium at high performance, producing water-soluble oligopeptides. Therefore, the aim of this paper was to immobilize the bromelain protease by Freezing / thawing method on polymeric gels of Poli (vinyl alcohol) in order to produce water-soluble oligopeptides derived from lysine. Calculations of oligolysine yield and average degree of polymerization (DPavg) were monitored by 1 H-NMR analysis. Scanning Electronic Micrograph (SEM) was responsible to associate to the porous size with performance of each system during the production of oligopeptides from lysine. These systems produced oligomers in only 1 hour with DPavg higher than free bromelain. (author)

  12. Hyper production of alkaline protease by mutagenized bacillus subtilis

    International Nuclear Information System (INIS)

    Qureshi, A.M.; Tanseem, F.

    2010-01-01

    The purpose of this work was to augment the alkaline protease production from Bacillus subtilis by using chemical mutagen (MMS) and UV mutagenesis. A number of mutants were isolated which produce high levels of extra cellular proteases. Analysis of culture supernatants of these mutants had shown that the total amounts of proteolysis activity were increased from 1 to 2 fold over the wild strain. Clones showing promote response were further characterized by analyzing different parameters; like of Temperature, pH substrate concentration and incubation period, to study the activity of protease enzyme. (author)

  13. Novel inexpensive fungi proteases: Production by solid state fermentation and characterization.

    Science.gov (United States)

    Novelli, Paula Kern; Barros, Margarida Maria; Fleuri, Luciana Francisco

    2016-05-01

    A comparative study was carried out for proteases production using agroindustrial residues as substrate for solid state fermentation (SSF) of several fungal strains. High protease production was observed for most of the microorganisms studied, as well as very different biochemical characteristics, including activities at specific temperatures and a wide range of pH values. The enzymes produced were very different regarding optimum pH and they showed stability at 50 °C. Aspergillus oryzae showed stability at all pH values studied. Penicillium roquefortii and Aspergillus flavipes presented optimum activity at temperatures of 50 °C and 90 °C, respectively. Lyophilized protease from A. oryzae reached 1251.60 U/g and yield of 155010.66 U/kg of substrate. Therefore, the substrate as well as the microorganism strain can modify the biochemical character of the enzyme produced. The high protease activity and stability established plus the low cost of substrates, make these fungal proteases potential alternatives for the biotechnological industry. Copyright © 2015 Elsevier Ltd. All rights reserved.

  14. Extracellular proteolytic enzymes produced by human pathogenic Vibrio species

    Directory of Open Access Journals (Sweden)

    Shin-Ichi eMiyoshi

    2013-11-01

    Full Text Available Bacteria in the genus Vibrio produce extracellular proteolytic enzymes to obtain nutrients via digestion of various protein substrates. However, the enzymes secreted by human pathogenic species have been documented to modulate the bacterial virulence. Several species including Vibrio cholerae and V. vulnificus are known to produce thermolysin-like metalloproteases termed vibriolysin. The vibriolysin from V. vulnificus, a causative agent of serious systemic infection, is a major toxic factor eliciting the secondary skin damage characterized by formation of the hemorrhagic brae. The vibriolysin from intestinal pathogens may play indirect roles in pathogenicity because it can activate protein toxins and hemagglutinin by the limited proteolysis and can affect the bacterial attachment to or detachment from the intestinal surface by degradation of the mucus layer. Two species causing wound infections, V. alginolyticus and V. parahaemolyticus, produce another metalloproteases so-called collagenases. Although the detailed pathological roles have not been studied, the collagenase is potent to accelerate the bacterial dissemination through digestion of the protein components of the extracellular matrix. Some species produce cymotrypsin-like serine proteases, which may also affect the bacterial virulence potential. The intestinal pathogens produce sufficient amounts of the metalloprotease at the small intestinal temperature; however, the metalloprotease production by extra-intestinal pathogens is much higher around the body surface temperature. On the other hand, the serine protease is expressed only in the absence of the metalloprotease.

  15. Protease and protease inhibitory activity in pregnant and postpartum involuting uterus

    International Nuclear Information System (INIS)

    Milwidsky, A.; Beller, U.; Palti, Z.; Mayer, M.

    1982-01-01

    The presence of two distinct proteolytic activities in the rat uterus was confirmed with 14 C-labeled globin used as a sensitive protein substrate and following release of label into the trichloroacetic acid-soluble supernatant fraction. Protease I is a cytoplasmic acid protease while protease II is associated with the pellet fraction, can be extracted by 0.6 M sodium chloride, and is active at pH 7.0. Protease I activity is low during pregnancy and markedly increases at term achieving maximal activity at day 3 post partum with a subsequent decline to preterm activity values. Lactation did not affect the uterine protease I activity. Protease II activity is not significantly different during pregnancy, at term, and post partum. The presence of an inhibitor of protease I was suggested by a decrease in enzyme activity with an increased cytosolic protein concentration. The inhibitor also lessened bovine trypsin activity but had no effect on protease II. Although its inhibitory potency on trypsin fluctuated during the various uterine physiologic stages, these changes appeared to be statistically insignificant. Human uterine samples were also found to contain the two protease activities with similar changes in protease I post partum. It is suggested that, both in the rat and in man, uterine involution post partum is associated with a marked increase in activity of acid cytosolic protease, while a particulate neutral protease and a soluble inhibitor of trypsin, which are also present in uterine cells, do not appear to play a significant role in the dissolution of uterine tissues after parturition

  16. Improvement of shelf life of soymilk using immobilized protease of Oerskovia xanthineolytica NCIM 2839

    OpenAIRE

    Sahoo, A. K.; Gaikwad, V. S.; Ranveer, R. C.; Dandge, P. B.; Waghmare, S. R.

    2016-01-01

    Protease enzyme has lot of commercial applications, so the cost-effective production of protease using sunflower oil seed waste was carried out from Oerskovia xanthineolyitca NCIM 2839. The maximum protease production was after 24?h of incubation with 2.5?% oil seed waste concentration. O. xanthineolytica was found to produce two proteases?P1 and P2. The proteases were purified using 60?% cold acetone precipitation and DEAE-cellulose ion exchange chromatography. SDS-PAGE revealed molecular we...

  17. Protease-sensitive synthetic prions.

    Directory of Open Access Journals (Sweden)

    David W Colby

    2010-01-01

    Full Text Available Prions arise when the cellular prion protein (PrP(C undergoes a self-propagating conformational change; the resulting infectious conformer is designated PrP(Sc. Frequently, PrP(Sc is protease-resistant but protease-sensitive (s prions have been isolated in humans and other animals. We report here that protease-sensitive, synthetic prions were generated in vitro during polymerization of recombinant (rec PrP into amyloid fibers. In 22 independent experiments, recPrP amyloid preparations, but not recPrP monomers or oligomers, transmitted disease to transgenic mice (n = 164, denoted Tg9949 mice, that overexpress N-terminally truncated PrP. Tg9949 control mice (n = 174 did not spontaneously generate prions although they were prone to late-onset spontaneous neurological dysfunction. When synthetic prion isolates from infected Tg9949 mice were serially transmitted in the same line of mice, they exhibited sPrP(Sc and caused neurodegeneration. Interestingly, these protease-sensitive prions did not shorten the life span of Tg9949 mice despite causing extensive neurodegeneration. We inoculated three synthetic prion isolates into Tg4053 mice that overexpress full-length PrP; Tg4053 mice are not prone to developing spontaneous neurological dysfunction. The synthetic prion isolates caused disease in 600-750 days in Tg4053 mice, which exhibited sPrP(Sc. These novel synthetic prions demonstrate that conformational changes in wild-type PrP can produce mouse prions composed exclusively of sPrP(Sc.

  18. Optimization Conditions of Extracellular Proteases Production from a Newly Isolated Streptomyces Pseudogrisiolus NRC-15

    Directory of Open Access Journals (Sweden)

    El-Sayed E. Mostafa

    2012-01-01

    Full Text Available Microbial protease represents the most important industrial enzymes, which have an active role in biotechnological processes. The objective of this study was to isolate new strain of Streptomyces that produce proteolytic enzymes with novel properties and the development of the low-cost medium. An alkaline protease producer strain NRC-15 was isolated from Egyptian soil sample. The cultural, morphological, physiological characters and chemotaxonomic evidence strongly indicated that the NRC-15 strain represents a novel species of the genus Streptomyces, hence the name Strptomyces pseudogrisiolus NRC-15. The culture conditions for higher protease production by NRC-15 were optimized with respect to carbon and nitrogen sources, metal ions, pH and temperature. Maximum protease production was obtained in the medium supplemented with 1% glucose, 1% yeast extract, 6% NaCl and 100 μmol/L of Tween 20, initial pH 9.0 at 50 °C for 96 h. The current results confirm that for this strain, a great ability to produce alkaline proteases, which supports the use of applications in industry.

  19. Earthworm Protease

    Directory of Open Access Journals (Sweden)

    Rong Pan

    2010-01-01

    Full Text Available The alimentary tract of earthworm secretes a group of proteases with a relative wide substrate specificity. In 1983, six isozymes were isolated from earthworm with fibrinolytic activities and called fibriniolytic enzymes. So far, more isozymes have been found from different earthworm species such as Lumbricus rubellus and Eisenia fetida. For convenience, the proteases are named on the basis of the earthworm species and the protein function, for instance, Eisenia fetida protease (EfP. The proteases have the abilities not only to hydrolyze fibrin and other protein, but also activate proenzymes such as plasminogen and prothrombin. In the light of recent studies, eight of the EfPs contain oligosaccharides chains which are thought to support the enzyme structure. Interestingly, EfP-II has a broader substrate specificity presenting alkaline trypsin, chymotrypsin and elastase activities, but EfP-III-1 has a stricter specificity. The protein crystal structures show the characteristics in their specificities. Earthworm proteases have been applied in several areas such as clinical treatment of clotting diseases, anti-tumor study, environmental protection and nutritional production. The current clinical utilizations and some potential new applications of the earthworm protease will be discussed in this paper.

  20. Earthworm Protease

    International Nuclear Information System (INIS)

    Pan, R.; Zhang, Z.; He, R.

    2010-01-01

    The alimentary tract of earthworm secretes a group of proteases with a relative wide substrate specificity. In 1983, six isozymes were isolated from earthworm with fibrinolytic activities and called fibrinolytic enzymes. So far, more isozymes have been found from different earthworm species such as Lumbricus rubellus and Eisenia fetida. For convenience, the proteases are named on the basis of the earthworm species and the protein function, for instance, Eisenia fetida protease (EfP). The proteases have the abilities not only to hydrolyze fibrin and other protein, but also activate pro enzymes such as plasminogen and prothrombin. In the light of recent studies, eight of the EfPs contain oligosaccharides chains which are thought to support the enzyme structure. Interestingly, EfP-II has a broader substrate specificity presenting alkaline trypsin, chymotrypsin and elastase activities, but EfP-III-1 has a stricter specificity. The protein crystal structures show the characteristics in their specificities. Earthworm proteases have been applied in several areas such as clinical treatment of clotting diseases, anti-tumor study, environmental protection and nutritional production. The current clinical utilizations and some potential new applications of the earthworm protease will be discussed in this paper.

  1. Production and Characterization of Keratinolytic Protease from New Wool-Degrading Bacillus Species Isolated from Egyptian Ecosystem

    Directory of Open Access Journals (Sweden)

    Mohamed A. Hassan

    2013-01-01

    Full Text Available Novel keratin-degrading bacteria were isolated from sand soil samples collected from Minia Governorate, Egypt. In this study, the isolates were identified as Bacillus amyloliquefaciens MA20 and Bacillus subtilis MA21 based on morphological and biochemical characteristics as well as 16S rRNA gene sequencing. B. amyloliquefaciens MA20 and B. subtilis MA21 produced alkaline keratinolytic serine protease when cultivated in mineral medium containing 1% of wool straight off sheep as sole carbon and nitrogen source. The two strains were observed to degrade wool completely to powder at pH 7 and 37°C within 5 days. Under these conditions the maximum activity of proteases produced by B. amyloliquefaciens MA20 and B. subtilis MA21 was 922 and 814 U/ml, respectively. The proteases exhibited optimum temperature and pH at 60°C and 9, respectively. However, the keratinolytic proteases were stable in broad range of temperature and pH values towards casein Hammerstein. Furthermore the protease inhibitor studies indicated that the produced proteases belong to serine protease because of their sensitivity to PMSF while they were inhibited partially in presence of EDTA. The two proteases are stable in most of the used organic solvents and enhanced by metals suggesting their potential use in biotechnological applications such as wool industry.

  2. Isolation, identification and characterization of organic solvent tolerant protease from Bacillus sp. DAF-01

    Directory of Open Access Journals (Sweden)

    Arastoo Badoei-Dalfard

    2012-01-01

    Full Text Available Introduction: Organic solvent-tolerant bacteria are relatively novel extermophilic microorganisms, which can produce organic tolerant protease with capacity of being used in industrial biotechnology for producing high-value compounds. Therefore, finding of these bacteria has drawn much researchers attention nowadays. Materials and Methods: In this project, samples were collected from a hot spring, located in Jiroft. Samples were incubated in medium supplemented with cyclohexane and toluene for 3 days. Screening of protease producing bacteria was performed on the specific media, SKM (Skim milk agar, based on clear area diameter. The best bacterium was identified based on 16s rDNA gene. Protease activity was considered in different temperatures, pH and organic solvents.Results: Sequence alignment and phylogenetic tree results showed that this bacteria was closely related to Bacillus niacini, with 97% homology. Enzymatic studies showed that, this enzyme was active at a wide range of temperatures, 20-90 °C and it,s optimal activity was in 60 °C. In addition, maximum protease activity was obtained in the 8-9 range of pH, and optimal stability was also at pH 9.0. Protease activity in the presence of methanol, toluene, isopropanol, cyclohexane and DMF ‏showed that, remaining activity was at least 80% compared to the control (without organic solvent Discussion and Conclusion: Thermopilic capacity, being active in alkaline protease and high protease stability in the presence of organic solvents all herald a remarkable application for using in different industries.

  3. Characterization and isolation of an extracellular serine protease from the tomato pathogen Colletotrichum coccodes, and it's role in pathogenicity

    Science.gov (United States)

    Redman, Regina S.; Rodriguez, Rusty J.

    2002-01-01

    Extracellular enzymes play an important role in the pathogenicity and virulence of phytopathogenic fungi. Several isolates of Colletotrichum coccodes causal agent of anthracnose on tomato, were screened to determine the relationship between protease activity and virulence. A direct relationship was observed between extracellular protease activity and the induction of disease symptoms of fruit and mortality in plants. Isolate Cc155 exhibited the highest protease activity after five days of growth in protease induction medium and produced an extracellular serine protease (sp78) that was 78 kDa, auto-degradative, glucose repressible, and non-glycosylated. To determine the role of sp78 in pathogenicity, a UV-induced extracellular protease deficient mutant (np155) was generated from the wildtype isolate Cc155. Np155 maintained growth rates comparable to Cc155 and produced wildtype levels of extracellular cellulase but did not produce extracellular protease. Unlike Cc155, np155 caused no disease symptoms on tomato fruit and 0% mortality on tomato seedlings. These results suggest that extracellular protease activity is required for pathogenicity and virulence of C. coccodes and that the elimination of protease activity transforms a virulent pathogen to a non-pathogenic endophyte.

  4. Isolation, identification and optimization of alkaline protease production by Candida viswanathii

    Directory of Open Access Journals (Sweden)

    Mandana Lotfi

    2014-03-01

    Conclusion: Due to the high demand for industrial enzymes in the Country and the high activity of alkaline proteases produced by strain. It seems that the native strain can achieve high production of alkaline proteases.These native strains could be resulted in the independence of our country in industrial enzymes production.

  5. Process optimization by response surface methodology for extracellular alkaline protease production from bacillus subtilis

    International Nuclear Information System (INIS)

    Mushtaq, Z.; Adnan, A.; Mehmood, Z.

    2014-01-01

    Three microbial cultures Bacillus subtilis DSM 1970, Bacillus subtilis GCU-8 and Bacillus licheniformis DSM 1969 were screened for protease production by casein agar plate method. Among these Bacillus subtilis GCU-8 was found to be the most potent protease producer in wide pH range (5.0 to 8.0). Fermentation conditions were optimized for the production of alkaline protease using two statistical tools: Placket Burmen Model for linear regression study and Response Surface Model for interactive effects of significant factors on production. The alkaline protease was optimally produced after 48 hours of incubation at 37 degree C in fermentation media containing equal amounts of substrates (soybean meal and wheat bran, 7.5 g), MgSO/sub 4/ 7H/sub 2/O, 0.10 g and yeast extract 0.55 g. The protease was purified to homogeneity by salt precipitation, ion-exchange chromatography and size exclusion chromatography. The homogeneity and molecular weights were checked by SDS-PAGE. The protease was 45 KDa protein, predominantly alkaline and optimally active at pH 8.0. (author)

  6. Co-evolution of insect proteases and plant protease inhibitors.

    Science.gov (United States)

    Jongsma, Maarten A; Beekwilder, Jules

    2011-08-01

    Plants are at the basis of the food chain, but there is no such thing as a "free lunch" for herbivores. To promote reproductive success, plants evolved multi-layered defensive tactics to avoid or discourage herbivory. To the detriment of plants, herbivores, in turn, evolved intricate strategies to find, eat, and successfully digest essential plant parts to raise their own offspring. In this battle the digestive tract is the arena determining final victory or defeat as measured by growth or starvation of the herbivore. Earlier, specific molecular opponents were identified as proteases and inhibitors: digestive proteases of herbivores evolved structural motifs to occlude plant protease inhibitors, or alternatively, the insects evolved proteases capable of specifically degrading the host plant inhibitors. In response plant inhibitors evolved hyper-variable and novel protein folds to remain active against potential herbivores. At the level of protease regulation in herbivorous insects, it was shown that inhibition-insensitive digestive proteases are up-regulated when sensitive proteases are inhibited. The way this regulation operates in mammals is known as negative feedback by gut-luminal factors, so-called 'monitor peptides' that are sensitive to the concentration of active enzymes. We propose that regulation of gut enzymes by endogenous luminal factors has been an open invitation to plants to "hijack" this regulation by evolving receptor antagonists, although yet these plant factors have not been identified. In future research the question of the co-evolution of insect proteases and plant inhibitors should, therefore, be better approached from a systems level keeping in mind that evolution is fundamentally opportunistic and that the plant's fitness is primarily improved by lowering the availability of essential amino acids to an herbivore by any available mechanism.

  7. Production, Partial Purification and Characterization of Protease From Irradiated Streptomyces Spp

    International Nuclear Information System (INIS)

    Botros, H.W.; Ahmed, A.S.

    2011-01-01

    Production and partial purification of protease by the irradiated Streptomyces spp. was the aim of this study. Streptomyces spp. was allowed to grow in culture broth of 4% shrimp shells for purpose of inducing protease enzymes. Optimal conditions for protease production were 30 degree C, 0.3 kGy, ph 7, 5x10 4 /ml inoculum size and 7 days incubation period. Protease was purified by 80% ammonium sulphate saturation which exhibited 8.7 U/ml enzyme activity. Column chromatography using sephadex G-200 exerted 23.3 U/ml enzyme activity from pooled fraction (13-16). The molecular mass of protease was determined to be 39 kDa by SDS-PAGE. The enzyme was more stable over a wide range of ph 6-8 and temperature up to 40 degree C. The produced protease was activated by Ca, Mn and FeCl 2 and completely inhibited by ethylene-diamin tetraacetic acid (EDTA) at concentration of 1000 μg/ml

  8. Recombinant expression and functional analysis of proteases from Streptococcus pneumoniae, Bacillus anthracis, and Yersinia pestis

    Directory of Open Access Journals (Sweden)

    Pieper Rembert

    2011-05-01

    Full Text Available Abstract Background Uncharacterized proteases naturally expressed by bacterial pathogens represents important topic in infectious disease research, because these enzymes may have critical roles in pathogenicity and cell physiology. It has been observed that cloning, expression and purification of proteases often fail due to their catalytic functions which, in turn, cause toxicity in the E. coli heterologous host. Results In order to address this problem systematically, a modified pipeline of our high-throughput protein expression and purification platform was developed. This included the use of a specific E. coli strain, BL21(DE3 pLysS to tightly control the expression of recombinant proteins and various expression vectors encoding fusion proteins to enhance recombinant protein solubility. Proteases fused to large fusion protein domains, maltosebinding protein (MBP, SP-MBP which contains signal peptide at the N-terminus of MBP, disulfide oxidoreductase (DsbA and Glutathione S-transferase (GST improved expression and solubility of proteases. Overall, 86.1% of selected protease genes including hypothetical proteins were expressed and purified using a combination of five different expression vectors. To detect novel proteolytic activities, zymography and fluorescence-based assays were performed and the protease activities of more than 46% of purified proteases and 40% of hypothetical proteins that were predicted to be proteases were confirmed. Conclusions Multiple expression vectors, employing distinct fusion tags in a high throughput pipeline increased overall success rates in expression, solubility and purification of proteases. The combinatorial functional analysis of the purified proteases using fluorescence assays and zymography confirmed their function.

  9. Comparative Detection of Alkaline Protease Production in Exiguobacterium acetylicum

    International Nuclear Information System (INIS)

    Gomaa, O.M.; EI Shafey, H.M.

    2009-01-01

    Alkaline protease is one of the most important enzymes in industry, medicine, and research. In the present work, a comparative detection for alkaline protease activity was established for instant detection of enzyme activity. Eight different alkalophilic bacterial isolates were compared based on the clear zone they produced on skim milk agar. One strain gave an absolute clear zone in 16 hours and was used for alkaline protease detection. The result of Phenotypic identification using Biology Microlog 3 identified the isolate as Exiguobacterium acetylicum. The isolate under study showed slightly different characteristics from a known Exiguobacterium acetylicum strain. The isolate tolerated alkaline conditions up to ph 11, while good growth was evident at ph 7, the maximum alkaline protease activity was observed at ph 9 which reached up to 109.01 U/ml. The alkaline activity assay using alkaline protease enzyme assay were coordinating with those obtained by conductivity; there was a relevant decrease in conductivity at the maximum increase in enzyme activity, which proved the cell membrane conductivity has a close relation to alkaline protease production. This isolate has tolerated gamma radiation, the increase in dose (up to 4 Gy) gave wider clear zones in terms of diameter and this was relevant to the conductivity measurements

  10. A novel protease activity assay using a protease-responsive chaperone protein

    International Nuclear Information System (INIS)

    Sao, Kentaro; Murata, Masaharu; Fujisaki, Yuri; Umezaki, Kaori; Mori, Takeshi; Niidome, Takuro; Katayama, Yoshiki; Hashizume, Makoto

    2009-01-01

    Protease activity assays are important for elucidating protease function and for developing new therapeutic agents. In this study, a novel turbidimetric method for determining the protease activity using a protease-responsive chaperone protein is described. For this purpose, a recombinant small heat-shock protein (sHSP) with an introduced Factor Xa protease recognition site was synthesized in bacteria. This recombinant mutant, FXa-HSP, exhibited chaperone-like activity at high temperatures in cell lysates. However, the chaperone-like activity of FXa-HSP decreased dramatically following treatment with Factor Xa. Protein precipitation was subsequently observed in the cell lysates. The reaction was Factor Xa concentration-dependent and was quantitatively suppressed by a specific inhibitor for Factor Xa. Protein aggregation was detected by a simple method based on turbidimetry. The results clearly demonstrate that this assay is an effective, easy-to-use method for determining protease activities without the requirement of labeling procedures and the use of radioisotopes.

  11. A novel protease activity assay using a protease-responsive chaperone protein

    Energy Technology Data Exchange (ETDEWEB)

    Sao, Kentaro [Graduate School of Systems Life Sciences, Kyushu University, 744 Motooka Nishi-ku, Fukuoka 819-0395 (Japan); Murata, Masaharu, E-mail: m-murata@dem.med.kyushu-u.ac.jp [Department of Advanced Medical Initiatives, Faculty of Medical Science, Kyushu University, 3-1-1 Maidashi, Higashi-ku Fukuoka 812-8582 (Japan); Fujisaki, Yuri; Umezaki, Kaori [Department of Advanced Medical Initiatives, Faculty of Medical Science, Kyushu University, 3-1-1 Maidashi, Higashi-ku Fukuoka 812-8582 (Japan); Mori, Takeshi; Niidome, Takuro; Katayama, Yoshiki [Graduate School of Systems Life Sciences, Kyushu University, 744 Motooka Nishi-ku, Fukuoka 819-0395 (Japan); Department of Applied Chemistry, Faculty of Engineering, Kyushu University, Nishi-ku Fukuoka 819-0395 (Japan); Center for Future Chemistry, Kyushu University, 744 Motooka, Nishi-ku, Fukuoka 819-0395 (Japan); Hashizume, Makoto [Department of Advanced Medical Initiatives, Faculty of Medical Science, Kyushu University, 3-1-1 Maidashi, Higashi-ku Fukuoka 812-8582 (Japan)

    2009-06-05

    Protease activity assays are important for elucidating protease function and for developing new therapeutic agents. In this study, a novel turbidimetric method for determining the protease activity using a protease-responsive chaperone protein is described. For this purpose, a recombinant small heat-shock protein (sHSP) with an introduced Factor Xa protease recognition site was synthesized in bacteria. This recombinant mutant, FXa-HSP, exhibited chaperone-like activity at high temperatures in cell lysates. However, the chaperone-like activity of FXa-HSP decreased dramatically following treatment with Factor Xa. Protein precipitation was subsequently observed in the cell lysates. The reaction was Factor Xa concentration-dependent and was quantitatively suppressed by a specific inhibitor for Factor Xa. Protein aggregation was detected by a simple method based on turbidimetry. The results clearly demonstrate that this assay is an effective, easy-to-use method for determining protease activities without the requirement of labeling procedures and the use of radioisotopes.

  12. A novel serine protease, Sep1, from Bacillus firmus DS-1 has nematicidal activity and degrades multiple intestinal-associated nematode proteins.

    Science.gov (United States)

    Geng, Ce; Nie, Xiangtao; Tang, Zhichao; Zhang, Yuyang; Lin, Jian; Sun, Ming; Peng, Donghai

    2016-04-27

    Plant-parasitic nematodes (PPNs) cause serious harm to agricultural production. Bacillus firmus shows excellent control of PPNs and has been produced as a commercial nematicide. However, its nematicidal factors and mechanisms are still unknown. In this study, we showed that B. firmus strain DS-1 has high toxicity against Meloidogyne incognita and soybean cyst nematode. We sequenced the whole genome of DS-1 and identified multiple potential virulence factors. We then focused on a peptidase S8 superfamily protein called Sep1 and demonstrated that it had toxicity against the nematodes Caenorhabditis elegans and M. incognita. The Sep1 protein exhibited serine protease activity and degraded the intestinal tissues of nematodes. Thus, the Sep1 protease of B. firmus is a novel biocontrol factor with activity against a root-knot nematode. We then used C. elegans as a model to elucidate the nematicidal mechanism of Sep1, and the results showed that Sep1 could degrade multiple intestinal and cuticle-associated proteins and destroyed host physical barriers. The knowledge gained in our study will lead to a better understanding of the mechanisms of B. firmus against PPNs and will aid in the development of novel bio-agents with increased efficacy for controlling PPNs.

  13. Metabolic complications associated with HIV protease inhibitor therapy.

    Science.gov (United States)

    Nolan, David

    2003-01-01

    HIV protease inhibitors were introduced into clinical practice over 7 years ago as an important component of combination antiretroviral drug regimens which in many ways revolutionised the treatment of HIV infection. The significant improvements in prognosis that have resulted from the use of these regimens, combined with the need for lifelong treatment, have increasingly focused attention on the adverse effects of antiretroviral drugs and on the metabolic complications of HIV protease inhibitors in particular. In this review, the cluster of metabolic abnormalities characterised by triglyceride-rich dyslipidaemia and insulin resistance associated with HIV protease inhibitor therapy are considered, along with implications for cardiovascular risk in patients affected by these complications. Toxicity profiles of individual drugs within the HIV protease inhibitor class are examined, as there is an increased recognition of significant intra-class differences both in terms of absolute risk of metabolic complications as well as the particular metabolic phenotype associated with these drugs. Guidelines for clinical assessment and treatment are emphasised, along with pathophysiological mechanisms that may provide a rational basis for the treatment of metabolic complications. Finally, these drug-specific effects are considered within the context of HIV-specific effects on lipid metabolism as well as lifestyle factors that have contributed to a rapidly increasing incidence of similar metabolic syndromes in the general population. These data highlight the importance of individualising patient management in terms of choice of antiretroviral regimen, assessment of metabolic outcomes and use of therapeutic interventions, based on the assessment of baseline (pre-treatment) metabolic status as well as the presence of potentially modifiable cardiovascular risk factors.

  14. Autoprocessing of human immunodeficiency virus type 1 protease miniprecursor fusions in mammalian cells

    Directory of Open Access Journals (Sweden)

    Chen Chaoping

    2010-07-01

    Full Text Available Abstract Background HIV protease (PR is a virus-encoded aspartic protease that is essential for viral replication and infectivity. The fully active and mature dimeric protease is released from the Gag-Pol polyprotein as a result of precursor autoprocessing. Results We here describe a simple model system to directly examine HIV protease autoprocessing in transfected mammalian cells. A fusion precursor was engineered encoding GST fused to a well-characterized miniprecursor, consisting of the mature protease along with its upstream transframe region (TFR, and small peptide epitopes to facilitate detection of the precursor substrate and autoprocessing products. In HEK 293T cells, the resulting chimeric precursor undergoes effective autoprocessing, producing mature protease that is rapidly degraded likely via autoproteolysis. The known protease inhibitors Darunavir and Indinavir suppressed both precursor autoprocessing and autoproteolysis in a dose-dependent manner. Protease mutations that inhibit Gag processing as characterized using proviruses also reduced autoprocessing efficiency when they were introduced to the fusion precursor. Interestingly, autoprocessing of the fusion precursor requires neither the full proteolytic activity nor the majority of the N-terminal TFR region. Conclusions We suggest that the fusion precursors provide a useful system to study protease autoprocessing in mammalian cells, and may be further developed for screening of new drugs targeting HIV protease autoprocessing.

  15. Identification of SlpB, a Cytotoxic Protease from Serratia marcescens.

    Science.gov (United States)

    Shanks, Robert M Q; Stella, Nicholas A; Hunt, Kristin M; Brothers, Kimberly M; Zhang, Liang; Thibodeau, Patrick H

    2015-07-01

    The Gram-negative bacterium and opportunistic pathogen Serratia marcescens causes ocular infections in healthy individuals. Secreted protease activity was characterized from 44 ocular clinical isolates, and a higher frequency of protease-positive strains was observed among keratitis isolates than among conjunctivitis isolates. A positive correlation between protease activity and cytotoxicity to human corneal epithelial cells in vitro was determined. Deletion of prtS in clinical keratitis isolate K904 reduced, but did not eliminate, cytotoxicity and secreted protease production. This indicated that PrtS is necessary for full cytotoxicity to ocular cells and implied the existence of another secreted protease(s) and cytotoxic factors. Bioinformatic analysis of the S. marcescens Db11 genome revealed three additional open reading frames predicted to code for serralysin-like proteases noted here as slpB, slpC, and slpD. Induced expression of prtS and slpB, but not slpC and slpD, in strain PIC3611 rendered the strain cytotoxic to a lung carcinoma cell line; however, only prtS induction was sufficient for cytotoxicity to a corneal cell line. Strain K904 with deletion of both prtS and slpB genes was defective in secreted protease activity and cytotoxicity to human cell lines. PAGE analysis suggests that SlpB is produced at lower levels than PrtS. Purified SlpB demonstrated calcium-dependent and AprI-inhibited protease activity and cytotoxicity to airway and ocular cell lines in vitro. Lastly, genetic analysis indicated that the type I secretion system gene, lipD, is required for SlpB secretion. These genetic data introduce SlpB as a new cytotoxic protease from S. marcescens. Copyright © 2015, American Society for Microbiology. All Rights Reserved.

  16. Streptomyces flavogriseus HS1: isolation and characterization of extracellular proteases and their compatibility with laundry detergents.

    Science.gov (United States)

    Ghorbel, Sofiane; Kammoun, Maher; Soltana, Hala; Nasri, Moncef; Hmidet, Noomen

    2014-01-01

    The present study describes the isolation of a new protease producing Streptomyces strain HS1 and the biochemical characterization of the secreted proteases. By sequencing of its noted 16S rDNA, HS1 strain was found to have a 100% identity with Streptomyces flavogriseus. The highest protease production was found using FermII media. In these conditions maximum protease production (99 U/mL) was obtained after 96 h incubation at 30°C and 150 rpm. HS1 strain produced at least five proteases as revealed by zymogram technique. The enzyme preparation exhibited activity over a broad range of pH (5-11) and temperature (25-70°C). Optimum activity was observed at a pH of 7.0 and a temperature of 50°C. Proteolytic activity was significantly unaffected by Ca(2+) and Mg(2+). EDTA and PMSF highly decreased the original activity. The crude extracellular proteases showed high stability when used as a detergent additive. These properties offer an interesting potential for enzymatic hydrolysis at the industrial level.

  17. Cysteine protease 30 (CP30) contributes to adhesion and cytopathogenicity in feline Tritrichomonas foetus

    Energy Technology Data Exchange (ETDEWEB)

    Gould, Emily N. [Univ. of Tennessee College of Veterinary Medicine, Knoxville, TN (United States); Giannone, Richard [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States); Kania, Stephen A. [The Univ. of Tennessee College of Veterinary Medicine, Knoxville, TN (United States); Tolbert, M. Katherine [Univ. of Tennessee College of Veterinary Medicine, Knoxville, TN (United States)

    2017-08-01

    Tritrichomonas foetus (T. foetus) is a flagellated protozoan parasite that is recognized as a significant cause of diarrhea in domestic cats with a prevalence rate as high as 30%. No drugs have been shown to consistently eliminate T. foetus infection in all cats. Cysteine proteases (CPs) have been identified as mediators of T. foetus-induced adhesion-dependent cytotoxicity to the intestinal epithelium. These CPs represent novel targets for the treatment of feline trichomonosis. However, cats also produce CPs that are part of life-critical systems. Thus, parasitic CPs need to be selectively targeted to reduce the potential for host toxicity. Previous studies have demonstrated the importance of a specific CP, CP30, in mediating bovine and human trichomonad cytopathogenicity. This CP has also recently been identified in feline T. foetus, although the function of this protease in the feline genotype remains unknown. Furthermore, the study objectives were to characterize the presence of CP30 in feline T. foetus isolates and to evaluate the effect of targeted inhibition of CP30 on feline T. foetus-induced adhesion dependent cytotoxicity.

  18. Aspartic Protease Zymography Case Study: Detection of Fungal Acid Proteases by Zymography.

    Science.gov (United States)

    Kernaghan, Gavin; Mayerhofer, Michael

    2017-01-01

    This chapter describes a method for the production and characterization of fungal acid proteases. Protease production is induced by growth on BSA media over a pH gradient and protein levels are monitored over time with the Bradford assay. Once protein is depleted, the media is purified and proteases are characterized by gelatin zymography using acrylamide and buffers at near-neutral pH. Maintaining pH levels below those found in traditional zymographic systems avoids the potential loss of activity that may occur in aspartic proteases under alkaline conditions.

  19. EFFECTS OF CHANGING THE INTERACTION BETWEEN SUBDOMAINS ON THE THERMOSTABILITY OF BACILLUS NEUTRAL PROTEASES

    NARCIS (Netherlands)

    EIJSINK, VGH; VRIEND, G; VANDERVINNE, B; HAZES, B; VANDENBURG, B; VENEMA, G

    1992-01-01

    Variants of the thermolabile neutral protease (Npr) of B. subtilis (Npr-sub) and the thermostable neutral protease of B. stearothermophilus (Npr-ste) were produced by means of site-directed mutagenesis and the effects of the mutations on thermostability were determined. Mutations were designed to

  20. Nucleic Acid Aptamers Against Proteases

    DEFF Research Database (Denmark)

    Dupont, D M; Andersen, L M; Bøtkjær, Kenneth Alrø

    2011-01-01

    , directed against blood coagulation factors, are in clinical trials as anticoagulant drugs. Several of the studies on protease-binding aptamers have been pioneering and trend-setting in the field. The work with protease-binding aptamers also demonstrates many interesting examples of non-standard selection......Proteases are potential or realized therapeutic targets in a wide variety of pathological conditions. Moreover, proteases are classical subjects for studies of enzymatic and regulatory mechanisms. We here review the literature on nucleic acid aptamers selected with proteases as targets. Designing...... small molecule protease inhibitors of sufficient specificity has proved a daunting task. Aptamers seem to represent a promising alternative. In our review, we concentrate on biochemical mechanisms of aptamer selection, proteinaptamer recognition, protease inhibition, and advantages of aptamers...

  1. The serine protease inhibitor TLCK attenuates intrinsic death pathways in neurons upstream of mitochondrial demise.

    Science.gov (United States)

    Reuther, C; Ganjam, G K; Dolga, A M; Culmsee, C

    2014-11-01

    It is well-established that activation of proteases, such as caspases, calpains and cathepsins are essential components in signaling pathways of programmed cell death (PCD). Although these proteases have also been linked to mechanisms of neuronal cell death, they are dispensable in paradigms of intrinsic death pathways, e.g. induced by oxidative stress. However, emerging evidence implicated a particular role for serine proteases in mechanisms of PCD in neurons. Here, we investigated the role of trypsin-like serine proteases in a model of glutamate toxicity in HT-22 cells. In these cells glutamate induces oxytosis, a form of caspase-independent cell death that involves activation of the pro-apoptotic protein BH3 interacting-domain death agonist (Bid), leading to mitochondrial demise and ensuing cell death. In this model system, the trypsin-like serine protease inhibitor Nα-tosyl-l-lysine chloromethyl ketone hydrochloride (TLCK) inhibited mitochondrial damage and cell death. Mitochondrial morphology alterations, the impairment of the mitochondrial membrane potential and ATP depletion were prevented and, moreover, lipid peroxidation induced by glutamate was completely abolished. Strikingly, truncated Bid-induced cell death was not affected by TLCK, suggesting a detrimental activity of serine proteases upstream of Bid activation and mitochondrial demise. In summary, this study demonstrates the protective effect of serine protease inhibition by TLCK against oxytosis-induced mitochondrial damage and cell death. These findings indicate that TLCK-sensitive serine proteases play a crucial role in cell death mechanisms upstream of mitochondrial demise and thus, may serve as therapeutic targets in diseases, where oxidative stress and intrinsic pathways of PCD mediate neuronal cell death.

  2. Disruption of ten protease genes in the filamentous fungus Aspergillus oryzae highly improves production of heterologous proteins.

    Science.gov (United States)

    Yoon, Jaewoo; Maruyama, Jun-ichi; Kitamoto, Katsuhiko

    2011-02-01

    Proteolytic degradation by secreted proteases into the culture medium is one of the significant problems to be solved in heterologous protein production by filamentous fungi including Aspergillus oryzae. Double (tppA, and pepE) and quintuple (tppA, pepE, nptB, dppIV, and dppV) disruption of protease genes enhanced human lysozyme (HLY) and bovine chymosin (CHY) production by A. oryzae. In this study, we used a quintuple protease gene disruptant and performed successive rounds of disruption for five additional protease genes (alpA, pepA, AopepAa, AopepAd, and cpI), which were previously investigated by DNA microarray analyses for their expression. Gene disruption was performed by pyrG marker recycling with a highly efficient gene-targeting background (∆ligD) as previously reported. As a result, the maximum yields of recombinant CHY and HLY produced by a decuple protease gene disruptant were approximately 30% and 35%, respectively, higher than those produced by a quintuple protease gene disruptant. Thus, we successfully constructed a decuple protease gene disruptant possessing highly improved capability of heterologous protein production. This is the first report on decuple protease gene disruption that improved the levels of heterologous protein production by the filamentous fungus A. oryzae.

  3. Comparison of the genomes and transcriptomes associated with the different protease secretions of Aspergillus oryzae 100-8 and 3.042.

    Science.gov (United States)

    Zhao, Guozhong; Yao, Yunping; Hou, Lihua; Wang, Chunling; Cao, Xiaohong

    2014-10-01

    Aspergillus oryzae is used to produce traditional fermented foods and beverages. A. oryzae 3.042 produces a neutral protease and an alkaline protease but rarely an acid protease, which is unfavourable to soy-sauce fermentation. A. oryzae 100-8 was obtained by N(+) ion implantation mutagenesis of A. oryzae 3.042, and the protease secretions of these two strains are different. Sequencing the genome of A. oryzae 100-8 and comparing it to the genomes of A. oryzae 100-8 and 3.042 revealed some differences, such as single nucleotide polymorphisms, nucleotide deletion or insertion. Some of these differences may reflect the ability of A. oryzae to secrete proteases. Transcriptional sequencing and analysis of the two strains during the same growth processes provided further insights into the genes and pathways involved in protease secretion.

  4. Proteases and protease inhibitors of urinary extracellular vesicles in diabetic nephropathy.

    Science.gov (United States)

    Musante, Luca; Tataruch, Dorota; Gu, Dongfeng; Liu, Xinyu; Forsblom, Carol; Groop, Per-Henrik; Holthofer, Harry

    2015-01-01

    Diabetic nephropathy (DN) is one of the major complications of diabetes mellitus (DM), leads to chronic kidney disease (CKD), and, ultimately, is the main cause for end-stage kidney disease (ESKD). Beyond urinary albumin, no reliable biomarkers are available for accurate early diagnostics. Urinary extracellular vesicles (UEVs) have recently emerged as an interesting source of diagnostic and prognostic disease biomarkers. Here we used a protease and respective protease inhibitor array to profile urines of type 1 diabetes patients at different stages of kidney involvement. Urine samples were divided into groups based on the level of albuminuria and UEVs isolated by hydrostatic dialysis and screened for relative changes of 34 different proteases and 32 protease inhibitors, respectively. Interestingly, myeloblastin and its natural inhibitor elafin showed an increase in the normo- and microalbuminuric groups. Similarly, a characteristic pattern was observed in the array of protease inhibitors, with a marked increase of cystatin B, natural inhibitor of cathepsins L, H, and B as well as of neutrophil gelatinase-associated Lipocalin (NGAL) in the normoalbuminuric group. This study shows for the first time the distinctive alterations in comprehensive protease profiles of UEVs in diabetic nephropathy and uncovers intriguing mechanistic, prognostic, and diagnostic features of kidney damage in diabetes.

  5. Proteases and Protease Inhibitors of Urinary Extracellular Vesicles in Diabetic Nephropathy

    Directory of Open Access Journals (Sweden)

    Luca Musante

    2015-01-01

    Full Text Available Diabetic nephropathy (DN is one of the major complications of diabetes mellitus (DM, leads to chronic kidney disease (CKD, and, ultimately, is the main cause for end-stage kidney disease (ESKD. Beyond urinary albumin, no reliable biomarkers are available for accurate early diagnostics. Urinary extracellular vesicles (UEVs have recently emerged as an interesting source of diagnostic and prognostic disease biomarkers. Here we used a protease and respective protease inhibitor array to profile urines of type 1 diabetes patients at different stages of kidney involvement. Urine samples were divided into groups based on the level of albuminuria and UEVs isolated by hydrostatic dialysis and screened for relative changes of 34 different proteases and 32 protease inhibitors, respectively. Interestingly, myeloblastin and its natural inhibitor elafin showed an increase in the normo- and microalbuminuric groups. Similarly, a characteristic pattern was observed in the array of protease inhibitors, with a marked increase of cystatin B, natural inhibitor of cathepsins L, H, and B as well as of neutrophil gelatinase-associated Lipocalin (NGAL in the normoalbuminuric group. This study shows for the first time the distinctive alterations in comprehensive protease profiles of UEVs in diabetic nephropathy and uncovers intriguing mechanistic, prognostic, and diagnostic features of kidney damage in diabetes.

  6. THERMOPHILIC BACILLUS LICHENIFORMIS RBS 5 ISOLATED FROM HOT TUNISIAN SPRING CO-PRODUCING ALKALINE AND THERMOSTABLE α-AMYLASE AND PROTEASE ENZYMES

    Directory of Open Access Journals (Sweden)

    Rakia Ben Salem

    2016-06-01

    Full Text Available Bacillus licheniformis RBS 5 was isolated from thermal spring in Tunisia. The isolate coproduce α-amylase and protease enzymes. The α-amylase activity showed an optimal activity at approximately 65°C and in wide pH interval ranging from 4 to 9. This enzyme was stable over the range of 45 to 70°C after 30 min of incubation and in the pH range of 8 to 10. Protease activity was optimal; at 80°C, pH 12. This enzyme was stable until 60°C over the pH range of 10 to 12. EDTA at concentration of 5 mM reduces slightly both activities evoking the serine alkaline protease. Cationic ions (Ca2+, Cu2+, Zn2+, and Mg 2+ have an inhibition effect on α-amylase. However, protease activity was enhanced by Ca2+, Cu2+ and Mg 2+; the other cations reduce slightly the proteolytic activity. SDS and H2O2 were found as inhibitors for both activities whereas Triton X-100 and perfume have no effect. Taken together, these traits make protease activity of B. licheniformis RBS 5 as efficient for use in detergent industry.

  7. Escherichia coli contains a soluble ATP-dependent protease (Ti) distinct from protease La

    Energy Technology Data Exchange (ETDEWEB)

    Hwang, B.J.; Park, W.J.; Chung, C.H.; Goldberg, A.L.

    1987-08-01

    The energy requirement for protein breakdown in Escherichia coli has generally been attributed to the ATP-dependence of protease La, the lon gene product. The authors have partially purified another ATP-dependent protease from lon/sup -/ cells that lack protease La (as shown by immunoblotting). This enzyme hydrolyzes (/sup 3/H)methyl-casein to acid-soluble products in the presence of ATP and Mg/sup 2 +/. ATP hydrolysis appears necessary for proteolytic activity. Since this enzyme is inhibited by diisopropyl fluorophosphate, it appears to be a serine protease, but it also contains essential thiol residues. They propose to name this enzyme protease Ti. It differs from protease La in nucleotide specificity, inhibitor sensitivity, and subunit composition. On gel filtration, protease Ti has an apparent molecular weight of 370,000. It can be fractionated by phosphocellulose chromatography or by DEAE chromatography into two components with apparent molecular weights of 260,000 and 140,000. When separated, they do not show preteolytic activity. One of these components, by itself, has ATPase activity and is labile in the absence of ATP. The other contains the diisopropyl fluorophosphate-sensitive proteolytic site. These results and the similar findings of Katayama-Fujimura et al. indicate that E. coli contains two ATP-hydrolyzing proteases, which differ in many biochemical features and probably in their physiological roles.

  8. Escherichia coli contains a soluble ATP-dependent protease (Ti) distinct from protease La

    International Nuclear Information System (INIS)

    Hwang, B.J.; Park, W.J.; Chung, C.H.; Goldberg, A.L.

    1987-01-01

    The energy requirement for protein breakdown in Escherichia coli has generally been attributed to the ATP-dependence of protease La, the lon gene product. The authors have partially purified another ATP-dependent protease from lon - cells that lack protease La (as shown by immunoblotting). This enzyme hydrolyzes [ 3 H]methyl-casein to acid-soluble products in the presence of ATP and Mg 2+ . ATP hydrolysis appears necessary for proteolytic activity. Since this enzyme is inhibited by diisopropyl fluorophosphate, it appears to be a serine protease, but it also contains essential thiol residues. They propose to name this enzyme protease Ti. It differs from protease La in nucleotide specificity, inhibitor sensitivity, and subunit composition. On gel filtration, protease Ti has an apparent molecular weight of 370,000. It can be fractionated by phosphocellulose chromatography or by DEAE chromatography into two components with apparent molecular weights of 260,000 and 140,000. When separated, they do not show preteolytic activity. One of these components, by itself, has ATPase activity and is labile in the absence of ATP. The other contains the diisopropyl fluorophosphate-sensitive proteolytic site. These results and the similar findings of Katayama-Fujimura et al. indicate that E. coli contains two ATP-hydrolyzing proteases, which differ in many biochemical features and probably in their physiological roles

  9. Effects of the toxic dinoflagellate, Gymnodinium catenatum on hydrolytic and antioxidant enzymes, in tissues of the giant lions-paw scallop Nodipecten subnodosus.

    Science.gov (United States)

    Estrada, Norma; de Jesús Romero, Maria; Campa-Córdova, Angel; Luna, Antonio; Ascencio, Felipe

    2007-11-01

    This study documents effects of the toxic dinoflagellate Gymnodinium catenatum, a producer of paralytic shellfish poison, on juvenile farmed (5.9+/-0.39 cm) giant lions-paw scallop Nodipecten subnodosus. Scallops were fed bloom concentrations of toxic dinoflagellate G. catenatum for 7 h. The effect of the toxic dinoflagellate in different tissues was determined by analysis of antioxidant enzymes (catalase, superoxide dismutase, gluthathione peroxidase), thiobarbituric acid reactive substances (lipid peroxidation), and hydrolytic enzymes (proteases, glycosidases, phosphatases, lipases, and esterases). Histopathological photos record the effects of the toxic dinoflagellate in various tissues. The results show that juvenile lions-paw scallops produce pseudo-feces, partially close their shell, increase melanization, and aggregate hemocytes. Several enzymes were affected and could serve as biological markers. In general, the adductor muscle was not affected. In the digestive gland, some enzymes could be the result of defensive and digestive processes. Gills and mantle tissue were markedly affected because these sites respond first to toxic dinoflagellates, leading to the idea that proteolytic cascades could be involved.

  10. Vibrio Type III Effector VPA1380 Is Related to the Cysteine Protease Domain of Large Bacterial Toxins

    Science.gov (United States)

    Calder, Thomas; Kinch, Lisa N.; Fernandez, Jessie; Salomon, Dor; Grishin, Nick V.; Orth, Kim

    2014-01-01

    Vibrio parahaemolyticus is a Gram-negative halophilic bacterium and one of the leading causes of food-borne gastroenteritis. Its genome harbors two Type III Secretion Systems (T3SS1 and T3SS2), but only T3SS2 is required for enterotoxicity seen in animal models. Effector proteins secreted from T3SS2 have been previously shown to promote colonization of the intestinal epithelium, invasion of host cells, and destruction of the epithelial monolayer. In this study, we identify VPA1380, a T3SS2 effector protein that is toxic when expressed in yeast. Bioinformatic analyses revealed that VPA1380 is highly similar to the inositol hexakisphosphate (IP6)-inducible cysteine protease domains of several large bacterial toxins. Mutations in conserved catalytic residues and residues in the putative IP6-binding pocket abolished toxicity in yeast. Furthermore, VPA1380 was not toxic in IP6 deficient yeast cells. Therefore, our findings suggest that VPA1380 is a cysteine protease that requires IP6 as an activator. PMID:25099122

  11. Vibrio type III effector VPA1380 is related to the cysteine protease domain of large bacterial toxins.

    Directory of Open Access Journals (Sweden)

    Thomas Calder

    Full Text Available Vibrio parahaemolyticus is a Gram-negative halophilic bacterium and one of the leading causes of food-borne gastroenteritis. Its genome harbors two Type III Secretion Systems (T3SS1 and T3SS2, but only T3SS2 is required for enterotoxicity seen in animal models. Effector proteins secreted from T3SS2 have been previously shown to promote colonization of the intestinal epithelium, invasion of host cells, and destruction of the epithelial monolayer. In this study, we identify VPA1380, a T3SS2 effector protein that is toxic when expressed in yeast. Bioinformatic analyses revealed that VPA1380 is highly similar to the inositol hexakisphosphate (IP6-inducible cysteine protease domains of several large bacterial toxins. Mutations in conserved catalytic residues and residues in the putative IP6-binding pocket abolished toxicity in yeast. Furthermore, VPA1380 was not toxic in IP6 deficient yeast cells. Therefore, our findings suggest that VPA1380 is a cysteine protease that requires IP6 as an activator.

  12. A Subset of Membrane-Altering Agents and γ-Secretase Modulators Provoke Nonsubstrate Cleavage by Rhomboid Proteases

    Directory of Open Access Journals (Sweden)

    Siniša Urban

    2014-09-01

    Full Text Available Rhomboid proteases are integral membrane enzymes that regulate cell signaling, adhesion, and organelle homeostasis pathways, making substrate specificity a key feature of their function. Interestingly, we found that perturbing the membrane pharmacologically in living cells had little effect on substrate processing but induced inappropriate cleavage of nonsubstrates by rhomboid proteases. A subclass of drugs known to modulate γ-secretase activity acted on the membrane directly and induced nonsubstrate cleavage by rhomboid proteases but left true substrate cleavage sites unaltered. These observations highlight an active role for the membrane in guiding rhomboid selectivity and caution that membrane-targeted drugs should be evaluated for cross-activity against membrane-resident enzymes that are otherwise unrelated to the intended drug target. Furthermore, some γ-secretase-modulating activity or toxicity could partly result from global membrane effects.

  13. Nutritional value and proteases of Lentinus citrinus produced by solid state fermentation of lignocellulosic waste from tropical region

    Directory of Open Access Journals (Sweden)

    Ana Rita Gaia Machado

    2016-09-01

    Full Text Available This paper examined the growth and yield performance of Lentinus citrinus on cupuaçu exocarp (Theobroma grandiflorum mixed with litter (CE + LI or rice bran (Oryza sativa (CE + RB in the ratio of 2:1 (800 g:200 g to investigate the nutritional composition and proteolytic potential of the fruiting body produced. Significance values of yield were determined on substrate combinations. In CE + LI the biological efficiency of the mushrooms was 93.5% and the content of fat (4.5%, fiber (11.0%, protein (27.0% and amino acids were higher when compared with CE + RB. Among the amino acids, the amount of glutamic acid, aspartic acid, alanine, arginine and leucine was high. The biological efficiency on CE + RB reduced to 84.2% and based on the nutritional value, carbohydrates (53.59%, energy (324.33 kcal and minerals such as zinc, iron, copper, potassium and phosphorus were higher in this substrate combination. Protease activity from fruiting body was significant in CE + LI (463.55 U/mL. This protease showed an optimal activity at 50 °C in neutral and alkaline pH with maximum stability at 30 °C at alkaline pH. This is the first report of L. citrinus fruiting body nutritional composition with potential for human food and application in industrial processes.

  14. Bacterial proteases and virulence

    DEFF Research Database (Denmark)

    Frees, Dorte; Brøndsted, Lone; Ingmer, Hanne

    2013-01-01

    signalling to short-circuit host cell processes. Common to both intra- and extracellular proteases is the tight control of their proteolytic activities. In general, substrate recognition by the intracellular proteases is highly selective which is, in part, attributed to the chaperone activity associated...... tolerance to adverse conditions such as those experienced in the host. In the membrane, HtrA performs similar functions whereas the extracellular proteases, in close contact with host components, pave the way for spreading infections by degrading host matrix components or interfering with host cell...... with the proteases either encoded within the same polypeptide or on separate subunits. In contrast, substrate recognition by extracellular proteases is less selective and therefore these enzymes are generally expressed as zymogens to prevent premature proteolytic activity that would be detrimental to the cell...

  15. Production and Characterization of Alkaline Protease from a High Yielding and Moderately Halophilic Strain of SD11 Marine Bacteria

    Directory of Open Access Journals (Sweden)

    Hongxia Cui

    2015-01-01

    Full Text Available A marine bacterium SD11, which was isolated from sea muds (Geziwo Qinhuangdao Sea area, China, was used to produce thermostable alkaline serine nonmetal protease in the skim milk agar plate medium with 10% NaCl. The optimal temperature about the manufacture of the extracellular protease was ~60°C. The crude enzyme was stable at 20–50°C. The activity was retained to 60% and 45% after heating for 1 h at 60 and 70°C, respectively. The protease was highly active in a wide pH scope (8.0–10.0 and maximum protease activity exhibited at pH 10.0. The activity was restrained by phenylmethylsulfonyl fluoride (PMSF but mildly increased (~107% in the presence of ethylenediaminetetraacetic acid (EDTA, indicating that the production contains serine-protease(s and nonmetal protease(s. Moreover, the crude alkaline protease was active with the 5 mM Ca2+, Mn2+, Zn2+, Cu2+, Na+, and K+ that existed separately. In addition, the protease showed superduper stability when exposed to an anionic surfactant (5 mM SDS, an oxidizing agent (1% H2O2, and several organic solvents (methanol, isopropanol, and acetone. These results suggest that the marine bacterium SD11 is significant in the industry from the prospects of its ability to produce thermally stable alkaline protease.

  16. Characterization of proteases from Planomicrobium sp. L-2 isolated from the gastrointestinal tract of Octopus variabilis (Sasaki)

    Science.gov (United States)

    Jin, Yulan; Wang, Yurong; Xiao, Lin; Lin, Xiukun

    2016-05-01

    A crude protease produced from Planomicrobium sp. L-2 is described, and its effectiveness as an additive in liquid detergent evaluated. We isolate the protease-producing Planomicrobium sp. L-2 from the gastrointestinal tract of Octopus variabilis. At least three caseinolytic protease clear bands were observed in zymogram analysis. The crude alkaline protease was highly tolerant of a pH range from 7.0 to 9.0, and temperatures to 50°C after incubation for 1 h. Proteolytic enzymes were stable towards three surfactants (5% Tween 80, 1% Triton X-100 and 0.05% SDS) and an oxidizing agent (1% hydrogen peroxide), in addition to being highly stable and compatible with popular commercial laundry powered detergent brands available in China. Our study demonstrates the potential these proteases have for development into novel classes of detergent additive. This study also suggests that the gastrointestinal tract of Octopus variabilis may be a rich source of commercially valuable strains of enzyme.

  17. Production and partial characterization of alkaline protease from bacillus subtilis mutant induced by gamma radiation

    International Nuclear Information System (INIS)

    Ibrahim, H.M.M.; Bashandy, A.S.

    2010-01-01

    Fourteen bacterial isolates belonging to B.subtilis were locally isolated from soil and screened for alkaline protease production. Only one strain, the highly potent one, was selected as alkaline protease producer and subjected to further studies to optimize its production. Alkaline protease production was maximum at 35 degree C after 72 h of incubation and at ph 10.0. molasses as a carbon source and combination of peptone and yeast extract as a nitrogen source enhanced greatly alkaline protease production. The mutant strain induced by gamma radiation showed higher alkaline protease production by 1.97 fold as compared with the parent strain. The alkaline protease enzyme was active at 40 degree C and ph 10. It was compatible with many commercial detergents and showed high stability (84 %) of its original activity with Ariel detergent. Moreover, alkaline protease enhanced the washing performance, and retained 95 % of its activity in the formulated dry powder.

  18. SjAPI, the first functionally characterized Ascaris-type protease inhibitor from animal venoms.

    Directory of Open Access Journals (Sweden)

    Zongyun Chen

    Full Text Available BACKGROUND: Serine protease inhibitors act as modulators of serine proteases, playing important roles in protecting animal toxin peptides from degradation. However, all known serine protease inhibitors discovered thus far from animal venom belong to the Kunitz-type subfamily, and whether there are other novel types of protease inhibitors in animal venom remains unclear. PRINCIPAL FINDINGS: Here, by screening scorpion venom gland cDNA libraries, we identified the first Ascaris-type animal toxin family, which contains four members: Scorpiops jendeki Ascaris-type protease inhibitor (SjAPI, Scorpiops jendeki Ascaris-type protease inhibitor 2 (SjAPI-2, Chaerilus tricostatus Ascaris-type protease inhibitor (CtAPI, and Buthus martensii Ascaris-type protease inhibitor (BmAPI. The detailed characterization of Ascaris-type peptide SjAPI from the venom gland of scorpion Scorpiops jendeki was carried out. The mature peptide of SjAPI contains 64 residues and possesses a classical Ascaris-type cysteine framework reticulated by five disulfide bridges, different from all known protease inhibitors from venomous animals. Enzyme and inhibitor reaction kinetics experiments showed that recombinant SjAPI was a dual function peptide with α-chymotrypsin- and elastase-inhibiting properties. Recombinant SjAPI inhibited α-chymotrypsin with a Ki of 97.1 nM and elastase with a Ki of 3.7 μM, respectively. Bioinformatics analyses and chimera experiments indicated that SjAPI contained the unique short side chain functional residues "AAV" and might be a useful template to produce new serine protease inhibitors. CONCLUSIONS/SIGNIFICANCE: To our knowledge, SjAPI is the first functionally characterized animal toxin peptide with an Ascaris-type fold. The structural and functional diversity of animal toxins with protease-inhibiting properties suggested that bioactive peptides from animal venom glands might be a new source of protease inhibitors, which will accelerate the

  19. Improvement of shelf life of soymilk using immobilized protease of Oerskovia xanthineolytica NCIM 2839.

    Science.gov (United States)

    Sahoo, A K; Gaikwad, V S; Ranveer, R C; Dandge, P B; Waghmare, S R

    2016-12-01

    Protease enzyme has lot of commercial applications, so the cost-effective production of protease using sunflower oil seed waste was carried out from Oerskovia xanthineolyitca NCIM 2839. The maximum protease production was after 24 h of incubation with 2.5 % oil seed waste concentration. O. xanthineolytica was found to produce two proteases-P1 and P2. The proteases were purified using 60 % cold acetone precipitation and DEAE-cellulose ion exchange chromatography. SDS-PAGE revealed molecular weight of P1 and P2 was 36 and 24 kDa, respectively. P1 and P2 were optimally active at pH 7.0 and pH 7.5 at temperature 35 and 40 °C, respectively. Analysis of hydrolyzed product of P1 and P2 by HPLC reveals that the P1 has endoprotease and P2 has exoprotease activity. The treated soy milk with immobilized proteases showed increased shelf life and removal of off flavor.

  20. A sensitive fluorescence reporter for monitoring quorum sensing regulated protease production in Vibrio harveyi.

    Science.gov (United States)

    Rajamani, Sathish; Sayre, Richard T

    2011-02-01

    Many bacteria produce and secrete proteases during host invasion and pathogenesis. Vibrio harveyi, an opportunistic pathogen of shrimp, is known to use a two-component quorum sensing (QS) mechanism for coordination of gene expression including protease secretion at high population densities. We examined the role of V. harveyi's QS signaling molecules, N-(3-hydroxybutanoyl)-L-homoserine lactone (AI-1) and the boron derivative of autoinducer-2 (BAI-2) in extracellular protease production. A fusion protein, M3CLPY (Rajamani et al., 2007), consisting of a large protease sensitive BAI-2 mutant receptor LuxP (~38kDa) flanked by two protease insensitive cyan and yellow variants of GFP (~28kDa each) was utilized as a substrate to detect secreted protease activity. The M3CLPY fusion, with the addition of wild-type V. harveyi (BB120) cell-free culture filtrate showed a time-dependent loss in fluorescence resonance energy transfer (FRET) associated with the cleavage of the LuxP linker protein and hence separation of the two fluorophores. This cleavage of LuxP linker protein leading to decreased FRET efficiency was further confirmed by immunoblotting using anti-GFP antibody. The addition of cell-free filtrates from strains defective in one or both of the two-component QS pathways: luxN(-) (defective in AI-1), luxS(-) (defective in BAI-2), and luxN(-)/luxS(-) (defective in both AI-1/BAI-2) showed differential levels of protease production. The observed protease activities were most pronounced in wild-type, followed by the AI-1 defective mutant (BB170) and the least for luxS(-) mutant (MM30) and luxN(-)/luxS(-) double mutant (MM32) strains. Incidentally, the lowest protease producing strains MM30 and MM32 were both defective in BAI-2 production. This observation was validated by addition of synthetic BAI-2 to MM30 and MM32 strains to restore protease production. Our results indicate that BAI-2 signaling in the two-component QS pathway plays the key role in regulating

  1. A parametric study ot protease production in batch and fed-batch cultures of Bacillus firmus.

    Science.gov (United States)

    Moon, S H; Parulekar, S J

    1991-03-05

    Proteolytic enzymes produced by Bacillus species find a wide variety of applications in brewing, detergent, food, and leather industries. Owing to significant differences normally observed in culture conditions promoting cell growth and those promoting production of metabolites such as enzymes, for increased efficacy of bioreactor operations it is essential to identify these sets of conditions (including medium formulation). This study is focused on formulation of a semidefined medium that substantially enhances synthesis and secretion of an alkaline protease in batch cultures of Bacillus firmus NRS 783, a known superior producer of this enzyme. The series of experiments conducted to identify culture conditions that lead to improved protease production also enables investigation of the regulatory effects of important culture parameters including pH, dissolved oxygen, and concentrations of nitrogen and phosphorous sources and yeast extract in the medium on cell growth, synthesis and secretion of protease, and production of two major nonbiomass products, viz., acetic acid and ethanol. Cell growth and formation of the three nonbiomass products are hampered significantly under nitrogen, phosphorous, or oxygen limitation, with the cells being unable to grow in an oxygen-free environment. Improvement in protease production is achieved with respect to each culture parameter, leading in the process to 80% enhancement in protease activity over that attained using media reported in the literature. Results of a few fed-batch experiments with constant feed rate, conducted to examine possible enhancement in protease production and to further investigate repression of protease synthesis by excess of the principal carbon and nitrogen sources, are also discussed. The detailed investigation of stimulatory and repressory effects of simple and complex nutrients on protease production and metabolism of Bacillus firmus conducted in this study will provide useful guidelines for design

  2. Enhanced Productivity of Serine Alkaline Protease by Bacillus sp. Using Soybean as Substrate

    Directory of Open Access Journals (Sweden)

    Saurabh, S.

    2007-01-01

    Full Text Available The growth and protease production by Bacillus sp. (SBP-29 was examined for poultry processing industries. The maximum protease activity was 3028 U/mL using 1.5% (w/v of soybean meal as substrate. Soybean meal is an inexpensive and readily available, thus it can be used as the cost effective crude material for the production of an extracellular protease. Inorganic nitrogen sources proved to be less favorable, for protease production as strong catabolic repression was observed with ammonium ions. A maximum of 3208 U/mL of protease was produced in 18 h in a 10L bioreactor. The enzyme has temperature and pH optima of 60°C and 9.5 respectively. However, the temperature stability range is from 20-90 °C and pH stability range is from 6.0–12.0. The protease was completely inhibited by phenylmethylsulfonyl fluoride (PMSF and diodopropyl fluorophosphate (DFP, with little increase (10-15% in the production of upon addition of Ca++ and Mg++.

  3. Production of rennin-like acid protease by Mucor pusillus through submerged fermentation

    International Nuclear Information System (INIS)

    Daudi, S.; Mukhtar, H.; Rehman, A.U.; Haq, I.U.

    2015-01-01

    The present study is concerned with the isolation and screening of Mucor species for the production of acid protease in shake flasks. Out of eight mould cultures evaluated, five were isolated from soil and three were provided from the Institute of Industrial Biotechnology, Government College University, Lahore. Of all the isolates tested, Mucor pusillus IHS6 was found to be the best producer of rennin-like acid protease producing 75 U/ml of the enzyme. Different agricultural byproducts were evaluated as fermentation substrates and maximum enzyme synthesis (61 U/ml) was obtained when rapeseed meal was used as a substrate. Optimum pH and fermentation period for the production of protease were 5.5 (56U/ml) and 72 hrs (55U/ml), respectively. The production of protease by Mucor pusillus IHS6 was also studied by adding different carbon and nitrogen sources to the fermentation medium. Fructose at a concentration of 1.5% (66 U/ml) and yeast extract at a concentration of 2% (68.2 U/ml) and ammonium chloride at a concentration of 0.1% (67U/ml) were found to be the best carbon and nitrogen (organic and inorganic) sources respectively. Spore inoculum at a concentration of 1% (68.4 U/ml) was found to be the best for protease production by Mucor pusillus. The fermentation broth was found to have strong milk clotting activity with 200 RU. (author)

  4. Production of alkaline protease by Teredinobacter turnirae cells ...

    African Journals Online (AJOL)

    The conditions for immobilizing the new alkaline protease-producing bacteria strain Teredinobacter turnirae by entrapment in calcium alginate gel were investigated. The influence of alginate concentration (20, 25 and 30 g/l) and initial cell loading (ICL) on enzyme production were studied. The production of alkaline ...

  5. Purification and Properties of an Insecticidal Metalloprotease Produced by Photorhabdus luminescens Strain 0805-P5G, the Entomopathogenic Nematode Symbiont

    Directory of Open Access Journals (Sweden)

    Feng-Chia Hsieh

    2012-12-01

    Full Text Available A total of 13 Photorhabdus luminescens strains were screened for proteolytic activity. The P. luminescens strain 0805-P5G had the highest activity on both skim milk and gelatin plates. The protease was purified to electrophoretical homogeneity by using a two-step column chromatographic procedure. It had a molecular weight of 51.8 kDa, as determined by MALDI-TOF mass spectrometry. The optimum pH, temperature, as well as pH and thermal stabilities were 8, 60 °C, 5–10, and 14–60 °C, respectively. It was completely inhibited by EDTA and 1,10-phenanthroline. Bioassay of the purified protease against Galleria mellonella by injection showed high insecticidal activity. The protease also showed high oral toxicity to the diamondback moth (Plutella xylostella of a Taiwan field-collected strain, but low toxicity to an American strain. To our knowledge, this is the first report to demonstrate that the purified protease of P. luminescens has direct toxicity to P. xylostella and biopesticide potentiality.

  6. Effect of amino acids on the repression of alkaline protease synthesis in haloalkaliphilic Nocardiopsis dassonvillei

    Directory of Open Access Journals (Sweden)

    Amit K. Sharma

    2016-12-01

    Full Text Available A newly isolated salt-tolerant alkaliphilic actinomycete, Nocardiopsis dassonvillei strain OK-18 grows on mineral salts medium with glucose as carbon source. It also grows and produces protease with amino acids as sole carbon source. The synthesis of extracellular alkaline protease parallel to growth was repressible by substrate concentrations. The absolute production of the protease was delinked with growth under nutritional stress, as protease production was high, despite poor growth. When amino acids served as the sole source of carbon and nitrogen, the enzyme production was significantly controlled by the number of amino acids. Maximal protease production was achieved with proline, asparagine, tyrosine, alanine, methionine and valine as sole source of carbon and nitrogen in minimal medium. With the increasing number of different amino acids in the presence and absence of glucose, the protease production was synergistically lower as compared to complex medium.

  7. Effect of steam activation of biochar produced from a giant Miscanthus on copper sorption and toxicity.

    Science.gov (United States)

    Shim, Taeyong; Yoo, Jisu; Ryu, Changkook; Park, Yong-Kwon; Jung, Jinho

    2015-12-01

    This study aims to evaluate the physiochemical properties, sorption characteristics, and toxicity effects of biochar (BC) produced from Miscanthus sacchariflorus via slow pyrolysis at 500°C and its steam activation product (ABC). Although BC has a much lower surface area than ABC (181 and 322m(2)g(-1), respectively), the Cu sorption capacities of BC and ABC are not significantly different (p>0.05). A two-compartment model successfully explains the sorption of BC and ABC as being dominated by fast and slow sorption processes, respectively. In addition, both BC and ABC efficiently eliminate the toxicity of Cu towards Daphnia magna. However, ABC itself induced acute toxicity to D. magna, which is possibly due to increased aromaticity upon steam activation. These findings suggest that activation of BC produced from M. sacchariflorus at a pyrolytic temperature of 500°C may not be appropriate in terms of Cu sorption and toxicity reduction. Copyright © 2015 Elsevier Ltd. All rights reserved.

  8. Regulation of cuticle-degrading subtilisin proteases from the entomopathogenic fungi, Lecanicillium spp: implications for host specificity.

    Science.gov (United States)

    Bye, Natasha J; Charnley, A Keith

    2008-01-01

    The ability to produce cuticle-degrading proteases to facilitate host penetration does not distinguish per se entomopathogenic fungi from saprophytes. However, adapted pathogens may produce host-protein specific enzymes in response to cues. This possibility prompted an investigation of the regulation of isoforms of the subtilisin Pr1-like proteases from five aphid-pathogenic isolates of Lecanicillium spp. Significant differences were found in substrate specificity and regulation of Pr1-like proteases between isoforms of the same isolate and between different isolates. For example, the pI 8.6 isoform from KV71 was considerably more active against aphid than locust cuticle and was induced specifically by N-acetylglucosamine (NAG). Isoform pI 9.1 from the same isolate was only produced on insect cuticle while most other isoforms were more prominent on chitin containing substrates but not induced by NAG. The ability to regulate isoforms independently may allow production at critical points in host penetration. Appearance of proteases (not subtilisins) with pI 4.2 and 4.4 only on aphid cuticle was a possible link with host specificity of KV71. The absence of C or N metabolite repression in subtilisins from KV42 is unusual for pathogen proteases and may help to account for differences in virulence strategy between aphid-pathogenic isolates of Lecanicillium longisporum (unpublished data).

  9. Deep-sea fungi as a source of alkaline and cold-tolerant proteases

    Digital Repository Service at National Institute of Oceanography (India)

    Damare, S.R.; Raghukumar, C.; Muraleedharan, U.; Raghukumar, S.

    ,5]. Fungi and their enzymes from the deep-sea environment have received scant attention. Proteins and peptides constitute a substantial portion of the organic nutrients present in the deep-sea sediments as well as suspended particulate matter [6... alkaline protease using a qualitative plate assay on Czapek Dox agar (CDA) supplemented with 1% skimmed milk powder (Trade name Sagar, India). Clearance zone produced around the fungal colonies in plates indicated protease positive reaction [19...

  10. Screening and characterization of alkaline protease produced by a pink pigmented facultative methylotrophic (PPFM strain, MSF 46

    Directory of Open Access Journals (Sweden)

    Shanmugam Jayashree

    2014-12-01

    Full Text Available Among the various bacterial isolates, the strain MSF 46 isolated from thorn forest soil samples, Tamil Nadu, India, was screened and characterized for its proteolytic activity. While the 16S rRNA sequencing and biochemical characterization revealed that the strain closely resembles Methylobacterium sp., methylotrophy of the strain was confirmed by the sequence homology of mxaF gene with other relative Methylobacterium sp. The alkaline protease was purified to homogeneity using DEAE cellulose ion exchange chromatography, with a 5.2-fold increase in specific activity and 34% recovery. The apparent molecular weight of the enzyme was determined as 40 kDa by SDS–PAGE study. The pH and temperature optima were 9.0 and 50 °C respectively with maximum protease activity of 1164 U/ml. Protease of MSF 46 was active in a broad pH range 7.0–11.0 with a maximum at pH 8.5 and exhibited thermostability at 50 °C. The enzyme activity was inhibited by PMSF but showed stability with Tween 20, Triton X-100 and hydrogen peroxide. Nearly 30% reduction in enzyme activity was observed in the presence of EDTA and DTT. The enzyme was effective in hydrolyzing gelatin, skimmed milk and blood clots and exhibited the potency for dehairing of goat skin and removing blood stain from cotton fabric. Significant morphological changes were observed under scanning electron microscope between cells grown in normal and casein amended medium. This first detailed report on the production of alkaline protease by a PPFM strain appears promising toward development of protocols for mass production, study of the molecular mechanism and other applications.

  11. Production, purification and characterization of an aspartic protease from Aspergillus foetidus.

    Science.gov (United States)

    Souza, Paula Monteiro; Werneck, Gabriela; Aliakbarian, Bahar; Siqueira, Felix; Ferreira Filho, Edivaldo Ximenes; Perego, Patrizia; Converti, Attilio; Magalhães, Pérola Oliveira; Junior, Adalberto Pessoa

    2017-11-01

    An acidic thermostable protease was extracellularly produced either in shake flask or in stirred tank bioreactor by an Aspergillus foetidus strain isolated from the Brazilian savanna soil using different nitrogen sources. Its maximum activity (63.7 U mL -1 ) was obtained in a medium containing 2% (w/v) peptone. A cultivation carried out in a 5.0 L stirred-tank bioreactor provided a maximum protease activity 9% lower than that observed in Erlenmeyer flasks, which was obtained after a significantly shorter (by 16-29%) time. Protease purification by a combination of gel-filtration chromatography resulted in a 16.9-fold increase in specific activity (248.1 U g -1 ). The estimated molecular weight of the purified enzyme was 50.6 kDa, and the optimal pH and temperature were 5.0 and 55 °C, respectively. The enzyme was completely inhibited by pepstatin A, and its activity enhanced by some metals. According to the inhibition profiles, it was confirmed that the purified acid protease belongs to the aspartic protease type. These results are quite promising for future development of large-scale production of such protease, which can be useful in biotechnological applications requiring high enzyme activity and stability under acidic conditions. Copyright © 2017 Elsevier Ltd. All rights reserved.

  12. Insecticide resistance and intracellular proteases.

    Science.gov (United States)

    Wilkins, Richard M

    2017-12-01

    Pesticide resistance is an example of evolution in action with mechanisms of resistance arising from mutations or increased expression of intrinsic genes. Intracellular proteases have a key role in maintaining healthy cells and in responding to stressors such as pesticides. Insecticide-resistant insects have constitutively elevated intracellular protease activity compared to corresponding susceptible strains. This increase was shown for some cases originally through biochemical enzyme studies and subsequently putatively by transcriptomics and proteomics methods. Upregulation and expression of proteases have been characterised in resistant strains of some insect species, including mosquitoes. This increase in proteolysis results in more degradation products (amino acids) of intracellular proteins. These may be utilised in the resistant strain to better protect the cell from stress. There are changes in insect intracellular proteases shortly after insecticide exposure, suggesting a role in stress response. The use of protease and proteasome inhibitors or peptide mimetics as synergists with improved application techniques and through protease gene knockdown using RNA interference (possibly expressed in crop plants) may be potential pest management strategies, in situations where elevated intracellular proteases are relevant. © 2017 Society of Chemical Industry. © 2017 Society of Chemical Industry.

  13. Purification and characterisation of a salt-stable protease from the halophilic archaeon Halogranum rubrum.

    Science.gov (United States)

    Gao, Ruichang; Shi, Tong; Liu, Xiangdong; Zhao, Mengqin; Cui, Henglin; Yuan, Li

    2017-03-01

    Because proteases play an important role in the fermentation of fish sauce, the purification and characterisation of an extracellular protease from the halophilic archaeon Halogranum rubrum was investigated. The molecular mass of the protease was estimated to be approximately 47 kDa based on sodium dodecyl sulfate-polyacrylamide gel electropheresis (SDS-PAGE) and native-PAGE analysis. The optimum conditions for catalytic activity were pH 8.0 and 50°C. The protease showed alkaline stability (pH 7.0-10.0). The protease also exhibited novel catalytic ability over a broad range of salinity (NaCl 0-3 mol L -1 ). Calcium ion enhanced the proteolytic activity of the enzyme. The K m and V max values of the purified protease for casein were calculated to be 4.89 mg mL -1 and 1111.11 U mL -1 , respectively. The protease was strongly inhibited by ethylenediamine tetraacetic acid (EDTA) and phenylmethanesulfonyl fluoride (PMSF). Meanwhile, the protease was stable in the presence of Triton X-100, isopropanol, ethanol or dithio-bis-nitrobenzoic (DTNB), but was inhibited by sodium dodecyl sulfate (SDS), dimethyl sulfoxide (DMSO) or methanol. MALDI -TOF/TOF MS analysis revealed that the protease shared some functional traits with protease produced by Halogranum salarium. Furthermore, it exhibited high hydrolytic activity on silver carp myosin protein. The protease is an alkaline and salt-tolerant enzyme that hydrolyses silver carp myosin with high efficiency. These excellent characteristics make this protease an attractive candidate for industrial use in low-salt fish sauce fermentation. © 2016 Society of Chemical Industry. © 2016 Society of Chemical Industry.

  14. Improved Protease-Targeting and Biopharmaceutical Properties of Novel Prodrugs of Ganciclovir.

    Science.gov (United States)

    Sun, Kefeng; Xu, Hao; Hilfinger, John L; Lee, Kyung-Dall; Provoda, Chester J; Sabit, Hairat; Amidon, Gordon L

    2018-02-05

    The prodrug strategy has been frequently employed as a chemical approach for overcoming the disadvantages of existing parent drugs. In this report, we synthesized four monoester prodrugs of ganciclovir, an anticytomegalovirus drug, and demonstrated their potential advantages in protease-targeted activation and biopharmaceutical profiles over the parent compound. We demonstrated that these four prodrugs of ganciclovir, i.e., N-benzyloxycarbonyl-(L)-alanine-ganciclovir (CbzAlaGCV), N-benzyloxycarbonyl-(α,l)-aminobutyric acid-ganciclovir (CbzAbuGCV), N-acetyl-(l)-phenylalanine-(l)-alanine-ganciclovir (AcPheAlaGCV), and N-acetyl-(l)-phenylalanine-(α,l)-aminobutyric acid-ganciclovir (AcPheAbuGCV), are hydrolytically activated by the protease of human cytomegalovirus (hCMV), a serine protease that possesses intrinsic esterase activities. CbzAlaGCV and AcPheAlaGCV were found to be activated at a higher rate by the hCMV protease than CbzAbuGCV and AcPheAbuGCV. These ganciclovir prodrugs could potentially be targeted to selective activation by the hCMV protease which is only present at the viral infection sites, thereby achieving higher efficacy and lower systemic toxicity. The tissue stability, cellular uptake, and trans-epithelial transport of these ganciclovir prodrugs were also characterized. The N-acetylated dipeptide prodrugs of ganciclovir were found to be generally more stable than Cbz-amino acid prodrugs in various tissue matrices. Among the four prodrug candidates, AcPheAbuGCV was the most stable in human cell homogenates, plasma, and pooled liver microsomes. AcPheAbuGCV also possessed a superior cellular uptake profile and permeability across epithelial cell monolayers. Since the targeting and selective activation of a prodrug is determined by not only its rate of hydrolysis catalyzed by the hCMV protease target but also its biopharmaceutical properties, i.e., oral absorption and systemic availability, AcPheAbuGCV is considered the best overall candidate among

  15. An organic solvent-, detergent-, and thermo-stable alkaline protease from the mesophilic, organic solvent-tolerant Bacillus licheniformis 3C5.

    Science.gov (United States)

    Rachadech, W; Navacharoen, A; Ruangsit, W; Pongtharangkul, T; Vangnai, A S

    2010-01-01

    Bacillus licheniformis 3C5, isolated as mesophilic bacterium, exhibited tolerance towards a wide range of non-polar and polar organic solvents at 45 degrees C. It produced an extracellular organic solvent-stable protease with an apparent molecular mass of approximately 32 kDa. The inhibitory effect of PMSF and EDTA suggested it is likely to be an alkaline serine protease. The protease was active over abroad range of temperatures (45-70 degrees C) and pH (8-10) range with an optimum activity at pH 10 and 65 degrees C. It was comparatively stable in the presence ofa relatively high concentration (35% (v/v)) of organic solvents and various types of detergents even at a relatively high temperature (45 degrees C). The protease production by B. licheniformis 3C5 was growth-dependent. The optimization of carbon and nitrogen sources for cell growth and protease production revealed that yeast extract was an important medium component to support both cell growth and the protease production. The overall properties of the protease produced by B. licheniformis 3C5 suggested that this thermo-stable, solvent-stable, detergent-stable alkaline protease is a promising potential biocatalyst for industrial and environmental applications.

  16. An efficient procedure for the expression and purification of HIV-1 protease from inclusion bodies.

    Science.gov (United States)

    Nguyen, Hong-Loan Thi; Nguyen, Thuy Thi; Vu, Quy Thi; Le, Hang Thi; Pham, Yen; Trinh, Phuong Le; Bui, Thuan Phuong; Phan, Tuan-Nghia

    2015-12-01

    Several studies have focused on HIV-1 protease for developing drugs for treating AIDS. Recombinant HIV-1 protease is used to screen new drugs from synthetic compounds or natural substances. However, large-scale expression and purification of this enzyme is difficult mainly because of its low expression and solubility. In this study, we constructed 9 recombinant plasmids containing a sequence encoding HIV-1 protease along with different fusion tags and examined the expression of the enzyme from these plasmids. Of the 9 plasmids, pET32a(+) plasmid containing the HIV-1 protease-encoding sequence along with sequences encoding an autocleavage site GTVSFNF at the N-terminus and TEV plus 6× His tag at the C-terminus showed the highest expression of the enzyme and was selected for further analysis. The recombinant protein was isolated from inclusion bodies by using 2 tandem Q- and Ni-Sepharose columns. SDS-PAGE of the obtained HIV-1 protease produced a single band of approximately 13 kDa. The enzyme was recovered efficiently (4 mg protein/L of cell culture) and had high specific activity of 1190 nmol min(-1) mg(-1) at an optimal pH of 4.7 and optimal temperature of 37 °C. This procedure for expressing and purifying HIV-1 protease is now being scaled up to produce the enzyme on a large scale for its application. Copyright © 2015 Elsevier Inc. All rights reserved.

  17. An assessment of whole effluent toxicity testing as a means of regulating waters produced by the oil and gas industry

    International Nuclear Information System (INIS)

    Hill, S.L.; Bergman, H.L.

    1993-01-01

    Approximately 500 million barrels of produced water are discharged to Wyoming's surface waters by the oil and gas industry. This discharges are of two types: direct and indirect. The direct discharges have been issued NPDES permits requiring whole effluent toxicity testing. Toxicity testing requirements have not been incorporated into permits written for indirect discharges because of the applicability of toxicity testing for regulating these waters has not been determined. Preliminary testing has shown that most produced waters are toxic at the point of discharge because of high concentrations of hydrogen sulfide, but that the toxicity of an indirect discharge is often lost before it reaches a receiving stream. Thus, whole effluent toxicity testing of an indirect discharge may be overly stringent, resulting in treatment or reinjection of the water or closure of the well. Any of these options would have severe economic consequences for oil producers and the state's agricultural industry. The purpose of this study was to determine whether whole effluent toxicity testing actually predicts the in-stream effects of indirect discharges on water quality and benthic invertebrate populations. The authors will report the results of short-term ambient toxicity tests and in-stream bioassessments performed upstream and downstream of six indirect discharges located in four drainages in Wyoming

  18. Partial characterization of cold active amylases and proteases of Streptomyces sp. from Antarctica

    Directory of Open Access Journals (Sweden)

    Mihaela Cotârleţ

    2011-09-01

    Full Text Available The aim of this study was to isolate novel enzyme-producing bacteria from vegetation samples from East Antarctica and also to characterize them genetically and biochemically in order to establish their phylogeny. The ability to grow at low temperature and to produce amylases and proteases cold-active was also tested. The results of the 16S rRNA gene sequence analysis showed that the 4 Alga rRNA was 100% identical to the sequences of Streptomyces sp. rRNA from Norway and from the Solomon Islands. The Streptomyces grew well in submerged system at 20ºC, cells multiplication up to stationary phase being drastically increased after 120 h of submerged cultivation. The beta-amylase production reached a maximum peak after seven days, while alpha-amylase and proteases were performing biosynthesis after nine days of submerged cultivation at 20ºC. Newly Streptomyces were able to produce amylase and proteases in a cold environment. The ability to adapt to low temperature of these enzymes could make them valuable ingredients for detergents, the food industry and bioremediation processes which require low temperatures.

  19. Humanized-VHH Transbodies that Inhibit HCV Protease and Replication

    Directory of Open Access Journals (Sweden)

    Surasak Jittavisutthikul

    2015-04-01

    Full Text Available There is a need for safe and broadly effective anti-HCV agents that can cope with genetic multiplicity and mutations of the virus. In this study, humanized-camel VHHs to genotype 3a HCV serine protease were produced and were linked molecularly to a cell penetrating peptide, penetratin (PEN. Human hepatic (Huh7 cells transfected with the JFH-1 RNA of HCV genotype 2a and treated with the cell penetrable nanobodies (transbodies had a marked reduction of the HCV RNA intracellularly and in their culture fluids, less HCV foci inside the cells and less amounts of HCV core antigen in culture supernatants compared with the infected cells cultured in the medium alone. The PEN-VHH-treated-transfected cells also had up-regulation of the genes coding for the host innate immune response (TRIF, TRAF3, IRF3, IL-28B and IFN-β, indicating that the cell penetrable nanobodies rescued the host innate immune response from the HCV mediated-suppression. Computerized intermolecular docking revealed that the VHHs bound to residues of the protease catalytic triad, oxyanion loop and/or the NS3 N-terminal portion important for non-covalent binding of the NS4A protease cofactor protein. The so-produced transbodies have high potential for testing further as a candidate for safe, broadly effective and virus mutation tolerable anti-HCV agents.

  20. Potent Inhibition of Feline Coronaviruses with Peptidyl Compounds Targeting Coronavirus 3C-like Protease

    Science.gov (United States)

    Kim, Yunjeong; Mandadapu, Sivakoteswara Rao; Groutas, William C.; Chang, Kyeong-Ok

    2012-01-01

    Feline coronavirus infection is common among domestic and exotic felid species and usually associated with mild or asymptomatic enteritis; however, feline infectious peritonitis (FIP) is a fatal disease of cats that is caused by systemic infection with a feline infectious peritonitis virus (FIPV), a variant of feline enteric coronavirus (FECV). Currently, there is no specific treatment approved for FIP despite the importance of FIP as the leading infectious cause of death in young cats. During the replication process, coronavirus produces viral polyproteins that are processed into mature proteins by viral proteases, the main protease (3C-like [3CL] protease) and the papain-like protease. Since the cleavages of viral polyproteins are an essential step for virus replication, blockage of viral protease is an attractive target for therapeutic intervention. Previously, we reported the generation of broad-spectrum peptidyl inhibitors against viruses that possess a 3C or 3CL protease. In this study, we further evaluated the antiviral effects of the peptidyl inhibitors against feline coronaviruses, and investigated the interaction between our protease inhibitor and a cathepsin B inhibitor, an entry blocker, against feline coronaviruses in cell culture. Herein we report that our compounds behave as reversible, competitive inhibitors of 3CL protease, potently inhibited the replication of feline coronaviruses (EC50 in a nanomolar range) and, furthermore, the combination of cathepsin B and 3CL protease inhibitors led to a strong synergistic interaction against feline coronaviruses in cell culture systems. PMID:23219425

  1. Reversal of atherogenic lipoprotein profile in HIV-1 infected patients with lipodystrophy after replacing protease inhibitors by nevirapine

    NARCIS (Netherlands)

    Negredo, Eugenia; Ribalta, Josep; Paredes, Roger; Ferré, Raimón; Sirera, Guillem; Ruiz, Lidia; Salazar, Juliana; Reiss, Peter; Masana, Lluís; Clotet, Bonaventura

    2002-01-01

    Background: The widespread use of protease inhibitors (PI) has been associated with abnormalities in the lipid profile of HIV-1-infected patients. Treatment simplification approaches in which PI are replaced by nevirapine (NVP) have been shown to improve PI-related toxicity. Objective: To assess the

  2. Production of extracellular proteases by Mucor circinelloides using D-glucose as carbon source / substrate

    Directory of Open Access Journals (Sweden)

    Andrade Vânia Sousa

    2002-01-01

    Full Text Available Recently, some Mucorales species have been reported as protease producers. The production of extracellular proteases by Mucor circinelloides using glucose as substrate was studied. Experiments were carried out with different D-glucose concentrations (40, 60 and 80 g/L. Biomass, pH and protease activity were determined. Although biomass production had reached best yields for the medium containing D-glucose in a concentration of 80 g/L, the enzymatic production was higher when the substrate concentration was reduced to 40 g/L. The yield factor for product on cell growth and the yield factor for product on carbon substrate were higher when the microorganism grew in medium containing 40 g/L glucose. The kinetics parameters suggest that this strain seems to be promising as an alternative microorganism for protease production.

  3. Purification and characterization of alkaline proteases from aspergillus terreus

    International Nuclear Information System (INIS)

    Hussain, A.; Mannan, A.; Zubair, H.; Mirza, B.

    2010-01-01

    Proteases belong to an important class of enzymes known as hydrolases and catalyze hydrolysis of proteins. They act primarily to degrade proteins that are used for energy production and as biosynthetic precursors. In the following study, protease produced from Aspergillus terreus was found to be thermo stable and included in the category of alkaline serine and metallo protease. During partial purification, presence of enzyme in 60% (NH/sub 4/)/sub 2/SO/sub 4/ indicated small molecular weight polypeptide; later purification with Sephadex G-75 fractionation yielded a single proteolytic active molecule. At final purification step, the increase in specific activity of the enzyme was 7.5 fold with 23% yield. SDS-PAGE analysis revealed that alkaline protease of Aspergillus terreus is a monomer with approximate molecular weight of 35 kDa. Optimum pH for protease activity was found in the range of 7.5-11.0 (maximum at pH 8.5), thus apparently classified as an alkaline protease. The enzyme was thermo stable towards high temperature (60 deg. C), however it denatured irreversibly at 70 deg. C showing 80% loss of activity. The maximum proteolytic activity was found at 40 deg. C. The enzyme was effectively inhibited by PMSF, EDTA and urea whereas iodoacetamide and thiourea did not result in any loss in activity while cysteine was found to be activator molecule. The study with metal ions Mg/sup +2/, Mn/sup +2/ and Fe/sup +3/ (1 mM each) showed minute stimulatory effects on enzyme activity. Co/sup +2/ and Ca/sup +2/ (1 mM) had neither excitatory nor inhibitory effect while Hg/sup +2/ and Cu/sup +2/ (1 mM) slightly reduced the enzyme activity. (author)

  4. Proteolytic crosstalk in multi-protease networks

    Science.gov (United States)

    Ogle, Curtis T.; Mather, William H.

    2016-04-01

    Processive proteases, such as ClpXP in E. coli, are conserved enzyme assemblies that can recognize and rapidly degrade proteins. These proteases are used for a number of purposes, including degrading mistranslated proteins and controlling cellular stress response. However, proteolytic machinery within the cell is limited in capacity and can lead to a bottleneck in protein degradation, whereby many proteins compete (‘queue’) for proteolytic resources. Previous work has demonstrated that such queueing can lead to pronounced statistical relationships between different protein counts when proteins compete for a single common protease. However, real cells contain many different proteases, e.g. ClpXP, ClpAP, and Lon in E. coli, and it is not clear how competition between proteins for multiple classes of protease would influence the dynamics of cellular networks. In the present work, we theoretically demonstrate that a multi-protease proteolytic bottleneck can substantially couple the dynamics for both simple and complex (oscillatory) networks, even between substrates with substantially different affinities for protease. For these networks, queueing often leads to strong positive correlations between protein counts, and these correlations are strongest near the queueing theoretic point of balance. Furthermore, we find that the qualitative behavior of these networks depends on the relative size of the absolute affinity of substrate to protease compared to the cross affinity of substrate to protease, leading in certain regimes to priority queue statistics.

  5. Genome-wide identification and structure-function studies of proteases and protease inhibitors in Cicer arietinum (chickpea).

    Science.gov (United States)

    Sharma, Ranu; Suresh, C G

    2015-01-01

    Proteases are a family of enzymes present in almost all living organisms. In plants they are involved in many biological processes requiring stress response in situations such as water deficiency, pathogen attack, maintaining protein content of the cell, programmed cell death, senescence, reproduction and many more. Similarly, protease inhibitors (PIs) are involved in various important functions like suppression of invasion by pathogenic nematodes, inhibition of spores-germination and mycelium growth of Alternaria alternata and response to wounding and fungal attack. As much as we know, no genome-wide study of proteases together with proteinaceous PIs is reported in any of the sequenced genomes till now. Phylogenetic studies and domain analysis of proteases were carried out to understand the molecular evolution as well as gene and protein features. Structural analysis was carried out to explore the binding mode and affinity of PIs for cognate proteases and prolyl oligopeptidase protease with inhibitor ligand. In the study reported here, a significant number of proteases and PIs were identified in chickpea genome. The gene expression profiles of proteases and PIs in five different plant tissues revealed a differential expression pattern in more than one plant tissue. Molecular dynamics studies revealed the formation of stable complex owing to increased number of protein-ligand and inter and intramolecular protein-protein hydrogen bonds. The genome-wide identification, characterization, evolutionary understanding, gene expression, and structural analysis of proteases and PIs provide a framework for future analysis when defining their roles in stress response and developing a more stress tolerant variety of chickpea. Copyright © 2014 Elsevier Ltd. All rights reserved.

  6. Cyanotoxins: producing organisms, occurrence, toxicity, mechanism of action and human health toxicological risk evaluation.

    Science.gov (United States)

    Buratti, Franca M; Manganelli, Maura; Vichi, Susanna; Stefanelli, Mara; Scardala, Simona; Testai, Emanuela; Funari, Enzo

    2017-03-01

    Cyanobacteria were present on the earth 3.5 billion years ago; since then they have colonized almost all terrestrial and aquatic ecosystems. They produce a high number of bioactive molecules, among which some are cyanotoxins. Cyanobacterial growth at high densities, forming blooms, is increasing in extension and frequency, following anthropogenic activities and climate changes, giving rise to some concern for human health and animal life exposed to cyanotoxins. Numerous cases of lethal poisonings have been associated with cyanotoxins ingestion in wild animal and livestock. In humans few episodes of lethal or severe human poisonings have been recorded after acute or short-term exposure, but the repeated/chronic exposure to low cyanotoxin levels remains a critical issue. The properties of the most frequently detected cyanotoxins (namely, microcystins, nodularins, cylindrospermopsin and neurotoxins) are here critically reviewed, describing for each toxin the available information on producing organisms, biosynthesis/genetic and occurrence, with a focus on the toxicological profile (including kinetics, acute systemic toxicity, mechanism and mode of action, local effects, repeated toxicity, genotoxicity, carcinogenicity, reproductive toxicity; human health effects and epidemiological studies; animal poisoning) with the derivation of health-based values and considerations on the risks for human health.

  7. Statistical medium optimization of an alkaline protease from Pseudomonas aeruginosa MTCC 10501, its characterization and application in leather processing.

    Science.gov (United States)

    Boopathy, Naidu Ramachandra; Indhuja, Devadas; Srinivasan, Krishnan; Uthirappan, Mani; Gupta, Rishikesh; Ramudu, Kamini Numbi; Chellan, Rose

    2013-04-01

    Proteases are shown to have greener mode of application in leather processing for dehairing of goat skins and cow hides. Production of protease by submerged fermentation with potent activity is reported using a new isolate P. aeruginosa MTCC 10501. The production parameters were optimized by statistical methods such as Plackett-Burman and response surface methodology. The optimized production medium contained (g/L); tryptone, 2.5; yeast extract, 3.0; skim milk 30.0; dextrose 1.0; inoculum concentration 4%: initial pH 6.0; incubation temperature 30 degrees C and optimum production at 48 h with protease activity of 7.6 U/mL. The protease had the following characteristics: pH optima, 9.0; temperature optima 50 degrees C; pH stability between 5.0-10.0 and temperature stability between 10-40 degrees C. The protease was observed to have high potential for dehairing of goat skins in the pre- tanning process comparable to that of the chemical process as evidenced by histology. The method offers cleaner processing using enzyme only instead of toxic chemicals in the pre-tanning process of leather manufacture.

  8. Natural inhibitors of tumor-associated proteases

    International Nuclear Information System (INIS)

    Magdolen, U.; Krol, J.; Sato, S.; Schmitt, M.; Magdolen, V.; Krueger, A.; Mueller, M.M.; Sperl, S.

    2002-01-01

    The turnover and remodelling of extracellular matrix (ECM) is an essential part of many normal biological processes including development, morphogenesis, and wound healing. ECM turnover also occurs in severe pathological situations like artherosclerosis, fibrosis, tumor invasion and metastasis. The major proteases involved in this turnover are serine proteases (especially the urokinase-type plasminogen activator/plasmin system), matrix metalloproteases (a family of about 20 zinc-dependent endopeptidases including collagenases, gelatinases, stromelysins, and membrane-type metalloproteases), and cysteine proteases. In vivo, the activity of these proteases is tightly regulated in the extracellular space by zymogen activation and/or controlled inhibition. In the present review, we give an overview on the structure and biochemical properties of important tumor-associated protease inhibitors such as plasminogen activator inhibitor type 1 and type 2 (PAI-1, PAI-2), tissue inhibitors of metalloproteinases (TIMP-1, -2, -3, and -4), and the cysteine protease inhibitor cystatin C. Interestingly, some of these inhibitors of tumor-associated proteases display multiple functions which rather promote than inhibit tumor progression, when the presence of inhibitors in the tumor tissue is not balanced. (author)

  9. In situ demonstration and characteristic analysis of the protease components from marine bacteria using substrate immersing zymography.

    Science.gov (United States)

    Liu, Dan; Yang, XingHao; Huang, JiaFeng; Wu, RiBang; Wu, CuiLing; He, HaiLun; Li, Hao

    2015-01-01

    Zymography is a widely used technique for the study of proteolytic activities on the basis of protein substrate degradation. In this study, substrate immersing zymography was used in analyzing proteolysis of extracellular proteases. Instead of being added directly into a sodium dodecyl sulfate-polyacrylamide gel electrophoresis (SDS-PAGE) gel, the substrates were added into the immersing solution after electrophoresis. Substrate immersing zymography could accurately determine the molecular weight of trypsin, and band intensities were linearly related to the amount of protease. The diversity of extracellular proteases produced by different marine bacteria was analyzed by substrate immersing zymography, and large variations of proteolysis were evidenced. The proteolytic activity of Pseudoalteromonas strains was more complicated than that of other strains. Five Pseudoalteromonas strains and five Vibrio strains were further analyzed by substrate immersing zymography with different substrates (casein and gelatin), and multiple caseinolytic and gelatinolytic profiles were detected. The extracellular proteolytic profiles of Pseudoalteromonas strains exhibited a large intraspecific variation. Molecular weight (Mw) of the main protease secreted by Vibrio was 35 kDa. Additionally, the time-related change trends of the activities of extracellular proteases produced by Pseudoalteromonas sp. SJN2 were analyzed by substrate immersing zymography. These results implied the potential application of substrate immersing zymography for the analysis of the diversity of bacterial extracellular proteases.

  10. Optimization of Amylase and Protease Production from Aspergillus awamori in Single Bioreactor Through EVOP Factorial Design Technique

    Directory of Open Access Journals (Sweden)

    Sangeeta Negi

    2006-01-01

    Full Text Available Evolutionary operation (EVOP factorial design technique was explored in order to economically produce amylase and protease at their optimum level in a single bioreactor by modified solid-state fermentation. Maximum yields of amylase and protease were achieved, using wheat bran as a substrate by a highly potent, locally isolated strain of Aspergillus awamori: Nakazawa MTCC 6652. The strain had been induced previously, inferring the ability to produce both enzymes concomitantly in a single bioreactor with their maximum capacity. The highest secretion of amylase and protease were measured to be 9420.6 and 1930 U/g, respectively, at 37 °C. pH and relative humidity were found to be optimum at 4 and 85 %, evaluated through EVOP method.

  11. Antimicrobial activity of a 48-kDa protease (AMP48) from Artocarpus heterophyllus latex.

    Science.gov (United States)

    Siritapetawee, J; Thammasirirak, S; Samosornsuk, W

    2012-01-01

    Artocarpus heterophyllus (jackfruit) is a latex producing plant. Plant latex is produced from secretory cells and contains many intergradients. It also has been used in folk medicine. This study aimed to purify and characterize the biological activities of a protease from jackfruit latex. A protease was isolated and purified from crude latex of a jackfruit tree by acid precipitation and ion exchange chromatography. The proteolytic activities of protein were tested using gelatin- and casein-zymography. The molecular weight and isoelectric point (pl) of protein were analysed by SDS/12.5% PAGE and 2D-PAGE, respectively. Antimicrobial activity of protein was analysed by broth microdilution method. In addition, the antibacterial activity of protein against Pseudomonas aeruginosa ATCC 27853 was observed and measured using atomic force microscopy (AFM) technique. The purified protein contained protease activity by digesting gelatin- and casein-substrates. The protease was designated as antimicrobial protease-48 kDa or AMP48 due to its molecular mass on SDS-PAGE was approximately 48 kDa. The isoelectric point (pl) of AMP48 was approximately 4.2. In addition, AMP48 contained antimicrobial activities by it could inhibit the growths of Pseudomonas aeruginosa ATCC 27853 and clinical isolated Candida albicans at minimum inhibitory concentration (MIC) 2.2 mg/ml and Minimum microbicidal concentration (MMC) 8.8 mg/ml. AFM image also supported the antimicrobial activities of AMP48 by the treated bacterial morphology and size were altered from normal.

  12. Structure of protease-cleaved Escherichia coli α-2-macroglobulin reveals a putative mechanism of conformational activation for protease entrapment

    International Nuclear Information System (INIS)

    Fyfe, Cameron D.; Grinter, Rhys; Josts, Inokentijs; Mosbahi, Khedidja; Roszak, Aleksander W.; Cogdell, Richard J.; Wall, Daniel M.; Burchmore, Richard J. S.; Byron, Olwyn; Walker, Daniel

    2015-01-01

    The X-ray structure of protease-cleaved E. coli α-2-macroglobulin is described, which reveals a putative mechanism of activation and conformational change essential for protease inhibition. Bacterial α-2-macroglobulins have been suggested to function in defence as broad-spectrum inhibitors of host proteases that breach the outer membrane. Here, the X-ray structure of protease-cleaved Escherichia coli α-2-macroglobulin is described, which reveals a putative mechanism of activation and conformational change essential for protease inhibition. In this competitive mechanism, protease cleavage of the bait-region domain results in the untethering of an intrinsically disordered region of this domain which disrupts native interdomain interactions that maintain E. coli α-2-macroglobulin in the inactivated form. The resulting global conformational change results in entrapment of the protease and activation of the thioester bond that covalently links to the attacking protease. Owing to the similarity in structure and domain architecture of Escherichia coli α-2-macroglobulin and human α-2-macroglobulin, this protease-activation mechanism is likely to operate across the diverse members of this group

  13. Structure of protease-cleaved Escherichia coli α-2-macroglobulin reveals a putative mechanism of conformational activation for protease entrapment

    Energy Technology Data Exchange (ETDEWEB)

    Fyfe, Cameron D.; Grinter, Rhys; Josts, Inokentijs; Mosbahi, Khedidja [University of Glasgow, Glasgow G12 8QQ, Scotland (United Kingdom); Roszak, Aleksander W. [University of Glasgow, Glasgow G12 8QQ, Scotland (United Kingdom); University of Glasgow, Glasgow G12 8QQ, Scotland (United Kingdom); Cogdell, Richard J.; Wall, Daniel M.; Burchmore, Richard J. S.; Byron, Olwyn; Walker, Daniel, E-mail: daniel.walker@glasgow.ac.uk [University of Glasgow, Glasgow G12 8QQ, Scotland (United Kingdom)

    2015-06-30

    The X-ray structure of protease-cleaved E. coli α-2-macroglobulin is described, which reveals a putative mechanism of activation and conformational change essential for protease inhibition. Bacterial α-2-macroglobulins have been suggested to function in defence as broad-spectrum inhibitors of host proteases that breach the outer membrane. Here, the X-ray structure of protease-cleaved Escherichia coli α-2-macroglobulin is described, which reveals a putative mechanism of activation and conformational change essential for protease inhibition. In this competitive mechanism, protease cleavage of the bait-region domain results in the untethering of an intrinsically disordered region of this domain which disrupts native interdomain interactions that maintain E. coli α-2-macroglobulin in the inactivated form. The resulting global conformational change results in entrapment of the protease and activation of the thioester bond that covalently links to the attacking protease. Owing to the similarity in structure and domain architecture of Escherichia coli α-2-macroglobulin and human α-2-macroglobulin, this protease-activation mechanism is likely to operate across the diverse members of this group.

  14. Three monoclonal antibodies against the serpin protease nexin-1 prevent protease translocation

    DEFF Research Database (Denmark)

    Kousted, Tina Mostrup; Skjoedt, K; Petersen, S V

    2013-01-01

    abolish the protease inhibitory activity of PN-1. In the presence of the antibodies, PN-1 does not form a complex with its target proteases, but is recovered in a reactive centre cleaved form. Using site-directed mutagenesis, we mapped the three overlapping epitopes to an area spanning the gap between...

  15. Mast cells limit extracellular levels of IL-13 via a serglycin proteoglycan-serine protease axis.

    Science.gov (United States)

    Waern, Ida; Karlsson, Iulia; Thorpe, Michael; Schlenner, Susan M; Feyerabend, Thorsten B; Rodewald, Hans-Reimer; Åbrink, Magnus; Hellman, Lars; Pejler, Gunnar; Wernersson, Sara

    2012-12-01

    Mast cell (MC) granules contain large amounts of proteases of the chymase, tryptase and carboxypeptidase A (MC-CPA) type that are stored in complex with serglycin,a proteoglycan with heparin side chains. Hence, serglycinprotease complexes are released upon MC degranulation and may influence local inflammation. Here we explored the possibility that a serglycin-protease axis may regulate levels of IL-13, a cytokine involved in allergic asthma. Indeed, we found that wild-type MCs efficiently degraded exogenous or endogenously produced IL-13 upon degranulation,whereas serglycin −/− MCs completely lacked this ability.Moreover, MC-mediated IL-13 degradation was blocked both by a serine protease inhibitor and by a heparin antagonist,which suggests that IL-13 degradation is catalyzed by serglycin-dependent serine proteases and that optimal IL-13 degradation is dependent on both the serglycin and the protease component of the serglycin-protease complex.Moreover, IL-13 degradation was abrogated in MC-CPA −/−MC cultures, but was normal in cultures of MCs with an inactivating mutation of MC-CPA, which suggests that the IL-13-degrading serine proteases rely on MC-CPA protein.Together, our data implicate a serglycin-serine protease axis in the regulation of extracellular levels of IL-13. Reduction of IL-13 levels through this mechanism possibly can provide a protective function in the context of allergic inflammation.

  16. Production and partial characterization of proteases from Mucor hiemalis URM3773

    Directory of Open Access Journals (Sweden)

    Roana Cecília dos Santos Ribeiro

    2015-03-01

    Full Text Available The current study evaluated the proteases production from 11 fungal species belonging to the genera Mucor, Rhizomucor and Absidia. The species were obtained from the Collection of Cultures URM at the Mycology Department-UFPE, Brazil. The best producing species was Mucor hiemalis URM 3773 (1.689 U mL-1. Plackett-Burman design methodology was employed to select the most effective parameter for protease production out of 11 medium components, including: concentration of filtrate soybean, glucose, incubation period, yeast extract, tryptone, pH, aeration, rotation, NH4Cl, MgSO4 and K2HPO4. Filtrated soybean concentration was the significant variable over the response variable, which was the specific protease activity. The crude enzyme extract showed optimal activity in pH 7.5 and at 50ºC. The enzyme was stable within a wide pH range from 5.8 to 8.0, in the phosphate buffer 0.1M and in stable temperature variation of 40-70ºC, for 180 minutes. The ions FeSO4, NaCl, MnCl2, MgCl2 and KCl stimulated the protease activity, whereas ZnCl2 ion inhibited the activity in 2.27%. Iodoacetic acid at 1mM was the proteases inhibitor that presented greater action.The results indicate that the studied enzyme have great potential for industrial application.

  17. PARP-1 cleavage fragments: signatures of cell-death proteases in neurodegeneration

    Directory of Open Access Journals (Sweden)

    Alexander Jonathan S

    2010-12-01

    Full Text Available Abstract The normal function of poly (ADP-ribose polymerase-1 (PARP-1 is the routine repair of DNA damage by adding poly (ADP ribose polymers in response to a variety of cellular stresses. Recently, it has become widely appreciated that PARP-1 also participates in diverse physiological and pathological functions from cell survival to several forms of cell death and has been implicated in gene transcription, immune responses, inflammation, learning, memory, synaptic functions, angiogenesis and aging. In the CNS, PARP inhibition attenuates injury in pathologies like cerebral ischemia, trauma and excitotoxicity demonstrating a central role of PARP-1 in these pathologies. PARP-1 is also a preferred substrate for several 'suicidal' proteases and the proteolytic action of suicidal proteases (caspases, calpains, cathepsins, granzymes and matrix metalloproteinases (MMPs on PARP-1 produces several specific proteolytic cleavage fragments with different molecular weights. These PARP-1 signature fragments are recognized biomarkers for specific patterns of protease activity in unique cell death programs. This review focuses on specific suicidal proteases active towards PARP-1 to generate signature PARP-1 fragments that can identify key proteases and particular forms of cell death involved in pathophysiology. The roles played by some of the PARP-1 fragments and their associated binding partners in the control of different forms of cell death are also discussed.

  18. PhAP protease from Pseudoalteromonas haloplanktis TAC125: Gene cloning, recombinant production in E. coli and enzyme characterization

    Science.gov (United States)

    de Pascale, D.; Giuliani, M.; De Santi, C.; Bergamasco, N.; Amoresano, A.; Carpentieri, A.; Parrilli, E.; Tutino, M. L.

    2010-08-01

    Cold-adapted proteases have been found to be the dominant activity throughout the cold marine environment, indicating their importance in bacterial acquisition of nitrogen-rich complex organic compounds. However, few extracellular proteases from marine organisms have been characterized so far, and the mechanisms that enable their activity in situ are still largely unknown. Aside from their ecological importance and use as model enzyme for structure/function investigations, cold-active proteolytic enzymes offer great potential for biotechnological applications. Our studies on cold adapted proteases were performed on exo-enzyme produced by the Antarctic marine bacterium Pseudoalteromonas haloplanktis TAC125. By applying a proteomic approach, we identified several proteolytic activities from its culture supernatant. PhAP protease was selected for further investigations. The encoding gene was cloned and the protein was recombinantly produced in E. coli cells. The homogeneous product was biochemically characterised and it turned out that the enzyme is a Zn-dependent aminopeptidase, with an activity dependence from assay temperature typical of psychrophilic enzymes.

  19. Extraction, purification and characterization of a protease from Micrococcus sp. VKMM 037.

    Science.gov (United States)

    Manikandan, Muthu; Kannan, Vijayaraghavan; Pasić, Lejla

    2011-10-01

    The haloalkaliphilic bacterium Micrococcus sp. VKMM 037, isolated from an effluent of the caustic soda industry, was found to produce a protease. Maximal proteolytic activity was observed in cell culture grown at 40 degrees C using 2% (w/v) glycerol, 2% (w/v) beef extract and 2% (w/v) peptone as nutrients in medium also containing 0.85 M NaCl with a pH of 10.0. An efficient purification procedure combining ammonium sulphate precipitation and Q-Sepharose ion-exchange chromatography was developed. The purified 41 kDa protease was stable in a temperature range between 20 degrees C and 60 degrees C. The protease remained active over a wide range of pH values (4.0-12.0) and NaCl concentrations (0-3.42 M) with an optimum at pH 10.0 and 0.85 M NaCl, respectively. Furthermore, the enzyme remained stable or was only marginally inhibited in the presence of various organic solvents, surfactants and reducing agents. The purified protease of Micrococcus sp. VKMM 037 efficiently removed blood stains within 40 minutes of treatment. Given the biochemical characteristics determined, this novel protease could be exploited as an additive in the detergent industry and also for the synthesis of biomolecules and the degradation of protein.

  20. Neutrophil-Derived Proteases Escalate Inflammation through Activation of IL-36 Family Cytokines

    Directory of Open Access Journals (Sweden)

    Conor M. Henry

    2016-02-01

    Full Text Available Recent evidence has strongly implicated the IL-1 family cytokines IL-36α, IL-36β, and IL-36γ as key initiators of skin inflammation. Similar to the other members of the IL-1 family, IL-36 cytokines are expressed as inactive precursors and require proteolytic processing for activation; however, the responsible proteases are unknown. Here, we show that IL-36α, IL-36β, and IL-36γ are activated differentially by the neutrophil granule-derived proteases cathepsin G, elastase, and proteinase-3, increasing their biological activity ∼500-fold. Active IL-36 promoted a strong pro-inflammatory signature in primary keratinocytes and was sufficient to perturb skin differentiation in a reconstituted 3D human skin model, producing features resembling psoriasis. Furthermore, skin eluates from psoriasis patients displayed significantly elevated cathepsin G-like activity that was sufficient to activate IL-36β. These data identify neutrophil granule proteases as potent IL-36-activating enzymes, adding to our understanding of how neutrophils escalate inflammatory reactions. Inhibition of neutrophil-derived proteases may therefore have therapeutic benefits in psoriasis.

  1. Processing Proteases

    DEFF Research Database (Denmark)

    Ødum, Anders Sebastian Rosenkrans

    -terminal of the scissile bond, leaving C-terminal fusions to have non-native C-termini after processing. A solution yielding native C-termini would allow novel expression and purification systems for therapeutic proteins and peptides.The peptidyl-Lys metallopeptidase (LysN) of the fungus Armillaria mellea (Am) is one...... of few known proteases to have substrate specificity for the C-terminal side of the scissile bond. LysN exhibits specificity for lysine, and has primarily been used to complement trypsin in to proteomic studies. A working hypothesis during this study was the potential of LysN as a processing protease...

  2. Tributyltin synergizes with 20-hydroxyecdysone to produce endocrine toxicity.

    Science.gov (United States)

    Wang, Ying H; Kwon, Gwijun; Li, Hong; Leblanc, Gerald A

    2011-09-01

    One of the great challenges facing modern toxicology is in predicting the hazard associated with chemical mixtures. The development of effective means of predicting the toxicity of chemical mixtures requires an understanding of how chemicals interact to produce nonadditive outcomes (e.g., synergy). We hypothesized that tributyltin would elicit toxicity in daphnids (Daphnia magna) by exaggerating physiological responses to 20-hydroxyecdysone signaling via synergistic activation of the retinoid X receptor (RXR):ecdysteroid receptor (EcR) complex. Using reporter gene assays, we demonstrated that RXR, alone, is activated by a variety of ligands including tributyltin, whereas RXR:EcR heterodimers were not activated by tributyltin. However, tributyltin, in combination with the daphnid EcR ligand 20-hydroxyecdysone, caused concentration-dependent, synergistic activation of the RXR:EcR reporter. Electrophoretic mobility shift assays revealed that tributyltin did not enhance the activity of 20-hydroxyecdysone by increasing binding of the receptor complex to a DR-4 DNA-binding site. Exposure of daphnids to elevated concentrations of 20-hydroxyecdysone caused premature and incomplete ecdysis resulting in death. Tributyltin exaggerated this effect of exogenous 20-hydroxyecdysone. Further, exposure of daphnids to tributyltin enhanced the inductive effects of 20-hydroxyecdysone on expression of the 20-hydroxyecdysone-inducible gene HR3. Continuous, prolonged exposure of maternal daphnids to concentrations of tributyltin resulted in mortality concurrent with molting. Taken together, these results demonstrate that xenobiotics, such as tributyltin, can interact with RXR to influence gene expression regulated by the heterodimeric partner to RXR. The result of such interactions can be toxicity due to inappropriate or exaggerated hormonal signaling. The application of the in vitro/in vivo approach used in this study is discussed in relation to modeling of nonadditive interactions

  3. Human eosinophils constitutively express a unique serine protease, PRSS33.

    Science.gov (United States)

    Toyama, Sumika; Okada, Naoko; Matsuda, Akio; Morita, Hideaki; Saito, Hirohisa; Fujisawa, Takao; Nakae, Susumu; Karasuyama, Hajime; Matsumoto, Kenji

    2017-07-01

    Eosinophils play important roles in asthma, especially airway remodeling, by producing various granule proteins, chemical mediators, cytokines, chemokines and proteases. However, protease production by eosinophils is not fully understood. In the present study, we investigated the production of eosinophil-specific proteases/proteinases by transcriptome analysis. Human eosinophils and other cells were purified from peripheral blood by density gradient sedimentation and negative/positive selections using immunomagnetic beads. Protease/proteinase expression in eosinophils and release into the supernatant were evaluated by microarray analysis, qPCR, ELISA, flow cytometry and immunofluorescence staining before and after stimulation with eosinophil-activating cytokines and secretagogues. mRNAs for extracellular matrix proteins in human normal fibroblasts were measured by qPCR after exposure to recombinant protease serine 33 (PRSS33) protein (rPRSS33), created with a baculovirus system. Human eosinophils expressed relatively high levels of mRNA for metalloproteinase 25 (MMP25), a disintegrin and metalloprotease 8 (ADAM8), ADAM10, ADAM19 and PRSS33. Expression of PRSS33 was the highest and eosinophil-specific. PRSS33 mRNA expression was not affected by eosinophil-activating cytokines. Immunofluorescence staining showed that PRSS33 was co-localized with an eosinophil granule protein. PRSS33 was not detected in the culture supernatant of eosinophils even after stimulation with secretagogues, but its cell surface expression was increased. rPRSS33 stimulation of human fibroblasts increased expression of collagen and fibronectin mRNAs, at least in part via protease-activated receptor-2 activation. Activated eosinophils may induce fibroblast extracellular matrix protein synthesis via cell surface expression of PRSS33, which would at least partly explain eosinophils' role(s) in airway remodeling. Copyright © 2017 Japanese Society of Allergology. Production and hosting by Elsevier

  4. Possible identity of IL-8 converting enzyme in human fibroblasts as a cysteine protease.

    Science.gov (United States)

    Ohashi, Kensaku; Sano, Emiko; Nakaki, Toshio; Naruto, Masanobu

    2003-04-01

    A converting activity was characterized in human diploid fibroblasts, which secrete 72IL-8 and 77IL-8 in treatment with IFN-beta and poly I: poly C. 77IL-8 was significantly converted to 72IL-8 by a partially purified fraction of the culture supernatant of human diploid fibroblasts. The converting activity, which was temperature-dependent and optimal at pH 6, was completely inhibited by cysteine protease inhibitors, antipain dihydrochloride and E-64, but not by other types of protease inhibitors. These data clearly show that human diploid fibroblasts are capable of processing IL-8 to produce a mature IL-8 and that the putative converting enzyme appears to be a cysteine protease.

  5. Enzymatic activity of proteases and its isoenzymes in fermentation process in cultivars of cocoa (Theobroma cacao L. produced in southern Bahia, Brazil

    Directory of Open Access Journals (Sweden)

    Luciane Santos SOUSA

    Full Text Available Abstract The fermentation of cocoa seeds envolves microbial processes and the action of enzymes. To identify the possible differences in the cocoa fermentation process, with regards to proteolysis, this study has the objective of determining protease activity (under predetermined conditions and its isoenzymes in two cocoa cultivars (PH-16 and HRT-1188 in different cocoa fermentation times, in addition to establishing the microbial load (molds and yeasts and aerobic mesophilic. Protease and its isoenzymes were extracted and partially purified and the enzymatic activities determined by spectrophotometry. The results showed that the proteases activity was higher at 66h of fermentation for both cultivars. When the isoenzymes activity was evaluated, the results demonstrated similar activity behavior for both cultivars, with regards to the isoenzymes aminopeptidase and carboxypeptidase, although the behavior of the endoprotease isoenzyme activity proved to be a little different for TSH-1188 cultivar. Concerning microbiological analyses, the results indicate that the period after molds and yeast counting reduction is consistent with the period of protease activity increase.

  6. Cuticle-degrading proteases and toxins as virulence markers of Beauveria bassiana (Balsamo) Vuillemin.

    Science.gov (United States)

    Cito, Annarita; Barzanti, Gian Paolo; Strangi, Agostino; Francardi, Valeria; Zanfini, Assunta; Dreassi, Elena

    2016-09-01

    Beauveria bassiana is one of the most known entomopathogenic fungal species and its entomopathogenic mechanism involves several bioactive metabolites, mainly cuticle-degrading enzymes and toxic molecules, which are predicted to play a key role as virulence factors. In this study six Beauveria bassiana strains (B 13/I03, B 13/I11, B 13/I49, B 13/I57, B 13/I63, and B 13/I64) were assayed against Tenebrio molitor larvae. Enzymatic activity of total proteases and specifically Pr 1 and Pr 2, as well as the production of toxic compounds were investigated in each fungal strain. Toxins were detected both in vitro-in medium filtrates and mycelia-and in vivo-in Tenebrio molitor larvae infected by the fungal strains tested. B 13/I11 and B 13/I63 strains showed the most significant entomopathogenic activity against Tenebrio molitor larvae (cumulative mortality rate 100 and 97%, respectively; average survival time 5.85 and 6.74 days, respectively). A widely variable and fungal strain-dependent enzymatic activity of total proteases, Pr 1 and Pr 2 was found. Beauvericin, beauvericin A and bassianolide resulted the most prevalent toxins detected in the substrates analyzed. It has been found that an increase of beauvericin content in vivo resulted significantly correlated to a decrease of Tenebrio molitor larvae average survival time in entomopathogenic bioassay (inverse correlation). The involvement of beauvericin in B. bassiana entomopathogenic process is confirmed; in vitro analysis of cuticle degrading proteases activity and toxins production in relation to the methods adopted resulted insufficient for a rapid screening to determine the virulence of B. bassiana strains against Tenebrio molitor larvae. © 2016 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  7. Production of a novel wheat gluten hydrolysate containing dipeptidyl peptidase-IV inhibitory tripeptides using ginger protease.

    Science.gov (United States)

    Taga, Yuki; Hayashida, Osamu; Kusubata, Masashi; Ogawa-Goto, Kiyoko; Hattori, Shunji

    2017-09-01

    Wheat gluten is a Pro-rich protein complex comprising glutenins and gliadins. Previous studies have reported that oral intake of enzymatic hydrolysates of gluten has beneficial effects, such as suppression of muscle injury and improvement of hepatitis. Here, we utilized ginger protease that preferentially cleaves peptide bonds with Pro at the P 2 position to produce a novel type of wheat gluten hydrolysate. Ginger protease efficiently hydrolyzed gluten, particularly under weak acidic conditions, to peptides with an average molecular weight of ginger protease can be used as a functional food for patients with type 2 diabetes.

  8. Modularly Constructed Synthetic Granzyme B Molecule Enables Interrogation of Intracellular Proteases for Targeted Cytotoxicity.

    Science.gov (United States)

    Ho, Patrick; Ede, Christopher; Chen, Yvonne Y

    2017-08-18

    Targeted therapies promise to increase the safety and efficacy of treatments against diseases ranging from cancer to viral infections. However, the vast majority of targeted therapeutics relies on the recognition of extracellular biomarkers, which are rarely restricted to diseased cells and are thus prone to severe and sometimes-fatal off-target toxicities. In contrast, intracellular antigens present a diverse yet underutilized repertoire of disease markers. Here, we report a protein-based therapeutic platform-termed Cytoplasmic Oncoprotein VErifier and Response Trigger (COVERT)-which enables the interrogation of intracellular proteases to trigger targeted cytotoxicity. COVERT molecules consist of the cytotoxic protein granzyme B (GrB) fused to an inhibitory N-terminal peptide, which can be removed by researcher-specified proteases to activate GrB function. We demonstrate that fusion of a small ubiquitin-like modifier 1 (SUMO1) protein to GrB yields a SUMO-GrB molecule that is specifically activated by the cancer-associated sentrin-specific protease 1 (SENP1). SUMO-GrB selectively triggers apoptotic phenotypes in HEK293T cells that overexpress SENP1, and it is highly sensitive to different SENP1 levels across cell lines. We further demonstrate the rational design of additional COVERT molecules responsive to enterokinase (EK) and tobacco etch virus protease (TEVp), highlighting the COVERT platform's modularity and adaptability to diverse protease targets. As an initial step toward engineering COVERT-T cells for adoptive T-cell therapy, we verified that primary human T cells can express, package, traffic, and deliver engineered GrB molecules in response to antigen stimulation. Our findings set the foundation for future intracellular-antigen-responsive therapeutics that can complement surface-targeted therapies.

  9. Antioxidant and ACE-inhibitory activities of hemp (Cannabis sativa L.) protein hydrolysates produced by the proteases AFP, HT, Pro-G, actinidin and zingibain.

    Science.gov (United States)

    Teh, Sue-Siang; Bekhit, Alaa El-Din A; Carne, Alan; Birch, John

    2016-07-15

    Hemp protein isolates (HPIs) were hydrolysed by proteases (AFP, HT, ProG, actinidin and zingibain). The enzymatic hydrolysis of HPIs was evaluated through the degree of hydrolysis and SDS-PAGE profiles. The bioactive properties of the resultant hydrolysates (HPHs) were accessed through ORAC, DPPḢ scavenging and ACE-inhibitory activities. The physical properties of the resultant HPHs were evaluated for their particle sizes, zeta potential and surface hydrophobicity. HT had the highest rate of caseinolytic activity at the lowest concentration (0.1 mg mL(-1)) compared to other proteases that required concentration of 100 mg mL(-1) to achieve their maximum rate of caseinolytic activity. This led to the highest degree of hydrolysis of HPIs by HT in the SDS-PAGE profiles. Among all proteases and substrates, HT resulted in the highest bioactivities (ORAC, DPPḢ scavenging and ACE-inhibitory activities) generated from alkali extracted HPI in the shortest time (2 h) compared to the other protease preparations. Copyright © 2016 Elsevier Ltd. All rights reserved.

  10. Approach toward enhancement of halophilic protease production by Halobacterium sp. strain LBU50301 using statistical design response surface methodology.

    Science.gov (United States)

    Chuprom, Julalak; Bovornreungroj, Preeyanuch; Ahmad, Mehraj; Kantachote, Duangporn; Dueramae, Sawitree

    2016-06-01

    A new potent halophilic protease producer, Halobacterium sp. strain LBU50301 was isolated from salt-fermented fish samples ( budu ) and identified by phenotypic analysis, and 16S rDNA gene sequencing. Thereafter, sequential statistical strategy was used to optimize halophilic protease production from Halobacterium sp. strain LBU50301 by shake-flask fermentation. The classical one-factor-at-a-time (OFAT) approach determined gelatin was the best nitrogen source. Based on Plackett - Burman (PB) experimental design; gelatin, MgSO 4 ·7H 2 O, NaCl and pH significantly influenced the halophilic protease production. Central composite design (CCD) determined the optimum level of medium components. Subsequently, an 8.78-fold increase in corresponding halophilic protease yield (156.22 U/mL) was obtained, compared with that produced in the original medium (17.80 U/mL). Validation experiments proved the adequacy and accuracy of model, and the results showed the predicted value agreed well with the experimental values. An overall 13-fold increase in halophilic protease yield was achieved using a 3 L laboratory fermenter and optimized medium (231.33 U/mL).

  11. Approach toward enhancement of halophilic protease production by Halobacterium sp. strain LBU50301 using statistical design response surface methodology

    Directory of Open Access Journals (Sweden)

    Julalak Chuprom

    2016-06-01

    Full Text Available A new potent halophilic protease producer, Halobacterium sp. strain LBU50301 was isolated from salt-fermented fish samples (budu and identified by phenotypic analysis, and 16S rDNA gene sequencing. Thereafter, sequential statistical strategy was used to optimize halophilic protease production from Halobacterium sp. strain LBU50301 by shake-flask fermentation. The classical one-factor-at-a-time (OFAT approach determined gelatin was the best nitrogen source. Based on Plackett–Burman (PB experimental design; gelatin, MgSO4·7H2O, NaCl and pH significantly influenced the halophilic protease production. Central composite design (CCD determined the optimum level of medium components. Subsequently, an 8.78-fold increase in corresponding halophilic protease yield (156.22 U/mL was obtained, compared with that produced in the original medium (17.80 U/mL. Validation experiments proved the adequacy and accuracy of model, and the results showed the predicted value agreed well with the experimental values. An overall 13-fold increase in halophilic protease yield was achieved using a 3 L laboratory fermenter and optimized medium (231.33 U/mL.

  12. Kinetic intermediates en route to the final serpin-protease complex: studies of complexes of α1-protease inhibitor with trypsin.

    Science.gov (United States)

    Maddur, Ashoka A; Swanson, Richard; Izaguirre, Gonzalo; Gettins, Peter G W; Olson, Steven T

    2013-11-01

    Serpin protein protease inhibitors inactivate their target proteases through a unique mechanism in which a major serpin conformational change, resulting in a 70-Å translocation of the protease from its initial reactive center loop docking site to the opposite pole of the serpin, kinetically traps the acyl-intermediate complex. Although the initial Michaelis and final trapped acyl-intermediate complexes have been well characterized structurally, the intermediate stages involved in this remarkable transformation are not well understood. To better characterize such intermediate steps, we undertook rapid kinetic studies of the FRET and fluorescence perturbation changes of site-specific fluorophore-labeled derivatives of the serpin, α1-protease inhibitor (α1PI), which report the serpin and protease conformational changes involved in transforming the Michaelis complex to the trapped acyl-intermediate complex in reactions with trypsin. Two kinetically resolvable conformational changes were observed in the reactions, ascribable to (i) serpin reactive center loop insertion into sheet A with full protease translocation but incomplete protease distortion followed by, (ii) full conformational distortion and movement of the protease and coupled serpin conformational changes involving the F helix-sheet A interface. Kinetic studies of calcium effects on the labeled α1PI-trypsin reactions demonstrated both inactive and low activity states of the distorted protease in the final complex that were distinct from the intermediate distorted state. These studies provide new insights into the nature of the serpin and protease conformational changes involved in trapping the acyl-intermediate complex in serpin-protease reactions and support a previously proposed role for helix F in the trapping mechanism.

  13. Production and some properties of crude alkaline proteases of indigenous Central Amazonian rhizobia strains

    Directory of Open Access Journals (Sweden)

    Arlem Nascimento de Oliveira

    2010-10-01

    Full Text Available Two rhizobia strains isolated from soils of the Central Amazonian floodplain produced appreciable quantities of crude alkaline protease extracts with inexpensive carbon and nitrogen sources. These protease crude extracts were optimally active at pH 9.0-11.0. The optimum temperatures were 35 ºC for Rhizobium sp. strain R-986 and 55 ºC for Bradyrhizobium sp. strain R-993. Protease activities in the crude extracts were enhanced in the presence of 5 mM metal ions, such as Na+, Ca2+, Mg2+ and Mn2+. Rhizobia proteases were strongly inhibited by PMSF, a serine-protease inhibitor. The enzymes were active in the presence of surfactants (SDS and Triton X-100 and stable in oxidizing (H2O2 and reducing agents (β-mercaptoethanol, and organic solvents (acetone, hexane, methanol, 1-propanol and toluene.Duas estirpes de rizóbia isoladas de solos de várzea da Amazônia Central produziram grandes quantidades de proteases alcalinas extracelulares, usando fontes baratas de carbono e nitrogênio. Os extratos brutos de proteases foram ativos em pH 9,0-11,0. As temperaturas ótimas foram de 35 ºC para a enzima do Rhizobium R-986 e de 55 ºC para a do Bradyrhizobium R-993. As atividades proteolíticas aumentaram na presença de 5 mM dos íons Na+, Ca2+ , Mg2+ e Mn2+ . As proteases secretadas pelos rizóbios foram fortemente inibidas por PMSF, um inibidor de serina protease. As enzimas foram ativas na presença de surfactantes (SDS e Triton X-100, e estáveis na presença de agentes oxidantes (H2O2 e redutores (β-mercaptoetanol e solventes orgânicos (acetona, hexano, metanol, 1-propanol e tolueno.

  14. HIDROLISIS IKAN BERNILAI EKONOMI RENDAH SECARA ENZIMATIS MENGGUNAKAN PROTEASE BIDURI [Enzymatic Hydrolysis of Low Economic Value Fishes using Biduri’s Protease

    Directory of Open Access Journals (Sweden)

    Yuli Witono1*

    2015-07-01

    Full Text Available Fish protein hydrolyzate is a product obtained from the decomposition of fish proteins into short-chain compounds due to the hydrolysis process either by enzymes, acids, or bases. The purpose of this study was to optimize the production of fish protein hydrolyzate from the low economic value fishes including 'bibisan' (Apogon albimaculosus, 'baji-baji' (Platycephalidae cymbacephalus, and the 'lidah' (Cynoglossus lingua obtained from Talango Island, Madura. Production of fish protein hydrolyzate was conducted using (Calotropis gigantea protease at various concentrations (0, 0.7, 1.4, and 2.1 Unit/g and at various hydrolysis times (0, 1.5, and 3 h. The experimental design was a Completely Randomized Design with two factors and the experiments were carried out in triplicates. The results showed that interactions between protease concentrations and hydrolysis times significantly affected (at 5% level test the soluble proteins, maillard products, and the level of rancidity measured as thiobarbituric acid (TBA. The best fish hydrolyzate product based on the soluble protein parameter was resulted from 2.1 unit/g of biduri’s protease with a hydrolysis time of 1.5 h. The hydrolyzate produced had 3.51% of soluble proteins, a maillard value of 0.63, and rancidity levels of 12.21 mmol TBA/kg.

  15. Advances in protease engineering for laundry detergents.

    Science.gov (United States)

    Vojcic, Ljubica; Pitzler, Christian; Körfer, Georgette; Jakob, Felix; Ronny Martinez; Maurer, Karl-Heinz; Schwaneberg, Ulrich

    2015-12-25

    Proteases are essential ingredients in modern laundry detergents. Over the past 30 years, subtilisin proteases employed in the laundry detergent industry have been engineered by directed evolution and rational design to tailor their properties towards industrial demands. This comprehensive review discusses recent success stories in subtilisin protease engineering. Advances in protease engineering for laundry detergents comprise simultaneous improvement of thermal resistance and activity at low temperatures, a rational strategy to modulate pH profiles, and a general hypothesis for how to increase promiscuous activity towards the production of peroxycarboxylic acids as mild bleaching agents. The three protease engineering campaigns presented provide in-depth analysis of protease properties and have identified principles that can be applied to improve or generate enzyme variants for industrial applications beyond laundry detergents. Copyright © 2015 Elsevier B.V. All rights reserved.

  16. Conversion of Squid Pens to Chitosanases and Proteases via Paenibacillus sp. TKU042

    Directory of Open Access Journals (Sweden)

    Chien Thang Doan

    2018-03-01

    Full Text Available Chitosanases and proteases have received much attention due to their wide range of applications. Four kinds of chitinous materials, squid pens, shrimp heads, demineralized shrimp shells and demineralized crab shells, were used as the sole carbon and nitrogen (C/N source to produce chitosanases, proteases and α-glucosidase inhibitors (αGI by four different strains of Paenibacillus. Chitosanase productivity was highest in the culture supernatants using squid pens as the sole C/N source. The maximum chitosanase activity of fermented squid pens (0.759 U/mL was compared to that of fermented shrimp heads (0.397 U/mL, demineralized shrimp shells (0.201 U/mL and demineralized crab shells (0.216 U/mL. A squid pen concentration of 0.5% was suitable for chitosanase, protease and αGI production via Paenibacillus sp. TKU042. Multi-purification, including ethanol precipitation and column chromatography of Macro-Prep High S as well as Macro-Prep DEAE (diethylaminoethyl, led to the isolation of Paenibacillus sp. TKU042 chitosanase and protease with molecular weights of 70 and 35 kDa, respectively. For comparison, 16 chitinolytic bacteria, including strains of Paenibacillus, were investigated for the production of chitinase, exochitinase, chitosanase, protease and αGI using two kinds of chitinous sources.

  17. Production and characterization of thermostable alkaline protease of Bacillus subtilis (ATCC 6633) from optimized solid-state fermentation.

    Science.gov (United States)

    Chatterjee, Joyee; Giri, Sudipta; Maity, Sujan; Sinha, Ankan; Ranjan, Ashish; Rajshekhar; Gupta, Suvroma

    2015-01-01

    Proteases are the most important group of enzymes utilized commercially in various arenas of industries, such as food, detergent, leather, dairy, pharmaceutical, diagnostics, and waste management, accounting for nearly 20% of the world enzyme market. Microorganisms of specially Bacillus genera serve as a vast repository of diverse set of industrially important enzymes and utilized for the large-scale enzyme production using a fermentation technology. Approximately 30%-40% of the cost of industrial enzymes originates from the cost of the growth medium. This study is attempted to produce protease from Bacillus subtilis (ATCC 6633) after optimization of various process parameters with the aid of solid-state fermentation using a cheap nutrient source such as wheat bran. B. subtilis (ATCC 6633) produces proteases of molecular weight 36 and 20 kDa, respectively, in the fermented medium as evident from SDS zymogram. Alkaline protease activity has been detected with optimum temperature at 50 °C and is insensitive to ethylenediaminetetraacetic acid. This thermostable alkaline protease exhibits dual pH optimum at 7 and 10 with moderate pH stability at alkaline pH range. It preserves its activity in the presence of detergent such as SDS, Tween 20, and Triton X-100 and may be considered as an effective additive to detergent formulation with some industrial importance. © 2014 International Union of Biochemistry and Molecular Biology, Inc.

  18. In-cell protease assay systems based on trans-localizing molecular beacon proteins using HCV protease as a model system.

    Directory of Open Access Journals (Sweden)

    Jeong Hee Kim

    Full Text Available This study describes a sensitive in-cell protease detection system that enables direct fluorescence detection of a target protease and its inhibition inside living cells. This live-cell imaging system provides a fluorescent molecular beacon protein comprised of an intracellular translocation signal sequence, a protease-specific cleavage sequence, and a fluorescent tag sequence(s. The molecular beacon protein is designed to change its intracellular localization upon cleavage by a target protease, i.e., from the cytosol to a subcellular organelle or from a subcellular organelle to the cytosol. Protease activity can be monitored at the single cell level, and accordingly the entire cell population expressing the protease can be accurately enumerated. The clear cellular change in fluorescence pattern makes this system an ideal tool for various life science and drug discovery research, including high throughput and high content screening applications.

  19. Towards generation of bioactive peptides from meat industry waste proteins: Generation of peptides using commercial microbial proteases.

    Science.gov (United States)

    Ryder, Kate; Bekhit, Alaa El-Din; McConnell, Michelle; Carne, Alan

    2016-10-01

    Five commercially available food-grade microbial protease preparations were evaluated for their ability to hydrolyse meat myofibrillar and connective tissue protein extracts to produce bioactive peptides. A bacterial-derived protease (HT) extensively hydrolysed both meat protein extracts, producing peptide hydrolysates with significant in vitro antioxidant and ACE inhibitor activities. The hydrolysates retained bioactivity after simulated gastrointestinal hydrolysis challenge. Gel permeation chromatography sub-fractionation of the crude protein hydrolysates showed that the smaller peptide fractions exhibited the highest antioxidant and ACE inhibitor activities. OFFGEL electrophoresis of the small peptides of both hydrolysates showed that low isoelectric point peptides had antioxidant activity; however, no consistent relationship was observed between isoelectric point and ACE inhibition. Cell-based assays indicated that the hydrolysates present no significant cytotoxicity towards Vero cells. The results indicate that HT protease hydrolysis of meat myofibrillar and connective tissue protein extracts produces bioactive peptides that are non-cytotoxic, should be stable in the gastrointestinal tract and may contain novel bioactive peptide sequences. Copyright © 2016 Elsevier Ltd. All rights reserved.

  20. Nepenthesin protease activity indicates digestive fluid dynamics in carnivorous nepenthes plants.

    Directory of Open Access Journals (Sweden)

    Franziska Buch

    Full Text Available Carnivorous plants use different morphological features to attract, trap and digest prey, mainly insects. Plants from the genus Nepenthes possess specialized leaves called pitchers that function as pitfall-traps. These pitchers are filled with a digestive fluid that is generated by the plants themselves. In order to digest caught prey in their pitchers, Nepenthes plants produce various hydrolytic enzymes including aspartic proteases, nepenthesins (Nep. Knowledge about the generation and induction of these proteases is limited. Here, by employing a FRET (fluorescent resonance energy transfer-based technique that uses a synthetic fluorescent substrate an easy and rapid detection of protease activities in the digestive fluids of various Nepenthes species was feasible. Biochemical studies and the heterologously expressed Nep II from Nepenthes mirabilis proved that the proteolytic activity relied on aspartic proteases, however an acid-mediated auto-activation mechanism was necessary. Employing the FRET-based approach, the induction and dynamics of nepenthesin in the digestive pitcher fluid of various Nepenthes plants could be studied directly with insect (Drosophila melanogaster prey or plant material. Moreover, we observed that proteolytic activity was induced by the phytohormone jasmonic acid but not by salicylic acid suggesting that jasmonate-dependent signaling pathways are involved in plant carnivory.

  1. Neutrophil-Derived Proteases Escalate Inflammation through Activation of IL-36 Family Cytokines.

    Science.gov (United States)

    Henry, Conor M; Sullivan, Graeme P; Clancy, Danielle M; Afonina, Inna S; Kulms, Dagmar; Martin, Seamus J

    2016-02-02

    Recent evidence has strongly implicated the IL-1 family cytokines IL-36α, IL-36β, and IL-36γ as key initiators of skin inflammation. Similar to the other members of the IL-1 family, IL-36 cytokines are expressed as inactive precursors and require proteolytic processing for activation; however, the responsible proteases are unknown. Here, we show that IL-36α, IL-36β, and IL-36γ are activated differentially by the neutrophil granule-derived proteases cathepsin G, elastase, and proteinase-3, increasing their biological activity ~500-fold. Active IL-36 promoted a strong pro-inflammatory signature in primary keratinocytes and was sufficient to perturb skin differentiation in a reconstituted 3D human skin model, producing features resembling psoriasis. Furthermore, skin eluates from psoriasis patients displayed significantly elevated cathepsin G-like activity that was sufficient to activate IL-36β. These data identify neutrophil granule proteases as potent IL-36-activating enzymes, adding to our understanding of how neutrophils escalate inflammatory reactions. Inhibition of neutrophil-derived proteases may therefore have therapeutic benefits in psoriasis. Copyright © 2016 The Authors. Published by Elsevier Inc. All rights reserved.

  2. HIV-1 transcripts use IRES-initiation under conditions where Cap-dependent translation is restricted by poliovirus 2A protease.

    Directory of Open Access Journals (Sweden)

    Raquel Amorim

    Full Text Available The 30 different species of mRNAs synthesized during the HIV-1 replication cycle are all capped and polyadenilated. Internal ribosome entry sites have been recognized in the 5' untranslated region of some mRNA species of HIV-1, which would contribute to an alternative mechanism of initiation of mRNA translation. However, the Cap-dependent translation is assumed to be the main mechanism driving the initiation of HIV-1 protein synthesis. In this work, we describe a cell system in which lower to higher levels of transient expression of the poliovirus 2A protease strongly inhibited cellular Cap-dependent translation with no toxic effect to the cells during a 72-hour time frame. In this system, the synthesis of HIV-1 proteins was inhibited in a temporal dose-dependent way. Higher levels of 2A protease expression severely inhibited HIV-1 protein synthesis during the first 24 hours of infection consequently inhibiting viral production and infectivity. Intermediate to lower levels of 2A Protease expression caused the inhibition of viral protein synthesis only during the first 48 hours of viral replication. After this period both protein synthesis and viral release were recovered to the control levels. However, the infectivity of viral progeny was still partially inhibited. These results indicate that two mechanisms of mRNA translation initiation contribute to the synthesis of HIV-1 proteins; during the first 24-48 hours of viral replication HIV-1 protein synthesis is strongly dependent on Cap-initiation, while at later time points IRES-driven translation initiation is sufficient to produce high amounts of viral particles.

  3. Understanding serine proteases implications on Leishmania spp lifecycle.

    Science.gov (United States)

    Alves, Carlos Roberto; Souza, Raquel Santos de; Charret, Karen Dos Santos; Côrtes, Luzia Monteiro de Castro; Sá-Silva, Matheus Pereira de; Barral-Veloso, Laura; Oliveira, Luiz Filipe Gonçalves; da Silva, Franklin Souza

    2018-01-01

    Serine proteases have significant functions over a broad range of relevant biological processes to the Leishmania spp lifecycle. Data gathered here present an update on the Leishmania spp serine proteases and the status of these enzymes as part of the parasite degradome. The serine protease genes (n = 26 to 28) in Leishmania spp, which encode proteins with a wide range of molecular masses (35 kDa-115 kDa), are described along with their degrees of chromosomal and allelic synteny. Amid 17 putative Leishmania spp serine proteases, only ∼18% were experimentally demonstrated, as: signal peptidases that remove the signal peptide from secretory pre-proteins, maturases of other proteins and with metacaspase-like activity. These enzymes include those of clans SB, SC and SF. Classical inhibitors of serine proteases are used as tools for the characterization and investigation of Leishmania spp. Endogenous serine protease inhibitors, which are ecotin-like, can act modulating host actions. However, crude or synthetic based-natural serine protease inhibitors, such as potato tuber extract, Stichodactyla helianthus protease inhibitor I, fukugetin and epoxy-α-lapachone act on parasitic serine proteases and are promising leishmanicidal agents. The functional interrelationship between serine proteases and other Leishmania spp proteins demonstrate essential functions of these enzymes in parasite physiology and therefore their value as targets for leishmaniasis treatment. Copyright © 2017 Elsevier Inc. All rights reserved.

  4. SELEKSI DAN IDENTIFIKASI BAKTERI ENDOFIT POTENSIAL PENGHASIL ENZIM PROTEASE DARI TAMAN NASIONAL GUNUNG HALIMUN - (The Selection and Identification of Potential Endophyte Bacteria as Protease Enzyme Producer from Halimun Mount National Park

    Directory of Open Access Journals (Sweden)

    Ruth Melliawati

    2016-12-01

    Full Text Available Endophytic bacteria have an equal chance to bacteria that live outside the plant tissue as potential bacteria. The selection has done towards 326 bacterial endophyte isolates. This research aimed to find and identify proteolytic potential isolates. The proteolytic selection of endophytic bacteria had done using solid skim milk. The capability of endophytic bacteria to agglomerate milk was tested using liquid skim milk which incubated for 7 days at room temperature. Enzyme production of four selected isolates was made through fermentation in GYS medium. The results showed that 86 isolates have proteolytic potential. Isolate HL.29B.63 had highest protease enzymes activity (65.918 U/mL. Medium optimization was able to increase the enzyme activity into 89.94% (125.04 U/mL. The analysis used 16s rDNA showed that isolate HL.29B.63 was Bacillus amyloliquefacient subs. plantarum strain FZB42.Keywords: endophytic bacteria, fermentation, identification, protease, selection ABSTRAKBakteri endofit mempunyai peluang yang sama dengan bakteri yang hidup diluar jaringan tanaman sebagai bakteri potensial. Seleksi dilakukan terhadap 326 isolat bakteri endofit. Tujuan penelitian ini adalah mencari isolat yang berpotensi proteolitik dan mengidentifikasinya. Seleksi proteolitik terhadap bakteri endofitik menggunakan skim milk padat. Uji kemampuan bakteri endofitik dalam menggumpalkan susu menggunakan medium skim milk cair yang diinkubasi selama 7 hari pada suhu ruang. Produksi enzim terhadap empat isolat terseleksi dilakukan melalui fermentasi dalam medium GYS. Hasilnya menunjukkan bahwa 86 isolat mempunyai potensi proteolitik. Isolat HL.29B.63 mempunyai aktif enzim protease tertinggi (65,918 U/mL. Optimasi medium dapat meningkatkan aktivitas enzim sebesar 89,94% (125,04 U/mL. Analisis menggunakan 16s rDNA menunjukkan bahwa isolat HL.29B.63 adalah Bacillus amyloliquefaciens subs. plantarum strain FZB42.Kata kunci: bakteri endofit, fermentasi, identifikasi, protease

  5. A genomic survey of proteases in Aspergilli

    NARCIS (Netherlands)

    Budak, Sebnem Ozturkoglu; Zhou, M.; Brouwer, Carlo; Wiebenga, A.; Benoit, Isabelle; Di Falco, Marcos; Tsang, Adrian; de Vries, Ronald P; van den Brink, J.

    2014-01-01

    BACKGROUND: Proteases can hydrolyze peptides in aqueous environments. This property has made proteases the most important industrial enzymes by taking up about 60% of the total enzyme market. Microorganisms are the main sources for industrial protease production due to their high yield and a wide

  6. Cytomegalovirus protease targeted prodrug development.

    Science.gov (United States)

    Sabit, Hairat; Dahan, Arik; Sun, Jing; Provoda, Chester J; Lee, Kyung-Dall; Hilfinger, John H; Amidon, Gordon L

    2013-04-01

    Human cytomegalovirus (HCMV) is a prevalent virus that infects up to 90% of the population. The goal of this research is to determine if small molecular prodrug substrates can be developed for a specific HCMV encoded protease and thus achieve site-specific activation. HCMV encodes a 256 amino acid serine protease that is responsible for capsid assembly, an essential process for herpes virus production. The esterase activity of the more stable HCMV A143T/A144T protease mutant was evaluated with model p-nitrophenol (ONp) esters, Boc-Xaa-ONp (Ala, Leu, Ile, Val, Gln, Phe at the Xaa position). We demonstrate that the A143T/A144T mutant has esterase activity toward specific small ester compounds, e.g., Boc-L-Ala-ONp. Mono amino acid and dipeptide prodrugs of ganciclovir (GCV) were also synthesized and evaluated for hydrolysis by the A143T/A144T protease mutant in solution. Hydrolysis of these prodrugs was also evaluated in Caco-2 cell homogenates, human liver microsomes (HLMs), and rat and human plasma. For the selectivity potential of the prodrugs, the hydrolysis ratio was evaluated as a percentage of prodrug hydrolyzed by the HCMV protease over the percentages of prodrug hydrolyses by Caco-2 cell homogenates, HLMs, and human/rat plasma. A dipeptide prodrug of ganciclovir, Ac-l-Gln-l-Ala-GCV, emerged as a potential selective prodrug candidate. The results of this research demonstrate that targeting prodrugs for activation by a specific protease encoded by the infectious HCMV pathogen may be achievable.

  7. Extracellular acid protease from Aspergillus niger I1: purification and ...

    African Journals Online (AJOL)

    STORAGESEVER

    2009-09-15

    Sep 15, 2009 ... A new strain of Aspergillus niger producing acid protease was isolated and identified by universal primers NL1 and .... Media were autoclaved at 120°C for 20 min. ... molecular weight calibration kit as markers consisting of bovine ... then removed by washing the gel three times with 100 mM ..... New York.

  8. The subtilisin-like protease AprV2 is required for virulence and uses a novel disulphide-tethered exosite to bind substrates.

    Directory of Open Access Journals (Sweden)

    Ruth M Kennan

    Full Text Available Many bacterial pathogens produce extracellular proteases that degrade the extracellular matrix of the host and therefore are involved in disease pathogenesis. Dichelobacter nodosus is the causative agent of ovine footrot, a highly contagious disease that is characterized by the separation of the hoof from the underlying tissue. D. nodosus secretes three subtilisin-like proteases whose analysis forms the basis of diagnostic tests that differentiate between virulent and benign strains and have been postulated to play a role in virulence. We have constructed protease mutants of D. nodosus; their analysis in a sheep virulence model revealed that one of these enzymes, AprV2, was required for virulence. These studies challenge the previous hypothesis that the elastase activity of AprV2 is important for disease progression, since aprV2 mutants were virulent when complemented with aprB2, which encodes a variant that has impaired elastase activity. We have determined the crystal structures of both AprV2 and AprB2 and characterized the biological activity of these enzymes. These data reveal that an unusual extended disulphide-tethered loop functions as an exosite, mediating effective enzyme-substrate interactions. The disulphide bond and Tyr92, which was located at the exposed end of the loop, were functionally important. Bioinformatic analyses suggested that other pathogenic bacteria may have proteases that utilize a similar mechanism. In conclusion, we have used an integrated multidisciplinary combination of bacterial genetics, whole animal virulence trials in the original host, biochemical studies, and comprehensive analysis of crystal structures to provide the first definitive evidence that the extracellular secreted proteases produced by D. nodosus are required for virulence and to elucidate the molecular mechanism by which these proteases bind to their natural substrates. We postulate that this exosite mechanism may be used by proteases produced by

  9. Role of Proteases in Chronic Obstructive Pulmonary Disease

    Directory of Open Access Journals (Sweden)

    Kailash C. Pandey

    2017-08-01

    Full Text Available Chronic obstructive pulmonary disease (COPD is generally associated with progressive destruction of airways and lung parenchyma. Various factors play an important role in the development and progression of COPD, like imbalance of proteases, environmental and genetic factors and oxidative stress. This review is specifically focused on the role of proteases and their imbalance in COPD. There are three classes (serine, mettalo, and cysteine of proteases involved in COPD. In serine proteases, neutrophil elastase, cathepsin G, and proteinase-3 are involved in destruction of alveolar tissue. Matrix-mettaloproteinase-9, 12, 13, plays an influential role in severity of COPD. Among cysteine proteases, caspase-3, caspases-8 and caspase-9 play an important role in controlling apoptosis. These proteases activities can be regulated by inhibitors like α-1-antitrypsin, neutrophil elastase inhibitor, and leukocyte protease inhibitor. Studies suggest that neutrophil elastase may be a therapeutic target for COPD, and specific inhibitor against this enzyme has potential role to control the disease. Current study suggests that Dipeptidyl Peptidase IV is a potential marker for COPD. Since the expression of proteases and its inhibitors play an important role in COPD pathogenesis, therefore, it is worth investigating the role of proteases and their regulation. Understanding the biochemical basis of COPD pathogenesis using advanced tools in protease biochemistry and aiming toward translational research from bench-to-bedside will have great impact to deal with this health problem.

  10. tolerant alkaline protease from Bacillus coagulans PSB

    African Journals Online (AJOL)

    oyaide

    2013-05-22

    May 22, 2013 ... suggest the suitability of the enzyme for applications in peptide synthesis, detergent formulation and ... The cell free supernatant was recovered as crude enzyme preparation and used for further studies. Assay of protease activity. Protease activity was ... Effect of pH on growth and protease production.

  11. Producing armyworm (spodoptera sp.) Bioinsecticide based on cysteine protease of red ginger (zingiber officinale var. Rubrum)

    Science.gov (United States)

    Afnan, N. T.; Nur, D. F.; Utami, T. S.; Sahlan, M.; Wijanarko, A.; Hermansyah, H.

    2018-03-01

    Armyworm (Spodoptera sp.) is highly polyphagous defoliator on various horticulture and grain plants. Various chemical insecticides have been created to control it. There is a need to create an eco-friendly and specific insecticide which only affect armyworm’s nervous system. This research investigates cysteine-protease’s enzyme activity of red ginger (Zingiber officinale var. Rubrum) which is called zingibain. Its catalytic site matches with residue site in armyworm’s body so it can be used as bioinsecticide raw material which meets the criterias above. Fresh red ginger rhizomes were washed and extracted. The juice was then deposited in low temperature and centrifuged to get rid of its starch content. It was filtrated to remove large contaminants and poured into Potassium Phospate buffer. The liquid was then centrifuged again for 30 minutes before collecting the supernatant. Fresh leaves were then dipped into crude ginger protease extract and fed to fourth instar-armyworms. Leaves dipped into non-diluted extract were barely eaten by armyworm while the 50% and 25% dilution was half eaten and most eaten. The crude red ginger extract was not strong enough to kill them although the research showed its enzymatic activity reaches up to 169 PU. It still needs improvement to be produced as commercial bioinsecticide.

  12. Mosaic serine proteases in the mammalian central nervous system.

    Science.gov (United States)

    Mitsui, Shinichi; Watanabe, Yoshihisa; Yamaguchi, Tatsuyuki; Yamaguchi, Nozomi

    2008-01-01

    We review the structure and function of three kinds of mosaic serine proteases expressed in the mammalian central nervous system (CNS). Mosaic serine proteases have several domains in the proenzyme fragment, which modulate proteolytic function, and a protease domain at the C-terminus. Spinesin/TMPRSS5 is a transmembrane serine protease whose presynaptic distribution on motor neurons in the spinal cord suggests that it is significant for neuronal plasticity. Cell type-specific alternative splicing gives this protease diverse functions by modulating its intracellular localization. Motopsin/PRSS12 is a mosaic protease, and loss of its function causes mental retardation. Recent reports indicate the significance of this protease for cognitive function. We mention the fibrinolytic protease, tissue plasminogen activator (tPA), which has physiological and pathological functions in the CNS.

  13. Rapid monitoring of autolysis process of proteases by capillary electrophoresis.

    Science.gov (United States)

    Chen, Xiu-Lan; Shun, Cai-Yun; Zhang, Yu-Zhong; Gao, Pei-Ji

    2003-10-01

    A protease, MCP-01, produced by a deep-sea psychrotrophic strain of Pseudoaltermonas sp. SM9913 was purified and its autolysis reaction at 20 degrees C-50 degrees C was monitored by capillary electrophoresis. Capillary electrophoresis provides a rapid assay because the degree and state of autolysis of protease MCP-01 could be observed within 6 min. The autolysis rate increased as the temperature rose in the tested range. After 30 min incubation at 30 degrees C, 77% of MCP-01 autolyzed into peptides. However, its activity for the hydrolysis of casein was reduced by only 4%. The rate of loss of activity of MCP-01 was thus slower than that of autolysis of MCP-01 at 30 degrees C. Similar results were obtained when MCP-01 was incubated at 20 degrees C, 40 degrees C and 50 degrees C. Large peptides produced by autolysis of MCP-01 therefore still have catalytic activity. When these large peptides autolyzed further into smaller peptides, the enzyme conformation that retained its catalytic activity was destroyed and activity was lost.

  14. Studies on screening, isolation and purification of a fibrinolytic protease from an isolate (VK12) of Ganoderma lucidum and evaluation of its antithrombotic activity.

    Science.gov (United States)

    Kumaran, Sekar; Palani, Perumal; Nishanthi, Ramasami; Kaviyarasan, Venkatesan

    2011-01-01

    Antithrombotic activity of a protease purified from a medicinal mushroom, Ganoderma lucidum, has been evaluated platelet aggregation in vitro and pulmonary thrombosis in vivo. The purified protease exhibited concentration dependent inhibitory effects on platelet aggregation induced by ADP (adenosine diphosphate), with an IC(50) value of 2.4 mg/mL. The purified protease protected mice against thrombotic death or paralysis induced by collagen and epinephrine in a dose dependent manner when administered orally. It produced a significant inhibition of thrombotic death or paralysis at 60 µg/kg body weight, while aspirin produced a significant inhibition of thrombosis at 10-20 mg/kg body weight. The purified protease also has showed fibrinolytic activity and alters coagulation parameters such as activated partial thromboplastin time (APTT), and thrombin time (TT) in rat platelet. These results suggested that the antithrombotic activity of Ganoderma lucidum protease might be due to antiplatelet activity rather than anticoagulation activity.

  15. Dysregulation of protease and protease inhibitors in a mouse model of human pelvic organ prolapse.

    Directory of Open Access Journals (Sweden)

    Madhusudhan Budatha

    Full Text Available Mice deficient for the fibulin-5 gene (Fbln5(-/- develop pelvic organ prolapse (POP due to compromised elastic fibers and upregulation of matrix metalloprotease (MMP-9. Here, we used casein zymography, inhibitor profiling, affinity pull-down, and mass spectrometry to discover additional protease upregulated in the vaginal wall of Fbln5(-/- mice, herein named V1 (25 kDa. V1 was a serine protease with trypsin-like activity similar to protease, serine (PRSS 3, a major extrapancreatic trypsinogen, was optimum at pH 8.0, and predominantly detected in estrogenized vaginal epithelium of Fbln5(-/- mice. PRSS3 was (a localized in epithelial secretions, (b detected in media of vaginal organ culture from both Fbln5(-/- and wild type mice, and (c cleaved fibulin-5 in vitro. Expression of two serine protease inhibitors [Serpina1a (α1-antitrypsin and Elafin] was dysregulated in Fbln5(-/- epithelium. Finally, we confirmed that PRSS3 was expressed in human vaginal epithelium and that SERPINA1 and Elafin were downregulated in vaginal tissues from women with POP. These data collectively suggest that the balance between proteases and their inhibitors contributes to support of the pelvic organs in humans and mice.

  16. Effect of hydrolysis enzymatic process of corn using protease crude (Rhizopus oligosporus-C1) to produce corn hydrolisate rich folic acid

    Science.gov (United States)

    Maryati, Yati; Susilowati, Agustine; Melanie, Hakiki; Lotulung, Puspa D.

    2017-11-01

    Corn hydrolyzate (Zea mays L) as a functional food fortificant derived from natural folic acid has been evaluated through a hydrolysis process using protease enzyme Rhizopus oligosporus strain C1. Enzymatic hydrolysis was carried out on two types of corn; yellow and white pearl variety corn, at concentration of protease enzyme (rough) 0.025; 0.125; and 0.225% (v/w of soluble nixtamal corn protein) with a hydrolysis time of 24 h at 30 °C, and pH 5.0. The results showed that the concentration of protease enzymes can increase the folic acid to the optimum condition, from the beginning to the end of the process time. Folic acid optimization of hydrolysis results in each corn was at the concentration of protease enzyme 0.225% (v/w of soluble nixtamal corn protein) in white corn and yellow corn at 24 hours hydrolysis, with folic acid composition, 283.56 µg/mL and 412.52 µg/mL, 1.07 and 1.04 mg/mL of soluble proteins, proteolytic activity 2.09 and 2.06 U/mL, total solids of 21.74 and 17.85%, total sugars of 0.56 and 2.22 mg/mL, and reducing sugar 91.72 and 48.47 mg/mL. In this condition, the increase of optimum folic acid for white corn was 33.57% and for yellow corn was 71.60% after hydrolysis.

  17. An oxidant, detergent and salt stable alkaline protease from Bacillus ...

    African Journals Online (AJOL)

    A novel soil bacterium, Bacillus cereus SIU1 was earlier isolated from non-saline, slightly alkaline soil of Eastern Uttar Pradesh, India. The isolate B. cereus SIU1 was grown in modified glucose yeast extract (modified GYE) medium at pH 9.0 and 45°C. It produced maximum protease at 20 h incubation. The enzyme was ...

  18. Enhanced production of alkaline thermostable keratinolytic protease from calcium alginate immobilized cells of thermoalkalophilic Bacillus halodurans JB 99 exhibiting dehairing activity.

    Science.gov (United States)

    Shrinivas, Dengeti; Kumar, Raghwendra; Naik, G R

    2012-01-01

    The thermoalkalophilic Bacillus halodurans JB 99 cells known for production of novel thermostable alkaline keratinolytic protease were immobilized in calcium alginate matrix. Batch and repeated batch cultivation using calcium alginate immobilized cells were studied for alkaline protease production in submerged fermentation. Immobilized cells with 2.5% alginate and 350 beads/flask of initial cell loading showed enhanced production of alkaline protease by 23.2% (5,275 ± 39.4 U/ml) as compared to free cells (4,280 ± 35.4 U/ml) after 24 h. In the semicontinuous mode of cultivation, immobilized cells under optimized conditions produced an appreciable level of alkaline protease in up to nine cycles and reached a maximal value of 5,975 U/ml after the seventh cycle. The enzyme produced from immobilized cells efficiently degraded chicken feathers in the presence of a reducing agent which can help the poultry industry in the management of keratin-rich waste and obtaining value-added products.

  19. Activity of the fungus Pleurotus ostreatus and of its proteases on ...

    African Journals Online (AJOL)

    Avell G1511

    more studies from biological models under laboratory conditions. Extracellular proteases produced by nematophagous fungi are directly involved in the stages of the infection. They act in the digestion of nematode's protection barrier, rich in protein (Braga et al., 2010). However, there is a lack of studies aimed at elucidating ...

  20. Enhanced production of protease by mutagenized strain of aspergillus oryzae in solid substrate fermentation of rice bran

    International Nuclear Information System (INIS)

    Yousif, M.; Irfan, M.; Baig, S.; Iqbal, A.

    2010-01-01

    Neutral protease activity of parent strain of Aspergellus oryzae was enhanced by UV and chemical mutagenization with ethyl methane sulphonate (EMS). After screening, a hyper producing strain was isolated and found effective for tile production of neutral protease as compared to the parent strain of Aspergellus oryzae. Solid substrate fermentation was carried out in 250ml conical flask with 45 % initial moisture contents at a temperature of 30 deg. C for 72 flours. Under the optimum conditions maximum yield of neutral protease obtained was 662.61+-0.36 U/gds, Almost all the organic nitrogen supplements favored the enzyme production while sucrose proved as a best carbon source. (author)

  1. Indispensable Role of Proteases in Plant Innate Immunity.

    Science.gov (United States)

    Balakireva, Anastasia V; Zamyatnin, Andrey A

    2018-02-23

    Plant defense is achieved mainly through the induction of microbe-associated molecular patterns (MAMP)-triggered immunity (MTI), effector-triggered immunity (ETI), systemic acquired resistance (SAR), induced systemic resistance (ISR), and RNA silencing. Plant immunity is a highly complex phenomenon with its own unique features that have emerged as a result of the arms race between plants and pathogens. However, the regulation of these processes is the same for all living organisms, including plants, and is controlled by proteases. Different families of plant proteases are involved in every type of immunity: some of the proteases that are covered in this review participate in MTI, affecting stomatal closure and callose deposition. A large number of proteases act in the apoplast, contributing to ETI by managing extracellular defense. A vast majority of the endogenous proteases discussed in this review are associated with the programmed cell death (PCD) of the infected cells and exhibit caspase-like activities. The synthesis of signal molecules, such as salicylic acid, jasmonic acid, and ethylene, and their signaling pathways, are regulated by endogenous proteases that affect the induction of pathogenesis-related genes and SAR or ISR establishment. A number of proteases are associated with herbivore defense. In this review, we summarize the data concerning identified plant endogenous proteases, their effect on plant-pathogen interactions, their subcellular localization, and their functional properties, if available, and we attribute a role in the different types and stages of innate immunity for each of the proteases covered.

  2. Gut proteases target Yersinia invasin in vivo

    Directory of Open Access Journals (Sweden)

    Freund Sandra

    2011-04-01

    Full Text Available Abstract Background Yersinia enterocolitica is a common cause of food borne gastrointestinal disease. After oral uptake, yersiniae invade Peyer's patches of the distal ileum. This is accomplished by the binding of the Yersinia invasin to β1 integrins on the apical surface of M cells which overlie follicle associated lymphoid tissue. The gut represents a barrier that severely limits yersiniae from reaching deeper tissues such as Peyer's patches. We wondered if gut protease attack on invasion factors could contribute to the low number of yersiniae invading Peyer's patches. Findings Here we show that invasin is rapidly degraded in vivo by gut proteases in the mouse infection model. In vivo proteolytic degradation is due to proteolysis by several gut proteases such as trypsin, α-chymotrypsin, pancreatic elastase, and pepsin. Protease treated yersiniae are shown to be less invasive in a cell culture model. YadA, another surface adhesin is cleaved by similar concentrations of gut proteases but Myf was not cleaved, showing that not all surface proteins are equally susceptible to degradation by gut proteases. Conclusions We demonstrate that gut proteases target important Yersinia virulence factors such as invasin and YadA in vivo. Since invasin is completely degraded within 2-3 h after reaching the small intestine of mice, it is no longer available to mediate invasion of Peyer's patches.

  3. Structures of a bi-functional Kunitz-type STI family inhibitor of serine and aspartic proteases: Could the aspartic protease inhibition have evolved from a canonical serine protease-binding loop?

    Science.gov (United States)

    Guerra, Yasel; Valiente, Pedro A; Pons, Tirso; Berry, Colin; Rudiño-Piñera, Enrique

    2016-08-01

    Bi-functional inhibitors from the Kunitz-type soybean trypsin inhibitor (STI) family are glycosylated proteins able to inhibit serine and aspartic proteases. Here we report six crystal structures of the wild-type and a non-glycosylated mutant of the bifunctional inhibitor E3Ad obtained at different pH values and space groups. The crystal structures show that E3Ad adopts the typical β-trefoil fold of the STI family exhibiting some conformational changes due to pH variations and crystal packing. Despite the high sequence identity with a recently reported potato cathepsin D inhibitor (PDI), three-dimensional structures obtained in this work show a significant conformational change in the protease-binding loop proposed for aspartic protease inhibition. The E3Ad binding loop for serine protease inhibition is also proposed, based on structural similarity with a novel non-canonical conformation described for the double-headed inhibitor API-A from the Kunitz-type STI family. In addition, structural and sequence analyses suggest that bifunctional inhibitors of serine and aspartic proteases from the Kunitz-type STI family are more similar to double-headed inhibitor API-A than other inhibitors with a canonical protease-binding loop. Copyright © 2016. Published by Elsevier Inc.

  4. Extracellular proteases from Streptomyces phaeopurpureus ExPro138 inhibit spore adhesion, germination and appressorium formation in Colletotrichum coccodes.

    Science.gov (United States)

    Palaniyandi, S A; Yang, S H; Suh, J-W

    2013-07-01

    To study the antifungal mechanism of proteases from Streptomyces phaeopurpureus strain ExPro138 towards Colletotrichum coccodes and to evaluate its utilization as biofungicide. We screened proteolytic Streptomyces strains from the yam rhizosphere with antifungal activity. Forty proteolytic Streptomyces were isolated, among which eleven isolates showed gelatinolytic activity and antagonistic activity on C. coccodes. Of the 11 isolates, protease preparation from an isolate designated ExPro138 showed antifungal activity. 16S rDNA sequence analysis of the strain showed 99% similarity with Streptomyces phaeopurepureus (EU841588.1). Zymography analysis of the ExPro138 culture filtrate revealed that the strain produced several extracellular proteases. The protease preparation inhibited spore germination, spore adhesion to polystyrene surface and appressorium formation. Microscopic study of the interaction between ExPro138 and C. coccodes revealed that ExPro138 was mycoparasitic on C. coccodes. The protease preparation also reduced anthracnose incidence on tomato fruits compared with untreated control. This study demonstrates possibility of utilizing antifungal proteases derived from antagonistic microbes as biofungicide. Microbial proteases having the ability to inhibit spore adhesion and appressorium formation could be used to suppress infection establishment by foliar fungal pathogens at the initial stages of the infection process. Journal of Applied Microbiology © 2013 The Society for Applied Microbiology.

  5. Deletion of aprA and nprA genes for alkaline protease A and neutral protease A from bacillus thuringiensis: effect on insecticidal crystal proteins.

    Science.gov (United States)

    Tan, Y; Donovan, W P

    2001-11-17

    The aprA gene encoding alkaline protease A (AprA) was cloned from Bacillus thuringiensis subsp. kurstaki, and the cloned gene was used to construct aprA-deleted (aprA1) strains of B. thuringiensis. An aprA1 strain of B. thuringiensis that contained the wild-type gene for neutral protease A (nprA(+)) displayed levels of extracellular proteolytic activity that were similar to those of an aprA(+)nprA(+) strain. However, when EDTA was included in the protease assay to inhibit NprA activity the aprA1nprA(+) strain displayed only 2% of the extracellular proteolytic activity of the aprA(+)nprA(+) strain. A strain that was deleted for both aprA and nprA (aprA1nprA3 strain) failed to produce detectable levels of proteolytic activity either in the presence or absence of EDTA in the assay. Compared with the aprA(+)nprA(+) strain the aprA1nprA(+) strain yielded 10% more full-length Cry1Bb crystal protein and the aprA1nprA3 strain yielded 25% more full-length Cry1Bb protein. No significant differences were seen in the 50% lethal dose of Cry1Bb protein from aprA(+)nprA(+) and aprA1nprA3 strains against three species of lepidopteran insects. These results suggest that enhanced yield of certain crystal proteins can be obtained by deletion of the genes aprA and nprA which are the major extracellular proteases of B. thuringiensis.

  6. HIV-1 protease-substrate coevolution in nelfinavir resistance.

    Science.gov (United States)

    Kolli, Madhavi; Ozen, Ayşegül; Kurt-Yilmaz, Nese; Schiffer, Celia A

    2014-07-01

    Resistance to various human immunodeficiency virus type 1 (HIV-1) protease inhibitors (PIs) challenges the effectiveness of therapies in treating HIV-1-infected individuals and AIDS patients. The virus accumulates mutations within the protease (PR) that render the PIs less potent. Occasionally, Gag sequences also coevolve with mutations at PR cleavage sites contributing to drug resistance. In this study, we investigated the structural basis of coevolution of the p1-p6 cleavage site with the nelfinavir (NFV) resistance D30N/N88D protease mutations by determining crystal structures of wild-type and NFV-resistant HIV-1 protease in complex with p1-p6 substrate peptide variants with L449F and/or S451N. Alterations of residue 30's interaction with the substrate are compensated by the coevolving L449F and S451N cleavage site mutations. This interdependency in the PR-p1-p6 interactions enhances intermolecular contacts and reinforces the overall fit of the substrate within the substrate envelope, likely enabling coevolution to sustain substrate recognition and cleavage in the presence of PR resistance mutations. Resistance to human immunodeficiency virus type 1 (HIV-1) protease inhibitors challenges the effectiveness of therapies in treating HIV-1-infected individuals and AIDS patients. Mutations in HIV-1 protease selected under the pressure of protease inhibitors render the inhibitors less potent. Occasionally, Gag sequences also mutate and coevolve with protease, contributing to maintenance of viral fitness and to drug resistance. In this study, we investigated the structural basis of coevolution at the Gag p1-p6 cleavage site with the nelfinavir (NFV) resistance D30N/N88D protease mutations. Our structural analysis reveals the interdependency of protease-substrate interactions and how coevolution may restore substrate recognition and cleavage in the presence of protease drug resistance mutations. Copyright © 2014, American Society for Microbiology. All Rights Reserved.

  7. Characterization of a membrane-associated serine protease in Escherichia coli

    International Nuclear Information System (INIS)

    Palmer, S.M.; St John, A.C.

    1987-01-01

    Three membrane-associated proteolytic activities in Escherichia coli were resolved by DEAE-cellulose chromatography from detergent extracts of the total envelope fraction. On the basis of substrate specificity for the hydrolysis of chromogenic amino acid ester substrates, the first two eluting activities were determined previously to be protease V and protease IV, respectively. The third proteolytic activity eluting from the DEAE-cellulose column was further purified by affinity chromatography on benzamidine-Sepharose 6B. They termed this enzyme protease VI. Protease VI did not hydrolyze any of the chromogenic substrates used in the detection of protease IV and protease V. However, all three enzymes generated acid-soluble fragments from a mixture of E. coli membrane proteins which were biosynthetically labeled with radioactive amino acids. The activity of protease VI was sensitive to serine protease inhibitors. Using [ 3 H]diisopropylfluorophosphate as an active-site labeling reagent, they determined that protease VI has an apparent molecular weight of 43,000 in polyacrylamide gels. All three membrane-associated serine proteases were insensitive to inhibition by Ecotin, an endogenous, periplasmic inhibitor of trypsin

  8. Genetic or chemical protease inhibition causes significant changes in the Bacillus subtilis exoproteome

    NARCIS (Netherlands)

    Westers, Lidia; Westers, Helga; Zanen, Geeske; Antelmann, Haike; Hecker, Michael; Noone, David; Devine, Kevin M.; van Dijl, Jan Maarten; Quax, Wim J.

    Bacillus subtilis is a prolific producer of enzymes and biopharmaceuticals. However, the susceptibility of heterologous proteins to degradation by (extracellular) proteases is a major limitation for use of B. subtilis as a protein cell factory. An increase in protein production levels has previously

  9. Toxic shock syndrome

    Science.gov (United States)

    Staphylococcal toxic shock syndrome; Toxic shock-like syndrome; TSLS ... Toxic shock syndrome is caused by a toxin produced by some types of staphylococcus bacteria. A similar problem, called toxic shock- ...

  10. Characterization and identification of enzyme-producing microflora isolated from the gut of sea cucumber Apostichopus japonicus

    Science.gov (United States)

    Li, Fenghui; Gao, Fei; Tan, Jie; Fan, Chaojing; Sun, Huiling; Yan, Jingping; Chen, Siqing; Wang, Xiaojun

    2016-01-01

    Gut microorganisms play an important role in the digestion of their host animals. The purpose of this research was to isolate and assess the enzyme-producing microbes from the Apostichopus japonicus gut. Thirty-nine strains that can produce at least one of the three digestive enzymes (protease, amylase, and cellulase) were qualitatively screened based on their extracellular enzyme-producing abilities. The enzyme-producing strains clustered into eight groups at the genetic similarity level of 100% by analyzing the restriction patterns of 16S rDNA amplified with Mbo I. Phylogenetic analysis revealed that 37 strains belonged to the genus Bacillus and two were members of the genus Virgibacillus. Enzyme-producing capability results indicate that the main enzyme-producing microflora in the A. japonicus gut was Bacillus, which can produce protease, amylase, and cellulase. Virgibacillus, however, can only produce protease. The high enzyme-producing capability of the isolates suggests that the gut microbiota play an important role in the sea cucumber digestive process.

  11. Supermarket Proteases.

    Science.gov (United States)

    Hagar, William G.; Bullerwell, Lornie D.

    2003-01-01

    Presents a laboratory activity on enzymes. Uses common items found in the supermarket that contain protease enzymes, such as contact lens cleaner and meat tenderizer. Demonstrates the digestion of gelatin proteins as part of enzymatic reactions. (Author/SOE)

  12. The pro-coagulant fibrinogenolytic serine protease isoenzymes purified from Daboia russelii russelii venom coagulate the blood through factor V activation: role of glycosylation on enzymatic activity.

    Directory of Open Access Journals (Sweden)

    Ashis K Mukherjee

    Full Text Available Proteases from Russell's viper venom (RVV induce a variety of toxic effects in victim. Therefore, four new RVV protease isoenzymes of molecular mass 32901.044 Da, 333631.179 Da, 333571.472 Da, and 34594.776 Da, were characterized in this study. The first 10 N-terminal residues of these serine protease isoenzymes showed significant sequence homology with N-terminal sequences of snake venom thrombin-like and factor V-activating serine proteases, which was reconfirmed by peptide mass fingerprinting analysis. These proteases were found to be different from previously reported factor V activators isolated from snake venoms. These proteases showed significantly different fibrinogenolytic, BAEE-esterase and plasma clotting activities but no fibrinolytic, TAME-esterase or amidolytic activity against the chromogenic substrate for trypsin, thrombin, plasmin and factor Xa. Their Km and Vmax values towards fibrinogen were determined in the range of 6.6 to 10.5 µM and 111.0 to 125.5 units/mg protein, respectively. On the basis of fibrinogen degradation pattern, they may be classified as A/B serine proteases isolated from snake venom. These proteases contain ∼ 42% to 44% of N-linked carbohydrates by mass whereas partially deglycosylated enzymes showed significantly less catalytic activity as compared to native enzymes. In vitro these protease isoenzymes induce blood coagulation through factor V activation, whereas in vivo they provoke dose-dependent defibrinogenation and anticoagulant activity in the mouse model. At a dose of 5 mg/kg, none of these protease isoenzymes were found to be lethal in mice or house geckos, suggesting therapeutic application of these anticoagulant peptides for the prevention of thrombosis.

  13. Contemporary protease inhibitors and cardiovascular risk

    DEFF Research Database (Denmark)

    Lundgren, Jens; Mocroft, Amanda; Ryom, Lene

    2018-01-01

    PURPOSE OF REVIEW: To review the evidence linking use of HIV protease inhibitors with excess risk of cardiovascular disease (CVD) in HIV+ populations. RECENT FINDINGS: For the two contemporary most frequently used protease inhibitors, darunavir and atazanavir [both pharmacologically boosted...

  14. Appearance and distribution of regioisomers in metallo- and serine-protease-catalysed acylation of sucrose in N,N-dimethylformamide

    DEFF Research Database (Denmark)

    Lie, Aleksander; Meyer, Anne S.; Pedersen, Lars Haastrup

    2014-01-01

    laurate was obtained in yields from 12 to 53% after 48 h under different catalytic conditions. The serine protease ALP-901, derived from a Streptomyces sp., produced the highest yield at this reaction time, while reaction with the zinc-protease thermolysin achieved the overall highest yield (63%) after 6...

  15. Purification and characterisation of a protease (tamarillin) from tamarillo fruit

    KAUST Repository

    Li, Zhao

    2018-02-16

    A protease from tamarillo fruit (Cyphomandra betacea Cav.) was purified by ammonium sulphate precipitation and diethylaminoethyl-Sepharose chromatography. Protease activity was determined on selected peak fractions using a casein substrate. Sodium dodecyl sulphate polyacrylamide gel electrophoresis analysis showed that the peak with the highest protease activity consisted of one protein of molecular mass ca. 70 kDa. The protease showed optimal activity at pH 11 and 60°C. It was sensitive to phenylmethylsulphonyl fluoride while ethylenediaminetetraacetic acid and p-chloromercuribenzoic acid had little effect on its activity, indicating that this enzyme was a serine protease. Hg2+ strongly inhibited enzyme activity, possibly due to formation of mercaptide bonds with the thiol groups of the protease, suggesting that some cysteine residues may be located close to the active site. De novo sequencing strongly indicated that the protease was a subtilisin-like alkaline serine protease. The protease from tamarillo has been named \\'tamarillin\\'.

  16. Purification and characterisation of a protease (tamarillin) from tamarillo fruit

    KAUST Repository

    Li, Zhao; Scott, Ken; Hemar, Yacine; Zhang, Huoming; Otter, Don

    2018-01-01

    A protease from tamarillo fruit (Cyphomandra betacea Cav.) was purified by ammonium sulphate precipitation and diethylaminoethyl-Sepharose chromatography. Protease activity was determined on selected peak fractions using a casein substrate. Sodium dodecyl sulphate polyacrylamide gel electrophoresis analysis showed that the peak with the highest protease activity consisted of one protein of molecular mass ca. 70 kDa. The protease showed optimal activity at pH 11 and 60°C. It was sensitive to phenylmethylsulphonyl fluoride while ethylenediaminetetraacetic acid and p-chloromercuribenzoic acid had little effect on its activity, indicating that this enzyme was a serine protease. Hg2+ strongly inhibited enzyme activity, possibly due to formation of mercaptide bonds with the thiol groups of the protease, suggesting that some cysteine residues may be located close to the active site. De novo sequencing strongly indicated that the protease was a subtilisin-like alkaline serine protease. The protease from tamarillo has been named 'tamarillin'.

  17. Superoxide produced in the matrix of mitochondria enhances methylmercury toxicity in human neuroblastoma cells

    Energy Technology Data Exchange (ETDEWEB)

    Mailloux, Ryan J.; Yumvihoze, Emmanuel; Chan, Hing Man, E-mail: laurie.chan@uottawa.ca

    2015-12-15

    The mechanism of intracellular metabolism of methylmercury (MeHg) is not fully known. It has been shown that superoxide (O{sub 2}·{sup −}), the proximal reactive oxygen species (ROS) generated by mitochondria, is responsible for MeHg demethylation. Here, we investigated the impact of different mitochondrial respiratory inhibitors, namely rotenone and antimycin A, on the O{sub 2}·{sup −} mediated degradation of MeHg in human neuroblastoma cells SH-K-SN. We also utilized paraquat (PQ) which generates O{sub 2}·{sup −} in the mitochondrial matrix. We found that the cleavage of the carbon-metal bond in MeHg was highly dependent on the topology of O{sub 2}·{sup −} production by mitochondria. Both rotenone and PQ, which increase O{sub 2}·{sup −} in the mitochondrial matrix at a dose-dependent manner, enhanced the conversion of MeHg to inorganic mercury (iHg). Surprisingly, antimycin A, which prompts emission of O{sub 2}·{sup −} into the intermembrane space, did not have the same effect even though antimycin A induced a dose dependent increase in O{sub 2}·{sup −} emission. Rotenone and PQ also enhanced the toxicity of sub-toxic doses (0.1 μM) MeHg which correlated with the accumulation of iHg in mitochondria and depletion of mitochondrial protein thiols. Taken together, our results demonstrate that MeHg degradation is mediated by mitochondrial O{sub 2}·{sup −}, specifically within the matrix of mitochondria when O{sub 2}·{sup −} is in adequate supply. Our results also show that O{sub 2}·{sup −} amplifies MeHg toxicity specifically through its conversion to iHg and subsequent interaction with protein cysteine thiols (R-SH). The implications of our findings in mercury neurotoxicity are discussed herein. - Highlights: • Superoxide produced in the matrix of mitochondria degrades MeHg. • Superoxide produced in intermembrane space does not degrade MeHg. • Matrix-generated superoxide enhances Hg toxicity by converting MeHg to iHg.

  18. Optimization of physical factors affecting the production of thermo-stable organic solvent-tolerant protease from a newly isolated halo tolerant Bacillus subtilis strain Rand

    Directory of Open Access Journals (Sweden)

    Salleh Abu

    2009-04-01

    Full Text Available Abstract Background Many researchers have reported on the optimization of protease production; nevertheless, only a few have reported on the optimization of the production of organic solvent-tolerant proteases. Ironically, none has reported on thermostable organic solvent-tolerant protease to date. The aim of this study was to isolate the thermostable organic solvent-tolerant protease and identify the culture conditions which support its production. The bacteria of genus Bacillus are active producers of extra-cellular proteases, and the thermostability of enzyme production by Bacillus species has been well-studied by a number of researchers. In the present study, the Bacillus subtilis strain Rand was isolated from the contaminated soil found in Port Dickson, Malaysia. Results A thermostable organic solvent-tolerant protease producer had been identified as Bacillus subtilis strain Rand, based on the 16S rRNA analysis conducted, as well as the morphological characteristics and biochemical properties. The production of the thermostable organic solvent-tolerant protease was optimized by varying various physical culture conditions. Inoculation with 5.0% (v/v of (AB600 = 0.5 inoculum size, in a culture medium (pH 7.0 and incubated for 24 h at 37°C with 200 rpm shaking, was the best culture condition which resulted in the maximum growth and production of protease (444.7 U/ml; 4042.4 U/mg. The Rand protease was not only stable in the presence of organic solvents, but it also exhibited a higher activity than in the absence of organic solvent, except for pyridine which inhibited the protease activity. The enzyme retained 100, 99 and 80% of its initial activity, after the heat treatment for 30 min at 50, 55, and 60°C, respectively. Conclusion Strain Rand has been found to be able to secrete extra-cellular thermostable organic solvent-tolerant protease into the culture medium. The protease exhibited a remarkable stability towards temperature and organic

  19. Defensome against toxic diatom aldehydes in the sea urchin Paracentrotus lividus.

    Directory of Open Access Journals (Sweden)

    Vincenzo Marrone

    Full Text Available Many diatom species produce polyunsaturated aldehydes, such as decadienal, which compromise embryonic and larval development in benthic organisms. Here newly fertilized Paracentrotus lividus sea urchins were exposed to low concentration of decadienal and the expression levels of sixteen genes, implicated in a broad range of functional responses, were followed by Real Time qPCR in order to identify potential decadienal targets. We show that at low decadienal concentrations the sea urchin Paracentrotus lividus places in motion different classes of genes to defend itself against this toxic aldehyde, activating hsp60 and two proteases, hat and BP10, at the blastula stage and hsp56 and several other genes (14-3-3ε, p38 MAPK, MTase, and GS at the prism stage. At this latter stage all genes involved in skeletogenesis (Nec, uni, SM50 and SM30 were also down-expressed, following developmental abnormalities that mainly affected skeleton morphogenesis. Moreover, sea urchin embryos treated with increasing concentrations of decadienal revealed a dose-dependent response of activated target genes. Finally, we suggest that this orchestrated defense system against decadienal represents part of the chemical defensome of P. lividus affording protection from environmental toxicants.

  20. Activation of the Arabidopsis membrane-bound transcription factor bZIP28 is mediated by site-2 protease, but not site-1 protease.

    Science.gov (United States)

    Iwata, Yuji; Ashida, Makoto; Hasegawa, Chisa; Tabara, Kazuki; Mishiba, Kei-Ichiro; Koizumi, Nozomu

    2017-08-01

    The unfolded protein response (UPR) is a homeostatic cellular response conserved in eukaryotic cells to alleviate the accumulation of unfolded proteins in the endoplasmic reticulum (ER). Arabidopsis bZIP28 is a membrane-bound transcription factor activated by proteolytic cleavage in response to ER stress, thereby releasing its cytosolic portion containing the bZIP domain from the membrane to translocate into the nucleus where it induces the transcription of genes encoding ER-resident molecular chaperones and folding enzymes. It has been widely recognized that the proteolytic activation of bZIP28 is mediated by the sequential cleavage of site-1 protease (S1P) and site-2 protease (S2P). In the present study we provide evidence that bZIP28 protein is cleaved by S2P, but not by S1P. We demonstrated that wild-type and s1p mutant plants produce the active, nuclear form of bZIP28 in response to the ER stress inducer tunicamycin. In contrast, tunicamycin-treated s2p mutants do not accumulate the active, nuclear form of bZIP28. Consistent with these observations, s2p mutants, but not s1p mutants, exhibited a defective transcriptional response of ER stress-responsive genes and significantly higher sensitivity to tunicamycin. Interestingly, s2p mutants accumulate two membrane-bound bZIP28 fragments with a shorter ER lumen-facing C-terminal domain. Importantly, the predicted cleavage sites are located far from the canonical S1P recognition motif previously described. We propose that ER stress-induced proteolytic activation of bZIP28 is mediated by the sequential actions of as-yet-unidentified protease(s) and S2P, and does not require S1P. © 2017 The Authors The Plant Journal © 2017 John Wiley & Sons Ltd.

  1. Isolation, partial purification, biochemical characterization and detergent compatibility of alkaline protease produced by Bacillus subtilis, Alcaligenes faecalis and Pseudomonas aeruginosa obtained from sea water samples

    Directory of Open Access Journals (Sweden)

    Sarika Kedar Marathe

    2018-06-01

    Full Text Available In the current study, bacteria isolated from sea water samples of Murdeshwar, Karnataka, were screened for the production of alkaline protease by culturing them onto skim milk agar media. Of the isolated bacteria, Bacillus subtilis, Pseudomonas aeruginosa and Alcaligenes faecalis showed distinct zones of hydrolysis due to enzyme production. They were each inoculated into enzyme production media under submerged fermentation conditions at 37 °C for 48 h with a constant agitation of 120 rpm. Partial purification of alkaline protease was carried out by isoelectric precipitation. Enzyme activity was determined under varying conditions of pH, incubation temperature, different substrates, carbon and nitrogen sources and salt concentrations using sigma’s universal protease activity assay. Enzyme immobilization was carried out using 2% Sodium alginate and 0.1 M ice cold CaCl2 and its activity under varying pH, temperature conditions and detergent compatibility was assayed. Efficacy of enzyme in stain removal was tested and haemolysis was observed within of 60 s which resulted in removal of the stain. Among the three organisms, enzyme from Bacillus subtilis showed highest activity in all cases indicating that it was the most ideal organism for enzyme production. Keywords: Alkaline protease, Skim milk agar, Bacillus, Alcaligenes, Pseudomonas, Isoelectric precipitation, Protease activity, Enzyme immobilization, Detergent compatibility

  2. High throughput in vivo protease inhibitor selection platform

    DEFF Research Database (Denmark)

    2017-01-01

    The invention relates to a recombinant microbial cell comprising a selection platform for screening for a protease inhibitor, wherein the platform comprises transgenes encoding a protease having selective peptide bond cleavage activity at a recognition site amino acid sequence; and transgenes...... platform for screening for a protease inhibitor....

  3. Detergent-compatible proteases: microbial production, properties, and stain removal analysis.

    Science.gov (United States)

    Niyonzima, Francois Niyongabo; More, Sunil

    2015-01-01

    Proteases are one of the most important commercial enzymes used in various industrial domains such as detergent and leather industries. The alkaline proteases as well as other detergent-compatible enzymes such as lipases and amylases serve now as the key components in detergent formulations. They break down various stains during fabric washing. The search for detergent-compatible proteases with better properties is a continuous exercise. The current trend is to use detergent-compatible proteases that are stable over a wide temperature range. Although the proteases showing stability at elevated pH have the capacity to be used in detergent formulations, their usage can be significant if they are also stable and compatible with detergent and detergent ingredients, and also able to remove protein stains. Despite the existence of some reviews on alkaline proteases, there is no specification for the use of alkaline proteases as detergent additives. The present review describes the detergent-compatible proteases tested as detergent additives. An overview was provided for screening, optimization, purification, and properties of detergent compatible proteases, with an emphasis on the stability and compatibility of the alkaline proteases with the detergent and detergent compounds, as well as stain removal examination methods.

  4. Overview of Chronic Oral Toxicity Values for Chemicals Present in Hydraulic Fracturing Fluids, Flowback and Produced Waters

    Science.gov (United States)

    as part of EPA's Hydraulic Fracturing Drinking Water Assessment, EPA is summarizing existing toxicity data for chemicals reported to be used in hydraulic fracturing fluids and/or found in flowback or produced waters from hydraulically fractured wells

  5. Hydroxyethylamine derivatives as HIV-1 protease inhibitors: a predictive QSAR modelling study based on Monte Carlo optimization.

    Science.gov (United States)

    Bhargava, S; Adhikari, N; Amin, S A; Das, K; Gayen, S; Jha, T

    2017-12-01

    Application of HIV-1 protease inhibitors (as an anti-HIV regimen) may serve as an attractive strategy for anti-HIV drug development. Several investigations suggest that there is a crucial need to develop a novel protease inhibitor with higher potency and reduced toxicity. Monte Carlo optimized QSAR study was performed on 200 hydroxyethylamine derivatives with antiprotease activity. Twenty-one QSAR models with good statistical qualities were developed from three different splits with various combinations of SMILES and GRAPH based descriptors. The best models from different splits were selected on the basis of statistically validated characteristics of the test set and have the following statistical parameters: r 2 = 0.806, Q 2 = 0.788 (split 1); r 2 = 0.842, Q 2 = 0.826 (split 2); r 2 = 0.774, Q 2 = 0.755 (split 3). The structural attributes obtained from the best models were analysed to understand the structural requirements of the selected series for HIV-1 protease inhibitory activity. On the basis of obtained structural attributes, 11 new compounds were designed, out of which five compounds were found to have better activity than the best active compound in the series.

  6. Monocytes can be induced by lipopolysaccharide-triggered T lymphocytes to express functional factor VII/VIIa protease activity

    OpenAIRE

    1984-01-01

    In the present study we demonstrate that human monocytes can be induced by the model stimulus, lipopolysaccharide (LPS), to produce and assemble on their surface functional Factor VII/VIIa. This protease was not induced in relatively purified monocytes alone following exposure to LPS; but was induced in the presence of Leu-3a positive helper/inducer T cells. The Factor VII/VIIa protease activity represented 35-40% of the potential initiating activity for the extrinsic coagulation pathway and ...

  7. The Effect of Exogenous Protease in Broiler Diets on the Apparent Ileal Digestibility of Amino Acids and on Protease Activity in Jejunum

    Directory of Open Access Journals (Sweden)

    Vojtěch Rada

    2016-01-01

    Full Text Available The objective of this study was to evaluate the effect of a mono-component commercial serine protease supplement in broiler diets on apparent ileal amino acid digestibility and protease activity. A total of 150 male (28 d old ROSS 308 were randomly placed into 30 battery pens and divided into 5 treatment groups with 6 replicates each. The experiment was performed for 7 days. Five dietary treatments were used: 2 standard protein diets without (SP and with protease (SP + P formulated 20.7 % CP, 2 lower-protein diets (19.9 % CP without (LP and with protease (LP + P and one lower‑protein diet with protease and with doubled rapeseed meal (RSM content (SP-RSM + P compared with the other treatments. Lower-protein diets were formulated with a 4 % decrease in the relative CP value compared with the standard protein diet. Enzyme protease was added to the diets at a concentration of 200 ppm (15,000 PROT units per kg. The diets contained 0.3 % Cr2O3 to facilitate the estimation of apparent AA digestibility and overall apparent ileal crude protein digestibility. Mono-component protease had no effect on apparent ileal AA digestibility or jejunum protease activity if diets contained the same level of RSM. The supplement of exogenous protease did not affect (P > 0.05 the apparent ileal AA digestibility coefficients if a higher RSM level was used. The CP level influenced (P < 0.05 only the coefficients of the apparent ileal AA digestibility of Pro and Arg. The RSM level (P < 0.01 had significant effects on protease activity in the jejunum.

  8. Concomitant production of two proteases and alpha-amylase by a novel strain of Bacillus subtilis in a microprocessor controlled bioreactor

    Directory of Open Access Journals (Sweden)

    Hamid Mukhtar

    2012-09-01

    Full Text Available We describe the simultaneous production of Bacillus subtilis based proteases and alpha amylase using a computer controlled laboratory scale 7.5 L batch bioreactor. The present strain is the first to be reported that concomitantly produces these two industrially important enzymes. The growth and sporulation of Bacillus subtilis was monitored and maximum production of alkaline protease and alpha amylase was found to coincide with maximum sporulation. Two types of proteases were detected in the fermentation broth; a neutral and an alkaline protease most active in a pH range of 7.0-8.0 and 8.0-10, respectively. Maximum production of proteases was observed at an incubation temperature of 37ºC while that of alpha amylase was observed at 40ºC. The optimum aeration and agitation levels for protease production were 0.6 L/L/min and 200rpm, respectively, and for alpha amylase were 0.6 L/L/min and 150 rpm. The kinetic parameters Yp/x and qp were also found to be significant at the given fermentation conditions.

  9. PAR-1 mediated apoptosis of breast cancer cells by V. cholerae hemagglutinin protease.

    Science.gov (United States)

    Ray, Tanusree; Pal, Amit

    2016-05-01

    Bacterial toxins have emerged as promising agents in cancer treatment strategy. Hemagglutinin (HAP) protease secreted by Vibrio cholerae induced apoptosis in breast cancer cells and regresses tumor growth in mice model. The success of novel cancer therapies depends on their selectivity for cancer cells with limited toxicity for normal tissues. Increased expression of Protease Activated Receptor-1 (PAR-1) has been reported in different malignant cells. In this study we report that HAP induced activation and over expression of PAR-1 in breast cancer cells (EAC). Immunoprecipitation studies have shown that HAP specifically binds with PAR-1. HAP mediated activation of PAR-1 caused nuclear translocation of p50-p65 and the phosphorylation of p38 which triggered the activation of NFκB and MAP kinase signaling pathways. These signaling pathways enhanced the cellular ROS level in malignant cells that induced the intrinsic pathway of cell apoptosis. PAR-1 mediated apoptosis by HAP of malignant breast cells without effecting normal healthy cells in the same environment makes it a good therapeutic agent for treatment of cancer.

  10. Expression and characterization of plant aspartic protease nepenthesin-1 from Nepenthes gracilis.

    Science.gov (United States)

    Kadek, Alan; Tretyachenko, Vyacheslav; Mrazek, Hynek; Ivanova, Ljubina; Halada, Petr; Rey, Martial; Schriemer, David C; Man, Petr

    2014-03-01

    Carnivorous plants of the genus Nepenthes produce their own aspartic proteases, nepenthesins, to digest prey trapped in their pitchers. Nepenthesins differ significantly in sequence from other aspartic proteases in the animal or even plant kingdoms. This difference, which also brings more cysteine residues into the structure of these proteases, can be a cause of uniquely high temperature and pH stabilities of nepenthesins. Their detailed structure characterization, however, has not previously been possible due to low amounts of protease present in the pitcher fluid and also due to limited accessibility of Nepenthes plants. In the present study we describe a convenient way for obtaining high amounts of nepenthesin-1 from Nepenthes gracilis using heterologous production in Escherichia coli. The protein can be easily refolded in vitro and its characteristics are very close to those described for a natural enzyme isolated from the pitcher fluid. Similarly to the natural enzyme, recombinant nepenthesin-1 is sensitive to denaturing and reducing agents. It also has maximal activity around pH 2.5, shows unusual stability at high pH and its activity is not irreversibly inhibited even after prolonged incubation in the basic pH range. On the other hand, temperature stability of the recombinant enzyme is lower in comparison with the natural enzyme, which can be attributed to missing N-glycosylation in the recombinant protein. Copyright © 2013 Elsevier Inc. All rights reserved.

  11. Optimizing HIV-1 protease production in Escherichia coli as fusion protein

    Directory of Open Access Journals (Sweden)

    Piubelli Luciano

    2011-06-01

    Full Text Available Abstract Background Human immunodeficiency virus (HIV is the etiological agent in AIDS and related diseases. The aspartyl protease encoded by the 5' portion of the pol gene is responsible for proteolytic processing of the gag-pol polyprotein precursor to yield the mature capsid protein and the reverse transcriptase and integrase enzymes. The HIV protease (HIV-1Pr is considered an attractive target for designing inhibitors which could be used to tackle AIDS and therefore it is still the object of a number of investigations. Results A recombinant human immunodeficiency virus type 1 protease (HIV-1Pr was overexpressed in Escherichia coli cells as a fusion protein with bacterial periplasmic protein dithiol oxidase (DsbA or glutathione S-transferase (GST, also containing a six-histidine tag sequence. Protein expression was optimized by designing a suitable HIV-1Pr cDNA (for E. coli expression and to avoid autoproteolysis and by screening six different E. coli strains and five growth media. The best expression yields were achieved in E. coli BL21-Codon Plus(DE3-RIL host and in TB or M9 medium to which 1% (w/v glucose was added to minimize basal expression. Among the different parameters assayed, the presence of a buffer system (based on phosphate salts and a growth temperature of 37°C after adding IPTG played the main role in enhancing protease expression (up to 10 mg of chimeric DsbA:HIV-1Pr/L fermentation broth. GST:HIVPr was in part (50% produced as soluble protein while the overexpressed DsbA:HIV-1Pr chimeric protein largely accumulated in inclusion bodies as unprocessed fusion protein. A simple refolding procedure was developed on HiTrap Chelating column that yielded a refolded DsbA:HIV-1Pr with a > 80% recovery. Finally, enterokinase digestion of resolubilized DsbA:HIV-1Pr gave more than 2 mg of HIV-1Pr per liter of fermentation broth with a purity ≤ 80%, while PreScission protease cleavage of soluble GST:HIVPr yielded ~ 0.15 mg of pure HIV-1

  12. Purification and molecular characterization of subtilisin-like alkaline protease BPP-A from Bacillus pumilus strain MS-1.

    Science.gov (United States)

    Miyaji, T; Otta, Y; Nakagawa, T; Watanabe, T; Niimura, Y; Tomizuka, N

    2006-03-01

    The present study was conducted by screening zein-degrading bacteria in an attempt to obtain zein-degrading protease. Soil bacteria were screened by formation of a clear zone on zein plates. Characterization of a zein-degrading bacterium indicated a taxonomic affiliation to Bacillus pumilus, and was named MS-1 strain. The strain produced two different types of extracellular proteases, BPP-A and BPP-B. In this study, we purified and characterized BPP-A because it exhibited a higher ability to hydrolyze zein than BPP-B. When casein was used as the substrate, the optimal pH for BPP-A was 11.0. In BPP-A, zein was better substrate than casein at pH 13.0, whereas casein was better one than zein at pH 11.0. The bppA gene encoded a 383-amino acid pre-pro form of BPP-A, and mature BPP-A contained 275 amino acid residues. It was concluded that BPP-A belonged to the subtilisin family. A zein-degrading bacterium assigned to B. pumilus produced two different types of extracellular proteases, BPP-A and BPP-B. BPP-A exhibited an ability to hydrolyze zein in an extreme alkaline condition. This is a first report on screening for zein-degrading micro-organisms. The subtilisin-like protease BPP-A is possible to utilize as an industrial enzyme for the production of zein hydrolysates.

  13. A new method for the characterization of strain-specific conformational stability of protease-sensitive and protease-resistant PrPSc.

    Directory of Open Access Journals (Sweden)

    Laura Pirisinu

    Full Text Available Although proteinacious in nature, prions exist as strains with specific self-perpetuating biological properties. Prion strains are thought to be associated with different conformers of PrP(Sc, a disease-associated isoform of the host-encoded cellular protein (PrP(C. Molecular strain typing approaches have been developed which rely on the characterization of protease-resistant PrP(Sc. However, PrP(Sc is composed not only of protease-resistant but also of protease-sensitive isoforms. The aim of this work was to develop a protocol for the molecular characterization of both, protease-resistant and protease-sensitive PrP(Sc aggregates. We first set up experimental conditions which allowed the most advantageous separation of PrP(C and PrP(Sc by means of differential centrifugation. The conformational solubility and stability assay (CSSA was then developed by measuring PrP(Sc solubility as a function of increased exposure to GdnHCl. Brain homogenates from voles infected with human and sheep prion isolates were analysed by CSSA and showed strain-specific conformational stabilities, with mean [GdnHCl](1/2 values ranging from 1.6 M for MM2 sCJD to 2.1 for scrapie and to 2.8 M for MM1/MV1 sCJD and E200K gCJD. Interestingly, the rank order of [GdnHCl](1/2 values observed in the human and sheep isolates used as inocula closely matched those found following transmission in voles, being MM1 sCJD the most resistant (3.3 M, followed by sheep scrapie (2.2 M and by MM2 sCJD (1.6 M. In order to test the ability of CSSA to characterise protease-sensitive PrP(Sc, we analysed sheep isolates of Nor98 and compared them to classical scrapie isolates. In Nor98, insoluble PrP(Sc aggregates were mainly protease-sensitive and showed a conformational stability much lower than in classical scrapie. Our results show that CSSA is able to reveal strain-specified PrP(Sc conformational stabilities of protease-resistant and protease-sensitive PrP(Sc and that it is a valuable tool

  14. Fibrin(ogen)olytic activity of bumblebee venom serine protease

    International Nuclear Information System (INIS)

    Qiu Yuling; Choo, Young Moo; Yoon, Hyung Joo; Jia Jingming; Cui Zheng; Wang Dong; Kim, Doh Hoon; Sohn, Hung Dae; Jin, Byung Rae

    2011-01-01

    Bee venom is a rich source of pharmacologically active components; it has been used as an immunotherapy to treat bee venom hypersensitivity, and venom therapy has been applied as an alternative medicine. Here, we present evidence that the serine protease found in bumblebee venom exhibits fibrin(ogen)olytic activity. Compared to honeybee venom, bumblebee venom contains a higher content of serine protease, which is one of its major components. Venom serine proteases from bumblebees did not cross-react with antibodies against the honeybee venom serine protease. We provide functional evidence indicating that bumblebee (Bombus terrestris) venom serine protease (Bt-VSP) acts as a fibrin(ogen)olytic enzyme. Bt-VSP activates prothrombin and directly degrades fibrinogen into fibrin degradation products. However, Bt-VSP is not a plasminogen activator, and its fibrinolytic activity is less than that of plasmin. Taken together, our results define roles for Bt-VSP as a prothrombin activator, a thrombin-like protease, and a plasmin-like protease. These findings offer significant insight into the allergic reaction sequence that is initiated by bee venom serine protease and its potential usefulness as a clinical agent in the field of hemostasis and thrombosis. - Graphical abstract: Display Omitted Highlights: → Bumblebee venom serine protease (Bt-VSP) is a fibrin(ogen)olytic enzyme. → Bt-VSP activates prothrombin. → Bt-VSP directly degrades fibrinogen into fibrin degradation products. → Bt-VSP is a hemostatically active protein that is a potent clinical agent.

  15. Characterization of Fibrinolytic Proteases from Gloydius blomhoffii siniticus Venom

    Directory of Open Access Journals (Sweden)

    Suk Ho Choi

    2011-09-01

    Full Text Available Objectives : This study was undertaken to identify fibrinolytic proteases from Gloydius blomhoffii siniticus venom and to characterize a major fibrinolytic protease purified from the venom. Methods: The venom was subjected to chromatography using columns of Q-Sepharose and Sephadex G-75. The molecular weights of fibrinolytic proteases showing fibrinolytic zone in fibrin plate assay were determined in SDS-PAGE (Sodium dodecyl sulfate-polyacrylamide gel electrophoresis The effects of inhibitors and metal ions on fibrinolytic protease and the proteolysis patterns of fibrinogen, gelatin, and bovine serum albumin were investigated. Results : 1 The fibrinolytic fractions of the three peaks isolated from Gloydius blomhoffii siniticus venom contained two polypeptides of 46 and 59 kDa and three polypeptides of 32, 18, and 15 kDa and a major polypeptide of 54 kDa, respectively. 2 The fibrinolytic activity of the purified protease of 54 kDA was inhibited by metal chelators, such as EDTA, EGTA, and 1,10-phenanthroline, and disulfhydryl-reducing compounds, such as dithiothreitol and cysteine. 3 Calcium chloride promoted the fibrinolytic activity of the protease, but mercuric chloride and cobalt(II chloride inhibited it. 4 The fibrinolytic protease cleaved preferentially A-chain and slowly B-chain of fibrinogen. It also hydrolyzed gelatin but not bovine serum albumin. Conclusions: The Gloydius blomhoffii siniticus venom contained more than three fibrinolytic proteases. The major fibrinolytic protease was a metalloprotease which hydrolyzed both fibrinogen and gelatin, but not bovine serum albumin.

  16. Structure of HIV-1 protease determined by neutron crystallography

    International Nuclear Information System (INIS)

    Adachi, Motoyasu; Kuroki, Ryota

    2009-01-01

    HIV-1 protease is an aspartic protease, and plays an essential role in replication of HIV. To develop HIV-1 protease inhibitors through structure-based drug design, it is necessary to understand the catalytic mechanism and inhibitor recognition of HIV-1 protease. We have determined the crystal structure of HIV-1 protease in complex with KNI-272 to 1.9 A resolution by neutron crystallography in combination with 1.4 A resolution X-ray diffraction data. The results show that the carbonyl group of hydroxymethylcarbonyl (HMC) in KNI-272 forms a hydrogen bonding interaction with protonated Asp 25 and the hydrogen atom from the hydroxyl group of HMC forms a hydrogen bonding interaction with the deprotonated Asp125. This is the first neutron report for HIV-1/inhibitor complex and shows directly the locations of key hydrogen atoms in catalysis and in the binding of a transition-state analog. The results confirm key aspect of the presumed catalytic mechanism of HIV-1 protease and will aid in the further development of protease inhibitors. (author)

  17. Construction of dengue virus protease expression plasmid and in vitro protease assay for screening antiviral inhibitors.

    Science.gov (United States)

    Lai, Huiguo; Teramoto, Tadahisa; Padmanabhan, Radhakrishnan

    2014-01-01

    Dengue virus serotypes 1-4 (DENV1-4) are mosquito-borne human pathogens of global significance causing ~390 million cases annually worldwide. The virus infections cause in general a self-limiting disease, known as dengue fever, but occasionally also more severe forms, especially during secondary infections, dengue hemorrhagic fever and dengue shock syndrome causing ~25,000 deaths annually. The DENV genome contains a single-strand positive sense RNA, approximately 11 kb in length. The 5'-end has a type I cap structure. The 3'-end has no poly(A) tail. The viral RNA has a single long open reading frame that is translated by the host translational machinery to yield a polyprotein precursor. Processing of the polyprotein precursor occurs co-translationally by cellular proteases and posttranslationally by the viral serine protease in the endoplasmic reticulum (ER) to yield three structural proteins (capsid (C), precursor membrane (prM), and envelope (E) and seven nonstructural (NS) proteins (NS1, NS2A, NS2B, NS3, NS4A, NS4B, and NS5). The active viral protease consists of both NS2B, an integral membrane protein in the ER, and the N-terminal part of NS3 (180 amino acid residues) that contains the trypsin-like serine protease domain having a catalytic triad of H51, D75, and S135. The C-terminal part of NS3, ~170-618 amino acid residues, encodes an NTPase/RNA helicase and 5'-RNA triphosphatase activities; the latter enzyme is required for the first step in 5'-capping. The cleavage sites of the polyprotein by the viral protease consist of two basic amino acid residues such as KR, RR, or QR, followed by short chain amino acid residues, G, S, or T. Since the cleavage of the polyprotein by the viral protease is absolutely required for assembly of the viral replicase, blockage of NS2B/NS3pro activity provides an effective means for designing dengue virus (DENV) small-molecule therapeutics. Here we describe the screening of small-molecule inhibitors against DENV2 protease.

  18. Multifunctional Mitochondrial AAA Proteases.

    Science.gov (United States)

    Glynn, Steven E

    2017-01-01

    Mitochondria perform numerous functions necessary for the survival of eukaryotic cells. These activities are coordinated by a diverse complement of proteins encoded in both the nuclear and mitochondrial genomes that must be properly organized and maintained. Misregulation of mitochondrial proteostasis impairs organellar function and can result in the development of severe human diseases. ATP-driven AAA+ proteins play crucial roles in preserving mitochondrial activity by removing and remodeling protein molecules in accordance with the needs of the cell. Two mitochondrial AAA proteases, i-AAA and m-AAA, are anchored to either face of the mitochondrial inner membrane, where they engage and process an array of substrates to impact protein biogenesis, quality control, and the regulation of key metabolic pathways. The functionality of these proteases is extended through multiple substrate-dependent modes of action, including complete degradation, partial processing, or dislocation from the membrane without proteolysis. This review discusses recent advances made toward elucidating the mechanisms of substrate recognition, handling, and degradation that allow these versatile proteases to control diverse activities in this multifunctional organelle.

  19. Characterization of detergent compatible protease of a halophilic Bacillus sp. EMB9: differential role of metal ions in stability and activity.

    Science.gov (United States)

    Sinha, Rajeshwari; Khare, S K

    2013-10-01

    A moderately halophilic protease producer, Bacillus sp. strain isolated from sea water is described. The protease is purified to homogeneity by ammonium sulphate precipitation and CM cellulose chromatography. The serine protease has a molecular mass of 29 kDa. Enzymatic characterization of protease revealed K(m) 2.22 mg mL(-1), Vmax 1111.11 U mL(-1), pH optimum 9.0, t1/2 190 min at 60°C and salt optima 1% (w/v) NaCl. The protease is remarkably stable in hydrophilic and hydrophobic solvents at high concentrations. The purified preparation is unstable at room temperature. Ca(2+) ions are required for preventing this loss of activity. Interestingly, the activity and stability are modulated differentially. Whereas, divalent cation Ca(2+) are involved in maintaining stability in solution at room temperature by preventing unfolding, monovalent Na(+) and K(+) ions participate in regulating the activity and assist in refolding of the enzyme. Application of the protease is shown in efficient removal of blood stain. Copyright © 2012 Elsevier Ltd. All rights reserved.

  20. Protease-associated cellular networks in malaria parasite Plasmodium falciparum

    Directory of Open Access Journals (Sweden)

    Lilburn Timothy G

    2011-12-01

    Full Text Available Abstract Background Malaria continues to be one of the most severe global infectious diseases, responsible for 1-2 million deaths yearly. The rapid evolution and spread of drug resistance in parasites has led to an urgent need for the development of novel antimalarial targets. Proteases are a group of enzymes that play essential roles in parasite growth and invasion. The possibility of designing specific inhibitors for proteases makes them promising drug targets. Previously, combining a comparative genomics approach and a machine learning approach, we identified the complement of proteases (degradome in the malaria parasite Plasmodium falciparum and its sibling species 123, providing a catalog of targets for functional characterization and rational inhibitor design. Network analysis represents another route to revealing the role of proteins in the biology of parasites and we use this approach here to expand our understanding of the systems involving the proteases of P. falciparum. Results We investigated the roles of proteases in the parasite life cycle by constructing a network using protein-protein association data from the STRING database 4, and analyzing these data, in conjunction with the data from protein-protein interaction assays using the yeast 2-hybrid (Y2H system 5, blood stage microarray experiments 678, proteomics 9101112, literature text mining, and sequence homology analysis. Seventy-seven (77 out of 124 predicted proteases were associated with at least one other protein, constituting 2,431 protein-protein interactions (PPIs. These proteases appear to play diverse roles in metabolism, cell cycle regulation, invasion and infection. Their degrees of connectivity (i.e., connections to other proteins, range from one to 143. The largest protease-associated sub-network is the ubiquitin-proteasome system which is crucial for protein recycling and stress response. Proteases are also implicated in heat shock response, signal peptide

  1. Pengaruh PH dan Suhu terhadap Aktivitas Protease Penicillium SP.

    OpenAIRE

    Yusriah, Yusriah; Kuswytasari, Nengah Dwianita

    2013-01-01

    Tujuan penelitian ini adalah untuk mengetahui pengaruh pH dan suhu terhadap aktivitas protease pada Penicillium sp.3 T3f2. Selanjutnya, isolat Penicillium sp. di kultur dalam media produksi protease untuk menghasilkan protease. Suhu yang digunakan adalah 300 – 500C sedangkan pH-nya 4 – 8. Aktivitas protease ditentukan dan diukur dengan spektrofotometer pada panjang gelombang 275 nm, dengan kasein sebagai substrat. Berdasarkan uji ANOVA yang dilanjutkan dengan uji Duncan dengan taraf kepercaya...

  2. Functional protease profiling for diagnosis of malignant disease.

    Science.gov (United States)

    Findeisen, Peter; Neumaier, Michael

    2012-01-01

    Clinical proteomic profiling by mass spectrometry (MS) aims at uncovering specific alterations within mass profiles of clinical specimens that are of diagnostic value for the detection and classification of various diseases including cancer. However, despite substantial progress in the field, the clinical proteomic profiling approaches have not matured into routine diagnostic applications so far. Their limitations are mainly related to high-abundance proteins and their complex processing by a multitude of endogenous proteases thus making rigorous standardization difficult. MS is biased towards the detection of low-molecular-weight peptides. Specifically, in serum specimens, the particular fragments of proteolytically degraded proteins are amenable to MS analysis. Proteases are known to be involved in tumour progression and tumour-specific proteases are released into the blood stream presumably as a result of invasive progression and metastasis. Thus, the determination of protease activity in clinical specimens from patients with malignant disease can offer diagnostic and also therapeutic options. The identification of specific substrates for tumour proteases in complex biological samples is challenging, but proteomic screens for proteases/substrate interactions are currently experiencing impressive progress. Such proteomic screens include peptide-based libraries, differential isotope labelling in combination with MS, quantitative degradomic analysis of proteolytically generated neo-N-termini, monitoring the degradation of exogenous reporter peptides with MS, and activity-based protein profiling. In the present article, we summarize and discuss the current status of proteomic techniques to identify tumour-specific protease-substrate interactions for functional protease profiling. Thereby, we focus on the potential diagnostic use of the respective approaches. Copyright © 2012 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  3. Differential protection of Cry1Fa toxin against Spodoptera frugiperda larval gut proteases by cadherin orthologs correlates with increased synergism.

    Science.gov (United States)

    Rahman, Khalidur; Abdullah, Mohd Amir F; Ambati, Suresh; Taylor, Milton D; Adang, Michael J

    2012-01-01

    The Cry proteins produced by Bacillus thuringiensis (Bt) are the most widely used biopesticides effective against a range of crop pests and disease vectors. Like chemical pesticides, development of resistance is the primary threat to the long-term efficacy of Bt toxins. Recently discovered cadherin-based Bt Cry synergists showed the potential to augment resistance management by improving efficacy of Cry toxins. However, the mode of action of Bt Cry synergists is thus far unclear. Here we elucidate the mechanism of cadherin-based Cry toxin synergism utilizing two cadherin peptides, Spodoptera frugiperda Cad (SfCad) and Manduca sexta Cad (MsCad), which differentially enhance Cry1Fa toxicity to Spodoptera frugiperda neonates. We show that differential SfCad- and MsCad-mediated protection of Cry1Fa toxin in the Spodoptera frugiperda midgut correlates with differential Cry1Fa toxicity enhancement. Both peptides exhibited high affinity for Cry1Fa toxin and an increased rate of Cry1Fa-induced pore formation in S. frugiperda. However, only SfCad bound the S. frugiperda brush border membrane vesicle and more effectively prolonged the stability of Cry1Fa toxin in the gut, explaining higher Cry1Fa enhancement by this peptide. This study shows that cadherin fragments may enhance B. thuringiensis toxicity by at least two different mechanisms or a combination thereof: (i) protection of Cry toxin from protease degradation in the insect midgut and (ii) enhancement of pore-forming ability of Cry toxin.

  4. Identification of cysteine proteases and screening of cysteine protease inhibitors in biological samples by a two-dimensional gel system of zymography and reverse zymography.

    Science.gov (United States)

    Saitoh, Eiichi; Yamamoto, Shinya; Okamoto, Eishiro; Hayakawa, Yoshimi; Hoshino, Takashi; Sato, Ritsuko; Isemura, Satoko; Ohtsubo, Sadami; Taniguchi, Masayuki

    2007-11-18

    We have developed a two-dimensional (2D-) gel system of zymography and reverse zymography for the detection and characterization of proteases and protease inhibitors. Isoelectric focusing (IEF) agarose gels with pH gradients were employed for separation in the first-dimension and sodium dodecyl sulfate (SDS)-polyacrylamide gel copolymerized with gelatin used for the second dimension. Proteases and protease inhibitors separated by IEF gel were applied on the second gel without trichloroacetic acid (TCA) fixation. Protease activity in the 2D-gel was visualized as transparent spots where gelatin substrate was digested after commassie brilliant blue (CBB) staining. Some of the transparent spots from the skin mucus extract of rainbow trout were determined to be a cysteine protease through use of E-64 or CA-074. In the reverse zymography technique, the gel was incubated with papain solution at 37 degrees C for 18 h. Cysteine protease inhibitors from broad bean seeds were detected as clear blue spots after CBB staining. The amino (N-) terminal sequences of four papain inhibitor spots thus detected were demonstrated to be identical to that of favin beta chain, a broad bean lectin. Taken together, our system can be considered to be an efficient technique for discovering and characterizing new proteases and protease inhibitors in biological samples. This is the first report describing a 2D-gel system of zymography and reverse zymography.

  5. Albizia lebbeck seed methanolic extract as a complementary therapy to manage local toxicity of Echis carinatus venom in a murine model.

    Science.gov (United States)

    Amog, P U; Manjuprasanna, V N; Yariswamy, M; Nanjaraj Urs, A N; Joshi, Vikram; Suvilesh, K N; Nataraju, A; Vishwanath, Bannikuppe Sannanaik; Gowda, T V

    2016-11-01

    Viperid venom-induced chronic local-toxicity continues even after anti-snake venom treatment. Therefore, traditional antidote Albizia lebbeck L. (Fabaceae) seed extract was tested against Echis carinatus S. (Viperidae) venom (ECV)-induced local toxicity to evaluate its complementary remedy. Soxhlet extraction of A. lebbeck seeds was performed with the increasing polarity of solvents (n-hexane to water); the extract was screened for phytochemicals (alkaloids, anthraquinones, flavonoids, glycosides, phenolics, saponins, steroids and tannins). In preliminary in vitro analysis, A. lebbeck methanolic extract (ALME) demonstrated significant inhibition of ECV proteases, the major enzyme-toxin responsible for local- toxicity. Therefore, in vitro neutralizing potential of ALME was further evaluated against hyaluronidases and phospholipase A 2 (1:1-1:100 w/w). In addition, alleviation of ECV induced characteristic local- toxicity [haemorrhage (i.d.) and myotoxicity (i.m.)] was determined in mice. ALME contained high concentrations of phenolics and flavonoids and demonstrated significant in vitro inhibition of ECV protease (IC 50  =   36.32 μg, p lebbeck in complementary medicine and identifies ALME as principle fraction responsible for antivenom properties.

  6. Protease signaling through protease activated receptor 1 mediate nerve activation by mucosal supernatants from irritable bowel syndrome but not from ulcerative colitis patients.

    Science.gov (United States)

    Buhner, Sabine; Hahne, Hannes; Hartwig, Kerstin; Li, Qin; Vignali, Sheila; Ostertag, Daniela; Meng, Chen; Hörmannsperger, Gabriele; Braak, Breg; Pehl, Christian; Frieling, Thomas; Barbara, Giovanni; De Giorgio, Roberto; Demir, Ihsan Ekin; Ceyhan, Güralp Onur; Zeller, Florian; Boeckxstaens, Guy; Haller, Dirk; Kuster, Bernhard; Schemann, Michael

    2018-01-01

    The causes of gastrointestinal complaints in irritable bowel syndrome (IBS) remain poorly understood. Altered nerve function has emerged as an important pathogenic factor as IBS mucosal biopsy supernatants consistently activate enteric and sensory neurons. We investigated the neurally active molecular components of such supernatants from patients with IBS and quiescent ulcerative colitis (UC). Effects of supernatants from 7 healthy controls (HC), 20 IBS and 12 UC patients on human and guinea pig submucous neurons were studied with neuroimaging techniques. We identify differentially expressed proteins with proteome analysis. Nerve activation by IBS supernatants was prevented by the protease activated receptor 1 (PAR1) antagonist SCHE79797. UC supernatants also activated enteric neurons through protease dependent mechanisms but without PAR1 involvement. Proteome analysis of the supernatants identified 204 proteins, among them 17 proteases as differentially expressed between IBS, UC and HC. Of those the four proteases elastase 3a, chymotrypsin C, proteasome subunit type beta-2 and an unspecified isoform of complement C3 were significantly more abundant in IBS compared to HC and UC supernatants. Of eight proteases, which were upregulated in IBS, the combination of elastase 3a, cathepsin L and proteasome alpha subunit-4 showed the highest prediction accuracy of 98% to discriminate between IBS and HC groups. Elastase synergistically potentiated the effects of histamine and serotonin-the two other main neuroactive substances in the IBS supernatants. A serine protease inhibitor isolated from the probiotic Bifidobacterium longum NCC2705 (SERPINBL), known to inhibit elastase-like proteases, prevented nerve activation by IBS supernatants. Proteases in IBS and UC supernatants were responsible for nerve activation. Our data demonstrate that proteases, particularly those signalling through neuronal PAR1, are biomarker candidates for IBS, and protease profiling may be used to

  7. Effect of irradiation on protease production by a Philippine strain of Aspergillus oryzae (ahlburg) cohn

    International Nuclear Information System (INIS)

    Anglo, P.G.

    1974-03-01

    The Philippine strain of Aspergillus oryzae (ahlburg) cohn. was exposed to ultraviolet rays and ionizing radiation from cobalt-60 for the purpose of obtaining possible mutants or resistant strains which produce powerful proteolytic enzymes. Out of 58 isolates, only 3 gave significant proteolytic values (PV) high enough to merit further investigation. The isolates, G-10, G-110, and 23-110, were picked from plates exposed to gamma rays from cobalt-60. Optimum incubation temperature for these isolates for highest percentage of active protease was 24 0 -27 0 C. The isolates were found capable of producing active protease from the second day of incubation up to the fifth day, whereas the activity of the parent strain was retained the fourth day only. The isolates showed maximum digestive ability at 25 0 -55 0 C, giving proteolytic values of 833. The pH activity curves showed that the enzyme produced by the irradiated isolates G-10 and G-110 were very active at pH 9.0-10.0, and isolate 23-110 at pH 6.0-10.0. The parent strain revealed two pH optima, one at pH 7.5-8.5 and the other at pH 9.0-9.5. Crude enzyme powder gave activities comparable to alkalase and maxatase, commercial proteolytic enzymes imported from Belgium and Netherlands being used as component of laundry detergents by some manufacturing companies in the Philippines. The results obtained give valuable information for the commercial application of the enzyme. Since the organism can produce high yields of protease from copra meal, a by-product of the coconut industry, commerical feasibility may be envisioned in the near future

  8. Serine protease inhibitors of parasitic helminths.

    Science.gov (United States)

    Molehin, Adebayo J; Gobert, Geoffrey N; McManus, Donald P

    2012-05-01

    Serine protease inhibitors (serpins) are a superfamily of structurally conserved proteins that inhibit serine proteases and play key physiological roles in numerous biological systems such as blood coagulation, complement activation and inflammation. A number of serpins have now been identified in parasitic helminths with putative involvement in immune regulation and in parasite survival through interference with the host immune response. This review describes the serpins and smapins (small serine protease inhibitors) that have been identified in Ascaris spp., Brugia malayi, Ancylostoma caninum Onchocerca volvulus, Haemonchus contortus, Trichinella spiralis, Trichostrongylus vitrinus, Anisakis simplex, Trichuris suis, Schistosoma spp., Clonorchis sinensis, Paragonimus westermani and Echinococcus spp. and discusses their possible biological functions, including roles in host-parasite interplay and their evolutionary relationships.

  9. Bioremediation of petroleum contaminated soil to combat toxicity on Withania somnifera through seed priming with biosurfactant producing plant growth promoting rhizobacteria.

    Science.gov (United States)

    Das, Amar Jyoti; Kumar, Rajesh

    2016-06-01

    Soil contaminated by Petroleum oil cannot be utilized for agricultural purposes due to hydrocarbon toxicity. Oil contaminated soil induces toxicity affecting germination, growth and productivity. Several technologies have been proposed for bioremediation of oil contaminated sites, but remediation through biosurfactant producing plant growth promontory rhizobacteria (PGPR) is considered to be most promising methods. In the present study the efficacy of seed priming on growth and pigment of Withania somnifera under petroleum toxicity is explored. Seeds of W. somnifera were primed with biosurfactant producing Pseudomonas sp. AJ15 with plant growth promoting traits having potentiality to utilized petroleum as carbon source. Results indicates that plant arose from priming seeds under various petroleum concentration expressed high values for all the parameters studied namely germination, shoot length, root length, fresh and dry weight and pigments (chlorophyll and carotenoid) as compared to non primed seed. Hence, the present study signifies that petroleum degrarding biosurfactant producing PGPR could be further used for management and detoxification of petroleum contaminated soils for growing economically important crops. Copyright © 2016. Published by Elsevier Ltd.

  10. Analysis of Milk from Mothers Who Delivered Prematurely Reveals Few Changes in Proteases and Protease Inhibitors across Gestational Age at Birth and Infant Postnatal Age.

    Science.gov (United States)

    Demers-Mathieu, Veronique; Nielsen, Søren Drud; Underwood, Mark A; Borghese, Robyn; Dallas, David C

    2017-06-01

    Background: Peptidomics research has demonstrated that protease activity is higher in breast milk from preterm-delivering mothers than from term-delivering mothers. However, to our knowledge, the effect of the degree of prematurity and postnatal age on proteases and protease inhibitors in human milk remains unknown. Objective: We aimed to determine the change of proteases and protease inhibitors in milk from mothers who delivered prematurely across gestational age (GA) and postnatal age. Methods: Milk samples were collected from 18 mothers aged 26-40 y who delivered preterm infants and who lacked mastitis. For analysis, samples were separated into 2 groups: 9 from early GA (EGA) (24-26 wk GA)-delivering mothers and 9 from late GA (LGA) (27-32 wk GA)-delivering mothers. Within the 9 samples in each group, the collection time ranged from postnatal days 2 to 47. The activity and predicted activity of proteases in preterm milk were determined with the use of fluorometric and spectrophotometric assays and peptidomics, respectively. Protease and protease inhibitor concentrations were determined with the use of ELISA. Linear mixed models were applied to compare enzymes across GA and postnatal age. Results: Carboxypeptidase B2, kallikrein, plasmin, elastase, thrombin, and cytosol aminopeptidase were present and active in the milk of preterm-delivering mothers. Most milk protease and antiprotease concentrations did not change with GA or postnatal age. However, the concentration and activity of kallikrein, the most abundant and active protease in preterm milk, increased by 25.4 ng · mL -1 · d -1 and 0.454 μg · mL -1 · d -1 postnatally, respectively, in EGA milk samples while remaining stable in LGA milk samples. Conclusions: This research demonstrates that proteases are active in human milk and begin to degrade milk protein within the mammary gland before consumption by infants. Proteases and protease inhibitors in milk from mothers of premature infants mostly did not

  11. HIV protease drug resistance and its impact on inhibitor design.

    Science.gov (United States)

    Ala, P J; Rodgers, J D; Chang, C H

    1999-07-01

    The primary cause of resistance to the currently available HIV protease inhibitors is the accumulation of multiple mutations in the viral protease. So far more than 20 substitutions have been observed in the active site, dimer interface, surface loops and flaps of the homodimer. While many mutations reduce the protease's affinity for inhibitors, others appear to enhance its catalytic efficiency. This high degree of genetic flexibility has made the protease an elusive drug target. The design of the next generation of HIV protease inhibitors will be discussed in light of the current structural information.

  12. 2-D zymographic analysis of Broccoli (Brassica oleracea L. var. Italica) florets proteases: follow up of cysteine protease isotypes in the course of post-harvest senescence.

    Science.gov (United States)

    Rossano, Rocco; Larocca, Marilena; Riccio, Paolo

    2011-09-01

    Zymographic analysis of Broccoli florets (Brassica oleracea L. var. Italica) revealed the presence of acidic metallo-proteases, serine proteases and cysteine proteases. Under conditions which were denaturing for the other proteases, the study was restricted to cysteine proteases. 2-D zymography, a technique that combines IEF and zymography was used to show the presence of 11 different cysteine protease spots with molecular mass of 44 and 47-48kDa and pIs ranging between 4.1 and 4.7. pI differences could be ascribed to different degrees of phosphorylation that partly disappeared in the presence of alkaline phosphatase. Post-harvest senescence of Broccoli florets was characterized by decrease in protein and chlorophyll contents and increase of protease activity. In particular, as determined by 2-D zymography, the presence of cysteine protease clearly increased during senescence, a finding that may represent a useful tool for the control of the aging process. Copyright © 2011 Elsevier GmbH. All rights reserved.

  13. Screening and characterization of alkaline protease produced by a pink pigmented facultative methylotrophic (PPFM) strain, MSF 46

    OpenAIRE

    Jayashree, Shanmugam; Annapurna, Balumuri; Jayakumar, Renganathan; Sa, Tongmin; Seshadri, Sundaram

    2014-01-01

    Among the various bacterial isolates, the strain MSF 46 isolated from thorn forest soil samples, Tamil Nadu, India, was screened and characterized for its proteolytic activity. While the 16S rRNA sequencing and biochemical characterization revealed that the strain closely resembles Methylobacterium sp., methylotrophy of the strain was confirmed by the sequence homology of mxaF gene with other relative Methylobacterium sp. The alkaline protease was purified to homogeneity using DEAE cellulose ...

  14. Detection of protease activity in cells and animals.

    Science.gov (United States)

    Verdoes, Martijn; Verhelst, Steven H L

    2016-01-01

    Proteases are involved in a wide variety of biologically and medically important events. They are entangled in a complex network of processes that regulate their activity, which makes their study intriguing, but challenging. For comprehensive understanding of protease biology and effective drug discovery, it is therefore essential to study proteases in models that are close to their complex native environments such as live cells or whole organisms. Protease activity can be detected by reporter substrates and activity-based probes, but not all of these reagents are suitable for intracellular or in vivo use. This review focuses on the detection of proteases in cells and in vivo. We summarize the use of probes and substrates as molecular tools, discuss strategies to deliver these tools inside cells, and describe sophisticated read-out techniques such as mass spectrometry and various imaging applications. This article is part of a Special Issue entitled: Physiological Enzymology and Protein Functions. Copyright © 2015 Elsevier B.V. All rights reserved.

  15. Kinetic and thermodynamic studies of a novel acid protease from Aspergillus foetidus.

    Science.gov (United States)

    Souza, Paula Monteiro; Aliakbarian, Bahar; Filho, Edivaldo Ximenes Ferreira; Magalhães, Pérola Oliveira; Junior, Adalberto Pessoa; Converti, Attilio; Perego, Patrizia

    2015-11-01

    The kinetics of a thermostable extracellular acid protease produced by an Aspergillus foetidus strain was investigated at different pH, temperatures and substrate concentrations. The enzyme exhibited maximal activity at pH 5.0 and 55°C, and its irreversible deactivation was well described by first-order kinetics. When temperature was raised from 55 to 70°C, the deactivation rate constant increased from 0.018 to 5.06h(-1), while the half-life decreased from 37.6 to 0.13h. The results of activity collected at different temperatures were then used to estimate, the activation energy of the hydrolysis reaction (E*=19.03kJ/mol) and the standard enthalpy variation of reversible enzyme unfolding (ΔH°U=19.03kJ/mol). The results of residual activity tests carried out in the temperature range 55-70°C allowed estimating the activation energy (E(*)d=314.12kJ/mol), enthalpy (311.27≤(ΔH°d≤311.39kJ/mol), entropy (599.59≤ΔS(*)d≤610.49kJ/mol K) and Gibbs free energy (103.18≤ΔG(*)d≤113.87kJ/mol) of the enzyme irreversible denaturation. These thermodynamic parameters suggest that this new protease is highly thermostable and could be important for industrial applications. To the best of our knowledge, this is the first report on thermodynamic parameters of an acid protease produced by A. foetidus. Copyright © 2015 Elsevier B.V. All rights reserved.

  16. Diversity of Protease-Producing Bacillus spp. From Fresh Indonesian Tempeh Based on 16S rRNA Gene Sequence

    Directory of Open Access Journals (Sweden)

    Tati Barus

    2017-01-01

    Full Text Available Tempeh is a type of traditional fermented food in Indonesia. The fermentation can be performed by Rhizopus microsporus as a main microorganism. However, Bacillus spp. is found in abundance in tempeh production. Nevertheless, information regarding the diversity of Bacillus spp. in tempeh production has not been reported yet. Therefore, the aim of this investigation was to study the genetic diversity of Bacillus spp. in tempeh production based on the 16S ribosomal RNA sequence. In this study, about 22 of 24 fresh tempeh from Jakarta, Bogor, and Tangerang were used. A total of 52 protease-producing Bacillus spp. isolates were obtained. Based on 16S ribosomal RNA results, all 52 isolates were identified to be similar to B. pumilus, B. subtilis, B. megaterium, B. licheniformis, B. cereus, B. thuringiensis, B. amyloliquefaciens, Brevibacillus brevis, and Bacillus sp. All the identified isolates were divided into two large clusters: 1 a cluster of B. cereus, B. thuringiensis, Bacillus sp., and B. brevis and 2 a cluster of B. pumilus, B. subtilis, B. megaterium, B. licheniformis, and B. amyloliquefaciens. Information about the Bacillus spp. role in determining the quality of tempeh has not been reported and this is a preliminary study of Bacillus spp. from tempeh.

  17. Cysteine Protease Inhibitors as Chemotherapy: Lessons from a Parasite Target

    Science.gov (United States)

    Selzer, Paul M.; Pingel, Sabine; Hsieh, Ivy; Ugele, Bernhard; Chan, Victor J.; Engel, Juan C.; Bogyo, Matthew; Russell, David G.; Sakanari, Judy A.; McKerrow, James H.

    1999-09-01

    Papain family cysteine proteases are key factors in the pathogenesis of cancer invasion, arthritis, osteoporosis, and microbial infections. Targeting this enzyme family is therefore one strategy in the development of new chemotherapy for a number of diseases. Little is known, however, about the efficacy, selectivity, and safety of cysteine protease inhibitors in cell culture or in vivo. We now report that specific cysteine protease inhibitors kill Leishmania parasites in vitro, at concentrations that do not overtly affect mammalian host cells. Inhibition of Leishmania cysteine protease activity was accompanied by defects in the parasite's lysosome/endosome compartment resembling those seen in lysosomal storage diseases. Colocalization of anti-protease antibodies with biotinylated surface proteins and accumulation of undigested debris and protease in the flagellar pocket of treated parasites were consistent with a pathway of protease trafficking from flagellar pocket to the lysosome/endosome compartment. The inhibitors were sufficiently absorbed and stable in vivo to ameliorate the pathology associated with a mouse model of Leishmania infection.

  18. Characterization of thermostable alkaline proteases from Bacillus infantis SKS1 isolated from garden soil.

    Directory of Open Access Journals (Sweden)

    Sandeep Kaur Saggu

    Full Text Available Proteases are one of the largest groups of hydrolytic enzymes constituting about 60% of total worldwide sales of industrial enzymes due to their wide applications in detergent, leather, textile, food and pharmaceutical industry. Microbial proteases have been preferred over animal and plant proteases because of their fundamental features and ease in production. Bacillus infantis SKS1, an alkaline protease producing bacteria has been isolated from garden soil of north India and identified using morphological, biochemical and molecular methods. 16S rDNA sequence amplified using universal primers has 99% sequence identity with corresponding gene sequence of Bacillus infantis strain FM 34 and Bacillus sp. Beige. The bacterial culture and its 16S rDNA gene sequence have been deposited to Microbial Culture Collection (Pune, India with accession number MCC 3035 and GenBank with accession number KR092197 respectively. The partially purified extract of Bacillus infantis SKS1 was thermostable and active in presence of Mg2+, acetyl acetone and laundry detergents implicating its application in industry. Production of these enzymes using this strain was maximized by optimization of various parameters including temperature, pH, media components and other growth conditions. Our results show that fructose and dextrose serve as the best carbon sources for production of these enzymes, highlighting the use of this strain for enzyme production utilizing relatively inexpensive substrates like beet molasses and corn steep liquor. Additionally, this strain showed maximum production of enzymes at 40°C similar to bacterial species used for commercial production of alkaline proteases. Characterization of alkaline proteases from this strain of Bacillus infantis and optimization of parameters for its production would help in understanding its industrial application and large-scale production.

  19. [Analysis of salivary protease spectrum in chronic periodontitis].

    Science.gov (United States)

    Qian, Li; Xuedong, Zhou; Yaping, Fan; Tengyu, Yang; Songtao, Wu; Yu, Yu; Jiao, Chen; Ping, Zhang; Yun, Feng

    2017-02-01

    This study aimed to investigate the difference in salivary protease expression in patients with chronic periodontitis and normal individuals. The stimulating saliva in patients with chronic periodontitis and normal individuals were collected. Protein chip technology was adapted to analyze salivary protease spectrum. Among the 34 proteases in the chip, disintegrin and metalloproteinase (ADAM)8, matrix metalloproteinase (MMP)-8, MMP-12, neprilysin/CD10, and uridylyl phosphate adenosine/urokinase showed a significantly increased concentration in the saliva of chronic periodontitis patients compared with those in the saliva of normal individuals (Pchronic periodontitis patients and normal individuals significantly differed. Analysis of salivary protease spectrum is a potential clinical method to examine, diagnose, and monitor chronic periodontitis.

  20. Identification of Cysteine Proteases and Screening of Cysteine Protease Inhibitors in Biological Samples by a Two-Dimensional Gel System of Zymography and Reverse Zymography

    OpenAIRE

    Saitoh, Eiichi; Yamamoto, Shinya; Okamoto, Eishiro; Hayakawa, Yoshimi; Hoshino, Takashi; Sato, Ritsuko; Isemura, Satoko; Ohtsubo, Sadami; Taniguchi, Masayuki

    2007-01-01

    We have developed a two-dimensional (2D-) gel system of zymography and reverse zymography for the detection and characterization of proteases and protease inhibitors. Isoelectric focusing (IEF) agarose gels with pH gradients were employed for separation in the fi rst-dimension and sodium dodecyl sulfate (SDS)-polyacrylamide gel copolymerized with gelatin used for the second dimension. Proteases and protease inhibitors separated by IEF gel were applied on the second gel without trichloroacetic...

  1. Heterologous expression of Hordeum vulgare cysteine protease in yeast

    DEFF Research Database (Denmark)

    Rosenkilde, Anne Lind; Dionisio, Giuseppe; Holm, Preben B

    Cysteine Proteases accounts for more than 90 % of the total proteolytic activity in the degradation of barley seed storage proteins during germination. Several Cysteine proteases have been identified in barley. One of the key enzymes, Hordeum vulgare endoprotease B2 (HvEPB2) was cloned with and w......Cysteine Proteases accounts for more than 90 % of the total proteolytic activity in the degradation of barley seed storage proteins during germination. Several Cysteine proteases have been identified in barley. One of the key enzymes, Hordeum vulgare endoprotease B2 (HvEPB2) was cloned...

  2. Expression and Characterization of Coprothermobacter proteolyticus Alkaline Serine Protease

    Directory of Open Access Journals (Sweden)

    Tanveer Majeed

    2013-01-01

    Full Text Available A putative protease gene (aprE from the thermophilic bacterium Coprothermobacter proteolyticus was cloned and expressed in Bacillus subtilis. The enzyme was determined to be a serine protease based on inhibition by PMSF. Biochemical characterization demonstrated that the enzyme had optimal activity under alkaline conditions (pH 8–10. In addition, the enzyme had an elevated optimum temperature (60°C. The protease was also stable in the presence of many surfactants and oxidant. Thus, the C. proteolyticus protease has potential applications in industries such as the detergent market.

  3. Activation of ADAM 12 protease by copper

    DEFF Research Database (Denmark)

    Loechel, F; Wewer, Ulla M.

    2001-01-01

    Conversion of latent proteases to the active form occurs by various mechanisms characteristic for different protease families. Here we report that the disintegrin metalloprotease ADAM 12-S is activated by Cu(II). Copper activation is distinct from the cysteine switch component of latency: elimina......Conversion of latent proteases to the active form occurs by various mechanisms characteristic for different protease families. Here we report that the disintegrin metalloprotease ADAM 12-S is activated by Cu(II). Copper activation is distinct from the cysteine switch component of latency......: elimination of the ADAM 12 cysteine switch by a point mutation in the propeptide had no effect on copper activation, whereas mutation of an unpaired cysteine residue in the catalytic domain resulted in a mutant form of ADAM 12-S that was insensitive to copper. This suggests a multi-step activation mechanism...... for ADAM 12 involving both furin cleavage and copper binding....

  4. The Cysteine Protease–Cysteine Protease Inhibitor System Explored in Soybean Nodule Development

    Directory of Open Access Journals (Sweden)

    Marian Dorcas Quain

    2013-08-01

    Full Text Available Almost all protease families have been associated with plant development, particularly senescence, which is the final developmental stage of every organ before cell death. Proteolysis remobilizes and recycles nitrogen from senescent organs that is required, for example, seed development. Senescence-associated expression of proteases has recently been characterized using large-scale gene expression analysis seeking to identify and characterize senescence-related genes. Increasing activities of proteolytic enzymes, particularly cysteine proteases, are observed during the senescence of legume nodules, in which a symbiotic relationship between the host plant and bacteria (Rhizobia facilitate the fixation of atmospheric nitrogen. It is generally considered that cysteine proteases are compartmentalized to prevent uncontrolled proteolysis in nitrogen-fixing nodules. In addition, the activities of cysteine proteases are regulated by endogenous cysteine protease inhibitors called cystatins. These small proteins form reversible complexes with cysteine proteases, leading to inactivation. However, very little is currently known about how the cysteine protease-cysteine protease inhibitor (cystatin system is regulated during nodule development. Moreover, our current understanding of the expression and functions of proteases and protease inhibitors in nodules is fragmented. To address this issue, we have summarized the current knowledge and techniques used for studying proteases and their inhibitors including the application of “omics” tools, with a particular focus on changes in the cysteine protease-cystatin system during nodule development.

  5. Effects of eye rubbing on the levels of protease, protease activity and cytokines in tears: relevance in keratoconus.

    Science.gov (United States)

    Balasubramanian, Sivaraman A; Pye, David C; Willcox, Mark D P

    2013-03-01

    Proteases, protease activity and inflammatory molecules in tears have been found to be relevant in the pathogenesis of keratoconus. We sought to determine the influence of eye rubbing on protease expression, protease activity and concentration of inflammatory molecules in tears. Basal tears were collected from normal volunteers before and after 60 seconds of experimental eye rubbing. The total amount of matrix metalloproteinase (MMP)-13 and inflammatory molecules interleukin (IL)-6 and tumour necrosis factor (TNF)-α in the tear samples were measured using specific enzyme-linked immunosorbent assays (ELISA). Tear collagenase activity was investigated using a specific activity assay. The concentrations of MMP-13 (51.9 ± 34.3 versus 63 ± 36.8 pg/ml, p = 0.006), IL-6 (1.24 ± 0.98 versus 2.02 ± 1.52 pg/ml, p = 0.004) and TNF-α (1.16 ± 0.74 versus 1.44 ± 0.66 pg/ml, p = 0.003) were significantly increased in normal subjects after eye rubbing. The experimental eye rub did not alter significantly the collagenase activity (5.02 ± 3 versus 7.50 ± 3.90 fluorescent intensity units, p = 0.14) of tears. Eye rubbing for 60 seconds increased the level of tear MMP-13, IL-6 and TNF-α in normal study subjects. This increase in protease, protease activity and inflammatory mediators in tears after eye rubbing may be exacerbated even further during persistent and forceful eye rubbing seen in people with keratoconus and this in turn may contribute to the progression of the disease. © 2013 The Authors. Clinical and Experimental Optometry © 2013 Optometrists Association Australia.

  6. Identification of an archaeal presenilin-like intramembrane protease.

    Science.gov (United States)

    Torres-Arancivia, Celia; Ross, Carolyn M; Chavez, Jose; Assur, Zahra; Dolios, Georgia; Mancia, Filippo; Ubarretxena-Belandia, Iban

    2010-09-29

    The GXGD-type diaspartyl intramembrane protease, presenilin, constitutes the catalytic core of the γ-secretase multi-protein complex responsible for activating critical signaling cascades during development and for the production of β-amyloid peptides (Aβ) implicated in Alzheimer's disease. The only other known GXGD-type diaspartyl intramembrane proteases are the eukaryotic signal peptide peptidases (SPPs). The presence of presenilin-like enzymes outside eukaryots has not been demonstrated. Here we report the existence of presenilin-like GXGD-type diaspartyl intramembrane proteases in archaea. We have employed in vitro activity assays to show that MCMJR1, a polytopic membrane protein from the archaeon Methanoculleus marisnigri JR1, is an intramembrane protease bearing the signature YD and GXGD catalytic motifs of presenilin-like enzymes. Mass spectrometry analysis showed MCMJR1 could cleave model intramembrane protease substrates at several sites within their transmembrane region. Remarkably, MCMJR1 could also cleave substrates derived from the β-amyloid precursor protein (APP) without the need of protein co-factors, as required by presenilin. Two distinct cleavage sites within the transmembrane domain of APP could be identified, one of which coincided with Aβ40, the predominant site processed by γ-secretase. Finally, an established presenilin and SPP transition-state analog inhibitor could inhibit MCMJR1. Our findings suggest that a primitive GXGD-type diaspartyl intramembrane protease from archaea can recapitulate key biochemical properties of eukaryotic presenilins and SPPs. MCMJR1 promises to be a more tractable, simpler system for in depth structural and mechanistic studies of GXGD-type diaspartyl intramembrane proteases.

  7. An Alkaline Protease from Bacillus pumilus MP 27: Functional Analysis of its Binding Model towards its Applications as Detergent Additive

    Directory of Open Access Journals (Sweden)

    Mehak Baweja

    2016-08-01

    Full Text Available A proteolytic strain of Bacillus pumilus MP 27 was isolated from water samples of Southern ocean produced alkaline protease. Since protease production need expensive ingredients, an economically viable process was developed by using low cost carbon source, wheat straw, supplemented with peptone. This protease was active within temperature ranges 10˚C -70˚C at pH 9. This process was optimized by response surface methodology using a Box Bekhman design by Design Expert 7.0 software that increased the protease activity to 776.5 U/ml. Moreover, the enzyme was extremely stable at a broad range of temperature and pH retaining 69% of its activity at 50 ºC and 70% at pH 11. The enzyme exhibited excellent compatibility with surfactants and commercial detergents, showing 87% stability with triton X-100 and ̴ 100% stability with Tide commercial detergent. The results of the wash performance analysis demonstrated considerably good de-staining at 50ºC and 4ºC with low supplementation (109 U/ml. Molecular modeling of the protease revealed the presence of serine proteases, subtilase family and serine active site and further docking supported the association of catalytic site with the various substrates. Certainly, such protease can be considered as a good detergent additive in detergent industry with a possibility to remove the stains effectively even in a cold wash.

  8. An Alkaline Protease from Bacillus pumilus MP 27: Functional Analysis of Its Binding Model toward Its Applications As Detergent Additive.

    Science.gov (United States)

    Baweja, Mehak; Tiwari, Rameshwar; Singh, Puneet K; Nain, Lata; Shukla, Pratyoosh

    2016-01-01

    A proteolytic strain of Bacillus pumilus MP 27 was isolated from water samples of Southern ocean produced alkaline protease. Since protease production need expensive ingredients, an economically viable process was developed by using low cost carbon source, wheat straw, supplemented with peptone. This protease was active within temperature ranges 10-70°C at pH 9. This process was optimized by response surface methodology using a Box Bekhman design by Design Expert 7.0 software that increased the protease activity to 776.5 U/ml. Moreover, the enzyme was extremely stable at a broad range of temperature and pH retaining 69% of its activity at 50°C and 70% at pH 11. The enzyme exhibited excellent compatibility with surfactants and commercial detergents, showing 87% stability with triton X-100 and 100% stability with Tide commercial detergent. The results of the wash performance analysis demonstrated considerably good de-staining at 50 and 4°C with low supplementation (109 U/ml). Molecular modeling of the protease revealed the presence of serine proteases, subtilase family and serine active site and further docking supported the association of catalytic site with the various substrates. Certainly, such protease can be considered as a good detergent additive in detergent industry with a possibility to remove the stains effectively even in a cold wash.

  9. Production, Characterization and Antioxidant Potential of Protease from Streptomyces sp. MAB18 Using Poultry Wastes

    Directory of Open Access Journals (Sweden)

    Panchanathan Manivasagan

    2013-01-01

    Full Text Available Poultry waste is an abundant renewable source for the recovery of several value-added metabolites with potential industrial applications. This study describes the production of protease on poultry waste, with the subsequent use of the same poultry waste for the extraction of antioxidants. An extracellular protease-producing strain was isolated from Cuddalore coast, India, and identified as Streptomyces sp. MAB18. Its protease was purified 17.13-fold with 21.62% yield with a specific activity of 2398.36 U/mg and the molecular weight was estimated as 43 kDa. The enzyme was optimally active at pH 8–10 and temperature 50–60°C and it was most stable up to pH 12 and 6–12% of NaCl concentration. The enzyme activity was reduced when treated with Hg2+, Pb2+, and SDS and stimulated by Fe2+, Mg2+, Triton X-100, DMSO (dimethyl sulfoxide, sodium sulphite, and β-mercaptoethanol. Furthermore, the antioxidant activities of protease were evaluated using in vitro antioxidant assays, such as DPPH radical-scavenging activity, O2 scavenging activity, NO scavenging activity, Fe2+ chelating activity, and reducing power. The enzyme showed important antioxidant potential with an IC50 value of 78±0.28 mg/mL. Results of the present study indicate that the poultry waste-derived protease may be useful as supplementary protein and antioxidant in the animal feed formulations.

  10. Hepatitis C virus NS3/4A protease inhibits complement activation by cleaving complement component 4.

    Directory of Open Access Journals (Sweden)

    Seiichi Mawatari

    Full Text Available BACKGROUND: It has been hypothesized that persistent hepatitis C virus (HCV infection is mediated in part by viral proteins that abrogate the host immune response, including the complement system, but the precise mechanisms are not well understood. We investigated whether HCV proteins are involved in the fragmentation of complement component 4 (C4, composed of subunits C4α, C4β, and C4γ, and the role of HCV proteins in complement activation. METHODS: Human C4 was incubated with HCV nonstructural (NS 3/4A protease, core, or NS5. Samples were separated by sodium dodecyl sulfate-polyacrylamide gel electrophoresis and then subjected to peptide sequencing. The activity of the classical complement pathway was examined using an erythrocyte hemolysis assay. The cleavage pattern of C4 in NS3/4A-expressing and HCV-infected cells, respectively, was also examined. RESULTS: HCV NS3/4A protease cleaved C4γ in a concentration-dependent manner, but viral core and NS5 did not. A specific inhibitor of NS3/4A protease reduced C4γ cleavage. NS3/4A protease-mediated cleavage of C4 inhibited classical pathway activation, which was abrogated by a NS3/4A protease inhibitor. In addition, co-transfection of cells with C4 and wild-type NS3/4A, but not a catalytic-site mutant of NS3/4A, produced cleaved C4γ fragments. Such C4 processing, with a concomitant reduction in levels of full-length C4γ, was also observed in HCV-infected cells expressing C4. CONCLUSIONS: C4 is a novel cellular substrate of the HCV NS3/4A protease. Understanding disturbances in the complement system mediated by NS3/4A protease may provide new insights into the mechanisms underlying persistent HCV infection.

  11. Tunable protease-activatable virus nanonodes.

    Science.gov (United States)

    Judd, Justin; Ho, Michelle L; Tiwari, Abhinav; Gomez, Eric J; Dempsey, Christopher; Van Vliet, Kim; Igoshin, Oleg A; Silberg, Jonathan J; Agbandje-McKenna, Mavis; Suh, Junghae

    2014-05-27

    We explored the unique signal integration properties of the self-assembling 60-mer protein capsid of adeno-associated virus (AAV), a clinically proven human gene therapy vector, by engineering proteolytic regulation of virus-receptor interactions such that processing of the capsid by proteases is required for infection. We find the transfer function of our engineered protease-activatable viruses (PAVs), relating the degree of proteolysis (input) to PAV activity (output), is highly nonlinear, likely due to increased polyvalency. By exploiting this dynamic polyvalency, in combination with the self-assembly properties of the virus capsid, we show that mosaic PAVs can be constructed that operate under a digital AND gate regime, where two different protease inputs are required for virus activation. These results show viruses can be engineered as signal-integrating nanoscale nodes whose functional properties are regulated by multiple proteolytic signals with easily tunable and predictable response surfaces, a promising development toward advanced control of gene delivery.

  12. Studies on the stability of protease from Bacillus sp. and its compatibility with commercial detergent Estudos sobre a estabilidade de uma protease de Bacillus sp. e sua compatibilidade com detergentes comerciais

    Directory of Open Access Journals (Sweden)

    Wellingta Cristina Almeida do Nascimento

    2006-09-01

    Full Text Available Enzymes, and particularly proteases, have become an important and indispensable part of industrial processes such as laundry detergents, pharmaceuticals and food products. Detergents such as Tide®, Ariel® and Biz® contain proteolytic enzymes, most of them produced by members of the genus Bacillus. This paper describes the compatibility of protease produced by the thermophilic Bacillus sp, with commercial laundry detergent. Stability studies indicated that this enzyme retained about 95% and 74% of its maximum activity after 1h at 60ºC in the presence of glycine in combination with MnSO4 and CaCl2, respectively. No inhibitory effect was observed at 1.0-5.0 mM of EDTA. Triton X-100 inhibited the enzyme in all the concentrations tested. The enzyme was unstable in a 5% (v/v concentration of peroxide solution. The protease retained more than 80% and 65% of its activity after 30 min incubation at 60ºC in the presence of Tide® and Cheer® detergents, respectively. After supplementation of CaCl2 (10 mM and glycine (1 mM, the enzyme in Tide® detergent retained more than 85% of its activity after 1h. Based on these findings, Bacillus sp. protease shows a good potential for application in laundry detergents.As enzimas, principalmente as proteases, têm uma participação importante e indispensável em muitos processos industriais tais como na indústria farmacêutica, de alimentos e de detergentes. Alguns detergentes como Tide®, Ariel® e Biz® contem enzimas proteolíticas em sua formulação, sendo a maioria produzida por bactérias do gênero Bacillus sp. Neste artigo, foi avaliada a compatibilidade de uma protease produzida por um microrganismo termofílico, Bacillus sp., com alguns detergentes comerciais. Estudos sobre a estabilidade mostraram que a enzima reteve cerca de 95% e 74% de sua máxima atividade após 1h a 60ºC na presença de glicina em combinação com MnSO4 e CaCl2 respectivamente. A enzima não foi inibida em presença de 1

  13. Role of Delay on Planktonic Ecosystem in the Presence of a Toxic Producing Phytoplankton

    Directory of Open Access Journals (Sweden)

    Swati Khare

    2011-01-01

    Full Text Available A mathematical model is proposed to study the role of distributed delay on plankton ecosystem in the presence of a toxic producing phytoplankton. The model includes three state variables, namely, nutrient concentration, phytoplankton biomass, and zooplankton biomass. The release of toxic substance by phytoplankton species reduces the growth of zooplankton and this plays an important role in plankton dynamics. In this paper, we introduce a delay (time-lag in the digestion of nutrient by phytoplankton. The stability analysis of all the feasible equilibria are studied and the existence of Hopf-bifurcation for the interior equilibrium of the system is explored. From the above analysis, we observe that the supply rate of nutrient and delay parameter play important role in changing the dynamical behaviour of the underlying system. Further, we have derived the explicit algorithm which determines the direction and the stability of Hopf-bifurcation solution. Finally, numerical simulation is carried out to support the theoretical result.

  14. Cross genome comparisons of serine proteases in Arabidopsis and rice

    Directory of Open Access Journals (Sweden)

    Sowdhamini R

    2006-08-01

    Full Text Available Abstract Background Serine proteases are one of the largest groups of proteolytic enzymes found across all kingdoms of life and are associated with several essential physiological pathways. The availability of Arabidopsis thaliana and rice (Oryza sativa genome sequences has permitted the identification and comparison of the repertoire of serine protease-like proteins in the two plant species. Results Despite the differences in genome sizes between Arabidopsis and rice, we identified a very similar number of serine protease-like proteins in the two plant species (206 and 222, respectively. Nearly 40% of the above sequences were identified as potential orthologues. Atypical members could be identified in the plant genomes for Deg, Clp, Lon, rhomboid proteases and species-specific members were observed for the highly populated subtilisin and serine carboxypeptidase families suggesting multiple lateral gene transfers. DegP proteases, prolyl oligopeptidases, Clp proteases and rhomboids share a significantly higher percentage orthology between the two genomes indicating substantial evolutionary divergence was set prior to speciation. Single domain architectures and paralogues for several putative subtilisins, serine carboxypeptidases and rhomboids suggest they may have been recruited for additional roles in secondary metabolism with spatial and temporal regulation. The analysis reveals some domain architectures unique to either or both of the plant species and some inactive proteases, like in rhomboids and Clp proteases, which could be involved in chaperone function. Conclusion The systematic analysis of the serine protease-like proteins in the two plant species has provided some insight into the possible functional associations of previously uncharacterised serine protease-like proteins. Further investigation of these aspects may prove beneficial in our understanding of similar processes in commercially significant crop plant species.

  15. Latex constituents from Calotropis procera (R. Br. display toxicity upon egg hatching and larvae of Aedes aegypti (Linn.

    Directory of Open Access Journals (Sweden)

    Márcio Viana Ramos

    2006-08-01

    Full Text Available Calotropis procera R. Br. (Asclepiadaceae is a well-known medicinal plant with leaves, roots, and bark being exploited by popular medicine to fight many human and animal diseases. This work deals with the fractionation of the crude latex produced by the green parts of the plant and aims to evaluate its toxic effects upon egg hatching and larval development of Aedes aegypti. The whole latex was shown to cause 100% mortality of 3rd instars within 5 min. It was fractionated into water-soluble dialyzable (DF and non-dialyzable (NDF rubber-free materials. Both fractions were partially effective to prevent egg hatching and most of individuals growing under experimental conditions died before reaching 2nd instars or stayed in 1st instars. Besides, the fractions were very toxic to 3rd instars causing 100% mortality within 24 h. When both fractions were submitted to heat-treatment the toxic effects were diminished considerably suggesting low thermostability of the toxic compounds. Polyacrylamide gel electrophoresis of both fractions and their newly fractionated peaks obtained through ion exchange chromatography or desalting attested the presence of proteins in both materials. When submitted to protease digestion prior to larvicidal assays NDF lost most of its toxicity but DF was still strongly active. It may be possible that the highly toxic effects of the whole latex from C. procera upon egg hatching and larvae development should be at least in part due to its protein content found in NDF. However the toxicity seems also to involve non protein molecules present in DF.

  16. Dataset of cocoa aspartic protease cleavage sites

    Directory of Open Access Journals (Sweden)

    Katharina Janek

    2016-09-01

    Full Text Available The data provide information in support of the research article, “The cleavage specificity of the aspartic protease of cocoa beans involved in the generation of the cocoa-specific aroma precursors” (Janek et al., 2016 [1]. Three different protein substrates were partially digested with the aspartic protease isolated from cocoa beans and commercial pepsin, respectively. The obtained peptide fragments were analyzed by matrix-assisted laser-desorption/ionization time-of-flight mass spectrometry (MALDI-TOF/TOF-MS/MS and identified using the MASCOT server. The N- and C-terminal ends of the peptide fragments were used to identify the corresponding in-vitro cleavage sites by comparison with the amino acid sequences of the substrate proteins. The same procedure was applied to identify the cleavage sites used by the cocoa aspartic protease during cocoa fermentation starting from the published amino acid sequences of oligopeptides isolated from fermented cocoa beans. Keywords: Aspartic protease, Cleavage sites, Cocoa, In-vitro proteolysis, Mass spectrometry, Peptides

  17. Synthesis of glycinamides using protease immobilized magnetic nanoparticles

    Directory of Open Access Journals (Sweden)

    Abha Sahu

    2016-12-01

    Full Text Available In the present investigation, Bacillus subtilis was isolated from slaughterhouse waste and screened for the production of protease enzyme. The purified protease was successfully immobilized on magnetic nanoparticles (MNPs and used for the synthesis of series of glycinamides. The binding and thermal stability of protease on MNPs was confirmed by FTIR spectroscopy and TGA analysis. The surface morphology of MNPs before and after protease immobilization was carried out using SEM analysis. XRD pattern revealed no phase change in MNPs after enzyme immobilization. The processing parameters for glycinamides synthesis viz. temperature, pH, and time were optimized using Response Surface Methodology (RSM by using Design Expert (9.0.6.2. The maximum yield of various amides 2 butyramidoacetic acid (AMD-1,83.4%, 2-benzamidoacetic acid (AMD-2,80.5% and 2,2′((carboxymethyl amino-2-oxoethyl-2-hydroxysuccinylbis(azanediyldiacetic acid (AMD-3,80.8% formed was observed at pH-8, 50 °C and 30 min. The synthesized immobilized protease retained 70% of the initial activity even after 8 cycles of reuse.

  18. Optimization of alkaline protease production and its fibrinolytic ...

    African Journals Online (AJOL)

    Optimization of alkaline protease production and its fibrinolytic activity from the ... nitrogen sources and sodium chloride concentration for protease production by the ... exploited to assist in protein degradation in various industrial processes.

  19. Optimization of alkaline protease production from Pseudomonas ...

    African Journals Online (AJOL)

    PRECIOUS

    2009-12-15

    Dec 15, 2009 ... protease production was 37°C at pH 9, with 2% inoculum in the medium for 24 h. .... Positive. Catalase test. Positive ... The enzyme activity gradually decreases from ... Effect of temperature on protease production by Pseudomonas fluorescens. 0 .... between RNA polymerase and upstream promotes DNA.

  20. Identification of an archaeal presenilin-like intramembrane protease.

    Directory of Open Access Journals (Sweden)

    Celia Torres-Arancivia

    Full Text Available BACKGROUND: The GXGD-type diaspartyl intramembrane protease, presenilin, constitutes the catalytic core of the γ-secretase multi-protein complex responsible for activating critical signaling cascades during development and for the production of β-amyloid peptides (Aβ implicated in Alzheimer's disease. The only other known GXGD-type diaspartyl intramembrane proteases are the eukaryotic signal peptide peptidases (SPPs. The presence of presenilin-like enzymes outside eukaryots has not been demonstrated. Here we report the existence of presenilin-like GXGD-type diaspartyl intramembrane proteases in archaea. METHODOLOGY AND PRINCIPAL FINDINGS: We have employed in vitro activity assays to show that MCMJR1, a polytopic membrane protein from the archaeon Methanoculleus marisnigri JR1, is an intramembrane protease bearing the signature YD and GXGD catalytic motifs of presenilin-like enzymes. Mass spectrometry analysis showed MCMJR1 could cleave model intramembrane protease substrates at several sites within their transmembrane region. Remarkably, MCMJR1 could also cleave substrates derived from the β-amyloid precursor protein (APP without the need of protein co-factors, as required by presenilin. Two distinct cleavage sites within the transmembrane domain of APP could be identified, one of which coincided with Aβ40, the predominant site processed by γ-secretase. Finally, an established presenilin and SPP transition-state analog inhibitor could inhibit MCMJR1. CONCLUSIONS AND SIGNIFICANCE: Our findings suggest that a primitive GXGD-type diaspartyl intramembrane protease from archaea can recapitulate key biochemical properties of eukaryotic presenilins and SPPs. MCMJR1 promises to be a more tractable, simpler system for in depth structural and mechanistic studies of GXGD-type diaspartyl intramembrane proteases.

  1. Differential Response of Extracellular Proteases of Trichoderma Harzianum Against Fungal Phytopathogens.

    Science.gov (United States)

    Sharma, Vivek; Salwan, Richa; Sharma, Prem N

    2016-09-01

    In the present study, production of extracellular proteases by Trichoderma harzianum was evaluated based on the relative gene expression and spectrophotometric assay. The fungal isolates were grown in Czapek Dox Broth medium supplemented with deactivated mycelium of plant fungal pathogens such as Fusarium oxysporum, Colletotrichum capsici, Gloeocercospora sorghi, and Colletotrichum truncatum. The maximum protease activity was detected after 48 h of incubation against Colletotrichum spp. Similarly in qRT-PCR, the relative gene expression of four proteases varied from 48 to 96 h against host pathogens in a time-independent manner. Among proteases, statistically significant upregulation of asp, asp, and srp was observed against Colletotrichum spp., followed by F. oxysporum. But in the case of pepM22, maximum upregulation was observed against F. oxysporum. The variation in enzyme assay and qRT-PCR of proteases at different time intervals against various fungal phytopathogens could be due to the limitation of using casein as a substrate for all types of proteases or protease-encoding transcripts selected for qRT-PCR, which may not be true representative of total protease activity.

  2. Economic Methods of Ginger Protease'sextraction and Purification

    Science.gov (United States)

    Qiao, Yuanyuan; Tong, Junfeng; Wei, Siqing; Du, Xinyong; Tang, Xiaozhen

    This article reports the ginger protease extraction and purification methods from fresh ginger rhizome. As to ginger protease extraction, we adapt the steps of organic solvent dissolving, ammonium sulfate depositing and freeze-drying, and this method can attain crude enzyme powder 0.6% weight of fresh ginger rhizome. The purification part in this study includes two steps: cellulose ion exchange (DEAE-52) and SP-Sephadex 50 chromatography, which can purify crude ginger protease through ion and molecular weight differences respectively.

  3. Purification and characterization of protease from Bacillus cereus ...

    African Journals Online (AJOL)

    Among them, SU12 isolate was selected due to its high enzyme production ... growth and protease production which includes different carbon and nitrogen sources, ... organism for the industrial production of the extracellular protease enzyme.

  4. Purification and characterization of protease enzyme from ...

    African Journals Online (AJOL)

    user

    2013-03-20

    Mar 20, 2013 ... Full Length Research Paper. Purification and ... ting into small peptides and free amino acids, which can ... Isolated strain was cultured in synthetic medium- casein (SMC; ... Protease activity was assayed by sigma's non-specific protease ... following buffers: 0.05 M citrate-phosphate buffer (pH 5 to 6), Tris-.

  5. Current and Novel Inhibitors of HIV Protease

    Czech Academy of Sciences Publication Activity Database

    Pokorná, Jana; Machala, L.; Řezáčová, Pavlína; Konvalinka, Jan

    2009-01-01

    Roč. 1, č. 3 (2009), s. 1209-1239 ISSN 1999-4915 R&D Projects: GA MŠk 1M0508 Grant - others:GA AV ČR(CZ) IAAX00320901 Program:IA Institutional research plan: CEZ:AV0Z40550506 Keywords : HIV protease * protease inhibitor * HAART Subject RIV: CE - Biochemistry

  6. PfClpC Is an Essential Clp Chaperone Required for Plastid Integrity and Clp Protease Stability in Plasmodium falciparum

    Directory of Open Access Journals (Sweden)

    Anat Florentin

    2017-11-01

    Full Text Available Summary: The deadly malaria parasite Plasmodium falciparum contains a nonphotosynthetic plastid, known as the apicoplast, that functions to produce essential metabolites, and drugs that target the apicoplast are clinically effective. Several prokaryotic caseinolytic protease (Clp genes have been identified in the Plasmodium genome. Using phylogenetic analysis, we focused on the Clp members that may form a regulated proteolytic complex in the apicoplast. We genetically targeted members of this complex and generated conditional mutants of the apicoplast-localized PfClpC chaperone and PfClpP protease. Conditional inhibition of the PfClpC chaperone resulted in growth arrest and apicoplast loss and was rescued by addition of the essential apicoplast-derived metabolite IPP. Using a double-conditional mutant parasite line, we discovered that the chaperone activity is required to stabilize the mature protease, revealing functional interactions. These data demonstrate the essential function of PfClpC in maintaining apicoplast integrity and its role in regulating the proteolytic activity of the Clp complex. : Plasmodium falciparum contains a unique organelle, the apicoplast. Using genetic and phenotypic assays, Florentin et al. characterize the apicoplast Clp chaperone and protease. They find that the chaperone is essential for protease stability and that together they function to maintain organelle integrity and segregation into daughter cells. Keywords: malaria, Plasmodium, apicoplast, IPP, Clp, chaperone, caseinolytic protease

  7. Cysteine proteases: Modes of activation and future prospects as pharmacological targets

    Directory of Open Access Journals (Sweden)

    Sonia eVerma

    2016-04-01

    Full Text Available Proteolytic enzymes are crucial for a variety of biological processes in organisms ranging from lower (virus, bacteria and parasite to the higher organisms (mammals. Proteases cleave proteins into smaller fragments by catalyzing peptide bonds hydrolysis. Proteases are classified according to their catalytic site, and distributed into four major classes: cysteine proteases, serine proteases, aspartic proteases and metallo-proteases. This review will cover only cysteine proteases, papain family enzymes which are involved in multiple functions such as extracellular matrix turnover, antigen presentation, processing events, digestion, immune invasion, hemoglobin hydrolysis, parasite invasion, parasite egress and processing surface proteins. Therefore, they are promising drug targets for various diseases. For preventing unwanted digestion, cysteine proteases are synthesized as zymogens, and contain a pro-domain (regulatory and a mature domain (catalytic. The prodomain acts as an endogenous inhibitor of the mature enzyme. For activation of the mature enzyme, removal of the prodomain is necessary and achieved by different modes. The pro-mature domain interaction can be categorized as protein-protein interactions (PPIs and may be targeted in a range of diseases. Cysteine protease inhibitors are available that can block the active site but no such inhibitor available yet that can be targeted to block the pro-mature domain interactions and prevent it activation. This review specifically highlights the modes of activation (processing of papain family enzymes, which involve auto-activation, trans-activation and also clarifies the future aspects of targeting PPIs to prevent the activation of cysteine proteases.

  8. Lyso-myristoyl phosphatidylcholine micelles sustain the activity of Dengue non-structural (NS) protein 3 protease domain fused with the full-length NS2B.

    Science.gov (United States)

    Huang, Qiwei; Li, Qingxin; Joy, Joma; Chen, Angela Shuyi; Ruiz-Carrillo, David; Hill, Jeffrey; Lescar, Julien; Kang, Congbao

    2013-12-01

    Dengue virus (DENV), a member of the flavivirus genus, affects 50-100 million people in tropical and sub-tropical regions. The DENV protease domain is located at the N-terminus of the NS3 protease and requires for its enzymatic activity a hydrophilic segment of the NS2B that acts as a cofactor. The protease is an important antiviral drug target because it plays a crucial role in virus replication by cleaving the genome-coded polypeptide into mature functional proteins. Currently, there are no drugs to inhibit DENV protease activity. Most structural and functional studies have been conducted using protein constructs containing the NS3 protease domain connected to a soluble segment of the NS2B membrane protein via a nine-residue linker. For in vitro structural and functional studies, it would be useful to produce a natural form of the DENV protease containing the NS3 protease domain and the full-length NS2B protein. Herein, we describe the expression and purification of a natural form of DENV protease (NS2BFL-NS3pro) containing the full-length NS2B protein and the protease domain of NS3 (NS3pro). The protease was expressed and purified in detergent micelles necessary for its folding. Our results show that this purified protein was active in detergent micelles such as lyso-myristoyl phosphatidylcholine (LMPC). These findings should facilitate further structural and functional studies of the protease and will facilitate drug discovery targeting DENV. Copyright © 2013 Elsevier Inc. All rights reserved.

  9. Characterization of the Mamestra configurata (Lepidoptera: Noctuidae) larval midgut protease complement and adaptation to feeding on artificial diet, Brassica species, and protease inhibitor.

    Science.gov (United States)

    Erlandson, Martin A; Hegedus, Dwayne D; Baldwin, Douglas; Noakes, Amy; Toprak, Umut

    2010-10-01

    The midgut protease profiles from 5th instar Mamestra configurata larvae fed various diets (standard artificial diet, low protein diet, low protein diet with soybean trypsin inhibitor [SBTI], or Brassica napus) were characterized by one-dimensional enzymography in gelatin gels. The gut protease profile of larvae fed B. napus possessed protease activities of molecular masses of approximately 33 and 55 kDa, which were not present in the guts of larvae fed artificial diet. Similarly, larvae fed artificial diet had protease activities of molecular masses of approximately 21, 30, and 100 kDa that were absent in larvae fed B. napus. Protease profiles changed within 12 to 24 h after switching larvae from artificial diet to plant diet and vice versa. The gut protease profiles from larvae fed various other brassicaceous species and lines having different secondary metabolite profiles did not differ despite significant differences in larval growth rates on the different host plants. Genes encoding putative digestive proteolytic enzymes, including four carboxypeptidases, five aminopeptidases, and 48 serine proteases, were identified in cDNA libraries from 4th instar M. configurata midgut tissue. Many of the protease-encoding genes were expressed at similar levels on all diets; however, three chymoptrypsin-like genes (McSP23, McSP27, and McSP37) were expressed at much higher levels on standard artificial diet and diet containing SBTI as was the trypsin-like gene McSP34. The expression of the trypsin-like gene McSP50 was highest on B. napus. The adaptation of M. configurata digestive biochemistry to different diets is discussed in the context of the flexibility of polyphagous insects to changing diet sources.

  10. Diglycolic acid, the toxic metabolite of diethylene glycol, chelates calcium and produces renal mitochondrial dysfunction in vitro.

    Science.gov (United States)

    Conrad, Taylor; Landry, Greg M; Aw, Tak Yee; Nichols, Royce; McMartin, Kenneth E

    2016-07-01

    Diethylene glycol (DEG) has caused many cases of acute kidney injury and deaths worldwide. Diglycolic acid (DGA) is the metabolite responsible for the renal toxicity, but its toxic mechanism remains unclear. To characterize the mitochondrial dysfunction produced from DGA by examining several mitochondrial processes potentially contributing to renal cell toxicity. The effect of DGA on mitochondrial membrane potential was examined in normal human proximal tubule (HPT) cells. Isolated rat kidney mitochondria were used to assess the effects of DGA on mitochondrial function, including respiratory parameters (States 3 and 4), electron transport chain complex activities and calcium-induced opening of the mitochondrial permeability transition pore. DGA was compared with ethylene glycol tetraacetic acid (EGTA) to determine calcium chelating ability. DGA cytotoxicity was assessed using lactate dehydrogenase leakage from cultured proximal tubule cells. DGA decreased the mitochondrial membrane potential in HPT cells. In rat kidney mitochondria, DGA decreased State 3 respiration, but did not affect State 4 respiration or the ADP/O ratio. DGA reduced glutamate/malate respiration at lower DGA concentrations (0.5 mmol/L) than succinate respiration (100 mmol/L). DGA inhibited Complex II activity without altering Complex I, III or IV activities. DGA blocked calcium-induced mitochondrial swelling, indicating inhibition of the calcium-dependent mitochondrial permeability transition. DGA and EGTA reduced the free calcium concentration in solution in an equimolar manner. DGA toxicity and mitochondrial dysfunction occurred as similar concentrations. DGA inhibited mitochondrial respiration, but without uncoupling oxidative phosphorylation. The more potent effect of DGA on glutamate/malate respiration and the inhibition of mitochondrial swelling was likely due to its chelation of calcium. These results indicate that DGA produces mitochondrial dysfunction by chelating calcium to

  11. Biodegradation of a keratin waste and the concomitant production of detergent stable serine proteases from Paecilomyces lilacinus.

    Science.gov (United States)

    Cavello, I A; Cavalitto, S F; Hours, R A

    2012-07-01

    Paecilomyces lilacinus (LPS 876) efficiently degraded keratin in chicken feather during submerged cultivation producing extracellular proteases. Characterization of crude protease activity was done including its compatibility in commercial detergents. Optimum pH and temperature were 10.0 and 60 °C, respectively. Protease activity was enhanced by Ca²⁺ but was strongly inhibited by PMSF and by Hg²⁺ suggesting the presence of thiol-dependent serine proteases. The crude protease showed extreme stability toward non-ionic (Tween 20, Tween 85, and Triton X-100) and anionic (SDS) surfactants, and relative stability toward oxidizing agent (H₂O₂ and sodium perborate). In addition, it showed excellent stability and compatibility with various solid and liquid commercial detergents from 30 to 50 °C. The enzyme preparation retained more than 95% of its initial activity with solid detergents (Ariel™ and Drive™) and 97% of its original activity with a liquid detergent (Ace™) after pre-incubation at 40 °C. The protective effect of polyols (propylene glycol, PEG 4000, and glycerol) on the heat inactivation was also examined and the best results were obtained with glycerol from 50 to 60 °C. Considering its promising properties, P. lilacinus enzymatic preparation may be considered as a candidate for use in biotechnological processes (i.e., as detergent additive) and in the processing of keratinous wastes.

  12. Amino acid sequence requirements in the hinge of human immunoglobulin A1 (IgA1) for cleavage by streptococcal IgA1 proteases

    DEFF Research Database (Denmark)

    Batten, MR; Senior, BW; Kilian, Mogens

    2003-01-01

    The amino acid sequence requirements in the hinge of human immunoglobulin A1 (IgA1) for cleavage by IgA1 proteases of different species of Streptococcus were investigated. Recombinant IgA1 antibodies were generated with point mutations at proline 227 and threonine 228, the residues lying on either...... side of the peptide bond at which all streptococcal IgA1 proteases cleave wild-type human IgA1. The amino acid substitutions produced no major effect upon the structure of the mutant IgA1 antibodies or their functional ability to bind to Fcalpha receptors. However, the substitutions had a substantial...... effect upon sensitivity to cleavage with some streptococcal IgA1 proteases, with, in some cases, a single point mutation rendering the antibody resistant to a particular IgA1 protease. This effect was least marked with the IgA1 protease from Streptococcus pneumoniae, which showed no absolute requirement...

  13. Expression, characterization, and cellular localization of knowpains, papain-like cysteine proteases of the Plasmodium knowlesi malaria parasite.

    Directory of Open Access Journals (Sweden)

    Rajesh Prasad

    Full Text Available Papain-like cysteine proteases of malaria parasites degrade haemoglobin in an acidic food vacuole to provide amino acids for intraerythrocytic parasites. These proteases are potential drug targets because their inhibitors block parasite development, and efforts are underway to develop chemotherapeutic inhibitors of these proteases as the treatments for malaria. Plasmodium knowlesi has recently been shown to be an important human pathogen in parts of Asia. We report expression and characterization of three P. knowlesi papain-like proteases, termed knowpains (KP2-4. Recombinant knowpains were produced using a bacterial expression system, and tested for various biochemical properties. Antibodies against recombinant knowpains were generated and used to determine their cellular localization in parasites. Inhibitory effects of the cysteine protease inhibitor E64 were assessed on P. knowlesi culture to validate drug target potential of knowpains. All three knowpains were present in the food vacuole, active in acidic pH, and capable of degrading haemoglobin at the food vacuolar pH (≈5.5, suggesting roles in haemoglobin degradation. The proteases showed absolute (KP2 and KP3 to moderate (KP4 preference for peptide substrates containing leucine at the P2 position; KP4 preferred arginine at the P2 position. While the three knowpains appear to have redundant roles in haemoglobin degradation, KP4 may also have a role in degradation of erythrocyte cytoskeleton during merozoite egress, as it displayed broad substrate specificity and was primarily localized at the parasite periphery. Importantly, E64 blocked erythrocytic development of P. knowlesi, with enlargement of food vacuoles, indicating inhibition of haemoglobin hydrolysis and supporting the potential for inhibition of knowpains as a strategy for the treatment of malaria. Functional expression and characterization of knowpains should enable simultaneous screening of available cysteine protease

  14. Characterization of detergent compatible protease from halophilic Virgibacillus sp. CD6.

    Science.gov (United States)

    Lam, Ming Quan; Nik Mut, Nik Nurhidayu; Thevarajoo, Suganthi; Chen, Sye Jinn; Selvaratnam, Chitra; Hussin, Huszalina; Jamaluddin, Haryati; Chong, Chun Shiong

    2018-02-01

    A halophilic bacterium, Virgibacillus sp. strain CD6, was isolated from salted fish and its extracellular protease was characterized. Protease production was found to be highest when yeast extract was used as nitrogen source for growth. The protease exhibited stability at wide range of salt concentration (0-12.5%, w/v), temperatures (20-60 °C), and pH (4-10) with maximum activity at 10.0% (w/v) NaCl, 60 °C, pH 7 and 10, indicating its polyextremophilicity. The protease activity was enhanced in the presence of Mg 2+ , Mn 2+ , Cd 2+ , and Al 3+ (107-122% relative activity), and with retention of activity > 80% for all of other metal ions examined (K + , Ca 2+ , Cu 2+ , Co 2+ , Ni 2+ , Zn 2+ , and Fe 3+ ). Both PMSF and EDTA inhibited protease activity, denoting serine protease and metalloprotease properties, respectively. High stability (> 70%) was demonstrated in the presence of organic solvents and detergent constituents, and the extracellular protease from strain CD6 was also found to be compatible in commercial detergents. Proteinaceous stain removal efficacy revealed that crude protease of strain CD6 could significantly enhance the performance of commercial detergent. The protease from Virgibacillus sp. strain CD6 could serve as a promising alternative for various applications, especially in detergent industry.

  15. Functional Implications of Domain Organization Within Prokaryotic Rhomboid Proteases.

    Science.gov (United States)

    Panigrahi, Rashmi; Lemieux, M Joanne

    2015-01-01

    Intramembrane proteases are membrane embedded enzymes that cleave transmembrane substrates. This interesting class of enzyme and its water mediated substrate cleavage mechanism occurring within the hydrophobic lipid bilayer has drawn the attention of researchers. Rhomboids are a family of ubiquitous serine intramembrane proteases. Bacterial forms of rhomboid proteases are mainly composed of six transmembrane helices that are preceded by a soluble N-terminal domain. Several crystal structures of the membrane domain of the E. coli rhomboid protease ecGlpG have been solved. Independently, the ecGlpG N-terminal cytoplasmic domain structure was solved using both NMR and protein crystallography. Despite these structures, we still do not know the structure of the full-length protein, nor do we know the functional role of these domains in the cell. This chapter will review the structural and functional roles of the different domains associated with prokaryotic rhomboid proteases. Lastly, we will address questions remaining in the field.

  16. The Degradome database: mammalian proteases and diseases of proteolysis.

    Science.gov (United States)

    Quesada, Víctor; Ordóñez, Gonzalo R; Sánchez, Luis M; Puente, Xose S; López-Otín, Carlos

    2009-01-01

    The degradome is defined as the complete set of proteases present in an organism. The recent availability of whole genomic sequences from multiple organisms has led us to predict the contents of the degradomes of several mammalian species. To ensure the fidelity of these predictions, our methods have included manual curation of individual sequences and, when necessary, direct cloning and sequencing experiments. The results of these studies in human, chimpanzee, mouse and rat have been incorporated into the Degradome database, which can be accessed through a web interface at http://degradome.uniovi.es. The annotations about each individual protease can be retrieved by browsing catalytic classes and families or by searching specific terms. This web site also provides detailed information about genetic diseases of proteolysis, a growing field of great importance for multiple users. Finally, the user can find additional information about protease structures, protease inhibitors, ancillary domains of proteases and differences between mammalian degradomes.

  17. Multiple linear regression and artificial neural networks for delta-endotoxin and protease yields modelling of Bacillus thuringiensis.

    Science.gov (United States)

    Ennouri, Karim; Ben Ayed, Rayda; Triki, Mohamed Ali; Ottaviani, Ennio; Mazzarello, Maura; Hertelli, Fathi; Zouari, Nabil

    2017-07-01

    The aim of the present work was to develop a model that supplies accurate predictions of the yields of delta-endotoxins and proteases produced by B. thuringiensis var. kurstaki HD-1. Using available medium ingredients as variables, a mathematical method, based on Plackett-Burman design (PB), was employed to analyze and compare data generated by the Bootstrap method and processed by multiple linear regressions (MLR) and artificial neural networks (ANN) including multilayer perceptron (MLP) and radial basis function (RBF) models. The predictive ability of these models was evaluated by comparison of output data through the determination of coefficient (R 2 ) and mean square error (MSE) values. The results demonstrate that the prediction of the yields of delta-endotoxin and protease was more accurate by ANN technique (87 and 89% for delta-endotoxin and protease determination coefficients, respectively) when compared with MLR method (73.1 and 77.2% for delta-endotoxin and protease determination coefficients, respectively), suggesting that the proposed ANNs, especially MLP, is a suitable new approach for determining yields of bacterial products that allow us to make more appropriate predictions in a shorter time and with less engineering effort.

  18. 21 CFR 184.1027 - Mixed carbohydrase and protease enzyme product.

    Science.gov (United States)

    2010-04-01

    ... 21 Food and Drugs 3 2010-04-01 2009-04-01 true Mixed carbohydrase and protease enzyme product. 184... RECOGNIZED AS SAFE Listing of Specific Substances Affirmed as GRAS § 184.1027 Mixed carbohydrase and protease enzyme product. (a) Mixed carbohydrase and protease enzyme product is an enzyme preparation that includes...

  19. Production of High Amounts of Hepatotoxin Nodularin and New Protease Inhibitors Pseudospumigins by the Brazilian Benthic Nostoc sp. CENA543

    Directory of Open Access Journals (Sweden)

    Jouni Jokela

    2017-10-01

    Full Text Available Nostoc is a cyanobacterial genus, common in soils and a prolific producer of natural products. This research project aimed to explore and characterize Brazilian cyanobacteria for new bioactive compounds. Here we report the production of hepatotoxins and new protease inhibitors from benthic Nostoc sp. CENA543 isolated from a small, shallow, saline-alkaline lake in the Nhecolândia, Pantanal wetland area in Brazil. Nostoc sp. CENA543 produces exceptionally high amounts of nodularin-R. This is the first free-living Nostoc that produces nodularin at comparable levels as the toxic, bloom-forming, Nodularia spumigena. We also characterized pseudospumigins A–F, which are a novel family of linear tetrapeptides. Pseudospumigins are structurally related to linear tetrapeptide spumigins and aeruginosins both present in N. spumigena but differ in respect to their diagnostic amino acid, which is Ile/Leu/Val in pseudospumigins, Pro/mPro in spumigins, and Choi in aeruginosins. The pseudospumigin gene cluster is more similar to the spumigin biosynthetic gene cluster than the aeruginosin gene cluster. Pseudospumigin A inhibited trypsin (IC50 4.5 μM after 1 h in a similar manner as spumigin E from N. spumigena but was almost two orders of magnitude less potent. This study identifies another location and environment where the hepatotoxic nodularin has the potential to cause the death of eukaryotic organisms.

  20. Production of High Amounts of Hepatotoxin Nodularin and New Protease Inhibitors Pseudospumigins by the Brazilian Benthic Nostoc sp. CENA543

    Science.gov (United States)

    Jokela, Jouni; Heinilä, Lassi M. P.; Shishido, Tânia K.; Wahlsten, Matti; Fewer, David P.; Fiore, Marli F.; Wang, Hao; Haapaniemi, Esa; Permi, Perttu; Sivonen, Kaarina

    2017-01-01

    Nostoc is a cyanobacterial genus, common in soils and a prolific producer of natural products. This research project aimed to explore and characterize Brazilian cyanobacteria for new bioactive compounds. Here we report the production of hepatotoxins and new protease inhibitors from benthic Nostoc sp. CENA543 isolated from a small, shallow, saline-alkaline lake in the Nhecolândia, Pantanal wetland area in Brazil. Nostoc sp. CENA543 produces exceptionally high amounts of nodularin-R. This is the first free-living Nostoc that produces nodularin at comparable levels as the toxic, bloom-forming, Nodularia spumigena. We also characterized pseudospumigins A–F, which are a novel family of linear tetrapeptides. Pseudospumigins are structurally related to linear tetrapeptide spumigins and aeruginosins both present in N. spumigena but differ in respect to their diagnostic amino acid, which is Ile/Leu/Val in pseudospumigins, Pro/mPro in spumigins, and Choi in aeruginosins. The pseudospumigin gene cluster is more similar to the spumigin biosynthetic gene cluster than the aeruginosin gene cluster. Pseudospumigin A inhibited trypsin (IC50 4.5 μM after 1 h) in a similar manner as spumigin E from N. spumigena but was almost two orders of magnitude less potent. This study identifies another location and environment where the hepatotoxic nodularin has the potential to cause the death of eukaryotic organisms. PMID:29062311

  1. A Kunitz-type cysteine protease inhibitor from cauliflower and Arabidopsis

    DEFF Research Database (Denmark)

    Halls, C.E.; Rogers, S. W.; Ouffattole, M.

    2006-01-01

    proaleurain maturation protease and of papain when assayed at pH 4.5 but not at pH 6.3. In a pull-down assay, the inhibitor bound tightly to papain, but only weakly to the aspartate protease pepsin. When the cauliflower protease inhibitor was transiently expressed in tobacco suspension culture protoplasts...

  2. Higher Desolvation Energy Reduces Molecular Recognition in Multi-Drug Resistant HIV-1 Protease

    Directory of Open Access Journals (Sweden)

    Ladislau C. Kovari

    2012-05-01

    Full Text Available Designing HIV-1 protease inhibitors that overcome drug-resistance is still a challenging task. In this study, four clinical isolates of multi-drug resistant HIV-1 proteases that exhibit resistance to all the US FDA-approved HIV-1 protease inhibitors and also reduce the substrate recognition ability were examined. A multi-drug resistant HIV-1 protease isolate, MDR 769, was co-crystallized with the p2/NC substrate and the mutated CA/p2 substrate, CA/p2 P1’F. Both substrates display different levels of molecular recognition by the wild-type and multi-drug resistant HIV-1 protease. From the crystal structures, only limited differences can be identified between the wild-type and multi-drug resistant protease. Therefore, a wild-type HIV-1 protease and four multi-drug resistant HIV-1 proteases in complex with the two peptides were modeled based on the crystal structures and examined during a 10 ns-molecular dynamics simulation. The simulation results reveal that the multi-drug resistant HIV-1 proteases require higher desolvation energy to form complexes with the peptides. This result suggests that the desolvation of the HIV-1 protease active site is an important step of protease-ligand complex formation as well as drug resistance. Therefore, desolvation energy could be considered as a parameter in the evaluation of future HIV-1 protease inhibitor candidates.

  3. Pnserpin: A Novel Serine Protease Inhibitor from Extremophile Pyrobaculum neutrophilum

    Directory of Open Access Journals (Sweden)

    Huan Zhang

    2017-01-01

    Full Text Available Serine protease inhibitors (serpins are native inhibitors of serine proteases, constituting a large protein family with members spread over eukaryotes and prokaryotes. However, only very few prokaryotic serpins, especially from extremophiles, have been characterized to date. In this study, Pnserpin, a putative serine protease inhibitor from the thermophile Pyrobaculum neutrophilum, was overexpressed in Escherichia coli for purification and characterization. It irreversibly inhibits chymotrypsin-, trypsin-, elastase-, and subtilisin-like proteases in a temperature range from 20 to 100 °C in a concentration-dependent manner. The stoichiometry of inhibition (SI of Pnserpin for proteases decreases as the temperature increases, indicating that the inhibitory activity of Pnserpin increases with the temperature. SDS-PAGE (sodium dodecyl sulfate polyacrylamide gel electrophoresis showed that Pnserpin inhibits proteases by forming a SDS-resistant covalent complex. Homology modeling and molecular dynamic simulations predicted that Pnserpin can form a stable common serpin fold. Results of the present work will help in understanding the structural and functional characteristics of thermophilic serpin and will broaden the current knowledge about serpins from extremophiles.

  4. Reverse zymography alone does not confirm presence of a protease inhibitor.

    Science.gov (United States)

    Dutta, Sangita; Bhattacharyya, Debasish

    2013-03-01

    Reverse zymography is applied for identification and semi-quantification of protease inhibitors that are of protein in nature. However, a protein that shows band in reverse zymography against a protease used for digestion of the gel need not be an inhibitor; it might be resistant to degradation by the protease. We demonstrate that in reverse zymography, avidin, streptavidin and the leaf extract of Catharanthus roseus behave like inhibitors of proteases like papain, ficin, bromelain extracts from pineapple leaf, stem and fruit and trypsin. Still, they do not act as inhibitors of those proteases when enzyme assays were done in solution. In reverse zymography, the extract of pineapple crown leaf shows two major inhibitor bands against its own proteases. Identification of these proteins from sequences derived from MALDI TOF MS analysis indicated that they are fruit and stem bromelains. Avidin, streptavidin and bromelains are 'kinetically stable proteins' that are usually resistant to proteolysis. Thus, it is recommended that identification of an inhibitor of a protease by reverse zymography should be supported by independent assay methods for confirmation.

  5. Mast cell protease 6 is required for allograft tolerance.

    Science.gov (United States)

    de Vries, V C; Elgueta, R; Lee, D M; Noelle, R J

    2010-09-01

    It has been shown that mast cells (MC) are absolutely required for transplant acceptance. However, only a few of the numerous mediators produced by MC have been proposed as potential mechanisms for the observed immunosuppression. The role of proteases in acquired immune tolerance as such has not yet been addressed. In this study, we have shown the requirement for MC protease 6 (MCP6), an MC-specific tryptase, to establish tolerance toward an allogeneic skin graft. The substrate for MCP6 is interleukin (IL)-6, cytokine generally considered to indicate transplant rejection. Herein we have shown an inverse correlation between MCP6 and IL-6. High expression of MCP6 is accompanied by low levels of IL-6 when the allograft is accepted, whereas low expression of MCP6 in combination with high levels of IL-6 are observed in rejecting grafts. Moreover, tolerance toward an allogeneic graft cannot be induced in MCP6(-/-) mice. Rejection observed in these mice was comparable to that of MC-deficient hosts; it is T-cell mediated. These findings suggest that MCP6 actively depletes the local environment of IL-6 to maintain tolerance. 2010. Published by Elsevier Inc.

  6. Optimization of Protease Production by Psychrotrophic Rheinheimera sp. with Response Surface Methodology

    OpenAIRE

    Mrayam Mahjoubin-Tehran; Bahar Shahnavaz; Razie Ghazi-Birjandi; Mansour Mashreghi; Jamshid Fooladi

    2016-01-01

    Background and Objectives: Psychrotrophic bacteria can produce enzymes at low temperatures; this provides a wide biotechnological potential, and offers numerous economical advantages over the use of mesophilic bacteria. In this study, extracellular protease production by psychrotrophic Rheinheimera sp. (KM459533) was optimized by the response surface methodology.Materials and Methods: The culture medium was tryptic soy broth containing 1% (w v -1 ) skim milk. First, the effects of variables w...

  7. Plant proteases for bioactive peptides release: A review.

    Science.gov (United States)

    Mazorra-Manzano, M A; Ramírez-Suarez, J C; Yada, R Y

    2017-04-10

    Proteins are a potential source of health-promoting biomolecules with medical, nutraceutical, and food applications. Nowadays, bioactive peptides production, its isolation, characterization, and strategies for its delivery to target sites are a matter of intensive research. In vitro and in vivo studies regarding the bioactivity of peptides has generated strong evidence of their health benefits. Dairy proteins are considered the richest source of bioactive peptides, however proteins from animal and vegetable origin also have been shown to be important sources. Enzymatic hydrolysis has been the process most commonly used for bioactive peptide production. Most commercial enzymatic preparations frequently used are from animal (e.g., trypsin and pepsin) and microbial (e.g., Alcalase® and Neutrase®) sources. Although the use of plant proteases is still relatively limited to papain and bromelain from papaya and pineapple, respectively, the application of new plant proteases is increasing. This review presents the latest knowledge in the use and diversity of plant proteases for bioactive peptides release from food proteins including both available commercial plant proteases as well as new potential plant sources. Furthermore, the properties of peptides released by plant proteases and health benefits associated in the control of disorders such as hypertension, diabetes, obesity, and cancer are reviewed.

  8. Degradation of the disease-associated prion protein by a serine protease from lichens

    Science.gov (United States)

    Johnson, C.J.; Bennett, J.P.; Biro, S.M.; Duque-Velasquez, J.C.; Rodriguez, C.M.; Bessen, R.A.; Rocke, T.E.; Bartz, Jason C.

    2011-01-01

    The disease-associated prion protein (PrP(TSE)), the probable etiological agent of the transmissible spongiform encephalopathies (TSEs), is resistant to degradation and can persist in the environment. Lichens, mutualistic symbioses containing fungi, algae, bacteria and occasionally cyanobacteria, are ubiquitous in the environment and have evolved unique biological activities allowing their survival in challenging ecological niches. We investigated PrP(TSE) inactivation by lichens and found acetone extracts of three lichen species (Parmelia sulcata, Cladonia rangiferina and Lobaria pulmonaria) have the ability to degrade prion protein (PrP) from TSE-infected hamsters, mice and deer. Immunoblots measuring PrP levels and protein misfolding cyclic amplification indicated at least two logs of reductions in PrP(TSE). Degradative activity was not found in closely related lichen species or in algae or a cyanobacterium that inhabit lichens. Degradation was blocked by Pefabloc SC, a serine protease inhibitor, but not inhibitors of other proteases or enzymes. Additionally, we found that PrP levels in PrP(TSE)-enriched preps or infected brain homogenates are also reduced following exposure to freshly-collected P. sulcata or an aqueous extract of the lichen. Our findings indicate that these lichen extracts efficiently degrade PrP(TSE) and suggest that some lichens could have potential to inactivate TSE infectivity on the landscape or be a source for agents to degrade prions. Further work to clone and characterize the protease, assess its effect on TSE infectivity and determine which organism or organisms present in lichens produce or influence the protease activity is warranted.

  9. Portulaca oleracea L. as a Prospective Candidate Inhibitor of Hepatitis C Virus NS3 Serine Protease.

    Science.gov (United States)

    Noreen, Sobia; Hussain, Ishtiaq; Tariq, Muhammad Ilyas; Ijaz, Bushra; Iqbal, Shahid; Qamar-ul-Zaman; Ashfaq, Usman Ali; Husnain, Tayyab

    2015-06-01

    Hepatitis C virus (HCV) infection is a worldwide health problem affecting about 300 million individuals. HCV causes chronic liver disease, liver cirrhosis, hepatocellular carcinoma, and death. Many side effects are associated with the current treatment options. Natural products that can be used as anti-HCV drugs are thus of considerable potential significance. NS3 serine protease (NS3-SP) is a target for the screening of antiviral activity against HCV. The present work explores plants with anti-HCV potential, isolating possible lead compounds. Ten plants, used for medicinal purposes against different infections in rural areas of Pakistan, were collected. The cellular toxicity effects of methanolic extracts of the plants on the viability of Huh-7 cells were studied through the Trypan blue dye exclusion method. Following this, the anti-HCV potential of phytoextracts was assessed by infecting liver cells with HCV-3a-infected serum inoculum. Only the methanolic extract of Portulaca oleracea L. (PO) exhibited more than 70% inhibition. Four fractions were obtained through bioassay-guided extraction of PO. Subsequent inhibition of all organic extract fractions against NS3 serine protease was checked to track the specific target in the virus. The results showed that the PO methanolic crude and ethyl acetate extract specifically abridged the HCV NS3 protease expression in a dose-dependent fashion. Hence, PO extract and its constituents either alone or with interferon could offer a future option to treat chronic HCV.

  10. 40 CFR 80.915 - How are the baseline toxics value and baseline toxics volume determined?

    Science.gov (United States)

    2010-07-01

    ... baseline toxics value if it can determine an applicable toxics value for every batch of gasoline produced... of gasoline batch i produced or imported between January 1, 1998 and December 31, 2000, inclusive. i = Individual batch of gasoline produced or imported between January 1, 1998 and December 31, 2000, inclusive. n...

  11. Comparison of protease production from newly isolated bacterial ...

    African Journals Online (AJOL)

    Nasir

    2016-10-12

    Oct 12, 2016 ... Protease has gained a very important position in many industries such as food, pharmaceutical, chemical and leather industries. In this research, protease was obtained from bacteria. The bacterial strain was obtained from soil which was collected from different areas of Lahore, Pakistan. Fermentation ...

  12. High-level expression of alkaline protease using recombinant ...

    African Journals Online (AJOL)

    AJL

    2012-02-16

    Feb 16, 2012 ... compared with that of wild-type B. licheniformis CICIM B5102. Key word: Alkaline protease, Bacillus amyloliquefaciens, Bacillus licheniformis. INTRODUCTION. Proteases are one of the most important industrial enzyme groups, accounting for approximately 60% of the total enzyme sales (Beg et al., 2003).

  13. Role of protease-activated receptor-2 in inflammation, and its possible implications as a putative mediator of periodontitis

    Directory of Open Access Journals (Sweden)

    M Holzhausen

    2005-03-01

    Full Text Available Proteinase-activated receptor-2 (PAR2 belongs to a novel subfamily of G-protein-coupled receptors with seven-transmembrane domains. This receptor is widely distributed throughout the body and seems to be importantly involved in inflammatory processes. PAR2 can be activated by serine proteases such as trypsin, mast cell tryptase, and bacterial proteases, such as gingipain produced by Porphyromonas gingivalis. This review describes the current stage of knowledge of the possible mechanisms that link PAR2 activation with periodontal disease, and proposes future therapeutic strategies to modulate the host response in the treatment of periodontitis.

  14. Cysteine proteases as potential antigens in antiparasitic DNA vaccines

    DEFF Research Database (Denmark)

    Jørgensen, Louise von Gersdorff; Buchmann, Kurt

    2011-01-01

    En litteraturgennemgang af muligheder for at bruge cystein proteaser som antigener i antiparasitære vacciner.......En litteraturgennemgang af muligheder for at bruge cystein proteaser som antigener i antiparasitære vacciner....

  15. The non-death role of metacaspase proteases

    International Nuclear Information System (INIS)

    Shrestha, Amit; Megeney, Lynn A.

    2012-01-01

    The activation of caspase proteases and the targeting of protein substrates act as key steps in the engagement and conduct of apoptosis/programmed cell death. However, the discovery of caspase involvement in diverse non-apoptotic cellular functions strongly suggests that these proteins may have evolved from a core behavior unrelated to the induction of cell death. The presence of similar proteases, termed metacaspases, in single cell organisms supports the contention that such proteins may have co-evolved or derived from a critical non-death function. Indeed, the benefit(s) for single cell life forms to retain proteins solely dedicated to self destruction would be countered by a strong selection pressure to curb or eliminate such processes. Examination of metacaspase biology provides evidence that these ancient protease forerunners of the caspase family also retain versatility in function, i.e., death and non-death cell functions. Here, we provide a critical review that highlights the non-death roles of metacaspases that have been described thus far, and the impact that these observations have for our understanding of the evolution and cellular utility of this protease family.

  16. Characterizing Protease Specificity: How Many Substrates Do We Need?

    Directory of Open Access Journals (Sweden)

    Michael Schauperl

    Full Text Available Calculation of cleavage entropies allows to quantify, map and compare protease substrate specificity by an information entropy based approach. The metric intrinsically depends on the number of experimentally determined substrates (data points. Thus a statistical analysis of its numerical stability is crucial to estimate the systematic error made by estimating specificity based on a limited number of substrates. In this contribution, we show the mathematical basis for estimating the uncertainty in cleavage entropies. Sets of cleavage entropies are calculated using experimental cleavage data and modeled extreme cases. By analyzing the underlying mathematics and applying statistical tools, a linear dependence of the metric in respect to 1/n was found. This allows us to extrapolate the values to an infinite number of samples and to estimate the errors. Analyzing the errors, a minimum number of 30 substrates was found to be necessary to characterize substrate specificity, in terms of amino acid variability, for a protease (S4-S4' with an uncertainty of 5 percent. Therefore, we encourage experimental researchers in the protease field to record specificity profiles of novel proteases aiming to identify at least 30 peptide substrates of maximum sequence diversity. We expect a full characterization of protease specificity helpful to rationalize biological functions of proteases and to assist rational drug design.

  17. Comparative analysis of the toxic effects of natural toxins and harmful substances produced by conventional processing methods or by irradiation and of toxicity tests

    International Nuclear Information System (INIS)

    Dahlhelm, H.; Arndt, K.; Groeger, G.; Schreiber, G.A.; Boegl, K.W.

    1994-01-01

    In this review, tasks and methods of food toxicology as well as the application of the different toxicity tests for the risk assessment of food ingredients are described. Particular reference is made to short-term genotoxicity tests. Enzymatic digestion and extraction methods for complex foodstuffs which are used in the toxicological testing of foods in in vitro systems are described. Radiolytic products which result from irradiation of foods or components of foodstuffs and corresponding results of toxicity testing are reviewed. Foodstuffs irradiated with doses of up to 10 kGy are regarded as toxicologically safe. A survey of the toxicologically tested irradiated foodstuffs as well as the applied maximum doses are given in tables at the end of chapter 8. Among the great number of toxicological studies of irradiated foods those are especially mentioned which have given rise to discussions on the health risks involved. In addition, the difficulties associated with the testing of toxicity of irradiated foodstuffs in feeding experiments are discussed. Short-term tests used to establish the benotoxicity of irradiated foods and essential results of toxicological testing are also presented in tables. An overview is given of the occurrence, frequency and health risks of natural toxins in foods and harmful substances produced by conventional methods of cooking and preservation, in order to enable a comparison with the health risks of irradiated foods. The relevance of animal experiments and in vitro investigations for the prediction of toxic effects of harmful substances of foodstuffs in man is discussed in the final chapter. (VHE) [de

  18. Loss of second and sixth conserved cysteine residues from trypsin inhibitor-like cysteine-rich domain-type protease inhibitors in Bombyx mori may induce activity against microbial proteases.

    Science.gov (United States)

    Li, Youshan; Liu, Huawei; Zhu, Rui; Xia, Qingyou; Zhao, Ping

    2016-12-01

    Previous studies have indicated that most trypsin inhibitor-like cysteine-rich domain (TIL)-type protease inhibitors, which contain a single TIL domain with ten conserved cysteines, inhibit cathepsin, trypsin, chymotrypsin, or elastase. Our recent findings suggest that Cys 2nd and Cys 6th were lost from the TIL domain of the fungal-resistance factors in Bombyx mori, BmSPI38 and BmSPI39, which inhibit microbial proteases and the germination of Beauveria bassiana conidia. To reveal the significance of these two missing cysteines in relation to the structure and function of TIL-type protease inhibitors in B. mori, cysteines were introduced at these two positions (D36 and L56 in BmSPI38, D38 and L58 in BmSPI39) by site-directed mutagenesis. The homology structure model of TIL domain of the wild-type and mutated form of BmSPI39 showed that two cysteine mutations may cause incorrect disulfide bond formation of B. mori TIL-type protease inhibitors. The results of Far-UV circular dichroism (CD) spectra indicated that both the wild-type and mutated form of BmSPI39 harbored predominantly random coil structures, and had slightly different secondary structure compositions. SDS-PAGE and Western blotting analysis showed that cysteine mutations affected the multimerization states and electrophoretic mobility of BmSPI38 and BmSPI39. Activity staining and protease inhibition assays showed that the introduction of cysteine mutations dramaticly reduced the activity of inhibitors against microbial proteases, such as subtilisin A from Bacillus licheniformis, protease K from Engyodontium album, protease from Aspergillus melleus. We also systematically analyzed the key residue sites, which may greatly influence the specificity and potency of TIL-type protease inhibitors. We found that the two missing cysteines in B. mori TIL-type protease inhibitors might be crucial for their inhibitory activities against microbial proteases. The genetic engineering of TIL-type protease inhibitors may be

  19. Characterization of Thermo- and Detergent Stable Antigenic Glycosylated Cysteine Protease of Euphorbia nivulia Buch.-Ham. and Evaluation of Its Ecofriendly Applications

    Directory of Open Access Journals (Sweden)

    Shamkant B. Badgujar

    2013-01-01

    Full Text Available An antigenic glycosylated cysteine protease has been purified from the latex of Euphorbia nivulia Buch.-Ham. It exhibits remarkable protease activity in the presence of metal ions, oxidizing agents, organic solvents, and detergents. This enzyme showed potential role in leather processing industry due to its dehairing activity for animal hide without hydrolyzing fibrous proteins, producing, by this way, a better quality product. The enzyme can also be used for silver recovering from X-ray plates. In addition, the stability (temperature and surfactants and hydrolysis of blood stain data also revealed its application in detergent industries. Agriculturally, this protease finds application in biocontrol process against the infectious management of root knot nematode, Meloidogyne incognita. Biologically, it shows noticeable wound healing, haemostatic and antibacterial activity.

  20. Effect of sorghum type and malting on production of free amino nitrogen in conjunction with exogenous protease enzymes.

    Science.gov (United States)

    Dlamini, Bhekisisa C; Buys, Elna M; Taylor, John R N

    2015-01-01

    Sorghum types suitable for brewing and bioethanol production are required. The effect of sorghum type (white non-tannin versus white type II tannin) on free amino nitrogen (FAN) production from sorghum grain and malt using exogenous protease enzymes was investigated over extended incubation at moderate temperature (45 °C). With grain in the absence of exogenous proteases, white non-tannin sorghum produced substantially higher levels of FAN than white type II tannin sorghum, due to the tannins in the latter. Incubating sorghum grain with neutral proteinase and amino-peptidase in combination improved FAN production. The two sorghum types produced similar FAN levels when malted and incubated in the absence of the exogenous proteases. When both sorghums were malted and incubated with neutral proteinase alone substantially more FAN yield (124-126 mg 100 g(-1)) occurred than with grains (61-84 mg 100 g(-1)). The combination of amino-peptidase and proteinase did not improve FAN further. Neither, did malting influence wort free amino acid profile. Group B amino acids constituted the highest percentage (42-47%). With grain, white non-tannin sorghum plus proteinase and amino-peptidase yields the highest FAN, with malt both white non-tannin and white type II tannin sorghums plus proteinase yield the highest FAN. © 2014 Society of Chemical Industry.

  1. m-AAA proteases, mitochondrial calcium homeostasis and neurodegeneration.

    Science.gov (United States)

    Patron, Maria; Sprenger, Hans-Georg; Langer, Thomas

    2018-03-01

    The function of mitochondria depends on ubiquitously expressed and evolutionary conserved m-AAA proteases in the inner membrane. These ATP-dependent peptidases form hexameric complexes built up of homologous subunits. AFG3L2 subunits assemble either into homo-oligomeric isoenzymes or with SPG7 (paraplegin) subunits into hetero-oligomeric proteolytic complexes. Mutations in AFG3L2 are associated with dominant spinocerebellar ataxia (SCA28) characterized by the loss of Purkinje cells, whereas mutations in SPG7 cause a recessive form of hereditary spastic paraplegia (HSP7) with motor neurons of the cortico-spinal tract being predominantly affected. Pleiotropic functions have been assigned to m-AAA proteases, which act as quality control and regulatory enzymes in mitochondria. Loss of m-AAA proteases affects mitochondrial protein synthesis and respiration and leads to mitochondrial fragmentation and deficiencies in the axonal transport of mitochondria. Moreover m-AAA proteases regulate the assembly of the mitochondrial calcium uniporter (MCU) complex. Impaired degradation of the MCU subunit EMRE in AFG3L2-deficient mitochondria results in the formation of deregulated MCU complexes, increased mitochondrial calcium uptake and increased vulnerability of neurons for calcium-induced cell death. A reduction of calcium influx into the cytosol of Purkinje cells rescues ataxia in an AFG3L2-deficient mouse model. In this review, we discuss the relationship between the m-AAA protease and mitochondrial calcium homeostasis and its relevance for neurodegeneration and describe a novel mouse model lacking MCU specifically in Purkinje cells. Our results pledge for a novel view on m-AAA proteases that integrates their pleiotropic functions in mitochondria to explain the pathogenesis of associated neurodegenerative disorders.

  2. Purification and Biochemical Characterization of a Neutral Serine Protease from Trichoderma harzianum. Use in Antibacterial Peptide Production from a Fish By-Product Hydrolysate.

    Science.gov (United States)

    Aissaoui, Neyssene; Chobert, Jean-Marc; Haertlé, Thomas; Marzouki, M Nejib; Abidi, Ferid

    2017-06-01

    This study reports the purification and biochemical characterization of an extracellular neutral protease from the fungus Trichoderma harzianum. The protease (Th-Protease) was purified from the culture supernatant to homogeneity by a three-step procedure with 14.2% recovery and 9.06-fold increase in specific activity. The purified enzyme appeared as a single protein band after sodium dodecyl sulfate-polyacrylamide gel electrophoresis (SDS-PAGE) with a molecular mass of about 20 kDa. The optimum pH and temperature for the proteolytic activity were pH 7.0 and 40 °C, respectively. The enzyme was then investigated for its potential application in the production of antibacterial peptides. Interestingly, Scorpaena notata viscera protein hydrolysate prepared using the purified serine protease (Th-Protease) showed remarkable in vitro antibacterial activities. A peptide with a high antibacterial activity was further purified by a three-step procedure, and its sequence was identified as FPIGMGHGSRPA. The result of this study offers a promising alternative to produce natural antibacterial peptides from fish protein hydrolysate.

  3. The putative serine protease inhibitor Api m 6 from Apis mellifera venom: recombinant and structural evaluation.

    Science.gov (United States)

    Michel, Y; McIntyre, M; Ginglinger, H; Ollert, M; Cifuentes, L; Blank, S; Spillner, E

    2012-01-01

    Immunoglobulin (Ig) E-mediated reactions to honeybee venom can cause severe anaphylaxis, sometimes with fatal consequences. Detailed knowledge of the allergic potential of all venom components is necessary to ensure proper diagnosis and treatment of allergy and to gain a better understanding of the allergological mechanisms of insect venoms. Our objective was to undertake an immunochemical and structural evaluation of the putative low-molecular-weight serine protease inhibitor Api m 6, a component of honeybee venom. We recombinantly produced Api m 6 as a soluble protein in Escherichia coli and in Spodoptera frugiperda (Sf9) insect cells.We also assessed specific IgE reactivity of venom-sensitized patients with 2 prokaryotically produced Api m 6 variants using enzyme-linked immunosorbent assay. Moreover, we built a structural model ofApi m 6 and compared it with other protease inhibitor structures to gain insights into the function of Api m 6. In a population of 31 honeybee venom-allergic patients, 26% showed specific IgE reactivity with prokaryotically produced Api m 6, showing it to be a minor but relevant allergen. Molecular modeling of Api m 6 revealed a typical fold of canonical protease inhibitors, supporting the putative function of this venom allergen. Although Api m 6 has a highly variant surface charge, its epitope distribution appears to be similar to that of related proteins. Api m 6 is a honeybee venom component with IgE-sensitizing potential in a fraction of venom-allergic patients. Recombinant Api m 6 can help elucidate individual component-resolved reactivity profiles and increase our understanding of immune responses to low-molecular-weight allergens

  4. Proteases from Latex of Euphorbia spp. and Its Application on Milk Clot Formation

    Directory of Open Access Journals (Sweden)

    Fidia Fibriana

    2015-09-01

    Full Text Available Crude proteases were extracted from Euphorbiaceae family, i.e. E. milii var imperata, E. trigona, and E. maculata. Among those three crude proteases, the activity of protease from E. trigona was the highest (812.50 U/ml, whereas E. milii and E. maculata crude proteases activity were 298.60 U/ml and 95.80 U/ml, respectively. E. maculata protein concentration was the highest among those three crude enzymes (1.206 mg/ml. The optimum pH and temperature of the enzymes were pH 7.0, pH 6.0, pH 6.5 and 60 °C, 50 °C, and 50 °C, respectively. Crude protease from E. milii var imperata, E. trigona, and E. maculata retained proteolytic activity over a wide range of pH (5.0–9.0 and temperature (up to 65 °C with casein as substrate. All crude proteases showed milk clotting activity ranged from 0.58 U/ml to 1.01 U/ml. Thus, these crude proteases are potential to be applied in dairy industries. However, further study on enzyme purification and characterization are necessary to obtain high purity of proteases before its application.Protease kasar berhasil diekstrak dari tanaman family Euphorbiaceae, yaitu E. milii var imperata, E. trigona, dan E. maculata. Diantara ketiga protease tersebut, aktivitas protease tertinggi diperoleh dari E. trigona (812,50 U/ml, sedangkan aktivitas protease dari E. milii dan E. maculata adalah 298,60 U/ml dan 95,80 U/ml, berturut-turut. Konsentrasi total protein tertinggi terdapat pada protease kasar E. maculata (1,206 mg/ml. pH dan suhu optimum ketiga enzim tersebut adalah pH 7.0, pH 6.0, pH 6.5 dan suhu 60 °C, 50 °C, and 50 °C, berturut-turut. Protease kasar dari E. milii var imperata, E. trigona, dan E. maculata menunjukkan aktivitas proteolitik pada rentang pH 5.0–9.0 dan rentang suhu sampai 65 °C menggunakan kasein sebagai substrat. Semua protease kasar menunjukkan aktivitas penggumpalan susu dengan rentang dari 0,58 U/ml sampai 1,01 U/ml. Berdasarkan hasil yang diperoleh, protease kasar dari ketiga jenis tanaman ini

  5. The threonine protease activity of testes-specific protease 50 (TSP50 is essential for its function in cell proliferation.

    Directory of Open Access Journals (Sweden)

    Yu-Yin Li

    Full Text Available BACKGROUND: Testes-specific protease 50 (TSP50, a newly discovered threonine enzyme, has similar amino acid sequences and enzymatic structures to those of many serine proteases. It may be an oncogene. TSP50 is up-regulated in breast cancer epithelial cells, and ectopic expression of TSP50 in TSP50-deficient Chinese hamster ovary (CHO cells has been found to promote cell proliferation. However, the mechanisms by which TSP50 exerts its growth-promoting effects are not yet fully understood. METHODOLOGY/PRINCIPAL FINDINGS: To delineate whether the threonine protease activity of TSP50 is essential to its function in cell proliferation, we constructed and characterized a mutant TSP50, called TSP50 T310A, which was identified as a protease-dead mutant of TSP50. By a series of proliferation analyses, colony formation assays and apoptosis analyses, we showed that T310A mutation significantly depresses TSP50-induced cell proliferation in vitro. Next, the CHO stable cell line expressing either wild-type or T310A mutant TSP50 was injected subcutaneously into nude mice. We found that the T310A mutation could abolish the tumorigenicity of TSP50 in vivo. A mechanism investigation revealed that the T310A mutation prevented interaction between TSP50 and the NF-κBIκBα complex, which is necessary for TSP50 to perform its function in cell proliferation. CONCLUSION: Our data highlight the importance of threonine 310, the most critical protease catalytic site in TSP50, to TSP50-induced cell proliferation and tumor formation.

  6. Cold denaturation of the HIV-1 protease monomer

    DEFF Research Database (Denmark)

    Rösner, Heike Ilona; Caldarini, Martina; Prestel, Andreas

    2017-01-01

    The HIV-1-protease is a complex protein which in its active form adopts a homodimer dominated by -sheet structures. We have discovered a cold-denatured state of the monomeric subunit of HIV-1-protease which is populated above 0ºC and therefore directly accessible to various spectroscopic approac...

  7. Two-Dimensional Zymography of Proteases from Steatotic Duck Liver.

    Science.gov (United States)

    Wilkesman, Jeff; Padrón, María Fernanda; Kurz, Liliana; Rémignon, Hervé

    2017-01-01

    Protease activity present in liver cells with steatosis can be electrophoretically characterized. Zymographic techniques allow semi-quantitative results, successfully detecting cathepsin and metalloprotease activity using polyacrylamide gels copolymerized with gelatin and quantified by densitometry. By using specific inhibitors, the identity of the proteases can be confirmed. 2D zymography allows the determination of both M r. and pI of the metalloprotease and cathepsin activity present in the homogenates. The analysis of liver proteases activities in force fed ducks may elucidate the mechanisms behind steatosis development.

  8. Solid-state fermentation of Jatropha seed cake for optimization of lipase, protease and detoxification of anti-nutrients in Jatropha seed cake using Aspergillus versicolor CJS-98.

    Science.gov (United States)

    Veerabhadrappa, Mohankumar Bavimane; Shivakumar, Sharath Belame; Devappa, Somashekar

    2014-02-01

    This study focused on the solid-state fermentation of Jatropha seed cake (JSC), a byproduct generated after biodiesel production. Presence of anti-nutritional compounds and toxins restricts its application in livestock feed. The disposal of the JSC is a major environmental problem in the future, due to the generation of huge quantity of JSC after biodiesel extraction. Hence the JSC was assessed for its suitability as substrate for production and optimization of lipase and protease from Aspergillus versicolor CJS-98 by solid-state fermentation (SSF). The present study was also focused on the biodetoxification of anti-nutrients and toxins in JSC. The SSF parameters were optimized for maximum production of lipase and protease. Under the optimized conditions, the JSC supplemented with maltose and peptone (2%), adjusted to pH 7.0, moisture content 40%, inoculated with 1 × 10(7) spores per 5 g cake and incubated at 25°C, produced maximum lipase, 1288 U/g and protease, 3366 U/g at 96 h. The anti-nutrients like phytic acid (6.08%), tannins (0.37%), trypsin inhibitors (697.5 TIU/g), cyanogenic glucosides (692.5 μg/100 g), and lectins (0.309 mg/ml), were reduced to 1.70%, 0.23%, 12.5 TIU/g, 560.6 μg/100 g and 0.034 mg/ml respectively. The main toxic compound phorbol esters content in the JSC was reduced from 0.083% to 0.015% after SSF. Our results indicate that viability of SSF to utilize the huge amount of seed cake generated after extraction of biodiesel, for production of industrial enzymes and biodetoxification of anti-nutrients, toxins. Copyright © 2013 The Society for Biotechnology, Japan. Published by Elsevier B.V. All rights reserved.

  9. In vitro Ca(2+)-dependent maturation of milk-clotting recombinant Epr: minor extracellular protease: from Bacillus licheniformis.

    Science.gov (United States)

    Ageitos, José Manuel; Vallejo, Juan Andrés; Serrat, Manuel; Sánchez-Pérez, Angeles; Villa, Tomás G

    2013-06-01

    The minor extracellular protease (Epr) is secreted into the culture medium during Bacillus licheniformis, strain USC13, stationary phase of growth. Whereas, B. subtilis Epr has been reported to be involved in swarming; the B. licheniformis protease is also involved in milk-clotting as shown by the curd forming ability of culture broths expressing this protein. The objectives of this study are the characterization of recombinant B. licheniformis Epr (minor extracellular protease) and the determination of its calcium-dependent activation process. In this work, we have cloned and expressed B. licheniformis Epr in Escherichia coli. We were also able to construct a tridimensional model for Epr based on its homology to Thermococcus kodakarensis pro-tk-subtilisin 2e1p, fervidolysin from Fervidobacterium pennivorans 1rv6, and B. lentus 1GCI subtilisin. Recombinant Epr was accumulated into inclusion bodies; after protein renaturation, Epr undergoes an in vitro calcium-dependent activation, similar to that described for tk protease. The recombinant Epr is capable of producing milk curds with the same clotting activity previously described for the native B. licheniformis Epr enzyme although further rheological and industrial studies should be carried out to confirm its real applicability. This work represents for the first time that Epr may be successfully expressed in a non-bacilli microorganism.

  10. Optimization, purification and characterization of novel thermostable, haloalkaline, solvent stable protease from Bacillus halodurans CAS6 using marine shellfish wastes: a potential additive for detergent and antioxidant synthesis.

    Science.gov (United States)

    Annamalai, Neelamegam; Rajeswari, Mayavan Veeramuthu; Thavasi, Rengathavasi; Vijayalakshmi, Shanmugam; Balasubramanian, Thangavel

    2013-07-01

    A protease producing marine bacterium, Bacillus halodurans CAS6 isolated from marine sediments, was found to produce higher enzyme by utilizing shrimp shell powder. Optimum culture conditions for protease production were 50 °C, pH 9.0, 30 % NaCl and 1 % shrimp shell powder (SSP) and the protease purified with a specific activity of 509.84 U/mg. The enzyme retained 100 % of its original activity even at 70 °C, pH 10.0 and 30 % NaCl for 1 h. The purified protease exhibited higher stability when treated with ionic, non-ionic (72-94 %) and commercial detergents (76-88 %), and organic solvents (88-126 %). Significant blood stain removal activity was found with the enzyme in washing experiments. The culture supernatant supplemented with 1 % SSP showed 93.67 ± 2.52 % scavenging activity and FT-IR analysis of the reaction mixture confirmed the presence of antioxidants such as cyclohexane and cyclic depsipeptide with aliphatic amino groups. These remarkable qualities found with this enzyme produced by Bacillus halodurans CAS6 could make this as an ideal candidate to develop the industrial process for bioconversion of marine wastes and antioxidant synthesis.

  11. Production of alkaline proteases by alkalophilic Bacillus subtilis ...

    African Journals Online (AJOL)

    Among various nitrogen sources, yeast extract was found to be the best inducer of alkaline protease. Among metal salts, KNO3 and NH4Cl were found to increase protease production. The maximum enzyme production (3600 U/ml) was observed with pomegranate peels of fermentation medium in the presence of yeast ...

  12. Characterization and identification of proteases secreted by Aspergillus fumigatus using free flow electrophoresis and MS.

    Science.gov (United States)

    Neustadt, Madlen; Costina, Victor; Kupfahl, Claudio; Buchheidt, Dieter; Eckerskorn, Christoph; Neumaier, Michael; Findeisen, Peter

    2009-06-01

    Early diagnosis of life-threatening invasive aspergillosis in neutropenic patients remains challenging because current laboratory methods have limited diagnostic sensitivity and/or specificity. Aspergillus species are known to secrete various pathogenetically relevant proteases and the monitoring of their protease activity in serum specimens might serve as a new diagnostic approach.For the characterization and identification of secreted proteases, the culture supernatant of Aspergillus fumigatus was fractionated using free flow electrophoresis (Becton Dickinson). Protease activity of separated fractions was measured using fluorescently labeled reporter peptides. Fractions were also co-incubated in parallel with various protease inhibitors that specifically inhibit a distinct class of proteases e.g. metallo- or cysteine-proteases. Those fractions with high protease activity were further subjected to LC-MS/MS analysis for protease identification. The highest protease activity was measured in fractions with an acidic pH range. The results of the 'inhibitor-panel' gave a clear indication that it is mainly metallo- and serine-proteases that are involved in the degradation of reporter peptides. Furthermore, several proteases were identified that facilitate the optimization of reporter peptides for functional protease profiling as a diagnostic tool for invasive aspergillosis.

  13. Proteases in Escherichia coli and Staphylococcus aureus confer reduced susceptibility to lactoferricin B.

    Science.gov (United States)

    Ulvatne, Hilde; Haukland, Hanne Husom; Samuelsen, Ørjan; Krämer, Manuela; Vorland, Lars H

    2002-10-01

    Lactoferricin B is a cationic antimicrobial peptide derived from the N-terminal part of bovine lactoferrin. The effect of bacterial proteases on the antibacterial activity of lactoferricin B towards Escherichia coli and Staphylococcus aureus was investigated using various protease inhibitors and protease-deficient E. coli mutants. Sodium-EDTA, a metalloprotease inhibitor, was the most efficient inhibitors in both species, but combinations of sodium-EDTA with other types of protease inhibitor gave a synergic effect. The results indicate that several groups of proteases are involved in resistance to lactoferricin B in both E. coli and S. aureus. We also report that genetic inactivation of the heat shock-induced serine protease DegP increased the susceptibility to lactoferricin B in E. coli, suggesting that this protease, at least, is involved in reduced susceptibility to lactoferricin B.

  14. Cysteine Protease (Capparin from Capsules of Caper (Capparis spinosa

    Directory of Open Access Journals (Sweden)

    Yasar Demir

    2008-01-01

    Full Text Available Proteases are enzymes that perform very important functions in organisms and are used for a variety of objectives in vitro. In recent years, proteases have been used for clinical, pharmaceutical (alimentary digestion, anti-inflammatory, etc. and industrial applications (cheese production, meat tenderizing, leather tanning. In this research, a protease has been purified from capsules of caper (Capparis spinosa and characterized. Caper plants have been used for food and medicine since ancient times. The plant grows abundantly in certain regions of Turkey. Ammonium sulphate fractionation and a CM Sephadex column were used for purification of the enzyme. The purification enzyme has an optimum pH=5.0 and its optimum temperature was 60 °C. The vmax and Km values determined by Lineweaver-Burk graphics were 1.38 μg/(L·min and 0.88 μg/L, respectively. The purification degree and the molecular mass of the enzyme (46 kDa were determined by SDS-PAGE and gel filtration chromatography. It was investigated whether the purified and characterized protease could cause milk to congeal or digest chicken and cow meat. The results show that protease can be used for industrial production.

  15. Chimeric exchange of coronavirus nsp5 proteases (3CLpro) identifies common and divergent regulatory determinants of protease activity.

    Science.gov (United States)

    Stobart, Christopher C; Sexton, Nicole R; Munjal, Havisha; Lu, Xiaotao; Molland, Katrina L; Tomar, Sakshi; Mesecar, Andrew D; Denison, Mark R

    2013-12-01

    Human coronaviruses (CoVs) such as severe acute respiratory syndrome CoV (SARS-CoV) and Middle East respiratory syndrome CoV (MERS-CoV) cause epidemics of severe human respiratory disease. A conserved step of CoV replication is the translation and processing of replicase polyproteins containing 16 nonstructural protein domains (nsp's 1 to 16). The CoV nsp5 protease (3CLpro; Mpro) processes nsp's at 11 cleavage sites and is essential for virus replication. CoV nsp5 has a conserved 3-domain structure and catalytic residues. However, the intra- and intermolecular determinants of nsp5 activity and their conservation across divergent CoVs are unknown, in part due to challenges in cultivating many human and zoonotic CoVs. To test for conservation of nsp5 structure-function determinants, we engineered chimeric betacoronavirus murine hepatitis virus (MHV) genomes encoding nsp5 proteases of human and bat alphacoronaviruses and betacoronaviruses. Exchange of nsp5 proteases from HCoV-HKU1 and HCoV-OC43, which share the same genogroup, genogroup 2a, with MHV, allowed for immediate viral recovery with efficient replication albeit with impaired fitness in direct competition with wild-type MHV. Introduction of MHV nsp5 temperature-sensitive mutations into chimeric HKU1 and OC43 nsp5 proteases resulted in clear differences in viability and temperature-sensitive phenotypes compared with MHV nsp5. These data indicate tight genetic linkage and coevolution between nsp5 protease and the genomic background and identify differences in intramolecular networks regulating nsp5 function. Our results also provide evidence that chimeric viruses within coronavirus genogroups can be used to test nsp5 determinants of function and inhibition in common isogenic backgrounds and cell types.

  16. Isolation of alkaline protease from Bacillus subtilis AKRS3

    African Journals Online (AJOL)

    ashok

    2012-08-28

    Aug 28, 2012 ... production proved high protease production than the other tested ... Crude alkaline protease was most active at 55°C, pH 9 with casein as ... 13416 Afr. J. Biotechnol. ... The Gram-positive, aerobic, rod-shaped endospore-.

  17. Partial purification and characterization of alkaline proteases from ...

    African Journals Online (AJOL)

    Alkaline proteases from the digestive tract of anchovy were partially purified by ammonium sulfate fractionation, dialysis and Sephadex G-75 gel filtration. The purification fold and yield were 6.23 and 4.49%, respectively. The optimum activities of partially purified alkaline proteases were observed at 60°C and at pH 11.0.

  18. Molecular cloning and immunochemical characterization of a novel major Japanese cedar pollen allergen belonging to the aspartic protease family.

    Science.gov (United States)

    Ibrahim, Ahmed Ragaa Nour; Kawamoto, Seiji; Aki, Tsunehiro; Shimada, Yayoi; Rikimaru, Satoshi; Onishi, Nobukazu; Babiker, Elfadil Elfadl; Oiso, Isao; Hashimoto, Kunihiko; Hayashi, Takaharu; Ono, Kazuhisa

    2010-01-01

    Japanese cedar (Cryptomeria japonica) pollen is a major cause of seasonal pollinosis in Japan. Protease activity in the pollen grains may trigger pro-allergic responses but no such proteases have yet been identified as pollen allergens. We report the molecular cloning and immunochemical characterization of a novel C. japonica pollen allergen belonging to the aspartic protease family. We focused on the C. japonica pollen allergen spot No. 63 (CPA63, 47.5% IgE binding frequency) on our 2-dimensional IgE immunoblot map. The internal amino acid sequences were determined using time-of-flight mass spectrometry. Full-length cpa63 cDNA was cloned by rapid amplification of cDNA ends (RACE)-PCR. Recombinant CPA63 (r-CPA63) was expressed using the baculovirus-insect cell culture system and its IgE binding capacity was analyzed by enzyme-linked immunosorbent assay (ELISA). The proteolytic activity of r-CPA63 was also assessed using a putative mature enzyme produced upon autolysis. cpa63 cDNA encoded a 472 amino acid polypeptide showing about 40% sequence identity to members of the plant atypical aspartic protease family. ELISA showed that r-CPA63 was recognized by IgE antibodies in the serum of 58% (18/31) of Japanese cedar pollinosis patients. We also demonstrated an aspartic protease-like enzyme activity of the putative mature r-CPA63. We have identified the first plant aspartic protease allergen from Japanese cedar pollen. The availability of the CPA63 sequence and its recombinant allergen production system are useful not only for pharmaceutical applications but also for further examination of the role of protease activity in the pathogenesis of cedar pollinosis. 2010 S. Karger AG, Basel.

  19. Enterovirus type 71 2A protease functions as a transcriptional activator in yeast

    Directory of Open Access Journals (Sweden)

    Lai Meng-Jiun

    2010-08-01

    Full Text Available Abstract Enterovirus type 71 (EV71 2A protease exhibited strong transcriptional activity in yeast cells. The transcriptional activity of 2A protease was independent of its protease activity. EV71 2A protease retained its transcriptional activity after truncation of 40 amino acids at the N-terminus but lost this activity after truncation of 60 amino acids at the N-terminus or deletion of 20 amino acids at the C-terminus. Thus, the acidic domain at the C-terminus of this protein is essential for its transcriptional activity. Indeed, deletion of amino acids from 146 to 149 (EAME in this acidic domain lost the transcriptional activity of EV71 2A protein though still retained its protease activity. EV71 2A protease was detected both in the cytoplasm and nucleus using confocal microscopy analysis. Coxsackie virus B3 2A protease also exhibited transcriptional activity in yeast cells. As expected, an acidic domain in the C-terminus of Coxsackie virus B3 2A protease was also identified. Truncation of this acidic domain resulted in the loss of transcriptional activity. Interestingly, this acidic region of poliovirus 2A protease is critical for viral RNA replication. The transcriptional activity of the EV71 or Coxsackie virus B3 2A protease should play a role in viral replication and/or pathogenesis.

  20. The Inflammatory Actions of Coagulant and Fibrinolytic Proteases in Disease

    Directory of Open Access Journals (Sweden)

    Michael Schuliga

    2015-01-01

    Full Text Available Aside from their role in hemostasis, coagulant and fibrinolytic proteases are important mediators of inflammation in diseases such as asthma, atherosclerosis, rheumatoid arthritis, and cancer. The blood circulating zymogens of these proteases enter damaged tissue as a consequence of vascular leak or rupture to become activated and contribute to extravascular coagulation or fibrinolysis. The coagulants, factor Xa (FXa, factor VIIa (FVIIa, tissue factor, and thrombin, also evoke cell-mediated actions on structural cells (e.g., fibroblasts and smooth muscle cells or inflammatory cells (e.g., macrophages via the proteolytic activation of protease-activated receptors (PARs. Plasmin, the principle enzymatic mediator of fibrinolysis, also forms toll-like receptor-4 (TLR-4 activating fibrin degradation products (FDPs and can release latent-matrix bound growth factors such as transforming growth factor-β (TGF-β. Furthermore, the proteases that convert plasminogen into plasmin (e.g., urokinase plasminogen activator evoke plasmin-independent proinflammatory actions involving coreceptor activation. Selectively targeting the receptor-mediated actions of hemostatic proteases is a strategy that may be used to treat inflammatory disease without the bleeding complications of conventional anticoagulant therapies. The mechanisms by which proteases of the coagulant and fibrinolytic systems contribute to extravascular inflammation in disease will be considered in this review.

  1. Factor VII-activating protease

    DEFF Research Database (Denmark)

    Ramanathan, Ramshanker; Gram, Jørgen B; Sand, Niels Peter R

    2017-01-01

    : Factor VII-activating protease (FSAP) may regulate development of cardiovascular disease (CVD). We evaluated sex differences in FSAP measures and examined the association between FSAP and coronary artery calcification (CAC) in a middle-aged population. Participants were randomly selected citizens...

  2. A New Pepstatin-Insensitive Thermopsin-Like Protease Overproduced in Peptide-Rich Cultures of Sulfolobus solfataricus

    Directory of Open Access Journals (Sweden)

    Marta Gogliettino

    2014-02-01

    Full Text Available In this study, we gain insight into the extracellular proteolytic system of Sulfolobus solfataricus grown on proteinaceous substrates, providing further evidence that acidic proteases were specifically produced in response to peptide-rich media. The main proteolytic component was the previously isolated SsMTP (Sulfolobus solfataricus multi-domain thermopsin-like protease, while the less abundant (named SsMTP-1 one was purified, characterized and identified as the sso1175 gene-product. The protein revealed a multi-domain organization shared with the cognate SsMTP with a catalytic domain followed by several tandemly-repeated motifs. Moreover, both enzymes were found spread across the Crenarchaeota phylum and belonging to the thermopsin family, although segregated into diverse phylogenetic clusters. SsMTP-1 showed a 75-kDa molecular mass and was stable in the temperature range 50–90 °C, with optimal activity at 70 °C and pH 2.0. Serine, metallo and aspartic protease inhibitors did not affect the enzyme activity, designating SsMTP-1 as a new member of the pepstatin-insensitive aspartic protease family. The peptide-bond-specificity of SsMTP-1 in the cleavage of the oxidized insulin B chain was uncommon amongst thermopsins, suggesting that it could play a distinct, but cooperative role in the protein degradation machinery. Interestingly, predictions of the transmembrane protein topology of SsMTP and SsMTP-1 strongly suggest a possible contribution in signal-transduction pathways.

  3. Purification and characterization of protease enzyme from ...

    African Journals Online (AJOL)

    The enzyme was active in pH range 5 to11 and temperature of 30 to 80°C. The optimum pH and the temperature for protease activity were recorded to be pH 8 and 50°C, respectively. The enzyme was stable up to 40°C and pH 9. The protease activity was inhibited by Zn2+, Ni2+ and Sn2+ and increased by Ca2+, Mg2+ ...

  4. Cysteine Protease Zymography: Brief Review.

    Science.gov (United States)

    Wilkesman, Jeff

    2017-01-01

    Cysteine proteases play multiple roles in basically all aspects of physiology and development. In plants, they are involved in growth and development and in accumulation and mobilization of storage proteins. Furthermore, they are engaged in signalling pathways and in the response to biotic and abiotic stresses. In animals and also in humans, they are responsible for senescence and apoptosis, prohormone processing, and ECM remodelling. When analyzed by zymography, the enzyme must be renaturated after SDS-PAGE. SDS must be washed out and substituted by Triton X-100. Gels are then further incubated under ideal conditions for activity detection. Cysteine proteases require an acidic pH (5.0-6.0) and a reducing agent, usually DTT. When screening biological samples, there is generally no previous clue on what peptidase class will be present, neither optimal proteolysis conditions are known. Hence, it is necessary to assess several parameters, such as incubation time, pH, temperature, influence of ions or reducing agents, and finally evaluate the inhibition profile. For detection of cysteine peptidase activity, the use of specific inhibitors, such as E-64, can be used to prevent the development of cysteine peptidase activity bands and positively confirm its presence. Here four different protocols to assess cysteine protease activity from different sources are presented.

  5. Evolutionary dynamics of hepatitis C virus NS3 protease domain during and following treatment with narlaprevir, a potent NS3 protease inhibitor

    NARCIS (Netherlands)

    de Bruijne, J.; Thomas, X. V.; Rebers, S. P.; Weegink, C. J.; Treitel, M. A.; Hughes, E.; Bergmann, J. F.; de Knegt, R. J.; Janssen, H. L. A.; Reesink, H. W.; Molenkamp, R.; Schinkel, J.

    2013-01-01

    Narlaprevir, a hepatitis C virus (HCV) NS3/4A serine protease inhibitor, has demonstrated robust antiviral activity in a placebo-controlled phase 1 study. To study evolutionary dynamics of resistant variants, the NS3 protease sequence was clonally analysed in thirty-two HCV genotype 1-infected

  6. Erwinia carotovora extracellular proteases : characterization and role in soft rot

    OpenAIRE

    Kyöstiö, Sirkka R. M.

    1990-01-01

    Erwinia carotovora subsp. carotovora (Ecc) strain EC14, a Gram-negative bacterium, causes soft rot on several crops, including potato. Maceration of potato tuber tissue is caused by secreted pectolytic enzymes. Other cell-degrading enzymes may also have roles in pathogenesis, including cellulases, phospholipases, and protease(s). The objectives of this research were to (1) characterize Ecc extracellular protease (Prt) and (2) elucidate its role in potato soft rot. A gene enc...

  7. Boosted protease inhibitors and the electrocardiographic measures of QT and PR durations

    DEFF Research Database (Denmark)

    Soliman, Elsayed Z; Lundgren, Jens D; Roediger, Mollie P

    2011-01-01

    There are contradictory reports regarding the effects of protease inhibitors on the ECG measures of QT and PR interval durations. The effect of interrupting use of protease inhibitors on QT and PR progression is also unknown.......There are contradictory reports regarding the effects of protease inhibitors on the ECG measures of QT and PR interval durations. The effect of interrupting use of protease inhibitors on QT and PR progression is also unknown....

  8. A role in immunity for Arabidopsis cysteine protease RD21, the ortholog of the tomato immune protease C14.

    Directory of Open Access Journals (Sweden)

    Takayuki Shindo

    Full Text Available Secreted papain-like Cys proteases are important players in plant immunity. We previously reported that the C14 protease of tomato is targeted by cystatin-like EPIC proteins that are secreted by the oomycete pathogen Phytophthora infestans (Pinf during infection. C14 has been under diversifying selection in wild potato species coevolving with Pinf and reduced C14 levels result in enhanced susceptibility for Pinf. Here, we investigated the role C14-EPIC-like interactions in the natural pathosystem of Arabidopsis with the oomycete pathogen Hyaloperonospora arabidopsidis (Hpa. In contrast to the Pinf-solanaceae pathosystem, the C14 orthologous protease of Arabidopsis, RD21, does not evolve under diversifying selection in Arabidopsis, and rd21 null mutants do not show phenotypes upon compatible and incompatible Hpa interactions, despite the evident lack of a major leaf protease. Hpa isolates express highly conserved EPIC-like proteins during infections, but it is unknown if these HpaEPICs can inhibit RD21 and one of these HpaEPICs even lacks the canonical cystatin motifs. The rd21 mutants are unaffected in compatible and incompatible interactions with Pseudomonas syringae pv. tomato, but are significantly more susceptible for the necrotrophic fungal pathogen Botrytis cinerea, demonstrating that RD21 provides immunity to a necrotrophic pathogen.

  9. Some Investigations on Protease Enzyme Production Kinetics Using Bacillus licheniformis BBRC 100053 and Effects of Inhibitors on Protease Activity

    Directory of Open Access Journals (Sweden)

    Zahra Ghobadi Nejad

    2014-01-01

    Full Text Available Due to great commercial application of protease, it is necessary to study kinetic characterization of this enzyme in order to improve design of enzymatic reactors. In this study, mathematical modeling of protease enzyme production kinetics which is derived from Bacillus licheniformis BBRC 100053 was studied (at 37°C, pH 10 after 73 h in stationary phase, and 150 rpm. The aim of the present paper was to determine the best kinetic model and kinetic parameters for production of protease and calculating Ki (inhibition constant of different inhibitors to find the most effective one. The kinetic parameters Km (Michaelis-Menten constant and Vm (maximum rate were calculated 0.626 mM and 0.0523 mM/min. According to the experimental results, using DFP (diisopropyl fluorophosphate and PMSF (phenylmethanesulfonyl fluoride as inhibitors almost 50% of the enzyme activity could be inhibited when their concentrations were 0.525 and 0.541 mM, respectively. Ki for DFP and PMSF were 0.46 and 0.56 mM, respectively. Kinetic analysis showed that the Lineweaver-Burk model was the best fitting model for protease production kinetics DFP was more effective than PMSF and both of them should be covered in the group of noncompetitive inhibitors.

  10. Inherent dynamics within the Crimean-Congo Hemorrhagic fever virus protease are localized to the same region as substrate interactions

    Energy Technology Data Exchange (ETDEWEB)

    Eisenmesser, Elan Z.; Capodagli, Glenn; Armstrong, Geoffrey S.; Holliday, Michael; Isern, Nancy G.; Zhang, Fengli; Pegan, Scott D.

    2015-05-01

    Crimean-Congo Hemorrhagic fever virus (CCHFV) is one of several lethal viruses that encodes for a viral ovarian tumor domain (vOTU), which serves to cleave and remove multiple proteins involved in cellular signaling such as ubiquitin (Ub) and interferon stimulated gene produce 15 (ISG15). Such manipulation of the host cell machinery serves to downregulate the host response and, therefore, complete characterization of these proteases is important. While several structures of the CCHFV vOTU protease have been solved, both free and bound to Ub and ISG15, few structural differences have been found and little insight has been gained as to the dynamic plasticity of this protease. Therefore, we have used NMR relaxation experiments to probe the dynamics of CCHV vOTU, both alone and in complex with Ub, thereby discovering a highly dynamic protease that exhibits conformational exchange within the same regions found to engage its Ub substrate. These experiments reveal a structural plasticity around the N-terminal regions of CCHV vOTU, which are unique to vOTUs, and provide a rationale for engaging multiple substrates with the same binding site.

  11. Conserved hydrogen bonds and water molecules in MDR HIV-1 protease substrate complexes

    Energy Technology Data Exchange (ETDEWEB)

    Liu, Zhigang [Wayne State Univ., Detroit, MI (United States); Case Western Reserve Univ., Cleveland, OH (United States); Harbor Hospital Baltimore, MD (United States); Wang, Yong [Wayne State Univ., Detroit, MI (United States); Yedidi, Ravikiran S. [Wayne State Univ., Detroit, MI (United States); National Institutes of Health, Bethesda, MD (United States); Dewdney, Tamaria G. [Wayne State Univ., Detroit, MI (United States); Reiter, Samuel J. [Wayne State Univ., Detroit, MI (United States); Brunzelle, Joseph S. [Northwestern Univ. Feinberg School of Medicine, Chicago, IL (United States); Kovari, Iulia A. [Wayne State Univ., Detroit, MI (United States); Kovari, Ladislau C. [Wayne State Univ., Detroit, MI (United States)

    2012-12-19

    Success of highly active antiretroviral therapy (HAART) in anti-HIV therapy is severely compromised by the rapidly developing drug resistance. HIV-1 protease inhibitors, part of HAART, are losing their potency and efficacy in inhibiting the target. Multi-drug resistant (MDR) 769 HIV-1 protease (resistant mutations at residues 10, 36, 46, 54, 62, 63, 71, 82, 84, 90) was selected for the present study to understand the binding to its natural substrates. The nine crystal structures of MDR769 HIV-1 protease substrate hepta-peptide complexes were analyzed in order to reveal the conserved structural elements for the purpose of drug design against MDR HIV-1 protease. Our structural studies demonstrated that highly conserved hydrogen bonds between the protease and substrate peptides, together with the conserved crystallographic water molecules, played a crucial role in the substrate recognition, substrate stabilization and protease stabilization. Additionally, the absence of the key flap-ligand bridging water molecule might imply a different catalytic mechanism of MDR769 HIV-1 protease compared to that of wild type (WT) HIV-1 protease.

  12. Test systems to identify reproductive toxicants.

    Science.gov (United States)

    Riecke, K; Stahlmann, R

    2000-09-01

    Experience with drugs and other xenobiotics indicates that both animal testing and epidemiological studies are necessary to provide adequate data for an estimation of risks that might be associated with exposure to a chemical substance. In this review, the pros and cons of test systems for reproductive toxicity are discussed. Usually, several studies are performed to cover the different phases of the reproductive cycle. In the preclinical development of drugs, the three so-called 'segment testing protocols' have been used for several decades now. More recently, new testing concepts have been accepted internationally which include more flexibility in implementation. Several examples of compounds with the potential for reproductive toxicity are presented in more detail in a discussion of some pitfalls of the tests for fertility (phthalates and fluoroquinolones), teratogenicity (acyclovir and protease inhibitors) and postnatal developmental toxicity (fluoroquinolones). In addition, important aspects of kinetics and metabolism as a prerequisite for a rational interpretation of results from toxicological studies are briefly discussed. In vitro assays are useful for supplementing the routinely used in vivo approaches or for studying an expected or defined effect, but they are not suitable for revealing an unknown effect of a chemical on the complex reproductive process.

  13. Fifteen years of HIV Protease Inhibitors: raising the barrier to resistance.

    Science.gov (United States)

    Wensing, Annemarie M J; van Maarseveen, Noortje M; Nijhuis, Monique

    2010-01-01

    HIV protease plays a crucial role in the viral life cycle and is essential for the generation of mature infectious virus particles. Detailed knowledge of the structure of HIV protease and its substrate has led to the design of specific HIV protease inhibitors. Unfortunately, resistance to all protease inhibitors (PIs) has been observed and the genetic basis of resistance has been well documented over the past 15 years. The arrival of the early PIs was a pivotal moment in the development of antiretroviral therapy. They made possible the dual class triple combination therapy that became known as HAART. However, the clinical utility of the first generation of PIs was limited by low bioavailability and high pill burdens, which ultimately reduced adherence and limited long-term viral inhibition. When therapy failure occurred multiple protease resistance mutations were observed, often resulting in broad class resistance. To combat PI-resistance development, second-generation approaches have been developed. The first advance was to increase the level of existing PIs in the plasma by boosting with ritonavir. The second was to develop novel PIs with high potency against the known PI-resistant HIV protease variants. Both approaches increased the number of protease mutations required for clinical resistance, thereby raising the genetic barrier. This review provides an overview of the history of protease inhibitor therapy, its current status and future perspectives. It forms part of a special issue of Antiviral Research marking the 25th anniversary of antiretroviral drug discovery and development, vol. 85, issue 1, 2010. Copyright 2009 Elsevier B.V. All rights reserved.

  14. Distorted secretory granule composition in mast cells with multiple protease deficiency.

    Science.gov (United States)

    Grujic, Mirjana; Calounova, Gabriela; Eriksson, Inger; Feyerabend, Thorsten; Rodewald, Hans-Reimer; Tchougounova, Elena; Kjellén, Lena; Pejler, Gunnar

    2013-10-01

    Mast cells are characterized by an abundance of secretory granules densely packed with inflammatory mediators such as bioactive amines, cytokines, serglycin proteoglycans with negatively charged glycosaminoglycan side chains of either heparin or chondroitin sulfate type, and large amounts of positively charged proteases. Despite the large biological impact of mast cell granules and their contents on various pathologies, the mechanisms that regulate granule composition are incompletely understood. In this study, we hypothesized that granule composition is dependent on a dynamic electrostatic interrelationship between different granule compounds. As a tool to evaluate this possibility, we generated mice in which mast cells are multideficient in a panel of positively charged proteases: the chymase mouse mast cell protease-4, the tryptase mouse mast cell protease-6, and carboxypeptidase A3. Through a posttranslational effect, mast cells from these mice additionally lack mouse mast cell protease-5 protein. Mast cells from mice deficient in individual proteases showed normal morphology. In contrast, mast cells with combined protease deficiency displayed a profound distortion of granule integrity, as seen both by conventional morphological criteria and by transmission electron microscopy. An assessment of granule content revealed that the distorted granule integrity in multiprotease-deficient mast cells was associated with a profound reduction of highly negatively charged heparin, whereas no reduction in chondroitin sulfate storage was observed. Taken together with previous findings showing that the storage of basic proteases conversely is regulated by anionic proteoglycans, these data suggest that secretory granule composition in mast cells is dependent on a dynamic interrelationship between granule compounds of opposite electrical charge.

  15. Optimization of Protease Production by Psychrotrophic Rheinheimera sp. with Response Surface Methodology

    Directory of Open Access Journals (Sweden)

    Mrayam Mahjoubin-Tehran

    2016-10-01

    Full Text Available Background and Objectives: Psychrotrophic bacteria can produce enzymes at low temperatures; this provides a wide biotechnological potential, and offers numerous economical advantages over the use of mesophilic bacteria. In this study, extracellular protease production by psychrotrophic Rheinheimera sp. (KM459533 was optimized by the response surface methodology.Materials and Methods: The culture medium was tryptic soy broth containing 1% (w v -1 skim milk. First, the effects of variables were independently evaluated on the microbial growth and protease production by one-factor-at-a-time method within the following ranges: incubation time 24-120 h, temperature 15-37°C, pH 6- 11, skim milk concentration 0-2% (w v -1 , and inoculum size 0.5-3% (v v -1 . The combinational effects of the four major variable including temperature, pH, skim milk concentration, and inoculum size were then evaluated within 96 h using response surface methodology through 27 experiments.Results and Conclusion: In one-factor-at-a-time method, high cell density was detected at 72h, 20°C, pH 7, skim milk 2% (w v -1 , and inoculum size 3% (v v -1 , and maximum enzyme production (533.74 Uml-1 was achieved at 96h, 20°C, pH 9, skim milk 1% (w v -1 , and inoculum size 3% (v v -1 . The response surface methodology study showed that pH is the most effective factor in enzyme production, and among the other variables, only temperature had significant interaction with pH and inoculum size. The determination coefficient (R2 =0.9544 and non-significant lack of fit demonstrated correlation between the experimental and predicted values. The optimal conditions predicted by the response surface methodology for protease production were defined as: 22C, pH 8.5, skim milk 1.1% (w v -1 , and inoculum size 4% (v v -1 . Protease production under these conditions reached to 567.19 Uml-1 . The use of response surface methodology in this study increased protease production by eight times as

  16. Oxidative Stress: Promoter of Allergic Sensitization to Protease Allergens?

    NARCIS (Netherlands)

    van Rijt, Leonie S.; Utsch, Lara; Lutter, René; van Ree, Ronald

    2017-01-01

    Allergies arise from aberrant T helper type 2 responses to allergens. Several respiratory allergens possess proteolytic activity, which has been recognized to act as an adjuvant for the development of a Th2 response. Allergen source-derived proteases can activate the protease-activated receptor-2,

  17. Model building of a thermolysin-like protease by mutagenesis

    NARCIS (Netherlands)

    Frigerio, F; Margarit, [No Value; Nogarotto, R; Grandi, G; Vriend, G; Hardy, F; Veltman, OR; Venema, G; Eijsink, VGH

    The present study concerns the use of site-directed mutagenesis experiments to optimize a three-dimensional model of the neutral protease of Bacillus subtilis (NP-sub), An initial model of NP-sub was constructed using the crystal structures of the homologous neutral proteases of Bacillus

  18. Functional dissection of the alphavirus capsid protease: sequence requirements for activity.

    Science.gov (United States)

    Thomas, Saijo; Rai, Jagdish; John, Lijo; Günther, Stephan; Drosten, Christian; Pützer, Brigitte M; Schaefer, Stephan

    2010-11-18

    The alphavirus capsid is multifunctional and plays a key role in the viral life cycle. The nucleocapsid domain is released by the self-cleavage activity of the serine protease domain within the capsid. All alphaviruses analyzed to date show this autocatalytic cleavage. Here we have analyzed the sequence requirements for the cleavage activity of Chikungunya virus capsid protease of genus alphavirus. Amongst alphaviruses, the C-terminal amino acid tryptophan (W261) is conserved and found to be important for the cleavage. Mutating tryptophan to alanine (W261A) completely inactivated the protease. Other amino acids near W261 were not having any effect on the activity of this protease. However, serine protease inhibitor AEBSF did not inhibit the activity. Through error-prone PCR we found that isoleucine 227 is important for the effective activity. The loss of activity was analyzed further by molecular modelling and comparison of WT and mutant structures. It was found that lysine introduced at position 227 is spatially very close to the catalytic triad and may disrupt electrostatic interactions in the catalytic site and thus inactivate the enzyme. We are also examining other sequence requirements for this protease activity. We analyzed various amino acid sequence requirements for the activity of ChikV capsid protease and found that amino acids outside the catalytic triads are important for the activity.

  19. Proteases and caspase-like activity in the yeast Saccharomyces cerevisiae.

    Science.gov (United States)

    Wilkinson, Derek; Ramsdale, Mark

    2011-10-01

    A variety of proteases have been implicated in yeast PCD (programmed cell death) including the metacaspase Mca1 and the separase Esp1, the HtrA-like serine protease Nma111, the cathepsin-like serine carboxypeptideases and a range of vacuolar proteases. Proteasomal activity is also shown to have an important role in determining cell fate, with both pro- and anti-apoptotic roles. Caspase 3-, 6- and 8-like activities are detected upon stimulation of yeast PCD, but not all of this activity is associated with Mca1, implicating other proteases with caspase-like activity in the yeast cell death response. Global proteolytic events that accompany PCD are discussed alongside a consideration of the conservation of the death-related degradome (both at the level of substrate choice and cleavage site). The importance of both gain-of-function changes in the degradome as well as loss-of-function changes are highlighted. Better understanding of both death-related proteases and their substrates may facilitate the design of future antifungal drugs or the manipulation of industrial yeasts for commercial exploitation.

  20. Immunoglobulins in nasal secretions of healthy humans: structural integrity of secretory immunoglobulin A1 (IgA1) and occurrence of neutralizing antibodies to IgA1 proteases of nasal bacteria

    DEFF Research Database (Denmark)

    Kirkeby, L; Rasmussen, TT; Reinholdt, Jesper

    2000-01-01

    Certain bacteria, including overt pathogens as well as commensals, produce immunoglobulin A1 (IgA1) proteases. By cleaving IgA1, including secretory IgA1, in the hinge region, these enzymes may interfere with the barrier functions of mucosal IgA antibodies, as indicated by experiments in vitro....... Previous studies have suggested that cleavage of IgA1 in nasal secretions may be associated with the development and perpetuation of atopic disease. To clarify the potential effect of IgA1 protease-producing bacteria in the nasal cavity, we have analyzed immunoglobulin isotypes in nasal secretions of 11...... healthy humans, with a focus on IgA, and at the same time have characterized and quantified IgA1 protease-producing bacteria in the nasal flora of the subjects. Samples in the form of nasal wash were collected by using a washing liquid that contained lithium as an internal reference. Dilution factors and...

  1. The Mitochondrial m-AAA Protease Prevents Demyelination and Hair Greying.

    Science.gov (United States)

    Wang, Shuaiyu; Jacquemyn, Julie; Murru, Sara; Martinelli, Paola; Barth, Esther; Langer, Thomas; Niessen, Carien M; Rugarli, Elena I

    2016-12-01

    The m-AAA protease preserves proteostasis of the inner mitochondrial membrane. It ensures a functional respiratory chain, by controlling the turnover of respiratory complex subunits and allowing mitochondrial translation, but other functions in mitochondria are conceivable. Mutations in genes encoding subunits of the m-AAA protease have been linked to various neurodegenerative diseases in humans, such as hereditary spastic paraplegia and spinocerebellar ataxia. While essential functions of the m-AAA protease for neuronal survival have been established, its role in adult glial cells remains enigmatic. Here, we show that deletion of the highly expressed subunit AFG3L2 in mature mouse oligodendrocytes provokes early-on mitochondrial fragmentation and swelling, as previously shown in neurons, but causes only late-onset motor defects and myelin abnormalities. In contrast, total ablation of the m-AAA protease, by deleting both Afg3l2 and its paralogue Afg3l1, triggers progressive motor dysfunction and demyelination, owing to rapid oligodendrocyte cell death. Surprisingly, the mice showed premature hair greying, caused by progressive loss of melanoblasts that share a common developmental origin with Schwann cells and are targeted in our experiments. Thus, while both neurons and glial cells are dependant on the m-AAA protease for survival in vivo, complete ablation of the complex is necessary to trigger death of oligodendrocytes, hinting to cell-autonomous thresholds of vulnerability to m-AAA protease deficiency.

  2. Marine toxicity and persistence of surfactants used in the petroleum producing industry

    International Nuclear Information System (INIS)

    Maddin, C.M.

    1991-01-01

    This paper presents a survey of marine toxicity and biodegradability data for surfactants used in the petroleum industry. Surfactants are key chemicals in the formulation of products such as emulsifiers, demulsifiers, dispersants and inhibitors. They are also used directly as foaming and defoaming agents. Because they function at low concentrations, below 1%, and have a tendency to adsorb on solid surfaces, their long-term environmental effects are minimal. In applications such as cementing, surfactants cannot migrate into the environment and, thus, have no bioavailability. The possibility of environmental contamination has caused well operators and regulatory agencies to require fish toxicity and persistence data for products used in servicing wells. This data has been organized for nonionic, anionic, cationic and amphoteric surfactants. Nonionic surfactants are toxic to fish at concentrations below 10 mg/L to over 2500 mg/L depending on their chemical compositions. Anionic surfactants are toxic to fish at concentrations under 1 mg/L to several hundred mg/L depending on their chemical compositions. cationic and amphoteric surfactants are generally toxic to fish at concentrations below 50 mg/L. Overall efforts are aimed at low toxicity and high biodegradability with the least compromise in product efficiency. This requires the continual testing and environmental evaluation of surfactants summarized herein

  3. Electron cryomicroscopy structure of a membrane-anchored mitochondrial AAA protease.

    Science.gov (United States)

    Lee, Sukyeong; Augustin, Steffen; Tatsuta, Takashi; Gerdes, Florian; Langer, Thomas; Tsai, Francis T F

    2011-02-11

    FtsH-related AAA proteases are conserved membrane-anchored, ATP-dependent molecular machines, which mediate the processing and turnover of soluble and membrane-embedded proteins in eubacteria, mitochondria, and chloroplasts. Homo- and hetero-oligomeric proteolytic complexes exist, which are composed of homologous subunits harboring an ATPase domain of the AAA family and an H41 metallopeptidase domain. Mutations in subunits of mitochondrial m-AAA proteases have been associated with different neurodegenerative disorders in human, raising questions on the functional differences between homo- and hetero-oligomeric AAA proteases. Here, we have analyzed the hetero-oligomeric yeast m-AAA protease composed of homologous Yta10 and Yta12 subunits. We combined genetic and structural approaches to define the molecular determinants for oligomer assembly and to assess functional similarities between Yta10 and Yta12. We demonstrate that replacement of only two amino acid residues within the metallopeptidase domain of Yta12 allows its assembly into homo-oligomeric complexes. To provide a molecular explanation, we determined the 12 Å resolution structure of the intact yeast m-AAA protease with its transmembrane domains by electron cryomicroscopy (cryo-EM) and atomic structure fitting. The full-length m-AAA protease has a bipartite structure and is a hexamer in solution. We found that residues in Yta12, which facilitate homo-oligomerization when mutated, are located at the interface between neighboring protomers in the hexamer ring. Notably, the transmembrane and intermembrane space domains are separated from the main body, creating a passage on the matrix side, which is wide enough to accommodate unfolded but not folded polypeptides. These results suggest a mechanism regarding how proteins are recognized and degraded by m-AAA proteases.

  4. Characterisation of a detergent-stable alkaline protease from a novel thermophilic strain Paenibacillus tezpurensis sp. nov. AS-S24-II.

    Science.gov (United States)

    Rai, Sudhir K; Roy, Jetendra K; Mukherjee, Ashis K

    2010-02-01

    An alkaline-protease-producing bacterial strain (AS-S24-II) isolated from a soil sample in Assam is a Gram-stain-positive, catalase-positive, endospore-forming rod and grows at temperatures ranging from 30 degrees C to 60 degrees C and salinity ranging from 0% to 7% (w/v) NaCl. Phenotypic characterisation, chemotaxonomic properties, presence of Paenibacillus-specific signature sequences, and ribotyping data suggested that the strain AS-S24-II represents a novel species of the genus Paenibacillus, for which the name Paenibacillus tezpurensis sp. nov. (MTCC 8959) is proposed. Phylogenetic analysis revealed that P. lentimorbus strain DNG-14 and P. lentimorbus strain DNG-16 represent the closest phylogenetic neighbour of this novel strain. Alkaline protease production (598 x 10(3) U l(-1)) by P. tezpurensis sp. nov. in SmF was optimised by response surface method. A laundry-detergent-stable, Ca(2+)-independent, 43-kDa molecular weight alkaline serine protease from this strain was purified with a 1.7-fold increase in specific activity. The purified protease displayed optimum activity at pH 9.5 and 45-50 degrees C temperature range and exhibited a significant stability and compatibility with surfactants and most of the tested commercial laundry detergents at room temperature. Further, the protease improved the wash performance of detergents, thus demonstrating its feasibility for inclusion in laundry detergent formulations.

  5. Studies on detection and analysis of proteases in leaf extract of medicinally important plants.

    Science.gov (United States)

    Chinnadurai, Gandhi Shree; Krishnan, Sivakumar; Perumal, Palani

    2018-02-01

    The whole plant or the extracts obtained from them have long been used as medicine to treat various human diseases and disorders. Notably, those plants endowed with protease activity have been traditionally used as the agents for treating tumors, digestion disorders, swelling, blood coagulation, fibrinolysis and also for immune-modulation. Proteases occupy a pivotal position in enzyme based industries. Plant proteases have been increasingly exploited for pharmaceutical, food, leather and textile processing industries. Earlier investigations have focused on the occurrence of proteases in medicinally unimportant plants. Therefore it has been aimed to study the occurrence of proteolytic enzymes from medicinally important plants establish any correlation exists between protease activity and medicinal use of individual plants. Crude extract were obtained from the leaves of 80 different medicinal plants. Tris-HCl buffer was used as the extraction buffer and the supernatants obtained were used for determination of total protein and protease activity using spectrophotometric methods. Qualitative screening for the presence of protease was carried out with agar diffusion method by incorporating the substrate. SDS-PAGE was used to analyse the isoforms of protease and for determination of relative molecular mass. Relatively higher protease activities were observed in the extracts of leaves of Pongamia pinnata (Fabaceae), Wrightia tinctoria (Apocyanaceae) Acalypha indica (Euphorbiaceae), Adhatoda vasica (Acanthaceae) and Curcuma longa (Zingiberaceae). No correlation was found between the total protein content and protease activity in individual plant species. SDS-PAGE analysis indicated the presence of multiple forms of protease of higher molecular weight range in several plant species. We found a strong correlation between the protease activity and medicinal application of the plant CONCLUSION: The present study has unequivocally revealed that the leaves of medicinal plants

  6. Protease activation involved in resistance of human cells to x-ray cell killing

    International Nuclear Information System (INIS)

    Zhang, Hong-Chang; Takahashi, Shuji; Karata, Kiyonobu; Kita, Kazuko; Suzuki, Nobuo

    2003-01-01

    Little is known of proteases that play roles in the early steps of X-ray irradiation response. In the present study, we first searched for proteases whose activity is induced in human RSa-R cells after X-ray irradiation. The activity was identified as fibrinolytic, using 125 I-labeled fibrin as a substrate. Protease samples were prepared by lysation of cells with a buffer containing MEGA-8. RSa-R cells showed an increased level of protease activity 10 min after X-ray (up to 3 Gy) irradiation. We next examined whether this protease inducibility is causally related with the X-ray susceptibility of cells. Leupeptin, a serine-cysteine protease inhibitor, inhibited the protease activity in samples obtained from X-ray-irradiated RSa-R cells. Treatment of RSa-R cells with the inhibitor before and after X-ray irradiation resulted in an increased susceptibility of the cells to X-ray cell killing. However, the treatment of cells with other inhibitors tested did not modulate the X-ray susceptibility. These results suggest that leupeptin-sensitive proteases are involved in the resistance of human cells to X-ray cell killing. (author)

  7. Proteases and antiproteases in chronic neutrophilic lung disease - relevance to drug discovery.

    LENUS (Irish Health Repository)

    Greene, Catherine M

    2009-10-01

    Chronic inflammatory lung diseases such as cystic fibrosis and emphysema are characterized by higher-than-normal levels of pulmonary proteases. While these enzymes play important roles such as bacterial killing, their dysregulated expression or activity can adversely impact on the inflammatory process. The existence of efficient endogenous control mechanisms that can dampen or halt this overexuberant protease activity in vivo is essential for the effective resolution of inflammatory lung disease. The function of pulmonary antiproteases is to fulfil this role. Interestingly, in addition to their antiprotease activity, protease inhibitors in the lung also often possess other intrinsic properties that contribute to microbial killing or termination of the inflammatory process. This review will outline important features of chronic inflammation that are regulated by pulmonary proteases and will describe the various mechanisms by which antiproteases attempt to counterbalance exaggerated protease-mediated inflammatory events. These proteases, antiproteases and their modifiers represent interesting targets for therapeutic intervention.

  8. Immobilized protease on the magnetic nanoparticles used for the hydrolysis of rapeseed meals

    International Nuclear Information System (INIS)

    Jin Xin; Li Jufang; Huang Pingying; Dong Xuyan; Guo Lulu; Yang Liang; Cao Yuancheng; Wei Fang; Zhao Yuandi

    2010-01-01

    (3-aminopropl) triethoxysilaneand modified magnetic nanoparticles with the average diameter of 25.4 nm were synthesized in water-phase co-precipitation method. And then these nanoparticles were covalently coupled with alkaline protease as enzyme carrier by using 1,4-phenylene diisothlocyanate as coupling agent. Experiments showed that the immobilized protease can keep the catalytic bioactivity, which can reach to 47.8% when casein was served as substrate. Results showed that the catalytic activity of immobilized protease on these magnetic nanoparticles could retain 98.63±2.37% after 60 days. And it is more stable than the free protease during the shelf-life test. The enzyme reaction conditions such as optimum reaction temperature and pH are the same as free protease. Furthermore, mix-and-separate experiments showed that the immobilized protease could be recycled through the magnetic nanoparticles after the biocatalysis process. When the rapeseed meals were used as substrate, the degree of hydrolysis of immobilized alkaline protease achieved 9.86%, while it was 10.41% for the free protease. The macromolecular proteins of rapeseed meals were hydrolyzed by immobilized protease into small molecules such as polypeptides or amino acids. Thus, a novel efficient and economic way for the recycling of enzymes in the application of continuous production of active peptides was provided based on these magnetic nanoparticles.

  9. Immobilized protease on the magnetic nanoparticles used for the hydrolysis of rapeseed meals

    Energy Technology Data Exchange (ETDEWEB)

    Jin Xin [Wuhan National Laboratory for Optoelectronics-Hubei Bioinformatics and Molecular Imaging Key Laboratory, College of Life Science and Technology, Huazhong University of Science and Technology, Wuhan, HuBei 430074 (China); Li Jufang [Key Lab of Oil Crops Biology, Ministry of Agriculture, Institute of Oil Crops Research, Chinese Academy of Agricultural Sciences, Wuhan, Hubei 430062 (China); Huang Pingying [Wuhan National Laboratory for Optoelectronics-Hubei Bioinformatics and Molecular Imaging Key Laboratory, College of Life Science and Technology, Huazhong University of Science and Technology, Wuhan, HuBei 430074 (China); Dong Xuyan [Wuhan National Laboratory for Optoelectronics-Hubei Bioinformatics and Molecular Imaging Key Laboratory, College of Life Science and Technology, Huazhong University of Science and Technology, Wuhan, HuBei 430074 (China); Key Lab of Oil Crops Biology, Ministry of Agriculture, Institute of Oil Crops Research, Chinese Academy of Agricultural Sciences, Wuhan, Hubei 430062 (China); Guo Lulu [Key Lab of Oil Crops Biology, Ministry of Agriculture, Institute of Oil Crops Research, Chinese Academy of Agricultural Sciences, Wuhan, Hubei 430062 (China); Yang Liang; Cao Yuancheng [Wuhan National Laboratory for Optoelectronics-Hubei Bioinformatics and Molecular Imaging Key Laboratory, College of Life Science and Technology, Huazhong University of Science and Technology, Wuhan, HuBei 430074 (China); Wei Fang [Key Lab of Oil Crops Biology, Ministry of Agriculture, Institute of Oil Crops Research, Chinese Academy of Agricultural Sciences, Wuhan, Hubei 430062 (China); Zhao Yuandi, E-mail: zydi@mail.hust.edu.c [Wuhan National Laboratory for Optoelectronics-Hubei Bioinformatics and Molecular Imaging Key Laboratory, College of Life Science and Technology, Huazhong University of Science and Technology, Wuhan, HuBei 430074 (China)

    2010-07-15

    (3-aminopropl) triethoxysilaneand modified magnetic nanoparticles with the average diameter of 25.4 nm were synthesized in water-phase co-precipitation method. And then these nanoparticles were covalently coupled with alkaline protease as enzyme carrier by using 1,4-phenylene diisothlocyanate as coupling agent. Experiments showed that the immobilized protease can keep the catalytic bioactivity, which can reach to 47.8% when casein was served as substrate. Results showed that the catalytic activity of immobilized protease on these magnetic nanoparticles could retain 98.63+-2.37% after 60 days. And it is more stable than the free protease during the shelf-life test. The enzyme reaction conditions such as optimum reaction temperature and pH are the same as free protease. Furthermore, mix-and-separate experiments showed that the immobilized protease could be recycled through the magnetic nanoparticles after the biocatalysis process. When the rapeseed meals were used as substrate, the degree of hydrolysis of immobilized alkaline protease achieved 9.86%, while it was 10.41% for the free protease. The macromolecular proteins of rapeseed meals were hydrolyzed by immobilized protease into small molecules such as polypeptides or amino acids. Thus, a novel efficient and economic way for the recycling of enzymes in the application of continuous production of active peptides was provided based on these magnetic nanoparticles.

  10. Preparation and toxicity evaluation of a novel nattokinase-tauroursodeoxycholate complex

    Directory of Open Access Journals (Sweden)

    Rui Feng

    2018-03-01

    Full Text Available Nattokinase (NK, which has been identified as a potent fibrinolytic protease, has remarkable potential in treatment of thrombolysis, and even has the ability to ameliorate chronic vein thrombosis. To reduce the hemorrhagic risk from an intravenous injection of NK, nattokinase-tauroursodeoxycholate (NK-TUDCA complex was prepared at different pH values and with different ratios of NK and TUDCA. When assessing survival time, survival state, tail injury, and the body weight of mice, it was found that the NK-TUDCA complex (NK: 10 kIU/ml; TUDCA: 10 mg/ml; pH 5.0 had a lower toxicity when administered at an NK dosage of 130 kIU/kg in the acute toxicity test and 13 kIU/kg in the repeated low-dose challenge. From the results of the in vitro thrombolytic test and characterization of NK-TUDCA, we speculated that the delayed release of NK-TUDCA might be the main cause of toxicity reduction by the complex. This study described the preparation of an NK complex with low toxicity following intravenous administration, which could be utilized for further clinical study of NK. Keywords: Nattokinase, Tauroursodeoxycholate, Complex, Toxicity test, In vitro thrombolytic test

  11. Quorum sensing signals are produced by Aeromonas salmonicida and quorum sensing inhibitors can reduce production of a potential virulence factor

    DEFF Research Database (Denmark)

    Rasch, Maria; Kastbjerg, Vicky Gaedt; Bruhn, Jesper Bartholin

    2007-01-01

    Many pathogens control production of virulence factors by self-produced signals in a process called quorum sensing (QS). We demonstrate that acyl homoserine lactone (AHL) signals, which enable bacteria to express certain phenotypes in relation to cell density, are produced by a wide spectrum...... of Aeromonas salmonicida strains. All 31 typical strains were AHL producers as were 21 of 26 atypical strains, but on a strain population basis, production of virulence factors such as protease, lipase, A-layer or pigment did not correlate with the production and accumulation of AHLs in the growth medium...... of Aeromonas salmonicida. The most efficient compound N-(heptylsulfanylacetyl)-L-homoserine lactone (HepS-AHL), reduced protease production by a factor of 10. Five extracellular proteases were detected on gelatin-containing sodium dodecyl sulphate polyacrylamide gel electrophoresis (SDS-PAGE) gels and 3...

  12. Effect of Gastrointestinal Protease Digestion on Bioactivity of Marine Peptides

    DEFF Research Database (Denmark)

    Jensen, Ida-Johanne; Andersen, Lisa Lystbæk; Ossum, Carlo Gunnar

    2014-01-01

    executed without concerning subsequent digestion after intake and the aim of this work was hence to investigate how the in vitro antioxidative, antihypertensive and caspase activating activities of peptides are affected by digestion with gastrointestinal (GI) proteases. Five different fish protein...... hydrolysates were chosen to study the effect of in vitro digestion on bioactivity. The protein concentration decreased in all samples during digestion and the molecular weight distribution of the peptides shifted towards lower values. Thus, in vitro digestion with GI proteases resulted in a further degradation...... of the peptides obtained by hydrolysis. The antihypertensive effect increased in all samples after digestion with GI proteases whereas the antioxidative capacity decreased. The effect on the caspase activity depended on the proteases used in the preparation of hydrolysates. In conclusion, the caspase activity...

  13. Identification of novel small molecule inhibitors against NS2B/NS3 serine protease from Zika virus

    Energy Technology Data Exchange (ETDEWEB)

    Lee, Hyun; Ren, Jinhong; Nocadello, Salvatore; Rice, Amy J.; Ojeda, Isabel; Light, Samuel; Minasov, George; Vargas, Jason; Nagarathnam, Dhanapalan; Anderson, Wayne F.; Johnson, Michael E. (UIC); (NWU); (Novalex); (DNSK)

    2016-12-26

    Zika flavivirus infection during pregnancy appears to produce higher risk of microcephaly, and also causes multiple neurological problems such as Guillain–Barré syndrome. The Zika virus is now widespread in Central and South America, and is anticipated to become an increasing risk in the southern United States. With continuing global travel and the spread of the mosquito vector, the exposure is expected to accelerate, but there are no currently approved treatments against the Zika virus. The Zika NS2B/NS3 protease is an attractive drug target due to its essential role in viral replication. Our studies have identified several compounds with inhibitory activity (IC50) and binding affinity (KD) of ~5–10 μM against the Zika NS2B-NS3 protease from testing 71 HCV NS3/NS4A inhibitors that were initially discovered by high-throughput screening of 40,967 compounds. Competition surface plasmon resonance studies and mechanism of inhibition analyses by enzyme kinetics subsequently determined the best compound to be a competitive inhibitor with a Ki value of 9.5 μM. We also determined the X-ray structure of the Zika NS2B-NS3 protease in a “pre-open conformation”, a conformation never observed before for any flavivirus proteases. This provides the foundation for new structure-based inhibitor design.

  14. House dust mite major allergens Der p 1 and Der p 5 activate human airway-derived epithelial cells by protease-dependent and protease-independent mechanisms

    Directory of Open Access Journals (Sweden)

    Timmerman J André B

    2006-03-01

    Full Text Available Abstract House dust mite allergens (HDM cause bronchoconstriction in asthma patients and induce an inflammatory response in the lungs due to the release of cytokines, chemokines and additional mediators. The mechanism how HDM components achieve this is largely unknown. The objective of this study was to assess whether HDM components of Dermatophagoides pteronissinus with protease activity (Der p 1 and unknown enzymatic activity (Der p 2, Der p 5 induce biological responses in a human airway-derived epithelial cell line (A549, and if so, to elucidate the underlying mechanism(s of action. A549 cells were incubated with HDM extract, Der p 1, recombinant Der p 2 and recombinant Der p 5. Cell desquamation was assessed by microscopy. The proinflammatory cytokines, IL-6 and IL-8, were measured by ELISA. Intracellular Ca2+ levels were assessed in A549 cells and in mouse fibroblasts expressing the human protease activated receptor (PAR1, PAR2 or PAR4. HDM extract, Der p 1 and Der p 5 dose-dependently increased the production of IL-6 and IL-8. Added simultaneously, Der p 1 and Der p 5 further increased the production of IL-6 and IL-8. The action of Der p 1 was blocked by cysteine-protease inhibitors, while that of Der p 5 couldn't be blocked by either serine- or cysteine protease inhibitors. Der p 5 only induced cell shrinking, whereas HDM extract and Der p1 also induced cell desquamation. Der p 2 had no effect on A549 cells. Der p 1's protease activity causes desquamation and induced the release of IL6 and IL-8 by a mechanism independent of Ca2+ mobilisation and PAR activation. Der p 5 exerts a protease-independent activation of A549 that involves Ca2+ mobilisation and also leads to the production of these cytokines. Together, our data indicate that allergens present in HDM extracts can trigger protease-dependent and protease-independent signalling pathways in A549 cells.

  15. Changes in protein metabolism after irradiation. Pt. 1. Protease activity, protease pattern, protein and free amino acids in cytoplasm and cell organelles of the rat spleen after 600 R whole body x irradiation

    Energy Technology Data Exchange (ETDEWEB)

    Valet, G [Max-Planck-Institut fuer Biochemie, Muenchen (F.R. Germany). Abt. fuer Experimentelle Medizin

    1975-12-01

    The protease activity of cytoplasm and cell organelles of the rat spleen against spleen protein and hemoglobin as a substrate increases during a initial reaction phase of the organism on the first day after 600 R whole body X-irradiation. The alkaline protease in the cytoplasm and the acid protease in the cell organelles increase, whereas the protease activity against externally added hemoglobin as substrate decreases below the initial values. The protein, the protease activity and the free amino acids of the cytoplasm and the cell organelles decrease during the disease phase on day 3 and 4 after irradiation. The protein loss of the spleen is therefore not explained by an increased protease activity. Acid proteases appear in the cytoplasm which derive probably from the cell organelles. The protease activity and the free amino acids are increased in the cytoplasm and the cell organelles during the regeneration phase of the organism between day 15 and 18 after irradiation.

  16. Partial characterisation of digestive proteases of the Mayan cichlid Cichlasoma urophthalmus.

    Science.gov (United States)

    Cuenca-Soria, C A; Álvarez-González, C A; Ortiz-Galindo, J L; Nolasco-Soria, H; Tovar-Ramírez, D; Guerrero-Zárate, R; Castillo-Domínguez, A; Perera-García, M A; Hernández-Gómez, R; Gisbert, E

    2014-06-01

    The characterisation of digestive proteases in native freshwater fish such as the Mayan cichlid Cichlasoma urophthalmus provides scientific elements that may be used to design balanced feed that matches with the digestive capacity of the fish. The purpose of this study was to characterise the digestive proteases, including the effect of the pH and the temperature on enzyme activity and stability, as well as the effect of inhibitors using multienzymatic extracts of the stomach and intestine of C. urophthalmus juveniles. Results showed that the optimum activities of the acid and alkaline proteases occurred at pH values of 3 and 9, respectively, whereas their optimum temperatures were 55 and 65 °C, respectively. The acid proteases were most stable at pH values of 2–3 and at temperatures of 35–45 °C, whereas the alkaline proteases were most stable at pH values of 6–9 and at 25–55 °C. The inhibition assays recorded a residual activity of 4% with pepstatin A for the acid proteases. The inhibition of the alkaline proteases was greater than 80% with TPCK, TLCK, EDTA and ovalbumin, and of 60 and 43.8% with PMSF and SBT1, respectively. The results obtained in this study make it possible to state that C. urophthalmus has a sufficiently complete digestive enzyme machinery to degrade food items characteristic of an omnivorous fish species, although specimens showed a tendency to carnivory.

  17. Effectiveness of sal deoiled seed cake as an inducer for protease production from Aeromonas sp. S1 for its application in kitchen wastewater treatment.

    Science.gov (United States)

    Saini, Vandana; Bhattacharya, Amrik; Gupta, Anshu

    2013-08-01

    The present study is an attempt to demonstrate the feasibility of sal (Shorea robusta) deoiled cake--a forest-based industrial by-product--as a cheaper media supplement for augmented protease production from Aeromonas sp. S1 and application of protease in the treatment of kitchen wastewater. Under optimized conditions, protease production could successfully be enhanced to 5.13-fold (527.5 U mL(-1)) on using sal deoiled seed cake extract (SDOCE), as medium additive, compared to an initial production of 102.7 U mL(-1) in its absence. The culture parameters for optimum production of protease were determined to be incubation time (48 h), pH (7.0), SDOCE concentration (3 % (v/v)), inoculum size (0.3-0.6 % (v/v)), and agitation rate (100 rpm). The enzyme was found to have an optimum pH and temperature of 8.0 and 60 °C, respectively. The protease preparation was tested for treatment of organic-laden kitchen wastewater. After 96 h of wastewater treatment under static condition, enzyme preparation was able to reduce 74 % biological oxygen demand, 37 % total suspended solids, and 41 % oil and grease. The higher and improved level of protease obtained using sal deoiled seed cake-based media hence offers a new approach for value addition to this underutilized biomass through industrial enzyme production. The protease produced using this biomass could also be used as pretreatment tool for remediation of organic-rich food wastewater.

  18. Alkaline protease production on date waste by an alkalophilic ...

    African Journals Online (AJOL)

    STORAGESEVER

    2008-05-16

    May 16, 2008 ... After 72 h incubation in a shaker incubator ... different incubation times (0 to 72 h) were investigated. Alkaline .... of alkaline protease (75%) and 24% of total protein is precipitated. ... starches and wheat flour as carbon source on protease production .... JP 395, method of making and detergent composition.

  19. Antimony Toxicity

    Directory of Open Access Journals (Sweden)

    Shyam Sundar

    2010-12-01

    Full Text Available Antimony toxicity occurs either due to occupational exposure or during therapy. Occupational exposure may cause respiratory irritation, pneumoconiosis, antimony spots on the skin and gastrointestinal symptoms. In addition antimony trioxide is possibly carcinogenic to humans. Improvements in working conditions have remarkably decreased the incidence of antimony toxicity in the workplace. As a therapeutic, antimony has been mostly used for the treatment of leishmaniasis and schistosomiasis. The major toxic side-effects of antimonials as a result of therapy are cardiotoxicity (~9% of patients and pancreatitis, which is seen commonly in HIV and visceral leishmaniasis co-infections. Quality control of each batch of drugs produced and regular monitoring for toxicity is required when antimonials are used therapeutically.

  20. Protease-Mediated Suppression of DRG Neuron Excitability by Commensal Bacteria.

    Science.gov (United States)

    Sessenwein, Jessica L; Baker, Corey C; Pradhananga, Sabindra; Maitland, Megan E; Petrof, Elaine O; Allen-Vercoe, Emma; Noordhof, Curtis; Reed, David E; Vanner, Stephen J; Lomax, Alan E

    2017-11-29

    Peripheral pain signaling reflects a balance of pronociceptive and antinociceptive influences; the contribution by the gastrointestinal microbiota to this balance has received little attention. Disorders, such as inflammatory bowel disease and irritable bowel syndrome, are associated with exaggerated visceral nociceptive actions that may involve altered microbial signaling, particularly given the evidence for bacterial dysbiosis. Thus, we tested whether a community of commensal gastrointestinal bacteria derived from a healthy human donor (microbial ecosystem therapeutics; MET-1) can affect the excitability of male mouse DRG neurons. MET-1 reduced the excitability of DRG neurons by significantly increasing rheobase, decreasing responses to capsaicin (2 μm) and reducing action potential discharge from colonic afferent nerves. The increase in rheobase was accompanied by an increase in the amplitude of voltage-gated K + currents. A mixture of bacterial protease inhibitors abrogated the effect of MET-1 effects on DRG neuron rheobase. A serine protease inhibitor but not inhibitors of cysteine proteases, acid proteases, metalloproteases, or aminopeptidases abolished the effects of MET-1. The serine protease cathepsin G recapitulated the effects of MET-1 on DRG neurons. Inhibition of protease-activated receptor-4 (PAR-4), but not PAR-2, blocked the effects of MET-1. Furthermore, Faecalibacterium prausnitzii recapitulated the effects of MET-1 on excitability of DRG neurons. We conclude that serine proteases derived from commensal bacteria can directly impact the excitability of DRG neurons, through PAR-4 activation. The ability of microbiota-neuronal interactions to modulate afferent signaling suggests that therapies that induce or correct microbial dysbiosis may impact visceral pain. SIGNIFICANCE STATEMENT Commercially available probiotics have the potential to modify visceral pain. Here we show that secretory products from gastrointestinal microbiota derived from a human

  1. Identification and characterization of fusolisin, the Fusobacterium nucleatum autotransporter serine protease.

    Directory of Open Access Journals (Sweden)

    Lior Doron

    Full Text Available Fusobacterium nucleatum is an oral anaerobe associated with periodontal disease, adverse pregnancy outcomes and colorectal carcinoma. A serine endopeptidase of 61-65 kDa capable of damaging host tissue and of inactivating immune effectors was detected previously in F. nucleatum. Here we describe the identification of this serine protease, named fusolisin, in three oral F. nucleatum sub-species. Gel zymogram revealed fusobacterial proteolytic activity with molecular masses ranging from 55-101 kDa. All of the detected proteases were inhibited by the serine protease inhibitor PMSF. analysis revealed that all of the detected proteases are encoded by genes encoding an open reading frame (ORF with a calculated mass of approximately 115 kDa. Bioinformatics analysis of the identified ORFs demonstrated that they consist of three domains characteristic of autotransporters of the type Va secretion system. Our results suggest that the F. nucleatum fusolisins are derived from a precursor of approximately 115 kDa. After crossing the cytoplasmic membrane and cleavage of the leader sequence, the C-terminal autotransporter domain of the remaining 96-113 kDa protein is embedded in the outer membrane and delivers the N-terminal S8 serine protease passenger domain to the outer cell surface. In most strains the N-terminal catalytic 55-65 kDa domain self cleaves and liberates itself from the autotransporter domain after its transfer across the outer cell membrane. In F. nucleatum ATCC 25586 this autocatalytic activity is less efficient resulting in a full length membrane-anchored serine protease. The mature serine protease was found to cleave after Thr, Gly, Ala and Leu residues at the P1 position. Growth of F. nucleatum in complex medium was inhibited when serine protease inhibitors were used. Additional experiments are needed to determine whether fusolisin might be used as a target for controlling fusobacterial infections.

  2. Mixing compatibilities of Aspergillus and American cockroach allergens with other high-protease fungal and insect extracts.

    Science.gov (United States)

    Grier, Thomas J; Hall, Dawn M; Duncan, Elizabeth A; Coyne, Terrance C

    2015-03-01

    Recent studies have shown that Alternaria and German cockroach allergens can be degraded by endogenous proteases from other insect and fungal extracts when combined for immunotherapy, but data supporting the compatibilities of other high-protease products in comparable mixtures have not been reported. To assess the stabilities and compatibilities of Aspergillus fumigatus and American cockroach allergens after mixing with protease-rich extracts from other insects or fungi at concentrations similar to those recommended for subcutaneous immunotherapy. Mixtures containing A fumigatus, American cockroach, and other fungal or insect extracts were evaluated by quantitative (enzyme-linked immunosorbent assays) and qualitative (immunoblotting) methods. Test mixtures and control samples at 10% to 50% glycerin concentrations were analyzed after storage for up to 12 months at 2°C to 8°C. Moderate to high recoveries of Aspergillus extract activities were retained in control samples and extract mixtures under all conditions examined. American cockroach extract controls were partly degraded at 10% to 25% glycerin, and cockroach allergen compatibilities were decreased significantly in mixtures with several fungal extracts at 25% glycerin. Mixing with other insects did not compromise the stability of American cockroach allergens at 25% to 50% glycerin. Aspergillus extracts exhibited favorable stabilities after mixing with other high-protease products. American cockroach extract potencies were unstable in less than 50% glycerin, even in the absence of other protease-containing allergens, and were destabilized in mixtures with several fungal extracts. Addition of fungal and insect extracts to separate treatment vials or preparation of fungal-insect mixtures at elevated glycerin concentrations might be necessary to produce compatible patient formulations for allergen immunotherapy injections. Copyright © 2015 American College of Allergy, Asthma & Immunology. Published by Elsevier

  3. Uncoupling of Protease trans-Cleavage and Helicase Activities in Pestivirus NS3.

    Science.gov (United States)

    Zheng, Fengwei; Lu, Guoliang; Li, Ling; Gong, Peng; Pan, Zishu

    2017-11-01

    The nonstructural protein NS3 from the Flaviviridae family is a multifunctional protein that contains an N-terminal protease and a C-terminal helicase, playing essential roles in viral polyprotein processing and genome replication. Here we report a full-length crystal structure of the classical swine fever virus (CSFV) NS3 in complex with its NS4A protease cofactor segment (PCS) at a 2.35-Å resolution. The structure reveals a previously unidentified ∼2,200-Å 2 intramolecular protease-helicase interface comprising three clusters of interactions, representing a "closed" global conformation related to the NS3-NS4A cis -cleavage event. Although this conformation is incompatible with protease trans -cleavage, it appears to be functionally important and beneficial to the helicase activity, as the mutations designed to perturb this conformation impaired both the helicase activities in vitro and virus production in vivo Our work reveals important features of protease-helicase coordination in pestivirus NS3 and provides a key basis for how different conformational states may explicitly contribute to certain functions of this natural protease-helicase fusion protein. IMPORTANCE Many RNA viruses encode helicases to aid their RNA genome replication and transcription by unwinding structured RNA. Being naturally fused to a protease participating in viral polyprotein processing, the NS3 helicases encoded by the Flaviviridae family viruses are unique. Therefore, how these two enzyme modules coordinate in a single polypeptide is of particular interest. Here we report a previously unidentified conformation of pestivirus NS3 in complex with its NS4A protease cofactor segment (PCS). This conformational state is related to the protease cis -cleavage event and is optimal for the function of helicase. This work provides an important basis to understand how different enzymatic activities of NS3 may be achieved by the coordination between the protease and helicase through different

  4. Biochemical characterization of a halophilic, alkalithermophilic protease from Alkalibacillus sp. NM-Da2.

    Science.gov (United States)

    Abdel-Hamed, Asmaa R; Abo-Elmatty, Dina M; Wiegel, Juergen; Mesbah, Noha M

    2016-11-01

    An extracellular, halophilic, alkalithermophilic serine protease from the halo-alkaliphilic Alkalibacillus sp. NM-Da2 was purified to homogeneity by ethanol precipitation and anion-exchange chromatography. The purified protease was a monomeric enzyme with an approximate molecular mass of 35 kDa and exhibited maximal activity at 2.7 M NaCl, pH 55 °C 9 and 56 °C. The protease showed great temperature stability, retaining greater than 80 % of initial activity after 2 h incubation at 55 °C. The protease was also extremely pH tolerant, retaining 80 % of initial activity at pH 55 °C 10.5 after 30 min incubation. Protease hydrolyzed complex substrates, displaying activity on yeast extract, tryptone, casein, gelatin and peptone. Protease activity was inhibited at casein concentrations greater than 1.2 mg/mL. The enzyme was stable and active in 40 % (v/v) solutions of isopropanol, ethanol and benzene and was stable in the presence of the polysorbate surfactant Tween 80. Activity was stimulated with the oxidizing agent hydrogen peroxide. Inhibition with phenyl methylsulfonylfluoride indicates it is a serine protease. Synthetic saline wastewater treated with the protease showed 50 % protein removal after 5 h. Being halophilic, alkaliphilic and thermophilic, in addition to being resistant to organic solvents, this protease has potential for various applications in biotechnological and pharmaceutical industries.

  5. PROSPER: an integrated feature-based tool for predicting protease substrate cleavage sites.

    Directory of Open Access Journals (Sweden)

    Jiangning Song

    Full Text Available The ability to catalytically cleave protein substrates after synthesis is fundamental for all forms of life. Accordingly, site-specific proteolysis is one of the most important post-translational modifications. The key to understanding the physiological role of a protease is to identify its natural substrate(s. Knowledge of the substrate specificity of a protease can dramatically improve our ability to predict its target protein substrates, but this information must be utilized in an effective manner in order to efficiently identify protein substrates by in silico approaches. To address this problem, we present PROSPER, an integrated feature-based server for in silico identification of protease substrates and their cleavage sites for twenty-four different proteases. PROSPER utilizes established specificity information for these proteases (derived from the MEROPS database with a machine learning approach to predict protease cleavage sites by using different, but complementary sequence and structure characteristics. Features used by PROSPER include local amino acid sequence profile, predicted secondary structure, solvent accessibility and predicted native disorder. Thus, for proteases with known amino acid specificity, PROSPER provides a convenient, pre-prepared tool for use in identifying protein substrates for the enzymes. Systematic prediction analysis for the twenty-four proteases thus far included in the database revealed that the features we have included in the tool strongly improve performance in terms of cleavage site prediction, as evidenced by their contribution to performance improvement in terms of identifying known cleavage sites in substrates for these enzymes. In comparison with two state-of-the-art prediction tools, PoPS and SitePrediction, PROSPER achieves greater accuracy and coverage. To our knowledge, PROSPER is the first comprehensive server capable of predicting cleavage sites of multiple proteases within a single substrate

  6. Molecular characterization of 45 kDa aspartic protease of Trichinella spiralis.

    Science.gov (United States)

    Park, Jong Nam; Park, Sang Kyun; Cho, Min Kyoung; Park, Mi-Kyung; Kang, Shin Ae; Kim, Dong-Hee; Yu, Hak Sun

    2012-12-21

    In a previous study, we identified an aspartic protease gene (Ts-Asp) from the Trichinella spiralis muscle stage larva cDNA library. The gene sequence of Ts-Asp was 1281 bp long and was found to encode a protein consisting of 405 amino acids, with a molecular mass of 45.248 kD and a pI of 5.95. The deduced Ts-Asp has a conserved catalytic motif with catalytic aspartic acid residues in the active site, a common characteristic of aspartic proteases. In addition, the deduced amino acid sequence of Ts-Asp was found to possess significant homology (above 50%) with aspartic proteases from nematode parasites. Results of phylogenetic analysis indicated a close relationship of Ts-Asp with cathepsin D aspartic proteases. For production of recombinant Ts-Asp (rTs-Asp), the pGEX4T expression system was used. Like other proteases, the purified rTs-Asp was able to digest collagen matrix in vitro. Abundant expression of Ts-Asp was observed in muscle stage larva. Ts-Asp was detected in ES proteins, and was able to elicit the production of specific antibodies. It is the first report of molecular characterization of aspartic protease isolated from T. spiralis. Copyright © 2012 Elsevier B.V. All rights reserved.

  7. The m-AAA Protease Associated with Neurodegeneration Limits MCU Activity in Mitochondria.

    Science.gov (United States)

    König, Tim; Tröder, Simon E; Bakka, Kavya; Korwitz, Anne; Richter-Dennerlein, Ricarda; Lampe, Philipp A; Patron, Maria; Mühlmeister, Mareike; Guerrero-Castillo, Sergio; Brandt, Ulrich; Decker, Thorsten; Lauria, Ines; Paggio, Angela; Rizzuto, Rosario; Rugarli, Elena I; De Stefani, Diego; Langer, Thomas

    2016-10-06

    Mutations in subunits of mitochondrial m-AAA proteases in the inner membrane cause neurodegeneration in spinocerebellar ataxia (SCA28) and hereditary spastic paraplegia (HSP7). m-AAA proteases preserve mitochondrial proteostasis, mitochondrial morphology, and efficient OXPHOS activity, but the cause for neuronal loss in disease is unknown. We have determined the neuronal interactome of m-AAA proteases in mice and identified a complex with C2ORF47 (termed MAIP1), which counteracts cell death by regulating the assembly of the mitochondrial Ca 2+ uniporter MCU. While MAIP1 assists biogenesis of the MCU subunit EMRE, the m-AAA protease degrades non-assembled EMRE and ensures efficient assembly of gatekeeper subunits with MCU. Loss of the m-AAA protease results in accumulation of constitutively active MCU-EMRE channels lacking gatekeeper subunits in neuronal mitochondria and facilitates mitochondrial Ca 2+ overload, mitochondrial permeability transition pore opening, and neuronal death. Together, our results explain neuronal loss in m-AAA protease deficiency by deregulated mitochondrial Ca 2+ homeostasis. Copyright © 2016 Elsevier Inc. All rights reserved.

  8. Optimization of novel and greener approach for the coproduction of uricase and alkaline protease in Bacillus licheniformis by Box-Behnken model.

    Science.gov (United States)

    Pawar, Shweta V; Rathod, Virendra K

    2018-01-02

    This study explores a novel concept of coproduction of uricase and alkaline protease by Bacillus licheniformis using single substrate in single step. Seven local bacterial strains were screened for uricase production, amongst which B. licheniformis is found to produce highest uricase along with alkaline protease. Optimization of various factors influencing maximum enzyme coproduction by B. licheniformis is performed. Maximum enzyme productivity of 0.386 U/mL uricase and 0.507 U/mL alkaline protease is obtained at 8 hr of incubation period, 1% (v/v) inoculum, and at 0.2% (w/v) uric acid when the organism is cultivated at 25°C, 180 rpm, in a media containing xylose as a carbon source, urea as a nitrogen source, and initial pH of 9.5. The statistical experimental design method of Box-Behnken was further applied to obtain optimal concentration of significant parameters such as pH (9.5), uric acid concentration (0.1%), and urea concentration (0.05%). The maximum uricase and alkaline protease production by B. licheniformis using Box-Behnken design was 0.616 and 0.582 U/mL, respectively, with 1.6- and 1.13-fold increase as compared to one factor at a time optimized media. This study will be useful to develop an economic, commercially viable, and scalable process for simultaneous production of uricase and protease enzymes.

  9. Molecular Basis for Drug Resistance in HIV-1 Protease

    Directory of Open Access Journals (Sweden)

    Celia A. Schiffer

    2010-11-01

    Full Text Available HIV-1 protease is one of the major antiviral targets in the treatment of patients infected with HIV-1. The nine FDA approved HIV-1 protease inhibitors were developed with extensive use of structure-based drug design, thus the atomic details of how the inhibitors bind are well characterized. From this structural understanding the molecular basis for drug resistance in HIV-1 protease can be elucidated. Selected mutations in response to therapy and diversity between clades in HIV-1 protease have altered the shape of the active site, potentially altered the dynamics and even altered the sequence of the cleavage sites in the Gag polyprotein. All of these interdependent changes act in synergy to confer drug resistance while simultaneously maintaining the fitness of the virus. New strategies, such as incorporation of the substrate envelope constraint to design robust inhibitors that incorporate details of HIV-1 protease’s function and decrease the probability of drug resistance, are necessary to continue to effectively target this key protein in HIV-1 life cycle.

  10. Interdependence of Inhibitor Recognition in HIV-1 Protease.

    Science.gov (United States)

    Paulsen, Janet L; Leidner, Florian; Ragland, Debra A; Kurt Yilmaz, Nese; Schiffer, Celia A

    2017-05-09

    Molecular recognition is a highly interdependent process. Subsite couplings within the active site of proteases are most often revealed through conditional amino acid preferences in substrate recognition. However, the potential effect of these couplings on inhibition and thus inhibitor design is largely unexplored. The present study examines the interdependency of subsites in HIV-1 protease using a focused library of protease inhibitors, to aid in future inhibitor design. Previously a series of darunavir (DRV) analogs was designed to systematically probe the S1' and S2' subsites. Co-crystal structures of these analogs with HIV-1 protease provide the ideal opportunity to probe subsite interdependency. All-atom molecular dynamics simulations starting from these structures were performed and systematically analyzed in terms of atomic fluctuations, intermolecular interactions, and water structure. These analyses reveal that the S1' subsite highly influences other subsites: the extension of the hydrophobic P1' moiety results in 1) reduced van der Waals contacts in the P2' subsite, 2) more variability in the hydrogen bond frequencies with catalytic residues and the flap water, and 3) changes in the occupancy of conserved water sites both proximal and distal to the active site. In addition, one of the monomers in this homodimeric enzyme has atomic fluctuations more highly correlated with DRV than the other monomer. These relationships intricately link the HIV-1 protease subsites and are critical to understanding molecular recognition and inhibitor binding. More broadly, the interdependency of subsite recognition within an active site requires consideration in the selection of chemical moieties in drug design; this strategy is in contrast to what is traditionally done with independent optimization of chemical moieties of an inhibitor.

  11. In vitro protein digestibility of enzymatically pre-treated bean (Phaseolus vulgaris L. flour using commercial protease and Bacillus sp. protease Digestibilidade protéica in vitro de farinhas de feijão (Phaseolus vulgaris L. pré-tratadas com protease comercial e protease de Bacillus sp.

    Directory of Open Access Journals (Sweden)

    Disney Ribeiro Dias

    2010-03-01

    Full Text Available The common bean (Phaseolus vulgaris L. is a staple food in the Brazilian diet and represents the major source of dietary protein and other micronutrients and minerals. Despite the considerable protein concentration in beans, the food is considered of low biological value when compared to animal proteins and other plant protein sources. To improve the availability of protein in beans, enzymatic treatments were performed in four cultivars (ON, OPNS, TAL and VC3. The approach was a completely randomized design with four replicates. We used a 4 × 3 factorial arrangement (four cultivars and three treatments: treatment 1-addition of commercial protease (Trypsin 250, Difco, treatment 2-addition of protease from Bacillus sp., and treatment 3:-control without enzyme addition. The enzyme: substrate ratio was 5% w/w (amount of enzyme per total protein in bean flour. The approach was a completely randomized design with four replicates. A 4 × 3 factorial arrangement (four cultivars and three treatments, the same as those mentioned above was used. The concentration of total protein (g.100 g-1 of dry matter in the samples ranged from 16.94 to 18.06%, while the concentration of total phenolics was between 0.78 and 1.12% (g Eq. tannic acid.100 g-1 dry matter. The in vitro protein digestibility of enzymatically untreated bean flour (control ranged from 47.30 to 56.17% based on the digestibility of casein. Concentrations of P, K, Ca, Mg, and Zn observed in the four cultivars tested were within the average values available in the literature. Treatment 2 with protease from Bacillus sp. induced decreases in the levels of Cu and Mn. The average Fe content increased in all bean flour samples when treated with proteases, reaching a maximum increase of 102% in the TAL flour treated with protease from Bacillus sp. The digestibility of all beans tested was significantly increased (p O feijão (Phaseolus vulgaris L. é um alimento básico na refeição do brasileiro

  12. Variable context Markov chains for HIV protease cleavage site prediction.

    Science.gov (United States)

    Oğul, Hasan

    2009-06-01

    Deciphering the knowledge of HIV protease specificity and developing computational tools for detecting its cleavage sites in protein polypeptide chain are very desirable for designing efficient and specific chemical inhibitors to prevent acquired immunodeficiency syndrome. In this study, we developed a generative model based on a generalization of variable order Markov chains (VOMC) for peptide sequences and adapted the model for prediction of their cleavability by certain proteases. The new method, called variable context Markov chains (VCMC), attempts to identify the context equivalence based on the evolutionary similarities between individual amino acids. It was applied for HIV-1 protease cleavage site prediction problem and shown to outperform existing methods in terms of prediction accuracy on a common dataset. In general, the method is a promising tool for prediction of cleavage sites of all proteases and encouraged to be used for any kind of peptide classification problem as well.

  13. Specificity and Application of the Lantibiotic Protease NisP

    Directory of Open Access Journals (Sweden)

    Manuel Montalbán-López

    2018-02-01

    Full Text Available Lantibiotics are ribosomally produced and posttranslationally modified peptides containing several lanthionine residues. They exhibit substantial antimicrobial activity against Gram-positive bacteria, including relevant pathogens. The production of the model lantibiotic nisin minimally requires the expression of the modification and export machinery. The last step during nisin maturation is the cleavage of the leader peptide. This liberates the active compound and is catalyzed by the cell wall-anchored protease NisP. Here, we report the production and purification of a soluble variant of NisP. This has enabled us to study its specificity and test its suitability for biotechnological applications. The ability of soluble NisP to cleave leaders from various substrates was tested with two sets of nisin variants. The first set was designed to investigate the influence of amino acid variations in the leader peptide or variations around the cleavage site. The second set was designed to study the influence of the lanthionine ring topology on the proteolytic efficiency. We show that the substrate promiscuity is higher than has previously been suggested. Our results demonstrate the importance of the arginine residue at the end of the leader peptide and the importance of lanthionine rings in the substrate for specific cleavage. Collectively, these data indicate that NisP is a suitable protease for the activation of diverse heterologously expressed lantibiotics, which is required to release active antimicrobial compounds.

  14. Production, purification, and characterization of an extracellular acid protease from the marine Antarctic yeast Rhodotorula mucilaginosa L7.

    Science.gov (United States)

    Lario, Luciana Daniela; Chaud, Luciana; Almeida, María das Graças; Converti, Attilio; Durães Sette, Lara; Pessoa, Adalberto

    2015-11-01

    The production, purification, and characterization of an extracellular protease released by Rhodotorula mucilaginosa L7 were evaluated in this study. This strain was isolated from an Antarctic marine alga and previously selected among others based on the capacity to produce the highest extracellular proteolytic activity in preliminary tests. R. mucilaginosa L7 was grown in Saboraud-dextrose medium at 25 °C, and the cell growth, pH of the medium, extracellular protease production and the glucose and protein consumption were determined as a function of time. The protease was then purified, and the effects of pH, temperature, and salt concentration on the catalytic activity and enzyme stability were determined. Enzyme production started at the beginning of the exponential phase of growth and reached a maximum after 48 h, which was accompanied by a decrease in the pH as well as reductions of the protein and glucose concentrations in the medium. The purified protease presented optimal catalytic activity at pH 5.0 and 50 °C. Finally, the enzyme was stable in the presence of high concentrations of NaCl. These characteristics are of interest for future studies and may lead to potential biotechnological applications that require enzyme activity and stability under acidic conditions and/or high salt concentrations. Copyright © 2015 The British Mycological Society. Published by Elsevier Ltd. All rights reserved.

  15. Structural and functional characterization of cleavage and inactivation of human serine protease inhibitors by the bacterial SPATE protease EspPα from enterohemorrhagic E. coli.

    Directory of Open Access Journals (Sweden)

    André Weiss

    Full Text Available EspPα and EspI are serine protease autotransporters found in enterohemorrhagic Escherichia coli. They both belong to the SPATE autotransporter family and are believed to contribute to pathogenicity via proteolytic cleavage and inactivation of different key host proteins during infection. Here, we describe the specific cleavage and functional inactivation of serine protease inhibitors (serpins by EspPα and compare this activity with the related SPATE EspI. Serpins are structurally related proteins that regulate vital protease cascades, such as blood coagulation and inflammatory host response. For the rapid determination of serpin cleavage sites, we applied direct MALDI-TOF-MS or ESI-FTMS analysis of coincubations of serpins and SPATE proteases and confirmed observed cleavage positions using in-gel-digest of SDS-PAGE-separated degradation products. Activities of both serpin and SPATE protease were assessed in a newly developed photometrical assay using chromogenic peptide substrates. EspPα cleaved the serpins α1-protease inhibitor (α1-PI, α1-antichymotrypsin, angiotensinogen, and α2-antiplasmin. Serpin cleavage led to loss of inhibitory function as demonstrated for α1-PI while EspPα activity was not affected. Notably, EspPα showed pronounced specificity and cleaved procoagulatory serpins such as α2-antiplasmin while the anticoagulatory antithrombin III was not affected. Together with recently published research, this underlines the interference of EspPα with hemostasis or inflammatory responses during infection, while the observed interaction of EspI with serpins is likely to be not physiologically relevant. EspPα-mediated serpin cleavage occurred always in flexible loops, indicating that this structural motif might be required for substrate recognition.

  16. Oxygen toxicity

    Directory of Open Access Journals (Sweden)

    C. A. van der Westhuizen

    1990-07-01

    Full Text Available Oxygen has been discovered about 200 years ago. Since then the vital physiological involvement of oxygen in various biologi­cal processes, mainly energy production, has been established. However, in the body molecular oxygen can be converted to toxic oxygen metabolites such as superoxide anion, hydrogen peroxide, the hydroxyl radical and singlet oxygen. These toxic metabolites are produced mainly in the mitochondria, plasma membranes and endoplasmic reticulum.

  17. Dynamic viscoelasticity of protease-treated rice batters for gluten-free rice bread making.

    Science.gov (United States)

    Honda, Yuji; Inoue, Nanami; Sugimoto, Reina; Matsumoto, Kenji; Koda, Tomonori; Nishioka, Akihiro

    2018-03-01

    Papain (cysteine protease), subtilisin (Protin SD-AY10, serine protease), and bacillolysin (Protin SD-NY10, metallo protease) increased the specific volume of gluten-free rice breads by 19-63% compared to untreated bread. In contrast, Newlase F (aspartyl protease) did not expand the volume of the rice bread. In a rheological analysis, the viscoelastic properties of the gluten-free rice batters also depended on the protease categories. Principal component analysis (PCA) analysis suggested that the storage and loss moduli (G' and G″, respectively) at 35 °C, and the maximum values of G' and G″, were important factors in the volume expansion. Judging from the PCA of the viscoelastic parameters of the rice batters, papain and Protin SD-AY10 improved the viscoelasticity for gluten-free rice bread making, and Protin SD-NY effectively expanded the gluten-free rice bread. The rheological properties differed between Protin SD-NY and the other protease treatments.

  18. Semi-continuous in situ magnetic separation for enhanced extracellular protease productionmodeling and experimental validation

    DEFF Research Database (Denmark)

    Cerff, M.; Scholz, A.; Käppler, T.

    2013-01-01

    In modern biotechnology proteases play a major role as detergent ingredients. Especially the production of extracellular protease by Bacillus species facilitates downstream processing because the protease can be directly harvested from the biosuspension. In situ magnetic separation (ISMS...... production, and was used to optimize ISMS steps to obtain the maximum overall protease yield. Biotechnol. Bioeng. 2013; 110: 2161–2172. © 2013 Wiley Periodicals, Inc....

  19. Potent and Selective Peptidyl Boronic Acid Inhibitors of the Serine Protease Prostate-Specific Antigen

    Science.gov (United States)

    LeBeau, Aaron M.; Singh, Pratap; Isaacs, John T.; Denmeade, Samuel R.

    2012-01-01

    SUMMARY Prostate cancer cells produce high (microgram to milligram/milliliter) levels of the serine protease Prostate-Specific Antigen (PSA). PSA is enzymatically active in the extracellular fluid surrounding prostate cancers but is found at 1,000- to 10,000-fold lower concentrations in the circulation, where it is inactivated due to binding to abundant serum protease inhibitors. The exclusive presence of high levels of active PSA within prostate cancer sites makes PSA an attractive candidate for targeted imaging and therapeutics. A synthetic approach based on a peptide substrate identified first peptide aldehyde and then boronic acid inhibitors of PSA. The best of these had the sequence Cbz-Ser-Ser-Lys-Leu-(boro)Leu, with a Ki for PSA of 65 nM. The inhibitor had a 60-fold higher Ki for chymotrypsin. A validated model of PSA’s catalytic site confirmed the critical interactions between the inhibitor and residues within the PSA enzyme. PMID:18635003

  20. Growth of Enterococcus durans E204 producing bacteriocin-like ...

    African Journals Online (AJOL)

    Bacteriocin-like substance E204 is an antimicrobial compound produced by Enterococcus durans E204 isolated from camel milk of Morocco that shows a broad spectrum of inhibitory activity against taxonomically related microorganisms. It is sensitive to digestive proteases. In the first study, de Man, Regosa and Sharpe ...

  1. Aspartic protease activities of schistosomes cleave mammalian hemoglobins in a host-specific manner

    Directory of Open Access Journals (Sweden)

    Jeffrey W Koehler

    2007-02-01

    Full Text Available We examined the efficiency of digestion of hemoglobin from four mammalian species, human, cow, sheep, and horse by acidic extracts of mixed sex adults of Schistosoma japonicum and S. mansoni. Activity ascribable to aspartic protease(s from S. japonicum and S. mansoni cleaved human hemoglobin. In addition, aspartic protease activities from S. japonicum cleaved hemoglobin from bovine, sheep, and horse blood more efficiently than did the activity from extracts of S. mansoni. These findings support the hypothesis that substrate specificity of hemoglobin-degrading proteases employed by blood feeding helminth parasites influences parasite host species range; differences in amino acid sequences in key sites of the parasite proteases interact less or more efficiently with the hemoglobins of permissive or non-permissive hosts.

  2. STABILIZATION OF BACILLUS-STEAROTHERMOPHILUS NEUTRAL PROTEASE BY INTRODUCTION OF PROLINES

    NARCIS (Netherlands)

    HARDY, F; VRIEND, G; VELTMAN, OR; VANDERVINNE, B; VENEMA, G; EIJSINK, VGH

    1993-01-01

    The thermostability of neutral proteases has been shown to depend on autolysis which presumably occurs in flexible regions of the protein. In an attempt to rigidify such a region in the neutral protease of Bacillus stearothermophilus, residues in the solvent-exposed 63-69 loop were replaced by

  3. Allostery Is an Intrinsic Property of the Protease Domain of DegS Implications for Enzyme Function and Evolution

    Energy Technology Data Exchange (ETDEWEB)

    Sohn, Jungsan; Grant, Robert A.; Sauer, Robert T. (MIT)

    2010-12-02

    DegS is a periplasmic Escherichia coli protease, which functions as a trimer to catalyze the initial rate-limiting step in a proteolytic cascade that ultimately activates transcription of stress response genes in the cytoplasm. Each DegS subunit consists of a protease domain and a PDZ domain. During protein folding stress, DegS is allosterically activated by peptides exposed in misfolded outer membrane porins, which bind to the PDZ domain and stabilize the active protease. It is not known whether allostery is conferred by the PDZ domains or is an intrinsic feature of the trimeric protease domain. Here, we demonstrate that free DegS{sup {Delta}PDZ} equilibrates between active and inactive trimers with the latter species predominating. Substrate binding stabilizes active DegS{sup {Delta}PDZ} in a positively cooperative fashion. Mutations can also stabilize active DegS{sup {Delta}PDZ} and produce an enzyme that displays hyperbolic kinetics and degrades substrate with a maximal velocity within error of that for fully activated, intact DegS. Crystal structures of multiple DegS{sup {Delta}PDZ} variants, in functional and non-functional conformations, support a two-state model in which allosteric switching is mediated by changes in specific elements of tertiary structure in the context of an invariant trimeric base. Overall, our results indicate that protein substrates must bind sufficiently tightly and specifically to the functional conformation of DegS{sup {Delta}PDZ} to assist their own degradation. Thus, substrate binding alone may have regulated the activities of ancestral DegS trimers with subsequent fusion of the protease domain to a PDZ domain, resulting in ligand-mediated regulation.

  4. Production, characterization, and immobilization of partially purified surfactant-detergent and alkali-thermostable protease from newly isolated Aeromonas caviae.

    Science.gov (United States)

    Datta, Sumitra; Menon, Gopalakrishnan; Varughese, Bincy

    2017-04-21

    Proteolytic Aeromonas caviae P-1-1 growing at wide-ranging pH (7.0-11.0) and moderate salinity (0-5% NaCl) was isolated from cattle shed of Thanjavur, India. It produced lipase, gelatinase, and polyhydroxybutyrate. Different culture conditions, incubation time, carbon and nitrogen sources, vitamins, amino acids, surfactants, and metal ions for optimal growth and protease production of P-1-1 were examined. Maximum protease (0.128 U/mL) production was achieved with 1% fructose, 1% yeast extract, 0.1% ammonium sulfate, 3% NaCl, 0.1% CaCl 2  · 2H 2 O, 1% glycine, 0.1% vitamin E, and 0.1% Tween-40 at pH 8.0 after 42 hr of incubation at 37°C. It was active over broad range of pH (7.0-12.0), temperature (15-100°C), and salinity (0-9% NaCl) with optima at pH 10.0, 55°C, and 3% NaCl. It retained 65 and 48% activities at pH 12.0 and 100°C, respectively. Partially purified protease was highly stable (100%) within pH range 7.0-12.0 and salinities of 0-5% NaCl for 48 hr. Cu 2+ , Mn 2+ , Co 2+ , and Ca 2+ did not inhibit its activity. Its stability at extreme pHs, temperatures, and in the presence of surfactants and commercial detergents suggests its possible application in laundry detergents. Partially purified protease was immobilized and reused. This is the first report of alkali-thermotolerant, surfactant-detergent-stable partially purified extracellular protease from A. caviae.

  5. Saccharomyces boulardii protease inhibits Clostridium difficile toxin A effects in the rat ileum.

    Science.gov (United States)

    Castagliuolo, I; LaMont, J T; Nikulasson, S T; Pothoulakis, C

    1996-01-01

    Saccharomyces boulardii, a nonpathogenic yeast, is effective in treating some patients with Clostridium difficile diarrhea and colitis. We have previously reported that S. boulardii inhibits rat ileal secretion in response to C. difficile toxin A possibly by releasing a protease that digests the intestinal receptor for this toxin (C. Pothoulakis, C. P. Kelly, M. A. Joshi, N. Gao, C. J. O'Keane, I. Castagliuolo, and J. T. LaMont, Gastroenterology 104: 1108-1115, 1993). The aim of this study was to purify and characterize this protease. S. boulardii protease was partially purified by gel filtration on Sephadex G-50 and octyl-Sepharose. The effect of S. boulardii protease on rat ileal secretion, epithelial permeability, and morphology in response to toxin A was examined in rat ileal loops in vivo. Sodium dodecyl sulfate-polyacrylamide gel electrophoresis of the purified S. boulardii protease revealed a major band at 54 kDa. Pretreatment of rat ileal brush border (BB) membranes with partially purified protease reduced specific toxin A receptor binding (by 26%). Partially purified protease digested the toxin A molecule and significantly reduced its binding to BB membranes in vitro (by 42%). Preincubation of toxin A with S. boulardii protease inhibited ileal secretion (46% inhibition, P < 0.01), mannitol permeability (74% inhibition, P < 0.01), and histologic damage caused by toxin A. Thus, S. boulardii protease inhibits the intestinal effects of C. difficile toxin A by proteolysis of the toxin and inhibition of toxin A binding to its BB receptor. Our results may be relevant to the mechanism by which S. boulardii exerts its protective effects in C. difficile infection in humans. PMID:8945570

  6. Chemical Tools for the Study of Intramembrane Proteases.

    Science.gov (United States)

    Nguyen, Minh T N; Van Kersavond, Tim; Verhelst, Steven H L

    2015-11-20

    Intramembrane proteases (IMPs) reside inside lipid bilayers and perform peptide hydrolysis in transmembrane or juxtamembrane regions of their substrates. Many IMPs are involved in crucial regulatory pathways and human diseases, including Alzheimer's disease, Parkinson's disease, and diabetes. In the past, chemical tools have been instrumental in the study of soluble proteases, enabling biochemical and biomedical research in complex environments such as tissue lysates or living cells. However, IMPs place special challenges on probe design and applications, and progress has been much slower than for soluble proteases. In this review, we will give an overview of the available chemical tools for IMPs, including activity-based probes, affinity-based probes, and synthetic substrates. We will discuss how these have been used to increase our structural and functional understanding of this fascinating group of enzymes, and how they might be applied to address future questions and challenges.

  7. Inhibition of protease activity by antisense RNA improves recombinant protein production in Nicotiana tabacum cv. Bright Yellow 2 (BY-2) suspension cells.

    Science.gov (United States)

    Mandal, Manoj K; Fischer, Rainer; Schillberg, Stefan; Schiermeyer, Andreas

    2014-08-01

    Recombinant proteins produced in plant suspension cultures are often degraded by endogenous plant proteases when secreted into the medium, resulting in low yields. To generate protease-deficient tobacco BY-2 cell lines and to retrieve the sequence information, we cloned four different protease cDNAs from tobacco BY-2 cells (NtAP, NtCP, NtMMP1, and NtSP), which represent the major catalytic classes. The simultaneous expression of antisense RNAs against these endogenous proteases led to the establishment of cell lines with reduced levels of endogenous protease expression and activity at late stages of the cultivation cycle. One of the cell lines showing reduced proteolytic activity in the culture medium was selected for the expression of the recombinant full-length IgG1(κ) antibody 2F5, recognizing the gp41 surface protein of HIV-1. This cell line showed significantly reduced degradation of the 2F5 heavy chain, resulting in four-fold higher accumulation of the intact antibody heavy chain when compared to transformed wild type cells expressing the same antibody. N-terminal sequencing data revealed that the antibody has two cleavage sites within the CDR-H3 and one site at the end of the H4-framework region. These cleavage sites are found to be vulnerable to serine proteases. The data provide a basis for further improvement of plant cells for the production of recombinant proteins in plant cell suspension cultures. Copyright © 2014 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  8. Screening de Mucor spp. para produção de amilase, lipase, poligalacturonase e protease

    OpenAIRE

    Alves, Maria Helena; Campos-Takaki, Galba M.; Porto, Ana Lúcia Figueiredo; Milanez, Adauto Ivo

    2002-01-01

    Fungi are well known by their ability to excrete enzymes into the environment. Among them, representatives of Mucor Fresen. have important biotechnological potential and some of them produce industrial enzymes. This work studied amylase, lipase, polygalacturonase and protease production by fifty-six isolates of Mucor belonging to 11 different taxa, selected from herbivores dung using solid media. The results showed that the majority of the isolates presented several enzymatic activities with ...

  9. Improvement of acid protease production by a mixed culture of ...

    African Journals Online (AJOL)

    The synthesis of acid protease by Aspergillus oryzae AS3042 was enhanced significantly with the mixed culture of Aspergillus niger SL-09 using solid-state fermentation technique. The influence of carbon sources, nitrogen sources and the addition of phytic acid on acid protease production were investigated. The enzyme ...

  10. Prolonged pharmacological inhibition of cathepsin C results in elimination of neutrophil serine proteases

    DEFF Research Database (Denmark)

    Guarino, Carla; Hamon, Yveline; Croix, Cécile

    2017-01-01

    cyclopropyl nitrile CatC inhibitor almost totally lack elastase. We confirmed the elimination of neutrophil elastase-like proteases by prolonged inhibition of CatC in a non-human primate. We also showed that neutrophils lacking elastase-like protease activities were still recruited to inflammatory sites....... These preclinical results demonstrate that the disappearance of neutrophil elastase-like proteases as observed in PLS patients can be achieved by pharmacological inhibition of bone marrow CatC. Such a transitory inhibition of CatC might thus help to rebalance the protease load during chronic inflammatory diseases...

  11. Cysteine protease 30 (CP30) contributes to adhesion and cytopathogenicity in feline Tritrichomonas foetus.

    Science.gov (United States)

    Gould, Emily N; Giannone, Richard; Kania, Stephen A; Tolbert, M Katherine

    2017-09-15

    Tritrichomonas foetus (T. foetus) is a flagellated protozoan parasite that is recognized as a significant cause of diarrhea in domestic cats with a prevalence rate as high as 30%. No drugs have been shown to consistently eliminate T. foetus infection in all cats. Cysteine proteases (CPs) have been identified as mediators of T. foetus-induced adhesion-dependent cytotoxicity to the intestinal epithelium. These CPs represent novel targets for the treatment of feline trichomonosis. However, cats also produce CPs that are part of life-critical systems. Thus, parasitic CPs need to be selectively targeted to reduce the potential for host toxicity. Previous studies have demonstrated the importance of a specific CP, CP30, in mediating bovine and human trichomonad cytopathogenicity. This CP has also recently been identified in feline T. foetus, although the function of this protease in the feline genotype remains unknown. Therefore, the study objectives were to characterize the presence of CP30 in feline T. foetus isolates and to evaluate the effect of targeted inhibition of CP30 on feline T. foetus-induced adhesion dependent cytotoxicity. The presence of CP30 in feline T. foetus isolates was identified by In gel zymography and proteomic analysis, indirect immunofluorescence (IF), and flow cytometry using a rabbit polyclonal antibody that targets bovine T. foetus CP30 (α-CP30). The effect of inhibition of CP30 activity on T. foetus adhesion and cytotoxicity was determined using CFSE-labeled feline T. foetus and crystal violet spectrophotometric assays in a previously validated co-culture model. CP30 expression was confirmed in all feline T. foetus isolates tested by all assays. Targeted inhibition of feline T. foetus CP30 resulted in decreased T. foetus adhesion to and cytotoxicity towards IPEC-J2 monolayers compared to rabbit IgG-treated T. foetus isolates. These studies establish that CP30 is expressed by feline T. foetus isolates and may be an important virulence factor

  12. Ubiquitin-specific protease 14 regulates cell proliferation and apoptosis in oral squamous cell carcinoma.

    Science.gov (United States)

    Chen, Xiangyun; Wu, Jingjing; Chen, Yitian; Ye, Dongxia; Lei, Hu; Xu, Hanzhang; Yang, Li; Wu, Yingli; Gu, Wenli

    2016-10-01

    Ubiquitin-specific protease 14, a deubiquitinating enzyme, has been implicated in the tumorigenesis and progression of several cancers, but its role in oral squamous cell carcinoma remains to be elucidated. The aim of this study was to explore the expression pattern and roles of Ubiquitin-specific protease 14 in the occurrence and development of oral squamous cell carcinoma. Interestingly, Ubiquitin-specific protease 14 was overexpressed in oral cancer tissues and cell lines at both mRNA and protein levels. b-AP15, a specific inhibitor of Ubiquitin-specific protease 14, significantly inhibited the growth of cancer cells and increased cell apoptosis in a dose-dependent manner. Moreover, knockdown of Ubiquitin-specific protease 14 by shRNA significantly inhibited the proliferation and migration of cancer cells in vitro. Finally, using a xenograft mouse model of oral squamous cell carcinoma, knockdown of Ubiquitin-specific protease 14 markedly inhibited tumor growth and triggered the cancer cell apoptosis in vivo, supporting previous results. In conclusion, for the first time we have demonstrated the expression pattern of Ubiquitin-specific protease 14 in oral squamous cell carcinoma and verified a relationship with tumor growth and metastasis. These results may highlight new therapeutic strategies for tumor treatment, application of Ubiquitin-specific protease 14 selective inhibitor, such as b-AP15, or knockdown by shRNA. Collectively, Ubiquitin-specific protease 14 could be a potential therapeutic target for oral squamous cell carcinoma patients. Copyright © 2016 Elsevier Ltd. All rights reserved.

  13. Serological Analysis of Immunogenic Properties of Recombinant Meningococcus IgA1 Protease-Based Proteins.

    Science.gov (United States)

    Kotelnikova, O V; Zinchenko, A A; Vikhrov, A A; Alliluev, A P; Serova, O V; Gordeeva, E A; Zhigis, L S; Zueva, V S; Razgulyaeva, O A; Melikhova, T D; Nokel, E A; Drozhzhina, E Yu; Rumsh, L D

    2016-07-01

    Using the genome sequence of IgA1 protease of N. meningitidis of serogroup B, four recombinant proteins of different structure and molecular weight were constructed. These proteins were equal in inducing the formation of specific antibodies to IgA1 protease and had protective properties against meningococci. In the sera of immunized mice, anti-IgA1 protease antibodies were detected by whole-cell ELISA, which indicated the presence of IgA1 protease on the surface of these bacteria. We hypothesized that the protective properties of IgA1 protease-based antigens and IgA1 protease analogs could be realized not only via impairment of bacterium adhesion to the mucosa, but also via suppression of this pathogen in the organism. The presented findings seem promising for using these proteins as the basis for anti-meningococcus vaccine.

  14. Mitochondrial AAA proteases--towards a molecular understanding of membrane-bound proteolytic machines.

    Science.gov (United States)

    Gerdes, Florian; Tatsuta, Takashi; Langer, Thomas

    2012-01-01

    Mitochondrial AAA proteases play an important role in the maintenance of mitochondrial proteostasis. They regulate and promote biogenesis of mitochondrial proteins by acting as processing enzymes and ensuring the selective turnover of misfolded proteins. Impairment of AAA proteases causes pleiotropic defects in various organisms including neurodegeneration in humans. AAA proteases comprise ring-like hexameric complexes in the mitochondrial inner membrane and are functionally conserved from yeast to man, but variations are evident in the subunit composition of orthologous enzymes. Recent structural and biochemical studies revealed how AAA proteases degrade their substrates in an ATP dependent manner. Intersubunit coordination of the ATP hydrolysis leads to an ordered ATP hydrolysis within the AAA ring, which ensures efficient substrate dislocation from the membrane and translocation to the proteolytic chamber. In this review, we summarize recent findings on the molecular mechanisms underlying the versatile functions of mitochondrial AAA proteases and their relevance to those of the other AAA+ machines. Copyright © 2011 Elsevier B.V. All rights reserved.

  15. Protease of Stenotrophomonas sp. from Indonesian fermented food: gene cloning and analysis

    Directory of Open Access Journals (Sweden)

    Frans Kurnia

    2018-02-01

    Full Text Available Screening of proteolytic and fibrinolytic bacteria from Indonesian soy bean based fermented food Oncom revealed several potential isolates. Based on 16s rDNA gene analysis, one particular isolate with the highest proteolytic and fibrinolytic activity was identified as Stenotrophomonas sp. The protease gene was amplified to generate a 1749 bp Polymerase Chain Reaction product and BLAST analysis, revealed 90% homology with gene encoding protease enzyme from Stenotrophomonas maltophilia. The putative amino acid sequence indicated a serine protease enzyme with typical amino acid aspartate, histidine and serine in the catalytic triad. The gene was translated into a pre-pro-protein consisted of cleavage site on its N terminal and Pre-Peptidase Cterminal domain. Cloning of the protease gene in pET22b with Escherichia coli BL21 DE3 as the host showed that the gene was expressed as insoluble protein fraction. This is the first report for analysis of protease gene from food origin Stenotrophomonas sp.

  16. Efficient Absorption of X-Hydroxyproline (Hyp)-Gly after Oral Administration of a Novel Gelatin Hydrolysate Prepared Using Ginger Protease.

    Science.gov (United States)

    Taga, Yuki; Kusubata, Masashi; Ogawa-Goto, Kiyoko; Hattori, Shunji

    2016-04-13

    Recent studies have reported that oral intake of gelatin hydrolysate has various beneficial effects, such as reduction of joint pain and lowering of blood sugar levels. In this study, we produced a novel gelatin hydrolysate using a cysteine-type ginger protease having unique substrate specificity with preferential peptide cleavage with Pro at the P2 position. Substantial amounts of X-hydroxyproline (Hyp)-Gly-type tripeptides were generated up to 2.5% (w/w) concomitantly with Gly-Pro-Y-type tripeptides (5%; w/w) using ginger powder. The in vivo absorption of the ginger-degraded gelatin hydrolysate was estimated using mice. The plasma levels of collagen-derived oligopeptides, especially X-Hyp-Gly, were significantly high (e.g., 2.3-fold for Glu-Hyp-Gly, p < 0.05) compared with those of the control gelatin hydrolysate, which was prepared using gastrointestinal proteases and did not contain detectable X-Hyp-Gly. This study demonstrated that orally administered X-Hyp-Gly was effectively absorbed into the blood, probably due to the high protease resistance of this type of tripeptide.

  17. The kunitz protease inhibitor form of the amyloid precursor protein (KPI/APP) inhibits the proneuropeptide processing enzyme prohormone thiol protease (PTP). Colocalization of KPI/APP and PTP in secretory vesicles.

    Science.gov (United States)

    Hook, V Y; Sei, C; Yasothornsrikul, S; Toneff, T; Kang, Y H; Efthimiopoulos, S; Robakis, N K; Van Nostrand, W

    1999-01-29

    Proteolytic processing of proenkephalin and proneuropeptides is required for the production of active neurotransmitters and peptide hormones. Variations in the extent of proenkephalin processing in vivo suggest involvement of endogenous protease inhibitors. This study demonstrates that "protease nexin 2 (PN2)," the secreted form of the kunitz protease inhibitor (KPI) of the amyloid precursor protein (APP), potently inhibited the proenkephalin processing enzyme known as prohormone thiol protease (PTP), with a Ki,app of 400 nM. Moreover, PTP and PN2 formed SDS-stable complexes that are typical of kunitz protease inhibitor interactions with target proteases. In vivo, KPI/APP (120 kDa), as well as a truncated form of KPI/APP that resembles PN2 in apparent molecular mass (110 kDa), were colocalized with PTP and (Met)enkephalin in secretory vesicles of adrenal medulla (chromaffin granules). KPI/APP (110-120 kDa) was also detected in pituitary secretory vesicles that contain PTP. In chromaffin cells, calcium-dependent secretion of KPI/APP with PTP and (Met)enkephalin demonstrated the colocalization of these components in functional secretory vesicles. These results suggest a role for KPI/APP inhibition of PTP in regulated secretory vesicles. In addition, these results are the first to identify an endogenous protease target of KPI/APP, which is developmentally regulated in aging and Alzheimer's disease.

  18. Purification of two high molecular weight proteases from rabbit reticulocyte lysate

    International Nuclear Information System (INIS)

    Hough, R.; Pratt, G.; Rechsteiner, M.

    1987-01-01

    The authors have purified two large proteases from rabbit reticulocyte lysate. The enzymes are so similar in their chromatographic behavior that each is the only significant contaminant of the other during the final stages of purification. At pH 7.8, both hydrolyze 125 I-α-casein and 4-methylcoumaryl-7-amide (MCA) derivatives with tyrosine, phenylalanine or arginine at the P 1 position. The larger, ATP-dependent enzyme degrades ubiquitin-lysozyme conjugates, but it does not degrade unmodified lysozyme. Hydrolysis of Suc-Leu-Leu-Val-Tyr-MCA by this enzyme is also stimulated two-fold in the presence of ATP. The protease has a molecular weight of 950,000 based on sedimentation, gel filtration and non-denaturing PAGE. Sodium dodecyl sulfate-polyacrylamide gel electrophoresis revealed that the protease is composed of a number of subunits with molecular masses between 32 and 110 kDa. Densitometric analysis showed equivalent amounts of the two larger chains, and the presence of one copy of each in the native enzyme would be consistent with an M/sub r/ of 950,000. The smaller protease has a molecular weight of 700,000 and is composed of 8 to 10 subunits ranging from 21,000 to 32,000. It cleaves ubiquitin-lysozyme conjugates only slightly, and hydrolysis of conjugates or fluorogenic peptide substrates is not stimulated by ATP. This protease appears similar, if not identical, to the multicatalytic protease complex first purified by Wilk and Orlowski

  19. Interfacial behavior of alkaline protease at the air-water and oil-water interfaces

    Science.gov (United States)

    Zhang, Jian; Li, Yanyan; Wang, Jing; Zhang, Yue

    2018-03-01

    The interfacial behavior of alkaline protease at the air-water and n-hexane-water interfaces was investigated using interfacial tension, dilatational rheology and dynamic light scattering. Additionally, different adsorption models which are Langmuir, Frumkin, Reorientation-A and Reorientation-R were used to fitting the data of equilibrium interfacial tension for further understanding the interfacial behavior of alkaline protease. Data fitting of the equilibrium interfacial tension was achieved by IsoFit software. The results show that the molecules arrangement of the alkaline protease at the n-hexane-water interface is more tightly than at the air-water interface. The data were further analyzed to indicate that the hydrophobic chains of alkaline protease penetrate into oil phase deeper than the air phase. Also data indicate that the electrostatic interactions and hydrophobic interactions at the n-hexane-water interface are stronger than at the air-water interface within molecules of the alkaline protease. Based on comprehensive analysis of the adsorption kinetics and interfacial rheological properties, interfacial structures mechanism of alkaline protease at n-hexane-water and air-water interfaces was proposed.

  20. Characterization of an alkaline protease associated with a granulosis virus of Plodia interpunctella.

    Science.gov (United States)

    Tweeten, K A; Bulla, L A; Consigli, R A

    1978-06-01

    An alkaline protease was found to be associated with the granulosis virus of the Indian meal moth. Plodia interpunctella. The protease was located within the protein matrix of the occluded virus and hydrolyzed the major constituent of this matrix, a 28,000-dalton protein (granulin), to a mixture of polypeptides ranging in molecular weight from 10,000 to 27,000. A rapid, sensitive assay for the protease was developed using radioactively labeled granulosis virus as substrate. With this assay, the proteolytic activity could be detected by measuring the release of acid-soluble peptides from the labeled virus. The protease had a pH optimum of 10.5 and a temperature optimum of 40 degrees C and was inhibited by diisopropyl phosphorofluoridate, phenylmethylsulfonyl fluoride, and L-(1-tosylamido-2-phenyl) ethyl chloromethyl ketone. Purification of the protease from matrix protein was achieved by anion-exchange and gel permeation chromatography. The molecular weight of the isolated protease, determined by sodium dodecyl sulfate-polyacrylamide gel electrophoresis and gel filtration, was approximately 14,000.

  1. Entamoeba histolytica-secreted cysteine proteases induce IL-8 production in human mast cells via a PAR2-independent mechanism.

    Science.gov (United States)

    Lee, Young Ah; Nam, Young Hee; Min, Arim; Kim, Kyeong Ah; Nozaki, Tomoyoshi; Saito-Nakano, Yumiko; Mirelman, David; Shin, Myeong Heon

    2014-01-01

    Entamoeba histolytica is an extracellular tissue parasite causing colitis and occasional liver abscess in humans. E. histolytica-derived secretory products (SPs) contain large amounts of cysteine proteases (CPs), one of the important amoebic virulence factors. Although tissue-residing mast cells play an important role in the mucosal inflammatory response to this pathogen, it is not known whether the SPs induce mast cell activation. In this study, when human mast cells (HMC-1 cells) were stimulated with SPs collected from pathogenic wild-type amoebae, interleukin IL-8 mRNA expression and production were significantly increased compared with cells incubated with medium alone. Inhibition of CP activity in the SPs with heat or the CP inhibitor E64 resulted in significant reduction of IL-8 production. Moreover, SPs obtained from inhibitors of cysteine protease (ICP)-overexpressing amoebae with low CP activity showed weaker stimulatory effects on IL-8 production than the wild-type control. Preincubation of HMC-1 cells with antibodies to human protease-activated receptor 2 (PAR2) did not affect the SP-induced IL-8 production. These results suggest that cysteine proteases in E. histolytica-derived secretory products stimulate mast cells to produce IL-8 via a PAR2-independent mechanism, which contributes to IL-8-mediated tissue inflammatory responses during the early phase of human amoebiasis. © Y.A. Lee et al., published by EDP Sciences, 2014.

  2. Entamoeba histolytica-secreted cysteine proteases induce IL-8 production in human mast cells via a PAR2-independent mechanism

    Directory of Open Access Journals (Sweden)

    Lee Young Ah

    2014-01-01

    Full Text Available Entamoeba histolytica is an extracellular tissue parasite causing colitis and occasional liver abscess in humans. E. histolytica-derived secretory products (SPs contain large amounts of cysteine proteases (CPs, one of the important amoebic virulence factors. Although tissue-residing mast cells play an important role in the mucosal inflammatory response to this pathogen, it is not known whether the SPs induce mast cell activation. In this study, when human mast cells (HMC-1 cells were stimulated with SPs collected from pathogenic wild-type amoebae, interleukin IL-8 mRNA expression and production were significantly increased compared with cells incubated with medium alone. Inhibition of CP activity in the SPs with heat or the CP inhibitor E64 resulted in significant reduction of IL-8 production. Moreover, SPs obtained from inhibitors of cysteine protease (ICP-overexpressing amoebae with low CP activity showed weaker stimulatory effects on IL-8 production than the wild-type control. Preincubation of HMC-1 cells with antibodies to human protease-activated receptor 2 (PAR2 did not affect the SP-induced IL-8 production. These results suggest that cysteine proteases in E. histolytica-derived secretory products stimulate mast cells to produce IL-8 via a PAR2-independent mechanism, which contributes to IL-8-mediated tissue inflammatory responses during the early phase of human amoebiasis.

  3. Characterization and milk coagulating properties of Cynanchum otophyllum Schneid. proteases.

    Science.gov (United States)

    Luo, Jie; Xiao, Chen; Zhang, Hao; Ren, Fazheng; Lei, Xingen; Yang, Zibiao; Yu, Zhengquan

    2018-04-01

    The herbaceous plant Cynanchum otophyllum Schneid. is widely used as a milk coagulant to make a Chinese traditional milk product, milk cake. However, the milk-clotting compounds and their mechanism remain unclear. In this study, crude proteases were extracted from the dried leaves of Cynanchum otophyllum Schneid. using citric acid-phosphate buffer and then partially purified by weak anion exchange chromatography. Two proteases, QA and QC, with molecular weights of 14 and 27 kDa, respectively, were shown to exhibit milk-clotting activity. A study of the effects of pH and temperature on the milk-clotting activity and proteolytic activity of the proteases showed that they exhibited good pH stability from pH 5.5 to 7.5 and good thermal stability at temperatures from 50 to 70°C. The QA and QC were the cysteine proteases, able to hydrolyze β-casein and κ-casein completely, and α-casein partially. The cleavage site on κ-casein determined by Orbitrap (Thermo Fisher Scientific, San Jose, CA) analysis showed that QA and QC could cleave κ-casein at Ser132-Thr133. Overall, the results suggest that the Cynanchum otophyllum Schneid. proteases are a promising milk-clotting enzyme that could be used for manufacturing milk cake and cheese. Copyright © 2018 American Dairy Science Association. Published by Elsevier Inc. All rights reserved.

  4. The action of neutrophil serine proteases on elastin and its precursor

    DEFF Research Database (Denmark)

    Heinz, Andrea; Jung, Michael C; Jahreis, Günther

    2012-01-01

    This study aimed to investigate the degradation of the natural substrates tropoelastin and elastin by the neutrophil-derived serine proteases human leukocyte elastase (HLE), proteinase 3 (PR3) and cathepsin G (CG). Focus was placed on determining their cleavage site specificities using mass...... spectrometric techniques. Moreover, the release of bioactive peptides from elastin by the three proteases was studied. Tropoelastin was comprehensively degraded by all three proteases, whereas less cleavage occurred in mature cross-linked elastin. An analysis of the cleavage site specificities of the three...... proteases in tropoelastin and elastin revealed that HLE and PR3 similarly tolerate hydrophobic and/or aliphatic amino acids such as Ala, Gly and Val at P(1), which are also preferred by CG. In addition, CG prefers the bulky hydrophobic amino acid Leu and accepts the bulky aromatic amino acids Phe and Tyr...

  5. Purification and characterization of an eggshell membrane decomposing protease from Pseudomonas aeruginosa strain ME-4.

    Science.gov (United States)

    Cheng, Minyi; Takenaka, Shinji; Aoki, Shunsuke; Murakami, Shuichiro; Aoki, Kenji

    2009-04-01

    A bacterial strain, ME-4, isolated from farm soil and identified as Pseudomonas aeruginosa, grew well on a medium containing eggshell membrane (ESM). P. aeruginosa strain ME-4 decomposed the ESM by producing an extracellular protease able to solubilize it. The protease was purified to homogeneity from culture supernatant by fractionation with (NH(4))(2)SO(4), as well as CM52 cellulose and DE52 cellulose column chromatography, with a final yield of 47%. The molecular mass of the enzyme was 33 kDa. The isolated enzyme was a metalloprotease and was strongly inhibited by EDTA, o-phenanthroline, and phosphoramidon. The enzyme inhibited by these reagents was reactivated in the presence of several metal ions. The enzyme acted on various proteins and showed higher activity with collagen than collagenase from Clostridium histolyticum. Results of assays with the FRETS combinatorial libraries revealed that the enzyme preferred Ser at the P1 position and Lys at the P2 position. It also preferred hydrophobic amino acid residues at the P1' and P2' positions. The enzyme showed a much higher solubilization activity with the ESM substrate than commercially obtained enzymes. The enzyme decomposed ESM to produce water-soluble peptides, Val-Leu-Pro-Pro and (X)-Val-Pro-Pro, and a free amino acid, tryptophan.

  6. Barley (Hordeum vulgare L.) cysteine proteases: heterologous expression, purification and characterization

    DEFF Research Database (Denmark)

    Rosenkilde, Anne Lind; Dionisio, Giuseppe; Holm, Preben Bach

    2011-01-01

    During germination of barley seeds, mobilization of protein is essential and cysteine proteases accounts for more than 90 % of the total proteolytic activity in the degradation of barley seed storage proteins. Cysteine proteases exist as pro-enzyme and is activated through reduction of the active...... site cysteines and by removal of the pro-domain. The complement of cysteine proteases is comprehensive and for detailed studies of the individual components of this complement, a fast and efficient eukaryotic expression platform is highly desirable. A cDNA clone of the barley key cysteine endoprotease...

  7. Effectiveness of Ritonavir-Boosted Protease Inhibitor Monotherapy in Clinical Practice Even with Previous Virological Failures to Protease Inhibitor-Based Regimens.

    Directory of Open Access Journals (Sweden)

    Luis F López-Cortés

    Full Text Available Significant controversy still exists about ritonavir-boosted protease inhibitor monotherapy (mtPI/rtv as a simplification strategy that is used up to now to treat patients that have not experienced previous virological failure (VF while on protease inhibitor (PI -based regimens. We have evaluated the effectiveness of two mtPI/rtv regimens in an actual clinical practice setting, including patients that had experienced previous VF with PI-based regimens.This retrospective study analyzed 1060 HIV-infected patients with undetectable viremia that were switched to lopinavir/ritonavir or darunavir/ritonavir monotherapy. In cases in which the patient had previously experienced VF while on a PI-based regimen, the lack of major HIV protease resistance mutations to lopinavir or darunavir, respectively, was mandatory. The primary endpoint of this study was the percentage of participants with virological suppression after 96 weeks according to intention-to-treat analysis (non-complete/missing = failure.A total of 1060 patients were analyzed, including 205 with previous VF while on PI-based regimens, 90 of whom were on complex therapies due to extensive resistance. The rates of treatment effectiveness (intention-to-treat analysis and virological efficacy (on-treatment analysis at week 96 were 79.3% (CI95, 76.8-81.8 and 91.5% (CI95, 89.6-93.4, respectively. No relationships were found between VF and earlier VF while on PI-based regimens, the presence of major or minor protease resistance mutations, the previous time on viral suppression, CD4+ T-cell nadir, and HCV-coinfection. Genotypic resistance tests were available in 49 out of the 74 patients with VFs and only four patients presented new major protease resistance mutations.Switching to mtPI/rtv achieves sustained virological control in most patients, even in those with previous VF on PI-based regimens as long as no major resistance mutations are present for the administered drug.

  8. The interaction of thrombin with platelet protease nexin

    International Nuclear Information System (INIS)

    Knupp, C.L.

    1989-01-01

    Thrombin interacts with a platelet protein which is immunologically related to fibroblast protease nexin and has been termed platelet protease nexin I (PNI). Conflicting hypotheses about the relationship of the thrombin-PNI complex formation to platelet activation have been proposed. The studies presented here demonstrate that the platelet-associated and supernatant complexes with added 125I-thrombin are formed only under conditions which produce platelet activation in normal and chymotrypsin-modified platelets. The platelet-associated complex is formed prior to the appearance of complexes in supernatants. Appearance of the supernatant complex coincides with the appearance of thrombospondin in the reaction supernatants. Excess native thrombin, dansylarginine N-(3-ethyl-1,5-pentanediyl) amide or hirudin can prevent radiolabeled platelet-associated complex formation if added before 125I-thrombin. DAPA or hirudin can prevent or dissociate complex formation if added up to one minute after thrombin but not at later time points. The surface associated complex is accessible to trypsin although a portion remains with the cytoskeletal proteins when thrombin-activated platelets are solubilized with Triton X 100. The surface-associated complex formation parallels many aspects of the specific measurable thrombin binding, yet it does not appear to involve other identified surface glycoprotein thrombin receptors or substrates. Although the time course of appearance of the complexes in supernatants is consistent with other data which suggest that PNI may be released from platelet granules during platelet activation, other explanations for the appearance of PNI on the platelet surface and in supernatants during platelet activation are possible

  9. Rapid Detection of Thrombin and Other Protease Activity Directly in Whole Blood

    Science.gov (United States)

    Yu, Johnson Chung Sing

    Thrombin is a serine protease that plays a key role in the clotting cascade to promote hemostasis following injury to the endothelium. From a clinical diagnostic perspective, in-vivo thrombin activity is linked to various blood clotting disorders, as well as cardiovascular disease (DVT, arteriosclerosis, etc). Thus, the ability to rapidly measure protease activity directly in whole blood will provide important new diagnostics, and clinical researchers with a powerful tool to further elucidate the relationship between circulating protease levels and disease. The ultimate goal is to design novel point of care (POC) diagnostic devices that are capable of monitoring protease activities directly in whole blood and biological sample. A charge-changing substrate specific to the thrombin enzyme was engineered and its functionality was confirmed by a series of experiments. This led to the preliminary design, construction, and testing of two device platforms deemed fully functional for the electrophoretic separation and focusing of charged peptide fragments. The concept of using the existing charge-changing substrate platform for bacterial protease detection was also investigated. Certain strains of E coli are associated with severe symptoms such as abdominal cramps, bloody diarrhea, and vomiting. The OmpT protease is expressed on the outer membrane of E coli and plays a role in the cleavage of antimicrobial peptides, the degradation of recombinant heterologous proteins, and the activation of plasminogen in the host. Thus, a synthetic peptide substrate specific to the OmpT protease was designed and modeled for the purpose of detecting E coli in biological sample.

  10. Cathepsin F cysteine protease of the human liver fluke, Opisthorchis viverrini.

    Directory of Open Access Journals (Sweden)

    Porntip Pinlaor

    Full Text Available The liver fluke Opisthorchis viverrini is classified as a class I carcinogen due to the association between cholangiocarcinoma and chronic O. viverrini infection. During its feeding activity within the bile duct, the parasite secretes several cathepsin F cysteine proteases that may induce or contribute to the pathologies associated with hepatobiliary abnormalities.Here, we describe the cDNA, gene organization, phylogenetic relationships, immunolocalization, and functional characterization of the cathepsin F cysteine protease gene, here termed Ov-cf-1, from O. viverrini. The full length mRNA of 1020 nucleotides (nt encoded a 326 amino acid zymogen consisting of a predicted signal peptide (18 amino acids, aa, prosegment (95 aa, and mature protease (213 aa. BLAST analysis using the Ov-CF-1 protein as the query revealed that the protease shared identity with cathepsin F-like cysteine proteases of other trematodes, including Clonorchis sinensis (81%, Paragonimus westermani (58%, Schistosoma mansoni and S. japonicum (52%, and with vertebrate cathepsin F (51%. Transcripts encoding the protease were detected in all developmental stages that parasitize the mammalian host. The Ov-cf-1 gene, of approximately 3 kb in length, included seven exons interrupted by six introns; the exons ranged from 69 to 267 bp in length, the introns from 43 to 1,060 bp. The six intron/exon boundaries of Ov-cf-1 were conserved with intron/exon boundaries in the human cathepsin F gene, although the gene structure of human cathepsin F is more complex. Unlike Ov-CF-1, human cathepsin F zymogen includes a cystatin domain in the prosegment region. Phylogenetic analysis revealed that the fluke, human, and other cathepsin Fs branched together in a clade discrete from the cathepsin L cysteine proteases. A recombinant Ov-CF-1 zymogen that displayed low-level activity was expressed in the yeast Pichia pastoris. Although the recombinant protease did not autocatalytically process and

  11. Corruption of innate immunity by bacterial proteases.

    Science.gov (United States)

    Potempa, Jan; Pike, Robert N

    2009-01-01

    The innate immune system of the human body has developed numerous mechanisms to control endogenous and exogenous bacteria and thus prevent infections by these microorganisms. These mechanisms range from physical barriers such as the skin or mucosal epithelium to a sophisticated array of molecules and cells that function to suppress or prevent bacterial infection. Many bacteria express a variety of proteases, ranging from non-specific and powerful enzymes that degrade many proteins involved in innate immunity to proteases that are extremely precise and specific in their mode of action. Here we have assembled a comprehensive picture of how bacterial proteases affect the host's innate immune system to gain advantage and cause infection. This picture is far from being complete since the numbers of mechanisms utilized are as astonishing as they are diverse, ranging from degradation of molecules vital to innate immune mechanisms to subversion of the mechanisms to allow the bacterium to hide from the system or take advantage of it. It is vital that such mechanisms are elucidated to allow strategies to be developed to aid the innate immune system in controlling bacterial infections.

  12. Novel peptide-based protease inhibitors

    DEFF Research Database (Denmark)

    Roodbeen, Renée

    of novel peptide-based protease inhibitors, efforts were made towards improved methods for peptide synthesis. The coupling of Fmoc-amino acids onto N-methylated peptidyl resins was investigated. These couplings can be low yielding and the effect of the use of microwave heating combined with the coupling...

  13. Carbohydrase and protease supplementation increased ...

    African Journals Online (AJOL)

    A trial was conducted to evaluate whether the addition of commercial enzyme preparations containing carbohydrases and a protease would increase the available metabolizable energy (ME) of maize-soya-based broiler diets. Seven thousand five hundred and sixty (7560) day-old Ross 788 chicks were randomly allocated ...

  14. Molecular models of NS3 protease variants of the Hepatitis C virus

    Directory of Open Access Journals (Sweden)

    Mello Isabel MVGC

    2005-01-01

    Full Text Available Abstract Background Hepatitis C virus (HCV currently infects approximately three percent of the world population. In view of the lack of vaccines against HCV, there is an urgent need for an efficient treatment of the disease by an effective antiviral drug. Rational drug design has not been the primary way for discovering major therapeutics. Nevertheless, there are reports of success in the development of inhibitor using a structure-based approach. One of the possible targets for drug development against HCV is the NS3 protease variants. Based on the three-dimensional structure of these variants we expect to identify new NS3 protease inhibitors. In order to speed up the modeling process all NS3 protease variant models were generated in a Beowulf cluster. The potential of the structural bioinformatics for development of new antiviral drugs is discussed. Results The atomic coordinates of crystallographic structure 1CU1 and 1DY9 were used as starting model for modeling of the NS3 protease variant structures. The NS3 protease variant structures are composed of six subdomains, which occur in sequence along the polypeptide chain. The protease domain exhibits the dual beta-barrel fold that is common among members of the chymotrypsin serine protease family. The helicase domain contains two structurally related beta-alpha-beta subdomains and a third subdomain of seven helices and three short beta strands. The latter domain is usually referred to as the helicase alpha-helical subdomain. The rmsd value of bond lengths and bond angles, the average G-factor and Verify 3D values are presented for NS3 protease variant structures. Conclusions This project increases the certainty that homology modeling is an useful tool in structural biology and that it can be very valuable in annotating genome sequence information and contributing to structural and functional genomics from virus. The structural models will be used to guide future efforts in the structure

  15. The Toxicity of Depleted Uranium

    OpenAIRE

    Briner, Wayne

    2010-01-01

    Depleted uranium (DU) is an emerging environmental pollutant that is introduced into the environment primarily by military activity. While depleted uranium is less radioactive than natural uranium, it still retains all the chemical toxicity associated with the original element. In large doses the kidney is the target organ for the acute chemical toxicity of this metal, producing potentially lethal tubular necrosis. In contrast, chronic low dose exposure to depleted uranium may not produce a c...

  16. Schistosome serine protease inhibitors: parasite defense or homeostasis?

    Directory of Open Access Journals (Sweden)

    Landys A. Lopez Quezada

    2011-06-01

    Full Text Available Serpins are a structurally conserved family of macromolecular inhibitors found in numerous biological systems. The completion and annotation of the genomes of Schistosoma mansoni and Schistosoma japonicum has enabled the identification by phylogenetic analysis of two major serpin clades. S. mansoni shows a greater multiplicity of serpin genes, perhaps reflecting adaptation to infection of a human host. Putative targets of schistosome serpins can be predicted from the sequence of the reactive center loop (RCL. Schistosome serpins may play important roles in both post-translational regulation of schistosome-derived proteases, as well as parasite defense mechanisms against the action of host proteases.Serpinas são uma família de inibidores macromoleculares estruturalmente conservados encontrados em inúmeros sistemas biológicos. O término e a anotação dos genomas de Schistosoma mansoni e de Schistosoma japonicum permitiram a identificação por análise filogenética de dois principais clados de serpinas. S. mansoni mostra uma multiplicidade maior de genes de serpinas, talvez refletindo uma adaptação à infecção de um hospedeiro humano. Alvos putativos das serpinas de esquistossomos podem ser preditos a partir da sequência do "loop" do centro reativo. Serpinas de esquistossomos podem ter importantes papeis tanto na regulação pós-traducional de proteases derivadas do esquistossoma, quanto nos mecanismos de defesa contra a ação de proteases do hospedeiro.

  17. Toxicity of common ions to marine organisms

    International Nuclear Information System (INIS)

    Pillard, D.A.; DuFresne, D.L.; Evans, J.

    1995-01-01

    Produced waters from oil and gas drilling operations are typically very saline, and these may cause acute toxicity to marine organisms due to osmotic imbalances as well as to an excess or deficiency of specific common ions. In order to better understand the relationship between toxicity and ion concentration, laboratory toxicity tests were conducted using mysid shrimp (Mysidopsis bahia), sheepshead minnow (Cyprinodon variegatus), and inland silverside (Menidia beryllina). For each species the ionic concentration of standard laboratory water was proportionally increased or decreased to produce test solutions with a range of salinities. Organisms were exposed for 48 hours. Individual ions (sodium, potassium, calcium, magnetsium, strontium, chloride, bromide, sulfate, bicarbonate, and borate) were also manipulated to examine individual ion toxicity. The three test species differ in their tolerance of salinity. Mysid shrimp show a marked decrease in survival at salinities less than approximately 5 ppt. Both fish species tolerated low salinity water, however, silversides were less tolerant of saline waters (salinity greater than 40 ppt). There were also significant differences in the responses of the organisms to different ions. The results show that the salinity of the test solution may play an important role in the responses of the organisms to the produced water effluent. Predictable toxicity/ion relationships developed in this study can be used to estimate whether toxicity in a produced water is a result of common ions, salinity, or some other unknown toxicant

  18. Dengue Virus NS2B/NS3 Protease Inhibitors Exploiting the Prime Side.

    Science.gov (United States)

    Lin, Kuan-Hung; Ali, Akbar; Rusere, Linah; Soumana, Djade I; Kurt Yilmaz, Nese; Schiffer, Celia A

    2017-05-15

    The mosquito-transmitted dengue virus (DENV) infects millions of people in tropical and subtropical regions. Maturation of DENV particles requires proper cleavage of the viral polyprotein, including processing of 8 of the 13 substrate cleavage sites by dengue virus NS2B/NS3 protease. With no available direct-acting antiviral targeting DENV, NS2/NS3 protease is a promising target for inhibitor design. Current design efforts focus on the nonprime side of the DENV protease active site, resulting in highly hydrophilic and nonspecific scaffolds. However, the prime side also significantly modulates DENV protease binding affinity, as revealed by engineering the binding loop of aprotinin, a small protein with high affinity for DENV protease. In this study, we designed a series of cyclic peptides interacting with both sides of the active site as inhibitors of dengue virus protease. The design was based on two aprotinin loops and aimed to leverage both key specific interactions of substrate sequences and the entropic advantage driving aprotinin's high affinity. By optimizing the cyclization linker, length, and amino acid sequence, the tightest cyclic peptide achieved a K i value of 2.9 μM against DENV3 wild-type (WT) protease. These inhibitors provide proof of concept that both sides of DENV protease active site can be exploited to potentially achieve specificity and lower hydrophilicity in the design of inhibitors targeting DENV. IMPORTANCE Viruses of the flaviviral family, including DENV and Zika virus transmitted by Aedes aegypti , continue to be a threat to global health by causing major outbreaks in tropical and subtropical regions, with no available direct-acting antivirals for treatment. A better understanding of the molecular requirements for the design of potent and specific inhibitors against flaviviral proteins will contribute to the development of targeted therapies for infections by these viruses. The cyclic peptides reported here as DENV protease inhibitors

  19. Design of novel HIV-1 protease inhibitors incorporating isophthalamide-derived P2-P3 ligands: Synthesis, biological evaluation and X-ray structural studies of inhibitor-HIV-1 protease complex

    Energy Technology Data Exchange (ETDEWEB)

    Ghosh, Arun K.; Brindisi, Margherita; Nyalapatla, Prasanth R.; Takayama, Jun; Ella-Menye, Jean-Rene; Yashchuk, Sofiya; Agniswamy, Johnson; Wang, Yuan-Fang; Aoki, Manabu; Amano, Masayuki; Weber, Irene T.; Mitsuya, Hiroaki

    2017-10-01

    Based upon molecular insights from the X-ray structures of inhibitor-bound HIV-1 protease complexes, we have designed a series of isophthalamide-derived inhibitors incorporating substituted pyrrolidines, piperidines and thiazolidines as P2-P3 ligands for specific interactions in the S2-S3 extended site. Compound 4b has shown an enzyme Ki of 0.025 nM and antiviral IC50 of 69 nM. An X-ray crystal structure of inhibitor 4b-HIV-1 protease complex was determined at 1.33 Å resolution. We have also determined X-ray structure of 3b-bound HIV-1 protease at 1.27 Å resolution. These structures revealed important molecular insight into the inhibitor–HIV-1 protease interactions in the active site.

  20. An efficient method to eliminate the protease activity contaminating commercial bovine pancreatic DNase I.

    Science.gov (United States)

    Le, Tien; Lee, Hak Jin; Jin, Hyung Jong

    2015-08-15

    A method was developed to eliminate the proteases contaminating commercial DNase I, which can cause degradation of target protein during the purification process. Bio Basic DNase stock solution (in Tris-HCl buffer [pH 8.0] containing 5mM CaCl2) was first incubated at 50 °C to generate autolysis of proteases and zymogens, leading to a significant reduction in protease activity while preserving DNase activity. The residual protease activity was completely inhibited by further incubation with 2mM PMSF (phenylmethylsulfonyl fluoride) or 2× S8830 inhibitor cocktail. This approach could be readily applicable to eliminate the protease activity in any DNase products or during the preparation of commercial DNase. Copyright © 2015 Elsevier Inc. All rights reserved.

  1. Purification and characterization of a serine protease (CESP) from mature coconut endosperm

    Science.gov (United States)

    Panicker, Leelamma M; Usha, Rajamma; Roy, Samir; Mandal, Chhabinath

    2009-01-01

    Background In plants, proteases execute an important role in the overall process of protein turnover during seed development, germination and senescence. The limited knowledge on the proteolytic machinery that operates during seed development in coconut (Cocos nucifera L.) prompted us to search for proteases in the coconut endosperm. Findings We have identified and purified a coconut endosperm protease (CESP) to apparent homogeneity. CESP is a single polypeptide enzyme of approximate molecular mass of 68 kDa and possesses pH optimum of 8.5 for the hydrolysis of BAPNA. Studies relating to substrate specificity and pattern of inhibition by various protease inhibitors indicated that CESP is a serine protease with cleavage specificity to peptide bonds after arginine. Purified CESP was often autolysed to two polypeptides of 41.6 kDa (CESP1) and 26.7 kDa (CESP2) and is confirmed by immunochemistry. We have shown the expression of CESP in all varieties of coconut and in all stages of coconut endosperm development with maximum amount in fully matured coconut. Conclusion Since the involvement of proteases in the processing of pre-proteins and maintenance of intracellular protein levels in seeds are well known, we suspect this CESP might play an important role in the coconut endosperm development. However this need to be confirmed using further studies. PMID:19426537

  2. Research strategies for design and development of NSAIDs: clue to balance potency and toxicity of acetanilide compounds.

    Science.gov (United States)

    Pal, A K; Sen, S; Ghosh, S; Bera, A K; Bhattacharya, S; Chakraborty, S; Banerjee, A

    2001-08-01

    Despite the fact that many modern drug therapies are based on the concept of enzyme inhibition, inhibition of several enzymes leads to pathological disorders. Clinically used nonsteroidal anti-inflammatory drugs (NSAIDs) bind to the active site of the membrane protein, cyclooxygenase (COX) and inhibit the synthesis of prostaglandins, the mediators for causing inflammation. At the same time, inhibition of hepatic cysteine proteases by some NSAID metabolites like NAPQI is implicated in the pathogenesis of hepatotoxicity. As a part of our efforts to develop new effective NSAIDs, a comprehensive investigation starting from synthesis to the study of the final metabolism of acetanilide group of compound has been envisaged with appropriate feedback from kinetic studies to enhance our knowledge and technical competency to feed the know-how to the medicinal chemist to screen out and design new acetanilide derivatives of high potency and low toxicity. Structure-function relationship based on the interaction of acetanilide with its cognate enzyme, cyclooxygenase has been studied critically with adequate comparison with several other available crystal structures of COX-NSAID complexes. Furthermore, to make the receptor based drug design strategy a novel and comprehensive one, both the mechanism of metabolism of acetanilide and structural basis of inhibition of cysteine proteases by the reactive metabolite (NAPQI) formed by cytochrome P450 oxidation of acetanilide have been incorporated in the study. It is hoped that this synergistic approach and the results obtained from such consorted structural investigation at atomic level may guide to dictate synthetic modification with judicious balance between cyclooxygenase inhibition and hepatic cysteine protease inhibition to enhance the potential of such molecular medicine to relieve inflammation on one hand and low hepatic toxicity on the other.

  3. Chemistry and biology of natural product derived protease inhibitors

    OpenAIRE

    Stolze, Sara Christina

    2012-01-01

    Im Rahmen dieser Dissertation sollten Naturstoffe und davon abgeleitete Derivate synthetisiert und im Hinblick auf ihre biologische Aktivität als Protease-Inhibitoren untersucht werden. Für die Naturstoffklasse der 3-Amino-6-Hydroxy-2-piperidon(Ahp)-Cyclodepsipeptide, die als nicht-kovalente Serin-Protease-Inhibitoren bekannt sind, konnte eine Festphasensynthese basierend auf einem allgemeinen Ahp-Vorläufermolekül entwickelt werden. Für den Ahp-Vorläufer wurde eine Lösungssynthese entwicke...

  4. A conformational switch high-throughput screening assay and allosteric inhibition of the flavivirus NS2B-NS3 protease.

    Directory of Open Access Journals (Sweden)

    Matthew Brecher

    2017-05-01

    Full Text Available The flavivirus genome encodes a single polyprotein precursor requiring multiple cleavages by host and viral proteases in order to produce the individual proteins that constitute an infectious virion. Previous studies have revealed that the NS2B cofactor of the viral NS2B-NS3 heterocomplex protease displays a conformational dynamic between active and inactive states. Here, we developed a conformational switch assay based on split luciferase complementation (SLC to monitor the conformational change of NS2B and to characterize candidate allosteric inhibitors. Binding of an active-site inhibitor to the protease resulted in a conformational change of NS2B and led to significant SLC enhancement. Mutagenesis of key residues at an allosteric site abolished this induced conformational change and SLC enhancement. We also performed a virtual screen of NCI library compounds to identify allosteric inhibitors, followed by in vitro biochemical screening of the resultant candidates. Only three of these compounds, NSC135618, 260594, and 146771, significantly inhibited the protease of Dengue virus 2 (DENV2 in vitro, with IC50 values of 1.8 μM, 11.4 μM, and 4.8 μM, respectively. Among the three compounds, only NSC135618 significantly suppressed the SLC enhancement triggered by binding of active-site inhibitor in a dose-dependent manner, indicating that it inhibits the conformational change of NS2B. Results from virus titer reduction assays revealed that NSC135618 is a broad spectrum flavivirus protease inhibitor, and can significantly reduce titers of DENV2, Zika virus (ZIKV, West Nile virus (WNV, and Yellow fever virus (YFV on A549 cells in vivo, with EC50 values in low micromolar range. In contrast, the cytotoxicity of NSC135618 is only moderate with CC50 of 48.8 μM on A549 cells. Moreover, NSC135618 inhibited ZIKV in human placental and neural progenitor cells relevant to ZIKV pathogenesis. Results from binding, kinetics, Western blot, mass spectrometry and

  5. Boosted protease inhibitor monotherapy versus boosted protease inhibitor plus lamivudine dual therapy as second-line maintenance treatment for HIV-1-infected patients in sub-Saharan Africa (ANRS12 286/MOBIDIP): a multicentre, randomised, parallel, open-label, superiority trial.

    Science.gov (United States)

    Ciaffi, Laura; Koulla-Shiro, Sinata; Sawadogo, Adrien Bruno; Ndour, Cheik Tidiane; Eymard-Duvernay, Sabrina; Mbouyap, Pretty Rosereine; Ayangma, Liliane; Zoungrana, Jacques; Gueye, Ndeye Fatou Ngom; Diallo, Mohamadou; Izard, Suzanne; Bado, Guillaume; Kane, Coumba Toure; Aghokeng, Avelin Fobang; Peeters, Martine; Girard, Pierre Marie; Le Moing, Vincent; Reynes, Jacques; Delaporte, Eric

    2017-09-01

    Despite satisfactory efficacy of WHO-recommended second-line antiretroviral treatment for patients with HIV in low-income countries, the need for simplified, low-cost, and less-toxic maintenance strategies remains high. We compared boosted protease inhibitor monotherapy with dual therapy with boosted protease inhibitor plus lamivudine in patients on second-line antiretrovial therapy (ART). We did a multicentre, randomised, parallel, open-label, superiority, trial in the HIV services of five hospitals in sub-Saharan Africa (Yaoundé, Cameroon; Dakar, Senegal; and Bobo Dioulasso, Burkina Faso). We recruited patients from the long-term, post-trial cohort of the ANRS 12169/2LADY study that compared the efficacy of three second-line combinations based on boosted protease inhibitors. Participants for our study were HIV-1 infected with multiple mutations including M184V, at first-line failure, aged 18 years and older, on boosted protease inhibitor plus two nucleoside reverse transcriptase inhibitors (NRTI) for at least 48 weeks with at least 48 weeks follow-up in the 2LADY trial, with two viral load measurements of less than 200 copies per mL in the previous 6 months, CD4 counts of more than 100 cells per μL, adherence of at least 90%, and no change to ART in the past 3 months. We randomly assigned participants (1:1) to receive either monotherapy with their boosted protease inhibitor (once-daily darunavir 800 mg [two 400 mg tablets] boosted with ritonavir 100 mg [one tablet] or coformulation of lopinavir 200 mg with ritonavir 50 mg [two tablets taken twice per day]) or to boosted protease inhibitor plus once-daily lamivudine 300 mg (one 300 mg tablet or two 150 mg tablets). Computer-generated randomisation was stratified by study site and viral load at screening (treatment allocation was not masked from clinicians or patients]. Patients had follow-up visits at weeks 4 and 12, and every 3 months until 96 weeks; if viral load exceeded 500 copies per mL at any visit, NRTI

  6. Studies on the Catalytic Properties of Partially Purified Alkaline Proteases from Some Selected Microorganisms

    Directory of Open Access Journals (Sweden)

    Titilayo Olufunke Femi-Ola

    2012-09-01

    Full Text Available Aims: The research was done to study the conditions enhancing catalytic activities of alkaline proteases from Vibro sp., Lactobacillus brevis, Zymomonas sp., Athrobacter sp., Corynebacterium sp. and Bacillus subtilis.Methodology and Results: The proteolytic enzymes were purified in 2-step procedures involving ammonium sulphate precipitation and sephadex G-150 gel permeation chromatography. The upper and lower limits for the specific activities of proteases from the selected microorganisms were estimated at 20.63 and 47.51 units/mg protein with Zymomonas protease having the highest specific activity towards casein as its substrate and purification fold of 3.46, while that ofLactobacillus brevis protease was 8.06. The native molecular weights of these active proteins ranged from 30.4 to 45.7 kDa with Athrobacter sp. protease having the highest weight for its subunits. The proteolytic enzymes had optimum pH range of 8 to 10 and temperature range of 50 to 62 ºC accounting for the percentage relative activity range of 75 to 94% and 71 to 84 % respectively. The activities of Lactobacillus brevis and Bacillus subtilis proteases were maximum at pH 9 and 10 respectively. Lactobacillus brevis protease activity was maximum at temperature of 62 ºC, while beyond this value, a general thermal instability of these active proteins was observed. At above 70 ºC, the catalytic activities of Corynebacterium sp., Vibrio sp., Zymomonas sp. and Arthrobacter sp. proteases were progressively reduced over a period of 120 min of incubation, while Bacillus subtlis and Lactobacillus brevis proteases were relatively stable. Effect of metal ions was investigated on the catalytic activity of protease from the microorganisms. Lactobacillus brevis,Zymomonas sp., Arthrobacter sp., Corynebacterium sp. and Bacillus subtilis protease activities were strongly activated by metal ions such as Ca+2 and Mg+2. Enzyme activities were inhibited strongly by Cu2+ and Hg2+ but were not

  7. Expression profile of the Schistosoma japonicum degradome reveals differential protease expression patterns and potential anti-schistosomal intervention targets.

    Directory of Open Access Journals (Sweden)

    Shuai Liu

    2014-10-01

    Full Text Available Blood fluke proteases play pivotal roles in the processes of invasion, nutrition acquisition, immune evasion, and other host-parasite interactions. Hundreds of genes encoding putative proteases have been identified in the recently published schistosome genomes. However, the expression profiles of these proteases in Schistosoma species have not yet been systematically analyzed. We retrieved and culled the redundant protease sequences of Schistosoma japonicum, Schistosoma mansoni, Echinococcus multilocularis, and Clonorchis sinensis from public databases utilizing bioinformatic approaches. The degradomes of the four parasitic organisms and Homo sapiens were then comparatively analyzed. A total of 262 S. japonicum protease sequences were obtained and the expression profiles generated using whole-genome microarray. Four main clusters of protease genes with different expression patterns were identified: proteases up-regulated in hepatic schistosomula and adult worms, egg-specific or predominantly expressed proteases, cercaria-specific or predominantly expressed proteases, and constantly expressed proteases. A subset of protease genes with different expression patterns were further validated using real-time quantitative PCR. The present study represents the most comprehensive analysis of a degradome in Schistosoma species to date. These results provide a firm foundation for future research on the specific function(s of individual proteases and may help to refine anti-proteolytic strategies in blood flukes.

  8. Developing HIV-1 Protease Inhibitors through Stereospecific Reactions in Protein Crystals.

    Science.gov (United States)

    Olajuyigbe, Folasade M; Demitri, Nicola; De Zorzi, Rita; Geremia, Silvano

    2016-10-31

    Protease inhibitors are key components in the chemotherapy of HIV infection. However, the appearance of viral mutants routinely compromises their clinical efficacy, creating a constant need for new and more potent inhibitors. Recently, a new class of epoxide-based inhibitors of HIV-1 protease was investigated and the configuration of the epoxide carbons was demonstrated to play a crucial role in determining the binding affinity. Here we report the comparison between three crystal structures at near-atomic resolution of HIV-1 protease in complex with the epoxide-based inhibitor, revealing an in-situ epoxide ring opening triggered by a pH change in the mother solution of the crystal. Increased pH in the crystal allows a stereospecific nucleophile attack of an ammonia molecule onto an epoxide carbon, with formation of a new inhibitor containing amino-alcohol functions. The described experiments open a pathway for the development of new stereospecific protease inhibitors from a reactive lead compound.

  9. Developing HIV-1 Protease Inhibitors through Stereospecific Reactions in Protein Crystals

    Directory of Open Access Journals (Sweden)

    Folasade M. Olajuyigbe

    2016-10-01

    Full Text Available Protease inhibitors are key components in the chemotherapy of HIV infection. However, the appearance of viral mutants routinely compromises their clinical efficacy, creating a constant need for new and more potent inhibitors. Recently, a new class of epoxide-based inhibitors of HIV-1 protease was investigated and the configuration of the epoxide carbons was demonstrated to play a crucial role in determining the binding affinity. Here we report the comparison between three crystal structures at near-atomic resolution of HIV-1 protease in complex with the epoxide-based inhibitor, revealing an in-situ epoxide ring opening triggered by a pH change in the mother solution of the crystal. Increased pH in the crystal allows a stereospecific nucleophile attack of an ammonia molecule onto an epoxide carbon, with formation of a new inhibitor containing amino-alcohol functions. The described experiments open a pathway for the development of new stereospecific protease inhibitors from a reactive lead compound.

  10. Structural Insights into the Allosteric Operation of the Lon AAA+ Protease.

    Science.gov (United States)

    Lin, Chien-Chu; Su, Shih-Chieh; Su, Ming-Yuan; Liang, Pi-Hui; Feng, Chia-Cheng; Wu, Shih-Hsiung; Chang, Chung-I

    2016-05-03

    The Lon AAA+ protease (LonA) is an evolutionarily conserved protease that couples the ATPase cycle into motion to drive substrate translocation and degradation. A hallmark feature shared by AAA+ proteases is the stimulation of ATPase activity by substrates. Here we report the structure of LonA bound to three ADPs, revealing the first AAA+ protease assembly where the six protomers are arranged alternately in nucleotide-free and bound states. Nucleotide binding induces large coordinated movements of conserved pore loops from two pairs of three non-adjacent protomers and shuttling of the proteolytic groove between the ATPase site and a previously unknown Arg paddle. Structural and biochemical evidence supports the roles of the substrate-bound proteolytic groove in allosteric stimulation of ATPase activity and the conserved Arg paddle in driving substrate degradation. Altogether, this work provides a molecular framework for understanding how ATP-dependent chemomechanical movements drive allosteric processes for substrate degradation in a major protein-destruction machine. Copyright © 2016 Elsevier Ltd. All rights reserved.

  11. The binding mechanism of a peptidic cyclic serine protease inhibitor

    DEFF Research Database (Denmark)

    Jiang, Longguang; Svane, Anna Sigrid P.; Sørensen, Hans Peter

    2011-01-01

    Serine proteases are classical objects for studies of catalytic and inhibitory mechanisms as well as interesting as therapeutic targets. Since small-molecule serine protease inhibitors generally suffer from specificity problems, peptidic inhibitors, isolated from phage-displayed peptide libraries......, have attracted considerable attention. Here, we have investigated the mechanism of binding of peptidic inhibitors to serine protease targets. Our model is upain-1 (CSWRGLENHRMC), a disulfide-bond-constrained competitive inhibitor of human urokinase-type plasminogen activator with a noncanonical...... inhibitory mechanism and an unusually high specificity. Using a number of modified variants of upain-1, we characterised the upain-1-urokinase-type plasminogen activator complex using X-ray crystal structure analysis, determined a model of the peptide in solution by NMR spectroscopy, and analysed binding...

  12. Targeting cysteine proteases in trypanosomatid disease drug discovery.

    Science.gov (United States)

    Ferreira, Leonardo G; Andricopulo, Adriano D

    2017-12-01

    Chagas disease and human African trypanosomiasis are endemic conditions in Latin America and Africa, respectively, for which no effective and safe therapy is available. Efforts in drug discovery have focused on several enzymes from these protozoans, among which cysteine proteases have been validated as molecular targets for pharmacological intervention. These enzymes are expressed during the entire life cycle of trypanosomatid parasites and are essential to many biological processes, including infectivity to the human host. As a result of advances in the knowledge of the structural aspects of cysteine proteases and their role in disease physiopathology, inhibition of these enzymes by small molecules has been demonstrated to be a worthwhile approach to trypanosomatid drug research. This review provides an update on drug discovery strategies targeting the cysteine peptidases cruzain from Trypanosoma cruzi and rhodesain and cathepsin B from Trypanosoma brucei. Given that current chemotherapy for Chagas disease and human African trypanosomiasis has several drawbacks, cysteine proteases will continue to be actively pursued as valuable molecular targets in trypanosomatid disease drug discovery efforts. Copyright © 2017. Published by Elsevier Inc.

  13. Toxic effect of nickel (Ni) on growth and metabolism in germinating seeds of sunflower (Helianthus annuus L.).

    Science.gov (United States)

    Ashraf, Muhammad Yasin; Sadiq, Rumana; Hussain, Mumtaz; Ashraf, Muhammad; Ahmad, M Sajid Aqeel

    2011-12-01

    To assess the toxic effect of nickel (Ni) on the growth and some key metabolic processes in sunflower, varying levels of Ni as Ni(NO(3))(2) up to 60 mg L(-1) were applied once to sunflower cultivars SF-187 and Hysun-33 at sowing time in sand culture. An increase in Ni in the growth medium adversely affected growth parameters, sugar concentration (both reducing and non-reducing), as well as the activities of α-amylase and protease. It also slowed down mobilization of stored proteins and amino acids in the germinating seeds. However, an increase in the activities of α-amylase and protease was observed over time from 24 to 120 h after sowing. Cultivar Hysun-33 showed better performance than SF-187 in the presence of excess Ni. Overall, Ni-induced reduction in germination of sunflower seed appeared to be due to disturbance in biochemical metabolism as the availability of sugars for the synthesis of metabolic energy as well as necessary amino acids for the synthesis of proteins and enzymes essential for the growing embryo are generally reduced due to suppression in α-amylase and protease activities.

  14. Gossypol Toxicity from Cottonseed Products

    Directory of Open Access Journals (Sweden)

    Ivana Cristina N. Gadelha

    2014-01-01

    Full Text Available Gossypol is a phenolic compound produced by pigment glands in cotton stems, leaves, seeds, and flower buds (Gossypium spp.. Cottonseed meal is a by-product of cotton that is used for animal feeding because it is rich in oil and proteins. However, gossypol toxicity limits cottonseed use in animal feed. High concentrations of free gossypol may be responsible for acute clinical signs of gossypol poisoning which include respiratory distress, impaired body weight gain, anorexia, weakness, apathy, and death after several days. However, the most common toxic effects is the impairment of male and female reproduction. Another important toxic effect of gossypol is its interference with immune function, reducing an animal’s resistance to infections and impairing the efficiency of vaccines. Preventive procedures to limit gossypol toxicity involve treatment of the cottonseed product to reduce the concentration of free gossypol with the most common treatment being exposure to heat. However, free gossypol can be released from the bound form during digestion. Agronomic selection has produced cotton varieties devoid of glands producing gossypol, but these varieties are not normally grown because they are less productive and are more vulnerable to attacks by insects.

  15. Effects of protease inhibitors on radiation transformation in vitro

    International Nuclear Information System (INIS)

    Kennedy, A.R.; Little, J.B.

    1981-01-01

    We have investigated the effects of three protease inhibitors, antipain, leupeptin, and soybean trypsin inhibitor, on the induction of oncogenic transformation in mouse C3H10T 1/2 cells by X-rays. The patterns of inhibition by the three protease inhibitors were different. Antipain was the most effective, having the ability to suppress completely radiation transformation as well as radiation transformation enhanced by the phorbol ester promoting agent 12-O-tetradecanoylphorbol-13-acetate. The fact that antipain could suppress transformation when present for only 1 day following irradiation suggests that an effect on a DNA repair process might be important in its action. Leupeptin was less effective than antipain in its inhibition of radiation transformation. Soybean trypsin inhibitor suppressed only the promotional effects of 12-O-tetradecanoylphorbol-13-acetate on transformation. Our results suggest that there may be more than one protease involved in carcinogenesis

  16. Identification of a Degradation Signal Sequence within Substrates of the Mitochondrial i-AAA Protease.

    Science.gov (United States)

    Rampello, Anthony J; Glynn, Steven E

    2017-03-24

    The i-AAA protease is a component of the mitochondrial quality control machinery that regulates respiration, mitochondrial dynamics, and protein import. The protease is required to select specific substrates for degradation from among the diverse complement of proteins present in mitochondria, yet the rules that govern this selection are unclear. Here, we reconstruct the yeast i-AAA protease, Yme1p, to examine the in vitro degradation of two intermembrane space chaperone subunits, Tim9 and Tim10. Yme1p degrades Tim10 more rapidly than Tim9 despite high sequence and structural similarity, and loss of Tim10 is accelerated by the disruption of conserved disulfide bonds within the substrate. An unstructured N-terminal region of Tim10 is necessary and sufficient to target the substrate to the protease through recognition of a short phenylalanine-rich motif, and the presence of similar motifs in other small Tim proteins predicts robust degradation by the protease. Together, these results identify the first specific degron sequence within a native i-AAA protease substrate. Copyright © 2017 Elsevier Ltd. All rights reserved.

  17. HIV protease inhibitors in pregnancy : pharmacology and clinical use.

    Science.gov (United States)

    Andany, Nisha; Loutfy, Mona R

    2013-03-01

    The impact of antiretroviral therapy (ART) on the natural history of HIV-1 infection has resulted in dramatic reductions in disease-associated morbidity and mortality. Additionally, the epidemiology of HIV-1 infection worldwide is changing, as women now represent a substantial proportion of infected adults. As more highly effective and tolerable antiretroviral regimens become available, and as the prevention of mother-to-child transmission becomes an attainable goal in the management of HIV-infected individuals, more and more HIV-positive women are choosing to become pregnant and have children. Consequently, it is important to consider the efficacy and safety of antiretroviral agents in pregnancy. Protease inhibitors are a common class of medication used in the treatment of HIV-1 infection and are increasingly being used in pregnancy. However, several studies have raised concerns regarding pharmacokinetic alterations in pregnancy, particularly in the third trimester, which results in suboptimal drug concentrations and a theoretically higher risk of virologic failure and perinatal transmission. Drug level reductions have been observed with each individual protease inhibitor and dose adjustments in pregnancy are suggested for certain agents. Furthermore, studies have also raised concerns regarding the safety of protease inhibitors in pregnancy, particularly as they may increase the risk of pre-term birth and metabolic disturbances. Overall, protease inhibitors are safe and effective for the treatment of HIV-infected pregnant women. Specifically, ritonavir-boosted lopinavir- and atazanavir-based regimens are preferred in pregnancy, while ritonavir-boosted darunavir- and saquinavir-based therapies are reasonable alternatives. This paper reviews the use of protease inhibitors in pregnancy, focusing on pharmacokinetic and safety considerations, and outlines the recommendations for use of this class of medication in the HIV-1-infected pregnant woman.

  18. Protease Inhibitors of Parasitic Flukes: Emerging Roles in Parasite Survival and Immune Defence.

    Science.gov (United States)

    Ranasinghe, Shiwanthi L; McManus, Donald P

    2017-05-01

    Protease inhibitors play crucial roles in parasite development and survival, counteracting the potentially damaging immune responses of their vertebrate hosts. However, limited information is currently available on protease inhibitors from schistosomes and food-borne trematodes. Future characterization of these molecules is important not only to expand knowledge on parasitic fluke biology but also to determine whether they represent novel vaccine and/or drug targets. Moreover, protease inhibitors from flukes may represent lead compounds for the development of a new range of therapeutic agents against inflammatory disorders and cancer. This review discusses already identified protease inhibitors of fluke origin, emphasizing their biological function and their possible future development as new intervention targets. Copyright © 2016 Elsevier Ltd. All rights reserved.

  19. Perfil de proteases de lesões cutâneas experimentais em camundongos tratadas com a lectina isolada das sementes de Canavalia brasiliensis Proteases profile of skin wounds treated with lectin from Canavalia brasiliensis seeds

    Directory of Open Access Journals (Sweden)

    Flávio de Oliveira Silva

    2009-09-01

    Full Text Available O objetivo deste estudo foi determinar o perfil de proteases em lesões cutâneas experimentais tratadas com a lectina isolada das sementes da Canavalia brasiliensis (ConBr livre e conjugada com o seu açúcar específico. Lesões cirúrgicas foram produzidas assepticamente na região dorsal de camundongos (n=120, divididos de acordo com o tratamento empregado: Grupo NaCl (NaCl 150mM, Grupo manose (manose 100mM, Grupo ConBr (ConBr 100µg mL-1 e Grupo ConBr/manose (solução contendo ConBr 100µg mL-1 preparada em manose 100mM. Amostras da área lesada foram coletadas para determinação do perfil de proteases e atividade colagenolítica no 2°, no 7° e no 12° dia de pós-operatório. O perfil das proteínas realizado através de eletroforese SDS-PAGE demonstrou a presença de proteínas com massa molecular de 67kDa em todos os grupos. O Grupo ConBr/manose apresentou a maior atividade colagenolítica no 12° dia de pós-operatório. A lectina isolada das sementes da Canavalia brasiliensis influenciou a expressão de proteases com atividade colagenolítica podendo assim interferir no processo cicatricial das lesões cutâneas em camundongos.The objective of the present study was determining the proteases profile of cutaneous healings treated with free and conjugated lectin of Canavalia brasiliensis (ConBr and their specific sugar. An aseptic wound was produced in the thoracic area of the mice (n=120, divided according to the employed treatment: NaCl Group (150mM NaCl, manose Group (100mM manose, ConBr Group (100µg mL-1 ConBr and ConBr/manose Group (solution containing 100µg mL-1 ConBr prepared in 100mM manose. Samples of the injured area were collected for determination of proteases profile and collagenolytic activity on 2nd, 7th e 12th days after the surgery. Electrophoresis SDS-PAGE demonstrated proteins with molecular mass of 67kDa in all groups. Group IV presented the highest collagenolytic activity on the 12th day post surgery. Con

  20. Heterologous expression and characterisation of the Aspergillus aspartic protease involved in the hydrolysis and decolorisation of red-pigmented proteins.

    Science.gov (United States)

    Takenaka, Shinji; Umeda, Mayo; Senba, Hisanori; Koyama, Dai; Tanaka, Kosei; Yoshida, Ken-Ichi; Doi, Mikiharu

    2017-01-01

    Aspergillus repens strain MK82 produces an aspartic protease (PepA_MK82) that efficiently decolorises red-pigmented proteins during dried bonito fermentation. However, further expansion of the industrial applications of PepA_MK82 requires the high-level production and efficient preparation of the recombinant enzyme. The genomic DNA and cDNA fragments encoding the protease were cloned from strain MK82 and sequenced. Phylogenetic analysis of PepA_MK82 and comparisons with previously reported fungal aspartic proteases showed that PepA_MK 82 clusters with different groups of these enzymes. Heterologous expression of PepA_MK82 in Pichia pastoris yielded preparations of higher purity than obtained with an Escherichia coli expression system. Total protease activity in a 100-mL culture of the P. pastoris transformant was 14 times higher than that from an equivalent culture of A. repense MK82. The recombinant PepA_MK82 was easily obtained via acetone precipitation; the final recovery was 83%. PepA_MK82 and its recombinant had similar characteristics in terms of their optimal pH, thermostability, and decolorisation activity. The recombinant was also able to decolorise flaked, dried bonito and to bleach a blood-stained cloth. Given its ability to hydrolyse and decolorise red-pigmented proteins, recombinant PepA_MK8 can be exploited in the food industry and as a stain-removal agent in laundry applications. © 2016 Society of Chemical Industry. © 2016 Society of Chemical Industry.

  1. Giardia duodenalis Surface Cysteine Proteases Induce Cleavage of the Intestinal Epithelial Cytoskeletal Protein Villin via Myosin Light Chain Kinase.

    Directory of Open Access Journals (Sweden)

    Amol Bhargava

    Full Text Available Giardia duodenalis infections are among the most common causes of waterborne diarrhoeal disease worldwide. At the height of infection, G. duodenalis trophozoites induce multiple pathophysiological processes within intestinal epithelial cells that contribute to the development of diarrhoeal disease. To date, our understanding of pathophysiological processes in giardiasis remains incompletely understood. The present study reveals a previously unappreciated role for G. duodenalis cathepsin cysteine proteases in intestinal epithelial pathophysiological processes that occur during giardiasis. Experiments first established that Giardia trophozoites indeed produce cathepsin B and L in strain-dependent fashion. Co-incubation of G. duodenalis with human enterocytes enhanced cathepsin production by Assemblage A (NF and S2 isolates trophozoites, but not when epithelial cells were exposed to Assemblage B (GSM isolate trophozoites. Direct contact between G. duodenalis parasites and human intestinal epithelial monolayers resulted in the degradation and redistribution of the intestinal epithelial cytoskeletal protein villin; these effects were abolished when parasite cathepsin cysteine proteases were inhibited. Interestingly, inhibition of parasite proteases did not prevent degradation of the intestinal tight junction-associated protein zonula occludens 1 (ZO-1, suggesting that G. duodenalis induces multiple pathophysiological processes within intestinal epithelial cells. Finally, this study demonstrates that G. duodenalis-mediated disruption of villin is, at least, in part dependent on activation of myosin light chain kinase (MLCK. Taken together, this study indicates a novel role for parasite cathepsin cysteine proteases in the pathophysiology of G. duodenalis infections.

  2. Toxic indole alkaloids avrainvillamide and stephacidin B produced by a biocide tolerant indoor mold Aspergillus westerdijkiae.

    Science.gov (United States)

    Mikkola, Raimo; Andersson, Maria A; Hautaniemi, Maria; Salkinoja-Salonen, Mirja S

    2015-06-01

    Toxic Aspergillus westerdijkiae were present in house dust and indoor air fall-out from a residence and a kindergarten where the occupants suffered from building related ill health. The A. westerdijkiae isolates produced indole alkaloids avrainvillamide (445 Da) and its dimer stephacidin B (890 Da). It grew and sporulated in presence of high concentrations of boron or polyguanidine (PHMB, PHMG) based antimicrobial biocides used to remediate mold infested buildings. The boar sperm cells were used as sensor cells to purify toxins from HPLC fractions of the fungal biomass. Submicromolar concentrations (EC50 0.3-0.4 μM) blocked boar spermatozoan motility and killed porcine kidney tubular epithelial cells (PK-15). Plate grown hyphal mass of the A. westerdijkiae isolates contained 300-750 ng of avrainvillamide and 30-300 ng of stephacidin B per mg (wet weight). The toxins induced rapid (30 min) loss of boar sperm motility, followed (24 h) by loss of mitochondrial membrane potential (ΔΨm). Apoptotic cell death was observed in PK-15 cell monolayers, prior to cessation of glucose uptake or loss of ΔΨm. Avrainvillamide and stephacidin B were 100-fold more potent towards the porcine cells than the mycotoxins stephacidin A, ochratoxin A, sterigmatocystin and citrinin. The high toxicity of stephacidin B indicates a role of nitrone group in the mechanism of toxicity. Avrainvillamide and stephacidin B represent a new class of toxins with possible a threat to human health in buildings. Furthermore, the use of biocides highly enhanced the growth of toxigenic A. westerdijkiae. Copyright © 2015 Elsevier Ltd. All rights reserved.

  3. A cyclic peptidic serine protease inhibitor

    DEFF Research Database (Denmark)

    Zhao, Baoyu; Xu, Peng; Jiang, Longguang

    2014-01-01

    Peptides are attracting increasing interest as protease inhibitors. Here, we demonstrate a new inhibitory mechanism and a new type of exosite interactions for a phage-displayed peptide library-derived competitive inhibitor, mupain-1 (CPAYSRYLDC), of the serine protease murine urokinase...... pocket, its carbonyl group aligning improperly relative to Ser195 and the oxyanion hole, explaining why the peptide is an inhibitor rather than a substrate. Substitution of the P1 Arg with novel unnatural Arg analogues with aliphatic or aromatic ring structures led to an increased affinity, depending......, in spite of a less favorable binding entropy and loss of a polar interaction. We conclude that increased flexibility of the peptide allows more favorable exosite interactions, which, in combination with the use of novel Arg analogues as P1 residues, can be used to manipulate the affinity and specificity...

  4. Coxsackievirus B3 2A protease promotes encephalomyocarditis virus replication.

    Science.gov (United States)

    Song, Qin-Qin; Lu, Ming-Zhi; Song, Juan; Chi, Miao-Miao; Sheng, Lin-Jun; Yu, Jie; Luo, Xiao-Nuan; Zhang, Lu; Yao, Hai-Lan; Han, Jun

    2015-10-02

    To determine whether 2A protease of the enterovirus genus with type I internal ribosome entry site (IRES) effect on the viral replication of type II IRES, coxsackievirus B3(CVB3)-encoded protease 2A and encephalomyocarditis virus (EMCV) IRES (Type II)-dependent or cap-dependent report gene were transiently co-expressed in eukaryotic cells. We found that CVB3 2A protease not only inhibited translation of cap-dependent reporter genes through the cleavage of eIF4GI, but also conferred high EMCV IRES-dependent translation ability and promoted EMCV replication. Moreover, deletions of short motif (aa13-18 RVVNRH, aa65-70 KNKHYP, or aa88-93 PRRYQSH) resembling the nuclear localization signals (NLS) or COOH-terminal acidic amino acid motif (aa133-147 DIRDLLWLEDDAMEQ) of CVB3 2A protease decreased both its EMCV IRES-dependent translation efficiency and destroy its cleavage on eukaryotic initiation factor 4G (eIF4G) I. Our results may provide better understanding into more effective interventions and treatments for co-infection of viral diseases. Copyright © 2015 Elsevier B.V. All rights reserved.

  5. Crystallization of mutants of Turnip yellow mosaic virus protease/ubiquitin hydrolase designed to prevent protease self-recognition.

    Science.gov (United States)

    Ayach, Maya; Bressanelli, Stéphane

    2015-04-01

    Processing of the polyprotein of Turnip yellow mosaic virus is mediated by the protease PRO. PRO cleaves at two places, one of which is at the C-terminus of the PRO domain of another polyprotein molecule. In addition to this processing activity, PRO possesses an ubiquitin hydrolase (DUB) activity. The crystal structure of PRO has previously been reported in its polyprotein-processing mode with the C-terminus of one PRO inserted into the catalytic site of the next PRO, generating PRO polymers in the crystal packing of the trigonal space group. Here, two mutants designed to disrupt specific PRO-PRO interactions were generated, produced and purified. Crystalline plates were obtained by seeding and cross-seeding from initial `sea urchin'-like microcrystals of one mutant. The plates diffracted to beyond 2 Å resolution at a synchrotron source and complete data sets were collected for the two mutants. Data processing and analysis indicated that both mutant crystals belonged to the same monoclinic space group, with two molecules of PRO in the asymmetric unit.

  6. Three Pairs of Protease-Serpin Complexes Cooperatively Regulate the Insect Innate Immune Responses*

    OpenAIRE

    Jiang, Rui; Kim, Eun-Hye; Gong, Ji-Hee; Kwon, Hyun-Mi; Kim, Chan-Hee; Ryu, Kyoung-Hwa; Park, Ji-Won; Kurokawa, Kenji; Zhang, Jinghai; Gubb, David; Lee, Bok-Luel

    2009-01-01

    Serpins are known to be necessary for the regulation of several serine protease cascades. However, the mechanisms of how serpins regulate the innate immune responses of invertebrates are not well understood due to the uncertainty of the identity of the serine proteases targeted by the serpins. We recently reported the molecular activation mechanisms of three serine protease-mediated Toll and melanin synthesis cascades in a large beetle, Tenebrio molitor. Here, we purified three novel serpins ...

  7. Cross-talk between malarial cysteine proteases and falstatin: the BC loop as a hot-spot target.

    Directory of Open Access Journals (Sweden)

    Srinivasan Sundararaj

    Full Text Available Cysteine proteases play a crucial role in the development of the human malaria parasites Plasmodium falciparum and Plasmodium vivax. Our earlier studies demonstrated that these enzymes are equipped with specific domains for defined functions and further suggested the mechanism of activation of cysteine proteases. The activities of these proteases are regulated by a new class of endogenous inhibitors of cysteine proteases (ICPs. Structural studies of the ICPs of Trypanosoma cruzi (chagasin and Plasmodium berghei (PbICP indicated that three loops (termed BC, DE, and FG are crucial for binding to target proteases. Falstatin, an ICP of P. falciparum, appears to play a crucial role in invasion of erythrocytes and hepatocytes. However, the mechanism of inhibition of cysteine proteases by falstatin has not been established. Our study suggests that falstatin is the first known ICP to function as a multimeric protein. Using site-directed mutagenesis, hemoglobin hydrolysis assays and peptide inhibition studies, we demonstrate that the BC loop, but not the DE or FG loops, inhibits cysteine proteases of P. falciparum and P. vivax via hydrogen bonds. These results suggest that the BC loop of falstatin acts as a hot-spot target for inhibiting malarial cysteine proteases. This finding suggests new strategies for the development of anti-malarial agents based on protease-inhibitor interactions.

  8. Analysis of serine proteases from marine sponges by 2-D zymography.

    Science.gov (United States)

    Wilkesman, Jeff G; Schröder, Heinz C

    2007-02-01

    Proteolytic activities isolated from the marine demosponges Geodia cydonium and Suberites domuncula were analyzed by 2-D zymography, a technique that combines IEF and zymography. After purification, a 200 kDa proteolytically active protein band was obtained from G. cydonium when analyzed in gelatin copolymerized 1-D zymograms. The enzymatic activity was quantified using alpha-N-benzoyl-D-arginine p-nitroanilide (BAPNA) as a substrate and corresponded to a serine protease. The protease activity was resistant to urea and SDS. DTT and 2-mercaptoethanol (2-ME) did not significantly change the protease activity, but induced a shift in molecular mass of the proteolytic band to lower M(r) values as detected by zymography. Under mild denaturing conditions, lower M(r) bands (zymography, the protease from G. cydonium revealed a pI of 8.0 and an M(r) shift from 200 to 66 kDa. To contrast these results, a cytosolic sample from S. domuncula was analyzed. The proteolytic activity of this sponge after 2-D zymography corresponded to an M(r) of 40 kDa and a pI of 4.0. The biological function of both sponge proteases is not yet known. This study demonstrates that mild denaturing conditions required for IEF may alter the interpretation of the 2-D zymography, and care must be taken during sample preparation.

  9. Hide depilation and feather disintegration studies with keratinolytic serine protease from a novel Bacillus subtilis isolate.

    Science.gov (United States)

    Pillai, Priya; Archana, G

    2008-03-01

    Keratinases play an important role in biotechnological applications such as improvement of feather meal, enzymatic dehairing and production of amino acids or peptides from high molecular weight substrates. Bacillus subtilis P13, isolated from Vajreshwari hot spring (45-50 degrees C) near Mumbai, India, produces a neutral serine protease and has an optimum temperature of 65 degrees C. This enzyme preparation was keratinolytic in nature and could disintegrate whole chicken feathers, except for the remnants of shafts. The enzyme preparation also exhibited depilation of goat hides with the recovery of intact animal hair. The enzyme preparation could release peptides from ground feathers and bring about their weight reduction; however, similar action on hair was relatively weak. A single major PMSF-sensitive protease band could be detected upon zymogram analysis, indicating that a single enzyme may be responsible for feather degradation and hide depilation. The importance of these findings in the biotechnological application for feather and leather industries is discussed.

  10. Sequential Detection of Thermophilic Lipase and Protease by Zymography.

    Science.gov (United States)

    Kurz, Liliana; Hernández, Zully; Contreras, Lellys M; Wilkesman, Jeff

    2017-01-01

    Lipase and protease present in cell-free fractions of thermophilic Bacillus sp. cultures were analyzed by polyacrylamide gel (PAG) electrophoresis. After run, the gel is electrotransferred to another PAG copolymerized with glycerol tributyrate, olive oil, and gelatin. This multi-substrate gel was incubated first for lipase detection, until bands appeared, and then stained with Coomassie for protease detection. Advantages of this sequential procedure are the detection of two different enzyme activities on a single PAG, beside time and resource saving.

  11. Integrated analysis of isopentenyl pyrophosphate (IPP) toxicity in isoprenoid-producing Escherichia coli

    DEFF Research Database (Denmark)

    George, Kevin W; Thompson, Mitchell; Kim, Joonhoon

    2018-01-01

    evidence that IPP can be transported by E. coli, findings that might be broadly relevant for the study of isoprenoid biosynthesis. Finally, we discover that IPP accumulation leads to the formation of ApppI, a nucleotide analog of IPP that may contribute to observed toxicity phenotypes. This comprehensive...... assessment of IPP stress suggests potential strategies for the alleviation of prenyl diphosphate toxicity and highlights possible engineering targets for improved IPP flux and high titer isoprenoid production....

  12. Modulation of the epithelial sodium channel (ENaC by bacterial metalloproteases and protease inhibitors.

    Directory of Open Access Journals (Sweden)

    Michael B Butterworth

    Full Text Available The serralysin family of metalloproteases is associated with the virulence of multiple gram-negative human pathogens, including Pseudomonas aeruginosa and Serratia marcescens. The serralysin proteases share highly conserved catalytic domains and show evolutionary similarity to the mammalian matrix metalloproteases. Our previous studies demonstrated that alkaline protease (AP from Pseudomonas aeruginosa is capable of activating the epithelial sodium channel (ENaC, leading to an increase in sodium absorption in airway epithelia. The serralysin proteases are often co-expressed with endogenous, intracellular or periplasmic inhibitors, which putatively protect the bacterium from unwanted or unregulated protease activities. To evaluate the potential use of these small protein inhibitors in regulating the serralysin induced activation of ENaC, proteases from Pseudomonas aeruginosa and Serratia marcescens were purified for characterization along with a high affinity inhibitor from Pseudomonas. Both proteases showed activity against in vitro substrates and could be blocked by near stoichiometric concentrations of the inhibitor. In addition, both proteases were capable of activating ENaC when added to the apical surfaces of multiple epithelial cells with similar slow activation kinetics. The high-affinity periplasmic inhibitor from Pseudomonas effectively blocked this activation. These data suggest that multiple metalloproteases are capable of activating ENaC. Further, the endogenous, periplasmic bacterial inhibitors may be useful for modulating the downstream effects of the serralysin virulence factors under physiological conditions.

  13. A recombinant fusion protein-based, fluorescent protease assay for high throughput-compatible substrate screening.

    Science.gov (United States)

    Bozóki, Beáta; Gazda, Lívia; Tóth, Ferenc; Miczi, Márió; Mótyán, János András; Tőzsér, József

    2018-01-01

    In connection with the intensive investigation of proteases, several methods have been developed for analysis of the substrate specificity. Due to the great number of proteases and the expected target molecules to be analyzed, time- and cost-efficient high-throughput screening (HTS) methods are preferred. Here we describe the development and application of a separation-based HTS-compatible fluorescent protease assay, which is based on the use of recombinant fusion proteins as substrates of proteases. The protein substrates used in this assay consists of N-terminal (hexahistidine and maltose binding protein) fusion tags, cleavage sequences of the tobacco etch virus (TEV) and HIV-1 proteases, and a C-terminal fluorescent protein (mApple or mTurquoise2). The assay is based on the fluorimetric detection of the fluorescent proteins, which are released from the magnetic bead-attached substrates by the proteolytic cleavage. The protease assay has been applied for activity measurements of TEV and HIV-1 proteases to test the suitability of the system for enzyme kinetic measurements, inhibition studies, and determination of pH optimum. We also found that denatured fluorescent proteins can be renatured after SDS-PAGE of denaturing conditions, but showed differences in their renaturation abilities. After in-gel renaturation both substrates and cleavage products can be identified by in-gel UV detection. Copyright © 2017 Elsevier Inc. All rights reserved.

  14. Variably protease-sensitive prionopathy in the UK: a retrospective review 1991-2008

    NARCIS (Netherlands)

    Head, M.W.; Yull, H.M.; Ritchie, D.L.; Langeveld, J.P.M.; Fletcher, N.A.; Knight, R.S.; Ironside, J.W.

    2013-01-01

    Variably protease-sensitive prionopathy is a newly described human prion disease of unknown aetiology lying out with the hitherto recognized phenotypic spectrum of Creutzfeldt-Jakob disease. Two cases that conform to the variably protease-sensitive prionopathy phenotype have been identified

  15. Identification and isoforms specificity of barley (Hordeum vulgare) grain proteinaceous inhibitors of commercial feed protease

    DEFF Research Database (Denmark)

    Dionisio, Giuseppe; Brinch-Pedersen, Henrik

    2016-01-01

    Protease is commonly used as feed additive. Ronozyme® ProAct, a subtilisin-like serine feed protease is different from the already characterized Bacillus subtilisin-like serine protease. When used in wheat and barley based feed, its degree of efficiency differs according to the cultivar in analys...

  16. Protease production during growth and autolysis of submerged Metarhizium anisopliae cultures Produção de protease durante o crescimento e análise de culturas submersas de Metarhizium anisopliae

    Directory of Open Access Journals (Sweden)

    Gilberto U.L. Braga

    1999-04-01

    Full Text Available The growth and autolysis of two strains of the entomopathogenic deuteromycete fungus Metarhizium anisopliae var. anisopliae were evaluated in medium containing casein or glucose as carbon source. Parameters such as economic coefficient and degree of autolysis were determined for each strain. Protease production was determined throughout the growth and autolysis phases of the cultures on medium under conditions of protease induction (in the presence of casein as sole source of carbon and nitrogen. The fungus was shown to utilize casein as a carbon/energy source in a more efficient manner than glucose. The autolysis shown by the strains was intense under both types of growth conditions, reaching up to 62.7% of the dry mass produced and started soon after the depletion of the exogenous carbon source. The relationship between the proteolytic activities of the two strains evaluated varied significantly (a maximum of 19.78 on the 5th day and a minimum of 2.03 on the 16th day of growth during the various growth and autolysis phases, clearly showing that the difference between the growth curves and the difference in the kinetics of enzyme production may decisively affect the process of strain selection for protease production.O crescimento e a autólise de duas linhagens do deuteromiceto entomopatogênico Metarhizium anisopliae var. anisopliae foram avaliados em meio contendo caseína ou glicose como fonte de carbono. Foram determinados parâmetros como o coeficiente econômico e o grau de autólise apresentado pelas linhagens. A produção de protease foi determinada durante todas as fases do crescimento e da autólise das culturas, em meio indutor da produção de proteases (meio contendo caseína como única fonte de carbono e de nitrogênio. Pôde-se verificar que o fungo foi capaz de utilizar a caseína como fonte de carbono/energia de maneira mais eficiente do que a glicose. A autólise apresentada pelas linhagens foi intensa em ambas as condi

  17. HIV-1 protease-induced apoptosis

    Czech Academy of Sciences Publication Activity Database

    Rumlová, Michaela; Křížová, Ivana; Keprová, Alena; Hadravová, Romana; Doležal, Michal; Strohalmová, Karolína; Pichová, Iva; Hájek, Miroslav; Ruml, T.

    2014-01-01

    Roč. 11, May 20 (2014), 37/1-37/15 ISSN 1742-4690 R&D Projects: GA ČR GA204/09/1388 Institutional support: RVO:61388963 Keywords : HIV protease * BCA3 * AKIP-1 * apoptosis * mitochondria Subject RIV: EE - Microbiology, Virology Impact factor: 4.185, year: 2014 http://www.retrovirology.com/content/11/1/37

  18. Toxicity of Single and Mixed Contaminants in Seawater Measured with Acute Toxicity Bioassays

    Directory of Open Access Journals (Sweden)

    A.R. Fernandez-Alba

    2002-01-01

    Full Text Available Different types of organic pollutants commonly detected in seawater have been evaluated by acute toxicity bioassays. Vibrio fischeri, Daphnia magna, and Selenastrum capricornotum were selected to test toxic effects of individual compounds and mixtures of these compounds, obtaining EC50 values in the range of 0.001 to 28.9 mg/l. In the case of mixtures, synergistic toxic responses were seen for a clear majority of the cases (>60%. Mixtures containing methyl-tertiary-butyl ether (MTBE exhibit accelerated processes that result in a change in concentration required to produce a toxic effect; for example, in the case of mixtures containing MTBE and Diuron and Dichlofluanid.

  19. Partial Purification and Characterization of Extracellular Protease ...

    African Journals Online (AJOL)

    USER

    Keywords: Protease, lactic acid bacteria, Pediococcus acidilactici, enzyme ... confers organoleptic improvements in fermented foods ... was characterized by studying the effect of substrate ... addition of solid ammonium sulphate up to 80%.

  20. Potential antioxidant peptides produced from whey hydrolysis with an immobilized aspartic protease from Salpichroa origanifolia fruits.

    Science.gov (United States)

    Rocha, Gabriela Fernanda; Kise, Francisco; Rosso, Adriana Mabel; Parisi, Mónica Graciela

    2017-12-15

    An aspartic protease from Salpichroa origanifolia fruits was successfully immobilized onto an activated support of glutaraldehyde agarose. The immobilized enzyme presented higher thermal stability than the free enzyme from 40°C to 50°C and high reusability, retaining 54% of the initial activity after ten cycles of the process. Whey protein concentrates (WPC) were hydrolyzed with both free and immobilized enzyme, reaching a similar degree of hydrolysis of approximately 6-8% after 20h. In addition, the immobilized derivate hydrolyzed α-lactalbumin protein with a higher affinity than β-lactoglobulin. The hydrolysate was ultra-filtrated, and the fractions were evaluated for antioxidant activities with the 2,2-diphenyl-1-picrylhydrazyl (DPPH) radical scavenging activity method. The fraction containing peptides with a molecular mass below 3kDa demonstrated a strong radical quenching effect (IC 50: 0.48mg/ml). These results suggest that hydrolyzed WPC could be considered as a promising source of natural food antioxidants for the development of functional food. Copyright © 2017 Elsevier Ltd. All rights reserved.

  1. Fibrinolytic protease production by new Streptomyces sp. DPUA 1576 from Amazon lichens

    Directory of Open Access Journals (Sweden)

    Germana M.M. Silva

    2015-01-01

    Conclusions: These results show that the optimization of the culture medium can enhance protease production, thus becoming a good process for further research. In addition, Streptomyces sp. DPUA 1576, isolated from Amazon lichens, might be a potential strain for fibrinolytic protease production.

  2. Protease digestion from wheat stillage within a dry grind ethanol facility.

    Science.gov (United States)

    Bals, Bryan; Brehmer, Ben; Dale, Bruce; Sanders, Johan

    2011-01-01

    As the current starch based ethanol market increases at its rapid pace, finding new markets for the primary coproduct, distiller's grains, has gained considerable interest. One possibility is to isolate the protein-rich fraction for use as precursors to biochemicals and bioplastics, further decreasing fossil fuel consumption. This research focuses on enzymatic extraction of protein peptides from wheat heavy stillage using commercially available proteases. The energy saved due to this process ranged from ∼ 1.5 to 3.0 GJ/ton wheat stillage compared to fossil fuel-based chemicals. Using Protex 6L (Genencor), ∼ 57% of the protein in the stillage was soluble 24 h after protease addition at 0.1% w/w loading. Of these proteins, ∼ 32% were already soluble, indicating the importance of using wet heavy stillage as the feedstock rather than dried distiller's grains. Peptide size was less than 6 kDa. Further improvements in protein removal may be obtained through a fed batch addition of protease and improved protease cocktails. Copyright © 2011 American Institute of Chemical Engineers (AIChE).

  3. Crystal structure of a novel cysteinless plant Kunitz-type protease inhibitor

    International Nuclear Information System (INIS)

    Hansen, Daiane; Macedo-Ribeiro, Sandra; Verissimo, Paula; Yoo Im, Sonia; Sampaio, Misako Uemura; Oliva, Maria Luiza Vilela

    2007-01-01

    Bauhinia bauhinioides Cruzipain Inhibitor (BbCI) is a cysteine protease inhibitor highly homologous to plant Kunitz-type inhibitors. However, in contrast to classical Kunitz family inhibitors it lacks cysteine residues and therefore disulfide bridges. BbCI is also distinct in the ability to inactivate enzymes belonging to two different classes, cysteine and serine proteases. Besides inhibiting the cysteine protease cruzipain, BbCI also inhibits cathepsin L and the serine proteases HNE (human neutrophil elastase) and PPE (porcine pancreatic elastase). Monoclinic crystals of the recombinant inhibitor that diffract to 1.7 A resolution were obtained using hanging drop method by vapor diffusion at 18 o C. The refined structure shows the conservative β-trefoil fold features of the Kunitz inhibitors. In BbCI, one of the two characteristic S-S bonds is replaced by the water-mediated interaction between Tyr125 and Gly132. In this work we explore the structural differences between Kunitz-type inhibitors and analyze the essential interactions that maintain the protein structural stability preserving its biological function

  4. Cysteine proteases and wheat (Triticum aestivum L) under drought: A still greatly unexplored association.

    Science.gov (United States)

    Botha, Anna-Maria; Kunert, Karl J; Cullis, Christopher A

    2017-09-01

    Bread wheat (Triticum aestivum L.) provides about 19% of global dietary energy. Environmental stress, such as drought, affects wheat growth causing premature plant senescence and ultimately plant death. A plant response to drought is an increase in protease-mediated proteolysis with rapid degradation of proteins required for metabolic processes. Among the plant proteases that are increased in their activity following stress, cysteine proteases are the best characterized. Very little is known about particular wheat cysteine protease sequences, their expression and also localization. The current knowledge on wheat cysteine proteases belonging to the five clans (CA, CD, CE, CF and CP) is outlined, in particular their expression and possible function under drought. The first successes in establishing an annotated wheat genome database are further highlighted which has allowed more detailed mining of cysteine proteases. We also share our thoughts on future research directions considering the growing availability of genomic resources of this very important food crop. Finally, we also outline future application of developed knowledge in transgenic wheat plants for environmental stress protection and also as senescence markers to monitor wheat growth under environmental stress conditions. © 2017 John Wiley & Sons Ltd.

  5. Towards tricking a pathogen's protease into fighting infection: the 3D structure of a stable circularly permuted onconase variant cleavedby HIV-1 protease.

    Directory of Open Access Journals (Sweden)

    Mariona Callís

    Full Text Available Onconase® is a highly cytotoxic amphibian homolog of Ribonuclease A. Here, we describe the construction of circularly permuted Onconase® variants by connecting the N- and C-termini of this enzyme with amino acid residues that are recognized and cleaved by the human immunodeficiency virus protease. Uncleaved circularly permuted Onconase® variants are unusually stable, non-cytotoxic and can internalize in human T-lymphocyte Jurkat cells. The structure, stability and dynamics of an intact and a cleaved circularly permuted Onconase® variant were determined by Nuclear Magnetic Resonance spectroscopy and provide valuable insight into the changes in catalytic efficiency caused by the cleavage. The understanding of the structural environment and the dynamics of the activation process represents a first step toward the development of more effective drugs for the treatment of diseases related to pathogens expressing a specific protease. By taking advantage of the protease's activity to initiate a cytotoxic cascade, this approach is thought to be less susceptible to known resistance mechanisms.

  6. Purification and characterization of an alkaline protease from Micrococcus sp. isolated from the South China Sea

    Science.gov (United States)

    Hou, Enling; Xia, Tao; Zhang, Zhaohui; Mao, Xiangzhao

    2017-04-01

    Protease is wildly used in various fields, such as food, medicine, washing, leather, cosmetics and other industrial fields. In this study, an alkaline protease secreted by Micrococcus NH54PC02 isolated from the South China Sea was purified and characterized. The growth curve and enzyme activity curve indicated that the cell reached a maximum concentration at the 30th hour and the enzyme activity reached the maximum value at the 36th hour. The protease was purified with 3 steps involving ammonium sulfate precipitation, ion-exchange chromatography and hydrophobic chromatography with 8.22-fold increase in specific activity and 23.68% increase in the recovery. The molecular mass of the protease was estimated to be 25 kDa by SDS-PAGE analysis. The optimum temperature and pH for the protease activity were 50°C and pH 10.0, respectively. The protease showed a strong stability in a wide range of pH values ranging from 6.0-11.0, and maintained 90% enzyme activity in strong alkaline environment with pH 11.0. Inhibitor trials indicated that the protease might be serine protease. But it also possessed the characteristic of metalloprotease as it could be strongly inhibited by EDTA and strongly stimulated by Mn2+. Evaluation of matrix-assisted laser desorption ionization/time-of-flight MS (MALDI-TOF-TOF/MS) showed that the protease might belong to the peptidase S8 family.

  7. Formulation studies on stability of solid-state proteases for detergent applications

    DEFF Research Database (Denmark)

    Ay, Suzan Biran; Jensen, Anker Degn; Kiil, Søren

    2012-01-01

    Enzymes are one of the most important components in the laundry detergents. They effectively contribute to the washing process by decreasing energy and water consumption, reducing environmental load of detergent products, leaving non-toxic water effluents and providing fabric care. Ensuring prope...... the antioxidant homogeneously with the enzyme was found to provide a better protection than coating the salt as a separate layer due to crack formation and/or deliquescence of Na2S2O3 at high humidity.......-dried detergent protease, Savinase, were determined in a newly developed experimental setup, providing rapid assessment of solid-state enzyme stability under oxidizing conditions. The method was based on exposure of an enzyme column to known concentrations of H2O2 (g) and humidity in a thermally stabilized...... that, the inactivation was caused by single-oxidation of the enzyme at Met222 residue. Formulation studies revealed that, having an anti-oxidative property,Na2S2O3 had a better activity-preservation effect compared to Na2CO3, retaining 80% and 60% residual activity, respectively. In addition, mixing...

  8. Comparative characterization of protease activity in cultured spotted rose snapper juveniles (Lutjanus guttatus

    Directory of Open Access Journals (Sweden)

    Emyr Peña

    2015-09-01

    Full Text Available Partial characterizations of digestive proteases were studied in three life stages of spotted rose snapper: early (EJ, middle (MJ and late juvenile (LJ with corresponding average weights of 21.3 ± 2.6 g (3 months after hatching, MAH, 190 ± 4.4 g (7 MAH, and 400 ± 11.5 g (12 MAH. At sampling points, the digestive tract was dissected into the stomach (St, pyloric caeca (PC, and the intestine in three sections (proximal (PI, middle (MI and distal intestine (DI. The effect of pH and temperature and specific inhibitors were evaluated for acid and alkaline proteases. Total acid and alkaline protease activity showed a tendency to increase with juvenile life stage of fish while trypsin activity decreased. Differences were found in acid and alkaline protease activities at different pH and temperatures during juvenile stages. Pepstatin A inhibited total activity in the stomach extract in all juvenile stages. Activity in total alkaline protease inhibition was significantly higher in EJ using TLCK, PMSF, SBTI, Phen and Ovo than in MJ and LJ, while no significant differences were found with TPCK inhibition. Therefore increases in protease activities with fish growth through juvenile stages in which a substitution or diversification in the type of alkaline enzymes exist. These results lead a better comprehension of changes in digestive potential of Lutjanidae fish.

  9. Genome-wide analysis of regulatory proteases sequences identified through bioinformatics data mining in Taenia solium.

    Science.gov (United States)

    Yan, Hong-Bin; Lou, Zhong-Zi; Li, Li; Brindley, Paul J; Zheng, Yadong; Luo, Xuenong; Hou, Junling; Guo, Aijiang; Jia, Wan-Zhong; Cai, Xuepeng

    2014-06-04

    Cysticercosis remains a major neglected tropical disease of humanity in many regions, especially in sub-Saharan Africa, Central America and elsewhere. Owing to the emerging drug resistance and the inability of current drugs to prevent re-infection, identification of novel vaccines and chemotherapeutic agents against Taenia solium and related helminth pathogens is a public health priority. The T. solium genome and the predicted proteome were reported recently, providing a wealth of information from which new interventional targets might be identified. In order to characterize and classify the entire repertoire of protease-encoding genes of T. solium, which act fundamental biological roles in all life processes, we analyzed the predicted proteins of this cestode through a combination of bioinformatics tools. Functional annotation was performed to yield insights into the signaling processes relevant to the complex developmental cycle of this tapeworm and to highlight a suite of the proteases as potential intervention targets. Within the genome of this helminth parasite, we identified 200 open reading frames encoding proteases from five clans, which correspond to 1.68% of the 11,902 protein-encoding genes predicted to be present in its genome. These proteases include calpains, cytosolic, mitochondrial signal peptidases, ubiquitylation related proteins, and others. Many not only show significant similarity to proteases in the Conserved Domain Database but have conserved active sites and catalytic domains. KEGG Automatic Annotation Server (KAAS) analysis indicated that ~60% of these proteases share strong sequence identities with proteins of the KEGG database, which are involved in human disease, metabolic pathways, genetic information processes, cellular processes, environmental information processes and organismal systems. Also, we identified signal peptides and transmembrane helices through comparative analysis with classes of important regulatory proteases

  10. Studies On Optimization Of Protease Production Using Bacterial Isolate Clri Strain 5468 And Its Application In Dehairing And Hydrolysis Of Tannery Fleshings Solid Waste Management

    Directory of Open Access Journals (Sweden)

    Vimala Devi Seenivasagham

    2015-08-01

    Full Text Available The strain which produces protease was originally isolated characterized in Biotechnology laboratory at CLRI and was maintained. The microorganism was growned on several proteolytic media and the maximum activity was observed. The characterization of enzyme was analysed for different pH temperature size of inoculum inhibitors age of the culture. Then the enzyme was observed for the unhairing of skin and the disadvantage in chemical treatment was studied. The conformation of unhairing was studied using histology studies. The tannery waste solid fleshings as it is cannot be directly disposed off to the environment. It was treated with the microbial proteases. The hydrolysis of waste was done using proteases. The solid waste was converted to protien fat and the salt matter. Future work is to optimize the cheap media for the production of the enzyme for large scale applications in various industries.

  11. Identification, Characterization and Down-Regulation of Cysteine Protease Genes in Tobacco for Use in Recombinant Protein Production.

    Directory of Open Access Journals (Sweden)

    Kishor Duwadi

    Full Text Available Plants are an attractive host system for pharmaceutical protein production. Many therapeutic proteins have been produced and scaled up in plants at a low cost compared to the conventional microbial and animal-based systems. The main technical challenge during this process is to produce sufficient levels of recombinant proteins in plants. Low yield is generally caused by proteolytic degradation during expression and downstream processing of recombinant proteins. The yield of human therapeutic interleukin (IL-10 produced in transgenic tobacco leaves was found to be below the critical level, and may be due to degradation by tobacco proteases. Here, we identified a total of 60 putative cysteine protease genes (CysP in tobacco. Based on their predicted expression in leaf tissue, 10 candidate CysPs (CysP1-CysP10 were selected for further characterization. The effect of CysP gene silencing on IL-10 accumulation was examined in tobacco. It was found that the recombinant protein yield in tobacco could be increased by silencing CysP6. Transient expression of CysP6 silencing construct also showed an increase in IL-10 accumulation in comparison to the control. Moreover, CysP6 localizes to the endoplasmic reticulum (ER, suggesting that ER may be the site of IL-10 degradation. Overall results suggest that CysP6 is important in determining the yield of recombinant IL-10 in tobacco leaves.

  12. Effects of cysteine protease inhibitors on rabbit cathepsin D maturation

    International Nuclear Information System (INIS)

    Samarel, A.M.; Ferguson, A.G.; Decker, R.S.; Lesch, M.

    1989-01-01

    To examine the effects of cysteine protease inhibitors on cathepsin D intracellular transport, proteolytic processing, and secretion, primary cultures of rabbit cardiac fibroblasts were grown to confluence and exposed to media containing leupeptin, E 64, or chloroquine. Cathepsin D maturation was then evaluated in pulse-chase biosynthetic labeling experiments. None of the three agents affected the charge modification of procathepsin D within the Golgi apparatus. However, all three agents interfered with the subsequent proteolytic processing of procathepsin D isoforms to active cathepsin D. Both leupeptin and E 64 caused the intracellular accumulation of large amounts of a Mr 51,000 processing intermediate. Trace amounts of this intermediate were also detected in chloroquine-treated cells. Combined activity assay and radioimmunoassay of cell lysates indicated that this partially processed form of cathepsin D possessed proteolytic activity. Whereas low medium concentrations of leupeptin (10-100 microM) but not E 64 appeared to stimulate procathepsin D secretion, neither agent appeared to have a major effect on the rate of proenzyme secretion at doses required to inhibit proteolytic maturation (1-10 mM). Furthermore, pretreatment of cells with 10 mM leupeptin appeared only to delay, but not prevent, the intracellular transport of cathepsin D to lysosomes. In contrast, chloroquine increased procathepsin D secretion in a dose-dependent manner, diverting the majority of newly synthesized procathepsin D from the intracellular protease(s) responsible for proteolytic processing. These results suggest that cysteine proteases participate in the proteolytic maturation of procathepsin D during the transport of newly synthesized enzyme to lysosomes, but cysteine protease-mediated proteolytic processing is not required for cathepsin D activation or lysosomal translocation

  13. The dissemination of C10 cysteine protease genes in Bacteroides fragilis by mobile genetic elements

    LENUS (Irish Health Repository)

    Thornton, Roibeard F

    2010-04-23

    Abstract Background The C10 family of cysteine proteases includes enzymes that contribute to the virulence of bacterial pathogens, such as SpeB in Streptococcus pyogenes. The presence of homologues of cysteine protease genes in human commensal organisms has not been examined. Bacteroides fragilis is a member of the dominant Bacteroidetes phylum of the human intestinal microbiota, and is a significant opportunistic pathogen. Results Four homologues of the streptococcal virulence factor SpeB were identified in the B. fragilis genome. These four protease genes, two were directly contiguous to open reading frames predicted to encode staphostatin-like inhibitors, with which the protease genes were co-transcribed. Two of these protease genes are unique to B. fragilis 638R and are associated with two large genomic insertions. Gene annotation indicated that one of these insertions was a conjugative Tn-like element and the other was a prophage-like element, which was shown to be capable of excision. Homologues of the B. fragilis C10 protease genes were present in a panel of clinical isolates, and in DNA extracted from normal human faecal microbiota. Conclusions This study suggests a mechanism for the evolution and dissemination of an important class of protease in major members of the normal human microbiota.

  14. The dissemination of C10 cysteine protease genes in Bacteroides fragilis by mobile genetic elements

    Directory of Open Access Journals (Sweden)

    Kagawa Todd F

    2010-04-01

    Full Text Available Abstract Background The C10 family of cysteine proteases includes enzymes that contribute to the virulence of bacterial pathogens, such as SpeB in Streptococcus pyogenes. The presence of homologues of cysteine protease genes in human commensal organisms has not been examined. Bacteroides fragilis is a member of the dominant Bacteroidetes phylum of the human intestinal microbiota, and is a significant opportunistic pathogen. Results Four homologues of the streptococcal virulence factor SpeB were identified in the B. fragilis genome. These four protease genes, two were directly contiguous to open reading frames predicted to encode staphostatin-like inhibitors, with which the protease genes were co-transcribed. Two of these protease genes are unique to B. fragilis 638R and are associated with two large genomic insertions. Gene annotation indicated that one of these insertions was a conjugative Tn-like element and the other was a prophage-like element, which was shown to be capable of excision. Homologues of the B. fragilis C10 protease genes were present in a panel of clinical isolates, and in DNA extracted from normal human faecal microbiota. Conclusions This study suggests a mechanism for the evolution and dissemination of an important class of protease in major members of the normal human microbiota.

  15. Teaching Foundational Topics and Scientific Skills in Biochemistry within the Conceptual Framework of HIV Protease

    Science.gov (United States)

    Johnson, R. Jeremy

    2014-01-01

    HIV protease has served as a model protein for understanding protein structure, enzyme kinetics, structure-based drug design, and protein evolution. Inhibitors of HIV protease are also an essential part of effective HIV/AIDS treatment and have provided great societal benefits. The broad applications for HIV protease and its inhibitors make it a…

  16. Characterization of the Aspergillus niger prtT, a unique regulator of extracellular protease encoding genes

    NARCIS (Netherlands)

    Punt, P.J.; Schuren, F.H.J.; Lehmbeck, J.; Christensen, T.; Hjort, C.; Hondel, C.A.M.J.J. van den

    2008-01-01

    Expression of several Aspergillus niger genes encoding major secreted, but not vacuolar, protease genes including the major acid protease gene pepA, was shown to be affected in the previously isolated A. niger protease mutant, AB1.13 [Mattern, I.E., van Noort, J.M., van den Berg, P., Archer, D.A.,

  17. Sponge-Associated Bacteria Produce Non-cytotoxic Melanin Which Protects Animal Cells from Photo-Toxicity.

    Science.gov (United States)

    Vijayan, Vijitha; Jasmin, Chekidhenkuzhiyil; Anas, Abdulaziz; Parakkaparambil Kuttan, Sreelakshmi; Vinothkumar, Saradavey; Perunninakulath Subrayan, Parameswaran; Nair, Shanta

    2017-09-01

    Melanin is a photo-protective polymer found in many organisms. Our research shows that the bacteria associated with darkly pigmented sponges (Haliclona pigmentifera, Sigmadocia pumila, Fasciospongia cavernosa, Spongia officinalis, and Callyspongia diffusa) secrete non-cytotoxic melanin, with antioxidant activity that protects animal cells from photo-toxicity. Out of 156 bacterial strains screened, 22 produced melanin and these melanin-producing bacteria (MPB) were identified as Vibrio spp., Providencia sp., Bacillus sp., Shewanella sp., Staphylococcus sp., Planococcus sp., Salinococcus sp., and Glutamicibacter sp. Maximum melanin production was exhibited by Vibrio alginolyticus Marine Microbial Reference Facility (MMRF) 534 (50 mg ml -1 ), followed by two isolates of Vibrio harveyi MMRF 535 (40 mg ml -1 ) and MMRF 546 (30 mg ml -1 ). Using pathway inhibition assay and FT-IR spectral analysis, we identified the melanin secreted into the culture medium of MPB as 1,8-dihydroxynaphthalene-melanin. The bacterial melanin was non-cytotoxic to mouse fibroblast L929 cells and brine shrimps up to a concentration of 200 and 500 ppm, respectively. Bacterial melanin showed antioxidant activity at very low concentration (IC 50 -9.0 ppm) and at 50 ppm, melanin protected L929 cells from UV-induced intracellular reactive oxygen stress. Our study proposes sponge-associated bacteria as a potential source of non-cytotoxic melanin with antioxidant potentials.

  18. Anticancer activities of emetine prodrugs that are proteolytically activated by the prostate specific antigen (PSA) and evaluation of in vivo toxicity of emetine derivatives.

    Science.gov (United States)

    Akinboye, Emmanuel S; Rosen, Marc D; Bakare, Oladapo; Denmeade, Samuel R

    2017-12-15

    Emetine is a small molecule protein synthesis inhibitor that is toxic to all cell types and therefore suitable for complete killing of all types of heterogeneous cancer cells within a tumor. It becomes significantly inactive (non-toxic) when derivatized at its N-2' secondary amine. This provides a strategy for targeting emetine to cancerous tumor without killing normal cells. In this report, PSA activatable peptide prodrugs of emetine were synthesized. To overcome steric hindrances and enhance protease specific cleavage, a 2-stage prodrug activation process was needed to release emetine in cancer cells. In this 2-stage process, emetine prodrug intermediates are coupled to PSA peptide substrate (Ac-His-Ser-Ser-Lys-Leu-Gln) to obtain the full prodrug. Both prodrug intermediates 10 (Ala-Pro-PABC-Emetine) and 14 (Ser-Leu-PABC-Emetine) were evaluated for kinetics of hydrolysis to emetine and potency [Where PABC = p-aminobenzyloxycarbonyl]. While both intermediates quantitatively liberate emetine when incubated under appropriate conditions, upon coupling of PSA substrate to give the full prodrugs, only prodrug 16, the prodrug obtained from 14 was hydrolyzable by PSA. Cytotoxicity studies in PSA producing LNCaP and CWR22Rv1 confirm the activation of the prodrug by PSA with an IC 50 of 75 nM and 59 nM respectively. The cytotoxicity of 16 is significantly reduced in cell lines that do not produce PSA. Further, in vivo toxicity studies are done on these prodrugs and other derivatives of emetine. The results show the significance of conformational modulation in obtaining safe emetine prodrugs. Copyright © 2017 Elsevier Ltd. All rights reserved.

  19. Selection of suitable detergents for obtaining an active dengue protease in its natural form from E. coli.

    Science.gov (United States)

    Liew, Lynette Sin Yee; Lee, Michelle Yueqi; Wong, Ying Lei; Cheng, Jinting; Li, Qingxin; Kang, CongBao

    2016-05-01

    Dengue protease is a two-component enzyme and is an important drug target against dengue virus. The protease activity and protein stability of dengue nonstructural protein 3 (NS3) require a co-factor region from a four-span membrane protein NS2B. A natural form of dengue protease containing full-length NS2B and NS3 protease domain NS2BFL-NS3pro will be useful for dengue drug discovery. In current study, detergents that can be used for protease purification were tested. Using a water soluble protease construct, 39 detergents were selected for both NS2B and NS2BFL-NS3pro purification. The results showed that 18 detergents were able to sustain the activity of the natural dengue protease and 11 detergents could be used for NS2B purification. The results obtained in this study will be useful for biochemical and biophysical studies on dengue protease. Copyright © 2016 Elsevier Inc. All rights reserved.

  20. Roles of secretory leukocyte protease inhibitor amniotic membrane in oral wound healing

    Directory of Open Access Journals (Sweden)

    Elly Munadziroh

    2006-12-01

    Full Text Available Secretory Leukocyte Protease Inhibitor (SLPI is serine protease inhibitor. Secretory Leukocyte Protease Inhibitor is a protein found in secretions such as whole saliva, seminal fluid, cervical mucus, synovial fluid, breast milk, tears, and cerebral spinal fluid, as in secretions from the nose and bronchi, amniotic fluid and amniotic membrane etc. These findings demonstrate that SLPI function as a potent anti protease, anti inflammatory, bactericidal, antifungal, tissue repair, extra cellular synthesis. Impaired healing states are characterized by excessive proteolysis and often bacterial infection, leading to the hypothesis that SLPI may have a role in the process. The objectives of this article are to investigate the role of SLPI in oral inflammation and how it contributes to tissue repair in oral mucosa. The oral wound healing responses are impaired in the SLPI sufficient mice and matrix synthesis and collagen deposition are delayed. This study indicated that SLPI is a povital factor necessary for optimal wound healing.

  1. Different contributions of HtrA protease and chaperone activities to Campylobacter jejuni stress tolerance and physiology

    DEFF Research Database (Denmark)

    Bæk, Kristoffer Torbjørn; Vegge, Christina Skovgaard; Skórko-Glonek, Joanna

    2011-01-01

    activity is sufficient for growth at high temperature or oxidative stress, whereas the HtrA protease activity is only essential at conditions close to the growth limit for C. jejuni. However, the protease activity was required to prevent induction of the cytoplasmic heat-shock response even at optimal......The microaerophilic bacterium Campylobacter jejuni is the most common cause of bacterial food-borne infections in the developed world. Tolerance to environmental stress relies on proteases and chaperones in the cell envelope such as HtrA and SurA. HtrA displays both chaperone and protease activity......, but little is known about how each of these activities contributes to stress tolerance in bacteria. In vitro experiments showed temperature dependent protease and chaperone activities of C. jejuni HtrA. A C. jejuni mutant lacking only the protease activity of HtrA was used to show that the HtrA chaperone...

  2. Identification of novel malarial cysteine protease inhibitors using structure-based virtual screening of a focused cysteine protease inhibitor library.

    Science.gov (United States)

    Shah, Falgun; Mukherjee, Prasenjit; Gut, Jiri; Legac, Jennifer; Rosenthal, Philip J; Tekwani, Babu L; Avery, Mitchell A

    2011-04-25

    Malaria, in particular that caused by Plasmodium falciparum , is prevalent across the tropics, and its medicinal control is limited by widespread drug resistance. Cysteine proteases of P. falciparum , falcipain-2 (FP-2) and falcipain-3 (FP-3), are major hemoglobinases, validated as potential antimalarial drug targets. Structure-based virtual screening of a focused cysteine protease inhibitor library built with soft rather than hard electrophiles was performed against an X-ray crystal structure of FP-2 using the Glide docking program. An enrichment study was performed to select a suitable scoring function and to retrieve potential candidates against FP-2 from a large chemical database. Biological evaluation of 50 selected compounds identified 21 diverse nonpeptidic inhibitors of FP-2 with a hit rate of 42%. Atomic Fukui indices were used to predict the most electrophilic center and its electrophilicity in the identified hits. Comparison of predicted electrophilicity of electrophiles in identified hits with those in known irreversible inhibitors suggested the soft-nature of electrophiles in the selected target compounds. The present study highlights the importance of focused libraries and enrichment studies in structure-based virtual screening. In addition, few compounds were screened against homologous human cysteine proteases for selectivity analysis. Further evaluation of structure-activity relationships around these nonpeptidic scaffolds could help in the development of selective leads for antimalarial chemotherapy.

  3. Optimization of medium composition for thermostable protease ...

    African Journals Online (AJOL)

    SERVER

    2008-04-17

    Apr 17, 2008 ... Optimization of the fermentation medium for maximization of thermostable neutral protease production by Bacillus sp. ..... Each contour curve represented an infinite number of combinations of two ..... Production in sea-water of.